
Designing a Sub-RISC Multi-Gigabit Regular
Expression Processor

Andrew Christopher Mihal
Christian Sauer
Kurt Keutzer

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-119

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-119.html

September 26, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work is funded, in part, by the Microelectronics Advanced Research
Consortium (MARCO) and Infineon Technologies, and is part of the efforts
of the Gigascale Systems Research Center (GSRC).

Designing a Sub-RISC Multi-Gigabit Regular Expression
Processor

Andrew Mihal
University of California at

Berkeley

mihal@eecs.berkeley.edu

Christian Sauer
Infineon Technologies,

Munich, Germany

Christian.Sauer@infineon.com

Kurt Keutzer
University of California at

Berkeley

keutzer@eecs.berkeley.edu

ABSTRACT
Increasingly, embedded system designers must exploit application-
specific concurrency in order to obtain high performance. Often
an application will exhibit several different styles and granular-
ities of concurrency. An average embedded RISC processor is
a poor platform when concurrency is a first-class concern. The
Sub-RISC paradigm, on the other hand, allows designers to cre-
ate programmable architectures with application-specific process-,
data-, and datatype-level concurrency. This paper describes a Sub-
RISC processor that accelerates regular expression matching for
network intrusion detection. This processor is lightweight and can
be tiled to search multiple packet streams in parallel. Unlike typi-
cal application-specific processors, designers are not burdened with
assembly language programming. Instead, the language of regular
expressions is used as a high-level programming abstraction. Re-
sults are shown for ASIC and FPGA implementations using regexp
rules from the Snort database.

1. INTRODUCTION
Modern network intrusion detection systems, such as Snort [11],

inspect the contents of packets to search for attacks. In order for
these systems to work at multi-gigabit line rates, fast pattern match-
ing techniques are needed. General-purpose processors operating
at gigahertz frequencies can perform regular expression matching
at rates up to a few hundred kilobytes per second [5]. To obtain
faster speeds, one must search for ways to exploit the concurrency
available in the application.

Fortunately, pattern matching offers many opportunities for par-
allelism on several levels of granularity:

• Process-Level Concurrency:To exploit traditional coarse-
grained concurrency, one can process multiple independent
text streams at the same time. This can be done against a
single set of patterns, or against different sets of patterns.

• Data-Level Concurrency:Within a process, multiple steps
of a given matching algorithm can be carried out in parallel.
One can compare a single text character against multiple pat-
tern characters simultaneously. Conversely, one could search
for a given character at several places in the stream. Combi-
nations of these approaches can be used as well.

• Datatype-Level Concurrency:At the finest granularity, there
is concurrency on the level of individual bits. An implemen-
tation can exploit this concurrency by providing hardware
support for the mathematical operations and data types used
in the application. Pattern matching uses 8-bit comparisons
and performs Boolean logic functions on the results.

A great deal of research has explored these areas. Haagdorens
et al. [7] focus on process-level concurrency. In this work multi-
ple network flows are processed in parallel against the same pattern

database. The target architecture is a dual-processor Xeon with Hy-
perthreading. Despite hardware support for 4 concurrent threads,
only a 16% improvement in throughput is found. Synchronization
and communication between processes is a significant bottleneck.
Focusing on process-level concurrency alone is not sufficient for a
scalable parallel implementation.

To exploit data-level and datatype-level concurrency, FPGAs are
an obvious candidate due to their bit-level granularity. Baker and
Prasanna build a circuit to accelerate the Knuth-Morris-Pratt algo-
rithm for exact string matching in [1]. This design can process one
text character per cycle for a throughput of 2.4 Gbps. The search
pattern is programmed into the FPGA’s embedded memories. How-
ever, network intrusion detection requires hundreds of patterns of
the size presented (16 to 32 characters).

The Granidt approach uses a CAM to compare an entire text
string against many patterns simultaneously [6]. This scales up
to 32 patterns of 20-byte length. After this, the frequency of the
design drops and performance suffers.

