
Closing the Loop: Control and Robot Navigation in
Wireless Sensor Networks

Shawn Michael Schaffert

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-112

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-112.html

September 5, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research was made possible in part by the generous financial support
of the Defense Advanced Research Projects Agency under grant F33615-
01-C-1895.

Closing the Loop: Control and Robot Navigation in Wireless Sensor Networks

by

Shawn Michael Schaffert

B.S. (University of Nebraska, Lincoln) 1998
M.S. (University of California, Berkeley) 2001

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Shankar S. Sastry, Chair

Professor Ruzena Bajcsy
Professor Steven D. Glaser

Fall 2006

The dissertation of Shawn Michael Schaffert is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2006

Closing the Loop: Control and Robot Navigation in Wireless Sensor Networks

Copyright 2006

by

Shawn Michael Schaffert

1

Abstract

Closing the Loop: Control and Robot Navigation in Wireless Sensor Networks

by

Shawn Michael Schaffert

Doctor of Philosophy in Electrical Engineering and ComputerScience

University of California, Berkeley

Professor Shankar S. Sastry, Chair

Wireless sensor networks have received considerable attention for their potential as a cheap, easily

deployed, distributed monitoring tool. Recently, researchers have begunto investigate the use of

wireless sensor networks to drive closed-loop control systems. However, such composite systems

are nontrivial to design due to the system interface dichotomy: control systems typically assume

periodic, high frequency sensor updates whereas sensor networksprovide aperiodic, low frequency,

and laggy sensor updates. Utilizing robot navigation and pursuit-evasiongames as benchmarks, our

research focuses on improving control system performance by exploiting the properties of wireless

sensor networks.

We developed and deployed a real-world, medium-scale wireless sensor network for play-

ing pursuit-evasion games. Using our experience from this deployment, wehighlight the difficulties

in using sensor network data to accurately localize robots. Several techniques designed to com-

pensate for such difficulties are developed and incorporated into an unified system architecture.

To test our architecture, an application-level simulator, accounting for many of the sensor network

characteristics that frustrate control design, is developed. This simulatorallows us to identify com-

ponents of our system architecture that can improve the performance of control systems operating

in networks of sensors. Amongst the components, intelligent path planning isidentified as uniquely

important in improving robot localization accuracy during navigation.

Path planning techniques that use information maps, exploiting the knowledge ofnode

topology and sensor models, are developed. Information is a metric for measuring the ability of

a region in the environment to aid in robot localization. In particular, for each region in the en-

vironment, an information map computes the change in entropy expected by a robot in this area

2

using Markov localization. We adapt sensor network models for use with information maps and

verify the ability of such maps to improve robot localization. Additionally, automaticpath planning

techniques based on information maps are developed that minimize localization error. We compare

the performance of these planners with other path planners, and demonstrate that this technique is

effective for generating paths that increase the accuracy of localization while typically requiring

fewer detections.

Professor Shankar S. Sastry
Dissertation Committee Chair

i

To my parents,

Harry and Wilma Schaffert,

for their

endless love,

support,

and inspiration.

ii

Contents

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Related Work . 2
1.2 Dissertation Contributions . 9
1.3 Thesis Outline . 10

2 Pursuit-Evasion Game 12
2.1 Platform . 13
2.2 Algorithms . 16
2.3 Results . 20
2.4 Lessons . 25

3 Practical System Architecture 27
3.1 Sensor Error .28
3.2 False Events . 28
3.3 Network Induced Error .. 29
3.4 Unified Framework . 30

4 The Sensor Network and Control System Simulator 33
4.1 System Models . 33

4.1.1 Sensing . 34
4.1.2 Communication . 35
4.1.3 Mote Platform . 37
4.1.4 Detection Routine . 37
4.1.5 Robot . 37

4.2 Agent Design . 39
4.2.1 State Estimation . 39
4.2.2 Network Latency Compensation . 40
4.2.3 Faulty Node Filtering . 40
4.2.4 Predictive Controller . 41
4.2.5 Feedback Controller . 41

iii

4.3 Controller Comparison Simulations . 42
4.4 Path Comparison Simulations . 45

5 Information Maps 48
5.1 Markov Localization . 49
5.2 Information . 52
5.3 Information Map Computation . 54
5.4 Simulations . 57

6 Localization using Information Maps 63
6.1 Markov Localization Revisited . 63
6.2 Simulations . 65
6.3 Relaxing for Continuous Dynamics and Sensors 75

6.3.1 Robot Dynamics . 75
6.3.2 Robot Prior . 79
6.3.3 Sensor Model . 80

6.4 Continuous Simulations . 82

7 Information Maps and Path Planning 91
7.1 Interpreting Entropy .91
7.2 Automating Path Planning . 93
7.3 Closed-Loop Performance .. 98

8 Conclusions 104

Bibliography 109

A Sensor Network and Control System Simulator Parameter Values 118

B Node Topologies for Closed-Loop Simulations 121

iv

List of Figures

2.1 Hardware used during the July 2003 pursuit-evasion game deployment.. 14
2.2 Flow of information (magnetic detections and position) during the pursuit-evasion

game deployment. 15
2.3 The pursuer’s estimation and pursuit control system. 19
2.4 Stills from a 26 second pursuit-evasion sequence. The pursuer andevader start in

the upper left and lower right corners, respectively. The evader is captured in the
last frame. 20

2.5 Results collected from a single robot traversing a 7 by 7 sensor network. Faulty
motes (4,10) and (4,12) have been manually silenced. 23

2.6 Results collected from a single robot traversing a 7 by 7 sensor network. Faulty
motes ((4,10) and (4,12)) and noisy motes ((12,12), (12,0), and (4,4)) have been
manually silenced. 24

3.1 Mote information flow. Responding to messages from the radio, the mode controller
selectively invokes services. Services interact with the environment by querying
sensors and sending messages. .. 30

3.2 Agent information flow. Using radio messages, mode information, and (option-
ally) on-board sensors, the estimation service infers the system-wide state.Using
additional messages and state estimation, the mode controller invokes servicesto
achieve the agent’s overall goal. Services interact with the environment by sending
messages and engaging actuators. .31

4.1 Sensor state transition diagram. .34
4.2 Single-hop reception probabilitypdist(d) = R(d, µ, σ) for µ = 2.5 andσ = 1.5. . . . 36
4.3 The robot model’s state and parameters. .. . 38
4.4 Example trial for 5 different control architectures depicting path and estimation results. 43
4.5 Example trial for 4 different fixed routes depicting path and estimation results. . . . 46

5.1 A hidden Markov model. 50
5.2 An information map computed using discrete, binary sensors and an uniform prior

with radius ˆrp = 4 cells as detailed in Table 5.1. 59
5.3 Information maps computed using discrete, binary sensors and an uniform prior

with varying radius ˆrp as detailed in Table 5.1. 60

v

6.1 Information map for our initial localization simulations. White dots outlined in
black represent motes and dotted squares represent their detection region. Back-
ground color of the plot represents the amount of information. 68

6.2 Basic simulation overview plots for our initial localization simulations depicting
the robot starting (white circle) and ending (white square) positions, the robot path
(solid black line), and a typical estimated robot path (solid light green line) super-
imposed on the information map (background color). Each figure is captioned with
the path scheme depicted. 70

6.3 Mean estimation error versus time during the initial localization simulations. Cap-
tions denote the path schemes displayed. 72

6.4 Mean estimation entropy versus time during the initial localization simulations.
Captions denote the path schemes displayed. .74

6.5 Approximating the areaA used by the continuous, circular, binary sensor model. . 81
6.6 Information map using the improved models. White dots outlined in black represent

motes, and dotted circles represent their detection region. Background color of the
plot represents the amount of information. .83

6.7 Basic simulation overview plots from the localization simulations with improved
models. Depicted is the robot starting (white circle) and ending (white square) po-
sitions, the robot path (solid black line), and the typical estimated robot path (solid
light green line) superimposed on the information map. Each figure is captioned
with the path scheme used. 85

6.8 Mean estimation error versus time during the localization simulations with im-
proved models. Captions denote the path scheme displayed. 87

6.9 Mean estimation entropy versus time during the localization simulations with im-
proved models. Captions denote the path scheme displayed. 88

7.1 Entropy values for 2 example distributions with increasing sizes on a 29x29 grid
with the mean at cell (15,15). The top plots are of uniform distributions over ad by
d square; the bottom plots are of a normal distribution with given standard deviation.
All plots list the entropy valueH . 92

7.2 Paths generated by the information grid path planner (cκ = 1 andcd = 10) for 3
different mote topologies. 94

7.3 Paths generated by the node centers path planner for 3 different mote topologies. . 95
7.4 Paths generated by the information clusters path planner (nv = 100 anddp = 5) for

3 different mote topologies. 96
7.5 Paths generated by the information clusters path planner for a fixed mote topology.

The padding is fixed atdp = 8 cells, andnv varies across the set{25,50,100} from
left to right. 97

7.6 Paths generated by the information clusters path planner for a fixed mote topology.
The number of candidate vertices is fixed atnv = 50, and the paddingdp varies
across the set{2,4,8} from left to right. 98

vi

7.7 Basic simulation overview plots for the multiple way-point, multiple map localiza-
tion simulations. Depicted is the desired robot path (thick solid red line), the actual
robot path (solid black line), and the typical estimated robot path (solid light green
line) superimposed on the information map. Each figure is captioned with the path
planner and parameters used. .101

B.1 The 10 sensor network topologies and accompanying information maps used during
the closed-loop simulations. 122

vii

List of Tables

4.1 Simulation results comparing 5 different system architectures for 10 trials. The
first 3 system utilize a feedback architecture and the last 2 utilize a MPC based
architecture. Shown above is the number of goal achieving trialsngoal, the mean
destination travel timētgoal, the mean number of estimations required ¯nest, the mean
estimated position error ¯ex, and mean estimated orientation error ¯eθ. 44

4.2 Simulation results comparing 4 different paths across 20 trials. Shown above is the
travel timetd, the mean number of estimations required ¯nest, the mean estimated
position errorēx, the mean estimated orientation error ¯eθ, the mean number of de-
tectionsn̄det, the mean number of event messages sent ¯nevt, and the mean estimated
position error without filtering ¯eevt,pos. 45

5.1 System models and parameters used for computing several information maps. . . . 57
5.2 Time required by a 2.6GHz Pentium4 with 1GB RAM running MATLAB R14 to

compute an information map using the parameters from Table 5.1. 61

6.1 System models and parameters used during our initial localization simulations.. . 66
6.2 Path information for each path scheme across all trials during our initial localization

simulations. 69
6.3 Estimation error and entropy for each path scheme across all trials during our initial

localization simulations. 69
6.4 Path estimation convergence times during the initial localization simulations. . . . 75
6.5 Systems model and parameters used during the localization simulation with im-

proved models. 82
6.6 Estimation error and entropy for each path scheme across all trials during the local-

ization simulations with improved models. 84
6.7 Estimation convergence times during the localization simulations with improved

models. 89
6.8 Path information for each path scheme during the localization simulations with im-

proved models. 89

7.1 System models and parameters used for the closed-loop, multiple map localization
simulations. 99

7.2 Simulation statistics collected for each path planner running a closed-loop localiza-
tion simulation across 10 node topologies with 100 trials each. 102

viii

Acknowledgments

First and foremost, I express my sincere gratitude to my research advisorProfessor Shankar

Sastry for whom I have the greatest amount of respect and admiration. Professor Sastry has offered

invaluable guidance and afforded me the opportunity to work with an excellent team of researchers.

His continual commitment to excellence in research and his expansive vision are inspiration to us

all.

I also thank Professor Ruzena Bajcsy and Professor Steven Glaser for serving on my

dissertation committee and prompting insightful questions during the course. Additionally, I thank

Professor David Culler for serving on my qualifying exam committee and providing helpful advice

during my tenure on the NEST project.

I am thankful for the support and inspiration of my research colleague and good friend

Cory Sharp. Cory is an encouraging and insightful person to interact with both as a researcher and

on a personal level. I am grateful for the many occasions that Cory listened to my concerns and

helped me clarify my thoughts.

A great team of researchers made the pursuit-evasion game experiment possible. For this,

I thank Cory Sharp, Alec Woo, Naveen Sastry, Chris Karlof, PhoebusChen, Fred Jiang, Jaein Jong,

Sukun Kim, Phil Levis, Neil Patel, Joe Polastre, Robert Szewczyk, Terrence Tong, Rob von Behren,

Kamin Whitehouse, Professor David Culler, Professor Eric Brewer, Professor David Wagner, Pro-

fessor Kris Pister, and Professor Shankar Sastry.

During my time at Berkeley, I have been fortunate to encounter many other great re-

searchers who have supported my research endeavors in one way oranother. For this, I am thankful

to Songhwai Oh, Michael Manzo, Bruno Sinopoli, Gilman Tolle, Prabal Dutta, Jonathan Hu, Sukun

Kim, Jay Taneja, Bonnie Zhu, Tanya Roosta, Luca Schenato, Hoam Chung, and David Shim. Ad-

ditionally, I thank Mike Howard, Travis Pynn, Damon Hinson, Peter Ray, and Maria Jauregui for

creating a productive and supportive atmosphere at Berkeley.

Over the years, I have been encouraged by many good friends who have endorsed my

goals, provided me an alternative perspective, and supported me in numerous ways. Amongst these,

I am especially thankful to Johan Vanderhaegen who has been a good friend and a trusted advisor.

During many conversation about work and life, Johan afforded me a much deeper understanding.

Additionally, for their support in many aspects of my life, I would like to thank my friends Maria

Herr, Mark Donahue, Scott Sutton, and Steve Smith.

I cannot fully express the gratitude I owe to my closest companion, Susan Standen. Susan

ix

has, on a day to day basis, supported my efforts and helped me maintain my lucidity. She has

especially encouraged my final drive in graduate school. For everything she has done for me, I am

grateful.

Finally, I thank my family for their influence and support. My brother, TysonSchaffert,

has been a constant source of encouragement to me. His creativity, drive, and kindness have inspired

me to succeed. I owe my deepest gratitude to my parents, Harry and Wilma Schaffert. They have

constantly encouraged and supported me in any and all my endeavors. This work is dedicated to

them.

This research was made possible in part by the generous financial support of the Defense

Advanced Research Projects Agency under grant F33615-01-C-1895.

1

Chapter 1

Introduction

Each year the size and cost of electronics reduce producing a world ubiquitous with sens-

ing and computing nodes. Observing this trend, researchers have turned to developing hardware

and software platforms [46, 88] to support distributed sensing and computation via hundreds or

thousands of tiny nodes. Each node, or mote, is designed to be a small, power-efficient sensing plat-

form that supports on-board computation and wireless communication. Usinga distributed array of

motes, or a wireless sensor network (WSN), provides a new sensing platform useful for a variety of

applications.

In the last several years, many of the foreseen applications and challenges [35, 75] of

WSNs have been actively researched. WSNs have already shown theirusefulness in many dis-

tributed sensing arenas such as habitat monitoring [20, 61], meteorology [59], information for first-

responders [38], and vehicle detection [30]. During the development ofsuch applications, chal-

lenges on several fronts have been investigated by researchers: ad-hoc networking [89, 2], power

efficiency [67], in-network data aggregation [60, 62], time synchronization[34], and automatic node

localization [93] to list a few.

The need to go beyond pure sensing applications and understand WSNs from a control and

actuation perspective has been identified by researchers [18]. Several important control applications

such as heating ventilation and air conditioning (HVAC) systems, pursuit-evasion games, and robot

navigation stand to benefit by the introduction of a sensor network platform.A WSN system can

reduce installation and maintenance costs for HVAC systems by eliminating wires between sensing

and control points. Pursuit-evasion games can acquire a global view of the playing field eliminating

the need for a pursuer robot to continuously patrol. Finally, robot navigation benefits in several

ways. Sensor networks can localize robots for environments (such as inside buildings or outside

2

under tree cover) that other technologies (such as GPS) cannot. Additionally, these networks allow

for the localization of robots without sensors reducing the cost of the robot platform and facilitating

applications (such as automated warehouses) that could benefit by deploying fleets of such robots.

We refer to these integrated systems as sensor network and control (SNAC) systems, to distinguish

them from classical control systems, networked control systems, and systems for control of the

network layer.

For a SNAC system to benefit from a sensor network platform, the platformneeds to be

easily deployable, self-organizing, robust, and long lasting. Many services are required for building

a robust SNAC application such as self localization, ad-hoc routing, detection and aggregation,

and control. As previously mentioned, most of these services have been studied in recent years.

However, limited work has addressed the design of control systems capable of accurately utilizing

the incoming information from sensor networks. Such composite systems are nontrivial to design

due to the system interface dichotomy: control systems [31, 79] typically assume periodic, high

frequency sensor updates whereas sensor networks provide aperiodic, low frequency, and laggy

sensor updates.

The goal of our work is to develop a general methodology that facilitates high quality

control services for SNAC applications. Additionally, our work focuseson the design of a con-

trol scheme for robot navigation in WSNs. Our research approaches these topic step by step. We

implement a complex SNAC system and provide practical insight into the challenges it presents.

We develop a general system architecture for approaching SNAC system design. We develop sev-

eral WSN models and a simulator suitable for testing our architecture. Finally, focusing on robot

navigation, we adapt localization and path planning techniques for WSNs.

1.1 Related Work

Previous work illuminating our research path is both varied and broad. In addition to

addressing control systems and sensor networks, our work uses pursuit-evasion games and robot

navigation as benchmarks and illustrative examples. Hence, a comprehensive survey involves delv-

ing into several research communities: classical control, sensor networks, distributed systems, esti-

mation, mobile robots, and pursuit-evasion games. Additionally, fundamental toany mobile robot

application is the ability for a robot to localize itself, requiring our survey to include results from

the localization and tracking communities. In fact, developing a robust sensor network system for

robot localization is useful outside our area of research in a variety of areas such as the hybrid field

3

of mobile sensor networks. Applications such as event sensitive monitoring[17, 70] require mobile

sensors to gather around interesting events increasing the sensing accuracy.

This survey explores, in order, estimation techniques and control (and navigation) sys-

tems. Relevant pursuit-evasion game literature is left for the appropriate chapter. The estimation

survey covers tracking in sensor networks, localization within sensor networks, and classical mo-

bile robot localization. The control survey covers mobile robot control insensor networks, classical

mobile robot navigation, and extensions to classical control systems.

Localizing a mobile robot can be viewed as a sensor network tracking problem. Such

problems have been studied in various forms. Early work [76] uses a combination of classifiers and

Kalman filters. Tracking multiple objects is accomplished by first using a series of filters to associate

new detections with entities being tracked. Then, the track of each entity is updated using a Kalman

filter and the relevant detections. Other researchers [71, 73] workingon this same application have

employed Monte Carlo techniques. Oh et al [71] show the utility of Markov chain Monte Carlo

methods for tracking multiple entities given noisy sensor network detections. The state of a Markov

chain models the current estimate of tracks in the network. The transitions of the Markov chain

are adapted to model simple transformations of the estimate such as track splitting or merging. The

technique is shown to successfully track multiple objects given noisy sensornetwork detections.

Other sensor network tracking work [62] focuses on developing a generalized architecture

for distributed estimation. In this work, the authors consider an architectureallowing nodes to

estimate the position of entities using local sensor measurements and shared estimation probabilities

from neighboring nodes. Techniques are developed for sharing estimation information amongst

nodes to achieve favorable results. An architecture and a set of filters are generated that achieve a

distributed Bayesian estimator. Additional work [13] by the authors provides a brief overview of

the practical challenges of integrating these techniques for a real deployment.

Probabilistically tracking multiple objects in a efficient manner has also been studied [57,

58]. In this work, multiple objects are tracked using a particle filter. In general, a particle filter

requires the use of a joint distribution encompassing probabilities for all the objects being tracked.

As the number of objects being tracked increases, such a distribution quickly becomes intractable.

An alternative method for managing the distribution is provided. The authors develop a method of

joining and splitting distributions to allow objects close together to be tracked with a joint distribu-

tion and objects separated by large distances to be individually tracked by marginal distributions.

This technique allows for the particle filter to operate on several simple distributions rather than one

complex distribution.

4

Still other researchers have focused on tracking techniques that minimally impact the re-

sources of the WSN. For instance, Zhao et al [97] propose that the execution of general information

processing tasks (such as entity tracking) is realized as the solution to an optimization problem.

The proposed objective function incorporates quantities such as information gain and communica-

tion costs. This technique, specialized for entity tracking, asserts that the estimated tracks are only

updated as necessary, minimizing power and bandwidth utilization.

Entity tracking within sensor networks is indeed an active research area encompassing

many scenarios and solutions. As already discussed, the focus of this work is on minimizing net-

work resources, tracking multiple objects, or distributed information sharing. The focus of our

work, on the contrary, is on the localization of a cooperative mobile robot. Hence, the current lit-

erature lacks an appropriate solution for our scenario: multiple object tracking algorithms are too

general, distributed information sharing architectures are not necessary, and low resource utilization

is not our focus. Furthermore, the cooperative mobile robot localization problem is decidedly dif-

ferent than the researched tracking scenarios: detections of our cooperative agent only occur locally

and can be immediately sent (via broadcast) to the agent which assumes the role of a centralized

estimator.

Before leaving the sensor network estimation literature, we expand our scope from track-

ing to localization and general estimation techniques. In this realm, researchers have studied many

specialized localization applications such as sniper localization [83] and sensor node localiza-

tion [93]. However, these applications are tailored for different sensor modalities and estimation

of static quantities which are not applicable to the mobile robot localization problem. The mobile

robot estimation problem within sensor networks has had limited coverage. Inparticular, Sinop-

oli et al [84] consider a linear control system with Kalman filter estimation supplied with sensor

network detections. The sensor network is modeled as a monolithic, distributedsensor that either

delivers a measurement on time or drops it. The authors show a relationship between the probability

of dropping a sensor reading, the system dynamics, and the system stability. This work provides

insight into the amount of network losses tolerated by a stable feedback control system. However,

the sensor network model is rather limited. It does not model network latencycharacteristics, and,

hence, has no method to incorporate late arriving measurements into the Kalmanfilter. In contrast,

our work does not provide theoretical stability bounds, but instead provides efficient solutions for

more realistic and practical sensor network scenarios.

The current sensor network estimation literature does not directly address our application,

but does provide an implicit suggestion for basic localization techniques. Atthe root of these track-

5

ing and localization algorithms, are Bayesian estimation techniques (or approximations thereof).

To provide more specific insight into applying Bayesian estimation, we turn to themobile robot

localization literature.

A large body of research on mobile robot localization has been carried out. Classical

techniques such as Kalman filtering (KF) [50] and Markov localization (ML)[36] have been heavily

investigated. Combinations and variants of these techniques have also beenexplored: extended

Kalman filtering (EKF) [54], Markov localization-extended Kalman filtering (ML-EKF) [41], and

multi-hypothesis tracking (MHT) [48, 5]. Additionally, a wide variety of sequential Monte Carlo

methods, or particle filters [32], have been explored: sensor-resettinglocalization [53], mixture

Monte Carlo localization [87], and adaptive Monte Carlo localization [27]. Comparisons of these

localization techniques [42, 43] have been performed. In fact, any of these techniques are candidates

for interpreting our sensor network data. However, the focus of our work is to develop techniques

that provide an estimator with the best information. In the case of mobile robot navigation, we show

that Markov localization is a particularly good choice. Since this body of literature tends to assume

a traditional robot model with on-board, high speed sensors (such as GPS and laser range finders),

these techniques are not adapted to the data characteristics of sensor networks. Fortunately, the

mobile robot literature proves more fruitful as we move from estimation to control (navigation).

Mobile robot navigation and control is studied from a variety of perspectives. As we

explore the navigation literature, we begin with topics directly related to sensornetworks. Then,

we expand our search to include generalized path planning topics and adapted classical control

techniques.

Robot navigation has been investigated in the context of an autonomous robot deploying

a sensor network and using it for coverage, exploration, and navigation [8, 9, 7]. In this work, each

node periodically emits a message to nearby receivers. As a robot moves about, it selects the node it

has recently received the most messages from as itscurrent node. If no messages have been received

recently, the robot deploys a new node and selects it as the current node. The current node is used

as the robot’s location. During the sensor network deployment phase, therobot and network build a

graph that probabilistically maps from the set of current robot locations and control actions to the set

of possible next robot locations. During coverage and exploration, nodes track which neighboring

areas have least recently been explored and direct nearby robots to these areas. During navigation,

the sensor network assigns a utility value to each node representing the likelihood of a robot nearby

this node reaching the desired destination. The utility values across the network are updated using

value iteration. The robot navigates, node by node, to the destination by iteratively navigating to

6

nearby nodes with the highest utility value. Although this system can explore and navigate areas,

the graph it builds is not based on geometric measures, but rather received radio signal strength.

This hinders the technique’s ability to be combined with other sensing platforms such as laser range

finders or GPS. This also makes it difficult for a robot to adapt to its environment by learning its

dynamic parameters such as wheel slippage. A final drawback to this approach is that value iteration

is slow to converge making it impractical for navigation with frequently changing way-points (such

as pursuit-evasion games).

Robot navigation in sensor networks has been considered by other researchers [74, 56].

In this work, motes are placed at known locations and are capable of detecting danger. A system

for navigating the network and avoiding danger is developed. Each mote and its neighboring region

is assigned a danger level based on how many radio hop counts it is away from danger, implicitly

building up a connectivity based graph for robot guidance. This information is used by an artificial

potential field algorithm to guide the robot. This work assumes that the robot can localize itself

to the extent of determining which nodes are nearby. Furthermore, it is assumed that the robot is

capable of navigation to any desired (nearby) node.

Other researchers [22, 24, 23] investigated the ability of a unmanned aerial vehicle (UAV)

to deploy, repair, localize, and navigate a sensor network. The UAV is capable of autonomous way-

point navigation using an on-board computation and sensing system (including a GPS sensor). The

goal for the sensor network deployment and repair phase is to create and maintain a desired network

topology. The network is configured to pass messages around in order todetect connectivity holes.

Once holes are identified, the UAV is dispatched to the region to deploy new motes. During network

localization, the UAV flies a pattern above the sensor network broadcastingits GPS coordinates.

Motes receiving these messages infer their locations in GPS coordinates using received radio signal

strength. For navigation, an a priori generated path in GPS coordinates isflooded across the network

and stored by motes near or on the path. The UAV follows this path by receiving partial path

information messages from nearby motes. This navigation technique amounts toan elaborate path

dissemination algorithm.

Das et al [28] consider a search and rescue system using mobile robots and sensor nodes.

Nodes are deployed to loosely known locations in a map. The authors propose that both the nodes

and the robot can be localized using traditional simultaneous localization and mapping (SLAM) [55]

techniques. In particular, it is proposed that a Kalman filter is provided received signal strength mea-

surements of messages passed amongst robots and motes. Navigation is achieved by first planning a

path along a string of nodes from the current position to the goal position. The network chooses the

7

string of nodes by passing messages around and achieving a dynamic programming type solution.

The robot then follows the planned path using a gradient decent routine.

