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Abstract

The inverse mapping problem ( [1,2]) is well-studied in magnetoencephalography
(MEG) domain, where measurements recorded from a small number of sensors
(100-300) are used to infer the currents in a much higher dimensional brain
space (1,000-50,000 vertices). The driving theme is that the patterns observed in
neuronal signal responses, when presented with various stimuli, can give insight
into the functional mapping of human brain. While inverse mapping algorithms
are critical in arriving at the correct estimates of electrical currents in brain
space, functional mapping of brain requires further analysis of these inferred
signals. In this paper, we assume that state of the art methods for inverse mapping
provide a reasonable solution in the brain space, and use the measurements in
the brain space for taking the next step toward functional analysis of brain. We
propose a set of analytical tools to characterize and analyze event related neuronal
activity measured in brain via MEG (figure 2). We propose a joint entropy
minimization based formulation that makes no assumptions on the underlying
canonical response at a given measurement point in the brain for a given stimulus.
We model the neuro-electrical activity for a given cognitive task as an ARMA
process. We then compare the event related neuronal activities using a distance
measure in the space of dynamical models that takes into account the activities
from multiple measurement points in the brain simultaneously. This approach
can handle individual variations across subjects, can model and handle various
measurement noises and phase off-set in the neuronal activities. We evaluated our
method on a dataset of MEG activity obtained during an anticipatory attention
task conducted by the Dynamic Neuroimaging Lab at UCSF. Preliminary results
show that this framework offers low computational complexity while providing
excellent classification performance.
Keywords: Magnetoencephalography (MEG), Comparative Analysis and Chara-
terization of event related neuronal activity, Functional brain mapping, Clustering,
Time Series Modeling, Classification, Linear Dynamical Models, Mutual Infor-
mation, Entropy Minimization



1 Introduction

The human brain is an amazingly complex structure that plays a central role in our lives. The
multitude of neurons in the outer layer of the human brain (cerebral cortex) function as the active
components in the vast signal processing network in our brain. Understanding the communications
links in this neuronal network, and figuring out the functional mapping of the brain has been one
of the holy grails in neuro science. When decisions are made or information is processed in this
network, small currents flow in the network and produce a weak magnetic field that can be non-
invasively measured through external devices called SQUID (superconducting quantum interference
device) magnetometers. These SQUIDs are placed outside the human skull. This form of recording
neuronal activity signals is known as magnetoencephalography (MEG) [3]. The time resolution of
MEG is better than 1 ms, and the spatial discrimination (under favorable circumstances) is around 2-
3 mm for sources in cerebral cortex. State-of-the-art MEG systems usually have around 300 SQUIDs
situated around the skull for measuring the MEG signals. Since the magnetic signals induced by
these currents in the brain are very weak, shielding from external magnetic signals is necessary. The
net currents can be thought of as current dipoles (known as equivalent current dipoles: ECD) which
are currents defined to have an associated position, orientation, and magnitude, but no spatial extent.
Each current dipole gives rise to a magnetic field that flows around the axis of its vector component.
The magnetic field arising from the net current dipole of a single neuron is too weak to be directly
detected. However the combined fields from a region of about 50,000 active neurons can give rise
to a net magnetic field that is measurable. Since current dipoles must have similar orientations to
generate magnetic fields that reinforce each other, it is often the layer of pyramidal cells in the cortex,
which are generally perpendicular to its surface, that give rise to measurable magnetic fields.

The ability to identify electrophysiological indices of brain function that are accessible in real time
will dramatically change our understanding of cognition in health and disease. Such capabilities
will enable us to develop brain machine interfaces that are tailored to the individual’s cognitive
style and to adapt the interfaces as the individual learns and changes their brain function with
experience. This has tremendous implications for education and for clinical interventions in all
aspects of cognitive disorders ranging from dementia to attention deficit disorders to schizophrenia.
Until recently our methods for investigating human brain function directly have been limited in
their ability to significantly assess electrophysiological signals in the brain within an individual
subject, requiring investigations of groups of subjects and statistical analyses across groups. Recent
advances in MEG and EEG brain source imaging (e.g. [4]) have made it possible to explore the
activity within an individual subject, to relate the physiological measures directly to that subject’s
behavioral performance and to develop methods for identifying electrophysiological indices in a
fraction of a second that can be used to interface with machines.

