
Structured and Parameter-Dependent Eigensolvers for
Simulation-Based Design of Resonant MEMS

David Samuel Bindel

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-108

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-108.html

August 22, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Structured and Parameter-Dependent Eigensolvers for
Simulation-Based Design of Resonant MEMS

by

David Samuel Bindel

B.S. (University of Maryland, College Park) 1999

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor James W. Demmel, Co-chair
Professor Sanjay Govindjee, Co-chair

Professor William M. Kahan
Professor Robert L. Taylor

Fall 2006

The dissertation of David Samuel Bindel is approved.

Co-chair Date

Co-chair Date

Date

Date

University of California, Berkeley

Fall 2006

Structured and Parameter-Dependent Eigensolvers for

Simulation-Based Design of Resonant MEMS

Copyright c© 2006

by

David Samuel Bindel

Abstract

Structured and Parameter-Dependent Eigensolvers for

Simulation-Based Design of Resonant MEMS

by

David Samuel Bindel

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor James W. Demmel, Co-chair

Professor Sanjay Govindjee, Co-chair

This dissertation is about computational tools to aid in the design of resonant

Micro-Electro-Mechanical Systems (MEMS), tiny vibrating devices built by processes

like those used to make integrated circuits. Vibrating MEMS are used in accelerom-

eters and gyroscopes, in sensors to detect chemicals and to measure pressure, and

in communication devices such as cell phones. MEMS engineers can use computer

simulations to design devices using fewer costly and time-consuming prototype tests,

but these simulations are only as useful as the models on which they are built. In this

work, we contribute new mathematical models, numerical methods, and software tools

to simulate resonant MEMS, and apply these tools to analyze specific devices. We

describe physical models of damped vibrations of MEMS, including anchor loss and

thermoelastic effects which are widely recognized as important, but not modeled in

generality by existing tools. Though the resulting systems of equations are large and

non-Hermitian, and depend nonlinearly on frequency, we use the equation structure

1

to develop efficient structured Krylov subspace projection methods for computing free

vibrations and reduced-order models. We also provide efficient continuation methods

for re-computing eigendecompositions under changes to design parameters or operat-

ing conditions. Our models and analysis methods are integrated into HiQLab, a new

finite element tool with a particularly flexible architecture which we have designed.

Using HiQLab, we simulate example resonator designs, and compare our results to

laboratory measurements. Our simulations reveal a previously-unknown mode in-

terference phenomenon, subsequently observed in experiments, which dramatically

affects the amount of damping near certain critical values of geometric parameters.

Professor James W. Demmel
Dissertation Committee Co-chair

Professor Sanjay Govindjee
Dissertation Committee Co-chair

2

Contents

Contents i

Acknowledgements v

1 Introduction 1

1.1 Outline and Contributions . 3

1.2 Resonant MEMS in applications . 6

1.2.1 Resonant MEMS in radio systems 7

1.2.2 Resonant MEMS in sensors 8

1.3 Damping in resonant MEMS . 9

1.3.1 Gas damping . 10

1.3.2 Material losses . 12

1.3.3 Thermoelastic damping (TED) 13

1.3.4 Anchor loss . 14

1.4 Computer-aided design for resonant MEMS 14

2 Mathematical preliminaries 17

2.1 Eigenvalues and approximation . 18

2.1.1 Forced response of a second-order system 18

2.1.2 General forced response and quality factors 20

2.2 Radiation damping and resonance . 21

2.2.1 Viscoelastic wave solutions . 23

2.2.2 One-dimensional model equations 24

2.2.3 Asymptotics of H(s) . 25

i

2.2.4 Summary of approximations 27

2.3 Galerkin methods . 30

2.3.1 Stability for solution of linear systems 32

2.3.2 Eigenvalue localization . 35

2.3.3 Krylov subspace model reduction 38

3 Perfectly Matched Layers 40

3.1 Introduction . 40

3.2 Perfectly matched layers . 42

3.2.1 A motivating example . 44

3.2.2 Elastic perfectly matched layers 47

3.2.3 Anisotropic medium interpretation 49

3.2.4 Finite element implementation 50

3.2.5 Effects of discretization and angle of incidence 52

3.3 Quality factors and forced motion computations 60

3.3.1 Quality factors via an eigencomputation 61

3.3.2 Efficient forced motion computations 62

3.3.3 Conclusions . 65

4 Thermoelastic Damping 67

4.1 Introduction . 67

4.2 Equations of thermoelasticity . 69

4.3 Nondimensionalization . 70

4.4 Weak form and discretization . 72

4.5 Perturbative eigenvalue approximation 73

4.6 Relation to Zener’s approach . 75

4.7 Comparisons for a beam calculation 77

4.7.1 Effect of nondimensionalization 78

4.7.2 Comparison of numerical results 80

4.7.3 Performance . 82

4.8 Conclusion . 84

5 Continuation of Invariant Subspaces 85

ii

5.1 Introduction . 85

5.1.1 Related work . 88

5.2 Continuous invariant subspaces . 90

5.2.1 The geometry of subspaces . 90

5.2.2 Complex-analytic characterization 94

5.2.3 Differential equation characterization 95

5.2.4 Algebraic characterization . 96

5.2.5 Connecting subspaces . 103

5.3 The CIS algorithm: direct methods 109

5.3.1 Initialization . 110

5.3.2 Choosing a subspace . 111

5.3.3 Normalizing the solution . 116

5.3.4 Subspace analysis and adaptation 118

5.4 The CIS algorithm: projection methods 121

5.4.1 Choosing a projection space 121

5.4.2 Initialization . 123

5.4.3 Projected normalization and residual equations 123

5.4.4 Projected predictors and correctors 128

5.5 Integrating the CIS algorithm into MATCONT 129

5.6 Conclusions and Future Work . 133

6 HiQLab 135

6.1 Introduction . 135

6.2 History . 136

6.2.1 SUGAR . 136

6.2.2 FEAPMEX . 138

6.2.3 HiQLab . 139

6.3 Architectural overview . 139

6.4 Core objects . 141

6.5 The role of Lua . 143

6.5.1 Lua callbacks . 144

6.5.2 Callback performance . 151

iii

6.5.3 Slots and scales . 153

6.6 The MATLAB interface . 155

6.7 Conclusions . 156

7 MEMS Examples 158

7.1 Introduction . 158

7.2 Study of disk resonators . 159

7.2.1 Convergence of Q . 160

7.2.2 Observed energy loss mechanism 163

7.2.3 Mode mixing and design sensitivity in the disk resonator . . . 164

7.2.4 Performance of model reduction method 167

7.2.5 Summary . 169

7.3 Checkerboard resonators and SOAR 170

7.4 Conclusion . 172

Bibliography 173

iv

Acknowledgements

Jim Demmel and Sanjay Govindjee co-advised me during this work, and I thank

them for sharing their technical insight and their curiosity.

Jim Demmel and Velvel Kahan shaped how I think about numerical computation

and linear algebra; and Sanjay Govindjee, Bob Taylor, and Panos Papadopoulos

shaped my understanding of finite elements and computational mechanics. Zhaojun

Bai taught me about model reduction and the importance of preserving structure;

Ming Gu taught me about semi-separable structure; and Mark Friedman introduced

me to numerical bifurcation analysis and parameter-dependent eigenvalue problems.

Kris Pister introduced me to MEMS and MEMS simulation, and Roger Howe provided

encouragement and technical guidance for my efforts to simulate RF-MEMS.

Sunil Bhave first interested me in RF-MEMS, and provided several of my favorite

example problems. Emmanuel Quévy built and measured the disk resonators we

used to test our models. Ushnish Basu taught me about perfectly matched layers.

Tsuyoshi Koyama contributed to the HiQLab code, and was responsible for most of

the exploratory simulations of thermoelastic damping.

Finally, I am indebted to the faculty who taught me, in lectures and in informal

discussions, and to fellow graduate students who were willing to “talk shop” and

who answered my questions and listened to my impromptu lectures with equal good

grace. More than anything else, it is these friends, colleagues, and guides who made

my graduate training satisfying and worthwhile.

The work described here was in part supported by the National Science Foundation

Grant ECS-0426660; the University of California MICRO program; Sun Microsys-

tems; and the National Science Foundation Graduate Student Fellowship program.

v

vi

Chapter 1

Introduction

This dissertation is about computational tools to aid in the design of resonant

Micro-Electro-Mechanical Systems (MEMS), tiny vibrating devices built by processes

like those used to make integrated circuits. Resonant MEMS are used in accelerom-

eters and gyroscopes, in sensors to detect chemicals and to measure pressure, and in

communication devices such as cell phones. Better computer simulations let engineers

design MEMS using fewer costly and time-consuming “build-and-break” prototype

tests, both by helping the designers develop insight and by giving them quantitative

predictions of device behavior. In this dissertation, we provide:

• Mathematical models of the physics of resonant MEMS

• Efficient and accurate algorithms for analyzing these models

• HiQLab, a software system that includes our model and algorithms

• Analyses of specific resonant MEMS, and comparisons of our simulations to

laboratory measurements.

We focus on resonant MEMS, but our ideas apply more broadly. In general, our

numerical methods apply to eigenvalue or resonance calculations for parameter-

1

dependent problems, problems with complex symmetry, and problems involving cer-

tain perturbation structures. The HiQLab software architecture is also general, and

includes features which are useful for other types of finite element simulations.

Our work comprises three parts in which we describe, respectively, physical models

and mathematical tools, simulation software, and analyses of specific devices. In the

first and largest part, we describe models of MEMS damping together with projection

methods for computing free vibrations and forced response of the damped systems.

We concentrate on anchor loss and thermoelastic damping, two damping mechanisms

considered important by MEMS designers. Anchor loss is particularly interesting, as

no other MEMS simulation tools we know provide anchor loss models. We provide

general finite-element formulations to model anchor loss and thermoelastic damping,

describe factors affecting the accuracy of our formulation, and show how the structure

of the equations leads to methods to calculate individual modes and reduced-order

models more quickly and accurately than may be done with standard methods. We

also present new subspace continuation techniques that allow us to quickly reanalyze

the linear dynamics of device models when the design parameters and nonlinear op-

erating points change. The problem structures we use in our model reduction and

subspace continuation methods are not specific to MEMS, as we show in our descrip-

tion of our work to integrate subspace continuation into the MATCONT numerical

bifurcation analysis package [61].

In the second part of this dissertation, we describe HiQLab, our finite element tool

for simulating resonant MEMS. By writing a new code, we provide special support

for the new elements and solvers described in the first part of our work. The core of

HiQLab is a small object-oriented library of finite element data structures built along

standard lines; and the primary user interface is written in MATLAB, which allows

us to quickly try new solution algorithms and to write short scripts for parameter

studies and design optimization tasks. The main novelty in the HiQLab architecture

2

is a mesh description system built around the Lua scripting language, which provides

such features as automatic physically-motivated rescaling of problem variables and

specification of spatial fields via callback functions. HiQLab lacks the pre- and post-

processing features of commercial finite element codes, but it includes algorithms and

elements that other codes lack. Because HiQLab has an open, flexible architecture, it

is a useful environment for developing new elements and algorithms.

In the final part of the dissertation, we use HiQLab to analyze two example res-

onant MEMS, and compare our analyses to laboratory measurements. Our analysis

highlights interesting characteristics of both the software and the devices under anal-

ysis. In particular, one of the contributions of this section is the discovery of a

previously-unknown interference phenomenon which leads to massively degraded de-

vice performance near certain frequencies. The mechanism by which this occurs, and

the means of avoiding it, apply to other very high-frequency resonant MEMS devices

as well.

1.1 Outline and Contributions

The detailed organization of the rest of the dissertation is as follows:

• In the remainder of this introductory chapter, we describe how resonant MEMS

are used in applications, why it is important to understand damping in these

devices, and why previous simulation tools do not suffice to provide designers

with damping information.

• In Chapter 2, we review Galerkin projection methods for analyzing the fre-

quency response of linear systems. We illustrate issues that arise in our later,

more realistic models by analyzing a sequence of one-dimensional problems.

Though this chapter includes no fundamentally new theorems, we contribute a

3

unifying presentation that ties together results from finite element analysis and

numerical linear algebra.

• In Chapter 3, we describe how to compute damping due to radiation of elastic

waves from a vibrating MEMS device into a large substrate. We simulate this

radiation behavior using an absorbing perfectly-matched layer (PML), which

we write as a complex-valued change of coordinates. We then give a novel

formulation of finite elements for PMLs, which makes it easier to program PMLs

for elastic problems. Our finite element equations have a complex symmetric

structure, which we use to develop a new model reduction procedure which is

about twice as accurate as standard algorithms using the same amount of work.

In addition, we present a new error analysis and resulting automated methods

for choosing PML parameters to minimize reflections in the discrete model. The

contents of this chapter largely overlap our previously-published work [30].

• In Chapter 4, we describe thermoelastic damping, a well-known loss mechanism

which particularly affects MEMS beams and other flexural devices. After re-

viewing the equations of thermoelasticity and their discretization, we then give

a new perturbation method for computing thermoelastic damping of mechanical

vibration modes. Our method generalizes Zener’s method of orthogonal ther-

modynamic potentials [189] to work with finite elements, which can be used in

much more complicated geometries than those that Zener considered.

• In Chapter 5, we describe the continuation of invariant subspaces (CIS) al-

gorithm. The CIS algorithm is used to quickly compute continuous partial

eigendecompositions of continuously parameter-dependent matrices. Such de-

compositions provide useful information to engineers who wish to understand

how device behavior changes under changes in design parameters; they are also

useful for understanding the dominant linear dynamics, and in particular the

4

system stability, near a dynamical equilibrium point in a general nonlinear sys-

tem. Previous work on subspace continuation has focused on dense problems;

because these methods are prohibitively expensive when the system dimension

grows larger than a few hundred, they are unsuitable for analysis of most PDE

problems. Our work combines invariant subspace continuation with Krylov

subspace projection methods for the first time, resulting in an algorithm which

computes continuous bases and is much faster than the previous method. We

also describe new algorithms for adapting the continued subspace in order to

improve the robustness of numerical stability analyses. In addition, we con-

tribute a theoretical result of independent interest, new sufficient conditions

for existence of a continuously-defined invariant subspace connecting subspaces

at the end-points of a curve in matrix space. Our bounds can be arbitrarily

tighter than previous results based on conventional perturbation expansions.

We have published most of the contents of this chapter previously as a techni-

cal report [34].

• In Chapter 6, we describe the software architecture of the HiQLab simulation

system. HiQLab includes the new models developed in previous chapters; in

particular, it is the first available MEMS simulation code we know to com-

pute anchor damping. We highlight novel aspects of the code, and particularly

emphasize the flexibility gained by describing analyses in MATLAB and by de-

scribing meshes in the Lua scripting language. This flexibility makes it easy to

prototype new elements and solvers, and to programmatically define meshes for

use in parameter studies and optimization tasks. The abstraction mechanisms

we use do not affect the expensive parts of typical computations, and so the

flexibility of HiQLab comes with a negligible performance penalty.

• In Chapter 7, we describe analyses in HiQLab of a checkerboard resonator and

5

of a family of disk resonators. We use the checkerboard example to high-

light the advantages of reduced-order modeling by building an application with

which engineers can visualize forced vibrations. We can evaluate the reduced-

model at each frequency point in milliseconds rather than seconds, which is fast

enough to allow users to interactively scan through different forcing frequen-

cies, viewing the response shape at each frequency. With the disk example,

we demonstrate the effectiveness of our anchor loss models; we also uncover a

previously-unknown physical phenomenon by which losses in a parasitic mode

lead to drastic increases in damping near certain critical values of geometric

design parameters. We discovered this behavior through our simulations; it was

subsequently verified in laboratory experiments. Our analysis of the mechanism

underlying this damping suggests that it will substantially affect a variety of

high-frequency resonant MEMS designs; we give insight into what designs may

suffer this effect, and how they can be changed to avoid the trouble. We vali-

date the simulations of both the checkerboard and the disks by comparing the

predicted behavior to experimental data. Parts of this chapter appear in our

previously-published papers [33, 31, 30].

1.2 Resonant MEMS in applications

In this section, we review some applications in which resonant MEMS are used.

For these applications, it is particularly important to have components with little

damping. Our work to simulate different damping mechanisms is motivated by the

engineering need to design these lightly-damped MEMS components.

6

control

RF amplifier /

preselector

IF amplifier /

filter

Demodulator Baseband

processing

Local

Oscillator

Mixer

Tuning

Figure 1.1. Block diagram of a super-heterodyne radio receiver (adapted from [112,
§13.1]).

1.2.1 Resonant MEMS in radio systems

In the super-heterodyne architectures used in most modern radio devices, radio-

frequency (RF) signals received by the antenna are translated to a lower intermediate

frequency (IF) before being demodulated and processed. Figure 1.1 shows a sim-

plified block diagram for a simple super-heterodyne receiver [112, §13.1]. Resonant

mechanical devices are already likely to be used in all but the last stage in this re-

ceiver architecture. Because the mixer translates multiple RF frequencies to the same

intermediate frequency, a surface acoustic wave (SAW) filter or film bulk acoustic res-

onator (FBAR) is used to pre-select the relevant RF range. The mixer used to effect

the translation will itself use a frequency synthesizer built around a precisely tuned

crystal oscillator. At the intermediate frequency, additional resonant mechanical pas-

sive components may be used in further filtering and demodulation. In all regards,

modern radios – including cell phones – are mechanical systems as well as electrical

ones.

Engineers use mechanical components because it would often be impossible to

realize equivalent functionality with an integrated circuit. The key advantage of

mechanical components is their high quality of resonance (Q), a dimensionless ratio of

the total energy stored in a resonating system to the energy lost per cycle of oscillation.

The quality factors of resonating mechanical systems are orders of magnitude higher

7

than the quality factors of purely electrical systems implemented in conventional

integrated circuitry. Components with high quality factors are necessary in order to

build very narrow-band filters, or filters which must have sharp edges in order to

distinguish between narrowly separated channels in a frequency-division multiplexing

system. High quality factors are also critical in building good frequency references.

In general, the higher the quality factor, the lower the power consumption and the

better the noise behavior; this “explains the traditional obsession of engineers with

maximizing resonator Q” [112, §18.2].

The mechanical resonators in current architectures are discrete components, not

integrated on a single chip with the electronics. In contrast, surface micro-machined

MEMS (microelectromechanical system) resonators can be integrated into standard

complementary metal-oxide semiconductor (CMOS) circuit technology, and so they

have the potential to use less area and power, and cost less money, than existing

resonators [134]. Beyond replacing their discrete counterparts, these integrated mi-

cromechanical devices may be used in large numbers to implement radio architectures

that would be impossible to build with discrete components. Nguyen has proposed

several MEMS-based architectural features which would allow order-of-magnitude

power savings to be attained in the RF front-end, allowing mobile phones to oper-

ate for much longer on a single charge [133]. To implement these features requires

micromechanical components with high quality factors.

1.2.2 Resonant MEMS in sensors

High frequency electromechanical resonators are also important components in

sensing systems. Acoustic wave devices, and particularly SAW-based devices, have

been used as sensors for many years [174]. Frequency measurement is relatively precise

and robust in the face of electronic imperfections [107, p.260]. At the same time, a res-

8

onator’s frequency response depends on geometry, material properties, and boundary

conditions, so that shifts in resonance of SAW devices can be used to sense a variety

of physical properties, including chemical concentrations [7], temperature [94], flow

rate [104], and liquid density and viscosity [121]. Resonant silicon microsensors made

with MEMS processes have been used for a similar variety of measurements [155].

Even a device as simple as a cantilever silicon beam has seen over two decades of

development for sensing, and cantilever-based resonating biosensors continue to be

the subject of active development [46].

The resonant frequency of a resonating sensor should be sensitive to changes in

the measured variable, and insensitive to other environmental parameters (such as

temperature). Consequently, it is important to understand how changes to the design

change both the nominal frequency and the frequency sensitivity. Resonant sensors

should also have high quality factors. If the quality factor is too low, frequency

changes cannot be measured precisely. Low quality factors can also lead to less

stable measurements, since shifts in the resonant frequency might be due not only

to the measured quantity, but also to the influence of the amplifiers and control

circuitry [155].

1.3 Damping in resonant MEMS

In the applications described in the last section, it is important to have components

with high quality factors. A variety of damping mechanisms can lower the quality fac-

tors in resonant MEMS, including gas damping, material losses, thermoelastic damp-

ing (TED), and anchor losses. Which loss mechanism matters most to a particular

design depends on the device geometry, the materials used, the environment, and the

operating frequency range. All of these damping mechanisms have been studied exper-

imentally for different types of cantilever beam resonators [93, 183, 180, 181, 76, 184];

9

for more general perspectives, we refer to the recent report by Brotz [39] and other

general reviews [119]. In the rest of this section, we briefly review existing work on

modeling each of these damping mechanisms. For the rest of the dissertation, though,

we will focus on TED and anchor losses. These two mechanisms are known to dom-

inate loss in some high-frequency MEMS; and unlike gas damping and some forms

of material loss, TED and anchor loss cannot be eliminated by better processing or

packaging methods.

1.3.1 Gas damping

Except in vacuum-packed devices and in some high-frequency bulk resonators, gas

damping is usually the dominant energy loss mechanism in resonant MEMS. In air

at standard temperature and pressure, the incompressible Navier-Stokes equations

provide a good model for the flow around larger MEMS devices. At these scales,

viscous forces dominate inertial forces, usually by one or two orders of magnitude,

so that the inertial terms can be dropped from the Navier-Stokes equation; what

remains is the equation for creeping flow (Stokes’ equation) [24, §4.8]. Many of the

interesting flows in MEMS devices involve thin films of fluid that fill narrow gaps

between structures; by using the large aspect ratios in these films, the equations

governing fluid flow simplify even further. The two most common cases are when the

surfaces bounding a film move parallel to each other, leading to shear flows [47]; or

when they move perpendicular to each other, leading to squeeze-film effects [154]. For

more complicated motions and geometries, and for testing the accuracy of simplified

models, researchers have turned to fast boundary element methods for the Stokes

equation [178, 185], or sometimes to finite element methods [21, 182].

Continuum models based on the incompressible Navier-Stokes equations do not

cover all cases of interest for MEMS designers. The ratio between the mean free

10

path and a characteristic length scale is known as the Knudsen number; and when

the Knudsen number is not small, sub-continuum deviations from the Navier-Stokes

model begin to play a role. For Knudsen numbers greater than 10−2, slip flow along

walls starts to become important; for Knudsen numbers between 10−1 and 10 the

flow is in the transitional regime, where the bulk of the fluid no longer conforms to

the incompressible constant-viscosity assumptions of the Navier-Stokes equation; and

for Knudsen numbers greater than 10, one enters the regime of free molecular flow,

where interactions between gas molecules are much less frequent than interactions

between a gas molecule and the solid boundary [115]. At standard temperature and

pressure, the mean free path of a molecule in air is 65 nm [115]. Gaps smaller than

ten times this mean free path (6.5 microns) are not uncommon, and half-micron gaps

are certainly possible, so slip flow conditions and compressibility effects are important

in real devices even in ordinary air. Free molecular flows occur in devices packaged

at low pressures.

Broadly speaking, there have been two types of models for studying gas damping

when the Knudsen number is not small. First, there are models derived from statisti-

cal mechanics in which a distribution of gas molecule velocities is used to compute the

momentum transferred from the vibrating device into the gas [48, 131, 193, 105, 184].

Second, there are models which incorporate corrections to the continuum model:

in particular, these include modifications to Reynolds’ equations which introduce a

pressure-dependent effective viscosity [170, 172, 76]. Additional modifications have

been proposed which incorporate not only compressibility effects, but also the effects

of gas flow through vent holes [171, 21, 111, 92].

Gas damping was recognized early as a major energy loss mechanism for mi-

croresonators [131], as it is for macroscopic resonators. Consequently, the role of gas

damping in microresonators has been widely studied in both models and experiments.

11

We refer the reader to [115, 186] for more comprehensive literature reviews on the

subject.

1.3.2 Material losses

Real materials have hysteretic behavior: the stress depends not only on the current

strain, but also on the recent strain history. Changes in strain result in changes to

the distribution of defects and chemical impurities in a material, and it takes time

for these modified distributions to relax back to equilibrium. The irreversible work

lost in these various relaxation phenomena is lumped under the heading of material

losses.

In studies of vibrating metal microcantilevers, the hysteresis effects in the bulk

of the material played a large role [93]. But many MEMS devices are not made of

metal; instead, they are made of high-quality single crystals of silicon, or of films

of polycrystalline silicon or silicon alloys. The internal losses in these materials are

much smaller than the internal losses in metals [155, 93]. However, because of the

large surface area to volume ratio in small devices, hysteretic losses in the material

at the surface can also be important. Surface damage during etching, the presence

of native oxide layers, and adsorbed contaminants may all play roles in this surface

damping [126, 183, 180, 181]. In experiments on submicron cantilevers, the scaling

of the overall damping was consistent with the scaling of surface losses; furthermore,

heat treatments meant to remove adsorbed material halved the damping in these

devices [183, 180].

12

1.3.3 Thermoelastic damping (TED)

A material expands when the temperature is raised; thermodynamic consistency

demands that this cannot be a distinct cause and effect, but that changes in volume

should lead to changes in temperature. Therefore pressure waves passing through

most media create spatial variations in temperature, and the relaxation of those

spatial variations through heat diffusion leads to attenuation of the pressure wave.

As early as 1868, Kirchhoff studied the attenuation of sound waves through ther-

mal relaxation, but the effect was not much studied in solids until a series of papers

by Clarence Zener starting in 1937 [187, 188, 190, 143]. In these papers and in a 1948

research monograph [189], Zener described the mechanism of thermoelastic damping

(TED), derived approximate formulas for the damping effects in beams and other

simple geometries, and compared his predictions to experimental measurements. The

theory of thermoelasticity developed rapidly starting in the early 1950s, particularly

after Biot in a 1956 paper derived the governing equations in variational terms, based

on firm foundations of irreversible thermodynamics [35]. For further description of

the development of thermoelasticity, we refer to Nowacki’s monograph [136] and to a

survey paper by Chadwick [42].

Certainly by the 1950s, designers of mechanical filters and resonators were aware

of thermoelastic damping and related effects [122]. Thermoelastic effects continued

to be a concern as resonant microsystems were developed. In 1990, Roszhart pub-

lished a paper in which he found that damping in silicon microbeams in a vacuum

showed good agreement with predictions based on Zener’s theory [145]. In subse-

quent investigations of damping in MEMS, TED has been repeatedly identified as

a significant, or even dominant, contribution [41, 67, 95]. These investigations have

typically relied on Zener’s approximate solution for flexural waves, or on refinements

to Zener’s approximation derived under similar kinematic assumptions about the de-

13

vice motion [118, 135, 153]. Gorman and Duwel have used finite-element simulations

in FEMLAB to numerically solve the coupled equations of elasticity [67, 83], but be-

cause of the prominent role played by flexural mechanisms in many MEMS designs,

variants of Zener’s approximation have generally dominated the literature.

1.3.4 Anchor loss

Another damping mechanism is anchor loss (also called clamping loss). Some of

the energy in a vibrating MEMS structure can leak through an anchoring structure

and into the substrate, there to be dissipated by internal loss mechanisms. Though

these clamping mechanisms are widely cited as a possible loss mechanism [41, 119],

and several authors have recommended balanced designs which minimize motion at

the anchor (and presumably thus minimize energy transfer through the anchor) [155,

164, 126, 177, 2, 176, 97], remarkably little work has been done to quantify anchor

losses. Most quantitative theoretical work on anchor loss in MEMS has focused

on the case of a beam attached to an infinite plate [93, 180, 54, 181, 88]. To our

knowledge, analytical work done by Hao and Ayazhi [87] and numerical work by

Park and Park [138, 139] and by us [31, 30] are the only examples of quantitative

prediction of anchor losses in three-dimensional MEMS structure.

1.4 Computer-aided design for resonant MEMS

Researchers have worked on specialized computer-aided design (CAD) tools for

nearly three decades. For a survey of the state of the art over the first two decades,

we refer particularly to the retrospective article by Senturia [149]; for a perspective

on the increasing role of macromodels, we refer to [127]. The monograph by Nathan

14

(Equivalent circuits, ODEs)

Reduced−order models

Device−level models

(Continuum mechanics, PDEs)

System−level models

Figure 1.2. Modeling levels for MEMS design (adapted from [149])

and Baltes [130] provides an excellent survey of CAD methods for a wide variety of

transducers.

There are two traditions of MEMS CAD tools: those built to work from

continuum-level descriptions of the underlying physics, and those built on higher-

level structural modeling ideas. The two tool sets are generally complementary, with

circuit simulators providing system-level information from simple component models

and finite-element analyses of individual components providing the parameters for

the simplified models. Over time, automatically constructed macromodels have come

to serve as a bridge between physical and structural models, and so model reduction

techniques are now a major research area [127]. Major vendors of MEMS simulation

systems now provide access to both types of simulations: Intellisuite [103] and Coven-

torWare [102] use the ABAQUS engine [1] for mechanical problems, and provide their

own system simulation software; while tools in the MEMSCAP suite [125] work with

ANSYS [8] to produce reduced-order device models in Verilog-A and VHDL [68].

ANSYS markets its multiphysics finite element code directly to MEMS design-

ers [9]; ABAQUS is used by Intellisuite and CoventorWare, but is not marketed

15

directly as a MEMS analysis tool. The other finite element code most marketed

to MEMS designers is COMSOL Multiphysics [129]. All these codes are capable of

computing the resonant frequencies and mode shapes for an undamped mechanical

resonator, but they provide more limited support for simulation of damping mecha-

nisms. ANSYS, ABAQUS, and COMSOL Multiphysics all include viscoelastic ma-

terial models; CoventorWare, Intellisuite, and MEMSCAP inherit these models. All

these systems also provide models of gas damping effects. Finite element models of

thermoelastic effects have received less attention than models of gas damping, but as

of version 10.0 (August 2005), ANSYS includes elements with thermoelastic effects

and supports some time-harmonic thermoelastic damping analysis [10]; prior to that,

other researchers used COMSOL Multiphysics (then FEMLAB) for similar finite ele-

ment calculations of thermoelastic damping [83, 67]. To our knowledge, none of these

systems includes models of anchor losses.

We will be concerned with simulating individual devices more than the larger

systems in which those devices operate. As different designs mature, the ultimate

goal is to provide compact models that predict the behavior of these designs without

recourse to finite elements and other continuum-level methods. Such compact models

can then be used in a larger system simulation framework. The model reduction algo-

rithms we describe in this dissertation form one approach to building these compact

models.

16

Chapter 2

Mathematical preliminaries

The mathematical components of this dissertation treat various projection meth-

ods for forced and free vibration problems. We now turn to the mathematical back-

ground for these methods. Our goal is to provide a unified treatment of some existing

results about finite element methods for PDEs and Krylov subspace methods for

finite-dimensional systems.

These results are well-established, but are generally presented in different parts

of the literature; our contribution is to present these ideas together in one place.

17

2.1 Eigenvalues and approximation

2.1.1 Forced response of a second-order system

We start with an autonomous single-input single-output (SISO) linear system in

the time domain:

Mutt(t) +Ku(t) = f(t)

f(t) = f0φ(t)

y(t) = l∗u(t).

These equations describe a vibrating system which is driven in the direction f0. This

force creates some response in the system, and we measure this response in some

direction using the functional l∗. Assuming the system starts at rest (u(0) = u̇(0) =

0), these equations uniquely define the relation between the input signal φ(t) and the

output signal y(t).

If we take the Laplace transform of the time-domain equation, we get the

frequency-domain equation

(s2M +K)L[u](s) = L[f](s)

L[f](s) = f0L[φ](s)

L[y](s) = l∗L[u](s).

The transformed input and output signals are related algebraically as

L[y](s) = H(s)L[φ](s), (2.1)

where H(s) is the transfer function defined by

H(s) := l∗(s2M +K)−1f0. (2.2)

The transfer function describes the steady-state response of the system; that is, if

φ(t) = eiωt and H(iω) is finite, then |y(t)−H(iω)eiωt| → 0 as t → ∞. In a physical

18

experiment, we can measure H(iω) by probing the system with a sinusoidal input

signal and measuring the response after any transient behavior dies away. Therefore,

transfer functions will be useful to us both as a theoretical tool and as something

which can be compared to experiment.

If the system (2.1) represents an undamped mechanical vibration, then M will be

symmetric and positive definite and K will be symmetric and positive semi-definite.

In this case, there is an M -orthonormal basis V = [v1, . . . , vn] which diagonalizes K;

that is, V ∗MV = I, and V ∗KV = diag(ω2
1, . . . , ω

2
n) for real values of ω. In this case,

we can write

H(s) =
n∑

j=1

cj
s2 + ω2

j

(2.3)

where

cj := (l∗vj)(v
∗
j f0). (2.4)

The response of the system is a rational function, and we can describe it completely

in terms of the position and strength of its poles, both of which we determine from an

eigendecomposition. This is true even for more complicated systems: an eigenvalue

problem determines the singularities, and a complete picture of the singularities gives

a complete picture of the transfer function.

A complete eigendecomposition may be mathematically useful, but it is also dif-

ficult and expensive to compute. However, the role of eigenvalue analysis in much of

engineering is not to obtain a complete picture of the system response, but to obtain

an approximate picture which is valid in some local frequency range. In the example

above, we know that if ωj is an isolated eigenvalue, then as ω → ωj, the behavior of

H(iω) is dominated by the first term in a Laurent expansion,

H(iω) = − cj
2ωj(ω − ωj)

+O(1). (2.5)

More generally, to approximate H(iω) for some frequency range [ωmin, ωmax], we might

build approximations based on the behavior of H at any singularities that occur near

19

those frequencies. For example, a typical approach to problems in structural vibration

is to compute the few eigenmodes with lowest frequency, and to only consider the

contributions from those modes when approximating the system response. However,

this approach to approximating a transfer function is a convenience, not a necessity;

there is nothing sacred about the use of an eigendecomposition.

2.1.2 General forced response and quality factors

Models of undamped vibration often have the form (2.1) with M symmetric

positive-definite andK symmetric positive-semidefinite. Models with damping cannot

take this form. The most common phenomenological models of damping in structures

take the form

Mutt(t) +But(t) +Ku(t) = f(t), (2.6)

while integral models of linear hysteretic material response lead to models of the form

Mutt(t) +

∫ t

−∞
G(t− τ)u(τ) dτ = f(t). (2.7)

These are still linear time-invariant systems, which can be converted into algebraic

equations through Laplace transforms. The transformed systems take the form

Kdynamic(s)L[u](s) = L[f](s). (2.8)

which leads to the single-input single-output transfer function

H(s) = l∗Kdynamic(s)
−1f0. (2.9)

The singularities ofH(s) are now given by solutions to a nonlinear eigenvalue problem

det(Kdynamic(s)) = 0. (2.10)

As before, we seek partial information about the singularities of Kdynamic(s) as a

means to approximate H(s). In particular, we are interested in isolated poles close

20

to the imaginary axis. Suppose s∗ = iω∗ is such a pole; then for frequencies ω near

to Re(ω∗), we will generically have a peak in the response magnitude |H(iω)|. The

shape of this peak is determined by how close ω∗ lies to the real axis. We define the

quality factor Q for ω∗ to be

Q =
|ω∗|

2 Im(ω∗)
. (2.11)

For Q� 1, the value of Q measures the shape of the peak in |H(iω)| in the following

sense. Using the first term in a Laurent expansion about ω∗, we write

H(s) ≈ c

s− s∗
(2.12)

If we write s∗ = −α+ βi, then we have

|H(iω)|2 ≈ |c|2

(ω − β)2 + α2
, (2.13)

so that

|H(i(β ± α))|2 ≈ 1

2
|H(iβ)|2. (2.14)

Therefore, |H(iω)|2 has a peak centered around β and with a half-height width of 2α.

