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Abstract

Closing the Loop: Control and Robot Navigation in Wireless $ehsetworks

by

Shawn Michael ScHeert
Doctor of Philosophy in Electrical Engineering and Comp@&eience

University of California, Berkeley

Professor Shankar S. Sastry, Chair

Wireless sensor networks have received considerable attention fiopoential as a cheap, easily
deployed, distributed monitoring tool. Recently, researchers have liegowestigate the use of
wireless sensor networks to drive closed-loop control systems. Hmw&wch composite systems
are nontrivial to design due to the system interface dichotomy: contrtégmegstypically assume
periodic, high frequency sensor updates whereas sensor nefpvorkde aperiodic, low frequency,
and laggy sensor updates. Utilizing robot navigation and pursuit-evgaioes as benchmarks, our
research focuses on improving control system performance by expglditnproperties of wireless
sensor networks.

We developed and deployed a real-world, medium-scale wireless sataark for play-
ing pursuit-evasion games. Using our experience from this deploymeiiigiigght the dificulties
in using sensor network data to accurately localize robots. Severalideelsndesigned to com-
pensate for such fliculties are developed and incorporated into an unified system architecture
To test our architecture, an application-level simulator, accounting foy miihe sensor network
characteristics that frustrate control design, is developed. This simal&ias us to identify com-
ponents of our system architecture that can improve the performancatwblcsystems operating
in networks of sensors. Amongst the components, intelligent path planriglenified as uniquely
important in improving robot localization accuracy during navigation.

Path planning techniques that use information maps, exploiting the knowledgedef
topology and sensor models, are developed. Information is a metric founmaasghe ability of
a region in the environment to aid in robot localization. In particular, foheagion in the en-
vironment, an information map computes the change in entropy expected Imptaimahis area



using Markov localization. We adapt sensor network models for use withnirgftion maps and
verify the ability of such maps to improve robot localization. Additionally, automadit planning
techniques based on information maps are developed that minimize localizator/ée compare
the performance of these planners with other path planners, and deaterisat this technique is
effective for generating paths that increase the accuracy of localizatide typically requiring

fewer detections.

Professor Shankar S. Sastry
Dissertation Committee Chair
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Chapter 1

Introduction

Each year the size and cost of electronics reduce producing a waoglditolnis with sens-
ing and computing nodes. Observing this trend, researchers have tordeveloping hardware
and software platforms [46, 88] to support distributed sensing and daigu via hundreds or
thousands of tiny nodes. Each node, or mote, is designed to be a smail;gibeient sensing plat-
form that supports on-board computation and wireless communication. Bsiistributed array of
motes, or a wireless sensor network (WSN), provides a new sensingrpiaiteful for a variety of
applications.

In the last several years, many of the foreseen applications and cles|§3ts 75] of
WSNSs have been actively researched. WSNs have already showruseéiiness in many dis-
tributed sensing arenas such as habitat monitoring [20, 61], meteor&@®pyrformation for first-
responders [38], and vehicle detection [30]. During the developmestici applications, chal-
lenges on several fronts have been investigated by researchensc aetworking [89, 2], power
efficiency [67], in-network data aggregation [60, 62], time synchronizg84j) and automatic node
localization [93] to list a few.

The need to go beyond pure sensing applications and understand VégNsdontrol and
actuation perspective has been identified by researchers [18}abiewportant control applications
such as heating ventilation and air conditioning (HVAC) systems, pursusi@@vgames, and robot
navigation stand to benefit by the introduction of a sensor network platfériW.SN system can
reduce installation and maintenance costs for HVAC systems by eliminating weit@sén sensing
and control points. Pursuit-evasion games can acquire a global view pfaing field eliminating
the need for a pursuer robot to continuously patrol. Finally, robot m#ieig benefits in several

ways. Sensor networks can localize robots for environments (suclsidg ibuildings or outside



under tree cover) that other technologies (such as GPS) cannot. Addlitjahese networks allow
for the localization of robots without sensors reducing the cost of thet htform and facilitating

applications (such as automated warehouses) that could benefit byidgdleets of such robots.
We refer to these integrated systems as sensor network and contraCjSigtems, to distinguish
them from classical control systems, networked control systems, atensy for control of the
network layer.

For a SNAC system to benefit from a sensor network platform, the platieeds to be
easily deployable, self-organizing, robust, and long lasting. Manycgesnare required for building
a robust SNAC application such as self localization, ad-hoc routing, deteatid aggregation,
and control. As previously mentioned, most of these services have he#iadsin recent years.
However, limited work has addressed the design of control systemsleagaxcurately utilizing
the incoming information from sensor networks. Such composite systemsiairé/ial to design
due to the system interface dichotomy: control systems [31, 79] typicallyrasperiodic, high
frequency sensor updates whereas sensor networks providedapelow frequency, and laggy
sensor updates.

The goal of our work is to develop a general methodology that facilitates dpility
control services for SNAC applications. Additionally, our work focusesthe design of a con-
trol scheme for robot navigation in WSNs. Our research approachkss tbpic step by step. We
implement a complex SNAC system and provide practical insight into the chalehgresents.
We develop a general system architecture for approaching SNAGwsy&sign. We develop sev-
eral WSN models and a simulator suitable for testing our architecture. Finadlysihg on robot
navigation, we adapt localization and path planning techniques for WSNs.

1.1 Related Work

Previous work illuminating our research path is both varied and broaddditien to
addressing control systems and sensor networks, our work usagtpewrasion games and robot
navigation as benchmarks and illustrative examples. Hence, a compueh&mnsey involves delv-
ing into several research communities: classical control, sensor netvdiskributed systems, esti-
mation, mobile robots, and pursuit-evasion games. Additionally, fundamerdalytaobile robot
application is the ability for a robot to localize itself, requiring our survey tduite results from
the localization and tracking communities. In fact, developing a robust seeswork system for

robot localization is useful outside our area of research in a varietseasasuch as the hybrid field



of mobile sensor networks. Applications such as event sensitive moni{@ing0] require mobile
sensors to gather around interesting events increasing the sensingcsiccu

This survey explores, in order, estimation techniques and control @vidation) sys-
tems. Relevant pursuit-evasion game literature is left for the appropriafgesh The estimation
survey covers tracking in sensor networks, localization within sengwronies, and classical mo-
bile robot localization. The control survey covers mobile robot contrekimsor networks, classical
mobile robot navigation, and extensions to classical control systems.

Localizing a mobile robot can be viewed as a sensor network trackindepnobSuch
problems have been studied in various forms. Early work [76] uses ainatidn of classifiers and
Kalman filters. Tracking multiple objects is accomplished by first using a sdftidtgrs to associate
new detections with entities being tracked. Then, the track of each entityasagodsing a Kalman
filter and the relevant detections. Other researchers [71, 73] wodkirilgis same application have
employed Monte Carlo techniques. Oh et al [71] show the utility of MarkairciMonte Carlo
methods for tracking multiple entities given noisy sensor network detectidresstate of a Markov
chain models the current estimate of tracks in the network. The transitiong dfdhkov chain
are adapted to model simple transformations of the estimate such as track splittiegging. The
technique is shown to successfully track multiple objects given noisy saet@ork detections.

Other sensor network tracking work [62] focuses on developing argéned architecture
for distributed estimation. In this work, the authors consider an architeetlowing nodes to
estimate the position of entities using local sensor measurements and shianati@sprobabilities
from neighboring nodes. Techniques are developed for sharing ésiimaformation amongst
nodes to achieve favorable results. An architecture and a set of fittegeaerated that achieve a
distributed Bayesian estimator. Additional work [13] by the authors prevadberief overview of
the practical challenges of integrating these techniques for a real degiby

Probabilistically tracking multiple objects in &ieient manner has also been studied [57,
58]. In this work, multiple objects are tracked using a patrticle filter. In ggner particle filter
requires the use of a joint distribution encompassing probabilities for allijeets being tracked.
As the number of objects being tracked increases, such a distributiorygh@tomes intractable.
An alternative method for managing the distribution is provided. The autlewelap a method of
joining and splitting distributions to allow objects close together to be tracked witintedistribu-
tion and objects separated by large distances to be individually tracked gynaladistributions.
This technique allows for the particle filter to operate on several simple ditritsurather than one

complex distribution.



Still other researchers have focused on tracking techniques that minimakytrie re-
sources of the WSN. For instance, Zhao et al [97] propose that doeigan of general information
processing tasks (such as entity tracking) is realized as the solution tdtiamizagion problem.
The proposed objective function incorporates quantities such as iriomgain and communica-
tion costs. This technique, specialized for entity tracking, asserts thastineaged tracks are only
updated as necessary, minimizing power and bandwidth utilization.

Entity tracking within sensor networks is indeed an active research assangassing
many scenarios and solutions. As already discussed, the focus of ttkissam minimizing net-
work resources, tracking multiple objects, or distributed information shariffge focus of our
work, on the contrary, is on the localization of a cooperative mobile robeticH, the current lit-
erature lacks an appropriate solution for our scenario: multiple objedtitigaalgorithms are too
general, distributed information sharing architectures are not negeasdrow resource utilization
is not our focus. Furthermore, the cooperative mobile robot localizatioblgm is decidedly dif-
ferent than the researched tracking scenarios: detections of querative agent only occur locally
and can be immediately sent (via broadcast) to the agent which assumeketbéaaentralized
estimator.

Before leaving the sensor network estimation literature, we expand ope am track-
ing to localization and general estimation techniques. In this realm, resesatehe studied many
specialized localization applications such as sniper localization [83] argbisede localiza-
tion [93]. However, these applications are tailored fdfatent sensor modalities and estimation
of static quantities which are not applicable to the mobile robot localization probléie mobile
robot estimation problem within sensor networks has had limited coveragearticular, Sinop-
oli et al [84] consider a linear control system with Kalman filter estimation kegpvith sensor
network detections. The sensor network is modeled as a monolithic, distribensdr that either
delivers a measurement on time or drops it. The authors show a relatioeshigan the probability
of dropping a sensor reading, the system dynamics, and the system stdfiigywork provides
insight into the amount of network losses tolerated by a stable feedbatblcgystem. However,
the sensor network model is rather limited. It does not model network latdranacteristics, and,
hence, has no method to incorporate late arriving measurements into the Kidemam contrast,
our work does not provide theoretical stability bounds, but insteadgee\wticient solutions for
more realistic and practical sensor network scenarios.

The current sensor network estimation literature does not directly adoluegpplication,

but does provide an implicit suggestion for basic localization techniquetheAbot of these track-



ing and localization algorithms, are Bayesian estimation techniques (or apat@mns thereof).
To provide more specific insight into applying Bayesian estimation, we turn tontitele robot
localization literature.

A large body of research on mobile robot localization has been carried @assical
techniques such as Kalman filtering (KF) [50] and Markov localization (MEB] have been heavily
investigated. Combinations and variants of these techniques have alsexjgered: extended
Kalman filtering (EKF) [54], Markov localization-extended Kalman filteringlMKF) [41], and
multi-hypothesis tracking (MHT) [48, 5]. Additionally, a wide variety of seqtial Monte Carlo
methods, or particle filters [32], have been explored: sensor-reséttiaization [53], mixture
Monte Carlo localization [87], and adaptive Monte Carlo localization [27dm@arisons of these
localization techniques [42, 43] have been performed. In fact, anyeséttechniques are candidates
for interpreting our sensor network data. However, the focus of ke to develop techniques
that provide an estimator with the best information. In the case of mobile robigiat@n, we show
that Markov localization is a particularly good choice. Since this body of tileeatends to assume
a traditional robot model with on-board, high speed sensors (suclP8saBd laser range finders),
these techniques are not adapted to the data characteristics of semamks.e Fortunately, the
mobile robot literature proves more fruitful as we move from estimation to cofmagigation).

Mobile robot navigation and control is studied from a variety of perspesti As we
explore the navigation literature, we begin with topics directly related to seretaorks. Then,
we expand our search to include generalized path planning topics aptedddassical control
techniques.

Robot navigation has been investigated in the context of an autonomatdeyioying
a sensor network and using it for coverage, exploration, and navig&i®, 7]. In this work, each
node periodically emits a message to nearby receivers. As a robot nimugsiaselects the node it
has recently received the most messages from asiitent node If no messages have been received
recently, the robot deploys a new node and selects it as the curremt fibd current node is used
as the robot’s location. During the sensor network deployment phasaltbeand network build a
graph that probabilistically maps from the set of current robot locatiodsantrol actions to the set
of possible next robot locations. During coverage and exploratiatesitrack which neighboring
areas have least recently been explored and direct nearby roboéséoateas. During navigation,
the sensor network assigns a utility value to each node representing theoltkebha robot nearby
this node reaching the desired destination. The utility values across therkeirgaipdated using

value iteration. The robot navigates, node by node, to the destination btiviedy navigating to



nearby nodes with the highest utility value. Although this system can exphot@avigate areas,
the graph it builds is not based on geometric measures, but rathere@canio signal strength.
This hinders the technique’s ability to be combined with other sensing platfarchsss laser range
finders or GPS. This also makes ifftult for a robot to adapt to its environment by learning its
dynamic parameters such as wheel slippage. A final drawback to thisesgbypis that value iteration
is slow to converge making it impractical for navigation with frequently chamgiay-points (such
as pursuit-evasion games).

Robot navigation in sensor networks has been considered by otlearcbers [74, 56].
In this work, motes are placed at known locations and are capable otidgtdanger. A system
for navigating the network and avoiding danger is developed. Each motiésareighboring region
is assigned a danger level based on how many radio hop counts it is emwagénger, implicitly
building up a connectivity based graph for robot guidance. This infoomés used by an atrtificial
potential field algorithm to guide the robot. This work assumes that the raotocalize itself
to the extent of determining which nodes are nearby. Furthermore, itusnasisthat the robot is
capable of navigation to any desired (nearby) node.

Other researchers [22, 24, 23] investigated the ability of a unmanniadhaicle (UAV)
to deploy, repair, localize, and navigate a sensor network. The UA\p&lda of autonomous way-
point navigation using an on-board computation and sensing system {mgli&GPS sensor). The
goal for the sensor network deployment and repair phase is to crehteaantain a desired network
topology. The network is configured to pass messages around in ordieteitt connectivity holes.
Once holes are identified, the UAV is dispatched to the region to deploy nevs niiieng network
localization, the UAV flies a pattern above the sensor network broadcasti@PS coordinates.
Motes receiving these messages infer their locations in GPS coordinatgserseived radio signal
strength. For navigation, an a priori generated path in GPS coordin#itasded across the network
and stored by motes near or on the path. The UAV follows this path by iegepartial path
information messages from nearby motes. This navigation techniqgue amoantelaborate path
dissemination algorithm.

Das et al [28] consider a search and rescue system using mobile rodatsresor nodes.
Nodes are deployed to loosely known locations in a map. The authorssardipat both the nodes
and the robot can be localized using traditional simultaneous localization grEngdSLAM) [55]
techniques. In particular, itis proposed that a Kalman filter is providezved signal strength mea-
surements of messages passed amongst robots and motes. Navigati@vetdmhfirst planning a

path along a string of nodes from the current position to the goal positimmn&twork chooses the



string of nodes by passing messages around and achieving a dynagriarpnaing type solution.
The robot then follows the planned path using a gradient decent routine.

Our survey could additionally broaden its scope to more generalizedrseasgorks
such as camera networks. However, the research in these areasjplicable to our SNAC sys-
tem due to dierences in the platform’s characteristics (such as fast, reliable netwitkslow
robot dynamics [47]) or dierences in the estimation architecture (such as switching amongst sen-
sors [52] rather than multiple sensor measurement fusion). The literaturebile robot control
and navigation with sensor networks is quite sparse. Techniques thalerant for our platform
use non-geometric based graphs for navigation. However, our veeksso develop a geometric
localization and navigation technique allowing integration with traditional sensoich as GPS,
laser range finders), admitting robot learning (such as learning théselweel slippage), and en-
abling fine grained control. Furthermore, previous navigation technipagsd on received radio
signal strength are suited to only specialized environments (such as simpt& iavironments
with controlled radio connectivity).

The mobile robot community has extensively investigated navigation and toHtrar-
ever, the focus is typically on topics non-applicable to our work such agole avoidance, map
building, or coordinated movement. Fortunately, previous work on intelligatht planning is help-
ful. Makarenko et al [63] consider the problem of integrated explanagiotailing path planning,
navigation, and localization. The authors assume a traditional robot phatfilizing SLAM [55]
techniques with an extended Kalman filter for mapping and robot localizatiorioed with an
occupancy gird for obstacle avoidance. In particular, the robot maveaigorithm proceeds by
suggesting several candidate destinations, choosing a destinatiora\agatimg to the chosen des-
tination. The candidate destinations are suggested for improved exploratimyle destination is
found as the solution to an optimization problem over localization accuracymation gain, and
travel time. Finally, the robot navigates to the destination by planning a pathubials obstacles.

Our work focuses on navigating not for obstacle avoidance, but foranegl localiza-
tion. Hence, both our work and the Makarenko et al work exploits a |adailizy metric to gauge
a position’s ability to accurately localize the robot. However, our metric istaddpr a distributed
sensing environment and is optimized at every point along the path, rattreatlust a few desti-
nations. Additionally, since our focus is on sensor networks, it will becoleer that the Gaussian
noise model implicit with Kalman filtering is inappropriate. Instead, our worlettgs a special-
ized sensor model for use with Markov localization. Finally, the developmwieotr localizability

metric is diferent from the one used by Makarenko et al. In particular, the metrievotk uses is



provided in the work by Roy et al [78], but is adapted to our distributed@enetwork model. There
are a few distinctions between the Makarenko et al and the Roy et al kaloiiliz metric. In par-
ticular, the former assumes infinite initial covariance and infinite readingchtmssition, whereas
the later assumes a well-defined prior with finite covariance and assumeagpectezl number of
readings at each position. Our work will clarify why an infinite initial covada is inappropriate
for the multiple, local sensor platform of a WSN.

Earlier work [86] utilizing a localizability metric for path planning has also besmied
out. This work assumes a robot platform with a ranging sensor and Kalttemmg (similar to
the work by Makarenko et al), and a localizability metric consistent with the&kvogrRoy et al.
Unfortunately, this work concluded with hand generated path producssgliéft during navigation
than a path based on the localizability metric.

Moving away from the mobile robot navigation and control literature andriengtehe
classical control arena, our survey finds more practical tips. Soreanaters [64, 65] developed
real-time compensation techniques for networked control systems. Théidescribes a technique
that compensates for sensing and actuation jitter for linear, discrete-tirteansys The authors
assume the jitter is known at run-time and develop an algorithm that simulatessteendprward
in time and recomputes the control action. Although this technique is only deddid linear,
discrete time systems, our research applies this idea to an extended Kalmato filterect for
network latency.

Predictive control techniques are also useful for incorporatingrakyeals and dealing
with missing or late sensor measurements typical of sensor networks. FEordasShim et al [82]
develop a model predictive control (MPC) framework for navigationesfa vehicles. The authors
use a MPC to incorporate several goals such as obstacle avoidaneaypdint navigation. Using
a finite time horizon, the MPC is able to plan locally optimal navigation routes. Addiligrsuch
a framework is able to continue operating using only predicted results dperigds of missing
measurements. Our general control architecture will avail itself of thisitqab.

Before leaving behind the literature on control and sensor networks)eméion one final
result for the interested reader. In a paper by Ye et al [96], fieets of communication protocols
on control systems are investigated using realistic network simulations. Therawonsider a
mobile robot cooperation application where communication between robots igghusing the
Network Simulator [12]. It is demonstrated that a communication scheme withrispseint, but
longer packets is superior to one with more frequent, but smaller packetefoapplication. This

counter-intuitive result reminds us that more research is needed onrkethantrol systems.



After a brief overview of the literature relevant to sensor network amdrobsystems —
and, in particular, to robot navigation — we find that many topics have nadtheessed. In particular,
since sensor networks is a new research area, few researchersonaidered their use for control
or robot navigation. Additionally, since only a few medium to large scaleseretworks have been
deployed, our knowledge of practical challenges is limited. Finally, to thedjesur knowledge,
only one medium to large scale SNAC system has been deployed. This syateour pursuit-

evasion game system and is discussed in the next chapter.

1.2 Dissertation Contributions

Our work difers from previous work in several ways. The goal of our work is to de
velop a practical design methodology for realistic SNAC systems. To thisamdyork allows
for complex models of the WSN and the control system, and our work fecus@&emonstrating
good performance rather than finding theoretical bounds on it. We areatentiby the fact that
the theoretical work tends to be too specialized to be useful for realyteplus, and the practical
implementations have yet to adequately address fundamental control gleallen

Our work achieves these goals by implementing, modeling, and evaluatinge3eaja-
tive SNAC applications: pursuit-evasion games and way-point naviga@on.work includes one
of the first, and the largest SNAC implementations. This implementation providgbtimsto the
difficult challenges facing control systems in sensor networks and aidseétogevg a generalized
SNAC system architecture. This work also leads us in developing seeatstic application-level
WSN models and a corresponding simulator. Using this simulator, we are aldentandtrate the
benefit of our SNAC system architecture. The analysis of this systers leatb consider intelli-
gent path planning for robot navigation. Focusing on navigation, wptad#ocalizability metric
for WSNs, we create a novel path planning routine, and we demonstratetiedittof this ap-
proach. Our final framework allows for simple, yet powerful extenstonzath planning and robot
localization such as path planning for explicit bandwidth reduction or dpusdmt of an optimal

re-deployment strategy. In summary, these contributions are
o first, largest SNAC implementation
¢ identify fundamental SNAC challenges

e develop a general SNAC system architecture
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develop practical, application-level models for WSNs

develop an application-level simulator for SNAC systems

demonstrate the benefit of our SNAC system architecture

tailor a localizability metric for WSNs

develop and demonstrate the benefit of a novel path planning technigqudéis in WSNs

e establish a localization and path planning framework enabling simple, pdwe&ténsions

1.3 Thesis Outline

Our work is presented in the following manner. Chapter 2 presents our implatios
of a pursuit-evasion game played within a wireless sensor network. Fiesgjaime is introduced
with relevant background and related work. Then, the hardwareddtwisse platform is described.
Next, the algorithms for sensing, communication, and control are descRasdlts collected from
the deployment are discussed. Finally, the practical lessons learngdeacidallenging aspects of
this application are presented.

