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Abstract
This paper argues for an integrated approach to verification, combining offline and online verifi-

cation techniques used at different stages of a system’s lifetime, in order to detect and correct failures
arising from design errors and program bugs. We propose a formal framework for online verification
and recovery, including a fault model, within which such an integrated approach can be investigated.

As a particular instance, we consider the problem of recovering a class of finite-state systems, at
run-time, from failures of safety properties, while leveraging results of offline verification. This class
comprises systems whose behavior can be divided into rounds such that each round is largely indepen-
dent of the others. We give a randomized recovery strategy based on online learning for which the
expected number of recovery actions performed in any state is at most logarithmic in the total number of
actions, assuming perfect error localization. Results from design-time verification can be used to reduce
the search space of the recovery algorithm and deal with imperfections in error localization. We illustrate
our approach with case studies.

Our results are a step towards building reactive systems that are robust to failures and self-evolve
towards correct systems.

1 Introduction
Computer systems are ubiqituous today, and we rely heavily on them. However, much remains to be done to
ensure dependable computing. In fact, improving the trustworthiness and robustness of computer systems
has been identified as a grand challenge for Computer Science and Engineering [14].

System dependability can be improved by detecting and correcting errors. This can be done at var-
ious stages in the system’s lifetime, ranging from design-time, through compile-time and install-time, to
run-time. Accordingly, various techniques have been proposed that operate at each stage, such as design
verification, static analysis, and run-time (dynamic) error detection and recovery. However, there is little, if
any, communication and co-operation between the tools and techniques that operate at each stage.

We argue for an integrated approach to verification, wherein techniques and tools for detecting and
correcting errors at various stages in a system’s lifetime are combined to achieve robustness to failures at
run-time. The focus is on errors that are introduced into the system by the designer/programmer and/or
during synthesis/compilation.1 We will refer to these errors as design errors or bugs. Pre-run-time tech-
niques for detecting design errors, including both formal and informal methods, will be referred to as design
verification or offline verification.

Our focus on design errors and the need for an integrated approach is motivated by the following factors:
1Some of the methods we propose in this paper could potentially be applied to other classes of errors.
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1. Limitations of offline verification: The traditional approach to ensuring correctness of computer
systems is offline, based on verification and testing systems before deployment. However, increasing
complexity, short release cycles, and uncertain, dynamic environments are making it extremely hard
to deploy systems that are devoid of design errors and program bugs. Many systems operate in unsu-
pervised settings or under high-availability requirements, where “best-effort patching” of bugs does
not suffice.
We elaborate below on these challenges:

(a) Increasing complexity: Consider the field of hardware design verification. In spite of significant
advances, increasing design complexity is exacerbating the already high cost of design verifi-
cation. As Bayazit and Malik [5, 34] point out, there is an exponential gap between the rate of
increase of design complexity and the processing power available for verification. Furthermore,
according to the 2004 update to the International Technology Roadmap for Semiconductors
(ITRS) [2], verification is becoming the bottleneck in the hardware design process.

(b) Imprecise environment models: The environment a system will operate within is often unknown
before deployment; examples include space systems as well as Internet services. The tradi-
tional approach to deal with this in design verification is to adopt a conservative environment
model. However, this can lead to a unacceptably high false alarm rate for the verifier, leading to
decreased designer/programmer productivity.

(c) Evolving systems: An increasing challenge for design verification is that computer systems of
today are constantly evolving (and sometimes so are their requirements), with short deployment
life-cycles. This is especially true of software, but with increased reconfigurability, it may soon
be true of hardware systems as well. It may be unwise to spend huge resources on exhaustive
verification of a design that will change soon unless the results of that verification effort can be
re-used easily for ensuring that the evolving system stays robust to failures at run time.

In light of these limitations, we cannot rely on offline verification alone.
However, we stress that offline verification is an important step in ensuring dependability. Getting
a system correct before deploying it, using exhaustive bug-finding or a correct-by-construction ap-
proach, is a goal worth striving for. The vast body of work on offline verification must be leveraged
in any approach to dependable computing.

2. Limitations of online verification and existing techniques for recovery: Run-time or online verifi-
cation offers a solution to some of the problems with design verification. In this approach, only those
executions that occur at run-time are verified by a system component that monitors execution. Run-
time monitoring has traditionally been hobbled by a high overhead cost, but recent work on hardware
support for monitoring (e.g. [50]) have made this a promising alternative approach to design verifica-
tion. Still, a question remains: when an error has been detected, how does the system recover from
it?
The most common traditional approach to recovery is based on periodic checkpointing, rollback on
error detection, followed by a replay. This will not suffice for dealing with deterministic errors, as
the error will simply re-appear on replay. The existing solution to this problem is to use for replay a
different, simpler version of the system that must be proved correct at design time. This approach has
the following shortcomings:
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• A simpler design is (typically) slower than the optimized version, so it can lead to substantial
overhead, especially for high performance applications.

• Formally verifying the correctness of the simpler design itself is not necessarily easy.
• For software, programmable systems, and arbitrary hardware circuits, it may not be easy or

cost-effective to manually come up with a substantially simpler design.

One can also view this traditional approach as a form of “n-version programming”, which previous
studies have indicated to have a high cost of development and maintenance with unclear benefits for
system dependability [31].
Thus, online verification on its own does not suffice to ensure system dependability.

The thesis of this paper is that the challenges to both offline and online verification can be overcome by
using an integrated approach to verification, wherein offline and online verification are combined to achieve
not only efficient run-time monitoring of systems, but also online recovery. In particular, we propose a new
formal approach to online verification and recovery based on leveraging (even partial) results of offline
verification. We are concerned in this paper with reactive systems, i.e., systems that run forever and interact
with the environment at the speed of the environment.

We propose and investigate the following new research directions:

1. A formal framework for run-time recovery from design errors. Current recovery methods are limited
to known classes of bugs (e.g., buffer overruns) and there is no formal framework within which their
pros and cons can be analyzed. In this work, we seek to create such a framework, leveraging the
extensive prior work on formal models of reactive systems.

2. Learning to optimize recovery. The run-time overhead of recovery can be mitigated by self-evolving
the system over time, by use of online and offline learning. The proposed work seeks to utilize,
specialize, and extend prior work in learning theory for this purpose, for instance, in the model of
learning with mistake bounds.