The ratio of the width to the center frequency is

β

2α
≈ Q. (2.15)

This formula is used to determine the quality factor associated with an experimentally

measured peak.

2.2 Radiation damping and resonance

When H(s) has isolated poles near the imaginary axis, we use partial knowledge

of those poles to construct approximations of H(iω) for some range of frequencies.

When the poles of H(s) are clustered, or when they are far from the imaginary axis,

we prefer other means of approximation. However, a low-order rational approximation

21

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

U
(x

,iω
)

Real part

Imaginary part

Elastic region Viscoelastic region

Figure 2.1. Model problem to illustrate resonance. A short elastic region on [0, 1]
is attached to a long viscoelastic region on [1, L + 1] with very different material
properties. The problem is clamped at x = L + 1, and subject to time-harmonic
displacement conditions at x = 0.

22

of H(s) may be locally quite accurate, even though the poles of the approximation

appear unrelated to the poles of H(s). In this event, the poles of the approximation

provide more useful information than the poles of the approximated function.

In the remainder of this section, we illustrate our point with a one-dimensional

PDE model (Figure 2.1). This model describes wave propagation in an inhomogeneous

elastic medium with two regions of material: a short elastic region in [0, 1], and

a long viscoelastic region in [1, L + 1]. For input and output signals, we choose

the displacement and force at x = 0; the transfer function relating these signals is

the dynamic stiffness at x = 0. When the properties of the two regions are very

different, the transfer function will have pronounced peaks; but these peaks cannot

be attributed to eigenvalues in an ordinary sense. We will be able to understand the

peaks more clearly by taking the limit as L→∞ and looking at hidden singularities,

or resonance poles, in this limiting case. The resonance poles will then take the place

of eigenvalues as the basis for constructing useful local approximations to the system

behavior.

2.2.1 Viscoelastic wave solutions

We start from a one-dimensional Laplace-domain viscoelastic wave equation:

s2ρU(x, s) = E(s)Uxx(x, s) (2.16)

where E(R) ⊂ R and any poles of E lie on the negative real axis. Typically, E(s)

is chosen to be a rational function. One of the simplest such viscoelastic models is

Zener’s model:

E(s) = E0
1 + sτ1
1 + sτ0

(2.17)

where τ1 and τ0 are characteristic times associated with stress and strain relaxation.

Note that E(iω) approaches constant values for ω → ∞ and ω → 0. The fact that

23

E(iω) is close to constant over large frequency ranges matters more to what follows

than any particular functional form.

For fixed choice of s = iω 6= 0, solutions to the wave equation take the form

U(x, s) = c1 exp(−ikx) + c2 exp(ikx) (2.18)

where the wave number k = k(ω) satisfies the dispersion relation ω2ρ = E(iω)k2. The

solution set determined by the dispersion relation is double-valued; by convention, we

choose as the principal value for k the one such that Im(k) < 0, so that exp(−ikx) →

0 as x→∞. For the branch cut along the positive real k axis, we choose the solution

such that k > 0.

2.2.2 One-dimensional model equations

We now write our one-dimensional model in the Laplace domain:

s2ρU(x, s) = E1Uxx(x, s), x ∈ (0, 1) (2.19)

s2ρU(x, s) = E2(s)Uxx(x, s), x ∈ (1, L+ 1) (2.20)

U(0, s) = Φ(s) (2.21)

U(L+ 1, s) = 0 (2.22)

Y (s) = E1Ux(0, s). (2.23)

We also require that the solution U(x, s) and the stress field EUx(x, s) both be con-

tinuous with respect to x. Our goal will be to study the behavior of the transfer

function H(s) such that Y (s) = H(s)Φ(s).

Let k1 and k2 denote the wave numbers in (0, 1) and (1, L+1), respectively. Then

we may write solutions in the form

û(x) =

 d1 sin(k1(x− 1)) + d2 cos(k1(x− 1)), x ∈ (0, 1)

d3e
ik2(x−1) + d4e

−ik2(x−1), x ∈ (1, L+ 1)
(2.24)

24

where the coefficients are determined by the boundary conditions

d1 sin(−k1) + d2 cos(−k1) = Φ(s) (2.25)

d3e
ik2L + d4e

−ik2L = 0 (2.26)

and the continuity and force balance conditions

d2 = d3 + d4 (2.27)

E1k1d1 = iE2k2(d3 − d4). (2.28)

The transfer function H(s) for this problem is given by

H(s) =
σ̂(0, s)

û(0, s)
= −E1k1

d1 cos(k1) + d2 sin(k1)

d1 sin(k1)− d2 cos(k1)
. (2.29)

Define the constants

δ = e−2ik2L (2.30)

ξ =
E1k1

E2k2

(2.31)

ξ̃ = ξ
1− δ

1 + δ
. (2.32)

Then we can use the side conditions to find

d1

d2

= iξ̃, (2.33)

so that

H(s) = −E1k1
cos(k1) + iξ̃ sin(k1)

sin(k1)− iξ̃ cos(k1)
. (2.34)

2.2.3 Asymptotics of H(s)

As E1/E2 → ∞, the stiffness of the viscoelastic region becomes small compared

to the stiffness of the elastic region, and we recover the behavior of a free boundary

at x = 1. In this limit, |ξ| → ∞, and H(s) converges pointwise almost everywhere to

Hfree(s) = E1k1 tan(k1). (2.35)

25

Similarly, when E2/E1 → ∞, the system behaves as though there were a clamped

boundary at x = 1, and H(s) converges pointwise almost everywhere to

Hclamp(s) = −E1k1 cot(k1). (2.36)

Thus if E1 and E2 are much different in magnitude, a reasonable first approximation

to H(s) is to model the large viscoelastic domain by a free or clamped boundary

condition. However, such an approximation will be poor in the neighborhood of

k1 = (n+1/2)π (for |E1| � |E2|) or k1 = nπ (for |E2| � |E1|). We need more details

to approximate H(s) accurately near these peaks.

Now consider the limiting behavior as L → ∞. By convention, we choose the

principal value of k2 such that Im(k2) < 0, except when the choices for k2 lie on the

real axis. Away from this branch cut, we therefore have that δ → 0 as L → ∞, and

H(s) asymptotically approaches the limiting function

Hunbounded(s) = −E1k1
cos(k1) + iξ sin(k1)

sin(k1)− iξ cos(k1)
. (2.37)

The convergence of H(s) to Hunbounded(s) is uniform on any compact subset of the s

plane which does not intersect the branch cut for k2 (which is also a branch cut for

Hunbounded) and does not contain any poles of Hunbounded.

The singularities of Hunbounded are given by solutions to the transcendental equa-

tion

sin(k1)− iξ cos(k1) = 0. (2.38)

In general, equation (2.38) is too difficult to solve directly, but we can hope to ap-

proach it by perturbation analysis. Suppose we are in the almost-fixed case, i.e.

|ξ| � 1; and further suppose that the value of ξ is nearly constant for k1 close to nπ.

Then rewrite (2.38) as

tan(k1) = iξ. (2.39)

26

By letting ξ0 denote the value of ξ at k1 = nπ and taking the first term in a Taylor

expansion for the tangent, we have

k1 ≈ nπ + iξ0. (2.40)

A major difficulty in the above argument is the hypothesis that ξ is nearly constant

for k1 close to nπ. In particular, it may happen that the branch cut for k2 (and hence

ξ) passes between nπ and nπ + iξ0. That is, Hunbounded is a multi-valued function

with a branch cut inherited from the branch cut for k2. In this case, the pole whose

location we have just estimated may lie on a second sheet, tucked away just behind

the branch cut. Such a hidden pole is called a resonance pole, and the effect it has

on the transfer function for real frequency values is no different from the effect of an

ordinary pole close to the real axis. We may use resonance poles of an unbounded-

domain approximation as the basis for approximating H(s), or for computing quality

factors, just as we did with the real poles.

Resonance poles are well-studied objects in classical and quantum mechanical

scattering theory [132, Chapter 12], [144, pp. 51–60]. For a lively introduction to

resonance poles and eigenvalues and their relation, we refer to the recent review paper

by Zworski [194].

2.2.4 Summary of approximations

The sequence of approximations we just described is as follows:

1. We described an initial model consisting of a small, lossless vibrating region

interacting with a large, lossy domain. We also chose a particular scalar transfer

function to describe the response of the model.

2. We observed that if the properties of the small region are very different from

those of the large region, then we may approximate the effects of the larger

27

domain by a free or fixed boundary condition. However, the transfer function

obtained by this approximation has poles at real frequencies (imaginary s val-

ues), and the approximate transfer function will exhibit large relative error near

those poles.

3. We observed that as the lossy domain grows larger, the transfer function ap-

proaches the transfer function for an infinite-domain problem. In this case, con-

vergence occurs everywhere away from the singularities of the infinite-domain

transfer function (including the branch cut). Therefore, for a large enough lossy

domain, we can use the infinite-domain solution to approximate the original

problem over a real frequency range, even near peaks in H(iω).

4. We saw that, depending on the location of the branch cut, some of the peaks in

the infinite-domain problem could be attributed to resonance poles, which we

described as singularities in a second sheet of definition of the infinite-domain

transfer function.

Let us consider again the implications of these last two points. As the size of

the lossy domain grows in our model problem, the eigenvalues of the problems on

ever-larger finite domains can converge to the resonances in the unbounded domain

problem. We have noted that the finite-domain transfer functions will converge to

the principal value for the infinite-domain transfer function, except where that latter

has branch cuts and poles. At resonances, the finite-domain transfer functions must

therefore converge to the principal value of the infinite-domain transfer function.

So by what means can the apparent effects of the resonance still lurk in the finite-

domain transfer functions? For ever larger finite domains, one will have ever more

dense clustering of eigenvalues close to the branch cut for the infinite-domain problem.

That clustering of eigenvalues serves to discretize the influence of the continuous

spectrum in the infinite-domain problem, in the same way that one might discretize

28

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

ω

R
es

po
ns

e
am

pl
itu

de

H(iω)
|H

unbounded
(iω)|

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
Branch cut
Resonance poles
Poles of H(iω)

Figure 2.2. Comparison of bounded- and unbounded-domain transfer functions for
a version of the test problem in Figure 2.1. For higher frequencies, Hunbounded(iω)
and H(iω) are in good agreement. The poles of H(iω) cluster along the branch
cut of Hunbounded(iω) in a way that mimics the effect of the resonance poles of
Hunbounded(iω).

29

the effects of a continuous charge distribution on a surface using an approximation

based on a finite number of point charges. For frequency parameters sufficiently far

from the cluster, the aggregate influence of the poles of the finite-domain problem

takes on the character of the poles of the infinite-domain problem. We illustrate this

situation in Figure 2.2.

The location of a branch cut in our infinite-domain problem was the result of a

choice: we chose a particular value for k2 which was consistent with decay in the far

field, and that led us to the principal value for our infinite-domain transfer function.

We could have chosen differently; and had we chosen differently, the resonances of

the system would have been revealed as ordinary poles in the principal definition.

One way to effect such a change in the location of a branch cut is to choose solutions

which decay not for large values of x, but for large values of some modified coordinate

x̃ which is stretched into the complex plane. We return to this notion in Chapter 3

when we discuss perfectly matched layers.

2.3 Galerkin methods

In the previous section, we considered the system

Kdynamic(s)L[u](s) = L[f](s), (2.41)

and sought to understand the behavior of L[u] as a function of s via the singularities

of Kdynamic(s). In this section, we discuss Galerkin approximations for systems of the

same general form, which we write

A(λ)u(λ) = f. (2.42)

We will suppress the parameter λ unless it is explicitly needed. As before, we consider

the behavior of u(λ) as a function of λ, and also the eigenproblem of finding nontrivial

30

solutions (u, λ) to the homogeneous system where f = 0. Our goal is to provide a

brief unified description of the finite element for PDEs and Krylov subspace methods

which appear in later chapters.

Let A(λ) : V → W be an invertible linear operator between two Hilbert spaces.

Partitioning the spaces into orthogonal complements V = V1⊕V2 and W = W1⊕W2,

we write A11 A12

A21 A22

u1

u2

 =

f1

f2

 . (2.43)

With respect to this partitioning, we write a Galerkin solution û ∈ V1 with the trial

space W1 as

A11û1 = f1

û2 = 0.

When V = W and V1 = W1, we call this a Bubnov-Galerkin approximation method.

Otherwise, it is a Petrov-Galerkin method.

Assuming A11 is invertible, the error in the Galerkin approximation is

e = u− û =

−A−1
11 A12

I

 e2. (2.44)

Over all possible approximations in V1, the smallest possible error norm is ‖e2‖.

Therefore, by taking norms of (2.44) we have the quasi-optimality property

‖u− û‖ ≤ Copt min
v∈V1

‖u− v‖, (2.45)

where

Copt :=

∥∥∥∥∥∥∥
−A−1

11 A12

I

∥∥∥∥∥∥∥ . (2.46)

Inequalities like (2.45) give us error bounds provided that we can show a uniform

bound on Copt (a stability property) and a bound on the error in the best approxi-

mation to u from V1 (a consistency property). This is the approach to error analysis

31

of Galerkin approximations that is usually taken in the finite element literature; see

for example the development as presented in [49, 159, 38].

2.3.1 Stability for solution of linear systems

In most of our discussions of projection methods in later chapters, we focus on

ways of enriching a Krylov subspace to contain better approximate solutions. In

this subsection, we discuss when the Galerkin procedure will be able to choose a

good approximation from a given subspace. For the moment, we do not consider the

dependence on the parameter λ.

Positive operators

We now consider stability for the Bubnov-Galerkin method when A is a positive

operator on V . We call A positive (or coercive or V-elliptic) provided there is an

α > 0 such that

∀v ∈ V , Re(v∗Av) ≥ α‖v‖2. (2.47)

Positive operators are invertible, and satisfy the bound ‖A−1‖ ≤ α−1. Moreover,

in the Bubnov-Galerkin method for positive A, we also have that A11 and A22 are

positive operators with the same constant α that A has. Therefore, we may write

C :=

∥∥∥∥∥∥∥
−A−1

11 A12

I

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
−A−1

11 0

0 A−1
22

A
0

I

∥∥∥∥∥∥∥ ≤ α−1‖A‖.

Note that this bound (Céa’s inequality [38, p. 64]) is completely independent of the

choice of V1.

When A is positive and self-adjoint, it defines an inner product; if A is bounded,

the topology under the induced norm ‖ · ‖A is equivalent to the ordinary topology

on V . With respect to the A-inner product, the constant in Céa’s inequality is one;

32

that is, Bubnov-Galerkin approximation is optimal in the A-norm. This optimality

result is usually a starting point for introductions to finite element error bounds and

for explanations of the conjugate gradient method. For indefinite problems like those

we face, the situation becomes more complicated.

Indefinite operators

Let us again consider Bubnov-Galerkin approximation for an operator A on V ,

but now without the restriction that A be positive. The field of values (numerical

range) of A [106, p. 267] is

F(A) := {v∗Av : v ∈ V}. (2.48)

The field of values is a convex set, and when A is real, the field of values is symmetric

about the real axis. Therefore, for real problems, there are only three choices: the

closure of the field of values will be strictly positive (A positive) or negative (A

negative), or it must contain zero (A indefinite). If the closure of F(A) contains zero,

then there can be no bound on ‖A−1
11 ‖ without hypotheses on V1. Therefore, in the

indefinite case the choice of spaces affects both stability and consistency, and the

two issues cannot be completely separated. Similarly, in the case of Petrov-Galerkin

methods, the trial spaces V1 and weight spaces W1 must be compatible in order to

ensure stability in the approximation problem.

Indefinite operators (or equivalent indefinite bilinear forms) occur regularly in the

finite element literature in the context of mixed variational formulations. For such

problems, the conditions necessary to ensure boundedness of A−1
11 are known as the inf-

sup or Babuska-Brezzi conditions [38, Chapter 12]. In the finite-dimensional setting

of Krylov subspace methods, singularity or near-singularity of the computed A11 is

associated with breakdown in BiCG algorithm [22]. Because of the issues associated

with stability in these cases, there are many finite element and Krylov subspace

33

methods for indefinite problems which are based on least-squares formulations or

similar alternatives to the Galerkin ansatz. In this dissertation, however, we will

continue to focus on Galerkin methods.

Weakly indefinite operators

The equations for the time-harmonic response of a forced structure at low fre-

quencies (not too large relative to the fundamental frequency) are indefinite, but only

mildly so. We now consider stability of Bubnov-Galerkin approximation in this case.

First, suppose there is an invariant subspace Va of low dimension such that for all

v ∈ V⊥, v∗Av ≥ α‖v‖2. For V1 containing Va, write V1 as the direct sum of orthogonal

complements, V1 = Va ⊕ Vb, so that

A11 =

Aaa Aab

0 Abb

 . (2.49)

Let β := σmin(Aaa) and γ := ‖A‖ ≥ ‖Aab‖; also recall that σmin(Abb) ≥ α. An

elementary calculation then gives

σmin(A11)
2 + (α+ β + γ)σmin(A11)− αβ ≥ 0. (2.50)

Therefore, we have a lower bound for σmin(A11) which does not depend on the choice

of V1 beyond the hypothesis that Va ⊂ V1. We can use perturbation theory to extend

to the case when V1 forms a small (but nonzero) angle with Va.

For low-frequency forced vibration problems, the smoothest modes span a “bad”

subspace that contains all the indefinite behavior. Such smooth functions can be

identified by comparing different norms: for example, the less smooth a function

v ∈ H1 is, the farther apart will be ‖v‖H1 and ‖v‖L2 . Therefore, we can ensure that

Bubnov-Galerkin projections with a subspace V1 give an operator with a uniformly

34

bounded inverse by a condition like

∀v ∈ V − {0}, sup
v̂∈V̂

|||v − v̂|||
‖v‖

< δ (2.51)

where |||·||| is a stronger Sobolev norm than ‖ · ‖. For an example of such a result,

see [38, §5.7]. Therefore, the finite element method for forced vibration problems

converges when the spaces involved satisfy mild stability conditions in addition to

the usual approximability conditions. For a more detailed treatment of these results,

we refer to the monograph by Chatelin [43].

2.3.2 Eigenvalue localization

In this section, we informally describe a general estimate for localizing eigen-

values of A(λ). Our approach is based in Schur complement bounds of the same

flavor as those introduced by Lehmann and by Kahan [140, Chap 10]; similar uses

of Schur complements appear in the literature on quantum mechanics, where they

are associated with the names of Livsic and Feshbach [96]. For a summary of more

standard estimates for Galerkin eigenpair approximations in finite element methods,

we refer to the survey article [17]; a more general treatment is given in the book by

Chatelin [43]. Chatelin also describes the behavior of Krylov subspace methods for

matrix eigenvalue problems; for further descriptions, including error analysis, we turn

to Saad [146], Stewart [157], and Parlett [140].

The stability of the Galerkin method for solving linear systems and the accuracy

of the Galerkin method for approximating eigenpairs are complementary issues. For

quasi-optimality results, we want A11(λ) to have a uniformly bounded inverse; for

eigenvalue approximation, we want to understand the relationship between values of

λ for which A11(λ) is singular and those for which A(λ) is singular. For standard

eigenvalue problems A(λ) = A − λI, it is relatively difficult to compute interior

eigenvalues for the same reason that it is relatively difficult to ensure stability in

35

Galerkin solution of linear systems with highly indefinite operators: unless restrictions

are placed on the choice of projection spaces, there may be spurious singularities of

A11(λ) that are not close to singularities of A(λ). This issue also affects the behavior

of Krylov subspace methods for model reduction, which we will address in the next

subsection.

Suppose A depends continuously on λ, and let Λ(A) denote the spectral set

Λ(A) := {λ ∈ C : A(λ) does not have a bounded inverse}. (2.52)

Define the Schur complement B(λ) by

B(λ) := (A(λ)−1)−1
11 = A11(λ)− A12(λ)A22(λ)−1A21(λ); (2.53)

then

Λ(A) ∪ Λ(A22) = Λ(B) ∪ Λ(A22). (2.54)

The complement B(λ) is the sum of the projected operator A11(λ), which we use as

the basis for Galerkin approximations, and a term which incorporates all of the other

parts of A. To show that the eigenvalues of A11(λ) provide good estimates of some

of the eigenvalues of A(λ), we need to bound the effects of the second term in the

definition of B(λ).

For any ε > 0, we define the pseudospectral set Λε(A11) [166] and a set Ωε where

‖B(λ)− A11(λ)‖ ≤ ε:

Λε(A11) :=
⋃

‖E‖≤ε

Λ(A11 + E) (2.55)

Ωε := {λ ∈ Λ(A22)
c : ‖A12(λ)A22(λ)−1A21(λ)‖ < ε}. (2.56)

By taking norms of (2.53) to bound the terms in (2.54), we have

Λ(A) ⊂ Λε(A11) ∪ Ωc
ε. (2.57)

That is, inside the resolved region Ωε, any eigenvalues of Amust reside within Λε(A11).

Furthermore, if A has only a point spectrum, then for any connected component ∆

36

of Λε(A11) contained strictly within Ωε, the continuity argument from Gershgorin’s

theorem [158, Section IV.2] implies that Λ(A) ∩∆ and Λ(A11) ∩∆ contain the same

number of eigenvalues, counting multiplicities.

The set Ωε describes the part of C for which the projection A11(λ) provides com-

plete information about Λ(A). The parameter ε tells us how good the eigenvalue

estimates from A11(λ) really are inside of Ωε. The bound (2.57) therefore provides

us with something like a microscope for inspecting Λ(A). As ε is made smaller, the

resolved region Ωε will shrink, but the pseudospectral set Λε(A11) will provide more

information about any eigenvalues of A that lie inside Ωε.

We wish to make two observations regarding (2.57) in the context of this disser-

tation. For simplicity, we will now restrict attention to the case of a linear eigenvalue

problem, i.e. A(λ) = A(0)− λI.

First, note that if ‖A12‖‖A21‖ is small and the spectrum of A11 is “well separated”

from A22(λ), then we will have Λε(A11) ⊂ Ωε. In this case, each of the eigenvalues

of A11 corresponds to an eigenvalue of A with some small perturbation, and it makes

sense to refer to V1 as an approximation of an invariant subspace. That is, the

two crucial ingredients to good approximation of an invariant subspace are a good

projection space (so that there is a small residual) and good separation between

the part of the spectrum associated with the invariant subspace and the rest of the

spectrum. We return to these points in Chapter 5.

Second, note that while complete information about A22 is usually unavailable,

in some circumstances it is possible to estimate bounds on A22. For example, if we

know a positivity bound such as the one discussed in the previous subsection, i.e.

∀v ∈ V2, v
∗Av ≥ α‖v‖2, then we can provide bounds such as{

λ ∈ C : Re(λ) < α− ‖A12‖‖A21‖
ε

}
⊂ Ωε. (2.58)

For finite element approximations of eigenvalues, estimates like this mean we can

37

accurately compute low frequency eigenvalues for which the modes are sufficiently

well approximated by the finite element space, and which are sufficiently separated

from any under-resolved modes. However, for a Krylov subspace approximation of

eigenvalues in the interior of the spectrum, any coarse bounds on Ωε will generally

contain Λε(A11). This reflects a real difficulty, namely that unless V1 is close to an

invariant subspace, the spectrum of A11 may contain “imposter” eigenvalues, which

do not approximate any true eigenvalue of A and which are not necessarily well

separated from the “good” eigenvalue estimates. As with the case of linear systems,

making a careful choice of approximation spaces can mitigate the effects of spurious

singularities in the projected system; this is the motivation behind the use of harmonic

Ritz vectors in eigenvalue approximation [157, Section 4.4].

2.3.3 Krylov subspace model reduction

Krylov subspace projections are used in most model reduction algorithms for

large problems, as described in many survey papers [18, 72, 12, 11, 152]. In these

algorithms, one approximates a transfer function

H(λ) = l∗A(λ)−1f (2.59)

by a the transfer function of a projected system,

H1(λ) = l∗1A11(λ)−1f1. (2.60)

The spacesW1 and V1 are chosen so as to provide a good approximation in some local

range for λ. For example, to generate a reduced model valid near some expansion

point λ0, the spaces W1 and V1 might be chosen to be invariant subspaces of A(λ0),

or Krylov subspaces for A(λ0)
−1. With an appropriate choice of subspaces, one can

obtain a reduced transfer function H1 which is a Padé approximation to the original

38

transfer function that matches some number of moments of H at λ0; see the discussion

of the Padé-via-Lanczos connection in the survey paper [18].

The same issues discussed in the previous subsections on Galerkin eigenvalue

approximation and Galerkin solution of linear systems also figure here. If neither V1

nor W1 is an invariant subspace, then H1 may have poles which are not poles of H.

If these poles of H1 are too close to the frequency range of interest, the accuracy of

the transfer function may be affected. This fact makes it difficult to provide a priori

error estimates for Krylov subspace procedures, except very close to the expansion

point λ0. This has not proven a serious impediment to the adoption of Galerkin

model-reduction methods. However, there are alternatives to the Galerkin method in

which an approximation is chosen to satisfy some optimization condition, and these

methods do not to suffer such singularities; see for example the thesis of Li [116].

Even poles of H1 which do not affect local accuracy of the approximation may

affect how well global properties of H are mimicked by H1. For example, even if H

is stable (i.e. if all the poles of H are in the left half plane and the only poles on

the imaginary axis are real), the reduced model H1 need not be stable. For many

systems, one can formulate hypotheses onW1 and V1 which are sufficient to guarantee

that qualitative properties, such as the stability or passivity of H, are preserved in

a reduced-order model. These hypotheses are designed to preserve physically mean-

ingful structures in the model equations. For example, the Second-Order ARnoldi

(SOAR) algorithm [19], which we use in one of the example calculations in Chapter 3,

preserves the structure of a model governed by a system of second-order differential

equations, as well as preserving the symmetry in the system coefficient matrices. For

a description of a general framework for such structure-preserving algorithms, we refer

to the recent paper of Li and Bai [117].

39

Chapter 3

Perfectly Matched Layers

3.1 Introduction

Modern communication systems rely on high-frequency electromechanical res-

onators to act as frequency references and filters. Though designers currently use

quartz, ceramic, and surface-acoustic wave devices, surface-micromachined micro-

electromechanical system resonators (MEMS resonators) in development offer an at-

tractive alternative. Because they can be integrated into standard complementary

metal-oxide semiconductor (CMOS) technology, MEMS resonators have the potential

to use less area and power, and cost less money than existing commercial devices [134].

But to be viable, energy losses in these MEMS resonators must be minimized. The

usual measure of this energy loss is the quality factor Q of a resonant peak, defined

as

Q = 2π

(
Stored energy

Energy lost per period

)
. (3.1)

For an ideal linear single degree of freedom oscillator Q = |ω|/2 Im[ω], where ω is the

oscillator’s complex-valued eigenvalue [148, p. 158]. Resonators in cell phone filters,

40

for example, require Q values greater than 1000 for good performance, and higher

values are preferable [134, 5].

Depending on scale, geometry, and materials, the energy losses that lower Q

may come from material damping, air damping, thermoelastic damping, or radiation

of elastic waves from an anchor [41]. While losses in low-frequency resonators are

dominated by air damping, for which increasingly accurate compact models are avail-

able [185, 21], high-frequency disk resonators have similar measured performance in

vacuum or air [176]. Thermoelastic damping is a frequently-cited source of losses at

high frequencies [67, 95, 3, 118, 153]. In most cases, the damping is estimated by

fitting parameters in a model originally developed by Zener [187, 188, 190]; unfortu-

nately, this parameter-fitting makes it difficult to tell what should be attributed to

thermoelastic effects and what should be attributed to other sources of damping with

similar functional form. Though anchor damping is a recognized source of losses [41],

there are relatively few MEMS papers (see e.g. [150, 138, 139]) dealing with losses at

the anchor.

Although it is not well studied, in several designs for high MHz or GHz frequency

resonators, the dominant loss mechanism appears to be radiation of elastic energy

through anchors. In these designs, the resonating device is much smaller than the

silicon substrate on which it sits, and waves radiating from the anchor are so attenu-

ated by the time they reflect from the sides of the microchip that the reflected waves

are negligible. That is, the bulk of the chip can be modeled without loss as a semi-

infinite half-space. To simulate the response of a semi-infinite domain, one usually

employs boundary dampers, infinite elements, boundary integrals, or exact Dirichlet-

to-Neumann (DtN) boundary conditions so that a domain of simulation can be finite

and allow for the application of finite element or finite difference methods; see e.g.

[192, Chapter 8],[70, 80, 16]. Each of these methods truncates the simulation domain

with an artificial boundary at which outgoing waves are absorbed. For an elastic half

41

space, Green’s function is not known in closed form, and so highly accurate global con-

ditions, such as DtN conditions, cannot be used. Instead we model the semi-infinite

domain using a perfectly matched layer (PML), which absorbs waves from any angle

of incidence, but which does not require knowledge of Green’s function [23].

Basu and Chopra [23] demonstrated the superior performance of their PML

method for problems related to earthquake engineering. Here, we examine the util-

ity of a PML for anchor loss computations in MEMS resonators. We begin with a

brief review of PMLs for time-harmonic motion. This is followed by a discussion of

the relevant finite element expressions. Our presentation, while similar to that of

[23], leads to a simpler implementation. We analyze the effects of discretization on

the PML behavior, and give describe how to choose the PML parameters to obtain

good accuracy. Because of the large computational scale of resonator problems we

also investigate the use of reduced-order models that preserve the complex symmetric

structure of the PML equations.

We will illustrate the effectiveness of perfectly matched layers for a MEMS example

in Chapter 7.

3.2 Perfectly matched layers

Except for scale, a microresonator atop a silicon chip is much like a structure

on the earth’s surface during an earthquake. While we are concerned with waves

radiating away from a structure and the earthquake engineer is concerned with waves

radiating toward a structure, in both cases the substrate is much larger than the

structure, and it can be modeled as an elastic half-space (possibly heterogeneous).

This infinite-domain approximation occurs in many physical models: acoustic waves

radiating from a musical instrument, electromagnetic waves reflecting from aircraft,

42

elastic waves scattering from a crack in a solid, and water waves in an open harbor are

only a few additional examples [167], [192, Chapter 8]. The essential characteristic

of the infinite-domain solution is that only outgoing waves are allowed. To model

infinite-domain problems on a computer, we need finite-size discretizations which

enforce this radiation condition.

One way to enforce the radiation condition is to discretize an exact boundary

equation satisfied by outgoing waves. For example, outside of a sphere containing

any radiators and scatterers, waves can be written as a multipole expansion; in this

expansion, the radiation condition just says that certain coefficients corresponding to

incoming waves should be zero. A related global condition is the DtN map, which

specifies how Dirichlet conditions and Neumann conditions must be related at a sur-

face [167]. These boundary conditions are rigorously derived and highly accurate,

but they usually require that the artificial boundary have a particular shape. They

are also nonlocal in space: every boundary unknown is directly related to every other

boundary unknown, and consequently the matrix of boundary terms is dense, and

expensive to form and to solve. Furthermore, exact boundary conditions may be un-

available for problems in which no analytically tractable Green’s function is known,

as in our case.

A second approach is to build approximate boundary conditions based on the

asymptotic behavior of outgoing waves. These approximate conditions are local and

inexpensive, but only absorb waves over a small range of angles of incidence [167, 23].

Consequently, a large computational domain may be needed for accurate results.

Further, they often have difficulty with surface waves and interface waves. Yet another

approach is to add a nonphysical “sponge layer” to dissipate waves before they reach

the artificial boundary. Waves passing through the sponge layer are damped on the

way to the artificial boundary, and are further damped when they are reflected back,

so that most of the signal entering the layer is absorbed. To be effective, though, the

43

layer must be designed so that there is no impedance mismatch to reflect waves back

from the interface between the layer and the rest of the domain.

A perfectly matched layer (PML) is a refinement of a sponge layer. Bérenger

invented the perfectly matched layer for problems in electromagnetic wave propaga-

tion [25], and it was later re-interpreted as a complex-valued change of coordinates

which could be applied to any linear wave equation [52, 168, 162]. Not only do these

layers rapidly attenuate waves, they also “perfectly match” the rest of the domain;

that is, there are no spurious reflections at the interface due to perfect impedance

matching. In [23], a perfectly matched layer for time-harmonic elastodynamics is

described which – unlike previous elastodynamic PMLs such as those in [53] – can

be implemented with finite elements in a standard displacement framework, with no

non-standard global unknowns. We describe an alternate interpretation of the PML

described in [23], and show how our interpretation further simplifies implementation

in a finite element code.

3.2.1 A motivating example

A PML model of an infinite domain problem is composed of two parts: a sub-

domain where the actual equation of interest is dealt with explicitly and, a sub-domain

that produces the desired effect of a far-field radiation boundary condition. To set

terminology and provide insight into the workings of PMLs, we review a simple 1-D

example.

1-D elastic wave

Consider a longitudinal wave propagating in a homogeneous, semi-infinite rod

with axial coordinate x ∈ [0,∞). If waves travel with speed c, the one-dimensional

44

wave equation that describes this system is

∂2u

∂x2
− 1

c2
∂2u

∂t2
= 0 (3.2)

where u(x, t) is the displacement. Time-harmonic solutions u(x, t) = û(x)eiωt are

governed by a Helmholtz equation

d2û

dx2
+ k2û = 0, (3.3)

where k = ω/c is the wave number and i =
√
−1. Solutions to this problem have the

form

û = coute
−ikx + cine

ikx (3.4)

where cout is the magnitude of the outgoing wave traveling from the origin toward

infinity, and cin is the magnitude of the incoming wave traveling from infinity to-

ward the origin. In general, we assume there is no source at infinity, so physically

meaningful solutions to such problems have cin = 0.

1-D elastic wave in a perfectly matched medium

We now consider the Helmholtz equation (3.3) under a change of coordinates.

Let λ : R → C be a continuous function which is nowhere zero, and define a new

coordinate

x̃ =

∫ x

0

λ(s) ds. (3.5)

By definition, x̃ and x are differentially related

dx̃

dx
= λ(x)

d

dx̃
=

1

λ(x)

d

dx
. (3.6)

Now suppose that the stretched coordinate x̃ is used as the independent variable in

equation (3.3). Then in terms of x, the equation is

1

λ

d

dx

(
1

λ

dû

dx

)
+ k2û = 0. (3.7)

45

σ

Bounded domain

x
L Lp

PML region

β(Lp − L)

Figure 3.1. Piecewise linear attenuation function for a plane wave

where the derivative may be taken in a weak sense, since λ need not be C1. Equation

(3.7) describes wave propagation in a perfectly matched medium (PMM).

Suppose

λ(s) = 1− iσ(s)/k; (3.8)

then the solutions to the PMM equation (3.7) are

û = cout exp

(
−

∫ x

0

σ(s) ds

)
exp (−ikx) + cin exp

(∫ x

0

σ(s) ds

)
exp (ikx) . (3.9)

So long as σ = 0, both the incoming and outgoing solutions to the PMM equation

(3.7) agree with the solutions to the original Helmholtz equation (3.3). Where σ > 0,

the wave decays in the direction of travel. Since the outgoing wave and the incoming

wave travel in opposite directions, the outgoing wave amplitude decays with increas-

ing x, while the incoming wave amplitude decays with decreasing x. For example,

assume σ is defined to be zero on [0, L] and σ = β(s − L) on [L,∞). Then for

x > L, the outgoing wave amplitude is cout exp (−β(x− L)2/2), and the incoming

wave amplitude is cin exp (β(x− L)2/2).