Using the results from our PEG deployment, Chapter 3 develops a pragtitam archi-
tecture for general SNAC systems. Three main challenge categoriesvetbrgptential solutions
are discussed. This chapter concludes with a framework that unifiesgbkgions. Chapter 4 de-
velops and uses a SNAC system simulator. First, a set of system modetvalapedd for the WSN
and robot platform. Then, several components of the aforementionkdemture are instantiated.
Finally, a set of simulations are performed to test our controller design\aidate the fiect of
path planning on localization accuracy.

The path planning simulations leads us to adapt a localizability metric for WSNsap-Ch
ter 5. This chapter begins with an overview of robot localization and a |ladaliy metric. Next,
the details of computing this metric are discussed and a set of simulations imnpedfoThe next
chapter, Chapter 6, moves to adapt this metric for more realistic WSN modets ardin testing
its usefulness for localization and path planning. Several simulations eved to demonstrate
the ability of this metric to gauge localization performance.

Building on this result, Chapter 7 develops techniques to generate autonthsdjased
on the localizability metric. An interpretation of entropy for path planning is migad several
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closed-loop simulations are provided as evidence this technique redaaészdtion error. Finally,

Chapter 8 reviews the results of this work and provides some concludimayks.
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Chapter 2

Pursuit-Evasion Game

To date, we have implemented several sensor network and control (S8yaAtems, rang-
ing from light monitoring and tracking, to RC car tracking with a pan-tilt cameraursuit-evasion
games on outdoor sensor networks [81, 21]. This chapter provideseaiew of the July 2003
pursuit-evasion game implementation, providing enough detail to serve astapreference for
later discussions on challenges and solutions for SNAC systems. Ouwitparasion game, or
PEG, is a distributed network of wireless sensors that aids a coopeagéwe (pursuer) in tracking
an uncooperative agent (evader). These games, in various foaves been extensively studied.
Researchers [45, 44] have investigated the game theoretic optimal ssalegaoping Nash so-
lutions. For continuous (polygonal) regions, other researchersh@sg determined bounds on the
number of pursuers needed for capture. For games occurring apla, gesearchers [72] have stud-
ied how to search for evaders, and others [1] have studied the nuifiingnsaer needed to catch an
evader. For a distributed sensing platform, Demirbas et al [29] haveedtpdrsuit-evasion games
on graphs whose vertices are covered by sensor nodes. Thesaagisame that communication is
symmetric and induces a fully connected graph. Additionally, they assumeedhsabr nodes can
exactly detect the pursuer and evader when the robots are at theFindly, they assume that a
pursuer robot can a priori navigate between nodes. The authakgevtunable pursuit algorithm
that allows for a tradefd between capture time and enerdii@ency. The algorithm functions by
having the network maintain a tree rooted at the evader. The tree is upd#ttag@eent detections
of the evader. Our work, considers the practical challenges for implati@ms of pursuit-evasion
games on sensor networks. Other work [91, 51] implementing pursuiieevgames has focused
on different platforms, considering vision based robots or multiple pursuer pdticices. PEG

provides a real world, medium scale (larger pure sensing systemg [2dy8been deployed since)
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SNAC system deployment from which we learn simpléeetive, pragmatic design and modeling
methodologies. PEG provides an extensive SNAC benchmark requiriagioss to many chal-
lenges:

e detection and disambiguation of mobile agents

distributed coordination and sharing of mote resources

in-network processing and aggregation

routing to mobile agents

closed-loop control

The services developed to confront these challenges are develdpetiewvhole system in mind
to reduce overall latency and provide the pursuer the ability to react litimsa

Being one of the first medium scale, distributed tracking implementations usiogree
constrained wireless sensors, PEG provides us with a road map of flengka ahead, new ideas
from the lessons learned, and a grocery list of tools needed. Thevdwa@nd software platform
along with the basic information flow is introduced in Section 2.1. Section 2.4deewa detailed
overview of the algorithms used. The results are summarized in Section 2dlyF8ection 2.4
discusses the lessons learned from PEG. In later chapters, the agpenigh PEG informs an
exploration of the challenges control systems face along with providingtinst@oint for devel-
oping SNAC models and simulators. More details of the entire PEG deploymemesisrted in our
published work [81].

2.1 Platform

This section describes the hardware and basic software architectdriouB&EG. PEG is
played on a 20 meter by 20 meter outdoor field with 121 motes and 2 grounig rdihe motes are
uniformly deployed in an 11 by 11 grid with 2 meter spacing. The robots apeesially released
onto the field: first the evader enters, then a few seconds later, theep@nsters. A base station
outside the field monitors and displays system statistics online. In the followiaglescribe the
mote, robot, and base station hardware along with the basic flow of informaationgst them.

The motes used for PEG are the Berkeley Mica2Dot'’s [46, 88] shown ir&@ 1a. They
are equipped with a wireless radio, ultrasonic transceiver, magnetoraetegutdoor enclosure.
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(a) Mica2Dot mote. (b) Pioneer robot.

Figure 2.1: Hardware used during the July 2003 pursuit-evasion gaphaydeent.

The computational resources are provided by the 8-bit 4 MHz Atmel ATMEZBL CPU with 128
kB of instruction memory and 4 kB of RAM. The on-board radio, the ChipC&1000 operating
at 1 GHz, provides about 2 K8 of shared network bandwidth for applications after accounting
for network overhead. The communication range varies heavily depgodithe antenna and the
environment; during PEG, with the use of a quarter wave length antenrtaentbte a few inches
off a level playing field (comprised of dirt and short grass), our maximum camuation range was
about 30 meters. The ultrasonic transceiver operates at 25 kHz aadauep mounted deflector
cone to provide about 2 meters of ranging in the plane of the playing field.mBEgmetometer is
tuned to detect changes in the magnitude of magnetic field near the mote; it deteatdots up
to about 3-4 meters away. The hardware is mounted in an outdoor ereclogbra flexible base
allowing for extended communication range and resilience to robot impactlyi-th@ motes run
the small, embedded TinyOS [46, 88] operating system

The evader and pursuer robots are identical outdoor, four-wheeleds (Figure 2.1b)
equipped with mobile computers, wireless radios, and GPS units. The od-dmwaputer is a 266
MHz Pentium2 CPU with 128 MB of RAM and a 20 GB hard drive running LinE&ch robot uses
an 802.11 wireless radio for communication to the base station. The GPS avidegs the robot’s
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Figure 2.2: Flow of information (magnetic detections and position) during theugtevasion game
deployment.

position to within 2 cm every 0.1 seconds. Each robot has a top speeduf hloys and a motor
control subsystem capable of independently controlling the velocity &f efthe four wheels. The
evader robot is driven remotely by a person, and the pursuer robohisolled autonomously by
on-board control software. The base station uses a 802.11 wireleds liegeive robot controller
statistics and a high-gain mote antenna to snoop the mote network.

The final software architecture contains many application services retateutity de-
tection and pursuit (localization, sensing, routing, state estimation, interag@éoning, etc) and
even more services supporting these (ranging, tree building, leadtoe|extc). We provide a brief
overview of only those services directly along the entity detection and pyesth. A flow chart of
these services, split between the sensor network and robot hardsvsinewn in Figure 2.2.

The mote data flow, shown in Figure 2.2a, is designed to provide detectiorigép the
pursuer. Since these reports relay the location and strength of a magegtetiti@h, a localization
service and entity detection service are fundamental. The localization semizing the ultra-
sound transceiver (and sub-services such as ranging) is rdsledios localizing the mote relative
to an anchor mote in the network. Due to sporadic errors of this servicendbes used a position
value provided by the user during the PEG trials. The implementation and dplitycaf the auto-

matic localization service is further explored in other work [93]. The entitgct@®n service filters
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measurements from the magnetometer and reports robot detections. Trneatinda collected by
the localization and entity detection service is stored and shared by the adighd service. This
service provides a distributed, loosely synchronized storage systenirglaeighboring motes to
share information. Using the information stored by this service, the detegjgmegation service
compiles location and detection information to be sent to the pursuer. Finallguheg service is
responsible for dispatching messages amongst motes and the mobile pursuer

The robot data flow, shown in Figure 2.2b, is designed to interpret thetaateeports
from the mote network and guide the pursuer to the evader. The puesaves entity detection
reports over its mote radio and pursuer position information over the GR$hehaUsing this
information, the pursuer estimates the state (position, orientation, etc) of itsetha evader. The
interception planning service determines the path the pursuer should follosden to éficiently
capture the evader. Finally, the navigation service interfaces with the nastdesnsures the desired
path is followed.

2.2 Algorithms

This section describes the algorithms making up the aforementioned serBeésie
describing the flow of detection events within the sensor network or thei@unse investigate the
mechanism that links these two systems: the routing layer. Then, starting wittoteelatform, we
explain the mechanisms that sense entities, share detections, and agg@adiags. Next, turning
to the robot platform, we discuss how detections are processed, hoystieensstate is estimated,
how an interception path is planned, and how this path is followed.

The mote routing layer is responsible for delivering messages from martggjrio few
(mobile agents). Using landmark routing [89], we partition the routing semice2 pieces: route
from many to a landmark, and route from a landmark to few. Landmark routiggires that the
user chooses a landmark and, using the landmark as a root node, byi&dming tree. A spanning
tree is built by flooding the network with a beacon that tracks hop count Ete will choose its
parent as the mote whom it heard broadcast the beacon with the lowesbtiop However, this
approach is vulnerable to generating asymmetric links and back edges.

Asymmetric links are generated because a mote does not verify the bidiedctbabil-
ity of the link between itself and its parent. We address this issue by filteringnessages that
originate from an unreliable link. In particular, if the message is receivighl avreceived signal

strength indicator (RSSI) below a preset threshold, or from a mote lotadefdr away according
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to localization information, the packet is dropped. The RSSI threshold e aetalue that provides
a highly reliable link based on small scale experiments using the same platform.

Back edges are caused by frequent message collision amongst mbteadeasting the
beacon. These collisions cause a nearby mote to choose a parentbhelhose messages did not
collide, often resulting in a higher hop count parent than necessarg iS3ue is addressed by
requiring that each receiving mote waits a random amount of tjness than an upper threshold
Ty before broadcasting the beacon. Additionally, if another beacon isl idore a mote has
broadcasted, it must choose another tipe Ty and begin waiting again.

Once a spanning tree is built, any mote can route to the landmark. Routing to tile mob
agent is achieve by building @umb trail. The mobile agent periodically broadcast a beacon to
a nearby mote. Using the spanning tree already in place, this beacon id toutee landmark.
Along the way, each connecting mote is left witkramb the identity of the previous mote during
this communication. Any message at the landmark can now be routed back toliiie agent by
reversing the crumb trail. Additionally, crumbs are associated with a timeouar@nerased from
motes when they become stale. With the routing service in place, we turn to thes imbéehal
operations.

The detection sequence at tmé mote begins with the entity detection component. This
component is fed measurements of the absolute magnetic field via the magnet@uoetév drift
in the magnetometer, the raw magnetic field readiBfg are high pass filtered to gener&8. If
the processed valug™ is above a preset threshdiikport, B™ along with the mote’s positiod™ is
broadcast to neighboring motes via the neighborhood service. Aftehwthie mote must wait for
Treport SECONdS before reporting another reading. We refer to these singleetoateter reading
packets asletection messages

The local neighborhood information sharing implementation used was HdddH@od
operates by broadcasting local updates to the state disregarding whagighibars are or if they
can hear it. Motes who hear a Hood broadcast and consider the batiagcmote to be a neigh-
bor, update their local state. For our purposes, Hood was configuifedn a magnetic detection
neighborhood with radiuB,qg. Additionally, this neighborhood was set to prune detections older
thanThoog SECONS.

The mote constantly monitors the neighborhood state, and, if it has the larggaetic
detection of any of its neighbors, the mote elects itself as a leader. As a heatkerit aggregates
all the detection readings it received in the [&gtort SeCONds into one packet and sends this via the

routing service to the pursuer. We refer to these aggregated magnetosaelieg packets asvent
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messagedOnce a mote is a leader, it must wWaigaqer Seconds before becoming a leader again.

When the pursuer receives an event message, it updates its estimateysdtdm state,
and using this estimate, it tracks the evader. The block diagram for thisggdae shown in Fig-
ure 2.3. Two coordinate systems are used by the pursuer: GPS caesdiakative to a nearby
landmark and mote network coordinates aligned with the mote deployment grtdilse these
coordinate systems are not important since a fixed homogeneous coetdamsformation between
the two systems is assumed to be known. Unless explicitly stated by using a kR8st all quan-
tities are in terms of the mote coordinate system. The pursuer rec@}}g%’@, an estimate of its
field position in GPS coordinates, which is transformed into the pursuer positimateif-!, i?2)
in mote coordinates.

Many techniques [77, 90] exist for tracking and estimating moving entitiesvener,
the choice of such algorithms is limited by the robot dynamics and sensorsartinytar, given
the accuracy of the GPS, the pursuer’s state is estimated using simpleirgeeafpniques. More
specifically, (P1,P2) are smoothed with Nlp step time window average to produce the position
estimate P, [%P). Then, theN} most recent position estimates are used (pairwise) to form several
orientation estimates, which are averaged to form the orientation estingétion

The pursuer estimates the evader’s state using received event nsesBage each de-
tected positionift,?2) is classified as being caused by noise, the pursuer, or the evader. Af
which, only evader detections are kept and sent to the evader state estiseatime. Several tech-
niques exists [71, 15, 33, 40] for classifying and tracking objects imsisg region. For estimation
of the evader, we note that since our robots can change their wheel gfithin about 0.2 seconds,
and the network only reports detections about every 1-3 secondsarwese a simple kinematic

model accounting only for a robot's maximum spegrgdy:
lkr1 = lk + (SmaxT)Uk (2.1)

wheresmax > 0, the controlu € [-1,1]%, and the sampling perio@ > 0. With our model, we
associate measurements close to the evader with the evader, and usirggagye af these mea-
surements, we estimate the evader’s position. In particular, assuming tlatahe any detected
position may be as much a (according to the 2-norm), and that the capture radjuis larger

than this error, detections withif, of the pursuer’s estimated location are ignored. These messages,
if not detections of the pursuer or noise, are detections of a captuaelémrevFurthermore, any de-
tections farther thand} + snaxt from the evader’s last estimated position, are considered noise and

ignored wherd is the time since the last measurement. All remaining messages are assumed to be
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Figure 2.4: Stills from a 26 second pursuit-evasion sequence. Thegouasd evader start in the
upper left and lower right corners, respectively. The evader isicaghin the last frame.

the position detection of the evader and are labdRdif2). These messages are used to estimate
the position of the evadefeg, ©2).

Using the estimated state of the pursuer and evader, the interception pl@meeates a
way-point ("1 |"a%2) for the pursuer to go to in order to intercept the evader. Our interception
planner simply generated the way point at the evader’s estimated positienintEinception con-
troller also implements 2 safety specifications: keep the pursuer inside thegofeythand do not
collide with the evader. Keeping the pursuer inside the playing field is achlgvelanning a path
to the center of the playing field if the robot ever leaves. Avoiding collisioitk the evader is
achieved by halting the pursuer when it is within the capture radius of tlteepaad restarting the
pursuer when the evader moves farther away. Finally, the robot isetirezthe new way-point via
the point navigation controller managing the robot wheel velocitiess?, w3, w*.

2.3 Results

PEG was deployed outdoors and many of the parameter values werteseindihe test-
ing. In particular,Breport Was set so most motes would detect a robot within 3-4 meters. Mote
neighborhoods were set to include a 9 by 9 grid of motes by leRjjagy = 3 meters. The timeouts
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were chosen to be 0.5 second&eport = Thood = Tieader = 0.5 seconds. Finally, the pursuer’s
position and orientation were estimated by windows of Ierngtﬂh: 2 andN;) = 4, respectively.

PEG was ran a half-dozen times, and, in each run, the pursuer sudigessptured the
evader. One particular run is shown in Figure 2.4. In the first frameegufgit), the pursuer
(robot with the orange cone attached) is shown in the upper left and stedielown and to the
left. The evader is in the lower right and is oriented facing right. As the esezpiproceeds, the
evader (driving in reverse) turns towards the bottom of the frame anelsdway from the pursuer.
Meanwhile, the pursuer turns to face the evader and drives toward$ét.last frame shows the
result: the evader is captured. From start to finish, this sequenceapaums26 seconds.

Unfortunately, PEG was indliciently instrumented to capture the necessary data. Hence,
we instrumented and re-deployed PEG on a 7 by 7 grid with 2 meter spacimgprithary focus
of our re-deployment was to study the detection-routing-reaction chaanfg loss, noise, etc).
To study this, a single robot is driven around in the field and the netwdikitgds monitored. In
particular, a base station snoops on the network packets and the roB&'pd&aition. Figure 2.5
shows 3 views of such a run: an overhead view of mote detections, ameakview of estimated
robot position, and a time line of detection and estimation error. Figure 2.5alpsoa view of the
robot path in the mote network. The solid line is the GPS measured path of titenfoich starts at
about (04, 7.6) att = 0 seconds and concludes arour@.{, 9.6) att = 145 seconds. The robot path
is additionally demarcated by a square for every 20 seconds of run timesMio elect themselves
as leaders and report event messages are shown as blue starsedlolae line is drawn from each
leader to the position of the robot at the time the event message was receiied tests of this
deployment revealed that the motes atl@) and (412) were frequently reporting false detections;
these mote detections were disabled to prevent them from saturating thelgeind, hence, are
not shown in this figure.

Sifting through this figure, we notice several phenomenon. Short ddstesdtend to
indicate a good detection with minimal latency. For example, the motes &)(aad (128) tend
to report the robot’s position reliably and quickly. Slightly longer dashedslindicate a higher
latency communication link between the leader mote and the robot. Long daseedslich as the
one connecting to the mote at (112), represent false detections. The motes ati2g (120),
and (4 4) were misbehaving and frequently reporting false detections. Poartidete made robot
position estimation diicult as shown in Figure 2.5b. This figure removes the leader indicators of
the previous figure and adds the estimated robot position (solid orange Tine)estimated robot

position was generatedfiine using a Kalman filter and the sensor network reports.
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The Kalman filter assumes simple (linear) point mass kinematics with no movemest nois
The sensing error covariance is tuned to the detection error (see thaastied line in Figure 2.5¢).
Additionally, the Kalman filter is initialized with a perfect state estimate. flied, the Kalman
filter is simply acting like a smoothing function for the detections. From Figure &.&bclear that
the system is extremely noisy especially with the false reports. Figure 2.Bsshtime line of
the sensor network detection error (blue dashed line) and the Kalman $ilieration error (solid
orange line) with detection receive times (light blue vertical lines). The teteerror is calculated
as the diference between the robot's GPS measured position and the sensokistwast recently
reported detection. Clearly, this error is quite high. Often, the robot ievent detected within the
correct grid cell or even the correct 9 by 9 grid cell surrounding timt. In fact, the mean error
of raw detections is 2.42 meters, indicating that the robot is often detected wraing grid cell.
Over the course of the 145 second journey, the robot receivestdgtidas, providing an average
of 1 detection every 3.02 seconds.

Additionally, as we will discuss shortly, we estimate the mean latency of the rietavor
be about 1.75 seconds. Given this high latency, low bandwidth, and highsystem, our Kalman
filter (with perfect initial state and zero movement noise) still generates 1.8 snmaean position
error; the unprocessed detections have 3.25 meters mean position €learly, a real system
with movement noise, running a feedback loop on such data would be quite limiggeed and
accuracy; compare this with a 10 Hertz, 2 cm accuracy GPS system, fandes

To understand the intrinsic quality of the sensor network data, we moressjgely filter
the raw detections to generate the results shown in Figure 2.6. In partimelaemove reports
from (additional) misbehaving motes by silencing motes {22, (12 0), and (44). To account for
latency, we shift the reports backwards in time and observe that a time stiift range of 1.6 to
2.5 seconds is helpful in reducing the detection error. We observe timaé shift of 1.75 seconds
provides a minimum amount of detection error. After which, we apply the saatmdh filter to
estimate the robot position. Our robot now only receives 41 measurenadoist (1 measurement
every 3.54 seconds), but is able to achieve a mean detection error ghé&tées (13.78% less error
than the previous Kalman filter estimate).

Over the span of this path, the detection error averages 2.60 metersbandeters after
application of the Kalman filter. We observe that even after applying our-¢aasal) filter to hand
picked measurements, the sensor platform still proves challenging fpogugd high speed, high
accuracy control systems. The next section summarizes the lessomslldarmg this deployment.
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(c) Position error: sensor network detected (dashed blue) and Kdilteastimated (solid orange).