Several works try to scale further by comparing fewer text and
pattern characters at the same time. Baker [2] and Sourdis[12] use
partitioning algorithms on the pattern database to avoid instantiat-
ing redundant comparators. Cho and Mangione-Smith[3] instanti-
ate comparators for only the prefix of a pattern, and store the suffix
in an on-chip ROM. These approaches achieve gigabit throughput
rates against hundreds of simultaneous patterns. Bloom filters offer
the possibility of scaling to thousands of patterns, if one accepts a
small probability of false positives [4].

Unfortunately, these exact string matching approaches are un-
able to detect all of the attack scenarios found in the Snort database.
Full regular expression pattern matching is often necessary. Deter-
ministic finite automata can be implemented in either hardware or
software, but require exponential space in the worst case. Non-
deterministic finite automata (NFAs) do not have this problem and
can be implemented on FPGAs. The original work by Sidhu and
Prasanna generates a hard-wired circuit that implements a fixed
NFA [10]. These circuits fully exploit data-level concurrency by
evaluating all non-deterministic state transitions in parallel in one
cycle. The required space is linear in the size of the regular ex-
pression and the machine runs in constant time. Franklin et al. [5]
achieve between 30 and 120 MHz depending on the size and com-
plexity of the regular expression. This equates to 30-120 MB/sec
of throughput.

A common downside to these NFA-based approaches is scala-
bility. Complex regular expressions lead to circuits with long com-
binational delays which degrade performance. Second, it is not
possible to explore different area/performance tradeoffs. There is
only one design point which is a complete parallelization of the al-
gorithm. Third, these designs depend on the configurability of the

Programmability

VLIW
RISC

ASIPs

C Compilation

Hard-wired
datapaths

RTL ADLsSub-RISC

Figure 1: Spectrum of ASIP Architectures

FPGA to be able to change the search patterns. One must synthe-
size, place and route the design to change the search patterns, and
the generality of the FPGA comes at the cost of large silicon area,
high power requirements, and low operating frequencies.

In this paper, we propose a new architecture for pattern match-
ing that combines the best features and avoids the shortcomings
of these previous works. We apply the Sub-RISC paradigm [9] to
create a low-cost, software-programmable processing element (PE)
for full regular expression pattern matching. The key to this ap-
proach is to support the application’s process-level, data-level, and
datatype-level concurrency in hardware.

Our NFA PE executes arbitrary non-deterministic finite automata
with only a 1-bit wide datapath and 3 function units. With software
programmability, we do not depend on FPGA reconfiguration to
change the search patterns. Therefore we can realize our archi-
tecture as an ASIC for higher throughput and lower cost. Unlike
the synthesis approaches, more complex regular expressions corre-
spond to longer programs, not larger circuits. The fixed datapath
gives predictable performance in all cases. The PE can also be tiled
to make a multiprocessor array for true scalability.

Typical multiprocessors built out of application-specific instruc-
tion set processors (ASIPs) are notoriously difficult to program. We
show how a NFA PE multiprocessor can be programmed using reg-
ular expressions as a high-level programming abstraction to make
scalable performance achievable in practice.

In the next section, we describe how the Sub-RISC approach en-
ables matching an application’s concurrency requirements at low
cost. Section 3 outlines the programming methodology, and the
NFA PE architecture is designed in Section 4. Finally, performance
results for a Xilinx FPGA-based implementation and an ASIC im-
plementation are given in Section 5.

2. SUB-RISC PROCESSORS
Sub-RISC processors are a class of ASIP. The Sub-RISC design

space covers architectures that are programmable, but for which C
compilation is not necessary. This space is shown in Figure 1. Soft-
ware programmability requires control logic that is difficult to spec-
ify using conventional RTL hardware description languages. De-
signers must manually ensure consistency between an instruction
set specification and an architectural implementation. Architecture
Description Languages (ADLs) provide the right abstractions for
solving this problem, but current ADLs focus on RISC-like archi-
tectures that run C programs.

The NFA PE does not need to run general C programs, it only
needs to execute NFAs. The Sub-RISC approach allows us to de-
sign an architecture that breaks the traditional RISC architectural
design patterns for the datapath and the control logic, yielding a PE
that is a better match for the application’s requirements.