1.1 Inverse Mapping Problem in MEG

It is a difficult challenge to infer the ECD currents given the magnetic field measured through
the sparse set of SQUID sensors placed around the human skull(figure- 1). For a long period
of time since the inception of MEG methodology, this inverse problem of inferring ECD space
measurements from the SQUID sensor measurements has been a very active area of research, and
there has been reasonable progress made in this regard ( [1,2]). In our project, we utilize the inverse
mapping method proposed by [4] to obtain the ECD space measurements from the sparse MEG
signals. They [4] use Tikhonov regularized minimum norm inverse method to recover approximately
10,000 ECD measurements on the cortical surface for each epoch, and have identified 25 regions
of interest (ROIs) expected to exhibit varying behavior. In our paper, we provide experimental



Figure 1: Helmet of SQUIDs around human skull for measuring MEG signals

analysis of data from 4 of those ROIs. We assume that the inverse mapping provided by the selected
algorithm has reasonable accuracy, and focus on the tools required to analyze the inferred ECD
space measurements with respect to various stimuli.

1.2 Challenges in Functional Mapping of Human Brain

Given the ECD space measurements obtained via inverse mapping, there are many interesting
challenges in the way to obtaining the functional mapping of human brain. Our first challenge
is: given a certain stimulus, we would like to understand how the canonical response is at any given
ECD vertex in the brain.Canonical response is defined as the underlying response that is common
to all the epochs at that given location for a given stimulus or function (in other words, a template
for a given stimulus or function at a given ECD location). Once inferred, this canonical response
can be used as a template to determine which vertices have similar kinds of neuronal response, and
potentially, the communication links between various vertices in the ECD space of the brain. The
second challenging problem we identify is the analysis (in the case of this paper, classification)
of neuronal response for a given stimulus, based on the characteristic behavior (in the case of this
paper, speed of response) of the subject. While there are other significant challenges such as figuring
out the causality of the neuronal response across various vertices in the cerebral cortex, we do not
address it in this paper.

In section 2 we describe an information theoretic formulation for obtaining a Bayesian estimate of
the canonical response at a given vertex location in cerebral cortex based on the neuronal response
signals recorded across multiple epochs (all from a single trial). In section 3, we use dynamical
systems to model the neuronal responses from multiple vertices at the same time, and use these
dynamical models to estimate the distance measures between the responses across multiple epochs.
We propose a classification scheme using these distance metrics, and demonstrate the applicability
of this formalism for classifying the epochs into speed/slow classes. A block diagram of this
dataflow is shown in figure 2. Truth values for the response speeds of the subject for each epoch
are experimentally recorded and available to us from the data provided by Dynamic Neuroimaging
Lab at UC-San Francisco. This truth data is used in section 3.7 to give quantitative results of the
classification performance.

2 Estimating Canonical Response

We define the problem of canonical response estimation as: at a chosen ECD vertex location in
cerebral cortex, given the neuronal signal responses across multiple epochs for a given stimulus
(or activity), compute the best estimate of the underlying response that is common across all the
epochs. While we make no assumptions on the underlying canonical response, we do impose
certain restrictions of the noise that could corrupt the canonical signal, thus resulting in different
manifestations at each epoch. Intuitively, this is similar to looking at a set of example pictures
of apples or faces, and figuring out what a canonical apple or face looks like. This problem has
been well studied in computer vision and medical image processing domains, and for the intuitive
understanding of the reader, we provide an example of such work in figure- 3 where the underlying



Figure 2: Dataflow in Our Paper: Please refer to section 1.2 for a description of this block diagram.

shape model of an eye-disc of Drosophila Melanogaster (fruitfly) was estimated by looking at a set
of examples from various fruitflies [5].