Figure 2.5: Results collected from a single robot traversing a 7 by 7 seatgork. Faulty motes

(4,10) and (412) have been manually silenced.
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(c) Position error: sensor network detected (dashed blue) and Kdilteastimated (solid orange).

Figure 2.6: Results collected from a single robot traversing a 7 by 7 seatgork. Faulty motes
((4,10) and (412)) and noisy motes ((122), (12 0), and (44)) have been manually silenced.
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2.4 Lessons

PEG taught us many practical lessons for design, development, and/heploof a
medium-scale sensor network and control system. We learned that motsugaslchould be
tailored specifically for development or deployment, that every physitaidntion with a mote
is likely to cause damage, that a high gain antenna snooping on the netweorlknigaiable de-
bugging tool, and that many additional software services for in situ débg@md interaction are
needed. However, here, our focus is on using the sensor netwargeassor for a control system.

From a control system’s perspective, perfect WSN data would betkatthe node loca-
tions are known, and, for all time, the physical quantity to be sensed isrkabevery node with no
latency. However, PEG demonstrated our controller would, aperiodicadiyéth a low data rate,
receive noisy measurements at loosely known regions of space-timeaté¢pazed properties of

the PEG WSN that make traditional control techniques challenging to apply:
e Sensor error

Sensor noise

modeling error

inter-mote calibration error

timing error

— localization error
e False events

— spurious detections

— missing detections
e Network induced error

— aperiodic

— low data rate

— latency

Sensor error refers to the error in the sensing system during detettine @vents (i.e.,

excluding any false positives or negatives) due to sensor noise, mgpaetor, inter-mote calibra-

tion error, timing error, and localization error. Additional error is induceth@asystem by spurious
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and missing events, caused by, for example, faulty hardware or emartal noise. Finally, net-
work characteristics denote the tendency of sensor measurementspgackeive aperiodically at a
low rate and with significant latency.

Just as other researchers [85] have discovered experimentallyfiilceltiés of sensing
applications using sensor networks, PEG has done this for controhssy/stehis chapter has de-
scribed the dficulty in using sensor network platforms to inform control systems. In thé nex
chapter, we identify several techniques to overcome thdBeuliies. Later chapters evaluate the
performance of these techniques.



27

Chapter 3

Practical System Architecture

Our PEG deployment demonstrated that several properties of setsorke(discussed
in Section 2.4) frustrate control system design. This chapter investigatesdaes for overcoming
these challenging properties and develops an architecture that uniestéithniques. The afore-
mentioned challenges can be address in many ways ranging from hardesign to algorithm
parameter choice. In our work, the localization and routing algorithms alatigthe mote hard-
ware is assumed to be fixed and given. Additionally, the node density gutdyd®ent strategy is
also assumed to be provided a priori. Hence, our approach focussingncombinations of simple
algorithms to improve the overall system performance. In later chapterdetedoped architecture
is tested with a series of detailed simulations.

Furthermore, as our architecture is evolved, we will keep in mind that maefylisensor
network services have already been developed. In particular, essitich as localization [93], time
synchronization [34], data query and aggregation [60], and run-tioméiguration utilities [69]
have been developed. Additionally, other architectures for networérattat systems have been
studied. Brooks [14] developed an architecture that allows for guhdefgradation of a control
system as connectivity decreases, provided that actuators alveayagraput from the lowest level
controller, a controller designed to implement basic, safe functionality. Menvene design of such
a controller is left to the reader. Our work seeks to develop an archiesfdiuBNAC systems based
on existing services and seeks to design such a control system.
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3.1 Sensor Error

Sensing error due to noise, modeling disparities, inter-mote calibration and tinfilag
ences, and localization error can be addressed in a variety of waydutos to noise is to obtain
more frequent samples. However, the number of samples is fundamentally lbyibedh the hard-
ware and the bandwidth of the network, in addition to any self-imposed limits rissitp meet
other goals such as reduced power consumption. Many of theseseraeguils can be addressed
by efficient use of the bandwidth. In particular, for a network that supports nrilktigents and
objectives, the networking layer can operate imaltimodalfashion, each mode tailored to each
objective. For instance, during PEG, the network could operate bothagsl&ze pursuer service
and a track evader service. Messages used to localize the pursletbealesigned to incur less
overhead since they require only single hop communication.

Additional error due to modeling discrepancies, inter-mote calibratiferénces, and
localization error can be addressed with a space-time model of the systainesand an accom-
panying estimation technique (such as probabilistic models with maximum likelihdiodation
techniques). We refer to such a model and estimation techniqueeigfgborhood sensor model
Not only can such models accurately interpret sensor readings, ihetresearchers [92] have used
them to calibrate sensors. Finally, timingfdrences amongst motes induce additional error, and
can be addressed by accounting for time discrepancies in the neightertoaie| or by utilizing a
coordination serviceSuch a service, possibly built on top ofiae synchronizatioservice, would
ensure neighboring motes sample their sensors at the same time.

3.2 False Events

False events, composed by spurious and missing readings, contributittored error
in the sensing platform. Such events can be caused by broken or ttbocaibrated hardware. In
this case, problematic motes must be identified and action must be taken to theserenotes do
not increase the overall system error. One method of identifying a faulty imto perform atatus
qguery, a request for the current status, on a mote. A network-wide statug gumrides a list of
motes that either diagnose themselves as faulty or are not respondingotonestages. Another
method of determining the status of motes is to use a neighborhood sensorforcagiroup of
motes and a known stimuli to determine via collaboration if some motes are faultyareotdy
calibrated. Spurious readings, often caused by environmental noigsilor hardware, can be
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identified using validation or verification techniques. Verification usémrmd shakingprotocol
between the sensor network and a cooperative entity to ensure thatenggtrested measurements
are announced by the mote network. For instance, a cooperativenajittperiodically emit a low
power radio message requesting nearby motes to reply with ranging measwse Far away motes
that reply to the robot can be labeled as potentially faulty. Sensor measssinmen nearby motes
can also be validated using a neighborhood sensor model as previmcslgsid.

Once groups of motes have been identified as potentially problemat@s)sor network
maintenance routinean be applied that automatically calibrates, restarts, replaces, or thisosio
motes. Automatically calibrating a mote involves using a neighborhood sensal maopredict
the mote’s sensor field based on measurements from nearby motes, cantipiarimith the mote’s
actual measurements, and adjusting the mote’s calibration parametersiragigor®estarting or
turning df a mote would require issuing such a command to the mote over the radio. Replacing
mote would involve navigating to the faulty mote’s location and deploying newwee Finally,
for cooperative robots, hardware identified as faulty can be ignateasoided by employing an

intelligent path planningoutine.

3.3 Network Induced Error

Properties of the networking system such as multi-hop packet delivergdbast colli-
sion, and shared bandwidth induce detection error when messagesaperiodically, with high
latency, and at a low data rate. Aperiodic arrival of detection messagassed both by the event
triggered nature of distributed entity detection and by the stochastically galgiency intrinsic
in the routing layer. Detections can potentially be made periodic with low jitter vdlyegnsing
coordination as previously mentioned. Latency and low data rates candbesadd by optimiz-
ing communication for multiple control modes (as previously mentioned), artifighilying down
the dynamics, or by using predictive controller A predictive controller assumes a parametric
model of the dynamics, and is composed of a goal controller with a state ssthgigr estimator
allowing it to operate in the face of missing and late measurements. Finally, tightlb@n when
sensor measurements occur are often not provided (such as dui@y Piis can be addressed
with network-wide time synchronization, hand shaking when measuremenikidbe performed,
or with aneighborhood routing modéhat estimates the time of detections based on characteristics

of the network.
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Figure 3.1: Mote information flow. Responding to messages from the ragiontde controller
selectively invokes services. Services interact with the environmenidry g sensors and sending

messages.

3.4 Unified Framework

This section combines the previous design solutions into a practical systhiteature
for SNAC systems overcoming challenging sensor network propertidsasisensor error, false
events, and network induced error. The techniques identified aboweatedhat this unified frame-

work should implement a subset of the following services:

Predictive controller

— Parametric model
— Goal controller

— State and parameter estimation

Neighborhood model

— Sensing

— Routing

Intelligent path planning

Multimodal controller
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Figure 3.2: Agent information flow. Using radio messages, mode informatiah(optionally) on-
board sensors, the estimation service infers the system-wide state. Uditigread messages and
state estimation, the mode controller invokes services to achieve the agemt#l geal. Services

interact with the environment by sending messages and engaging actuators

— Networking

— Control strategy

Coordination

Status query

Time synchronization

Hand shaking

Sensor network maintenance routine

— Calibrates
— Restart
— Replace

— Shut df

Using this list as a guide, we propose a 2 part architecture: the mote argtétebown

in Figure 3.1 and the agent architecture shown in Figure 3.2. Both degigrsnailar with the
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exception that the mote does not perform estimation or actuation. The 2 fraksework together
in a loose client-server relationship. The mote generally either runs a feteaf services or se-
lectively invokes services according to agent demand. Occasionalljdteemay invoke services
autonomously; for instance, a watchdog may invoke a mote’s maintenamnieesand cause a re-
boot.

The high level flow of information in the mote architecture is event-triggerexspBnd-
ing to radio messages, the mode controller selectively invokes variouseserwarious sensing
services, such as detection and tracking, send detection messagesdriggsensing events. Addi-
tionally, for a typical tracking application, the mode controller may continuowsiya time synchro-
nization and tracking service while invoking other services such as seposts or maintenance
when requested by the agent.

The agent architecture can be implemented as a time-triggered archite@uoelidlly,
using any recently received messages and mode switching informatiomgethesectively estimates
system-wide parameters related to sensor calibration, routing, and sotshats. The mode con-
troller using transition cues from the network and a current system-witke eséimate selectively
invokes various services. Invoked services influence the systemévioe by sending messages
and controlling the actuators. For instance, during a PEG application, the owodroller may
continuously invoke navigation and path planning services to track areevaldile selectively in-
voking different networking modes and maintenance routines to balance the robalizdton and
tracking error.

Together these architectures enable the aforementioned design rideaodhk controller
allows us to switch between various networking and control modes. Thegat@n controller and
path planning services utilizes the predictive controller and intelligent patimiplg concepts. The
estimation services utilizes neighborhood models. Finally, various servicbstb architectures
take advantage of techniques such as coordination, time synchronizaitus, query, hand shaking,
and maintenance. Some of the design rules and correlating servicepbmeexn more detail in

later chapters.
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Chapter 4

The Sensor Network and Control
System Simulator

Previous chapters have described real world SNAC implementations,alenges these
systems present, and methods of addressing these challenges. This, ceyelops formal models
of the SNAC system and an accompanying simulator. Furthermore, this cipapterms several
simulations. The first set of simulations compare components of the previdess®joped system
architecture with a traditional design. The next set of simulations estabttsa@nportance of path

planning for robot navigation in sensor networks.

4.1 System Models

Using our experience from PEG and results from the literature [37,al4ét of models
and a simulator for a mobile robot embedded within a sensor network is dedeldp order to
accurately capture the most challenging aspects of sensor networkslsnaoel developed to ac-
count for sensing noise, sensor saturation, calibratifierénces, packet collision, radio reception
range, multi-hop latency, finite battery lifetime, faulty hardware, and loose tymehsonization.
Additionally, the robot model captures the actuator noise and nonholongméics. In the fol-
lowing sections, models for the sensor, the communication layer, the motedratrdire detection

and aggregation algorithm, and the robot dynamics are developed.
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Figure 4.1: Sensor state transition diagram.

4.1.1 Sensing

For PEG, the motes used on-board magnetometers to detect entities in thekn€wor
experience with the mote hardware indicates that the measured value ddpoatmote is a function
of the state of the sensor and the magnetic field near the mote. In particelaserssor could be
in any one of 5 states: normal, noisy, unresponsive, unpredictabkgtorated. A sensor in a
normal state reports a valle2= By + e whereBy is the magnitude of the magnetic field aads
normally distributed noise. A noisy sensor reports the same measuredhatitygically has much
higher noise variance due to a priori exposure to intensive magnetic diefdsity hardware. An
unresponsive sensor never reports measurements due to, for éstaweak battery or a faulty
radio. Sensors in a unpredictable state report a normally distributed Vdligestate models faulty
sensors that tend to report only noise typically due to exposure to intemsignetic fields. Finally,
a sensor in the saturated state reports a constant measured®valBg,. Sensors enter saturation
when exposed to large magnetic fields and typically resume normal opertiéioa ahort period of
time.

During an experiment, a sensor can occasionally transition between stagbsven in
Figure 4.1. Before an experiment begins, all sensors are in the initial ftaeploy. As each
mote is placed in the field, its sensor transitions to the unpredictable, unsdsmaroisy, or normal
state with probabilitypup, Pur, Pn, OF 1= (Pup + Pur + Pn), respectively. Once a sensor becomes
unresponsive or unpredictable, it remains this way (until maintained depéyed). Sensors that
are deployed in the normal or noisy states occasionally transition to the teaiustate during

normal operation if the detected fieRlexceeds the saturation thresh8g,es Once the sensor has
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been in saturation for a duration of,; seconds, it returns to its previous state. Furthermore, if a
mote is deployed in the normal (noisy) state, its error lpiags normally distributed agv(0, 0'5)
(N(0,52)) and its error variance? is normally distributed asv(0, o2) (N(0, o'2)).

The actual field the sensor is exposed to (denoteBys modeled as a magnetic dipole
far field. In particular, each detectable entity is assumed to be a magneticwipiotipole moment
= [o 0 M]T at a height ofd, (in meters) above the field, whel > 0 (in Am2) anddy, is
much larger than the length of the dipole. Lettinge the vector from the dipole to a particular

mote, the magnitude of the magnetic field (in Teslas) at the mote is

Bo = 5 |30+ P)r — I (4.1)

-
wherepg is the permeability of free space (in WAm)). Therefore, with an entity a{b(\, yv] in

-
the plane, and a mote on the groun(%x;q ym] , it can be shown that

Bo = An(p? + 2512 (*2)

1/2
p2 + (_Zd%—pz )2] /

T
wherep = ”[Xm - X Ym-— yv] H is the distance (in meters) in the plane between the mote and the
entity. Note, the largest field, attained when the entity is directly on top of the isote,

oM

B, =0)=
o(o = 0) )

(4.3)

4.1.2 Communication

The communication model abstracts the combined interaction of the lossy radinath
with the multi-hop routing protocols. In particular, 2 communication scenariescansidered:
message broadcasting (single-hop communication) and multi-hop routing.brdbdcast com-
munication model accounts for medium access control (MAC) delaysepaoKision, and non-
deterministic reception ranges. In particular, when a mote sends a bsbadessage, the packet
is first tested for collision. With probabilitpgop, the message collides and is lost. If not lost, the
message is assigned a communication delay,@h (LI[TI’ag, Tllég]. After 1159 seconds have elapsed,
the message is delivered to each neighbor at distdnegh probability pgisi(d). The reception
probability is modeled after the work by Ganesan et al [37] and CerpgdXE]a In particular, this
work determined that the reception probability is not 1 even at a distance Gcs not drop to 0
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reception probability

distance (m)

Figure 4.2: Single-hop reception probabiliyisi(d) = R(d, i, o) for u = 2.5 ando = 1.5.

even for rather large distances. This reception probalpljiy(d) is approximated here with

Paisi(d) = R(d, u, ) = o.5(1 ~erf [%ﬂ) (4.4)

for some fixed valueg, 0. An example of this function fop = 2.5 ando = 1.5 is shown in
Figure 4.2.

The multi-hop routing model accounts for packet loss and lag induceddbyhexp. This
model assumes the underlying routing algorithm ensures a robust netvpmlogy that provides
a route between any sender and receiver pair. Hence, each somlevhalong a multi-hop route
is assumed to be reliable and the reception probability mpge(d) is ignored. However, since
each transmission may still be loss due to collision, each hop may fail with ghtyoat.p. Fur-
thermore, it is assumed that the number of hops between any sendercaivér@air can be ap-
proximated bynhop = [a‘:t] whered; is the straight line distance between the sender and receiver
anddnop is the estimated average distance per hop. Using this model, each multi-hogenisssa
first duplicated for each potential receiver. Then, for each mes#agstraight line distance to the
receiverd; and the estimated hop coumi,p is computed. Then, each hog {1,2, ..., finep} either
fails with probability p4rop and the message is lost, or the hop succeeds and adds an additional lag
of T:ag ~ W[Tl’ag,

rl’ég] to the overall packet latencyag = 3 T}ag. If all hops succeed, the message

is deliveredr|ag seconds later to its receiver.
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4.1.3 Mote Platform

The mote platform model accounts for the variation of times motes come onlineahd e
mote’s finite battery lifetime. In particular, motes may be manually switched on angraé or the
network may be sent a start-up radio message. In either case, indimidted will become active
at different times. This is modeled by allowing the initial sensing tipef a mote be uniformly
distributed:rs ~ U[ g, 74 ]. Furthermore, once a mote is turned on, it’s battery (or potentially other
vital hardware) will eventually fail. This is modeled by setting a uniformly disteluexpiration

time 7 for each motere ~ U[7L, 72 ].

4.1.4 Detection Routine

The detection routine models the entity detection and aggregate algorithm thrat is p
grammed on the motes. This models the same algorithm implemented by PEG. In pakacia
mote with a measured magnetic fi@ddarger than a given threshoB}..sannounces the measured
value over the radio to its neighboring motes using a detection message. Aaleteessage con-
tains the announcing mote’s id, location, and the measured magnetic fielda@mate announces
a detection, it must wait for at lea$feport SeCONds before reporting a detection again. Additionally,
any mote receiving a detection message will store the messagje fex seconds before discarding
it. If a detecting mote measures a magnetic field larger than the magnetic fieltecepgrany of
its neighbors within the laskeport SECONS, this mote will elect itself as a leader. As a leader, it
aggregates all the detection reports from its neighbors (within th@lgsk: seconds) into an event

packet and sends this packet (via the multi-hop routing layer) to the pursm.

415 Robot

The robot model accounts for the kinematics of the pursuer and ewalutgisr For PEG,
the pioneer robot from ActivMedia was used. However, for many otést beds, the COTS-
BOTS [11] platform, a mote controlled small RC car, is used. The robot mapleloximates
the nonholonomic, car-like kinematics of the COTS-BOTS that can virtuallyritest@ously set its

=
steering angle and wheel velocity. In particular, the position and orient%ulonxﬁ ek] evolve
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Figure 4.3: The robot model’s state and parameters.

according to

Xea| X b cot(@k)[sin(6k + 7k) — Sin@)]
x2 .1 = (x| + [bcot@y)lcosEk) — cosbk +m)] (4.5)
Ok+1 Ok Nk

_— kT+n(¢k> (4.6)

4.7)

whereb is the wheelbasey is the change in orientatiof, is the sampling periodi is the wheel
velocity, andgy is the steering angle as shown in Figure 4.3. Additionally, the achievablesviaiue

wheel velocity and steering angle are limited by the hardware:

Vk € [Vimins Vmax] (4.8)
‘zk € [émin, Pmax (4.9
(4.10)

wherevmin < 0 < vmaxandémin < 0 < dmax The applied wheel speed and steering angle are noisy

functions of the user supplied control valugsandgy. In particular,

Yk = Vk+ g (4.12)
G = dute (4.12)
e ~ N2 (4.13)
& ~ N.09) (4.14)
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Finally, the control bound&/min, Vmax ®min, #max are considered fixed, unknown param-

eters of the system.

4.2 Agent Design

This section develops several of the system architecture componemtsSiotion 3.4
including neighborhood estimation services, a predictive controller, grathaplanner. First, an
extended Kalman filter is developed for state estimation. Then, two modificatiding éstimation
system are proposed: network latency compensation and faulty nodadiltétext, a predictive
navigation controller is designed. Finally, a feedback controller for raiag is developed to com-

pare with the predictive controller.

4.2.1 State Estimation

In this section, an extended Kalman filter (EKF) [6] is designed to provide s&imates
to the controller. In following sections, the estimator is augmented to compemsdtdse posi-
tives and communication delay. An EKF is designed analogously to a Kalmarbfflierearizing
nonlinearities in the dynamics at each point of estimation. For each new tim& stépand new
sensor measuremeyit.1, the EKF iteratively computes the new state estinxatgy:1 and the error
covariancePy.1k+1. The update occurs iteratively in 2 steps: a proprioceptive update pretep-
tive update. The proprioceptive update evolves the state forward Ilteerég, 1« according to the

system dynamics with no noise, and evolves the error covariance fbegaording to
Pis1k = FkPukFp + Qk (4.15)

whereQ is the noise covariance of the dynamics &nds the Jacobian of the dynamics. For the

car dynamics, it can be shown that

1 0 —wTsin@k)
Fk=10 1 wT cosfk) (4.16)
00 1

for a car moving in a straight line, or

1 0 beotl)cos@ik + nx) — cosbix)]
Fk=[0 1 bcotk)[sin@kk + nk) — Sin@kk)] (4.17)
0 0 1
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: : _wT sin(@k)
for a car that is turning wheng = *—-"<.