Because waves decay so rapidly as they travel through the PMM region, we obtain

a good approximation to the infinite-domain problem even if we force û(Lp) = 0 for

some finite Lp > L. This generates the concept of a perfectly matched layer (PML);

i.e. a PML is a finite PMM attached to a region with regular wave behavior. For

example, suppose we prescribe û(0) = 1 and û(Lp) = 0. For convenience, define

46

γ = β(Lp − L)2; then the boundary conditions become û(0)

û(Lp)

 =

 1 1

e−(γ/2+ikLp) eγ/2+ikLp

cout

cin

 =

1

0

 (3.10)

and therefore

cout =
1

1− e−γ−2ikLp
= 1 +O(e−γ) cin =

−e−γ−2ikLp

1− e−γ−2ikLp
= −O(e−γ). (3.11)

Even for modest γ, the bounded-domain solution is a good approximation to the

infinite domain solution. For γ ≈ 4.6, only 1% of the outgoing wave is reflected.

Increasing γ decreases the reflection in the continuous case; however, in the discrete

equations obtained from finite difference or finite element approximations, we must

be careful about how we increase γ. If β is too large, the waves entering the PML will

decay rapidly, effectively creating a boundary layer; if the discretization is too coarse

to resolve this decay, the numerical solution will be polluted by spurious reflections.

We discuss this phenomenon and its implications further in Section 3.2.5.

3.2.2 Elastic perfectly matched layers

The multi-dimensional equations of motion for a time-harmonic elastodynamic

medium with no body forces are

ω2ρu+∇ · σ = 0 (3.12)

σ = C : ε (3.13)

ε(u) =

(
∂u

∂x

)s

(3.14)

where u is the displacement field, ε is the infinitesimal strain tensor, σ is the stress

tensor, C is the material stiffness tensor, and ρ is the density. A simple isotropic elas-

tic medium admits propagating disturbances moving at two characteristic velocities

– compression waves (P waves) and shear waves (S waves). An anisotropic medium

47

admits further characteristic wave speeds, and inhomogeneities and interfaces add yet

more wave types. However, as in the one-dimensional case, a complex-valued coordi-

nate transformation can be used to attenuate each of these waves in the direction of

travel without spurious reflections from artificial interfaces.

Multi-dimension PMM equations

Though it is possible to introduce the coordinate transformation into the local

form of the equations [23], it is simpler to first recast the equations in weak form and

then transform. The weak form of the time-harmonic elastodynamic equation is∫
Ω

ε(w) : σ(u) dΩ− ω2

∫
Ω

ρw · u dΩ =

∫
Γ

w · t dΓ (3.15)

where the domain is Ω, part of the boundary Γ ⊂ ∂Ω is subject to tractions t, and

w is a weight function. As before, suppose x̃ is a transformed coordinate such that

the Jacobian ∂x̃
∂x

= Λ is continuously defined and everywhere nonsingular. Replacing

x with x̃ everywhere in (3.15), we have∫
Ω̃

ε̃(w) : σ̃(u) dΩ̃− ω2

∫
Ω̃

ρw · u dΩ̃ =

∫
Γ̃

w · σ̃(u) · ñdΓ̃ (3.16)

We now map back to the x coordinate system:∫
Ω

ε̃(w) : σ̃(u) det(Λ)dΩ− ω2

∫
Ω

ρw · u det(Λ)dΩ =

∫
Γ

w · σ̃(u) · (Λ−Tn) det(Λ) dΓ.

(3.17)

In the x coordinate system, the transformed strain and stress tensors are

ε̃(u) =

(
∂u

∂x̃

)s

=

(
∂u

∂x
Λ−1

)s

(3.18)

σ̃(u) = C : ε̃(u). (3.19)

The local form of (3.17), which can be derived either from (3.17) or directly from

transforming (3.12), is

trace

(
∂σ̃(u)

∂x
Λ−1

)
+ ω2ρu = 0 (3.20)

48

or, in indicial form,

∂σ̃ij

∂xk

(
Λ−1

)
kj

+ ω2ρui = 0. (3.21)

3.2.3 Anisotropic medium interpretation

We now present a different way to look at the PML equations, in which the

original form of the elasticity equations is maintained, but with different material

coefficients. This leads to a succinct and intrinsically symmetric implementation for

multi-dimensional elastic PMLs.

In indicial form, we write the strain associated with a displacement field u as

εij(u) =
1

2
(δipδjq + δiqδjp)

∂up

∂xq

. (3.22)

The PML-transformed strain has the same form, except with one of the Kronecker δ

functions replaced by Λ−1:

ε̃ij(u) =
1

2
(δipδjr + δirδjp)

∂up

∂xq

(
Λ−1

)
qr

(3.23)

= Ĩijpq
∂up

∂xq

, (3.24)

where Ĩijpq := 1
2

(
δip (Λ−1)qj + (Λ−1)qi δjp

)
. Now by substitution,

ε̃ij(w)Cijklε̃kl(u) =
∂wp

∂xq

ĨijpqCijkl̃Iklrs
∂ur

∂xs

(3.25)

=
∂wp

∂xq

C̃pqrs
∂ur

∂xs

(3.26)

where we define

C̃pqrs := ĨijpqCijkl̃Iklrs . (3.27)

Note that C̃pqrs inherits the major and minor symmetries of Cijkl. That is,

Cijkl = Cklij =⇒ C̃pqrs = C̃rspq (3.28)

Cijkl = Cjikl =⇒ C̃pqrs = C̃qprs. (3.29)

49

ξ2

ξ1

x1

x2 x̃2

x̃1

Ωe Ω̃e

Ω�

x̃(x)x(ξ)

Figure 3.2. Concatenated isoparametric mapping and PML coordinate mapping

Because of the minor symmetries (C̃pqrs = C̃qprs and C̃pqrs = C̃pqsr), we can rewrite

(3.26) as

ε̃pq(w)Cpqrsε̃rs(u) =
∂wp

∂xq

C̃pqrs
∂ur

∂xs

= εpq(w)C̃pqrsεrs(u). (3.30)

If we substitute (3.30) into the weak form of the PML equation (3.17), and assume

that there is no loading on the transformed part of the boundary, we have∫
Ω

ε(w) : C̃ε(u) det(Λ)dΩ− ω2

∫
Ω

ρw · u det(Λ)dΩ =

∫
Γ

w · t dΓ. (3.31)

Now define

CPML = C̃ det(Λ) (3.32)

ρPML = ρ det(Λ). (3.33)

so that (3.31) becomes∫
Ω

ε(w) : CPMLε(u) dΩ− ω2

∫
Ω

ρPMLw · u dΩ =

∫
Γ

w · t dΓ. (3.34)

The form of (3.34) is identical to the form of the standard elasticity equation (3.15),

but with inhomogeneous, anisotropic, complex-valued material properties.

3.2.4 Finite element implementation

To derive the weak form of the PML equations in the x coordinate system, Equa-

tion (3.17), we performed a change of variables in the integrals of Equation (3.16).

50

Because isoparametric finite elements already use mapped integration, we can com-

bine the change of variables associated with the PML mapping with the change of

variables associated with the isoparametric coordinate transformation.

Consider the element in Figure 3.2. Suppose we choose shape functions NI , so that

we have interpolations within elements of the form u =
∑

I NIuI and w =
∑

I NIwI .

Then the nodal submatrices for the element stiffness and mass are given by

ke
IJ =

∫
Ω�

B̃T
I DB̃J J̃dΩ

� (3.35)

me
IJ =

(∫
Ω�

ρNT
I NJ J̃dΩ

�

)
1 (3.36)

where 1 is the second order identity tensor and the nodal matrices B̃I come from

transforming coordinates in the standard B-matrix formulation [191, Chapter 4], D is

the standard matrix of material parameters, and J̃ is the Jacobian of the composition

of the PML mapping with the isoparametric mapping:

J̃ = det

(
∂x

∂ξ

)
det (Λ) . (3.37)

In practice, we evaluate the integrals numerically by Gaussian quadrature in the

parent domain. Whether the quadrature is done analytically or numerically, the form

of the integrands in (3.35) and (3.36) guarantees that the mass and stiffness matrices

will be complex symmetric.

Remarks:

1. This interpretation of the PML in terms of an additional coordinate transforma-

tion works with plane stress, plane strain, axisymmetric, or three-dimensional

problems. In the axisymmetric case, however, the factor of r that appears in

the integrands should not be transformed into the PML coordinate systems,

since that factor of r comes from the Jacobian of the mapping to the (r, z)

coordinates, and not from the mapping to the (r̃, z̃) coordinates.

51

2. For many problems, a reasonable choice of coordinate transformations is to

independently stretch each coordinate xi, so that Λ is a diagonal matrix; i.e.

Λ = diag(λi). If we further choose stretching functions so that Λ can be de-

scribed by low-order polynomials, then it makes sense to also use isoparametric

interpolation to compute the values of the stretching function. That is, given

values for λi at each node, we compute Λ = diag(λi) by interpolation at the

Gauss points where it is evaluated.

3. By writing the PML equations in this form we can easily institute an economy

of programming where every element in a mesh is a “PML element.” Regular

elements are formed using the coordinate transformation Λ = 1 and true PML

elements by Λ = diag(λi). Thus the creation of PML elements only requires a

minor modification of the traditional element mapped integration routines.

3.2.5 Effects of discretization and angle of incidence

We now consider the effects of discretizing the PML. Our model problem will be

a two-dimensional Helmholtz equation on [0, Lp] × R, where a PML transformation

is applied to the x coordinate for x ∈ [L,Lp]:

1

λ

∂

∂x

(
1

λ

∂u

∂x

)
+
∂2u

∂y2
+ k2u = 0 (3.38)

u(0, y) = exp(ikyy) (3.39)

u(Lp, y) = 0. (3.40)

This equation admits plane-wave type solutions of the form u(x, y) = v(x) exp(ikyy)

where v satisfies the one-dimensional PML equation

1

λ

d

dx

(
1

λ

dv

dx

)
+ k2

xv = 0 (3.41)

v(0) = 1 (3.42)

v(Lp) = 0. (3.43)

52

We analyzed this one-dimensional problem in Section 3.2.1. Recall that in the un-

transformed part of the domain, the solution v(x) is a linear combination of the

free-space left-traveling and right-traveling waves:

v(x) = cin exp(ikxx) + cout exp(−ikxx) for x ∈ [0, L]. (3.44)

The continuous reflection coefficient is defined as rcontinuous := |cin/cout|. If λ(x) =

1 − iσ(x)/k, then the reflection coefficient has the form exp(−γkx/k), where γ is a

function of the PML length and the choice of parameters. Thus plane waves traveling

nearly perpendicular to the PML interface are more strongly absorbed by the PML

than are waves traveling at a shallow angle.

We analyze the discrete PML in much the same way we analyzed the continuous

problem. Starting with a finite element discretization of the our model problem, we

use transform away the y coordinate to obtain a one-dimensional discrete system.

This one-dimensional system is finite, so we can solve it numerically. In the ordinary

part of the domain where the PML is not in effect, we write the solutions as a

linear combination of discrete left-traveling and right-traveling waes; the ratio of the

magnitude of these components defines a discrete reflection coefficient.

Our discrete model problem is illustrated in Figure 3.3. For the purpose of con-

creteness, we will consider a mesh of square biquadratic elements of uniform size h.

Let (xl, yl) be the positions of the nodes in [0, h)× [0, h), i.e.

(x1, y1) = (0, 0) (x2, y2) =
(

h
2
, 0

)
(x3, y3) =

(
h
2
, h

2

)
(x4, y4) =

(
0, h

2

)
Every node in the mesh can be written uniquely as (xl +ph, yl + qh) for some integers

p and q. Let U l
pq be the field value at node (xl + ph, yl + qh) and define Upq =

(U1
pq, U

2
pq, U

3
pq, U

4
pq)

T ∈ C4. Grouping together field values in this way, we write the

53

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

U0,1

U0,−1

U0,0

U1,−1

U1,0

U1,1

p = 0 p = 1 p = N p = N +NPML

h

q = 1

q = 0

q = −1

Figure 3.3. Discrete 2D plane wave test problem.

discretized Helmholtz equation in terms of a system of difference equations∑
p,q

HrspqUpq = 0 (3.45)

whereHrspq ∈ C4×4 represents the interaction between Upq and Urs. Note thatHrspq =

0 for |r− p| > 1 or |s− q| > 1. Also, because of translational invariance, Hrspq really

only depends on s− q:

Hrspq = Crp,s−q. (3.46)

We now seek solutions of the form Upq = Vp exp(ikyqh). The new variable V satisfies∑
p

ĤrpVp = 0 (3.47)

where

Ĥrp := exp(−ikyh)Crp,−1 + Crp,0 + exp(ikyh)Crp,1. (3.48)

Equation 3.48 is a finite-size system of linear equations which may be solved numer-

ically.

In the untransformed interior of the domain (0 < p < N), we have a constant

coefficient difference equation

BTVp−1 + AVp +BVp+1 = 0 (3.49)

54

where A = Ĥpp and B = Ĥp p+1 = ĤT
p p−1. Therefore for 0 < p < N , we can write

Vp =
∑
m

cmξ
p
mWm (3.50)

where (ξm,Wm) are solutions to the quadratic eigenvalue problem

(BT + ξA+ ξ2B)W = 0. (3.51)

For biquadratic elements, there are eight solutions to the eigenvalue problem (3.51).

Two eigenvalues are zero, and two eigenvalues are infinite; these eigenvalues corre-

spond to modes which only appear at boundaries of the discrete system. Two of the

eigenvalues are purely real, and correspond to evanescent waves with a wavelength in

the y direction of h/2. The remaining two eigenvalues are a complex conjugate pair on

the unit circle. We call these eigenvalues ξ1 ≈ exp(−ikxh) and ξ2 = ξH
1 ≈ exp(ikxh);

they correspond to right-traveling and left-traveling discrete waves. We now define

the discrete reflection coefficient to be rdiscrete := |c1/c2|.

Because ξ1 is an algebraic function of kxh, it can only approximate the transcen-

dental function exp(−ikxh). Thus, there is always numerical dispersion; that is, for

a fixed h the discrete wave speed depends on the wave number. Similarly, if the

mesh size h is not uniform, there will be numerical reflections at interfaces where the

mesh density – and consequently the discrete wave speed – changes. These spurious

effects come from the error implicit in the discretization, and they vanish in the limit

as kh → 0. While the mesh size in our model problem is uniform in the original

coordinate x, the elements are not uniformly sized with respect to the transformed

coordinate x̃; it is unsurprising, then, that there is a mismatch in the discrete wave

behavior at the PML interface that causes reflections.

We therefore view the discrete reflection as the sum of two parts: an interface

reflection due to discretization, and a far-end reflection due to the finite termination

of the PML. We can easily estimate the magnitude of both effects. To estimate the

55

PSfrag replacements

Wave incidence angle (θ)

R
efl

ec
ti
o
n

co
effi

ce
n
t

Continuum reflection

Grazing reflection

Interface reflection

0 20 40 60 80 100
10−8

10−6

10−4

10−2

100

Figure 3.4. Discrete reflection coefficient rdiscrete as a function of varying angle. The
discrete reflection coefficient (solid line) is closely approximated by the sum of the
continuum reflection coefficient rcontinuum (dotted line) and the reflection coefficient
for one-dimensional waves of length kx directly entering a long PML (dashed line).

far-end reflection, we use the continuum reflection coefficient rcontinuum. To estimate

the interface reflection, we use a PML sufficiently long that the supposed continuum

reflection should be small, on the same order as the roundoff threshold. Our life is

further simplified by the realization that the interface reflection depends only weakly

on ky, assuming that kyh is not too large; as with the far-end reflection, only the

kx component of the wave vector matters. That is, the reflection coefficient for a

two-dimensional finite element mesh of the model problem (3.38) is nearly the same

as the reflection coefficient for a one-dimensional finite element mesh of the model

problem (3.41).

We illustrate the point in Figure 3.4. For a mesh of biquadratic elements, we send

waves with kh = 2π/10 into a five-element PML with the parabolic stretch profile

λ(x) = 1− i0.3h−2(L−Lp)
2 for x > L. The waves arrive at different angles, from 1 to

56

90 degrees; for each angle, we compute the discrete reflection coefficient rdiscrete (solid

line). At the same time, we compute the continuum reflection coefficient (dotted line)

and an estimated interface reflection (dashed line). The discrete reflection coefficient

is computed by launching discrete plane waves with kyh = 0 and given kx into a

PML long enough that the continuum reflection would be 10−15. For this problem,

the estimate of rdiscrete given by the sum of these two coefficients is never off by more

than 25%.

We also note two other relevant features of Figure 3.4. The continuum reflection

coefficient is a strictly monotone function of kx: the larger kx is, the smaller rcontinuum

is. In contrast, the smaller kx is, the smaller the interface reflection; with more

elements per wavelength in the x direction, the continuum wave behavior is better

resolved. Depending on the exact choice of PML parameters, the interface reflection

may not be completely monotone. Nevertheless, in general rdiscrete is dominated by

interface reflection when kx is large and far-end reflection when kx is small.

To be more general, consider PML transformations of the form

λ(x) =

 1− iβ|x− L|p, x > L

1 x ≤ L.
(3.52)

For a reasonably resolved discretization, we model rdiscrete ≈ rmodel, where

rmodel(kx, β, Lp − L, h) := rcontinuum(k̂x, β, Lp − L) + rinterface(k̂xh, βh
−p). (3.53)

Here k̂x = i log(ξ1)/h is the discrete wave speed,

rcontinuum = exp

(
− 2β

p+ 1
(Lp − L)p+1k̂x

)
(3.54)

is the reflection coefficient in the continuum case, and rinterface is the discrete reflection

for a PML with length chosen so that rcontinuum is equal to the machine unit roundoff

threshold:

Lp − L = h

⌈
h−1

(
−p+ 1

2βk̂x

log εmachine

)1/(p+1)
⌉
. (3.55)

57

PSfrag replacements

Number of PML elements

lo
g
1
0
(β

h
)

− log
10

(r) at (kh)−1 = 10

1

1

1

2

2

2

2 2 2 2

333

3

3

3

3

444

4

4

5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

PSfrag replacements

Number of PML elements

lo
g
1
0
(β

h
)

− log10(rinterface + rnominal) at (kh)−1 = 10

1

1

1

2

2

2

2 2 2 2

333

3

3

3

444

4

4

5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

Figure 3.5. Actual (left) and estimated (right) numerical reflection for varying PML
parameters at ten quadratic elements per wave.

To test this model, we computed the actual and predicted rdiscrete for all combi-

nations of

1. Bilinear, biquadratic, and bicubic elements

2. Linear and parabolic damping profiles

3. Angles of attack between 1 and 90 degrees, in steps of one degree

4. Mesh densities between 8 and 20 elements per wavelength, in steps of one ele-

ment per wavelength)

5. Nominal reflection of 10−2, 10−3, . . . 10−12 for plane waves traveling in the x

direction

6. Between 1 and 10 elements through the PML

Over this range of parameters, we found that rmodel was never more than twice rdiscrete.

In 97% of our test cases, rmodel was within a factor of two of rdiscrete. In the cases

when rmodel was substantially larger than rdiscrete, we typically found that rcontinuum

and rinterface were comparable, and so the two sources or reflection canceled.

We illustrate the behavior of the discrete PML with two simple experiments with

plane waves launched directly into a PML with a linear damping profile. Figure 3.5

58

PSfrag replacements

Elements per wave (kh)−1

lo
g
1
0
(β

h
)

− log10(rinterface): linear elements

1
1

1.5

1.
5

1.5
1.5

1.5

2

2
2

2

2.
5

2.5
2.5 2.5

3

3
3 3

3.5
3.5 3.5

4
4

5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

PSfrag replacements

Elements per wave (kh)−1

lo
g
1
0
(β

h
)

− log10(rinterface): quadratic elements

1

2

2
2

2

3

3

3
3

4

4

4
4

5

5

5

6

6

5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

Figure 3.6. Amount of spurious reflection from a discrete PML interface for varying
mesh densities and PML parameters. Both linear (left) and quadratic (right) elements
are shown.

shows the estimated and actual reflection coefficients for a fixed value of kh as the

PML parameter β and the PML length are varied. Notice that when the PML reaches

a critical length, the interface reflection begins to dominate, and further lengthening

the PML leads to no improvement in the numerical performance. Figure 3.6, we show

the effects of interface reflections in the PML for linear and quadratic elements. We

see from these plots that fine discretizations (either from smaller values of kh or from

higher-order elements) and low values of β lead to decreased interface reflections. We

also note that quadratic elements perform substantially better than linear elements.

This model for the behavior of the discrete PML suggests the following simple

heuristic for choosing the PML parameters given a polynomial profile and a reflection

tolerance rtol. First, consider the maximum wave number in the system kmax, and

choose β so that the interface reflection for waves of length kmax is rtol/2. Second,

choose the PML length so that the continuum reflection is rtol/2 for waves with the

minimal propogating wave number kmin entering at the shallowest allowed angle θmin:

Lp − L = h

⌈
h−1

(
− p+ 1

2βkmin sin(θmin)
log(rtol/2)

)1/(p+1)
⌉
. (3.56)

Remarks:

59

1. The idea of measuring the behavior of discrete plane waves entering a PML goes

back at least to Collino and Monk [51]. Though they worked with a simpler low-

order finite difference scheme, dispersion analysis of higher-order elements is an

old, standard technique [128], and in that sense our calculation of the discrete

reflection coefficients is a straightforward combination of previous results. Our

primary contribution is the decomposition of the discrete reflection coefficient

into far-end and interface reflections, each of which can be estimated in a simple

fashion.

2. Dispersion analysis is typically done with constant-coefficient differential equa-

tions or difference equations. However, the discrete PML equations do not

have constant coefficients. While analyzing the behavior of waves propogating

through a PML with a constant stretch function can provide useful intuition

about the effects of discretization [89, 51], in practice the stretch function is

never chosen to be a constant. We therefore prefer to avoid the term dispersion

when referring to waves propagating through the PML, and instead simply refer

to the numerical reflection caused by mismatches in the discrete wave behavior

in the PML and the discrete wave behavior in the untransformed domain.

3.3 Quality factors and forced motion computa-

tions

In the MEMS problems of interest to us, we wish to compute quality factors and to

compute forced motion responses. The governing equations after spatial discretization

of the weak form are given by:

Kdyn(ω)u = F , (3.57)

60

where Kdyn(ω) := K(ω)−ω2M(ω). As we noted at the end of Section 3.2.2, the PML

coordinate transformations suggested in [23] are dependent on the frequency, so that

the attenuation through the PML layer will be independent of the forcing frequency.

This makes the system matrices dependent upon the drive frequency. Also note that

the system matrices are complex symmetric. The points taken together create a

somewhat involved problem. However, a number of basic observations can be used

to greatly simplify the situation.

3.3.1 Quality factors via an eigencomputation

In a properly designed high quality MEMS resonator the drive pattern and fre-

quency are always chosen to excite some resonant mode. Because of this, it suffices for

many cases to simply compute the complex-valued eigenvalue of the system closest to

the real-valued drive frequency. From this complex-valued eigenvalue, Q is formally

defined according to Equation (3.1) as the ratio of the stored energy to the energy

loss per radian, which in terms of a single mode damped oscillator can be expressed

as

Q =
|ω|

2 Im(ω)
(3.58)

where ω is the computed eigenvalue [148].

Because the system matrices depend upon ω, the eigenvalues ω will correspond

to solutions of the nonlinear eigenvalue problem det(Kdyn(ω)) = 0. However, when

the frequency range of interest is not too wide, the parameters of the coordinate

transformation may be chosen once to give acceptable attenuation over the desired

range, so that the approximate dynamic stiffness for ω near a fixed reference frequency

ω0 is

K0
dyn(ω) := K(ω0)− ω2M(ω0). (3.59)

61

Finding roots such that det(K0
dyn(ω)) = 0 is a linear (generalized) eigenvalue problem,

which we can approach using standard tools.

To find the damped eigenvalues near some specified (real-valued) reference fre-

quency ω0, we use a shift-and-invert Arnoldi procedure, described in standard refer-

ences on numerical linear algebra [81, Chapter 9], [59, Chapter 7]. This procedure

computes an orthonormal basis V for the Krylov subspace

Kn(Kdyn(ω0), u0) = span{u0, K
0
dyn(ω0)

−1u0, . . . , K
0
dyn(ω0)

−(n−1)u0}; (3.60)

the eigenvalues are then approximated by the eigenvalues of the much smaller prob-

lem V HK0
dyn(ω)V , where (·)H indicates complex conjugate transpose. For computing

a few isolated eigenvalues near ω0, the main cost of the shift-and-invert Arnoldi pro-

cedure is to compute the factorization needed to apply K0
dyn(ω0)

−1. In our numerical

experiments, we use UMFPACK [56] to factor the shifted matrix, and we use eigs,

MATLAB’s interface to the implicitly-restarted Arnoldi code ARPACK [114], to com-

pute the desired eigenvalues.

3.3.2 Efficient forced motion computations

Though damped mode eigencomputations are illuminating, they do not give a

complete picture of the frequency response behavior. In practice, we are interested

in systems in which there is a single periodically-forced input and a single output

determined by some sensed displacement. Suppose F is a time-harmonic load pattern

vector, and the output is a linear function of displacement P Tu. Then we are really

interested in computing the transfer function

H(ω) = P TKdyn(ω)−1F (3.61)

which we approximate for a range of frequencies near ω0 by

H0(ω) = P TK0
dyn(ω)−1F. (3.62)

62

Even if K0
dyn(ω) is nearly singular at some frequency, the response amplitude |H0(ω)|

may not peak, since F may be nearly orthogonal to the forcing that drives the mode,

or P may be orthogonal to the modal displacement pattern. Therefore, one normally

examines H0(ω) directly using a Bode plot.

Since the dimension N of K0
dyn(ω) will be large, it is expensive to evaluate H0(ω)

directly. Instead, we construct a reduced-order model of dimension n � N , which

we use to approximate H0(ω). Krylov-subspace projections are often used to build

reduced models of large systems [18, 11]. If we build an orthogonal basis V for a small

Krylov subspace using shift-and-invert Arnoldi, then we can approximate H0(ω) near

the shift ω0 by

Ĥ0(ω) := (V HP)H(V HK0
dyn(ω)V)−1(V HF) ≈ H0(ω). (3.63)

Though Ĥ0(ω) is often a good approximation to H0(ω), the projected system

matrix V HK0
dyn(ω)V does not preserve the complex symmetric structure of the orig-

inal discretization. We can construct a symmetry-preserving reduced-order model by

choosing an orthonormal projection basis W such that

span(W) = span([Re(V), Im(V)]). (3.64)

Because the span of W contains the span of V , a reduced model based on W will

be at least as accurate as the standard Arnoldi-based reduced model. Also, because

W is a real-valued basis, projection onto the space spanned by W corresponds to a

Bubnov-Galerkin discretization of the PML equation with shape functions N reduced
I =∑

J WIJNJ . While these facts alone might induce us to use W rather than V as a

projection basis [33], we expect projection onto W to yield much better accuracy than

standard Arnoldi projection, as we now describe.

If (K,M) is a Hermitian pencil and M is positive definite, then the pencil will

have an orthonormal eigensystem, so that if v is a column eigenvector, vH will be

63

a corresponding row eigenvector. In the study of such eigenproblems, the Rayleigh

quotient

ρ(v) =
vHKv

vHMv
(3.65)

plays a special role. When v is an eigenvector, ρ(v) is a corresponding eigenvalue;

and further, since ρ is stationary when and only when the argument is an eigenvec-

tor, the Rayleigh quotient produces second-order accurate eigenvalue estimates from

eigenvector estimates which are only accurate to first order. For general pencils, a

column eigenvector v and the corresponding row eigenvector wH need have no such

simple relationship, and so the Rayleigh quotient only provides first-order accurate

eigenvalue estimates. The appropriate generalization of the Rayleigh quotient to the

non-Hermitian case is (wHKv)/(wHMv), a ratio which again yields second order ac-

curacy (so long as the degenerate case wHMv 6= 0 is avoided). When K and M

are complex symmetric, we know the left and right eigenvectors are simply (non-

conjugated) transposes of each other, and so we re-write the second-order accurate

quotient estimate as

θ(v) =
vTKv

vTMv
. (3.66)

This modified Rayleigh quotient was used in [13] as part of a Jacobi-Davidson strat-

egy for solving complex symmetric eigenvalue problems from PML discretizations of

problems in electromagnetics.

The usefulness of having both left and right eigenvectors explains why model re-

duction methods based on nonsymmetric Lanczos iteration often approximate better

than Arnoldi methods: a nonsymmetric Lanczos iteration simultaneously builds a

basis for a right Krylov subspace, which typically contains good approximations for

column eigenvectors; and a left Krylov subspace, which typically contains good ap-

proximations for row eigenvectors. For complex symmetric matrices, however, left and

right subspaces are simply conjugates of each other, and the definition of span(W)

64

given above is equivalent to

span(W) = span([V, conjV]). (3.67)

That is, if V is an Arnoldi basis for a right Krylov subspace, then both the right Krylov

subspace and the corresponding left Krylov subspace are subspaces of span(W). As

explained in the previous paragraph, then, the position of any eigenvalues (poles)

which are estimated by vectors in V will be determined to second-order accuracy

by projection onto W , where projection onto V would typically attain only first-

order accuracy. For similar reasons, if P and F are proportional to each other, the

estimated transfer function obtained from projecting onto W will match H0 in 2n

moments, rather than the n moments typical of a standard Arnoldi projection [18].

3.3.3 Conclusions

In this chapter, we have described, developed, and enhanced tools suitable for

the simulation of quality factors in very high frequency MEMS resonators. The

simulation of this regime of physical behavior, to date, has been largely ignored due

to the analytical and numerical difficulty of estimating anchor losses which dominate

such systems. The primary numerical advances made are as follows:

1. We have described an alternate interpretation of a PML for time-harmonic

elasticity which was introduced in [23] and in doing so have shown how to

construct a particularly simple finite element implementation for all relevant

classes of analysis.

2. Through the use of one-dimensional analysis, we have elucidated the effect of

discretization on the perfect matching property in order to derive heuristics for

choosing the PML parameters.

65

3. By exploiting the complex symmetry inherent in the PML equations, we have

also described how to improve the accuracy of standard methods for computing

free vibrations and for building reduced models for forced frequency-response

analysis.

66

Chapter 4

Thermoelastic Damping

4.1 Introduction

Mechanical vibrations may be damped through extrinsic losses, or transfer of

energy to the external environment; and through intrinsic losses, or through transfer

of energy to internal degrees of freedom. The radiation of elastic waves from an anchor

is an example of an extrinsic loss; an example of intrinsic loss is the material damping

that occurs due to motions of dislocations and impurities within a crystal structure.

Another intrinsic loss mechanism comes from thermoelastic effects. Most materials

expand when the temperature increases; thermodynamic consistency demands that

this cannot be a distinct cause and effect, but that changes in the volume should

lead to changes in temperature. Therefore pressure waves passing through a medium

create spatial variations in temperature, and the relaxation of those spatial variations

through heat diffusion leads to attenuation of the waves. This energy loss mechanism

is called thermoelastic damping (TED). For a brief review of the role of TED, we

refer to Section 1.3.3, which we partly recount here.

The importance of thermoelastic damping in solids was recognized by Zener in

67

the 1930s [187, 188, 190, 143]. Early designers of macroscopic mechanical resonators

knew about TED [122]; and as early as 1990, Roszhart showed that Zener’s model

of TED in beams matched the measured quality factor for vacuum-packed MEMS

cantilevers [145]. In subsequent investigations of damping in MEMS, TED has been

repeatedly identified as a significant, or even dominant, contribution [41, 67, 95].

These investigations have typically relied on Zener’s approximate solution for flexural

waves in beams, or on refinements to Zener’s approximation derived under similar

kinematic assumptions about the device motion [118, 135, 153]. Gorman and Duwel

have used finite-element simulations in FEMLAB to numerically solve the coupled

equations of thermoelasticity [67, 83], but because of the prominent role played by

flexural mechanisms in many MEMS designs, variants of Zener’s approximation have

dominated the literature.

In this chapter, we review the equations of thermoelasticity and their nondimen-

sionalization. We then describe the weak form which is the basis for a finite element

discretization, and show how to approximate the eigenvalues of the discretized prob-

lem using a perturbation technique. Our perturbation method generalizes Zener’s

approach, as we describe, and allows us to compute TED for problems with more com-

plicated geometries than those Zener considered. We have implemented our method

in HiQLab, and we conclude with some example test calculations.

68

4.2 Equations of thermoelasticity

The equations of linear thermoelasticity in the absence of body forces or heat

sources are [42, 136]

ρü = ∇ · σT (4.1)

σ = Cε− βθ (4.2)

ρcvθ̇ = ∇ · (κ∇θ)− T0β : ε̇ (4.3)

where u(x, t) is the displacement field, T0 + θ(x, t) is the temperature field, and

κ = thermal conductivity tensor (4.4)

β = thermal stress constitutive tensor (4.5)

T0 = reference temperature (4.6)

C = isothermal elasticity tensor (4.7)

cv = specific heat at constant volume (4.8)

In the case of an isotropic or a cubic solid, the thermal conductivity and thermal

stress tensors are scalar multiples of an identity tensor:

κ = κ1 (4.9)

β = β1 = αT C : 1. (4.10)

For isotropic problems, we may relate the thermal stress coefficient β to the ordinary

thermal coefficient of expansion αT by the relation

β = (3λ+ 2µ)αT =
EαT

1− 2ν
, (4.11)

where λ and µ are the Lamé parameters and E and ν are Young’s modulus and

Poisson’s ratio.

69

4.3 Nondimensionalization

We now non-dimensionalize the thermoelasticity equations (4.1)-(4.3) as in [42]

and [136]. For simplicity, we consider the case of a homogeneous isotropic or cubic

material, for which

κ = κ1 (4.12)

β = β1. (4.13)

We also assume that we can write the elasticity tensor as

C = EĈ (4.14)

where Ĉ is dimensionless. We suppose E is Young’s modulus in the isotropic case,

and some other characteristic scale in the anisotropic case. Under these assumptions,

we may write the thermoelastic equations as

ü = ∇ ·
(
E

ρ
Ĉε− β

ρ
θ1

)
(4.15)

θ̇ =
κ

ρcv
∇2θ − βT0

ρcv
tr(ε̇) (4.16)

The constants in (4.15) and (4.16) have the following dimensions, where [M], [L],

[T], and [K] denote units of mass, length, time, and temperature:[
E

ρ

]
= [L2][T−2] (4.17)[

β

ρ

]
= [L2][T−2][K−1] (4.18)[

κ

ρcv

]
= [L2][T−1] (4.19)[

βT0

ρcv

]
= [K]. (4.20)

In addition, we suppose a characteristic frequency ω∗ with units

[ω∗] = [T−1]. (4.21)

70

From these constants, we form the following characteristic scales for time, length, and

temperature:

τ∗ = ω−1
∗ (4.22)

l∗ = τ∗

√
E

ρ
(4.23)

θ∗ =
T0β

ρcv
(4.24)

After expressing (4.15) and (4.16) relative to these scales, we have the dimensionless

equations

ü = ∇ · (Cε− ξθ1) (4.25)

θ̇ = η∇2θ − tr(ε̇), (4.26)

where

ξ :=
β2T0

ρcvE
(4.27)

η :=
ω∗
ω̃

(4.28)

ω̃ =
Ecv
κ

(4.29)

For polysilicon, typical values of ξ and ω̃ are about 2 × 10−4 and 3.8 × 1012 Hz (see

Figure 4.1). Thus even at gigahertz frequencies, the reduced frequency η is only about

10−4.