2.1 Modeling Assumptions

yi(t)t=1,...,τ wherey(t) ∈ RN . N is the number of epochs. In our dataset,N is approximately
30 for each class of responses, andτ is 276 time steps. The data is from a 1.2 kHz (sampling
frequency), 275-channel whole-head CTF Omega system [4] to collect MEG data on a human
subject that is presented with timed visual cues. Using the approach outlined in [4], we take
the 275-channel SQUID data and estimate the ECD currents for each vertex location in the brain
space. This inverse mapping serves to decorrelate the signals in the ECD space. We assume
that the observed ECD signalyi(t) is corrupted by various noises such as DC-offset, phase-
unsynchronization, magnification errors (ampling scaling) and frequency domain noises. Letyc be
the canonical underlying signal that we are trying to estimate. Assuming additive frequency domain
noise (belonging to a set of unknown bandlimited noisesB), the signal observed atith epoch is given
as:

yi(t) = K1 + (1 + K2) ∗ yc(t−K3) + αi ∗Bi(t) (1)

= g−1
i (yc(t)). (2)

whereK1, K2, K3 are scalar real numbers,Bi(t) ∈ B, andg−1
i is the overall transformation that

maps the canonical signal to the current observationyi(t). We make a highly simplifying assumption
that eachyi(t), t = 1, ..., τ is an i.i.d. process. In our experiments, we have treated the frequency
domain noise to be zero but given some domain knowledge about the kinds of frequency domain
noises that could be present across the epochs, such noise can be easily incorporated as shown in
equation-2.

2.2 Joint Nonparametric Inference for Canonical Response

As mentioned earlier, choice ofB is dependent on the domain knowledge. Since we did not have
an intuition about this choice in our current experiments, we setαi = 0 in our experiments. This
reduces the noise assumptions to be Gaussian. The goal is to find the transformationgi that converts
a givenyi(t) into the most likely form ofyc(t). The transformationgi is characterized by parameter
vectorui = {K1i,K2i,K3i}. Note that eachgi uniquely maps the canonical responsexc to the
ith neuronal responsexi. Formulating this as the maximum likelihood estimation problem, and



Figure 3: Example: Estimating the canonical shape of an eye disc in Drosophila Melanogaster by
using an ensemble of examples drawn from various fruitflies. The top row shows four different
examples of an eye disc. The bottom left image is the average shape estimate before registering
the disc shapes with one another. The bottom right image is the estimated average shape after
registration across the ensemble of images.

by searching through the space ofui wherei = 1, ..N , we want to find theui that maximizes
P (g−1

i |yi(t)). We defineΘ̂ as:

Θ̂ = arg maxuiP (g−1
i |yi(t)). (3)

Using Bayes’ rule and ignoring the constant term in the denominator:

Θ̂ = arg maxuiP (yi(t)|g−1
i )P (g−1

i ). (4)

Assuming a uniform prior over the transformation parameters, we can write Equation 4 as:

Θ̂ = arg maxuiP (yi(t)|g−1
i ). (5)

Notice the fact that probability of theyi(t) is the same as probability ofyc(t) associated with the
correspondingyi(t) andg−1

i . We can write this as:

Θ̂ = arg maxuiP (yi(t)|(yc(t), g−1
i )). (6)

Using i.i.d. assumptions and equation-2 to write,

Θ̂ = arg maxui

∏
t=1,...,τ

∏
ui∈RN×K

py(gi(yi(t)))) (7)

whereK(= 3) is the dimension of the transformation spaceui andpy(gi(yi(t)))) is the probability
of the transformed neuronal signal at timet. Taking log-probabilities, and reasoning along the lines
of derivation in [5], we get:

arg maxui

∑
t=1,...,τ

∑
ui∈RN×K

log py(gi(yi(t)))) ≈ arg minui

∑
t=1,...,τ

H(g(y(t))). (8)

By the law of large numbers, this approximation becomes equality whenN is very large. Here,
H(y(t)) is the Shannon entropy of the time series stack at time=t. In our work, the values in the
time series signals are not binary, so we use a different entropy estimator called Vasicek estimator
as suggested in [6].

Mathematically, this maximum likelihood estimation can be formulated as solving an optimization
problem. Noting the fact that the priors are not actually uniform on different transformations, we
need to write a compensated objective function for our optimizationΨ defined as

Ψ .=
τ∑

t=1

H(g(x(t))) +
N∑

i=1

|ui| (9)

where{ui}N
i=1 are the vectors of transformation parameters (Equation 2), and| · | is some norm (or

penalty term or regularization term) on these vectors to keep the time series signals from shrinking
to zero or undergoing some other extreme transformations. We callΨ as the Penalized Summed
Pointwise Entropy.