The preceptive update is computed, using the proprioceptive update, as

Kibi = PreakHp, 1 (Hie1PreaHy, 1 + Ree) ™ (4.18)
Rrtkrr = Rtk + Kir1 (Vi1 — Hir1Rier k) (4.19)
Pertrr = (I = KigrHice1) Praak (4.20)

whereRy, 1 is the covariance of the sensor noise &hgl, is the Jacobian of the measurement func-
tion. Since event messages can be transformed into a single position estismagef@r instance, a

center of mass computation), the measurement function is taken to be

x|+ e (4.21)

wheree is the sensor noise which is normally distributed with covaridiicedence, for this model,

Hy.1 is given by the constant output matrix:

(4.22)

1 00
Hk+1:

010

4.2.2 Network Latency Compensation

Using the above computations, the state can be estimated for each time stemosifig k
edge of the control values and the new sensor measurements. Hotheveensor network does
not provide a sensor measurement at each time step. Furthermoreedecsiasurements can be
out of order or late. Hence, the input to the EKF is adapted to accoutitdse characteristics. If a
new sensor measurement is not available, only the proprioceptive upadgiglied. If a new sensor
measurement is available it is used to correct the state estimpagronds in the past wherg is
the estimated mean latency of received messages. After a past state estiroatrisd, the filter
is re-applied to generate a current estimate.

4.2.3 Faulty Node Filtering

To account for faulty motes that frequently report false positives, asagesvalidation
filter is applied to all incoming messages. This filter estimates a packet’s validibabpitstically

as p(vin) wheren is the number of sensor readings in the packetard {valid, invalid} is the



41

packet’s validity. Applying maximum likelihood estimation, the validity of a packet \fiigensor
readings is the argmax overof p(filv) assuming a uniform prior distribution far. Clearly, this
model either accepts or rejects packets based on the number of setingse

4.2.4 Predictive Controller

A model predictive controller [82] (MPC) is developed for way-poinvigation of the
car-like robot. This controller achieves the destination pginising two maneuvers: turning and
driving straight. First, during the turning phase, the vehicle is driven int# tigcle taking the

T T
vehicle from a starting sta{aa aa] to a intermediate sta{ab eb] . Second, during the straight

phase, the vehicle is driven straight£ 0) to [xf *] where the orientation is not specified.
The computation is carried out by first determining the quadyAftelative to the robot

coordinate system) the destination point lies in. Next, it is determined whetheestieation point

lies inside the turning radius of the robot at its initial positioh £ true) or not ¢! = false). Using

these two computations, the controller chooses an initial control value:
o (v,8) = (Vmax Pmax) if (g, 1Y) € {(2, false) (4, true)}
o (v,8) = (Vmin dma) if (0*, 1Y) € {(3, false) (1, true)}
o (v,0) = (Vmax ®min) if (g, r1) € {(1, false) (3, true)}
o (v, ) = (Vmin dmin) if (g1, 1Y) € {(4, false) (2, true)}

This control action is applied exactly long enough for the robot to reachtarmediate state that
admits a straight path to the destination. Next, a control action that driveslibestraight to the

destination is computed by determining which quadrgrihe destination currently lies in:
o (¢) = (ymax 0) if g* € (1,2}
e (v,¢) = (Vmin, 0) if 02 € {3,4)

The second control action is applied exactly long enough for the robettthrthe destination.

425 Feedback Controller

A simple state feedback controller is developed to challenge the perforrétice pre-
dictive controller. To simplify future analysis, the feedback controller ist kpiite simple: way-

points are assumed to be far away (in comparison to the wheelbase) afmbintg/are considered
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to be successfully achieved when the car is witljgn > b. Given these constraints, the feedback
controller is designed to proportionally track the desired orientation (thet mientated towards
the goal) and reduce the wheel speed as the destination becomes clpseticuar, the control

-

2_A2 ~ T . . . ~ .
Where@ﬁj = arctan%) is the desired orientatio+$<k ek] is the state estimate at tinkeVmaxiS

values are
Pmaq 1 — e IRxtll]

. (4.23)
Py (6K — 65

a fixed a priori estimate of the maximum speed of the vehicle gnelR" is a control parameter.

4.3 Controller Comparison Simulations

Using the aforementioned models and control systems, several simulagqrerformed
to compare the performance of the control architecture from Section 3.4ttofta simple feedback
controller. In particular, the estimation accuracy and navigation ability ofdifferent system
architectures is compared. The simulator is configured to emulate the PEG semsork. In
particular, the parameter values used are given in Appendix A unlessvigbanoted.

Five system architectures are compared. System 1 uses the feedbaditler and the
plain EKF previous designed. The plain EKF estimator does not use nelatericy compensation
or faulty node filtering. System 2 augments the estimator of System 1 with faully filcering.
System 3 augments the estimator of System 2 with network latency compensatitemsS} uses
the model predicative controller, the EKF, and faulty node filtering. Fingjlgiem 5 augments the
estimation of system 4 with network latency compensation.

For each simulation, 10 trials were ran, the destination goal was %et)tol(f, and
the goal tolerance was set to 10 cm. Each trial was ran until the goal \Wweeved or 150 seconds
elapsed. An example trial for each system is shown in Figure 4.4. Forfigach, the gray sym-
bols represent the locations of sensor nodes with each symbol denaingdle’s status: normal
(gray dot), non-responsive (gray X), noisy (gray asterisk),.argitedictable (gray pentagram). Fur-
thermore, the robot’s starting and ending states are denoted by a getemgte and arrow. The
desired ending location is drawn as 3 concentric black circles. Finallystiraaed robot position
during the trial is denoted by light red dots connected by a light red dottedBaeh smaller fig-
ure is captioned with the system architecture components used: Fee&iBckxXtended Kalman
filter (EKF), model predictive controller (MPC), faulty node filtering (F\NBnd network latency
compensation (NLC).
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Figure 4.4: Example trial for 5 éierent control architectures depicting path and estimation results.
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’ SyStemH Ngoal ‘ t_goal ‘ Nest ‘ Ex ‘ & ‘
1 0 NA | 5001.0| 2.98 | 1.95
81.1 | 4311.5| 1.21| 151
66.1 | 4721.2| 1.82| 2.01
108.5| 8.6 | 1.15| 0.56
111.7| 84 | 1.14|0.54

AN W

2
3
4
5

Table 4.1: Simulation results comparing 3tdient system architectures for 10 trials. The first 3
system utilize a feedback architecture and the last 2 utilize a MPC baséiettate. Shown above
is the number of goal achieving triatgoa, the mean destination travel tirt_@ah the mean number
of estimations requiredss;, the mean estimated position ereyt and mean estimated orientation

errorey.

Referring to this figure, it is shown that for system 1, the estimated path issthes
wards the unpredictable mote in the lower right of the field. This is expected #ie estimator
does not account for such faulty nodes. Consequently, the estimationrisuipd the feedback con-
troller drives the robot aimlessly in circles. The next system, utilizes the faatgware model and
does much better. The estimator is able to ignore the faulty node and is ablesonably esti-
mate the position of the robot guiding it close to the desired destination. Sysgeanattempt to
compensate for the lag of the network. For this trial, the system promptly @shileg desired goal
position. However, as will be addressed later, this turns out to not bentgeneral. The estimation
tends to lags gticiently behind the the robot’s actual position and causes instability in thedekdb
system. The next system switches to the model predictive controller with tReaBH faulty node
filtering. This system achieves the goal with low estimation error. In particsilace this system
only estimates the robot’s state after an entire control sequence hasdoged out, the controller
can pause and allow laggy sensor messages to reach it before eachi@stifmally, system 5,
augments the previous system with network latency compensation furthmingdhe estimation
error. This system does notfger with the application of network latency compensation as system
3 does since the MPC does not immediately react to each incoming messagmaalise at the
completion of each control sequence.

The simulation results are summarized in Table 4.1. Notice, the basic feedisaelds
incapable of ever achieving the goal. System 2 achieves a significantiempent in performance
by using faulty node filtering. However, as previously mentioned, nethaigdncy compensation
tends to induce instability for system 3 and reduces the overall perfornadutice controller. The
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’ Path H ty ‘ Nest ‘ Ex ‘ € ‘ Ndet ‘ Nevt ‘ €evtpos ‘
1 605 | 1 |3.90|0.47| 1328.0] 229.1| 3.56
2 629 | 2 | 2.77|1.73| 1186.2| 230.2| 3.82
3 65.1 | 2 |210|0.53|1604.8| 266.3| 3.37
4 109.6| 8 | 1.71] 0.78 | 2199.0| 375.8| 4.40

Table 4.2: Simulation results comparing 4fdient paths across 20 trials. Shown above is the travel
time ty, the mean number of estimations required; the mean estimated position ermey; the
mean estimated orientation ermr the mean number of detectiongt, the mean number of event

messages senky, and the mean estimated position error without filteeagpos.

last 2 systems improve performance by replacing the feedback contrittethv MPC. In particu-

lar, system 5 achieves the best results. This architecture achievesti®goof the time, requires
very little estimation overhead, and reduces the position and estimation eart¥ and 72.3%,
respectively, compared to the basic feedback system.

4.4 Path Comparison Simulations

Using the aforementioned models and system architecture, several sinmaikateoper-
formed to compare theffect path planning has on robot localization accuracy. In particulargusin
the final system architecture (system 5) from the previous sectiondifiarent routes to the desti-
nation are followed. The results are compared to determine if path plannipipiteng the sensor
network topology) significantly féects localization accuracy. The simulator is configured to em-
ulate the PEG sensor network. In particular, the parameter values wesegi/an in Appendix A
unless otherwise noted.

For these simulations, 20 trials are performed and the destination goallvtm%l& 1qT.
Example trials using the four chosen routes are shown in Figure 4.5. Patiply gjoes directly
to the destination ignoring the sensor network topology. Path 2 is allowed tdhgligviate from
straight to encounter a region more densely covered by nodes. Patlo8vischthe same flexibility,
but takes a dferent path. Finally, path 4 attempts to enter as many densely coveredapeasible
on the way to the destination.

The results are summarized in Table 4.2. As expected, path 1 is the quicksiop
the destination and the control architecture only estimates the robot statéhendestination is
reached. Since nodes are scattered to either sides of this route, the estiathtkas high error, but
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Figure 4.5: Example trial for 4 ffierent fixed routes depicting path and estimation results.
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the estimated orientation has low error. The second path does well initiallizigper 4.5b), but the
latter sections of this path are detected by nodes to the lower right of the pasitéon. This results
in a reduction in estimated position error, but an increase in estimated oriergation The third
path mends the trouble with the latter part of the second path by routing dao dme right (see
Figure 4.5c¢). This has thdtect of slightly increasing the number of detections and achieves good
estimation results. Path 4 attempts to only navigate in dense regions and skalegirerror. This
route does reduce the estimated position error at the sake of incrediseated orientation error
and increased number of detections (utilization of bandwidth). In fact, #ils, plthough chosen
to reduce the innate sensor erggyipos, has actually increased it by 23.6% over the basic straight
path. This can also been seen by Figure 4.5d. The first half of the rasthigh detection error
with motes detecting the robot either too high or too low. However, even withgetections, this
path achieves the lowest position estimation error. From this, we see thandésauhow the robot
should choose its path. This will be addressed in more detail in later chapters

The simulations have confirmed that both control architecture and pathiqpdahave
significant g€fect on the system performance. Components of the unified system aalgitbave
proved to be beneficial for SNAC system operating in realistic simulationseMer, it is unclear
how path planning should be addressed to improve system performartbe.following chapters,

path planning to achieve reduced localization error and bandwidth utilizationastigated.
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Chapter 5

Information Maps

The remaining material in this thesis focuses on robot localization in senswonks
exploiting an information metric. This chapter presents information maps, adodetermining
the localizability of a robot in a region. Previous work [78, 63, 86] explgiiimformation for robot
localization has been in the context of a robot equipped with on-boasbsenOur work applies
a global information view, or information map, to robots localizing with senstwoik data. In
the following chapters, we develop sensor network models and approximsaifothese models
suitable for information map computation. For instance, this chapter consigengbinary sensors
distributed in a field; later chapters extend this sensor model and devedopxapations suitable
for efficient computation. Additionally, our work provides a comprehensive lddkfarmation
maps (formal presentation of the algorithm with time complexity analysis), aridtieaensor
network localization simulations utilizing information maps. Finally, a later chapterdeitelop a
novel path planning routine exploiting information that outperforms sewthalr (non-information
based) techniques for accurately localizing a robot in a sensor network

This chapter provides an overview of information maps. First, an analydialview
of Markov localization is presented. Next, the information metric is introdudégin, using this
metric, an algorithm is presented that computes information for all region® abtiot pose space
generating an information map. Finally, several simulations are performedliey the computa-
tion time required and providing insight into the information topology of a senstwork.
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5.1 Markov Localization

This section describes how Markov localization [36] is used to estimate tleg @ostate,
of a robot. First, the system model, composed of the robot's dynamics arsktiser network
model is described. Next, this model is adapted for use with Markov localizaioally, the steps
of localizing a robot using Markov localization are outlined.

Markov localization is a Bayesian estimation technique [49] for estimating &'sqimse
given a model of the system and periodic sensor readings. Markdizktian requires that the pose
belongs to a finite space and that the system is specified probabilisticallyaislitgen Markov
Model (HMM). However, a robot’'s pose often lives in an infinite, contins space and evolves
according to a set of fference or dferential equations. In order to rectify thisfidirence, the
infinite pose space is partitioned and the dynamics are converted to a HMM.

First, the infinite pose space is partitioned. In the following, a bar is placedvaviables
related to the infinite pose space, suchasz, to distinguish them from the finite pose space, such
asl or L. The infinite pose spacé_ is partitioned into a finite number of pose spadés (L.
Typically, this partitioning is based on a regular grid, although other teckriguch as topologi-
cal [68] and tree-based [16] are used. For our work, the contpose space isAby A square
anchored at the origin iR2. This space is partitioned into a reguMrby M grid where thei( j)I

partition, or cell, is denoted & j. More precisely, the pose spaces are described by

L = [0,A]x[0,A] c R? (5.1)
L = (Gijhi (®-2)
G = [(i-DAIAIx[(j- DA, jA] € £Lc R? (5.3)
A = % (5.4)

wherei, j € {1,2,..., M}. For notational conveniencé, j) is used to denote a pokm the partition

space that represents thgj{" grid cellGi j with centerg; j, inducing the following relationship:
=, j) = Qi,j — |_€ gi,j — g._J = Centergi,j) (5.5)

Next, the system dynamics are adapted for Markov localization. The eqtm&;’el_e L

is assumed to evolve according to thé&@lience equation

kst = f (I, Uk, K) (5.6)
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Figure 5.1: A hidden Markov model.

for each time stef € {0,1, 2,...}, and each control valug € U. At each time stej, our sensor

network measures the current pd;sas
Yic = h(lk, K) (5.7)

whereyy € V.

Adapting these dynamics to a HMM can be challenging. In a later section, tessewy
steps are performed; for the time being, it is assumed that the system ig/aldzgaied to a HMM.
The HMM (see Figure 5.1) is modeled with a hidden state £ representing the pose, an output
Yk representing the sensor network measurements, and a transitiomdmpptesenting the control.
The relationships between the variables are specified probabilisticallywaheien from one state
Ik to the nexty,, is described byp(lk.1llk, Uk), the sensing relationship is describedpgyx|lk), and
the initial pose at timé&k = 0 is described byp(lp). For notational simplicityp(z) and p(z) are
written to indicatep(Z = 2) andp(Z = z), respectively.

Now, the Markov localization algorithm is investigated. This algorithm provies-
erative method for estimating the pose of the robot given periodic seeadings. The algorithm
is developed by computing the posterior pose estimation (distribution) givepritrgpose estima-
tion (distribution), a sensor reading, and a control input. The iteratiugadation is revealed by a

thoughtfully chosen distributioa:

a(ln)
a(lo)

P(In, Yo, - - - YnlUo, - - -, Un-1) (5.8)
p(lo) (5.9)

This definition ofa allows an iterative computation of the posterior pose estimation atriimé
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given the relevant quantities at time

CY(I n+1) = p(II'H-l’ yOa KR} yn+l|U0, ] Un) (510)
Z p(|n+1a YO, e ,Yn+1||n, UO, ceey Un) p(|n|UO, ceey Un) (511)

In

Z P(Yo, - - - » Yn+1lln+1. In. Uo, - . ., Un) P(In+2lln, Uo, - - ., Un) p(InlUo, - - ., Un) (5.12)

In

Z p(YO, e ,Yn||n+1, In, uO’ ] Un) p(Yn+1||n+1a In, an R Un) :

In

P(In+1lln, Uo, - -, Un) P(Inlos - .- , Un) (5.13)

Z P(Yo, - - - ¥nlln, Uo, - - ., Un-1) P(Yn+2llns 1) P(ns2lln, un) P(InlUo, - . ., un-1)  (5.14)

In

Z p(In, Yo, - - - Ynluo, - . ., Un—1) P(Yn+1lln+1) P(In+2lln, Un) (5.15)

In

Pnsallnet) D, Plnsalln, Un)a(ln) (5.16)
In

Referring to equation (5.16), we see thdt,.1) is computed by first evolving(l,) forward us-

ing the system dynamics(ln.1/ln, Un) (the proprioceptive step), and then by weighting the result
with new sensor readings(yn:1/ln+1) (the preceptive step). Onegl,,1) is computed, the pose
estimation distribution is computed as

a(lnsa)
Ly @(Ins1)

To reduce this distribution to a single point estimate, several methods maydsudeas finding

p(l n+1|YO, ceey yn+1, UO, ) Un) = (517)

the argmax or taking the expectation oygr. We prefer the later and estimate the pose as

a(In+1) )
Zlml a(lns1)

Although conceptually straightforward, the above algorithm neglects tmalare @ at

lne1 = E(P(nsalYos - - -» Yneto Uos - - » Un)) = E( (5.18)

each step, leading to large numerical errors over time. This is solved taciepa with the

normalized versiop:

Bmln) = PUalyo. ... Yr. Uo, ..., Um) (5.19)

B3lo) = p(lo) (5.20)
Following steps similar to those used above, we find a 2 step iteratiogBover

Brllne1) = Z P(In+1lln, Un)Bh_1(In) (5.21)

In

P(Yn+llne1)Brlne1)

5.22
S POl ) BRImD) (5:22)

BR+1(IH+1)
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Here the proprioceptive and preceptive steps naturally reveal thessiehequation (5.21) and
equation (5.22), respectively. To initialize this algorithm, at time 0, we start withp(lp) and a
sensor readingp. Since the robot is assumed to be stationary prior+00, u_1 = 0 could be used

in the computation, but instead, we prefer to only compute the preceptivéeufodahis time step.
Hence, we sqﬁg(lo) to the priorp(lp) to indicate that the proprioceptive step is skipped. We again

estimate the pose with an expectation:

IAn+l = E(BR:%(Iml)) (5-23)

This section introduced our general system, and applied Markov locatiz&tith. The
next section will investigate which regions of our environment (poseegpae well suited to

Markov localization.

5.2 Information

This section introduces a metric for determining the performance of Markalization
applied to dfferent regions of the sensor network. A measure of a region’s abilityoidd® sensor
measurements that reduce the estimation error is presented. Such a negfareed to as infor-
mation [78] or a localizability metric [63]. Information in our context can beenstbod by referring
back to localization. Recall that Markov localization provides more than jesptise estimate
it provides the posterior distributigh encompassing all of the knowledge of the current pose. In
particular, the3 distribution can be use to determine the estimation error. Hence, by obséreing
change in the distribution during the preceptive phase of localization, it can be determihasdhw
sensor readings are most instrumental in reducing estimation error; i.eh rghgions have the most
information. The development of information is done in 3 steps: entropy isetkfinformation is
defined, and system assumptions are imposed to simply the representatifmnroétion.

Entropy [26] is defined for a discrete distributip(z) as

H(p@) = - ) p(2)log(p(2) (5.24)

z

If p(2) is localized to one point, the entropy is 0. A$z) spreads out across several points, its
entropy increases toward infinity. Entropy is said to measurelig@rderin a distribution; in our
context, entropy is used to measure estimation error. Hence, the estimatioof erpose estimation

distributiong, is given by its entropyH (8).
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Next, the change in estimation error (entropy) during the preceptiveepifdscalization
is computed. It is assumed that a robot arrives at a ppseL, computes the proprioceptive pose
estimatep, (1), receives a sensor readipgand, computes the preceptive pose estirpgély). The
notation p;,(I) and p,(Ily) is used in place oB(Ins1) andBi*i(ln.1), respectively, to focus on a
single preceptive update occurring at the plgsén other words, this development is not interested
in how the robot arrived af. Hence, it is assumed that the proprioceptive pose estimgie
is known, thereby neglecting all the details leading up to its computation. Fromirtfosmation

I . £ — [0,inf) is defined as theecreasen estimation error (entropy) during the preceptive phase:

I(lo) = H(pi,(1)) = H(pi(lly)) (5.25)

In practice, the priop;,(I) and the sensor readirygare unknown a priori. This dilemma

can be partially solved by eliminatingwith an expectation:

1(lo) = H(pip(1)) — Ey[H (i, (I1y))] (5.26)

However, p,(I) cannot be eliminated in such a fashion: it is a complex quantity, resulting from
potentially many steps of Markov localization, making iffidiult to compute. Instead, when com-
puting information, an approximation fqij,(l) based on observations of the dynamics is substi-
tuted. This substitution is addressed in later sections along with each pariieplamentation. To
simplify our forthcoming computations, 2 additional requirements are impoggd) is solely a
function of| — lp and the set of possible sensor valdéss finite. The first requirement enforces
that p,(I) has constant shape; hence, it has constant entropyolet H(pi,(I)). The second
requirement allows information to include arffieient) summation over sensor values. With these
assumptions, information can be reduced further, arriving at the fotimldetermined by previous
work [78]:

1(0) = Ho—EJH(p,(I)] (5.27)
= Ho- ) pMH(p,(IY) (5.28)
y
= Ho+ Y po® D pio(ly)log(pi(lly)) (5.29)
y |
B Po(LY),  pip(l,Y)
) H°+Zy: p'°(y)Z|: ) %) (5:30)

B Pl Y)
= Ho+ ; Z b, (1. y)log( 0.0) ) (5.31)
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Armed with a formula for information, we turn to detailing the steps needed to ciempu
it. Understanding information and entropy as measures is discussed me®ions.1.

