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Abstract

Automating Malware Detection by Inferring Intent

by

Weidong Cui

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Randy H. Katz, Chair

An increasing variety of malware like worms, spyware and adware threatens both personal and

business computing. Modern malware has two features: (1) malware evolves rapidly; (2) self-

propagating malware can spread very fast. These features lead to a strong need for automatic actions

against new unknown malware. In this thesis, we aim to develop new techniques and systems to

automate the detection of new unknown malware because detection is the first step for any reaction.

Since there is no single panacea that could be used to detect all malware in every environment,

we focus on one important environment, personal computers, and one important type of malware,

computer worms.

To tackle the problem of automatic malware detection, we face two fundamental challenges:

false alarms and scalability. We take two new approaches to solve these challenges. To minimize

false alarms, our approach is to infer the intent of user or adversary (the malware author) because

most benign software running on personal computers is user driven, and authors behind different

kinds of malware have distinct intent. To achieve early detection of fast spreading Internet worms,

we must monitor the Internet from a large number of vantage points, which leads to the scalability

problem—how to filter repeated probes. Our approach is to leverage protocol-independent replay

of application dialog, a new technology which, given examples of an application session, can mimic

both the initiator and responder sides of the session for a wide variety of application protocols
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without requiring any specifics about the particular application it mimics. We use replay to filter

frequent multi-stage attacks by replaying the server side responses.

To evaluate the effectiveness of our new approaches, we develop the following systems:

(1) BINDER, a host-based detection system that can detect a wide class of malware on per-

sonal computers by identifying extrusions, malicious outbound network requests which the

user did not intend; (2) GQ, a large-scale, high-fidelity honeyfarm system that can cap-

ture Internet worms by analyzing in real-time the scanning probes seen on a quarter mil-

lion Internet addresses, with emphases on isolation, stringent control, and wide coverage.

Professor Randy H. Katz
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Motivation

An increasing variety of malware like worms, spyware and adware threatens both personal and

business computing [32, 86]. Since 2001, large-scale Internet worm outbreaks have not only com-

promised hundreds of thousands of computer systems [56, 54, 97] but also slowed down many parts

of the Internet [54]. The Code Red worm [56] exploited a single Microsoft IIS server vulnerability,

took 14 hours to infect the 360,000 vulnerable hosts, and launched a flooding attack against the

White House web server. Using only a single UDP packet for infection, Slammer [54] took about

10 minutes to infect its vulnerable population and caused severe congestion in both local and global

networks. Spyware [73] jeopardizes computer users by disclosing their personal information to third

parties. Remotely controlled “bot” (short for robot, an automated software program that can execute

certain commands when it receives a specific input) networks of compromised systems are growing

quickly [13]. The bots have been used for spam forwarding, distributed denial of service attacks,

and spyware. In short, modern threats are causing severe damage to today’s computer world.

Before we describe the problem this thesis tackles, we first look at the features of modern

malware.

• Malware evolves rapidly. In a recent study [86], Symantec reported that it detected more

than 21,000 new Win32 malware variants in 2005, which is one order of magnitude larger
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than the number of variants seen in 2003. In addition to the volume increase, we also see

more attacks against personal computers that exploit not only buffer overflow vulnerabilities

but also user misbehavior in using web browser, instant messaging, and peer-to-peer software.

• Self-propagating malware can spread very rapidly. While it took 14 hours for the Code

Red worm to infect its vulnerable hosts, it took only 10 minutes for the Slammer worm to do

so. Staniford et al. presented several techniques to accelerate a worm’s spread in [83, 82].

Their simulations showed that flash worms, which propagate over a pre-constructed tree for

efficient spreading, can complete their propagation in less than a second for single packet

UDP worms and only a few seconds for small TCP worms. In another study [57], Moore et

al. demonstrated that effective worm containment requires a reaction time under 60 seconds.

These features lead to a strong need for fast, automatic action against new unknown malware.

In the next section (Section 1.2), we describe the research problems we attempt to tackle in this

thesis and discuss the research challenges we face. In Section 1.3, we present our contributions and

the structure of this thesis.

1.2 Problem Definition and Challenges

To fight against new unknown malware, there are two potential approaches: proactive and re-

active. Proactive approaches focus on eliminating vulnerabilities to prevent any malware. Reactive

approaches concern about actions after malware is unleashed. We believe that there is a long way to

go before we could achieve zero attacks. Thus we follow reactive approaches in this thesis. To react

to a new malicious attack, the first step is to detect the new malware. Since there are more and more

malware variants and self-propagating malware can spread very rapidly, we need fast, automatic

detection. In this thesis, we aim to develop new techniques and systems to automate the detection

of new unknown malware.

To tackle this problem, we face two fundamental challenges.

• False Alarms: To detect new unknown malware means we cannot use signatures. Instead,

we must detect it by recognizing certain patterns possessed solely by some malware. In this

2



thesis, we focus on patterns one can infer by monitoring its anomalous behavior. Anomaly-

based intrusion detection techniques have been studied for many years [4, 18], but they are

not widely deployed in practice due to their high false alarms. Axelsson [5] used the base-

rate fallacy phenomenon to show that, when intrusions are rare, the false alarm rate (i.e., the

probability that a benign event causes an alarm) has to be very low to achieve an acceptable

Bayesian detection rate (i.e., the probability that an alarm implies an intrusion). In automatic

detection and reaction, we tolerate fewer false alarms because actions on false alarms would

interrupt normal communication and computation.

To minimize false alarms, the approach in this thesis is to infer the intent of user or adversary

(the malware author).

– User Intent: It is a unique characteristic on personal computers. Most benign software

running on personal computers shares a common feature, that is, its activity is user

driven. Thus, if we can infer user intent, we can detect break-ins of new unknown

malware by identifying activity that the user did not intend. In other words, instead

of attempting to model anomalous behavior, we model the normal behavior of benign

software: their activity follows user intent. Since users of personal computers usually

use input devices such as keyboards and mice to control their computers, we assume

that user intent can be inferred from user-driven activity such as key strokes and mouse

clicks. Software activity may include network requests, file access, or system calls. We

focus on network activity in this thesis. The idea is that an outbound network connection

that is not requested by a user or cannot be traced back to some user request is treated

as likely to be malicious. A large class of malware makes such malicious outbound

network connections either for self-propagation (worms) or to disclose user information

(spyware/adware). We refer to these malicious, user-unintended, outbound network

connections as extrusions. Therefore, we can detect new unknown malware on personal

computers by identifying extrusions. In Chapter 3, we present the details of the extrusion

detection algorithm and a prototype system we built.

– Adversary Intent: Authors of malware have unique intent. For example, worm authors

intend to spread their malicious code to vulnerable systems via self-propagation; spy-

3



ware authors intend to collect private information on victim machines; bot authors in-

tend to control their bots and execute various malicious tasks on them. In our work, we

focus on computer worms. Given the intent of worm authors, we detect new worms by

identifying self-propagation. Our basic approach is to first let a machine become in-

fected, and then let the first machine infect another one, and so on. By doing so, we can

observe a chain of self-propagation if the first machine is compromised by a computer

worm. We have never seen a false alarm by using this approach (see Section 5.4.3).

• Scalability: We must achieve early detection of fast spreading Internet worms for any effec-

tive defense. To do so, we must monitor the Internet from a large number of vantage points.

This leads to the scalability problem—how to analyze the large amount of data efficiently in

real-time.

A central tool that has emerged recently for detecting Internet worm outbreaks is the

honeyfarm [80], a large collection of honeypots fed Internet traffic by a network tele-

scope [6, 34, 58, 96]. In our work, we use high-fidelity honeypots to analyze in real-time

the thousands of scanning probes per minute seen on the large address space of our network

telescope. To do so by using a small number of honeypots, we leverage extensive filtering and

engage honeypots dynamically. In extensive filtering, we filter scanning probes in multiple

stages: (1) the scan filter limits the total number of distinct telescope addresses that engage a

remote source; (2) the first-packet filter drops a connection if the first data packet unambigu-

ously identifies the attack as a known threat; (3) the replay proxy filters frequent multi-stage

attacks by replaying the server side responses until the point where it can identify the attack.

The replay proxy leverages a new technology—protocol-independent replay of application

dialog—we develop in this thesis. In replay, we use a script automatically derived from one or

two examples of a previous application session as the basis for mimicking either the client or

the server side of the session in a subsequent instance of the same transaction. The idea is that

we can represent each previously seen attack using a script that describes the network-level

dialog (both client and server messages) corresponding to the attack. A key property of such

scripts is that we can automatically extract them from samples of two dialogs corresponding

to a given attack, without any knowledge of the semantics of the application protocol used in
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the attack. In Chapter 4, we present the details of protocol-independent replay. In Chapter 5,

we describe the design and implementation of our honeyfarm system.

In next section, we highlight our contributions and describe the structure of this thesis.

1.3 Contributions and Structure of This Thesis

In this thesis, we tackle the problem of automating detection of new unknown malware. Because

there are many different kinds of malware and they infect computer systems in many different

environments, there is no single panacea that can detect all malware in every environment. We

recognize this and focus on one important environment (personal computers) and one important

type of malware (computer worms). We develop the following algorithms and systems:

• Extrusion Detection: Our algorithm is based on the idea of inferring user intent. It detects

new unknown malware on personal computers by identifying extrusions, malicious outbound

network requests which the user did not intend. We implement BINDER, a host-based detec-

tion system for Windows that realizes this algorithm and can detect a wide class of malware

on personal computers, including worms, spyware, and adware, with few false alarms.

• Protocol-Independent Replay: We develop RolePlayer, a system which, given examples

of an application session, can mimic both the initiator and responder sides of the session

for a wide variety of application protocols. A key property of RolePlayer is that it operates

in an application-independent fashion: the system does not require any specifics about the

particular application it mimics. We can potentially use such replay for recognizing malware

variants, determining the range of system versions vulnerable to a given attack, testing defense

mechanisms, and filtering multi-stage attacks.

• GQ Honeyfarm System: We develop GQ, a large-scale honeyfarm system that ensures high-

fidelity honeypot operation, efficiently discards the incessant Internet “background radiation”

that has only nuisance value when looking for new forms of activity, and devises and enforces

an effective “containment” policy to ensure that the detected malware does not inflict external
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damage or skew internal analyses. GQ leverages aggressive filtering, including a technique

based on protocol-independent replay.

The rest of this thesis is organized as follows. In Chapter 2, we discuss the related work in

the areas of intrusion detection and Internet epidemiology and defense. It provides the background

from which this thesis is developed.

In Chapter 3, we describe the design of the extrusion detection algorithm and the implementa-

tion and evaluation of the BINDER prototype system. We present the results of both real-world and

control-testbed experiments to demonstrate how effectively the system detects a wide class of mal-

ware and controls false alarms. Our limited user study indicates that BINDER controls the number

of false alarms to at most five over four weeks on each computer and the false positive rate is less

than 0.03%. Our control-testbed experiments show that BINDER can successfully detect the Blaster

worm and 22 different email worms (collected on a departmental email server over one week).

In Chapter 4, we describe the design and implementation of the RolePlayer system that can

mimic both the client and server sides of an application session for a wide variety of application

protocols without knowing any specifics of the application it mimics. We present the evaluation of

RolePlayer with a variety of network applications as well as the multi-stage infection processes of

some Windows worms. Our evaluations show that RolePlayer successfully replays the client and

server sides for NFS, FTP, and CIFS/SMB file transfers as well as the infection processes of the

Blaster and W32.Randex.D worms.

In Chapter 5, we describe the design and implementation of the GQ honeyfarm system which

we built to detect new worm outbreaks by analyzing in real-time the scanning probes seen on a

quarter million Internet addresses. We report on preliminary experiences with operating the system

at scale. We monitor more than a quarter million Internet addresses and have detected 66 distinct

worms in four months of operations, which far exceeds that previously achieved for a high-fidelity

honeyfarm.

Finally, in Chapter 6, we summarize our work and contributions, and discuss directions for

future work.
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Chapter 2

Related Work

In this chapter, we discuss the related work in the areas of intrusion detection and Internet

epidemiology and defense. Instead of covering every piece of work in these areas, we focus on

the most relevant work and aim to provide the background from which we developed this thesis.

We start with intrusion detection (see Section 2.1), describing techniques proposed in the areas

of host-based intrusion detection (see Section 2.1.1) and network-based intrusion detection (see

Section 2.1.2) Then we describe the research efforts made in the area of Internet epidemiology

and defense (see Section 2.2), which motivate our work on developing a large-scale, high-fidelity

honeyfarm system.

2.1 Intrusion Detection

Research on intrusion detection has a long history since Anderson’s [4] and Denning’s [18]

seminal work. Prior work on intrusion detection can be roughly classified along two dimensions:

detection method (misuse-based vs. anomaly-based) and audit data source (host-based vs. network-

based). Misuse-based (also known as signature-based or rule-based) intrusion detection systems use

a set of rules or signatures to check if intrusion happens, while anomaly-based intrusion detection

systems attempt to detect anomalous behavior by observing a deviation from the previously learned

normal behavior of the system or the users. Host-based intrusion detection systems leverage audit
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data collected from end hosts, while network-based intrusion detection systems monitor and analyze

network traffic.

2.1.1 Host-based Intrusion Detection

Early work on anomaly-based host intrusion detection was focused on analyzing system calls.

In [23], Forrest et al. modeled processes as normal patterns of short sequences of system calls and

used the percentage of mismatches to detect anomalies. Their work was based on two assumptions:

(1) the sequence of system calls executed by a program is locally consistent during normal opera-

tion, and (2) some unusual short sequence of system calls will be executed when a security hole in a

program is exploited. Ko et al. [38] proposed to use a specification language to define the intended

behavior of every program. The adoption of their scheme is limited because of the low degree of

automation. To detect intrusions, Wagner and Dean [100] used static analysis to learn “program

intent” and then compared the runtime behavior of a program with its intent. They proposed three

models to describe program intent: call graph, stack and digraph. The advantages of their tech-

niques are: a high degree of automation; protection against a large class of attacks; the elimination

of false alarms. The limitation is that program source code is required. Sekar et al. [75] proposed

to train a finite-state automaton using a trace of system calls, program counter and stack informa-

tion and monitor system calls to check if they follow the automaton in real-time. Compared with

Wagner and Dean’s work, this method does not require program source code but may have false

alarms due to the incompleteness of system call traces. Liao and Vemuri [48] applied text catego-

rization techniques to intrusion detection by making an analogy between processes and documents

and between system calls and words. They used a k-Nearest Neighbor classification algorithm to

classify processes based on system calls. In [101], Wagner and Soto showed that it is possible for

attackers to evade host-based anomaly intrusion detection systems that use system calls. Besides

system calls, the behavior of storage [65] and file [113] systems has also been used for intrusion

detection. Pennington et al. [65] proposed to monitor storage activity to detect intrusions using a set

of predetermined rules. Their approach has limited ability to detect new attacks due to the usage of

rules. In [113], Xie et al. proposed to detect intrusions by identifying “simultaneous” creations of
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new files on multiple machines in a homogeneous cluster. They correlated the file system activity

on a coarse granularity of one day, which slows the detection.

Anomaly-based host intrusion detection techniques are not widely deployed in practice. A key

obstacle is their high false alarm rate. Axelsson [5] used the base-rate fallacy phenomenon to show

that, when intrusions are rare, the false alarm rate has to be very low to achieve an acceptable

Bayesian detection rate, i.e., the probability that alarms imply intrusions. In contrast, signature-

based host intrusion detection systems are well adopted in practice. Commercial products like

Symantec [87] and ZoneAlarm [120] protect hosts against intrusions by filtering known attacks, but

they cannot detect new ones.

Recently, dynamic data flow analysis [62, 15] has been used to detect attacks that overwrite a

buffer with data received from untrusted sources (e.g., buffer overflow attacks). These approaches

have very good detection accuracy, but high performance overhead limits their deployment.

In summary, previous host-based intrusion detection systems have the following limitations.

Signature-based solutions have low false alarm rates but do not perform well on detecting new

attacks. Anomaly-based solutions can detect new attacks but have high false alarm rates. Moreover,

anomaly-based solutions that use system calls are likely to fail to detect new kinds of attacks like

spyware and email viruses because these attacks usually run as a new program and its program

behavior in terms of system calls may be similar to other benign programs.

2.1.2 Network-based Intrusion Detection

The first network intrusion detection system (NIDS) was developed by Snapp et al. in [78]. Lee

and Stolfo [44, 45] proposed a framework for constructing features and models for intrusion detec-

tion. Their key idea is to use data mining techniques to compute frequent patterns, select features,

and then apply classification algorithms to learn detection models. To detect network intrusions,

Sekar et al. [76] proposed a specification language to combine traffic statistics with state-machine

specifications of network protocols. In [92], Thottan and Ji used a statistical signal processing tech-

nique based on abrupt change detection to detect network anomalies. Snort [71] is a signature-based

lightweight network intrusion detection system. Paxson [64] developed Bro, a system for detecting
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network intrusions in real-time. Bro applies the design philosophy of separating mechanisms from

policies by separating the event engine and the policy script interpreter. The former is for processing

packets at the network/application level, while the latter is for checking events according to poli-

cies and generating real-time alarms. Ptacek and Newsham [68] presented three classes of attacks

against network intrusion detection systems: insertion (attackers send packets that are only seen by

the NIDS but not the end system), evasion (attackers send packets that create ambiguities for the

NIDS), and denial of service attacks. Handley et al. [26] studied the evasion problem and intro-

duced a traffic normalizer that patches up the packet stream to eliminate potential ambiguities. To

detect new unknown attacks exploiting known vulnerabilities, Wang et al. [102] developed Shield,

which prevents vulnerability-specific, exploit-generic attacks by using network filters built based on

known vulnerabilities.

In summary, anomaly-based network intrusion detection suffers from false alarms while

signature-based solutions do not reliably detect new unknown attacks.

2.2 Internet Epidemiology and Defenses

2.2.1 Overview

Since 2001, Internet worm outbreaks have caused severe damage that affected tens of millions

of individuals and hundreds of thousands of organizations. The Code Red worm of 2001 [56]

was the first outbreak in today’s global Internet after the Morris worm [20, 79] in 1988. It not

only compromised 360,000 hosts with a Web server vulnerability but also attempted to launch a

distributed denial of service attack against a government web server from those hosts. The Blaster

worm [97] exploited a vulnerability of a service running on millions of personal computers. The

Slammer worm [54] used only a single UDP packet for infection and took just 10 minutes to infect

its vulnerable population. The excessive scan traffic generated by Slammer slowed down many

parts of the Internet. Also using a single UDP packet for infection, the Witty worm [55] exploited

a vulnerability, which was publicized only one day before, in a commercial intrusion detection

software. It was the first to carry a destructive payload that overwrote random disk blocks. It
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also started in an organized manner with an order of magnitude more ground-zero hosts than any

previous worm, and apparently was targeted at military bases. Weaver et al. provided a taxonomy

of computer worms in [104].

Staniford et al. presented several techniques to accelerate a worm’s spread in [83, 82]. They

described the design of flash worms, in which the worm author collects a list of vulnerable hosts,

constructs an efficient spread tree and encode it in the worm before propagating the worm. Their

simulations showed that flash worms can complete their spread in less than a second for single

packet UDP worms and only a few seconds for small TCP worms. In another study [57], Moore et

al. demonstrated that effective worm containment requires a reaction time under 60 seconds. These

results suggest that automated early detection of new worm outbreaks is essential for any effective

defense.

2.2.2 Network Telescopes

Understanding the behavior of Internet-scale worms requires broad visibility into their work-

ings. Network telescopes, which work by monitoring traffic sent to unallocated portions of the IP

address space, have emerged as a powerful tool for this purpose [58], enabling analysis of remote

denial-of-service flooding attacks [59], botnet probing [116], and worm outbreaks [42, 54, 55, 56].

However, the passive nature of network telescopes limits the richness of analysis we can perform

with them; often, all we can tell of a source is that it is probing for a particular type of server, but

not what it will do if it finds such a server. We can gain much richer information by interacting

with the sources. One line of research in this regard has been the use of lightweight mechanisms

that establish connections with remote sources but process the data received from them syntactically

rather than with full semantics. For example, iSink [117] uses a stateless active responder to generate

response packets to incoming traffic, enabling it to discriminate between different types of attacks

by checking the response payloads. The lightweight responder of the Internet Motion Sensor [6]

bases its analysis on payload signatures. The responder acknowledges TCP SYN packets to elicit

the first data segment the source will send, using a cache of packet payload checksums to detect

matches to previously seen activity. This matching, however, lacks sufficient power to identify
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new probing that deviates from previously seen activity only in subsequent data packets, nor can it

detect activity that is semantically equivalent to previous activity but differs in checksum due to the

presence of message fields that do not affect the semantics of the probe (e.g., IP addresses embedded

in data). Pang et al. used a detailed application-level responder to study the characteristics of

Internet “background radiation” [63]. The work shows that a large proportion of such probing

cannot in fact be distinguished using lightweight first-packet techniques such as those in [6, 117]

due to the prevalence of protocols (such as Windows NetBIOS and CIFS) that engage in extensive

setup exchanges.

In summary, network telescopes provide early and broad visibility into a worm’s spread, but

have no or limited capability of actively responding to probes. This makes them prone to false

alarms when they are attempted for fast detection of novel worms.

2.2.3 Honeypots

A honeypot is a vulnerable network decoy whose value lies in being probed, attacked, or com-

promised for the purposes of detecting the presence, techniques, and motivations of an attacker [81].

Honeypots can run directly on a host machine (“bare metal”) or within virtual machine environments

that provide isolation and control over the execution of processes within the honeypot. Honey-

pots can also be classified as low-interaction, medium-interaction or high-interaction (alternatively,

low-fidelity or high-fidelity). Low-interaction honeypots can emulate a variety of services that the

attackers can interact with. Medium-interaction honeypots provide more functionalities than low-

interaction honeypots but still do not have a full, productive operating system. One example is the

use of chroot in a UNIX environment. High-interaction honeypots give the attackers access to a

real operating system with few restrictions.

In [66], Provos proposed Honeyd, a scalable virtual honeypot framework. Honeyd can person-

alize TCP response to deceive Nmap [51] (a free open source utility for network exploration or

security auditing, which can be used to determine what operating systems and OS versions a host

is running) and create arbitrary virtual routing topologies. Honeyd can be used for detecting worms

and distracting adversaries. However, low-interaction honeypots’ ability to detect novel worms is
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limited to their emulation capability in terms of the number of services they can emulate and their

incapability of emulating unknown vulnerabilities. High-interaction honeypots behave exactly as

a real host and therefore allow accurate, in situ examinations of a worm’s behavior. Moreover,

they can be used to detect new attacks against even unknown vulnerabilities in real operating sys-

tems [29]. However, they also require more protection in containment and isolation.