It is important to target all three levels of concurrency in the ap-
plication: process-, data-, and datatype-level. For process-level

StateState LogicLogic

Instruction
Stream

Outgoing
Data

Incoming
Data

Horizontal
Microcode

Control

Figure 2: TIPI Control Abstraction

concurrency, we can create custom control logic that is different
from a RISC processor’s fetch, decode, and jump logic. The NFA
PE evaluates NFA state transitions for streaming character data. It
must compute the same set of next state equations for each char-
acter. This can be done with a finite-length program that is free of
jumps. A Sub-RISC processor can have specialized control logic
to match this usage scenario.

To support data-level concurrency, we can create a tiled multi-
processor architecture that can do several character comparisons
and evaluate multiple next state transitions in parallel. To match
the application’s datatype-level concurrency, we can leave out the
traditional RISC 32-bit ALU and register file and instead focus on
character-wide comparators and bit-wide Boolean logic functional
units. These customizations will provide higher performance at a
lower cost than a typical RISC processor.

2.1 Designing Sub-RISC Processors
The Sub-RISC design space is targeted by the TIPI architecture

description language and framework [13]. TIPI stands for Tiny
Instruction Processors and Interconnect. With this toolset, archi-
tects model datapaths structurally. Components such as register
files, multiplexors, pipeline registers, arithmetic and logical func-
tion units are assembled into novel datapaths that match the appli-
cation’s concurrency requirements.

The atomic state-to-state behaviors the datapath can perform are
automatically extracted as a set ofoperations[14]. Operations are
a generalization of RISC instructions that describe the programma-
bility of the datapath.

The control abstraction for a TIPI processor is shown in Figure 2.
TIPI datapaths are horizontally-microcoded, statically-scheduled
machines. A PE idles until it receives asignal-with-datamessage
from an external source. Thesignalcomponent of this message is
a pointer to a sequence of microcode stored in a program memory.
Thedatacomponent contains operands that are made available on
the datapath’s input ports. A message causes the PE to execute a fi-
nite sequence of instructions, after which it returns to the idle state.
The program may produce values on output ports which are treated
as new signal-with-data messages. These can be sent to another PE
in a multiprocessor using an on-chip network, thus continuing the
chain of execution.

This control abstraction is a building block for constructing hard-
ware for application-specific process-level concurrency. For net-
work intrusion detection a streaming model is desired. A signal-
with-data message will contain a text character and a pointer to a
program that computes one state transition of an NFA. These mes-
sages will stream into the PE, and the output will be the desired
stream of match bits.

TIPI includes code generation algorithms to convert structural
datapath models to synthesizable HDL implementations and fast
simulators [15]. Architects are not required to write HDL code by
hand or specify complex control logic. This enables rapid design
space exploration.

Sub-RISC
Multiprocessor

Sub-RISC
Multiprocessor

MoCMoCMoC
MoCMoCMoCMoCMoC

Model TransformsModel Transforms

Code GenerationCode Generation

Signal/Data
Model

Signal/Data
Model

Mapping AssignmentsMapping Assignments

ApplicationsApplications

ArchitectureArchitecture

ImplementationImplementation

PE ProgramsPE Programs

Mapping
Models

Mapping
Models

C++ Simulation
Synthesizable Verilog
Performance Analysis

Figure 3: Cairn Y-chart Design Flow

2.2 Deploying Sub-RISC Processors
A common problem with ASIPs is that application experts can-

not figure out how to program them. Application domain experts
have in mind a concurrent application, but are faced with writing C
or assembly language code for individual PEs in a multiprocessor.
Here there is aconcurrency implementation gap. It is difficult and
error-prone to translate the application’s concurrency into a low-
level programming abstraction.

To avoid this problem, the NFA PE is designed to consider de-
ployment as a primary concern. The Cairn methodology provides
a discipline for programming Sub-RISC multiprocessors [9]. An
outline of this approach is shown in Figure 3.

A core requirement of Cairn is that programmers must use proper
abstractions for expressing application concurrency. Traditional
languages like C lack the ability to specify process-, data-, and
datatype-level concurrency. Inspired by systems such as Ptolemy II,
Cairn usesmodels of computationas a basis for application abstrac-
tions [8]. Models of computation make it easy for domain experts
to make a precise specification of an application’s requirements.
Model transformsare used to replace the abstractions provided by
models of computation with concrete implementation details.