5.3 Information Map Computation

Using the analytical representation for information, this section formalizestépes re-
quired to compute information across all possible poses. The final espiadi®n (matrix, grid, or
2 dimensional plot) is referred to as aformation map To compute the information map, an
algorithm is presented that walks through the computation of each term iti@ay(&31). Addi-
tionally, we investigate the computational complexity of this algorithm and revievalteenative
algorithm (suggested by other researchers [78] using a traditionad ptditform) that reduces the
overall complexity.

The steps required to exactly compute the information map are given by Algotith
Computing the information given in equation (5.31), in turn, requires the ctatipn of 3 terms:
Ho, pi, (I, y), andp,(y). As mentioned in Section 5.Big is independent db; henceHg is calculated
once at the start of the algorithm (line 1). The remaining 2 terms must be deltfitet eachg (line
2).

Algorithm 1 Information Map Computation

1: computeHg

2: forall Ip e £ do

3 computepy, (1)

4 forall (I,y) e £Lx Y do

5 computep(y|l)

6: computepi,(l.y) = p, () P(Yl)
7 forall ye Y do

8 computepy,(y) = Yies Pio(l.Y)

o computel(lo) = Ho+ Syey Siez Proll, VIog( 2

Before computing,(l,y) (line 6), 2 more terms are required: the prpy(l) (line 3) and
the sensor modgi(y|l) (line 5). Both these terms are implementation (and model) specific, so the
computational details are postponed until needed. To lend more traction ¢ottipéss, the reader
is directed to Section 5.4 whe,(l) is modeled as a uniform distribution over a square pfyl)
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is modeled as a simple binary sensor. In general, our simulations use a simopldigtribution
(uniform or normal) that is computationally easy to shiftgaluring each iteration of the algorithm.
The last term required to compute informationigy) (line 8) which directly follows fromp, (1, y).
Finally, informationl (Ip) (line 9) is computed as directed by equation (5.31).

A second look at Algorithm 1 reveals the time complexity. Working through théstithe
required by basic operations (add, subtract, multiply, log, etc) is repr@édeduced to constants
¢k without further explanation. Since the computatiorpg(l) and p(yil) is model specific, the time
required for these computations is denoted@andts, respectively. Finally, sinc& andY are
finite sets, their cardinalities are denotechpandny, respectively.

Starting at the beginning of the algorithm, note thigtis an entropy computation, which
entailsn; logs, nj multiplications, andh — 1 subtractions. Hence, the total time required Hr
is cihy — c2. The loop on line 2 requires iterations, which serves as a multiplicative factor for
the remaining computation. Rolling lines 3 through 6 together reqtiresyny(ts + c3) wherecs
represents the multiplication required fag(l, y). Similarly, lines 7 and 8 entails,(csn — ¢4) since
for eachy, pj,(y) entailsn — 1 additions at a cost af. Finally, line 9 requiresny divisions, logs,
and multiplications and( — 1)(ny — 1) + 1 additions, totalingsnyn — cg(n + ny) + ¢7. Putting these

terms together (with the loop on line 2), the time complexity of Algorithm 2 is
(Ca = C2) + ni[tp + niny(ts + C3) + Ny(Cany — C4) + (CsNyny — Ce(Ny + Ny) + C7)] (5.32)
Further reducing and combining constants, the®itime complexity is
nZ[ny(ts + Cg) — Co] — CoMiny + Ni(tp + C10) — C2 € O(NPnyts + Nitp) (5.33)

where we have intentionally left, andts in the bigO notation since these terms are potentially
functions ofn andny. Note, the first and second terms of the complexity are associated with com-
putation of the sensor model and the prior, respectively, #ndts are constants (as they are for
many of our simulations), the time complexity reduces)(olzny). Hence, a practical implementa-
tion of Algorithm 1 must carefully implement the most deeply nested computatiores @imnd 6)

in order for the algorithm to remain feasible.

To reduce the time spent in lines 5 and 6, Algorithm 2, an approximate infornatgn
algorithm (developed by other researchers [78] using a traditional maibiet platform), is re-
viewed. This algorithm exploits tacit assumptions about locality within the systemarticular,
since the priop,(I) gains most of its support within a small neighborhoothpinformation compu-

tation is restricted to this neighborhood. More specifically, wheft) is generated, an approximate



56

Algorithm 2 Approximate Information Map Computation

1. computeHg
2: forall Ip e £ do
3 computepy,(l) and the approximate support $f
compute the approximate set of sensor readiigs
forall (I,y)e LxYdo
computep(yll)
computepy,(1.y) = pi,(1) (Yl
forall ye Ydo
computep(y) = XieL Pio(l,Y)
10: computel (lo) = Ho + Zyev Siet Pl YIog(3267)

© ® N o g &

support set,, c £ for p,(I) containing themost relevanpoints is also generated. Then, a reduced
set of possible sensor valugg based orl, is generated. The reduced sensor space is the primary
contributor to reduced computation time. These optimizations are particularlyswedd for the
sensor network model where a robot only excites nearby sensos.ndaleffect, this algorithm
switches from computing information &t using the entire spacé x Y to using only a localized
spacel, X Y.

Now, it is shown that reducing the computation space dramatically reducgstheom-
plexity. The time required to compute the prior and its support set is denofigd Agtditionally, the
time required to compute the reduced sensor measurementlspagelenoted byly. Finally, the
cardinality of the reduced spackg andY, is denoted byy andny, respectively. Walking through

Algorithm 2 in a fashion similar to above computations, the time complexity is found to be

(cini — o) + ni[fp + By + Aify(ts + c3) + Ay(Call — ca) + (csiyfy — cs(fy + fy) + c7)] (5.34)
= my[Py(ts + cg) — cs] — comiy + m(fp + £, + c10) — 2 (5.35)

e O(niyiyts + ni(Ep + ) (5.36)

Comparing equation (5.36) and equation (5.33), it is clear that the apprexatgorithm has re-

duced the cost associated with the sensor model and potentially increasmastiassociated with
the prior and sensor measurement space. Agats, fif, andf, are constants, the time complexity
reduces tay iy resting on the shoulders of the sensor model. Since the cardinality of theedkd

spaced |, andY), is much smaller than the whole space, the time complexity has been significantly
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reduced. Based on this evidence, our work uses exclusively Algo@tfansimulations. Furnished
with a feasible method of computing information maps, the next section pressesd with sev-

eral simulations.

5.4 Simulations

Having previously traced through all the steps necessary to computecamation map,
this section computes several such maps for a sensor network modela Fiestic robot prior and
sensor network model are presented. Then, an information map is confiputki system and is
discussed along with the required CPU time. Finally, to illuminate ffexta prior model has on
the information map, several maps with varying priors are computed andsdestu

size 100m x 100m
Field grid 200 x 200
sensor distributiory uniform
Ns 30
model discrete,binary
Sensor ls 10 cells
Ps 0.75
Estimator priorAmodeI discre‘Fe, box
Fp varies

Table 5.1: System models and parameters used for computing severalatifor maps.

A summary of the system details is provided in Table 5.1. The simulated seraarke
hasNs = 30 sensors uniformly distributed on the playing field that spans 100m by E0@ is
divided by a 200 by 200 regular grid. The global sensor mp@gl) is an independent combination

of all the node sensor models: N
S

poi1) = [ | p(ymil) (5.37)

m=1
Each sensor is represented by digcrete binary sensor moddtor them™ node, during each sens-
ing period, this model assumes that the sensor either reports a detggtiors) with probability
ps or remains silenty(, = 0) with probability 1- ps. More precisely, the detection distribution for
them sensor, with sensing radiug located atz, € £ is given by
Psif Il = Zmll < 1s

Plym = @ll) = (5.38)
0 otherwise
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wherel|-|| is the infinity norm on the partition spaggand is the larger of either cells horizontally or
cells vertically. In this norm, a radius ofcovers a 2+ 1 by 2 + 1 square of cells; hencd,= 2r + 1
is referred to as the diameter of such a set of cells.

A binary sensor model may seem trivial, but it accurately captures thésdet@ertain
mote sensors used in real deployments. Indeed, during PEG, the magteeteamsor (with an
r3 response drop#fband threshold detection) amounted to a binary detector. Other resesajgher
have also identified the usefulness of a binary sensor model in serts@mrkenvironments. For
this simulation, the sensor has a detection radiusscf 10 cells and a detection probability of
ps = 0.75.

The robot priorp, (1) is taken to be uniform on a square of grid cells. In particysg(])
is represented by thdiscrete box priomodel with a radius of ; cells:

Po() ~ U3 = Fp. 15— Fp+ 1, . 15+ P} X (13— Tp, 13 = Fp+ 1,..., 12+ Fp)) (5.39)

Hence,p, (1) is uniform across dj, by d, square of cells centered lgtwhered,, = 2f,, + 1.

Before the simulation can commence, the computatiobpand Y, must be outlined.
ComputingLy, is straightforward: the exact support fpg (1) (i.e., the&p by &p square centered at
lo) is used. To comput¥, c Y = {y = (Y1.¥2,...,Yn,)IYm € {0, ®}}, observe that sensocoseto
lo can either reportyg, = ®) or not report ¥, = 0), whereas, sensofar from Iy will not report

(Yym = 0). Hence we lety|, be such a set:

Yio = 1Y = (V1. Y2, - - -, INSlYm € Y} (5.40)
where
0,@ if |lo—zml| S rs+ T
m_ {0,®} 1f |llo |<rs+fp (5.41)
{0} otherwise

Using the above details, the simulation proceeds for varying prior radii. iffoema-
tion map computed with," = 4 cells is displayed in Figure 5.2 as both a 2-dimensional and 3-
dimensional plot. In the 2-dimensional plot, nodes and their sensing regriendentified by white
dots and dark blue dashed lines, respectively. The color backgrauride plots represent the
amount of information. These 2 plots with a vibrant color scheme are incltalédhlight the
variation in information across our playing field. In particular, informatioom@gions occur in
2 places: far from sensor coverage and close to node locationsedions far from sensing cov-
erage it is intuitive that the robot gleans no estimation help. In these regiodss do not report
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(a) 3-dimensional view (b) 2-dimensional view

Figure 5.2: An information map computed using discrete, binary senso@amaiform prior with

radiusry = 4 cells as detailed in Table 5.1.

detections which is expected by Markov localization; hence, no informatiprowdded to the es-
timator. However, it may seem surprising that no information is gained by @ kavy close to a
node. This occurs when a robot next to a node has its prior entirelyssttlo the node’s sensing
radius. Whether the node detects the robot or not is of no conseqieetingerobot since it already
knows its pose with a greater accuracy than the node can provide. guoihe information rich
regions, we might have guessed that these regions were at the centetest but that fallacy has
been dispelled. Instead, the highest information regions are those clasetie’s edge of detec-
tion, or, better yet, in regions close to several sensing edges. In #gieas, the robot’s prior tends
to be partially in and partially out of a sensing region. If the mote reports, stima&tion routine
only retains the outside part of the prior; if the mote does not report, oningige part is retained.
Hence, these regions provide a good way for the robot to quickly stfyart of its prior and re-
duce its estimation error. In a nutshell, the robot is betfienear detection edges where the chances
of being detected and going undetected are roughly equal. Henceptathab navigates between
several sensing regions without being detected often attains a lot afafion. Later sections will
show that robots navigating intelligentyoundnodes often do better than ones navigatoge to
nodes.

Information maps computed for 6ftkrent prior radii ( € {1,2,4,7,12 17}) are shown

in Figure 5.3. These plots, and all the remaining information plots in this pageeg B-dimensional
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Figure 5.3: Information maps computed using discrete, binary sensom@namaiform prior with

varying radius p as detailed in Table 5.1.
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representation. Additionally, to increase the legibility of future plots that irchadre symbols, the
plots switch to a muted color scheme of blue tones. These plots show that asotterpdius
increases, fewer regions in the map are void of information. This ocaoause a large prior
has a good chance of intersecting one or more sensing regions, gardjless of what the sensor
network reports, the large prior can be trimmed down. In particular, notatentithr, € {1, 2,4, 7},
the center of a node’s sensing region has a information null since theésrphior is small enough to
fit entirely in the sensing region. However, once the prior’s radiusxCeeds the sensing radius
in the last 2 plots, the entire node’s sensing region becomes useful. Eipwe sensing center still
remains a relatively low information region, contradicting the intuitive notion ahabot benefits
the most by driving close to nodes. Additionally, these plots underscoimpetance of choosing
an accurate prior for ensuring that information maps are represenatvealizability.

The approximate information map algorithm is carried out in MATLAB R14 on &&iB
P4 with 1GB RAM. The computation time required for each simulation is summarizeabie 5.2.
The mean time required to compute each map steadily increases from 17.01 rfonwesnall
prior to 116.77 minutes for a large prior. Furthermore, the mean time requingobitie each cell
varies from 25.5 ms to 175.2 ms. This indicates that a robot can update thaatimn map in real
time to compensate for a changing environment. For instance, if a node gioes ar diline, the
information map should be updated in the 2(rs) + 1 diameter square centered at this node. For
our simulations withrs = 10 cells and'p = 4 cells, the map could compensate for such a node
(updating a 29 by 29 region of the map) in about 26.6 seconds. Hent&sional changes in the

environment could be accounted for in real time.

¢ cell computation|  grid computation
P mean (ms) total (s) \ total (min)
1 25.5 1020.72 17.01
2 28.9 1154.50 19.24
4 31.6 1264.28| 21.08
7 51.1 2044.17| 34.07
12 98.6 3942.63| 65.71
17 175.2 7006.23| 116.77

Table 5.2: Time required by a 2.6 GHz Pentium4 with 1GB RAM running MATLABIR1compute

an information map using the parameters from Table 5.1.

This chapter presented an overview of information maps for sensor retwiarkov

localization and information were reviewed analytically and algorithmically. @pattention was
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paid to the time complexity of computing information for an entire region. A systemeihfoda
robot localizing in a sensor network was developed and several simulatenesperformed with
this model. The simulation results provide evidence that robots localizing imiseasvorks will
benefit by navigating close to sensor’s edge of detection. The negtezhavestigates this idea

more formally, and compares the localization accuracy of robots that elokglisregard this idea.
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Chapter 6

Localization using Information Maps

Now that the generation of information maps has been throughly studiedertieening
work will focus on applying information to aid in localization. Our work methodicauilds up
to simulations of realistic, closed-loop navigation systems starting with simple;loppnzero
noise systems. This chapter focuses strictly on open-loop systems to véfidaipplicability of
information maps. First, the steps required to compute localization updatesdigethe simulator
are presented. Next, an initial localization simulation is perused and usechtmderate the ability
of an information based path to improve localization performance over o#tletgchniques. After
this, the basic system models are relaxed to more realistic models and aredaddaptse with
information maps and Markov localization. Finally, the new models are useatoate the ability

of information based paths to improve localization accuracy and confidence

6.1 Markov Localization Revisited

Before beginning any localization simulations, this section takes a methoddllogikat
Markov localization. Using the analytical introduction to Markov localizatiamfrSection 5.1, this
section outlines the necessary computational steps. Additionally, the time cémEexnalyzed
and an approximate alternative to exact Markov localization is reviewed.

The presentation of the Markov localization computation first walks througlitehative
update for timen + 1, and then returns to discuss the initialization of the algorithm at time 0. The
update algorithm for timea + 1 is shown in Algorithm 3. The algorithm is initialized (line 1) with a
new sensor reading,. 1, the last control value,,, and the previous iteration’s posterior distribution

Bn_1(In). The remainder of the algorithm computes, in order, the propriocepfidata given by
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equation (5.21), the preceptive update given by equation (5.22), anexffected pose given by
equation (5.23). For each possible new piasg the proprioceptive updaf#(ln.1) is achieved on
line 6. Prior to this, the transition probability(ln.1/ln, un) is computed (line 4) and applied (line
5) for each possible previous padge In general, the computation @fl,,,1|ln, uy) Mmust be handled
with care to ensure this part of the update algorithm is feasible for a lagegpace’. Since this
computation is dependent on the dynamics, the computational details arsssdtligger for specific
models. Next, the algorithm prepares to compute the preceptive updaitevéathn line 11). First,
the sensor modeb(yn:1/ln+1) is computed (line 7) using the new sensor reading, and the result
is merged with the proprioceptive distribution (line 8). Again, the computatiop(f, 1|ln.1) is
dependent on the system model; hence, the details are delayed untiargcéiext, the algorithm
exits the loop ovefn,1, and computes the normalization constgnt (line 9). Finally, for each
new posdy, 1, the preceptive update is computed (line 11). The last step (line 12) is toute e
estimate of the pose using an expectation of the posieitiotin.1).

To initialize the algorithm at time 0, only a preceptive update, as mentioned in 8&ctio
is computed. In particular, given a pripflo) and a new sensor readigg the proprioceptive update
computation (lines 3-6) is skipped aﬁ@(lo) is set to the priop(lp). After which, normal operation
is resumed to compu%(lo) andly. The computational details of the prip(lg) are delayed until

necessary.

Algorithm 3 Markov localization update
1: givenp] ;(In), Yn+1, @ndupn
2: forall I,.1 € Ldo

3: forall I, e L do

4 computep(lnsalln, Un)

5 computey(lns1, In) = P(lnealln, Un)BR_,(In)
6 computeB(lne1) = Xy, ¥(In+1. In)

7 computep(Yn+1/ln+1)

8 computep(lny1) = P(Ynrallns1)Br(n+1)

9: computelng = Xy, ¢(In+1)

10: for all 14,1 € £ do

1L computeBi™(ni1) = ¢(lns1)/Ene1

12: fne1 = EBT(Ins1))




65

Walking through Algorithm 3, the time complexity is computed using the same praeedur
as that used in Section 5.3. We find the blgime complexity as

n[n(t + c1) + (= 1)ce + ts+ 3] + (N — 1)cq + csny + (M — 1)cg (6.1)
= n2(t +C7) + ni(ts + Cg) + Co (6.2)
e O +nitg) (6.3)

wheret; andts are the times required to compute the transition distribugfp.1/ln, u,) and the
sensor modep(Yn:+1llnt1), respectively. Since the computation of both the transition and sensor
model can greatly impact the running time of Markov localization, these compusatst be
efficient. In particular, the time required for the transition model must be limited sirce#gnified

by n|2. The time required to compute the transition and sensor distributions is diddaskger
sections along with the accompanying system models.

If t andts are constants, the big-complexity reduces tnlz. This term represents the size
of the space to be updated. In order to reduce this term, our simulationstepglective update
approach from the literature [10]. This approach approximates thepiee update step by only
using the previously detailed update algorithm for cells vgfttin.1) larger than a threshold. The
remaining cells are updated with the simple rule

B (Ine1) = AB7(Ine1) (6.4)

where is chosen to normalize the resultigg™(In,1) distribution. For our simulations, this ap-
proach can dramatically reduce the time required for sensory updates.

6.2 Simulations

This section and the remainder of this chapter are dedicated to using infannagjus to
improving robot localization in sensor networks. After discussing informatiaps (Sections 5.2,
5.3, and 5.4) and the details of robot localization (Sections 5.1 and 6.1)etiisrs combines the
two concepts in simulation. First, a full system model, now including robot e is presented.
Then, an initial set of localization simulations are performed. Finally, thdtseate discussed.

The localization simulations entail a robot traversing a sensor networgivieg mea-
surements, and estimating its location. These simulations are specified kgl sietails:

¢ the field and sensor layout
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size 100m x 100m
Field grid 200 x 200
sensor distributiorn uniform
Ns 30
model discrete, binary
Sensor rs 10 cells
Ps 0.75
Estimated Prior prior model discrete, box
p 4 cells
. prior model discrete, box
Estimator o 50 cells
Dynamics model discrete, adjacent cell
U 4 cells
>
Pose lo [5 10] :
| goal |70 9q
Simulation trials . 100
path type Xy, yX, straight, node centers, manual

Table 6.1: System models and parameters used during our initial localizatiolasimns.

the sensor model

the information map parameters (estimated prior)

the initial conditions of the estimator

the robot path
e the robot dynamics

For our initial simulations, these details are summarized in Table 6.1, but reqaieeexplanation.
Much of the setup is inherited from the previous information map simulations itio8eét4. More
specifically a 100m by 100m field with 30 sensors uniformly distributed is.usadh sensor uses
the discrete binary sensor model with a detection radjus 10 cells and a detection probability
ps of 0.75. The information map, computed before the localization simulation, usedidtrete
box prior model with radiugs, = 4 cells. The estimator is initialized with the robot pripflo)
defined as a discrete box prior with radiys= 50 cells centered about the robot’s initial position.
Notice, the distinction betweem, andr}: rp is the initial radius of the prior during simulation, ~
is the prior radius assumed during computation of the information map. Thetlmutebot takes

is varied across simulations to compare localization error associated Wéltedt paths. However,
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the robot is required to start at polgg(in the lower left) and end at po$gya (in the upper right).
The robot model is defined using thiéscrete adjacent cell dynamicd he discrete adjacent cell
dynamics specify that a robot’s pose £ evolves according to

lerr = I+ Uk (6.5)

where
weU={-U-U+1,...,0,..,U-1U}2cz? (6.6)

In other words, the robot may move upliocells (4 cells for this simulation) both horizontally and
vertically.