Advances in Virtual Machine Monitors such as VMware [95], Xen [7], and User-Mode Linux

(UML) [19] have made it tractable to deploy and manage high-interaction virtual honeypots. The

Honeynet project [29] proposed an architecture for high-interaction honeypots to contain and ana-

lyze attackers in the wild, focusing on two main components: data control and data capture. The

data control component prevents attackers from using the Honeynet to attack or harm other systems.

It limits outbound connections based on configurable policies and uses Snort Inline [53] to block

known attacks. The data capture component (also known as Sebek [30]) logs all of the attacker’s

activity and transmits data to a safe machine without the attacker knowing it. In [17], Dagon and

colleagues presented HoneyStat, a system that uses high-interaction honeypots running on VMware

GSX servers to monitor memory, disk and network activity on the guest OS. HoneyStat uses logit

regression [106] for causality analysis to detect a worm when discovering that a single network

event causes all subsequent memory or disk events.

By themselves, honeypots serve as poor “early warning” detection of new worm outbreaks be-

cause of the low probability that any particular honeypot will be infected early in a worm’s growth.

Conceptually, one might scatter a large number of well-monitored honeypots across the Internet

to address this limitation, but this raises major issues of management, cost, and liability. Spitzner

presented the idea of “Honeypot Farms” to address these issues [80]. These work by deploying a

collection of honeypots in a single, centralized location, where they receive suspicious traffic redi-

rected from distributed network locations. Jiang and Xu presented a VM-based honeyfarm system,

Collapsar, which uses UML to capture and forward packets via Generic Routing Encapsulation

(GRE) tunnels and Snort-Inline to contain outbound traffic. However, since in Collapsar each hon-

eypot has a single IP address, the probability of early detection is still low due to the limited “cross

section” presented by the honeypots.

In summary, we still lack solutions that can automatically detect and analyze Internet worm
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outbreaks in seconds. In this thesis, we develop a large-scale high-fidelity honeyfarm system to

tackle this challenge.

2.2.4 Defenses

There have been many research efforts on detecting scanning worms. When a host is compro-

mised by a scanning worm, it will try to spread by scanning other hosts while a large fraction of

them may not exist. Williamson [107] presented a virus throttle, a rate-limiting solution that throt-

tles the rate of new connections made by a compromised host. The virus throttle can detect and

contain fast scanning worms. Zou et al. [121] proposed a new architecture for detecting scanning

worms. Their basic idea is to detect the trend, not the rate of monitored illegitimate scan traffic

because at the beginning of its spreading, a scanning worm propagates almost exponentially with

a constant, positive rate [122]. They used a Kalman filter to compute the parameter modeling the

victim increasing rate. If that parameter stabilizes and oscillates slightly around a positive constant

value, it means a new worm outbreak. Based on the theory of sequential hypothesis testing, Jung et

al. [35] proposed an on-line port scan detection algorithm called Threshold Random Walk (TRW).

In practice, TRW requires only four or five connection attempts to detect a malicious remote hosts.

In [74], Schechter et al. proposed a hybrid approach that integrates reverse sequential hypothesis

testing and credit-based connection rate limiting. Weaver et al. [105] proposed a solution based

on TRW to detect and contain scanning worms in an enterprise environment at very high speed by

leveraging hardware acceleration. They showed that their techniques can stop a scanning host after

fewer than ten scans with a very low false positive rate.

Email worms like SoBig and MyDoom have caused severe damage [112]. Several solutions

have been proposed to defend against email worms. Gupta and Sekar [25] proposed an anomaly-

based approach that detects increases in traffic volume over what was observed during the training

period. Their assumption was that an email virus attack would overwhelm mail servers and clients

with a large volume of email traffic. In [31], Hu and Mok proposed a framework based on be-

havior skewing and cordoning. Particularly, they set up bait email addresses (behavior skewing),

intercept SMTP messages to them (behavior monitoring), and forward suspicious emails to their

own SMTP server (cordoning). Based on conventional epidemiology, Xiong [114] proposed an at-
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tachment chain tracing scheme that detects email worm propagation by identifying the existence of

transmission chains in the network.

It is important to generate attack signatures of previously unknown worms so that signature-

based intrusion detection systems can use the signatures to protect against these worms. Several

automated solutions have been proposed in the past. Kreibich and Crowcroft [41] proposed Honey-

comb, which uses Honeyd as the frontend. After merging connections, Honeycomb compares them

horizontally (the nth incoming messages of all connections) and vertically (all incoming messages

of two connections) and uses a Longest Common Substring algorithm to find attack signatures.

In [77], Singh et al. developed Earlybird, a worm fingerprinting system that uses content sifting

to generate worm signatures. Content sifting is based on two anomalies of worm traffic: (1) some

content in a worm’s exploit is invariant; (2) the invariant content appear in flows from many source

to many destinations. By using multi-resolution bitmaps and multistage filters, Earlybird can main-

tain the necessary data structures at very high speed and with low memory overhead. Kim and

Karp [36] proposed Autograph, which automatically generates worm signatures by analyzing the

prevalence of portions of flow payloads. Autograph uses content-based payload partitioning to di-

vide payloads of suspicious flows from scanning sources into variable-length content blocks, then

applies a greedy algorithm to find prevalent content blocks as signatures. All these solutions do

not work with polymorphic worms whose content may be encoded into successive, different byte

strings. In [61], Newsome et al. proposed Polygraph, which automatically generates signatures

for polymorphic worms. Polygraph leverages a key assumption that multiple invariant substrings

must often be present in all variants of a worm payload for the worm to function properly. These

substrings typically correspond to protocol framing, return addresses, and poorly obfuscated code.

Some worm behavior signatures [21] can be used to detect unknown worms. Network traffic

patterns of worm behaviors include (1) sending similar data from one machine to the next, (2) tree-

like propagation and reconnaissance, and (3) changing a server into a client. However, it is not clear

how the behavioral approach can be deployed in practice because it is difficult to collect necessary

information.
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2.3 Summary

In this chapter, we reviewed the related work in the areas of intrusion detection and Internet

epidemiology and defense. We observe that anomaly detection techniques are not widely deployed

in practice due to their high false alarms. We also see that, in the war against Internet worms, it

is critical to achieve fast automatic detection of new outbreaks. The previous work described in

this chapter sets the stage for our work. In the next chapter, we present our work on detecting

new unknown malware on personal computers by capturing user-unintended malicious outbound

network connections.
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Chapter 3

Extrusion-based Malware Detection for

Personal Computers

The main goal of our work is to develop new techniques and system architectures to automate

the process of malware detection. In this chapter, we describe how we can infer user intent to

automatically detect a wide class of new unknown malware on personal computers without any

prior knowledge. In Chapter 4 and Chapter 5, we will describe how we can infer adversary intent to

detect fast spreading Internet worms automatically and quickly.

3.1 Motivation

Many research efforts [64, 71, 102] and commercial products [87, 120] have focused on pre-

venting break-ins by filtering either known malware or unknown malware exploiting known vul-

nerabilities. To protect computer systems from rapidly evolving malware, these solutions have two

requirements. First, a central entity must rapidly generate signatures of new malware after it is

detected. Second, distributed computer systems must download and apply these signatures to their

local databases before they are attacked. However, these can leave computer systems temporarily

unprotected from newly emerging malware. [86] estimated that 49 days elapsed on average between

the publication of a vulnerability and the release of an associated patch in 2005. On the other hand,
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the average time for exploit development was less than 7 days in 2005. In particular, worms can

propagate much more rapidly than humans can respond in terms of generation and distribution of

signatures [83]. Therefore, we need schemes to detect new unknown malware when the signatures

are not available.

Anomaly-based intrusion detection have been studied for detecting new unknown malware. [28]

used short sequences of system calls executed by running processes to detect anomalies caused by

intrusions. [45] proposed a data mining framework for constructing features and training models

of network traffic for intrusion detection. [119] proposed a scheme based on the distinctive timing

characteristics of interactive traffic for detecting compromised stepping stones. Recent work of [47]

correlated simultaneous anomalous behaviors from different perspectives to improve the accuracy

of intrusion detection. The performance of anomaly-based approaches is limited in practice due to

their high false positive rate [5].

In short, it is highly desirable to develop new anomaly-based malware detection techniques that

can achieve low false positive rate to be useful in practice. We tackle this problem on a specific but

important platform—personal computers (i.e., a computer that is used locally by a single user at any

time).

A unique characteristic of personal computers is user intent. Most benign software running on

personal computers shares a common feature, that is, its activity is user driven. Thus, if we can

infer user intent, we can detect break-ins of unknown malware by identifying activity which the

user did not intend. Such activity can be network requests, file access, or system calls. In this thesis,

we focus on network activity because a large class of malware makes malicious outbound network

connections either for self-propagation (worms) or to disclose user information (spyware/adware).

Such outbound connections are suspicious when they are uncorrelated with user activity. We refer

to these malicious user unintended outbound connections as extrusions1 . Thus we can detect new

unknown malware on personal computers by identifying extrusions.

Prior to our work, user intent has been used to set the access control policy (also known as

“designating authority”) in a GUI (Graphic User Interface) system [85, 115, 84]. Based on the

Principle of Least Authority (or Privilege), the basic idea of these research efforts is to designate
1Extrusion is also defined as unauthorized transfer of digital assets in some other context [9].
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the necessary authority to a running program based on user actions it receives directly or indirectly.

Unlike the prior work, our goal is to detect malware on personal computers that run a GUI, and

our basic idea is that a running program that receives user input directly or indirectly may generate

outbound network requests.

In the remainder of this chapter, we first describe the extrusion detection algorithm (see Sec-

tion 3.2). Then, we present the architecture and implementation of BINDER (Break-IN DEtectoR),

a host-based malware detection system that realizes the extrusion detection algorithm (see Sec-

tion 3.3). Next, we demonstrate our evaluation methodology and show that BINDER can detect

a wide class of malware with few false alarms (see Section 3.4). In the end, we discuss the lim-

itations caused by potential attack techniques (see Section 3.5) and summarize this chapter (see

Section 3.6).

3.2 Design

In this section, we first present the design goals and rationale for our approach. Then, we

use an example to demonstrate how to infer user intent. Next, we describe the extrusion detection

algorithm in detail. We conclude this section by discussing why outbound connections of a wide

class of malware can be detected as extrusions.

3.2.1 Overview

Our goal is to automatically detect break-ins of new unknown malware on personal computers.

Our design should achieve:

• Minimal False Alarms: This is critical for any automatic intrusion detection system.

• Generality: It should work for a large class of malware without the need for signatures, and

regardless of how the malware infects the system.

• Small Overhead: It must not use intrusive probing or adversely affect the performance of the

host computer.
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We achieve these design goals by leveraging a unique characteristic on personal computers, that

is, user intent. Our key observation is that outbound network connections from a compromised per-

sonal computer can be classified into three categories: user-intended, user-unintended benign, and

user-unintended malicious (referred to as extrusions). Since many kinds of malware such as worms,

spyware and adware make malicious outbound network connections either for self-propagation or

to disclose user information, we can detect break-ins of these kinds of malware by identifying their

extrusions. In the rest of this chapter, we use connections and outbound connections interchange-

ably unless otherwise specified. We do not consider inbound connections (initiated by a remote

computer) because firewalls are designed to filter such traffic. In Chapter 5, we will describe how

we use honeypots to inspect incoming malicious traffic to detect worms.

Since users of personal computers usually use input devices such as keyboards and mice to

control their computers, we assume that user intent can be inferred from user-driven activities.

We also assume malware runs as standalone processes. For those that hide in other processes by

exploiting techniques proposed in [70], our current design is unable to detect them. We look at this

as one of the limitations of today’s operating systems. We will discuss in detail attack techniques

and potential solutions in Section 3.5.

To detect extrusions, we need to determine if an outbound connection is user-intended. We

infer user intent by correlating outbound network connections with user-driven input at the process

level. Our key assumption is that outbound network connections made by a process that receives

user input a short time ago is user-intended. We also treat repeated connections (from the same

process to the same destination host or IP address within a given time window; see Section 3.2.3

for more details) as user-intended as long as the first one is user-intended. By doing this, we can

handle the case of automatically refreshing web pages and polling emails. Among user-unintended

outbound connections, we use a small whitelist to differentiate benign traffic from malicious traffic.

The whitelist covers three kinds of programs: system daemons, applications automatically checking

updates, and network applications automatically started by the operating system. Actual rules are

specific to each operating system and may become user specific.
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In the rest of this section, we first use an example to demonstrate how user intended connections

may be initiated. Next, we describe the extrusion detection algorithm. Finally, we discuss how

malware can be detected by this algorithm.

3.2.2 Inferring User Intent

The following example demonstrates how user-intended connections are initiated. Let us as-

sume that a user opens an Internet Explorer (IE) window, goes to a news web site, then leaves the

window idle to answer a phone call. We consider three kinds of events: user events (user input), pro-

cess events (process start and process finish), and network events (connection request, data arrival

and domain name lookup). A list of events generated by these user actions is shown in Figure 3.1.

In this example, new connections are generated in the following four cases.

• Case I: When the user opens IE by double-clicking its icon on My Desktop in Windows, the

shell process explorer.exe (PID=1664) of Windows receives the user input (Event 1-2), and

then starts the IE process (Event 3). After the domain name (www.cs.berkeley.edu) of the

default homepage is resolved (Event 4), the IE process makes a connection to it to download

the homepage (Event 5). This connection of IE is triggered by the user input of its parent

process of explorer.exe.

• Case II: After the user clicks a bookmark of news.yahoo.com in the IE window (Event 8),

the domain name is resolved as 66.218.75.230 (Event 9). Then the IE process makes a

connection to it to download the HTML file (Event 10). This connection is triggered by the

user input of the same process.

• Case III: After receiving the HTML file in 4 packets (Event 11-14), IE goes to retrieve two

image files from us.ard.yahoo.com and us.ent4.yimg.com. IE makes connections to them

(Event 16,18) after the domain names are resolved (Event 15,17). These two connections are

triggered by the HTML data arrivals of the same process.

• Case IV: According to a setting in the web page, IE starts refreshing the web page for updated

21



1 09:32:33, PID=1664 (user input)

2 09:32:33, PID=1664 (user input)

3 09:32:35, PID=2573, PPID=1664, NAME="C:\...\iexplore.exe" (process start)

4 09:32:39, HOST=www.cs.berkeley.edu, IP=169.229.60.105 (DNS lookup)

5 09:32:39, PID=2573, LPORT=5354, RIP=169.229.60.105, RPORT=80 (connection request)

6 09:32:40, PID=2573, LPORT=5354, RIP=169.229.60.105, RPORT=80 (data arrival)

7 09:32:40, PID=2573, LPORT=5354, RIP=169.229.60.105, RPORT=80 (data arrival)

8 09:32:43, PID=2573 (user input)

9 09:32:45, HOST=news.yahoo.com, IP=66.218.75.230 (DNS lookup)

10 09:32:45, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (connection request)

11 09:32:47, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (data arrival)

12 09:32:47, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (data arrival)

13 09:32:48, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (data arrival)

14 09:32:48, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (data arrival)

15 09:32:50, HOST=us.ard.yahoo.com, IP=216.136.232.142,216.136.232.143 (DNS lookup)

16 09:32:50, PID=2573, LPORT=5359, RIP=216.136.232.142, RPORT=80 (connection request)

17 09:32:51, HOST=us.ent4.yimg.com, IP=192.35.210.205,192.35.210.199 (DNS lookup)

18 09:32:51, PID=2573, LPORT=5360, RIP=192.35.210.205, RPORT=80 (connection request)

19 09:32:52, PID=2573, LPORT=5359, RIP=216.136.232.142, RPORT=80 (data arrival)

20 09:32:52, PID=2573, LPORT=5360, RIP=192.35.210.205, RPORT=80 (data arrival)

21 09:32:53, PID=2573, LPORT=5359, RIP=216.136.232.142, RPORT=80 (data arrival)

22 09:32:53, PID=2573, LPORT=5360, RIP=192.35.210.205, RPORT=80 (data arrival)

23 09:43:01, HOST=news.yahoo.com, IP=66.218.75.230 (DNS lookup)

24 09:43:01, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (connection request)

25 09:43:02, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (data arrival)

26 09:43:02, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (data arrival)

......

Figure 3.1. An example of events generated by browsing a news web site.

news 10 minutes later. This connection (Event 24) repeats the previous connection (Event 10)

by connecting to the same host or Internet address.

It is natural for a user input or data arrival event to trigger a new connection in the same process

(Case II and III). It is also normal to repeat a recent connection in the same process (Case IV). Note

that connections of email clients repeatedly pulling emails falls into this case. However, Case I im-

plies that it is necessary to correlate events among processes. In general, a user-intended connection

must be triggered by one of the rules below:

• Intra-process rule: A connection of a process may be triggered by a user input, data arrival or

connection request event of the same process.
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• Inter-process rule: A connection of a process may be triggered by a user input or data arrival

event of another process.

To verify if a connection is triggered by the intra-process rule, we just need to monitor all user

and network activities of each single process. However, we need to monitor all possible commu-

nications among processes to verify if a connection is triggered by the inter-process rule. In our

current design, we only consider communications from a parent process to its direct child process

and use the following parent-process rule to approximate the inter-process rule. In other words, we

do not allow cascading in applying the parent-process rule.

• Parent-process rule: A connection of a process may be triggered by a user input or data arrival

event received by its direct parent process before it is created.

3.2.3 Extrusion Detection Algorithm

Dnew oldD oldD
Dprev

T

1,2 3 4,5 6,7 8 9,10 25,2623,2411,12 13,14 15,16 17,18 19,20 21,22

Figure 3.2. A time diagram of events in Figure 3.1.

The extrusion detection algorithm must decide if a connection is user-intended and if it is in the

whitelist. Its main idea is to limit the delay from a triggering event to a connection request event.

Note that, for data arrival events, we only consider those of user-intended connections. There are

three possible delays for a connection request. In Figure 3.2, we show them in a time diagram of

events in Figure 3.1. For a connection request made by process P , we define the three delays as

follows:

• Dnew: The delay since the last user input or data arrival event received by the parent process

of P before P is created. It is the delay from Event 1 to 5 in Figure 3.2.
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• Dold: The delay since the last user input or data arrival event received by P . It is the delay

from Event 8 to 10 and from Event 14 to 16 in Figure 3.2.

• Dprev: The delay since the last connection request to the same host or IP address made by P .

It is the delay from Event 10 to 24 in Figure 3.2.

As Dold is the reaction time of a process, Dnew includes the loading time of a process as well.

For user-intended connections, Dold and Dnew are on the order of seconds while Dprev is on the

order of minutes. Depending on how a user-intended connection is initiated, it must have at least

one of the three delays less than its upper bound (defined as D
upper
new , D

upper
old , and D

upper
prev ). Note

that these delays are dependent on the hardware, operating system, and user behavior. Given a

host computer system, we must train the BINDER system to find the correct upper bounds. In

Section 3.4.2 we will discuss how to choose these upper bounds.

In the design of the extrusion detection algorithm, we assume that we can learn rules from

previous false alarms. Each rule includes an application name (the image file name of a process

with the complete path) and a remote host (host name and/or IP address). The existence of a rule

means that any connection to that host made by a process of that application is not considered to be

an extrusion.

Given a connection request, the detection algorithm works as follows:

• If it is in the rule set of previous false alarms, then return;

• If it is in the whitelist, then return;

• If Dprev exists and is less than D
upper
prev , then return;

• If Dnew exists and is less than D
upper
new , then return;

• If Dold exists and is less than D
upper

old
, then return;

• Otherwise, it is an extrusion.

After detecting an extrusion, we can either drop the connection or raise an alarm with related

information such as the process ID, the image file name, and the connection information. Studying

the tradeoff between different reactions is beyond the scope of this chapter.
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3.2.4 Detecting Break-Ins

We just described the extrusion detection algorithm. Next, we discuss why outbound con-

nections of worms, spyware and adware can be detected as extrusions. Unlike worms, spyware

and adware cannot propagate themselves and thus require user input to infect a computer system.

Worms can be classified as self-activated like Blaster [97] or user-activated like email worms. The

latter also requires user input to infect a personal computer.

When the malware receives user input for its break-in, its connections shortly after the break-

in may be masked by user activity. Thus we may not be able to detect these initial extrusions.

However, we can detect a break-in as long as we can capture the first non-user triggered connection.

In Section 3.4, we will show that we successfully detected the adware Spydeleter [3] and 22 email

worms shortly after their break-ins.

When the malware runs without user input, we can easily detect its first outbound connection

as an extrusion. This is because the malware runs as a background process and does not receive any

user input. So Dold, Dnew and Dprev of the first connection do not exist. Additionally, we clear the

user input history after a personal computer is restarted. So even for the malware that received user

input for its break-in, it is guaranteed to detect its first connection as an extrusion after the victim

system is restarted.

In summary, BINDER can detect a large class of malware such as worms, spyware and ad-

ware that (1) run as background processes, (2) do not receive any user-driven input, and (3) make

outbound network connections.

3.3 Implementation

In the previous section, we described the extrusion detection algorithm. In this section, we de-

scribe the architecture and implementation of BINDER (Break-IN DEtectoR), a host-based detec-

tion system which, realizing the extrusion detection algorithm, can detect break-ins of new unknown

malware on personal computers.
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3.3.1 BINDER Architecture

User Network
Monitor

Process
MonitorMonitor

Extrusion Detector

Operating System Kernel

Figure 3.3. BINDER’s architecture.

As a host-based system, BINDER must have small overhead so that it does not affect the perfor-

mance of the host computer. Therefore, BINDER takes advantage of passive monitoring. To detect

extrusions, BINDER correlates information across three sources: user-driven input, processes, and

network traffic. Therefore, there are four components in a BINDER system: User Monitor, Pro-

cess Monitor, Network Monitor, and Extrusion Detector. The architecture of BINDER is shown in

Figure 3.3. The first three components independently collect information from the operating system

(OS) passively in real time and report user, process, and network events to the Extrusion Detec-

tor. APIs for real-time monitoring are specific to each operating system. Since BINDER is built

to demonstrate the feasibility and effectiveness of the extrusion detection technique, we implement

BINDER in the application domain rather than in the kernel for ease of implementation and practical

limitation (i.e., no access to Windows source code). We describe the implementation on Windows

operating system in the second part of this section. In the following, we explain the functionality

and interface of these components that are general to all operating systems.