Our survey could additionally broaden its scope to more generalized sensor networks

such as camera networks. However, the research in these areas is notapplicable to our SNAC sys-

tem due to differences in the platform’s characteristics (such as fast, reliable networkswith slow

robot dynamics [47]) or differences in the estimation architecture (such as switching amongst sen-

sors [52] rather than multiple sensor measurement fusion). The literature on mobile robot control

and navigation with sensor networks is quite sparse. Techniques that arerelevant for our platform

use non-geometric based graphs for navigation. However, our work seeks to develop a geometric

localization and navigation technique allowing integration with traditional sensors (such as GPS,

laser range finders), admitting robot learning (such as learning the robot’s wheel slippage), and en-

abling fine grained control. Furthermore, previous navigation techniquesbased on received radio

signal strength are suited to only specialized environments (such as simple indoor environments

with controlled radio connectivity).

The mobile robot community has extensively investigated navigation and control. How-

ever, the focus is typically on topics non-applicable to our work such as obstacle avoidance, map

building, or coordinated movement. Fortunately, previous work on intelligentpath planning is help-

ful. Makarenko et al [63] consider the problem of integrated exploration entailing path planning,

navigation, and localization. The authors assume a traditional robot platform utilizing SLAM [55]

techniques with an extended Kalman filter for mapping and robot localization combined with an

occupancy gird for obstacle avoidance. In particular, the robot movement algorithm proceeds by

suggesting several candidate destinations, choosing a destination, and navigating to the chosen des-

tination. The candidate destinations are suggested for improved exploration.A single destination is

found as the solution to an optimization problem over localization accuracy, information gain, and

travel time. Finally, the robot navigates to the destination by planning a path thatavoids obstacles.

Our work focuses on navigating not for obstacle avoidance, but for improved localiza-

tion. Hence, both our work and the Makarenko et al work exploits a localizability metric to gauge

a position’s ability to accurately localize the robot. However, our metric is adapted for a distributed

sensing environment and is optimized at every point along the path, rather than at just a few desti-

nations. Additionally, since our focus is on sensor networks, it will becomeclear that the Gaussian

noise model implicit with Kalman filtering is inappropriate. Instead, our work develops a special-

ized sensor model for use with Markov localization. Finally, the developmentof our localizability

metric is different from the one used by Makarenko et al. In particular, the metric ourwork uses is

8

provided in the work by Roy et al [78], but is adapted to our distributed sensor network model. There

are a few distinctions between the Makarenko et al and the Roy et al localizability metric. In par-

ticular, the former assumes infinite initial covariance and infinite readings at each position, whereas

the later assumes a well-defined prior with finite covariance and assumes an expected number of

readings at each position. Our work will clarify why an infinite initial covariance is inappropriate

for the multiple, local sensor platform of a WSN.

Earlier work [86] utilizing a localizability metric for path planning has also been carried

out. This work assumes a robot platform with a ranging sensor and Kalman filtering (similar to

the work by Makarenko et al), and a localizability metric consistent with the work by Roy et al.

Unfortunately, this work concluded with hand generated path producing less drift during navigation

than a path based on the localizability metric.

Moving away from the mobile robot navigation and control literature and entering the

classical control arena, our survey finds more practical tips. Some researchers [64, 65] developed

real-time compensation techniques for networked control systems. Their work describes a technique

that compensates for sensing and actuation jitter for linear, discrete-time systems. The authors

assume the jitter is known at run-time and develop an algorithm that simulates the system forward

in time and recomputes the control action. Although this technique is only described for linear,

discrete time systems, our research applies this idea to an extended Kalman filterto correct for

network latency.

Predictive control techniques are also useful for incorporating several goals and dealing

with missing or late sensor measurements typical of sensor networks. For instance, Shim et al [82]

develop a model predictive control (MPC) framework for navigation of aerial vehicles. The authors

use a MPC to incorporate several goals such as obstacle avoidance andway-point navigation. Using

a finite time horizon, the MPC is able to plan locally optimal navigation routes. Additionally, such

a framework is able to continue operating using only predicted results duringperiods of missing

measurements. Our general control architecture will avail itself of this technique.

Before leaving behind the literature on control and sensor networks, wemention one final

result for the interested reader. In a paper by Ye et al [96], the effects of communication protocols

on control systems are investigated using realistic network simulations. The authors consider a

mobile robot cooperation application where communication between robots is simulated using the

Network Simulator [12]. It is demonstrated that a communication scheme with less frequent, but

longer packets is superior to one with more frequent, but smaller packets for their application. This

counter-intuitive result reminds us that more research is needed on networked control systems.

9

After a brief overview of the literature relevant to sensor network and control systems –

and, in particular, to robot navigation – we find that many topics have not beaddressed. In particular,

since sensor networks is a new research area, few researchers have considered their use for control

or robot navigation. Additionally, since only a few medium to large scale sensor networks have been

deployed, our knowledge of practical challenges is limited. Finally, to the best of our knowledge,

only one medium to large scale SNAC system has been deployed. This systemwas our pursuit-

evasion game system and is discussed in the next chapter.

1.2 Dissertation Contributions

Our work differs from previous work in several ways. The goal of our work is to de-

velop a practical design methodology for realistic SNAC systems. To this end,our work allows

for complex models of the WSN and the control system, and our work focuses on demonstrating

good performance rather than finding theoretical bounds on it. We are motivated by the fact that

the theoretical work tends to be too specialized to be useful for real deployments, and the practical

implementations have yet to adequately address fundamental control challenges.

Our work achieves these goals by implementing, modeling, and evaluating 2 representa-

tive SNAC applications: pursuit-evasion games and way-point navigation.Our work includes one

of the first, and the largest SNAC implementations. This implementation provides insight into the

difficult challenges facing control systems in sensor networks and aids in developing a generalized

SNAC system architecture. This work also leads us in developing severalrealistic application-level

WSN models and a corresponding simulator. Using this simulator, we are able to demonstrate the

benefit of our SNAC system architecture. The analysis of this system leads us to consider intelli-

gent path planning for robot navigation. Focusing on navigation, we adapt a localizability metric

for WSNs, we create a novel path planning routine, and we demonstrate the benefit of this ap-

proach. Our final framework allows for simple, yet powerful extensionsto path planning and robot

localization such as path planning for explicit bandwidth reduction or development of an optimal

re-deployment strategy. In summary, these contributions are

• first, largest SNAC implementation

• identify fundamental SNAC challenges

• develop a general SNAC system architecture

10

• develop practical, application-level models for WSNs

• develop an application-level simulator for SNAC systems

• demonstrate the benefit of our SNAC system architecture

• tailor a localizability metric for WSNs

• develop and demonstrate the benefit of a novel path planning technique for robots in WSNs

• establish a localization and path planning framework enabling simple, powerful extensions

1.3 Thesis Outline

Our work is presented in the following manner. Chapter 2 presents our implementation

of a pursuit-evasion game played within a wireless sensor network. First, the game is introduced

with relevant background and related work. Then, the hardware and software platform is described.

Next, the algorithms for sensing, communication, and control are described. Results collected from

the deployment are discussed. Finally, the practical lessons learned andthe challenging aspects of

this application are presented.

Using the results from our PEG deployment, Chapter 3 develops a practicalsystem archi-

tecture for general SNAC systems. Three main challenge categories alongwith potential solutions

are discussed. This chapter concludes with a framework that unifies these solutions. Chapter 4 de-

velops and uses a SNAC system simulator. First, a set of system models are developed for the WSN

and robot platform. Then, several components of the aforementioned architecture are instantiated.

Finally, a set of simulations are performed to test our controller design and evaluate the effect of

path planning on localization accuracy.

The path planning simulations leads us to adapt a localizability metric for WSNs in Chap-

ter 5. This chapter begins with an overview of robot localization and a localizability metric. Next,

the details of computing this metric are discussed and a set of simulations is performed. The next

chapter, Chapter 6, moves to adapt this metric for more realistic WSN models andto begin testing

its usefulness for localization and path planning. Several simulations are provided to demonstrate

the ability of this metric to gauge localization performance.

Building on this result, Chapter 7 develops techniques to generate automatic paths based

on the localizability metric. An interpretation of entropy for path planning is given and several

11

closed-loop simulations are provided as evidence this technique reduces localization error. Finally,

Chapter 8 reviews the results of this work and provides some concluding remarks.

12

Chapter 2

Pursuit-Evasion Game

To date, we have implemented several sensor network and control (SNAC) systems, rang-

ing from light monitoring and tracking, to RC car tracking with a pan-tilt camera,to pursuit-evasion

games on outdoor sensor networks [81, 21]. This chapter provides anoverview of the July 2003

pursuit-evasion game implementation, providing enough detail to serve as a point of reference for

later discussions on challenges and solutions for SNAC systems. Our pursuit-evasion game, or

PEG, is a distributed network of wireless sensors that aids a cooperativeagent (pursuer) in tracking

an uncooperative agent (evader). These games, in various forms, have been extensively studied.

Researchers [45, 44] have investigated the game theoretic optimal strategies developing Nash so-

lutions. For continuous (polygonal) regions, other researchers [95]have determined bounds on the

number of pursuers needed for capture. For games occurring on a graph, researchers [72] have stud-

ied how to search for evaders, and others [1] have studied the number of pursuer needed to catch an

evader. For a distributed sensing platform, Demirbas et al [29] have studied pursuit-evasion games

on graphs whose vertices are covered by sensor nodes. The authors assume that communication is

symmetric and induces a fully connected graph. Additionally, they assume thatsensor nodes can

exactly detect the pursuer and evader when the robots are at the node.Finally, they assume that a

pursuer robot can a priori navigate between nodes. The authors develop a tunable pursuit algorithm

that allows for a trade-off between capture time and energy efficiency. The algorithm functions by

having the network maintain a tree rooted at the evader. The tree is updated with recent detections

of the evader. Our work, considers the practical challenges for implementations of pursuit-evasion

games on sensor networks. Other work [91, 51] implementing pursuit-evasion games has focused

on different platforms, considering vision based robots or multiple pursuer policychoices. PEG

provides a real world, medium scale (larger pure sensing systems [21, 3] have been deployed since)

13

SNAC system deployment from which we learn simple, effective, pragmatic design and modeling

methodologies. PEG provides an extensive SNAC benchmark requiring solutions to many chal-

lenges:

• detection and disambiguation of mobile agents

• distributed coordination and sharing of mote resources

• in-network processing and aggregation

• routing to mobile agents

• closed-loop control

The services developed to confront these challenges are developed with the whole system in mind

to reduce overall latency and provide the pursuer the ability to react in real-time.

Being one of the first medium scale, distributed tracking implementations using resource

constrained wireless sensors, PEG provides us with a road map of the challenges ahead, new ideas

from the lessons learned, and a grocery list of tools needed. The hardware and software platform

along with the basic information flow is introduced in Section 2.1. Section 2.2 provides a detailed

overview of the algorithms used. The results are summarized in Section 2.3. Finally, Section 2.4

discusses the lessons learned from PEG. In later chapters, the experience with PEG informs an

exploration of the challenges control systems face along with providing a starting point for devel-

oping SNAC models and simulators. More details of the entire PEG deployment is presented in our

published work [81].

2.1 Platform

This section describes the hardware and basic software architecture used for PEG. PEG is

played on a 20 meter by 20 meter outdoor field with 121 motes and 2 ground robots. The motes are

uniformly deployed in an 11 by 11 grid with 2 meter spacing. The robots are sequentially released

onto the field: first the evader enters, then a few seconds later, the pursuer enters. A base station

outside the field monitors and displays system statistics online. In the following, we describe the

mote, robot, and base station hardware along with the basic flow of informationamongst them.

The motes used for PEG are the Berkeley Mica2Dot’s [46, 88] shown in Figure 2.1a. They

are equipped with a wireless radio, ultrasonic transceiver, magnetometer,and outdoor enclosure.

14

(a) Mica2Dot mote. (b) Pioneer robot.

Figure 2.1: Hardware used during the July 2003 pursuit-evasion game deployment.

The computational resources are provided by the 8-bit 4 MHz Atmel ATMEGA128L CPU with 128

kB of instruction memory and 4 kB of RAM. The on-board radio, the ChipconCC1000 operating

at 1 GHz, provides about 2 kB/s of shared network bandwidth for applications after accounting

for network overhead. The communication range varies heavily depending on the antenna and the

environment; during PEG, with the use of a quarter wave length antenna andthe mote a few inches

off a level playing field (comprised of dirt and short grass), our maximum communication range was

about 30 meters. The ultrasonic transceiver operates at 25 kHz and uses a top mounted deflector

cone to provide about 2 meters of ranging in the plane of the playing field. Themagnetometer is

tuned to detect changes in the magnitude of magnetic field near the mote; it detectsour robots up

to about 3-4 meters away. The hardware is mounted in an outdoor enclosure with a flexible base

allowing for extended communication range and resilience to robot impact. Finally, the motes run

the small, embedded TinyOS [46, 88] operating system

The evader and pursuer robots are identical outdoor, four-wheeledrobots (Figure 2.1b)

equipped with mobile computers, wireless radios, and GPS units. The on-board computer is a 266

MHz Pentium2 CPU with 128 MB of RAM and a 20 GB hard drive running Linux.Each robot uses

an 802.11 wireless radio for communication to the base station. The GPS unit provides the robot’s

15

Localization Entity Detection

Neighborhood

Mote Radio

Detection
Aggregation

Routing

Magnetometer
Ultrasound
Transceiver

(a) Mote data flow.

State Estimation

Interception
Planning

Navigation

Mote RadioGPS

Motors

(b) Robot data flow.

Figure 2.2: Flow of information (magnetic detections and position) during the pursuit-evasion game

deployment.

position to within 2 cm every 0.1 seconds. Each robot has a top speed of about 1 m/s and a motor

control subsystem capable of independently controlling the velocity of each of the four wheels. The

evader robot is driven remotely by a person, and the pursuer robot iscontrolled autonomously by

on-board control software. The base station uses a 802.11 wireless linkto receive robot controller

statistics and a high-gain mote antenna to snoop the mote network.

The final software architecture contains many application services relatedto entity de-

tection and pursuit (localization, sensing, routing, state estimation, interception planning, etc) and

even more services supporting these (ranging, tree building, leader election, etc). We provide a brief

overview of only those services directly along the entity detection and pursuit path. A flow chart of

these services, split between the sensor network and robot hardware, is shown in Figure 2.2.

The mote data flow, shown in Figure 2.2a, is designed to provide detection reports to the

pursuer. Since these reports relay the location and strength of a magnetic detection, a localization

service and entity detection service are fundamental. The localization service utilizing the ultra-

sound transceiver (and sub-services such as ranging) is responsible for localizing the mote relative

to an anchor mote in the network. Due to sporadic errors of this service, themotes used a position

value provided by the user during the PEG trials. The implementation and applicability of the auto-

matic localization service is further explored in other work [93]. The entity detection service filters

16

measurements from the magnetometer and reports robot detections. The information collected by

the localization and entity detection service is stored and shared by the neighborhood service. This

service provides a distributed, loosely synchronized storage system allowing neighboring motes to

share information. Using the information stored by this service, the detection aggregation service

compiles location and detection information to be sent to the pursuer. Finally, therouting service is

responsible for dispatching messages amongst motes and the mobile pursuer.

The robot data flow, shown in Figure 2.2b, is designed to interpret the detection reports

from the mote network and guide the pursuer to the evader. The pursuer receives entity detection

reports over its mote radio and pursuer position information over the GPS channel. Using this

information, the pursuer estimates the state (position, orientation, etc) of itself and the evader. The

interception planning service determines the path the pursuer should follow inorder to efficiently

capture the evader. Finally, the navigation service interfaces with the motorsand ensures the desired

path is followed.

2.2 Algorithms

This section describes the algorithms making up the aforementioned services.Before

describing the flow of detection events within the sensor network or the pursuer, we investigate the

mechanism that links these two systems: the routing layer. Then, starting with themote platform, we

explain the mechanisms that sense entities, share detections, and aggregatereadings. Next, turning

to the robot platform, we discuss how detections are processed, how the system state is estimated,

how an interception path is planned, and how this path is followed.

The mote routing layer is responsible for delivering messages from many (motes) to few

(mobile agents). Using landmark routing [89], we partition the routing serviceinto 2 pieces: route

from many to a landmark, and route from a landmark to few. Landmark routingrequires that the

user chooses a landmark and, using the landmark as a root node, builds a spanning tree. A spanning

tree is built by flooding the network with a beacon that tracks hop count. Each mote will choose its

parent as the mote whom it heard broadcast the beacon with the lowest hopcount. However, this

approach is vulnerable to generating asymmetric links and back edges.

Asymmetric links are generated because a mote does not verify the bidirectional reliabil-

ity of the link between itself and its parent. We address this issue by filtering outmessages that

originate from an unreliable link. In particular, if the message is received with a received signal

strength indicator (RSSI) below a preset threshold, or from a mote locatedtoo far away according

17

to localization information, the packet is dropped. The RSSI threshold is setto a value that provides

a highly reliable link based on small scale experiments using the same platform.

Back edges are caused by frequent message collision amongst motes re-broadcasting the

beacon. These collisions cause a nearby mote to choose a parent whosebeacon messages did not

collide, often resulting in a higher hop count parent than necessary. This issue is addressed by

requiring that each receiving mote waits a random amount of timetb less than an upper threshold

Tb before broadcasting the beacon. Additionally, if another beacon is heard before a mote has

broadcasted, it must choose another timetb < Tb and begin waiting again.

Once a spanning tree is built, any mote can route to the landmark. Routing to the mobile

agent is achieve by building acrumb trail. The mobile agent periodically broadcast a beacon to

a nearby mote. Using the spanning tree already in place, this beacon is routed to the landmark.

Along the way, each connecting mote is left with acrumb, the identity of the previous mote during

this communication. Any message at the landmark can now be routed back to the mobile agent by

reversing the crumb trail. Additionally, crumbs are associated with a timeout andare erased from

motes when they become stale. With the routing service in place, we turn to the mote’s internal

operations.

The detection sequence at themth mote begins with the entity detection component. This

component is fed measurements of the absolute magnetic field via the magnetometer. Due to drift

in the magnetometer, the raw magnetic field readingsBm
raw are high pass filtered to generateBm. If

the processed valueBm is above a preset thresholdBreport, Bm along with the mote’s positionzm is

broadcast to neighboring motes via the neighborhood service. After which, the mote must wait for

Treport seconds before reporting another reading. We refer to these single magnetometer reading

packets asdetection messages.

The local neighborhood information sharing implementation used was Hood [94]. Hood

operates by broadcasting local updates to the state disregarding whom its neighbors are or if they

can hear it. Motes who hear a Hood broadcast and consider the broadcasting mote to be a neigh-

bor, update their local state. For our purposes, Hood was configuredto form a magnetic detection

neighborhood with radiusRhood. Additionally, this neighborhood was set to prune detections older

thanThood seconds.

The mote constantly monitors the neighborhood state, and, if it has the largestmagnetic

detection of any of its neighbors, the mote elects itself as a leader. As a leadermote, it aggregates

all the detection readings it received in the lastTreport seconds into one packet and sends this via the

routing service to the pursuer. We refer to these aggregated magnetometerreading packets asevent

18

messages. Once a mote is a leader, it must waitTleader seconds before becoming a leader again.

When the pursuer receives an event message, it updates its estimate of thesystem state,

and using this estimate, it tracks the evader. The block diagram for this process is shown in Fig-

ure 2.3. Two coordinate systems are used by the pursuer: GPS coordinates relative to a nearby

landmark and mote network coordinates aligned with the mote deployment grid. Details of these

coordinate systems are not important since a fixed homogeneous coordinate transformation between

the two systems is assumed to be known. Unless explicitly stated by using a GPS subscript, all quan-

tities are in terms of the mote coordinate system. The pursuer receives (l̃p,1
gps, l̃

p,2
gps), an estimate of its

field position in GPS coordinates, which is transformed into the pursuer position estimate (̃lp,1, l̃p,2)

in mote coordinates.

Many techniques [77, 90] exist for tracking and estimating moving entities. However,

the choice of such algorithms is limited by the robot dynamics and sensors. In particular, given

the accuracy of the GPS, the pursuer’s state is estimated using simple averaging techniques. More

specifically, (̃lp,1, l̃p,2) are smoothed with aNp
l step time window average to produce the position

estimate (̂l1,p, l̂2,p). Then, theNp
θ

most recent position estimates are used (pairwise) to form several

orientation estimates, which are averaged to form the orientation estimationθ̂p.

The pursuer estimates the evader’s state using received event messages. First, each de-

tected position (̂l?,1, l̂?,2) is classified as being caused by noise, the pursuer, or the evader. After

which, only evader detections are kept and sent to the evader state estimation service. Several tech-

niques exists [71, 15, 33, 40] for classifying and tracking objects in a sensing region. For estimation

of the evader, we note that since our robots can change their wheel speed within about 0.2 seconds,

and the network only reports detections about every 1-3 seconds, we can use a simple kinematic

model accounting only for a robot’s maximum speedsmax:

lk+1 = lk + (smaxT)uk (2.1)

wheresmax > 0, the controluk ∈ [−1,1]2, and the sampling periodT > 0. With our model, we

associate measurements close to the evader with the evader, and using an average of these mea-

surements, we estimate the evader’s position. In particular, assuming that theerror in any detected

position may be as much asdn (according to the 2-norm), and that the capture radiusdc is larger

than this error, detections withindn of the pursuer’s estimated location are ignored. These messages,

if not detections of the pursuer or noise, are detections of a captured evader. Furthermore, any de-

tections farther than 2dn + smaxt from the evader’s last estimated position, are considered noise and

ignored wheret is the time since the last measurement. All remaining messages are assumed to be

19

l̃p,1
gps, l̃

p,2
gps

l̃p,1, l̃p,2

l̂p,1, l̂p,2, θ̂p

ω1, ω2, ω3, ω4

l̃?,1, l̃?,2

l̃e,1, l̃e,2

l̂e,1, l̂e,2

lnav,1, lnav,2

GPS

Coordinate
Transform

Pursuer State
Estimation

Navigation
Controller

Motor
Controller

Motors

Sensor
Network

Disambiguation
Filter

Evader State
Estimation

Interception
Planner

Figure 2.3: The pursuer’s estimation and pursuit control system.

20

Figure 2.4: Stills from a 26 second pursuit-evasion sequence. The pursuer and evader start in the

upper left and lower right corners, respectively. The evader is captured in the last frame.

the position detection of the evader and are labeled (l̃e,1, l̃e,2). These messages are used to estimate

the position of the evader (l̂e,1, l̂e,2).

Using the estimated state of the pursuer and evader, the interception plannergenerates a

way-point (lnav,1, lnav,2) for the pursuer to go to in order to intercept the evader. Our interception

planner simply generated the way point at the evader’s estimated position. The interception con-

troller also implements 2 safety specifications: keep the pursuer inside the playing field and do not

collide with the evader. Keeping the pursuer inside the playing field is achieved by planning a path

to the center of the playing field if the robot ever leaves. Avoiding collisions with the evader is

achieved by halting the pursuer when it is within the capture radius of the evader and restarting the

pursuer when the evader moves farther away. Finally, the robot is directed to the new way-point via

the point navigation controller managing the robot wheel velocitiesω1, ω2, ω3, ω4.

2.3 Results

PEG was deployed outdoors and many of the parameter values were set after online test-

ing. In particular,Breport was set so most motes would detect a robot within 3-4 meters. Mote

neighborhoods were set to include a 9 by 9 grid of motes by lettingRhood= 3 meters. The timeouts

21

were chosen to be 0.5 seconds:Treport = Thood = Tleader = 0.5 seconds. Finally, the pursuer’s

position and orientation were estimated by windows of lengthNp
l = 2 andNp

θ
= 4, respectively.

PEG was ran a half-dozen times, and, in each run, the pursuer successfully captured the

evader. One particular run is shown in Figure 2.4. In the first frame (upper left), the pursuer

(robot with the orange cone attached) is shown in the upper left and is oriented down and to the

left. The evader is in the lower right and is oriented facing right. As the sequence proceeds, the

evader (driving in reverse) turns towards the bottom of the frame and drives away from the pursuer.

Meanwhile, the pursuer turns to face the evader and drives towards it. The last frame shows the

result: the evader is captured. From start to finish, this sequence spansabout 26 seconds.

Unfortunately, PEG was insufficiently instrumented to capture the necessary data. Hence,

we instrumented and re-deployed PEG on a 7 by 7 grid with 2 meter spacing. The primary focus

of our re-deployment was to study the detection-routing-reaction chain (latency, loss, noise, etc).

To study this, a single robot is driven around in the field and the network activity is monitored. In

particular, a base station snoops on the network packets and the robot’s GPS position. Figure 2.5

shows 3 views of such a run: an overhead view of mote detections, an overhead view of estimated

robot position, and a time line of detection and estimation error. Figure 2.5a provides a view of the

robot path in the mote network. The solid line is the GPS measured path of the robot which starts at

about (0.4,7.6) att = 0 seconds and concludes around (−0.1,9.6) att = 145 seconds. The robot path

is additionally demarcated by a square for every 20 seconds of run time. Motes who elect themselves

as leaders and report event messages are shown as blue stars. A dashed blue line is drawn from each

leader to the position of the robot at the time the event message was received. Initial tests of this

deployment revealed that the motes at (4,10) and (4,12) were frequently reporting false detections;

these mote detections were disabled to prevent them from saturating the network, and, hence, are

not shown in this figure.

Sifting through this figure, we notice several phenomenon. Short dashedlines tend to

indicate a good detection with minimal latency. For example, the motes at (10,8) and (12,8) tend

to report the robot’s position reliably and quickly. Slightly longer dashed lines indicate a higher

latency communication link between the leader mote and the robot. Long dashed lines, such as the

one connecting to the mote at (12,12), represent false detections. The motes at (12,12), (12,0),

and (4,4) were misbehaving and frequently reporting false detections. Poor detections made robot

position estimation difficult as shown in Figure 2.5b. This figure removes the leader indicators of

the previous figure and adds the estimated robot position (solid orange line). The estimated robot

position was generated offline using a Kalman filter and the sensor network reports.

22

The Kalman filter assumes simple (linear) point mass kinematics with no movement noise.

The sensing error covariance is tuned to the detection error (see the bluedashed line in Figure 2.5c).

Additionally, the Kalman filter is initialized with a perfect state estimate. In effect, the Kalman

filter is simply acting like a smoothing function for the detections. From Figure 2.5b, it is clear that

the system is extremely noisy especially with the false reports. Figure 2.5c shows a time line of

the sensor network detection error (blue dashed line) and the Kalman filter estimation error (solid

orange line) with detection receive times (light blue vertical lines). The detection error is calculated

as the difference between the robot’s GPS measured position and the sensor network’s most recently

reported detection. Clearly, this error is quite high. Often, the robot is noteven detected within the

correct grid cell or even the correct 9 by 9 grid cell surrounding the robot. In fact, the mean error

of raw detections is 2.42 meters, indicating that the robot is often detected in thewrong grid cell.

Over the course of the 145 second journey, the robot receives 48 detections, providing an average

of 1 detection every 3.02 seconds.