When ξ is small, we expect the thermal fields to only weakly influence the me-

chanical problem. Therefore, we can use ξ as a regular perturbation parameter, as we

will describe shortly. The parameter η is also small for the problems we care about.

But η scales the highest-order spatial derivative in the thermal equation, and so that

equation has the structure of a singular perturbation problem. Therefore when η is

small, we expect boundary layers in the thermal problem.

The HiQLab system includes automatic support for rescaling problems, as de-

scribed in Section 6.5.3. In particular, we provide routines to automatically compute

71

characteristic time and temperature scales for thermoelastic problems from a length

scale and from properties in a material database.

4.4 Weak form and discretization

Let Ω be a bounded domain on which we wish to solve the coupled thermoelastic

equations, and let δu : Ω → R3 and δθ : Ω → R be H1 test functions on Ω. Then we

multiply (4.25) and (4.26) by δu and δθ and integrate to get the weak forms∫
Ω

δu · ü dΩ +

∫
Ω

δε : Ĉε dΩ = ξ

∫
Ω

tr(δε)θ dΩ +

∫
Γ

δu · t dΓ (4.30)∫
Ω

δθ θ̇ dΩ + η

∫
Ω

∇δθ ·∇θ dΩ = −
∫

Ω

δθ tr(ε̇) dΩ +

∫
Γ

δθ h dΓ (4.31)

where t is the surface traction and h is the surface heat flux.

We use a Bubnov-Galerkin finite element discretization of the weak equations, to

obtain a discretization of the weak equations:

Muuü+Kuuu = ξKuθθ + Fu (4.32)

Cθθθ̇ + ηKθθθ = −Cθuu̇+ Fθ (4.33)

Note that Kuθ = CT
θu. We may write this coupled system of second-order mechanical

equations and first-order thermal equations in the second order formMuu 0

0 0

ü
θ̈

 +

 0 0

Cθu Cθθ

u̇
θ̇

 +

Kuu −ξKuθ

0 ηKθθ

u
θ

 (4.34)

or we may introduce the velocity field v = u̇ to obtain the first-order form
I 0 0

0 Muu 0

0 0 Cθθ

u̇

v̇

θ̇

 +

0 I 0

Kuu 0 −ξKuθ

0 Cθu ηKθθ

u

v

θ

 =

0

Fu

Fθ

 . (4.35)

72

4.5 Perturbative eigenvalue approximation

We now wish to compute the quality factors for poles of the coupled system (4.32)-

(4.33). That is, we wish to find complex frequencies ω and vectors u and θ such that

(−ω2Muu +Kuu)u = ξKuθθ (4.36)

(iωCθθ + ηKθθ)θ = −iωCθuu. (4.37)

In the standard approach to this problem, we would convert to first-order form:iω

I 0 0

0 Muu 0

0 0 Cθθ

 +

0 I 0

Kuu 0 −ξKuθ

0 Cθu ηKθθ

u

v

θ

 = 0. (4.38)

Equation (4.38) is a generalized linear eigenvalue problem, which we can solve using

standard sparse eigenvalue solvers. However, we know that ξ is typically small, and

so we will consider an alternative method based on a linearization of (4.36) and (4.37)

about the state ξ = 0.

For ξ = 0, the resonant frequencies and modal vectors are the solution to a purely

mechanical eigenvalue problem, and the corresponding temperature vector can be

found by solving a linear system:

(−ω2
0Muu +Kuu)u0 = 0 (4.39)

(iω0Cθθ + ηKθθ)θ0 = −iω0Cθuu0. (4.40)

To first order, the change in ω2 for small ξ is given by

−δ(ω2)Muuu0 + (−ω2
0Muu +Kuu)δu = ξKuθθ0 (4.41)

If we multiply through by uT
0 , the second term on the left hand side vanishes, and we

find

δ(ω2) =
uT

0 ξKuθθ0

uT
0Mu0

. (4.42)

73

Therefore, we have a modified Rayleigh quotient estimate

ω2 =
uT

0 (Kuuu0 − ξKuθθ0)

uT
0Muuu0

+O(ξ2). (4.43)

For large Q, |ω| ≈ |Re(ω)|, and we may write∣∣∣∣Im(ω2)

ω2

∣∣∣∣ =

∣∣∣∣2 Im(ω)

ω

∣∣∣∣ ∣∣∣∣Reω

ω

∣∣∣∣ ≈ ∣∣∣∣2 Im(ω)

ω

∣∣∣∣ = Q−1. (4.44)

Now estimate |ω| by |ω0| and Im(ω) from the modified Rayleigh quotient to find

Q−1 ≈
∣∣∣∣ξ Im

(
uT

0Kuθθ0

uT
0Kuuu0

)∣∣∣∣ =

∣∣∣∣∣∣∣ξ Im

uT
0Kuθ

(
Cθθ − i η

ω0
Kθθ

)−1

Cθuu0

uT
0Kuuu0

∣∣∣∣∣∣∣ . (4.45)

In our derivation of (4.45), the only use we made of the nondimensionalization

was in arguing that ξ is small. Whether or not the problem is nondimensionalized,

we may use the same algorithm to compute the effect of thermoelastic damping in

the usual case when the thermal variations only weakly influence the displacement

fields:

1. Compute a mode u0 with frequency ω0 for the purely mechanical problem.

2. Compute the approximate time-harmonic temperature field θ0 based on the

mechanical solution.

3. Compute the time-harmonic forcing vector f̂ induced by the thermal effects.

4. The imaginary part of u0·f̂ represents a time-averaged rate of energy dissipation,

and so the ratio of Im(u0 · f̂) to the modal stiffness uT
0Kuuu0 is an estimate for

Q−1.

This approximation procedure is essentially the same as the procedure described by

Zener, as we describe in the next section.

The perturbation method requires less computation than using Arnoldi or some

related iteration to directly compute the eigenvalues of a linearized form like (4.35).

74

If we use a space of dimension Nmech for the mechanical degrees of freedom and a

space of dimension Nthermal for the thermal degrees of freedom, then the perturbation

method involves a real, symmetric, purely mechanical mode calculation of size Nmech;

the solution of one complex symmetric linear system of size Nthermal to compute a

temperature field; and a few matrix multiplications and dot products to compute the

perturbed frequency estimate. In contrast, finding the eigenvalues via linearization

like (4.35) requires the solution of a nonsymmetric eigenvalue problem of size 2Nmech+

Nthermal.

4.6 Relation to Zener’s approach

Zener’s “method of orthonormal thermodynamic potentials,” as described in his

monograph [189], is a special case of the perturbation expansion applied above. Zener

begins by computing a purely mechanical solution, and then computes an approxima-

tion to the thermal field using a Bubnov-Galerkin method with a basis of orthonormal

modes for the heat equation. He then computes the rate of energy dissipation using

a formula like (4.42). Zener applies his method to find relaxation times for transverse

and longitudinal vibrations of beams and rods with circular or rectangular cross-

sections. Along with TED, he also treats damping mechanisms where stress depends

on chemical concentration, magnetically-induced eddy currents, and other quantities

governed by diffusion. In the MEMS literature, however, Zener’s method is most

widely identified with a formula for the quality factor of a transversely vibrating

beam (see e.g. [39, Section 2.3]).

Based on our perturbation approach, we recover Zener’s calculation of TED for

transverse vibration of beams as follows. Suppose we have a narrow beam of width w,

vibrating in flexure at a frequency of ω0. If x is the axial direction and y the transverse

direction, we impose the Euler-Bernoulli assumption that the only important stress

75

component is σxx, which is proportional to y. We also assume that the thermal

solution takes the form

θ = aθφ(y) (4.46)

φ(y) =

√
2

w
sin

(πy
w

)
. (4.47)

In Galerkin terms, we choose one shape function (y) to represent the strain field, and

one sinusoidal shape function (φ(y)) to represent the thermal field. Therefore, for

this specific case, we have simple scalars rather than finite element matrices,

Kuu =

∫ w/2

−w/2

y2 dy =
w3

12
(4.48)

Kuθ = Cθu =

∫ w/2

−w/2

yφ(y) dy =

√
8w3

π4
(4.49)

Kθθ =

∫ w/2

−w/2

(
dφ

dy

)2

dy =
(π
w

)2

(4.50)

Cθθ =

∫ w/2

−w/2

φ(y)2 dy = 1. (4.51)

We now observe that

K2
uθ

Kuu

= 0.986... ≈ 1, (4.52)

so that the formula (4.45) becomes approximately

Q−1 ≈

∣∣∣∣∣ξ̂ Im

{(
Cθθ −

iη

ω0

Kθθ

)−1
}∣∣∣∣∣ = ξ̂

η

ω0

π2

w2

[
1 +

(
η

ω0

π2

w2

)2
]−1

(4.53)

where the coupling coefficient

ξ̂ :=
(αTE)2T0

ρcvE
(4.54)

is analogous to (4.27), but with αTE instead of β for consistency with Euler-Bernoulli

beam theory. In [189], Zener actually expands the temperature field in a series and

then notes that the approximation (4.52) holds, so that all but the first term may be

neglected.

76

Symbol Value SI units Description
ρ 2300 kilogram meter−3 Mass density
E 165× 109 Pascal Young’s modulus
ν 0.3 dimensionless Poisson’s ratio
αT 2.6× 10−6 Kelvin−1 Thermal coefficient of expan-

sion
cv 712 Joule Kelvin−1 meter−3 Specific heat at constant vol-

ume (STP)
κT 30 Watt Kelvin−1 meter−1 Thermal conductivity
T0 293.15 Kelvin Standard temperature
ξ 1.25× 10−3 dimensionless thermomechanical coupling co-

efficient

ξ̃ 2.0× 10−4 dimensionless Zener’s thermomechanical cou-
pling coefficient

ω̃ 4.0× 1012 second−1 Thermal characteristic fre-
quency

Figure 4.1. Parameters for polysilicon (material silicon2 in the HiQLab material
database).

The main advantage of our generalization over Zener’s method of orthogonal ther-

modynamic potentials is that our method extends easily to problems with complicated

geometries. In general, it is difficult to analytically compute modes of the mechanical

problem or of the thermal problem. By allowing more general approximation bases,

we extend Zener’s method to any problem that can be accurately discretized with

finite element methods. A secondary advantage to our derivation is that we make

explicit the use of ξ as a perturbation parameter, where Zener assumes first-order

decoupling between the thermal and mechanical fields implicitly.

4.7 Comparisons for a beam calculation

So far, we have described three methods for computing the quality factor of a

vibrating beam:

77

1. Discretize the thermoelastic PDEs and find eigenvalues from a linearization such

as (4.38);

2. Discretize the thermoelastic PDEs and find eigenvalues by a perturbation for-

mula such as (4.45); or

3. Use Zener’s approximation formula (4.52) or some other specialized perturba-

tion formula.

We now compare these methods for beams of varying aspect ratio.

We consider two-dimensional (plane-stress) models of cantilevered polysilicon

beams 2 microns deep by 10, 20, 40, 60, 80, and 100 microns long. The beams

are subject to fixed temperature and displacement boundary conditions at one end,

and are free elsewhere. The material parameters used in the simulations are given

in Figure 4.1. We use a finite element discretization of square bicubic elements, one

micron on a side. All the eigenvalue problems are solved using shift-invert Arnoldi

iteration from ARPACK [114] via MATLAB’s eigs command with default tolerances

and settings. We use an analytical estimate of the beam’s first fundamental for the

shift. We used UMFPACK [56] to compute the sparse LU factorization used to apply

the operator for the Arnoldi iteration.

4.7.1 Effect of nondimensionalization

To find approximate eigenpairs, ARPACK searches a sequence of Krylov sub-

spaces, beginning with an initial space generated from a random start vector. Ap-

proximate eigenpairs are extracted from these spaces by a Galerkin procedure, and

when the residual norm for an eigenpair is small enough, it is considered converged

(see Section 2.3). The accuracy of the converged eigenvalues depends both on the

sensitivity of the eigenvalue and on the residual tolerance. If the residual tolerance is

78

1.085 1.086 1.087 1.088 1.089 1.09 1.091 1.092 1.093

x 10
4

0

5

10

15

20

25

30

35

40

45

F
re

qu
en

cy

Computed Q

Quality factors from first−order form

Figure 4.2. Distribution of computed quality factors for a single 20 micron polysilicon
beam model when using shift-invert Arnoldi on a first-order form in SI units. The
input matrices to the Arnoldi eigensolver were the same in all cases; the variation
is due purely to the different choices of random starting vectors when forming the
Krylov subspace.

79

loose, or if the eigenvalue is very sensitive, then the eigenvalues may be inaccurate.

One problem with computing eigenvalues from the first-order form (4.38) is that the

residual has components corresponding to displacements, velocities, and tempera-

tures; if we are careless in our choice of units for these components, the eigensolver

may exit too quickly. Thus, if we compute eigenvalues from the first-order form, it is

important to first re-scale the problem, as we have done in Section 4.3. Because the

perturbation method treats the mechanical and thermal fields in different steps, it is

less sensitive to the choice of scales.

To illustrate the situation, we consider the behavior of the eigensolver for the 20

micron beam. We form the first-order equations in SI units and in the first-order

form (4.38), and then solve each problem a hundred times. Because of the different

choices of starting vectors, each run produces slightly different answers. When the

problem is not scaled, these differences are large enough to lead to variations in the

third digit of the computed quality factor, as we show in Figure 4.2. In contrast, the

quality factors computed from the dimensionless first-order form varied in the eigthth

digit.

In a similar experiment for our perturbation method, the quality factors computed

from the perturbation method varied in the thirteenth digit whether the problem

was posed in SI units or nondimensionalized. Note that we do not claim that the

computed quality factors are accurate to thirteen places; we only claim that they are

not artificially sensitive due to scaling issues.

4.7.2 Comparison of numerical results

Figure 4.3 shows the relative errors between the quality factors computed from

the first-order form, from our perturbation method, and from Zener’s formula. These

errors are computed relative to the mean quality factor from one hundred runs of

80

10 20 30 40 50 60 70 80 90 100
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Beam length (microns)

R
el

at
iv

e
er

ro
r

Perturbation method
Zener’s formula
First−order form

Figure 4.3. Relative errors in computed Q values for different beam lengths, using
the first-order form, using our perturbation method, and using Zener’s formula.

81

ARPACK for the scaled first-order form. We also recorded the minimum and maxi-

mum quality factors computed from the first-order form over the hundred trials; we

report the range of values, scaled by the mean, as an error measure for the first-order

form. For all tests, we saw agreement between the first-order form calculation and

the perturbation method, with at least three digits of agreement. For the case of the

60, 80, and 100 micron tests, we note that the quality factors computed from our

perturbation method lie strictly within the range of quality factors computed from

the first-order form.

Zener’s formula gives fair agreement with the other calculations, and the agree-

ment gets better as the beams get longer. Zener’s formula only disagreed with the

other formulas by more than 10% in the case of the 10 micron beam; for this case,

the aspect ratio of the beam length to width is only 5:1, and so we are pressing the

limits of what we can expect from the Euler-Bernoulli beam theory on which Zener’s

formula is based.

4.7.3 Performance

In Figure 4.4, we compare the time to compute thermoelastic damping using the

first-order form and using our perturbation method. All experiments were run on a

PowerBook with a 1.67 GHz G4 processor. For the hundred micron beam, we used a

mesh of 2800 free nodes; the purely mechanical eigenvalue problem therefore has 5600

unknowns, while the first-order form has 14000 unknowns. As before, the reported

results are averaged over a hundred trials. For this type of problem, our perturbation

method is about twice as fast as the calculation from the first-order form.

Somewhat surprisingly, scaling the first-order form not only improves the accuracy

of the eigenvalue calculation; it also improves the speed. For the hundred micron beam

example, computing the quality factor from the unscaled first-order form took three

82

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Beam length (microns)

T
im

e
(s

)

Perturbation method
First−order form

Figure 4.4. Average time to compute quality factors for beam models of different
lengths, using the first-order form and the perturbation method.

83

minutes; this should be compared to the five seconds and ten seconds, respectively,

required to compute the quality factor using the perturbation method and using the

scaled first-order form. The performance difference comes from the choice of pivots in

the sparse LU factorization; because of the very different scales, UMFPACK chooses

pivots for stability rather than for minimal fill. Consequently, the L factor in the

unscaled case has about 11 million nonzeros, while the L factor for the scaled problem

has about 380 thousand nonzeros.

4.8 Conclusion

In this chapter, we have described methods for computing thermoelastic damping,

including Zener’s formula for TED in flexing beams, a new perturbation method

which generalizes Zener’s formula, and a standard method based on the eigenvalues

computed from a first-order form of the differential equations. Unlike Zener’s formula,

our method applies to general geometries; we require only that the thermomechanical

coupling be weak (as characterized by a the small size of a particular dimensionless

number). This requirement is met for typical MEMS materials.

Our perturbation method is both faster and less sensitive to scaling issues than

the standard calculation based on a first-order form, and the relative difference in

the results of the two methods is less than 10−3 for the beam tests reported in this

chapter. For this reason, the default TED calculation method in HiQLab is based

on our perturbation method, though the first-order form is provided as an option.

For calculations based on the first-order form, it is important that the equations

be appropriately scaled; failure to choose good scales affects the solution accuracy,

and can also make the solution procedure much slower. HiQLab provides support to

automatically rescale thermoelastic problems according to the formulas described in

Section 4.3.

84

Chapter 5

Continuation of Invariant

Subspaces

5.1 Introduction

Parameter-dependent Jacobian matrices provide important information about dy-

namical systems

du

dt
= f(u, α), where u ∈ Rn, α ∈ R, f(u, α) ∈ Rn. (5.1)

For example, to analyze stability at branches (u(s), α(s)) of steady states

f(u, α) = 0, (5.2)

we look at the linearization A(s) = Duf(u(s), α(s)). If the system comes from a spa-

tial discretization of a partial differential equation, then A(s) will typically be large

and sparse. In this case, an invariant subspace R(s) corresponding to a few eigenval-

ues near the imaginary axis provides information about stability and bifurcations.

Recently, we developed with collaborators the CIS algorithm for the continuation

of invariant subspaces of a parameter-dependent matrix [60, 63, 73, 74, 32]. In this

85

Script capitals (Z) Subspaces of Rm

San-serif capitals (S) Operators on matrix spaces (e.g. Sylvester opera-
tors)

Standard roman capitals (Z) Matrices and bases
Grass(n,m) The Grassmann manifold of m-dimensional sub-

spaces of Rn

Stief(n,m) The Stiefel manifold of orthogonal bases of ele-
ments of Grass(n,m)

O(n) Orthogonal matrices in Rn×n

f(u, α) Right-hand side in a dynamical system du
dt

=
f(u, α)

(u(s), α(s)) A branch of equilibria of du
dt

= f(u, α)
A(s) A parameter-dependent matrix (A : R → Rn×n).

Typically, A(s) = Duf(u(s), α(s)).

A[s0, s1] = A(s0)−A(s1)
s0−s1

Newton divided difference of A

R(s) A continuous maximal invariant subspace of A(s)
Q(s) =

[
Q1(s) Q2(s)

]
A continuous basis for R such that R(s) =
span(Q1(s))

T (s) =

[
T11(s) T12(s)

0 T21(s)

]
A continuous block Schur factor: A(s)Q(s) =
Q(s)T (s)

Y (s) = Q2(s0)
TQ1(s) Riccati equation unknown

Q̄1(s) = Q(s0)

[
I

Y (s)

]
Alternately normalized basis for R(s)

T̂ (s) =

[
T̂11 T̂12

Ê11 T̂21

]
Approximate Schur form at s near s0: T̂ (s) =
Q(s0)

TA(s)Q(s0)
Λ(s) = {λi}n

i=1 The spectrum of A(s)
Λ1(s) = {λi}m

i=1 The spectrum of A(s)|R(s)

Λ2(s) = {λi}n
i=m+1 The spectrum of A(s)|R(s)⊥

P (s) A (skew) eigenprojector associated with R(s)
SY = Y A11 − A22Y Sylvester operator associated with A (Aij =

QT
i AQj)

sep(B,C) The smallest singular value of the Sylvester map
X → BX −XC

V A projection space for Galerkin approximation
V An orthonormal basis for V

Figure 5.1. Table of notation

86

report, we extend the CIS algorithm to make it more suitable to numerical bifurcation

analysis. Our goal is to extend numerical bifurcation techniques developed for small

systems to larger systems. We also wish to ensure that bifurcations are detected

reliably; this goal becomes especially relevant for non-normal matrices, where a small

perturbation of a matrix may result in a large change to its eigenvalues [165, 169]. To

this end, we make the following contributions to the development of the method: we

derive new sufficient conditions for the existence of a continuously-defined invariant

subspace; we introduce logic to adapt or reinitialize the subspace during continuation

so that it is always well-defined and always includes information relevant to bifurcation

analysis; we extend the algorithm to use Galerkin projection methods when n is large

and direct methods are expensive; and we integrate our method into the MATCONT

bifurcation analysis tool [61].

The CIS algorithm consists of a predictor based on first derivative information,

and a corrector based on iterative refinement of an approximate invariant subspace

(see [156], [58] and references therein). The algorithm evaluates a smoothly varying

orthonormal basis for R(s) at sample points s0 < s1 < . . . < sN−1 < sN . This basis

approximately minimizes arclength over all orthonormal bases for R(s), in a sense

we will make precise in Section 5.2.1. The step size is adapted so that hi = si − si−1

decreases when R(s) changes fast and increases when R(s) changes slowly. When

the eigenvalues corresponding to R(s) come too near the rest of the spectrum, the

continuation procedure breaks down. In this case, the size of the continued subspace

is adapted, and continuation proceeds with a larger or smaller subspace.

The rest of the paper is organized as follows. After discussing related work in

the remainder of this section, we turn to the theory of existence and uniqueness

of continuously-defined invariant subspaces and prove our new result on sufficient

conditions for existence in Section 5.2. In Section 5.3, we describe the CIS algorithm

and our new algorithms for initializing and updating the invariant subspace during the

87

continuation process. In Section 5.4, we describe how to modify the CIS algorithm

to use projection methods; and in Section 5.5, we illustrate the usefulness of the

modified algorithm in bifurcation analysis through the solution of a model problem

in MATCONT. We conclude and present our plans for future work in Section 5.6.

5.1.1 Related work

The local behavior of eigendecompositions and other matrix factorizations when

viewed as matrix functions is of long-standing interest, and is treated in detail in the

book by Stewart and Sun [158], as well as in the authoritative tome of Kato [106].

The local behavior of invariant subspaces can be analyzed by representing the sub-

spaces near some reference subspace in terms of an orthogonal departure from that

reference space; such analysis leads directly to an algebraic Riccati equation. In [58],

this Riccati equation was used as the basis for a unified analyis of several algorithms

for refining approximate invariant subspaces; and in more recent work [37], new algo-

rithms for invariant subspace approximation are proposed which combine a Galerkin

approximate solution to an algebraic Riccati equation with the subspace construction

ideas of the Jacobi-Davidson algorithm. In [69], Edelman and his colleagues proposed

a more global approach to the analysis of linear algebra algorithms based on Grass-

mann manifolds and Stiefel manifolds (manifolds of subspaces and of orthonormal

subspace bases, respectively); this approach has inspired several new methods for

invariant subspace refinement, four of which are summarized and analyzed in [4].

No algorithm can produce globally continuous eigendecompositions, even for the

set of diagonalizable matrices. However, one can smoothly define an invariant sub-

space basis along a path through matrix space, assuming the path crosses no singu-

larities that would render the subspace discontinuous. In [62], a variety of continu-

ous eigendecompositions for one-parameter matrix functions are described, including

88

continuous Schur and block Schur decompositions. In a paper by Govaerts, Gucken-

heimer, and Khibnik [86] which motivated our work on invariant subspace continua-

tion, a low-dimensional invariant subspace of the Jacobian matrix, corresponding to

the eigenvalues with largest real parts, was computed at each point along a continu-

ation path and used to detect Hopf bifurcations via the bialternate matrix product.

The authors concluded that subspace reduction can be combined with complicated

bifurcation computations and should be tried for large problems.

The CIS algorithm was presented and analyzed in [60] and further studied in [63],

[73], with additional practical developments in [74] and [32]. The algorithm of [63]

constructs a smooth block 2-by-2 Schur decomposition; in [65], the approach is ex-

tended to the case of more blocks, and a new method is proposed to compute a smooth

similarity reduction to block bidiagonal form. In [64], the approach described in [60]

for using subspace continuation to compute connecting orbits between equilibria was

extended to compute connecting orbits between periodic orbits. To continue low-

dimensional invariant subspaces of sparse matrices, the authors of [27] use a bordered

Bartels-Stewart algorithm to solve each corrector iteration; in [36], this approach is

combined with ideas from [63, 73]. Though [27] and [36] deal with methods for sparse

matrices, they differ from our current work in that they use different predictors and

correctors, and they do not analyze and update the subspace during continuation to

ensure it retains all information relevant to bifurcations.

Numerical continuation for large nonlinear systems arising from ODEs and dis-

cretized PDEs is an active area of research, and the idea of subspace projection is

common in many methods being developed. The continuation algorithms are typ-

ically based on Krylov subspaces, or on recursive projection methods which use a

time integrator instead of a Jacobian multiplication as a black box to identify the

low-dimensional invariant subspace where interesting dynamics take place; see e.g.

[14, 151, 84, 44, 85, 66, 78, 40, 50], and references there.

89

5.2 Continuous invariant subspaces

Let A ∈ Ck([0, 1], Rn×n) be a k-times continuously differentiable parameter-

dependent matrix. We can write the spectrum Λ(s) of A(s) as n continuous functions

λ1(s), . . . , λn(s) [106]. At parameter values where λi(s) is a multiple eigenvalue, λi(s)

may not be differentiable, and it may be impossible to define a continuous right

eigenvector. However, λi(s) is a Ck function with a Ck right eigenvector as long as

λi(s) has algebraic multiplicity 1. More generally, define

Λ1(s) := {λi(s)}m
i=1

Λ2(s) := {λi(s)}n
i=m+1

Λ(s) := Λ1(s) ∪ Λ2(s)

. (5.3)

While Λ1(s) and Λ2(s) remain disjoint, there is a well-defined maximal right invariant

subspace R(s) corresponding to Λ1(s), and R(s) is Ck. There are several ways to

prove this fact; each provides a useful perspective.

In what follows, we will primarily use the Frobenius matrix norm: ‖A‖F =√
tr(ATA). We also assume that complex conjugate pairs are not split between

Λ1 and Λ2.

5.2.1 The geometry of subspaces

We begin with a brief review of the geometry of subspaces and orthonormal bases

(see [69] for a more complete treatment). The Stiefel manifold Stief(n,m) is the set

of matrices with orthonormal columns:

Stief(n,m) := {Z ∈ Rn×m : ZTZ = I} (5.4)

where m ≤ n. We can also write

Stief(n,m) = {QIn,m : Q ∈ O(n), In,m = leading m columns of In} (5.5)

90

Well-known examples of Stiefel manifolds are the unit sphere (for m = 1) and the

orthogonal group O(n) (for m = n).

The Grassmann manifold Grass(n,m) is the set of all m-dimensional subspaces

of Rn. We represent elements of Grass(n,m) by equivalence classes of members of

Stief(n,m) spanning the same space. That is,

Grass(n,m) = Stief(n,m)/ [Z ∼ ZU, U ∈ O(m)] . (5.6)

Grassmann manifolds are more difficult to picture than Stiefel manifolds are, since

they are not naturally subsets of a Euclidean space of matrices.

The tangent directions at Q0 ∈ O(n) are translations of the skew symmetric

matrices. For any Q ∈ O(n) near Q0,

Q = Q0 +Q0H + higher order terms, where H = −HT . (5.7)

The tangents to Stief(n,m) have a related structure. If Z0 = Q0In,m ∈ Stief(n,m)

for Q0 ∈ O(n), then for any nearby Z ∈ Stief(n,m),

Z = Z0 +Q0HIn,m + higher order terms, where H = −HT (5.8)

In block form, these tangent directions look like Q0

H11

H21

, where H11 ∈ Rm×m is

skew-symmetric and H21 ∈ R(n−m)×m is arbitrary.

The tangent space at Z0 ∈ Stief(n,m) is a direct sum of two orthogonal spaces:

the vertical space and the horizontal space (Figure 5.2). The vertical space is

{∆Z ∈ Rn×m : ∆Z = Z0H11 and H11 ∈ Rm×m is skew}, (5.9)

and the horizontal space is

{∆Z ∈ Rn×m : ZT
0 ∆Z = 0}. (5.10)

91

0 0

0 0

−θy 0

0 0

0 0

0 θx

0 θz

−θz 0

0 0

Figure 5.2. Two horizontal tangents (left) and one vertical tangent (right) at [e1, e2] ∈
Stief(3, 2)

The set of matrices in Stief(n,m) spanning the same space as Z0 is {Z ∈ Stief(n,m) :

Z = Z0U, U ∈ O(m)}. The vertical directions are exactly the tangents to this set.

So vertical motion “spins” vectors without changing the subspace, while horizontal

motion changes the subspace spanned.

We define the differentiable structure of Grass(n,m) in terms of the structure of

Stief(n,m): a path Z(s) in Grass(n,m) is Ck if there is a Ck basis Z : [0, 1] →

Stief(n,m) such that Z(s) = span(Z(s)). This basis is not unique; however, given a

basis Z0 ∈ Stief(n,m) for Z(0), there is a unique Ck basis starting from Z0 which

moves only horizontally. We describe the basis in the following lemma.

Lemma 1. Let Z : [0, 1] → Grass(n,m) be a Ck parameter-dependent space (k > 0).

Then for any Z0 ∈ Stief(n,m) such that Z(0) = span(Z0), there is a unique Ck basis

Z : [0, 1] → Stief(n,m) for Z(s) such that Z(0) = Z0 and

Z(s)TZ ′(s) = 0. (5.11)

This basis minimizes the Euclidean arclength

l(Z) =

∫ 1

0

‖Z ′(s)‖F ds (5.12)

over all Ck orthonormal bases for Z(s).

92

Proof. Let Ẑ : [0, 1] → Stief(n,m) be one Ck orthonormal basis for Z. Any other Ck

orthonormal basis for Z can be written Z = ẐU for some Ck function U : [0, 1] →

O(m). By the Pythagorean theorem,

‖(ẐU)′‖2
F = ‖(I − ẐẐT)(ẐU)′‖2

F + ‖ẐẐT (ẐU)′‖2
F (5.13)

where the first term corresponds to horizontal motion, and the second term to vertical

motion. Since the Frobenius norm is invariant under unitary transformations, we can

show the first term depends only on Z, and not on the particular choice of basis:

‖(I − ẐẐT)(ẐU)′‖F = ‖(I − ẐẐT)(Ẑ ′U + ẐU ′)‖F (5.14)

= ‖(I − ẐẐT)Ẑ ′U‖F (5.15)

= ‖(I − ẐẐT)Ẑ ′‖F . (5.16)

By again using unitary invariance of the norm, we rewrite the second term as

‖ẐẐT (ẐU)′‖F = ‖ẐT (ẐU)′‖F = ‖(ẐU)T (ẐU)′‖F . (5.17)

Therefore, the minimum attainable arclength should occur when

0 = (ẐU)T (ẐU)′ = UT (ẐT Ẑ ′U + U ′) (5.18)

or equivalently,

U ′ = −ẐẐ ′U. (5.19)

By the standard theory for linear ODEs, there is a unique U which satisfies (5.19)

together with the initial condition Ẑ(0)U(0) = Z0. Therefore, there is a unique

orthonormal basis Z = ẐU which satisfies (5.11) and Z(0) = Z0. Furthermore, Z has

minimal arclength.

For computation, we can approximate the equation Z(s)TZ ′(s) = 0 by the condi-

tion

Z(si)
T (Z̄(si+1)− Z(si)) = 0. (5.20)

93

Z(si)
Z̄(si+1)

Z(si+1)

Figure 5.3. Discrete approximation to Z(s)TZ ′(s) = 0 for m = 1

�λ3(s0)

Γ

� λ1(s0)

� λ2(s0)

� λ5(s0)

� λ4(s0)

Figure 5.4. Contour Γ in C enclosing Λ1 ⊂ Λ

As long as no vectors in Z(si) are normal to Z(si+1), such a Z̄(si+1) ∈ Rn×m exists.

Then we let the computed Z(si+1) be the element of Stief(n,m) nearest Z̄(si+1)

(Figure 5.3). The problem of finding the nearest element of Stief(n,m) to a given

full-rank matrix in Rn×m is called the orthogonal Procrustes problem [81, p. 582], and

we will return to it later.

5.2.2 Complex-analytic characterization

In [106], Kato characterizes continuity of invariant subspaces in terms of the as-

sociated eigenprojections. If Γ is a union of disjoint positively-oriented simple closed

contours in C with Λ1(s0) inside Γ and Λ2(s0) outside Γ (see Figure 5.4), then

P (s) := − 1

2πi

∫
Γ

(A(s)− ξI)−1 dξ (5.21)

is well-defined for any s near s0. The matrix P (s) is a projection with range R(s).

Suppose X0 ∈ Rn×m is a basis for R(s0). Then we use P (s) to locally produce a

94

continuous basis X(s) for R(s):

X(s) := P (s)X0. (5.22)

Because X(s0) = X0 is full rank, and the full rank matrices form an open subset of

Rn×m, by continuity X(s) will have full rank for all s sufficiently near s0.

5.2.3 Differential equation characterization

We can also prove the existence of a Ck invariant subspace by writing a differential

equation for a Schur factorization. This is the approach used in [62], [60], and [63];

we summarize their result in the following theorem.

Theorem 2. ([62, 60, 63]) Suppose Λ1(s) and Λ2(s) are disjoint for all s ∈ [0, 1].

Then there is an orthogonal matrix Q and block upper triangular matrix T , each with

Ck dependence on s, so that

A(s) = Q(s)T (s)Q(s)T (5.23)

=

[
Q1(s) Q2(s)

]T11(s) T12(s)

0 T22(s)

[
Q1(s) Q2(s)

]T

. (5.24)

where Q1(s) ∈ Rn×m is a basis for the subspace R(s) corresponding to Λ1(s), and

Q2(s) ∈ Rn×(n−m) is a basis for R(s)⊥.

Proof. The proof is written in detail in the cited references, so we only sketch the

main ideas here. We differentiate the relation A = QTQT to get

A′ = Q′TQT +QTQ′T +QT ′QT . (5.25)

Because Q is orthogonal, H = QTQ′ must be skew; by multiplying by QT and Q on

the left and right, respectively, we have

QTA′Q = HT − TH + T ′. (5.26)

95

Since T21 = T ′21 = 0, H21 satisfies

QT
2A

′Q1 = H21T11 − T22H21 (5.27)

The spectra of T11 and T22 (Λ1 and Λ2 respectively) remain disjoint by hypothesis,

so there is a unique solution H21 for equation (5.27). We specify that H11(s) =

Q1(s)
TQ′

1(s) = 0 and H22(s) = Q2(s)
TQ′

2(s) = 0 to get a unique solution for equa-

tion (5.25) given an initial factorization A(0) = Q(0)T (0)Q(0)T . Because we have

constrained Q1 and Q2 to move only horizontally, Q1 is a minimal arclength basis for

R and Q2 is a minimal arclength basis for R⊥.