The User Monitor is responsible for monitoring user input and reporting user events to the

Extrusion Detector. It reports a user input event when observing a user clicks the mouse or hits a

key. A user input event has two components: the time when it happens and the ID of the process

that receives this user input. This mapping between a user input and a process is provided by the
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operating system. So the User Monitor does not rely on the Process Monitor for such information.

Since a user input event has only the time information and the Extrusion Detector only stores the

last user input event, BINDER avoids storing or leaking privacy-sensitive information.

When a process is created or stopped, the Process Monitor correspondingly reports to the Ex-

trusion Detector two types of process events: process start and process finish. A process start event

includes the time, the ID of the process itself, its image file name, and the ID of the parent process.

A process finish event has only the time and the process ID.
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Figure 3.4. CDF of the DNS lookup time on an experimental computer.

The Network Monitor audits network traffic and reports network events. For the sake of detect-

ing extrusions, it reports three types of network events: connection request, data arrival and domain

name lookup. For connection request events, the Network Monitor checks TCP SYN packets and

UDP packets. A data arrival event is reported when an inbound TCP or UDP packet with non-empty

payload is received from a normal outbound connections. Note that the direction of a connection is

determined by the direction of the first TCP SYN or UDP packet of this connection. The Network

Monitor also parses DNS lookup packets. It associates a successful DNS lookup with a following

connection request to the same remote IP address as returned in the lookup. This is important be-

cause DNS lookup may take significant time between a user input and the corresponding connection
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request. The Cumulative Distribution Function (CDF) of 2,644 DNS lookup times on one of the ex-

perimental computers (see Section 3.4.2 for details of the experiments) is shown in Figure 3.4. We

can see that about 8% DNS lookups take more than 2 seconds. A connection request event has five

components: the time, the process ID, the local transport port number, the remote IP address and

the remote transport port number. Note that the time is the starting time of its DNS lookup if it has

any or the connection itself. The mapping between network traffic and processes is provided by

the operating system. A data arrival event has the same components as a connection request event

except that its time is the time when the data packet is received. A domain name lookup event has

the time, the domain name for lookup, and a list of IP addresses mapping to it.

Except for domain name lookup results that are shared among all processes, the Extrusion

Detector organizes events based on processes and maintains a data record for each process. A

process data record has the following members: the process ID, the image file name, the parent

process ID, the time of the last user input event, the time of the last data arrival event, and all the

previous normal connections. When a process start event is received, a process data record is created

with the process ID, the image file name and the parent process ID. The time of the last user input

event is updated when a user input event of the process is reported. Similarly, the time of the last

data arrival is updated when a data arrival event is received. A process data record is closed when

its corresponding process finish event is received. All process records are cleared when the system

is shutdown. The size of the event database is small because the number of simultaneous processes

on a personal computer is usually less than 100. Based on all the information of user, process and

network events, the Extrusion Detector implements the extrusion detection algorithm.

3.3.2 Windows Prototype

BINDER’s general design (see Figure 3.3) can be implemented in all modern operating sys-

tems. Since computers running Windows operating systems are the largest community targeted by

malware [86], we implemented a prototype of BINDER for Windows 2000/XP. Given current Win-

dows systems’ limitations [70], our Windows prototype does not provide a bulletproof solution for

break-in detection although it does demonstrate effectiveness of the extrusion detection technique

on detecting a large class of existing malware. Though this prototype is implemented in the applica-
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tion space, a BINDER system can run in the kernel space if it is adopted in practice. A widespread

availability of Trusted Computing-related Virtual Machine-based protection [33] or similar isolation

techniques are necessary to turn BINDER into robust production.

The User Monitor is implemented with the Windows Hooks API [108]. It uses three hook pro-

cedures, KeyboardProc, MouseProc and CBTProc. KeyboardProc is used to monitor keyboard

events while MouseProc is used to monitor mouse events. MouseProc can provide the informa-

tion of which window will receive a mouse event. Since KeyboardProc cannot provide the same

information for a keyboard event, we use CBTProc to monitor events when a window is about to re-

ceive the keyboard focus. After determining which window will receive a user input event, the User

Monitor uses the procedure GetWindowThreadProcessId to get the process ID of the window.

The Process Monitor is implemented based on the built-in Security Auditing on Windows

2000/XP [109]. By turning on the local security policy of auditing process tracking (Com-

puter Configuration/Windows Settings/Security Settings/Local Policies/Audit Policy/Audit

process tracking), the Windows operating system can audit detailed tracking information for pro-

cess start and finish events. The Process Monitor uses psloglist [67] to parse the security event log

and generates process start and process finish events.

The Network Monitor is implemented based on TDIMon [91] and WinDump [110] which

requires WinPcap [111]. TDIMon monitors activity at the Transport Driver Interface (TDI) level

of networking operations in the operating system kernel. It can provide all network events associated

with the process information. Since TDIMon does not save complete DNS packets, the Network

Monitor uses WinDump for this purpose. Based on the information collected by TDIMon and

DNS packets stored by WinDump, the Network Monitor reports network events to the Extrusion

Detector.

It is straightforward to implement the extrusion detection algorithm based on the information

stored in the process data record in the Extrusion Detector. Here we focus on the whitelisting mech-

anism in our Windows implementation. The whitelist in our current implementation has 15 rules.

These cover three kinds of programs: system daemons, software updates and network applications

automatically started by Windows. A rule for system daemons has only a program name (with a
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full path). Processes of the program are allowed to make connections at any time. In our current

implementation, we have five system daemons including System, spoolsv.exe, svchost.exe, ser-

vices.exe and lsass.exe. Note that the traffic of network protocols such as DHCP, ARP, and NTP

is initiated by the system daemons. A rule for software updates has both a program name and an

update web site. Processes of the program are allowed to connect to the update web site at any

time. In this category, we now have six rules that cover Symantec, Sygate, ZoneAlarm, Real Player,

Microsoft Office, and Mozilla. For network applications automatically started by Windows when it

starts, we currently have four rules for messenger programs of MSN, Yahoo!, AOL, and ICQ. These

programs are allowed to make connections at any time. In the future, we need to include a special

rule regarding wireless network status change. For example, an email client on a laptop computer

may start sending pre-written emails right after the laptop is connected to the wireless network in a

hot spot. In addition, we need to study the behavior of peer-to-peer software applications to decide

if it is necessary to treat them as system daemons to avoid false positives.

Managing the whitelist for an average user is very important. Rules for system daemons usually

do not change until the operating systems are upgraded. Since the number of software applications

that require regular updates is small and do not change very often, the rules for software updates can

be updated by some central entity that adopts BINDER. Though rules in the last category have to be

configured individually for each system, we believe some central entity can provide help by main-

taining a list of applications that fall into this category. A mechanism similar to PeerPressure [103]

may be used to help an average user configure her own whitelist.

3.4 Evaluation

We evaluated BINDER on false positives and false negatives in two environments. First, we

installed it on six Windows computers used by different volunteers for their daily work, and col-

lected traces over five weeks since September 7th, 2004. Second, in a controlled testbed based on

the Click modular router [39] and VMware Workstation [95], we tested BINDER with the Blaster

worm and 22 different email worms collected on a departmental email server over one week since

October 7th, 2004.
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3.4.1 Methodology

The most important design objective of BINDER is to minimize false alarms while maximizing

detected extrusions. In our experiments, we use the number of false alarms rather than the false pos-

itive rate to evaluate BINDER. This is because users who respond to alarms are more sensitive to the

absolute number than a relative rate. When BINDER detects extrusions, it is based on connections.

However, when we count the number of false alarms, we do not use the number of misclassified

normal connections directly. This is because a false alarm covers a series of consecutive connection

requests (e.g., after the first misclassified normal connection is corrected, consecutive connection

requests that repeat it by connecting to the same host or IP address will be treated as normal).

Therefore, for misclassified normal connections, we merge them into groups, in which the first false

alarm covers the rest, and count each group as one false alarm. When we evaluate BINDER on

false negatives, we check if and how fast it can detect a break-in. The real world experiments are

used to evaluate BINDER for both false positives and false negatives, while the experiments in the

controlled testbed are only for false negatives.

To evaluate BINDER with different values for the three parameters D
upper
old , Dupper

new and D
upper
prev ,

we use offline, trace-based analysis in all experiments.

3.4.2 Real World Experiments

Table 3.1. Summary of collected traces in real world experiments.

User Machine OS Days User Events Process Events Network Apps TCP Conns
A Desktop WinXP 27 35,270 5,048 33 33,480
B Desktop WinXP 26 80,497 12,502 35 15,450
C Desktop WinXP 23 24,781 7,487 55 36,077
D Laptop Win2K 23 99,928 8,345 28 9,784
E Laptop WinXP 13 8,630 2,448 21 10,210
F Laptop WinXP 12 20,490 5,402 20 7,592

To evaluate the performance of BINDER in a real world environment, we installed it on six

Windows computers used by different volunteers for their daily work, and collected traces over five

weeks. We collected traces of user input, process information, and network traffic from the six
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computers. A summary of the collected traces is shown in Table 3.1. On one hand, these computers

were used for daily work, so the traces are realistic. On the other hand, our experimental population

is small because it is difficult to convince users to submit their working environment to experimental

software. However, from the summary of the collected traces in Table 3.1, we see that they have

several distinct combinations of hardware, operating system, and user behavior. For real world

experiments, we discuss parameter selection and then analyze the performance of our approach on

false positives and false negatives. Due to the limitation of data collection, we train BINDER and

evaluate it on the same data set.

Parameter Selection

Table 3.2. Parameter selection for Dold, Dnew and Dprev.

90% (sec) 95% (sec) 99% (sec)
User Dold Dnew Dprev # of FAs Dold Dnew Dprev # of FAs Dold Dnew Dprev # of FAs

A 18 11 142 15 33 15 752 5 79 21 4973 3
B 15 12 64 23 28 21 260 7 79 22 3329 5
C 14 14 28 20 25 15 134 5 74 33 2272 1
D 16 81 213 3 33 81 715 3 85 81 4611 2
E 19 12 539 5 32 14 541 4 93 90 4216 3
F 14 8 80 10 27 13 265 5 79 31 3633 2

In this section, we discuss how to choose values for the three parameters D
upper

old
, D

upper
new and

D
upper
prev . The goal of parameter selection is to make the tightest possible upper bounds under the

condition that the number of false alarms is acceptable. We assume the rules of whitelisting de-

scribed in Section 3.3.2 are fixed. The performance metric is the number of false alarms. Based

on the real-world traces, we calculate Dold, Dnew and Dprev for all connection request events for

every user. Then we take the 90th, 95th and 99th percentile for all three parameters and calculate

the number of false alarms for each percentile. The results are shown in Table 3.2.

From Table 3.2 we can see that D
upper

old
, D

upper
new and D

upper
prev must be different for different users

because they are dependent on computer speed and user patterns. Thus, they should be selected

on a per-user basis. We can also see that the performance of taking the 90th percentile is not

acceptable and the improvement from taking the 95th percentile to the 99th percentile is small.

Therefore, the parameters can be selected by choosing some value in the 95th percentile or according

to user’s preference. For conservative users, we should choose smaller values. The percentiles can
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be obtained by training BINDER over a period of virus-free time. Without training, these parameters

can also be chosen (in some range) based on user’s preference. D
upper

old
and D

upper
new can take values

between 10 and 60 seconds, while D
upper
prev can take values between 600 and 3600 seconds. Note that

D
upper
old can be greater than D

upper
new because the reaction time from a user input or data arrival event

to a connection request event is dependent on the instantaneous state of a computer. It remains a

challenge for future research to investigate effective solutions for parameter selection.

False Positives

Table 3.3. Break-down of false alarms according to causes.

User Inter-Process Whitelist Collection Total
A 2 1 0 3
B 4 1 0 5
C 1 0 0 1
D 0 1 1 2
E 1 1 1 3
F 0 1 1 2

By choosing parameters correctly, we expect to achieve few false alarms. From Table 3.2 we

can see that there were at most five false alarms (over 26 days) for each computer by choosing the

99th percentile. The false positive rate (i.e., the probability that a benign event causes an alarm) is

0.03%. We manually checked these remaining false alarms and found that they were caused by one

of three reasons:

• Incomplete information about inter-process event sharing. For example, four of the five false

alarms of User B were caused by this. We observe that PowerPoint followed IE to connect

to the same IP address while the parent process of the PowerPoint process was the Windows

shell. We hypothesize this is due to the usage of Windows API ShellExecute (which was

called by IE when the user clicked on a link of a PowerPoint file).

• Incomplete whitelisting. For example, connections made by Windows Application Layer

Gateway Service were (incorrectly) treated as extrusions.

• Incomplete trace collection. BINDER was accidentally turned off by a user in the middle of

33



trace collection. We gave users the control of turning on/off BINDER in case they thought

BINDER was responsible for bad performance, etc.

A break-down of the false alarms is shown in Table 3.3. We can see that a better-engineered

BINDER can eliminate false alarms in the Whitelist and Collection columns in Table 3.3, resulting

in much lower false positives. By extending BINDER to consider more inter-process communi-

cations than those between parent-child processes, we can decrease the false alarms in the Inter-

Process column.

False Negatives

1 14:40:10, PID=2368, PPID=240, NAME="C:\...\iexplore.exe" (process start)

2 14:40:15, PID=2368 (user input)

3 14:40:24, PID=2368 (user input)

4 14:40:24, PID=2368, LPORT=1054, RIP=12.34.56.78, RPORT=80 (connection request)

5 14:40:24, PID=2368, LPORT=1054, RIP=12.34.56.78, RPORT=80 (data arrival)

......

6 14:40:28, PID=2552, PPID=960, NAME="C:\...\mshta.exe" (process start)

7 14:40:29, PID=2552, LPORT=1066, RIP=87.65.43.21, RPORT=80 (connection request)

7 14:40:29, PID=2552, LPORT=1066, RIP=87.65.43.21, RPORT=80 (data arrival)

......

8 14:40:34, PID=2896, PPID=2552, NAME="C:\...\ntvdm.exe" (process start)

9 14:40:35, PID=2988, PPID=2896, NAME="C:\...\ ftp.exe" (process start)

10 14:40:35, PID=2988, LPORT=1068, RIP=44.33.22.11, RPORT=21 (connection request)

......

Figure 3.5. A stripped list of events logged during the break-in of adware Spydeleter.

In the real world experiments, among the six computers, one was infected by the adware

Gator [2] and CNSMIN [1] and another one was infected by the adware Gator and Spydeleter [3].

In particular, the second computer was compromised by Spydeleter when BINDER was running.

BINDER can successfully detect the adware Gator and CNSMIN because they do not have any

user input in history. In the following, we demonstrate how BINDER can detect the break-in of

Spydeleter right after it compromised the victim computer.

In Figure 3.5, we show a stripped list of events logged during the break-in of the adware Spy-

deleter. Note that all IP addresses are anonymized. Two related processes not shown in the list are
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a process of explorer.exe with PID 240 and a process of svchost.exe with PID 960. After IE is

opened, a user connects to a site with IP 12.34.56.78. The web page has code to exploit a vulnera-

bility in mshta.exe that processes .HTA files. After mshta.exe is infected by the malicious .HTA

file that is downloaded from 87.65.43.21, it starts a series of processes of ntvdm.exe that provides

an environment for a 16-bit process to execute on a 32-bit platform. Then, a process of ntvdm.exe

starts a process of ftp.exe that makes a connection request to 44.33.22.11. Since the prototype of

BINDER does not have complete information for verifying if a connection is triggered according

to the inter-process rule (see Section 3.2), the connection made by mshta.exe is detected as an ex-

trusion. This is because its parent process is svchost.exe rather than iexplore.exe, though it is the

latter process that triggers its creation. If BINDER had complete information for inter-process event

sharing, it would detect the connection request made by ftp.exe as an extrusion. This is because

we do not allow cascading in applying the parent-process rule (this may cause false positives, but

we leave it for future research to study this tradeoff) and both the process of ftp.exe and its parent

process of ntvdm.exe does not have any user input or data arrival event in its history. So Dold,

Dnew and Dprev for the connection request made by ftp.exe do not exist. This connection is used

to download malicious code. Therefore, BINDER’s detection with some appropriate actions could

have stopped the adware from infecting the computer. Note that the three parameters of D
upper
old ,

D
upper
new and D

upper
prev do not affect BINDER’s detection of Spydeleter here.

3.4.3 Controlled Testbed Experiments

Our real world experiments show that BINDER has a small false positive rate. Since the number

of break-ins in our real world experiments is very limited, to evaluate BINDER’s performance on

false negatives, we need to test BINDER with more real world malware. To do so, we face a

challenge of repeating break-ins of real world malware without unwanted damage. We tackle this

problem by building a controlled testbed. Next, we describe our controlled testbed and present

experimental results on 22 email worms and the Blaster worm.

Controlled Testbed

We developed a controlled testbed using the Click modular router [39] and VMware Worksta-
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tion [95]. We chose Click for its powerful modules [40] for packet filtering and Network Address

and Port Translation (NAPT). In addition, we implemented a containment module in Click that can

pass, redirect or drop outbound connections according to predefined policies. The advantage of

using VMware is that we can discard an infected system and get a new one just by copying a few

files. VMware also provides virtual private networks on the host system. The testbed is shown in

Figure 3.6.

NAPT1

Containment

SMTP

NAPT2

Click

Internet

Linux Host1

Internal

Click

External

Linux Host2

Internal

External

Windows VM
Linux VM

Figure 3.6. The controlled testbed for evaluating BINDER with real world malware.

In the testbed, we have two Linux hosts running VMware Workstation. On the first host, we

have a Windows virtual machine (VM) in a host-only private network. This VM is used for execut-

ing malicious code attached in email worms. The Click router on this host includes a containment

module and a NAPT module. The containment policy on this router allows DNS traffic pass through

and redirects all SMTP traffic (to port 25) to another Linux host. The second Linux host has a Linux

VM running the eXtremail server [22] in a host-only private network. The email server is configured

to accept all relay requests. The Click router on this host also has a NAPT module that guarantees

the email server can only receive inbound SMTP connections. Thus, all malicious emails are con-
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tained in the email server. This controlled testbed enables us to repeat the whole break-in and

propagation process of email worms.

Experiments with Email Worms

Table 3.4. Email worms tested in the controlled testbed.

W32.Beagle.AB@mm W32.Beagle.AC@mm
W32.Beagle.AG@mm W32.Beagle.AR@mm
W32.Beagle.M@mm W32.Bugbear.B@mm
W32.Erkez.B@mm W32.Mydoom.L@mm
W32.Mydoom.M@mm W32.Netsky.AB@mm
W32.Netsky.AD@mm W32.Netsky.B@mm
W32.Netsky.C@mm W32.Netsky.D@mm
W32.Netsky.F@mm W32.Netsky.K@mm
W32.Netsky.P@mm W32.Netsky.Q@mm
W32.Netsky.S@mm W32.Netsky.W@mm
W32.Netsky.Z@mm W32.Swen.A@mm

We obtained email worms from two sources. First, we set up our own email server and pub-

lished an email address to USENET groups. This resulted in the email worm W32.Swen.A@mm

(we use Symantec’s naming rule [88]) being sent to us. Second, we were fortunate to convince the

system administrators of our department email server to give us 1,843 filtered virus email attach-

ments that were collected over the week starting on October 7th, 2004. We used Symantec Norton

Antivirus [87] to scan these attachments and recognized 27 unique email worms. Among them, we

used 21 email worms because the rest of them were encrypted with a password. Thus, we tested 22

different real world email worms shown in Table 3.4.

For each email worm, we manually start it on a Windows virtual machine that has a file of

10 real email addresses, let it run for 10 minutes (with user input in history), and then restart the

virtual machine to run another 10 minutes (without user input in history). We analyze BINDER’s

performance using the traces collected during the two 10 minute periods. We choose 10 minutes

because they are long enough for email worms to scan hard disk, find email addresses, and send

malicious emails to them.

Our results show that BINDER successfully detects break-ins of all 22 email worms in the
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second 10 minute period by identifying the very first malicious outbound connection. In the rest of

this section, we focus on BINDER’s performance in the first 10 minute period.

Table 3.5. The impact of D
upper

old
/Dupper

new on BINDER’s performance of false negatives.

D
upper

old = D
upper
new (sec) 10 20 30 40 50 60

Num of email worms detected 22 21 21 19 17 15

According to our discussion on parameter selection, D
upper

old and D
upper
new usually take values

between 10 and 60 seconds, while D
upper
prev usually takes values between 600 and 3600 seconds.

Since our traces are 10 minute long, the parameter D
upper
prev does not affect BINDER’s performance

on false negatives. So we study the impact of D
upper

old
and D

upper
new on BINDER’s performance of false

negatives. In Table 3.5, we show the number of email worms are detected by BINDER when D
upper

old

and D
upper
new take a same given value between 10 and 60 seconds. We have only one email worm

(W32.Swen.A@mm) missed when we take 30 seconds for D
upper
old and D

upper
new . This is because

the first connection is detected as user-intended due to the user input and all following connections

repeat the first one by connecting to the same Internet address.

Experiments with Blaster

We test BINDER with the Blaster worm [97]. In this experiment, we run two Windows XP VMs

A and B in a private network. We run BINDER on VM B and run msblast.exe on VM A. Blaster

on VM A scans the network, finds VM B and infects it. By analyzing the infection trace collected

by BINDER, we see that BINDER detects the first outbound connection made by a process tftp.exe

as an extrusion. This is because the process itself and its parent process of cmd.exe does not receive

any user input. Thus we can successfully detect Blaster in this case even before the worm itself is

transferred over by TFTP.

3.5 Limitations

Our limited user study shows that BINDER controls the number of false alarms to at most

five over four weeks on each computer. We also show that BINDER successfully detects break-ins
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of the adware Gator, CNMIN, and Spydeleter, the Blaster worm, and 22 email worms. However,

BINDER is far from a complete system. It is built to verify that user intent can be a simple and

effective detector of a large class of malware with a very low false positive rate. We devote this

section to discussions of potential attacks against BINDER if its scheme is known to adversaries.

Though we try to investigate all possible attacks against BINDER, we cannot argue that we have

considered all of its possible vulnerabilities. Potential attacks include:

• Direct attack: subvert BINDER on the compromised system;

• Hiding inside other processes: inject malicious code into other processes;

• Faking user input: use APIs provided by the operating system to generate synthesized actions.

• Tricking the user to input: trick users to click on pop-up windows or a transparent overlay

window that intercepts all user input.

• Exploiting the whitelist: replace the executables of programs in the whitelist with a tweaked

one;

• Exploiting user input in history: when a malicious process is allowed to make one outbound

connection due to user input (e.g., a user opens a malicious email attachment), it can evade

BINDER’s detection by making that connection to a collusive remote site to keep receiv-

ing data. This would make BINDER think any new connections made by this process are

triggered by those data arrivals.

