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Abstract

Computational Analyses of Eukaryotic Gene Evolution

by

Sourav Chatterji

Doctor of Philosophy in Computer Science

with

Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Lior Pachter, Chair

The recent sequencing of multiple eukaryotic genomes offers an unprecedented op-

portunity to study the evolution of genomic elements like protein coding genes. The

initial step in any such study is to obtain accurate gene annotations. Lack of suffi-

cient experimental evidence necessitates the development of computational annota-

tion tools. This thesis presents algorithms for genome annotation and their applica-

tions for studying gene evolution.

We first develop a Gibbs sampling approach for ab-initio identification of genes

in multiple orthologous sequences. This approach leverages the evolutionary rela-

tionships between the sequences to improve the gene predictions, without explicitly

aligning the sequences. We show that excellent performance can be obtained with as

little as four organisms. The method overcomes a number of difficulties of previous

comparison based gene finding approaches: it is robust with respect to genomic re-
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arrangements, can work with draft sequence, and is fast (linear in the number and

length of the sequences).

We also develop GeneMapper, a program for transferring annotations from a well

annotated genome to other genomes. Drawing on high quality curated annotations,

GeneMapper enables rapid and accurate annotation of newly sequenced genomes

and is suitable for both finished and draft genomes. GeneMapper uses a profile

based approach for mapping genes into multiple species, improving upon the standard

pairwise approach.

Finally, these methods are employed to annotate the newly available fruitfly

and mammalian genomic sequences. We use these annotations to study the evo-

lution of gene structure through intron gain and loss. We test several previously

proposed mechanisms of intron gain and loss. We also study the relationship be-

tween intron loss and duplication events. We find that although gene duplication

is highly correlated with intron loss, structural changes in genes are not necessar-

ily due to a loss of constraint following gene duplication as previously suggested.

Professor Lior Pachter
Dissertation Committee Chair
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Chapter 1

INTRODUCTION

The understanding of the biology of functional elements is one of the most impor-

tant problems in molecular biology. In this thesis, we focus on the evolution of protein

coding genes, the elements of the genome that contain information for biosynthesis of

proteins. There has been a considerable amount of research performed on the evolu-

tion of genes at the nucleotide and amino acid level. However, in addition to coding

for proteins, eukaryotic genes have an exon-intron structure in which the introns are

spliced out of precursor mRNAs. This structure allows for diverse phenomena such

as alternative splicing, nonsense mediated decay and regulation through untranslated

regions(UTRs). In spite of such interesting features, there have been very few sys-

tematic studies on the evolution of gene structure. This is because the evolution of

gene structure occurs at a much slower rate compared to the evolution of individual

nucleotides in a gene and there is relatively less data to study the characteristics

of gene structure evolution. Consequently, the origin and evolution of the exon in-

tron structure of genes in eukaryotic genomes is one of the fundamental problems in

evolutionary biology.

Most of the initial research about gene structure evolution involved the analysis
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of small gene sets [e.g. Tarrio et al., 1998]. More recent studies have been more sys-

tematic and involved the comparison of gene structure in large sets of orthologous

genes in widely separated eukaryotic genomes [Rogozin et al., 2003; Roy and Gilbert ,

2005b]. Because of the very large evolutionary distances between the genomes, several

questions about gene structure cannot be answered conclusively in these phylogenet-

ically diverse studies. A denser phylogenetic sampling of genomes can help answer

these questions more definitively and thus greatly improve the understanding of gene

structure evolution. For example, a comparison of related genomes such as human

and chimpanzee will help us find recently gained/lost introns and thus understand

the mechanisms of intron gain and loss. Unfortunately, insufficient sequence data has

hampered any such systematic large scale studies. The recent sequencing of multiple

fly, worm and mammalian genomes offers an unprecedented opportunity to under-

stand the evolution of gene structure. The NHGRI webpage on the status of genome

sequencing [http://www.genome.gov/10002154] currently catalogs twenty five mam-

malian, twelve fruitfly and five worm genomes that have been sequenced or are being

sequenced. The access to such phylogenetically dense whole genome data provides

the opportunity to study the evolution of gene structure at different evolutionary

timescales.

The principal objective of this thesis is to investigate the evolution of gene struc-

ture by comparison of these newly sequenced genomes. The initial step in any such

study is to obtain accurate gene annotations. Therefore, the first part of the thesis

concentrates on the development of computational tools for accurate annotation of

protein coding genes in newly sequenced genomes. As many of the newly sequenced

genomes are of draft quality, our methods are robust to sequencing errors and missing

sequence. We then use these highly accurate annotations generated by our programs

to study the evolution of gene structure.

2



1.1 Computational Gene Prediction

Automatic identification of protein coding genes is comparatively straightforward

in many genomes such as Saccharomyces cerevisiae because most genes are intronless

and a search for open reading frames (ORFs) identifies almost all genes. Consequently,

the annotation of these genomes is virtually complete. On the other hand, vertebrate

genes have a complex exon-intron structure which makes accurate gene prediction

difficult. The problem of predicting all genes in a vertebrate genome has not been

completely solved even after more than fifteen years of active research. In fact, the

number of genes encoded by the human genome is still undetermined [Pennisi , 2003;

Glusman et al., 2006].

Computational genefinding methods can be broadly classified into two main cate-

gories, ab-initio methods and evidence based methods. The next two sections briefly

reviews previous advances in these areas.

1.1.1 Ab-initio gene prediction

Ab-initio genefinding methods predict gene structure in DNA sequences from first

principles without using external biological evidence (such as similarity to known

proteins or mRNA). Most of the current generation ab-initio genefinding programs

model gene structure by using hidden Markov models(HMMs). A variation of the

standard genefinding HMM is shown in Figure 1.1. We only show the states for the

forward strand. The HMM has states representing initial exons (Ej
i ), terminal exons

(Ei
T ), internal exons(Ej

I ) and introns (Introni). The HMM has multiple exon/intron

states to represent the three possible exon frames. In addition, we have a special

state representing single exon genes. The HMM ensures that the predicted gene has

a consistent open reading frame(ORF) across introns. Another advantage of using
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Figure 1.1. A representation of the state space and transitions of the standard
genefinding HMM.

HMMs is that they are flexible and it is easy to incorporate new states to model

additional features such as UTRs. The transition and emission probabilities for each

state in the HMM can be learned from known genes. Given a genomic sequence, a

sequence of states (or a parse) in the HMM defines a possible gene prediction and

its probability. Most programs use the parse with the highest probability as the

gene prediction and this optimal parse can be found efficiently by using the Viterbi

algorithm. More details about the use of HMMs in ab-initio genefinding programs

can be found in Burge [1997].
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GENIE [Kulp et al., 1996] was the first program to introduce the use of HMMs in

genefinding. However, GENSCAN [Burge and Karlin, 1997] is the most widely used

ab-initio genefinding program. A careful probabilistic modeling of splice sites, exon

lengths and other features made GENSCAN significantly more accurate compared to

earlier programs. Recent advances in single organism genefinding has been incremen-

tal. For example, Augustus [Stanke and Waack , 2003] uses a better intron sub-model,

while SNAP [Korf , 2004] is a more flexible program that is easily adaptable for a va-

riety of genomes. A big drawback of single organism genefinding programs is that

they have a low specificity i.e. they make a lot of wrong predictions.

Comparative genefinding methods try to improve upon single organism methods

by exploiting patterns of sequence homology between related genomes. They use

the fact that exons are functional and are more likely to be conserved by evolution

compared to introns. For example, a comparison of human and mouse orthologous

genes in Waterston et al. [2002] show that the average sequence identity is 84.7%

among orthologous exons, and 68.6% among orthologous introns (the identity among

human/mouse orthologous introns is as low as 35% in some other studies such as

Batzoglou, Pachter, Mesirov, Berger, and Lander [2000]). In addition, 91% of orthol-

ogous human mouse exon pairs have the same length, while only 1% of the orthologous

introns have the same length. These conservation patterns inspired the development

of a new generation of genefinding programs that use comparative analysis to distin-

guish exons from introns.

Pairwise genefinding programs use comparative analysis of orthologous sequences

from two related species such as human and mouse to improve gene prediction.

Rosetta [Batzoglou, Pachter, Mesirov, Berger, and Lander , 2000], the first compari-

son based program, uses a two step algorithm for pairwise genefinding by comparing

human and mouse sequences. It first creates a global alignment of the two sequences

and then uses conservation information from this alignment to make gene predictions.
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Other programs such as Twinscan [Flicek et al., 2003], SGP-2 [Parra et al., 2003] and

AGENDA [Rinner and Morgenstern, 2002] use conservation information from local

alignments (obtained from programs such as BLAST [Altschul et al., 1990] or DI-

ALIGN [Morgenstern, 1999]) to make gene predictions. SLAM [Alexandersson et al.,

2003] and DoubleScan [Meyer and Durbin, 2002] use pair HMMs to simultaneously

align and predict the gene structure in the two orthologous sequences. Each state of

a pair HMM emits a pair of characters, but they retain many properties of HMMs

(for example, an efficient Viterbi algorithm). We refer the reader to book by Durbin

[Durbin et al., 1998] for more details about pair HMMs.

The next logical step in comparison based genefinding methods is to use additional

species to improve performance. Initial studies such as Dewey et al. [2004] showed

that three way comparison with orthologous mouse and rat sequences helped improve

gene prediction in human sequences. Recently, methods that work with an arbitrary

number of species have been developed. Shadower [Boffelli et al., 2003; McAuliffe

et al., 2004] uses phylogenetic shadowing to find exons in multiple closely related

organisms such as primates. EXONIPHY [Siepel and Haussler , 2004] and N-SCAN

[Gross and Brent , 2005] extends this method for more diverse genomes. However, all

these methods depend upon the accuracy of the alignment. In this thesis, we develop

a novel Gibbs sampling strategy [Chatterji and Pachter , 2004, 2005] that exploits

conservation information among related species without using an alignment.

Ab-initio methods have been used in several studies [Dewey et al., 2004; Castellano

et al., 2001; Guigo et al., 2003; Wu et al., 2004] to predict novel genes. However, in

spite of the best efforts of several scientists for over 15 years, ab-initio genefinding

programs are not very accurate. To illustrate the inaccuracies, let us examine the

example in Figure 1.2 which shows a segment from human chromosome 9 in the UCSC

genome browser [Kent et al., 2002]. Coding exons are represented by blocks connected

by horizontal lines representing introns. Untranslated regions (UTRs) are displayed as
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Figure 1.2. Ab-initio gene prediction tracks on a segment of the human chromosome
9 in the UCSC genome browser.

thinner blocks. The RefSeq track is based on experimental mRNA evidence and is the

true gene structure. Genscan [Burge and Karlin, 1997], Geneid [Parra et al., 2000]

and Augustus [Stanke and Waack , 2003] are single organism ab-initio genefinding

methods. N-SCAN [Gross and Brent , 2005], Twinscan [Flicek et al., 2003] and SGP

[Parra et al., 2003] are comparison based methods that use conservation information

with related species to improve gene predictions. The figure displays the predictions

of these programs in this region. Even though the programs are able to correctly

predict some of the exons, none of the methods are successful in predicting the gene

structure accurately. It is also notable that many of the programs are deficient in

predicting gene boundaries. We now summarize the main hurdles that impede the

accuracy of ab-initio genefinding programs.

• Pseudogenes : Pseudogenes are sequences that are very similar to genes, but

with deleterious mutations. Thus a genefinding program can wrongly annotate

pseudogenes as coding sequence.

• Long Introns : On average, coding exons are much shorter than non-coding

introns and the presence of long introns makes genefinding complicated. Fur-

thermore, ab-initio programs are also not very good at finding very short exons

(microexons).
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• Conserved non-coding sequences(CNSs) : Comparison based genefinding pro-

grams improve upon single organism genefinding programs by using conserva-

tion information to boost exon scores (exons are much more conserved among

related species compared to introns). Thus some of these methods find it hard

to distinguish exons from CNSs and they can wrongly annotate CNSs as coding

sequences.

• Accurate determination of gene boundaries : Even though genefinding programs

have become fairly accurate in annotating individual exons, they are not good at

assembling the exon predictions together to obtain the correct gene structure.

Many gene prediction programs often split up or fuse gene boundaries. The

accurate determination of gene boundaries is an important open problem and

a knowledge of gene boundaries will greatly enhance the accuracy of ab-initio

genefinding methods.

1.1.2 Evidence based gene prediction

Evidence based genefinding methods use information not intrinsic to the genomic

DNA sequence, such as known cDNA or protein sequences to improve accuracy. Evi-

dence based methods mostly involve aligning the evidence with the genomic sequence

and they are significantly more accurate compared to ab-initio methods. However as

they are dependent on external evidence, they cannot be used to make novel gene

predictions.

High throughput cDNA sequencing is carried out by sequencing expressed se-

quence tags(ESTs). An EST is a segment of a cDNA clone obtained at random

from a cDNA library. More details about cDNA sequencing can be obtained from

Adams et al. [1991]. Gene prediction from ESTs is a two step process. The first step

is EST clustering, which is the joining of overlapping ESTs into clusters to obtain
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full length cDNA sequences. The second step is transcript assembly, which is the

alignment of the mRNA sequence to the genome to obtain gene annotation. Unigene

[Schuler et al., 1996] and TGI [Quackenbush et al., 2001] are the most well known

EST clustering algorithms. A complementary set of methods such as EST GENOME

[Mott , 1997], BLAT [Kent , 2002] and GMAP [Wu and Watanabe, 2005] have been

designed to align full length cDNA sequences with the genome. More recent methods

such as Aceview [Thierry-Mieg et al., unpublished] and ecGENE [Kim et al., 2005]

do EST clustering and transcript assembly simultaneously. All these methods need

to account for the fact that ESTs can have a relatively high error rate (up to 3%).

However, they have not been developed to align cDNA evidence with evolutionarily

distant genomes. For example, they are not designed to align human cDNA with the

mouse genome.

Protein based methods make use of alignments of known protein sequences with

genomic sequences, and form an important component of pipelines such as ENSEMBL

[Birney et al., 2004b]. Such programs include DPS [Huang , 1996], Procrustes [Gelfand

et al., 1996], Genomescan [Yeh et al., 2001] and GeneWise [Birney et al., 2004a]. To

some extent, these programs are designed to work with proteins from related species.