The learning algorithm proceeds as follows:



Figure 4: Penalized Summed Pointwise Entropy(PSPE): PSPE goes down monotonically with
increasing iterations, and converges to a stable minimum as the joint entropy minimization routine
converges. This plot shows one of the runs where PSPE stabilized within 80 iterations for
convergence. In this figure, x-axis is number of iterations and y-axis is PSPE value.

1. Maintain a transform parameter vectorui (Equation 2) for each neuronal signalyi(t). Each
parameter vector will specify a transformationĝi according to Equation 2. Initialize allui

such that eacĥgi is an identity transformation.

2. Compute the Penalized Summed Pointwise EntropyΨ for the current set of ECD time
series signals from Equation 9.

3. Repeat until convergence:
For each time series signalyi(t),
(a) Calculate the numerical gradient5uiΨ of Equation 9 with respect to the transforma-

tion parametersuj ’s for the current time series signal (1 ≤ j ≤ N ).
(b) Updateui

j as:ui
j = ui

j + γ 5ui Ψ. (where the scaling factorγ ∈ R).
(c) Updateγ (according to some reasonable update rule such as the Armijo rule [7]).

At convergence of this optimization procedure, the set of time series signals are aligned, and the
associated transformations{ui}N

i=1 are computed. To visualize the entropy of the transformed time
series set for a class at each step of the optimization, one can construct a time series (Figure 5) in
which each time point is average across the ensemble after the registration.

2.3 Results and Discussion

Settingαi = 0 (equation-2) also serves as a simple way to cross-validate the performance of the
joint inference against the simple averaging done in practice by experimentalists. Since the joint
inference algorithm is optimizing for Penalized Summed Pointwise Entropy, which is different from
the underlying assumptions involved in simple averaging procedure, we would consider the joint
entropy minimization to be doing something reasonable if the results of this optimization match
closely with the simple averaging for the cases whenαi = 0 andK3 ≈ 0. Looking at the similarity
between the blue and red plots in figure- 5, we can conclude that the joint entropy minimization
procedure is producing a reasonale estimate of thexc(t), t = 1, ..., τ when the simpleK1,K2 based
model is chosen. The convergence of Penalized Summed Pointwise Entropy is shown in figure 4.
It can be seen that this number goes down monotonically and stablizes by the time the algorithm
converges.

3 Classifying Event-Related Neuronal Responses

Once we compute the canonical response signal at any given ECD vertex, it makes sense to use it as
a template to do pattern matching and classify the signals. The critical question here is how to do this
matching between various neuronal responses. Given a common time-frame of observations, and



Figure 5: MEG Average Signal compared to the joint entropy minimized estimate signal: While
restricting the space of transformations toK1,K2, both results are similar despite the very different
objective functions being minimized. In this figure, x-axis is time in seconds witht = 0 being the
point where cue is shown to the subject. Y-axis is amplitude of the neuronal signal.

fixed set of noise assumptions, it is tempting to just use the time-series signal of neuronal response
directly, and compute the time-domain mean squared error (TD-MSE) as a measure of distance
between neuronal responses. While this could be a quick-fix, this process is heavily reliant on
time-synchronization, and phase locking of the signals. Choosing TD-MSE distance metric makes
the dubious assumption that the difference in the time-series signals is characterized completely by
some Gaussian noise with zero mean. Using TD-MSE also makes it hard to visualize how these
neuronal responses are laid out in measurement space.

In this section, we propose a first-order approximation of neuronal responses using a perspective
from dynamical systems. We treat the observed neuronal response as a second order stationary time-
series (which is an oversimplified characterization of the signal in terms of tracking or estimation
- but makes good sense for the purpose of classification). We point to a closed-form solution
for estimatingnth order ARMA model for the neuronal response. We use the estimated model
parameters to map our neuronal responses into a metric space (in this specific case, this space is
called Stiefel manifold) and compute distance metric between the neuronal responses. Such distance
metrics naturally allow us to perform grouping, segmentation and classification of the neuronal
signals.