To test the ability of the information map to predict localizability, severfiedént robot
path schemes are tested:

e xy: drive in the x-direction, then in the y-direction

yx: drive in the y-direction, then in the x-direction

straight: drive in a straight line

node centers: drive through several sensing centers on the waydesdtieation

manual: using the information map, a human chooses a path that takes tharobgh high

information regions

The first 3 path schemes represent basic paths that the robot mighpesédthe destination. These
schemes assume no information is known about the environment. The hertescnode centers,
is generated by a path planner that tries to drive through the centeravhbsensing regions on its
way to the destination. This path planner is described in more detail in SectioRat.20w, it is
assumed that this path is provided. The final path scheme, manual, répresmth chosen by us
after looking at the information map. This scheme is an attempt by a human to maximiaestiall
information the robot encounters on its way to the destination.

Since this is the first set of localization simulations, the mechanics and resthiessiu-
lation are perused. Prior to running the localization simulation, the informationsmapnputed as
described in the previous chapter. The result is shown in Figure 6.1lisloabe, 3 high information
regions are obvious in the field: in the upper left, in the lower right, andwaytup the (00)—
(100, 100) diagonal. If the information maps are a good measure of localizabilibh@ passing

through these regions should have less estimation error than a robotdiust these regions. To test
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Figure 6.1: Information map for our initial localization simulations. White dots oudlimeblack
represent motes and dotted squares represent their detection regickgr&ind color of the plot
represents the amount of information.
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| Path Type | Length (m)| Travel Time (s)] ng | ng/100 m|

Xy 145.00 7.30 19.72 13.60

yX 145.00 7.30 29.44 20.30
straight 103.08 7.10 4.56 4.42

node centers| 252.66 20.40 133.92| 53.00

manual 289.31 15.40 43.20 14.93

Table 6.2: Path information for each path scheme across all trials durinmital localization

simulations.
Estimation Error (m)|| Estimation Entropy
Path Type Min | Mean| Max [ Min [ Mean | Max
Xy 2.15| 239 | 3.37 || 2.13| 2.56 | 3.84
yX 255| 269 | 3.51 | 3.00| 3.33 | 441

straight 9.27| 9.29 | 940 | 6.98| 6.99 | 7.01
node centers 0.80| 0.95 | 1.38 || 1.11| 1.23 | 1.51
manual 0.65| 0.73 | 1.03 || 0.57| 0.63 | 0.85

Table 6.3: Estimation error and entropy for each path scheme across aldtriadg our initial

localization simulations.

this, a robot is simulated following each of the aforementioned paths 100 timaehb. t&al records
various statistics about the estimation performance. Each path scheme, espathtinformation,
and information map are displayed in Figure 6.2. These plots depict aneagkview of each path
(solid black line) superimposed on the information map (background cdlbg.white circles and
squares represent the starting and ending positions of the robotctieslye The light green line
shows the estimated path fotygical trial. A typical trial is a trial such that the filerence between
its mean estimation error and the mean estimation error across all trials is minimall patha,
but the straight path, the typical estimated path eventually converges tottla jpath before the
destination is achieved. The straight path misses the detection region of afldsu motes making
localization dificult. Shortly, we will investigate more precisely how this spoils the localization
performance. Before leaving this figure, note that the node centemnandal paths tend to take
a similar route that is also longer than other paths. These 2 paths provideesesiimg point of
comparison allowing us to quantify how much the localization accuracy caefib&nth smarter
paths.

Across all trials, for each path, several statistics are collected: the pagth)ehe path

travel time, the mean number of detectiogsthe mean number of detections per 100 meigf$00
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(c) straight (d) node centers

100

50

(e) manual

Figure 6.2: Basic simulation overview plots for our initial localization simulationsidimg the
robot starting (white circle) and ending (white square) positions, thet qodih (solid black line),
and a typical estimated robot path (solid light green line) superimposed dnftieation map

(background color). Each figure is captioned with the path scheme dgpicte
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m, and the bounds and the mean of both estimation error and estimation enthase Statistics
are compiled in a path information table (Table 6.2) and an estimation informatior(Table 6.3).
Referring to Table 6.2, notice the large range in number of detections penéters. The straight
path only receives an average of 4.42 detections per 100 meters, wBidtsrin high estimation
error and estimation entropy (see Table 6.3). On the other end of thetspedtrthe node centers
path which generates an average of 53.00 detections per 100 meteigiby through the center
of detection regions. In fact, this scheme does reduce the estimation@n®took at the manual
path scheme, however, indicates that more detections does not always ileggierror. The manual
path, in comparison to node centers, is able to achieve lower estimation é@trdewer detections.
Let’s investigate the mechanisms underlying this relationship by turning to thedshs.

Note that yx underperforms xy, even though yx receives 49.3% madeetitns. There are
2 mechanisms contributing to this phenomena: the time lapse until first detectidhealodation
of detections with respect to the currghtistribution. The xy path takes the robot immediately
through high information regions formed at the edge of several deteetipons (Figure 6.2a). The
yx path scheme (Figure 6.2b), however, requires more time before theenbounters a detection
region, but has the robot drive through the center of a detection refmmall schemes, the prior
starts out as a uniform distribution over a large square region. As tha psbgresses through
the field, this region is reduced by detections (or lack of detections) eliminatisgjble poses and
improving estimation accuracy. Since the prior’s support region is initiallyelasfen the best way
to quickly reduce it is to get a detection. This first detection reduceg tl&ribution to (less than)
the sensing region of the mote. If the robot is close to the center of this reégeestimated position
(the mean of thg distribution) will have low error; if the robot, however, is closer to the edfje
this region, the estimated pose will have higher error.

To further observe this phenomena, the average estimation error tiensus displayed
in Figure 6.3. Figure 6.3a, shows xy’s estimation error sharply fallifigust before yx’s does.
This is caused by xy’s path encountering a sensing region beforelgg's. However, Figure 6.3a
shows that when yx’s estimation error fallf a little later (due to it's encounter with a detection
region), it drops to a lower level. This is caused by yx leading the robotitiir the middle of the
sensing region and xy leading the robot through the edge of a sengiong.réience, the mean of
the posterior distributiop better approximates the actual robot pose for yx than xy after the initial
detections. However, even with yx achieving a better posterior pose estrbgtie- 2 seconds, and
receiving more detections overall, it still under performs the xy path sch&higis due to xy more

consistently reducing the entropy by encountering high information redmmdetection region
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Figure 6.3: Mean estimation error versus time during the initial localization simuatdaptions
denote the path schemes displayed.
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edges). To observe thigfect, the mean estimation entropy versus time is shown in Figure 6.4.
Notice, xy, as expected, has lower entropy more often than yx. Furthermier moment at which

yx has lower entropy is during the time yx lies in the middle of a sensing regioreaed/es several
detections, amounting to a temporary win for yx at the cost of network bialttalw

Now, we turn to comparing more precisely thé&@iences in the 2 intelligent path schemes:
node centers and manual. Turning back to Table 6.3, notice that the péittitlgxpsing the infor-
mation map (manual path) has achieved the best estimation performancetidalpa the manual
scheme has 23.16% less mean estimation error and 48.78% less mean entrdhg tiespective
next best schemes. Additionally, it is encouraging that the manual pathreqilyres a modest
number of detections. The next best performing scheme, node cartpiges 210.00% more de-
tections than the manual scheme. The success of the manual path schetemateddy Figure 6.3
where except for a brief moment, the manual path always maintains the lestesation error.
Finally, observe that, as expected, the manual path scheme maintains ltmetiea entropy at all
times than any other scheme as shown in Figure 6.4.

These simulations provide insight into many of the mechanisms at play for goalizk-
tion. However, since the system dynamics have no noise, the resultcasedoon howféiciently
the system can reduce the large staring prior (a 101 cell by 101 celliedoaan accurate position
estimate. This convergence information is summarized in Table 6.4. Notice tgghermanual
scheme converges to within a 1 cell accuracy of the actual position. Fudihe, the only other
path scheme to converge to within 2 cells takes 129.74% longer than the matiuagheme.
Overall, use of the information map allows the robot to achieve the lowest nstiamagon error
(by 23.16%), the lowest mean entropy (by 48.78%), and the best gmnas times (56.47% faster
to converge to 2 cell accuracy). Additionally, the manual path requirgsaomodest number of
detections per 100 meter (about the same as the 3 simple planners requiei)ing low band-
width utilization. Hence, we observe that good localization is not strictly howyrdetections are
received. In fact, by navigating on the edge of detections, the robotamesriow estimation error
and reduces the number of detections. The information map does notetbgid/hole story either.
The previous map was computed with a prior radiyis: 4 cells implying that it is designed for use
with a system whose estimation error lies in this range. We will show that informitaps can be
useful for maintaining low error, but may not reduce it as quickly as dtws. Presently, informa-
tion maps have proved themselves as a useful tool for sensor netwogati@n. Encouraged by

this, the next section extends the system models to be more realistic.
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Figure 6.4: Mean estimation entropy versus time during the initial localization simusatio

Captions denote the path schemes displayed.
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Path Type Mean Time to Converge (S)
5.66m (8 cells)| 2.83m (4 cells)| 1.41m (2 cells)] 0.71m (1 cell)
Xy 2.33 2.45 — —
yX 1.46 4.17 — —
straight — — — —
node centers 1.33 2.59 4.48 —
manual 1.36 1.43 1.95 1.98

Table 6.4: Path estimation convergence times during the initial localization simulations

6.3 Relaxing for Continuous Dynamics and Sensors

Now that the use of information maps has been justified, this section investigata®
relax the system models to more closely resemble those of realistic sensorkngpatems such as
PEG. In this section, the discrete grid-based robot dynamics from thipsesection are replaced
with a continuous space model. Furthermore, the sensor model is relaxach&ving a square
detection grid to having a continuous circular detection area. Finally, to be oumsistent with
real-world dynamics, a robot error model is introduced and the prior riseefrom a normal
distribution rather than from the uniform distribution used previously.

6.3.1 Robot Dynamics

First, the robot dynamics are relaxed to model those of a simple holonomicagbipped
with a compass. The robot is assumed to be able to quickly set its wheelape@dopel itself in
any direction. Given these constraints, the robot’s state can negledertons and orientation.
More specifically, the robot’s position in the field is represented with the comtisrvalued pose

I e £ c R? evolving according to theontinuous, normal noise dynamigisen by
k1 = I+ U + di (6.7)

where the controly € U = [-U,U]? c R? and the disturbance valueg, d? ~ N(0,03) with a
noise variancerq that is a function of the contrak. In particular, for each component of the control

urk”, we let
um|3

U

m _
oy = max{

whereoq0,0d0min > 0. This enforces that, above a given control threshold, the varisaoesv

0do U'd,O,min} (6.8)

linearly with the magnitude of the control.
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Before Markov localization can be applied to the new dynamics, they mustriverted to
a transition distribution on the discrete pose spScé his requires that the probabilify(lk. 11k, Uk)
can be computed for each possible discrete transitign, [) € £2 and a given contrali. Since
the distribution can be partitioned component-wis@@g.1llk, ux) = p(li,,[IE, ub)p(I2, ,[IZ, u?), the
transition computation is derived for only one dimensiorg {1, 2}. Furthermore, the new (single-
dimensional) transition relation is computed in 2 steps: first, the startinglpasessumed to lie
within a grid [p}", b} c £M and the ending posél, is fixed at a point € L™ then, the ending
posely! , is allowed to vary across a grid cedl], aJ'] c L™, In this derivation, when a pose is only
known to be within a grid cell, the actual pose is assumed to be uniformly distlilagt®ss that
grid cell.

Beginning the derivation, we assume tﬁgg =z 1" = [b]", b, andu is given. Then,

the transition distribution is computed as

P, =27 =[BRS uR) = p(F + U +df = 217 (6.9)
= p(If +d" = z— ulyIm) (6.10)
= fp(l =wil)p(dy' = z— Uy — w)dw (6.11)

b3’
= p(IM = w)p(d" = z— Ul — w)dw (6.12)
1
1 brzn m m
T o _pn p(dk =Zz- U —w)dw (6.13)
2 ~ 91
1 z-ug'-b'
= wf p(dg’ = y)dy (6.14)
2 1 Jz-ul-b}
1 Z-ug'—b' 5
= pmopm f N(y, 0,0)dy (6.15)
2 z=u-b}

__1 [erf(Z U~ bm) erf(z_ e~ bm)] (6.16)
2(b3' - bY) V204 V20rg

whereN(y; 0O, 0'3) is the normal probability distribution function ovgmwith mean O and variance

0'5. Next, the ending pose is allowed to vary across a cell: letfing= [a", &, equation (6.16)
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can be integrated [39] to compupdl  [II7, uf") as
Pty = [a7’, a1l = [, b3, uf

1 farz"[ f(z—uﬂ“—bT) 1:(z—ukm—bg“)] (6.17)
— eff| ———= | —erf| ———= .
2(03' = b7) Jap V2og V2og

_ Y _ _
= o )~ ea) ~ a3) + e (6.18)
= o [d@) - £(02) - £(as) + () (6.19)
wherey = V20, ¢ is given by
@ @ 1 &2
e P 6.20
and thex functions are given by
ap = ay-bf'-u (6.21)
a = a'-bf'-u (6.22)
az = ay-b-uy (6.23)
as = ay-by-uy (6.24)

This provides an analytical method of computing the transition probabilities. ey
there are 2 diiculties associated with using this distribution for Markov localization. First,esinc
this computation is derived from a model with normally distributed noise, theiti@mdistribution
smears the density across the entire field. It attributes a non-zero pitgtialeven the most remote
locations. This unnecessarily slows down the simulations. To avoid this, the isaruncated in
our model to a finite range. A truncated noise model is additionally justifiedulseciypically a
robot does not experience large movement errors unless it encoantebstacle or it transported
to a diferent location, neither of which is part of our model. Additionally, for sanlenvironment,

a more applicable localization system such as multiple hypothesis tracking][d8ul8 be used.
The second diicultly of using this transition distribution is that even with the error limited to a
finite range this computation can be slow in practice. This issue is addregsetblmatting the
computation of the proprioceptive update in the Markov localization algorithrthis model.

Henceforth, the noisq}, dE is restricted to the regior-D, D], and the normal distribution
is replaced with the truncated normal distribution:

if d™ ¢ [-D, D]

N(d™0,02) = (6.25)

@ _(dm)Z .
> @exp( 203) otherwise
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Algorithm 4 Continuous Dynamics Proprioceptive Update
1. givengBn(ln), anduy

2: forall me {1,2} do

, _ u"-D-A/2

3 computes. = [ t———]
myD+A/2

4 computesiy, = [ =1
5 lety™ = {6 Omin + Lo .o, Omasd
6: forall 6™e y™ do
7 computex = (6™ + 1)A — u!
8: compute?, = Jx[¢(@) — 24(a — A) + {( — 2A)]
9: forall 6t e yt, 6% € y? do

10: computes’ ¥ (I): shift Ba(ln) by (6%, 62) adding zeros where necessary
1 ¢2
11: COMPUtEBn(lne1) = Lstept ez P P20 (In)

where
1

¢ erf(D/)
Then, to compute the proprioceptive update, lines 2-6 of Algorithm 3 aneved, and an updated

(6.26)

computation tailored for the new model is inserted between lines 1 and 2. Theoreputa-
tion, listed as Algorithm 4, exploits 2 properties of the dynamics. First, theiti@mgrobability
P, I1Fs uf) can be reduced to a function of only the distan®éetween the starting and ending
grid cell, rather than a function of the actual grid cells. Second, sinceahiat is known and
the noise is bounded, the rang® of possible distances™ with non-zero transition probability
is also known and bounded. More specifically, for any 2 (single-dimangigrid cells separated
by distance’™, the « functions in equations (6.21) through (6.24) only depend®nHence, the
¢ function in equation (6.20) and the transition distribution in equation (6.19) d@epend ors™,
allowing the proprioceptive update to be computed as a shift and a scalengrith distribution is
shifted bys™ and scaled by the transition probability f§F. Referring to Algorithm 4, the com-
putation proceeds by computing the scaling fa&t@ for a shift of 6™ in the m" dimension (lines
2-8). For each dimensiam € {1, 2}, lines 3 through 5 compute the distang&&hat the robot could
move with potentially non-zero transition probability. Then, for each possiisiances™ € ™,
lines 7 and 8 compute the scaling factor given by equation (6.19). Next9iaed 10 compute, for
each 2 dimensional shifsY, 62), a shifted prior distributioﬁﬁl"sz(ln). This distribution is computed
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as

12 n(ln — o1, 62 for (In — 61, 62
gy - [Pl = 07 forla= Py e £ 62

0 otherwise

Finally, line 11 computes the proprioceptive update as a superimpositioiftetisdnd scaled priors.
This extra &ort is not in vain; the time required by localization has been reduced signif-
icantly. Assuming thab, = max{|x!|,[x?[}, then an upper bound on the time complexity of this

algorithm is found to be

2[C1 + Cz + Ny (C3 + C4)] + NZCs + (N, — 1)°Cq (6.28)
= C7N% + CgNy + Co (6.29)
e o) (6.30)

Hence, the time required for the proprioceptive update is reducecﬂ(oﬁ) required by the Markov
localization algorithm, Algorithm 3, to)(nf(). Furthermore, assuming thétis square, them, <
/. Typically, since only a small region of the grid cells are reachable fotiemg/stepp, is much
smaller thany/n;. Hence, the time complexity has been reduced f@(lmf) to something less than
o).
The last detail required by the new dynamics model is a method of simulating tie tru

cated normal distribution. To do this, the standard method of evaluating threémithe cumulative
density function with a uniformly distributed random variable is used. In pdaicgiven a random

variablev ~ U[0, 1] and the cumulative density function

d
f@= [ e (6.31)
the (single dimensional) noise is computed as
= W) (6.32)
_ yerfl(zv_l) (6.33)
a

wherey = V20q anda = 1/erf(D/y).

6.3.2 Robot Prior

Since the error in the robot model is (approximately) normally distributed, tioe is

also allowed to assume an (approximate) normal distribution. For a normalkprtered about a
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~2

robot atlg € £ with covariance{ 7 - ‘ the prior on the discrete spagecan be shown to be
0'
=7 fg"+A/2_|l o 12276 (6.34)
p(l) = - |er —er 6.34
4 O'p \/_ 0'p \/_
g2 +A/2-12 02 - A/2-12

erf| L~ 0 o —erf| 0 o (6.35)

Gp V2 Gp V2

whereg; ; € L is the center of cell. To extend this to a truncated normp(l) is set to O outside the

[-P, P]2 square centered Etand re-normalized.

6.3.3 Sensor Model

The binary sensor model is relaxed by allowing it to operate on the consmadued
robot pose spacé, and the detection area is allowed to become circular. Then, for each sgmplin
period, the probability of detecting a robotlat £ for the k! sensor located & € £ is given by
the continuous, circular, binary sensor model

sy—ai_ i - a2 < rs 030
0 otherwise
whererg > 0 is the detection radius. Again, for Markov localization, this distribution mest b
tessellated to fingp(y|l). Similar work [66, 36] has been done on discretizing the sensor model
for ultrasonic range sensors. Assuming that the robot pose is indepeofdthe sensing model,
n(l,y) = pyilp(l), the distribution can be reduced:

Pl = .D) = pOileGip) (6.37)
g POYPOYIN
- 26 T (6.38)
Jeg,, PO)
Since the exact robot pose is unknown a priori, it is assumedthat U(L£), further reducing the
distribution:
N Jeg, PO
pOil = (1. ) =~ (6.39)
Jegn, 1
]
_ 2 ) 6.40
32 Jrg PO (6.40)
- Pgq (6.41)
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Figure 6.5: Approximating the ared used by the continuous, circular, binary sensor model.

whereA is the grid side length andi = AreaGi j N {I : d(I,a) < rs}).

The areaA can be estimated with a few simple approximations. To begin with, the grid
cell G j is by circumscribed by a circle of radius= %2 as shown in Figure 6.5. We let; € L
be the center of the grid cedl;i j, andd; j« be the distance from the center to i mote, that is,

dijk = 19i,j — all. Then, we delineate the area computation for 3 ranges;@fvalues:
° di,j,k e[0,rs—¢]: A= G
o djre (rs—ers+el: A=a2(E9 %)
o dijke(rs+e00)A=0

The first and third terms are obvious: if the grid cell is entirely enclosedchtirety outside the
sensing area, then the overlapping afeis A2 or 0, respectively. Wheg:, ; is partially covered by
the sensing region, as a easily computable approximation, wé \etry linearly withd; j. Now,

using this in equation (6.41), the approximate discretized sensor model fkoWcalization is

found to be
Ps if O<lax-gl<rs—e
piy=ell) ~ | Bl lacd it e <g-gl<rote (6.42)
0 if  rs+e<llax—dl

wheree = A/ V2.

We have now developed more realistic models for the robot, the sensorrkeéwd the
robot prior. These models have been allowed to operate in the continm@pnd have been
discretized for use with Markov localization. In the next section, the newelscate applied to

several simulations.
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size 100m x 100m
Field grid 200 x 200
sensor distribution uniform
Ns 30
Sensor model continuous, circular, binary
ls 5m
Ps 0.90
prior model discretized, truncated normal
Estimated Prior 0p 0.75m
P 35p=225m
Estimator prior model discrete, box
p 50 cells
model continuous, normal noise
U 5m
Dynamics 0do 0.1m
0°d,0,min 0.01m
D 30g=03m
T
Pose lo [5 10] :
lgoal |70 9q
Simulation trials - 100 .
path type Xy, YX, straight, node centers, manual, hybrid

Table 6.5: Systems model and parameters used during the localization simulatidmproved
models.