Although they work quite well with highly conserved proteins, they are not as accurate

for diverged protein sequences.

Reference based genefinding methods use gene annotations from a reference species

as evidence to predict the gene structure in a target species. In analogy to cDNA

based methods, these reference based genefinding methods align mRNA from a ref-

erence gene to a target sequence, however they exploit additional information about

splice sites. Projector [Meyer and Durbin, 2004], one of the first reference based meth-

ods uses a pair HMM to transfer annotations from the reference species to the target

sequence. In this thesis, we introduce a new reference based algorithm called Gen-

eMapper which is significantly more accurate compared to existing reference based
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and protein based methods. We use GeneMapper as the main component of our

whole genome annotation pipeline.

Another class of evidence based methods such as JIGSAW [Allen and Salzberg ,

2005] and Exonhunter [Brejova et al., 2005] use multiple sources of evidence to pre-

dict gene structure. Theoretically, multiple source methods should outperform single

source methods, but we believe that computational genefinding based on multiple

sources is still an area of active research. It is also interesting to note that meth-

ods such as GeneComber [Shah et al., 2003] improve ab-initio gene prediction by

combining predictions from several ab-initio genefinding programs.

1.2 Evolution of Gene Structure

There is enormous diversity in the structure and organization of genes in liv-

ing organisms. Prokaryotic genes are intronless while most eukaryotic genes have

introns that are spliced from precursor mRNA. There is lot of variation in gene struc-

ture even within eukaryotic genomes. For example, most yeast genes are intronless

whereas human genes have an average of about 8 introns per gene. Such diversity

in gene structure has been used to explain the evolution of genomic complexity and

determination of population size[Lynch and Conery , 2003]. In addition, introns are

believed to play a role in natural selection [Comeron and Kreitman, 2000], but their

exact role is not well understood. Therefore, the origin and evolution of exon-intron

structure of genes in eukaryotic genomes remains one of the most important unan-

swered questions in evolution. We now review the current understanding of gene

structure evolution.
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1.2.1 Origin of Exon Intron Structure of Genes

Introns are classified according to the mechanisms by which they are removed from

the precursor mRNA. The mRNAs that contain Group I and Group II introns are

self splicing, i.e. their structure facilitates the removal of introns from the RNA tran-

scripts. The difference between these two intron types is in the mechanism of the self

catalytic splicing process. These two intron types have been found in bacterial and

organellar genomes. In this thesis, we mostly deal with spliceosomal introns. Spliceo-

somal introns are found in eukaryotic nuclear genomes and a spliceosomal complex is

used to splice out the intron from the precursor mRNA. The splicing mechanism of

spliceosomal introns resembles the mechanism in Group II introns and this similarity

suggests that spliceosomal introns evolved from Group II introns [Cavalier-Smith,

1991]. It has been recently hypothesized that the formation of the nucleus coincided

with the evolution of exon-intron structure and the incipient function of the nuclear

envelope was to allow mRNA splicing [Martin and Koonin, 2006].

There are two theories about the origins of exon-intron structure in eukaryotic

genomes. The exon theory of genes or “Introns Early” theory [Gilbert , 1978; Gilbert

et al., 1997; Roy , 2003] hypothesizes that genes in the original cell were assembled

by exon shuffling. The theory proposes that spliceosomal introns have been lost in

prokaryotic lineages and they continue to exist in eukaryotic genomes. The alterna-

tive “Introns Late” theory [Palmer and Logsdon, 1991] postulates that introns were

invented during eukaryotic evolution and they were spread by insertion into unsplit,

pre-existing genes.

Spliceosomal introns are absent in all prokaryotic genomes whereas they are widely

distributed in eukaryotic lineages. This phylogenetic distribution of introns strongly

supports the introns late theory. On the other hand, the introns early theory is

supported by intron phase and protein structure correlations among related genomes.

11



The debate is further muddled by the fact that there has been extensive intron gain

and intron loss in eukaryotic kingdoms [Rogozin et al., 2003]. However, there is

increasing evidence for more nuanced views of the competing models. For example, it

is clear that most introns do not predate the eukaryotic-prokaryotic ancestors and are

fairly new. Phylogenetic studies also suggest that the spliceosome was present in the

ancestor of all extant eukaryotes [Collins and Penny , 2005]. But the central question

of whether the eukaryotic-prokaryotic ancestor had any introns is unresolved and is

still a subject of vigorous debate.

1.2.2 Mechanisms of Gene Structure Evolution

The evolution of gene structure is a slow process and the exon-intron structure of a

gene is highly conserved in related species. For example, a comparison of orthologous

genes in the human and mouse genome showed that 86% of the genes have identical

numbers of exons [Waterston et al., 2002]. In fact, the exon-intron structure of

some genes is highly conserved over very large evolutionary timescales even when

the sequence homology of the proteins coded by the orthologous genes is very low

[Betts et al., 2001; Yoshihama et al., 2002]. Over these smaller timescales, most of

the changes in the gene structure occur through changes in intron length. This is

because introns are not under any evolutionary constraints and they are prone to

rampant insertions and deletions. Introns can also serve as sinks for transposable

elements such as Alus [McNaughton et al., 1997]. In fact, insertions and deletions

in introns can be used to infer phylogenies [Ogurtsov et al., 2004]. A more detailed

analysis of the evolution of the lengths of orthologous introns has been carried out by

Yandell et al. [2006].

The exon-intron structure of a gene can also evolve through gain and loss of cod-

ing sequence. Exon shuffling is one of the most widely studied mechanisms by which
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existing exons recombine or duplicate to develop new exon-intron gene structures.

Exon shuffling can occur by exon duplication, exon insertion or exon deletion. Patthy

[1999] catalogs genes that are known to have been formed by exon shuffling. Genes

are also known to generate new functions by integrating transposable elements into

the coding sequence of a host gene[Nekrutenko and Li , 2001; Lorenc and Makalowski ,

2003]. A gene can also develop a new structure by gain and loss of alternative spliced

forms. For example, a recent comparison of orthologous genes in two dipteran species

by Malko et al. [2006] found that only 80% of alternative exons are conserved. There-

fore, the remaining 20% of the alternative exons must have been gained or lost during

evolution. Lastly, the structure of a gene can be altered through gene fusion and gene

fission [Snel et al., 2000].

In this thesis, we concentrate on the evolution of gene structure by gain and

loss of introns. These events do not affect the protein coded by the gene but the

deciphering of the mechanisms can help us understand the origin and attributes of

the exon-intron structure of genes. The loss and gain of introns occur at a much lower

rate compared to nucleotide/amino acid substitutions [Roy and Gilbert , 2005b]. Even

though these events are comparatively rare, introns are known to have been gained

and lost in diverse eukaryotic lineages [Rogozin et al., 2003]. We now briefly review

the mechanisms of intron gain and intron loss in eukaryotic genomes. For a more

detailed review, the reader is referred to Roy and Gilbert [2006].

1.2.3 Mechanisms of Intron Gain and Loss

The most popular theory about intron gain postulates that new introns are formed

by duplication of previously present introns [Tarrio et al., 1998]. According to this

theory, a previously spliced intron can be inserted into an mRNA, which is reverse

transcribed to cDNA that recombines with the genome. Group II introns are known
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to propagate through a similar mechanism. There is also evidence that some of the

recently gained introns have been inserted by this mechanism [Tarrio et al., 1998;

Coghlan and Wolfe, 2004]. However, all evidence for this theory seems to be indirect

and there is no direct proof of insertion of introns by this mechanism.

Another theory for intron gain first espoused by Francis Crick [Crick , 1979], hy-

pothesizes that novel introns arise by insertion of transposons. There are multiple

examples of recently inserted transposons are spliced out of precursor mRNA [Giroux

et al., 1994]. These examples clearly prove that new introns can be formed by in-

sertion of transposable elements. However a recent study of comparatively recent

introns in worms in Coghlan and Wolfe [2004] suggests that very few novel introns

are repeat elements. The role of transposons in the evolution of gene structure is also

muddled by the fact that many genes are known to gain new functions by recruiting

transposons as coding sequence [Nekrutenko and Li , 2001].

The classical theory of intron loss states that introns are lost by recombination of a

reverse transcribed mRNA transcript with the genome, resulting in the loss of introns

[Bernstein et al., 1983]. As reverse transcriptase works from the 3’ to the 5’ end and

is often incomplete, this theory predicts that more introns should be lost from the

3’ end compared to the 5’ end. Because of this mechanism of reverse transcriptase,

this theory also predicts that many introns should be lost in tandem. An alternative

theory of intron loss hypothesizes that introns are lost by genomic deletion [Kent and

Zahler , 2000; Cho et al., 2004]. This theory predicts that intron loss is inexact. It

also predicts that intron loss is random and not biased towards the 3’ ends of genes.

Large scale comparative studies of orthologous genes have resulted in mixed results

in validating the predictions of these competing theories of intron loss.

It seems that none of the theories can explain the evolution of introns. However,

scientists studying intron evolution have been constrained by limited data and a novel
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mechanism might explain all observed intron gains. We believe that a more dense

phylogenetic sampling will help us in answering these questions more accurately.

1.3 Overview of the thesis

The goals of this thesis are twofold. The first goal is to develop a comprehensive

computational system for accurate annotation of protein coding genes in a newly

sequenced genome. As we have discussed in the previous section, ab-initio and evi-

dence based methods are complementary to each other. Ab-initio methods are useful

in finding novel genes, while evidence based methods are much more accurate in pre-

dicting gene structure. Therefore, we have developed novel ab-initio and evidence

based methods as a part of this thesis. We also use these tools to develop a gene

prediction pipeline for annotating newly sequenced genomes. The second goal of

this thesis is to study the evolution of gene structure in a wide range of eukaryotic

genomes. We have mainly concentrated on the gain and loss of introns in evolution.

Our research in ab-initio genefinding has mostly concentrated on developing com-

parative methods, as they are much more accurate compared to ab-initio methods.

As described earlier, comparative genefinding methods exploit the fact that exons are

functional and are more likely to be conserved compared to introns. Most comparative

methods such as Rosetta [Batzoglou et al., 2000] and Twinscan [Flicek et al., 2003]

obtain this conservation information from either global or local alignments. However

alignments of orthologous genes are not always reliable, especially because conserved

exons are much shorter than non-conserved introns. In Chapter 2, we develop a novel

Gibbs sampling strategy that exploits conservation information without using align-

ments. We believe that this strategy will be an important approach for improving

accuracy of genefinding programs in the badly aligned regions of the genomes.
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In Chapter 3, we describe GeneMapper, a program for annotating newly sequenced

genomes by transferring gene annotations from well annotated reference genomes

(such as D. melanogaster and H. sapiens). The rationale behind developing Gen-

eMapper is that a lot of resources have been invested in annotating genomes of these

model organisms and and it is unreasonable to expect similar efforts to be expended

for the myriad of genomes that are now being sequenced. GeneMapper provides an al-

ternative way to accurately annotate these genomes by transferring annotations from

reference genomes. For example, we have used D. melanogaster FlyBase annotations

to annotate the newly sequenced fruitfly genomes. If a gene is to be mapped into

multiple species, GeneMapper uses a novel profile based approach that is an improve-

ment over the standard pairwise approach. We show that GeneMapper is much more

accurate compared to existing programs such as Projector and GeneWise. GeneMap-

per is designed to be robust to missing sequence and sequencing errors, so that it is

suitable for both finished and draft genomes.

GeneMapper maps known genes from a reference genome to newly sequenced

genomes and thus implicitly creates a data set of orthologous genes for studying the

evolution of genes. In Chapter 4, we use this data set to study the evolution of genes

in multicellular eukaryotes. We are particularly interested in the evolution of gene

structure. The sequencing of multiple dipteran and mammalian genomes opens new

vistas as the more dense phylogenetic sampling of species can help us answer many

unresolved questions about evolution of gene structure. We use GeneMapper anno-

tations to study the gain and loss of introns in mammalian and dipteran (fruitfly)

genomes. We test previous theories of intron gain and loss. In addition, our findings

in Diptera also provide an explanation for the 5’ bias in the position of introns in

eukaryotic genomes. We also study the relationship between intron loss and duplica-

tion events. We find structural changes in genes are not necessarily due to a loss of

constraint following gene duplication as previously suggested.
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Chapter 2

COMPARATIVE GENEFINDING

BY GIBBS SAMPLING

With the publication of the mouse [Waterston et al., 2002] and rat [Gibbs et al.,

2004] genomes, it has become apparent that comparative-based gene finding meth-

ods such as SGP2 [Parra et al., 2003], SLAM [Alexandersson et al., 2003] and

TWINSCAN [Flicek et al., 2003] improve upon single organism gene finding meth-

ods as implemented in GENSCAN [Burge and Karlin, 1997] or GENIE [Kulp et al.,

1996]. Comparative-based gene finders are more accurate because conserved regions

in genomes are more likely to be functional (and in particular coding), and there-

fore an alignment of a pair of homologous sequences can be used to assist in gene

identification. It appears intuitive that the addition of more sequences (and their

alignments) should improve the quality of gene predictions. However there are mul-

tiple serious issues in developing multiple species gene prediction algorithms. The

problem of accurately aligning large genomic regions is non-trivial (especially in the

case of sequence inversions and rearrangements). The problem of accurate align-

ment of orthologous genes is further exacerbated by the fact that conserved exons are
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much shorter compared to highly divergent introns. In addition, many of the pair-

wise gene prediction methods become computationally intractable when generalized

to more than two sequences (for example, the running time of SLAM for k sequences

of length m is O(mk)).

The Gibbs sampling method has been widely used for sequence analysis after it

was successfully applied to the problem of identifying regulatory motif sequences up-

stream of genes [Lawrence et al., 1993]. Since then numerous variants of the original

idea have emerged: however, in all cases the application has been to finding short

motifs in collections of short sequences (typically less than 100 nucleotides long).

In this chapter, we introduce a Gibbs sampling approach for identifying genes in

multiple large genomic sequences up to hundreds of kilobases long. This approach

leverages the evolutionary relationships between the sequences to improve the gene

predictions, without explicitly aligning the sequences. As we will see, the approach

we propose avoids the need for a pre-processed multiple alignment of the sequences,

and in fact implicitly produces a partial alignment which is robust with respect to ge-

nomic rearrangements, large insertions/deletions and other evolutionary events which

complicate the multiple alignment of large genomic regions.