For the NFA PE, we will use the language of regular expressions
itself as a programming abstraction. A model transform converts a
regular expression into a functional model of an NFA that contains
explicit concurrency. This NFA model is then assigned to an NFA
PE in a multiprocessor in an explicit mapping step. The model is
then compiled into an executable program for the PE that computes
NFA state transitions in response to signal-with-data messages.

These processes are detailed in the following sections. We start
with the transformation of a regular expression into an NFA. Once
a formal model of the application is in place, we can then design an
architecture that is a good match for the application domain.

3. PROGRAMMING ABSTRACTION
We employ the method of Sidhu and Prasanna as a model trans-

form to convert a regular expression into a NFA [10]. Instead of
treating the result as a FPGA circuit, we use it as a bit-level func-
tional model of an NFA.

The first step is to create a parse tree for the regular expression.
The leaves in this tree are characters and the nodes are metachar-
acters. Each leaf and node has a corresponding circuit block. An
edge in the tree is a 1-bit bidirectional link between circuit blocks.

Figure 4 shows a simple example for the regular expression a+b∗.
The circuit is akin to a one-hot encoded state machine with one
state bit for each leaf in the regular expression. Non-determinism
is emulated by allowing multiple bits to be hot at the same time.

TEXT

====

NFA
State
Bit

NFA
State
Bit

AA

Match In Match OutConcatenate Metacharacter

Character

====

NFA
State

Bit

NFA
State

Bit

BB

Character

Star
Metacharacter

Plus
Metacharacter

Figure 4: Bit-Level NFA Model for a+b∗

{N, M}
CounterCounter

reset

N � X � MN � X � M

match subexpression between N and
M times, inclusive

{0, M}

CounterCounter
reset

1 � X � M1 � X � Mmatch subexpression 0 through M
times, inclusive

Figure 5: Additional Counting Metacharacters

This bit-level model is an ideal formulation for the Cairn de-
ployment methodology because all of the concurrency in the NFA
is explicit. The logic gates and bit-vector wires express datatype-
level concurrency. The next state logic can also be interpreted as a
dataflow graph that describes data-level concurrency. Process-level
concurrency is contained in the sequential behavior of the circuit.
In each iteration, the NFA consumes one character from the incom-
ing text stream and computes the circuit’s outputs and next state
values. The NFA PE will do these same computations with a finite-
length program that is free of jumps. One execution of the program
corresponds to one iteration of the NFA.

We extend the original work by defining additional metachar-
acters as shown in Figure 5. Curly braces add additional state to
the NFA in the form of counters that record how many times a
subexpression matches. If the counter input is true, the subexpres-
sion matches in the current cycle and the counter is incremented.
The match is propagated up the tree if the count falls within the
given range. If the counter input is false, the number of consecu-
tive matches seen is reset to zero.

Additional metacharacters are special cases of the metacharac-
ters in the figure. The{N} metacharacter (match a subexpression
exactlyN times) is{N, M} with N equal toM . Likewise,{N, }
(matchN or more times) uses{N, M} with M equal to infinity.
The ? metacharacter (match 0 or 1 times) uses{0, M} with M
equal to 1.

If one writes out the next state equations and output equations for
a Sidhu and Prasanna NFA by hand, a simple pattern emerges. All

matchoutput :== expr
next state :== expr
expr :== constant

| state
| compare(state, text, pattern)
| expr or expr
| count range(expr, counter, N, M)

Figure 6: Next State Equation BNF

RFRF

Counter
RF

Counter
RF ++++ N � x � MN � x � M

00

X == AX == A
TEXT

ImmediateImmediate

Figure 7: Preliminary NFA PE Architecture

of the signal values in the circuit can be calculated by recursively
applying a small set of functions. This can be easily described by
the BNF syntax shown in Figure 6. NFA outputs and next state
variables are both exprs. An expr can be a constant (0 or 1) or a
current state bit. It can also be the result of the conditional compar-
ison function found in the leaves of the Sidhu and Prasanna tree.

There are two ways to build an expr recursively. One is to take
the Boolean or of two exprs: an operation found in many metachar-
acters. The other is to apply the count and range functions found in
the curly-brace metacharacters to an expr.