Additionally, as we will discuss shortly, we estimate the mean latency of the network to

be about 1.75 seconds. Given this high latency, low bandwidth, and high error system, our Kalman

filter (with perfect initial state and zero movement noise) still generates 1.96 meters mean position

error; the unprocessed detections have 3.25 meters mean position error.Clearly, a real system

with movement noise, running a feedback loop on such data would be quite limitedin speed and

accuracy; compare this with a 10 Hertz, 2 cm accuracy GPS system, for instance.

To understand the intrinsic quality of the sensor network data, we more aggressively filter

the raw detections to generate the results shown in Figure 2.6. In particular,we remove reports

from (additional) misbehaving motes by silencing motes (12,12), (12,0), and (4,4). To account for

latency, we shift the reports backwards in time and observe that a time shift inthe range of 1.6 to

2.5 seconds is helpful in reducing the detection error. We observe that atime shift of 1.75 seconds

provides a minimum amount of detection error. After which, we apply the same Kalman filter to

estimate the robot position. Our robot now only receives 41 measurements (about 1 measurement

every 3.54 seconds), but is able to achieve a mean detection error of 1.69meters (13.78% less error

than the previous Kalman filter estimate).

Over the span of this path, the detection error averages 2.60 meters, and 1.53 meters after

application of the Kalman filter. We observe that even after applying our (non-causal) filter to hand

picked measurements, the sensor platform still proves challenging for support of high speed, high

accuracy control systems. The next section summarizes the lessons learned during this deployment.

23

x1 (m)

x
2

(m
)

-2 0 2 4 6 8 10 12 14 16 18
-2

0

2

4

6

8

10

12

14

(a) GPS measured robot path (solid black) demarcated ev-

ery 20 seconds (black squares) with leader motes (blue

stars) and received message times (blue dotted lines).

x1 (m)

x
2

(m
)

-2 0 2 4 6 8 10 12 14 16 18
-2

0

2

4

6

8

10

12

14

(b) GPS measured robot path (solid black) demarcated ev-

ery 20 seconds (black squares) with Kalman filter esti-

mated position (solid orange).

time (s)

er
ro

r
(m

)

0 20 40 60 80 100 120 140
0

5

10

15

(c) Position error: sensor network detected (dashed blue) and Kalmanfilter estimated (solid orange).

Figure 2.5: Results collected from a single robot traversing a 7 by 7 sensor network. Faulty motes

(4,10) and (4,12) have been manually silenced.

24

x1 (m)

x
2

(m
)

-2 0 2 4 6 8 10 12 14 16 18
-2

0

2

4

6

8

10

12

14

(a) GPS measured robot path (solid black) demarcated ev-

ery 20 seconds (black squares) with leader motes (blue

stars) and received message times (blue dotted lines).

x1 (m)

x
2

(m
)

-2 0 2 4 6 8 10 12 14 16 18
-2

0

2

4

6

8

10

12

14

(b) GPS measured robot path (solid black) demarcated ev-

ery 20 seconds (black squares) with Kalman filter esti-

mated position (solid orange).

time (s)

er
ro

r
(m

)

0 20 40 60 80 100 120 140
0

5

10

15

(c) Position error: sensor network detected (dashed blue) and Kalmanfilter estimated (solid orange).

Figure 2.6: Results collected from a single robot traversing a 7 by 7 sensor network. Faulty motes

((4,10) and (4,12)) and noisy motes ((12,12), (12,0), and (4,4)) have been manually silenced.

25

2.4 Lessons

PEG taught us many practical lessons for design, development, and deployment of a

medium-scale sensor network and control system. We learned that mote enclosures should be

tailored specifically for development or deployment, that every physical interaction with a mote

is likely to cause damage, that a high gain antenna snooping on the network is an invaluable de-

bugging tool, and that many additional software services for in situ debugging and interaction are

needed. However, here, our focus is on using the sensor network asa sensor for a control system.

From a control system’s perspective, perfect WSN data would be suchthat the node loca-

tions are known, and, for all time, the physical quantity to be sensed is known at every node with no

latency. However, PEG demonstrated our controller would, aperiodically and with a low data rate,

receive noisy measurements at loosely known regions of space-time. We categorized properties of

the PEG WSN that make traditional control techniques challenging to apply:

• Sensor error

– sensor noise

– modeling error

– inter-mote calibration error

– timing error

– localization error

• False events

– spurious detections

– missing detections

• Network induced error

– aperiodic

– low data rate

– latency

Sensor error refers to the error in the sensing system during detection of true events (i.e.,

excluding any false positives or negatives) due to sensor noise, modeling error, inter-mote calibra-

tion error, timing error, and localization error. Additional error is induced inthe system by spurious

26

and missing events, caused by, for example, faulty hardware or environmental noise. Finally, net-

work characteristics denote the tendency of sensor measurement packets to arrive aperiodically at a

low rate and with significant latency.

Just as other researchers [85] have discovered experimentally the difficulties of sensing

applications using sensor networks, PEG has done this for control systems. This chapter has de-

scribed the difficulty in using sensor network platforms to inform control systems. In the next

chapter, we identify several techniques to overcome these difficulties. Later chapters evaluate the

performance of these techniques.

27

Chapter 3

Practical System Architecture

Our PEG deployment demonstrated that several properties of sensor networks (discussed

in Section 2.4) frustrate control system design. This chapter investigates techniques for overcoming

these challenging properties and develops an architecture that unifies these techniques. The afore-

mentioned challenges can be address in many ways ranging from hardware design to algorithm

parameter choice. In our work, the localization and routing algorithms along with the mote hard-

ware is assumed to be fixed and given. Additionally, the node density and deployment strategy is

also assumed to be provided a priori. Hence, our approach focuses onusing combinations of simple

algorithms to improve the overall system performance. In later chapters, thedeveloped architecture

is tested with a series of detailed simulations.

Furthermore, as our architecture is evolved, we will keep in mind that many useful sensor

network services have already been developed. In particular, services such as localization [93], time

synchronization [34], data query and aggregation [60], and run-time configuration utilities [69]

have been developed. Additionally, other architectures for networked control systems have been

studied. Brooks [14] developed an architecture that allows for graceful degradation of a control

system as connectivity decreases, provided that actuators always receive input from the lowest level

controller, a controller designed to implement basic, safe functionality. However, the design of such

a controller is left to the reader. Our work seeks to develop an architecture for SNAC systems based

on existing services and seeks to design such a control system.

28

3.1 Sensor Error

Sensing error due to noise, modeling disparities, inter-mote calibration and timingdiffer-

ences, and localization error can be addressed in a variety of ways. A solution to noise is to obtain

more frequent samples. However, the number of samples is fundamentally limitedby both the hard-

ware and the bandwidth of the network, in addition to any self-imposed limits designed to meet

other goals such as reduced power consumption. Many of theses requirements can be addressed

by efficient use of the bandwidth. In particular, for a network that supports multiple clients and

objectives, the networking layer can operate in amultimodalfashion, each mode tailored to each

objective. For instance, during PEG, the network could operate both as alocalize pursuer service

and a track evader service. Messages used to localize the pursuer could be designed to incur less

overhead since they require only single hop communication.

Additional error due to modeling discrepancies, inter-mote calibration differences, and

localization error can be addressed with a space-time model of the system variables and an accom-

panying estimation technique (such as probabilistic models with maximum likelihood estimation

techniques). We refer to such a model and estimation technique as aneighborhood sensor model.

Not only can such models accurately interpret sensor readings, but some researchers [92] have used

them to calibrate sensors. Finally, timing differences amongst motes induce additional error, and

can be addressed by accounting for time discrepancies in the neighborhood model or by utilizing a

coordination service. Such a service, possibly built on top of atime synchronizationservice, would

ensure neighboring motes sample their sensors at the same time.

3.2 False Events

False events, composed by spurious and missing readings, contribute to additional error

in the sensing platform. Such events can be caused by broken or incorrectly calibrated hardware. In

this case, problematic motes must be identified and action must be taken to ensurethese motes do

not increase the overall system error. One method of identifying a faulty mote is to perform astatus

query, a request for the current status, on a mote. A network-wide status query provides a list of

motes that either diagnose themselves as faulty or are not responding to radio messages. Another

method of determining the status of motes is to use a neighborhood sensor modelfor a group of

motes and a known stimuli to determine via collaboration if some motes are faulty or incorrectly

calibrated. Spurious readings, often caused by environmental noise orfaulty hardware, can be

29

identified using validation or verification techniques. Verification uses ahand shakingprotocol

between the sensor network and a cooperative entity to ensure that only the requested measurements

are announced by the mote network. For instance, a cooperative robotmight periodically emit a low

power radio message requesting nearby motes to reply with ranging measurements. Far away motes

that reply to the robot can be labeled as potentially faulty. Sensor measurements from nearby motes

can also be validated using a neighborhood sensor model as previously discussed.

Once groups of motes have been identified as potentially problematic, asensor network

maintenance routinecan be applied that automatically calibrates, restarts, replaces, or turns off such

motes. Automatically calibrating a mote involves using a neighborhood sensor model to predict

the mote’s sensor field based on measurements from nearby motes, comparing this with the mote’s

actual measurements, and adjusting the mote’s calibration parameters accordingly. Restarting or

turning off a mote would require issuing such a command to the mote over the radio. Replacingthe

mote would involve navigating to the faulty mote’s location and deploying new hardware. Finally,

for cooperative robots, hardware identified as faulty can be ignore and avoided by employing an

intelligent path planningroutine.

3.3 Network Induced Error

Properties of the networking system such as multi-hop packet delivery, broadcast colli-

sion, and shared bandwidth induce detection error when messages arrive aperiodically, with high

latency, and at a low data rate. Aperiodic arrival of detection messages iscaused both by the event

triggered nature of distributed entity detection and by the stochastically varying latency intrinsic

in the routing layer. Detections can potentially be made periodic with low jitter valuesby sensing

coordination as previously mentioned. Latency and low data rates can be addressed by optimiz-

ing communication for multiple control modes (as previously mentioned), artificiallyslowing down

the dynamics, or by using apredictive controller. A predictive controller assumes a parametric

model of the dynamics, and is composed of a goal controller with a state and parameter estimator

allowing it to operate in the face of missing and late measurements. Finally, tight bounds on when

sensor measurements occur are often not provided (such as during PEG). This can be addressed

with network-wide time synchronization, hand shaking when measurements should be performed,

or with aneighborhood routing modelthat estimates the time of detections based on characteristics

of the network.

30

Report Status

Mote Radio

Mode
Controller

Hand Shake Response

Coordination

Time Synchronization

Maintenance

Detection/Tracking

Sensors

Figure 3.1: Mote information flow. Responding to messages from the radio, the mode controller

selectively invokes services. Services interact with the environment by querying sensors and sending

messages.

3.4 Unified Framework

This section combines the previous design solutions into a practical system architecture

for SNAC systems overcoming challenging sensor network properties such as sensor error, false

events, and network induced error. The techniques identified above indicate that this unified frame-

work should implement a subset of the following services:

• Predictive controller

– Parametric model

– Goal controller

– State and parameter estimation

• Neighborhood model

– Sensing

– Routing

• Intelligent path planning

• Multimodal controller

31

Path Planning
Mote Radio

Mode
Controller

Estimation
Service

Actuators

Status Query

Hand Shaking

Network Mode Switch

Maintenance

Predictive Navigation
ControllerSensors

Figure 3.2: Agent information flow. Using radio messages, mode information,and (optionally) on-

board sensors, the estimation service infers the system-wide state. Using additional messages and

state estimation, the mode controller invokes services to achieve the agent’s overall goal. Services

interact with the environment by sending messages and engaging actuators.

– Networking

– Control strategy

• Coordination

• Status query

• Time synchronization

• Hand shaking

• Sensor network maintenance routine

– Calibrates

– Restart

– Replace

– Shut off

Using this list as a guide, we propose a 2 part architecture: the mote architecture shown

in Figure 3.1 and the agent architecture shown in Figure 3.2. Both designs are similar with the

32

exception that the mote does not perform estimation or actuation. The 2 frameworks work together

in a loose client-server relationship. The mote generally either runs a fixed set of services or se-

lectively invokes services according to agent demand. Occasionally, themote may invoke services

autonomously; for instance, a watchdog may invoke a mote’s maintenance service and cause a re-

boot.

The high level flow of information in the mote architecture is event-triggered. Respond-

ing to radio messages, the mode controller selectively invokes various services. Various sensing

services, such as detection and tracking, send detection messages triggered by sensing events. Addi-

tionally, for a typical tracking application, the mode controller may continuouslyrun a time synchro-

nization and tracking service while invoking other services such as status reports or maintenance

when requested by the agent.

The agent architecture can be implemented as a time-triggered architecture. Periodically,

using any recently received messages and mode switching information, the agent actively estimates

system-wide parameters related to sensor calibration, routing, and robot dynamics. The mode con-

troller using transition cues from the network and a current system-wide state estimate selectively

invokes various services. Invoked services influence the system’s behavior by sending messages

and controlling the actuators. For instance, during a PEG application, the mode controller may

continuously invoke navigation and path planning services to track an evader, while selectively in-

voking different networking modes and maintenance routines to balance the robot’s localization and

tracking error.

Together these architectures enable the aforementioned design rules. The mode controller

allows us to switch between various networking and control modes. The navigation controller and

path planning services utilizes the predictive controller and intelligent path planning concepts. The

estimation services utilizes neighborhood models. Finally, various services on both architectures

take advantage of techniques such as coordination, time synchronization,status query, hand shaking,

and maintenance. Some of the design rules and correlating services are explored in more detail in

later chapters.

33

Chapter 4

The Sensor Network and Control

System Simulator

Previous chapters have described real world SNAC implementations, the challenges these

systems present, and methods of addressing these challenges. This chapter, develops formal models

of the SNAC system and an accompanying simulator. Furthermore, this chapter performs several

simulations. The first set of simulations compare components of the previouslydeveloped system

architecture with a traditional design. The next set of simulations establishesthe importance of path

planning for robot navigation in sensor networks.

4.1 System Models

Using our experience from PEG and results from the literature [37, 11],a set of models

and a simulator for a mobile robot embedded within a sensor network is developed. In order to

accurately capture the most challenging aspects of sensor networks, models are developed to ac-

count for sensing noise, sensor saturation, calibration differences, packet collision, radio reception

range, multi-hop latency, finite battery lifetime, faulty hardware, and loose time synchronization.

Additionally, the robot model captures the actuator noise and nonholonomic dynamics. In the fol-

lowing sections, models for the sensor, the communication layer, the mote hardware, the detection

and aggregation algorithm, and the robot dynamics are developed.

34

B = B0 + e

B = B0 + e

B > Bthres

B > Bthres

∆t > τsat

∆t > τsat

B = Bthres

B = Bthres

normal

saturation

saturation

deploy

noisy

unresponsive
B = ∅

unpredictable
B ∼ N

pur

pup
pn

1− (pn+
pur + pup)

Figure 4.1: Sensor state transition diagram.

4.1.1 Sensing

For PEG, the motes used on-board magnetometers to detect entities in the network. Our

experience with the mote hardware indicates that the measured value reported by a mote is a function

of the state of the sensor and the magnetic field near the mote. In particular, each sensor could be

in any one of 5 states: normal, noisy, unresponsive, unpredictable, orsaturated. A sensor in a

normal state reports a valueB = B0 + e whereB0 is the magnitude of the magnetic field ande is

normally distributed noise. A noisy sensor reports the same measured value,but typically has much

higher noise variance due to a priori exposure to intensive magnetic fieldsor faulty hardware. An

unresponsive sensor never reports measurements due to, for instance, a weak battery or a faulty

radio. Sensors in a unpredictable state report a normally distributed value.This state models faulty

sensors that tend to report only noise typically due to exposure to intensive magnetic fields. Finally,

a sensor in the saturated state reports a constant measured valueB = Bsat. Sensors enter saturation

when exposed to large magnetic fields and typically resume normal operation after a short period of

time.

During an experiment, a sensor can occasionally transition between states as shown in

Figure 4.1. Before an experiment begins, all sensors are in the initial stateof deploy. As each

mote is placed in the field, its sensor transitions to the unpredictable, unresponsive, noisy, or normal

state with probabilitypup, pur, pn, or 1− (pup + pur + pn), respectively. Once a sensor becomes

unresponsive or unpredictable, it remains this way (until maintained or re-deployed). Sensors that

are deployed in the normal or noisy states occasionally transition to the saturation state during

normal operation if the detected fieldB exceeds the saturation thresholdBthres. Once the sensor has

35

been in saturation for a duration ofτsat seconds, it returns to its previous state. Furthermore, if a

mote is deployed in the normal (noisy) state, its error biasµk is normally distributed asN(0, σ2
µ)

(N(0, σ̃2
µ)) and its error varianceσ2

k is normally distributed asN(0, σ2
σ) (N(0, σ2

σ)).

The actual field the sensor is exposed to (denoted byB0) is modeled as a magnetic dipole

far field. In particular, each detectable entity is assumed to be a magnetic dipolewith dipole moment

~m =
[

0 0 M
]T

at a height ofdm (in meters) above the field, whereM > 0 (in Am2) anddm is

much larger than the length of the dipole. Letting~r be the vector from the dipole to a particular

mote, the magnitude of the magnetic field (in Teslas) at the mote is

B0 =
µ0

4π‖~r ‖5
∥

∥

∥3(~m · ~r)~r − ‖~r‖2~m
∥

∥

∥ (4.1)

whereµ0 is the permeability of free space (in Wb/(Am)). Therefore, with an entity at
[

xv yv

]T
in

the plane, and a mote on the ground at
[

xm ym

]T
, it can be shown that

B0 =

3µ0dmM

[

ρ2 +

(

2d2
m−ρ2
3dm

)2
]1/2

4π(ρ2 + d2
m)5/2

(4.2)

whereρ =

∥

∥

∥

∥

∥

∥

[

xm− xv ym− yv

]T
∥

∥

∥

∥

∥

∥

is the distance (in meters) in the plane between the mote and the

entity. Note, the largest field, attained when the entity is directly on top of the mote,is

B0(ρ = 0) =
µ0M

2πd3
m

(4.3)

4.1.2 Communication

The communication model abstracts the combined interaction of the lossy radio channel

with the multi-hop routing protocols. In particular, 2 communication scenarios are considered:

message broadcasting (single-hop communication) and multi-hop routing. Thebroadcast com-

munication model accounts for medium access control (MAC) delays, packet collision, and non-

deterministic reception ranges. In particular, when a mote sends a broadcast message, the packet

is first tested for collision. With probabilitypdrop, the message collides and is lost. If not lost, the

message is assigned a communication delay ofτlag ∼ U[τ′lag, τ
′′
lag]. After τlag seconds have elapsed,

the message is delivered to each neighbor at distanced with probability pdist(d). The reception

probability is modeled after the work by Ganesan et al [37] and Cerpa et al [19]. In particular, this

work determined that the reception probability is not 1 even at a distance 0 and does not drop to 0

36

distance (m)

re
ce

p
ti

on
p
ro

b
ab

il
it
y

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Figure 4.2: Single-hop reception probabilitypdist(d) = R(d, µ, σ) for µ = 2.5 andσ = 1.5.

even for rather large distances. This reception probabilitypdist(d) is approximated here with

pdist(d) = R(d, µ, σ) = 0.5

(

1− er f

[

d − µ
√

2σ

])

(4.4)

for some fixed valuesµ, σ. An example of this function forµ = 2.5 andσ = 1.5 is shown in

Figure 4.2.

The multi-hop routing model accounts for packet loss and lag induced by each hop. This

model assumes the underlying routing algorithm ensures a robust networktopology that provides

a route between any sender and receiver pair. Hence, each single-hop link along a multi-hop route

is assumed to be reliable and the reception probability modelpdist(d) is ignored. However, since

each transmission may still be loss due to collision, each hop may fail with probability pdrop. Fur-

thermore, it is assumed that the number of hops between any sender and receiver pair can be ap-

proximated by ˆnhop = ⌈ dr

d̂hop
⌉ wheredr is the straight line distance between the sender and receiver

and d̂hop is the estimated average distance per hop. Using this model, each multi-hop message is

first duplicated for each potential receiver. Then, for each message, the straight line distance to the

receiverdr and the estimated hop count ˆnhop is computed. Then, each hopi ∈ {1,2, . . . , n̂hop} either

fails with probabilitypdrop and the message is lost, or the hop succeeds and adds an additional lag

of τilag ∼ U[τ′lag, τ
′′
lag] to the overall packet latencyτlag =

∑

i τ
i
lag. If all hops succeed, the message

is deliveredτlag seconds later to its receiver.

37

4.1.3 Mote Platform

The mote platform model accounts for the variation of times motes come online and each

mote’s finite battery lifetime. In particular, motes may be manually switched on one ata time or the

network may be sent a start-up radio message. In either case, individualmotes will become active

at different times. This is modeled by allowing the initial sensing timeτs of a mote be uniformly

distributed:τs ∼ U[τ′s, τ
′′
s]. Furthermore, once a mote is turned on, it’s battery (or potentially other

vital hardware) will eventually fail. This is modeled by setting a uniformly distributed expiration

timeτe for each mote:τe ∼ U[τ′e, τ
′′
e].

4.1.4 Detection Routine

The detection routine models the entity detection and aggregate algorithm that is pro-

grammed on the motes. This models the same algorithm implemented by PEG. In particular, each

mote with a measured magnetic fieldB larger than a given thresholdBthres announces the measured

value over the radio to its neighboring motes using a detection message. A detection message con-

tains the announcing mote’s id, location, and the measured magnetic field. Oncea mote announces

a detection, it must wait for at leastTreport seconds before reporting a detection again. Additionally,

any mote receiving a detection message will store the message forTreport seconds before discarding

it. If a detecting mote measures a magnetic field larger than the magnetic field reported by any of

its neighbors within the lastTreport seconds, this mote will elect itself as a leader. As a leader, it

aggregates all the detection reports from its neighbors (within the lastTreport seconds) into an event

packet and sends this packet (via the multi-hop routing layer) to the pursuer robot.

4.1.5 Robot

The robot model accounts for the kinematics of the pursuer and evader robots. For PEG,

the pioneer robot from ActivMedia was used. However, for many othertest beds, the COTS-

BOTS [11] platform, a mote controlled small RC car, is used. The robot modelapproximates

the nonholonomic, car-like kinematics of the COTS-BOTS that can virtually instantaneously set its

steering angle and wheel velocity. In particular, the position and orientation
[

x1
k x2

k θk

]T
evolve

38

x1

x2

θ

b

ν̄

φ̄

Figure 4.3: The robot model’s state and parameters.

according to

































x1
k+1

x2
k+1

θk+1

































=

































x1
k

x2
k

θk

































+

































bcot(φ̄k)[sin(θk + ηk) − sin(θk)]

bcot(φ̄k)[cos(θk) − cos(θk + ηk)]

ηk

































(4.5)

ηk =
ν̄kT sin(φ̄k)

b
(4.6)

(4.7)

whereb is the wheelbase,ηk is the change in orientation,T is the sampling period, ¯νk is the wheel

velocity, andφ̄k is the steering angle as shown in Figure 4.3. Additionally, the achievable values for

wheel velocity and steering angle are limited by the hardware:

ν̄k ∈ [νmin, νmax] (4.8)

φ̄k ∈ [φmin, φmax] (4.9)

(4.10)

whereνmin < 0 < νmax andφmin < 0 < φmax. The applied wheel speed and steering angle are noisy

functions of the user supplied control valuesνk andφk. In particular,

ν̄k = νk + ǫ
ν
k (4.11)

φ̄k = φk + ǫ
φ
k (4.12)

ǫνk ∼ N(0, σ2
ν) (4.13)

ǫ
φ
k ∼ N(0, σ2

φ) (4.14)

39

Finally, the control bounds{νmin, νmax, φmin, φmax} are considered fixed, unknown param-

eters of the system.

4.2 Agent Design

This section develops several of the system architecture components from Section 3.4

including neighborhood estimation services, a predictive controller, and apath planner. First, an

extended Kalman filter is developed for state estimation. Then, two modifications tothe estimation

system are proposed: network latency compensation and faulty node filtering. Next, a predictive

navigation controller is designed. Finally, a feedback controller for navigation is developed to com-

pare with the predictive controller.

4.2.1 State Estimation

In this section, an extended Kalman filter (EKF) [6] is designed to provide state estimates

to the controller. In following sections, the estimator is augmented to compensate for false posi-

tives and communication delay. An EKF is designed analogously to a Kalman filterby linearizing

nonlinearities in the dynamics at each point of estimation. For each new time stepk + 1 and new

sensor measurementyk+1, the EKF iteratively computes the new state estimate ˆxk+1|k+1 and the error

covariancePk+1|k+1. The update occurs iteratively in 2 steps: a proprioceptive update and aprecep-

tive update. The proprioceptive update evolves the state forward to realize x̂k+1|k according to the

system dynamics with no noise, and evolves the error covariance forward according to

Pk+1|k = FkPk|kFT
k + Qk (4.15)

whereQk is the noise covariance of the dynamics andFk is the Jacobian of the dynamics. For the

car dynamics, it can be shown that

Fk =

































1 0 −νkT sin(θk)

0 1 νkT cos(θk)

0 0 1

































(4.16)

for a car moving in a straight line, or

Fk =

































1 0 bcot(φk)[cos(̂θk|k + ηk) − cos(̂θk|k)]

0 1 bcot(φk)[sin(θ̂k|k + ηk) − sin(θ̂k|k)]

0 0 1

































(4.17)

40

for a car that is turning whereηk =
νkT sin(φk)

b .

The preceptive update is computed, using the proprioceptive update, as

Kk+1 = Pk+1|kHT
k+1(Hk+1Pk+1|kHT

k+1 + Rk+1)−1 (4.18)

x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 − Hk+1x̂k+1|k) (4.19)

Pk+1|k+1 = (I − Kk+1Hk+1)Pk+1|k (4.20)

whereRk+1 is the covariance of the sensor noise andHk+1 is the Jacobian of the measurement func-

tion. Since event messages can be transformed into a single position estimate (using, for instance, a

center of mass computation), the measurement function is taken to be

yk =



















1 0 0

0 1 0



















































x1
k

x2
k

θk

































+ ǫ (4.21)

whereǫ is the sensor noise which is normally distributed with covarianceRk. Hence, for this model,

Hk+1 is given by the constant output matrix:

Hk+1 =



















1 0 0

0 1 0



















(4.22)

4.2.2 Network Latency Compensation

Using the above computations, the state can be estimated for each time step using knowl-

edge of the control values and the new sensor measurements. However,the sensor network does

not provide a sensor measurement at each time step. Furthermore, received measurements can be

out of order or late. Hence, the input to the EKF is adapted to account forthese characteristics. If a

new sensor measurement is not available, only the proprioceptive updateis applied. If a new sensor

measurement is available it is used to correct the state estimateτd seconds in the past whereτd is

the estimated mean latency of received messages. After a past state estimate is corrected, the filter

is re-applied to generate a current estimate.