We begin by describing in more detail our approach to finding genes in multiple

vertebrate sequences. We apply Gibbs sampling to learn the parameters of a suitable

hidden Markov model, from which we can infer gene annotations. This is equivalent

to the missing data formulation of Tanner and Wong [1987]. In section 2.2, we present

results of tests of the method on multiple large genomic regions.
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2.1 The collapsed Gibbs sampler for hidden

Markov models

We briefly review the fundamentals of Gibbs sampling for the missing data prob-

lem, and proceed to describe its application in the context of gene finding. Our

notation and presentation borrow from a number of sources including standard texts

[Durbin et al., 1998] and the papers by Liu [Lawrence et al., 1993; Liu et al., 1995].

We denote a state sequence path by z, and the ith state in a state sequence path by

zi. An HMM is described by transition probabilities:

akl = P (zi = l|zi−1 = k) (2.1)

and output probabilities:

ek(b) = P (xi = b|zi = k). (2.2)

Here the letters l, k denote states and b an output symbol. The set of all parameters

is denoted by θ. In hidden semi-Markov models (or generalized HMMs) we also have

duration distributions from which we sample durations for each state.

We will assume that we have a set of n sequences y = y1, . . . , yn that have been

generated independently by the hidden Markov model but for which the state paths

are unknown. We would like to maximize the log likelihood

log P (y1, . . . , yn|θ) =
n∑

j=1

log P (yj|θ). (2.3)

This is of course the standard parameter estimation problem.

Suppose we have a distribution p(x1, . . . , xn) from which we would like to sam-

ple, but it is difficult to do so because of complex dependencies between the random

variables. Gibbs sampling is an iterative (provably correct under appropriate assump-

tions) method for sampling from the distribution in the case where the conditional
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distributions are easy to sample from. The method is simply to iteratively sample

from the conditional distributions

p(xi|x1, . . . , xi−1, xi+1, . . . , xn)(1 ≤ i ≤ n). (2.4)

In the case of HMM parameter estimation where the path information is missing,

we would like to sample from the joint posterior distribution

p(z, θ|y). (2.5)

The random variables z = z1, . . . , zn (denoting state paths) and θ now play the

roles of the xis above and the method is to iteratively sample from the conditional

distributions

p(zi|z[−i]y, θ) (1 ≤ i ≤ n) (2.6)

and the posterior distribution

p(θ|y, z). (2.7)

In the first equation, z[−k] denotes the data z with zk missing. A practical imple-

mentation of the Gibbs sampler requires that we are able to efficiently sample both

the paths and the parameters θ (from their posterior distributions). We provide the

details of these two key steps of the Gibbs Sampler in the next two sections.

2.1.1 The path sampling step

As we have mentioned, the key ingredient of a Gibbs sampler for an HMM is

an efficient method for sampling a state path zi = zi
1, . . . , z

i
L in the sequence yi =

yi
1, . . . , y

i
m from

p(zi
1, . . . , z

i
L|yi

1, . . . , y
i
m, z[−i],y[−i]). (2.8)

This can be done using a standard forward-backtrack type algorithm (e.g. Durbin

et al. [1998]). For completeness, and since it is rarely explicitly outlined in hidden
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Markov model texts or tutorials, we provide the detailed algorithm here, and illustrate

it in a slightly more general graph theoretic setting:

Lemma 1 Let G be a directed acyclic graph with source s and sink t. Let each edge

e = (vi, vj) of G have a weight w(e) (we also use the notation w(e) = w(vi, vj)), and

each node weight w(vi). Assume without loss of generality that

∑
paths P=(v1,...,vk(P ))

w(v1)

k(P )∏
i=2

w(vi−1, vi)w(vi) = 1.

It is possible to pick a path P consisting of s = v1, v2, . . . , vk(P ) = t at random in time

O(n) so that

Pr(picking P ) = w(s)

k(P )∏
i=2

w(vi−1, vi)w(vi).

Proof: The proof is by induction on the maximal length of a path between s and

t. The base case n = 1 is trivial. Suppose the theorem is true for the case when the

length of the longest path between s and t is n, and consider the case where the max.

path has length n+1. Suppose the edges out of s have weights w(e1), . . . , w(ek), and

are adjacent to vertices v1, . . . , vk respectively. Suppose we have computed weights

β(vi) for all the vertices adjacent to s, where β(vi) is the sum of the weight of all

the paths from vi to t (this step can be done using dynamic programming, and is

the backward algorithm for HMMs). Our path picking algorithm is to pick an edge

from s at random with probability w(s)w(ei)β(vi), at which point the distance from

vi to t is at most n, so by induction we can choose from there a path P which has

weight z, and which has been selected with probability z
β(vi)

. Observe that the weight

of the path from s to t is w(s)zw(ei), and that it has been selected with probability

z
β(vi)

w(s)w(ei)β(vi) = w(s)zw(ei).

The sampling method above can also work in reverse by backtracking from t

instead of starting from s, in which case one first needs to compute the forward
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variables α(v). This algorithm also has fast memory efficient implementations [Cawley

and Pachter , 2003].

In a hidden Markov model we have two types of parameters: the output probabil-

ities and the transition probabilities. These parameterize multinomial distributions

and geometric distributions respectively. Thus, for prior distributions on θ we use

the conjugate priors: the Dirichlet distributions for the multinomial output data and

the β distribution for the geometric data. In semi-hidden Markov models, we have

states whose lengths are distributed according to arbitrary distributions which may

not be convenient to deal with in the Bayesian framework. Fortunately, in the case

we are interested in (generalized HMMs for gene finding), the only generalized states

are the exon states, which are conveniently modeled with Gamma distributions, and

these have the Gamma distribution as the conjugate prior.

2.1.2 The collapsed Gibbs sampler

In the traditional Gibbs sampling setup, the parameters of the hidden Markov

model are sampled together with state paths (in an alternating fashion). Liu [Liu,

1994] has pointed out that the sampling of parameters can be avoided by integrating

out the parameters and if the sequences are sufficiently long and there are enough of

them, the integration can be efficiently approximated. We now review the argument,

and in the process correct some small mistakes in [Liu et al., 1995], in which the

proof incorrectly skips the necessary requirement of many sequences (and not just

long sequences).

We begin with the observation that

p(z|y) ∝ p(z,y) =

∫
θ

p(z,y|θ)f(θ) (2.9)

∝
∏

i

Γ(h(yi) + αi). (2.10)
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where f(θ) is the prior distribution for θ and consists of a product of gamma distri-

butions each with parameters αi. The notation h(y) denotes counts obtained from

the data y. Note that in the final product term above, yi consists of subsets of the

data which are determined by z.

Now p(zk|z[−k],y[−k]) ∝ p(z|y) and therefore

p(zk|z[−k],y[−k]) ∝
∏

i

Γ(h(y
[−k]
i ) + αi + h(yk

i ))

Γ(h(y
[−k]
i ) + αi)

(2.11)

where y[−k] denotes the data y with sequence k missing (and similarly for z). The

subscript i and the notation yi denotes the fact that the product will range of subsets

of the data, these being determined by the particular state paths.

We now use the fact that if b << a

Γ(h(a + b))

Γ(h(a))
≈ h(a)h(b) (2.12)

where notation h(a + b) denotes the ”sum” of the counts, in other words the counts

obtained from considering the union of the two data sets.

From this we infer that the predictive distribution p(zk = i|z[−k],y[−k]) is pro-

portional to the probability of path i in the hidden Markov model. Although not

explicitly pointed out by Liu, the validity of the approximation depends on both the

number and size of the sequences, and on the amount of data available for learning

each state. For example, in the block motif application there is a lot more background

sequence data than position data (for the former one needs long sequences, for the

latter many of them).

2.1.3 The block-motif Gibbs sampler

A special case of the above framework is the Gibbs sampler for block-motifs of

which was introduced in a seminal paper in Science [Lawrence et al., 1993] and which
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Figure 2.1. The hidden Markov model representation of the block-motif sampler for
W=4. Panel A shows the the allowable transitions between states. Panel B shows the
graphical model. In this representation, shaded circles correspond to observed random
variables and unshaded circles to hidden random variables. The arrows represent
conditional dependencies among random variables. The BG (background) states are
used for sequence before and after the motif.

has found widespread application in the detection of binding site motifs in genomic

sequences. Suppose that our motifs have width W . In this case, we have k sequences

each of length n and generated from an HMM (shown in figure 2.1 for W=4).

The description of θ is as follows: The self transition probabilities on the end

states are fixed and equal. The remaining parameters consist of output probabili-

ties for states 1, . . .W, which do not have dependence on previous sequence. It is

straightforward to derive the Liu block-motif predictive update formula (equation 5

in Liu et al. [1995]) using the above model.

2.1.4 The gene finding Gibbs sampler

We applied the collapsed Gibbs sampler to a gene finding HMM (state space shown

in Figure 2.2). We therefore consider the coding exons and introns of a gene (and
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Figure 2.2. States space of the gene finder. Only the forward strand states are
shown. The triplets of exon states are required to ensure a contiguous open reading
frame across introns. The state BG is the intergenic state, and Intron0, Intron1 and
Intron2 are for the three phases of intron. The exon states are divided into initial
(EIj), terminal (ET j) and internal (Eij) types, with an additional special state for
single exon genes. Further details about the basic gene finding model can be found
in [3]. Our model is an extension of the basic model, in that each exon state actually
consists of k states (corresponding to k different gene models). Details are shown
only for the E01 state (see box in figure). Thus, if the model is to be used to predict
up to k genes, it contains 3 intron states, one intergenic state, and 16k exon states
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possibly other features) to be encoded in the hidden state paths of an HMM, and com-

parative sequence data is viewed to consist of independent realizations of sequences

from the model. This setup assumes the sequences are related via a “star” evolution-

ary tree, that is, a tree where all the leaf edges meet at one point. This assumption is

realistic for the sequences we test with in this thesis (mammalian sequences roughly

equidistant from each other); however in general it is of course preferable to use a

model that incorporates the true phylogenetic relationships between the sequences.

We defer discussion of this until the final section of the chapter. In summary, we view

the gene finding problem as the solution to the parameter estimation problem for the

HMM.

The SLAM gene finding program [Alexandersson et al., 2003] was modified to

work as a single organism non-homogeneous gene finder, thus being very similar to

the GENSCAN program [Burge and Karlin, 1997] (except for the non-homogeneity

and some extra states, described below). We omit details of the signal models used

and refer the reader to Burge and Karlin [1997]. We used the parameters of SLAM

in single species mode as the priors or pseudo-counts for the Gibbs Sampler. For the

results described below, we only learned exon frequencies (modeled with a 5th order

HMM) and lengths for the generalized exon states.

A particular sequence can have two or more genes with widely different charac-

teristics (different exon frequencies and exon lengths) and we need to have different

models for different gene types in the sequence. In our Gibbs sampler, every exon

state is composed of k states, where k is the number of gene models (see box in Figure

2.2). Furthermore, the hidden Markov model is non-homogeneous; in particular, the

transition probabilities to the different gene classes change with the sequence loca-

tion. Formally, the probability of the exon e under our model is
∑k

i=0 at
iP (e|Mi),

where at
i is the probability of choosing gene class Mi at position t and P (e|Mi) is the

probability of exon e in gene class Mi. It is important to note that the probabilities
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at
i depend on t, that is they are allowed to change over time (in our case “time” is

the location of the exon).

In principle, it is necessary to learn the number of classes k, and also the non-

homogeneity of the chain as part of the sampling process. In order to speed up

the computations, we circumvented this problem by directly comparing predicted

peptides in the learning step of the Gibbs sampler to identify the number of classes,

and where they appear in each sequence, on the basis of significant hits.

More precisely, we constructed an undirected graph G = (V, E), with one node

vi for each predicted gene. The predicted peptides of the genes were compared using

translated BLAT [Kent , 2002]. Two genes were defined to be similar if there was a

significant hit, and this was represented by an edge (vi, vj) in the graph. The con-

nected components of the graph were used to define the gene classes Mi. The exon

parameters for gene class Mi were in turn learned from the ith connected component.

Exon counts were adjusted by “pseudo-counts” based on standard gene finding pa-

rameters. This can be interpreted probabilistically as a mixture model for the exon

states.

In order to obtain a probability for a gene in the model, it was necessary to know

(or learn) the transition probabilities at
i. These were set so that at position t, at

j = 1

for some j and at
i = 0 for all i 6= j. This condition enforced the use of only one

gene model per exon. The transition probabilities were set by assigning an exon the

probability: P (e) = maxi P (e|Mi).
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2.2 Results

2.2.1 Data

We tested our results on mammalian sequences from the NISC Comparative Ver-

tebrate Sequencing Project. A region was selected for testing if it satisfied a number

of criteria: No alternatively spliced genes were allowed to lie in the region, and the

length in each organism was required to be less than 0.3Mb (in order to reduce mem-

ory usage). This latter restriction should not be necessary in general if the approach

is used with a memory efficient gene finder on a machine with large amounts of RAM.

GENSCAN is often run on sequences megabases long. Finally, regions were required

to contain sequence from the human (where reliable annotations could be obtained),

as well as three other mammalian species roughly equidistant from each other. The

final criterion was ensured by selecting regions with one sequence from cat or dog,

one from cow or pig, and one from mouse or rat. Thus, each region had sequence

from four organisms.

We identified ten suitable gene regions from the NISC comparative sequencing

project which satisfied our criteria. One of these was the cystic fibrosis (CFTR) gene

region, which is fairly large and was therefore subdivided into five smaller regions,

each of size less than 0.3Mb. This gave us a total of 14 regions with 20 genes, which

we call test set 1. In addition, we created two artificial test sets to evaluate the

robustness of various genefinding programs with respect to evolutionary events such

as rearrangements. These sets are described in the next section.

2.2.2 Testing

The Gibbs sampler was compared to four freely available and widely used pro-

grams that have been used for whole genome annotations: the GENSCAN program
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Figure 2.3. Variation of the performance of the Gibbs Sampler with the number of
sequences used

Program Nucleotide Level Exon Level
Sn Sp Avg Sn Sp Avg

GENSCAN 0.918 0.548 0.733 0.777 0.518 0.648
TWINSCAN 0.692 0.856 0.774 0.440 0.513 0.477
SGP2 0.943 0.586 0.764 0.755 0.530 0.642
SLAM 0.791 0.881 0.836 0.632 0.527 0.580
Gibbs sampler 0.897 0.886 0.891 0.714 0.628 0.671

Table 2.1. Performance of the gene finders on test set 1.