3.1 Generative Models for Neuronal Response

There is no unique and true model of a time-varying neuronal signal. The space of models is infinite
dimensional. One needs to choose the appropriate criteria for evaluating the correctness of the
interpretation given by the model. In the context of the neuronal signals discussed in this report,
the signals are treated simply as time series signals at fixed spatial locations (i.e. the vertices of the
ROIs). Modeling, understanding and inferring the signal implies learning a stochastic model that
can generate the same sequence of numbers over time. The validity of the model is assessed in terms
of the predictive power - meaning, a valid model should be able to predict the future sequence of
numbers causally based on the past values of the time series. The geometric correctness in Euclidian
sense is not assumed in this characterization. Only the predictive power of the model is taken as the
basis of evaluation for the correctness of the model. A good model that predicts the future values
of the sequence can be seen as a compressed version of the whole sequence that captures the core
essence of the time series. This captured essence can be used for recognition and classification of
neuronal signal depending on the application. The choice of the unique model to represent this
essence can be achieved by imposing regularization and certain Bayesian priors.

The independent realizations in a neuronal time series signal are not independent realizations from a
stationary distribution since there is a temporal coherence (also known as temporal redundancy) that
needs to be captured. The assumption that can capture this idea is that individual values in the time-
series are realizations of the output of a dynamical system driven by independent and identically



distributed process (IID) [8]. Simply using auto regressive (AR) model will not capture the spatio-
temporal characteristics of the dynamic texture. ARMA models are better suited for this purpose.
In this report, the ARMA model proposed by Doretto et. al. [8] is used.

Let: xi(t)t=1,...,τ wherex(t) ∈ RM . M is the number of ROIs from which we sample the time-
series neuronal responses. All the time-series signals are jointly modeled as a second order stationary
process. Suppose at each time instant of timet we can measure a noisy version ofxi(t) asy(t) =
xi(t)+w(t), wherew(t) is an IID sequence drawn from a known distribution [8]. Therefore, a linear
dynamic time-series associated to an ARMA process with unknown input distribution(x(t) ∈ RM )
can be modeled as:

x(t + 1) = Ax(t) + Bv(t)
y(t) = Cxi(t) + w(t) (10)

with x(0) = x0,v(t) as an unknown IID distribution,w(t) as a known or given IID distribution.
By assuming thatx(t + 1) = f(x(t), v(t)), this formulation can easily be extended tonon-linear
dynamic models. Sayq(.) is the distribution of the input. In the literature of dynamical systems, it
is commonly assumed that the distribution of the inputq(.) is known. In the context of our problem,
we have the additional complication of having to infer the distribution of the input along with the
dynamical model parameters.

3.2 Maximum Likelihood Learning

The maximum likelihood formulation for learning the dynamical model parameters can be formu-
lated as follows:

Given: y(1), ..., y(τ), find:

Â, B̂, Ĉ, q(.) = arg maxA,B,C,q log(p(y(1), ..., y(τ)))

subject to: equation (10) andv(t)IID ≈ q (11)

The inference method crucially depends upon what type of representation is chosen forq.

3.3 Predictive Error

As an alternative to maximum likelihood, the estimation of the model can be done subject to least
mean square prediction error constraint. Letx̂(t + 1|t) = E[x(t + 1)|y(1), ..., y(t)] be the best one-
step predictor that depends upon the parametersA, B, C, andq. Then the problem can be posed
as:

Â, B̂, Ĉ, q̂ = limt→∞argmin E||y(t + 1)− Cx̂(t + 1|t))||2

(12)

subject to:equation (10). Unfortunately, explicit forms of the one-step predictors are available only
for restricted assumptions, such as linear models driven by Gaussian noise.

Unknown driving distribution belongs to infinite dimensional space in principle but a choice of a
parametric class of densities transforms this into a finite dimensional problem. Exponential class of
densities is the choice made in [8].

3.4 A Closed Form Solution For Learning Second-Order Stationary Processes

It is known that a stationary second order process with arbitrary covariance can be modeled as the
output of a linear dynamical system driven by white, zero-mean Gaussian noise [9]. Using this
result, assumingx0 ∈ Rm as initial condition, andQ, R as positive semi-definite matrices, the
equation (10) can be written as:

x(t + 1) = Ax(t) + v(t),
where v(t) ≈ N(0, Q); x(0) = x0

y(t) = Cx(t) + w(t),
where w(t) ≈ N(0, R) (13)



for some matricesA and C. The problem of system identification consists of estimating the
model parametersA, C, Q, R from the measurementsy(t). Note thatB andv(t) in the model
(equation (10) are such thatBBT = Q andv(t) ≈ N(0, Inv) whereInv is the identity matrix of
dimensionsnv × nv.