3. Leveraging offline verification. We investigate ways to leverage partial results of offline verification
in order to reduce the overhead of run-time verification and improve the effectiveness of the recovery.

4. Quantifying dependability with a fault model. It is essential to gain a quantitative understanding of
the trade-off between spending resources on offline verification and incurring an overhead at run-time.
Toward this goal, we are developing formal models of faults leading to design errors.

The primary offline verification technique considered in our work is model checking. Model checking
is perhaps the most widely-used automated formal verification technique available today, for both hardware
and software. However, perhaps the most frustrating aspect of model checking is that, given short design
cycles, the process often does not terminate with a yes/no answer within the time allocated for verification.
In such cases, one is left with little to show for the many hours (or days!) for which the model checker was
run.

Techniques for run-time verification and monitoring are not the focus of this paper; there is a large and
active body of work in that area which we seek to build upon.

The rest of the paper is organized as follows. Section 2 starts with some basic background terminology.
We introduce basic ideas in our formal approach in Section 3. Ideas are explored in the context of a

class of finite-state systems whose behavior exhibits a form of state-renewal, wherein each execution can
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be divided into rounds such that each round is largely independent of the others. We define a fault model
for finite-state systems that covers common classes of faults introduced by designers/programmers, and
formally define what critical system functionality may be preserved during recovery.

We then describe in Section 4 how system recovery can be optimized by use of learning. In particular, we
give a randomized strategy the system can follow so that the expected number of recovery actions performed
for any fault is at most logarithmic in the total number of actions, assuming perfect error localization.

Section 5 shows how the presence of even partial offline verification results helps improve the proposed
recovery procedure. Results from offline verification can be used to reduce the search space of the recovery
algorithm and deal with imperfections in error localization.

A case study is described in detail in Section 6. Related work is surveyed in Section 7. We conclude in
Section 8 with a discussion of the paper’s contributions and directions for future work.

2 Background
We use the taxonomy for dependable and secure computing given by Avizienis et al [4].

A system is an entity that interacts with other entities (systems), including hardware, software, human
beings, and the physical world. These other systems form its environment.

The focus of this paper is on making systems robust from errors that the designer/programmer might
introduce into the system description, especially those errors that are deterministic in nature. We assume
that the system is accompanied by a formal specification of its correct behavior, as elaborated in Section 3.

A failure occurs in a system when its behavior deviates from the specification. The part of the system
state that exhibits this deviation is the error. The adjudged or hypothesized cause of an error is called a fault.

3 Formal Framework
We now give a formal treatment of the problem of recovering from run-time failures of a class of finite-
state systems. We begin in Section 3.1 with the formal model of this class of systems along with relevant
definitions. A fault model is introduced in Section 3.2 as a way of quantifying the capabilities of a recovery
technique.

3.1 System, Properties, Error Detection, and Recovery
The system M is modeled as a finite-state transition system, represented as a tuple (S,A, δ, I), where

• S is the set of system states;

• A is the set of system actions;

• δ ⊆ S ×A → S is the transition function that describes the next state of the system that results from
performing an action in the current state; and

• I is the set of initial states of the system.

The above system model is standard. Formally, an action is a predicate over two states, and can be rep-
resented as a Boolean expression containing current and next state variables. Examples of actions include
system calls, message sends and receives, incrementing a hardware counter, setting a bit, etc.
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In addition to being finite-state, the system obeys a state-renewal property. Specifically, after startup
and initialization, the system behavior (also termed as run or execution) can be divided into rounds, each of
which begins in a “valid” start state and is of finite, but arbitrary, length. A valid start state is defined by a
state invariant Istart. This is typical of many reactive systems, whose runs are infinite, but are composed of
terminating sub-computations performed within a non-terminating sense-response loop.

Formally, each minimally correct behavior (trace) of the system must be a sequence of states and actions
taking the form

s0 a1 s1 a2 . . . ai1 si1 ai1+1 si1+1 . . . ai2 si2 ai2+1 si2+1 . . . ai3 si3 ai3+1 si3+1 . . . . . .

where

• s0 ∈ I;

• si = δ(si−1, ai);

• ∀j ∈ 1, 2, 3, . . ., sij ∈ Istart.

The finite sub-trace starting at sit and ending before sit+1
is termed as round t. We make a distinction here

between the initial state of the system (s0) and the state in which the system starts its state-renewal behavior
(si1 ) to model system “boot-up.”

The reason we require the state-renewal behavior is so that errors do not accumulate to the extent that
the system becomes unrecoverable. By requiring the system to return to a valid start state in each round, we
place a minimal correctness requirement on each execution.

We note that each round is “largely” independent of the other in that the system begins each round
in a valid start state. An example of a system exhibiting this behavior is a network packet processing
system performing a task such as a packet forwarding: whether and where a packet is forwarded is usually
independent of how its predecessors were processed. Similarly, in reactive programs that operate in a sense-
response loop, the start of a new iteration corresponds to the program returning to the head of the loop, so
Istart is simply a predicate on the program counter.

Note that even systems that do not exhibit the above behavior could potentially be viewed in this way.
Each round could be a finite, but arbitrary-length prefix of a run of the system that prematurely ends in
failure, with system reboot leading to the start of a new round. We can model aspects of recovery-oriented
computing [10] approaches in this manner.

Note that we make no assumptions about the environment, in particular about whether it is finite-state
or otherwise.

System Description. The transition function of the system can be succinctly represented as a guarded
command program. This is done by viewing each action ai as a guarded command of the form gi → opi,
where gi is a Boolean expression over the state variables of the system and opi is the assignment to state
variables corresponding to ai. We will term opi as the operation corresponding to ai. Thus, gi → opi

defines operation opi to be taken in all states that satisfy the guard gi. We assume the guards to be mutually
exclusive and together they exhaustively cover all system states.

Finite-state systems implemented in languages such as C and Verilog can be translated into the above
form. For instance, for a C program, a guard will include the corresponding program counter location and
any conditionals under which an action is taken (statement is executed).
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3.1.1 Properties and Recovery

The goal of recovery is to preserve “critical system functionality” when an error has occurred or is imminent.
For this section, we will formalize critical functionality of system M in the tth round of operation as

the combination of the following properties:

1. M must return to a valid start state for the next round t + 1 (sit+1
∈ Istart; and

2. M must satisfy a safety property (e.g., all states must obey an invariant property).

For this paper, we further restrict the first property to be a bounded liveness property by requiring the system
to return to a valid start state within a specified number of steps of the previous start state. This is often
the case for reactive systems where sub-computations in each round are guaranteed to be terminating (e.g.,
embedded systems composed of tasks satisfying real-time constraints).