5.2.4 Algebraic characterization

A Riccati equation

Suppose A ∈ Ck([0, 1],Rn×n) and at some s0 ∈ [0, 1], Λ1(s0) and Λ2(s0) are

disjoint. Then by the results in previous sections, there is a (non-unique) continuous

block Schur decomposition for s near s0, which at s0 is

A(s0) =

[
Q1(s0) Q2(s0)

]T11(s0) T12(s0)

0 T22(s0)

[
Q1(s0) Q2(s0)

]T

(5.28)

where the the spectrum of Tii(s0) is Λi(s0). Sufficiently near s0, continuity demands

that no nonzero vector in R(s) be orthogonal to R(s0), so we may write

R(s) = span

Q(s0)

 I

Y (s)

 (5.29)

for some continuous Y with Y (s0) = 0. The function Y (s) must satisfy an algebraic

Riccati equation, which we describe in the following lemma.

Lemma 3. ([60, 63]) Let A ∈ Ck([0, 1],Rn×n) have a block Schur decomposition at

96

s0 as in (5.28), where the diagonal blocks of T (s0) have disjoint spectra. Define

T̂ (s) =

T̂11(s) T̂12(s)

E21(s) T̂22(s)

 := Q(s0)
TA(s)Q(s0). (5.30)

Then for s near s0, there is a unique, continuous, minimum-norm solution Y (s) ∈

R(n−m)×m to the Riccati equation

F (Y) := T̂22(s)Y − Y T̂11(s) + E21(s)− Y T̂12(s)Y = 0 (5.31)

and there is a continuous block Schur decomposition

A(s) = Q(s)T (s)Q(s)T (5.32)

where

Q(s) = Q̄(s)
(
Q̄(s)T Q̄(s)

)−1/2
(5.33)

Q̄(s) = Q(s0)

 I −Y (s)T

Y (s) I

 . (5.34)

This theorem is stated in [60] and [63], and extends results proved by Demmel

[58], Stewart [156], and Stewart and Sun [158, section V.2]. For completeness, we

repeat the proof here.

Proof. We want the matrix Q̄1(s), which is exactly the matrix used in (5.29), to be

a basis for R(s). To span an invariant subspace, Q̄1(s) must satisfy the equation

A(s)Q̄1(s) = Q̄1(s)T̄11(s) (5.35)

for some matrix T̄11(s). As we saw in Section 5.2.1, (5.35) has a continuous set of

solutions. To specify a unique solution, we add a normalizing equation:

Q1(s0)
T Q̄1(s) = I, (5.36)

97

which implies

Q̄1(s) = Q(s0)

 I

Y (s)

 . (5.37)

In order to have Q̄1(s0) = Q1(s0), we require Y (s0) = 0.

If we multiply (5.35) on the left by Q(s0)
T and substitute (5.37) for Q̄1(s) we have

Q(s0)
TA(s)Q(s0)

 I

Y (s)

 =

 I

Y (s)

 T̄11(s). (5.38)

Now we rewrite Q(s0)
TA(s)Q(s0) using (5.30):T̂11(s) T̂12(s)

E21(s) T̂22(s)

 I

Y (s)

 =

 I

Y (s)

 T̄11(s). (5.39)

The first row of (5.39) gives us an expression for T̄11(s):

T̄11(s) = T̂11(s) + T̂12(s)Y (s). (5.40)

We substitute into the second row to get

E21(s) + T̂22(s)Y (s) = Y (s)
(
T̂11(s) + T̂12(s)Y (s)

)
(5.41)

and rearrange terms to get (5.31).

Note that the computed Q(s) is an orthogonal matrix, and is designed so that the

leading columns span R(s).

A constructive existence proof

Lemma 3 says that near s0 we can write R(s) in terms of a continuous solution to

an algebraic Riccati equation, but it says nothing about the size of the neighborhood

or the magnitude of the Riccati solution. To get more detailed information about

Y (s), we extend a theorem due to Stewart [156], [158, section V.2].

98

Theorem 4. Define Ω := C([a, b],R(n−m)×m). For Y ∈ Ω, we will suppress the

argument s to write ‖Y ‖ for the function s 7→ ‖Y (s)‖. The norm ‖ · ‖ may be any

consistent norm. We use |||Y ||| = maxs∈[a,b] ‖Y (s)‖ to denote the norm on Ω.

Let Y0 ∈ Ω be given. Define a Sylvester operator S : Ω → Ω and a bilinear function

φ : Ω× Ω → Ω by

SZ := Z(T̂11 + T̂12Y0)− (T̂22 − Y0T̂12)Z (5.42)

φ(X, Y) := S−1(XT̂12Y). (5.43)

Suppose S is invertible on [a, b]. Then we can define continuous functions α, β :

[a, b] → R by

α := ‖S−1(F (Y0))‖ (5.44)

β := max
‖X‖=‖Y ‖=1

‖φ(X, Y)‖. (5.45)

Suppose also that 4αβ < 1 on [a, b], and define

ξ∗ :=
2α

1 +
√

1− 4αβ
. (5.46)

Then there is a unique continuous solution Y∗ to the Riccati equation (5.31) such that

‖Y∗ − Y0‖ ≤ ξ∗.

Proof. Let Z := Y − Y0. Then we rewrite (5.31) as

0 = F (Y0 + Z) = F (Y0)− S(Z + φ(Z,Z)), (5.47)

which we can rearrange to get

Z = S−1 (F (Y0))− φ(Z,Z). (5.48)

So the map ψ : Ω → Ω given by

ψ(Z) := S−1(F (Y0))− φ(Z,Z) (5.49)

99

has fixed points where (5.31) has solutions. Now define Ω0 = {Z ∈ Ω : ‖Z‖ ≤ ξ∗}.

We will show that ψ(Ω0) ⊆ Ω0 and ψ is contractive on Ω0, so by the contraction

mapping theorem the iteration Zi+1 = ψ(Zi) will converge to a unique fixed point

Z∗ ∈ Ω0 starting from any Z1 ∈ Ω0.

1. ψ(Ω0) ⊆ Ω0:

By the definition of α and β,

‖ψ(Z)‖ ≤ α+ β‖Z‖2

Define τ(ξ) = α+ βξ2. The quadratic equation ξ = τ(ξ) has two real solutions

when 4αβ < 1; the smaller solution is

ξ∗ =
1−

√
1− 4αβ

2β
=

2α

1 +
√

1− 4αβ

Because β ≥ 0, τ is monotonically nondecreasing for positive arguments. So for

0 ≤ ‖Z‖ ≤ ξ∗,

0 ≤ ‖ψ(Z)‖ ≤ τ(‖Z‖) ≤ τ(ξ∗) = ξ∗

So ψ(Ω0) ⊂ Ω0. Therefore all the iterates Zi remain in Ω0.

2. ψ is contractive on Ω0:

For any X, Y ∈ Ω0,

‖ψ(X)− ψ(Y)‖ = ‖φ(X,X)− φ(Y, Y)‖

= ‖φ(X,X − Y) + φ(X − Y, Y)‖

≤ β (‖X‖‖X − Y ‖+ ‖X − Y ‖‖Y ‖)

≤ 2βξ∗‖X − Y ‖

=
4αβ

1 +
√

1− 4αβ
‖X − Y ‖

< 4αβ‖X − Y ‖

100

Let γ := maxs∈[a,b] 4αβ; by hypothesis, γ < 1. Then we have

|||ψ(X)− ψ(Y)||| < γ |||X − Y ||| .

Therefore, ψ has a unique fixed point Z∗ in Ω0; and there is a unique continuous

solution Y∗ = Y0 + Z∗ to the Riccati equation (5.31) such that ‖Y∗ − Y0‖ ≤ ξ∗.

The separation of matrices B and C is the smallest singular value of the Sylvester

operator A(X) = BX −XC:

sep(B,C) := σmin(A) = min
‖X‖F =1

‖BX −XC‖F =
1

‖A−1‖2

. (5.50)

sep(B,C) is zero when B and C have a common eigenvalue, and it is small if a small

perturbation makes them share an eigenvalue. If B and C are normal, sep(B,C) is

the distance between their spectra, but in general sep(B,C) may be much smaller,

since a small change to a non-normal matrix can cause a relatively large change to

the spectrum [165, 169]. By manipulating norm inequalities and using the notion of

matrix separation, we can bound the quantities α and β defined in Theorem 4.

Lemma 5. Let α and β be defined as in Theorem 4. Then the following inequalities

hold pointwise one s ∈ [a, b]:

‖S‖−1
2 ‖F (Y0)‖F ≤ α ≤ ‖S−1‖2‖F (Y0)‖F (5.51)

and

1√
(n−m)m

‖S−1‖2‖T̂12‖2 ≤ β ≤ ‖S−1‖2‖T̂12‖2, (5.52)

where

‖S−1‖2 =
1

sep(T̂11 + T̂12Y0, T̂22 − Y0T̂12)
. (5.53)

101

Proof. Equation (5.53) is simply the definition of sep, while (5.51) follows from the

basic properties of an operator two-norm. To see the upper bound in (5.52), observe

that

‖φ(X, Y)‖F = ‖XT̂12Y ‖F ≤ ‖T̂12‖2‖X‖F‖Y ‖F .

To see the lower bound in (5.52), let X = eiu
T and Y = veT

j , where u and v are

left and right singular vectors for σmax(T̂12) and i and j are chosen to maximize

‖S−1(eie
T
j)‖. Then ‖X‖F = ‖Y ‖F = 1, and

β ≥ ‖S−1((eiu
T)T̂12(vej)‖F (5.54)

= ‖T̂12‖2‖S−1(eie
T
j)‖F (5.55)

≥ 1√
(n−m)m

‖S−1‖2‖T̂12‖2 (5.56)

We can see the last inequality by viewing S−1(eiej)
T as the column of greatest norm

from S−1 when S−1 is viewed in Kronecker product form as an (n−m)m-by-(n−m)m

matrix.

The bounds (5.51) and (5.52) together with Theorem 4 yield the following theo-

rem.

Theorem 6. ([60, 63]) Let Y0 : [a, b] → R(n−m)×m be continuous, and define

κ(T̂) :=
‖T̂12‖2 ‖F (Y0)‖F

sep2(T̂11 + T̂12Y0, T̂22 − Y0T̂12)
(5.57)

In any neighborhood containing s0 in which κ(T̂) < 1/4, the Riccati equation (5.31)

has a unique continuous solution Y∗(s) such that

‖Y∗‖F <
2‖F (Y0)‖F

sep(T̂11 + T̂12Y0, T̂22 − Y0T̂12)
. (5.58)

In any neighborhood containing s0 where κ(T̂) < 1/12, Newton’s method at a fixed s

on (5.31) will converge quadratically to Y∗ starting from Y0.

102

Proof. To prove the existence statement, substitute (5.51) and (5.52) into Theorem

4.

In [58], Demmel proved the quadratic convergence of Newton’s iteration for κ(T̂) <

1/12. To extend to the case of a parameter-dependent matrix, we simply apply

Demmel’s theorem pointwise.

5.2.5 Connecting subspaces

Suppose we are given bases for invariant subspaces of A(s) at s = 0 and s =

h. How can we check that the two end points are connected by a continuously

defined invariant subspace basis on [0, h]? This question has practical significance for

our continuation algorithm, since we would like to avoid mistaken branch-jumping

behavior when two subspaces come close to each other, and we would like to detect

when a continued invariant subspace ceases to be continuously defined.

Theorem 6 partially answers the question of how to check for a continuous con-

necting invariant subspace. But to apply the theorem, we need to bound κ(T̂) on the

interval [0, h]. In the remainder of this section, we describe how to construct bounds

which incorporate information from both s = 0 and s = h using interpolation. Our

ultimate goal is Theorem 12, but first we need some technical lemmas.

We first turn to the problem of bounding ‖B−1‖2, where B ∈ C1([0, h],Rp×p) is

some parameterized operator on a Euclidean space. Since S is also a linear operator

on a Euclidean space (R(n−m)×m with the Frobenius inner product), all our results

apply directly to S as well. We begin by reviewing a simple result about matrix

interpolation.

Lemma 7. Suppose B ∈ C1([0, h],Rp×p) and B′ is Lipschitz with constant M . Then

103

B(s) = B(0) +B[0, h]s+B[0, h, s]s(s− h) (5.59)

where B[0, h] and B[0, h, s] are first and second Newton divided differences and

‖B[0, h]‖2 ≤ max
ξ∈[0,h]

‖B′(ξ)‖2

‖B[0, h, s]‖2 ≤ M.

Proof. For any u, v ∈ Rp and any distinct a, b ∈ [0, h], a < b, the mean value theorem

applied to the scalar function uTB(s)v implies

uTB[a, b]v = uTB(ξ)v (5.60)

for some ξ ∈ [a, b]. Therefore, ‖B[a, b]‖2 ≤ maxξ∈[a,b] ‖B(ξ)‖2.

Now we compute

uTB[0, h, s]v = (uTB[0, s]v − uTB[h, s]v)/h (5.61)

= (uTB′(ξ1)v − uTB′(ξ2)v)/h (5.62)

≤ ‖B′(ξ1)−B′(ξ2)‖2

h
‖u‖2‖v‖2 (5.63)

≤ M‖u‖2‖v‖2. (5.64)

So ‖B[0, h, s]‖2 ≤M .

We can now show a very simple bound on the minimal singular value of B.

Lemma 8. Suppose B ∈ C1([0, h],Rp×p) and B′ is Lipschitz with constant M . Then

σmin(B(s)) ≥ σmin(B(0))− ‖B[0, h]‖2s−Ms(h− s) (5.65)

Proof. By the previous lemma,

‖B(s)−B(0)‖2 = ‖B[0, h]s+B[0, h, s]s(s− h)‖ ≤ ‖B[0, h]‖2s+Ms(s− h).

104

To complete the proof, recall (e.g. from [81]) that

|σmin(B(s))− σmin(B(0))| ≤ ‖B(s)−B(0)‖2.

Lemma 8 uses only the norm of B(s) − B(0); we can refine the bound by using

the direction as well as the magnitude.

Lemma 9. Suppose B ∈ C1([0, h],Rp×p) and B′ is Lipschitz with constant M . Then

σmin(B(s)) ≥ σmin(B(0))(1− ‖B(0)−1B[0, h]‖2s)−Ms(h− s) (5.66)

Proof. Let E(s) = B[0, h]s. If ‖B(0)−1E(s)‖2 ≥ 1, then the lemma is trivial. Other-

wise, I +B(0)−1E(s) is invertible, and

(B(0) + E(s))−1 =
(
I +B(0)−1E(s)

)−1
B(0)−1 (5.67)

=
∞∑

k=0

(
−B(0)−1E(s)

)k
B(0)−1 (5.68)

so ∥∥(B(0) + E(s))−1
∥∥

2
≤ ‖B(0)−1‖2

1− ‖B(0)−1E(s)‖2

. (5.69)

Taking inverses on both sides, we have

σmin(B(0) + E(s)) ≥ σmin(B(0))(1− ‖B(0)−1E(s)‖). (5.70)

Therefore

σmin(B(s)) = σmin(B(0) +B[0, s]s+B[0, h, s]s(s− h)) (5.71)

≥ σmin(B(0) +B[0, s]s)−Ms(h− s) (5.72)

≥ σmin(B(0))(1− ‖B(0)−1B[0, h]‖2s)−Ms(h− s) (5.73)

105

We now turn to the problem of bounding ‖F (Y0)‖F in 5.31 for a specific choice of

Y0. Suppose

 I

hZ

 is a basis for a given invariant subspace of T̂ (h) (see 5.30); then

we linearly interpolate Y0(s) = sZ, so that the residual F (Y0) is zero at both s = 0

and s = h.

Lemma 10. Suppose T̂ ∈ C1 and T̂ ′ has Lipschitz constant M . Also suppose

 I

hZ

spans an invariant subspace of T̂ (h), and define

G(s) := T̂22[0, h]Z − ZT̂11[0, h]− Z
(
T̂12(0) + (s+ h)T̂12[0, h]

)
Z. (5.74)

Then for Y0(s) = sZ, and for any s ∈ [0, h],

‖F (Y0)‖F ≤
h2

2

{
max(‖G(0)‖F , ‖G(h)‖F) +

√
mM(1 + h‖Z‖2)

2
}

(5.75)

Proof. We write F (Y0(s)) as the product

F (Y0(s)) =

[
−Y0(s) I

]
T̂ (s)

 I

Y0(s)

 . = [
−sZ I

]
T̂ (s)

 I

sZ

 . (5.76)

Using the Newton form of the interpolant,

T̂ (s) = T̂ (0) + T̂ [0, h]s+ T̂ [0, h, s]s(s− h); (5.77)

we can therefore write F (Y0(s)) as

F (Y0(s)) = F1(Y0(s)) + F2(Y0(s)) (5.78)

F1(Y0(s)) =

[
−sZ I

](
T̂ (0) + T̂ [0, h]s

) I

sZ

 (5.79)

F2(Y0(s)) =

[
−sZ I

](
T̂ [0, h, s]s(s− h)

) I

sZ

 . (5.80)

We now bound the norms of F1(Y0(s)) and F2(Y0(s)) independently.

106

To bound F1(Y0(s)), we expand and collect terms at each order in s:

F1(Y0(s)) = E21(0) (5.81)

+s
(
T̂22(0)Z − ZT̂11(0) + E21[0, h]

)
+s2

(
T̂22[0, h]Z − ZT̂11[0, h]− ZT̂12(0)Z

)
+s3

(
−ZT̂12[0, h]Z

)
(5.82)

Since F (Y0(s))|s=0 = 0, we know E21(0) = 0. Similarly, since F (Y0(s))|s=h = 0, we

know

T̂22(0)Z − ZT̂11(0) + E21[0, h]

= −h
(
T̂22[0, h]Z − ZT̂11[0, h]− ZT̂12(0)Z

)
−h2

(
−ZT̂12[0, h]Z

)
. (5.83)

Substituting (5.83) into (5.82), we have

F1(Y0(s)) = (s2 − sh)
(
T̂22[0, h]Z − ZT̂11[0, h]− ZT̂12(0)Z

)
+

(s3 − sh2)
(
−ZT̂12[0, h]Z

)
. (5.84)

Factoring out s(s− h) from both terms, we have

F1(Y0(s)) = s(s− h)G(s). (5.85)

Note that G(s) is linear, so by convexity of norms,

‖G(s)‖F ≤ max (‖G(0)‖F , ‖G(h)‖F) for s ∈ [0, h]. (5.86)

Therefore

‖F1(Y0(s))‖F ≤
h2

2
max (‖G(0)‖F , ‖G(h)‖F) for s ∈ [0, h]. (5.87)

We use a cruder bound for F2(Y0(s)). Since F2(Y0(s)) ∈ R(n−m)×m,

‖F2(Y0(s))‖F ≤
√
m‖F2(Y0(s))‖2. Both

[
−sZ I

]
and

 I

hZ

 are bounded in

107

2-norm by 1 + h‖Z‖2; and by 7, ‖T̂ [0, h, s]‖ ≤M . Therefore

‖F2(Y0(s))‖2 ≤
∥∥∥∥[
−sZ I

]∥∥∥∥
2

∥∥∥T̂ [0, h, s]
∥∥∥

2

∥∥∥∥∥∥∥
 I

sZ

∥∥∥∥∥∥∥

2

s(s− h) (5.88)

≤ h2

2
M(1 + h‖Z‖2)

2. (5.89)

Substituting the above bounds into ‖F (Y0(s))‖F ≤ ‖F1(Y0(s))‖F + ‖F2(Y0(s))‖F

concludes the proof.

Now we bound ‖T̂12(s)‖2 on [0, h].

Lemma 11. Suppose T̂ ∈ C1 and T̂ ′ has Lipschitz constant M . Then for s ∈ [0, h],

‖T̂12(s)‖2 ≤ max
(
‖T̂12(0)‖2, ‖T̂12(h)‖2

)
+

1

2
Ms(h− s) (5.90)

Proof. By Lemma 7,

‖T12(s)‖2 = ‖T12(0) + T12[0, h]s+ T12[0, h, s]s(s− h)‖2 (5.91)

≤ ‖T12(0) + T12[0, h]s‖2 +Ms(h− s), (5.92)

and because norms are convex functions,

‖T12(0) + T12[0, h]s‖2 ≤ max (‖T12(0)‖2, ‖T12(h)‖2) . (5.93)

Putting together the preceding bounds, we have the following theorem.

Theorem 12. Suppose T̂ (s) is C2 and T̂ ′ is Lipschitz with constant M . SupposeI
0

 and

 I

hZ

 span invariant subspaces at 0 and h respectively. Let S be defined as

in (5.42). Then if

σmin(S(0))(1− h‖S(0)−1S[0, h]‖2)−
1

2
Mh2 > 0 (5.94)

108

the operator S is invertible for all s ∈ [0, h]. Further, the constants α and β defined

in (5.44) and (5.45) are bounded for all s ∈ [0, h] by

α ≤ h2

2

max (‖G(0)‖F , ‖G(h)‖F) +
√
mM(1 + h‖Z‖2)

2

σmin(S(0))(1− h‖S(0)−1S[0, h]‖2)− 1
2
Mh2

(5.95)

=
h2

2

max (‖G(0)‖F , ‖G(h)‖F) +
√
mM

σmin(S(0))
+O(h3) (5.96)

β ≤
max

(
‖T̂12(0)‖2, ‖T̂12(h)‖2

)
+ 1

2
Mh2

σmin(S(0))(1− h‖S(0)−1S[0, h]‖2)− 1
2
Mh2

(5.97)

=
max

(
‖T̂12(0)‖2, ‖T̂12(h)‖2

)
σmin(S(0))

+O(h) (5.98)

where

G(s) = T̂22[0, h]Z − ZT̂11[0, h]− Z
(
T̂12(0) + (s+ h)T̂12[0, h]

)
Z.

Therefore, by Theorem 4, if the resulting upper bound on 4αβ is bounded below one,

there is a continuous connecting invariant subspace between

I
0

 at s = 0 and

 I

hZ

at s = h.

Dropping higher-order terms, we have

α ≤ h2

2

max (‖G(0)‖F , ‖G(h)‖F) +
√
mM

σmin(S(0))
+O(h3) (5.99)

β ≤
max

(
‖T̂12(0)‖2, ‖T̂12(h)‖2

)
σmin(S(0))

+O(h) (5.100)

Besides sep(T̂11(0), T̂22(0)) = σmin(S(0)) and ‖S(0)−1S[0, h]‖2, the quantities in the

bounds of the above theorem are cheap and simple to compute.

5.3 The CIS algorithm: direct methods

We now describe the CIS algorithm in the case when we can use direct solvers.

Much of this work is described in [60], [63], [73], and [74]. Here, we emphasize parts

109

of the computation that we perform differently, or which are particularly relevant to

the sparse case.

At the highest level, our algorithm is as follows:

1. Choose an initial invariant subspace.

2. Compute a continuation step.

3. Normalize the solution.

4. Adapt the space and step size to improve convergence and resolve features of

interest.

We can continue either Q1(s) and T11(s) or the full Q(s) and T (s) matrices.

Currently, our dense code computes the full Schur factors at each step. When we

continue only the first part of the decomposition, as we do in the sparse case, we

also compute a few extra eigenvalues from Λ2(s). We use these eigenvalues to decide

whether the algorithm should be reinitialized with a different partitioning of the

spectrum.

5.3.1 Initialization

To initialize the algorithm at s0, we compute a Schur decomposition of A(s0) and

use standard LAPACK routines [6] to sort the decomposition so selected eigenvalues

appear in T11(s0). For bifurcation problems, we assume that only a small part of the

spectrum is unstable; therefore, we include all the unstable eigenvalues as well as a

few stable eigenvalues nearest the imaginary axis in our m-dimensional subspace (see

Figure 5.5).

We require that Λ1(s0) contains any unstable eigenvalues and some specified num-

ber of stable eigenvalues; but we may include additional eigenvalues in order to sim-

110

PSfrag replacements

Λ1Λ2

-1 -0.5 0 0.5 1

-0.5

0

0.5

Figure 5.5. Selected eigenvalues during initialization

plify the subsequent continuation process. For example, we include an extra eigen-

value in order to avoid splitting a complex conjugate pair of eigenvalues between

Λ1(s0) and Λ2(s0). More generally, we would like to choose Λ1(s0) so that the gap

between the real parts of the leftmost eigenvalue in Λ1(s0) and the rightmost eigen-

value in Λ2(s0) are greater than some threshold. In this way, we hope to keep track

of all eigenvalues that might cross the imaginary axis.

In the dense case, the same LAPACK routine used to sort the Schur form also

estimates the sensitivity of the selected subspace, and so we may choose a larger

subspace if the smallest feasible subspace is very sensitive. Though the cost of the

computations at a single point increases as we increase the size of our subspace,

continuing a less sensitive subspace will allow us to take larger steps.

We summarize the initialization procedure in Algorithm 1.

5.3.2 Choosing a subspace

We have considered three strategies for computing R(s1) starting from R(s0):

111

Algorithm 1 Choose an initial subspace

Input: A(s0),
nmin, nmax, {bounds on subspace size}
nstableref , {number of stable reference eigenvalues}
εgap, {minimum gap between Λ1(s0) and Λ2(s0)}

Output: Q1(s0) and T11(s0)

Compute a Schur decomposition A(s0) = QTQT

t := real parts of converged eigenvalues sorted in descending order

Find smallest m so that

nmin ≤ m ≤ nmax

m ≥ (# unstable eigenvalues) + nstableref

t(m)− t(m+ 1) > εgap

if no such m exists then

error “Spectrum too tightly clustered”

else

Sort subspace for rightmost m eigenvalues to the front of Q, T

Return Q1 = Q(:, 1 : m), T11 = T (1 : m, 1 : m)

end if

112

• As in the construction of Theorem 6, apply a predictor and then use a Newton

corrector.

• Choose a subspace which minimizes the distance between eigenvalues in the

computed Λ(s1) and eigenvalues in Λ(s0).

• Choose a subspace by finding the m eigenvectors of A(s1) which most nearly lie

in R(s0), or which most nearly lie in a predicted subspace.

We currently use an approximate Euler predictor and a Newton corrector. We

use the convergence of the corrector to govern our step size: if it converges slowly or

fails to converge, we reduce the step size, or reinitialize the continuation process with

a larger or smaller subspace. If the corrector converges quickly, we increase the step

size.

Subspace predictors

We build an Euler predictor for R(s1) by differentiating the Schur factorization

as in (5.25) and substituting finite difference approximations for Q′ and T ′. Alter-

natively, we could differentiate the Riccati equation (5.31) and substitute a finite

difference approximation for Y ′. Either way, this gives us the equation

T22(s0)Y0(s1)− Y0(s1)T11(s0) = −(s1 − s0)E
′
21(s1) (5.101)

If derivatives of A are unavailable, we can substitute a finite difference approximation

for E ′
21(s) to get the approximate Euler predictor equation

T22(s0)Y0(s1)− Y0(s1)T11(s0) = −E21(s1). (5.102)

We can also build a secant predictor; but to do so, we must consider how consecu-

tive steps are normalized. In a single predictor-corrector step, we normalize the basis

113

Q1(s0)Q̄1(s−1)

Q1(s−1)

Q̄pred
1 (s)

Qpred
1 (s)

Q̄1(s)

Q1(s)

Figure 5.6. Choosing a consistent normalization for secant prediction

for a space X by requiring that Q(s0)
TX = I; however, this normalization changes

with each step. If R(s−1) is the invariant subspace from a previous continuation

step, we must choose a basis Q̄1(s−1) for R(s−1) which is consistent with the current

normalization (see Figure 5.6). Because Q̄1(s−1) spans the same space as Q1(s−1),

there must be some invertible B(s−1) ∈ Rm×m such that

Q̄1(s−1) = Q1(s−1)B(s−1), (5.103)

and the normalizing condition is

I = Q1(s0)
T Q̄1(s−1) = Q1(s0)

TQ1(s−1)B(s−1). (5.104)

Therefore

B(s−1) =
(
Q1(s0)

TQ1(s−1)
)−1

(5.105)

Q̄1(s−1) = Q1(s−1)
(
Q1(s0)

TQ1(s−1)
)−1

. (5.106)

By linear extrapolation, the secant predictor for Q̄1(s1) is

Q̄pred
1 (s1) = Q1(s0) +

s1 − s0

s0 − s−1

(
Q1(s0)− Q̄1(s−1)

)
(5.107)

The Riccati unknown has the form Y (s) = Q2(s0)
T Q̄1(s) with Y (s0) = 0, so we can

rewrite the predictor (5.107) as

Y0(s1) = − s1 − s0

s0 − s−1

Y (s−1), (5.108)

114

where

Y (s−1) = Q2(s0)
T Q̄1(s−1). (5.109)

We similarly write higher-order polynomial predictors by choosing a consistent

normalization for several steps and using polynomial extrapolation.

Direct Newton corrector iterations

One way to find Q̄1(s) is to simultaneously solve residual equations for the the

eigensystem and the normalization:

R =

A(s)Q̄1(s1)− Q̄1(s1)T̄11(s1)

Q1(s0)
T Q̄1(s1)− I

 = 0 (5.110)

We can compute a Newton step for (5.110) using a bordered Bartels-Stewart algo-

rithm [27]. Alternately, we can eliminate T̄11(s1) and perform Newton iteration on

the Riccati equation (5.31). A Newton step for the Riccati equation can be solved

using an ordinary Bartels-Stewart algorithm [81, p. 367].

Newton iterations on the reduced and unreduced systems are equivalent in ex-

act arithmetic, assuming that the initial iterate in the unreduced case satisfies the

normalization condition Q1(s0)
T Q̄pred

1 (s1) = I. However, while reducing (5.110) to a

Riccati equation reduces the problem size by a modest amount, the reduced system

will usually be dense, even if (5.110) is sparse. For small problems, we use dense

methods, and the loss of sparsity matters little; for large problems, we sidestep the

issue by using projection methods, as described in Chapter 5.4. For medium-sized

problems, it may be better to use sparse direct solvers to take Newton steps on the

unreduced system of equations.

115

5.3.3 Normalizing the solution

After we compute a basis Q̄1(s1) for R(s1), we normalize to find another basis

Q1(s1) which is as near as possible to Q1(s0). This normalization approximates the

minimal arclength condition described in Section 5.2.1. We describe several ways to

write the normalization in the following lemma.

Lemma 13. Let Q̄1(s1) be a basis for R(s1) with Q1(s0)
T Q̄1(s1) = I. Let Q̄1(s1) =

UΣV T be a singular value decomposition with U ∈ Rn×m and Σ, V ∈ Rm×m, and let

Y (s1) = Q2(s0)Q̄1(s1). Then the orthonormal basis Q1(s1) ∈ Stief(n,m) for R(s1)

which minimizes ‖Q1(s1)−Q1(s0)‖F can be written in the following ways:

Q1(s1) = UV T (5.111)

Q1(s1) = Q̄1(s1)
(
Q̄1(s1)

T Q̄1(s1)
)−1/2

(5.112)

Q1(s1) = Q1(s0)

 I

Y (s1)

(
I + Y (s1)

TY (s1)
)−1/2

. (5.113)

Proof. If Q̄1(s1) = UΣV T , then one orthonormal basis for R(s1) is UV T . We can

write any other orthonormal basis for R(s1) as UV TW for some orthogonal matrix

W ∈ O(m).

Now we solve an orthogonal Procrustes problem ([81, p. 582]) to find W corre-

sponding to the orthonormal basis nearest Q0. Choose W to minimize

‖Q1(s0)− UV TW‖2
F . (5.114)

116

Because the Frobenius norm is invariant under unitary transformations, we have

∥∥Q1(s0)− UV TW
∥∥2

F

=

∥∥∥∥∥∥∥Q(s0)

Im

0

−
Q1(s0)

TUV TW

Q2(s0)
TUV TW

∥∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥∥
Im −Q1(s0)

TUV TW

−Q2(s0)
TUV TW

∥∥∥∥∥∥∥

2

F

and by the Pythagorean theorem,

∥∥Q1(s0)− UV TW
∥∥2

F
=

∥∥Im −Q1(s0)
TUV TW

∥∥2

F
+∥∥−Q2(s0)

TUV TW
∥∥2

F
.

The second term of the sum does not depend on W , since W is orthogonal. Therefore,

we minimize
∥∥Q1(s0)− UV TW

∥∥2

F
by minimizing

∥∥Im −Q1(s0)
TUV TW

∥∥2

F
(5.115)

By hypothesis,

I = Q1(s0)
T Q̄1(s0) = Q1(s0)

TUΣV T . (5.116)

If we substitute (5.116) into (5.115) and use the unitary invariance of the Frobenius

norm yet again, we have

∥∥Im −Q1(s0)
TUV TW

∥∥2

F
=

∥∥Q1(s0)
TU

(
Σ− V TWV

)
V T

∥∥2

F

=
∥∥Σ− V TWV

∥∥2

F

The matrix V TWV is orthogonal, and the closest orthogonal matrix to the positive

diagonal matrix Σ is the identity. Therefore, (5.115) is minimized when V TWV = I.

Thus ‖Q1(s0) − UV TW‖2
F is minimized for W = I, and so Q1(s1) = UV T . This

proves (5.111).

117

To show (5.112), we write

Q̄1(s1)
(
Q̄1(s1)

T Q̄1(s1)
)−1/2

= UΣV T
(
V ΣUTUΣV T

)−1/2

= UΣV T
(
V Σ2V T

)−1/2

= UΣV TV
(
Σ2

)−1/2
V T

= UV T

= Q1(s1)

If we write

Q̄1(s1) = Q(s0)

 I

Y (s1)

 , (5.117)

then

Q̄1(s1)
T Q̄1(s) =

 I

Y (s1)

T

Q(s0)
TQ(s0)

 I

Y (s1)

=

(
I + Y (s1)

TY (s1)
)

(5.118)

Now substitute (5.117) and (5.118) into (5.112) to get (5.113).

5.3.4 Subspace analysis and adaptation

Bifurcations and overlaps

When the CIS algorithm is initialized, the set Λ1(s0) contains all the unstable

eigenvalues of A(s0) and a few of the stable eigenvalues nearest the imaginary axis.

The set Λ2(s0) lies strictly left of Λ1(s0) in the complex plane. During continuation,

eigenvalues from Λ1(s) may cross the imaginary axis (a bifurcation), or Λ2(s) may

cease to lie strictly to the left of Λ1(s) (an overlap). These situations are illustrated

118

Figure 5.7. Examples of overlap and bifurcation. In the top example (overlap), one of
the eigenvalues from Λ1(s) (open circles) changes position with one of the eigenvalues
of Λ2(s). In the bottom example, an eigenvalue crosses over the imaginary axis (a
bifurcation), so that Λ1(s) contains fewer stable eigenvalues.

Figure 5.8. Generic overlap situations. On the left, two real eigenvalues collide and
produce a complex pair (top), and the real parts of two complex conjugate eigenvalue
pairs change order (bottom). On the right, a complex conjugate pair and a real
eigenvalue change places in two ways.

in Figure 5.7. When bifurcation or overlap occurs, we reinitialize the continuation

procedure.