6.4 Continuous Simulations

Using the new sensor, robot dynamics, and prior models from the psesixtion, this
section runs several localization simulations. First, the simulation setup iskiEkciThen, the
results are presented and discussed.

The simulation setup is summarized in Table 6.5. The simulations use the same 100m by
100m field with 30 sensors uniformly deployed as the previous section.roliwd’s starting and
ending points remain the same. The rest of the models, however, hawgechakor the sensor
nodes, the continuous, circular binary sensor model with detection nagiti§ meters and detec-
tion probability ps = 0.90 is used. The estimated prior, used for calculating the information map, is
a truncated normal with standard deviatiop = 0.75 m. The distribution is truncated at the' 3~
radius which amounts to a 9 cell by 9 cell support square (similar to pregiouglations). The
estimator is initialized with the same 50 cell radius discrete, box prior. The netincous, normal
noise dynamics model is used with control bouhd 5 meters and noise varianmg = 0.01 me-
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Figure 6.6: Information map using the improved models. White dots outlined in bégrksent
motes, and dotted circles represent their detection region. Backgrolordf the plot represents

the amount of information.

ters. The noise remains low for this simulation so tffee the new models have on the simulation
can be observed independently. Later, a closed-loop control will Becacind the noise variance
will be increased. The same path schemes, save one, are used; thb@atwer, they generate are
different. One path scheme, hybrid, is added to the line up; it is a combinatiorcbé&ges: node
centers and manual. The hybrid path initially follows the node centers patbnbe the estimation
entropy has decreased below a given threshold, it jumps over to the hpattuand remains on this
until the destination is achieved. This path scheme is motivated by the factdimatiea previously,
the information map is tuned to a estimation prior with supporting radius of 4 cetishandriving
through the node centers quickly reduces large initial priors. This patsisaed to be provided
for now, but, later in this section, the determination of this path is explored.

As before, the information map is computed prior to simulation. The information map
is shown in Figure 6.6. As expected, this information map has circular higihniafiton regions
as opposed to the previous simulation with square regions. Additionally, tpeseaf the high
information regions tend to rollfb smoothly for this new map. This is due to the information

map computation using a normal prior with circular support instead of a umifsior with square
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Estimation Error (m)|| Estimation Entropy

Path Type Min \ Mean\ Max || Min \ Mean\ Max
Xy 2441 291 | 822 || 442| 454 | 6.05
yX 508 520 | 5.32 || 6.29| 6.30 | 6.51

straight 3.54| 3.99 | 7.29 | 5.24| 5.34 | 5.92
node centers| 1.93| 2.15 | 3.99 || 3.65| 3.76 | 4.55
manual 2.16| 232 | 286 | 3.31| 3.38 | 3.75
hybrid 152| 1.69 | 266 || 3.10| 3.21 | 3.55

Table 6.6: Estimation error and entropy for each path scheme acrosssiiitniang the localization

simulations with improved models.

support. This property also provides the sense that the high informagemmsehave smaller width
than before, even though the priors used similar diameter values.

Once the information map is computed, the localization simulation commences. Ror eac
path scheme, 100 trials are ran, and various statistics are recordech.p&facscheme, typical
estimated path, and information map is shown in Figure 6.7. The 3 basic patdmexiixy, yX,
and straight) use the same paths as before (Section 6.2), but the estimatidthm@lglearly has
more dfficulty in converging to the true path. In particular, the typical estimated pathsotio
converge to and track the actual path like before. The 3 intelligent schgpieally do much better
at converging to the actual path. Notice, unlike before, the node cesmersnanual path route
through diferent regions of the field. In particular, the node centers path stays teftrod the
field and goes through one region with particularly high information. The @igrath, on the other
hand, goes through this region, then heads to the right and goes thanatiter high information
region. Finally, notice that the hybrid path is a combination of the previousi@so initially, it
follows the node centers route; then, it follows the manual route.

A summary of the estimation statistics, shown in Table 6.6, looks similar to the previous
set of simulations. The intelligent path planners have proven themsehasleabtackling the new
system models equally well. The amount the mean estimation error changebébasic schemes
to the intelligent schemes, however, is not as drastic as before. Inadjegiethe path schemes have
a more dificult time reducing the localization error. Additionally, the manual path has slightly
higher mean estimation error than the node centers path, but lower estimdtigoyeii his occurs
due to the phenomenon mentioned in Section 6.2: the information map is tunearfall @sor, the
system starts with a large prior, and the timing and location of initial detectionsadically efects

the initial convergence of the estimation error. These properties are thieatien for the hybrid
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50 100 50 100

(c) straight (d) node centers

50 100 50 100

(e) manual () hybrid

Figure 6.7: Basic simulation overview plots from the localization simulations with ivgatonod-
els. Depicted is the robot starting (white circle) and ending (white squasiiigns, the robot path
(solid black line), and the typical estimated robot path (solid light green lung@rsmposed on the

information map. Each figure is captioned with the path scheme used.
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path: use the node centers path to quickly reduce the initial estimation egoruge the manual
path to maintain a reduced estimation error. Although, we have yet to diseidg\iblopment of
the hybrid path, we see from Table 6.6 that the hybrid path achieves 21e43%stimation error
and 5.03% less entropy than the next best paths, respectively. Tlpsrgithe notion that node
centers is good at initializing the estimator and reducing the error to the sizdedéetion region;

whereas, the information based path is good at further reducing and maigtiw error.

A closer look at the estimation error traces, shown in Figure 6.8, shows pneceely
how the estimation error decreases over time. Notice that the manual pathelsigd the node
centers and hybrid path schemes in reducing the estimation error. The inéral drop-¢ on all
the schemes is due to when they (on average) receive their first deteStime the manual path
tends to skirt the detection regions, it takes longer to receive its firsttietec The node centers
and hybrid scheme are as quick as any scheme at receiving their festide by driving the robot
right to a sensor. Once the manual path, however, reduces the estimatiptodevels similar
to those of the other 2 intelligent schemes, it performs equally well at kedpengrror low. In a
later section, more noisy simulations will demonstrate that the manual path actoe$iybdtter at
maintaining low error than the other schemes.

A look at the estimation entropy traces, shown in Figure 6.9, reveals fudibt@nctions
amongst the path schemes. While neither node centers nor manual stascbeirig the quickest
to reduce entropy, it is clear that the manual path converges to a lowepentilue. After £1.2
seconds, the average entropy of the manual path is about 18.5% leskghahthe node centers,
providing evidence that the manual path tends to produce a more cordgtenate. Again, here
we see the hybrid path provides the best of both worlds. Not only does fiezform node cen-
ter's estimation error, but it keeps pace with and outperforms all the schienterns of entropy
reduction.

Observing the entropy traces, we can more adequately address howbtiie path is
chosen. A entropy threshold value is chosen for switching between te centers and manual
paths. Since, the manual path exploits the information map, and the informatiois toaed to a
system with a truncated normal proprioceptive prior vvjﬁw: 2.25 cells, the threshold should be
set to switch to the manual path when the actual prior is similar to this distributioa.effittopy
of this distribution is 4.36, hence, the hybrid path switches from node ceotee it (on average)
achieves an entropy value of this or lower. The node centers path ashigs by the 3rd way point
(it achieves entropy of 3.15). So the hybrid path follows the first 3 waptpamf node centers,
then switches to the manual path. In practice, this switching mechanism dbkbaveoaccess to



87

12

10

mean estimation error (cells)
o
T

time (s)

12

mean estimation error (cells)
o
T

time (s)

(b) node centers (solid black), manual (dashed green), hybritettblue)

12

10

mean estimation error (cells)
o
T

time (s)

(c) all path schemes

Figure 6.8: Mean estimation error versus time during the localization simulations witbveg

models. Captions denote the path scheme displayed.
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Figure 6.9: Mean estimation entropy versus time during the localization simulatitmswproved
models. Captions denote the path scheme displayed.
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Path Type Mean Time to Converge (S)
5.66m (8 cells)| 2.83m (4 cells)| 1.41m (2 cells)] 0.71m (1 cell)

Xy 0.56 0.69 — —

yX 1.40 1.61 — —
straight 0.43 — — —
node centers 0.32 0.44 0.87 —
manual 0.41 0.83 1.11 —
hybrid 0.33 0.49 0.79 —

Table 6.7: Estimation convergence times during the localization simulations with iegrogdels.

| Path Type | Length (m)] ty(s) | ng | ng/100 m |

Xy 145.00 2.80| 7.97 5.50

yX 145.00 2.80| 1.85 1.28
straight 103.08 1.60| 5.34 5.18
node centers. 151.03 2.60 | 19.16 12.69
manual 216.58 3.30| 24.36| 11.25
hybrid 219.97 3.40| 20.49 9.31

Table 6.8: Path information for each path scheme during the localization simslatitmimproved

models.

several prior runs of the node centers scheme, and, hence, theiswitabuld be done based on
the run-time value of entropy (with some hysteresis).

For completeness, Table 6.7 shows the estimation error convergence tintles fmath
schemes. This table reiterates that the basic path schemes provide poaom armdrage, unreliable
convergence. The intelligent schemes are all capable of converginighio @& grid cells accuracy,
with the hybrid path providing the quickest convergence time by 9.20% ogerekt fastest scheme.
Additionally, notice that the hybrid scheme sacrifices a minuscule amountrekegence time
initially to gain more later.

The final statistics collected during the simulations, related to path informatiodend
tections, is compiled in Table 6.8. This table provides a comparison of the padlkd bn length,
travel time, and number of detections. The manual path lives up to expesthtiorquiring fewer
detections per 100 meters than the node centers path; this is achieved byheledges of detec-
tion. Even though the hybrid path is the longest path, it only requires a m@ddsdetections for
every 100m of travel. Apparently, the hybrid path has provided thedstshation performance at

the lowest bandwidth utilization.
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The goal of this work has been to learn how to adapt the well-performingiahacheme
for simple systems (as shown in Section 6.2) to a scheme for real systenasti¢nlar, care must be
taken to use the information maps at the correct time. We observed that theerérs path works
well for quick initialization of a system and the information based path workelt far the fine-
tuning and continual maintenance of the estimation system. This leads us tatgmnjbat a more
complete information map path planning system may make use of several infarmegjus, each
one tuned to a dierent prior entropy value. Such a system could switch amongst the irtforma
maps as the online entropy values change. This behavior was approxinyatesl hybrid scheme
and was shown to perform well.

To more adequately explore the performance of information based systenmeed to
develop and test a closed-loop system with more significant noise levelati@r of a closed-loop
system requires the development of automatic path planners that cathevaianually chosen
paths. Looking forward enlightens our previous choices. The reasohave been relying on
information maps with relatively small priors is because once a closed-l&iprayis developed,
the entropy will, on average, be low and will stay low due to the closed-loaprivdtion map based
path planner. These notions are explored in the next chapter.
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Chapter 7

Information Maps and Path Planning

Previous sections have investigated the computation of information maps anatittg

in choosing useful paths for navigation. This section builds on this wodkdavelops several
techniques for automatic path planning using node information and informatipe. nkarst, the
semantics of entropy and information and how they can be interpreted asia dscussed. Then,
using the cost functions, automatic techniques for determining paths avsshscalong with their
respective time complexity. Finally, closed-loop localization simulations areipeefd for multiple
way-points on multiple maps, and the results are compared. By the close a&dtians a complete
and fully functional sensor network navigation system will have beeeldped and evaluated on a

set of realistic system models.

7.1 Interpreting Entropy

Entropy provides a measure of a distribution’s disorder — the larger thepgnthe more
scattered a distribution. The information value for a particular cell provicewith a measure
of how much a prior's entropy is expected to change after sensor gmsadifaken together, the
information map provides a method for estimating how much less scattered ths egionation
is expected to be after sensor readings. However, the mapping frormawfascatter to entropy
change is not clear. This section develops the relationship betweeneatrdgnformation and
provides an interpretation of information as a measure of the expectecticedin a distribution’s
support.

Consider the relationship between entropy and cells covered. This reldfiaiepends on

the distribution used as shown in Figure 7.1. Notice, the entropy valuesfottmal distribution
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(a)d/2 = 05, (b)d/2 = 15, (c)d/2 = 25, (d)d/2 = 45, (e)d/2 = 85,
H = 0.00 H =220 H =322 H =439 H =567

(f) 30 = 0.5, (g) 3 = 15, (h) 3 = 2.5, (i) 3 = 4.5, (i) 30 = 8.5,
H =034 H =162 H =281 H =413 H =550

Figure 7.1: Entropy values for 2 example distributions with increasing sizes29x29 grid with
the mean at cell (13.5). The top plots are of uniform distributions oved by d square; the bottom
plots are of a normal distribution with given standard deviation. All plots liskethteopy valueH.

are smaller than those for the uniform distribution. This is always the caseniform distribution
provides an upper bound. A uniform distribution covenmeglls, has a probability density gf= %

for each cell. The entropy of this distributiortg = — 3, plog(p) = log(n). Notice, the logarithmic
progression of the entropy versus the area from left to right in FigureGiven an entropy value
H derived from a uniform distribution, the number of cells covered by thigilligion is given by

n = &', Furthermore, assuming a uniform distribution with entréfay(coveringny = e cells) is
reduced to a uniform distribution with entropi; (coveringn; = e cells), the decrease in support
is An = ng — ny = eo — g1, For the information map computation, where a prior with constant
entropyHp is used, it is convenient to rewrite the change in support as

H1

An = glo _ gl = gHo _ gHo=l — gHo(1 _ 7 (7.1)

where we have used that= Ho — Hy. This term is derived for uniform distributions, but can be
used to aid us in interpreting information for other distributions too.

Given this relationship between information and support, overall costildy wan be
interpreted in many ways. We present 2 methods. First, thecamsild be an fiine transformation
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of the change in support, such as

k = Cp—c1(An) (7.2)
= co-ce@a-e™) (7.3)
= co+Co(e” —1) (7.4)

wherecy, ¢1, ¢ > 0 andcy is chosen largest enough such that 0. This representation assigns low
costs to large reductions in number of cells involved in the support. Altegigtihe cosk could
be used to represent the increase in supgiarneter such as

k = Co—ci(vNo— V) (7.5)
= co—cl\/ﬁ(l— \/9) (7.6)
= co+c(Vel-1) (7.7)

wherecy, ¢1, C2 > 0 andcy is chosen largest enough such that 0. This representation assigns low
costs to large reductions in the diameter of the support. Unless stated otheheigosk always
refers to the formerféine cost function. The next section uses the cost interpretation to develop
path planners.

7.2 Automating Path Planning

Up to this point, a complete closed-loop navigation system sans a path plaseedn
developed. This section fills in the gap by developing several path prms@ne of which have
already been used in previous simulations without explanation. An ovepfie@ach path planner
along with running time analysis and example paths is presented.

The previously used simple path planners (xy, yx, and straight) and wbwaind fixed;
hence, the following investigation focuses on only the intelligent path planfidrree such plan-
ners are discussedhformation grid node centersandinformation clusters The general modus
operandi of each of these planners is the same: encode theSp@acktany path information into a
weighted, directed graph; then, apply a least cost optimization routine &vagera path iC. The
difference in each planner is the manner in which the graph is constructedheFoptimization
routine, many tools exists [25, 80], such as Dijkstké, or Bellman-Ford. To avoid path planners
that create loops or back-track significantly, the graph edge weightestricted to positive values.
Hence, generalized dynamic programming routines like Bellman-Ford areaqated. Addition-
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Figure 7.2: Paths generated by the information grid path plaper { andcy = 10) for 3 diferent

mote topologies.

ally, since the primary focus is nofficiency, but path #ectiveness, heuristic based routines such
asA* are ruled out. For our work, the Dijkstra algorithm is used for finding theskiveost path.

The Dijkstra algorithm requires a weighted, directed gr@phith verticesV and edge&
such that, for each edge= (u, v) € E, the cost of going fronu to v is given byw(u, v) defined by the
positive cost functionv : E — [0, o). Given starting and ending verticag us € V, the algorithm
computes the lowest cost pathe V*, whereV* is the set of all finite sequences of vertices. For
general graphs, the time complexity of this algorithrd{®2) wheren, = |V/|.

The most straightforward application of the Dijkstra algorithm is realized bijnfloema-
tion grid path planner. This path planner encodes the entire information magraph. A similar
path planer [78] has been previously developed that additionally incatgman obstacle map. In
our approach, the set of vertices for the graph is defined to be thé akkgod cells{G; j}. Then,
each grid cell (vertex) is defined to have an edge connecting to the immedidjabent grid cells
(vertices). Finally, the overall cost to go from vertex g; ; to vertexv = g is defined as a linear
combination of the ending cell’s information cogt) = «(gx)) and the 2-norm distance between
the cells’ centers:

W(U, V) = Cek(V) + Cgllu — VII2 (7.8)
where the mixing proportions, ¢y are non-negative. This function assigns far away cells with low

information a high cost. Figure 7.2 shows the path generated by the inforngatibpath planner
for 3 different node configurations. For each plot, the field spans 100 mete@®byeters, and the
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Figure 7.3: Paths generated by the node centers path planner féer@ili mote topologies.

robot starts in the lower left %5 10]T and ends in the upper right%vto 9({. These plots have used

¢, = 1 andcy = 10. It turns out, for more general valuesmfandcy, that this path planner tends to
choose fairly straight paths deviating only slightly to encounter higher infiomaegions. Later
simulations will demonstrate that the paths generated by this planner tend te ftealvel time to

the destination by sacrificing some reduction in estimation error. A disadwanfabis planner is

the computation time required. Since it uses all the grid cells as vertices, theenoimertices

is ny = ny, inducing aO(n,Z) running time. The remaining path planners that are presented require
significantly less time.

The node centers path planner embodies the idea that the robot shealthdosugh many
detection centers on the way to the destination. This planner uses the saedboations and the
robot’s starting and ending positions as the graph’s vertices for the Rijriorithm. It creates
edges amongst all mote locations and robot starting and ending positiehgneades the cost

from u to v as the exponential of the 2-norm distance:
w(u, v) = glu-Vk (7.9)

The advantage to using an exponential in the cost function is that it eagesithe planner to
take many small leaps towards the destination (encountering severa);notieseas, without the
exponential, the lowest cost path would be the straight line connecting ttiegtand destination
positions. Three runs of the node centers planner are shown in Figurdhe chosen paths tend
to find routes supported by many close detection areas. The plannerefdl prpath along many

close motes to a path that take large jumps in between groups of motes as gttbvmtiddle plot.
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Figure 7.4: Paths generated by the information clusters path plamner 100 andd, = 5) for 3
different mote topologies.

Finally, since this planner only uses the mote locations and 2 robot positieest@es, the running
time isO(N2) whereNs is the number of motes and is typically much less that

The final path planner, information clusters, combines several of théepeideas. It at-
tempts to generate a path that prefers many small leaps (like node centeris)gdaigh information
regions (like information grid). This planner uses 2 parameters: the nushbandidate vertices,
and thepadding ¢, around each vertex. Both these parametéfessehow candidate vertices for the
Dijkstra algorithm are chosen. More specifically, starting with an empty sedrtites, the planner
finds the grid celu with the lowest cosk(u), and adds this grid cell to the set of vertices. Then, all
grid cells withind,, (according to the norm on the partition spageare removed as possible vertex
candidates. This procedure now repeats by choosing the next loaststartex, adding it to the
set of vertices, and removing neighboring cells. The set of verticesrsased untih, have been
identified. Then, each vertex is connected to every other vertex, aratieecost ofi to v is the
same exponential distance used previously:

w(u, V) = glu-Vk2 (7.10)

Examples of this planner fax, = 100 andd, = 5 are shown in Figure 7.4. The paths generated
are similar to the node centers paths, but instead of routing through a entig,¢hese paths tend
to ride the edge of detection. In fact, the paths produced by this planaeuite similar to the
manual paths used in Sections 6.2 and 6.4. Hence, a hybrid planner expimtle centers and
information clusters may provide results superior to each planner aloreramdtrated previously
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Figure 7.5: Paths generated by the information clusters path planner xedaniiote topology. The
padding is fixed atl, = 8 cells, andh, varies across the sgt5, 50, 100 from left to right.

with a hybrid manual and node centers path. Overall, this algorithm has vhatade of choosing
intermediate way-points in high information regions and choosing paths with staoy jumps
between way-points. Finally, the time required for this algorithi®@s?), and, hence, is set by the
ny parameter which is typically much less than

One potential disadvantage of the information clusters planner is the nebdddsec?2
parameters, andd,, for a particular deployment. To better understand these parameterssaweb
the dfect varying them has on the generated paths. In Figure 7.5, the paddirtiebn fixed at
dp = 8 cells, and the number of verticaeg is varied across the sg25,50, 100, from left to right.
Increasing the number of vertices provides the planner with more waysgoichoose from. Since
the padding is fixed, additional way-points are chosen far from prewviogs. This tends to make
the generated path more jagged: it takes more frequent short jumpsallydlis generates a path
that more precisely follows the high information regions.