• Covert channels: a very tricky attack is to have a legitimate process make connections and

use them as a covert channel to leak information. For example, spyware can have an existing

IE process download a web page of a tweaked hyperlink by using some API provided by the

Windows shell right after a user clicks on the IE window of the same process. A collusive

remote server can get private information from the tweaked hyperlink.

Direct attack is a general limitation of all end-host software (e.g., antivirus, personal fire-

walls [120], and virus throttles [107] that attempt to limit outgoing attacks). A widespread avail-

ability of Trusted Computing-related Virtual Machine-based protection [33] or similar isolation

techniques are necessary to turn BINDER or any of these other systems into robust production.

39



The attacks of hiding inside other processes, faking user input, tricking users to input, and

exploiting whitelisting are inherent to the limitations of today’s operating systems. The effectiveness

of BINDER on malware detection implies pressing requirements for isolation among processes and

trustworthy user input in next-generation operating systems. Possible incomplete solutions for these

attacks might be to monitor corresponding system APIs or to verify the integrity of programs listed

in the whitelist. Even without a bulletproof solution for today’s operating system, we believe a

deployed BINDER system can raise the bar for adversaries significantly.

For the attacks of exploiting user input in history, a possible solution is to add more constraints

on how a user intended connection may be triggered. This requires more research work in the future.

For the attack of covert channels, possible solutions are discussed in [10].

3.6 Summary

In this chapter, we presented the design of a novel extrusion detection algorithm and the im-

plementation of a host-based detection system which, realizing the extrusion detection algorithm,

can detect break-ins of a wide class of malware, including worms, spyware and adware, on personal

computers by identifying their extrusions. Our main contributions are:

• We take advantage of a unique characteristic of personal computers—user intent. Our evalu-

ations suggest that user intent is a simple and effective detector for a large class of malware

with few false alarms.

• The controlled testbed based on the Click modular router and VMware Workstation enables

us to repeat the whole break-in and propagation process of email worms without worrying

about unwanted damage.

BINDER is very effective at detecting break-ins of malware on personal computers, but it also

has limitations:

• Leveraging user intent, it only works for personal computers.
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• Running solely on a single host, it is poor at providing “early warning” of new worm out-

breaks.

• It needs more extensive evaluation for actual deployment.

To address these limitations, in the next two chapters we describe how we can infer adversary

intent on a large-scale honeypot system to detect fast spreading Internet worms automatically and

quickly.
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Chapter 4

Protocol Independent Replay of

Application Dialog

In the previous chapter, we described a novel extrusion detection algorithm and the BINDER

system for detecting break-ins of new unknown malware on personal computers. BINDER holds

promise to be effective on detecting a wide class of malware with few false alarms, but it would be

difficult to scale to provide “early warning” of new Internet worm outbreaks. For early automatic

detection of new worm outbreaks, we built a large-scale, high-fidelity “honeyfarm” system that ana-

lyzes in real-time the scanning probes seen on a quarter million Internet addresses. To achieve such

a scale, the honeyfarm system leverages a novel technique of protocol-independent replay of appli-

cation dialog to winnow down the hundreds of probes per second seen by the honeyfarm to a level

that it can process. Before describing the honeyfarm system in detail in Chapter 5, we present in this

chapter the design of this novel technique and an evaluation over a variety of real-world network ap-

plications. This chapter is organized as follows. After motivating our work (see Section 4.1), we first

present an overview of design goals, challenges, terminology, and assumptions (see Section 4.2).

Then, we describe our replay system in detail and discuss related design issues (see Section 4.3).

Next, we describe our implementation, evaluate our system with real-world network applications,

and discuss the limitations (see Section 4.4). We demonstrate that our system successfully replays

the client and server sides for real-world network applications such as NFS, FTP, and CIFS/SMB
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file transfers as well as the multi-stage infection processes of real-world worms such as Blaster and

W32.Randex.D. Finally, we summarize in Section 4.5.

4.1 Motivation

In a number of different situations it would be highly useful if we could cheaply “replay” one

side of an application session in a slightly different context. For example, consider the problem of

receiving probes from a remote host and attempting to determine whether the probes reflect a new

type of malware or an already known attack. Different attacks that exploit the same vulnerability

often conduct the same application dialog prior to finally exposing their unique malicious intent.

Thus, to coax from these attackers their final intent requires engaging them in an initial dialog,

either by implementing protocol-specific application-level responders [63, 66] or by deploying high-

interaction honeypot systems [29, 89] that run the actual vulnerable services. Both approaches are

expensive in terms of development or management overhead.

On the other hand, much of the dialog required to engage with the remote source follows the

same “script” as seen in the past, with only very minor variants (different hostnames, IP addresses,

port numbers, command strings, or session cookies). If we could cheaply reproduce one side of the

dialog, we could directly tease out the remote source’s intent by efficiently driving it through the

routine part of the dialog until it reaches the point where, if it is indeed something new, it will reveal

its distinguishing nature by parting from the script.

A powerful example concerns the use of replay to construct proxies in our honeyfarm system.

Suppose in the first example above that not only do we wish to determine whether an incoming

probe reflects a new type of attack or a known type, but we also want to filter the attack if it is a

known type but allow it through if it is a new type. We could use replay to efficiently do so in two

steps (see Figure 5.2 in Section 5.2.4 for an illustration). First, we would replay the targeted server’s

behavior in response to the probe’s initial activity (e.g., setting up a Windows SMB RPC call) until

we reach a point where a new attack variant will manifest itself (e.g., by making a new type of SMB

call or by sending over a previously unseen payload for an existing type of call). If the remote host

at this point proves to lack novelty (we see the same final step in its activity as we have seen before),
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then we drop the connection. However, if it reveals a novel next step, then at this point we would

like it to engage a high-interaction honeypot server so we can examine the new attack. To do so,

though, we must bring the server “up to speed” with respect to the application dialog in which the

remote host is already engaged. We can do so by using replay again, this time replaying the remote

host’s previous actions to the new server so that the two systems become synchronized, after which

we can allow the remote host to proceed with its probing. If we perform such proxying correctly, the

remote host will never know that it was switched from one type of responder (our initial replayer)

to another (the high-interaction honeypot).

Another example comes from trying to determine the equivalent for malware of a “toxicology

spread” for a biological pathogen. That is, given only an observed instance of a successful attack

against a given type of server (i.e., particular OS version and server patch level), how can we de-

termine what other server/OS versions are also susceptible? If we have instances of other possible

versions available, then we could test their vulnerability by replaying the original attack against

them, providing the replay again takes into account the natural session variants such as differing

hostnames, IP addresses, and session cookies. Similarly, we could use replay to feed possible at-

tacks into more sophisticated analysis engines (e.g., [62] and [15]).

We can also use lightweight replay to facilitate testing of network systems. For example, when

developing or configuring a new security mechanism it can be very helpful if we can easily repeat

attacks against the system to evaluate its response. Historically, this may require a complex testbed

to repeatedly run a piece of malware in a safe, restricted fashion. Armed with a replay system,

however, we could capture a single instance of an attack and then replay it against refinements of

the security mechanism without having to reestablish an environment for the malware to execute

within.

We can generalize such repeated replay to tasks of stress-testing, evaluating servers, or con-

ducting large-scale measurements. A replay system could work as a low-cost client by replaying

application dialogs with altered parameters in part of the dialog. For example, by dynamically re-

placing the receiver’s email address in a SMTP dialog, we could use replay to create numerous

SMTP clients that send the same email to different addresses. We could use such a capability for
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both debugging and performance testing, without needing to either create specialized clients or

invoke repeated instances of a computationally expensive piece of client software.

The programming and operating systems communities have studied the notion of replaying pro-

gram execution for a number of years. Debugging was their targeted application for replay. LeBlanc

and Mellor-Crummey [43] studied how to leverage replay to debug parallel programs. Russinovich

and Cogswell [72] presented the repeatable scheduling algorithm for recording and replaying the

execution of shared-memory applications. King et al. [37] described a time-traveling virtual ma-

chine for debugging operating systems. Time travel allows a debugger to go back and forth arbitrar-

ily through the execution history and to replay arbitrary segments of the past execution. Recently,

Geels et al. [24] developed a replay debugging tool for distributed C/C++ applications. However,

we know of little literature discussing general replay of network activity at the application level. The

existing work has instead focused on incorporating application-specific semantics. Honeyd [66], a

virtual honeypot framework, supports emulating arbitrary services that run as external applications

and receive/send data from/to stdin/stdout.

Libes’ expect tool includes the same notion as our work of automatically following a “script”

of expected interactive dialogs [49]. A significant difference of our work, however, is that we focus

on generating the script automatically from previous communications.

A number of commercial security products address replaying network traffic [16, 52]. These

products however appear limited to replay at the network or transport layer, similar to the Monkey

and Tcpreplay tools [12, 90]. The Flowreplay tool uses application-specific plug-ins to support

application-level replay [93].

To achieve protocol-independent replay, we develop a new system named RolePlayer. Our

work leverages the Needleman-Wunsch algorithm [60], widely used in bioinformatics research, to

locate fields that have changed between one example of an application session and another. In this

regard, our approach is similar to the recent Protocol Informatics project [8], which attempts to

identify protocol fields in unknown or poorly documented network protocols by comparing a series

of samples using sequence alignment algorithms.

Concurrent with our RolePlayer work, Leita et al proposed ScriptGen [46], a system for auto-
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matically generating honeyd [66] scripts without requiring prior knowledge of application protocols.

They presented a novel region analysis algorithm to identify and merge fields in an application pro-

tocol. While these results hold promise for a number of applications, it remains a challenge to use

the approach for completing interactions with attacks using complex protocols such as SMB.

Before describing the design of RolePlayer, we first present an overview of design goals, chal-

lenges, terminology, and assumptions in the next section.

4.2 Overview

In this section, we first describe our design goals. Then, we discuss the challenges in imple-

menting protocol-independent replay. Finally, we present the terminology and design assumptions.

4.2.1 Goals

In developing our replay system, RolePlayer, we aim for the system to achieve several important

goals:

• Protocol independence. The system should not need any application-specific customization,

so that it works transparently for a large class of applications, including both as a client and

as a server.

• Minimal training. The system should be able to mimic a previously seen type of application

dialog given only a small number of examples.

• Automation. Given such examples, the system should operate correctly without requiring

any manual intervention.

4.2.2 Challenges

In some cases, replaying is trivial to implement. For example, each attack by the Code Red

worm sends exactly the same byte stream over the network to a target. However, successfully re-

playing an application dialog can be much more complicated than simply parroting the stream.
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tftp −i xx.xx.xx.xx GET msblast.exe

compromise and open a shell

download msblast.exe via tftp

start msblast.exe

VictimAttacker

Figure 4.1. The infection process of the Blaster worm.

Consider for example the Blaster worm of August, 2003, which exploited a DCOM RPC vulnera-

bility in Windows by attacking port 135/tcp. For Blaster, if a compromised host (A) finds a new

vulnerable host (V ) via its random scanning, then the following infection process occurs (see Fig-

ure 4.1).

1. A opens a connection to 135/tcp on V and sends three packets with payload sizes of 72, 1460,

and 244 bytes. These packets compromise V and open a shell listening on 4444/tcp.

2. A opens a connection to 4444/tcp and issues “tftp -i xx.xx.xx.xx GET msblast.exe” where

“xx.xx.xx.xx” is A’s IP address.

3. V sends a request back to 69/udp on A to download msblast.exe via TFTP.

4. A issues commands via 4444/tcp to start msblast.exe on host V .

This example illustrates a number of challenges for implementing replay.

1. An application session can involve multiple connections, with the initiator and responder

switching roles as both client and server, which means RolePlayer must be able to run as

client and server simultaneously.

2. While replaying an application dialog we sometimes cannot coalesce data. For example, if

the replayer attempts to send the first Blaster data unit as a single packet, we observe two

packets with sizes of 1460 and 316 bytes due to Ethernet framing. For reasons we have been
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unable to determine, these packets do not compromise vulnerable hosts. Thus, RolePlayer

must consider both application data units and network framing. (It appears that there is a

race condition in Blaster’s exploitation process—A connects to 4444/tcp before the port is

opened on V . If we do not consider the network framing, it increases the likelihood of the

race condition. Accommodating such timing issues in replay remains for future work.)

3. Endpoint addresses such as IP addresses, port numbers and hostnames may appear in appli-

cation data. For example, the IP address of A appears in the TFTP download command. This

requires RolePlayer to find and update endpoint addresses dynamically.

4. Endpoint addresses (especially names but also IP addresses, depending on formatting) can

have variable lengths, and thus the data size of a packet or application data unit can differ

between dialogs. This creates two requirements for RolePlayer: deciding if a received appli-

cation data unit is complete, particularly when its size is smaller than expected; and changing

the value of such length fields when replaying them with different endpoint addresses.

5. Some applications use “cookie” fields to record session state. For example, the process ID

of the client program is a cookie field for the Windows CIFS protocol, while the file handle

is one in the NFS protocol. Therefore, RolePlayer must locate and update these fields during

replay.

6. We observe that non-zero padding up to 3 bytes may be inserted into an application data unit,

which we must accommodate without confusion during replay.

4.2.3 Terminology

We will use the term application session to mean a fixed series of interactions between two

hosts that accomplishes a specific task (e.g., uploading a particular file into a particular location).

The term application dialog refers to a recorded instance of a particular application session. The

host that starts a session is the initiator. The initiator contacts the responder. (We avoid “client”

and “server” here because for some applications the two endpoints assume both roles at different

times.) We want RolePlayer to be able to correctly mimic both initiators and responders. In doing
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so, it acts as the replayer, using previous dialog(s) as a guide in communicating with the remote live

peer that runs the actual application program.

An application session consists of a set of TCP and/or UDP connections, where a UDP “connec-

tion” is a pair of unidirectional UDP flows that are matched on source/destination IP address/port

number. In a connection, an application data unit (ADU) is a consecutive chunk of application-

level data sent in one direction, which spans one or more packets. RolePlayer only cares about

application-level data, ignoring both network and transport-layer headers when replaying a session.

Table 4.1. Definitions of different types of dynamic fields.

Type Definition
endpoint-address hostnames, IP addresses, transport port numbers
length 1 or 2 bytes reflecting the length of either the ADU or a subsequent dynamic field
cookie session-specific opaque data that appears in ADUs from both sides of the dialog
argument fields that customize the meaning of a session
don’t-care opaque fields that appear in only one side of the dialog

Within an ADU, a field is a byte sequence with semantic meaning. A dynamic field is a field that

potentially changes between different dialogs. We classify dynamic fields into five types: endpoint-

address, length, cookie, argument, and don’t-care (see Table 4.1 for their definitions). Argument

fields (e.g., the destination directory for a file transfer or the domain name in a DNS lookup) are

only relevant for replay if we want to specifically alter them; for don’t-care fields, we ignore the

difference if the value for them we receive from a live peer differs from the original, and we send

them verbatim if communicating them to a live peer.

To replay a session, we need at least one sample dialog—the primary application dialog—to use

as a reference. We may also need an additional secondary dialog for discovering dynamic fields,

particularly length fields. Finally, we refer to the dialog generated during replay as the replay dialog.

4.2.4 Assumptions

Given the terminology, we can frame our design assumptions as follows.

1. We have available primary and (when needed) secondary dialogs that differ enough to disclose

the dynamic fields, but are otherwise the same in terms of the application semantics.
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2. We assume that the live peer is configured suitably similar to its counterpart in the dialogs.

3. We assume the knowledge of some standard network protocol representations, such as em-

bedded IP addresses being represented either as a four-byte integer or in dotted or comma-

separated format and embedded transport port numbers as two-byte integers. (We currently

consider network byte order only, but it is an easy extension to accommodate either endi-

anness.) Note that we do not assume the use of a single format, but instead encode into

RolePlayer each of the possible formats.

4. We assume the domain names of the participating hosts in sample dialogs can be provided

by the user if required for successful replay (see Section 4.4.7 for more discussion on this

assumption).

5. We assume that the application session does not include time-related behavior (e.g., wait 30

seconds before sending the next message) and does not require encryption or cryptographic

authentication.

We will show that these assumptions do not impede RolePlayer from replaying a wide class of

application protocols (see Section 4.4).

4.3 Design

The basic idea of RolePlayer is straightforward: given an example or two of an application

session, locate the dynamic fields in the ADUs and adjust them as necessary before sending the

ADUs out from the replayer. Since some dynamic fields, such as length fields, can only be found

by comparing two existing sample application dialogs, we split the work of RolePlayer into two

stages: preparation and replay. During preparation, RolePlayer first searches for endpoint-address

and argument fields in each sample dialog, then searches for length fields and possible cookie fields

by comparing the primary and secondary dialogs. During replay, it first searches for new values of

dynamic fields by comparing received ADUs with the corresponding ones in the primary dialog,

then updates them with the new values. In this section, we describe both stages in detail.
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Before proceeding, we note that a particularly important issue concerns dynamic ports. Role-

Player needs to determine when to initiate or accept new connections, and in particular must rec-

ognize additional ports that an application protocol dynamically specifies. To do so, RolePlayer

detects stand-alone ports and IP address/port pairs during its search process, and matches these with

subsequent connection requests. This enables the system to accommodate features such as FTP’s

use of dynamic ports for data transfers, and portmapping as used by SunRPC.

4.3.1 Preparation Stage

Start Preparation

Parse Application Dialogs

Read Given Hostnames
and Arguments

Search for Endpoint−Address
and Arguments Fields
in the Primary Dialog

Search for Endpoint−Address
and Arguments Fields
in the Secondary Dialog

Split ADU into Segments
based on Found Fields

Search for Length, Cookie
and Don’t−Care Fields

Finish Preparation

No

Yes

Secondary Dialog Exists?

Figure 4.2. Steps in the preparation stage.

In the preparation stage, RolePlayer needs to parse network traces of the application dialogs and
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search for the dynamic fields within. For its processing we may also need to inform RolePlayer of

the hostnames of both sides of the dialog, and any application arguments of interest, as these cannot

be inferred from the dialog. These steps of the preparation stage are shown in Figure 4.2.

Parsing Application Dialogs

Response: 150 Opening BINARY

mode data connection for setup.exe

Request: RETR setup.exe

FTP Data

Response: 226 File send ok

Open FTP Data ConnectionFTP Client FTP Server

Figure 4.3. A sample dialog for PASV FTP.

RolePlayer organizes dialogs in terms of both ADUs and data packets. It uses data packets

as the unit for sending and receiving data and ADUs as the unit for manipulating dynamic fields.

Note that data packets may interleave with ADUs. For example, FTP sessions use two concurrent

connections, one for data transfer and one for control (see Figure 4.3). RolePlayer needs to honor

the ordering between these as revealed by the packet sequencing on the wire, such as ensuring that

a file transfer on the data channel completes before sending the “226 Transfer complete” on the

control channel. Accordingly, we use the SYN, FIN and RST bits in the TCP header to delimit the

beginning and end of each connection, so we know the correct temporal ordering of the connections

within a session.

Searching for Dynamic Fields

RolePlayer next searches for dynamic fields in the primary dialog, and also by comparing it

with the secondary dialog (if available). The searching process contains a number of subtle steps

and considerations (we discuss some design issues in detail in Section 4.3.3). We illustrate these

using replay of a fictitious toy protocol, Service Port Discovery (SPD), as a running example.
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TYPE SID LEN−1 HOSTNAME LEN−2 SERVICE

TYPE SID LEN−1 IP−PORTResponse LEN−0

LEN−0Request

Figure 4.4. The message format for the toy Service Port Discovery protocol.

In SPD, a client sends a request message, carrying the client’s hostname and a service name, to

a server to ask for the port number of that service. The server replies with an IP address and port

number expressed in the comma-separated syntax used by FTP.

These two messages have the formats shown in Figure 4.4. Requests have 7 fields: LEN-

0 (1 byte) holds the length of the message. TYPE (1 byte) indicates the message type, with a

value of 1 indicating a request and 2 a response message. SID (2 bytes) is session/transaction

identifier, which the server must echo in its response. LEN-1 (1 byte) stores the length of the client

hostname, HOSTNAME, which the server logs. LEN-2 (1 byte) stores the length of the service

name, SERVICE.

Responses have 5 fields. LEN-0, TYPE and SID have the same meanings as in requests. LEN-1

(1 byte) stores the length of the IP-PORT field, which holds the IP address and port number of the

requested service in a comma-separated format. For example, 1.2.3.4:567 is expressed as “0x31

0x2c 0x32 0x2c 0x33 0x2c 0x34 0x2c 0x32 0x2c 0x35 0x35”.

19 1 1314 6 h o s t 0 1 7 p r i n t e r

16 1 0300 7 h o s t t w o 3 m a p

18 2 1314 13 1 0 , 2 , 3 , 4 , 2 , 5 5

19 2 0300 14 1 0 , 4 , 5 , 6 , 2 , 1 4 2

Figure 4.5. The primary and secondary dialogs for requests (left) and responses (right) using the toy
SPD protocol. RolePlayer first discovers endpoint-address (bold italic) and argument (italic) fields,
then breaks the ADUs into segments (indicated by gaps), and discovers length (gray background)
and possible cookie (bold) fields.

We note that this protocol is sufficiently simple that some of the operations we illustrate appear

trivial. However, the key point is that exactly the same operations also work for much more complex

protocols (such as Windows SMB/CIFS). Figure 4.5 shows two SPD dialogs, each consisting of

a request (left) and response (right). For RolePlayer to process these, we must inform it of the
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embedded hostnames (“host01”, “hosttwo”) and arguments (“printer”, “map”), though we do

not need to specify their locations in the protocol. If we did not specify the arguments, they would

instead be identified and treated as don’t-care fields. We do not need to inform RolePlayer of the

hostname of a live peer because RolePlayer can automatically find it as the byte subsequence aligned

with the hostname in the primary dialog if it appears in an ADU from the live peer. In addition, we

do not inform RolePlayer of the embedded transaction identifiers (1314, 0300), length fields, IP

addresses (10.2.3.4, 10.4.5.6), or port numbers (567 = 2 · 256 + 55, 654 = 2 · 256 + 142).

The naive way to search for dynamic fields would be to align the byte sequences of the corre-

sponding ADUs and look for subsequences that differ. However, we need to treat endpoint-address

and argument fields as a whole; for example, we do not want to decide that one difference between

the primary and secondary dialogs is changing “01” in the first to “two” in the second (the tail end

of the hostnames). Similarly, we want to detect that 13 and 14 in the replies are length fields and

not elements of the embedded IP addresses that changed. To do so, we proceed as follows:

1. Search for endpoint-address and argument fields in both dialogs by finding matches of pre-

sentations of their known values. For example, we will find “host01” as an endpoint-address

field and “printer” as an argument field in the primary’s request.