Test set 2 (before rearrangement) Test set 3 (after rearrangement)
Program Nucleotide Level Exon Level Nucleotide Level Exon Level

Sn Sp Sn Sp Sn Sp Sn Sp
GENSCAN 0.911 0.680 0.771 0.612 0.866 0.652 0.748 0.594
TWINSCAN 0.694 0.895 0.465 0.604 0.665 0.853 0.465 0.598
SGP2 0.957 0.723 0.771 0.620 0.914 0.704 0.763 0.621
SLAM 0.927 0.911 0.718 0.566 0.438 0.936 0.250 0.646
Gibbs sampler 0.939 0.950 0.763 0.735 0.885 0.910 0.740 0.703

Table 2.2. Effect of rearrangements. Performance of the gene finders before and after
artificially induced rearrangements

used for single organism gene prediction, and the SGP2, SLAM and TWINSCAN pro-

grams used for pairwise comparative-based prediction. SLAM simultaneously aligns
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and annotates a pair of sequences, and the alignment is required to be global. TWIN-

SCAN and SGP2 predict genes in one organism, but modify the exon probabilities

based on TBLASTX local alignments to the second sequence. SLAM, TWINSCAN

and SGP2 were tested with human and mouse/rat. Note that comparison based gene

finding approaches give similar results with either mouse or rat as they are equidistant

to human. The results of the comparisons are shown in Table 2.1.

A second test was performed to measure the performance of the Gibbs sampler on

sequences with a rearrangement. A randomly picked subset of 8 regions from test set

1 was selected (we call this test set 2). Pairs were then concatenated, and then one

of the sequences in human was reverse complemented (i.e. we performed an artificial

inversion in human). We call this test set 3. The results of the gene finders on test

sets 2 and 3 are shown in Table 2.2.

A final test was performed to assess the effect of the number of species on the

performance of the Gibbs Sampler. In this experiment, the number of sequences

input to the Gibbs Sampler were varied from one to four species. The results of this

experiment are summarized in Figure 2.3.

There are two standard tests for measuring the accuracy of a gene finder. At

the nucleotide level, sensitivity and specificity calculations are performed to find the

fraction of coding bases covered by predictions and conversely the fraction of predicted

bases covering true exons. Another standard test is the exon level test, which measures

the accuracy of gene predictions at the exon level; i.e. exons are required to be

predicted with exact matching boundaries in order to be counted. For more details

about these tests, the reader is referred to Burset and Guigo [1996].
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2.2.3 Conclusions

We found that our Gibbs Sampler outperformed the other comparison based gene

finders in both nucleotide and exon level results. It is well known that GENSCAN

suffers from an over-prediction problem and this is reflected in very poor specificity in

the tested regions, especially in nucleotide level results. There is scope for improve-

ment in exon level results for our Gibbs sampler, though the results are already better

than for the other comparative-based programs. Future development will include the

learning of splice sites, which holds the promise of improving these results.

The rearrangement test confirms that the results for single organism gene finders

such as GENSCAN don’t change with regard to rearrangements. The sensitivity of

SLAM drops dramatically, because SLAM only predicts genes which have a consistent

open reading frame in both organisms, and this is impossible with a rearrangement

in the human. The results of TWINSCAN and SGP2 are fairly stable because they

use local TBLASTX alignments (although there did appear to be some drop in exact

exon sensitivity, perhaps an artifact from a bad local alignment). The Gibbs sampler

maintains its high level of specificity and sensitivity in spite of rearrangements. It is

interesting to observe that the gene predictions made by the sampler can therefore be

used to locate rearrangements. Applications include the “seeding” of global multiple

alignment algorithms.

We also performed an experiment to assess how the number of species affected

the performance of the Gibbs Sampler. For a single sequence, the Gibbs Sampler is

equivalent to a single species genefinder and has high sensitivity/low specificity. For

two species, there is a small drop in sensitivity but a significant increase in specificity.

There are small increases in both sensitivity and specificity as we go from two to

three species. The increase in specificity and sensitivity is much larger when we go

from three to four species. We therefore see that increasing the number of sequences
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from two to four leads to a significant improvement in the accuracy of the genefinder.

It will be interesting to see whether there is room for further improvement as more

multiple species data become available.

2.3 Discussion

This chapter describes one of the first genefinding programs for homologous se-

quences from multiple (> 2) species. The running time for the program is O(kNL)

where k is number of sampling iterations, N is the number of sequences and L is the

maximum length of a sequence. We have found that for our application the sampler

converges after six iterations (with the exception of minor changes to some boundary

predictions of exons). The memory used is proportional to the memory requirements

for a single species gene finder (linear in the size of the sequences). Thus, the Gibbs

sampling strategy for gene finding is extremely efficient, especially in comparison to

existing comparative-based gene finding methods which require either a local or global

alignment of the sequences (quadratic time in the lengths of the sequences for a pair

of sequences).

A key feature of the Gibbs sampling approach to gene finding is that the method

is robust with respect to rearrangements. Gene rearrangements (where the order of

genes is not preserved between organisms) have been the Achilles heel of comparative-

based gene prediction programs, because sorting out the rearrangements during an

alignment phase is usually non-trivial. Because the Gibbs sampler only predicts

in one sequence at a time, rearrangements present no problem. In fact, it should

be possible to apply our strategy to infer the locations of rearrangements between

sequences. This should be very useful for annotating multiple Drosophila genomes,

where high transposon activity has resulted in frequent rearrangements. Furthermore,

the approach is robust with respect to gene duplications in any of the sequences.
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Another improvement over other comparative-based based species gene finders is

that the sequences can be of draft quality (some sequence missing, or contigs not

fully assembled). Draft sequence can be annotated irrespective of its order, so contigs

can just be glued together for analysis. This feature should be extremely useful in

the coming years as draft sequence emerges for multiple sequences (primarily from

comparative BAC mapping and sequencing projects).

In the current implementation, we have not taken into account the evolutionary

tree of the species involved. By selecting species which are mutually distant from

each other we have circumvented this problem by effectively treating the sequences

as independent realizations from a GHMM. This is analogous to many of the mod-

els used for motif finding. We have experimented with different weighting schemes

based on phylogeny, and with the possibility of integrating probabilistic phylogenetic

methods into the Gibbs sampling framework, but initial tests indicate that a rather

sophisticated solution will be required. Further analysis along these lines is beyond

the scope of this thesis, but is an obvious direction for future research. Other im-

provements consist of learning more parameters. We are currently exploring the use

of new, flexible gene finders for which we can easily tune the parameters, and with

which we can learn splice site probabilities, transition probabilities to exons and other

gene features. States will also be added for repetitive sequence and conserved non-

coding sequence. As with phylogenetic sampling, the exhaustive search of parameter

space and careful analysis of the best parameters to use for prediction is beyond the

scope of this thesis.

In summary, the results we have obtained are very encouraging and suggest that

the Gibbs sampling approach to gene finding is accurate, scalable, and well suited for

comparative gene finding with multiple organisms.
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Chapter 3

GENEMAPPER : REFERENCE

BASED ANNOTATION

With large scale sequencing of vertebrate, fly and worm genomes now underway,

it is imperative to develop methods that produce high quality annotations of these

newly sequenced genomes. Lack of genome-wide full length cDNA sequences for

these species will make it virtually impossible to completely annotate these genomes

using cDNA based methods such as Aceview[Thierry-Mieg et al., unpublished]. An

alternative approach is to transfer reference annotation from a well-annotated genome

(such as human and D. melanogaster) to other (possibly draft) genomes. We call this

reference based annotation. In fact, annotation systems such as ENSEMBL[Birney

et al., 2004b] already incorporate reference based annotation as part of their gene

prediction pipelines.

The rationale behind the reference based approach is that a lot of resources have

been invested in annotating genomes of model organisms, and it is unreasonable to

expect similar efforts to be expended for the myriad of genomes that are now being

sequenced. The status of current annotation projects for various insect and chordate
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genomes is shown in Table 3.1. In the case of vertebrate genomes, the human genome

provides an excellent source of reference annotations suitable for transfer. In addi-

tion to having extensive numbers of cDNA sequences and a fairly complete RefSeq

gene annotation, the human genome annotation also consists of a manual annotation

component. By contrast, the other vertebrate genomes have insufficient cDNA se-

quence. In fact, many genome projects lack sufficient resources to run some of the

existing ab-initio gene prediction programs. The reference based annotation tool we

have developed, called GeneMapper, can be used in such cases to transfer human

annotations. GeneMapper provides a comprehensive annotation that, as we show, is

surprisingly accurate. A similar argument can be made for other clades. For exam-

ple, Drosophila melanogaster is an extensively studied model organism and there is a

well curated FlyBase database[Drysdale et al., 2005] of supporting annotations. Gen-

eMapper has been used to provide high quality annotations of the newly sequenced

fruitfly genomes by transferring the FlyBase annotations.

GeneMapper has been influenced by and is in the same category of gene-finding

methods as Projector[Meyer and Durbin, 2004]. Projector uses gene annotations from

a reference species as evidence to predict the gene structure in a target sequence. In

analogy to cDNA based methods, Projector aligns mRNA from a reference gene to a

target sequence, however it exploits additional information about splice sites. This is

accomplished by using a pair hidden Markov model to transfer annotations from the

reference species to the target sequence.

GeneMapper uses a bottom up approach to predict the gene structure. First, each

reference exon is aligned to a target genome and these alignments are then joined

to build a gene structure. As exons are much shorter than introns, this approach

makes use of dynamic programming with a fairly sophisticated codon evolution model

to provide detailed alignment of exons. GeneMapper also uses a novel mapping

process that exploits the phylogeny of the reference and target species to obtain more
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Organism ESTs mRNAs RefSeqs Manual Ab-initio
Homo sapiens 6134812 207905 24293 22421 5
Pan troglodytes 4983 947 None None 3
Macaca mulatta 52754 1766 None None None
Canis familiaris 349306 1666 None 45 2
Bos taurus 702434 8046 None None 2
Mus musculus 4686082 241865 18757 5501 3
Rattus norvegicus 701072 23,017 9012 None 5
Oryctolagus cuniculus 28046 2669 None None None
Dasypus novemcinctus None None None None None
Loxodonta africana None 4 None None None
Monodelphis domestica 50 363 None None 1
Gallus gallus 578445 29743 3848 None 4
Xenopus tropicalis 1038272 10712 None None 1
Dan rerio 673076 25094 10689 3546 None
Tetraodon nigroviridis 99 107945 None None 2
Takifugu rubripes 25850 978 None None 1
Drosophila melanogaster 383407 19931 19697 None 4
D. simulans 5013 80 None None 2
D. yakuba 11015 808 None None 2
D. erecta None 6 None None 1
D. ananassae None 11 None None 1
D. pseudoobscura 35042 40 None None 4
D. virilis 663 41 None None 1
D. mojavensis 361 2 None None 1
D. grimshawi None None None None 1

Table 3.1. The table summarizes the annotation status of vertebrate and fly genomes
as of October 2005. The number of EST sequences were obtained from the NCBI
dbEST database [Boguski et al., 1993]. The number of manually annotated genes was
obtained from the VEGA annotation project site[Ashurst et al., 2005]. The number
of genebank mRNAs, RefSeq genes and ab-initio tracks were obtained from the UCSC
genome browser database[Karolchik et al., 2003].

precise annotations. If a gene is to be mapped from a reference species to multiple

target species, GeneMapper makes use of characteristic properties extracted from all

the available orthologous genes in the family. In other words, the program works

with profiles of orthologous genes, which are not unlike protein profiles. The gene

profile is built up progressively as the gene is mapped into successive target species.

Therefore, the profile becomes more complete as the gene is mapped into additional
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target species. The profile is especially useful in mapping genes to evolutionarily

distant species that may have diverged a lot from the reference species. The rationale

behind the profile based approach is that information from all orthologous sequences

results in a more comprehensive representation of the gene than is possible with a

single sequence.

GeneMapper was tested on a set of orthologous human and mouse genes. Results

were compared with GeneWise and Projector annotations. We show that GeneMap-

per outperforms both GeneWise and Projector, and also establish that the addition of

multiple sequences from chimpanzee, rat, and chicken further improves performance

through the use of gene profiles.

3.1 The GeneMapper Algorithm

3.1.1 ExonAligner

GeneMapper is a bottom up algorithm that first predicts the ortholog of each

reference exon in the target sequence and then combines the exon predictions to de-

termine the gene structure. Therefore, the most critical step of the algorithm is to

predict the ortholog of each reference exon by aligning it with the target sequence. A

module called ExonAligner was developed to carry out this step in GeneMapper. Ex-

onAligner takes as input two sequences, the annotated exon from the reference species

and a target sequence containing its ortholog. A fairly intricate dynamic programming

model is then used to align the reference exon with the target sequence. The bottom

panel shows the dynamic programming matrix used by ExonAligner. Only the edges

into top right node are shown. The solid edges represent matches/mismatches and

gaps in codon space. The dotted edges represent translation frame disrupting events

such as frameshifts.
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Reference Exon

Target Sequence

splice sites

(a) Constrained Dynamic Programming in ExonAligner

(b) Dynamic Programming Matrix in ExonAligner

Figure 3.1. The ExonAligner Algorithm

ExonAligner uses a version of the Smith Waterman algorithm to find the best

alignment of the reference exon with a subsequence of the target sequence. Fig-

ure 3.1(a) is a representation of constrained dynamic programming used by Exon-

Aligner. It aligns the reference exon with a subsequence of the target sequence.

In this version of the standard dynamic programming algorithm, overhanging ends

are penalized in the reference exon but not in the target sequence. This subse-

quence is additionally constrained to have splice sites at its ends, which are rep-

resented by blobs in the cartoon. The splice sites are scored using StrataSplice
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(http://www.sanger.ac.uk/Software/analysis/stratasplice/) to improve splice site de-

tection.