4.2.3 Faulty Node Filtering

To account for faulty motes that frequently report false positives, a message validation

filter is applied to all incoming messages. This filter estimates a packet’s validity probabilistically

as p(v|n) wheren is the number of sensor readings in the packet andv ∈ {valid, invalid} is the

41

packet’s validity. Applying maximum likelihood estimation, the validity of a packet withñ sensor

readings is the argmax overv of p(ñ|v) assuming a uniform prior distribution forv. Clearly, this

model either accepts or rejects packets based on the number of sensor readings.

4.2.4 Predictive Controller

A model predictive controller [82] (MPC) is developed for way-point navigation of the

car-like robot. This controller achieves the destination pointxf using two maneuvers: turning and

driving straight. First, during the turning phase, the vehicle is driven in a tight circle taking the

vehicle from a starting state
[

xa θa

]T
to a intermediate state

[

xb θb

]T
. Second, during the straight

phase, the vehicle is driven straight (φ = 0) to
[

xf ∗
]T

where the orientation is not specified.

The computation is carried out by first determining the quadrantq1 (relative to the robot

coordinate system) the destination point lies in. Next, it is determined whether thedestination point

lies inside the turning radius of the robot at its initial position (r1 = true) or not (r1 = false). Using

these two computations, the controller chooses an initial control value:

• (ν, φ) = (νmax, φmax) if (q1, r1) ∈ {(2, false), (4, true)}

• (ν, φ) = (νmin, φmax) if (q1, r1) ∈ {(3, false), (1, true)}

• (ν, φ) = (νmax, φmin) if (q1, r1) ∈ {(1, false), (3, true)}

• (ν, φ) = (νmin, φmin) if (q1, r1) ∈ {(4, false), (2, true)}

This control action is applied exactly long enough for the robot to reach anintermediate state that

admits a straight path to the destination. Next, a control action that drives the robot straight to the

destination is computed by determining which quadrantq2 the destination currently lies in:

• (ν, φ) = (νmax,0) if q2 ∈ {1,2}

• (ν, φ) = (νmin,0) if q2 ∈ {3,4}

The second control action is applied exactly long enough for the robot to reach the destination.

4.2.5 Feedback Controller

A simple state feedback controller is developed to challenge the performanceof the pre-

dictive controller. To simplify future analysis, the feedback controller is kept quite simple: way-

points are assumed to be far away (in comparison to the wheelbase) and way-points are considered

42

to be successfully achieved when the car is withindgoal > b. Given these constraints, the feedback

controller is designed to proportionally track the desired orientation (the robot orientated towards

the goal) and reduce the wheel speed as the destination becomes close. Inparticular, the control

values are


















νk

φk



















=



















ν̂max[1 − e−‖x̂k−xf ‖]

pφ(θ̂k − θdk)



















(4.23)

whereθdk = arctan(
x2

f−x̂2
k

x1
f−x̂1

k
) is the desired orientation,

[

x̂k θ̂k

]T
is the state estimate at timek, ν̂max is

a fixed a priori estimate of the maximum speed of the vehicle, andpφ ∈ R+ is a control parameter.

4.3 Controller Comparison Simulations

Using the aforementioned models and control systems, several simulations are performed

to compare the performance of the control architecture from Section 3.4 to that of a simple feedback

controller. In particular, the estimation accuracy and navigation ability of fivedifferent system

architectures is compared. The simulator is configured to emulate the PEG sensor network. In

particular, the parameter values used are given in Appendix A unless otherwise noted.

Five system architectures are compared. System 1 uses the feedback controller and the

plain EKF previous designed. The plain EKF estimator does not use networklatency compensation

or faulty node filtering. System 2 augments the estimator of System 1 with faulty node filtering.

System 3 augments the estimator of System 2 with network latency compensation. System 4 uses

the model predicative controller, the EKF, and faulty node filtering. Finally,system 5 augments the

estimation of system 4 with network latency compensation.

For each simulation, 10 trials were ran, the destination goal was set to
[

10 10
]T

, and

the goal tolerance was set to 10 cm. Each trial was ran until the goal was achieved or 150 seconds

elapsed. An example trial for each system is shown in Figure 4.4. For eachfigure, the gray sym-

bols represent the locations of sensor nodes with each symbol denoting the node’s status: normal

(gray dot), non-responsive (gray x), noisy (gray asterisk), andunpredictable (gray pentagram). Fur-

thermore, the robot’s starting and ending states are denoted by a green rectangle and arrow. The

desired ending location is drawn as 3 concentric black circles. Finally, the estimated robot position

during the trial is denoted by light red dots connected by a light red dotted line. Each smaller fig-

ure is captioned with the system architecture components used: Feedback (FB), extended Kalman

filter (EKF), model predictive controller (MPC), faulty node filtering (FNF), and network latency

compensation (NLC).

43

x1 (m)

x
2

(m
)

0 5 10 15 20
0

5

10

15

20

(a) System 1: FB, EKF

x1 (m)

x
2

(m
)

0 5 10 15 20
0

5

10

15

20

(b) System 2: FB, EKF, FNF

x1 (m)

x
2

(m
)

0 5 10 15 20
0

5

10

15

20

(c) System 3: FB, EKF, FNF, NLC

x1 (m)

x
2

(m
)

0 5 10 15 20
0

5

10

15

20

(d) System 4: MPC, EKF, FNF

x1 (m)

x
2

(m
)

0 5 10 15 20
0

5

10

15

20

(e) System 5: MPC, EKF, FNF, NLC

Figure 4.4: Example trial for 5 different control architectures depicting path and estimation results.

44

System ngoal t̄goal n̄est ēx ēθ
1 0 NA 5001.0 2.98 1.95
2 3 81.1 4311.5 1.21 1.51
3 1 66.1 4721.2 1.82 2.01
4 2 108.5 8.6 1.15 0.56
5 4 111.7 8.4 1.14 0.54

Table 4.1: Simulation results comparing 5 different system architectures for 10 trials. The first 3

system utilize a feedback architecture and the last 2 utilize a MPC based architecture. Shown above

is the number of goal achieving trialsngoal, the mean destination travel timētgoal, the mean number

of estimations required ¯nest, the mean estimated position error ¯ex, and mean estimated orientation

errorēθ.

Referring to this figure, it is shown that for system 1, the estimated path is smeared to-

wards the unpredictable mote in the lower right of the field. This is expected since the estimator

does not account for such faulty nodes. Consequently, the estimation is poor and the feedback con-

troller drives the robot aimlessly in circles. The next system, utilizes the faultyhardware model and

does much better. The estimator is able to ignore the faulty node and is able to reasonably esti-

mate the position of the robot guiding it close to the desired destination. System 3is an attempt to

compensate for the lag of the network. For this trial, the system promptly achieves the desired goal

position. However, as will be addressed later, this turns out to not be truein general. The estimation

tends to lags sufficiently behind the the robot’s actual position and causes instability in the feedback

system. The next system switches to the model predictive controller with the EKF and faulty node

filtering. This system achieves the goal with low estimation error. In particular, since this system

only estimates the robot’s state after an entire control sequence has been carried out, the controller

can pause and allow laggy sensor messages to reach it before each estimation. Finally, system 5,

augments the previous system with network latency compensation further reducing the estimation

error. This system does not suffer with the application of network latency compensation as system

3 does since the MPC does not immediately react to each incoming message and can pause at the

completion of each control sequence.

The simulation results are summarized in Table 4.1. Notice, the basic feedback system is

incapable of ever achieving the goal. System 2 achieves a significant improvement in performance

by using faulty node filtering. However, as previously mentioned, networklatency compensation

tends to induce instability for system 3 and reduces the overall performanceof the controller. The

45

Path td n̄est ēx ēθ n̄det n̄evt ēevt,pos

1 60.5 1 3.90 0.47 1328.0 229.1 3.56
2 62.9 2 2.77 1.73 1186.2 230.2 3.82
3 65.1 2 2.10 0.53 1604.8 266.3 3.37
4 109.6 8 1.71 0.78 2199.0 375.8 4.40

Table 4.2: Simulation results comparing 4 different paths across 20 trials. Shown above is the travel

time td, the mean number of estimations required ¯nest, the mean estimated position error ¯ex, the

mean estimated orientation error ¯eθ, the mean number of detections ¯ndet, the mean number of event

messages sent ¯nevt, and the mean estimated position error without filtering ¯eevt,pos.

last 2 systems improve performance by replacing the feedback controller with the MPC. In particu-

lar, system 5 achieves the best results. This architecture achieves the goal 40% of the time, requires

very little estimation overhead, and reduces the position and estimation error by61.7% and 72.3%,

respectively, compared to the basic feedback system.

4.4 Path Comparison Simulations

Using the aforementioned models and system architecture, several simulations are per-

formed to compare the effect path planning has on robot localization accuracy. In particular, using

the final system architecture (system 5) from the previous section, fourdifferent routes to the desti-

nation are followed. The results are compared to determine if path planning (exploiting the sensor

network topology) significantly effects localization accuracy. The simulator is configured to em-

ulate the PEG sensor network. In particular, the parameter values used are given in Appendix A

unless otherwise noted.

For these simulations, 20 trials are performed and the destination goal was set to
[

15 15
]T

.

Example trials using the four chosen routes are shown in Figure 4.5. Path 1 simply goes directly

to the destination ignoring the sensor network topology. Path 2 is allowed to slightly deviate from

straight to encounter a region more densely covered by nodes. Path 3 is allowed the same flexibility,

but takes a different path. Finally, path 4 attempts to enter as many densely covered areas as possible

on the way to the destination.

The results are summarized in Table 4.2. As expected, path 1 is the quickest path to

the destination and the control architecture only estimates the robot state oncethe destination is

reached. Since nodes are scattered to either sides of this route, the estimated path has high error, but

46

x1 (m)

x
2

(m
)

0 5 10 15 20
0

5

10

15

20

(a) Path 1

x1 (m)

x
2

(m
)

0 5 10 15 20
0

5

10

15

20

(b) Path 2

x1 (m)

x
2

(m
)

0 5 10 15 20
0

5

10

15

20

(c) Path 3

x1 (m)

x
2

(m
)

0 5 10 15 20
0

5

10

15

20

(d) Path 4

Figure 4.5: Example trial for 4 different fixed routes depicting path and estimation results.

47

the estimated orientation has low error. The second path does well initially (seeFigure 4.5b), but the

latter sections of this path are detected by nodes to the lower right of the actual position. This results

in a reduction in estimated position error, but an increase in estimated orientationerror. The third

path mends the trouble with the latter part of the second path by routing down and to the right (see

Figure 4.5c). This has the effect of slightly increasing the number of detections and achieves good

estimation results. Path 4 attempts to only navigate in dense regions and seeks reduced error. This

route does reduce the estimated position error at the sake of increased estimated orientation error

and increased number of detections (utilization of bandwidth). In fact, this path, although chosen

to reduce the innate sensor error ¯eevt,pos, has actually increased it by 23.6% over the basic straight

path. This can also been seen by Figure 4.5d. The first half of the route has high detection error

with motes detecting the robot either too high or too low. However, even with poor detections, this

path achieves the lowest position estimation error. From this, we see that it is unclear how the robot

should choose its path. This will be addressed in more detail in later chapters.

The simulations have confirmed that both control architecture and path planning have

significant effect on the system performance. Components of the unified system architecture have

proved to be beneficial for SNAC system operating in realistic simulations. However, it is unclear

how path planning should be addressed to improve system performance. Inthe following chapters,

path planning to achieve reduced localization error and bandwidth utilization isinvestigated.

48

Chapter 5

Information Maps

The remaining material in this thesis focuses on robot localization in sensor networks

exploiting an information metric. This chapter presents information maps, a tool for determining

the localizability of a robot in a region. Previous work [78, 63, 86] exploiting information for robot

localization has been in the context of a robot equipped with on-board sensors. Our work applies

a global information view, or information map, to robots localizing with sensor network data. In

the following chapters, we develop sensor network models and approximations of these models

suitable for information map computation. For instance, this chapter considersmany binary sensors

distributed in a field; later chapters extend this sensor model and develop approximations suitable

for efficient computation. Additionally, our work provides a comprehensive look at information

maps (formal presentation of the algorithm with time complexity analysis), and realistic sensor

network localization simulations utilizing information maps. Finally, a later chapter willdevelop a

novel path planning routine exploiting information that outperforms severalother (non-information

based) techniques for accurately localizing a robot in a sensor network.

This chapter provides an overview of information maps. First, an analyticaloverview

of Markov localization is presented. Next, the information metric is introduced.Then, using this

metric, an algorithm is presented that computes information for all regions of the robot pose space

generating an information map. Finally, several simulations are performed revealing the computa-

tion time required and providing insight into the information topology of a sensornetwork.

49

5.1 Markov Localization

This section describes how Markov localization [36] is used to estimate the pose, or state,

of a robot. First, the system model, composed of the robot’s dynamics and thesensor network

model is described. Next, this model is adapted for use with Markov localization. Finally, the steps

of localizing a robot using Markov localization are outlined.

Markov localization is a Bayesian estimation technique [49] for estimating a robot’s pose

given a model of the system and periodic sensor readings. Markov localization requires that the pose

belongs to a finite space and that the system is specified probabilistically usinga Hidden Markov

Model (HMM). However, a robot’s pose often lives in an infinite, continuous space and evolves

according to a set of difference or differential equations. In order to rectify this difference, the

infinite pose space is partitioned and the dynamics are converted to a HMM.

First, the infinite pose space is partitioned. In the following, a bar is placed over variables

related to the infinite pose space, such asl̄ or L̄, to distinguish them from the finite pose space, such

as l or L. The infinite pose spacēL is partitioned into a finite number of pose spacesL = {L̄i}.
Typically, this partitioning is based on a regular grid, although other techniques such as topologi-

cal [68] and tree-based [16] are used. For our work, the continuous pose space is aA by A square

anchored at the origin inR2. This space is partitioned into a regularM by M grid where the (i, j)th

partition, or cell, is denoted asGi, j . More precisely, the pose spaces are described by

L̄ = [0,A] × [0,A] ⊂ R2 (5.1)

L = {Gi, j}i, j (5.2)

Gi, j = [(i − 1)∆, i∆] × [(j − 1)∆, j∆] ⊂ L̄ ⊂ R2 (5.3)

∆ =
A
M

(5.4)

wherei, j ∈ {1,2, . . . ,M}. For notational convenience,〈i, j〉 is used to denote a posel in the partition

space that represents the (i, j)th grid cellGi, j with center ¯gi, j , inducing the following relationship:

l = 〈i, j〉 = Gi, j ⇐⇒ l̄ ∈ Gi, j ⇐⇒ ḡi, j = Center(Gi, j) (5.5)

Next, the system dynamics are adapted for Markov localization. The robot’s posēl ∈ L̄
is assumed to evolve according to the difference equation

l̄k+1 = f (l̄k,uk, k) (5.6)

50

· · ·· · ·

u0

l0

y0

u1

l1

y1

un+1

ln+1

yn+1

p(l0)

p(y0|l0)

p(l1|l0, u0)

p(y1|l1)

p(ln+1|ln, un)

p(yn+1|ln+1)

Figure 5.1: A hidden Markov model.

for each time stepk ∈ {0,1,2, . . .}, and each control valueuk ∈ U. At each time stepk, our sensor

network measures the current posel̄k as

yk = h(l̄k, k) (5.7)

whereyk ∈ Y.

Adapting these dynamics to a HMM can be challenging. In a later section, the necessary

steps are performed; for the time being, it is assumed that the system is already adapted to a HMM.

The HMM (see Figure 5.1) is modeled with a hidden statelk ∈ L representing the pose, an output

yk representing the sensor network measurements, and a transition inputuk representing the control.

The relationships between the variables are specified probabilistically: the evolution from one state

lk to the nextlk+1 is described byp(lk+1|lk,uk), the sensing relationship is described byp(yk|lk), and

the initial pose at timek = 0 is described byp(l0). For notational simplicity,p(z) and p(z0) are

written to indicatep(Z = z) andp(Z = z0), respectively.

Now, the Markov localization algorithm is investigated. This algorithm providesan it-

erative method for estimating the pose of the robot given periodic sensor readings. The algorithm

is developed by computing the posterior pose estimation (distribution) given theprior pose estima-

tion (distribution), a sensor reading, and a control input. The iterative computation is revealed by a

thoughtfully chosen distributionα:

α(ln) ≔ p(ln, y0, . . . , yn|u0, . . . ,un−1) (5.8)

α(l0) ≔ p(l0) (5.9)

This definition ofα allows an iterative computation of the posterior pose estimation at timen + 1

51

given the relevant quantities at timen:

α(ln+1) = p(ln+1, y0, . . . , yn+1|u0, . . . ,un) (5.10)

=
∑

ln

p(ln+1, y0, . . . , yn+1|ln,u0, . . . ,un)p(ln|u0, . . . ,un) (5.11)

=
∑

ln

p(y0, . . . , yn+1|ln+1, ln,u0, . . . ,un)p(ln+1|ln,u0, . . . ,un)p(ln|u0, . . . ,un) (5.12)

=
∑

ln

p(y0, . . . , yn|ln+1, ln,u0, . . . ,un)p(yn+1|ln+1, ln,u0, . . . ,un) ·

p(ln+1|ln,u0, . . . ,un)p(ln|u0, . . . ,un) (5.13)

=
∑

ln

p(y0, . . . , yn|ln,u0, . . . ,un−1)p(yn+1|ln+1)p(ln+1|ln,un)p(ln|u0, . . . ,un−1) (5.14)

=
∑

ln

p(ln, y0, . . . , yn|u0, . . . ,un−1)p(yn+1|ln+1)p(ln+1|ln,un) (5.15)

= p(yn+1|ln+1)
∑

ln

p(ln+1|ln,un)α(ln) (5.16)

Referring to equation (5.16), we see thatα(ln+1) is computed by first evolvingα(ln) forward us-

ing the system dynamicsp(ln+1|ln,un) (the proprioceptive step), and then by weighting the result

with new sensor readingsp(yn+1|ln+1) (the preceptive step). Onceα(ln+1) is computed, the pose

estimation distribution is computed as

p(ln+1|y0, . . . , yn+1,u0, . . . ,un) =
α(ln+1)

∑

ln+1
α(ln+1)

(5.17)

To reduce this distribution to a single point estimate, several methods may be used such as finding

the argmax or taking the expectation overln+1. We prefer the later and estimate the pose as

l̂n+1 = E(p(ln+1|y0, . . . , yn+1,u0, . . . ,un)) = E(
α(ln+1)

∑

ln+1
α(ln+1)

) (5.18)

Although conceptually straightforward, the above algorithm neglects to normalizeα at

each step, leading to large numerical errors over time. This is solved by replacing α with the

normalized versionβ:

βr
m(ln) ≔ p(ln|y0, . . . , yr ,u0, . . . ,um) (5.19)

β0
0(l0) ≔ p(l0) (5.20)

Following steps similar to those used above, we find a 2 step iteration overβ:

βn
n(ln+1) =

∑

ln

p(ln+1|ln,un)βn
n−1(ln) (5.21)

βn+1
n (ln+1) =

p(yn+1|ln+1)βn
n(ln+1)

∑

ln+1
p(yn+1|ln+1)βn

n(ln+1)
(5.22)

52

Here the proprioceptive and preceptive steps naturally reveal themselves in equation (5.21) and

equation (5.22), respectively. To initialize this algorithm, at timen = 0, we start withp(l0) and a

sensor readingy0. Since the robot is assumed to be stationary prior ton = 0, u−1 = 0 could be used

in the computation, but instead, we prefer to only compute the preceptive update for this time step.

Hence, we setβ0
0(l0) to the priorp(l0) to indicate that the proprioceptive step is skipped. We again

estimate the pose with an expectation:

l̂n+1 = E(βn+1
n+1(ln+1)) (5.23)

This section introduced our general system, and applied Markov localization to it. The

next section will investigate which regions of our environment (pose space) are well suited to

Markov localization.

5.2 Information

This section introduces a metric for determining the performance of Markov localization

applied to different regions of the sensor network. A measure of a region’s ability to provide sensor

measurements that reduce the estimation error is presented. Such a measureis referred to as infor-

mation [78] or a localizability metric [63]. Information in our context can be understood by referring

back to localization. Recall that Markov localization provides more than just the pose estimatêl;

it provides the posterior distributionβ encompassing all of the knowledge of the current pose. In

particular, theβ distribution can be use to determine the estimation error. Hence, by observingthe

change in theβ distribution during the preceptive phase of localization, it can be determined which

sensor readings are most instrumental in reducing estimation error; i.e., which regions have the most

information. The development of information is done in 3 steps: entropy is defined, information is

defined, and system assumptions are imposed to simply the representation of information.

Entropy [26] is defined for a discrete distributionp(z) as

H(p(z)) = −
∑

z

p(z) log(p(z)) (5.24)

If p(z) is localized to one point, the entropy is 0. Asp(z) spreads out across several points, its

entropy increases toward infinity. Entropy is said to measure thedisorder in a distribution; in our

context, entropy is used to measure estimation error. Hence, the estimation error of a pose estimation

distributionβ, is given by its entropyH(β).

53

Next, the change in estimation error (entropy) during the preceptive phase of localization

is computed. It is assumed that a robot arrives at a posel0 ∈ L, computes the proprioceptive pose

estimatepl0(l), receives a sensor readingy, and, computes the preceptive pose estimatepl0(l|y). The

notation pl0(l) and pl0(l|y) is used in place ofβn
n(ln+1) andβn+1

n (ln+1), respectively, to focus on a

single preceptive update occurring at the posel0. In other words, this development is not interested

in how the robot arrived atl0. Hence, it is assumed that the proprioceptive pose estimatepl0(l)

is known, thereby neglecting all the details leading up to its computation. From this, information

I : L → [0, inf) is defined as thedecreasein estimation error (entropy) during the preceptive phase:

I (l0) = H(pl0(l)) −H(pl0(l|y)) (5.25)

In practice, the priorpl0(l) and the sensor readingy are unknown a priori. This dilemma

can be partially solved by eliminatingy with an expectation:

I (l0) = H(pl0(l)) − Ey[H(pl0(l|y))] (5.26)

However, pl0(l) cannot be eliminated in such a fashion: it is a complex quantity, resulting from

potentially many steps of Markov localization, making it difficult to compute. Instead, when com-

puting information, an approximation forpl0(l) based on observations of the dynamics is substi-

tuted. This substitution is addressed in later sections along with each particularimplementation. To

simplify our forthcoming computations, 2 additional requirements are imposed:pl0(l) is solely a

function of l − l0 and the set of possible sensor valuesY is finite. The first requirement enforces

that pl0(l) has constant shape; hence, it has constant entropy: letH0 = H(pl0(l)). The second

requirement allows information to include an (efficient) summation over sensor values. With these

assumptions, information can be reduced further, arriving at the formulation determined by previous

work [78]:

I (l0) = H0 − Ey[H(pl0(l|y))] (5.27)

= H0 −
∑

y

pl0(y)H(pl0(l|y)) (5.28)

= H0 +
∑

y

pl0(y)
∑

l

pl0(l|y)log(pl0(l|y)) (5.29)

= H0 +
∑

y

pl0(y)
∑

l

pl0(l, y)

pl0(y)
log(

pl0(l, y)

pl0(y)
) (5.30)

= H0 +
∑

y

∑

l

pl0(l, y)log(
pl0(l, y)

pl0(y)
) (5.31)

54

Armed with a formula for information, we turn to detailing the steps needed to compute

it. Understanding information and entropy as measures is discussed more in Section 7.1.

5.3 Information Map Computation

Using the analytical representation for information, this section formalizes thesteps re-

quired to compute information across all possible poses. The final representation (matrix, grid, or

2 dimensional plot) is referred to as aninformation map. To compute the information map, an

algorithm is presented that walks through the computation of each term in equation (5.31). Addi-

tionally, we investigate the computational complexity of this algorithm and review thealternative

algorithm (suggested by other researchers [78] using a traditional robot platform) that reduces the

overall complexity.

The steps required to exactly compute the information map are given by Algorithm 1.

Computing the information given in equation (5.31), in turn, requires the computation of 3 terms:

H0, pl0(l, y), andpl0(y). As mentioned in Section 5.2,H0 is independent ofl0; hence,H0 is calculated

once at the start of the algorithm (line 1). The remaining 2 terms must be calculated for eachl0 (line

2).

Algorithm 1 Information Map Computation

1: computeH0

2: for all l0 ∈ L do

3: computepl0(l)

4: for all (l, y) ∈ L × Y do

5: computep(y|l)
6: computepl0(l, y) = pl0(l)p(y|l)
7: for all y ∈ Y do

8: computepl0(y) =
∑

l∈L pl0(l, y)

9: computeI (l0) = H0 +
∑

y∈Y
∑

l∈L pl0(l, y)log(
pl0(l,y)
pl0(y))

Before computingpl0(l, y) (line 6), 2 more terms are required: the priorpl0(l) (line 3) and

the sensor modelp(y|l) (line 5). Both these terms are implementation (and model) specific, so the

computational details are postponed until needed. To lend more traction to these topics, the reader

is directed to Section 5.4 wherepl0(l) is modeled as a uniform distribution over a square andp(y|l)

55

is modeled as a simple binary sensor. In general, our simulations use a simple prior distribution

(uniform or normal) that is computationally easy to shift tol0 during each iteration of the algorithm.

The last term required to compute information ispl0(y) (line 8) which directly follows frompl0(l, y).

Finally, informationI (l0) (line 9) is computed as directed by equation (5.31).

A second look at Algorithm 1 reveals the time complexity. Working through this, the time

required by basic operations (add, subtract, multiply, log, etc) is replacedand reduced to constants

ck without further explanation. Since the computation ofpl0(l) andp(y|l) is model specific, the time

required for these computations is denoted astp and ts, respectively. Finally, sinceL andY are

finite sets, their cardinalities are denoted asnl andny, respectively.

Starting at the beginning of the algorithm, note thatH0 is an entropy computation, which

entailsnl logs, nl multiplications, andnl − 1 subtractions. Hence, the total time required forH0

is c1nl − c2. The loop on line 2 requiresnl iterations, which serves as a multiplicative factor for

the remaining computation. Rolling lines 3 through 6 together requirestp + nlny(ts + c3) wherec3

represents the multiplication required forpl0(l, y). Similarly, lines 7 and 8 entailsny(c4nl − c4) since

for eachy, pl0(y) entailsnl − 1 additions at a cost ofc4. Finally, line 9 requiresnlny divisions, logs,

and multiplications and (nl −1)(ny−1)+1 additions, totalingc5nynl − c6(nl +ny)+ c7. Putting these

terms together (with the loop on line 2), the time complexity of Algorithm 2 is

(c1nl − c2) + nl [tp + nlny(ts+ c3) + ny(c4nl − c4) + (c5nynl − c6(nl + ny) + c7)] (5.32)

Further reducing and combining constants, the big-O time complexity is

n2
l [ny(ts+ c8) − c6] − c9nlny + nl(tp + c10) − c2 ∈ O(n2

l nyts+ nl tp) (5.33)

where we have intentionally lefttp and ts in the big-O notation since these terms are potentially

functions ofnl andny. Note, the first and second terms of the complexity are associated with com-

putation of the sensor model and the prior, respectively. Iftp andts are constants (as they are for

many of our simulations), the time complexity reduces toO(n2
l ny). Hence, a practical implementa-

tion of Algorithm 1 must carefully implement the most deeply nested computations (lines 5 and 6)

in order for the algorithm to remain feasible.