These are the only operations necessary to match a regular ex-
pression. We use this knowledge in the next section to guide the
design of the NFA PE architecture.

4. NFA PE ARCHITECTURE
A primary goal of the TIPI framework is to enable efficient ar-

chitectural design space exploration. To demonstrate the utility of
this approach we present the evolution of the NFA PE architecture.

The initial version of the NFA PE is shown in Figure 7. This is
a simple one-bit wide datapath that contains exactly the function
units found in Figure 6. There are two register files. The main one-
bit wide RF stores NFA state bits and intermediate computations.
The counter RF stores state for curly-brace metacharacters.

It may seem that this figure is a simplification, but it is in fact
a complete TIPI architectural specification. Unlike other frame-
works, TIPI allows architects to leave many aspects of the control
logic unspecified. In this diagram there are no read address, write
address, or write enable signals on the register files. The 4-to-1
multiplexor has no select signal. The comparators are missing in-
puts for the N, M, and A values. In TIPI, these signals are implicitly
connected to a horizontal microcode control unit. The operation
extraction algorithm discovers the settings that have valid meaning
and can be used by statically scheduled software.

There are five valid operations for this datapath. The first is sim-
ply thenopoperation where the machine idles for a cycle. There is
an operation that performs a Boolean OR, one that does the count-
and-range function, one for the conditional compare function, and
one that writes an immediate constant into the register file.

This datapath is also parameterized as follows:
• Register File Depth: This controls how many NFA state bits

the PE can store. With a deeper register file, the PE can ex-
ecute more complex regular expressions. In this paper we

are using a depth of 256. This is large enough for the most
complex regular expression in the Snort database.

• Counter RF Depth: Each curly-brace metacharacter in a reg-
ular expression requires its own counter. One Snort rule re-
quires 17 counters, the rest use 14 or fewer. PEs with 16 and
32 counters will be mentioned in the results section.

• Counter RF Width: This determines the maximum values
of N and M in a curly-brace metacharacter. The NFA PE
datapath uses type-polymorphic TIPI actors to automatically
match this parameter. The largest value found in the Snort
rules is 1075, so the counters are 11 bits wide.

• Character Width: Normal ASCII characters are 8 bits wide,
but here we use 9 bits to allow for ample out-of-band charac-
ters (e.g. the $ which matches the end of a stream).

• Program Memory Depth: This is the maximum length of the
program the PE can run to execute an NFA. We choose a
value of 512 for implementation on a Xilinx FPGA, as this is
the shallowest BRAM configuration. For ASIC designs, we
use a 256-entry program memory.

This datapath architecture is a way to time-multiplex the logic
found in an NFA circuit. It can execute any regular expression up to
the complexity bounded by the architectural parameters. The more
complex the expression, the more datapath clock cycles it takes to
evaluate each NFA iteration.

4.1 Design Space Exploration
This first attempt at a PE does a good job at matching the ap-

plication’s datatype-level concurrency. The datapath is only one
bit wide and contains exactly the required function units and noth-
ing more. Architects can use the TIPI simulator generator to ex-
periment with this design and measure its performance on various
regular expressions. A hardware description can be generated and
synthesized to look for hardware-level issues. These experiments
reveal some shortcomings that can be easily addressed by making
structural changes to the datapath using the TIPI framework.

First, the datapath can benefit from pipelining. TIPI allows users
to create irregular pipelines by adding pipeline registers wherever
they are necessary. This is an important freedom because Sub-
RISC designs often defy the traditional 5-stage RISC architectural
design pattern. We added synchronous read ports to the register
files, and added a pipeline stage to the inputs of the 4-to-1 mux.
The combinational paths through the count-and-range function unit
and the text comparator are also broken by pipeline registers.

Second, the immediate field that writes a constant into the reg-
ister file can be removed entirely by exploiting special cases of the
count-and-range function unit. A zero is obtained by executing the
count-and-range operation withN = ∞ andM = 0. These values
are reversed to obtain a one. The write enable for the counter RF is
disabled in these cases to avoid disrupting counter state.