ExonAligner uses a special dynamic programming matrix to model the evolution

of codons and to allow for sequencing errors and frame shifts. The dynamic program-

ming matrix is shown in Figure 3.1(b). There are two types of edges in the matrix,

solid edges representing transitions in codon space and dotted edges representing

events that cause disruptions in the translation frame. The solid edges model inser-

tions, deletions and pairing of codons and cover three nucleotides in the X and(or) Y

coordinates. On the other hand, the dotted edges cover one nucleotide in the X or Y

directions. They model events such as sequencing errors and frameshifts which cause

disruptions in the translation frame. As these events are very rare, a big penalty is

charged for traversing these edges.

ExonAligner models the evolution of codons by using 64× 64 matrices, which we

call COD matrices. COD matrices define distances between codons and are very

similar to PAM and BLOSUM matrices [Dayhoff et al., 1978; Henikoff and Henikoff ,

1992] that define distances between amino acids. The COD matrices are learned

from whole genome alignments. In the case of vertebrates, the COD matrices are

extrapolated from human and chimpanzee whole genome alignments. The whole

genome alignment of the human and chimpanzee genomes was obtained from the

UCSC genome browser database[Karolchik et al., 2003]. The alignments of human

genes with the chimpanzee genome were extracted from this data. The gene align-

ments were then used to learn parameters for evolution of codons between human

and chimpanzee genomes. The human/chimpanzee parameters were extrapolated to

obtain parameters for other species.

The ExonAligner algorithm predicts the reference exon’s putative ortholog in the

target species. The putative ortholog is used as a prediction by GeneMapper only
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if its alignment with the reference exon passes a test of statistical significance. The

testing of statistical significance of alignments is a well studied problem. The reader

is referred to the book by Durbin [Durbin et al., 1998] for an overview. ExonAligner

uses the Bayesian likelihood ratio test as its core test. In this test, the calculated score

is the ratio of the likelihood of the alignment in the match model to its likelihood in

the random model. As the score is dependent upon length, short exons may fail to

pass the ratio test. Therefore, ExonAligner also allows highly conserved short exons

to pass the test of statistical significance.

3.1.2 The Pairwise GeneMapper Algorithm

In this section, we describe the pairwise version of GeneMapper that maps gene

annotations from a reference species to a single target species. The GeneMapper

pipeline consists of three stages and is depicted in Figure 3.2. In the first stage, only

the most conserved exons are mapped to the target sequence. At the end of this

stage, an approximate outline of the gene in target sequence is obtained, as depicted

in Figure 3.2(a). In the second stage, this outline is used to predict the orthologs

of exons that are unmapped in the first stage. The exons mapped in the first stage

narrow down the possible locations of neighboring unmapped exons and thus help in

mapping them with more confidence. For example, in Figure 3.2(b), the search for

the third exon in the target sequence can be narrowed down between the second and

fourth exons (which were mapped in the first stage of the algorithm). In the first

two stages, it is assumed that there are equal numbers of exons in orthologous genes

of the reference and target species. But studies [Waterston et al., 2002] have shown

that this is not entirely true. In case of human and mouse, for instance, about 15%

of orthologous genes do not have the same number of exons. Therefore, GeneMapper
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searches for exon splitting and exon fusion events in the third stage. We now describe

in detail each stage of the pipeline.

In the first stage of the GeneMapper algorithm, only the highly conserved ex-

ons are mapped. GeneMapper initially searches for the approximate locations of the

ortholog of each exon in the target sequence by using translated BLAST. If any sig-

nificant hits are found for an exon, the best hit is extended to get an approximate

location of the exon’s ortholog in the target sequence. The ExonAligner algorithm is

then used to predict the exact ortholog of the exon. The alignment of the predicted

ortholog with the reference exon is checked for statistical significance using a combi-

nation of tests described in the previous section. These tests are made quite stringent

so that only the most conserved exons pass them. This choice is made by design as

we are able to obtain an outline of the gene structure in the target sequence that

can be utilized to map less conserved exons more confidently in the next stage of the

algorithm.

In the second stage of GeneMapper, linearity of transcription is used to map exons

that are missed in the first stage of the algorithm i.e. already mapped exons are used

to find out the approximate locations of unmapped exons. The details of the use of

extrapolation to pinpoint the location of unmapped exons are shown in Figure 3.3.

We assume that the gene is in the same strand in both species. If an unmapped exon

has mapped exons both upstream as well as downstream, the unmapped exon should

be mapped between the orthologs of its nearest mapped upstream and downstream

exons. This is depicted in Panel 3.3(a). If only the exons upstream of an unmapped

exon are mapped, then the unmapped exon should be mapped downstream of the

ortholog of its closest mapped exon. This is depicted in Panel 3.3(b). If only the exons

downstream of an unmapped exon are mapped, then the unmapped exon should be

mapped upstream of the ortholog of its closest mapped exon. This is depicted in

Panel 3.3(c). Once the possible location of an unmapped exon has been narrowed
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(a) Step 1: Map the highly conserved exons

(b) Step 2: Use extrapolation to map less conserved exons 

(c) Step 3: Find cases of exon splitting and exon fusion

Reference Annotation

Reference Annotation

Target Sequence

Target Sequence

Target Sequence

Figure 3.2. The three stages of the GeneMapper pipeline. Panel a shows the first
stage, where only the most conserved exons are mapped. Panel b depicts the second
stage, where the algorithm uses exons mapped in the first stage as signposts to map
already mapped exons. In this example, the possible locations of the second and third
exons is narrowed down as they must be between the first and fourth exons. Panel c
shows the last stage, in which the algorithm searches for cases of exon splitting and
exon fusion.
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(a) Extrapolation between predicted exons

(b) Extrapolation downstream of a predicted exon

(c) Extrapolation upstream of a predicted exon

Reference Annotation

Reference Annotation

Target Sequence

Target Sequence

Target Sequence

Reference Annotation

Figure 3.3. Extrapolation in GeneMapper. The blue sequence shows the possible
location of the unmapped exon in the target sequence.

down, translated BLAST and ExonAligner are used to map the exon in the target

sequence by a procedure that is similar to the first stage of the algorithm. However,

the statistical significance tests are made less stringent in the second stage. This is

because the position of the exon was narrowed down using already predicted exons

and this makes us more confident about the accuracy of the prediction.

In the third and final stage of GeneMapper, the algorithm searches for exon fusion

and exon splitting events. For detecting exon fusion, we use the fact that introns must

be of at least a minimum length to maintain the intron splicing reaction. Thus, if

two adjacent exon predictions in the target sequence are closer than the minimum

intron length, they must have fused during evolution. This rule is very effective in
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detecting all cases of exon fusion in the Projector data set. On the other hand, the

rule for detecting exon splitting is comparatively crude and is dependent on having an

accurate alignment of the reference exon with the predicted ortholog. The alignment

is searched for gaps of length greater than the minimum intron length and having

splice sites at their ends. Such gaps are best explained by exon splitting events. The

rules for detecting exon splitting are preliminary and improvements are planned in

future versions of GeneMapper.

3.1.3 Multi species GeneMapper

Several studies [Dubchak et al., 2000; Dewey et al., 2004; Chatterji and Pachter ,

2004; Gross and Brent , 2005] have shown that increasing the number of species help

in improving the performance of comparative ab-initio gene-finding programs. It

therefore appears intuitive that increasing the number of species (and thus increasing

the amount of available data) should enhance the accuracy of evidence based gene-

finding methods. The multiple species version of the GeneMapper algorithm makes

use of two key ideas to improve upon the pairwise algorithm. First, a profile of the

gene is built and updated each time we map the gene into a new target species. The

gene profiles are very similar to protein profiles which are used extensively in protein

informatics. The profiles help us to map genes more accurately into species that are

evolutionarily distant from the reference species. Second, there is a specific order in

which a gene is mapped from the reference species into the multiple target species

and this order is designed to take full advantage of the profile.

Gene profiles are alignments of one or more orthologous genes that are used to

search for new orthologs. As shown in Figure 3.4, gene profiles work in codon space

and each column in the profile contains orthologous codons. As with standard profiles,

a gene profile can include gaps of length 3 that cover a codon. For example, the fifth
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AGT  TTG  GGA  GAA  TCG  TCC  TTT  GGG  AGC  CAT  CTG  CCT  GAC

AGT  TTG  GGA  GAA  TCG  TCC  TTT  GGG  AGT  CAT  CTG  CCT  GAC

AGT  TTG  GGT  GAC  ____  TCT  TTT  GGG  AGC  CAT  CCA  CCT  GAC

Human :

Chimp  :

Mouse  :

Rat  :  AGT  TTG  GGA  GAC  ____  TCT  TTT  GGG  AGC  CAT  CCA  CCT  GAC

Figure 3.4. A gene profile. A portion of the gene profile of the Neurod4 gene or-
thologs in human, chimpanzee, mouse and rat. Each column in the profile contains
orthologous codons and is used to obtain residue scoring matrix for dynamic pro-
gramming. Columns with conserved codons are shown in bold, whereas columns with
synonymous substitutions are italicized.

column in the figure has codon gaps in the mouse and rat sequences. In addition,

a gene profile can contain non-codon gaps that cover one nucleotide. These gaps

account for rare translation disrupting events such as frameshifts and sequencing

errors and are not shown in the figure.

ExonAligner is modified to align gene profiles with sequences. As with pairwise

ExonAligner, COD matrices are used to model the evolution of codons. To evaluate

the residue scoring matrix for the profile, ExonAligner calculates the COD matrices

defining the distances between the codons in the target species and each species in the

profile. The COD matrices are then used to get the pairwise residue scoring matrix

for each species. The residue scoring matrix for the whole profile is the sum of the

pairwise scores. We illustrate the procedure by calculating the residue scoring matrix

for species s at the third column in Figure 3.4. We first calculate the pairwise COD

matrices between s and human, chimpanzee, mouse and rat, and call them CODsh,

CODsc, CODsm and CODsr respectively. The score for codon c is the sum of the

pairwise scores:

CODsh(c, GGA) + CODsc(c, GGA) + CODsm(c, GGT ) + CODsr(c, GGA)

ExonAligner uses two evolutionary models to take into account the variations
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in mutability of codons. The first model represents codons that are under negative

selection and have low mutation rate. The second model represents codons that are

not under any selection pressure and therefore have a high rate of mutability. A

simple heuristic is employed to determine the model for a particular site. The first

model is used if all the mutations in the site are synonymous, otherwise the second

model is used. In addition, the program uses position sensitive gap scores whereby

sites represented by the second model have a lower gap penalty.

The mapping of the gene into each target species takes place in three stages, in

exactly the same manner as described for pairwise GeneMapper. The sequence in

which the target species are mapped is ordered by the evolutionary distance from

the reference species i.e. the gene is first mapped to the target species closest to the

reference species, then to the next closest species and so on. This particular order is

used because it is comparatively easy to map genes to a species that is evolutionarily

close to the reference species than to a species that is more distant. Each time an

orthologous gene is predicted in a target species, it is added to the profile. The

updated profile is a more complete representation of the statistical properties of the

gene family and therefore helps us in getting a more accurate prediction of the ortholog

in the next species.

3.2 Results

GeneMapper was implemented in C and tested on a standard Linux machine. The

running time of GeneMapper on a single gene is O(
Ne∑
i=1

(li)
2), where Ne is the number

of exons in the gene and li is the length of the ith exon. A loose upper bound on

this running time is O(L2), where L is the length of coding sequence in the gene.

However the running time is expected to be appreciably smaller than quadratic for
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multiple exon genes. GeneMapper can be downloaded from the GeneMapper website

(http://bio.math.berkeley.edu/genemapper/).

Two tests were carried out to evaluate the performance of GeneMapper. In the

first test, GeneMapper was compared with GeneWise and Projector, two commonly

used reference based programs. For the second test, a data set of orthologous genes

from the human, chimpanzee, mouse, rat and chicken genomes was created. This

data set was then used to test the hypothesis that adding more species improves

the performance of GeneMapper. The tests are described in detail in the next two

sections.

3.2.1 Performance

GeneMapper was compared with Projector and GeneWise on the Projector data

set[Meyer and Durbin, 2004]. This data set consists of 491 orthologous genes that

are reciprocal best matches between mRNA supported human and mouse ENSEMBL

genes. The set can be divided into two subsets. The first subset contains 465 genes

where the number of exons is the same in the human and mouse orthologs. The second

subset has 26 genes where the human and mouse orthologs have different number of

exons, in some cases due to exon fusion and splitting events. Some of the genes in

this subset were not true orthologs and the data set was refined manually to remove

any such errors.

To compare the performance of the programs, the human annotations were used

to predict the gene structure in the orthologous mouse sequences. GeneWise and

Projector predictions were taken from the Projector paper[Meyer and Durbin, 2004].

The eval package [Keibler and Brent , 2003] was then used to calculate the nucleotide,

exon and gene level sensitivities and specificities of the programs. For more details

about these metrics, the reader is referred to [Burset and Guigo, 1996]. The perfor-
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Program Nucleotide Level Exon Level Gene Level
Sn Sp Sn Sp Sn1 Sp1

GeneWise 99.86 99.91 92.8 93.4 61.3 60.8
Projector 99.78 99.70 94.2 90.5 59.9 59.5
GeneMapper 99.88 99.94 97.2 97.8 81.7 81.7

Table 3.2. The table summarizes the performance of GeneWise, Projector and Gen-
eMapper on the Projector data set consisting of 491 orthologous human and mouse
genes. The human annotations was used to predict the gene structure in the mouse
sequence. Performance is reported in terms of nucleotide, exon and gene level sensi-
tivities and specificities.

mance of the three programs are compared in Table 3.2. The exon level sensitivity

and specificity of GeneMapper is 97.15% and 98.19% respectively and the error rate is

less than half of that of the other programs. The gene level sensitivity and specificity

is improved by more than 20% compared to GeneWise and Projector. We believe that

the primary reason for GeneMapper’s accuracy is the use of a proper exon model for

the alignment and mapping of exons. The results clearly indicate that GeneMap-

per is a significant improvement over existing programs and will be a useful tool for

accurately transferring annotations from reference genomes to the newly sequenced

genomes.