To reduce the time spent in lines 5 and 6, Algorithm 2, an approximate informationmap

algorithm (developed by other researchers [78] using a traditional mobilerobot platform), is re-

viewed. This algorithm exploits tacit assumptions about locality within the system. In particular,

since the priorpl0(l) gains most of its support within a small neighborhood ofl0, information compu-

tation is restricted to this neighborhood. More specifically, whenpl0(l) is generated, an approximate

56

Algorithm 2 Approximate Information Map Computation

1: computeH0

2: for all l0 ∈ L do

3: computepl0(l) and the approximate support setLl0

4: compute the approximate set of sensor readingsYl0

5: for all (l, y) ∈ L × Y do

6: computep(y|l)
7: computepl0(l, y) = pl0(l)p(y|l)
8: for all y ∈ Y do

9: computepl0(y) =
∑

l∈L pl0(l, y)

10: computeI (l0) = H0 +
∑

y∈Y
∑

l∈L pl0(l, y)log(
pl0(l,y)
pl0(y))

support setLl0 ⊂ L for pl0(l) containing themost relevantpoints is also generated. Then, a reduced

set of possible sensor valuesYl0 based onLl0 is generated. The reduced sensor space is the primary

contributor to reduced computation time. These optimizations are particularly wellsuited for the

sensor network model where a robot only excites nearby sensor nodes. In effect, this algorithm

switches from computing information atl0 using the entire spaceL × Y to using only a localized

spaceLl0 × Yl0.

Now, it is shown that reducing the computation space dramatically reduces thetime com-

plexity. The time required to compute the prior and its support set is denoted byt̂p. Additionally, the

time required to compute the reduced sensor measurement spaceLl0 is denoted bŷty. Finally, the

cardinality of the reduced spacesLl0 andYl0 is denoted by ˆnl and ˆny, respectively. Walking through

Algorithm 2 in a fashion similar to above computations, the time complexity is found to be

(c1nl − c2) + nl [t̂p + t̂y + n̂l n̂y(ts+ c3) + n̂y(c4n̂l − c4) + (c5n̂yn̂l − c6(n̂l + n̂y) + c7)] (5.34)

= nl n̂l [n̂y(ts+ c8) − c6] − c9nl n̂y + nl(t̂p + t̂y + c10) − c2 (5.35)

∈ O(nl n̂l n̂yts+ nl(t̂p + t̂y)) (5.36)

Comparing equation (5.36) and equation (5.33), it is clear that the approximate algorithm has re-

duced the cost associated with the sensor model and potentially increased the cost associated with

the prior and sensor measurement space. Again, ifts, t̂p, andt̂y are constants, the time complexity

reduces tonl n̂l n̂y resting on the shoulders of the sensor model. Since the cardinality of the reduced

spacesLl0 andYl0 is much smaller than the whole space, the time complexity has been significantly

57

reduced. Based on this evidence, our work uses exclusively Algorithm2 for simulations. Furnished

with a feasible method of computing information maps, the next section presses forward with sev-

eral simulations.

5.4 Simulations

Having previously traced through all the steps necessary to compute an information map,

this section computes several such maps for a sensor network model. First,a basic robot prior and

sensor network model are presented. Then, an information map is computedfor this system and is

discussed along with the required CPU time. Finally, to illuminate the effect a prior model has on

the information map, several maps with varying priors are computed and discussed.

Field

size 100m x 100m
grid 200 x 200

sensor distribution uniform
Ns 30

Sensor
model discrete,binary

rs 10 cells
ps 0.75

Estimator
prior model discrete, box

r̂p varies

Table 5.1: System models and parameters used for computing several information maps.

A summary of the system details is provided in Table 5.1. The simulated sensor network

hasNs = 30 sensors uniformly distributed on the playing field that spans 100m by 100m and is

divided by a 200 by 200 regular grid. The global sensor modelp(y|l) is an independent combination

of all the node sensor models:

p(y|l) =
Ns
∏

m=1

p(ym|l) (5.37)

Each sensor is represented by thediscrete binary sensor model. For themth node, during each sens-

ing period, this model assumes that the sensor either reports a detection (ym = ⊛) with probability

ps or remains silent (ym = ∅) with probability 1− ps. More precisely, the detection distribution for

themth sensor, with sensing radiusrs, located atzm ∈ L is given by

p(ym = ⊛|l) =























ps if ||l − zm|| ≤ rs

0 otherwise
(5.38)

58

where|| · || is the infinity norm on the partition spaceL and is the larger of either cells horizontally or

cells vertically. In this norm, a radius ofr covers a 2r +1 by 2r +1 square of cells; hence,d = 2r +1

is referred to as the diameter of such a set of cells.

A binary sensor model may seem trivial, but it accurately captures the details of certain

mote sensors used in real deployments. Indeed, during PEG, the magnetometer sensor (with an

r3 response drop-off and threshold detection) amounted to a binary detector. Other researchers [4]

have also identified the usefulness of a binary sensor model in sensor network environments. For

this simulation, the sensor has a detection radius ofrs = 10 cells and a detection probability of

ps = 0.75.

The robot priorpl0(l) is taken to be uniform on a square of grid cells. In particular,pl0(l)

is represented by thediscrete box priormodel with a radius of ˆrp cells:

pl0(l) ∼ U({l10 − r̂p, l
1
0 − r̂p + 1, . . . , l10 + r̂p} × {l20 − r̂p, l

2
0 − r̂p + 1, . . . , l20 + r̂p}) (5.39)

Hence,pl0(l) is uniform across âdp by d̂p square of cells centered atl0 whered̂p = 2r̂p + 1.

Before the simulation can commence, the computation ofLl0 andYl0 must be outlined.

ComputingLl0 is straightforward: the exact support forpl0(l) (i.e., thed̂p by d̂p square centered at

l0) is used. To computeYl0 ⊂ Y = {y = (y1, y2, . . . , yNs)|ym ∈ {∅,⊛}}, observe that sensorscloseto

l0 can either report (ym = ⊛) or not report (ym = ∅), whereas, sensorsfar from l0 will not report

(ym = ∅). Hence we letYl0 be such a set:

Yl0 = {y = (y1, y2, . . . , yNs)|ym ∈ Ym
l0
} (5.40)

where

Ym
l0
=























{∅,⊛} if ||l0 − zm|| ≤ rs+ r̂p

{∅} otherwise
(5.41)

Using the above details, the simulation proceeds for varying prior radii. Theinforma-

tion map computed with ˆrp = 4 cells is displayed in Figure 5.2 as both a 2-dimensional and 3-

dimensional plot. In the 2-dimensional plot, nodes and their sensing regionsare identified by white

dots and dark blue dashed lines, respectively. The color backgroundon the plots represent the

amount of information. These 2 plots with a vibrant color scheme are includedto highlight the

variation in information across our playing field. In particular, information poor regions occur in

2 places: far from sensor coverage and close to node locations. For regions far from sensing cov-

erage it is intuitive that the robot gleans no estimation help. In these regions,nodes do not report

59

50

100

0

50

100

0

0.5

1

1.5

(a) 3-dimensional view

50 100

0.2

0.4

0.6

0.8

1

1.2

0

50

100

(b) 2-dimensional view

Figure 5.2: An information map computed using discrete, binary sensors andan uniform prior with

radius ˆrp = 4 cells as detailed in Table 5.1.

detections which is expected by Markov localization; hence, no information isprovided to the es-

timator. However, it may seem surprising that no information is gained by a robot very close to a

node. This occurs when a robot next to a node has its prior entirely enclosed in the node’s sensing

radius. Whether the node detects the robot or not is of no consequenceto the robot since it already

knows its pose with a greater accuracy than the node can provide. Turning to the information rich

regions, we might have guessed that these regions were at the center ofnodes, but that fallacy has

been dispelled. Instead, the highest information regions are those close toa node’s edge of detec-

tion, or, better yet, in regions close to several sensing edges. In these regions, the robot’s prior tends

to be partially in and partially out of a sensing region. If the mote reports, the estimation routine

only retains the outside part of the prior; if the mote does not report, only theinside part is retained.

Hence, these regions provide a good way for the robot to quickly shaveoff part of its prior and re-

duce its estimation error. In a nutshell, the robot is better off near detection edges where the chances

of being detected and going undetected are roughly equal. Hence, a robot that navigates between

several sensing regions without being detected often attains a lot of information. Later sections will

show that robots navigating intelligentlyaroundnodes often do better than ones navigatingclose to

nodes.

Information maps computed for 6 different prior radii (ˆrp ∈ {1,2,4,7,12,17}) are shown

in Figure 5.3. These plots, and all the remaining information plots in this paper, use a 2-dimensional

60

50 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

(a) r̂p = 1

50 100
0

0.2

0.4

0.6

0.8

1

1.2

0

50

100

(b) r̂p = 2

50 100

0.2

0.4

0.6

0.8

1

1.2

0

50

100

(c) r̂p = 4

50 100
0

0.2

0.4

0.6

0.8

1

1.2

0

50

100

(d) r̂p = 7

50 100

0.2

0.4

0.6

0.8

1

1.2

0

50

100

(e) r̂p = 12

50 100
0

0.5

1

1.5

0

50

100

(f) r̂p = 17

Figure 5.3: Information maps computed using discrete, binary sensors andan uniform prior with

varying radius ˆrp as detailed in Table 5.1.

61

representation. Additionally, to increase the legibility of future plots that include more symbols, the

plots switch to a muted color scheme of blue tones. These plots show that as the prior’s radius

increases, fewer regions in the map are void of information. This occurs because a large prior

has a good chance of intersecting one or more sensing regions, and, regardless of what the sensor

network reports, the large prior can be trimmed down. In particular, notice that with r̂p ∈ {1,2,4,7},
the center of a node’s sensing region has a information null since the robot’s prior is small enough to

fit entirely in the sensing region. However, once the prior’s radius ˆrp exceeds the sensing radiusrs

in the last 2 plots, the entire node’s sensing region becomes useful. However, the sensing center still

remains a relatively low information region, contradicting the intuitive notion thata robot benefits

the most by driving close to nodes. Additionally, these plots underscore theimportance of choosing

an accurate prior for ensuring that information maps are representativeof localizability.

The approximate information map algorithm is carried out in MATLAB R14 on a 2.6GHz

P4 with 1GB RAM. The computation time required for each simulation is summarized in Table 5.2.

The mean time required to compute each map steadily increases from 17.01 minutesfor a small

prior to 116.77 minutes for a large prior. Furthermore, the mean time required toupdate each cell

varies from 25.5 ms to 175.2 ms. This indicates that a robot can update the information map in real

time to compensate for a changing environment. For instance, if a node goes online or offline, the

information map should be updated in the 2(ˆrp + rs) + 1 diameter square centered at this node. For

our simulations withrs = 10 cells and ˆrp = 4 cells, the map could compensate for such a node

(updating a 29 by 29 region of the map) in about 26.6 seconds. Hence, occasional changes in the

environment could be accounted for in real time.

r̂p
cell computation grid computation

mean (ms) total (s) total (min)

1 25.5 1020.72 17.01
2 28.9 1154.50 19.24
4 31.6 1264.28 21.08
7 51.1 2044.17 34.07
12 98.6 3942.63 65.71
17 175.2 7006.23 116.77

Table 5.2: Time required by a 2.6GHz Pentium4 with 1GB RAM running MATLAB R14 to compute

an information map using the parameters from Table 5.1.

This chapter presented an overview of information maps for sensor networks. Markov

localization and information were reviewed analytically and algorithmically. Special attention was

62

paid to the time complexity of computing information for an entire region. A system model for a

robot localizing in a sensor network was developed and several simulationswere performed with

this model. The simulation results provide evidence that robots localizing in sensor networks will

benefit by navigating close to sensor’s edge of detection. The next chapter investigates this idea

more formally, and compares the localization accuracy of robots that obey and disregard this idea.

63

Chapter 6

Localization using Information Maps

Now that the generation of information maps has been throughly studied, the remaining

work will focus on applying information to aid in localization. Our work methodically builds up

to simulations of realistic, closed-loop navigation systems starting with simple, open-loop, zero

noise systems. This chapter focuses strictly on open-loop systems to validatethe applicability of

information maps. First, the steps required to compute localization updates needed by the simulator

are presented. Next, an initial localization simulation is perused and used to demonstrate the ability

of an information based path to improve localization performance over other path techniques. After

this, the basic system models are relaxed to more realistic models and are adapted for use with

information maps and Markov localization. Finally, the new models are used to evaluate the ability

of information based paths to improve localization accuracy and confidence.

6.1 Markov Localization Revisited

Before beginning any localization simulations, this section takes a methodological look at

Markov localization. Using the analytical introduction to Markov localization from Section 5.1, this

section outlines the necessary computational steps. Additionally, the time complexity is analyzed

and an approximate alternative to exact Markov localization is reviewed.

The presentation of the Markov localization computation first walks through the iterative

update for timen + 1, and then returns to discuss the initialization of the algorithm at time 0. The

update algorithm for timen+ 1 is shown in Algorithm 3. The algorithm is initialized (line 1) with a

new sensor readingyn+1, the last control valueun, and the previous iteration’s posterior distribution

βn
n−1(ln). The remainder of the algorithm computes, in order, the proprioceptive update given by

64

equation (5.21), the preceptive update given by equation (5.22), and the expected pose given by

equation (5.23). For each possible new poseln+1, the proprioceptive updateβn
n(ln+1) is achieved on

line 6. Prior to this, the transition probabilityp(ln+1|ln,un) is computed (line 4) and applied (line

5) for each possible previous poseln. In general, the computation ofp(ln+1|ln,un) must be handled

with care to ensure this part of the update algorithm is feasible for a large pose spaceL. Since this

computation is dependent on the dynamics, the computational details are addressed later for specific

models. Next, the algorithm prepares to compute the preceptive update (achieved on line 11). First,

the sensor modelp(yn+1|ln+1) is computed (line 7) using the new sensor reading, and the result

is merged with the proprioceptive distribution (line 8). Again, the computation ofp(yn+1|ln+1) is

dependent on the system model; hence, the details are delayed until necessary. Next, the algorithm

exits the loop overln+1, and computes the normalization constantζn+1 (line 9). Finally, for each

new poseln+1, the preceptive update is computed (line 11). The last step (line 12) is to compute the

estimate of the pose using an expectation of the posteriorβn+1
n (ln+1).

To initialize the algorithm at time 0, only a preceptive update, as mentioned in Section 5.1,

is computed. In particular, given a priorp(l0) and a new sensor readingy0, the proprioceptive update

computation (lines 3-6) is skipped andβ0
0(l0) is set to the priorp(l0). After which, normal operation

is resumed to computeβ1
0(l0) and l̂0. The computational details of the priorp(l0) are delayed until

necessary.

Algorithm 3 Markov localization update

1: givenβn
n−1(ln), yn+1, andun

2: for all ln+1 ∈ L do

3: for all ln ∈ L do

4: computep(ln+1|ln,un)

5: computeγ(ln+1, ln) = p(ln+1|ln,un)βn
n−1(ln)

6: computeβn
n(ln+1) =

∑

ln γ(ln+1, ln)

7: computep(yn+1|ln+1)

8: computeϕ(ln+1) = p(yn+1|ln+1)βn
n(ln+1)

9: computeζn+1 =
∑

ln+1
ϕ(ln+1)

10: for all ln+1 ∈ L do

11: computeβn+1
n (ln+1) = ϕ(ln+1)/ζn+1

12: l̂n+1 = E(βn+1
n (ln+1))

65

Walking through Algorithm 3, the time complexity is computed using the same procedure

as that used in Section 5.3. We find the big-O time complexity as

nl [nl(tl + c1) + (nl − 1)c2 + ts+ c3] + (nl − 1)c4 + c5nl + (nl − 1)c6 (6.1)

= n2
l (tl + c7) + nl(ts+ c8) + c9 (6.2)

∈ O(n2
l tl + nl ts) (6.3)

wheretl and ts are the times required to compute the transition distributionp(ln+1|ln,un) and the

sensor modelp(yn+1|ln+1), respectively. Since the computation of both the transition and sensor

model can greatly impact the running time of Markov localization, these computations must be

efficient. In particular, the time required for the transition model must be limited since itis magnified

by n2
l . The time required to compute the transition and sensor distributions is discussed in later

sections along with the accompanying system models.

If tl andts are constants, the big-O complexity reduces ton2
l . This term represents the size

of the space to be updated. In order to reduce this term, our simulations applythe selective update

approach from the literature [10]. This approach approximates the preceptive update step by only

using the previously detailed update algorithm for cells withβn
n(ln+1) larger than a threshold. The

remaining cells are updated with the simple rule

βn+1
n (ln+1) = λβn

n(ln+1) (6.4)

whereλ is chosen to normalize the resultingβn+1
n (ln+1) distribution. For our simulations, this ap-

proach can dramatically reduce the time required for sensory updates.

6.2 Simulations

This section and the remainder of this chapter are dedicated to using information maps to

improving robot localization in sensor networks. After discussing information maps (Sections 5.2,

5.3, and 5.4) and the details of robot localization (Sections 5.1 and 6.1), this section combines the

two concepts in simulation. First, a full system model, now including robot dynamics, is presented.

Then, an initial set of localization simulations are performed. Finally, the results are discussed.

The localization simulations entail a robot traversing a sensor network, receiving mea-

surements, and estimating its location. These simulations are specified by several details:

• the field and sensor layout

66

Field

size 100m x 100m
grid 200 x 200

sensor distribution uniform
Ns 30

Sensor
model discrete, binary

rs 10 cells
ps 0.75

Estimated Prior
prior model discrete, box

r̂p 4 cells

Estimator
prior model discrete, box

rp 50 cells

Dynamics
model discrete, adjacent cell

U 4 cells

Pose
l0

[

5 10
]T

lgoal

[

70 90
]T

Simulation
trials 100

path type xy, yx, straight, node centers, manual

Table 6.1: System models and parameters used during our initial localization simulations.

• the sensor model

• the information map parameters (estimated prior)

• the initial conditions of the estimator

• the robot path

• the robot dynamics

For our initial simulations, these details are summarized in Table 6.1, but requiremore explanation.

Much of the setup is inherited from the previous information map simulations in Section 5.4. More

specifically a 100m by 100m field with 30 sensors uniformly distributed is used. Each sensor uses

the discrete binary sensor model with a detection radiusrs = 10 cells and a detection probability

ps of 0.75. The information map, computed before the localization simulation, uses the discrete

box prior model with radius ˆrp = 4 cells. The estimator is initialized with the robot priorp(l0)

defined as a discrete box prior with radiusrp = 50 cells centered about the robot’s initial position.

Notice, the distinction betweenrp and r̂p: rp is the initial radius of the prior during simulation, ˆrp

is the prior radius assumed during computation of the information map. The routethe robot takes

is varied across simulations to compare localization error associated with different paths. However,

67

the robot is required to start at posel0 (in the lower left) and end at poselgoal (in the upper right).

The robot model is defined using thediscrete adjacent cell dynamics. The discrete adjacent cell

dynamics specify that a robot’s posel ∈ L evolves according to

lk+1 = lk + uk (6.5)

where

uk ∈ U = {−U,−U + 1, . . . ,0, . . . ,U − 1,U}2 ⊂ Z2 (6.6)

In other words, the robot may move up toU cells (4 cells for this simulation) both horizontally and

vertically.

To test the ability of the information map to predict localizability, several different robot

path schemes are tested:

• xy: drive in the x-direction, then in the y-direction

• yx: drive in the y-direction, then in the x-direction

• straight: drive in a straight line

• node centers: drive through several sensing centers on the way to thedestination

• manual: using the information map, a human chooses a path that takes the robotthrough high

information regions

The first 3 path schemes represent basic paths that the robot might use toget to the destination. These

schemes assume no information is known about the environment. The next scheme, node centers,

is generated by a path planner that tries to drive through the center of several sensing regions on its

way to the destination. This path planner is described in more detail in Section 7.2. For now, it is

assumed that this path is provided. The final path scheme, manual, represents a path chosen by us

after looking at the information map. This scheme is an attempt by a human to maximize the overall

information the robot encounters on its way to the destination.

Since this is the first set of localization simulations, the mechanics and results ofthe simu-

lation are perused. Prior to running the localization simulation, the information mapis computed as

described in the previous chapter. The result is shown in Figure 6.1. In this case, 3 high information

regions are obvious in the field: in the upper left, in the lower right, and partway up the (0,0)–

(100,100) diagonal. If the information maps are a good measure of localizability, a robot passing

through these regions should have less estimation error than a robot that avoids these regions. To test

68

50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

Figure 6.1: Information map for our initial localization simulations. White dots outlined in black

represent motes and dotted squares represent their detection region. Background color of the plot

represents the amount of information.

69

Path Type Length (m) Travel Time (s) n̄d n̄d/100 m

xy 145.00 7.30 19.72 13.60
yx 145.00 7.30 29.44 20.30

straight 103.08 7.10 4.56 4.42
node centers 252.66 20.40 133.92 53.00

manual 289.31 15.40 43.20 14.93

Table 6.2: Path information for each path scheme across all trials during ourinitial localization

simulations.

Path Type
Estimation Error (m) Estimation Entropy
Min Mean Max Min Mean Max

xy 2.15 2.39 3.37 2.13 2.56 3.84
yx 2.55 2.69 3.51 3.00 3.33 4.41

straight 9.27 9.29 9.40 6.98 6.99 7.01
node centers 0.80 0.95 1.38 1.11 1.23 1.51

manual 0.65 0.73 1.03 0.57 0.63 0.85

Table 6.3: Estimation error and entropy for each path scheme across all trialsduring our initial

localization simulations.

this, a robot is simulated following each of the aforementioned paths 100 times. Each trial records

various statistics about the estimation performance. Each path scheme, estimated path information,

and information map are displayed in Figure 6.2. These plots depict an overhead view of each path

(solid black line) superimposed on the information map (background color).The white circles and

squares represent the starting and ending positions of the robot, respectively. The light green line

shows the estimated path for atypical trial. A typical trial is a trial such that the difference between

its mean estimation error and the mean estimation error across all trials is minimal. For all paths,

but the straight path, the typical estimated path eventually converges to the actual path before the

destination is achieved. The straight path misses the detection region of all but a few motes making

localization difficult. Shortly, we will investigate more precisely how this spoils the localization

performance. Before leaving this figure, note that the node centers andmanual paths tend to take

a similar route that is also longer than other paths. These 2 paths provide an interesting point of

comparison allowing us to quantify how much the localization accuracy can benefit with smarter

paths.

Across all trials, for each path, several statistics are collected: the path length, the path

travel time, the mean number of detections ¯nd, the mean number of detections per 100 meters ¯nd/100

70

50 100
0

50

100

(a) xy

50 100
0

50

100

(b) yx

50 100
0

50

100

(c) straight

50 100
0

50

100

(d) node centers

50 100
0

50

100

(e) manual

Figure 6.2: Basic simulation overview plots for our initial localization simulations depicting the

robot starting (white circle) and ending (white square) positions, the robot path (solid black line),

and a typical estimated robot path (solid light green line) superimposed on theinformation map

(background color). Each figure is captioned with the path scheme depicted.

71

m, and the bounds and the mean of both estimation error and estimation entropy. These statistics

are compiled in a path information table (Table 6.2) and an estimation information table(Table 6.3).

Referring to Table 6.2, notice the large range in number of detections per 100 meters. The straight

path only receives an average of 4.42 detections per 100 meters, which results in high estimation

error and estimation entropy (see Table 6.3). On the other end of the spectrum, is the node centers

path which generates an average of 53.00 detections per 100 meters by driving through the center

of detection regions. In fact, this scheme does reduce the estimation error.One look at the manual

path scheme, however, indicates that more detections does not always implies less error. The manual

path, in comparison to node centers, is able to achieve lower estimation error with fewer detections.

Let’s investigate the mechanisms underlying this relationship by turning to the basic paths.

Note that yx underperforms xy, even though yx receives 49.3% more detections. There are

2 mechanisms contributing to this phenomena: the time lapse until first detection andthe location

of detections with respect to the currentβ distribution. The xy path takes the robot immediately

through high information regions formed at the edge of several detection regions (Figure 6.2a). The

yx path scheme (Figure 6.2b), however, requires more time before the robot encounters a detection

region, but has the robot drive through the center of a detection region. For all schemes, the prior

starts out as a uniform distribution over a large square region. As the robot progresses through

the field, this region is reduced by detections (or lack of detections) eliminatingpossible poses and

improving estimation accuracy. Since the prior’s support region is initially large, often the best way

to quickly reduce it is to get a detection. This first detection reduces theβ distribution to (less than)

the sensing region of the mote. If the robot is close to the center of this region, the estimated position

(the mean of theβ distribution) will have low error; if the robot, however, is closer to the edgeof

this region, the estimated pose will have higher error.

To further observe this phenomena, the average estimation error versustime is displayed

in Figure 6.3. Figure 6.3a, shows xy’s estimation error sharply falling off just before yx’s does.

This is caused by xy’s path encountering a sensing region before yx’sdoes. However, Figure 6.3a

shows that when yx’s estimation error falls off a little later (due to it’s encounter with a detection

region), it drops to a lower level. This is caused by yx leading the robot through the middle of the

sensing region and xy leading the robot through the edge of a sensing region. Hence, the mean of

the posterior distributionβ better approximates the actual robot pose for yx than xy after the initial

detections. However, even with yx achieving a better posterior pose estimation by t = 2 seconds, and

receiving more detections overall, it still under performs the xy path scheme. This is due to xy more

consistently reducing the entropy by encountering high information regions(or detection region

72

time (s)

m
ea

n
es

ti
m

at
io

n
er

ro
r

(c
el

ls
)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

(a) xy (solid black), yx (dashed green), straight (dotted blue)

time (s)

m
ea

n
es

ti
m

at
io

n
er

ro
r

(c
el

ls
)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

(b) node centers (solid black),manual (dashed green)

time (s)

m
ea

n
es

ti
m

at
io

n
er

ro
r

(c
el

ls
)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

(c) all path schemes

Figure 6.3: Mean estimation error versus time during the initial localization simulations. Captions

denote the path schemes displayed.

73

edges). To observe this effect, the mean estimation entropy versus time is shown in Figure 6.4.

Notice, xy, as expected, has lower entropy more often than yx. Furthermore, the moment at which

yx has lower entropy is during the time yx lies in the middle of a sensing region andreceives several

detections, amounting to a temporary win for yx at the cost of network bandwidth.

Now, we turn to comparing more precisely the differences in the 2 intelligent path schemes:

node centers and manual. Turning back to Table 6.3, notice that the path explicitly using the infor-

mation map (manual path) has achieved the best estimation performance. In particular, the manual

scheme has 23.16% less mean estimation error and 48.78% less mean entropy than the respective

next best schemes. Additionally, it is encouraging that the manual path onlyrequires a modest

number of detections. The next best performing scheme, node centers,requires 210.00% more de-

tections than the manual scheme. The success of the manual path scheme is reiterated by Figure 6.3

where except for a brief moment, the manual path always maintains the lowestestimation error.