The simplest form of the second property is an invariant: a Boolean formula over state variables ex-
pressing a condition that each safe system state must satisfy. We will express such a property in terms of its
negation, the error predicate E , that defines error states.

We deal with deadlock by modeling absence of it as a safety property.
In some cases, the second property can be relaxed further to allow for a “few violations” of the safety

property. For instance, in a network processor, it might be acceptable for a few packets to be misforwarded,
but the fraction of these must be vanishingly small. We will see an example of this in the case study described
in Section 6.

M is correct if every execution preserves critical functionality as defined above, where the safety pred-
icate is defined as ¬E . Otherwise, we say that M is buggy.

A move is an operation that the system M has full control over. A failure occurs in a round of system
M because M performs one or more incorrect moves during that round. We will term such an incorrect
move as an error move.

A recovery strategy replaces each error move with an alternative repair move.
We will sometimes refer to the problem of devising and executing a recovery strategy as the system

repair problem.
Finally, we mention that an online error detector can run in one of two modes:

1. In lockstep with the implementation or with a slight look-ahead, detecting an impending failure one
or more steps before it occurs.
For instance, suppose system M is in state s and about to perform action a. We can detect whether
an error is imminent by checking if the next state s′ = δ(s, a) satisfies E .
The goal of recovery here is to steer the system away from the error state by modifying its transition
function.

2. In a slightly delayed mode, where rounds of execution of the implementation that have already oc-
curred are analyzed by the detector for failures.
This can be used in applications where a few failures can be tolerated (such as network processors
dropping a few packets in error). The goal of recovery in this case is to automatically evolve the
system towards correctness over several rounds of execution.
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3.2 Fault Model
A fault model defines the capabilities of a recovery technique in terms of exactly what kinds of faults
(errors) can be detected and corrected. It plays a similar role to error models in coding theory that specify,
for example, the number of bit flips or erasures that an error-correcting code can detect and correct.

Suppose that we are given a finite-state transition system M = (S,A, δ, I). As mentioned earlier in this
section, the transition behavior of M is represented as a guarded command program

g1 → op1

g2 → op2

...
gk → opk

where operations op1, op2, . . . , opk are distinct, the guards are mutually exclusive (gi ∧ gj = false for
i 6= j), and together they exhaustively cover all system states (

∨
i gi is a tautology). We will assume that,

without loss of generality, gk is a special default guard that covers all states that the remaining guards do not
include (this is commonly the case in system descriptions). Note that the total number of guarded commands
is k.

As mentioned in Section 3.1.1, a failure in a round of system execution is caused due to a sub-sequence
of one or more error moves. The error model we introduce here specifies what kinds of sequences can be
detected and corrected.

3.2.1 Kinds of Errors

We first define the kinds of errors that a designer/programmer might introduce into the system description.
Assuming that the set of initial states I is specified correctly, all errors must be in the guarded command
program. These can be of the following kinds:

1. Substitution errors: A guarded command program has a substitution error if one of its actions g i →
opi must be substituted by a new action to make M correct.

2. Insertion errors: A guarded command program has an insertion error if a new action gi → opi must
be inserted to make M correct.
To avoid introducing non-determinism into the system, the guards in the program may need to be
adjusted after a new action is inserted into it. (If the new guard is mutually exclusive with the other
non-default actions, no adjustment is required.) Thus, an insertion performed to correct an error might
also result in substitutions.

In general, a buggy system may have one or more substitution and insertion errors. We have found this
class of errors to be sufficient for our preliminary work and to model errors reported in the literature. For
instance, Groce et al. [24] discuss the “root causes” of errors found by the CBMC model checker [11] in
source code for two programs. The first is the Resolution Advisory component of the Traffic Alert and
Collision Avoidance System (TCAS) included in the Siemens suite [41]. The second is a version of the
µC/OS-II real-time kernel [3] source code. The former has a substitution error, where a conditional (guard)
is wrongly specified. The latter has an insertion error, where a return statement was missing at a certain line
in the code.
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In this paper, we discuss repair strategies for substitution errors where only the operation part of the
action needs to be substituted. Dealing with other classes of errors is left to future work.

We denote the number of such substitution errors in a guarded command program by Nerr.

3.2.2 Elements of a Fault Model

A fault model has three parameters:

1. Nemove: The maximum length of a sub-sequence of error moves that can be corrected.

2. Nsteps: The number of actions (steps) from the last error move within which any failure can be
detected.

3. Nerr: The number of substitution errors in the guarded command program representing system M.

The first parameter is a measure of how complicated a failure the system can self-correct; a failure that
results from a long chain of error moves (a large value of Nemove) is likely to be hard to debug and fix, even
manually. The second parameter is a measure of how precisely the run-time verifier can localize the error.
Smaller the value of Nsteps, better the error localization. The third parameter is a measure of how buggy the
system M is.

4 Optimizing Recovery with Learning
The overhead of needing to recover from failures in a round can be mitigated by incorporating a form of self-
repair into the system, where the system learns from failures in previous rounds of execution. In this section,
we consider how the online recovery process can be optimized by use of online learning. In particular, one
can view the online recovery problem as one of learning from mistakes. This allows us to leverage the work
in computational learning theory under the mistake bounds model [32]. System rounds correspond to the
“trials” in which learning proceeds.

For ease of presentation, we initially consider an fault model in which Nemove = 1 and Nerr = 1;
i.e., there is only one substitution error in the original guarded command program and the recovery strategy
can recover from a failure caused by a sequence of error moves of length one. Even this highly restricted
fault model brings out many interesting aspects of recovery. The restriction is lifted in Section 4.4, with a
discussion of the resulting implications.

4.1 A Simple Scenario
We first consider the simplest situation where Nsteps = 1 (in addition to Nemove = 1 and Nerr = 1). In
other words, we have perfect error localization.