Program Nucleotide Level Exon Level Gene Level
Sn Sp Sn Sp Sn1 Sp1

Pairwise GeneMapper 99.95 99.93 91.3 95.1 52.2 52.2
Multiple Species GeneMapper 99.95 99.93 91.5 95.2 52.6 52.6

Table 3.3. The table summarizes the effect of additional species on the performance
of GeneMapper. To test pairwise GeneMapper, only the human annotations was
used to predict the gene structure in the chicken sequence. For testing the profile
based approach, additional orthologous sequences from the chimpanzee, mouse and
rat genomes were used to create a profile for each gene. The profiles were then
employed to predict genes in the chicken sequences. The table compares the accuracy
in predicting the gene structure in the chicken sequences.

1GeneMapper predicts exactly one gene per reference annotation and the number of predicted
genes is equal to the number of genes in true or gold standard annotation. Consequently, gene
sensitivity is equal to gene specificity for GeneMapper.
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3.2.2 Using additional species to improve performance

The second test used a data set of orthologous human, chimpanzee, mouse, rat

and chicken genes to measure the improvement in accuracy of GeneMapper with

the addition of multiple species. RefSeq annotations of human, mouse and chicken

genomes were downloaded from the UCSC genome browser database [Karolchik et al.,

2003]. The gene set was refined to remove annotations with common errors such as

the absence of start or stop codons. BLAT [Kent , 2002] was then used to find mutu-

ally best hits among the proteomes. The pairwise hits were further joined together

to obtain orthologous triplets of human, mouse and chicken genes. The human and

mouse orthologs were then mapped into the chimpanzee and rat genomes respec-

tively resulting in a set of orthologs from all five species. The data set obtained by

this process consisted of 895 potential orthologous segments from the five vertebrate

genomes. We should note here that this standard method of obtaining orthologs by

reciprocal best hits cannot distinguish between paralogs. However the accuracy of

reference based programs such as GeneMapper is not affected as long as the potential

orthologs are sufficiently conserved.

To assess the performance of pairwise GeneMapper, human annotations were

used to predict the gene structure in the orthologous chicken sequences. For mul-

tiple species GeneMapper, additional orthologous sequences from chimpanzee, mouse

and rat were utilized. The profiles were initialized with the human genes, and were

then used to predict gene structures incrementally in the chimpanzee, mouse and rat

genomes. As gene structures were predicted in each new species, they were added to

the profiles. Finally, the profiles were used to predict the gene structures in the chicken

sequence. The performance of the pairwise and multiple species versions of GeneMap-

per on the chicken genome is summarized in Table 3.3. The table demonstrates that

multiple species GeneMapper is an improvement upon pairwise GeneMapper. We

49



point out later that most of the errors in the predictions are caused by factors that

cannot be corrected computationally. Consequently, it is quite significant that mul-

tiple species GeneMapper is able to correct 18 wrong exon predictions of pairwise

GeneMapper with just three additional species. We thus believe that with the ad-

dition of more species, multiple species GeneMapper will comes close to the limit of

computational reference based methods.

3.3 Discussion

We have shown that GeneMapper is able to transfer reference annotations with

remarkably high accuracy and is a substantial improvement over existing programs.

This suggests that reference based gene finding is a feasible approach for accurately

annotating the large number of genomes that are now being sequenced.

It is important to note that the idea of transferring annotations is not a new

concept and methods such as DPS, Procrustes, GeneWise, Genomescan and Projec-

tor have been designed to perform exactly the same task. GeneWise and Procrustes

align proteins with genomic sequences from target species. The principal disadvan-

tage of the protein alignment approach is that it does not utilize information about

exon/intron boundaries and therefore does not perform very well on less conserved

genes. On the other hand, methods such as Projector and GeneMapper utilize the

exon/intron structure of the gene and thus are more accurate in identifying splice

sites. However, it should be noted that GeneMapper and Projector are not suitable

for mapping genes from very distant species where the exon/intron structure of the

gene might not remain conserved. For example, if one wants to find the homolog of

a novel fruitfly gene in the human genome, it is probably best to use methods such

as Procrustes and GeneWise.
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Both GeneMapper and Projector use the exon/intron structure of the gene to

predict the ortholog of a reference gene in a related species, but they have different

approaches to the prediction problem. Projector uses the Viterbi algorithm for a

pair hidden Markov model to predict the gene structure. Since the running time of

the Viterbi algorithms for pair hidden Markov models is quadratic, Projector uses

a heuristic to decrease the search space. On the other hand, GeneMapper uses a

bottom up algorithm that first maps each exon and then joins the exon predictions

together to obtain the gene structure. As exons are much shorter than introns, a more

sophisticated model can be used for the exon alignment. The optimal alignment is still

obtained using dynamic programming, albeit a more complex one. We believe that

the use of our exon alignment model makes GeneMapper more accurate compared

to Projector. Furthermore, unlike Projector, GeneMapper models sequencing errors

and frameshifts and we believe that this makes GeneMapper more suitable for draft

genomes.

When a gene has to be mapped into multiple species, GeneMapper uses profiles

to obtain a more complete characterization of the gene and thus make more precise

predictions. This is because a profile of orthologous genes can help us in obtaining

much more information about the gene family than a single reference gene. We show

that the use of additional species and the application of the profile based approach

outperforms the pairwise approach. The use of profiles is particularly appropriate for

annotating the newly sequenced vertebrate, insect and worm genomes as the profile

can exploit information from all related genomes while making gene predictions.

Even though GeneMapper is remarkably accurate and has an error rate of less

than 3% in transferring exons from human genes to orthologous mouse sequences, we

investigated the sources of these errors to gain more insight into the GeneMapper

algorithm. Most errors can be classified into the following categories:
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1. Highly divergent exons : Exons that have diverged a lot between the reference

and the target genes are not able to pass the statistical significance tests of

ExonAligner. This is because a choice was made of reporting only highly reliable

predictions at the cost of missing a few true exons.

2. Exon Splitting : As described in Section 3.1.2, GeneMapper’s procedure for

detecting exon splitting is comparatively crude and depends on the accurately

aligning the reference exon with the orthologous target sequence (which contains

an inserted intron). The presence of the inserted intron makes it difficult to

accurately align these regions, especially if it is a long intron. Such wrongly

aligned exons are partially predicted and this problem can probably be solved

by having a more sophisticated alignment model that allows inserted introns.

3. Assembly and sequencing errors : The GeneMapper algorithm is unable to

account for certain assembly and sequencing errors. For example, we found

many cases of duplicated chicken exons, most probably due to errors in the

assembly. In such cases, there is no way to distinguish between the duplicate

exons and the prediction is made randomly among the duplicates. GeneMapper

also constrains the predicted exons to have splice sites at their ends. Therefore,

we are unable to deal with sequencing errors at splice sites.

4. Differential splicing : Differential splicing in the reference and target species

can also cause errors in GeneMapper predictions. For example, if an exon

is transcribed in the reference species but its ortholog is not transcribed in

the target species, GeneMapper predicts a wrong exon in the target species.

However, it is not clear whether this is a wrong prediction considering that this

exon might be part of an alternate transcript in the target species. In fact, it is

an open question whether alternative spliced forms are conserved among related

species such as human and mouse, and we believe that GeneMapper predictions
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could be an appropriate starting point for any experiment that seeks to answer

this question.

An analysis of these errors will facilitate future improvements in GeneMapper. For

example, we intend to work on statistical significance tests that are able to do a better

job in discriminating between true and false exon predictions. Future enhancements

of GeneMapper will also include improved handling of exon splitting. GeneMapper

only transfers the coding sequence of a reference gene to a target sequence. We intend

to modify GeneMapper to map 5’ and 3’ untranslated regions(UTRs). This will

also help in mapping short initial/terminal coding exons, which are more divergent

compared to internal exons.

Although, as we have pointed out, there is still room for improvement, we believe

that multiple species GeneMapper comes close to the limit of gene prediction accuracy

possible with computational reference based gene finding.
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Chapter 4

EVOLUTION OF GENE

STRUCTURE

The ultimate goal of this thesis is to systematically study the evolution of

gene structure in eukaryotic genomes by using the multiple mammalian and fruit-

fly genomes that are currently available to us. To perform any such study, we need

accurate gene annotations in all the genomes being studied. As discussed in Chapter

3, scarce experimental evidence in many of these newly sequenced genomes necessi-

tates the development of computational annotation methods. In Chapters 2 and 3, we

have developed algorithms for accurate gene prediction. We now develop a pipeline

that utilizes these methods to annotate protein coding genes in the newly sequenced

genomes. In Sections 4.2 and 4.3, these annotations are used for studying gene struc-

ture evolution in eukaryotic genomes. We use our annotations to study variations in

the rates of intron gain and loss in various clades. We then test various previously

proposed mechanisms of intron gain and loss. We also try to find the relationship of

gene structure changes to gene duplications and selection pressure.
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4.1 Annotation Pipeline

We have developed an annotation pipeline for predicting protein coding genes in

target genomes by transferring annotations from a well curated reference genome. The

steps of this reference based pipeline are depicted in Figure 4.1. Initially, homology

maps identifying evolutionary relationships between reference and target genomes are

created. These homology maps are used to determine the approximate location of

the ortholog of each reference gene in the target genomes. GeneMapper then uses the

orthology information and reference annotations to annotate the target genomes. In

the process, multiple alignments of each reference gene and its orthologs in the other

genomes are also created. We now discuss these steps in greater detail.

4.1.1 Generation of Homology Maps

Mercator (http://bio.math.berkeley.edu/mercator/) was used to create an initial

orthology map relating the reference and target genomes. The large scale evolutionary

relationships detected by Mercator may be incomplete because of various factors.

For instance, Mercator uses genomic landmarks or anchors to identify evolutionary

relationships between various genomes. As a result, incomplete anchor coverage might

lead to an incomplete homology map. In addition, homologous segments with low

sequence identity might also be missed. Lastly, Mercator mainly identifies large scale

evolutionary relationships between the target and reference genomes. Consequently,

the program might not be able to detect small scale rearrangements and inversions.

As some evolutionary relationships might be missed by Mercator, we extend the

Mercator orthology map by using extrapolation. The extrapolation algorithm is de-

picted in Figure 4.2 and is similar to the extrapolation algorithm in the second stage

of the GeneMapper algorithm (cf. Section 3.1.2). For example, if an unmapped re-
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Figure 4.1. The gene prediction pipeline.
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(a) Extrapolation between mapped regions

(b) Extrapolation downstream of a mapped region

(c) Extrapolation upstream of a mapped region
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Reference Genome
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Figure 4.2. Extrapolation in the annotation pipeline.

gion had mapped regions both upstream and downstream, we looked for the orthologs

of the unmapped region between the orthologs of its nearest mapped upstream and

downstream region (Figure 4.2 (a)). However, there is a subtle difference between this

algorithm and the extrapolation used in the GeneMapper algorithm. While extending

the Mercator homology maps, we search for homologous regions in both strands and

this helps us detect inversions that might have been missed by Mercator. Note that

this is not required in GeneMapper as all the exons of a gene are in the same strand.
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4.1.2 Annotations and Gene Alignments

The extended orthology map created in the previous step was used to determine

the approximate location of the ortholog of each reference gene in the target genomes.

GeneMapper was then used to annotate every target species by transferring the ref-

erence annotation to the target genome. Separate clade specific parameters were

used for fly and mammalian genomes. In the case of mammals, the COD matri-

ces were calculated from human-chimp whole genome alignments, whereas fruitfly

specific parameters were calculated from Drosophila melanogaster-Drosophila yakuba

whole genome alignments. A description of COD matrices and their derivation from

whole genome alignments is provided in Section 3.1.

As discussed in Section 3.1.3, GeneMapper iteratively creates a gene profile of

orthologous genes while transferring genes from the reference species to multiple target

species. The use of the profile helps us map genes accurately to evolutionarily distant

species. In addition, the profiles are used to create gene alignments for each reference

gene. The gene profile that is created by GeneMapper while transferring annotations

is essentially an alignment of the reference gene and its orthologs. Therefore, the

gene profile can be used to guide a gene alignment to study gene evolution. Unlike

global alignment programs that are not conscious of the patterns of gene evolution,

GeneMapper carefully models the evolution of genes, taking into account the fact

that they have a codon structure and splice sites (Figure 3.1). The evolution of

codons is modeled using 64×64 COD matrices. Furthermore, GeneMapper uses exact

dynamic programming while adding each ortholog to the gene profile. Consequently,

GeneMapper gene alignments are much more accurate compared to gene alignments

obtained from global alignment programs. We provide these gene alignments as a

resource for researchers studying the evolution of genes and they are available on the

GeneMapper website (http://bio.math.berkeley.edu/genemapper/).
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4.1.3 Determination of Gene Structure Changes

The main application of the annotations generated by the pipeline is to inves-

tigate gene structure evolution in eukaryotes. As a result, it is imperative for the

annotation pipeline to reliably detect changes in gene structure. However, as dis-

cussed in Section 3.1.2, the stand alone version of GeneMapper has a comparatively

crude algorithm for detecting inserted introns. The algorithm assumes that we have

an accurate alignment of the reference exon and the target sequence (containing an

inserted intron). However, the dynamic programming alignment algorithm used by

GeneMapper can misalign such exons, especially if the inserted intron is long. This

problem is illustrated in Figure 4.3. Panel (a) shows the true alignment when there

is an inserted intron in the target sequence. The true alignment should align the cod-

ing sequences with a gap for the inserted intron. However, a dynamic programming

algorithm that doesn’t allow for inserted introns would produce a misalignment, as is

illustrated in Panel (b). Consequently, we have modified the GeneMapper algorithm

to detect such misalignments and thus accurately detect exon splitting events and

the modified algorithm is described below.

The reference exon and the target sequence are first aligned using the dynamic

programming algorithm described in Section 3.1.1. This algorithm doesn’t take into

account the possibility of inserted introns in the target sequence and can therefore

cause misalignments (cf. Figure 4.3(b)). We detect such misalignments by making

the following observation: if the alignment algorithm aligns the exon only partially

(due to the presence of an inserted intron), either the 5′ or 3′ end of the reference

exon will be aligned to the target intron. Consequently, the alignment should have

low sequence identity at one of the boundaries. For example, in Figure 4.3(b), the

3′ end of the reference exon is aligned to the intron and the alignment should have

low sequence identity at the 3′ end. Therefore, we can look at the boundaries of the
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Reference Exon

Target Sequence

Inserted Intron

Reference Exon
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(a) An example of inserted intron and the true alignment.  