Finally, observe that, as expected, the manual path scheme maintains lower estimation entropy at all

times than any other scheme as shown in Figure 6.4.

These simulations provide insight into many of the mechanisms at play for good localiza-

tion. However, since the system dynamics have no noise, the results are focused on how efficiently

the system can reduce the large staring prior (a 101 cell by 101 cell square) to an accurate position

estimate. This convergence information is summarized in Table 6.4. Notice that only the manual

scheme converges to within a 1 cell accuracy of the actual position. Furthermore, the only other

path scheme to converge to within 2 cells takes 129.74% longer than the manual path scheme.

Overall, use of the information map allows the robot to achieve the lowest mean estimation error

(by 23.16%), the lowest mean entropy (by 48.78%), and the best convergence times (56.47% faster

to converge to 2 cell accuracy). Additionally, the manual path requires only a modest number of

detections per 100 meter (about the same as the 3 simple planners required),providing low band-

width utilization. Hence, we observe that good localization is not strictly how many detections are

received. In fact, by navigating on the edge of detections, the robot maintains low estimation error

and reduces the number of detections. The information map does not provide the whole story either.

The previous map was computed with a prior radius ˆrp = 4 cells implying that it is designed for use

with a system whose estimation error lies in this range. We will show that information maps can be

useful for maintaining low error, but may not reduce it as quickly as othertools. Presently, informa-

tion maps have proved themselves as a useful tool for sensor network navigation. Encouraged by

this, the next section extends the system models to be more realistic.

74
PSfrag

time (s)

m
ea

n
en

tr
op

y

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

(a) xy (solid black), yx (dashed green), straight (dotted blue)

PSfrag

time (s)

m
ea

n
en

tr
op

y

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

(b) node centers (solid black),manual (dashed green)

PSfrag

time (s)

m
ea

n
en

tr
op

y

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

(c) all path schemes

Figure 6.4: Mean estimation entropy versus time during the initial localization simulations.

Captions denote the path schemes displayed.

75

Path Type
Mean Time to Converge (s)

5.66m (8 cells) 2.83m (4 cells) 1.41m (2 cells) 0.71m (1 cell)

xy 2.33 2.45 — —
yx 1.46 4.17 — —

straight — — — —
node centers 1.33 2.59 4.48 —

manual 1.36 1.43 1.95 1.98

Table 6.4: Path estimation convergence times during the initial localization simulations.

6.3 Relaxing for Continuous Dynamics and Sensors

Now that the use of information maps has been justified, this section investigateshow to

relax the system models to more closely resemble those of realistic sensor network systems such as

PEG. In this section, the discrete grid-based robot dynamics from the previous section are replaced

with a continuous space model. Furthermore, the sensor model is relaxed from having a square

detection grid to having a continuous circular detection area. Finally, to be more consistent with

real-world dynamics, a robot error model is introduced and the prior is derived from a normal

distribution rather than from the uniform distribution used previously.

6.3.1 Robot Dynamics

First, the robot dynamics are relaxed to model those of a simple holonomic robot equipped

with a compass. The robot is assumed to be able to quickly set its wheel speedand propel itself in

any direction. Given these constraints, the robot’s state can neglect accelerations and orientation.

More specifically, the robot’s position in the field is represented with the continuous-valued pose

l̄k ∈ L̄ ⊂ R2 evolving according to thecontinuous, normal noise dynamicsgiven by

l̄k+1 = l̄k + uk + dk (6.7)

where the controluk ∈ U = [−U,U]2 ⊂ R2 and the disturbance valuesd1
k,d

2
k ∼ N(0, σ2

d) with a

noise varianceσd that is a function of the controluk. In particular, for each component of the control

um
k , we let

σm
d = max



















∣

∣

∣

∣

∣

∣

um
k

U

∣

∣

∣

∣

∣

∣

1
2

σd,0 , σd,0,min



















(6.8)

whereσd,0, σd,0,min > 0. This enforces that, above a given control threshold, the variance varies

linearly with the magnitude of the control.

76

Before Markov localization can be applied to the new dynamics, they must be converted to

a transition distribution on the discrete pose spaceL. This requires that the probabilityp(lk+1|lk,uk)

can be computed for each possible discrete transition (lk+1, lk) ∈ L2 and a given controluk. Since

the distribution can be partitioned component-wise asp(lk+1|lk,uk) = p(l1k+1|l1k,u1
k)p(l2k+1|l2k,u2

k), the

transition computation is derived for only one dimension,m ∈ {1,2}. Furthermore, the new (single-

dimensional) transition relation is computed in 2 steps: first, the starting poselmk is assumed to lie

within a grid [bm
1 ,b

m
2] ⊂ L̄m and the ending poselmk+1 is fixed at a pointz ∈ L̄m; then, the ending

poselmk+1 is allowed to vary across a grid cell [am
1 ,a

m
2] ⊂ L̄m. In this derivation, when a pose is only

known to be within a grid cell, the actual pose is assumed to be uniformly distributed across that

grid cell.

Beginning the derivation, we assume thatl̄mk+1 = z, lmk = [bm
1 ,b

m
2], andum

k is given. Then,

the transition distribution is computed as

p(l̄mk+1 = z|lmk = [bm
1 ,b

m
2],um

k) = p(l̄mk + um
k + dm

k = z|lmk) (6.9)

= p(l̄mk + dm
k = z− um

k |l
m
k) (6.10)

=

∫

p(l̄mk = w|lmk)p(dm
k = z− um

k − w)dw (6.11)

=

∫ bm
2

bm
1

p(l̄mk = w)p(dm
k = z− um

k − w)dw (6.12)

=
1

bm
2 − bm

1

∫ bm
2

bm
1

p(dm
k = z− um

k − w)dw (6.13)

=
1

bm
2 − bm

1

∫ z−um
k −bm

1

z−um
k −bm

2

p(dm
k = y)dy (6.14)

=
1

bm
2 − bm

1

∫ z−um
k −bm

1

z−um
k −bm

2

N(y; 0, σ2
d)dy (6.15)

=
1

2(bm
2 − bm

1)

[

erf

(

z− um
k − bm

1√
2σd

)

− erf

(

z− um
k − bm

2√
2σd

)]

(6.16)

whereN(y; 0, σ2
d) is the normal probability distribution function overy with mean 0 and variance

σ2
d. Next, the ending pose is allowed to vary across a cell: lettinglmk+1 = [am

1 ,a
m
2], equation (6.16)

77

can be integrated [39] to computep(lmk+1|l
m
k ,u

m
k) as

p(lmk+1 = [am
1 ,a

m
2]|lmk = [bm

1 ,b
m
2],um

k)

=
1

2(bm
2 − bm

1)

∫ am
2

am
1

[

erf

(

z− um
k − bm

1√
2σd

)

− erf

(

z− um
k − bm

2√
2σd

)]

(6.17)

=
γ

2(bm
2 − bm

1)
[

ζ(α1) − ζ(α2) − ζ(α3) + ζ(α4)
]

(6.18)

=
γ

2∆
[

ζ(α1) − ζ(α2) − ζ(α3) + ζ(α4)
]

(6.19)

whereγ =
√

2σd, ζ is given by

ζ(α) =
α

γ
erf

(

α

γ

)

+
1
√
π

e
− α2
γ2 (6.20)

and theα functions are given by

α1 = am
2 − bm

1 − um
k (6.21)

α2 = am
1 − bm

1 − um
k (6.22)

α3 = am
2 − bm

2 − um
k (6.23)

α4 = am
1 − bm

2 − um
k (6.24)

This provides an analytical method of computing the transition probabilities. However,

there are 2 difficulties associated with using this distribution for Markov localization. First, since

this computation is derived from a model with normally distributed noise, the transition distribution

smears the density across the entire field. It attributes a non-zero probability to even the most remote

locations. This unnecessarily slows down the simulations. To avoid this, the noise is truncated in

our model to a finite range. A truncated noise model is additionally justified because typically a

robot does not experience large movement errors unless it encounters an obstacle or it transported

to a different location, neither of which is part of our model. Additionally, for suchan environment,

a more applicable localization system such as multiple hypothesis tracking [48, 5] could be used.

The second difficultly of using this transition distribution is that even with the error limited to a

finite range this computation can be slow in practice. This issue is addressed by reformatting the

computation of the proprioceptive update in the Markov localization algorithm for this model.

Henceforth, the noised1
k,d

2
k is restricted to the region [−D,D], and the normal distribution

is replaced with the truncated normal distribution:

N̂(dm; 0, σ2
d) =























0 if dm
< [−D,D]

α

σd
√

2π
exp(− (dm)2

2σ2
d

) otherwise
(6.25)

78

Algorithm 4 Continuous Dynamics Proprioceptive Update

1: givenβn(ln), andun

2: for all m ∈ {1,2} do

3: computeδmmin = ⌊
um

n−D−∆/2
∆

⌋
4: computeδmmax= ⌈

um
n+D+∆/2
∆

⌉
5: let χm = {δmmin, δ

m
min+ 1, . . . , δmmax}

6: for all δm ∈ χm do

7: computeα = (δm+ 1)∆ − um
n

8: computeΨm
δm =

γ
2∆ [ζ(α) − 2ζ(α − ∆) + ζ(α − 2∆)]

9: for all δ1 ∈ χ1, δ2 ∈ χ2 do

10: computeβδ
1,δ2

n (ln): shift βn(ln) by (δ1, δ2) adding zeros where necessary

11: computeβn(ln+1) =
∑

δ1∈χ1,δ2∈χ2 Ψ1
δ1
Ψ2
δ2
βδ

1,δ2

n (ln)

where

α =
1

erf (D/γ)
(6.26)

Then, to compute the proprioceptive update, lines 2-6 of Algorithm 3 are removed, and an updated

computation tailored for the new model is inserted between lines 1 and 2. The new computa-

tion, listed as Algorithm 4, exploits 2 properties of the dynamics. First, the transition probability

p(lmk+1|l
m
k ,u

m
k) can be reduced to a function of only the distanceδm between the starting and ending

grid cell, rather than a function of the actual grid cells. Second, since the control is known and

the noise is bounded, the rangeχm of possible distancesδm with non-zero transition probability

is also known and bounded. More specifically, for any 2 (single-dimensional) grid cells separated

by distanceδm, theα functions in equations (6.21) through (6.24) only depend onδm. Hence, the

ζ function in equation (6.20) and the transition distribution in equation (6.19) onlydepend onδm,

allowing the proprioceptive update to be computed as a shift and a scaling: the prior distribution is

shifted byδm and scaled by the transition probability forδm. Referring to Algorithm 4, the com-

putation proceeds by computing the scaling factorΨm
δm for a shift ofδm in themth dimension (lines

2-8). For each dimensionm ∈ {1,2}, lines 3 through 5 compute the distancesχm that the robot could

move with potentially non-zero transition probability. Then, for each possibledistanceδm ∈ χm,

lines 7 and 8 compute the scaling factor given by equation (6.19). Next, lines9 and 10 compute, for

each 2 dimensional shift (δ1, δ2), a shifted prior distributionβδ
1,δ2

n (ln). This distribution is computed

79

as

βδ
1,δ2

n (ln) =























βn(ln − 〈δ1, δ2〉) for (ln − 〈δ1, δ2〉) ∈ L

0 otherwise
(6.27)

Finally, line 11 computes the proprioceptive update as a superimposition of shifted and scaled priors.

This extra effort is not in vain; the time required by localization has been reduced signif-

icantly. Assuming thatnχ = max{|χ1|, |χ2|}, then an upper bound on the time complexity of this

algorithm is found to be

2[c1 + c2 + nχ(c3 + c4)] + n2
χc5 + (nχ − 1)2c6 (6.28)

= c7n2
χ + c8nχ + c9 (6.29)

∈ O(n2
χ) (6.30)

Hence, the time required for the proprioceptive update is reduced fromO(n2
l) required by the Markov

localization algorithm, Algorithm 3, toO(n2
χ). Furthermore, assuming thatL is square, thennχ <

√
nl . Typically, since only a small region of the grid cells are reachable for anytime step,nχ is much

smaller than
√

nl . Hence, the time complexity has been reduced fromO(n2
l) to something less than

O(nl).

The last detail required by the new dynamics model is a method of simulating the trun-

cated normal distribution. To do this, the standard method of evaluating the inverse of the cumulative

density function with a uniformly distributed random variable is used. In particular, given a random

variablev ∼ U[0,1] and the cumulative density function

f (d) =
∫ d

−∞
p(dm

k) (6.31)

the (single dimensional) noise is computed as

dm
k = f −1(v) (6.32)

= γerf−1
(

2v− 1
α

)

(6.33)

whereγ =
√

2σd andα = 1/erf (D/γ).

6.3.2 Robot Prior

Since the error in the robot model is (approximately) normally distributed, the prior is

also allowed to assume an (approximate) normal distribution. For a normal prior centered about a

80

robot atl̄0 ∈ L̄ with covariance



















σ̂2
p 0

0 σ̂2
p



















, the prior on the discrete spaceL can be shown to be

p(l) =
1
4

















erf

















ḡ1
i, j + ∆/2− l̄10

σ̂p
√

2

















− erf

















ḡ1
i, j − ∆/2− l̄10

σ̂p
√

2

































· (6.34)

















erf

















ḡ2
i, j + ∆/2− l̄20

σ̂p
√

2

















− erf

















ḡ2
i, j − ∆/2− l̄20

σ̂p
√

2

































(6.35)

whereḡi, j ∈ L̄ is the center of celll. To extend this to a truncated normal,p(l) is set to 0 outside the

[−P,P]2 square centered at̄l0 and re-normalized.

6.3.3 Sensor Model

The binary sensor model is relaxed by allowing it to operate on the continuous-valued

robot pose spacēL, and the detection area is allowed to become circular. Then, for each sampling

period, the probability of detecting a robot atl̄ ∈ L̄ for thekth sensor located at ¯ak ∈ L̄ is given by

thecontinuous, circular, binary sensor model:

p(y = ⊛|l̄) =























ps if ||l̄ − āk||2 ≤ rs

0 otherwise
(6.36)

wherers > 0 is the detection radius. Again, for Markov localization, this distribution must be

tessellated to findp(y|l). Similar work [66, 36] has been done on discretizing the sensor model

for ultrasonic range sensors. Assuming that the robot pose is independent of the sensing model,

p(l̄, y) = p(y|l̄)p(l̄), the distribution can be reduced:

p(y|l = 〈i, j〉) = p(y|l̄ ∈ Gi, j) (6.37)

=

∫

l̄∈Gi, j
p(l̄)p(y|l̄)

∫

l̄∈Gi, j
p(l̄)

(6.38)

Since the exact robot pose is unknown a priori, it is assumed thatp(l̄) ∼ U(L̄), further reducing the

distribution:

p(y|l = 〈i, j〉) =

∫

l̄∈Gi, j
p(y|l̄)

∫

l̄∈Gi, j
1

(6.39)

=
1
∆2

∫

l̄∈Gi, j

p(y|l̄) (6.40)

=
ps

∆2
A (6.41)

81

āk

di, j,k

ǫ

ḡi, j

∆

∆

Figure 6.5: Approximating the areaA used by the continuous, circular, binary sensor model.

where∆ is the grid side length andA = Area(Gi, j ∩ {l̄ : d(l̄,a) < rs}).
The areaA can be estimated with a few simple approximations. To begin with, the grid

cell Gi, j is by circumscribed by a circle of radiusǫ = ∆√
2

as shown in Figure 6.5. We let ¯gi, j ∈ L̄
be the center of the grid cellGi, j , anddi, j,k be the distance from the center to thekth mote, that is,

di, j,k = ||ḡi, j − āk||. Then, we delineate the area computation for 3 ranges ofdi, j,k values:

• di, j,k ∈ [0, rs− ǫ]: A = ∆2

• di, j,k ∈ (rs− ǫ, rs+ ǫ]: A = ∆2
((rs+ǫ)−di, j,k

2ǫ

)

• di, j,k ∈ (rs+ ǫ,∞): A = 0

The first and third terms are obvious: if the grid cell is entirely enclosed or entirely outside the

sensing area, then the overlapping areaA is∆2 or 0, respectively. WhenGi, j is partially covered by

the sensing region, as a easily computable approximation, we letA vary linearly withdi, j,k. Now,

using this in equation (6.41), the approximate discretized sensor model for Markov localization is

found to be

p(y = ⊛|l) ≈











































ps if 0 ≤ ||āk − ḡ|| ≤ rs− ǫ
ps(r+ǫ−||āk−ḡ||)

2ǫ if rs− ǫ ≤ ||āk − ḡ|| ≤ rs+ ǫ

0 if rs+ ǫ ≤ ||āk − ḡ||

(6.42)

whereǫ = ∆/
√

2.

We have now developed more realistic models for the robot, the sensor network, and the

robot prior. These models have been allowed to operate in the continuous spaceL̄ and have been

discretized for use with Markov localization. In the next section, the new models are applied to

several simulations.

82

Field

size 100m x 100m
grid 200 x 200

sensor distribution uniform
Ns 30

Sensor
model continuous, circular, binary

rs 5 m
ps 0.90

Estimated Prior
prior model discretized, truncated normal
σ̂p 0.75 m
P 3σ̂p = 2.25 m

Estimator
prior model discrete, box

rp 50 cells

Dynamics

model continuous, normal noise
U 5 m
σd,0 0.1 m
σd,0,min 0.01 m

D 3σd = 0.3 m

Pose
l0

[

5 10
]T

lgoal

[

70 90
]T

Simulation
trials 100

path type xy, yx, straight, node centers, manual, hybrid

Table 6.5: Systems model and parameters used during the localization simulation with improved

models.

6.4 Continuous Simulations

Using the new sensor, robot dynamics, and prior models from the previous section, this

section runs several localization simulations. First, the simulation setup is described. Then, the

results are presented and discussed.

The simulation setup is summarized in Table 6.5. The simulations use the same 100m by

100m field with 30 sensors uniformly deployed as the previous section. Therobot’s starting and

ending points remain the same. The rest of the models, however, have changed. For the sensor

nodes, the continuous, circular binary sensor model with detection radiusrs = 5 meters and detec-

tion probabilityps = 0.90 is used. The estimated prior, used for calculating the information map, is

a truncated normal with standard deviation ˆσp = 0.75 m. The distribution is truncated at the 3 ˆσp

radius which amounts to a 9 cell by 9 cell support square (similar to previoussimulations). The

estimator is initialized with the same 50 cell radius discrete, box prior. The new continuous, normal

noise dynamics model is used with control boundU = 5 meters and noise varianceσ2
d = 0.01 me-

83

50 100
0

0.2

0.4

0.6

0.8

1

0

50

100

Figure 6.6: Information map using the improved models. White dots outlined in blackrepresent

motes, and dotted circles represent their detection region. Background color of the plot represents

the amount of information.

ters. The noise remains low for this simulation so the effect the new models have on the simulation

can be observed independently. Later, a closed-loop control will be added, and the noise variance

will be increased. The same path schemes, save one, are used; the paths, however, they generate are

different. One path scheme, hybrid, is added to the line up; it is a combination of 2 schemes: node

centers and manual. The hybrid path initially follows the node centers path, but once the estimation

entropy has decreased below a given threshold, it jumps over to the manual path and remains on this

until the destination is achieved. This path scheme is motivated by the fact that, as noted previously,

the information map is tuned to a estimation prior with supporting radius of 4 cells, and that driving

through the node centers quickly reduces large initial priors. This path is assumed to be provided

for now, but, later in this section, the determination of this path is explored.

As before, the information map is computed prior to simulation. The information map

is shown in Figure 6.6. As expected, this information map has circular high information regions

as opposed to the previous simulation with square regions. Additionally, the edges of the high

information regions tend to roll off smoothly for this new map. This is due to the information

map computation using a normal prior with circular support instead of a uniform prior with square

84

Path Type
Estimation Error (m) Estimation Entropy
Min Mean Max Min Mean Max

xy 2.44 2.91 8.22 4.42 4.54 6.05
yx 5.08 5.20 5.32 6.29 6.30 6.51

straight 3.54 3.99 7.29 5.24 5.34 5.92
node centers 1.93 2.15 3.99 3.65 3.76 4.55

manual 2.16 2.32 2.86 3.31 3.38 3.75
hybrid 1.52 1.69 2.66 3.10 3.21 3.55

Table 6.6: Estimation error and entropy for each path scheme across all trials during the localization

simulations with improved models.

support. This property also provides the sense that the high information regions have smaller width

than before, even though the priors used similar diameter values.

Once the information map is computed, the localization simulation commences. For each

path scheme, 100 trials are ran, and various statistics are recorded . Each path scheme, typical

estimated path, and information map is shown in Figure 6.7. The 3 basic paths schemes (xy, yx,

and straight) use the same paths as before (Section 6.2), but the estimation algorithm clearly has

more difficulty in converging to the true path. In particular, the typical estimated paths donot

converge to and track the actual path like before. The 3 intelligent schemestypically do much better

at converging to the actual path. Notice, unlike before, the node centersand manual path route

through different regions of the field. In particular, the node centers path stays to theleft of the

field and goes through one region with particularly high information. The manual path, on the other

hand, goes through this region, then heads to the right and goes throughanother high information

region. Finally, notice that the hybrid path is a combination of the previous 2 routes: initially, it

follows the node centers route; then, it follows the manual route.

A summary of the estimation statistics, shown in Table 6.6, looks similar to the previous

set of simulations. The intelligent path planners have proven themselves capable of tackling the new

system models equally well. The amount the mean estimation error changes fromthe basic schemes

to the intelligent schemes, however, is not as drastic as before. In general, all the path schemes have

a more difficult time reducing the localization error. Additionally, the manual path has slightly

higher mean estimation error than the node centers path, but lower estimation entropy. This occurs

due to the phenomenon mentioned in Section 6.2: the information map is tuned for a small prior, the

system starts with a large prior, and the timing and location of initial detections dramatically effects

the initial convergence of the estimation error. These properties are the inspiration for the hybrid

85

50 100
0

50

100

(a) xy

50 100
0

50

100

(b) yx

50 100
0

50

100

(c) straight

50 100
0

50

100

(d) node centers

50 100
0

50

100

(e) manual

50 100
0

50

100

(f) hybrid

Figure 6.7: Basic simulation overview plots from the localization simulations with improved mod-

els. Depicted is the robot starting (white circle) and ending (white square) positions, the robot path

(solid black line), and the typical estimated robot path (solid light green line) superimposed on the

information map. Each figure is captioned with the path scheme used.

86

path: use the node centers path to quickly reduce the initial estimation error, then use the manual

path to maintain a reduced estimation error. Although, we have yet to discuss the development of

the hybrid path, we see from Table 6.6 that the hybrid path achieves 21.40%less estimation error

and 5.03% less entropy than the next best paths, respectively. This supports the notion that node

centers is good at initializing the estimator and reducing the error to the size of adetection region;

whereas, the information based path is good at further reducing and maintaining low error.

A closer look at the estimation error traces, shown in Figure 6.8, shows moreprecisely

how the estimation error decreases over time. Notice that the manual path lags behind the node

centers and hybrid path schemes in reducing the estimation error. The initial sharp drop-off on all

the schemes is due to when they (on average) receive their first detection. Since the manual path

tends to skirt the detection regions, it takes longer to receive its first detections. The node centers

and hybrid scheme are as quick as any scheme at receiving their first detection by driving the robot

right to a sensor. Once the manual path, however, reduces the estimation error to levels similar

to those of the other 2 intelligent schemes, it performs equally well at keepingthe error low. In a

later section, more noisy simulations will demonstrate that the manual path actually does better at

maintaining low error than the other schemes.

A look at the estimation entropy traces, shown in Figure 6.9, reveals furtherdistinctions

amongst the path schemes. While neither node centers nor manual stand outas being the quickest

to reduce entropy, it is clear that the manual path converges to a lower entropy value. After t=1.2

seconds, the average entropy of the manual path is about 18.5% less thanthat of the node centers,

providing evidence that the manual path tends to produce a more confidentestimate. Again, here

we see the hybrid path provides the best of both worlds. Not only does it out perform node cen-

ter’s estimation error, but it keeps pace with and outperforms all the schemes in turns of entropy

reduction.

Observing the entropy traces, we can more adequately address how the hybrid path is

chosen. A entropy threshold value is chosen for switching between the node centers and manual

paths. Since, the manual path exploits the information map, and the information mapis tuned to a

system with a truncated normal proprioceptive prior withσ2
d = 2.25 cells, the threshold should be

set to switch to the manual path when the actual prior is similar to this distribution. The entropy

of this distribution is 4.36, hence, the hybrid path switches from node centers once it (on average)

achieves an entropy value of this or lower. The node centers path achieves this by the 3rd way point

(it achieves entropy of 3.15). So the hybrid path follows the first 3 way points of node centers,

then switches to the manual path. In practice, this switching mechanism does not have access to

87

time (s)

m
ea

n
es

ti
m

at
io

n
er

ro
r

(c
el

ls
)

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

(a) xy (solid black), yx (dashed green), straight (dotted blue)

time (s)

m
ea

n
es

ti
m

at
io

n
er

ro
r

(c
el

ls
)

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

(b) node centers (solid black), manual (dashed green), hybrid (dotted blue)

time (s)

m
ea

n
es

ti
m

at
io

n
er

ro
r

(c
el

ls
)

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

(c) all path schemes

Figure 6.8: Mean estimation error versus time during the localization simulations with improved

models. Captions denote the path scheme displayed.

88
PSfrag

time (s)

m
ea

n
en

tr
op

y

0 0.5 1 1.5 2 2.5 3 3.5
1

2

3

4

5

6

7

8

9

(a) xy (solid black), yx (dashed green), straight (dotted blue)

PSfrag

time (s)

m
ea

n
en

tr
op

y

0 0.5 1 1.5 2 2.5 3 3.5
1

2

3

4

5

6

7

8

9

(b) node centers (solid black), manual (dashed green), hybrid (dotted blue)

PSfrag

time (s)

m
ea

n
en

tr
op

y

0 0.5 1 1.5 2 2.5 3 3.5
1

2

3

4

5

6

7

8

9

(c) all path schemes

Figure 6.9: Mean estimation entropy versus time during the localization simulations with improved

models. Captions denote the path scheme displayed.

89

Path Type
Mean Time to Converge (s)

5.66m (8 cells) 2.83m (4 cells) 1.41m (2 cells) 0.71m (1 cell)

xy 0.56 0.69 — —
yx 1.40 1.61 — —

straight 0.43 — — —
node centers 0.32 0.44 0.87 —

manual 0.41 0.83 1.11 —
hybrid 0.33 0.49 0.79 —

Table 6.7: Estimation convergence times during the localization simulations with improved models.