Suppose the system arrives at state s and is about to perform the move corresponding to non-input action
a1. Suppose that the run-time monitor detects that the imminent next state s′ = δ(s, a1) satisfies E , i.e., s′

is an error state. We must now choose a new move to perform in state s. The question is: which one?
The situation is depicted in Figure 1. The currently defined transition out of state s is shown as a solid

line. In order to avoid the failure, the system M must replace the operation associated with its current action
a1 by a new one. Suppose that the options for replacement result in alternate actions a2, a3, . . . , am. By
evaluating δ(s, ai) for each i, we can select a subset Ar of these alternative actions that will avoid the error
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a2

E

E

a3

ak

a1

s

Figure 1: Recovering from an error with perfect error localization. a1 is the currently defined action in
state s and a2, a3, . . . , ak are the alternatives.

in the next step. In Figure 1, the alternative actions that avoid the error are shown by indicating their target
state in gray.

Note that set Ar forms the search space for the recovery strategy. This space can be very large. In fact,
the cardinality of Ar can be O(|S|), the number of system states. This is because each alternative action can
correspond to a transition to a unique system state.

Consider using the following greedy strategy:

Greedy: Pick an arbitrary action ar from Ar, according to a deterministic heuristic, and replace
a1 by it.

By construction of Ar, the resulting guarded command program will avoid entering an error state in the next
step of the current round of execution. However, the following problems can still occur:

1. Problem: The system might encounter an error state in two or more steps, within the current round.
Reason: The chosen action ar is incorrect. By assumption, Nerr = 1, so a different action cannot be
the cause of the error. However, it is possible that using ar led the system into a part of the state space
that should not be reached under correct execution, and the error was then encountered on an action
different from ar. Even in this latter case, the cause of the imminent failure is ar.

2. Problem: The system might encounter an error state in a subsequent round of execution.
Reason: The chosen action ar = gr → opr is incorrect. Even though ar avoided the error for the
environment inputs provided in the current round, the input received in the subsequent round led the
system to a state satisfying gr from which performing ar will result in a failure.

In either case, we can conclude that if the system encounters an error state, it must be the case that ar is
an error move and must be replaced by an alternate action.

The lesson is that a greedy recovery strategy can have a high overhead, with recovery actions required
in several rounds of execution. In fact, if the recovery strategy is greedy, the system might be required
to perform an unbounded number of recovery steps in its lifetime, even when there is a valid fix to the
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substitution error. This is because the environment could alternate between two inputs inp1 and inp2 that
causes the system to toggle between two repair actions that lead to errors on inp1 and inp2 respectively.

4.1.1 Use of Randomization

One of the problems with the greedy strategy is that the choice of repair action ar is deterministic. What if
we randomized this choice?

More precisely, suppose we follow the following repair strategy:

Uniform Random: Pick an action ar from Ar uniformly at random, and replace a1 by it.

Denote the cardinality of Ar by m and the number of correct fixes (actions that make M correct when
substituted in for a1) in Ar by m′. Then, the probability of picking the correct fix in a single trial is p = m′

m
.

The uniform random (UR) strategy faces the same two problems as the greedy strategy. However, if
there is at least one correct fix, the expected number of recovery actions that UR performs before finding the
correct fix is

∞∑

i=1

i · p · (1 − p)i−1 =
1

p
=

m

m′
(1)

In the worst case, m′ = 1, and thus the expected number of recovery actions that the UR strategy takes is
m.

While better than the greedy strategy, this is still not good enough. In the worst case, the number of
actions is equal to the number of states of M, which can be exponential in the number of state variables, a
fairly high overhead!

4.1.2 Use of Learning

The problem with both greedy and UR strategies is that they do not learn from past mistakes. Depending
on the mode of online error detection (as introduced in Section 3.1) a mistake can either be (1) a recovery
action that is not the correct fix (if one exists), or (2) a failure of the implementation. In either case, we want
to obtain a recovery strategy that minimizes the number of mistakes it makes.

Mistake Bounds and the Experts Problem. A natural setup for this problem is to treat it as one of
learning under a mistake bounds model [32]. Conceptually, there is one learning problem for each substitu-
tion error encountered during recovery.

An existing learning problem that fits our scenario well is the experts problem (also known as the prob-
lem of predicting from experts advice) [7,33]. The problem is best stated as a multi-round game as follows.

• Setup: There are two players whom we will refer to as the protagonist and the antagonist. In addition,
there are n experts who make a binary prediction in each round.

• Play: At the start of each round, the protagonist must choose an expert to “go with,” while the an-
tagonist picks the “right answer” for the predictions. However, they make their selections unaware of
each other’s choices. At the end of the round, the choices are revealed.
If an expert predicted the antagonist’s choice incorrectly, she incurs a cost of 1, else 0. The protagonist
incurs the cost of the expert he chose.

• Goal: The goal for the protagonist is to use a selection strategy that incurs a cost as small as that
incurred by the best expert, in hindsight, over several rounds.
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Suppose recovery is initiated in round t at state si satisfying guard gi. Let Γi denote the set of all moves
that can be performed in si.

The repair problem considered in this section is mapped to the experts problem as follows:

• Experts correspond to elements of Γi, i.e., candidate repair moves as well as the current move in si.
The system M is the protagonist and its environment is the antagonist.

• Each move γi in Γi is evaluated in si to ascertain whether it will result in a failure. If so, the move
“predicts” that it will result in an error the next time recovery is initiated in some state s ′

i satisfying
gi, otherwise, not. The next time for recovery could occur either later in round t or in a subsequent
round.

• The system M must select one of the moves in Γi, denoted by γr, as a repair move to “go with”. In
other words, M will modify its transition behavior (for the rest of round t and all subsequent rounds)
by using γr in all states satisfying gi.

• The environment selects inputs to M. If some candidate repair move γ can result in a failure, it means
that the environment is able to supply the input that will trigger that failure. Thus, the environment’s
choices decide which candidate repair moves will result in a failure the next time recovery is initiated.

• The goal of M is to use a recovery strategy that incurs as low a cost as the best candidate repair move
would have done, in hindsight. If there is a correct fix, we would ideally like M to select that fix
rightaway and incur 0 cost after the first recovery.

Remark 1 There is one potential problem with the above mapping. If M’s choice of γr is observable by
the environment, it can always force M to fail. Therefore, we assume for this paper that the environment is
oblivious to M’s choice, at least until that choice results in a failure. Relaxing this assumption will be the
subject of future work.