Third, performance can be improved by adding support for the
set comparisons found in regular expressions (the[] grouping op-
erator). In the current datapath this must be expanded using the
| metacharacter, e.g.[a–c] = (a|b|c). This costs cycles and uses
extra entries in the NFA state register file. To solve this we re-
place the equality text comparator (t = A) with a range compara-
tor (A ≤ t ≤ B). To support the[̂] syntax, an XOR gate with
one input driven from an immediate field in the microcode enables
negating the result of a comparison.

For [] leaves with multiple items (e.g.[0–9a–f]), we replace the
AND gate and the OR gate in the original datapath with logic el-
ements that can perform either Boolean operation. The expression
[0–9a–f] becomesState∧((0 ≤ t ≤ 9)∨(a ≤ t ≤ f)). Similarly,
[̂ 0–9a–f] is State ∧ ¬(0 ≤ t ≤ 9) ∧ ¬(a ≤ t ≤ f).

RFRF

Counter
RF

Counter
RF ++++

N � x � MN � x � M00

A � t � ZA � t � Z
TEXT

To neighbors
(N,S,E,W)

From neighbors
(N,S,E,W)ImmImm

t ∈∈∈∈ \dt ∈∈∈∈ \d

t ∈∈∈∈ \st ∈∈∈∈ \s

t ∈∈∈∈ \wt ∈∈∈∈ \w

ImmImm

ImmImm

ImmImm

Figure 8: Final NFA PE Architecture

The special characters\d (match any digit),\s (match any white-
space character), and\w (match word characters) appear frequently
in Snort regular expressions. To speed up these matches, additional
hard-wired comparators are added to the text comparison function
unit. These are done in parallel with the range comparison and are
conditionally included in the result of the compare operation.

Lastly, four pairs of single-bit input and output ports are included
for communicating with neighboring NFA PEs in a tiled multipro-
cessor. These links can be used to communicate match bits off chip.
They can also be used to enable mapping a single complex regular
expression across multiple NFA PEs to speed up execution.

Figure 8 shows the final architecture. Architects do not have to
modify HDL code, update an ISA specification, or verify consis-
tency between an ISA and the datapath implementation to make
these changes. Only the structural model needs to be changed.
The operation extraction algorithm identifies the changes and prop-
agates this information to the software deployment tool chain auto-
matically. This is an important benefit of the TIPI approach.

5. IMPLEMENTATION RESULTS
To evaluate the performance of our Sub-RISC design, we synthe-

size TIPI’s Verilog output for a Xilinx FPGA and for an Infineon
ASIC flow. We program the datapath with regular expressions ex-
tracted from the Snort rule database.

5.1 Software Performance
The Snort rules contain 385 unique regular expressions. Cairn

provides an automated flow for converting these regular expres-
sions into executable code. First, the model transform described in
Section 3 is applied to generate NFA models. A code generation
tool takes these models and a netlist of the NFA PE architecture
as inputs. For each NFA, a combination of symbolic simulation
and Boolean satisfiability is used to find an optimal schedule of
TIPI operations that calculate the NFA functions. An architecture-
independent code generation approach is used because TIPI data-
paths change frequently during design space exploration. Design-
ers cannot afford to rewrite a compiler for each experiment.

The number of processor cycles it takes to perform one iteration
of an NFA can be approximated by adding up the cost of each regu-
lar expression component, as given in Table 1. Over all 385 regular
expressions, there are 7,599 single character,\d, \s, and\w com-
parisons. The[] metacharacters require an additional 2,354 com-
parisons. The range comparator (A ≤ t ≤ B) proves its worth: if
all ranges were expanded to single character comparisons, 14,010
comparisons would be required instead.

The total cost of all 385 regular expressions is 14,058 PE cycles.

Regexp Component Cycle Cost

Single character or\d, \s,\w 1
[] with N characters or ranges (N > 1) N + 1
[̂] with N characters or ranges N
|, +, ∗ metacharacters 1
{ } metacharacter 2
? metacharacter 2
Concatenate metacharacter 0

Table 1: NFA PE Cycle Counts

The PE spends 70% of its time doing comparisons and 30% of its
time evaluating metacharacters. The most complex regular expres-
sion found in Snort requires 246 cycles, while the majority take
under 40 cycles. Figure 9 shows a histogram of the distribution.