Path Type Length (m) tp(s) n̄d n̄d/100 m

xy 145.00 2.80 7.97 5.50
yx 145.00 2.80 1.85 1.28

straight 103.08 1.60 5.34 5.18
node centers 151.03 2.60 19.16 12.69

manual 216.58 3.30 24.36 11.25
hybrid 219.97 3.40 20.49 9.31

Table 6.8: Path information for each path scheme during the localization simulations with improved

models.

several prior runs of the node centers scheme, and, hence, the switching would be done based on

the run-time value of entropy (with some hysteresis).

For completeness, Table 6.7 shows the estimation error convergence times for the path

schemes. This table reiterates that the basic path schemes provide poor and, on average, unreliable

convergence. The intelligent schemes are all capable of converging to within 2 grid cells accuracy,

with the hybrid path providing the quickest convergence time by 9.20% over the next fastest scheme.

Additionally, notice that the hybrid scheme sacrifices a minuscule amount of convergence time

initially to gain more later.

The final statistics collected during the simulations, related to path information andde-

tections, is compiled in Table 6.8. This table provides a comparison of the paths based on length,

travel time, and number of detections. The manual path lives up to expectations by requiring fewer

detections per 100 meters than the node centers path; this is achieved by riding the edges of detec-

tion. Even though the hybrid path is the longest path, it only requires a modest 9.31 detections for

every 100m of travel. Apparently, the hybrid path has provided the bestestimation performance at

the lowest bandwidth utilization.

90

The goal of this work has been to learn how to adapt the well-performing manual scheme

for simple systems (as shown in Section 6.2) to a scheme for real systems. In particular, care must be

taken to use the information maps at the correct time. We observed that the node centers path works

well for quick initialization of a system and the information based path worked well for the fine-

tuning and continual maintenance of the estimation system. This leads us to conjecture that a more

complete information map path planning system may make use of several information maps, each

one tuned to a different prior entropy value. Such a system could switch amongst the information

maps as the online entropy values change. This behavior was approximatedby the hybrid scheme

and was shown to perform well.

To more adequately explore the performance of information based systems,we need to

develop and test a closed-loop system with more significant noise levels. Creation of a closed-loop

system requires the development of automatic path planners that can rivalthe manually chosen

paths. Looking forward enlightens our previous choices. The reasonwe have been relying on

information maps with relatively small priors is because once a closed-loop system is developed,

the entropy will, on average, be low and will stay low due to the closed-loop information map based

path planner. These notions are explored in the next chapter.

91

Chapter 7

Information Maps and Path Planning

Previous sections have investigated the computation of information maps and their utility

in choosing useful paths for navigation. This section builds on this work and develops several

techniques for automatic path planning using node information and information maps. First, the

semantics of entropy and information and how they can be interpreted as a cost is discussed. Then,

using the cost functions, automatic techniques for determining paths are discussed along with their

respective time complexity. Finally, closed-loop localization simulations are performed for multiple

way-points on multiple maps, and the results are compared. By the close of this section, a complete

and fully functional sensor network navigation system will have been developed and evaluated on a

set of realistic system models.

7.1 Interpreting Entropy

Entropy provides a measure of a distribution’s disorder – the larger the entropy, the more

scattered a distribution. The information value for a particular cell providesus with a measure

of how much a prior’s entropy is expected to change after sensor readings. Taken together, the

information map provides a method for estimating how much less scattered the robot’s estimation

is expected to be after sensor readings. However, the mapping from amount of scatter to entropy

change is not clear. This section develops the relationship between entropy and information and

provides an interpretation of information as a measure of the expected reduction in a distribution’s

support.

Consider the relationship between entropy and cells covered. This relationship depends on

the distribution used as shown in Figure 7.1. Notice, the entropy values for the normal distribution

92

(a)d/2 = 0.5,

H = 0.00

(b) d/2 = 1.5,

H = 2.20

(c) d/2 = 2.5,

H = 3.22

(d) d/2 = 4.5,

H = 4.39

(e)d/2 = 8.5,

H = 5.67

(f) 3σ = 0.5,

H = 0.34

(g) 3σ = 1.5,

H = 1.62

(h) 3σ = 2.5,

H = 2.81

(i) 3σ = 4.5,

H = 4.13

(j) 3σ = 8.5,

H = 5.50

Figure 7.1: Entropy values for 2 example distributions with increasing sizes on a 29x29 grid with

the mean at cell (15,15). The top plots are of uniform distributions over ad by d square; the bottom

plots are of a normal distribution with given standard deviation. All plots list theentropy valueH .

are smaller than those for the uniform distribution. This is always the case: the uniform distribution

provides an upper bound. A uniform distribution coveringn cells, has a probability density ofp = 1
n

for each cell. The entropy of this distribution isH = −∑

n p log(p) = log(n). Notice, the logarithmic

progression of the entropy versus the area from left to right in Figure 7.1. Given an entropy value

H derived from a uniform distribution, the number of cells covered by the distribution is given by

n = eH . Furthermore, assuming a uniform distribution with entropyH0 (coveringn0 = eH0 cells) is

reduced to a uniform distribution with entropyH1 (coveringn1 = eH1 cells), the decrease in support

is ∆n = n0 − n1 = eH0 − eH1. For the information map computation, where a prior with constant

entropyH0 is used, it is convenient to rewrite the change in support as

∆n = eH0 − eH1 = eH0 − eH0−I = eH0(1− e−I) (7.1)

where we have used thatI = H0 − H1. This term is derived for uniform distributions, but can be

used to aid us in interpreting information for other distributions too.

Given this relationship between information and support, overall cost or utility can be

interpreted in many ways. We present 2 methods. First, the costκ could be an affine transformation

93

of the change in support, such as

κ = c0 − c1(∆n) (7.2)

= c0 − c1eH0(1− e−I) (7.3)

= c0 + c2(e−I − 1) (7.4)

wherec0, c1, c2 > 0 andc0 is chosen largest enough such thatκ > 0. This representation assigns low

costs to large reductions in number of cells involved in the support. Alternatively, the costκ could

be used to represent the increase in supportdiameter, such as

κ = c0 − c1(
√

n0 −
√

n1) (7.5)

= c0 − c1

√
eH0(1−

√
e−I) (7.6)

= c0 + c2(
√

e−I − 1) (7.7)

wherec0, c1, c2 > 0 andc0 is chosen largest enough such thatκ > 0. This representation assigns low

costs to large reductions in the diameter of the support. Unless stated otherwise, the costκ always

refers to the former affine cost function. The next section uses the cost interpretation to develop

path planners.

7.2 Automating Path Planning

Up to this point, a complete closed-loop navigation system sans a path planner has been

developed. This section fills in the gap by developing several path planners, some of which have

already been used in previous simulations without explanation. An overviewof each path planner

along with running time analysis and example paths is presented.

The previously used simple path planners (xy, yx, and straight) and obvious and fixed;

hence, the following investigation focuses on only the intelligent path planners. Three such plan-

ners are discussed:information grid, node centers, and information clusters. The general modus

operandi of each of these planners is the same: encode the spaceL and any path information into a

weighted, directed graph; then, apply a least cost optimization routine to generate a path inL. The

difference in each planner is the manner in which the graph is constructed. Forthe optimization

routine, many tools exists [25, 80], such as Dijkstra,A∗, or Bellman-Ford. To avoid path planners

that create loops or back-track significantly, the graph edge weights arerestricted to positive values.

Hence, generalized dynamic programming routines like Bellman-Ford are notrequired. Addition-

94

Figure 7.2: Paths generated by the information grid path planner (cκ = 1 andcd = 10) for 3 different

mote topologies.

ally, since the primary focus is not efficiency, but path effectiveness, heuristic based routines such

asA∗ are ruled out. For our work, the Dijkstra algorithm is used for finding the lowest cost path.

The Dijkstra algorithm requires a weighted, directed graphG with verticesV and edgesE

such that, for each edgee= (u, v) ∈ E, the cost of going fromu to v is given byw(u, v) defined by the

positive cost functionw : E→ [0,∞). Given starting and ending verticesu0,uf ∈ V, the algorithm

computes the lowest cost pathP ∈ V∗, whereV∗ is the set of all finite sequences of vertices. For

general graphs, the time complexity of this algorithm isO(n2
v) wherenv = |V|.

The most straightforward application of the Dijkstra algorithm is realized by theinforma-

tion grid path planner. This path planner encodes the entire information map in agraph. A similar

path planer [78] has been previously developed that additionally incorporates an obstacle map. In

our approach, the set of vertices for the graph is defined to be the set of all grid cells {Gi, j}. Then,

each grid cell (vertex) is defined to have an edge connecting to the immediatelyadjacent grid cells

(vertices). Finally, the overall cost to go from vertexu = gi, j to vertexv = gk,l is defined as a linear

combination of the ending cell’s information costκ(v) = κ(gk,l) and the 2-norm distance between

the cells’ centers:

w(u, v) = cκκ(v) + cd||u− v||2 (7.8)

where the mixing proportionscκ, cd are non-negative. This function assigns far away cells with low

information a high cost. Figure 7.2 shows the path generated by the informationgrid path planner

for 3 different node configurations. For each plot, the field spans 100 meters by 100 meters, and the

95

Figure 7.3: Paths generated by the node centers path planner for 3 different mote topologies.

robot starts in the lower left at
[

5 10
]T

and ends in the upper right at
[

70 90
]T

. These plots have used

cκ = 1 andcd = 10. It turns out, for more general values ofcκ andcd, that this path planner tends to

choose fairly straight paths deviating only slightly to encounter higher information regions. Later

simulations will demonstrate that the paths generated by this planner tend to reduce travel time to

the destination by sacrificing some reduction in estimation error. A disadvantage of this planner is

the computation time required. Since it uses all the grid cells as vertices, the number of vertices

is nv = nl , inducing aO(n2
l) running time. The remaining path planners that are presented require

significantly less time.

The node centers path planner embodies the idea that the robot should drive through many

detection centers on the way to the destination. This planner uses the set of mote locations and the

robot’s starting and ending positions as the graph’s vertices for the Dijkstra algorithm. It creates

edges amongst all mote locations and robot starting and ending positions, and encodes the cost

from u to v as the exponential of the 2-norm distance:

w(u, v) = e||u−v||2 (7.9)

The advantage to using an exponential in the cost function is that it encourages the planner to

take many small leaps towards the destination (encountering several nodes); whereas, without the

exponential, the lowest cost path would be the straight line connecting the starting and destination

positions. Three runs of the node centers planner are shown in Figure 7.3. The chosen paths tend

to find routes supported by many close detection areas. The planner will prefer a path along many

close motes to a path that take large jumps in between groups of motes as shown by the middle plot.

96

Figure 7.4: Paths generated by the information clusters path planner (nv = 100 anddp = 5) for 3

different mote topologies.

Finally, since this planner only uses the mote locations and 2 robot positions asvertices, the running

time isO(N2
s) whereNs is the number of motes and is typically much less thatnl .

The final path planner, information clusters, combines several of the previous ideas. It at-

tempts to generate a path that prefers many small leaps (like node centers) favoring high information

regions (like information grid). This planner uses 2 parameters: the numberof candidate verticesnv

and thepadding dp around each vertex. Both these parameters effect how candidate vertices for the

Dijkstra algorithm are chosen. More specifically, starting with an empty set ofvertices, the planner

finds the grid cellu with the lowest costκ(u), and adds this grid cell to the set of vertices. Then, all

grid cells withindp (according to the norm on the partition spaceL) are removed as possible vertex

candidates. This procedure now repeats by choosing the next lowest cost vertex, adding it to the

set of vertices, and removing neighboring cells. The set of vertices is increased untilnv have been

identified. Then, each vertex is connected to every other vertex, and theedge cost ofu to v is the

same exponential distance used previously:

w(u, v) = e||u−v||2 (7.10)

Examples of this planner fornv = 100 anddp = 5 are shown in Figure 7.4. The paths generated

are similar to the node centers paths, but instead of routing through a node center, these paths tend

to ride the edge of detection. In fact, the paths produced by this planner are quite similar to the

manual paths used in Sections 6.2 and 6.4. Hence, a hybrid planner exploiting node centers and

information clusters may provide results superior to each planner alone as demonstrated previously

97

Figure 7.5: Paths generated by the information clusters path planner for a fixed mote topology. The

padding is fixed atdp = 8 cells, andnv varies across the set{25,50,100} from left to right.

with a hybrid manual and node centers path. Overall, this algorithm has the advantage of choosing

intermediate way-points in high information regions and choosing paths with manyshort jumps

between way-points. Finally, the time required for this algorithm isO(n2
v), and, hence, is set by the

nv parameter which is typically much less thannl .

One potential disadvantage of the information clusters planner is the need to choose 2

parametersnv anddp for a particular deployment. To better understand these parameters, we observe

the effect varying them has on the generated paths. In Figure 7.5, the padding has been fixed at

dp = 8 cells, and the number of verticesnv is varied across the set{25,50,100} from left to right.

Increasing the number of vertices provides the planner with more way-points to choose from. Since

the padding is fixed, additional way-points are chosen far from previous ones. This tends to make

the generated path more jagged: it takes more frequent short jumps. Typically, this generates a path

that more precisely follows the high information regions.

In Figure 7.6, the number of candidate vertices is fixed atnv = 50, and the paddingdp is

varied across the set{2,4,8} from left to right. Increasing the padding forces the candidate way-

points to be more spread out. As shown in the plots, this tends to generate pathsthat deviate farther

from a straight path than paths with less padding. However, if padding is increased more, the gener-

ated paths may adhere closer to straight paths: since candidate way-pointsare pushed far away from

a good route, the path tends to use fewer points creating a straighter line. Inthe following, we will

denote the information clusters planner configured withnv vertices anddp padding as information

clusters (nv,dp).

98

Figure 7.6: Paths generated by the information clusters path planner for a fixed mote topology. The

number of candidate vertices is fixed atnv = 50, and the paddingdp varies across the set{2,4,8}
from left to right.

7.3 Closed-Loop Performance

Using the path planners developed in the previous section, this section performs several

localization simulations. In particular, the navigation system can now be tested ina closed-loop con-

figuration for several scenarios. This section introduces the localization simulation setup, performs

a set of closed-loop simulations, and analyzes the results.

To fully test the navigation system, the localization simulations tests each path planner

in a closed-loop configuration for multiple way-points and for multiple sensor network topologies.

In particular, the simulator first randomly generates 10 different sensor network topologies. For

completeness, these topologies and accompanying information maps are listed inAppendix B. Each

topology is generated by uniformly distributing 30 motes on the 100m by 100m field. Then, for each

topology, a set of mini-experiments are run. For each mini-experiment, the system configuration and

parameters used are listed in Table 7.1. The improved models for the sensor,dynamics, and prior

developed in Section 6.3 are utilized. The sensor is configured to have a 90% chance of detecting

an object within 5 meters. The information maps are computed using the truncatednormal prior

with a (single-dimensional) standard deviation of 0.75 m. This prior is truncatedat the 3σ̂p radius

creating a 9 cell by 9 cell square support. The initial estimation of the robot’slocation is given

by a uniform distribution covering a 21 by 21 square of cells. Previous simulations used an initial

prior with a much larger diameter (101 cells) since the focus was on estimation convergence. For

99

Field

size 100m x 100m
grid 200 x 200

sensor distribution uniform
Ns 30

Sensor
model continuous, circular, binary

rs 5m
ps 0.90

Estimated Prior
prior model discretized, truncated normal
σ̂p 0.75 m
P 3σ̂2

p = 2.25 m

Estimator
prior model discrete, box

rp 10 cells

Dynamics

model continuous, normal noise
U 5 m
σd,0 0.84 m
σd,0,min 0.05 m

D 3σd = 2.51 m

Pose l0, l1goal, l
2
goal, l

3
goal

[

5
10

] [

70
90

] [

80
22

] [

12
83

]

Simulation
trials 100

path planners
xy, yx, straight, node centers,

information grid, information clusters

Table 7.1: System models and parameters used for the closed-loop, multiple maplocalization sim-

ulations.

100

the current simulations, a smaller prior is used and the focus is shifted to how well the closed-loop

system can maintain a tight estimate and closely follow a desired path. The continuous, normal

noise model of the dynamics is used with 5 meter control bounds and a noise variance of 0.70m2.

Again, since these experiments focus on closed-loop performance, the noise variance is increased

to 0.70m2 from previous experiments that used a minimal noise variance of 0.01m2. For each trial,

the robot is provided with a starting position at
[

5 10
]T

(in the lower left corner), and given 3

remote way-points to accomplish in order:
[

70 90
]T

(upper, right corner),
[

80 22
]T

(lower, right

corner), and
[

12 83
]T

(upper, left corner).

Each mini-experiment compares 9 different path planners. Each planner is depicted in

Figure 7.7 with the robot path and estimated path for a typical run of the first mini-experiment. The

top 3 plots show the basic path planners tested: xy, yx, and straight. The remaining planners are in-

telligent planners: a node center, an information grid, and 4 different configurations of information

clusters. Clearly, the paths chosen vary heavily depending on the planner and the parameters. An

interesting characteristic of the intelligent planners is that sections of previous paths are frequently

reused for multiple way-point paths. For example, using the information clusters planner in Fig-

ure 7.7i, when the robot navigates from the lower, right corner to the upper, left corner, much of

the previous path is reused. This leads us to conjecture that a deployed sensor network implicitly

creates several stable, static routes that are consistently useful for localizing a robot. Such routes

could prove useful for a variety of reasons: the path planner can reduce the computation required by

reusing paths or several unused motes in remote regions could be re-deployed next to a heavy use

route.

For each path, resulting statistics are first averaged for each mini-experiment, and then

across mini-experiments. Additionally, statistics are collected after the first way-point has been

reached providing time for the system to settle. Several key results from thesimulations are shown

in Table 7.2. Notice that the basic planners are challenged to reduce the meanestimation error

below 1.60 meters. Additionally, the most basic intelligent path planner, node centers, improves the

estimation performance over the best performing basic planner, straight, by 4.40%. The remaining

intelligent planners progressively push the mean estimation error down to the1.3 meter range and

outperform the best simple path planner by anywhere from 12.58% to 19.50%. Next, notice that

the node centers planner generates a lengthy path (49.06% longer than theshortest path planner,

straight) with a high number of detections per 100 meters (24.34% more detections than the next

largest value). Hence, this path planner, which ignores the information map, tends to produce paths

101

50 100
0

50

100

(a) xy

50 100
0

50

100

(b) yx

50 100
0

50

100

(c) straight

50 100
0

50

100

(d) node centers

50 100
0

50

100

(e) information grid

50 100
0

50

100

(f) information clusters (15,1)

50 100
0

50

100

(g) information clusters (40,15)

50 100
0

50

100

(h) information clusters (60,12)

50 100
0

50

100

(i) information clusters (100,5)

Figure 7.7: Basic simulation overview plots for the multiple way-point, multiple map localization

simulations. Depicted is the desired robot path (thick solid red line), the actualrobot path (solid

black line), and the typical estimated robot path (solid light green line) superimposed on the infor-

mation map. Each figure is captioned with the path planner and parameters used.

102

path
mean

length (m)
n̄d n̄d/100 m

mean
estimation
error (m)

mean
entropy

xy 352.00 24.75 7.03 1.67 4.40
yx 352.00 22.31 6.34 1.64 4.40

straight 263.16 23.14 8.79 1.59 4.43
node centers 392.27 66.82 17.06 1.52 4.35

information grid 272.33 26.14 9.60 1.39 4.13
information clusters(15,1) 337.12 42.15 12.52 1.35 4.20
information clusters(60,12) 458.88 63.14 13.72 1.32 4.07
information clusters(40,15) 429.28 56.48 13.16 1.35 4.18
information clusters(100,5) 461.18 60.52 13.13 1.28 3.90

Table 7.2: Simulation statistics collected for each path planner running a closed-loop localization

simulation across 10 node topologies with 100 trials each.

which provide little apparent benefit over simple path planners. Other intelligent planners, however,

exploiting the information map, tend to generate more suitable paths. For instance, the information

grid planner not only generates paths with lengths that rival the straight path planner (only 3.48%

longer) and reduces detections per 100 meters to a modest level (only 9.22% more than the best

performing basic path planner), but it also reduces the estimation error significantly (anywhere

from 12.58% to 16.77% over the basic schemes). Such a planner would likelybe preferred to the

basic planners in most scenarios.

The information clusters planners, as a group, produce the least estimationerror. They

also tend to produce some of the longest paths with a high number of detectionsper meter, though

still fewer detections than required by the node centers planner. These planners tend to sacrifice

path length and number of detections for reduced estimation error and computation time. Finally,

the closed-loop performance provides more support for the information based planners. Due to the

accuracy of the estimation, the basic path schemes and the node centers scheme tend to track the

desired path to within about 1.03 meters; however, the other planners trackthe desired path within

about 0.85 meters (a 17.48% improvement).

This chapter began with providing a more tangible interpretation of information as cost.

Using this interpretation, several path planners were developed that generated varying paths de-

pending on the mote topology. Finally, several sets of closed-loop simulationswere performed to

demonstrate the benefit of information based planners. In particular, it was demonstrated that 2

varieties of information based planners provided improved performance over all the simple path

103

schemes and even the node centers planner which exploits node location information. The next

chapter provides an overview and summary of our research.

104

Chapter 8

Conclusions

Our work focused on how to develop control and navigation systems that operate effec-

tively when embedded with real world wireless sensor networks (WSNs).Such networks are com-

posed of many small sensing and computation nodes, or motes. Often times, each mote executes a

variety of services such as time synchronization, localization, entity detection, leader election, and

message communication. The composite system provides not only a complex distributed sensor,

but also an interactive and variable sensing mechanisms. To further our understanding of control

system design within such an environment, we began by deploying severalreal world sensor net-

works. From this experience, we extracted models of the sensing platformand developed practical

techniques for architecting control systems. Next, using robot navigationas our benchmark, we de-

veloped a simulator and tested several control system designs. This workidentified intelligent path

planning as an important method for improving localization and navigation in sensor networks. Us-

ing an information topology, we developed several path planning techniques, and demonstrated that

these techniques could reduce bandwidth utilization and improve localization accuracy.

One of the initial sensor network and control (SNAC) systems that we deployed is de-

scribed in Chapter 2. A grid of 121 motes was deployed in an outdoor field forplaying mobile

robot pursuit-evasion games (PEGs). This chapter began by discussing the general sensing and

communication algorithm implemented by the sensor network. These details allowedthe reader

to understand the complexity of using WSNs as a distributed sensor. Additionally, the control and

navigation system utilized by the pursuer robot was presented. This system relied on 2 sensors: the

sensor network and an on-board GPS sensor. The GPS sensor was necessary to provide reliable

estimates of the pursuer location. Without such estimates, it was unclear how the pursuit algorithm

should be designed.

105

Once deployed, we turned to characterizing the performance and results of this system.

In particular, PEG was deemed a successful deployment with the pursuerrobot capturing the evader

in all runs. However, the performance of the sensor network was less than expected. An analogous

deployment indicated that detections from the sensor network arrived every 3.02 seconds, with a

latency of 1.75 seconds, and an detection error of 2.42 meters. After the application of several

idealistic filtering techniques (zero movement noise Kalman filtering, latency removal, and faulty

detection removal), the final estimation error could be reduced to 1.53 meters.We noted that these

characteristics are dramatically different from the GPS sensor which provides robot position esti-

mation at 10 Hz with 0.02 meters accuracy. Hence, we identified the primary distinction between a

high performance local sensor (GPS) and a large-scale distributed sensor (WSN). In order to facili-

tate the design of a control system informed solely by a WSN, we identified several characteristics

of sensor networks that challenge the performance of traditional control systems. These challenging

characteristics were grouped into 3 categories: sensor error, false events, and network induced error.

Using our experience from PEG and the list of challenging characteristics, the next chap-

ter, Chapter 3, developed a general control architecture. In particular, for each challenge, a list of

services useful for combating each challenge was developed. In total, several services were iden-

tified: predictive control, neighborhood model based estimation, intelligent path planning, multi-

modal control and networking, sensing coordination, time synchronization, hand shaking, and mote

maintenance. Using these services, a unified architecture for both the control system and the motes

was developed. We noted that viewing the control architecture as a service based architecture has

the advantage of freeing the designer from the traditional control systemparadigm. More specifi-

cally, a service based architecture allows the designer to create servicesthat interact and vary the

sensing system.

After enumerating both a set of challenges and a set of solutions, Chapter4 began our

development of a simulator for further investigating SNAC systems. Using ourprevious experi-

ence and results from the literature, models were developed for the sensor network that account

for many properties of real world deployments: sensing noise, sensor saturation, calibration dif-

ferences, packet collision, radio reception range, multi-hop latency, finite battery lifetime, faulty

hardware, and loose time synchronization. More specifically, we developed a sensor model based

on the magnetometer used during the PEG deployment. Objects are detected in accordance with

a magnetic dipole far field model. Additionally, the operational status of the sensor hardware was

modeled with a state machine permitting several states: normal, saturation, noisy,unresponsive, and

unpredictable. Next, we developed a communication layer model that operates in 2 states: broadcast

106

and multi-hop. The broadcast communication model probabilistically accountedfor MAC delays,

packet collision, and reception ranges. The multi-hop communication model accounted for packet

loss and cumulative packet latency. Next, we developed a mote platform model accounting for a

mote’s finite lifetime and individual time synchronization. Finally, we modeled the detection rou-

tine used during the PEG trials. In addition to our WSN models, we also developed a robot model

based on car like kinematics.

After developing our system models, we instantiated control and estimation services from

our unified control architecture. For the controller, 2 distinct way-pointnavigation services were

developed: feedback and predictive control. For a basic estimation service, an extended Kalman fil-

ter was designed. Two additional augmentations to the estimator were developed: network latency

compensation and faulty node filtering. Using the aforementioned models and thenewly developed

control and estimation services, several simulations were ran. First, we ran a set of simulations to

compare the performance of the control and estimation services. These simulations reinforced the

difficulty of applying basic feedback control to a SNAC system. Additionally, we demonstrated that

our estimation and control architecture was able to achieve the best navigation results: the goal was

more frequently achieved and the overall estimation error was less. Hence, our control architec-

ture utilizing model predictive control and an estimation system tailored to the sensor network was

more effective for way-point navigation than traditional control techniques. Next, to understand the

relationship between a robot’s path and the localization accuracy, we ran several simulations with

varying robot paths. In particular, some paths were chosen to lead the robot through areas densely

covered in sensors with the intention to decrease the estimation error. These simulations revealed

the complex nature of navigation in sensor networks. Our results indicated that path planning can

significantly effect the number of detections, the detection error, and the overall estimation error.

However, it was not clear how a path should be planned to consistently improve estimation accu-

racy. We observed that paths through densely covered areas produced both more and less detection

error than our baseline, straight path. Additionally, such paths consistently decreased the position

estimation error, but not the orientation estimation error.