We have been able to formulate the problem of selecting a recovery move as an instance of the experts
problem. The next question is: how do we solve it?

The Weighted-Majority Algorithm. Littlestone and Warmuth gave the weighted majority algorithm
(WM) to solve a version of the experts problem [33]. Later, Freund and Schapire [23] showed how to use
a modified, randomized version of that algorithm (RWM) as a way of solving the experts problem. RWM
makes at most O(log n) mistakes (assuming there is a correct fix), where n is the number of experts, but its
running time and space, per round, is O(n). For a proof of this result, see the above mentioned papers [23,33]
or Blum’s survey paper [7].

The randomized weighted-majority (RWM) recovery strategy is given below:

Randomized Weighted-Majority:

• Initially, all experts (recovery moves) are assigned a weight of 1.
• When an expert makes a mistake, the associated weight is multiplied by a factor β ∈

(0, 1).
• (randomized step) At any time, the algorithm picks the expert with probability equal to

that expert’s fraction of the total weight.
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If set of candidate repair moves is of size m, this means that using this algorithm will incur an expected
number of O(log m) mistakes. This is true even if there is only one correct fix amongst the m alternative
actions, unlike the case of the UR strategy. The overhead imposed by RWM seems acceptable, given that
log m is of the order of the number of state variables.

Thus, the use of online learning can be very beneficial in reducing the overhead of a recovery strategy,
even in the simple case of Nsteps = Nemove = Nerr = 1.

However, the run time of the RWM recovery strategy is O(m). Since m can be as large as |S|, the run-
time and space requirements of RWM can be too high for a practical implementation, unless restrictions are
placed on the kinds of repair actions to be considered. Techniques to mitigate this overhead will be explored
in Section 4.3.

Remark 2 If a correct fix does not exist, the RWM strategy guarantees that in the expected case M will
make only O(log m) more mistakes than if it started and stuck with the recovery move that made the fewest
mistakes in hindsight.

Remark 3 Note that the mapping to the expert problem given above is not the only one possible. Domain-
specific heuristics can be used as “expert advice” and the RWM strategy can be used to do almost as well as
the best domain-specific heuristic will.

4.2 Dealing with Arbitrary Nsteps

We now relax one of our assumptions, allowing Nsteps ≥ 1; i.e., the failure might be detected more than
one step after the error move was made.

Consider round t of operation of M that results in a failure, producing the following error trace:

sstart
a1−→ s1

a2−→ s2 . . . sn−1

an−→ serr

where sstart is the start state for round t, and serr = sn is an error state, i.e., one satisfying the error predicate
E .

On failure, M initiates recovery by rolling back at most Nsteps steps and steers itself into a non-error
state, if one exists. (If one does not exist, it means that there is no correct fix to the guarded command
program.) The steering is performed by replacing ai for some i, where max(1, n−Nsteps +1) ≤ i ≤ n, by
an alternative action ar. In this case, the recovery strategy must make two selections:

1. A state si at which to replace ai; and

2. An alternative recovery action ar to take in si: ar is a candidate alternate action if replacing ai with it
in the guarded command program and replaying the execution from si avoids the error state serr.

In fact, we need to replace an action in the guarded command program (GCP) representation of M. For
a GCP with k actions, we need to roll back at most Ngcp = min(k,Nsteps) steps. Therefore, the search
space for a repair move to correct for a single failure is

m · Ngcp = m · min(k,Nsteps) (2)

where, as before, m is the number of alternate recovery moves (actions) to be consider at each step.
Let us first consider the asymptotic running time of our recovery algorithm. The number of candidate

repair moves to be considered, in the worst case, is O(m · Ngcp). Assuming a cost model where each step
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incurs the same cost, the time taken to check whether a candidate repair move avoids state serr by replaying
with the repair move is O(Nsteps). Finally, denote the time taken to select one of the candidate repair moves
that avoids serr by Trec, the time taken by the recovery strategy.

If we use RWM to select a repair move, Trec is O(m · Ngcp).
Thus, the overall run time is O(Nsteps · m · Ngcp).
This is clearly unacceptably high in the worst case, since m can be as large as |S|.

4.3 Practical Concerns
The time and space requirements of the recovery strategies discussed above can make them impractical. In
this section, we briefly discuss some of these problems and potential solutions.

4.3.1 Backtracking and Search Overhead

A source of overhead is the linear dependence of the run-time on the number of candidate repair moves, m.
A natural approach is to work with a restricted set of potential repair moves Γr. Ideally, one would

like this set to have cardinality exponentially smaller than the number of states in the system. Dealing with
defining such a set is left to future work. Note, however, that this restriction is easily done in a “design-for-
recovery” setup, where the system designer specifies an exhaustive set of error moves. In that case, Γr is
typically a O(1) sized set that is statically chosen.

Exploiting parallelism is another approach that can be used to mitigate the impact of having many candi-
date repair moves. The different options for recovery can be explored in parallel as long as the corresponding
state is maintained disjoint from each other and without any global effects.

4.3.2 Recovery Strategy Overhead

RWM requires that we maintain weights for each candidate repair move. In other words, it requires O(m)
space for each learning problem, which can be excessively high. This can be addressed by using a restricted
set of candidate repair moves, as mentioned above.

However, it is likely that most of the candidate repair moves will avoid the error in most states. This
is because operations typically modify a small subset of the overall state and are thus likely to preserve
the safety property. Thus, only a small subset of weights would need to be adjusted on each round of the
RWM algorithm, and it is worth investigating efficient implementations for this “sparse” case. One way of
exploiting sparse updates is to maintain a cache of weights rather than a full table.

Maintaining weights involves floating-point computation, which can be expensive. The parameter β

can be chosen as 1

2
to reduce the overhead of floating-point division by forcing weights to a power of 2.

If the weights are maintained as powers of 2, they can be maintained as integers and in fact can be stored
compactly using Bloom filters [6] or their counting variants.

In summary, we believe with a suitable combination of implementation techniques, the overhead of
RWM can be reduced.

4.4 General Case
At the start of this section, we assumed that Nemove = 1 and Nerr = 1. We now relax these assumptions
and consider the implications. As before, we consider an error trace of the form

sstart
a1−→ s1

a2−→ s2 . . . sn−1

an−→ serr
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where the failure was detected within Nsteps of the last error move.
First, consider what happens if Nemove ≥ 1, but Nerr = 1. This means that the failure could have been

caused by a chain of at most Nemove error moves, but each of those is due to the same substitution error in
the guarded command program.