A generic overlap or bifurcation is one which persists when the function A(s)

is perturbed. For steady-state continuation problems, the only generic bifurcations

are fold bifurcations, in which an isolated real eigenvalue crosses the imaginary axis;

and Hopf bifurcations, in which an isolated complex conjugate pair of eigenvalues

crosses the imaginary axis. There are four generic types of overlap (see Figure 5.8).

In three cases, a single real eigenvalue or complex conjugate pair from Λ2(s) moves

119

right of some element of Λ1(s). In the fourth case, a single eigenvalue from Λ2(s)

collides with an eigenvalue from Λ1(s) to form a complex conjugate pair. Q1(s)

corresponding to Λ1(s) will cease to be continuously defined, and we expect that the

Newton iteration will not converge. Complex conjugate eigenvalues in the spectrum

may also generically collide and become real eigenvalues, but because we do not allow

complex conjugate pairs to be split between Λ1(s) and Λ2(s), this behavior does not

result in an overlap.

Step size and subspace adaptation

Standard bifurcation analysis algorithms [85] involve computing functions of A(s).

We adapt these methods to large problems by computing the same functions of the

much smaller T11(s). Therefore, we try to ensure that only eigenvalues from Λ1(s) can

cross the imaginary axis, so that T11(s) will provide all the relevant information about

bifurcations. To prevent eigenvalues from Λ2(s) from crossing the imaginary axis, we

adapt the step size and the size of the Λ1(s) so that overlaps and bifurcations are not

allowed in the same step. We summarize the step size and subspace adaptation logic

in Algorithm 2.

When an overlap occurs because two real eigenvalues collide to form a conjugate

pair, the Newton iteration will fail to converge. To detect other types of overlap at

s, we compute the overlap set:

{(λi(s), λj(s)) ∈ Λ1(s)× Λ2(s) : Re(λi(s)) < Re(λj(s))} .

If this set is non-empty, then an overlap has occurred. To decide whether multiple

overlaps have occurred, we count the number of (λi(s), λj(s)) pairs in the overlap set.

To avoid double-counting overlaps involving complex conjugate pairs, we only count

the pairs such that Im(λi(s)) ≤ 0 and Im(λj(s)) ≤ 0.

120

Only one overlap is allowed in a step. If we detect multiple overlaps, we retry with

a smaller step size until only one overlap is left. If we reach the minimum step size

and still have multiple overlaps, we reinitialize the continuation process at si so that

the overlap set from the failed step belongs entirely to Λ1(si) or entirely to Λ2(si).

We detect bifurcations by counting the unstable eigenvalues. If the total number

of unstable eigenvalues at si+1 differs from the total number of unstable eigenvalues at

si, then a bifurcation occurred during the step. If this total number changed by more

than one real eigenvalue or one complex conjugate eigenpair, we assume that multiple

bifurcations have occurred, and we try to resolve them by decreasing the step size. If

we cannot resolve the behavior with the minimum step size, then the algorithm fails

with a diagnostic message. Unless we fail or a bifurcation and an overlap both occur

during the step, we assume that Λ1(s) contains all information about bifurcations.

If an overlap or bifurcation occurs in an accepted step from si to si+1, we will

reinitialize the computation at si+1 before attempting another step. This way, the

new spectral sets will not overlap, and the new Λ1(si+1) will include no more or fewer

eigenvalues than necessary after a bifurcation.

5.4 The CIS algorithm: projection methods

We now turn to the case when the dimension n of A(s) is large and we are

interested in a space R(s) of dimension m � n. In this case, direct methods are

expensive; however, if we can multiply byA(s) quickly, we can use projection methods.

5.4.1 Choosing a projection space

In the direct case, we consider two spectral sets: Λ1(s), which contains the unstable

eigenvalues and a few of the rightmost stable eigenvalues; and Λ2(s), which contains

121

Algorithm 2 Continue and adapt invariant subspace of A(s)

Input: A(s) {matrix-valued function}
s0, {starting parameter}
hinitial, hmin, hmax {starting step size, step size bounds}

Output: Q(s) and T (s)

Compute initial point Q(s0), T (s0) using Algorithm 1.

s := s0, h := hinitial

while not done do

Compute a candidate step and candidate step size ĥ

Test for bifurcation and overlap

if subspace did not converge then

Reinitialize at s using Algorithm 1 and reset step size to hinitial

else if multiple overlap, multiple bifurcation, or overlap and bifurcation then

if h > hmin then

Decrease h

else if multiple bifurcation then

error “Could not resolve nongeneric bifurcation”

else

Reinitialize at s using Algorithm 1

end if

else

Record the decomposition and diagnostic information

s := s+ h, h := min(hmax, ĥ)

if bifurcation or overlap occurred in accepted step then

Reinitialize at s using Algorithm 1 and reset step size to hinitial

end if

end if

end while

122

the remaining eigenvalues. In the projection case, we consider three spectral sets:

Λ1(s), a set of m elements which contains the unstable eigenvalues and a few of the

rightmost stable eigenvalues; Λ2(s), a set of p − m elements which contains a few

of the rightmost eigenvalues not in Λ1(s); and Λ3(s), a set of n − p elements which

contains the remainder of the spectrum. Our basic strategy in the projected CIS

algorithm is to build a projection space V of dimension p > m such that p � n and

the restriction of A(s) to V provides good approximations to Λ1(s) and Λ2(s).

5.4.2 Initialization

During initialization, we may not know how large V must be to find all the unstable

eigenvalues plus a few stable eigenvalues. Therefore, the projected version of the

initialization routine calls Algorithm 1 in a loop. While not enough stable eigenvalues

converge or there are no sufficiently large gaps between stable eigenvalues in the

converged part spectrum, more eigenvalues are requested. If a suitable subspace

cannot be found when a specified maximum number of eigenvalues are requested, the

code exits with a diagnostic message.

5.4.3 Projected normalization and residual equations

Suppose V ∈ Rp×n is an orthonormal basis for a projection space V . Recall the

n-by-m residual equation (5.35)

A(s)Q̄1(s)− Q̄1(s)T̄11(s) = 0.

We approximate the equation by assuming that Q̄1(s) ≈ Q̄h
1(s) := V Q̂1(s) and choos-

ing Q̄h
1(s) to satisfy the Galerkin condition

0 = V T
(
A(s)Q̄h

1(s)− Q̄h
1(s)T̄

h
11(s)

)
(5.119)

= V TA(s)V Q̂1(s)− Q̂1(s)T̄
h
11(s) (5.120)

123

PSfrag replacements

Λ1Λ2Λ3

-6 -4 -2 0
-1

-0.5

0

0.5

1

Figure 5.9. Eigenvalue sets in the projected CIS algorithm. In practice, Λ3 will
contain many more eigenvalues than Λ1 and Λ2.

We assume the same normalizing condition we used before:

Q1(s0)
T Q̄h

1(s) =
(
V TQ1(s0)

)T
Q̂1(s) = I (5.121)

Once Q̄h
1(s) has been computed, we can use Lemma 13 to compute the orthonormal

basis Qh
1(s) for the same space which is closest to Q1(s0) in the Frobenius norm. We

will let Qh
2(s) ∈ Rn×(p−m) be an orthonormal basis for the orthogonal complement of

span(Qh
1(s)) in V . Though we require continuity of Qh

1(s), it will not be important

for our purposes to continuously define Qh
2(s).

We typically will use a projection space V which is itself an approximate maximal

invariant subspace computed by an Arnoldi method. Suppose that A(s1)V ⊂ V , and

let V ⊥ ∈ Rn×(n−p) be an orthonormal basis for V⊥. Then at s1, solutions to the

Galerkin equation (5.120) span invariant subspaces of A(s1).

If V is a p-dimensional maximal invariant subspace corresponding to the rightmost

part of the spectrum of A(s1), then we compute the leading two-by-two part of a

124

three-by-three block Schur form

A(s1) =

[
Qh

1(s1) Qh
2(s1) V ⊥

]

T h

11(s1) T h
12(s1) T h

13(s1)

0 T h
22(s1) T h

23(s1)

0 0 T h
33(s1)

[
Qh

1(s1) Qh
2(s1) V ⊥

]T

The spectrum of the T h
11(s) block is the continued set of eigenvalues Λ1(s). The T h

22(s)

block has a few of the rightmost remaining eigenvalues, which we use to diagnose

overlap. The eigenvalues of the uncomputed block T h
33(s) are part of the spectrum

which lies further from the imaginary axis. Figure 5.9 illustrates the three spectral

sets corresponding to T h
11(s), T

h
22(s), and T h

33(s) in the case when no overlap has

occurred.

As in the dense case, we can eliminate T̄ h
11(s) from equation (5.120); we summarize

this calculation in the following lemma.

Lemma 14. Let V TQ1(s0) have the singular value decomposition

V TQ1(s0) = U

Σ

0

RT =

[
U1 U2

]Σ

0

RT (5.122)

where U ∈ Rp×p, Σ ∈ Rm×m, and R ∈ Rm×m. Let

T̂ h(s) =

T̂ h
11(s) T̂ h

12(s)

Eh
21(s) T̂ h

22(s)

 :=

Σ 0

0 I

UTV TA(s)V U

Σ−1 0

0 I

 (5.123)

Then any solution to the Galerkin equation (5.120) and normalizing condition (5.121)

can be written as

Q̂1(s) = U

 Σ−1

Ŷ h(s)

RT (5.124)

125

where Ŷ h(s) ∈ R(p−m)×m is a solution to the Riccati equation

F h(Y h(s)) := T̂ h
22(s)Y

h(s)− Y h(s)T̂ h
11(s) + Eh

21(s)− Y h(s)T̂ h
12(s)Y

h(s) = 0. (5.125)

Proof. Let B(s) = UT Q̂h
1(s)R. Substituting the SVD (5.122) into (5.121), we have

I = R

[
Σ 0

]
UT Q̂1(s) (5.126)

= R

[
Σ 0

]
B(s)RT (5.127)

If we multiply on the left by RT and on the right by R, we have

I =

[
Σ 0

]
B(s) (5.128)

Therefore, for some Y h(s) ∈ R(p−m)×m, B(s) can be written as

B(s) =

 Σ−1

Y h(s)

 =

Σ−1 0

0 I

 I

Y h(s)

 (5.129)

Now we substitute Q̂h
1(s) = UB(s)RT into the projected residual equation (5.120):

V TA(s)V U

Σ−1 0

0 I

 I

Y h(s)

RT − U

Σ−1 0

0 I

 I

Y h(s)

RT T̄ h
11(s) = 0 (5.130)

If we multiply by

Σ 0

0 I

UT on the left and by R on the right, we have

T̂ h(s)

 I

Y h(s)

 =

 I

Y h(s)

(
RT T̄ h

11(s)R
)

(5.131)

The first row of (5.131) gives an expression for RT T̄ h
11(s)R, which we can substitute

into the second row to get the Riccati equation (5.125):

RT T̄ h
11(s)R = T̂ h

11(s) + T̂ h
12(s)Y

h(s)

Eh
21(s) + T̂ h

22(s)Y
h(s) = Y h(s)

(
RT T̄ h

11(s)R
)

= Y h(s)T̂ h
11(s) + Y h(s)T̂ h

12(s)Y
h(s)

126

In Theorem 3, we saw that for s sufficiently near s0, the normalized basis for R(s)

corresponded to the minimum norm solution for the Riccati equation (5.31). The

norm of the Riccati unknown Y (s) is equal to the distance ‖Q̄1(s) − Q1(s0)‖F . We

now show that ‖Y h(s)‖F is similarly related to ‖Q̄h
1(s)−Q1(s0)‖F .

Lemma 15. In the previous lemma, the distance from Q̄h
1 to Q1(s0) is

‖Q̄h
1(s)−Q1(s0)‖2

F = ‖Y h‖2
F + ‖Σ−1‖2

F −m (5.132)

Proof. We decompose Q1(s0) and Q̄h
1(s) into components in three orthogonal spaces

spanned by V ⊥, V U1, and V U2:

Q1(s0) = V ⊥(V ⊥)TQ1(s0) + V U1ΣR
T (5.133)

Qh
1(s) = V U1Σ

−1RT + V U2Y
h(s)RT (5.134)

where the first equation is a consequence of (5.122) and the second equation follows

from (5.124). The difference is

Q1(s0)−Qh
1(s) =

V ⊥(V ⊥)TQ1(s0)+

V U1(Σ− Σ−1)RT +

V U2Yh(s)R
T

 . (5.135)

Because the three components are orthogonal, the squared Frobenius norm is the sum

of the squares of the Frobenius norms; that is

‖Q1(s0)−Qh
1(s)‖2

F =

‖V ⊥(V ⊥)TQ1(s0)‖2

F +

‖V U1(Σ− Σ−1)RT‖2
F +

‖V U2Yh(s)R
T‖2

F

 . (5.136)

Because multiplication by an orthonormal matrix does not change the Frobenius

127

norm, we can write

‖Q1(s0)−Qh
1(s)‖2

F =

‖(V ⊥)TQ1(s0)‖2

F +

‖Σ− Σ−1|2F +

‖Yh(s)‖2
F

 (5.137)

=

‖(V ⊥)TQ1(s0)‖2

F +

(‖Σ‖2
F + ‖Σ−1|2F − 2m)+

‖Yh(s)‖2
F

 . (5.138)

Note that

m = ‖Q1(s0)‖2
F = ‖(V ⊥)TQ1(s0)‖2

F + ‖V TQ1(s0)‖2
F (5.139)

= ‖(V ⊥)TQ1(s0)‖2
F + ‖Σ‖2

F . (5.140)

Now substitute

‖(V ⊥)TQ1(s0)‖2
F = m− ‖Σ‖2

F (5.141)

into (5.138) to obtain the desired result.

Therefore, if s1 is sufficiently near s0 and V is itself an invariant subspace of A(s1)

such that R(s1) ⊂ V , the minimal norm solution to the projected Riccati equation

(5.125) corresponds exactly to the minimal norm solution to the Riccati equation

(5.31).

5.4.4 Projected predictors and correctors

The Euler predictor (5.101) and the finite difference version of the Euler predictor

(5.102) are subtly different in the projected case. A projection subspace V which

is an invariant subspace for A(s1) will generally not contain R(s0); consequently,

Q1(s0) will not correspond to a solution to the projected Riccati equation (5.125)

128

at s = s0. Worse, Eh
21(s0) will usually be nonzero. If we naively differentiate the

relation F h(Y h(s)) = 0 and use the resulting differential equation to form an Euler-

like approximation Y h
0 (s1) starting from a value of 0 for Y h(s0), then to first order

F h(Y h
0 (s1)) will be E21(s0).

We can remedy this problem by requiring R(s0) ⊂ V . However, a more straight-

forward alternative is to compute a secant prediction Q̄pred
1 (s1) using (5.107), and

then project

Q̄h,pred
1 (s1) = V V T Q̄pred

1 (s1). (5.142)

The corresponding projected Riccati predictor is then

Y h
0 (s1) = UT

2 V
T Q̄pred

1 (s1)R (5.143)

In the current code, we use the trivial predictor Y h
0 (s1) = 0.

Once we have a predicted value Y h
0 (s1), we solve the projected Riccati equation

with a Newton iteration, just as we did in the direct methods. We note that the

projected matrix V TA(s)V will usually be dense, and so there seems to be little

benefit to solving the unreduced equations. Just as in the direct case, alternate

subspace selection methods based on eigenvalues and eigenvectors are possible.

5.5 Integrating the CIS algorithm into MAT-

CONT

In the introduction, we described how invariant subspace continuation can be used

to adapt bifurcation analysis methods for small problems in order to analyze much

larger systems. In this section, we discuss one example of our work to use the CIS

algorithm in this way to extend the bifurcation analysis code MATCONT [61]: using

projected test functions to detect and locate Hopf bifurcations.

129

Let x(s) = (u(s), α(s)) ∈ Rn×R be a smooth local parameterization of a solution

branch of the stationary problem (5.2):

f(x(s)) = f(u(s), α(s)) = 0.

We write the Jacobian matrix along this path as A(s) := fu(x(s)). A solution point

x(s0) is a bifurcation point if Reλi(s0) = 0 for at least one eigenvalue λi(s0) of A(s0).

The point x(s0) is a simple Hopf bifurcation if the simple eigenvalue λi(s0) is a pure

imaginary number and Re
(

dλi

ds
(s0)

)
6= 0.

A test function φ(s) := ψ(x(s)) is a (typically) smooth scalar function that has a

regular zero at a bifurcation point. A bifurcation point between consecutive contin-

uation points x(sk) and x(sk+1) is detected when

ψ(x(sk))ψ(x(sk+1)) < 0. (5.144)

Once a bifurcation point has been detected, it can be located by solving the system f(x) = 0,

g(x) = 0
(5.145)

for an appropriate function g

The test function used in MATCONT to detect Hopf points is

ψHopf(x(s)) := det [2A(s)� In] =
∏
i>j

(λi(s) + λj(s)) , (5.146)

where � is the bialternate product [85]. Clearly ψHM(x(s)) is zero if A(s) has a pure

imaginary pair of eigenvalues (±iκ); but note that ψHM is also zero if A(s) has a pair

of real eigenvalues which sum to zero (±κ).

To detect Hopf bifurcations using the CIS algorithm, we introduce the test func-

tions

ψ
(1)
Hopf(x(s)) =

∏
m≥i>j

(λi(s) + λj(s)) , (5.147)

ψ
(2)
Hopf(x(s)) = (−1)#{λi(s):Re λi(s)≥0 and Im λi(s)>0}. (5.148)

130

where λ1(s), . . . , λm(s) are the eigenvalues of T11(s). We detect a Hopf bifurcation

when

ψ
(1)
Hopf(x(sk))ψ

(1)
Hopf(x(sk+1)) < 0 and ψ

(2)
Hopf(x(sk))ψ

(2)
Hopf(x(sk+1)) < 0 (5.149)

The test function ψ
(1)
Hopf is analogous to ψHopf , while ψ(2) is used to exclude the case

of two real eigenvalues that sum to zero.

A well-known method to locate a Hopf point (see e.g. e.g. [110, 85, 26]) is to solve

the system
f(x) = 0,

fu(x)r − iωr = 0,

r∗r0 − 1 = 0

(5.150)

where x ∈ Rn+1, r ∈ Cn, and ω ∈ R. The reference vector r0 ∈ Cn is given. Usually,

the system (5.150) is converted to a system of 3n + 2 real unknowns. Based on the

CIS algorithm, we replace (5.150) with the system
f(x) = 0,

T11(x)r − iωr = 0,

r∗r0 − 1 = 0

(5.151)

where r is now a vector in Cm. In contrast to (5.150), the system (5.151) involves

n+ 2m+ 2 real unknowns.

Example 16. The 1D Brusselator [113] is a well known model system for autocat-

alytic chemical reactions with diffusion. The problem is defined on Ω = (0, 1) by

coupled differential equations for unknowns u and v

d1

l2
u′′ − (b+ 1)u+ u2v + a = 0

d2

l2
v′′ + bu− u2v = 0

with boundary conditions

u(0) = u(1) = a and v(0) = v(1) =
b

a
. (5.152)

131

This problem exhibits a rich bifurcation scenario and has been used in the literature

as a standard model for bifurcation analysis [147, 82, 55, 15, 45, 124]. Utilizing a

second-order finite difference discretization

f ′′ ≈ 1

h2
(fi−1 − 2fi + fi+1)

with h = (N + 1)−1, the resulting discrete problem can be written in the form (5.2).

This discretization of the Brusselator is used in a MATCONT example [61].

In order to verify the accuracy of locating a Hopf point, we continue a constant

solution branch: u(x) = a, v(x) = b
a
, with respect to b. In this case the values of b

where Hopf bifurcation occurs are known analytically as a function of N , see e.g. [45,

Eq. (24)]. In the table below n = 2N is the dimension of the system (5.2); ttotal and

tCIS are the average total time and the CIS time per continuation step, respectively,

and tH is the time for finding the value of b for which Hopf bifurcation occurs to least

eight correct digits. The computations are performed on an 850 MHz Pentium III

machine.

n 256 512 1024 2048 4096
ttotal

sec .
step

1.13 1.56 2.20 4.35 13.8

tCIS
sec .
step

1.01 1.19 1.25 1.29 1.41

tH sec . 9.1 9.5 10.7 18.8 39

These preliminary results indicate that the relative cost of the CIS computations

decreases as n increases, and that for large n the cost of one Newton step for locat-

ing a Hopf bifurcation is approximately the same as that of one Newton step for a

continuation step of (5.2). For this example, typically one Newton step was required

in the corrector at each continuation step, while locating the Hopf bifurcation took

three Newton steps on the extended system.

132

5.6 Conclusions and Future Work

In this paper, we have discussed the CIS algorithm for computing a smooth or-

thonormal basis for an invariant subspace of a parameter-dependent matrix, and we

have extended it to make it more suitable for numerical bifurcation analysis. In

particular, we have made the following contributions:

1. We have derived new sufficient conditions for the existence of a continuous

invariant subspace connecting invariant subspaces of matrices at the end of a

parameterized matrix curve.

2. We have extended the original CIS algorithm for dense problems with logic

for adapting the continued subspace in order to ensure that it always includes

information relevant to bifurcation analysis. Such adaptation is necessary when

an bifurcation occurs or when there is an overlap: that is, when the real parts

of eigenvalues change order.

3. We have extended our algorithm to work efficiently on large sparse matrices by

exploiting Galerkin projection methods. The original CIS algorithm used direct

methods for dense matrices, and so cost O(n3) work at each step.

4. We have incorporated the projection-based CIS algorithm into the MATCONT

bifurcation analysis package, and we have applied the combined code to the

Brusselator model problem.

Future work includes the following topics. We are still actively investigating

how the information can most effectively be used for finding bifurcations from non-

static equilibria, and how to best use the CIS algorithm in detecting and computing

codimension-2 bifurcations along branches of Hopf and limit points. We are also in-

133

volved in using of the CIS algorithm in order to study the dependence of resonant

frequencies of mechanical devices as design parameters are varied.

134

Chapter 6

HiQLab

6.1 Introduction

HiQLab is a finite element tool for simulating resonant MEMS. The source code is

open and freely available [29]. We have included in HiQLab the models and algorithms

described in previous chapters, including elements for perfectly matched layers, and

thermoelastic damping and structure-preserving algorithms for model reduction and

for eigencomputations. The main design goals of HiQLab are:

• Flexible problem descriptions: HiQLab was designed with parameter studies

and optimization tasks in mind. For these tasks, it is useful to be able to

programatically describe the problem in a way that naturally exposes relevant

parameters.

• Ease of extension: The target problems for HiQLab involve interactions be-

tween different physical domains. To solve these problems easily, it is important

to be able to quickly incorporate new elements and to construct new algorithms

to take advantage of special problem structures.

135

• Openness: We wanted to share our code with the community and collabo-

rators, and to allow others to build on it for academic or commercial use. It

is easiest to do this with a completely open core library that does not depend

intrinsically on any particular commercial systems.

While we focus on resonant MEMS, the architecture of HiQLab is general. The

application-specific parts of the program mostly involve the specific types of structures

we preserve in our algorithms and the interface elements seen by the users. The

architecture of HiQLab incorporates several novel features, including the extensive

use of scripting languages, built-in support for problem-specific scaling, and a global

shape function facility. Our goal in this chapter is to describe HiQLab at a high level,

with particular emphasis on these architectural features.

6.2 History

HiQLab draws on previous projects in which we have been involved, as well as on

several related projects. We described some of these systems in our first chapter; we

now review how these systems influenced the design of HiQLab.

6.2.1 SUGAR

The SUGAR system for modified nodal analysis of MEMS devices [160] is in many

ways the direct ancestor of HiQLab. The name and the inspiration of SUGAR were

both drawn from SPICE, an enormously successful family of circuit simulation sys-

tems which were initially designed at Berkeley and were subsequently developed into

commercial tools by several companies. SPICE provides compact models of common

circuit components such as resistors, capacitors, and transistors, and configurations

of these circuit components are described using an input text file called a netlist.

136

The goal of the SUGAR project, and of related projects such as NODAS [71], was

to provide a SPICE-like facility for compactly describing devices in terms of domain-

specific elements, including both circuit elements like resistors and capacitors and also

mechanical elements like beams and comb drives. In addition, SUGAR was initially

designed as a MATLAB program [163], so that new models and solution algorithms

might be quickly and easily added to the program.

Early versions of SUGAR were written entirely within MATLAB, which ultimately

led to performance problems. In particular, the code to parse SUGAR netlists was

written in MATLAB, and parsing input files proved to be the slowest part of many

simulations. Also, in the early versions of SUGAR there was no clear distinction

between the code for individual elements such as beams and capacitors and the code

for general tasks such as assembling a stiffness matrix or a nonlinear solver iteration.

We completely redesigned the system for version 2.0 so that there was a clean sepa-

ration between element routines (“model functions” in SUGAR parlance), assembly

and analysis routines, and the routines to process the netlist file. We also wrote a

custom language system for SUGAR 2.0, with support for hierarchical design via a

subroutine construct (subnets), libraries of parameters for different processes, and

parameterized descriptions. We later redesigned SUGAR again, and in this third

major version we moved replaced our custom language – which had grown unwieldy

over time as we added features – with a modified version of the Lua language [99].

We also moved common routines such as matrix assembly out of MATLAB and into

a core library written in C. This new organization proved so convenient that we chose

to design HiQLab around the same basic architecture: of a core written in a compiled

language, user interfaces and high-level analysis routines written in MATLAB, and a

mesh description system based on Lua.

137

6.2.2 FEAPMEX

SUGAR was always designed around a SPICE-like model in which many of the

individual elements in the system were unique and connectivity among elements could

be irregular. In consequence, SUGAR was not well suited to continuum finite element

simulations, which typically involve large numbers of elements with similar or identical

properties, connected locally to a few spatially adjacent neighbors in a relatively

regular way. As we increasingly became involved in collaborations to simulate the

behavior of high-frequency resonant MEMS, we found we needed the capabilities of

a conventional finite element code. At the same time, we wanted to continue using

the MATLAB environment to test new numerical methods and to script parameter

studies. Thus was FEAPMEX inspired.

FEAPMEX is a MATLAB interface to the academic finite element code

FEAP [161]. By running FEAP and MATLAB in independent threads and pass-

ing control between the threads only when FEAP would normally wait on user input,

FEAPMEX is able to provide broad access to the internal data structures used by

FEAP with only minimal modifications to the FEAP code base. FEAPMEX provides

hooks so that users can, from within MATLAB, access assembled mass and stiffness

matrices, evaluate residual forces, and execute FEAP’s plotting commands. Users

can also control mesh generation from MATLAB, either by defining parameters to

be used by FEAP on loading an input deck or by providing a complete list of node

positions and element connectivities stored in MATLAB arrays. Thus, FEAPMEX

does what it was originally intended to do: it provides a flexible MATLAB scripting

interface to FEAP.

While the FEAP provides a wide array of elements and analysis capabilities,

it seemed much less flexible than SUGAR when it came to writing new classes of

elements and when adding new analysis routines written in compiled languages. Also,

138

the FEAP mesh description language does not have all the capabilities that were

present in Lua. Furthermore, the FEAP source code is only available for a license

fee. These limitations were increasingly vexing as we began to work on models of

damping in resonant MEMS, for which we wanted new elements, new mesh input

facilities, and new solvers.

6.2.3 HiQLab

HiQLab was conceived as a collection of MATLAB scripts and supporting C li-

braries which we used for prototyping new finite elements and new solvers. The C

libraries initially provided only routines for finite element matrix assembly, which

were often a bottleneck even for modest problems when written in MATLAB. As we

began to include elements which performed more complicated calculations, we also

moved the elements into compiled code. Though our initial intent was to incorpo-

rate these new elements into FEAP, and to use them via FEAPMEX, we changed

our mind once the C library became sufficiently self-contained. We decided instead

to move the mesh description container from MATLAB into the compiled language

core and to improve the mesh description capabilities using the Lua language, thus

repeating the same architectural pattern that worked so well for SUGAR.

6.3 Architectural overview

The core library of HiQLab is written in C++. This core library includes routines

to assemble and manipulate the mesh data structure; numerical support libraries

of basic matrix operations, shape functions, and quadrature weights; and interfaces

through which the core interacts with the element library and the Lua meshing sub-

system. In addition, the core library contains interface code to allow the incorporation

139

of outside numerical libraries such as ARPACK [114] and UMFPACK [56]. This core

is compact, with just under 6500 lines of code; most of the core shares a great deal in

common with other finite element systems, and below the object-oriented interfaces

lie the same data structures as are used in traditional finite element codes, which can

be found in standard references [98, 191].

The element library, which is also written in C++, contains elements for elasticity

and scalar elements for thermal and electrostatic problems; coupled-field elements for

thermoelasticity, piezoelectricity, and electrostatic attraction of elastic bodies; ba-

sic circuit elements, including resistors, capacitors, inductors, and voltage sources;

and elements to impose general constraints on the system via Lagrange multipliers.

The code supports one-dimensional, two-dimensional, axisymmetric, and fully three-

dimensional problems. Other than the circuit elements and the Lagrange multiplier

elements, all the elements in the system support the perfectly matched layer trans-

formation described earlier in this dissertation.

There are two subsystems which implement a user interface for analysts to script

and steer solution algorithms and to retrieve analysis results. The primary such user

interface is hosted in MATLAB. Through this interface, one can solve equations for

static equilibria, eigenvalue problems, and time-harmonic forced response; one can

also plot the results. A second user interface based on Lua is available, though it

has fewer features and currently lacks the graphics available from MATLAB. Despite

these limitations, the Lua user interface is better than the MATLAB interface for non-

interactive uses such as scripting automated tests; for debugging problems in which

MATLAB interacts poorly with debugging tools; and for running on systems like the

Itanium, where MATLAB is simply unavailable. Whether one uses the MATLAB

interface or the Lua user interface, one usually uses Lua scripts to build problem

descriptions in HiQLab. Glue code, which allows MATLAB and Lua to call the C++

140

core library in a natural way, is automatically generated from a high-level interface

description file using tolua++ [120] and a customized version of Matwrap [91].

6.4 Core objects

The core data structures in HiQLab are similar to the core data structures de-

scribed in standard references on finite element programming [98, 191], so our de-

scription of them will be brief. At the heart of HiQLab is the mesh object. This

object serves as a central container for global state associated with a simulation,

including

• Nodal coordinates

• Element connectivities and types

• Boundary condition arrays

• Displacement, velocity, acceleration, and residual force vectors

• Indexing structures for nodal, element, and global variables

• Pointers to the Lua interpreter and the elements owned by the mesh

In addition to methods for reading and writing the mesh data structures, the mesh

object also provides functions to assemble residuals and tangent matrices.

The real work in the residual and tangent computations is done by element objects.

Elements in HiQLab are an instance of the flyweight pattern [77]: most of the state

for an element is stored externally, in the mesh data structure arrays, and it is passed

into an element object on method calls. Each element object then corresponds to a

particular type of physics and a way of computing material responses, things which are

141

shared by many elements. Element objects provide methods to perform the following

tasks:

• Tell the mesh how many branch variables an element needs

• Mark which nodal degrees of freedom the element uses

• Assemble local residual and tangent matrix contributions

• Compute lumped L2 projections of fields defined at Gauss points

• Evaluate Gauss point stresses

• Manage the mapping between the element order for nodal variables and the

global order

Each element in the system implements the interface defined by the Element base

class, and the core library interacts with the elements only through this interface.

Assembler objects provide a level of indirection between the elements and the

data structures which will contain the accumulated element contributions to global

vectors and matrices. Matrix assembler objects only allow one to add an element

contribution to an existing matrix; vector assembler objects allow one to add or

set individual entries. Because of this level of indirection, it is simple to assemble

into different types of data structures. By default, element matrices are stored in

coordinate form in a buffer; at the end of the assembly loop, the coordinate entries

are sorted into column major order, summed in order to eliminate duplicate entries

for the same coordinate location, and converted to compressed sparse column form.

However, there are also other assemblers which build matrix data structures used by

the PETSc [20] and Trilinos [90] parallel libraries.

142

The remaining routines in the core library perform linear algebra computations;

evaluate shape functions and quadrature rules; and support the interfaces used in

evaluating Lua callbacks, as we describe below.

6.5 The role of Lua

Lua was first developed in 1993 at PUC-Rio in Brazil, where it originally grew out

of two other little languages: a problem description language for numerical simulators,

and a configuration language for a report generation program. From the beginning,

the language was designed to be small, simple, fast, and easy to embed in C programs.

These are precisely the features which led us to choose Lua for use in HiQLab. The

history of Lua is described in [101], and the language itself is described concisely

in the user manual [99] and in an associated book [100]. Because of its speed and

simplicity, Lua is widely used for scripting games, as well as in a variety of other

applications where embedded scripts are useful.

Lua plays two distinct roles in HiQLab. First, Lua can be used as an alternative

language to MATLAB for scripting user actions and solvers. The use of scripting

languages to steer computations is well-established, and indeed was part of the mo-

tivation for the development of Lua. Lua has been used for steering computations

in other finite element packages as well, as have languages like Python [142] and

Tcl [179]; in older finite element codes, custom interpreted mini-languages often serve

the same role.

Lua also serves in HiQLab as a problem description language. Even when using

the MATLAB user interface, HiQLab uses the Lua interpreter to construct the mesh.

We use Lua for problem description both because of the flexibility and clarity of the

language and because of the ease with which the interpreter can be linked into a

143

MATLAB extension file; this ease of linking is not shared by Python and Tcl. As

with solution descriptions, many finite element codes and circuit simulators provide

some simple interpreted language for mesh description. In many simulation systems

the problem description language is ad hoc, but other systems employ full-featured

scripting languages; examples include the use of Tcl in OpenSees [137, 123], Python in

PyFemax [79], Lua in pdelib [75], and Lisp in CADENCE [141]. Use of a full-featured

language not only saves on development time, but it also saves simulator developers

from the need to also become language designers.

6.5.1 Lua callbacks

To specify a finite element calculation, one needs to know the shape of the domain,

the partial differential equations describing what happens on that domain (including

boundary conditions), and how both the domain shape and the equations are to be

discretized. Different parts of the problem are naturally expressed as functions over

the domain: material properties are functions of position in the domain, boundary

conditions are expressed as functions over some surface, and measurements of the sys-

tem often take the form of a functional applied to the solution fields. In a traditional

finite element code, these functions are specified in one of two ways. First, one might

choose from a small parameterized library of possible functions; for example, it might

be possible to specify that a particular field is constant along some flat surface. The

problem with this mode of specification is obvious: the library of possible functions

will be limited, so that specifying a constant along a flat surface is possible, but spec-

ifying a linearly varying field along some curved surface is hard. Second, one might

choose to specify conditions node-by-node; for example, the analyst might specify

that every hundredth node between 1000 and 2000 has zero displacement. There are

two obvious problems with this approach: it is verbose except in the simplest cases;

144

and it ties the specification of the continuum problem to a particular discretization,

so that changes to the mesh require changes to how the boundary conditions are

specified.

By using a full-featured language for problem descriptions, one can specify math-

ematical functions defined on the problem domain in terms of program functions in

the description language. The user specifies these functions as part of the problem

specification, and when values of the function are needed at a node or a quadrature

point in order to perform some computation, the main code can call the user function

in order to obtain the value. We use this callback mechanism extensively in HiQLab.

With every mesh is an associated Lua interpreter which contains the definitions of any

callback functions; and by changing the behavior of specific callbacks dynamically,

we can play with many problem parameters without reloading the mesh.