We consider seven possible presentations and their Unicode [94] equivalents for endpoint

addresses, and one presentation and its Unicode equivalent for arguments. For example, for

the primary’s reply we know from the packet headers in the primary trace that the server’s

IP address is 10.2.3.4, in which case we search for: the binary equivalent (0x0A020304);

ASCII dotted-quad notation (“10.2.3.4”); and comma-separated octets (“10,2,3,4”). The latter

locates the occurrence of the address in the reply. (If the server’s address was something

different, then we would not replace “10,2,3,4” in the replayed dialog.)

2. If we have a secondary dialog, then RolePlayer splits each ADU into segments based on the

endpoint-address and argument fields found in the previous step.

3. Finally, RolePlayer searches for length, cookie, and don’t-care fields by aligning and compar-

ing each pair of data segments. By “alignment” here we mean application of the Needleman-

Wunsch algorithm [60], which efficiently finds the minimal set of difference between two
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byte sequences subject to constraints; see Section 4.3.3 below for discussion. An important

point is that at this stage we do not distinguish between cookie fields and don’t-care fields.

Only during the actual subsequent live session will we see whether these fields are used in

a manner consistent with cookies (which need to be altered during replay) or don’t-care’s

(which shouldn’t). See Section 4.3.2 for the process by which we make this decision.

In the SPD example (Figure 4.5), aligning and comparing the five-byte initial segments in the

primary and secondary requests results in the discovery of two pairs of length fields (19 vs.

16, and 6 vs. 7) and one cookie field (1314 vs. 0300). To find these, RolePlayer first checks

if a pair of differing bytes (or differing pairs of bytes) are consistent with being length fields,

i.e., their numeric values differ by one of: (1) the length difference of the whole ADU, (2) the

length difference of an endpoint-address or argument field that comes right after the length

fields, or (3) the double-byte length difference of these, if the subsequent field is in Unicode

format. For example, RolePlayer finds 19 and 16 as length fields because their difference

matches the length difference of the request messages, while the difference between 6 and 7

matches the length difference of the client hostnames. (Note that, to accommodate Unicode,

we merge any two consecutive differing byte sequences if there is only one single zero byte

between them.)

4.3.2 Replay Stage

With the preparation complete, RolePlayer can communicate with a live peer (the remote ap-

plication program that interacts with RolePlayer). To do so, it uses the primary application dialog

plus the discovered dynamic fields as its “script,” allowing it to replay either the initiator or the

responder. Figures 4.6(a) and 4.6(b) give examples of creating an initial request and responding to

a request from a live peer in SPD, respectively. To construct these requires several steps, as shown

in Figure 4.7.

Deciding Packet Direction

We read the next data packet from the script to see whether we now expect to receive a packet

from the live peer or send one out.
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19 1 1314 6 h o s t 0 1 7 p r i n t e r

18 1 1314 4 n e w h 8 s c h e d u l e

(a) The scripted (primary) dialog (top) and RolePlayer’s generated dialog (bottom) for an SPD request for which we

have instructed it to use a different hostname and service. The fields in black background reflect those updated to

account for the modified request and the automatically updated length fields.

19 1 1314 6 h o s t 0 1 7 p r i n t e r

18 1 1616 5 h o s t 4

18 2 1314 13 1 0 , 2 , 3 , 4 , 2 , 5 5

19 2 1616 14 1 0 , 2 1 , 8 , 57 p r i n t e r , 2 , 5 5

(b) The same for constructing an SPD reply to a live peer that sends a different transaction ID in their request, and

for which the replayer is running on a different IP address. Note that the port in the reply stays constant.

Figure 4.6. Initiator-based and responder-based SPD replay dialogs.

Next Packet?

Yes

Send or Recv?

Last Packet?

Yes
Find Dynamic

First Packet?

Yes

Send

No

Recv

Fields in ADU

Update Dynamic
Fields in ADU

Finish Replay

Recv Packet
Send Packet

Start Replay

No

No

Sending Data

Receiving Data

Figure 4.7. Steps in the replay stage.
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Receiving Data

If we expect to receive a packet, we read data from the specific connection. Doing so requires

deciding whether the received data is complete (i.e., equivalent to the corresponding data in the

script). To do so, we use the alignment algorithm (Section 4.3.3) with the constraint that the match

should be weighted to begin at the same point (i.e., at the beginning of the received data). If it yields

a match with no trailing “gap” (i.e., it did not need to pad the received data to construct a good

match), then we consider that we have received the expected data. Otherwise, we wait for more data

to arrive.

After receiving a complete ADU, we compare it with the corresponding one in the script to lo-

cate dynamic fields. This additional search is necessary for two reasons. First, RolePlayer may need

to find new values of endpoint addresses or arguments. Second, cookie fields found in the replay

stage may differ from those found in the preparation stage due to accidental agreement between the

primary and secondary dialogs.

We can apply the techniques used in the preparation stage to find dynamic fields, but with the

major additional challenge that now for the live dialog (the ongoing dialog with the live peer) we

do not have access to the endpoint addresses and application arguments. While the script provides

us with guidance as to the existence of these fields, they are often not in easily located positions

but instead surrounded by don’t-care fields. The difficult task is to pinpoint the fields that need to

change in the midst of those that do not matter. If by mistake this process overlaps an endpoint-

address or argument field with a don’t-care field, then this will likely substitute incorrect text for

the replay. However, we can overcome these difficulties by applying the alignment algorithm with

pairwise constraints (Section 4.3.3). Doing so, we find that RolePlayer correctly identifies the fields

with high reliability.

After finding the endpoint-address and argument fields, we then use the same approach as for

the preparation stage to find length, cookie and don’t-care fields. We save the data corresponding

to newly found endpoint-address, argument, and cookie fields for future use in updating dynamic

fields.

Sending Data
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When the script calls for us to send a data packet, we check whether it is the first one in an

ADU. If so, we update any dynamic fields in it and packetize it. The updated values come from

three sources: (1) analysis of previous ADUs; (2) the IP address and transport port numbers on

the replayer; (3) user-specified (for argument fields). After updating all other fields, we then adjust

length fields.

This still leaves the cookie fields for updating. RolePlayer only updates cookie fields reactively,

i.e., to reflect changes first introduced by the live peer. So, for example, in Figure 4.6(a) we do not

change the transaction ID when sending out the request, but we do change it in the reply shown in

Figure 4.6(b).

To update cookie values altered by the live peer, we search the ADU we are currently construct-

ing for matches to cookie fields we previously found by comparing received ADUs with the script.

However, some of these identified cookie fields may in fact not be true cookies (and thus should

not be reflected in our new ADU), for three reasons: some Windows applications use non-zero-byte

padding; sometimes a single, long field becomes split into multiple, short cookie fields due to par-

tial matches within it; and messages such as FTP server greetings can contain inconsistent (varying)

data (e.g., the FTP software name and version).

Thus, another major challenge is to determine robustly which cookie matches we should ac-

tually update. We studied several popular protocols and found that cookie fields usually appear in

the same context (i.e., with the same fields preceding and trailing them). Also, the probability of a

false match to an N -byte cookie field is very small when N is large (e.g., when N ≥ 4). Hence, to

determine if we should update a cookie match, we check four conditions, requiring at least two to

hold.

1. Does the byte sequence have at least four bytes? This condition reflects the fact that padding

fields are usually less than four bytes in length because they are used to align an ADU to a

32-bit boundary.

2. Does the byte sequence overlap a potential cookie field found in the preparation stage? (If

there is no secondary dialog, this condition will always be false, because we only find cookie

fields during preparation by comparing the primary and secondary dialog.) The intuition here
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is that the matched byte sequence is more likely to be a correct one since it is part of a potential

cookie field.

3. Is the prefix of the byte sequence consistent with that of the matched cookie field? The prefix

is the byte sequence between the matched cookie field and the preceding non-cookie dynamic

field (or the beginning of the ADU). For prefixes exceeding 4 bytes, we consider only the last

four bytes (next to the targeted byte sequence). For empty prefixes, if the non-cookie dynamic

fields are the same type (or it is the beginning of the ADU) then the condition holds. This

condition matches cookie fields with the same leading context.

4. Is the suffix consistent? The same as the prefix condition but for the trailing context.

In the SPD example (Figure 4.5), byte sequences of 1314 in the request and response messages

in the primary dialog are cookie fields because they meet the second and fourth condition above.

By the second condition, they both overlap 0300 in the secondary dialog. By the fourth condition,

they are both trailed by a length field. On the other hand, the first and third conditions are not true

because they have only two bytes and their prefix fields are 1 and 2, respectively.

4.3.3 Design Issues

Sequence Alignment

The cornerstone of our approach is to compare two byte streams (either a primary dialog and a

secondary dialog, or a script and the ADUs we receive from a live peer) to find the best description

of their differences. The whole trick here is what constitutes “best”. Because we strive for an

application-independent approach, we cannot use the semantics of the underlying protocol to guide

the matching process. Instead we turn to generic algorithms that compare two byte streams using

customizable, byte-level weightings for determining the significance of differences between the two.

The term used for the application of these algorithms is “alignment”, since the goal is to find

which subsequences within two byte streams should be considered as counterparts. The Needleman-

Wunsch algorithm [60] we use is parameterized in terms of weights reflecting the value associated

with identical characters, differing characters, and missing characters (“gaps”). The algorithm then
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uses dynamic programming to find an alignment between two byte streams (i.e., where to introduce,

remove, or transform characters) with maximal weight.

We use two different forms of sequence alignment, global and semi-global. Global refers to

matching two byte streams against one another in their entirety, and is done using the standard

Needleman-Wunsch algorithm. Semi-global reflects matching one byte stream as a prefix or suffix

of the other, for which we use a modified Needleman-Wunsch algorithm (see below).

When considering possible alignments, the algorithm assigns different weightings for each

aligned pair of characters depending on whether the characters agree, disagree, or one is a gap.

Let the weight be m if they agree, n if they disagree, and g if one is a gap. The total score for a pos-

sible alignment is then the sum of the corresponding weights. For example, given abcdf and acef,

with weights m = 2, n = −1, g = −2, the optimal alignment (which the algorithm is guaranteed

to find) is abcdf with a-cef, with score m + g + m + n + m = 3, where “-” indicates a gap.

To compute semi-global alignments of matching one byte stream as prefix of the other, we

modify the algorithm to ignore trailing gap penalties. For example, given two strings ab and abcb,

we obtain the same global alignment score of 2m + 2g for the alignments ab-- with abcb, versus

a--b with abcb. But for semi-global alignment, the similarity score is 2m for the first and 2m+2g

for the second, so we prefer the first since g takes a negative value.

The quality of sequence alignment depends critically on the particular parameters (weightings)

we use. For our use, the major concern is deciding how many gaps to allow in order to gain a match.

For example, when globally aligning ab with bc, two possible alignment results are ab with bc

(score n+n) or ab- with -bc (score g +m+ g). The three parameters will have a combined linear

relationship (since we add combinations of them linearly to obtain a total score), so we proceed by

fixing n and g (to 0 and -1, respectively), and adjusting m for different situations.

For global alignment—which we use to align two sequences before comparing them and locat-

ing length, cookie, and don’t-care fields—we set m = 1 to avoid alignments like ab- with -bc.

For semi-global alignment—used during replay to decide whether received data is complete—we

set m to the length difference of the two sequences. The notion here is that if the last character

of the received data matches the last one in the ADU from the script, then m is large enough to
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offset the gap penalty caused by aligning the characters together. However, if the received data is

indeed incomplete, its better match to only the first part of the ADU will still win out. Using the

semi-global alignment example above, we will set m = 2 (due to the length of ab vs. abcb), and

hence still find the best alignment with abcb to be ab-- rather than a--b.

Finally, we make a powerful refinement to the Needleman-Wunsch algorithm for pinpointing

endpoint-address and/or argument fields in a received ADU: we modify the algorithm to work with

a pairwise constraint matrix. The matrix specifies whether the ith element of the first sequence

can or cannot be aligned with the jth element of the second sequence. We dynamically generate

this matrix based on the structure of the data from the primary dialog. For example, if the data

includes an endpoint-address field represented as a dotted-quad IP address, then we add entries in

the matrix prohibiting those digits from being matched with non-digits in the second data stream,

and prohibiting the embedded “.”s from being matched to anything other than “.”s. This modification

significantly improves the efficacy of the alignment algorithm in the presence of don’t-care fields.

Removing Overlap

When we don’t have a secondary dialog, and search for matches of cookie fields in an ADU

in the primary dialog (so that we can update them with new values), sometimes we find fields that

overlap with one another. We remove these using a greedy algorithm. For each overlapping dynamic

field, we set the penalty for removing it as the number of bytes we would lose from the union set of

all dynamic fields. (So, for example, a dynamic field that is fully embedded within another dynamic

field has a penalty of 0.) We then select the overlapping field with the least penalty, remove it, and

repeat the process until there is no overlap.

Handling Large ADUs

ADUs can be very large, such as when transferring a large data item using a single Windows

CIFS, NFS or FTP message. RolePlayer cannot ignore these ADUs when searching for dynamic

fields because there may exist dynamic fields embedded within them—generally at the beginning.

For example, an NFS “READ Reply” response comes with both the read status and the correspond-

ing file data, and includes a cookie field containing a transaction identifier. However, the complexity

of sequence alignment is O(MN) for sequences of lengths M and N , making its application in-
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tractable for large sequences. RolePlayer avoids this problem by considering only fixed-size byte

sequences at the beginning of large ADUs (we take the first 1024 bytes in our current implementa-

tion).

4.4 Evaluation

Protocol Initiator Program Responder Program # Connections # ADUs # Initiator Fields # Responder Fields
received sent received sent

SMTP manual Sendmail 1 13 22 3 3 3
DNS nslookup BIND 1 2 8 0 0 1
HTTP wget Apache 1 2 10 0 0 0
TFTP W32.Blaster Windows XP 3 34 5 1 1 1
FTP wget ProFTPD 2 18 12 0 0 2
NFS mount Linux Fedora NFS 9 36 34 12 46 23
CIFS W32.Randex.D Windows XP 6 86 101 65 80 63

Table 4.2. Summary of evaluated applications and the number of dynamic fields in data received or
sent by RolePlayer during either initiator or responder replay.

In the previous section, we described the design of RolePlayer. We implemented RolePlayer

in 7,700 lines of C code under Linux, using libpcap [50] to store traffic and the standard socket

API to generate traffic. Thus, RolePlayer only needs root access if it needs to send traffic from a

privileged port. RolePlayer tries to packetize data of TCP connections in the same fashion as seen in

the primary/secondary dialogs. However, the socket APIs do not support such functionality. In our

implementation, RolePlayer calls send and sendto to dispatch data segments at the same boundary

as seen in those dialogs, and usually achieves expected packetization. We tested the system on a va-

riety of protocols widely used in malicious attacks and network applications. Table 4.2 summarizes

our test suite. RolePlayer can successfully replay both the initiator and responder sides of all of

these dialogs. In the remainder of this section, we first describe our test environment, then present

the evaluation results, and discuss the limitations of RolePlayer in the end.

4.4.1 Test Environment

We conducted our evaluation in an isolated testbed consisting of a set of nodes running on

VMware Workstation [95] interconnected using software based on Click [39]. We used VMware

Workstation’s support for multiple guest operating systems and private networks between VM in-
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stances to construct different, contained test configurations, with the Click system redirecting mal-

ware scans to our chosen target systems. We gave each running VM instance a distinct IP address

and hostname, and used non-persistent virtual disks to allow recovery from infection. For the tests

we used both Windows XP Professional and Fedora Core 3 images, to verify that replay works for

both Windows and Linux services. RolePlayer itself ran on the Linux host system rather than within

a virtual machine, enabling it to communicate with any virtual machine on the system.

4.4.2 Simple Protocols

Our simplest tests were for SMTP, DNS, and HTTP replay. For testing SMTP, we replayed an

email dialog with RolePlayer changing the recipient’s email address (an “argument” dynamic field).

In one instance, RolePlayer itself made this change as the session initiator; in the other, it played

the role of the responder (SMTP server).

For DNS, RolePlayer correctly located the transaction ID embedded within requests, updating it

when replaying the responder (DNS server). The HTTP dialog was similarly simple, being limited

to a single request and response. Since the request did not contain a cookie field, replaying trivially

consisted of purely resending the same data as seen originally (though RolePlayer found some

don’t-care fields in the HTTP header of the response message).

4.4.3 Blaster (TFTP)

As discussed in Section 4.2, Blaster [97] (see Figure 4.1) attacks its victim using a DCOM RPC

vulnerability. After attacking, it causes the victim to initiate a TFTP transfer back to the attacker to

download an executable, which it then instructs the victim to run. A Blaster attack session does not

contain any length fields or hostnames, so we can replay it without needing a secondary application

dialog or hostname information.

RolePlayer can replay both sides of the dialog. As an initiator, we successfully infected a remote

host with Blaster. As a fake victim, we tricked a live copy of Blaster into going through the full set

of infection steps when it probed a new system.

When replaying the initiator, RolePlayer found five dynamic fields in received ADUs. Of these,
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it correctly deemed four as don’t-care fields. These were each part of a confirmation message,

specifying information such as data transfer size, time, and speed. The single dynamic field found

and updated was the IP address of the initiator, necessary for correct operation of the injected TFTP

command.

When replaying the responder, RolePlayer found only a single dynamic field, the worm’s IP

address, again necessary to correctly create the TFTP channel.

4.4.4 FTP

To test FTP replay (see Figure 4.3 for a sample dialog of PASV FTP), we used the

wget utility as the client program to connect to two live FTP servers, fedora.bu.edu and mir-

rors.xmission.com. We collected two sample application dialogs using the command wget

ftp://ftp-server-name/fedora/core/3/i386/os/Fedora/RPMS/crontabs-1.10-7.noarch.rpm. In

both cases, wget used passive FTP, which uses dynamically created ports on the server side.

When acting as the initiator, we replayed the fedora.bu.edu dialog over a live session to mir-

rors.xmission.com, and vice versa. There were no length fields, so we did not need a secondary

dialog (nor hostnames). In both cases, RolePlayer successfully downloaded the file.

The system found twelve dynamic fields in the ADUs it received. Among them, the only two

meaningful ones were endpoint-address fields: the server’s IP address and the port of the FTP data-

transfer channel. The rest arose due to differences in the greeting messages and authentication

responses. RolePlayer recognized these as don’t-care’s and did not update them.

When replaying the responder, wget successfully downloaded the file from a fake RolePlayer

server pretending to be either fedora.bu.edu or mirrors.xmission.com, with the same two endpoint-

address fields updated in ADUs sent by the replayer.

We tested support for argument fields by specifying the filename crontabs-1.10-7.noarch.rpm

as an argument. When replaying the initiator, we replaced this with pyorbit-devel-2.0.1-

1.i386.rpm, another file in the same directory. RolePlayer successfully downloaded the new file

from fedora.bu.edu using the script from mirrors.xmission.com. Since the two files are completely

different, the system found many don’t-care fields. None of these affected the replay because they
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did not meet the conditions for updating cookie fields. We also confirmed that RolePlayer can replay

non-passive FTP dialogs successfully.

4.4.5 NFS

We tested the NFS protocol running over SunRPC using two different NFS servers. We used

the series of commands mount, ls, cp, umount to mount an NFS directory, copy a file from it to

a local directory, and unmount it. We used one NFS server for collecting the primary application

dialog and a second as the target for replaying the initiator. The NFS session consisted of nine TCP

connections, including interactions with three daemons running on the NSF server: portmap, nfs,

and mountd. The first two ran on 111/tcp and 2049/tcp, while mountd used a dynamic service port.

As is usually the case with NFS access, in the session both of the latter two ports were found via

RPCs to portmap.

When replaying the initiator, RolePlayer found 34 dynamic fields in received ADUs, and

changed 12 fields in the ADUs it sent. When replaying the responder, RolePlayer found 46 dynamic

fields in received ADUs, and changed 23 fields in the ADUs it sent. The cookie fields concerned

RPC call IDs.

RolePlayer successfully replayed both the initiator side (receiving the directory listing and then

the requested file) and the responder side (sending these to a live client, which correctly displayed

the listing and copied the file).

4.4.6 Randex (CIFS/SMB)

To test RolePlayer’s ability to handle a complex protocol while interacting with live malware,

we used the W32.Randex.D worm [98]. This worm scans the network for SMB/CIFS shares with

weak administrator passwords. To do so, it makes numerous SMB RPC calls (see Figure 4.8, repro-

duced with permission from [63]). When it finds an open share, it uploads a malicious executable

msmgri32.exe. In our experiments, we configured the targeted Windows VM to accept blank

passwords, and turned off its firewall so it would accept traffic on ports 135/tcp, 139/tcp, 445/tcp,

137/udp, and 138/udp.
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-> SMB Negotiate Protocol Request
<- SMB Negotiate Protocol Response
-> SMB Session Setup AndX Request
<- SMB Session Setup AndX Response
-> SMB Tree Connect AndX Request,

Path: \\XX.128.18.16\IPC$
<- SMB Tree Connect AndX Response
-> SMB NT Create AndX Request, Path: \samr
<- SMB NT Create AndX Response
-> DCERPC Bind: call_id: 1 UUID: SAMR
<- DCERPC Bind_ack:
-> SAMR Connect4 request
<- SAMR Connect4 reply
-> SAMR EnumDomains request
<- SAMR EnumDomains reply
-> SAMR LookupDomain request
<- SAMR LookupDomain reply
-> SAMR OpenDomain request
<- SAMR OpenDomain reply
-> SAMR EnumDomainUsers request

Now start another session, connect to the
SRVSVC pipe and issue NetRemoteTOD
(get remote Time of Day) request

-> SMB Negotiate Protocol Request
<- SMB Negotiate Protocol Response
-> SMB Session Setup AndX Request
<- SMB Session Setup AndX Response
-> SMB Tree Connect AndX Request,

Path: \ \XX.128.18.16\IPC$
<- SMB Tree Connect AndX Response
-> SMB NT Create AndX Request, Path: \srvsvc
<- SMB NT Create AndX Response
-> DCERPC Bind: call_id: 1 UUID: SRVSVC
<- DCERPC Bind_ack: call_id: 1
-> SRVSVC NetrRemoteTOD request
<- SRVSVC NetrRemoteTOD reply
-> SMB Close request
<- SMB Close Response

Now connect to the ADMIN share and write the file

-> SMB Tree Connect AndX Request, Path: \\XX.128.18.16\ADMIN$
<- SMB Tree Connect AndX Response
-> SMB NT Create AndX Request,

Path:\system32\msmsgri32.exe <<<===

<- SMB NT Create AndX Response, FID: 0x74ca
-> SMB Transaction2 Request SET_FILE_INFORMATION
<- SMB Transaction2 Response SET_FILE_INFORMATION
-> SMB Transaction2 Request QUERY_FS_INFORMATION
<- SMB Transaction2 Response QUERY_FS_INFORMATION
-> SMB Write Request
....