Since there is only one error that needs fixing, this case folds to the same situation as in Section 4.2. The
recovery step must try, for each step in the trace that corresponds to a unique guarded command program
(GCP) action, an alternate repair action. The number of such steps can be at most Ngcp = min(k,Nsteps).
As before, the search space for recovery is of size m · Ngcp.

However, the run-time can be larger, since one might need to backtrack more than Nsteps steps to replay.
(Note that Nsteps is the number of steps since the last error move.) In the worst case, one might need to
backtrack n steps to sstart.

Thus, if Nerr = 1, the run-time for recovery is O(n · m · Ngcp).

However, the situation is considerably harder if Nerr > 1. Let us consider the case where Nerr <

Nemove, and both can be greater than 1.
A recovery strategy must now consider all possible sub-sequences in the above trace of length Nemove.

For each sub-sequence, at most Nerr of the moves that correspond to distinct GCP actions must be replaced
by alternative repair moves. Thus, it must pick Nemove positions out of the at most n positions in the above
trace, and for each substitution in the GCP, it must select from the available candidate repair moves. The
size of the search space is therefore

nPNemove
· mNerr (3)

where the first term corresponds to picking Nemove positions and the second term corresponds to searching
for a combination of error moves to use in those positions.

Clearly, the main implication of relaxing the Nerr = 1 assumption is a combinatorial explosion in the
search space that the recovery strategy must consider, directly impacting the time and space overheads of
the recovery strategy (e.g., RWM). The overall run-time for recovery, factoring in the time for replay, is
O(n · nPNemove

· mNerr).
In Section 5, we explore the use of offline verification, even with partial verification results, to reduce

this search space.

5 Leveraging Offline Verification
Practically all computer systems undergo some form of verification before deployment, by way of testing,
simulation, static analysis, and/or formal verification. Verification is an integral part of the product design
cycle. However, in spite of all the resources that go into verification, hardly any of the current proposals
for recovery make use of the results of offline verification. Perhaps this is because the results of verification
are often only partial, and currently there are no ways to use partial verification results. We believe that
the lack of a formal framework for recovery makes it unclear what form of partial results would be useful.
Verification is commonly viewed these days as a technique for catching bugs, and how does one make use
of bug reports to reduce recovery overhead?

In this section, we take a fresh view of this matter. We contend that results of offline (design) verification,
even if partial, can be gainfully used to reduce the overhead of recovery. Rather than view verification simply
as a way of catching bugs, we view it as a technique for exploring the reachable and erroneous state spaces
of a system. State coverage, even if partial, can be used to reduce the overhead of the recovery strategies
proposed in Section 4.
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From the viewpoint of reducing recovery overhead in this paper, the goal of offline verification is to
reduce the following parameters of the fault model:

1. Nsteps: The number of steps from the last error move within which any failure can be detected.

2. Nerr: The number of substitution errors in the guarded command program representing system M.

3. Nemove: The maximum length of a sub-sequence of error moves that can be corrected.

4. m: The number of candidate repair moves to be considered at each step

We will focus on how partial verification results obtained from finite-state model checking [12, 13, 39]
can be utilized to reduce the values of the above parameters. Furthermore, we will focus on model checking
techniques that perform a breadth-first exploration of the state space. The widely used method of symbolic
model checking [36] falls in this category. An investigation of what can be gained from other verification
techniques is left to future work.

Note that model checking is performed on a closed system, obtained as the composition of the system
M with its environment. Thus, we assume for this section that the environment is also finite-state. An
iteration of model checking thus includes a step by the system or by the environment or both; this is unlike
those in the system runs we have seen in this paper so far, where the system alone steps. The form of the
composition (asynchronous or synchronous) affects the form of a run of the combined system. With syn-
chronous composition, both system and environment take a step simultaneously (at each “clock tick”), but
with asynchronous composition there could be arbitrary interleaving, in general, except that output actions
of the environment are synchronized with input actions of the system, and vice-versa. For simplicity, we
will assume synchronous composition for the rest of this section. (Dealing with asynchronous composition
will be left to future work.)

Figure 2 shows some kinds of partial model checking results that one might obtain in order to prove that
a safety predicate ¬E is an invariant of M.

E

Df
Db

≤ D

I

Figure 2: Partial state space coverage in model checking. The dashed and solid arrows depict system
behaviors.

The most common step in model checking is reachability analysis, which computes the set of states that
can be reached from some initial state in I . If this set intersects with E , we have found an error state working
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forward. However, in the event reachability analysis does not complete, we have only partially explored the
state space in the forward direction, to a depth of Df . This is indicated in Figure 2.

Another common form of state space exploration is backwards reachability analysis. Starting with the
set of error states, the model checker computes the set of states that can reach E in 1, 2, 3, . . . steps. If the
resulting set of states intersects with the initial states I , then we have found an error trace. However, it is
possible that we might only have partially explored the state space working backward to a depth of Db, also
indicated in Figure 2.

Finally, in some situations we may have an upper bound D on the diameter of the state graph, i.e., on the
number of steps between an initial state and a reachable error state. The shaded portion of Figure 2 indicates
the unexplored part of the state space.

Below, we consider how the above forms of partial state coverage can be used to reduce two of the fault
model parameters.

5.1 Reducing Nsteps

One form of backwards state exploration is to compute the set of states from which an error is inevitable;
i.e., if M continues to follow its transition function from those states, it will enter an error state no matter
what sequence of inputs it receives from the environment.

Note that this set of states need not equal E ; in fact, the strength of this approach comes from the fact that
there could be non-error states from which an error is inevitable because the erroneous action has already
been performed and there is a deterministic sequence of inconsequential actions in between it and the error
state.

This is performed using the algorithm to compute the set of “uncontrollable” states given by de Alfaro
et al. [16]. Conceptually, we iterate the process of computing new uncontrollable states until a fixed point is
reached. The iteration is performed as follows:

1. Initialization: Set U0(s) = E(s).

2. Iteration: Compute Uj as

Uj(s) = [∀a ∈ Ainp . Uj−1(δ(s, a))]
∨

[∃a ∈ A \ Ainp . Uj−1(δ(s, a))]

where Ainp are the input actions of M.
In words, we add a state to Uj if it can reach an uncontrollable state either by all possible input actions
or by some non-input action.