Callbacks from C++ to Lua are the basis of most of the novel features of the

HiQLab problem description language, as we describe below. After describing how

useful such callbacks can be, we address concerns about the performance of ubiquitous

use of callbacks into an interpreted language like Lua.

Boundary conditions

Consider how essential boundary conditions are described. There are two com-

ponents to the description of such conditions: first, one must specify the surface or

subdomain where the conditions apply, and second one must specify the values to be

applied to some field. HiQLab allows users to provide callback functions to describe

both where the boundary lives and how the boundary values should be assigned. For

example, to clamp the x displacement (ux) along the line y = 0, we might write

clamp_boundary(function(x,y) return mesheq(x,0) end, ’ux’)

145

while to specify a displacement field which varies linearly with the y coordinate, we

might write

mesh:set_bc(function(x,y)

if mesheq(x,0) then -- If |x| < tol

return ’u ’, a*y -- x displacement = a*y

end

end

Note that the -- symbol marks the start of a Lua comment. In the first case, the

argument provided to clamp boundary defines an indicator function which is true

for nodes on the surface to be clamped, and false elsewhere. In the second case, we

specify the type of boundary conditions to be applied using a string return, and the

boundary value in subsequent numerical return values. If the ith character of the

returned string is ’u’, we apply an essential boundary condition to the ith degree of

freedom associated with the node; if it is ’f’, we apply a natural condition; and if it

is blank, we apply no condition.

HiQLab provides functions to apply boundary conditions in several ways. Beside

specifying a surface where some value should be clamped or given a specified displace-

ment, as above, one can describe a point load or an electrical ground in a natural

way using functions like point load and circuit.ground. All of these convenience

functions are written in Lua, with a common mechanism to transfer the results from

Lua into the C++ mesh. When the time comes to assemble problem boundary con-

ditions, the C++ library calls a Lua function attached to the C++ mesh object.

That Lua function in turn calls methods on the C++ mesh object to manipulate

the boundary arrays. For example, the code to evaluate a callback function at every

nodal point which returns boundary strings and boundary values (as in the second

example above) looks like

function Mesh:form_nodal_bcs(bcfunc)

for j = 1,self:numnp() do

146

--

-- Iterate through the list of boundary conditions (BCs) at

-- node j, as returned from bcfunc. For each BC, the

-- iterator returns

-- i - The index of the nodal variable affected

-- value - The force or displacement for variable i

-- type - ’u’ or ’f’ for displacement or force BC

--

for i,value,type in bc_iterator(bcfunc(self:x(j-1))) do

self:set_bcode(i-1,j-1,type) -- Record the type of BC

self:set_bv(i-1,j-1,value) -- Record the value

end

end

end

Drive and sense functions

In a typical frequency-response problem, we are interested in evaluating a transfer

function like

H(ω) = l∗(K − ω2M)−1f. (6.1)

To evaluate H(ω), we need not only the mass and stiffness matrices, but also the

drive function f and the sense functional l∗. Drive and sense functions are specified in

HiQLab by making a Lua callback, with the mesh object and a vector assembler object

as arguments. The vector assembler provides set and add methods, which can be

used respectively to write or to add to an element in the vector under construction. As

is the case with boundary conditions, there are several convenience functions written

in Lua which can be used with this mechanism.

The nodal2d indicator is one example of a cover function to construct drive and

sense vectors. The purpose of this function is to allow the user to specify a vector with

one nonzero value corresponding to a particular degree of freedom at a particular node.

The node is specified by coordinates, and the degree of freedom can be specified by a

string name or by an index (see Section 6.5.3 for information on the HiQLab system

147

for managing degrees of freedom). In its entirety, the nodal2d indicator function

is:

function nodal2d_indicator(dof,x,y,val)

--

-- First, check inputs and assign defaults. The Lua or operator

-- returns the first non-nil value, so a line like

-- val = val or 1

-- will set val to 1 if the user did not already assign a value.

--

assert(dof and x and y, ’Must define dof and node coordinates’)

dof = var_slots[dof] or dof

val = val or 1

--

-- Return a function that acts on a vector assembler object by

-- writing into the variable specified by the (dof,x,y) arguments

--

return function(mesh,v)

for j = 1,mesh:numnp() do

if mesheq(x,mesh:x(0,j-1)) and mesheq(y,mesh:x(1,j-1)) then

v:set(mesh:inode(dof,j-1), val)

end

end

end

end

Note that the nodal2d indicator function uses the fact that Lua, like Scheme,

provides lexical closures and first class functions. The nodal2d indicator does not

itself construct a vector; rather, it produces another function to construct the vector.

For example, in a problem involving the measurement of a cantilever beam of length l,

we use the following call to define a sense function to measure the vertical displacement

of the beam tip:

tip_displacement = nodal2d_indicator(’uy’, l, 0)

From the MATLAB interface, the analyst can then construct the vector using the

command

148

sense_vector = Mesh_get_vector(mesh, ’tip_displacement’);

If one were to refine the mesh or reorder the indices associated with different de-

grees of freedom, we could get a new version of the sense vector by repeating the

Mesh get vector call. There is no need to redefine tip displacement.

Global shape functions

The finite element method is based on two ideas: the Galerkin method, and the

definition of approximation bases via element shape functions. However, sometimes

we want an approximation based only on a subspace of the full finite element space.

For example, we use Krylov subspaces to build a reduced model from a finite element

model, and we use other subspaces to introduce constraints into a problem definition.

A convenient way to define these subspaces is through the introduction of global

shape functions, or linear combinations of nodal basis functions. In HiQLab, these

functions are defined in terms of Lua callbacks in the same way that drive and sense

functions are defined: the callback receives the mesh object and a vector assembler as

arguments, and uses these to define the coefficients of a linear combination of nodal

basis functions. For example, in an electrical problem in which some surface is a

conductor at a constant (but not fixed) potential, we might define a global shape for

the entire surface:

-- Add a variable for a conductor along [-w/2,w/2] x {h}.

-- The variable has units of voltage ’V’, and dual units of charge ’Q’

conductor = mesh:add_global(

function(x,y)

if mesheq(y,h) and meshbetween(x, -w/2, w/2) then

return 1

end

end,

’V’, ’Q’)

149

By default, when a nodal basis function is used in the definition of a global shape, the

degree of freedom corresponding to the original basis function is removed from the

system. Therefore the above definition not only adds a new global degree of freedom

corresponding to a unit voltage on the entire conductor surface; it also removes the

original degrees of freedom describing the voltage across that surface. Now all the

electrical degrees of freedom on the conductor surface are tied to a single value, and

the corresponding dual variable is the total charge on the conductor. The global

degree of freedom for the conductor can now be connected to the voltage at some

node in a controlling circuit, so that the circuit components and the continuum finite

element model are integrated together in the same simulation.

Inhomogeneous material parameters

Part of the specification of the perfectly matched layers described in Chapter 3

is the definition of a stretching function, which dictates how quickly the coordinate

system is deformed into the complex domain. In HiQLab, the stretch function for a

PML element is defined by registering a Lua callback with the element. For example,

in a one dimensional example problem, we might specify a linear stretching function

supported on [a, b] like this:

pml_element:set_stretch(function(x)

return max((x-a)/(b-a) * stretch_max, 0)

end)

We can then change the rate of stretching and the length of the perfectly matched

layer by changing the values of a, b, and stretch max in the Lua environment.

Using the same type of interface, it is possible to support inhomogeneous ma-

terial parameters on an element-by-element basis. However, this feature is not yet

implemented.

150

Type Order Form matrix Form residual Factor Solve Total time
Lua C++ Lua C++ Lua C++

1.5 GHz Pentium 4
Scalar 1 0.24 0.17 0.15 0.08 0.17 0.02 0.58 0.44
Scalar 2 0.29 0.26 0.10 0.06 0.19 0.03 0.61 0.54
Scalar 3 0.51 0.48 0.11 0.08 0.20 0.04 0.86 0.80
Elastic 1 0.51 0.46 0.22 0.15 0.91 0.08 1.72 1.60
Elastic 2 0.68 0.65 0.19 0.15 0.85 0.16 1.88 1.81
Elastic 3 1.08 1.05 0.23 0.20 0.87 0.22 2.40 2.34

1.67 GHz PowerPC G4
Scalar 1 0.19 0.09 0.13 0.04 0.13 0.05 0.50 0.31
Scalar 2 0.18 0.13 0.08 0.03 0.14 0.04 0.44 0.34
Scalar 3 0.25 0.20 0.08 0.03 0.16 0.06 0.55 0.45
Elastic 1 0.39 0.29 0.15 0.05 0.76 0.13 1.43 1.23
Elastic 2 0.49 0.43 0.10 0.05 0.71 0.17 1.47 1.36
Elastic 3 0.75 0.71 0.10 0.06 0.76 0.35 1.96 1.88

Figure 6.1. HiQLab timings (in seconds) of different stages in solving small (49-
by-73 node) forced vibration problems for scalar wave and elastic wave problems on
a domain with a PML transformation. We test bilinear, biquadratic, and bicubic
elements using either Lua or C++ to specify the transformation function. On a Mac
G4 laptop, the Lua versions of the tests were slower than the C++ versions by at
most 16% for elastic case and 60% on scalar case; on an Intel Pentium 4 desktop,
these figures are 7% and 32%. For larger problems, the factorization takes a larger
fraction of the overall time, further reducing the relative overhead of Lua callbacks
compared to overall solution time.

6.5.2 Callback performance

A natural objection to the use of Lua callbacks in HiQLab is that it might be too

slow. Even in pure C++ programs, the expense of small callbacks is of great enough

concern that some authors recommend template techniques to allow the compiler to

inline callback code at compile time rather than using a conventional C++ design

using a virtual method dispatch [173]. However, cross-language control transfers

between C++ and Lua are fast compared to similar control transfers between C++

and other interpreted languages (such as MATLAB); and Lua is fast enough that

the interpretation overhead is small compared to the overall cost of the calculations.

151

Thus far, our experience with HiQLab suggests that the cost of using callbacks in

problem description is small compared to the rest of the cost of forming and solving

a finite element discretization.

To illustrate the cost of using Lua callbacks, we time a small model problem de-

scribing radiation of waves into a half space modeled by a perfectly mached layer.

Our domain consists of a 73-by-49 node block terminated on three of the four sides

with perfectly matched layers. On the fourth side, we prescribe natural boundary

conditions, except over a few nodes in the center, where impose time-harmonic dis-

placement boundary conditions. We solve both scalar wave and elastic wave versions

of the problem using bilinear, biquadratic, and bicubic elements. As each element

computes its local tangent or residual contributions, it invokes a callback function

on each node in order to evaluate the stretch functions that define the PML. The

HiQLab framework allows these callbacks to be implemented in C++ or in Lua, and

we have written equivalent callbacks in each language. In Figure 6.1 we compare the

costs of using the Lua callbacks versus C++ callbacks at each stage of the calculation.

The solution procedure consists of four steps: assembling a global tangent matrix,

assembling a global residual vector, factoring the stiffness matrix, and solving a linear

system. The costs of building the tangent matrix and the residual vector are higher

when using Lua than when using C++ for callbacks, but the time to factor and solve

the linear system is the same in either case.

On a PowerBook laptop, the cost to form the tangent stiffness for a scalar wave

equation discretized with linear elements is roughly doubled by using Lua instead

of C++ for callbacks. The cost of computing the element stiffnesses is greater for

higher-order elements or for elastic elements than it is in the scalar case with linear

elements. Also, the cost to factor the tangent matrix is greater in the elastic case

than in the scalar case, and the time to factor the matrix grows more quickly with

increasing problem size than the time to form the matrix. Therefore, the overhead

152

of using Lua to specify PML transformations should be worse for a small scalar wave

problem than for almost any other problem we have considered. In this worse case, the

use of Lua adds about 60% to the overall solution time on a PowerBook laptop. For

the same size mesh, Lua adds only about 4% to the cost of solving an elastic problem

discretized with bicubic elements. On an Intel Pentium 4, the relative overhead of

using Lua callbacks is even smaller. For the disk resonator simulations we describe

in Chapter 7, the overhead of using Lua callbacks to specify perfectly matched layer

transformations is negligible.

6.5.3 Slots and scales

HiQLab uses a standard structure for indexing nodal degrees of freedom. Each

active degree of freedom is assigned an index, which is stored in the two-dimensional

id array. The index of the ith degree of freedom for the node with global index

j is stored in id(i,j). Let us call the ith nodal degree of freedom the ith “slot.”

Because we wish to solve multiphysics problems, we need a way to track which field

is represented by each slot; that is, we need a way to prevent some elements from

thinking id(0,j) is the index for the x displacement of node j while other elements

think it is the index for the electrical potential at the same node. HiQLab uses a

Lua table called var slots to keep map field names to indices; for instance, if the

x displacement degree of freedom were assigned to the first slot, we would have

var slots.ux = 0. When new elements types are added to an existing mesh, they

request the indices of slots corresponding to the fields they use, so that each element’s

local notion of the ordering of fields can be made consistent with the global order in

which slots are assigned.

Assigning text names to the fields in a calculation simplifies the interface for spec-

ifying boundary conditions and drive and sense functions. It also makes it relatively

153

simple to manage a list of scales for different problem fields. In a Lua table called

dim scales, there is a mapping between different fields and the units used to ex-

press them. For example, if the first field corresponds to x displacement, then the

first two entries in the dim scales.vars table will be ’L’ and ’F’ to indicate that

the x displacement has units of length, and the dual field has units of force. The

fields dim scales.L and dim scales.F, in turn, specify characteristic length and

force scales for the problem. If these scales are undefined, they default to one. The

Lua support code provides cover routines which compute characteristic scales based

on a characteristic length scale together with a table of material properties. For ex-

ample, the routine to nondimensionalize mechanical problems chooses a characteristic

time scale by dividing the characteristic length by the acoustic wave velocity in the

specified material.

The scaling information stored in the dim scales table is used to construct two

scaling vectors stored inside the mesh object: one for the primary variables in the

problem, and one for the secondary variables. The initialization of the scaling vectors

is done using a Lua callback function, so that the user can change how scales are

assigned if the default behavior is not appropriate. For example, in the case of a long,

thin structure, the user might choose to assign different characteristic scales for the

x and y displacement fields. Inside the analysis routines, HiQLab uses these scaling

vectors to nondimensionalize the linearized problems in order to prevent artificial ill

conditioning. Also, the nondimensionalized increment and residual norms are used for

convergence tests in the Newton iteration routine to compute nonlinear equilibrium

solutions.

Though the HiQLab system of mapping fields to slots and to scales is simple, we

are unaware of other codes which provide the same capabilities. As with many other

aspects of the code, the flexibility of the HiQLab system of assigning index slots and

characteristic scales is based on the combination of a simple mechanism implemented

154

in the compiled core – in this case, element-to-global slot maps and the mesh scaling

vectors – together with Lua cover functions to implement standard policies. Because

the Lua code governs the policy of how scales and slots are assigned, it is possible for

users to change the policy without recompiling the program.

6.6 The MATLAB interface

The MATLAB interface has two parts: a library of low-level routines for interact-

ing with the C++ and Lua libraries, and a library of higher-level routines built by

combining the low-level routines and the facilities of MATLAB. The low-level inter-

faces are built from an automatic wrapper generation tool based on Matwrap [91].

Except for helpers to pack results, fill in default arguments, and cope with differences

between zero-based and one-based indexing, the interfaces to these routines are iden-

tical to their C++ counterparts. The high-level interfaces can be grouped into three

main categories: administrative routines, numerical methods, and plots. We describe

these now.

The Mesh load routine creates a Lua interpreter and loads it with data from

MATLAB; initializes the default paths used in Lua; executes a mesh generation script

in the Lua interpreter; and initializes the resulting mesh object. The return values

are a new mesh object and, optionally, a Lua interpreter object which can be used

to call Lua methods or change the values of any variables in Lua that are used by

callback functions. A typical call to Mesh load might look like

param.length = 100e-6; % Set the value of ’length’ used in the mesh

[mesh,L] = Mesh_load(’beammesh.lua’, param);

The param argument to Mesh load is the primary means used to parameterize the

mesh construction from MATLAB. This argument is optional, however, and we con-

sider it good practice to provide default parameter values in the Lua file. This can be

155

done very concisely using the Lua or operator, which returns the first non-nil value

it sees. For example, in the beammesh.lua file, we might have

length = length or 50e-6

width = width or 2e-6

By providing default values in this way, one documents the parameters that control

the mesh behavior and a set of reasonable defaults for those parameters.

Once the mesh has been loaded, one typically runs an analysis routine. HiQLab

provides routines to compute nonlinear equilibrium states, time-harmonic linearized

frequency responses, and free vibration modes. There are also routines to compute

reduced-order models for faster frequency-response calculations. There are specialized

modal analysis and model reduction routines for specific structures; in particular, we

provide specialized routines for analysis of problems with perfectly-matched layers

and thermoelastic damping, using both the algorithms described elsewhere in this

dissertation and algorithms developed by T. Koyama [109, 108]. After running an

analysis routine, we can manipulate the results with further scripts, or we can simply

plot them. The HiQLab plot routines are unsophisticated, but we do include color

plots of the solution fields, animations of time-harmonic deformations, and Bode plots

of frequency-response behavior.

6.7 Conclusions

The HiQLab software architecture uses a clean but conventional organization of

core modules to handle basic data structures, together with scripting language inter-

faces for scripting analyses and for problem description. The primary interface for

scripting analyses is written in MATLAB, which allows us to quickly prototype new

numerical algorithms; and the primary interface for mesh description is written in

156

Lua, which we chose for its speed, simplicity, and small size, as well as for the ease

which we could embed it into the larger system.

The new features of HiQLab include the new algorithms and elements described

elsewhere in this dissertation; and new architectural features based on callbacks to

interpreted Lua functions, which define the mathematical functions that make up

the problem description concisely and without direct reference to the details of the

domain discretization. We use this callbacks for specifying boundary conditions,

drive and sense functionals, global shape functions, and the stretching functions used

to specify perfectly matched layers. Our architecture separates the responsibility

for general purpose mechanisms for finite element problems, which are implemented

in C++, from the domain-specific policies based on those mechanisms, which are

written in Lua. For example, by implementing the storage of scaling vectors in the

C++ core while constructing the vectors in Lua, we are able to provide a general-

purpose framework for problem nondimensionalization, which the user can customize

as part of the problem specification without the need to delve into the compiled core

libraries.

157

Chapter 7

MEMS Examples

7.1 Introduction

In this chapter, we discuss two MEMS resonator simulations using HiQLab. We

first examine in detail the behavior of a family of disk-shaped resonators. Our simula-

tions show the effectiveness of the perfectly matched absorbing layer and the accuracy

of our structured model reduction method. We also discuss a mode-interference phe-

nomenon which substantially affects the performance of these devices. This phe-

nomenon was first observed in our simulations, and then verified in subsequent

laboratory experiments. Our second example is a checkerboard-shaped resonator;

we use this example to show the effectiveness of the structure-preserving second-

order Arnoldi algorithm. These examples are drawn from previously published pa-

pers [31, 30, 33]

158

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
����������������������� V−

V+V+

PML region

DiskElectrode

Wafer

Figure 7.1. Schematic of a radial disk resonator. An overhead view (right) shows the
arrangement of the resonating disk and the electrodes which force it. An idealized
cross-section (left) is used in an axisymmetric simulation, where the wafer substrate
is treated as semi-infinite using a perfectly-matched layer.

7.2 Study of disk resonators

We now examine in detail the response of several radial disk resonators which have

been fabricated recently [176, 175, 31]. In the laboratory, these devices have shown

quality factors as high as 55000 at frequencies of up to 1.14 GHz. Through numerical

experiments, we explain in detail the mechanism of anchor loss in disk resonators;

the predictions of our models are supported by recent experimental work [31], which

we also partially report here.

A schematic of a disk resonator is shown in Figure 7.1. A thin disk is supported on

a post above a substrate. The disk is surrounded by drive electrodes, and the potential

difference between the disk and the drive electrodes pulls the disk radially outward

at the rim. The disk is driven near the frequency of the first or second axisymmetric,

bulk radial, in-plane mode. In [176], the disk is made of polysilicon; [175] describes

both polysilicon and polydiamond disks; [31] is concerned with poly-SiGe disks.

In HiQLab simulations, the computed thermoelastic damping in these disk res-

onators is too small to be a dominant dissipation mechanism. Similarly, based on

experiments in which Q changes little between vacuum-packed disk resonators and

those operating in air, we do not believe air damping dominates. The disks are con-

structed of materials with low intrinsic loss, so that material loss should be small.

159

However, a major source of energy loss in these devices is the propagation of elastic

waves down the supporting post and into the wafer below, where they are largely

dissipated. Relative to the size of the resonating device, the wafer is large. We as-

sume that the wafer is effectively infinite in extent, so that none of the waves that

radiate into the substrate will be reflected. We use a perfectly matched layer to

model the wafer as a semi-infinite half space. We will also assume axisymmetry in

our simulations.

In the actual devices, there are nitride and oxide films between the device and the

wafer. For our simulations we have ignored these geometric features as they typically

only have a minor effect on resonator performance. Note that this is a simplification

in our model, not an inherent limitation of the PML technology; indeed, one of

the attractions of PMLs is the ability to handle layered media and other embedded

scatterers.

In the examples to follow, we examine issues of

1. Mesh convergence – h and p.

2. Elucidation of the physical mechanism of anchor loss.

3. Design sensitivity in such resonators.

4. Performance of the model reduction method.

7.2.1 Convergence of Q

We first consider the polysilicon disk resonator described in [176], which has a

disk 20 µm in diameter and 2 µm thick, supported 0.5 µm above the substrate by

a post 2 µm in diameter. When the disk was driven in the second radial mode,

the measured Q was 7330 in vacuum and 6100 in air, and the center frequency was

160

PSfrag replacements

Mesh density

C
o
m

p
u
te

d
Q

Cubic

Linear
Quadratic

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

PSfrag replacements

Mesh density

C
o
m

p
u
te

d
fr

eq
u
en

cy
(M

H
z)

Cubic

Linear
Quadratic

1 2 3 4 5 6 7 8
714

716

718

720

722

724

726

Figure 7.2. Convergence of Q and ωcenter for the second radial mode of the polysilicon
disk in [176].

161

PSfrag replacements
Radial displacement

y (µm)
Vertical displacement

r (µm)
y (µm)

0
2
4
6
8

10
0
2
4
6
8

10
-5
0
5

-0.2
0

0.2
-5
0
5

-0.2
0

0.2

PSfrag replacements

Radial displacement

y
(µ

m
)

Vertical displacement

r (µm)

y
(µ

m
)

0 2 4 6 8 10

0 2 4 6 8 10

-5

0

5

-0.2

0

0.2

-5

0

5

-0.2

0

0.2

Figure 7.3. Forced displacement (real part) for the disk resonator model at 715 MHz.

733 MHz. In our best-resolved simulation, we computed a Q value of 6250 at a

center frequency of 715.6 MHz. Perhaps surprisingly, relatively fine resolution was

required to obtain convergence. When the mesh was under-resolved, the Q factor was

drastically underestimated, possibly because the small flux reaching the anchor base

could not be resolved by the mesh, and was therefore overestimated. We computed

the value of Q using both linear and higher-order elements at several mesh densities;

see Fig. 7.2. For a given mesh density parameter m, we chose elements so that nodes

were as near as possible to 1/m µm apart. We computed Q and ωcenter by using

ARPACK in shift-and-invert mode [114] with an initial shift of 715 MHz to find the

closest complex-valued eigenvalue; most of the time in these computations was spent

in the sparse LU factorization of the shifted matrix. The plot shows a clear advantage

to p-refinement for this class of problems.

162

PSfrag replacements

r(µm)

y
(µ

m
)

Averaged energy flow

0 5 10

-4

-2

0

2

PSfrag replacements

r(µm)

y
(µ

m
)

Averaged energy flow

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

Figure 7.4. Time-averaged energy flux vector field in the disk resonator driven at 715
MHz. The left plot shows the full field; the right plot shows only the region in the
vicinity of the post.

7.2.2 Observed energy loss mechanism

Figure 7.3 shows the behavior of the same disk when driven at 715 MHz, just

slightly below the resonant frequency. The amplitudes of both the radial and vertical

displacements are shown at the point when the forcing is maximal. Even though the

design intent was to excite a pure radial mode, it is clear that the mode contains a

bending component. This is a reflection of the fact that pure radial modes are not

possible in supported structures. The majority of the displacement occurs in the disk

itself, but there is some motion in the post as well. Though the forcing is in the radial

direction, the Poisson effect leads to motion in the vertical direction at the center of

the disk. This vertical “pump” motion results in displacement waves that travel down

the post and into the substrate. In an animation, it is possible to see low-amplitude

waves radiating away from the post to be absorbed into the perfectly matched layer.

To better understand the behavior shown in Figure 7.3, we compute the energy

density flux:

F (t) = −Re(σeiωt) Re(veiωt) (7.1)

where σ is the stress tensor and v is the velocity vector. Since the energy flux changes

over time, we time-average over a single period to obtain the mean energy density

163

flux:

F̄ = −1

2
Re(σv∗) (7.2)

where v∗ is the complex conjugate of the velocity. For a standing wave, the displace-

ment and stress are pure real, and v = iku is pure imaginary, so there is no mean

energy flux. Therefore, the mean energy flux field tells us something about the de-

parture from the lossless standing-wave behavior. Figure 7.4 shows the mean energy

flux for a region of the resonator near the edge of the post. The flux vectors in the

body of the disk form cycles which carry energy around inside the disk, but do not

let it escape into the substrate. Near the post, however, the cycle pattern is broken,

and the energy flux plot shows a “spray” of energy that travels down the post and

into the substrate.

7.2.3 Mode mixing and design sensitivity in the disk res-

onator

To further test our simulation technology on anchor loss, we now consider a series

of five poly-Si0.4Ge0.6 disk resonators with 41.5 µm radii disks with different thick-

nesses [31]. Figure 7.5 shows one such 41.5 µm radius resonator. The disk itself is

supported on a conical post with upper radius 1.49 µm, lower radius 1.61 µm, and

nominal height 1 µm. The drive is clearly not fully axisymmetric but we model it as

such for simplicity. For the material we use a density of 4127 kg/m3 computed by lin-

ear interpolation and assume a Poisson ratio of 0.28; Young’s modulus was estimated

from an acoustic measurement as 139 GPa.

Figure 7.6 shows the computed in-phase radial and vertical displacements in one

of the disks when it is driven with a radial forcing on its outer edge; the computed

Q of the dominant mode is 140000. The radial motion is coupled to a small bending

motion due to the stem as mentioned earlier. Thus, as in the prior example, the

164

Figure 7.5. SEM of 41.5 µm radius poly-SiGe disk resonator.

dominant mode for this disk is not a pure radial motion. The bending motion of

the mode along with the Poisson effect induces a vertical motion in the stem which

pumps displacement waves into the substrate, where they carry away the energy of

the resonance.

Figure 7.7 shows measured Q values from the five 41.5 µm disks. The error bars

on thickness are indicative of the limits of the SEM geometry measurement method.

Also shown in Figure 7.7 is simulation data using the measured geometry from the

resonators. The two curves correspond to Q values for the two eigenvalues nearest

the shift (45 MHz). The high Q curve is associated with the radial extension mode

we wish to drive; the low Q mode is dominated by a bending motion. The agreement

between the measured and computed Q values is good, and the trend with respect to

changing disk thickness is captured well.

The presence of the nearby second mode has a large influence on the highQmode’s

quality factor. This is seen in the large swings in the curves of Fig. 7.7 which are

computed solely from the system eigenvalues. A good method of visualizing the pole

165

PSfrag replacements
Radial displacement

y (µm)
Vertical displacement

r (µm)
y (µm)

0
10
20
30
40
50
0

10
20
30
40
50
-5
0
5

-0.05
0

0.05
-5
0
5

-0.2
0

0.2

PSfrag replacements

Radial displacement

y
(µ

m
)

Vertical displacement

r (µm)

y
(µ

m
)

0 10 20 30 40 50

0 10 20 30 40 50

-5

0

5

-0.05

0

0.05

-5

0

5

-0.2

0

0.2

Figure 7.6. Radial and vertical displacement fields illustrating the mode mixing. Disk
radius is 41.5 µm and film thickness is 1.6 µm. The drive frequency is 45 MHz and
Q = 140000. Displacement contours are in units of µm.

PSfrag replacements

Film thickness (µm)

Q

1.2 1.3 1.4 1.5 1.6 1.7 1.8
100

102

104

106

108

Figure 7.7. Measured and computed quality factors in 41.5 µm radius disk with
varying film thickness. Upper curve indicates Q from eigenvalue closest to the shift.
Lower curve indicates Q from next nearest eigenvalue.

166

PSfrag replacements

Real frequency (MHz)

Im
a
g
in

a
ry

fr
eq

u
en

cy
(M

H
z)

a
b

cdd

e

a b

c
dd

e

a = 1.51 µm

b = 1.52 µm

c = 1.53 µm

d = 1.54 µm

e = 1.55 µm

46 46.5 47 47.5 48
0

0.05

0.1

0.15

0.2

0.25

Figure 7.8. Root-locus plot parameterized by varying film thickness. Lower curve
corresponds to the first mode and the upper curve to the next nearest mode.

interaction is to examine a root-locus diagram for the two interacting poles (eigen-

values) parameterized by film thickness. Figure 7.8 was computed for the 41.5 µm

radius disks. As the thickness changes the two poles approach each other. The first

mode’s frequency first moves away from the real axis increasing damping, then back

toward the real axis decreasing damping. The speed of the first pole increases the

closer it is to the second pole in the complex plane. The dip in Q correlates well with

the thickness at which the poles are closest.

7.2.4 Performance of model reduction method

As seen above, the bending-dominated mode significantly affects the resonant

peaks associated with the radial dominated modes but not in a way that is immedi-

ately obvious. For this reason, Bode plots are helpful in understanding such systems.

As an example of our model reduction technology, we start with a shift drawn from

167

PSfrag replacements

Frequency (MHz)

T
ra

n
sf

er
(d

B
)

Frequency (MHz)

P
h
a
se

(d
eg

re
es

)

47.2 47.25 47.3

47.2 47.25 47.3

0

100

200

-80

-60

-40

-20

0

Figure 7.9. Bode plot of the disk resonator with the full model (x), a structure-
preserving reduced model (solid line), and a standard Arnoldi reduced model (dashed
line).

PSfrag replacements

Frequency (MHz)

|H
(ω

)
−

H
r
e
d
u
c
e
d
(ω

)|
/
H

(ω
)|

Arnoldi ROM

Structure-preserving ROM

45 46 47 48 49 50

10−6

10−4

10−2

Figure 7.10. Errors in a structure-preserving reduced model (+) and a standard
Arnoldi reduced model (*). Both reduced models are generated from the same number
of Krylov vectors.

168

a hand estimate for the disk frequency:

ωshift = 2.405c/R, (7.3)

where R is the disk radius and c is the compression-wave velocity in the disk mate-

rial. With this shift, we require only two steps of shift-and-invert Arnoldi to resolve

the two-dimensional invariant subspace for both relevant eigenvalues. We perform

the projections in two ways: first, using a standard Arnoldi projection (with three

complex vectors); and second, using the symmetry-preserving projection described

in Chapter 3 that splits the real and imaginary parts of the Arnoldi vectors (with

five real vectors). Both reduced models produce Bode plots which closely match the

original 24265 degree of freedom system (Figure 7.9). In Figure 7.10, we compare

the accuracy of the two models; clearly, the structure-preserving algorithm is more

accurate.

7.2.5 Summary

Our motivation for studying PMLs was to investigate anchor loss in MEMS res-

onators. We have demonstrated the utility of our method by analyzing the behavior

of a family of disk resonators. Our developed tools allow us, in detail, to describe

the physical mechanism by which these resonators lose energy by radiation of elas-

tic waves from the anchor. Because MEMS fabrication processes are not exact, we

have analyzed the effect of variations in the thickness of the resonating disks. Our

analysis showed that the quality factor of these resonators is highly sensitive to the

film thickness, and experimental results confirmed this analysis. Our new tools allow

us to explain the variations in the quality factor in terms of interactions between the

desired radial extension mode and a parasitic bending mode which resonates at nearly

the same frequency. The sensitivity to film thickness was first discovered numerically,

and later was verified experimentally.

169

7.3 Checkerboard resonators and SOAR

As an application, we build a reduced-order model from a finite element simulation

of a prototype MEMS filter [33]. The goal for this device is to produce a high-

frequency bandpass filter to replace, for example, the surface acoustic wave (SAW)

devices used in cell phones. The device (Figure 7.11) consists of a checkerboard of

silicon squares which are linked at the corners [28]. The “checkers” are held at a fixed

voltage bias relative to the drive and sense electrodes placed around the perimeter.

A radio-frequency (RF) voltage variation on drive electrodes at the northwest corner

creates an electrostatic force which causes the device to move in plane. The motion

induces changes in capacitance at the sense electrodes at the southwest corner of

the device. The induced motion is typically very small; the checker squares are two

microns thick and tens of microns on a side, and the maximum displacement is on

the order of tens of nanometers.

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���
���
���
���

	�	
	�	

�

�

�
�
�
�
�

�
�
�
�
�

�
�
���
���

�
�
�
�
�

�
�
�
�
�

������

D+

D−

D+

D−

S+ S+

S−

S−

Figure 7.11. Illustration of a checkerboard resonator. The SEM picture (left) shows a
fabricated device, and the simulation (right) shows one resonant mode excited during
operation. The motion is excited at the northwest corner and sensed at the southeast
corner (center).

A single square pinned at the corners exhibits a “Lamé mode.” If the interaction

between squares was negligible, the system would have a five-fold eigenvalue corre-

sponding to independent Lamé-mode motions for each square. The coupling between

the squares causes the five eigenvalues to split, so there are several poles near each

other; consequently, the array has low motional resistance near the target frequency.

170

80 85 90 95 100 105 110 115 120
−26

−24

−22

−20

−18

−16

lo
g1

0(
m

ag
ni

tu
de

)

Bode plot

80 85 90 95 100 105 110 115 120
−4

−2

0

2

4

ph
as

e(
ra

d)
Frequency (MHz)

Exact
SOAR

Figure 7.12. Bode plots from finite element model and reduced order model for a
3-by-3 checkerboard resonator

The same idea of using weakly coupled arrays has also been applied to other RF

resonator designs [57].

We model the checkerboard with linear 2D plane stress elements and an empiri-

cal viscous damping model. Even for a small mesh (N = 3231), model reduction is

beneficial. Using a reduced model with 150 degrees of freedom, we obtain a Bode

plot which is visually indistinguishable from the plot for the unreduced system (Fig-

ure 7.12). We have also created a visualization tool which designers can use to see

the forced motion at different frequencies (Figure 7.13). With a reduced model, we

can compute the shape of the motion at a specified frequency within tens of millisec-

onds instead of seconds, quickly enough for the user to interactively scan through

frequencies of interest. Designers can use these visualizations to build intuition about

different strategies for constructing anchors, connecting resonator components, and

placing drive and sense electrodes.

171

0 5 10 15

x 10−5

−2

0

2

4

6

8

10

12

14

16

18
x 10−5

8 9 10 11

x 107

−250

−200

−150

−100

Frequency (Hz)

A
m

pl
itu

de
 (d

B
)

8 9 10 11

x 107

−4

−2

0

2

4

Frequency (Hz)

P
ha

se
 (r

ad
)

Figure 7.13. Screenshot of a visualization tool for observing forced response shapes
for in-plane resonators. Using a reduced model, the tool can compute and plot the
response shape quickly enough for interactive use

7.4 Conclusion

In this chapter, we have described simulations of two classes of resonant MEMS:

a family of disk resonators, and a family of checkerboard-shaped resonators. For each

resonator, we have constructed numerical simulations in HiQLab, and used structure-

preserving model reduction methods to produce fast frequency-response simulations.