Figure 4.8. The application-level conversation of W32.Randex.D.
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To collect sample application dialogs, we manually launched a malware executable from an-

other Windows VM, redirecting its scans to the targeted Windows VM, recording the traffic using

tcpdump. We stored two attacks because replaying CIFS requires a secondary application dialog

to locate the numerous length fields.

There are six connections in W32.Randex.D’s attack, all started by the initiator. Of these, two

are connections to 139/tcp, which are reset by the initiator immediately after it receives a SYN-ACK

from the responder. One connects to 80/tcp (HTTP), reset by the responder because the victim did

not run an HTTP server. The remaining three connections are all to 445/tcp. The worm uses the first

of these to detect a possible victim; it does not transmit any application data on this connection. The

worm uses the second to enumerate the user account list on the responder via the SAMR named pipe.

The final connection uploads the malicious executable to \Admin$\system32\msmsgri32.exe

via the Admin named pipe.

When replaying the initiator, RolePlayer found 101 dynamic fields in received ADUs, and

changed 65 fields in the ADUs it sent. When replaying the responder, it found 80 dynamic fields

in received ADUs, and changed 63 fields in the ADUs it sent. (The difference in the number of

fields is because some dynamic fields remain the same when they come from the replayer rather

than the worm. For example, the responder chooses the context handle of the SAMR named pipe;

when replaying the responder, the replayer just uses the same context handle as in the primary ap-

plication dialog.) Considering ADUs in both directions, there were 21 endpoint-address fields, 76

length fields, and 32 cookie fields. The cookie fields reflect such information as the context handles

in SAMR named pipes and the client process IDs.

As with our Blaster experiment, RolePlayer successfully infected a live Windows system with

W32.Randex.D when replaying the initiator side, and, when replaying the responder, successfully

drove a live, attacking instance of the worm through its full set of infection steps.

To demonstrate the function of RolePlayer, we select six consecutive messages from the

conversation of W32.Randex.D (shown in bold-italic in Figure 4.8), consisting of SAMR Con-

nect4 request/response, SAMR EnumDomains request/response, and SAMR LookupDomain re-

quest/response. We show the content of these messages from the primary, secondary, initiator-based
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A->V

A<-V

A->V

A<-V

A->V

A<-V

N1|180|S26|0388|S7|96|S20|96|S8|113|S16|R8|96|R6|72|R4|0014CCB8|18|M4|18|M4

 |144.165.114.119|M20

N4|S26|0388|S28|R24|M16|0000000092F3E82470FDD91195F8000C295763F7|M4

N4|S26|0388|S56|R24|0000000092F3E82470FDD91195F8000C295763F7|M8

N1|180|S26|0388|S7|124|S8|124|S6|125|S1|R8|124|DECRPC-6|100|R4|M4|000B0BB0

 |M4|000B27A0|M8|8|10|000B8D18|M8|000BC610|5|M4|4|hone|M36

N1|156|S26|0388|S7|72|S20|72|S8|89|S16|R8|72|R6|48|R4|M4

 |0000000092F3E82470FDD91195F8000C295763F7|8|10|001503F8|5|M4|4|hone

N4|S26|0388|S28|R24|000B27A0|M32

(a) Primary Dialog

N1|172|S26|0474|S7|88|S20|88|S8|105|S16|R8|88|R6|64|R4|0014CCB8|14|M4|14|M4

 |48.196.8.48|M20

N4|S26|0474|S28|R24|M16|000000006093917586FDD91195F8000C294A478F|M4

N4|S26|0474|S56|R24|000000006093917586FDD91195F8000C294A478F|M8

N1|184|S26|0474|S7|128|S8|128|S6|129|S1|R8|128|DECRPC-6|104|R4|M4|000B0BB0

 |M4|000B6380|M8|12|14|000B76C0|M8|000C9FA8|7|M4|6|host02|M36

N1|160|S26|0474|S7|76|S20|76|S8|89|S16|R8|76|R6|52|R4|M4

 |000000006093917586FDD91195F8000C294A478F|12|14|001503F8|7|M4|6|host02

N4|S26|0474|S28|R24|000B27A0|M32

A->V

A<-V

A->V

A<-V

A->V

A<-V

(b) Secondary Dialog

N1|176|S26|0388|S7|92|S20|92|S8|109|S16|R8|92|R6|68|R4|0014CCB8|16|M4|16|M4

 |192.168.170.3|M20

N4|S26|0388|S28|R24|M16|0000000018B30AD10BFDD91195F8000C293573E4|M4

N4|S26|0388|S56|R24|0000000018B30AD10BFDD91195F8000C293573E4|M8

N1|188|S26|0388|S7|132|S8|132|S6|133|S1|R8|132|DECRPC-6|108|R4|M4|000B0BB0

 |M4|000B9358|M8|16|18|000BEF40|M8|000B6BA0|9|M4|8|hostpeer|M36

N1|164|S26|0388|S7|80|S20|80|S8|89|S16|R8|80|R6|56|R4|M4

 |0000000018B30AD10BFDD91195F8000C293573E4|16|18|001503F8|9|M4|8|hostpeer

N4|S26|0388|S28|R24|000BEF40|M32

A->V

A<-V

A->V

A<-V

A->V

A<-V

(c) Initiator-based Replay Dialog

A->V

A<-V

A->V

A<-V

A->V

A<-V

N1|176|S26|0608|S7|92|S20|92|S8|109|S16|R8|92|R6|68|R4|0014CCB8|16|M4|16|M4

 |169.91.250.93|M20

N4|S26|0608|S28|R24|M16|0000000092F3E82470FDD91195F8000C295763F7|M4

N4|S26|0608|S56|R24|0000000092F3E82470FDD91195F8000C295763F7|M8

N1|180|S26|0608|S7|124|S8|124|S6|125|S1|R8|124|DECRPC-6|100|R4|M4|000B0BB0

 |M4|000B27A0|M8|8|10|000B8D18|M8|000BC610|5|M4|4|hone|M36

N1|156|S26|0608|S7|72|S20|72|S8|89|S16|R8|72|R6|48|R4|M4

 |0000000092F3E82470FDD91195F8000C295763F7|8|10|00150A88|5|M4|4|hone

N4|S26|0608|S28|R24|000B27A0|M32

(d) Responder-based Replay Dialog

Figure 4.9. A portion of the application-level conversation of W32.Randex.D. Endpoint-address
fields are in bold-italic, cookie fields are in bold, and length fields are in gray background. In the
initiator-based and responder-based replay dialogs, updated fields are in black background.
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replay, and responder-based replay dialogs in Figure 4.9. To fit each message more compactly, we

present them in the following format:

1. We split each message based on dynamic fields.

2. XY means we skipped Y bytes from protocol X (N for NetBIOS, S for SMB, R for DCE-

RPC, M for Security Account Manager), since they do not change between different dialogs.

These represent the fixed fields as part of the dialog.

3. We present endpoint-address fields such as IP addresses and hostnames in ASCII format in

bold-italic. Three hostnames appear in the messages: “hone”, “host02”, and “hostpeer”.

4. We show length fields in decimal, with a gray background. For example, “180” and “96” in

the first message of the primary dialog are length fields.

5. We show cookie fields and don’t-care fields, including the client process IDs and the SAMR

context handles, in octets. For example, “0388” in the first message of the primary dialog

is a client process ID. For convenience, we highlight in bold the cookies in the primary and

secondary dialog which require dynamic updates during the replay process.

Note that RolePlayer located two cookie fields from the SAMR context handles because part of

the handles didn’t change between dialogs (e.g., the middle portion was constant in all the dialogs).

4.4.7 Discussion

From the experiments we can see that it is necessary to locate and update all dynamic fields—

endpoint-address, cookie, and length fields—for replaying protocols successfully, while argument

fields are important for extending RolePlayer’s functionality. TFTP, FTP, and NFS require correct

manipulation of endpoint-address fields. DNS, NFS, and CIFS also rely on correct identification

of cookie files. CIFS has numerous length fields within a single application dialog. Leveraging

argument fields, RolePlayer can work as a low-cost client for SMTP, FTP, or DNS.

While RolePlayer can replay a wide class of application protocols, its coverage is not universal.

In particular, it cannot accommodate protocols with time-dependent state, nor those that use cryp-
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tographic authentication or encrypted traffic, although we can envision dealing with the latter by

introducing application-specific extensions to provide RolePlayer with access to a session’s clear-

text dialog. Another restriction is that the live peer with which RolePlayer engages must behave

in a fashion consistent with the “script” used to configure RolePlayer. This requirement is more

restrictive than simply that the live peer follows the application protocol: it must also follow the

particular path present in the script.

Since RolePlayer keeps some dynamic fields unchanged as in the primary dialog, it is possible

for an adversary to detect the existence of a running RolePlayer by checking if certain dynamic fields

are changed among different sessions. For example, RolePlayer will always open the same port for

the data channel when replaying the responder of an FTP dialog, and it will use the same context

handles in SAMR named pipes when replaying the responder of a CIFS dialog. Another possible

way to detect RolePlayer is to discover inconsistencies between the operating system the application

should be running on versus the operating system RolePlayer is running on, by fingerprinting packet

headers [118]. In the future, we plan to address these problems by randomizing certain dynamic

fields and by manipulating packet headers to match the expected operating system.

Many applications of replay require automatic replay without human intervention. However,

this causes a problem for our assumption that the domain names of the participating hosts in the ex-

ample dialogs can be provided by the user. In fact, this assumption may be eliminated by clustering

consecutive printable ASCII bytes in a message to find domain names. Note that we don’t need to

know the semantic meaning of the printable ASCII strings because in RolePlayer we use domain

names synthetically for splitting a message into segments and identifying length fields.

To locate length and (sometimes) cookie fields, RolePlayer needs a secondary dialog. In some

cases, it is not trivial to automatically identify two example dialogs that realize the same application

session or malicious attack. In addition, RolePlayer as presented in this chapter can only handle one

script at a time. In the next chapter, we will present the replay proxy, which extends the functionality

of RolePlayer to process multiple scripts concurrently. We will also describe how we find two

example dialogs for the same malicious attack.

70



4.5 Summary

We have presented RolePlayer, a system that, given examples of an application session, can

mimic both the initiator and responder sides of the session for a wide variety of application proto-

cols. We can potentially use such replay for recognizing malware variants, determining the range of

system versions vulnerable to a given attack, testing defense mechanisms, and filtering multi-step

attacks. However, while for some application protocols replay can be essentially trivial—just resend

the same bytes as recorded for previously seen examples of the session—for other protocols replay

can require correctly altering numerous fields embedded within the examples, such as IP addresses,

hostnames, port numbers, transaction identifiers and other opaque cookies, as well as length fields

that change as these values change.

We might therefore conclude that replay inevitably requires building into the replayer specific

knowledge of the applications it can mimic. However, one of the key properties of RolePlayer is that

it operates in an application-independent fashion: the system does not require any specifics about

the particular application it mimics. It instead uses extensions of byte-stream alignment algorithms

from bioinformatics to compare different instances of a session to determine which fields it must

change to successfully replay one side of the session. To do so, it needs only two examples of the

particular session; in some cases, a single example suffices.

RolePlayer’s understanding of network protocols is very limited—just knowledge of a few low-

level syntactic conventions, such as common representations of IP addresses and the use of length

fields to specify the size of subsequent variable-length fields. (The only other information Role-

Player requires—depending on the application protocol—is context for the example sessions, such

as the domain names of the participating hosts and specific arguments in requests or responses if

we wish to change these when replaying.) This information suffices for RolePlayer to heuristically

detect and adjust network addresses, ports, cookies, and length fields embedded within the session,

including for sessions that span multiple, concurrent connections.

We have successfully used RolePlayer to replay both the initiator and responder sides for a

variety of network applications, including: SMTP, DNS, HTTP; NFS, FTP and CIFS/SMB file

transfers; and the multi-stage infection processes of the Blaster and W32.Randex.D worms. The
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latter require correctly engaging in connections that, within a single session, encompass multiple

protocols and both client and server roles.

Based on RolePlayer, we implemented a replay proxy for our honeyfarm system. This proxy

can filter known multi-step attacks by replaying the server-side responses and allow new attacks

through without dropping the ongoing ones by replaying the incomplete dialog to a high-fidelity

honeypot. In the next chapter, we describe our honeyfarm system with the replay proxy in detail.
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Chapter 5

GQ: Realizing a Large-Scale Honeyfarm

System

In the previous chapter, we described RolePlayer, a system which, given one or two examples

of an application session, can mimic both the client side and the server side of the session for a wide

variety of application protocols. Based on RolePlayer, we develop a replay proxy to filter previously

seen attacks in our honeyfarm system. In this chapter, we describe the design, implementation, and

evaluation of our honeyfarm system.

5.1 Motivation

In Section 2.2, we reviewed the related work in the area of Internet epidemiology and defenses

in detail. In this section, we briefly recall our discussion there to motivate our work.

Since 2001, Internet worm outbreaks have caused severe damage that affected tens of millions

of individuals and hundreds of thousands of organizations. The Code Red worm [56], the first

outbreak in today’s global Internet after the Morris worm [20, 79] in 1988, compromised 360,000

vulnerable hosts with the Web server vulnerability and launched a distributed denial of service attack

against a government web server from those hosts. The Blaster worm [97] was the first outbreak

that exploited a vulnerability of a service running on millions of personal computers. The Slammer
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worm [54] used only a single UDP packet for infection and took only 10 minutes to infect its

vulnerable population. Also using a single UDP packet for infection, the Witty worm [55] exploited

a vulnerability, which was publicized only one day before, in a commercial intrusion detection

software, and was the first to carry a destructive payload of overwriting random disk blocks. Prior

study [57, 83, 82] suggests that automated early detection of new worm outbreaks is essential for

any effective defense.

Honeypots, as vulnerable network decoys, can be used to detect and analyze the presence, tech-

niques, and motivations of an attacker [81]. By themselves, however, honeypots serve as poor “early

warning” detection of new worm outbreaks because of the low probability that any particular hon-

eypot will be infected early in a worm’s growth. On the other hand, network telescopes, which work

by monitoring traffic sent to unallocated portions of the IP address space, have been a powerful tool

for understanding the behavior of Internet worm outbreaks at scale [58]. Combining them, a central

tool that has emerged recently for detecting Internet worm outbreaks is the honeyfarm [80], a large

collection of honeypots fed Internet traffic by a network telescope [6, 34, 58, 96]. The honeypots

interact with remote sources whose probes strike the telescope, using either “low fidelity” mimicry

to characterize the intent of the probe activity [6, 63, 66, 117], or with “high fidelity” full execution

of incoming service requests in order to purposefully become infected as a means of assessing the

malicious activity in detail [17, 29, 34, 96].

Considerable strides have been made in deploying low-fidelity honeyfarms at large scale [6,

117], but high-fidelity systems face extensive challenges, due to the much greater processing re-

quired by the honeypot systems, and the need to safely contain hostile, captured contagion while

still allowing it enough freedom of execution to fully reveal its operation. Recent work has seen

significant advances in some facets of building large-scale, high-interaction honeyfarms, such as

making much more efficient use of Virtual Machine (VM) technology [96], but these systems have

yet to see live operation at scale.

To achieve automated early detection of Internet worm outbreaks, we develop a large-scale,

high-fidelity honeyfarm system named GQ. Our work combines clusters of high-fidelity honeypots

with the large address spaces managed by network telescopes. By leveraging extensive filtering

and engaging honeypots dynamically, we can use a small number of honeypots to inspect untrusted
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traffic sent to a large number of IP addresses, with goals of automatically detecting Internet worm

outbreaks within seconds, and facilitating a wide variety of analyses on detected worms, such as

extracting (vulnerability, attack, and behavioral) signatures, and testing whether these signatures

can correctly detect repeated attacks by deploying them within the controlled environment of the

honeyfarm. Architecturally, this is similar in spirit to our UCSD colleagues’ work on the Potemkin

system, though that effort particularly emphasizes developing powerful VM technology for running

large numbers of servers optimized for worm detection [96].

In the remainder of this chapter, we first describe GQ’s design (see Section 5.2) and implemen-

tation (see Section 5.3). Then we report on our preliminary experiences with operating the system

to monitor more than a quarter million addresses, during which we captured 66 distinct worms over

the course of four months (see Section 5.4). Finally, we finish with a summary of our work (see

Section 5.5).

5.2 Design

In this section we present GQ’s design, beginning with an overview of the design goals and

system’s architecture. We then discuss management of the incoming traffic stream: obtaining input

from the network telescope, prefiltering this stream with lightweight mechanisms, and further filter-

ing it using a replay proxy. We follow this with how we address the thorny problem of containment,

detailing the containment and redirection policy we have implemented that endeavors to strike a

tenable balance between allowing contagion executing within the honeyfarm to exhibit its complete

infection (and possibly self-propagation) process, while preventing it from damaging external hosts.

We finish with a discussion of issues regarding the management of the honeypots.

5.2.1 Overview and Architecture

In developing our honeyfarm system, we aim for the system to achieve several important goals:

• High Fidelity: The system should run fully functional servers to detect new attacks against

even unknown vulnerabilities.
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Figure 5.1. GQ’s general architecture.

• Scalability: The system should be able to analyze in real-time the scanning probes seen on a

large number of Internet addresses (e.g., a quarter million addresses).

• Isolation: The system should isolate the network communications of every single honeypot.

• Stringent Control: The system should prevent honeypots from attacking external hosts.

• Wide Coverage: The system should run honeypots with a wide range of configurations with

respect to operating systems and services.

As Figure 5.1 portrays, GQ’s design emphasizes high-level modularity, consisting of a front-end

controller and back-end honeypots, mediated by a honeypot manager. This structure allows the bulk

of our system to remain honeypot-independent: although we currently use VMware ESX server

for our honeypot substrate, we intend to extend the system to include both Xen-based honeypots

using the technology developed for Potemkin [96] and a set of “bare metal” honeypots that execute

directly on hardware rather than in a VM environment, so we can detect malware that suppresses its

behavior when operating inside a VM.

The front-end controller supports data collection from multiple sources, including both direct

network connections and GRE tunnels. The latter allow us to topologically separate the honeyfarm

from the network telescope, and potentially to scatter numerous “wormholes” around the Internet

to obtain diverse sensor deployment. These features are desirable both for masking the honeyfarm’s

scope from attacker discovery and to ensure visibility into a broad spectrum of the Internet address
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space, as previous work has shown large variations in the probing seen at different locations in the

network [14]. The controller also performs extensive filtering, using both simple mechanisms and

the more sophisticated replay proxy.

The front-end also performs Network Address Translation (NAT). Rather than require that each

honeypot be dynamically reconfigured to have an internal address equivalent to the external tele-

scope address for which it is responding, we use NAT to perform this rewriting. However, if the

honeypot itself supports dynamic address reconfiguration (e.g., [96]), the front end simply skips the

NAT.

The final function of the front-end is containment and redirection. When a honeypot makes

an outgoing request, GQ must decide whether to allow it out to the public Internet. Based on

the policy in place, the front-end either allows the connection to proceed, redirects it to another

honeypot, or blocks it. Redirection to another honeypot is the means by which we can directly detect

a worm’s self-propagating behavior (namely if, once contacted, the new target honeypot itself then

initiates network activity). However, many types of malware require multi-stage infection processes

for which the initial infection will fail to fully establish (and thus fail to exhibit subsequent self-

propagation) if we do not allow some preliminary connections out to the Internet. Finding the right

balance between these two takes careful consideration, as we discuss below.

5.2.2 Network Input

The initial input to GQ is a stream of network connection attempts. GQ can process two different

forms of input: a directly routed address range, and GRE-encapsulated tunnels. A direct-routed

range simply is a local Ethernet or other network device connected to one or more subnets, while a

GRE tunnel requires a remote peer.

Supporting direct connections gives a simple and efficient deployment option. Supporting GRE

gives the opportunity to decouple the honeyfarm system from the telescope’s address space, and can

ultimately serve as a bridge between multiple honeyfarms.
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5.2.3 Filtering

We term the initial stage of responding as prefiltering, which aims to use a few simple rules

to eliminate probe sources likely of low interest. Prefiltering has several components. First, GQ

limits the total number of distinct telescope addresses that engage a given remote source to a small

number N . The assumption here is that a modest N suffices to identify a source engaged in a new or

otherwise interesting form of activity. This filter can greatly reduce the volume of traffic processed

by the honeyfarm because of the very common phenomenon of a single remote source engaging in

heavy scanning of the telescope’s address space.

We note that there is no optimal value for N . Too low, and we will miss processing sources

that engage in diverse scanning patterns that send different types of probes to different subsequent

addresses. Too high, and we burden the honeypots with a great deal of redundant traffic.

In principle, knowledge of N also allows an adversary to design their probes to escape detection

by the honeyfarm. However, to do so the adversary also needs to know the address space over which

we apply the threshold of N , and if they know that, they can more directly escape detection.

As a way to offset both these considerations, GQ’s architecture supports sampling of the probe

stream: taking a small, randomly selected subset of the stream and accepting it for processing

without applying any of our filtering criteria (see “Filter Bypass” in Figure 5.1). We also use this

mechanism for sources deemed “interesting” during the filtering stages, such as those that deviate

from the replay proxy’s scripts (see Section 5.2.4).

Our current implementation of this prefilter maintains state for each IP address that contacts

our address ranges. Since we require 8 ∗ N bytes for each IP address, we need only 400M bytes

of memory for 10 million hosts when N is taken to be five. To date, we have not seen significant

memory issues with keeping complete state.

GQ uses a second prefilter, too, taken from the work of Bailey et al. [6]. After acknowledging

an initial SYN packet, we examine the first data packet sent by the putative attacking host. If this

packet unambiguously identifies the attack as a known and classified threat, the filter drops the

connection. While configuration of these filters requires manual assessment (since many attacks
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cannot be unambiguously identified by their first data packet), we can use this mechanism to weed

out background radiation from endemic sources such as Code Red and Slammer.