(b) An example of mis-alignment due to an inserted intron

Figure 4.3. An example demonstrating the problem of accurately aligning orthologous
coding sequences with inserted introns. Panel (a) shows the ”true” alignment. The
target sequence orthologous to the reference exon contains two exons (colored red)
and an inserted intron (colored black). Panel (b) illustrating the misalignment that
can be caused if a naive alignment algorithm (that doesn’t allow inserted introns) is
used to align the reference exon and the target sequence. This algorithm aligns the
reference exon with one of the target exons and the contiguous intronic sequence.

alignments to find misalignments (due to inserted introns). The misaligned exons are

realigned by employing a pair-HMM based algorithm described below.

The states of the pair-HMM and the transitions between the states are depicted

in Figure 4.4. The evolution of coding sequences is modeled in a manner similar

to ExonAligner (Section 3.1.1). In addition, we have an inserted intron state (IN)

to model the inserted intron. The Viterbi algorithm is then used to find the best

alignment between the reference and target exon. The running time of the Viterbi

algorithm on this pair-HMM is cubic in the length of the sequences. As a result,

we use this algorithm only to realign misaligned exons detected by the algorithm
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Figure 4.4. The pair-HMM used to align reference exons and target sequence with
an inserted intron. S and E are the standard start and end states of pair-HMMs. To
keep the figure simple, we have collapsed the states used to model evolution of coding
sequences into dotted squares. Each inbound edge into a dotted square implies that
there are corresponding inbound edges into every state inside the square. Similarly,
every outbound edge from each dotted square represents corresponding outbound
edges from every state in the dotted square. The states in the each dotted square
and the transitions between them are equivalent to the dynamic programming matrix
in Figure 3.1(b). Each square has the standard match(M), insert(I) and delete(D)
states of standard pair-HMMs. In addition, the F state is used to model frame shifts.
The intron state(IN) is used to model the inserted intron in the target sequence.

described above. It is also important to notice that the algorithm cannot detect

multiple inserted introns. Therefore as discussed earlier, the GeneMapper algorithm

is not suitable when the gene structure has changed drastically.

Tandem Repeats : Tandem repeats are two or more adjacent and approximate

copies of a sequence of nucleotides. There is a widespread tandem repeat polymor-

phism in human protein coding genes [O’Dushlaine et al., 2005]. We also found a

lot of inter-species variation in tandem repeat length and our algorithm for finding

inserted introns predicts some tandem repeats (in the target sequence) as inserted

introns. Consequently, we use the program Tandem Repeat Finder [Benson, 1999] to

remove any tandem repeats that have been incorrectly predicted as inserted introns.
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4.1.4 Reconstructing the Evolutionary History of Introns

To understand the biology of intron gain/loss, it is necessary to reconstruct the

evolutionary history of introns in genes undergoing structure changes. The evolution-

ary history of an intron can be reconstructed by comparing the presence/absence of

the intron in the phylogenetic tree relating the orthologous genes. There are two ap-

proaches to reconstructing this evolutionary history from the phylogenetic tree. The

maximum parsimony approach [Rogozin et al., 2003; Nielsen et al., 2004] infers the

evolutionary history that can explain the phylogenetic tree most parsimoniously in

terms of intron gain and loss events. The parsimony approach assumes that introns

gain and loss are comparatively rare. However, if species being studied are phyloge-

netically sparse, the parsimony approach may give incorrect or ambiguous answers

because of parallel intron gain and loss. On the other hand, the maximum likelihood

approach [Roy and Gilbert , 2005a; Qiu et al., 2004; Nguyen et al., 2005] infers the

evolutionary history with the highest probability according to a particular model of

intron evolution. The results of the likelihood approach depend on the assumptions

in the underlying model and different likelihood models infer vastly disparate results

for phylogenetically diverse data sets such as the one in Rogozin et al. [2003].

In this thesis, we work with phylogenetically dense data sets where we can make

inferences about the evolutionary history of an intron with high confidence by using

parsimony. Indeed, gene structure changes among related species are so rare that the

location of intron gain/loss could be identified by manual inspection of the phyloge-

netic tree. We use GeneMapper annotations to identify genes that underwent gene

structure changes. For each instance of intron gain and loss, the presence/absence of

the intron in each species was used to label the leaves of the phylogenetic tree relating

the species. A parsimony analysis similar to Rogozin et al. [2003] was then used to

locate intron gain and loss in the tree.

62



4.2 Gene Structure Evolution in Mammals

The ENCODE Project [Feingold et al., 2004] aims to study functional elements

by rigorously analyzing a portion (about 1%) of the human genome. 44 regions across

the human genome were chosen for investigation. The ENCODE project, although

focused on the identification of functional elements in the human genome, offers an

unprecedented opportunity to study the evolution of functional elements. A key part

of the project has been the sequencing of multiple species orthologous to the hu-

man sequence. The September 2005 release of ENCODE contains 546 Mb of genomic

sequence from 44 vertebrates. This includes about 500 Mb of sequences from 38 mam-

malian genomes. In addition, the human ENCODE sequences have been rigorously

annotated as part of the GENCODE project (http://genome.imim.es/gencode/).

Thus the dense phylogenetic sampling of genomes in the ENCODE regions offers an

unprecedented opportunity to study the evolution of gene structure in mammalian

genomes.

The ENCODE sequences have a well curated set of human annotations. How-

ever, ENCODE sequences in non-human species have little experimental evidence to

support gene annotation. Therefore, human GENCODE annotations were used as a

reference to annotate the non-human sequences. We have also generated high qual-

ity alignments of the GENCODE genes which should be a useful resource for other

studies of gene function and structure. All these resources are publicly available at

the supplementary website (http://bio.math.berkeley.edu/genemapper/encode).

GeneMapper annotations were used to search for changes in gene structure in

the mammalian sequences. Because this is a comparatively small data set, all cases

of putative gene structure change were manually verified for any discrepancies. A

phylogenetic analysis of gene structure changes in the mammalian lineages was used

to identify 11 genes with instances of intron loss (Table 4.1). No intron gains were
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Gene ENCODE Region Species Introns Lost
RP11-126K1.1 ENr231 Rat 1
AC009404.1 ENr121 Mouse, Rat 1
AC116366.3 ENm002 Rat 1
RP11-505P4.2 ENr223 Shrew 2
XX-FW83128A1.1 ENm006 Shrew 1
XX-FW83563B9.3 ENm006 Bat 1
AF277315.16 ENm006 Shrew 1
AP001187.10 ENr332 Mouse, Rat 1
AC011330.7 ENr233 Rat 1
AC018512.8 ENr233 Mouse, Rat 3
AP000313.5 ENm005 Shrew 2

Table 4.1. Intron loss events in the ENCODE regions.

observed. Some genes were found to have lost more than one intron, resulting in 15

distinct cases of intron loss. A single instance of intron loss was detected in the bat

lineage whereas the rest of the instances of intron loss were in the rodent (mouse/rat)

and shrew lineages. A particularly interesting example is the gene AC018512.8 (a

microfibrillar-associated protein), where the second and third introns were lost in the

mouse lineage and the fourth intron was lost in the rat lineage. In fact, introns are

lost in this gene in fugu and zebrafish also. This example suggests the presence of

hot-spots for structural changes.

The dense phylogenetic sampling in the ENCODE regions allows us to infer the

evolutionary history of an intron with high confidence. The only previous gene struc-

ture evolution study in mammals was done in human, mouse and rat, with fugu as

the out-group [Roy et al., 2003]. To illustrate the limitations inherent in using such

a phylogenetically sparse species set, it is instructive to analyze the fourth intron of

the gene AC018512.8, where introns are lost in both fugu and rat. Without more

species, it is impossible to decide with confidence whether these events are due to

parallel intron gains in human/mouse or intron losses in fugu and rat. However, a
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phylogenetic analysis of the gene structure in all the ENCODE species makes it clear

that the scenario of two intron losses is the most parsimonious explanation.

Rates of Intron Gain/Loss : It is apparent from the results above that intron

loss occurs at a much higher rate compared to intron gain in mammalian lineages.

In fact, to the best of our knowledge, no instance of recent intron gain has been

detected in mammalian lineages. It also appears that some lineages (such as rodents

and shrew) have a much higher rate of gene structure change compared to other

lineages (such as primates). The difference in rates might be related to differences in

generation times. These observations are consistent with results in a previous study

comparing the structure of human and rodent genes [Roy et al., 2003].

Mechanisms of Intron Loss : The classical theory of intron loss states that

introns are lost by recombination of reverse transcribed mRNA transcript with the

genome [Bernstein et al., 1983]. As reverse transcriptase operates from the 3’ to 5’

end and may terminate prematurely, this theory predicts that more introns should be

lost from the 3’ end compared to the 5’ end. Because of the involvement of reverse

transcriptase, this theory also predicts that many introns should be lost in tandem.

While we did not find that the lost introns show bias towards the 3 end of genes, all

the cases of multiple intron loss did occur in tandem. An alternative theory of intron

loss hypothesizes that introns are lost by genomic deletion [Kent and Zahler , 2000;

Cho et al., 2004]. This theory predicts that intron lost is inexact in which a small

number of codons are added or lost from the flanking coding sequence. However, all

the intron losses in our data set are exact.

Gene Expression : For a gene structure change to be passed on to subsequent

generations, it has to occur in the germline. Indeed, it has been previously observed

[Coghlan and Wolfe, 2004] that genes expressed in the germline are more susceptible

to gene structure change. Gene expression levels in 79 human and 61 mouse tissues
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were obtained from the GNF Gene Expression Atlas 2 [Su et al., 2002]. For each gene

with gene structure change, the maximum expression level across all germline tissues

was compared to the median value across all tissues. It was found that all the genes

had moderate to high expression levels in at least one germline tissue (more than

0.9 above the median on the log scale). Of these genes, four were highly expressed

(more than 2 above the median on the log scale). It should be pointed out that it is

possible that the genes with moderate expression levels might be expressed at higher

levels in other germline tissues. This is because not all the genes were covered by

the mouse experiments and the coverage of some other genes was incomplete. It is

also possible that these genes are expressed in tissues that were not sampled in the

experiment. Furthermore, some of the gene structure changes occurred in the rat,

shrew and bat lineages and expression levels might have changed in these species. In

any event, the evidence seems to indicate that genes that have undergone structural

change are expressed in at least moderate levels in germline cells.

Selection : GeneMapper was used to create multiple alignments of all GENCODE

genes and their orthologs. We used these alignments to measure ω, the ratio of

synonymous and non-synonymous substitution rates for the genes undergoing gene

structure evolution. The value of ω is a measurement of the nature of selection

undergone by a gene. If ω << 1, a gene is likely to be under purifying selection. On

the other hand, a value of ω >> 1 suggests that a gene is under positive selection. As

the biological functions of most genes are expected to be conserved during evolution,

genes are expected to be under purifying selection. All the 11 genes with intron loss

were under strong to moderate purifying selection (ω < 0.20). In addition, 6 genes

were under very strong purifying selection (ω < 0.05). Therefore, it appears that

changes in gene structure evolution are not related to any drastic changes in coding

sequence.

Gene Duplication : It has been suggested that intron gain/loss is accelerated
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AC011330.7

AC018512.8AC116366.3

AP001187.7

HUMAN MOUSERAT

RP11-126K1.1

Figure 4.5. The relationship between duplication events and intron losses. Each
gene is assigned a separate color. Colored edges on the tree show when intron losses
occurred. The stars and plus signs show when retro-transposition events and local
duplication events occurred. The locations of the symbols and edges indicate the
relative order of the associated events. The gene AC018502.8 (green) is interesting
because intron loss occurred twice in separate introns (one in the mouse and the other
in the rat). In the mouse lineage, both the loss of the intron and local duplication
occurred after separation from the mouse/rat ancestor. Moreover, we were able to
infer that the duplication event occurred after the intron loss

in genes with duplications as a result of a reduction in selective pressure [Castillo-

Davis et al., 2004; Lin et al., 2006]. If this hypothesis is true in mammalian lineages,

most cases of intron loss should follow gene duplication. We tested this hypothesis

by studying duplication events in the six genes with intron loss in mouse and rat

using the complete genome sequences available for those species. We searched for

homologs of each gene in the human, mouse and rat genomes using BLAT [Kent ,

2002]. Four genes had multiple copies in at least one of the three genomes. For each

gene with a homolog, the homolog with the highest sequence identity was identified as

the one formed by the most recent duplication event. The location of the duplication
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event as well as intron loss was then identified on the phylogenetic tree relating the

three species. This association of gene duplication with intron loss is depicted in

Figure 4.5. It is interesting to note that in two genes (AC009404.1 and AC018512.8),

the most recent duplication event occurred after the intron loss. In two other genes

(AC011330.7 and RP11-126K1.1), the most recent duplication occurred in the human

lineage (which had no structure change). It is also interesting to note that all the genes

are under strong or moderate purifying selection. Therefore, all available evidence

indicates that intron loss does not occur due to relaxation of selection pressure (caused

by duplication). But it appears that genes undergoing intron loss are also susceptible

to duplication and that indeed, many of the duplication events may occur after intron

loss.

Summary : Our study of the mammalian lineages provides evidence that gene

structure changes may not be caused by reduction of selection pressure due to du-

plication. In fact, we show that many duplication events occur after gene structure

change. Our conclusions are also supported by the fact that all the genes with gene

structure change are under purifying selection (ω < 0.20). In addition, it appears

that genes with intron loss are susceptible to duplication. This provides evidence for

a common underlying cause for intron loss and gene duplication. We speculate that

changes are induced by a mechanism mediated by reverse transcriptase. The fact

that the genes we identified are moderate to highly expressed in germline cells is also

consistent with a reverse splicing mechanism.

The data set used in this study was comparatively small and a follow-up study

based on larger amounts of data expected from the forthcoming phase of the ENCODE

project will be necessary (and, we believe sufficient) for reaching definitive conclusions

about gene structure evolution in mammals.
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4.3 Gene Structure Evolution in Diptera

The sequencing of twelve fruitfly genomes (http://rana.lbl.gov/drosophila/) offers

another opportunity to study gene structure evolution. A comparison with mammals

also allows us to study variation in the mode of gene structure evolution. Among

these twelve genomes, Drosophila melanogaster is well annotated by FlyBase [Drysdale

et al., 2005], whereas other species have comparatively sparse experimental evidence

for gene annotation. Consequently, we have used the D. melanogaster FlyBase gene

annotations as a reference to annotate the other fruitfly genomes. Gene alignments

for each FlyBase protein coding gene and its orthologs were also generated at this

step.