In each case, the interactions between multiple resonant modes proved critical, so

that naive projection onto a single mode is inadequate for exploring even the local

frequency-response behavior. Our investigation of the disk resonator example led to

the discovery of a previously unsuspected mode-interference effect, which has a major

influence on device performance.

172

Bibliography

[1] ABAQUS, Inc. http://www.abaqus.com/.

[2] M. A. Abdelmoneum, M. U. Demirci, and C. T.-C. Nguyen. Stemless wine-
glass-mode disk micromechanical resonators. In Proceedings of Transducers
2003, pages 698–701. IEEE, 2003.

[3] R. Abdolvand, G. K. Ho, A. Erbil, and F. Ayazi. Thermoelastic damping in
trench-refilled polysilicon resonators. In Proceedings of the 12th International
Conference on Solid State Sensors, Actuators and Microsystems (Transducers
03), pages 324–327, Boston, June 2003.

[4] P.-A. Absil, R. Sepulchre, P. Van Dooren, and R. Mahony. Cubically convergent
iterations for invariant subspace computation. SIAM J. Matrix Anal. Appl.,
26(1):70–96, 2004.

[5] R. Aigner, S. Marksteiner, L. Elbrecht, and W. Nessler. RF-filters in mobile
phone applications. In Proceedings of Transducers 03, pages 891–894, Boston,
June 2003.

[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-
PACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, third edition, 1999.

[7] J.C. Andle and J.F. Vetelino. Acoustic wave biosensors. Sensors and Actuators
A, 44(3):167–176, September 1994.

[8] ANSYS, Inc. www.ansys.com.

[9] ANSYS, Inc. Ansys multiphysics. www.ansys.com/products/multiphysics.asp.

[10] ANSYS, Inc. ANSYS 10.0 new features, June 2005.
www.ansys.com/products/newfeatures/default.asp.

[11] A. C. Antoulas and D. C. Sorensen. Approximation of large-scale dynamical
systems. Technical Report TR01-01.pdf, Department of Computational and
Applied Mathematics, Rice University, 2001.

173

[12] A. C. Antoulas, D. C. Sorensen, and S. Gugercin. A survey of model reduction
methods for large-scale systems. Technical Report TR00-38.pdf, Department
of Computational and Applied Mathematics, Rice University, 2000.

[13] P. Arbenz and M. E. Hochstenbach. A Jacobi-Davidson method for solving
complex symmetric eigenvalue problems. SIAM J. Sci. Comp., 25:1655–1673,
2004.

[14] P. Ashwin, K. Böhmer, and Z. Mei. A numerical Liapunov-Schmidt method
with applications to Hopf bifurcation on a square. Math. Comp., 64:649–670,
1995.

[15] P. Ashwin and Z. Mei. A Hopf bifurcation with Robin boundary conditions. J.
Dynamics and Differential Equations, 6:487–503, 1994.

[16] R. J. Astley. Infinite elements for wave problems: a review of current formu-
lations and an assessment of accuracy. International Journal for Numerical
Methods in Engineering, 49:951–976, 2000.

[17] I. Babuska and J. Osborn. Eigenvalue problems. In P.G. Ciarlet and J.L. Lions,
editors, Handbook of Numerical Analysis, Vol II: Finite Element Methods, pages
643–787. North-Holland, 1991.

[18] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale
dynamical systems. Applied Numerical Mathematics, 43:9–44, 2002.

[19] Z. Bai and Y. Su. Dimension reduction of second-order dynamical systems
via a second-order Arnoldi method. SIAM Journal of Scientific Computing,
26(5):1692–1709, 2005.

[20] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang.
PETSc Web page, 2001. http://www.mcs.anl.gov/petsc.

[21] M. Bao, H. Yang, Y. Sun, and P. J. French. Modified Reynolds’ equation and
analytical analysis of squeeze-film air damping of perforated structures. Journal
of Micromechanics and Microengineering, 13:795–800, July 2003.

[22] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM,
Philadelphia, PA, 1994.

[23] U. Basu and A. Chopra. Perfectly matched layers for time-harmonic elastody-
namics of unbounded domains: theory and finite-element implementation. Com-
puter Methods in Applied Mechanics and Engineering, 192:1337–1375, 2003.

[24] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University
Press, 2000.

174

[25] J.-P. Bérenger. A perfectly matched layer for the absorption of electromagnetic
waves. Journal of Computational Physics, 114:185–200, 1994.

[26] W.-J. Beyn, A. Champneys, E. J. Doedel, Yu. A. Kuznetsov, B. Sandstede,
and W. Govaerts. Numerical continuation and computation of normal forms.
In B. Fiedler, editor, Handbook of Dynamical Systems III: Towards Applications,
chapter 4. Elsevier, 2001.

[27] W-J Beyn, W. Kleß, and V. Thümmler. Continuation of low-dimensional in-
variant subspaces in dynamical systems of large dimension. In B. Fiedler, edi-
tor, Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems,
pages 47–72. Springer, 2001.

[28] S. Bhave, D. Gao, R. Maboudian, and R. T. Howe. Fully differential poly-SiC
Lamé mode resonator and checkerboard filter. In Proceedings of MEMS 05,
Miami, FL, January 2005.

[29] D. Bindel. HiQLab project page.

[30] D. S. Bindel and S. Govindjee. Elastic PMLs for resonator anchor loss simula-
tion. International Journal for Numerical Methods in Engineering, 64:789–818,
2005.

[31] D. S. Bindel, E. Quévy, T. Koyama, S. Govindjee, J. W. Demmel, and R. T.
Howe. Anchor loss simulation in resonators. In MEMS 2005, IEEE international
conference. IEEE, January 2005.

[32] David Bindel, James Demmel, and Mark Friedman. Continuation of invariant
subspaces for large bifurcation problems. In Proceedings of the SIAM Conference
on Linear Algebra, Williamsburg, VA, 2003.

[33] David S. Bindel, Zhaojun Bai, and James W. Demmel. Model reduction for RF
MEMS simulation. In Proceedings of PARA 04, volume 3732/2006 of Lecture
Notes in Computer Science. Springer, June 2004.

[34] David S. Bindel, James W. Demmel, and Mark Friedman. Continuation of in-
variant subspaces for large bifurcation problems. Technical Report UCB/EECS-
2006-13, EECS Department, University of California, Berkeley, February 2006.

[35] M.A. Biot. Thermoelasticity and irreversible thermodynamics. Journal of Ap-
plied Physics, 27(3):240–253, March 1956.

[36] J. Bosec. Continuation of Invariant Subspaces in Bifurcation Problems. PhD
thesis, University of Marburg, 2002.

[37] J. H. Brandts. The Riccati method for eigenvalues and invariant subspaces
of matrices with inexpensive action. Linear Algebra and its Applications,
358(1):335–365, January 2003.

175

[38] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element
Methods. Springer, second edition, 2002.

[39] Jay Brotz. Damping in CMOS-MEMS resonators. Master’s thesis, Carnegie
Mellon University, Department of Electrical and Computer Engineering, June
2004.

[40] E. A. Burroughs, R. B. Lehoucq, L. A. Romero, and A. J. Salinger. Linear
stability of flow in a differentially heated cavity via large-scale eigenvalue cal-
culations. Technical Report SAND2002-3036J, Sandia National Laboratories,
2002.

[41] R. N. Candler, H. Li, M. Lutz, W.-T. Park, A. Partridge, G. Yama, and T. W.
Kenny. Investigation of energy loss mechanisms in micromechanical resonators.
In Proceedings of the 12th International Conference on Solid State Sensors,
Actuators and Microsystems (Transducers 03), pages 332–335, Boston, June
2003.

[42] P. Chadwick. Thermoelasticity, the dynamic theory. In I.N. Sneddon and
R. Hill, editors, Progress in solid mechanics, volume 1, chapter 6, pages 265–
330. North-Holland Publishing Company, 1960.

[43] Francoise Chatelin. Spectral Approximation of Linear Operators. Academic
Press, 1983.

[44] C. S. Chien and M. H. Chen. Multiple bifurcations in a reaction-diffusion
problem. Computers Math. Applic., 35(8):15–39, 1998.

[45] C. S. Chien, Z. Mei, and C. L. Shen. Numerical continuation at double bifurca-
tion points of a reaction-diffusion problem. Int. J. Bifur. and Chaos, 8(1):117–
139, 1997.

[46] H. Cho, J. Kang, S. Kwak, K. Hwang, J. Min, J. Lee, D. Yoon, and T. Kim.
Integration of PDMS microfluidic channel with silicon-based electromechanical
cantilever sensor on a CD chip. In MEMS 2005, IEEE international conference.
IEEE, January 2005.

[47] Y.-H. Cho, B. M. Kwak, A. P. Pisano, and R. T. Howe. Viscous damping
model for laterally oscillating microstructures. IEEE/ASME Journal of Micro-
electromechanical Systems, 3:81–87, 1994.

[48] R.G. Christian. The theory of oscillating-vane vacuum gauges. Vacuum, 16:175–
178, 1966.

[49] Phillippe G. Ciarlet. The Finite Element Method for Elliptic Problems, vol-
ume 40 of Classics in Applied Mathematics. SIAM, 2002.

176

[50] K. A. Cliffe, A. Spence, and S. J. Tavener. The numerical analysis of bifurcation
problems with application to fluid mechanics. In A. Iserles, editor, Acta Nu-
merica, volume 9, chapter 2, pages 39–132. Cambridge University Press, 2000.

[51] F. Collino and P. Monk. Optimizing the perfectly matched layer. Computer
Methods in Applied Mechanics and Engineering, 164:157–171, 1998.

[52] F. Collino and P. Monk. The perfectly matched layer in curvilinear coordinates.
SIAM Journal of Scientific Computing, 19:2061–2090, 1998.

[53] F. Collino and C. Tsogka. Application of the perfectly matched absorbing layer
model to the linear elastodynamic problem in anisotropic heterogeneous media.
Geophysics, 66:294–307, 2001.

[54] M.C. Cross and R. Lifshitz. Elastic wave transmission at an abrupt junction
in a thin plate with application to heat transport and vibrations in mesoscopic
systems. Physical Review B, 64, 2001.

[55] G. Dangelmayr. Degenerate bifurcations near a double eigenvalue in the Brus-
selator. J. Austral. Math. Soc. Ser. B, 28:486–535, 1987.

[56] T. A. Davis. Algorithm 832: UMFPACK — an unsymmetric-pattern mul-
tifrontal method. ACM Transactions on Mathematical Software, 30:196–199,
2004.

[57] Mustafa U. Demirci, Mohamed A. Abdelmoneum, and Clark T.-C. Nguyen.
Mechanically corner-coupled square microresonator array for reduced series mo-
tional resistance. In Proc. of the 12th Intern. Conf. on Solid State Sensors,
Actuators, and Microsystems, pages 955–958, Boston, June 2003.

[58] J. W. Demmel. Three methods for refining estimates of invariant subspaces.
Computing, 38:43–57, 1987.

[59] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[60] J. W. Demmel, L. Dieci, and M. J. Friedman. Computing connecting orbits
via an improved algorithm for continuing invariant subspaces. SIAM J. Sci.
Comp., 22(1):81–94, 2001.

[61] A. Dhooge, W. Govaerts, Yu.A. Kuznetsov, W. Mestrom, and A. M.
Riet. MATLAB continuation software package CL MATCONT, January 2003.
http://www.math.uu.nl/people/kuznet/cm/.

[62] L. Dieci and T. Eirola. On smooth decompositions of matrices. SIAM J. Matrix
Anal. Appl., 20(3):800–819, 1999.

[63] L. Dieci and M. J. Friedman. Continuation of invariant subspaces. Numerical
Linear Algebra Applications, 8:317–327, 2001.

177

[64] L. Dieci and A. Papini. Point-to-periodic and periodic-to-periodic connections.
Preprint, 2003.

[65] L. Dieci and A. J. Rebaza. Continuation of eigendecompositions. To appear in
FGCS: Future Generation Computer Systems – Computational Science, 2002.

[66] E. J. Doedel and H. Sharifi. Collocation methods for continuation problems in
nonlinear elliptic PDEs, issue on continuation. In D. Henry and A. Bergeon,
editors, Continuation Methods in Fluid Mechanics, volume 74 of Notes on Nu-
merical Fluid Mechanics, pages 105–118. Vieweg, 2000.

[67] A. Duwel, J. Gorman, M. Weinstein, J. Borenstein, and P. Ward. Experimental
study of thermoelastic damping in MEMS gyros. Sensors and Actuators A,
103:70–75, 2003.

[68] EDA industry working groups. www.eda-stds.org. Includes pointers to refer-
ences and working groups concerned with Verilog and VHDL.

[69] A. Edelman, T. Arias, and S. Smith. The geometry of algorithms with orthog-
onality constraints. SIAM J. Matrix Anal. Appl., 20(2):303–353, 1998.

[70] B. Engquist and A. Majda. Absorbing boundary conditions for the numerical
simulation of waves. Mathematics of Computation, 31:629–651, 1977.

[71] Gary K. Fedder and Qi Jing. NODAS 1.3 – nodal design of actuators and
sensors. In Proceedings of BMAS 98: IEEE/VIUF Int. Workshop on Behavioral
Modeling and Simulation, October 1998.

[72] R. Freund. Krylov-subspace methods for reduced-order modeling in circuit
simulation. Journal of Computational and Applied Mathematics, 123:395–421,
2000.

[73] M. J. Friedman. Improved detection of bifurcations in large nonlinear systems
via the Continuation of Invariant Subspaces algorithm. Int. J. Bif. and Chaos,
11(8):2277–2285, 2001.

[74] M. J. Friedman and M. E. Jackson. An improved RLV stability analysis via a
continuation approach. Technical report, NASA Marshall Space Flight Center,
2002.

[75] J. Fuhrmann, Th. Koprucki, and H. Langmach. pdelib: an open modular tool
box for the numerical solution of partial differential equations. design patterns.
In W. Hackbusch and G. Wittum, editors, Proceedings of the 14th GAMM
Seminar Kiel on Concepts of Numerical Software, January 1998.

[76] M.A. Gallis and J.R. Torczynski. An improved Reynolds-equation model for
gas damping of microbeam motion. Journal of Microelectromechanical Systems,
13(4):653–658, August 2004.

178

[77] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[78] K. Georg. Matrix-free numerical continuation and bifurcation. Numerical Func-
tional Analysis and Optimization, 22:303–320, 2001.

[79] R. Geus and P. Arbenz. PySparse and PyFemax: a Python framework for large
scale sparse linear algebra. In PyCon03, Washington, DC, March 2003.

[80] D. Givoli. Numerical Methods for Problems in Infinite Domains. Elsevier, 1992.

[81] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins
University Press, 1989.

[82] M. Golubitsky and D. G. Schaeffer. Singularities and groups in bifurcation
theory, Vol 1. Springer-Verlag, 1985.

[83] J. P. Gorman. Finite element model of thermoelastic damping in MEMS. Mas-
ter’s thesis, Massachusetts Institute of Technology, June 2002.

[84] W. Govaerts. Computation of singularities in large nonlinear systems. SIAM
J. Numerical Anal., 34:867–880, 1997.

[85] W. Govaerts. Numerical methods for bifurcations of dynamical equilibria. SIAM
Publications, Philadelphia, 2000.

[86] W. Govaerts, J. Guckenheimer, and A. Khibnik. Defining functions for multiple
Hopf bifurcations. SIAM J. Numerical Anal., 34:1269–1288, 1997.

[87] Z. Hao and F. Ayazi. Support loss in micromechanical disk resonators. In
Proceedings of MEMS 05, pages 137–141. IEEE, 2005.

[88] Z. Hao, A. Erbil, and F. Ayazi. An analytical model for support loss in mi-
cromachined beam resonators with in-plane flexural vibration. Sensors and
Actuators A, 109:156–164, 2003.

[89] I. Harari, M. Slavutin, and E. Turkel. Analytical and numerical studies of
a finite element PML for the Helmholtz equation. Journal of Computational
Acoustics, 8:121–137, 2000.

[90] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoek-
stra, Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long,
Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist,
Ray S. Tuminaro, James M. Willenbring, Alan Williams, and Kendall S. Stan-
ley. An overview of the Trilinos project. ACM Trans. Math. Softw., 31(3):397–
423, 2005.

[91] Gary Holt. Matwrap. lnc.usc.edu/~holt/matwrap/.

179

[92] D. Homentcovschi and R.N. Miles. Viscous damping of perforated planar mi-
cromechanical structures. Sensors and Actuators A, 119:544–552, 2005.

[93] H. Hosaka, K. Itao, and S. Kuroda. Damping characteristics of beam-shaped
micro-oscillators. Sensors and Actuators A, 49:87–95, 1995.

[94] M. Hoummady and D. Hauden. Acoustic wave thermal sensitivity: Temperature
sensors and temperature compensation in microsensors. Sensors and Actuators
A, 44(3):177–182, September 1994.

[95] B. H. Houston, D. M. Photiadis, M. H. Marcus, J. A. Bucaro, Xiao Liu, and
J. F. Vignola. Thermoelastic loss in microscale oscillators. Applied Physics
Letters, 80:1300–1302, 2002.

[96] James S. Howland. The Livsic matrix in perturbation theory. Journal of Math-
ematical Analysis and Applications, 50:415–437, 1975.

[97] X.M.H. Huang, X.L. Feng, C.A. Zorman, M. Mehregany, and M.L. Roukes.
VHF, UHF, and microwave frequency nanomechanical resonators. New Journal
of Physics, 7, 2005. http://www.njp.org.

[98] T. J. R. Hughes. The Finite Element Method. Dover, 2000.

[99] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. Lua 5.0 Reference Manual,
November 2003.

[100] Roberto Ierusalimschy. Programming in Lua. Ingram and Baker & Taylor,
2003.

[101] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. The
evolution of Lua. In ACM History of Programming Languages III. To appear.

[102] Conventor Inc. http://www.conventor.com/coventorware.

[103] IntelliSense Software Corp., 2005. http://intellisensesoftware.com/.

[104] S.G. Joshi. Flow sensors based on surface acoustic waves. Sensors and Actuators
A, 44(3):191–197, September 1994.

[105] Z. Kádár, W. Kindt, A. Bossche, and J. Mollinger. Quality factor of torsional
resonators in the low-pressure region. Sensors and Actuators A, pages 299–303,
1996.

[106] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, corrected
printing of the second edition edition, 1995.

[107] G. T. A. Kovacs. Micromachined transducers sourcebook. McGraw-Kill, 1998.

[108] Tsuyoshi Koyama, David S. Bindel, and Sanjay Govindjee. Reduced order mod-
eling for simulation of TED in MEMS resonators. Manuscript in preparation.,
June 2006.

180

[109] Tsuyoshi Koyama, David S. Bindel, Wei He, Emmanuel Quevy, James W. Dem-
mel, Sanjay Govindjee, and Roger T. Howe. Simulation tools for damping in
high frequency resonators. In 12th International Conference on Solid-State Sen-
sors, Actuators, and Microsystems (Transducers ’03), November 2005.

[110] Yu. A. Kuznetsov. Elements of Applied Bifurcation Theory, Second edition.
Springer-Verlag, New York, 1998.

[111] P.Y. Kwok, M.S. Weinberg, and K.S. Breuer. Fluid effects in vibrating microma-
chined structures. Journal of Microelectromechanical Systems, 14(4):770–780,
August 2005.

[112] T. H. Lee. The Design of CMOS Radio-Frequency Integrated Circuits. Cam-
bridge University Press, 2nd edition, 2004.

[113] R. Lefever and I. Prigogine. Symmetry-breaking instabilities in dissipative sys-
tems II. J. Chem. Phys., 48:1695–1700, 1968.

[114] R. B. Lehoucq, D. C. Soensen, and C. Yang. ARPACK User’s Guide: Solution
of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.
SIAM Publications, Philadelphia, 1998.

[115] Gary Li and Henry Hughes. Review of viscous damping in micro-machined
structures. In Eric Peeters and Oliver Paul, editors, Micromachined Devices
and Components VI, volume 4176 of Proceedings of SPIE, pages 30–46. SPIE,
2000.

[116] Jing-Rebecca Li. Model Reduction of Large Linear Systems via Low Rank Sys-
tem Gramians. PhD thesis, Massachusetts Institute of Technology, 2000.

[117] R.-C. Li and Z. Bai. Structure-preserving model reduction using a Krylov
subspace formulation. Comm. Math. Sci., 3:179–199, 2005.

[118] R. Lifshitz and M. L. Roukes. Thermoelastic damping in micro- and nanome-
chanical systems. Physical Review B, 61:5600–5609, 2000.

[119] R.M. Lin and W.J. Wang. Structural dynamics of microsystems – current state
of research and future directions. Mechanical systems and signal processing,
20:1015–1043, 2006.

[120] Ariel Manzur. tolua++. www.codenix.com/~tolua, 2006.

[121] S. J. Martin, G. C. Frye, and K. O. Wessendorf. Sensing liquid properties
with thickness-shear mode resonators. Sensors and Actuators A, 44(3):209–
218, September 1994.

[122] W. Mason. Physical Acoustics and the Properties of Solids. D. Van Nostrand
Company, Inc., 1958.

181

[123] F. McKenna. Object-oriented finite element programming: frameworks for anal-
ysis, algorithms, and parallel computing. PhD thesis, University of California,
Berkeley, 1997.

[124] Z. Mei. Numerical bifurcation analysis for reaction-diffusion equations. PhD
thesis, University of Marburg, 1997.

[125] MEMSCAP, Inc. MEMSCAP CAD Solutions.
http://www.memscap.com/products-cad.html.

[126] R.E. Mihailovich and N.C. MacDonald. Dissipation measurements of vacuum-
operated single-crystal silicon microresonators. Sensors and Actuators A,
50:199–207, 1995.

[127] T. Mukherjee, G. Fedder, and J. White. Emerging simulation approaches for
micromachined devices. IEEE Transactions on Computer Aided Design, De-
cember 2000.

[128] R. Mullen and T. Belytschko. Dispersion analysis of finite element semidis-
cretizations of the two-dimensional wave equation. International Journal for
Numerical Methods in Engineering, 18:11–29, 1982.

[129] COMSOL Multiphysics. http://www.comsol.com/.

[130] A. Nathan and H. Baltes. Microtransducer CAD - Physical and Computational
Aspects. Springer-Verlag, 1999.

[131] William E. Newell. Miniaturization of tuning forks. Science, 161(3848):1320–
1326, September 1968.

[132] Roger G. Newton. Scattering Theory of Waves and Particles. Dover Publica-
tions, second edition, 2002.

[133] C. T.-C. Nguyen. Transceiver front-end architectures using vibrating microme-
chanical signal processors. In Dig. of Papers, Topical Meeting on Silicon Mono-
lithic Integrated Circuits in RF Systems, pages 23–32, 2001.

[134] C. T.-C. Nguyen. Vibrating RF MEMS for low power wireless communications.
In Proceedings of the 2001 International MEMS Workshop (iMEMS01), pages
21–34, Singapore, July 2001.

[135] A. N. Norris and D. M. Photiadis. Thermoelastic relaxation in elastic structures
with applications to thin plates. arXiv:cond-mat/0405323 v2, November 2004.

[136] W. Nowacki. Dynamic problems of thermoelasticity. Noordhoff International
Publishing, 1975. Translated by Henryk Worski from the 1966 Polish edition.

[137] Open system for earthquake engineering simulation (OpenSees).
opensees.berkeley.edu.

182

[138] Y.-H. Park and K. C. Park. High-fidelity modeling of MEMS resonators–part I:
Anchor loss mechanisms through substrate. Journal of Microelectromechanical
Systems, 13:238–247, 2004.

[139] Y.-H. Park and K. C. Park. High-fidelity modeling of MEMS resonators–part II:
Coupled beam-substrate dynamics and validation. Journal of Microelectrome-
chanical Systems, 13:248–257, 2004.

[140] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, 1997.

[141] Edwin S. Petrus. SKILL: a Lisp based extension language. In LUV 93: Pro-
ceedings of the third international conference on Lisp users and vendors, pages
71–79, New York, NY, USA, 1993. ACM Press.

[142] Python programming language – official website. www.python.org.

[143] R. H. Randall, F. C. Rose, and C. Zener. Intercrystalline thermal currents as a
source of internal friction. Physical Review, 56:343–349, August 1939.

[144] Michael Reed and Barry Simon. Methods of Mathematical Physics IV: Analysis
of Operators. Academic Press, 1978.

[145] T. V. Roszhart. The effect of thermoelastic internal friction on the Q of mi-
cromachined silicon resonators. In Proceedings of the Solid State Sensors and
Actuators Workshop, pages 13–16, Hilton Head Island, SC, 1990. IEEE.

[146] Yousef Saad. Numerical Methods for Large Eigenvalue Prob-
lems. Manchester University Press, 1992. Available at
www-users.cs.umn.edu/~saad/books.html.

[147] D. Schaeffer and M. Golubitsky. Bifurcation analysis near a double eigenvalue
of a model chemical reaction. Arch. Rational Mech. Anal., 75:315–347, 1981.

[148] S. Senturia. Microsystem Design. Kluwer Academic Publishers, 2001.

[149] S.D. Senturia. Simulation and design of microsystems: a 10-year perspective.
Sensors and Actuators A, 67:1–7, 1998.

[150] D. Sherman. An investigation of MEMS anchor design for optimal stiffness and
damping. Technical report, University of California, Department of Mechanical
Engineering, 1996. (M.S. Report).

[151] G. M. Shroff and H. B. Keller. Stabilization of unstable procedures: The recur-
sive projection method. SIAM J. Numerical Anal., 30:1099–1120, 1993.

[152] D. C. Sorensen and A. C. Antoulas. Projection methods for balanced model
reduction. Technical Report TR01-03.pdf, Department of Computational and
Applied Mathematics, Rice University, 2001.

183

[153] V. T. Srikar and Stephen D. Senturia. Thermoelastic damping in fine-grained
polysilicon flexural beam resonators. Journal of Microelectromechanical Sys-
tems, 11:499–504, 2002.

[154] J. B. Starr. Squeeze film damping in solid-state accelerometers. In Proceedings
of the IEEE Solid-State Sensors and Actuators Workshop, pages 44–47, Hilton
Head Island, SC, June 1990.

[155] G oran Stemme. Resonant silicon sensors. J. Micromech. Microeng., 1991.

[156] G. W. Stewart. Error and perturbation bounds for subspaces associated with
certain eigenvalue problems. SIAM Review, 4:727–764, 1973.

[157] G. W. Stewart. Matrix Algorithms, Volume II: Eigensystems. SIAM, 2001.

[158] G. W. Stewart and Ji guang Sun. Matrix Perturbation Theory. Academic Press,
San Diego, CA, 1990.

[159] G. Strang and G. Fix. An Analysis of the Finite Element Method. Wellesley-
Cambridge Press, 1988.

[160] SUGAR group. SUGAR: A MEMS simulation tool.
http://mems.sourceforge.net.

[161] R. L. Taylor. FEAP. http://www.ce.berkeley.edu/~rlt/feap, 2004.

[162] F. Teixeira and W. Chew. Complex space approach to perfectly matched lay-
ers: a review and some new developments. International Journal of Numerical
Modelling, 13:441–455, 2000.

[163] The MathWorks, Inc. www.mathworks.com.

[164] H. Tilmans, M. Elwenspoek, and J.H.J. Fluitman. Micro-resonant force gauges.
Sensors and Actuators A, 30:35–53, 1992.

[165] L. N. Trefethen. Pseudospectra of matrices. In D. F. Griffiths and G. A.
Watson, editors, Numerical Analysis 1991, pages 234–262. Longman Scientific
and Technical, Harlow, Essex, UK, 1991.

[166] L. N. Trefethen and M. Embree. Spectra and Pseudospectra. Princeton Univer-
sity Press, 2005.

[167] E. Turkel. Introduction to the special issue on absorbing boundary conditions.
Applied Numerical Mathematics, 27:327–329, 1998.

[168] E. Turkel and A. Yefet. Absorbing PML boundary layers for wave-like equations.
Applied Numerical Mathematics, 27:533–557, 1998.

[169] J. M. Varah. On the separation of two matrices. SIAM J. Numerical Anal.,
pages 212–222, 1979.

184

[170] T. Veijola, H. Kuisma, and J. Lahdenperä. Model for gas film damping in
a silicon accelerometer. In Proceedings of Transducers 97, pages 1097–1100,
Chicago, June 1997. IEEE.

[171] T. Veijola and T. Mattila. Compact squeezed-film damping model for perforated
surface. In Proceedings of Transducers 01, pages 1506–1509. IEEE, June 2001.

[172] T. Veijola and M. Turoswki. Compact damping models for laterally moving
microstructures with gas-rarefaction effects. Journal of Microelectromechanical
Systems, 10(2):263–273, June 2001.

[173] Todd Veldhuizen. Techniques for scientific C++. Technical Report 542, Indiana
University Computer Science Department, August 2000.

[174] Adrian Venema. Preface to a special issue on acoustic-wave-based microsensors.
Sensors and Actuators A, 44(3):165, September 1994.

[175] J. Wang, J. E. Butler, T. Feygelson, and C. T.-C. Nguyen. 1.51-GHz nanocrys-
talline diamond micromechanical disk resonator with material-mismatched iso-
lating support. In Proceedings of MEMS 2004, pages 641–644, Boston, 2004.

[176] J. Wang, Z. Ren, and C. T-C. Nguyen. Self-aligned 1.14 GHz vibrating radial-
mode disk resonators. In 12th International Conference on Solid-State Sensors,
Actuators, and Microsystems (Transducers ’03), pages 947–950, 2003.

[177] K. Wang, Y. Yu, A.-C. Wong, and C. T.-C. Nguyen. VHF free-free beam high-
Q micromechanical resonators. In Technical Digest, 12th International IEEE
Micro Electro Mechanical Systems Conference, pages 453–458, 1999.

[178] X. Wang, M. Judy, and J. White. Validating fast simulation of air damping in
micromachined devices. In Proceedings of TRANSDUCERS 02, pages 210–213.
IEEE, 2002.

[179] Brent B. Welch. Practical Programming in Tcl and Tk. Prentice Hall, second
edition, 1997.

[180] J. Yang, T. Ono, and M. Esashi. Mechanical behavior of ultrathin microcan-
tilever. Sensors and Actuators A, 82:102–107, 2000.

[181] J. Yang, T. Ono, and M. Esashi. Energy dissipation in submicrometer thick
single-crystal silicon cantilevers. Journal of Micromechanical Systems, 11:775–
783, 2002.

[182] Y.-J. Yang and P.-C. Yen. An efficient macromodeling methodology for air
damping effects. Journal of Microelectromechanical Systems, 14(4):812–827,
August 2005.

[183] K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C.
Stipe, and D. Rugar. Quality factors in micron- and submicron-thick cantilevers.
Journal of Microelectromechanical Systems, 9:117–125, 2000.

185

[184] W. Ye and S. Hutcherson. Air damping of microbeam resonators in a low
vacuum. In Proceedings of the 12th International Conference on Solid-State
Sensors, Actuators and Microsystems, pages 772–775. IEEE, June 2005.

[185] W. Ye, X. Wang, W. Hemmert, D. Freeman, and J. White. Air damping
in laterally oscillating microresonators: A numerical and experimental study.
Journal of Microelectromechanical Systems, 12:557–566, 2003.

[186] Mohammad I. Younis. Modeling and Simulation of Microelectromechanical Sys-
tems in Multi-Physics Fields. PhD thesis, Virginia Polytechnic Institute and
State University, Department of Engineering Mechanics, June 2004.

[187] C. Zener. Internal friction in solids I: Theory of internal friction in reeds.
Physical Review, 52:230–235, 1937.

[188] C. Zener. Internal friction in solids II: General theory of thermoelastic internal
friction. Physical Review, 53:90–99, 1938.

[189] C. Zener. Elasticity and Anelasticity in Metals. University of Chicago Press,
1948.

[190] C. Zener, W. Otis, and R. Nuckolls. Internal friction in solids III: Experimental
demonstration of thermoelastic internal friction. Physical Review, 53:100–101,
1938.

[191] O. C. Zienkiewicz and R. Taylor. The Finite Element Method, Volume 1: The
Basis. Butterworth-Heinemann, fifth edition, 2000.

[192] O. C. Zienkiewicz and R. Taylor. The Finite Element Method, Volume 3: Fluid
Dynamics. Butterworth-Heinemann, fifth edition, 2000.

[193] J.D. Zook, D.W. Burns, H. Guckel, J.J. Sniegowski, R.L. Engelstad, and
Z. Feng. Characteristics of polysilicon resonant microbeams. Sensors and Ac-
tuators A, 35:51–59, 1992.

[194] Maciej Zworski. Resonances in physics and geometry. Notices of the AMS,
46(3):319–328, March 1999.

186

	Contents
	Acknowledgements
	Introduction
	Outline and Contributions
	Resonant MEMS in applications
	Resonant MEMS in radio systems
	Resonant MEMS in sensors

	Damping in resonant MEMS
	Gas damping
	Material losses
	Thermoelastic damping (TED)
	Anchor loss

	Computer-aided design for resonant MEMS

	Mathematical preliminaries
	Eigenvalues and approximation
	Forced response of a second-order system
	General forced response and quality factors

	Radiation damping and resonance
	Viscoelastic wave solutions
	One-dimensional model equations
	Asymptotics of H(s)
	Summary of approximations

	Galerkin methods
	Stability for solution of linear systems
	Eigenvalue localization
	Krylov subspace model reduction

	Perfectly Matched Layers
	Introduction
	Perfectly matched layers
	A motivating example
	Elastic perfectly matched layers
	Anisotropic medium interpretation
	Finite element implementation
	Effects of discretization and angle of incidence

	Quality factors and forced motion computations
	Quality factors via an eigencomputation
	Efficient forced motion computations
	Conclusions

	Thermoelastic Damping
	Introduction
	Equations of thermoelasticity
	Nondimensionalization
	Weak form and discretization
	Perturbative eigenvalue approximation
	Relation to Zener's approach
	Comparisons for a beam calculation
	Effect of nondimensionalization
	Comparison of numerical results
	Performance

	Conclusion

	Continuation of Invariant Subspaces
	Introduction
	Related work

	Continuous invariant subspaces
	The geometry of subspaces
	Complex-analytic characterization
	Differential equation characterization
	Algebraic characterization
	Connecting subspaces

	The CIS algorithm: direct methods
	Initialization
	Choosing a subspace
	Normalizing the solution
	Subspace analysis and adaptation

	The CIS algorithm: projection methods
	Choosing a projection space
	Initialization
	Projected normalization and residual equations
	Projected predictors and correctors

	Integrating the CIS algorithm into MATCONT
	Conclusions and Future Work

	HiQLab
	Introduction
	History
	SUGAR
	FEAPMEX
	HiQLab

	Architectural overview
	Core objects
	The role of Lua
	Lua callbacks
	Callback performance
	Slots and scales

	The MATLAB interface
	Conclusions

	MEMS Examples
	Introduction
	Study of disk resonators
	Convergence of Q
	Observed energy loss mechanism
	Mode mixing and design sensitivity in the disk resonator
	Performance of model reduction method
	Summary

	Checkerboard resonators and SOAR
	Conclusion

	Bibliography