Note that our use of TCP header rewriting when instantiating our honeypots greatly simplifies

use of this second prefilter. Without it, we would have to allocate a honeypot upon the initial SYN

(if it passes the scan-N prefilter) so it could complete the SYN handshake, agree upon sequence

numbers, and elicit the first data packet, just in case that packet proved of interest and we wished

to continue the connection. We could not proxy for the beginning of the connection because any

honeypot we might wind up instantiating later to handle the remainder of the connection would not

have knowledge of the correct sequence numbers.

Additionally, we include a final “safety” filter, used only for filtering outbound traffic. Its role

is to limit external traffic from the honeyfarm if any other component fails. This is a more relaxed

but simpler policy than we implement in the rest of the honeyfarm, as the point is to assure—via

independent operation—that any failure of our more complicated containment mechanism will not

have a deleterious external effect.

5.2.4 Replay Proxy

Something quite important to realize (which we quantify in Section 5.4) is that the simple

prefilters discussed in the previous section lack the power to identify many instances of known

attacks. As an extreme example, the W32.Femot worm goes through 90 pairs of message exchanges

before we can distinguish one variant from another, because it is only at that point that the attack

reveals the precise code it injects into the victim. Even for well-known worms such as Blaster, the

first-packet filter will fail to recognize new and potentially interesting variants, because these will

not manifest until later. Yet creating a custom filter for each significant piece of known worms is

quite impractical due to their prevalence.

To filter these frequent multi-stage attacks, we employ technology developed for RolePlayer,

our application-independent replay system discussed in Chapter 4. RolePlayer uses a script au-

tomatically derived from one or two examples of a previous application session as the basis for

mimicking either the client or the server side of the session in a subsequent instance of the same
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transaction. The idea is that we can represent each previously seen attack using a script that de-

scribes the network-level dialog (both client and server messages) corresponding to the attack. A

key property of such scripts is that RolePlayer can automatically extract them from samples of two

dialogs corresponding to a given attack, without having to code into RolePlayer any knowledge of

the semantics of the application protocol used in the attack. We leverage this feature of RolePlayer

to build up a set of scripts with which we configure our replay proxy.

The replay proxy extends RolePlayer’s functionality in three substantial ways:

• Processing multiple scripts concurrently;

• Recognizing when a source deviates from this set of scripts;

• Serving as an intermediary between a source and a high-fidelity honeypot once the script no

longer applies.

The proxy first plays the role of the server side of the dialog, replying to incoming traffic from a

remote source. By matching the source’s messages against multiple scripts, the proxy can perform

a fine-grained classification of known attacks without relying on application-specific responders. If

the source never deviates from the set of scripts, then we have previously seen its activity, and we

can drop the connection.

If the dialog deviates from the scripts, however, the proxy has found something that is in some

fashion new. At this point it needs to facilitate cutting the remote source over from the faux dialog

with which it has engaged so far to a continuation of that dialog with a high-fidelity honeypot.

Doing so requires bringing the honeypot “up to speed.” That is, as far as the source is concerned,

it is already deeply engaged with a server. We need to synch the server up to this same point in the

dialog so that the rest of the interaction can continue with full fidelity.

To do so, the proxy replays the dialog as it has received it so far back to the honeypot server;

this time, the proxy plays the role of the client rather than the server’s role. Once it has brought

the honeypot up to speed, the source can then continue interacting with the honeypot. However, the

replay proxy needs to remain engaged in the dialog as an intermediary, translating the IP addresses,
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Figure 5.2. The replay proxy’s operation. It begins by matching the attacker’s messages against a
script. When the attacker deviates from the script, the proxy turns around and uses the client side of
the dialog so far to bring a honeypot server up to speed, before proxying (and possibly modifying)
the communication between the honeypot and attacker. The shaded rectangles show in abstract
terms portions of messages that the proxy identifies as requiring either echoing in subsequent traffic
(e.g., a transaction identifier) or per-connection customization (e.g., an embedded IP address).

sequence numbers, and, most importantly, dynamic application fields (e.g., IP addresses embedded

in application messages, or opaque “cookie” fields). Figure 5.2 shows the replay proxy’s operation.

For new attacks, there exists a risk that the replay proxy might interfere with their execution

because its knowledge is limited to scripts generated from previous attacks. Since the proxy has

no semantic understanding of the communication relayed between the attacker and the honeypot,

it cannot recognize if such interference occurs. Thus, the proxy marks the source of each attack

it attempts to pass along to a backend honeypot as “interesting”, such that any further connections

from that source will be routed directly to a honeypot server, bypassing the replay proxy.

The replay proxy is one of GQ’s most significant components. We will discuss some imple-

mentation considerations for it in Section 5.3.1.

5.2.5 Containment and Redirection

Another important design element concerns monitoring and enforcing the containment policy:

i.e., as compromised honeypots initiate outbound network connections, do we allow these to traverse

into the public Internet, redirect them to a fake respondent running inside the honeyfarm, or block
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them entirely? As noted above, the fundamental tension here is the need to balance between allow-

ing contagion to exhibit its complete infection process (necessary for identifying self-propagation),

but preventing the contagion from damaging external hosts.

To do so, we work through the following policy, in the given order:

1. If an outbound request would exceed the globally enforced, per-instantiated-honeypot rate

limit, drop it. This acts as a general safety feature for containment, complementary to, but

independent of, the “safety filter” previously discussed.

2. If an outbound DNS request originates from the DHCP/DNS-server honeypot, allow it. We

configure GQ’s honeypots with the address of a DHCP/DNS server that itself runs on a GQ

honeypot. We allow that one node to make outbound DNS requests.

3. If an outbound DNS request originates from a regular honeypot, redirect it to the DHCP/DNS

honeypot. Additionally, we consider such requests as suspicious, since the honeypot should

have originally sent them to the DHCP/DNS honeypot according to the configuration.

4. If an outbound request originates from a honeypot that has not been probed, drop it. If a

honeypot creates spontaneous activity (such as automatic update requests or similar tasks),

we simply block this activity. This serves both as a safety net and to ensure we know the

exact behavior of the honeypot.

5. If an outbound request targets the address of the source that caused GQ to instantiate the

honeypot, allow it. We allow the honeypot to always communicate with the source of the

initial attack, to enable it to complete some forms of multi-stage infections and to participate

in simple “phone home” confirmations.

6. If an outbound request is the first outbound connection to a host other than the infecting

source, allow it. Many worms use a two-stage infection process, where an initial infection

then fetches the bulk of the contagion from a second remote site, or “phones home” to register

the successful infection.1
1For example, we received notification that three of our telescope addresses appeared in a list produced upon the arrest

of the suspected operators of the toxbot botnet [99]. Unlike many erroneous notifications we receive due to our use of the
address space, this one was correct: our honeypots had indeed become infected by toxbot, and our containment policy
correctly allowed them to contact the botnet’s control infrastructure.
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7. If the destination port is 21/tcp, 80/tcp, 443/tcp, or 69/udp AND the port was not the one

accessed when the original remote source probed the honeypot AND the outbound request

is below a configurable threshold of how many such extra-port requests to allow, allow it.

Again, we do this to enable multi-stage infections and their control traffic, while attempting

to limit the probability of an escaped infection.

8. If the outbound request is a DHCP address-request broadcast, redirect it to the DHCP/DNS

honeypot.

9. If a clean honeypot is available, redirect the outbound request to it. Note that this step is

critical for detecting self-propagating behavior, and highlights the importance of not running

the honeyfarm at full capacity.

10. Otherwise, drop the outbound request.

In addition, when this process yields a decision to redirect, GQ consults a configurable redi-

rection limit (computed on a per-instantiated-honeypot basis). If this connection would cause the

honeypot to exceed the limit, we drop the connection instead, to prevent runaway honeypots from

consuming excessive honeyfarm resources.

It is while assessing containment/redirection that GQ also makes a determination, from a net-

work perspective, that we have spotted a new worm. We consider a system as infected with a worm

if, when redirected to another honeypot, it causes that honeypot to begin initiating connections.

Thus, from a network perspective, a worm is a program which, when running on one honeypot,

can cause other honeypots to change state sufficiently that they also begin generating connection

requests. This definition gives us a behavioral way to separate an infection that causes non-self-

propagating network activity from one that self-propagates at least one additional step (thus dis-

tinguishing worms from botnet “autorooters” that compromise a machine and perhaps download

configurable code to it, but do not cause it to automatically continue the process).

Redirection within the honeyfarm also allows us to perform malware classification. As the

worm continues to generate requests, we redirect these to honeypots with differing configurations,

including patch levels and OS variants. Doing so automatically creates a system vulnerability pro-

file, determining which systems and configurations the worm can exploit.
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The policy engine also manages the mapping of external (telescope) addresses to honeypots.

Currently, when doing so it allocates different honeypots to distinct attackers, even if those attackers

happen to target the same telescope address. Doing so maintains GQ’s analysis of exactly what

remote traffic infected a given honeypot, but also makes the honeyfarm vulnerable to fingerprinting

by attackers.

A final facet of containment concerns internal containment. We need to ensure that infected

honeypots cannot directly contact any other honeypot in the honeyfarm without our control system

mediating the interaction. To do so, we require that all honeypot-to-honeypot communication pass

through the control system, which also allows us to maintain each honeypot behind a NAT device.

Note that the load it adds to the control system is trivial compared with the scan probes from the

network telescopes.

We use VLANs as the primary technology for internal containment. This imposes a require-

ment that the back-end system running the honeypot VM can terminate a VLAN. We assign each

honeypot to its own VLAN, with the GQ controller on a VLAN trunk. The controller can then

rewrite packets on a per-VLAN as well as per-IP-address basis, enabling fine-grained isolation and

control of all honeypot traffic, even broadcast and related traffic.

5.2.6 Honeypot Management

To maintain modularity, the GQ honeypot manager (see Figure 5.1) isolates management of

honeypot configurations. The controller keeps an inventory and state of the different available hon-

eypots, but defers direct operation of the VM honeypots to the honeypot manager, which is respon-

sible for starting and reseting each honeypot. Only the honeypot manager needs to understand the

VM or bare-metal technology used to implement a given honeypot. By doing this, we not only

avoid the risk of inconsistency between the controller and the (stateless) honeypot manager, but also

make the controller independent of the back-end implementation.

In the large, the GQ controller simply monitors the honeypots and responds to network requests.

When the manager restarts a honeypot, the honeypot exists in a newly born state until requesting

its IP address through DHCP. After the honeypot received an address assignment, the controller
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waits until it sees the system generate some network traffic (which it inevitably does as part of its

startup). At this point the controller waits ten seconds (to enable remaining services to start up and

to avoid startup transients) before considering the honeypot available. Once available, the controller

can now allocate the honeypot to serve incoming traffic. When later the controller decides that the

instantiated honeypot no longer has value, it instructs the manager to destroy the instance and restart

the honeypot in a reinitialized state.

5.3 Implementation

The GQ system is implemented in C (the replay proxy) and C++ (the Click modules) for about

14,000 lines in total. In this section we describe the most significant issues that arose when realizing

the GQ system as an implementation of the architecture presented in the previous section. These

issues concerned the replay proxy system, the allocation and isolation mechanisms, and the VMware

virtual machine management, which we detail in this section.

5.3.1 Replay Proxy

The replay proxy plays a central role in our architecture. Our current system takes a series of

scripts for different attacks, with two sample dialogs (a “primary” dialog and a “secondary” dialog,

in the terminology of Section 4.2.3, necessary for locating some types of dynamic fields) for each

script. The main challenges for implementing the replay proxy are generating scripts for newly seen

attacks and determining when a host has deviated from a script.

To generate a script for a newly seen worm attack, we take two different approaches depending

on whether the attack succeeded or failed. For successful attacks, we can use the instances of

infections redirected inside the honeyfarm for the primary and secondary dialogs. In this case, we

also have control over replay-sensitive fields such as host names and IP addresses, which RolePlayer

needs to know about to construct an accurate script.

For unsuccessful attacks, however, we have only one example of the application dialog corre-

sponding to the attack. In this case, we face the difficult challenge of trying—without knowledge
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of the application’s semantics—to find another instance of the exact same attack (as opposed to

merely a variant or an attack that has some elements in common). We leverage a heuristic to tackle

this problem: we assume that two very similar attacks from the same attacking host are in fact very

likely the same attack, and we can therefore use the pair as the primary and secondary dialogs re-

quired by RolePlayer. We test whether two candidate attacks from the same host are indeed “very

similar” by checking the number of Application Data Units (ADUs) in the two dialogs, their sizes,

and the dynamic fields we locate within them. We require that the number of ADUs must be the

same; the difference in ADU size quite small; and dynamic fields consistent across the two dialogs.

We use this technique to construct a corpus of known types of activity automatically. After a

single infection by a worm, we want to inform automatically the replay proxy of the worm’s attack

to allow it to filter out subsequent probes from the same worm (which could become huge very

rapidly, if the worm spreads quickly), to avoid tying up the honeyfarm with uninteresting additional

worm traffic. We also benefit significantly from having scripts to filter out uninteresting instances

of “background radiation”.

To efficiently filter out known activity, rather than comparing an instance with all of the scripts

at each step, we merge the scripts into a tree structure. For N scripts, doing so reduces the com-

putational complexity from O(N) to O(log(N)). Constructing the tree requires comparing ADUs

from different scripts. We decide that two ADUs from different scripts are the same if the match of

dynamic fields between them is at least as good as that between the primary and secondary dialogs

used to locate the fields in each script in the first place.

In online filtering, we use the same approach to check if a received ADU matches the ADU of

a node in the tree. If not, it represents a deviation from our collection of scripts.

When we compare an ADU with a set of sibling nodes, it is possible that more than one of the

nodes matches. When this happens, we choose the node that minimizes the number of don’t-care

fields (opaque data segments that appear in only one side of the attacks; see Chapter 4 for more

details) identified in the compared node.

To avoid comparing a received ADU with every node in a large set of sibling nodes (which

can arise for some common attack vectors like CIFS/SMB exploits), we use a Most Recently Used
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(MRU) technique to control the number of nodes compared. The intuition behind this technique is

to leverage the locality of incoming probes. Given a set of sibling nodes, we associate with each

node a time reflecting when it last matched a a received ADU. We compare newly received ADUs

with those nodes having the most recent times first, to see if we can quickly find a close match.

The replay proxy also supports detection of attack variants for attacks that involve multiple

connections. For example, if a new Blaster worm uses the same buffer overflow code as the old

one, but changes the contents of the executable file then transferred over TFTP, the replay proxy

can correctly follow the dialog up through the TFTP connection, retrieve the executable file, notice

it differs from the script at that point, and proceed to replay this full set of activity to a honeypot

server in order to bring it up to speed to become infected by the attack variant.

A final detail is that when receiving data the proxy must determine when it has received a

complete ADU. Since it may interact with unknown attacks, it cannot always directly tell when this

occurs, so we use a timeout (currently set to five seconds) to ensure it reaches a decision. If the

source has not sent any further packets when the timeout expires, we assume the data received until

that point comprises an ADU. Since the timeout adds extra latency for detecting a new worm, we

plan to improve the design of the replay proxy to eliminate it by comparing incomplete ADUs with

the scripts.

Our replay proxy implementation comprises 8,600 lines of C code. It currently uses the socket

APIs to communicate with the attackers and the honeypots. This limits its performance and makes

it unwieldy to implement the address and sequence number translation it needs to perform. We

plan to replace the socket APIs with a user-level transport layer stack (using raw sockets) and port

the replay proxy to Click. Doing so will let us closely integrate the replay proxy with the other

components of the honeyfarm controller.

Currently, a single-threaded instance of the replay proxy can process about 100 concurrent

probes per second. To use the proxy operationally, we must improve its performance so that it can

process significantly more concurrent connections. In our near-term future work, we aim to solve

this problem from three perspectives: (1) improve the replay algorithm to reduce the computational

cost; (2) leverage multiple threads/processes/machines; (3) convert its network input/output to use
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raw sockets. Our general goal is for the overhead of the replay proxy processing for an incoming

probe to be much less than that for launching a virtual machine honeypot.

5.3.2 Isolation

Another critical component for our system implementation is maintaining rigorous isolation of

all honeypots. The honeypots need to contact other honeyfarm systems—in particular, DHCP and

DNS servers—but we need absolute control over these and any other interactions. Additionally, we

need to keep our control traffic isolated from honeypot traffic.

To do so, we use VLANs and a VLAN-aware HP ProCurve 2800 series managed Ethernet

switch [27]. We use a “base” VLAN with no encapsulation for a port on the controller and a port

on each VMware ESX server. This LAN carries the management traffic for all the ESX servers,

including access to our file server. By using an entirely separate (virtual) network with a switch

capable of enforcing the separation, we can prevent even misbehaving honeypots from saturating

our control plane.2

Equally important is maintaining isolation among honeypot traffic. Each individual honeypot

should only communicate with authorized systems, which we accomplish using VLAN tagging and

the Virtual Switch Tagging (VST) mode provided by the VMware ESX server. In this mode, each

virtual switch in the ESX server will tag (untag) all outbound (inbound) Ethernet frames, leaving

VLAN tagging transparent to the honeypots. This is important because we want to repeatedly

use a single virtual machine image file for multiple running instances, and thus we want to avoid

embedding any VLAN-related state in the image file. With this approach, the only untagged link is

between the honeypot and the virtual switch; we achieve isolation for this segment by dedicating a

port group to each honeypot (the port group number is the same as the VLAN identifier assigned to

the honeypot). Thus, the GQ controller’s interface to the honeypot network receives VLAN-tagged

packets, with each honeypot on a different VLAN.

We also need to consider VLAN tagging/untagging for the controller. We implemented a VLAN

manager in the controller, which maintains the mapping between IP addresses and VLAN IDs, and
2We are susceptible to bugs in the switch, however, if the VLAN encapsulation fails. We could instead use two

separate switches if this proves problematic.
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adds/removes VLAN tags before the Ethernet frames leave/enter the GQ controller. This approach

allows us to completely abstract the isolation mechanism from the rest of the system.

Additionally, the VLAN manager has a “default route” for forwarding DHCP packets to the

dedicated DHCP/DNS VM system. Rather than running these servers on the controller, where they

might be susceptible to attack by a worm, we use a separate Linux honeypot to provide DHCP and

DNS service for the honeypots.

5.3.3 Honeypot Management

Table 5.1. Virtual machine image types installed in GQ.

Windows 2000 Professional with No Patches Windows 2000 Professional with Service Pack 4
Windows 2000 Professional with All Patches Windows 2000 Server with No Patches
Windows 2000 Server with Service Pack 4 Windows 2000 Server with All Patches
Windows XP Professional with No Patches Windows XP Professional with Service Pack 2
Windows XP Professional with All Patches Fedora Core 4 with All Patches

We have manually installed ten different virtual machine images for both Windows and Linux

(see Table 5.1). For ease of initial deployment, we operate only a subset of these which together

cover a wide range of vulnerabilities in Windows systems.

0 4

Request from GQ Controller to Honeypot Manager

8 12

0 4 8 12 16

Response from Honeypot Manager to GQ Controller

MESSAGE SIZE

MESSAGE SIZE

VM Action

VM Action

VM IP Address

VM IP Address VM State

ESX Server Info

Figure 5.3. Message formats for the communication between the GQ controller and the honeypot
manager. “ESX Server Info” is a string with the ESX server hostname, the ESX server control port
number, the user name, the password, and the VM config file name, separated by tab keys.
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We implemented the honeypot manager in C using the (undocumented other than by header

files) vmcontrol interface provided by VMware for remotely controlling virtual machines running

on VMware ESX servers. The communication between the honeyfarm controller and the honey-

pot manager follows a simple application-level protocol (see Figure 5.3) by which the controller

instructs the manager what actions to take on what virtual machines, and the manager informs the

controller of the results of those actions.

5.4 Evaluation

We began running GQ operationally in late 2005. The initial deployment we operate consists

of four VMware ESX servers running 24 honeypots in three different virtual machine configu-

rations, including unpatched Windows XP Professional, unpatched Windows 2000 Server, and a

fully patched Windows XP Professional with an insecure configuration and weak passwords, since

these three configurations have a good coverage of vulnerabilities (vulnerabilities in unpatched Win-

dows 2000 Professional are a subset of those in unpatched Windows 2000 Server). Thus, GQ

can currently capture worms that exploit Windows vulnerabilities on 80/tcp, 135/tcp, 139/tcp, and

445/tcp, but not other types of worms.

For our evaluation, we first examine the level of background radiation our network telescope

captures and analyze the effectiveness of scan filtering for reducing this volume. We then evaluate

the correctness and performance of the replay proxy. Finally, we present the worms GQ captured

over the course of four months of operation.

5.4.1 Background Radiation and Scalability Analysis

Our network telescope currently captures the equivalent of a /14 network block (262,144 ad-

dresses), plus an additional “hot” /23 network (512 addresses). This latter block lies just above one

of the private-address allocations. Any malware that performs sequential scanning using its local

address as a starting point (e.g., Blaster [97]) and runs on a host assigned an address within the

private-address block will very rapidly probe the adjacent public-address block, sending traffic to
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(a) TCP scans to the /14 network without any filtering.
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(b) TCP scans to the /23 network without any filtering.

Figure 5.4. TCP scans before scan filtering.
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(a) TCP scans to the /14 network after scan filteringi.
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(b) TCP scans to the /23 network after scan filtering.

Figure 5.5. TCP scans after scan filtering.
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our telescope. Thus, this particular telescope feed provides magnified visibility into the activity of

such malware.

We analyzed two weeks of network traffic recorded during honeyfarm operation. We find a huge

bias in background radiation. Figures 5.4(a) and 5.4(b) show the number of TCP scans per minute

seen by each telescope feed. Here, a “scan” means a TCP SYN from a distinct source-destination

pair (any duplicate TCP SYNs that arrive within 60 seconds are considered as one). We see that

despite being 1/512th the size, the /23 network sees several times more background radiation than

does the /14 network, dramatically illustrating the opportunity it provides to capture probes from

sequentially scanning worms early during their propagation.

Figures 5.5(a) and 5.5(b) show the reduction in the raw probing achieved by prefiltering the

traffic to remove scans. Our prefilter’s current configuration allows each source to scan at most

N = 4 different telescope addresses within an hour. We picked a cutoff of 4 because we currently

run three different honeypot configurations, and the GQ controller allocates honeypots with different

configurations to the same source when it probes additional telescope addresses; we then chose

N = 4 rather than N = 3 to add some redundancy.

This filtering has the greatest effect on traffic from the /23 network, which by its nature sees

numerous intensive scans, for which the prefilter discards all but the first few probes. As a result,

after prefiltering the honeyfarm as a whole receives over a dozen attack probes/sec.

We used trace-based analysis to study the impact of different parameters for the scan filtering.