0

20

40

60

80

100

120

140

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

NFAPE Cycle Count

N
um

be
r

of
 R

eg
ex

ps

Figure 9: Histogram of Snort Regexp Cycle Counts

In the next sections we construct NFA PE implementations with
256-deep instruction memories. This is large enough for the most
complex regular expression. To match all 385 regular expressions
in parallel, we build a multiprocessor of 55 PEs and distribute the
NFAs across them. Every 256 cycles, the multiprocessor updates
all NFAs and consumes one text character.

5.2 FPGA Implementation
Two different Xilinx XC2VP50-5 designs are considered, one

with a 16-entry and one with a 32-entry counter register file. Em-
bedded BRAMs are used for the instruction memories. These are
configured with the minimum allowed depth of 512 words even
though only 256 words are addressed.

Architecture Slices BRAMs Clock Rate

16 Counters 142 3 185 MHz
32 Counters 152 3 185 MHz

Table 2: FPGA Implementation Results

A multiprocessor with 55 PEs consumes 7,810 slices and 165
BRAMs. At 185 MHz, this machine matches one character against
385 regular expressions every 256 cycles for a throughput of 722
KB/sec.

5.3 ASIC Implementation
Both NFA PE variants were synthesized with Synopsys Design

Compiler for one of Infineon’s 90 nm technologies. For the large
instruction memory, a macro was generated. The other memories
were synthesized.

We obtain a clock frequency of 980 MHz for typical operating
conditions, as shown in Table 3. The critical path depends on exter-
nal I/O. Since this PE is insensitive to I/O latency and the most crit-
ical internal path is 1.042 GHz (Typ/IO) the speed could improve

Frequency(MHz)
Architecture Area(mm2) Typ Typ/IO Best/IO

16 Counters 0.143 980 1042 1299
32 Counters 0.155 980 1053 1299

Table 3: ASIC Implementation Results

by up to 6% with I/O pipelining. For best operating conditions, the
same design can run at 1.3 GHz (Best/IO).

The 55 PE multiprocessor will consume 7.8mm2 and achieves
throughputs of 3.9 MB/s at 1 GHz and 5.0 MB/s at 1.3 GHz.

The instruction memory dominates the area of these designs at
approximately 75% of the given values. Since these PEs execute
branch-free programs, random access to the instruction memory
is not required. Instruction compression will be a topic of future
work. Another option is to allow multiple copies of the datapath to
share the same instruction memory while working on independent
packet streams. This is similar to a SIMD architecture. A 16-wide
PE can provide 16× more throughput for only 6× more area.

5.4 Performance Comparison
We compare against the work of Franklin, Carver and Hutch-

ings [5] where a complete NFA circuit is implemented on an FPGA.
This approach is a completely unrolled design whereas the NFA
PE is a completely time-multiplexed design. The authors use 8-bit
equality comparisons, so[] expressions with ranges are more ex-
pensive to implement. For all 385 regular expressions, a total of
20,742 single character comparisons are required. Also, the curly-
brace{ } metacharacter is not considered.

For an NFA of this size approximately 1.25 slices/character are
required for a total of 25,000 slices. This is slightly larger than
the XC2VP50 used in this paper. Snort regular expressions do not
feature deeply nested metacharacters, so the combinational delay
is kept under control. Extrapolating from the published results, a
frequency of 50 MHz should be attainable. This machine consumes
one character every clock for a throughput of 50 MB/sec.

A multiprocessor ASIC constructed of 16-wide NFA PEs is ca-
pable of 80 MB/sec in under 50 mm2. This savings in area over the
FPGA is only one of the benefits of the Sub-RISC approach. First,
the speed and area of this design are not dependent on the com-
plexity of the regular expressions. The datapath offers predictable
performance in all cases. Second, the fine granularity of the NFA
PE makes it possible to target more points in the area/performance
design space. The smallest FPGA design requires 25,000 slices
and additional throughput comes in increments of this area cost.
NFA PEs can be added one at a time for consistent improvements
in throughput.