Suppose we are unable to complete the above fixed point iteration, but are able to compute Uj for
j = Db. In this case, we can detect an error Db steps before it actually occurs. Thus, we can use an fault
model with a new value of Nsteps which is up to Db smaller than the original value.

5.2 Reducing m

One way to reduce m is by pre-computing strategies to steer away from error states. This is in fact the prob-
lem of synthesizing a controller for safety objectives, for which techniques exist (e.g., see [35]). However,
these synthesis algorithms are very expensive, even more than the corresponding verification algorithms.

We can relax this by instead considering a bounded horizon synthesis problem: to pre-compute strategies
to steer away from error states reachable in n or fewer steps. This tackles one of the problems with symbolic
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methods, viz. that they are not very good at searching large state spaces with large diameter of the state
graph (i.e. searching “deep”). In particular, it can be hard to use symbolic breadth-first techniques to find
out whether a state that can reach an error state within n steps is itself reachable from the initial states.

This problem can be handled as follows. Compute the set of states that can reach an error state in n

or fewer steps. Then, for this set, compute a control strategy that avoids the error within max(n,Nsteps)
steps – by allowing an arbitrary action to be taken at one or more points. This can be done by relaxing
the transition function of the system. Another approach is to compute all possible ways to avoid error in n

steps by computing all witnesses under a relaxed transition relation, using techniques proposed by Sheyner
et al [43]. This avoids the need to do a search for alternative repair moves at run-time. However, note that
the environment model used offline to find such a bounded horizon control strategy must be conservative.

6 Case Studies
We have performed a few case studies to investigate the topics discussed in earlier sections. Our main
example is a network monitor, a packet filtering system to detect malicious traffic, adapted from Varghese’s
book on Network Algorithmics [45]. We discuss other examples and future work in Section 6.2. All our
examples illustrate that when model checking faces computational barriers, online verification and recovery
can be effective.

Experimental results reported in this section were obtained on a workstation with 2 dual-core 2.8 GHz
Xeon processors and 2 GB of RAM running 32-bit Redhat Enterprise Linux.

6.1 Network Monitor
Varghese describes a simple example of a network monitor (intrusion detection system) in Chapter 1 of his
book [45]. The system seeks to drop packets that match a pattern of malicious behavior while forwarding
all others. A packet is viewed as a sequence of characters (bytes) of length L. For each possible character c,
we have an associated threshold Tc that specifies that c must appear no more than Tc ·L times in the packet.
In this highly simplified example, a malicious packet is one that violates this threshold restriction for some
character.

Varghese works through several implementations of this network monitor, from very simple and slow,
to a cleverly optimized version. We chose the most optimized version as the implementation for our experi-
ment, and the second-most optimized version as the specification.2 We will refer to these as Impl and Spec

respectively.
The models we created work as follows. Both Spec and Impl were modeled as synchronous digital

circuits that make use of lookup tables (arrays). Thresholds are specified as powers of 2 and stored as shifts.
A threshold array thresh arr maintains these shift values. The specification Spec initializes an count
array count arr with zeroes, where each entry corresponds to a possible character, and the count is the
total number of instances of that character in the current packet. Spec initializes one entry per cycle. Thus,
for 256 possible characters, Spec will take 256 cycles to initialize its count arr. After initialization, it
proceeds to read and process the bytes in the packet, one byte per cycle. Thus, this process takes L cycles.
By calculating the ratio of the count over the threshold on-the-fly, the final pass through the count array to
check thresholds is avoided. Thus, the decision on whether to drop or forward the packet is made in 256+L

cycles.
2Our actual experiments used slightly modified versions, where fields weren’t packed into a single word as Varghese describes,

but this is orthogonal to the main topic of online verification and recovery.
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Even this is a bit slow. The implementation Impl delays initialization at the cost of slightly more storage.
Briefly, it initializes only one entry in count arr per round of execution. However, it also maintains a
register to keep track of a “generation count”, namely the current round number (modulo maximum storable
value in the register), as well as generation counts for the last time each character’s entry in count arr was
updated. If the generation count of the currently read character does not match the global generation count,
that character’s count arr entry is set to 1 (initialization of 0 plus the first occurrence). By maintaining
a large enough generation register it can process each packet in 1 + L cycles while avoiding wraparound
issues with the global generation count.

For details of the above case study, we refer the reader to the book [45].
In this case study, the specification Spec is a simpler version of Impl that runs much slower. While Spec

can be used to detect errors, it cannot be used for recovery as the specification is too slow to run at wire
speeds. However, this application is one in which a few failures can be tolerated (a few dropped packets),
even as it would be unacceptable to drop all benign packets with a specific pattern. The goal of recovery in
this case is to automatically evolve the system towards correctness over several rounds of execution.

We introduced a simple substitution error into Impl. Instead of setting the count arr entry to 1 when a
generation count mismatch is detected, we set it to 0. Thus, an off-by-one error is introduced leading to a
malicious packet being incorrectly forwarded.

We attempted to model check the composition of Spec and Impl in Cadence SMV [1], but it ran out
of 2 GB of memory even for a greatly simplified version. In this version, we set L to 8, considered only
8 possible characters, and maintained a 3-bit generation count register. Thus Spec requires 16 cycles to
process a packet, while Impl requires 9 cycles. The combined system operates in rounds of length 18, where
Spec uses the last two cycles to check the result obtained by Impl in the first 9 cycles.

On the other hand, an online approach based on the techniques of Section 4 was able to recover the
system and pick the correct fix for the fault. We implemented a simulator for the combination of Spec

and Impl in C, just as modeled in SMV. If an error is detected by Spec, it enters a recovery mode where
it suspends error detection, performs diagnosis, and then performs recovery according to a pre-defined
strategy (one of the three described in Section 4). Error diagnosis was performed by re-running a copy
of Impl and observing where the counts of the Spec and this copy diverge; this approach provides precise
fault localization. Candidate recovery actions included setting the count array entry to a variety of constants
(including 0 and 1) as well as increment and decrement operations.

We found that using the C pseudo-random number generator to generate random input characters (pack-
ets) quickly led the system into errors. Using a fixed, greedy strategy to recover led to over 50% of the
rounds leading to errors. The UR and RWM strategies performed much better, but the number of error
rounds in the UR approach showed much greater variance, as expected. In many runs, we observed that the
correct repair move was selected after the very first failure.