In Figure 7.6, the number of candidate vertices is fixed,at 50, and the paddindp is
varied across the s¢?, 4, 8} from left to right. Increasing the padding forces the candidate way-
points to be more spread out. As shown in the plots, this tends to generat¢hpaithaviate farther
from a straight path than paths with less padding. However, if paddingrisased more, the gener-
ated paths may adhere closer to straight paths: since candidate wayapeiptshed far away from
a good route, the path tends to use fewer points creating a straighter liie. fisllowing, we will
denote the information clusters planner configured wjthertices andl, padding as information

clusters (v, dp).
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Figure 7.6: Paths generated by the information clusters path planner xedaniiote topology. The
number of candidate vertices is fixedrgt= 50, and the padding, varies across the s, 4, 8}

from left to right.

7.3 Closed-Loop Performance

Using the path planners developed in the previous section, this sectiammpsr$everal
localization simulations. In particular, the navigation system can now be testadiaeed-loop con-
figuration for several scenarios. This section introduces the localizatiaration setup, performs
a set of closed-loop simulations, and analyzes the results.

To fully test the navigation system, the localization simulations tests each patteplann
in a closed-loop configuration for multiple way-points and for multiple senstwark topologies.
In particular, the simulator first randomly generates 1ffedént sensor network topologies. For
completeness, these topologies and accompanying information maps are lispgeindix B. Each
topology is generated by uniformly distributing 30 motes on the 100m by 100 Tiken, for each
topology, a set of mini-experiments are run. For each mini-experiment, steenszonfiguration and
parameters used are listed in Table 7.1. The improved models for the s#yrsmmics, and prior
developed in Section 6.3 are utilized. The sensor is configured to haw &i®nce of detecting
an object within 5 meters. The information maps are computed using the trumeated! prior
with a (single-dimensional) standard deviation of 0.75 m. This prior is trunctéee 3, radius
creating a 9 cell by 9 cell square support. The initial estimation of the rolmm#ion is given
by a uniform distribution covering a 21 by 21 square of cells. Previouslations used an initial
prior with a much larger diameter (101 cells) since the focus was on estimatvergence. For
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size 100m x 100m
Field grid 200 x 200
sensor distributior) uniform
Ns 30
Sensor model continuous, circular, binary
ls 5m
Ps 0.90
prior model discretized, truncated normal
Estimated Prior Tp 0.75m
P 355 =225m
Estimator prior model discrete, box
o 10 cells
model continuous, normal noise
U 5m
Dynamics 0do 0.84 m
0°d,0,min 0.05m
D 30g=251m
51(70(|80f |12
Pose lo, Iéoal’ ISoal’ ISoal [10] [90] [22} [83}
trials 100
Simulation Xy, yX, straight, node centers,
path planners | . : o .
information grid, information clusters

Table 7.1: System models and parameters used for the closed-loop, multiplecalgation sim-

ulations.
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the current simulations, a smaller prior is used and the focus is shifted to bththe closed-loop
system can maintain a tight estimate and closely follow a desired path. The cusjmormal
noise model of the dynamics is used with 5 meter control bounds and a ndseceaof 0.7077.
Again, since these experiments focus on closed-loop performancegidevariance is increased
to 0.70m? from previous experiments that used a minimal noise variance off@>0For each trial,
the robot is provided with a starting position [& 10]T (in the lower left corner), and given 3

T T
remote way-points to accomplish in ord%m 94 (upper, rightcorner)[,so 24 (lower, right

corner), anc[lz 83]T (upper, left corner).

Each mini-experiment compares Qfdrent path planners. Each planner is depicted in
Figure 7.7 with the robot path and estimated path for a typical run of the firstaxgeriment. The
top 3 plots show the basic path planners tested: xy, yx, and straight. Miagniag planners are in-
telligent planners: a node center, an information grid, andféreint configurations of information
clusters. Clearly, the paths chosen vary heavily depending on the plandié¢he parameters. An
interesting characteristic of the intelligent planners is that sections of piep@ths are frequently
reused for multiple way-point paths. For example, using the information ctugtenner in Fig-
ure 7.7i, when the robot navigates from the lower, right corner to thembgft corner, much of
the previous path is reused. This leads us to conjecture that a deplaysa setwork implicitly
creates several stable, static routes that are consistently useful dtizilog a robot. Such routes
could prove useful for a variety of reasons: the path planner carcedtie computation required by
reusing paths or several unused motes in remote regions could belogeatepext to a heavy use
route.

For each path, resulting statistics are first averaged for each miniseeuey and then
across mini-experiments. Additionally, statistics are collected after the fingtpoimt has been
reached providing time for the system to settle. Several key results froginthiations are shown
in Table 7.2. Notice that the basic planners are challenged to reduce theesteaation error
below 1.60 meters. Additionally, the most basic intelligent path planner, naderseimproves the
estimation performance over the best performing basic planner, straygh4®%. The remaining
intelligent planners progressively push the mean estimation error down fo3imeeter range and
outperform the best simple path planner by anywhere from 12.58% to%9.5{&xt, notice that
the node centers planner generates a lengthy path (49.06% longer thehottest path planner,
straight) with a high number of detections per 100 meters (24.34% more detettimmthe next
largest value). Hence, this path planner, which ignores the informationterags to produce paths
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100

50

(c) straight

100 100 100

50 50

0 0
50 100 50 100 50 100

(d) node centers (e) information grid (f) information clusters (15,1)

50 100

(g) information clusters (40,15) (h) information clusters (60,12) (i) information clusters (100,5)

Figure 7.7: Basic simulation overview plots for the multiple way-point, multiple magikataon
simulations. Depicted is the desired robot path (thick solid red line), the acthat path (solid
black line), and the typical estimated robot path (solid light green line) supesi@tbon the infor-
mation map. Each figure is captioned with the path planner and parameters used
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path mean Ny Ng/100 m es?rﬁzzon mean

length (m) error (m) entropy
Xy 352.00 24.75 7.03 1.67 4.40
yX 352.00 22.31 6.34 1.64 4.40
straight 263.16 23.14 8.79 1.59 4.43
node centers 392.27 66.82 17.06 1.52 4.35
information grid 272.33 26.14 9.60 1.39 4.13
information clusters(15,1) 337.12 42.15 12.52 1.35 4.20
information clusters(60,12 458.88 63.14 13.72 1.32 4.07
information clusters(40,15 429.28 56.48 13.16 1.35 4.18
information clusters(100,5 461.18 60.52 13.13 1.28 3.90

Table 7.2: Simulation statistics collected for each path planner running a dlugedbcalization

simulation across 10 node topologies with 100 trials each.

which provide little apparent benefit over simple path planners. Other intelld@nners, however,
exploiting the information map, tend to generate more suitable paths. For instaadgformation
grid planner not only generates paths with lengths that rival the straaghtgbanner (only 3.48%
longer) and reduces detections per 100 meters to a modest level (ont n@Pe than the best
performing basic path planner), but it also reduces the estimation erruficagtly (anywhere
from 12.58% to 16.77% over the basic schemes). Such a planner wouldbi&glyeferred to the
basic planners in most scenarios.

The information clusters planners, as a group, produce the least estiraation They
also tend to produce some of the longest paths with a high number of detqmiometer, though
still fewer detections than required by the node centers planner. Theseeps tend to sacrifice
path length and number of detections for reduced estimation error and tadifopuime. Finally,
the closed-loop performance provides more support for the informasisedoplanners. Due to the
accuracy of the estimation, the basic path schemes and the node centeng $ehd to track the
desired path to within about 1.03 meters; however, the other plannerghadesired path within
about 0.85 meters (a 17.48% improvement).

This chapter began with providing a more tangible interpretation of informataost.
Using this interpretation, several path planners were developed thataged varying paths de-
pending on the mote topology. Finally, several sets of closed-loop simulatieresperformed to
demonstrate the benefit of information based planners. In particularsidemonstrated that 2

varieties of information based planners provided improved performaveeadl the simple path
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schemes and even the node centers planner which exploits node locationatibn. The next

chapter provides an overview and summary of our research.
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Chapter 8

Conclusions

Our work focused on how to develop control and navigation systems pleahte &ec-
tively when embedded with real world wireless sensor networks (WSBig)h networks are com-
posed of many small sensing and computation nodes, or motes. Often times&@cexecutes a
variety of services such as time synchronization, localization, entity detetaater election, and
message communication. The composite system provides not only a compléutistisensor,
but also an interactive and variable sensing mechanisms. To furthendarstanding of control
system design within such an environment, we began by deploying segatalorld sensor net-
works. From this experience, we extracted models of the sensing pladfwdirdeveloped practical
techniques for architecting control systems. Next, using robot navigasieur benchmark, we de-
veloped a simulator and tested several control system designs. ThisdeatKied intelligent path
planning as an important method for improving localization and navigation ioseesvorks. Us-
ing an information topology, we developed several path planning techs)ignd demonstrated that
these techniques could reduce bandwidth utilization and improve localizatareay.

One of the initial sensor network and control (SNAC) systems that we geglis de-
scribed in Chapter 2. A grid of 121 motes was deployed in an outdoor fieldl&ing mobile
robot pursuit-evasion games (PEGs). This chapter began by disguksirgeneral sensing and
communication algorithm implemented by the sensor network. These details allbevedader
to understand the complexity of using WSNs as a distributed sensor. Addlifjadha control and
navigation system utilized by the pursuer robot was presented. Thisrsyalied on 2 sensors: the
sensor network and an on-board GPS sensor. The GPS sensoesessary to provide reliable
estimates of the pursuer location. Without such estimates, it was unclear é@artuit algorithm
should be designed.
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Once deployed, we turned to characterizing the performance and refstilis system.
In particular, PEG was deemed a successful deployment with the puoddicapturing the evader
in all runs. However, the performance of the sensor network was lassttpected. An analogous
deployment indicated that detections from the sensor network arrivaxg 8W02 seconds, with a
latency of 1.75 seconds, and an detection error of 2.42 meters. Aftepghiieaion of several
idealistic filtering techniques (zero movement noise Kalman filtering, latencyvamand faulty
detection removal), the final estimation error could be reduced to 1.53 m@étensoted that these
characteristics are dramaticallyfidirent from the GPS sensor which provides robot position esti-
mation at 10 Hz with 0.02 meters accuracy. Hence, we identified the primaryctiistirnetween a
high performance local sensor (GPS) and a large-scale distributedr8¥SN). In order to facili-
tate the design of a control system informed solely by a WSN, we identifietadesharacteristics
of sensor networks that challenge the performance of traditional ¢sgst@ms. These challenging
characteristics were grouped into 3 categories: sensor error, ¥@seseand network induced error.

Using our experience from PEG and the list of challenging characteridiesext chap-
ter, Chapter 3, developed a general control architecture. In pariéotaeach challenge, a list of
services useful for combating each challenge was developed. In ®talas services were iden-
tified: predictive control, neighborhood model based estimation, intelligatt planning, multi-
modal control and networking, sensing coordination, time synchronizaterd shaking, and mote
maintenance. Using these services, a unified architecture for both ttrel®ystem and the motes
was developed. We noted that viewing the control architecture as aeséased architecture has
the advantage of freeing the designer from the traditional control syséeatdigm. More specifi-
cally, a service based architecture allows the designer to create sahat@steract and vary the
sensing system.

After enumerating both a set of challenges and a set of solutions, Chaptsggan our
development of a simulator for further investigating SNAC systems. Usingmwious experi-
ence and results from the literature, models were developed for ther setamrk that account
for many properties of real world deployments: sensing noise, seatimation, calibration dif-
ferences, packet collision, radio reception range, multi-hop latendte fattery lifetime, faulty
hardware, and loose time synchronization. More specifically, we desetlasensor model based
on the magnetometer used during the PEG deployment. Objects are detectedrdaace with
a magnetic dipole far field model. Additionally, the operational status of theosdiasdware was
modeled with a state machine permitting several states: normal, saturationumogsponsive, and

unpredictable. Next, we developed a communication layer model that opar&tstates: broadcast
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and multi-hop. The broadcast communication model probabilistically accotontddAC delays,

packet collision, and reception ranges. The multi-hop communication moc@liated for packet
loss and cumulative packet latency. Next, we developed a mote platform amminting for a
mote’s finite lifetime and individual time synchronization. Finally, we modeled theatien rou-

tine used during the PEG trials. In addition to our WSN models, we also dedetopebot model
based on car like kinematics.

After developing our system models, we instantiated control and estimatiinesefrom
our unified control architecture. For the controller, 2 distinct way-poaigation services were
developed: feedback and predictive control. For a basic estimatioicsean extended Kalman fil-
ter was designed. Two additional augmentations to the estimator were deletgbeork latency
compensation and faulty node filtering. Using the aforementioned models anevthyedeveloped
control and estimation services, several simulations were ran. First,nagegeat of simulations to
compare the performance of the control and estimation services. Thedatgimaireinforced the
difficulty of applying basic feedback control to a SNAC system. Additionally, araehstrated that
our estimation and control architecture was able to achieve the best navigedidts: the goal was
more frequently achieved and the overall estimation error was less. Hemceontrol architec-
ture utilizing model predictive control and an estimation system tailored to therseetvork was
more dfective for way-point navigation than traditional control techniques.tNexunderstand the
relationship between a robot’s path and the localization accuracy, wesvaras simulations with
varying robot paths. In particular, some paths were chosen to leadlibetiwough areas densely
covered in sensors with the intention to decrease the estimation error. Timed&tions revealed
the complex nature of navigation in sensor networks. Our results indicaegath planning can
significantly dfect the number of detections, the detection error, and the overall estimation e
However, it was not clear how a path should be planned to consistently\umpstimation accu-
racy. We observed that paths through densely covered areascptbdath more and less detection
error than our baseline, straight path. Additionally, such paths contdystiatreased the position
estimation error, but not the orientation estimation error.

Intrigued by these results, in Chapter 5, we began to formalize the relapdpestwveen
path and localization accuracy. We began by reviewing Markov localizatidrinformation. Next,
we formalized the computation of an information map, with particular attention beiithtp the
time complexity. For situations where the computation of the sensor model amdnaritel require
constant time, we showed that the information map computation has a time comple@(hyﬁn;)

wheren is the cardinality of the pose space awds the cardinality of the measurement space. Not-
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ing that this time complexity can be limiting in practice, we reviewed an approximatenatmn
map computation algorithm developed by Roy et al [78]. This algorithm wawrsto reduce the
time complexity by computing across a reduced pose and measurementNpzai;eve developed
a sensor model and a robot prior model and computed several infornmadips. In particular, we
introduced the discrete binary sensor model and the discrete box pri@l.mdsing these models
and a uniformly deployed sensor network, we varied the size of the pnibrcamputed several
information maps. We discussed the time required to compute these maps on imardievare and
discussed how the information map could be updated in real time to compensata$or nodes
coming on-line or going f-line. Additionally, we noted that regions both far from sensing areas
and close to node locations were low in information; whereas, regions twdke edge of detec-
tion were high in information. We noted that the information topology explainsavbgth planner
developed to simply drive in densely covered regions or close to nodesaihtyprovide the best
localization results.

Verifying the error reducing ability of information based paths with simulatioas war-
ried out in Chapter 6. First, Markov localization was formalized as an algorithie noted the time
complexity for this computation()(nlzn + nits) wheret; andts are the times required to compute
the transition distribution and the sensor model, respectively. Next, we utteodhe basic discrete
adjacent cell dynamics for robot movement and, using these dynamicsgvaral localization sim-
ulations for a set of fixed paths. In particular, we compared 5 pathssi8 paths (xy, yx, straight),
a node by node path (node centers), and a manually chosen informasied path (manual). It
was demonstrated that the information based path achieves the lowest rtieti@s error and
mean entropy along its path, while requiring only a modest number of detecharttermore, we
demonstrated that the node centers path achieves the next lowest @rreguires 210.00% more
detections. Hence, it was shown that the simple and intuitive path planniegsecio go node by
node, is far from optimal.

Next, the models used for the localization simulations were replaced with mdisticea
models. First, the robot dynamics were allowed to become continuous with ihpdisributed
noise that varies with the control magnitude. This model was then systematicai@isted for use
with Markov localization. The resulting transition function was a complex fundtiat incurs high
computation costs. To address this, the transition function was relaxed s@meoonly the most
likely transitions, and a new update computation was used in place of the istavidekov move-
ment update. It was shown that the new computation reduces the time compfekigynoovement

update frorr()(nlz) to something less tha@(n;). Next, the robot prior was relaxed to be continuous
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and normally distributed. This model was easily tessellated for use in the simslakorally, the
sensor model was relaxed to have a circular detection region. Againgdbe tessellation of this
model, a simple approximation was made for the sake of computation time. With the rdeismo
and their computationallyfgcient counterparts, we again ran several localization simulations using
the same path schemes as before (xy, yx, straight, node centers, maitludile addition of one:

a hybrid scheme. The hybrid path scheme was developed to use both theeradrs path and
the manual path in order to quickly reduce and, henceforth, maintain a towagien error. This
scheme was shown to outperform the other schemes.

With verification that information based paths perform well for realistic moaedsthen
moved on to developing automatic path planners in Chapter 7. In this chageresented a
brief introduction to entropy, information, and interpretation of information sn&jsing this back-
ground, 3 automatic path planners were developed: node centergatiimn grid, and information
clusters. The node centers planner embodied the concept of havibgtanavigate node by node
to the destination. Hence, this planner made use of the node topology. Bheation grid and
information clusters planners additionally incorporated knowledge of tloenretion topology. In
particular, the information clusters planner was designed to mimic the manualgyathious used.
Next, all the path planners and various configurations of them were tesitegla closed-loop, mul-
tiple way-point simulation. It was shown that the node centers path plaasgrdrformance similar
to that of the simple path planners (xy, yx, straight). Whereas, the peafaze of information based
planners outperformed the other planners by providing reduced labatizerror and path devia-
tion. We observed that, the information grid path planner provided a shtrttp the destination
and low bandwidth utilization and the information clusters planner providededkelbcalization
accuracy and path following abilities.

Overall, our work provided insight into real world SNAC system deploytmevith an
emphasis on way-point navigation. We deployed one of the first andslaBMAC systems. We
identified the challenges for such systems and developed a control amdtes solution in the
form of a service based architecture. We developed a practical WSKIrhaded on real world
experience and previous results from the literature. We combined dhiteatcire and our WSN
model into an application level simulator suitable for studying control probl&kesdemonstrated
the benefits of several of the services from our architecture. ThigmaWocus on the intelligent
path planning service, we generated information based path plannedsadstrated their ability

to reduce localization error and path deviation.
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Appendix A

Sensor Network and Control System

Simulator Parameter Values

This section provides a list of the parameter values used by the models innba se
network and control system simulator discussed in Chapter 4.

e Physical layout

— Field dimensions: 20 m by 20 m
— Number of motes: 100

— Mote distribution: uniform

e Sensor model

Dipole height df ground:dy, =2 m

2x107%7d3, _ 10°%d
Ho -2

Dipole strengthM = i A/m allowingBg(p =0)=10*T=1G

Permeability of free spacgp = 47 x 1077 Wh/(Am)

Saturation threshol®Bires = 980 mG

— Saturation measuremersy = 980 mG

— Saturation durationtggt =2 S

— Normal sensors: % p, — pur — Pup = 94 %

+ Bias distribution:N(0, 20°) mG

+ Noise variance distributionV(0, 20?) mG
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— Noisy sensorsp, =2 %

« Bias distribution:N(0, 20%) mG

» Noise variance distributionV(0, 100?) mG
— Unpredictable sensorgyp = 2 %

+ Measurement distribution¥ (uup, o3 )
* Distribution standard deviatiom:,, = 50 mG

* Distribution meanuyp = —oup V2erf(2pgetect— 1) + Bihres Where pgetect = 0.05
is the probability of the measurement exceeding the detection threshold.

— Unresponsive sensorpyr = 2 %
e Communication model
— Packet drop probabilitypgrop = 0.30
— Single hop lag distributionZ{[0, 0.3] s
— Reception probabilityd in meters) :pqisi(d) ~ R(2.414,1)
— Average hop distanceﬁhop =2414m

e Mote platform

— Low energy probability;pe = 2 %
— Mote expiration time distribution/[0, 30] s

— Mote initial sensing time distributionZ{[0, 1.5] s
e Mote algorithm parameters

— Reporting thresholdBreport = 136 mG where the sensor will nominally detect af2
meters

— Reporting periodTreport = 0.3 S
e Car model

— Wheelbaseb = 0.15m
— Wheel speed bounds:e [-0.25,0.25] mys

— Turning angle bounds) € [-20, 20] degrees providing a®2 m turning radius
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— Wheel speed error variance? = 0.01

— Steering angle error varianceg =0.01
e Feedback controller parameters

— Wheel speed bound estimaig;x = 0.3 nmys

— Proportional constanpg = 1
e Estimation parameters

0 ifn<1,
- p(nv) =
1 otherwise

— Expected packet delayyg =1s
— Wheel speed bounds estimatenh, vmax = [-0.3,0.3] m/s

— Steering angle bounds estimat@if, dmax = [-0.4, 0.4] radians

e Simulator parameters

Sample timeT = 0.03 s
T

T
Initial state:[xo 90] :[5 5 3r/2]
T

.
Initial state estimatetio @)0] =[4 4 7r/2]

-
Destination positionx; = [10 14
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Appendix B

Node Topologies for Closed-Loop

Simulations

This section provides a depiction, in Figure B.1, of the node topologies &mwumation

maps used during the multiple map, multiple way point, closed-loop simulations of S&c3io
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Figure B.1: The 10 sensor network topologies and accompanying informratps used during the

closed-loop simulations.