Important observation concerning model (13) is that the choice of matricesA,C,Q is not unique,
in the sense that there are infinitely many such matrices which give rise to exactly the same paths
y(t) starting from suitable conditions. This can be seen by substitutingA with TAT−1, C with
CT−1 andQ with TQTT , and choosing the initial conditionTx0 whereT is any invertiblen × n
matrix known as similarity transformation. In other words, the basis of the state-space is arbitrary,
and any given process hasnot one unique model, but anequivalent class of modelsmapped through
the similarity transformation. In order to be able to identify a unique model of the type (13) from
a sample pathy(t), it is necessary to choose a representative of the equivalent class: otherwise also
known as acanonical model realization, in the sense that it does not depend on the choice of the
basis of the state space (because it has been fixed). There are many canonical realizations, but [8]
proposes to choose a model that is tailored for the data. Since the approach attempts to reduce
dimensionality, the following assumptions are made:

n >> m, rank(C) = m (14)

and choose the canonical model that makes the columns of C orthonormal:

CT C = Im (15)

whereIm is the identity matrix of dimensionsm×m. This assumption results in a unique model.

3.5 Closed-form solution

Let Y τ
1 = [y(1), ..., y(τ)] ∈ Rm×τ and Xτ

1 = [x(1), ..., x(τ)] ∈ Rn×τ . Let τ > m, and
W τ

1 = [w(1), ..., w(τ)] ∈ Rm×τ . Following the arguments illustrated in [8], we can see that:
SVD of Y τ = UΣV T , UT U = I, V T V = I whereΣ is the diagonal matrix with singular values.
Therefore, using the fixed rank approximation, the best estimate ofC in the sense of Frobenius
norm: (̂C)(τ), (̂X)(τ) = arg min C,Xτ

1
||W τ

1 ||F . The unique solution is given by

Ĉ(τ) = U, X̂(τ) = ΣV T (16)

Â can be determined uniquely (assuming distinct singular values), in the sense of Frobenius norm:

Â(τ) = ΣV T D1V (V T D2V )−1Σ−1 (17)

whereD1 =
[

0 0
Iτ−1 0

]
andD2 =

[
Iτ−1 0

0 0

]
. The sample input noise covarianceQ can be

estimated from

Q̂(τ) =
1

τ − 1

τ−1∑
i=1

v̂(i)v̂T (i) (18)

wherev̂(t) = x̂(t+1)−Â(τ)x̂(t). For more in-depth discussion of the derivations of these formulae,
please refer to section 4.1 and 4.2 in [8]. In this algorithm, order of the system itn is given as input
to the algorithm. AMatlabversion of this algoritm is provided in [8].

3.6 Metrics for Dynamical Systems

Given the formulation of ARMA model of the set of neuronal responses, we can compare different
sets of neuronal responses based on the model parameters estimated - such asA andC matrices.
This is based on the assumption that neuronal responses are realizations of second order stationary
stochastic processes (the covariance is finite and shift-invariant). Thus, recognizing the models that
generate these stochastic realizations will in essence solve the actual recognition problem (if the
stationarity assumption is correct). In the case of neuronal signals, this assumption is incorrect -
but we show that even this first approximation is enough to solve the classification problem across
different neural responses.



Given two sets of neural responses, we can use the sub-optimal learning procedure stated in section
3.5 to learn model parameters (A, C, Q, R).While the state transitionA and the output transition
C are intrinsic parameters of the model, the input and output noise covariancesQ andR are not
significant for the purpose of recognition or classification. So, the distance needs to be measured
betweenA andC matrices.

The trick here is the fact that the choice of metric between parameter spaces is not trivial. Model
parametersA andC are dependent on basisx0. These parameters do not live in the linear space
- so a simpleL2 distance norm does not yield a good measure of distance between the models.
Thus, recognition in the space of models amounts to doing statistics in quotient space that has
non-trivial Riemannian structure. In this report, a special basis invariant distance measure has
been implemented - namely: martin distance [10]. We first need to compute subspace angles [11]
between the models in order to compute the distance metrics. Our implementation of subspace
angle computation follows the procedure described in [12, 13]. Given a modelM specified by the
pair (A,C) as above, one might define the infinite observability matrix as:

O(M) = [CT AT CT A2T CT ...]T ∈ R∞×n (19)

O(M) can be viewed as ann-dimensional subspace ofR∞ that is spanned by itsn columns. To
compare the two modelsM1 andM2 the basic idea is to compare the subspaceanglesbetween the
two observability subspaces ofM1 andM2. A canonical notion of angles between the subspaces
is given by the so-called subspace angles [11]. Given two models, let’s say the subspace angles are
defined by:

M1 ∧M2 = [Θ1,Θ2, ...,Θi, ...,Θn], Θi ≥ Θi+1 ≥ 0 (20)

Based on these angles, two distance metrics are defined as:

Martin Distance: d2
M = −ln

∏
i

cos2(Θi) (21)

The martin distance follows from the definition of Martin [10]. In the case of the Martin distance
for minimum phase single-input single-output (SISO) systems, it is equivalent to the norm deduced
from a natural metric on the cepstrum of the system auto-correlation function, and this distance has
a closed-form formula in terms of the systems’ poles and zeros. However, for MIMO systems, it is
not guaranteed that the martin distance will be non-negative.

3.7 Results and Discussion

We obtained the data from UCSF Dynamic Neuroimaging lab for these experiments. The data is
MEG recordings from a visual attention study. Each trial has multiple epochs, and each epoch
represents a central visual cue that directs attention to the lower left or right of the visual field, in
anticipation of a second stimulus (S2), delivered 1 sec later on the left or right. Responses to the Cue
therefore contain brain activity underlying the anticipatory deployment of attention. In principle,
this activity contains signals that reflect whether a subject has deployed attention well. Such activity
should therefore be correlated with their subsequent performance when they respond to the target
stimulus (S2). The locations of the upcomingS2 are continuously marked by gray patches, to guide
allocation of covert visual spatial attention. For better explanation of the experimental set-up of
this study, please refer to [4]. The response speeds of the subjects are recorded, and based on the
response speeds, fast/speed classes of neuronal responses from pre-selected ROIs can be computed
using the inverse mapping method mentioned in [1].

In our first experiment, we computed all pair-wise Martin distances between the given responses
and we notice (figure 6)that two clear groupings pop-out in the dissimilarity matrix. Computing
the eigenvalues of this dissimilarity matrix automatically tells us how many groups of neuronal
responses exist in the given dataset. This encouraged us to pursue classification of the neuronal
responses using subspace distance metrics.

In our second experiment, we compute subspace distance between current neuronal response (from
each epoch) and the canonical responses of fast/slow neuronal responses. We assign thefast label to
the current epoch if its subspace distance to the fast canonical response is smaller than its distance
to the slow canonical response. We call thisCanonical Signal based Classification(CSBC). In our
third experiment, we compute subspace distance between current neuronal response (from each



Figure 6: Example of pairwise Martin distances between neuronal responses across all epochs (left
cue): in this diagram, there are 30 fast and 29 slow response epochs, and these two blocks show up
clearly.

Table 1: Classification Results

Left Cue Right Cue
Canonical Signal Based Classification 100% 63.93%

Leave One Out Classification 100% 100%

epoch) and the responses from all other epochs. We assign thefast label to the current epoch if its
subspace distance is smallest with respect to a fast epoch. We assign theslow label to the current
epoch if its subspace distance is smallest with respect to a slow epoch. We call thisLeave One Out
Classification(LOOC). The classification results for both CSBC and LOOC are shown in Table 1.

4 Remarks

While the mathematical formulation for finding the canonical response signal is laid out in this
report, the modeling assumption to restrict the transformation space toK1,K2 and possiblyK3 does
not take into account any possible frequency domain noise. While the results for frequency domain
noise assumptions are not shown here, the formulation can easily accommodate such modeling
assumptions. Choosing the correct transformation space is critical to correct inference of the
canonical response at the given ECD vertex. The power of the modeling paradigm proposed in
this paper is that it can easily accommodate both time and frequency domain noise assumptions
in order to do the denoising of the observed signal, and compute the best estimate of underlying
canonical response across an ensemble of observations.