In a network intrusion deployment scenario, the NFA PE multi-
processor will be used alongside a processor that matches packet
header fields against Snort rules. In most cases, header process-
ing will determine that a packet stream only needs to be com-
pared against a subset of the 385 regular expressions. To achieve a
throughput of 125 MB/sec (for gigabit Ethernet line rate), a single
NFA PE at 1.3 GHz can afford to spend 10 cycles per character.
If the packet stream can be broken into 16 distinct flows, a single
16-wide SIMD-style PE can spend 160 cycles per character. This is
sufficient to process at least four average-size regular expressions
(under 40 cycles each as shown in Figure 9). In a multiprocessor,
most of the NFA PEs can be configured for the most common regu-
lar expressions. With tens of PEs it is therefore possible to achieve
multi-gigabit line rates.

6. CONCLUSION
Like most embedded applications, network intrusion detection

exhibits multiple flavors of concurrency on several levels of gran-
ularity. Designers must exploit this concurrency to obtain high-
performance implementations. The Sub-RISC paradigm provides
a unique way to accomplish this. Architects can build small, light-
weight datapaths that match the application’s process-, data-, and
datatype-level concurrency. Unlike other application-specific pro-
cessors, programmers are not forced to write complex assembly
code. Strong application abstractions make it easy for domain ex-
perts to describe parallel applications. Our results show that by
starting with a precise model of a concurrent application, and by
providing hardware support for the application’s concurrency re-
quirements, one can achieve excellent performance at low cost.

7. REFERENCES
[1] Z. Baker and V. Prasanna. Time and area efficient pattern

matching on FPGAs. InACM/SIGDA Intl. Symp. on Field
Programmable Gate Arrays, pages 223–232, Feb. 2004.

[2] Z. K. Baker and V. K. Prasanna. A methodology for
synthesis of efficient intrusion detection systems on FPGAs.
In IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 135–144, Apr. 2004.

[3] Y. H. Cho and W. H. Mangione-Smith. Deep packet filter
with dedicated logic and read only memories. InIEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 125–134, Apr. 2004.

[4] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and
J. Lockwood. Deep packet inspection using parallel Bloom
filters. IEEE Micro, 24(1):52–61, 2004.

[5] R. Franklin, D. Carver, and B. L. Hutchings. Assisting
network intrusion detection with reconfigurable hardware. In
IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 111–120, Apr. 2002.

[6] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole,
and V. Hogsett. Granidt: Towards gigabit rate network
intrusion detection technology. InInternational Conference
on Field Programmable Logic and Applications (FPL),
pages 404–413, London, UK, 2002. Springer-Verlag.

[7] B. Haagdorens, T. Vermeiren, and M. Goossens. Improving
the performance of signature-based network intrusion
detection sensors by multi-threading. InIntl. Workshop on
Information Security Applications, page 188, Aug. 2004.

[8] E. Lee. Embedded software. In M. Zelkowitz, editor,
Advances in Computers, volume 56, pages 56–99. Academic
Press, 2002.

[9] A. Mihal, S. Weber, and K. Keutzer. Sub-RISC processors.
In P. Ienne and R. Leupers, editors,Customizable Embedded
Processors: Design Technologies and Applications,
chapter 13. Elsevier, 2006.

[10] R. Sidhu and V. K. Prasanna. Fast regular expression
matching using FPGAs. InIEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM),
pages 227–238, Apr. 2001.

[11] Snort - the de facto standard for intrusion
detection/prevention. http://snort.org.

[12] I. Sourdis and D. Pnevmatikatos. Pre-decoded CAMs for
efficient and high-speed NIDS pattern matching. InIEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 258–267, Apr. 2004.

[13] S. Weber. TIPI: Tiny instruction processors and interconnect.
2005.

[14] S. Weber and K. Keutzer. Using minimal minterms to
represent programmability. InInternational Conference on
Hardware/Software Codesign and System Synthesis
(CODES), pages 63–68, Sept. 2005.

[15] S. Weber, M. Moskewicz, M. Gries, C. Sauer, and
K. Keutzer. Fast cycle-accurate simulation and instruction set
generation for constraint-based descriptions of
programmable architectures. InInternational Conference on
Hardware/Software Codesign and System Synthesis
(CODES), pages 18–23, Sept. 2004.