Our results demonstrate that random testing/simulation is effective at catching the bug as compared to
symbolic model checking. When combined with the online recovery methods of Section 4, the system is
not only able to detect errors, but also correct them during execution.

6.2 Discussion
We have also performed a second case study. This example is a robot controller modeled in the language of
the SMV model checker [36]. It is a real-time system with discrete real-time semantics: a scaled-up version
of a case study performed by Campos et al. [9].

The SMV model checker ran on this example for a whole week without returning an answer. Online
verification detected an error and successfully recovered from it.
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In both case studies, we measured the overhead of recovery only in “logical” terms, i.e., as the number of
recovery steps taken over many rounds of execution. We are currently engaged in building the infrastructure
to conduct a more quantitative evaluation of the overhead of recovery.

7 Related Work
We organize our survey of related work based on the two main areas of relevance for this paper: online
verification and online recovery.

7.1 Online Verification
Online or run-time verification (RV) is the study of techniques to detect design errors at run-time, possi-
bly post-deployment. It differs from traditional testing in that the correctness properties are specified in a
formalism such as temporal logic.

Tools and frameworks for run-time verification such as JPaX [26], MaC [28, 29], and LOLA [15] are
available. We discuss here a few recent examples of work in RV and refer the reader to a recent survey for
details on work published prior to 2004 [18].

Recent references include work by Havelund and Roşu [25] on monitoring safety properties, Elmas et
al. [22] for runtime refinement checking of software, D’Angelo et al. [15] for online and offline monitoring
of synchronous systems, Sammapun et al. [42] on online monitoring of real-time systems, and Bayazit and
Malik [5] for monitoring safety and bounded liveness properties for distributed hardware systems.

Bayazit and Malik discuss one way to integrate online and offline verification. In particular, offline
verification of the distributed system is performed using compositional reasoning with the environment
assumptions and abstractions that are verified (locally) at run-time. Recovery is only briefly addressed in
their paper, and the recovery strategy is designer specified.

7.2 Online Recovery and Robust Computing
Robust computing is the study of run-time techniques to not only detect errors (design or otherwise) at
run-time, but also correct for them or at least de-rate the system’s performance.

The recovery-oriented computing project by Patterson, Fox, et al [37] explores ways to design computers
to recover quickly from run-time failures, mainly targeted towards Internet services. An instance of the
project is to design reboot-only systems [10], which can handle transient or random error conditions, but
cannot deal with deterministic design errors.

Several projects have recently addressed the problem of surviving failures arising from software bugs.
Rinard et al. have introduced failure-oblivious computing [40], which seeks to execute through buffer over-
flow problems by returning artificial values for reads that are out of bound. Although potentially unsafe, they
demonstrate the utility of being able to execute through an error rather than terminating with an exceptional
condition reporting the error. The reactive immune system [44] similarly proposed to execute through errors
by returning a speculative error code on failure. Qin et al. [38] present Rx, a system for recovering from
common bugs in commodity software, such as web servers, such as buffer overruns, races, and memory cor-
ruption. The main idea is to change the controllable part of the environment, namely the operating system,
by providing safe versions of system and library calls for use during rollback and recovery. However, the
approach does not generalize beyond the considered bug classes.

Easwaran et al. [21] discuss steering, a technique for predicting failures and taking evasive action in
advance, in the context of discrete event systems. Failures are restricted to safety properties and corrective
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action comprises making error states unreachable. The authors build upon previous work on run-time veri-
fication and instead focus on constructing a steerer whose lookahead is more than enough to compensate for
communication latency between the steerer and the system. Unlike the proposed work, there is neither use
of online learning nor of an integrated approach to verification.

Model-based methods involve the synthesis of fault diagnosis and recovery components from high-level
descriptions [17, 47]. An example of a model-based system is Livingstone developed by Williams and
Nayak [48]. Their work primarily focuses on device faults (such as in sensors and actuators), as opposed to
the design errors that are the subject of this proposal.

Bos and Witteveen [8] have presented a way to optimize a model-based approach for the control of
hybrid systems based on pre-compiling the “hard” parts of the constraint satisfaction problem that would
need to be solved online. This has a similar flavor to the integrated approach we mention in this paper, but
the class of systems and faults addressed are different. Also, we propose to use a broader range of results of
offline verification.

Demsky et al. [19,20] present the concept of data-structure repair, which uses a model-based approach
to maintaining invariant properties of data structures at run-time in the face of errors introduced by buggy
code.

The work on online recovery for hardware systems is more recent. Wagner et al. [46] proposed a
technique for recovering from post-silicon bugs in control logic by maintaining a CAM with fixes addressed
by “bug patterns”. Fault diagnosis is performed offline and the fixes downloaded into the CAM.

7.3 Miscellaneous Topics
Work on error (fault) localization is also relevant to this proposal. Zeller’s recent book [49] has many
references to the literature on this subject, including on error localization for software model checking
(e.g., [24]).

While there has been prior work on fault models for design errors, especially in the field of software
testing (e.g., [30]), the model we propose and the use for online recovery are quite different from those
considered in prior work.

Finally, we mention that work on online verification can benefit from recent work on hardware support
for rollback and recovery [27, 50].

8 Conclusions
This paper has proposed an integrated approach to verification to overcome the shortcomings of offline
(design) and online (run-time) verification. We have given a formal framework for a large, useful class of
finite-state systems, including a fault model for design errors. Strategies for recovering from failures have
been explored and the use of learning proposed as a way to optimize recovery overhead. Techniques for
leveraging even partial results of offline verification to reduce the cost of online verification and recovery
have been presented. A case study showed that online verification and recovery could be effective in a case
where (offline) symbolic model checking was unable to complete verification. Our results are a step towards
building reactive systems that are robust to failures and self-evolve towards correct systems.

The techniques proposed in this paper can be used even pre-deployment. They can be used in con-
junction with dynamic analysis methods, including testing and simulation, in order to assist designers with
diagnosing and fixing bugs.
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There are many avenues for future work. We are performing further case studies including a comprehen-
sive study of our current fault model. We intend to expand this model in the future and extend our recovery
methods to handle a larger class of faults than has been explored herein.
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