In our experiments shown in this paper, the ROIs were LOF (left orbital frontal), RSupPar (right
superior parietal), ROcc (right occipetal), LFront (left frontal). The choice of ROIs certainly has a
strong say in the classification accuracy of our algorithm, and can give hints about which parts of
the brain respond strongly to certain cues. In the worst case scenario, the problem of choosing the
right set of ROIs is combinatorial in the space of possible ROIs.

Experiments have shown that taking neuronal signal responses from all the ROIs at the same time
(jointly) results in a good classification and recognition performance. In other experiments, we
found thataveraging signals across vertices in a chosen ROI is not a good idea. Classification
results for such averaged neuronal signals were much worse compared to the cases where we picked
one vertex signal from each ROI and combined them into a set across the ROIs using the dynamical
systems approach.



5 Future Directions

While the classification results using Martin distance already look very reasonable, they can be
potentially improved for Canonical Signal based Classification, if the signal models included
frequency domain noises. Also, it seems to be a worthwhile endeavor to try and do unsupervised
clustering of neuronal responses in the Stiefel manifold. Considering how this framework has
shown promising results for MEG, it might be interesting to conduct similar analysis on EEG or
Electrocorticography (ECog) measurements as well. This will allow discovery of more interesting
classes of neuronal responses instead of simple classes like fast/slow responses. Investigating
better metrics for Dynamical modeling of neuronal responses is also a promising avenue for further
research.

Acknowledgements

PA would like to thank: Dr. Gregory V. Simpson (for data and helpful discussions), Dr. Mikael
Eklund at UC-Berkeley (for useful discussions), Dimitrios Pantazis at USC (for inverse mapping
method), Dr. Steve Bressler at FAU and Dr. Richard Leahy at USC (for discussions), Edgar Lobaton
and Chuohao Yeo (for proof-reading the draft) and Vivian Leung (for cool graphics).

References

[1] F. Darvas, D. Pantazis, E. Kucucaltun-Yildirim, and R. Leahy, “Mapping human brain function with MEG
and EEG: Methods and validation,”NeuroImage, vol. 23, no. 1, pp. S289–99, 2004.

[2] O. Faugeras and et al, “Variational, geometric and statistical methods for modeling brain anatomy and
function,” NeuroImage, vol. 23, no. 1, pp. S46–55, 2004.

[3] M. Hamalainen, R. Hari, R. Ilmoniemi, J. Knuutila, and O. Lounasmaa, “Magnetoencephalography
theory, instrumentation, and applications to noninvasive studies of signal processing in the human brain,”
Reviews of Modern Physics, vol. 65, pp. 413–497, 1993.

[4] D. Pantazis, D. Weber, C. Dale, T. Nichols, G. Simpson, and R. Leahy, “Imaging of oscillatory behavior
in event-related MEG studies,” inProceedings of SPIE, Computational Imaging III.

[5] P. Ahammad, C. L. Harmon, A. Hammonds, S. S. Sastry, and G. M. Rubin, “Joint nonparametric
alignment for analyzing spatial gene expression patterns in drosophila imaginal discs,” inCVPR ’05:
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05) - Volume 2, 2005, pp. 755–760.

[6] E. G. Learned-Miller and P. Ahammad, “Joint mri bias removal using entropy minimization across
images,” inAdvances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou,
Eds. Cambridge, MA: MIT Press, 2005, pp. 761–768. [Online]. Available: http://books.nips.cc/

[7] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge, UK: Cambridge University Press,
2004. [Online]. Available: http://www.stanford.edu/ boyd/cvxbook.html

[8] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic textures,”International Journal of Computer
Vision, vol. 51, no. 2, pp. 91–109, 2003.

[9] L. Ljung, System Identification Theory for the User. Hoboken, NJ: Prentice Hall, Englewood Cliffs, NJ,
1987.

[10] R. Martin, “A metric for arma processes,”IEEE transactions on Signal Processing, vol. 48, no. 4, pp.
1164–1170, 2000.

[11] P. V. Overschee and B. D. Moor, “Subspace algorithms for the stochastic identification problem,”
Automatica, vol. 29, pp. 649–660, 1993.

[12] K. D. Cock and B. D. Moor, “Subspace angles between linear stochastic models,” inProcedings of 39th
IEEE Conference on Decision and Control, 2000, pp. 1561–1566.

[13] ——, “Almost invariant submanifolds for compact group actions,” inProcedings of Mathematical Theory
of Networks and Systems, 2000.