Figure 5.6 shows for the /14 and /23 network the proportion of the incoming traffic that passes the

prefiltering stage for a given setting of N , the filter cutoff. The cutoff specifies number of different

telescope addresses allowed for a remote source to probe for a given period of time (as shown by

the different curves). For the /23 network, the pass-through proportion remains around 5%. For the

/14 network, it is considerably higher, but prefiltering still reaps significant benefits in reducing the

initial load.

However, even with aggressive prefiltering, more than eight attack probes pass the filtering

every second. This level rapidly consumes the available honeypots. In our current operation, we

use 20 of the 24 honeypots to engage remote attackers, and the other four for internal redirection.
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Since engaging an attacker takes a considerable amount of time (including restarting the honeypot

afresh after finishing), the honeyfarm is always saturated. To investigate the number of honeypots

required in the absence of further filtering, we conducted a trace-based analysis using different

mean honeypot “life cycles”, where the life cycle consists of the attack engagement time plus the

restart time. We varied the life cycle from ten seconds up to five minutes (note that Xen-like virtual

machines may take only seconds [96] to restart, while a full restart for a VMware virtual machine

may take a full minute).

Figure 5.7 shows that once the life cycle exceeds one minute, we would need over 1,000 honey-

pots to engage 90% of the attacks that pass the prefiltering stage. Thus we need some mechanism to

filter down the attacks. To do so, we introduce the second stage of filtering provided by our replay

proxy, which we assess next.

5.4.2 Evaluating the Replay Proxy

In this section we assess the correctness and efficacy of the replay proxy as a means for further

reducing the volume of probes that the honeypots must process.

To assess correctness, we extracted 66 distinct worm attacks that successfully infected the hon-

eypots and exhibited self-propagation inside the honeyfarm (detailed in Section 5.4.3). For each

distinct attack, we validated the proxy’s proper operation as follows:

1. We verified that the proxy indeed successfully replays the attack to compromise another vul-

nerable honeypot.

2. We ran the proxy with an incomplete script for the attack that only specifies part of the attack

activity. We then launched the attack against the honeyfarm to confirm that the proxy would

correctly follow the script through its end, and upon reaching the end would then successfully

bring a vulnerable honeypot “up to speed” and mediate the continuation of the attack so that

infection occurred.

3. We ran the proxy with a complete script of the attack to confirm that it successfully filtered

further instances of the attack.
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Of these, the first two are particularly critical, because incorrect operation can lead to either

underestimating which other system configurations a given worm can infect (since we use replay to

generate the test instances for constructing these vulnerability profiles), or failing to detect a novel

attack (because the proxy does not manage to successfully transfer the new activity to a honeypot).

Incorrect operation in the third case results in greater honeyfarm load, but does not undermine

correctness.

Port Nodes Max Depth Max Breadth Pairs of Examples
80/tcp 28 5 7 39

135/tcp 548 176 13 914
139/tcp 312 55 13 63
445/tcp 3,977 104 42 1,551

Table 5.2. Summary of protocol trees.

Because we have not yet integrated the replay proxy into the operational honeyfarm, to assess

its filtering efficacy we constructed a set of scripts for it to follow and then ran those against attacks

drawn from traces of GQ’s operation. To do so, we first extracted 42,004 attack events for which GQ

allocated a honeypot. (Note that each attack might involve multiple connections.) We then followed

the approach described in Section 5.3.1 to automatically find 2,572 pairs of same attacks. Using

these pairs as the primary and secondary dialogs, we generated scripts for each and constructed four

protocol trees for filtering, one for each of the four services accessed in the attack traces: 80/tcp,

135/tcp, 139/tcp, and 445/tcp. Table 5.2 shows the properties of the resulting trees.

Using this set of scripts to process the remaining 36,860 attack events, the proxy filters out 76%

of them, indicating that operating it would offload the honeypots by a factor of four, a major gain.

Finally, it is difficult to directly assess the false positive rate (attacks that should not have been

filtered out but were), because doing so entails determining the equivalence of the actual operational

semantics of different sets of server requests. However, we argue that the rate should be low because

we take a conservative approach by requiring that filtered activity must match all dynamic fields in

a script, including large ADUs that correspond to buffer overruns or bulk data transfers.
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Executable Name Size (B) MD5Sum Worm Name # Events # Conns Time (s)
a####.exe 10366 7a67f7c8... W32.Zotob.E 4 3 29.0
a####.exe 10878 bf47cfe2... W32.Zotob.H 9 3 25.2
a####.exe 25726 62697686... Quarantined but no name 1 3 223.2
cpufanctrl.exe 191150 1737ec9a... Backdoor.Sdbot 1 4 111.2
chkdisk32.exe 73728 27764a5d... Quarantined but no name 1 4 134.7
dllhost.exe 10240 53bfe15e... W32.Welchia.Worm 297 4 or 6 24.5
enbiei.exe 11808 d1ee9d2e... W32.Blaster.F.Worm 1 3 28.9
msblast.exe 6176 5ae700c1... W32.Balster.Worm 1 3 43.8
lsd 18432 17028f1e... W32.Poxdar 11 8 32.4
NeroFil.EXE 78480 5ca9a953... W32.Spybot.Worm 1 5 237.5
sysmsn.exe 93184 5f6c8c40... W32.Spybot.Worm 3 3 79.6
MsUpdaters.exe 107008 aa0ee4b0... W32.Spybot.Worm 1 5 57.0
ReaIPlayer.exe 120320 4995eb34... W32.Spybot.Worm 2 5 95.4
WinTemp.exe 209920 9e74a7b4... W32.Spybot.Worm 1 5 178.4
wins.exe 214528 7a9aee7b... W32.Spybot.Worm 1 5 118.2
msnet.exe 238592 6355d4d5... W32.Spybot.Worm 1 7 189.4
MSGUPDATES.EXE 241152 65b401eb... W32.Spybot.Worm 2 5 125.3
ntsf.exe 211968 5ac5998e... Quarantined but no name 1 5 459.4
scardsvr32.exe 33169 1a570b48... W32.Femot.Worm 4 3 46.2
scardsvr32.exe 34304 b10069a8... W32.Femot.Worm 1 3 66.5
scardsvr32.exe 34816 ba599948... W32.Femot.Worm 55 3 96.6
scardsvr32.exe 35328 617b4056... W32.Femot.Worm 2 3 179.6
scardsvr32.exe 36864 0372809c... W32.Femot.Worm 1 5 49.3
scardsvr32.exe 39689 470de280... W32.Femot.Worm 4 3 41.4
scardsvr32.exe 40504 23055595... W32.Femot.Worm 1 3 41.1
scardsvr32.exe 43008 ff20f56b... W32.Valla.2048 1 5 32.2
scardsvr32.exe 66374 f7a00ef5... Quarantined but no name 1 7 54.8
scardsvr32.exe 205562 87f9e3d9... W32.Pinfi 1 3 180.8

Table 5.3. Part 1 of summary of captured worms (worm names are reported by Symantec Antivirus).

5.4.3 Capturing Worms

In four months of operation, GQ inspected about 260,000 attacks, among which 2,792 attacks

were worms and 32,884 attacks were not worms but successfully compromised honeypots (we ob-

served suspicious outbound network requests from the honeypots). Overall, GQ automatically cap-

tured 66 distinct worms belonging to 14 different families. Table 5.3 and 5.4 (we split the table into

two parts due to the large table size) summarize the different types, where a worm type corresponds

to a unique MD5 checksum for the worm’s executable code (note that all the worms we captured

involved multiple connections and had buffer overflow or password guessing separated from their

executables). Most of these executables have a name directly associated with them because they are

uploaded as files by the worm’s initial exploit (see below). The table also gives the size in bytes of

the executable and how many times GQ captured an instance of the worm.

To identify the worms, we uploaded the malicious executables to a Windows virtual machine
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Executable Name Size (B) MD5Sum Worm Name # Events # Conns Time (s)
x.exe 9343 986b5970... W32.Korgo.Q 17 2 6.6
x.exe 9344 d6df3972... W32.Korgo.T 7 2 9.5
x.exe 9353 7d99b0e9... W32.Korgo.V 102 2 6.0
x.exe 9359 a0139d7a... W32.Korgo.W 31 2 5.9
x.exe 9728 c05385e6... W32.Korgo.Z 20 2 6.6
x.exe 11391 7f60162c... W32.Korgo.S 169 2 6.6
x.exe 11776 c0610a0d... W32.Korgo.S 15 2 8.6
x.exe 13825 0b80b637... W32.Korgo.V 2 2 24.4
x.exe 20992 31385818... W32.Licum 2 2 7.9
x.exe 23040 e0989c83... W32.Korgo.S 3 2 10.4
x.exe 187348 384c6289... W32.Pinfi 1 2 329.7
x.exe 187350 a4410431... W32.Korgo.V 6 2 11.3
x.exe 187352 b3673398... W32.Pinfi 5 2 20.1
x.exe 187354 c132582a... W32.Pinfi 5 2 24.9
x.exe 187356 d586e6c2... W32.Pinfi 2 2 27.5
x.exe 187358 2430c64c... W32.Korgo.V 1 2 27.5
x.exe 187360 eb1d07c1... W32.Pinfi 1 2 63.1
x.exe 187392 2d9951ca... W32.Korgo.W 1 2 76.1
x.exe 189400 7d195c0a... W32.Korgo.S 1 2 18.0
x.exe 189402 c03b5262... W32.Pinfi 1 2 58.2
x.exe 189406 4957f2e3... W32.Korgo.S 1 2 210.9
xxxx...x 46592 a12cab51... Backdoor.Berbew.N 844 2 9.4
xxxx...x 56832 b783511e... W32.Info.A 34 2 7.2
xxxx...x 57856 ab5e47bf... Trojan.Dropper 685 3 10.0
xxxx...x 224218 d009d6e5... W32.Pinfi 1 3 32.5
xxxx...x 224220 af79e0c6... W32.Pinfi 3 2 34.2
n/a 10240 7623c942... W32.Korgo.C 3 2 4.8
n/a 10752 1b90cc9f... W32.Korgo.L 1 2 7.0
n/a 10752 32a0d7d0... W32.Korgo.G 8 2 4.1
n/a 10752 ab7ecc7a... W32.Korgo.N 2 2 5.3
n/a 10752 d175bad0... W32.Korgo.G 3 2 5.4
n/a 10752 d85bf0c5... W32.Korgo.E 1 2 5.6
n/a 10752 b1e7d9ba... W32.Korgo.gen 1 2 5.0
n/a 10879 042774a2... W32.Korgo.I 15 2 4.3
n/a 11264 a36ba4a2... W32.Korgo.I 1 2 5.4
22 distinct files n/a n/a W32.Muma.A 2 7 186.7
3 distinct files n/a n/a W32.Muma.B 2 7 208.9
26/27/28 distinct files n/a n/a BAT.Boohoo.Worm 4 72 384.9

Table 5.4. Part 2 of summary of captured worms (worm names are reported by Symantec Antivirus).

on which we installed Symantec Antivirus. While its identification is incomplete (and some of the

names appear less convincing), since we lack access to a large worm corpus we include the names

for completeness.

We captured not only buffer-overflow worms but also those that exploit weak passwords.

All of those worm attacks required multiple connections to complete (as many as 72 for

BAT.Boohoo.Worm), as listed in the penultimate column, and involved a data transfer channel sep-

arate from the exploit connection to upload the malicious executable to the victim. This nature

highlights the weakness of using “first payload” techniques for filtering out known attacks from
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background radiation: a large number of attacks only distinguish themselves as novel or known

after first engaging in significant initial activity.

The table also shows the (minimum) detection time for each worm. We measure detection

time as the interval between when the first scan packet arrived at the honeyfarm, to when a second

honeypot (infected by redirection from the first honeypot that served the request itself) attempts to

make an outbound connection attempt, which provides proof that we have captured code that self-

propagates. Detection time depends on many factors: end host response delay, network latency,

execution time of the malware within the honeypot, and redirection honeypot availability. We in-

spect network traces by comparing the times when a packet is read by the GQ controller and when

it is forwarded to a virtual machine by it. We find that the delay due to processing by the GQ con-

troller is essentially instantaneous, i.e., the clock (which has a granularity of 10−6 second) did not

advance during processing by the controller.

While the times given in Table 5.3 and 5.4 seem high, often the culprit is a slow first stage during

which the remote source initially infects a honeypot. When we tested GQ’s detection process by

releasing Code Red and Blaster within it, the detection time was around one second.

However, this detection time measures only the latency between a probe of a worm is admitted

by the honeyfarm and the honeyfarm detects it as a worm. What is more critical for the possibility

of automatic response and containment is the overall detection time of a new worm outbreak that

measures the latency between the first spread attempt of the worm outbreak and the detection by

the honeyfarm. Though we could apply the same techniques used in [69] to estimate the latency

between the first spread attempt of a worm outbreak and its first probe hits our network telescope of

a quarter million addresses, we still cannot estimate the overall detection time GQ may experience

because only a small part of the probes that hit our network telescope are inspected by GQ in the

current operation due to the facts that the replay proxy is not integrated and the number of virtual

machine honeypots is limited. The biggest challenge in the future work is to solve these problems

so that all the probes sent to the quarter million addresses can be inspected in real time. After it, we

can study if the overall detection time experienced by GQ is low enough for automatic response and

containment.
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5.5 Summary

Recently, great interest has arisen in the construction of honeyfarms: large pools of honeypots

that interact with probes received over the Internet to automatically determine the nature of the

probing activity, especially whether it signals the onset of a global worm outbreak.

Building an effective honeyfarm raises many challenging technical issues. These include en-

suring high-fidelity honeypot operation; efficiently discarding the incessant Internet “background

radiation” that has only nuisance value when looking for new forms of activity; and devising and

policing an effective “containment” policy to ensure that captured malware does not inflict external

damage or skew internal analyses.

In this chapter we presented GQ, a high-fidelity honeyfarm system designed to meet these chal-

lenges. GQ runs fully functional servers across a range of operating systems known to be prime

targets for worms (especially various flavors of Microsoft Windows), confining each server to a vir-

tual machine to maintain full control over its operation once compromised. To cope with load, GQ

leverages aggressive filtering, including a technique based on application-independent “replay” that

holds promise to quadruple GQ’s effective capacity.

Among honeyfarm efforts, our experiences with GQ are singular in that the scale at which

we have operated it—monitoring more than a quarter million Internet addresses, and capturing

66 distinct worms in four months of operation—far exceeds that previously achieved for a high-

fidelity honeyfarm. While much remains for pushing the system further in terms of capacity and

automated, efficient operation, its future as a first-rate tool for analyzing Internet-scale epidemics

appears definite.
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Chapter 6

Conclusions and Future Work

We start this chapter with a summary of our contributions in Section 6.1 and finish it and this

thesis with a discussion of directions for future work in Section 6.2.

6.1 Thesis Summary

In this thesis, we tackle the problem of automating detection of new unknown malware with

our focus on an important environment, personal computers, and an important kind of malware,

computer worms. We face two fundamental challenges: false alarms and scalability. To minimize

false alarms, our approach is to infer the intent of user or adversary (the malware author). We infer

user intent on personal computers by monitoring user-driven activity such as key strokes and mouse

clicks. To infer the intent of worm authors, we leverage honeypots to detect self-propagation by first

letting a honeypot become infected, and then letting the first honeypot infect another one, and so

on. For the scalability problem—how to handle a huge number of repeated probes—our approach

is to leverage a new technology, protocol-independent replay of application dialog, to filter frequent

multi-stage attacks by replaying the server-side responses. Our main contributions are concluded as

follows.

1. BINDER: an Extrusion-based Break-In Detector for Personal Computers.

We designed a novel extrusion detection algorithm to detect break-ins of new unknown mal-

101



ware on personal computers. To detect extrusions, we first assume that user intent is implied

by user-driven input such as key strokes and mouse clicks. We infer user intent by correlating

outbound network connections with user-driven input at the process level, and use whitelist-

ing to detect user-unintended but benign connections generated by system daemons. By doing

so, we can detect a large class of malware such as worms, spyware and adware that (1) run as

background processes, (2) do not receive any user-driven input, (3) and make outbound net-

work connections. We implemented BINDER, a host-based detection system for Windows, to

realize this algorithm. We evaluated BINDER on six computers used by different volunteers

for their daily work over five weeks. Our limited user study indicates that BINDER controls

the number of false alarms to at most five over four weeks on each computer and the false

positive rate is less than 0.03%. To evaluate BINDER’s capability of detecting break-ins, we

built a controlled testbed using the Click modular router and VMware Workstation. We tested

BINDER with the Blaster worm and 22 different email worms collected on a departmental

email server over one week and showed that BINDER successfully detect the break-ins caused

by all these worms. From this work, we demonstrated that user intent, a unique characteristic

of personal computers, is a simple and effective detector for a large class of malware with few

false alarms.

2. RolePlayer: Protocol-Independent Replay of Application Dialog.

We designed and implemented RolePlayer, a system which, given examples of an application

session, can mimic both the client side and the server side of the session for a wide variety

of application protocols. A key property of RolePlayer is that it operates in an application-

independent fashion: the system does not require any specifics about the particular application

it mimics. It instead uses byte-stream alignment algorithms from bioinformatics to compare

different instances of a session to determine which fields it must change to successfully replay

one side of the session. Drawing only on knowledge of a few low-level syntactic conventions

such as representing IP addresses using “dotted quads”, and contextual information such as

the domain names of the participating hosts, RolePlayer can heuristically detect and adjust

network addresses, ports, cookies, and length fields embedded within the session, including

sessions that span multiple, concurrent connections on dynamically assigned ports. We suc-
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cessfully used RolePlayer to replay both the client and server sides for a variety of network

applications, including NFS, FTP, and CIFS/SMB file transfers, as well as the multi-stage

infection processes of the Blaster and W32.Randex.D worms. We can potentially use such

replay for recognizing malware variants, determining the range of system versions vulnera-

ble to a given attack, testing defense mechanisms, and filtering multi-step attacks. From this

work, we demonstrated that it is possible to achieve automatic network protocol analysis for

certain problems.

3. GQ: a Large-Scale, High-Fidelity Honeyfarm System.

We designed, implemented, and deployed GQ, a large-scale, high-fidelity honeyfarm system

that can detect new worm outbreaks by analyzing in real-time the scanning probes seen in a

quarter million Internet addresses. In GQ, we overcame many technical challenges, including

ensuring high-fidelity honeypot operation; efficiently discarding the incessant Internet back-

ground radiation that has only nuisance value when looking for new forms of activity; and

devising and policing an effective containment policy to ensure that captured malware does

not inflict external damage or skew internal analyses. GQ leverages aggressive filtering, in-

cluding a technique based on application-independent replay that holds promise to quadruple

GQ’s effective capacity. Among honeyfarm efforts, our experiences with GQ are singular in

that the scale at which we have operated it—monitoring more than a quarter million Internet

addresses, and capturing 66 distinct worms in four months of operation—far exceeds that

previously achieved for a high-fidelity honeyfarm.

6.2 Future Work

To win the war against malicious attackers, we must keep creating new defense mechanisms in

the future. The work in this thesis sets the stage for follow-on work in a number of areas.

1. Improving the performance of the replay technology. From our discussion in Chap-

ter 4 and 5 we can see that the replay technology has many potential applications. How-

ever, the replay proxy hasn’t been integrated into the GQ honeyfarm operationally due to
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its performance limitation (a single-threaded instance of the replay proxy can process about

100 concurrent probes per second). We plan to study this problem from three perspectives:

(1) improving the replay algorithm to reduce the computational cost; (2) leveraging multiple

threads/processes/machines; (3) converting its network input/output to use raw sockets. To

improve the performance of the replay technology fundamentally, we need to have a better

understanding of network application protocols (so that we can compare an ADU with replay

“scripts” more efficiently). We need to develop new technologies for automatic inference of

network application protocols. RolePlayer compares two examples of an application session

to infer dynamic fields. We need to investigate what level of understanding we can achieve

by analyzing hundreds of thousands of examples of a network application all together.

2. Enriching the functionality of the honeyfarm technology. In this thesis, we have studied

detecting scanning worms (which probe a set of addresses to identify vulnerable hosts) by

inspecting traffic from network telescopes on honeypots. We need to extend the design and

operation of the GQ honeyfarm in two directions. First, once a worm is captured, we can per-

form a wide variety of analyses on it using the well-engineered, fully-controlled honeyfarm.

For example, we can leverage existing technologies on vulnerability analysis and signature

generation [62, 15, 11] to generate attack and vulnerability signatures. Moreover, we can ver-

ify if the analyses produce correct signatures by deploying them in the honeyfarm to check if

repeated attacks can be blocked. How we can integrate these technologies in the honeyfarm

efficiently remains to be a challenge. Second, we can use a honeyfarm system to detect and

analyze other malware than scanning worms because the operation of the honeypot cluster is

independent from the source of traffic. For example, we could feed the honeyfarm with spam

emails sent to nonexistent recipients on well-known email servers such as those owned by

universities; we could also subscribe honeyfarm nodes to application-layer networks such as

instant messaging and peer-to-peer networks. We need to investigate new approaches to feed

such data into the honeyfarm effectively.

In the long run, the following directions are interesting and important.

104



1. High-speed inline network intrusion detection with application-level replay. The replay

proxy presented in Chapter 5 is promising on filtering previously seen multi-stage malicious

attacks from a network telescope. Currently the inline network intrusion detection systems

are limited to signature inspection. If we could apply the replay proxy in network intrusion

detection, we could use it to reply to a suspicious request and replay the finished conversion

against the original target host so that the conversation can be continued after the request is

recognized as a normal one. It remains a challenge to achieve this with few false alarms at

high speed.

2. Emulating user (mis)behavior on honeypots. Our work in this thesis shows that inferring

intent is effective for malware detection and honeypots are a powerful tool for observing

malware’s behavior. However, existing work in honeypot research doesn’t have users in the

loop. This impedes honeypots from detect social-engineering attacks that exploit user’s mis-

behavior. On the other hand, attackers can detect the existence of honeypots by noticing zero

user activity. So it is desirable to emulate user (mis)behavior on honeypots, but it remains a

challenge due to the daunting complexity of user behavior.

3. Virtual machines for better security. In the GQ honeyfarm, virtual machine technology

enables us to deploy and manage high-fidelity virtual honeypots. In addition to efficiency and

isolation, an interesting property of virtual machines is disposability. If we could run multi-

ple virtual machines instead of a single persistent operating system, we could run untrusted

jobs on a separate virtual machine from those that we use for other activities. These virtual

machines must be light weight with respect to resource consumption and boot-up speed. It

also remains a challenge to design a usage model for simultaneous virtual machines such that

it is easy for average users to migrate from today’s single persistent operating system model.
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