Intrigued by these results, in Chapter 5, we began to formalize the relationship between

path and localization accuracy. We began by reviewing Markov localizationand information. Next,

we formalized the computation of an information map, with particular attention being paid to the

time complexity. For situations where the computation of the sensor model and prior model require

constant time, we showed that the information map computation has a time complexity ofO(n2
l ny)

wherenl is the cardinality of the pose space andny is the cardinality of the measurement space. Not-

107

ing that this time complexity can be limiting in practice, we reviewed an approximate information

map computation algorithm developed by Roy et al [78]. This algorithm was shown to reduce the

time complexity by computing across a reduced pose and measurement space.Next, we developed

a sensor model and a robot prior model and computed several informationmaps. In particular, we

introduced the discrete binary sensor model and the discrete box prior model. Using these models

and a uniformly deployed sensor network, we varied the size of the prior and computed several

information maps. We discussed the time required to compute these maps on modernhardware and

discussed how the information map could be updated in real time to compensate for sensor nodes

coming on-line or going off-line. Additionally, we noted that regions both far from sensing areas

and close to node locations were low in information; whereas, regions closeto the edge of detec-

tion were high in information. We noted that the information topology explains whya path planner

developed to simply drive in densely covered regions or close to nodes mayfail to provide the best

localization results.

Verifying the error reducing ability of information based paths with simulations was car-

ried out in Chapter 6. First, Markov localization was formalized as an algorithm. We noted the time

complexity for this computation:O(n2
l tl + nl ts) wheretl and ts are the times required to compute

the transition distribution and the sensor model, respectively. Next, we introduced the basic discrete

adjacent cell dynamics for robot movement and, using these dynamics, ran several localization sim-

ulations for a set of fixed paths. In particular, we compared 5 paths: 3 basic paths (xy, yx, straight),

a node by node path (node centers), and a manually chosen information based path (manual). It

was demonstrated that the information based path achieves the lowest mean estimation error and

mean entropy along its path, while requiring only a modest number of detections. Furthermore, we

demonstrated that the node centers path achieves the next lowest error, but requires 210.00% more

detections. Hence, it was shown that the simple and intuitive path planning scheme, to go node by

node, is far from optimal.

Next, the models used for the localization simulations were replaced with more realistic

models. First, the robot dynamics were allowed to become continuous with normally distributed

noise that varies with the control magnitude. This model was then systematically tessellated for use

with Markov localization. The resulting transition function was a complex function that incurs high

computation costs. To address this, the transition function was relaxed to consider only the most

likely transitions, and a new update computation was used in place of the standard Markov move-

ment update. It was shown that the new computation reduces the time complexity of the movement

update fromO(n2
l) to something less thanO(nl). Next, the robot prior was relaxed to be continuous

108

and normally distributed. This model was easily tessellated for use in the simulations. Finally, the

sensor model was relaxed to have a circular detection region. Again, during the tessellation of this

model, a simple approximation was made for the sake of computation time. With the new models

and their computationally efficient counterparts, we again ran several localization simulations using

the same path schemes as before (xy, yx, straight, node centers, manual)with the addition of one:

a hybrid scheme. The hybrid path scheme was developed to use both the node centers path and

the manual path in order to quickly reduce and, henceforth, maintain a low estimation error. This

scheme was shown to outperform the other schemes.

With verification that information based paths perform well for realistic models, we then

moved on to developing automatic path planners in Chapter 7. In this chapter, we presented a

brief introduction to entropy, information, and interpretation of information maps. Using this back-

ground, 3 automatic path planners were developed: node centers, information grid, and information

clusters. The node centers planner embodied the concept of having a robot navigate node by node

to the destination. Hence, this planner made use of the node topology. The information grid and

information clusters planners additionally incorporated knowledge of the information topology. In

particular, the information clusters planner was designed to mimic the manual paths previous used.

Next, all the path planners and various configurations of them were testedusing a closed-loop, mul-

tiple way-point simulation. It was shown that the node centers path planner has performance similar

to that of the simple path planners (xy, yx, straight). Whereas, the performance of information based

planners outperformed the other planners by providing reduced localization error and path devia-

tion. We observed that, the information grid path planner provided a short path to the destination

and low bandwidth utilization and the information clusters planner provided the best localization

accuracy and path following abilities.

Overall, our work provided insight into real world SNAC system deployments with an

emphasis on way-point navigation. We deployed one of the first and largest SNAC systems. We

identified the challenges for such systems and developed a control and estimation solution in the

form of a service based architecture. We developed a practical WSN model based on real world

experience and previous results from the literature. We combined our architecture and our WSN

model into an application level simulator suitable for studying control problems.We demonstrated

the benefits of several of the services from our architecture. Then, with a focus on the intelligent

path planning service, we generated information based path planners anddemonstrated their ability

to reduce localization error and path deviation.

109

Bibliography

[1] M. Aigner and M. Fromme. A game of cops and robbers. InDiscrete Applied Mathematics,

number 8, pages 1–12, 1984.

[2] J. N. Al-Karaki and A. E. Kamal. Routing techniques in wireless sensor networks: a survey.

In IEEE Wireless Communications, volume 11, pages 6–28, December 2004.

[3] Anish Arora, Rajiv Ramnath, Emre Ertin, Prasun Sinha, Sandip Bapat,Vinayak Naik, Vinod

Kulathumani, Hongwei Zhang, Hui Cao, Mukundan Sridharan, SantoshKumar, Nick Sed-

don, Chris Anderson, Ted Herman, Nishank Trivedi, Chen Zhang, Mikhail Nesterenko, Romil

Shah, Sandeep Kulkarni, Mahesh Aramugam, Limin Wang, Mohamed Gouda,Young ri Choi,

David Culler, Prabal Dutta, Cory Sharp, Gilman Tolle, Mike Grimmer, Bill Ferriera, and Ken

Parker. Exscal: Elements of an extreme scale wireless sensor network. In IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications, 2005.

[4] Javed Aslam, Zack Butler, Florin Constantin, Valentino Crespi, GeorgeCybenko, and Daniela

Rus. Tracking a moving object with a binary sensor network. InACM Conference on Embed-

ded Networked Sensor Systems, November 2003.

[5] David J. Austin and Patric Jensfelt. Using multiple gaussian hypotheses torepresent proba-

bility distributions for mobile robot localization. InInternational Conference on Robotics&

Automation, April 2000.

[6] Y. Bar-Shalom and T. Fortmann.Tracking and Data Association. Academic Press, 1988.

[7] M. Batalin and G. Sukhatme. Efficient exploration without localization. InIEEE International

Conference on Robotics and Automation, 2003.

[8] M. Batalin and G. Sukhatme. Coverage, exploration, and deployment by a mobile robot and

communication network. InTelecommunication Systems, 2004.

110

[9] M. Batalin, G. Sukhatme, and M. Hattig. Mobile robot navigation using a sensor network. In

IEEE International Conference on Robotics and Automation, 2003.

[10] Michael Beetz, Wolfram Burgard, Dieter Fox, and Armin Cremers. Integrating active localiza-

tion into high-level control systems.Robotics and Autonomous Systems, 23:205–220, 1998.

[11] S. Bergbreiter and K.S.J. Pister. Cotsbots: An off-the-shelf platform for distributed robotics.

In International Conference on Intelligent Robots and Systems 2003, October 2003.

[12] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. McCamme,

K. Varadhan, Y. Xu, and H. Yu. Advances in network simulation. InIEEE Computer, May

2000.

[13] Alex Brooks, Alexei Makarenko, Tobias Kaupp, Stefan Williams, and Hugh Durrant-Whyte.

Implementation of an indoor active sensor network. InInternational Symposium on Experi-

mental Robotics, 2004.

[14] R. A. Brooks. A robust layered control system for a mobile robot.In IEEE Transactions on

Robotics and Automation, March 1986.

[15] R. R. Brooks, P. Ramanathan, and A. M. Sayeed. Distributed target classification and tracking

in sensor networks. InProceedings of the IEEE, August 2003.

[16] W. Burgard, A. Derr, D. Fox, and A. B. Cremers. Integrating global position estimation and

position tracking for mobile robots: The dynamic markov localization approach. In Proceed-

ings of IEEE/RSJ International Conference on Intelligent Robots and Systems, October 1998.

[17] Z. Butler and D. Rus. Event-based motion control for mobile sensor networks. InIEEE

Pervasive Computing, volume 2, pages 34–43, October–November 2003.

[18] V. Bychkosvkiy, T. Schoellhammer, and D. Estrin. Control and actuation in data-centric wire-

less sensor networks. InAAAI Spring Symposium on Intelligent, Distributed, and Embedded

Systems, 2002.

[19] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin. Statistical model of lossy links

in wireless sensor networks. Technical Report 41, CENS Technical Report, April 2004.

[20] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis Girod, Michael Hamilton, and Jerry

Zhao. Habitat monitoring: Application driver for wireless communications technology. In

111

ACM SIGCOMM Workshop on Data Communications in Latin America and the Caribbean,

April 2001.

[21] Phoebus Chen, Songhwai Oh, Michael Manzo, Bruno Sinopoli, Cory Sharp, Kamin White-

house, Gilman Tolle, Jaein Jeong, Prabal Dutta, Jonathan Hui, Shawn Shaffert, Sukun Kim,

Jay Taneja, Bonnie Zhu, Tanya Roosta, Mike Howard, David Culler, andShankar Sastry.

Closing the loop in sensor networks. InIEEE International Conference on Robotics and Au-

tomation Video, 2006.

[22] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme. Autonomous de-

ployment and repair of a sensor net using an unmanned aerial vehicle. In IEEE International

Conference on Robotics and Automation, 2004.

[23] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme. Deployment and

connectivity repair of a sensor net with a flying robot. InProceedings of the Ninth International

Symposium on Experimental Robotics, June 2004.

[24] P. Corke, R. Peterson, and D. Rus. Networked robots: Flying robot navigation using a sensor

net. InProceedings International Symposium on Robotics Research, November 2003.

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.Introduction

to Algorithms. MIT Press and McGraw-Hill, second edition, 2001.

[26] T. M. Cover and J. A. Thomas.Elements of Information Theory. Wiley-Interscience, 1991.

[27] Z. Crisman, E. Curre, C. Kwok, N. Ratliff, L. Tsybert, and D. Fox. Team description:

Uwhuskies-02. InRoboCup-2002: Robot Soccer World Cup VI. Springer Verlag, 2003.

[28] A. Das, G. Kantor, V. Kumar, G. Pereira, R. Peterson, D. Rus, S. Singh, and J. Spletzer.

Distributed search and rescue with robot and sensor teams. InInternational Conference on

Field and Service Robotics, July 2003.

[29] M. Demirbas, A. Arora, and M.G. Gouda. A pursuer-evader gamefor sensor networks. In

Self-Stabilizing Systems 2003, pages 1–16, 2003.

[30] Jiagen Ding, Sing Yiu Cheung, Chin-Woo Tan, and Pravin Varaiya.Signal processing of

sensor node data for vehicle detection. InInternational IEEE Conference on Intelligent Trans-

portation Systems, October 2004.

112

[31] R. Dorf and R. Bishop.Modern Control Systems. Prentice Hall, tenth edition, 2004.

[32] A. Doucet, N. De Freitas, and N.J. Gordon, editors.Sequential Monte Carlo Methods in

Practice. Springer-Verlag, May 2001.

[33] Prabal Dutta, Mike Grimmer, Anish Arora, Steven Bibyk, and David Culler. Design of a

wireless sensor network platform for detecting rare, random, and ephemeral events. InInter-

national Conference on Information Processing in Sensor Networks, 2005.

[34] J. Elson.Time synchronization in wireless sensor networks. PhD thesis, May 2003.

[35] Deborah Estrin, Lewis Girod, Greg Pottie, and Mani Srivastava. Instrumenting the world

with wireless sensor networks. InInternational Conference on Acoustics, Speech, and Signal

Processing, 2001.

[36] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic environ-

ments. InJournal of Artificial Intelligence Research, 1999.

[37] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, andS. Wicker. Complex behav-

ior at scale: An experimental study of low-power wireless sensor networks. Technical report,

UCLA Computer Science Technical Report UCLA/CSD-TR 02-0013, 2002.

[38] Tia Gao, Dan Greenspan, Matt Welsh, Radford R. Juang, and Alex Alm. Vital signs moni-

toring and patient tracking over a wireless network. InInternational Conference of the IEEE

Engineering in Medicine and Biology Society, September 2005.

[39] I.S. Gradshteyn and I.M. Ryzhik.Table of Integrals, Series, and Products. Academic Press,

Inc., fifth edition, 1994.

[40] Lin Gu, Dong Jia, Pascal Vicaire, Ting Yan, Liqian Luo, Ajay Tirumala, Qing Cao, Tian

He, John A. Stankovic, Tarek Abdelzaher, and Bruce H. Krogh. Lightweight detection and

classification for wireless sensor networks in realistic environments. InACM Conference on

Embedded Networked Sensor Systems, 2005.

[41] Jens-Steffen Gutmann. Markov-kalman localization for mobile robots. InProceedings of the

International Conference on Pattern Recognition, 2002.

113

[42] Jens-Steffen Gutmann, Wolfram Burgard, Dieter Fox, and Kurt Konolige. An experimental

comparison of localization methods. InInternational Conference on Intelligent Robots and

Systems, 1998.

[43] Jens-Steffen Gutmann and Dieter Fox. An experimental comparison of localization methods

continued. InProceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2002.

[44] J. Hespanha, M. Prandini, and S. Sastry. Probabilistic pursuit-evasion games: A one-step nash

approach. InProceedings of the 39th IEEE Conference on Decision and Control, December

2000.

[45] J.P. Hespanha and Maria Prandini. Optimal pursuit under partial information. InIn Proceed-

ings of the 10th Mediterranean Conference on Control and Automation, July 2002.

[46] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister. Sys-

tem architecture directions for networked sensors. InProceedings of ACM International Con-

ference on Architectural Support for Programming Languages and Operating Systems, pages

93–104, November 2000.

[47] A. Hoover and B.D. Olsen. Sensor network perception for mobile robotics. InIEEE Confer-

ence on Robotics& Automation, April 2000.

[48] P. Jensfelt and S. Kristensen. Active global localisation for a mobilerobot using multiple

hypothesis tracking. InWorkshop on Reasoning with Uncertainty in Robot Navigation, Aug

1999.

[49] M. I. Jordan.Learning in Graphical Models (Adaptive Computation and Machine Learning).

The MIT Press, 1998.

[50] R. E. Kalman. A new approach to linear filtering and prediction problems. In Transactions of

the ASME – Journal of Basic Engineering, volume 82, pages 35–45, 1960.

[51] H. J. Kim, R. Vidal, D. Shim, O.Shankernia, and S. Sastry. A hierarchical approach to prob-

abilistic pursuit-evasion games with unmanned ground and aerial vehicles. In Proceedings of

the 40th IEEE Conference on Decision and Control, December 2001.

[52] J. Lee and H. Hashimoto. Controlling mobile robots in distributed intelligent sensor network.

In IEEE Transactions on Industrial Electronics, volume 50, October 2003.

114

[53] Scott Lenser and Manuela M. Veloso. Sensor resetting localization for poorly modelled mobile

robots. InProceedings of the IEEE International Conference on Robotics and Automation,

pages 1225–1232, 2000.

[54] J. Leonard and H. Durrant-Whyte. Mobile robot localization by tracking geometric beacons.

In IEEE Transaction on Robotics and Automation, 1991.

[55] J.J. Leonard and H.F. Durrant-Whyte. Simultaneous map building and localisation for an

autonomous robot. InIEEE/RSJ International Workshop on Intelligent Robots and Systems,

pages 1442–1447, 1991.

[56] Q. Li, M. DeRosa, and D. Rus. Distributed algorithms for guiding navigation across a sensor

network. InInternational Workshop on Information Processing in Sensor Networks, 2003.

[57] Jie Liu, Patrick Cheung, Leonadas Guibas, and Feng Zhao. A dual-space approach to tracking

and sensor management in wireless sensor networks. InACM International Workshop on

Wireless Sensor Networks and Applications, 2002.

[58] Juan Liu, Maurice Chu, Jie Liu, Jim Reich, and Feng Zhao. Distributed state representation for

tracking problems in sensor networks. InInternational Workshop on Information Processing

in Sensor Networks, 2004.

[59] J. Lundquist, D. Cayan, and M. Dettinger. Meteorology and hydrology in yosemite national

park: A sensor network application. InInformation Processing in Sensor Networks, April

2003.

[60] Samuel Madden, Michael Franklin, Joseph Hellerstein, and Wei Hong. Tinydb: An acqui-

sitional query processing system for sensor networks. InACM Transactions on Database

Systems, 2005.

[61] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor net-

works for habitat monitoring. InWireless Sensor Networks and Applications, September 2002.

[62] Alexei Makarenko and Hugh Durrant-Whyte. Decentralized data fusion and control in active

sensor networks. InInternational Conference on Information Fusion, 2004.

[63] Alexei A. Makarenko, Stefan B. Williams, Frederic Bourgault, and Hugh F. Durrant-Whyte.

An experiment in integrated exploration. InProceedings of the IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, 2002.

115

[64] P. Mart́ı, G. Fohler, K. Ramamritham, and J.M. Fuertes. Jitter compensation for real-time

control systems. InIEEE Real-Time Systems Symposium, December 2001.

[65] Pau Mart́ı, Ricard Villa, Josep M. Fuertes, and Gerhard Fohler. Stability of on-line com-

pensated real-time scheduled control tasks. InIFAC Conference on New Technologies for

Computer Control, November 2001.

[66] H.P. Moravec. Sensor fusion in certainty grids for mobile robots. InAI Magazine, 1988.

[67] S. Narayanaswamy, V. Kawadia, R. Sreenivas, and P. Kumar. Power control in ad-hoc net-

works: Theory, architecture, algorithm and implementation of the compow protocol. InEuro-

pean Wireless Conference, 2002.

[68] I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish an office-navigating robot. InAI Maga-

zine, volume 16, pages 53–60, 1995.

[69] Nucleus Network Management System Website. Available on the Internet: http://www.cs.

berkeley.edu/∼get/nucleus/.

[70] P. Ogren, E. Fiorelli, and N.E. Leonard. Cooperative control ofmobile sensor networks:

Adaptive gradient climbing in a distributed environment. InIEEE Transactions on Automatic

Control, August 2004.

[71] S. Oh, S. Russell, and S. Sastry. Markov chain monte carlo data association for general

multiple-target tracking problems. InIEEE Conference on Decision and Control, 2004.

[72] T.D. Parsons. Pursuit-evasion in a graph. InTheory and Application of Graphs, pages 426–

441. Springer-Verlag, 1976.

[73] Hanna Pasula, Stuart Russel, Michael Ostland, and Ya’acov Ritov. Tracking many objects

with many sensors. InProceedings of International Joint Conference on Artificial Intelligence,

1999.

[74] R. Peterson and D. Rus. Interacting with a sensor network. InAustralasian Conference on

Robotics and Automation, November 2002.

[75] Gregory Pottie and William Kaiser. Wireless integrated network sensors. InCommunications

of the ACM, volume 43, pages 51–58, May 2000.

116

[76] D.B. Reid. An algorithm for tracking multiple targets. InIEEE Transactions on Automatic

Control, volume 24:6, 1979.

[77] Branko Ristic, Sanjeev Arulampalam, and Neil Gordon.Beyond the Kalman Filter: Particle

Filters for Tracking Applications. Artech House, February 2004.

[78] Nicholas Roy, Wolfram Burgard, Dieter Fox, and Sebastian Thrun. Coastal navigation mo-

bile robot navigation with uncertainty in dynamic environments. InProceedings of the IEEE

International Conference on Robotics and Automation, 1999.

[79] Wilson J. Rugh. Linear System Theory. Information and System Sciences Series. Prentice

Hall, Upper Saddle River, New Jersey 07458, second edition, 1996.

[80] Stuart J. Russell and Peter Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall,

second edition, 2002.

[81] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry, and D. Culler. Design and

implementation of a sensor network system for vehicle tracking and autonomous interception.

In European Workshop on Wireless Sensor Networks, 2005.

[82] D. Shim, H.J. Kim, and S. Sastry. Decentralized nonlinear model predictive control of multiple

flying robots. InProceedings of IEEE Conference on Decision and Control, 2003.

[83] Gyula Simon, Mikĺos Maŕoti, Ákos Lédeczi, Gÿorgy Balogh, Branislav Kusy, András Ńadas,

Gábor Pap, J́anos Sallai, and Ken Frampton. Sensor network-based countersniper system. In

ACM Conference on Embedded Networked Sensor Systems, 2004.

[84] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan,and S. Sastry. Kalman

filtering with intermittent observations. InProceedings of IEEE Conference on Decision and

Control 2004, December 2004.

[85] Robert Szewczyk, Joseph Polastre, Alan Mainwaring, and DavidCuller. Lessons from a sensor

network expedition. InEuropean Workshop on Wireless Sensor Networks, January 2004.

[86] Haruo Takeda, Claudio Facchinetti, and Jean-Claude Latombe. Planning the motions of a

mobile robot in a sensory uncertainty field. InIEEE Transactions on Pattern Analysis and

Machine Intelligence, 1994.

117

[87] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization for mobile

robots. InArtificial Intelligence, 2000.

[88] TinyOS Website. Available on the Internet:http://www.tinyos.net/.

[89] P.F. Tsuchiya. The landmark hierarchy, a new hierarchy for routing in very large networks. In

Special Interest Group on Data Communication, pages 36–42, 1988.

[90] Pravin Varaiya and P.R. Kumar.Stochastic Systems: Estimation, Identification, and Adaptive

Control. Information and System Sciences Series. Prentice Hall, Upper Saddle River, New

Jersey 07458, 1986.

[91] R. Vidal, S. Rashid, C. Sharp, O. Shakernia, J. Kim, and S. Sastry. Pursuit-evasion games with

unmanned ground and aerial vehicles. InProceedings of the IEEE International Conference

on Robotics and Automation, May 2001.

[92] Kamin Whitehouse and David Culler. Calibration as parameter estimation in sensor networks.

In ACM International Workshop on Wireless Sensor Networks and Applications, 2002.

[93] Kamin Whitehouse, Chris Karlof, Alec Woo, Fred Jiang, and David Culler. The effects of

ranging noise on multihop localization: an empirical study. InThe International Conference

on Information Processing in Sensor Networks, 2005.

[94] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: a neighborhood ab-

straction for sensor networks. InProceedings of ACM International Conference on Mobile

Systems, Applications, and Services. ACM Press, June 2004.

[95] M. Yamashita, H. Umemoto, I. Suzuki, and T. Kameda. Searching for mobile intruders in a

polygonal region by a group of mobile searchers. InAlgorithmica, volume 31, pages 208–236,

2001.

[96] W. Ye, R. Vaughan, G. Sukhatme, J. Heidemann, D. Estrin, and M. Mataric. Evaluating control

strategies for wireless-networked robots using an integrated robot andnetwork simulation. In

Proceedings of the IEEE International Conference on Robotics and Automation, May 2001.

[97] Feng Zhao, Jie Liu, Juan Liu, Leonidas Guibas, and James Reich. Collaborative signal and

information processing: An information directed approach. InProceedings of the IEEE, 2003.

118

Appendix A

Sensor Network and Control System

Simulator Parameter Values

This section provides a list of the parameter values used by the models in the sensor

network and control system simulator discussed in Chapter 4.

• Physical layout

– Field dimensions: 20 m by 20 m

– Number of motes: 100

– Mote distribution: uniform

• Sensor model

– Dipole height off ground:dm = 2 m

– Dipole strength:M = 2×10−4πd3
m

µ0
=

103d3
m

2 A/m allowingB0(ρ = 0) = 10−4 T = 1 G

– Permeability of free space:µ0 = 4π × 10−7 Wb/(Am)

– Saturation threshold:Bthres= 980 mG

– Saturation measurement:Bsat = 980 mG

– Saturation duration:τsat = 2 s

– Normal sensors: 1− pn − pur − pup = 94 %

∗ Bias distribution:N(0,202) mG

∗ Noise variance distribution:N(0,202) mG

119

– Noisy sensors:pn = 2 %

∗ Bias distribution:N(0,202) mG

∗ Noise variance distribution:N(0,1002) mG

– Unpredictable sensors:pup = 2 %

∗ Measurement distribution:N(µup, σ
2
up)

∗ Distribution standard deviation:σup = 50 mG

∗ Distribution mean:µup = −σup
√

2erf−1(2pdetect− 1)+ Bthres wherepdetect= 0.05

is the probability of the measurement exceeding the detection threshold.

– Unresponsive sensors:pur = 2 %

• Communication model

– Packet drop probability:pdrop = 0.30

– Single hop lag distribution:U[0,0.3] s

– Reception probability (d in meters) :pdist(d) ∼ R(2.414,1)

– Average hop distance:̂dhop = 2.414 m

• Mote platform

– Low energy probability:pe = 2 %

– Mote expiration time distribution:U[0,30] s

– Mote initial sensing time distribution:U[0,1.5] s

• Mote algorithm parameters

– Reporting threshold:Breport = 136 mG where the sensor will nominally detect at 2
√

2

meters

– Reporting period:Treport = 0.3 s

• Car model

– Wheelbase:b = 0.15 m

– Wheel speed bounds:ν ∈ [−0.25,0.25] m/s

– Turning angle bounds:φ ∈ [−20,20] degrees providing a 0.52 m turning radius

120

– Wheel speed error variance:σ2
ν = 0.01

– Steering angle error variance:σ2
φ = 0.01

• Feedback controller parameters

– Wheel speed bound estimate: ˆνmax= 0.3 m/s

– Proportional constant:pφ = 1

• Estimation parameters

– p(n|v) =























0 if n ≤ 1 ,

1 otherwise.

– Expected packet delay:τd = 1 s

– Wheel speed bounds estimate: [ˆνmin, ν̂max] = [−0.3,0.3] m/s

– Steering angle bounds estimate: [φ̂min, φ̂max] = [−0.4,0.4] radians

• Simulator parameters

– Sample time:T = 0.03 s

– Initial state:
[

x0 θ0

]T
=

[

5 5 3π/2
]T

– Initial state estimate:
[

x̂0 θ̂0

]T
=

[

4 4 π/2
]T

– Destination position:xf =

[

10 10
]T

121

Appendix B

Node Topologies for Closed-Loop

Simulations

This section provides a depiction, in Figure B.1, of the node topologies and information

maps used during the multiple map, multiple way point, closed-loop simulations of Section 7.3.

122

50 100
0

0.2

0.4

0.6

0.8

1

0

50

100

(a) map 1

50 100
0

0.2

0.4

0.6

0.8

1

0

50

100

(b) map 2

50 100

0.2

0.4

0.6

0.8

1

1.2

0

50

100

(c) map 3

50 100
0

0.2

0.4

0.6

0.8

1

0

50

100

(d) map 4

50 100
0

0.2

0.4

0.6

0.8

1

0

50

100

(e) map 5

50 100
0

0.2

0.4

0.6

0.8

1

0

50

100

(f) map 6

50 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

(g) map 7

50 100
0

0.2

0.4

0.6

0.8

1

0

50

100

(h) map 8

50 100

0.2

0.4

0.6

0.8

1

0

50

100

(i) map 9

50 100

0.2

0.4

0.6

0.8

1

0

50

100

(j) map 10

Figure B.1: The 10 sensor network topologies and accompanying information maps used during the

closed-loop simulations.