To study gene structure evolution in diptera, we have used closely related species

in the Melanogaster subgroup (Figure 4.6). The phylogenetic relationship between

D. melanogaster, D. yakuba and D. erecta is unsettled [Daniel A. Pollard, personal

communication]. This is because many gene trees are not consistent with the branch-

ing in the consensus species tree. However, D. annanassae is unequivocally an out-

group for these three species. Therefore, we have used pairwise comparisons between

these three species and employed D. annanassae as an out-group to detect evolu-

tionary history of introns. Specifically, we have compared gene structures of ortholo-

gous D. melanogaster and D. yakuba genes and also the structures of orthologous D.

melanogaster and D. erecta genes to find recent cases of intron gain and loss. Since

these three species are separated by less than 6 million years, we can assume that

cases of parallel intron gain and loss are non-existent. Consequently, a parsimony

based analysis should accurately retrieve the evolutionary history of introns.

A pairwise comparison of gene structure in the three species in the Melanogaster

subgroup (D. melanogaster, D. yakuba and D. erecta) found 87 cases of intron loss

and 161 cases of intron gain. This suggests that the dipteran genomes are gaining
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D. ananassaeD. yakubaD. erectaD. melanogaster

Figure 4.6. The consensus tree relating the species used to study gene structure
evolution in diptera. The phylogenetic relationship between D. melanogaster, D.
yakuba and D. erecta is unsettled because the consensus species tree is incongruous
with many gene trees.

introns at a faster rate than they are losing introns. In contrast, our study in mam-

malian genomes (Section 4.2) found no cases of intron gain. In fact, to the best of

our knowledge, no case of recent intron gain has ever been reported in mammalian

genomes. Our study indicates that there is great diversity in the mode and tempo of

gene structure evolution between eukaryotic clades. Our data set is also one of the

largest data sets of recently gained/lost introns in eukaryotic genomes. We have used

this comparatively large data set to study the statistical properties of the recently

gained and lost introns, and infer any stochastic process underlying intron gain and

loss.

Intron Lengths : The lengths of recently lost introns are shown in Figure 4.7

(a). The distribution is similar to the distribution of lengths of all introns in the D.

melanogaster genome [Deutsch and Long , 1999], with a peak between 50 and 70 bp.

However the length distribution is not smooth as the number of data points in the

sample is comparatively small. The number of inserted introns is much higher and
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(a) (b)

Figure 4.7. The lengths of recently gained and lost introns in the Drosophila subgroup.
Panel (a) shows the distribution of lengths of 87 introns that have been lost in the
Melanogaster subgroup whereas Panel (b) shows the distribution of lengths of 161
recently gained introns.

the length distribution is much smoother with a peak between 50 and 70 bp. This

distribution is also similar to the distribution of length of all introns in the genome.

Therefore it appears that there is no bias in the length of introns that are being lost

and gained in Drosophila genomes.

Intron Phases : The phases of inserted and lost introns have profound implica-

tions on the theories of the origin of introns [e.g. Long et al., 1995]. About 42% of

Drosophila introns are phase zero (compared to 33.3% that would be expected if there

was no phase bias). This phase bias is also observed in other eukaryotic genomes.

The abundance of phase zero introns has been used to support the introns early or the

exon theory of genes. The excess of phase zero introns is conjectured to be the legacy

of exon shuffling events. It is argued that in the event that genes were assembled

through exon shuffling, an exon shuffling product would be viable only if the all the

introns were phase zero, otherwise the resultant gene will have frame-shifts and will

code for an in-viable protein. However, there can be alternative explanations for the

excess of phase zero introns in eukaryotic genomes. For example, intron insertion can

be phase biased [e.g. Coghlan and Wolfe, 2004]. It has also been suggested that the
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excess of phase zero introns is due to their selective advantage [Lynch, 2002]. We now

use our data set to test the merits of these theories.

The phase bias in the introns that have been lost and gained recently in the

Melanogaster subgroup is shown in Figure 4.8. We found that that phase zero introns

were preferentially gained and lost. We found that about 50% of recently inserted

introns were phase zero (compared to 42% that would be expected by chance). There

was an even greater likelihood for phase zero introns to be lost and about 62% of

the recently lost introns were phase zero. Therefore, we did not find any evidence for

selective advantages of phase zero introns. But we did not have enough evidence to

either substantiate or refute the other two theories. It is clear that a phase zero bias in

the inserted introns. However, there is an even greater phase zero bias in the introns

that are being deleted. Consequently, it is not clear whether the excess of phase zero

introns are due to phase biased insertion or due to the legacy of exon-shuffling events.

We should also point out that the phase zero bias might be related to some diptera

specific mechanism of intron gain and loss. A more extensive study examining these

biases in multifarious eukaryotic clades might help us answer these questions more

precisely.

Intron Positions : The preferential loss of 3’ introns has been observed in some

eukaryotic genomes and is used to support the reverse transcriptase mediated theory

of intron loss [Roy and Gilbert , 2005c]. It has also been observed that there is an

excess of 5’ introns in eukaryotic genomes [Sakurai et al., 2002; Lin and Zhang , 2005].

We now try to explain the molecular mechanisms behind patterns by looking at the

positions of recently gained and lost introns in the coding sequence. For each inserted

and lost intron, we compiled its position in the coding sequence. As in Sakurai et al.

[2002], the position of each intron within its host gene is mapped into a (0,1) interval

relative to its coding sequence length. The fraction of the introns in each quarter is

displayed in Figure 4.9. As has been previously observed in Lin and Zhang [2005],
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Figure 4.8. The phases of recently gained and lost introns in Diptera. The chart
shows the fraction of all Drosophila melanogaster introns, recently gained introns and
recently lost introns in each of the three phases.

we can see that there is an excess of 5’ introns in the genome with around 31% of

the introns in the 5’ quarter of the gene. In contrast, only 16% of lost introns are in

the 5′ quarter and 30% of these introns are in the 3′ quarter. Therefore, 3′ introns

seem to be preferentially lost in the Drosophila lineage. We are not able to detect any

significant bias in the positions of inserted introns. However, it appears that introns

are more likely to be inserted in second and third quarters (56% of the introns) and

less likely to be lost in the first and fourth quarters (44% of the introns). Our findings

suggest that the 5′ bias in intron positions is due to preferential loss of 3′ introns and

not due to any significant bias in the position of inserted introns. We believe that this

result is significant support for the reverse transcriptase mediated theory of intron

loss.

Mechanisms of Intron Gain and Loss : In Section 1.2.3, we discussed various

theories that have been proposed to explain the gain and loss of introns. Each of these

theories makes certain testable predictions about the pattern of intron loss. We now
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Figure 4.9. The positions of recently gained and lost introns in each quarter of the
coding sequence. The chart shows the fraction of all Drosophila melanogaster introns,
recently gained introns and recently lost introns in the each quarter of the coding
sequence.

test these predictions on our data set and thus make inferences about the mechanisms

of intron gain and loss in dipteran lineages.

The transposon theory of intron gain [Crick , 1979] postulates that novel in-

trons arise by insertion of transposons. To test this theory we searched for

transposable elements in the recently gained introns by using RepeatMasker

(http://www.repeatmasker.org). 3 of the 161 newly inserted introns were found to be

transposons. Therefore, it seems that even though some novel dipteran introns are

formed by insertion of transposable elements into genes, this mechanism is used very

rarely.

The alternative duplication theory of intron gain [Tarrio et al., 1998] proposes

that new introns are formed by duplication of existing introns. To test this theory we

used BLAT [Kent , 2002] to search our data set of inserted introns for matches with

existing introns. No duplications were found. Therefore, we are unable to obtain any

support for the duplication theory in dipteran genomes. It is interesting to note that
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this theory was proposed by looking at the gene structure of a single gene (Xanthine

Dehydrogenase) in dipteran and related genomes. It was found that the novel intron

in Drosophila willistoni was formed by a duplication of an existing intron. However,

our systematic study clearly proves that this mechanism isn’t widespread in dipteran

genomes.

As discussed earlier in this section, we have found support for the reverse tran-

scriptase mediated theory of intron loss [Bernstein et al., 1983]. Reverse transcriptase

works from the 3’ to 5’ end of a gene and therefore predicts a 3’ bias in intron loss.

Earlier in this section, we detected considerable preferential loss of 3’ introns (Figure

4.9). In addition, we find that there is no bias in the positions of inserted introns.

Consequently, the 5′ bias in intron positions in eukaryotic genomes can be explained

by this theory. Our study clearly provides substantial evidence for the reverse tran-

scriptase mediated theory of intron loss.

In contrast, we couldn’t find any evidence confirming the deletion theory of intron

loss [Kent and Zahler , 2000; Cho et al., 2004]. This theory predicts that intron loss

is inexact and a small number of codons are added or lost from the flanking coding

sequence during intron deletion. To test this theory, we looked at gene alignments

around the lost introns. No introns with inexact intron loss were found and this

evidence suggests the absence of the deletion mechanism of intron loss in dipteran

lineages.

Summary : Most previous studies about gene structure evolution compared gene

structures in phylogenetically diverse species. In fact, previous whole genome gene

structure evolution studies compared species that are at least 100 million years apart

[Nielsen et al., 2004; Coghlan and Wolfe, 2004; Castillo-Davis et al., 2004; Roy and

Hartl , 2006]. In contrast, our study compares species that are around 6 million years

apart. Therefore, we have been able to detect introns that have been gained and
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lost very recently. Consequently, we expect that there wouldn’t be any significant

changes in the intronic sequences since they were gained/lost in one of the lineages.

In addition, our study is not affected by the possibility of parallel intron gain and

loss. Consequently, we believe that this is one of the most error-free studies of gene

structure evolution.

We show that the rate of intron gain is much higher than the rate of intron loss

in the recent evolutionary history of Diptera. This is in contrast to the rates in

mammalian lineages where we couldn’t find any occurrences of intron gain. Thus

we are able to confirm previous studies such as Roy and Gilbert [2005b] and Rogozin

et al. [2003] which found widely varying rates of gene structure evolution in different

eukaryotic lineages. Our findings also provide an explanation for the 5’ bias in the

position of introns in eukaryotic genomes. We find that there is no discernible bias in

the positions of inserted introns, but we were able to find a 3’ bias in the positions of

lost introns. If similar mechanisms exist in other eukaryotic clades, these dynamics

of intron gain and loss will explain the 5’ bias in the positions of eukaryotic introns.

We have also tested previously proposed theories of intron gain and loss. We were

able to find strong evidence favoring the reverse transcriptase theory of intron loss.

In addition, we were able to prove that a small fraction of new introns were formed

by insertion of transposable elements. However, it is clear that not all new introns

were formed by this mechanism. Furthermore, we were able to find evidence that is

contradictory to the predictions of the duplication theory of intron formation [Tarrio

et al., 1998] and the deletion theory of intron loss [Kent and Zahler , 2000; Cho et al.,

2004], proving that these mechanisms are absent in dipteran lineages.
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4.4 Concluding Remarks

Among other impacts, the sequencing of several closely related eukaryotic genomes

will revolutionize evolutionary biology. In this thesis, we try to develop computational

tools that will accelerate the pace of this revolution. One of the first steps in under-

standing these genomes would be the accurate annotation of protein coding genes in

these genomes. Due to the lack of sufficient experimental evidence, we have devel-

oped computational tools for rapid and accurate annotation of these newly sequenced

genomes. We then use these methods to study the evolution of gene structure in

mammalian and dipteran genomes.

An interesting aspect of our study was the variations in the mode of gene structure

evolution among various clades. There were particularly stark contrasts in the rate

of gene structure evolution. Although no inserted introns were found in mammalian

genes, the rate of intron gain was much higher than the rate of intron loss in dipteran

clades. In contrast to previous studies in nematodes [Cho et al., 2004], we were unable

to find any evidence supporting the deletion theory of intron loss in mammalian and

dipteran lineages. Similarly, we were able to find evidence validating the reverse

transcriptase mediated mechanism of intron loss unlike conflicting studies in fungi and

plasmodium [Nielsen et al., 2004; Roy and Hartl , 2006]. As more genomes become

available, we will be able to understand these variations and apparent contradictions

much more precisely. In particular, we would be able to know if the results from the

previous studies were muddled due to parallel intron gain and loss. This is because

the previous studies compared genomes which were evolutionarily distant and the

presence of hotspots for intron gain and loss would lead to parallel intron gain and

loss. Furthermore, such studies would help us answer deeper questions about genome

evolution. For example, if a mechanism is common among many eukaryotic clades, it

was probably present in the eukaryotic ancestor. An understanding of the molecular
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mechanisms in the eukaryotic ancestor would help us resolve the debate between the

introns early and introns late theory of the origin of introns.

A population-genetic explanation for the evolution of gene structure and their

diversity among eukaryotic clades has recently been proposed [Lynch, 2006]. We

believe that this is an interesting perspective on gene structure evolution, but it is

beyond the scope of the thesis. However, any future hypotheses about gene structure

evolution should keep this viewpoint in mind.

Our study used only computational methods to obtain the gene annotations in the

non-reference organisms. To the best of our knowledge, most previous studies also

used annotations from databases that use computational methods to obtain annota-

tions. We believe that our study is much more accurate compared to previous studies.

This is because we compare gene structures of closely related organisms and trans-

ferring annotations from a reference genome to an evolutionary close species is much

more accurate compared to transferring annotations from a reference genome to an

evolutionarily distant species. Furthermore, we have demonstrated that GeneMapper

is much more accurate compared to existing gene prediction programs. Therefore,

we are very confident about the accuracy of our annotations. However, we should

point out that a combination of experimental and computational methods (in which

experiments are used to verify the computational gene predictions) would be a much

more appropriate, albeit considerably costlier, strategy for future studies.

Finally, we should point out that we have studied only one of the modes of gene

structure evolution i.e. intron gain and loss. Gene structure evolution can take place

through other mechanisms such as gain/loss of coding sequence or development of

alternative isoforms. It is necessary to conduct experiments to study these alternate

mechanisms of gene structure evolution and was therefore beyond the scope of this

thesis.
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