
Sapheniea: Simplifying Configuration Using Classes

Cheng Tien Ee
Scott Shenker
Lakshminarayanan Subramanian

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-135

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-135.html

October 19, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Sapheniea: Simplifying Configuration Using Classes
Cheng Tien Ee

UC Berkeley
Scott Shenker

ICSI, UC Berkeley
Lakshminarayanan Subramanian

New York University

Abstract— This paper describes the design of Sapheniea,1
a framework that enables network administrators to easily
implement policies in large-scale networks. The goal of Sapheniea
is to capture as much configuration information as possible into
a single parameter, which we define as class. The key idea is
to categorize network traffic into different classes and embed
the same class parameter as a configuration knob in routing.
Network administrators only need to define the various classes,
specify the relationship between them, and assign classes to links.
In this paper, we provide two applications that illustrate how
Sapheniea can be used in enterprise networks to perform: (a)
access control within a domain; (b) traffic channeling through
choke-points.

I. INTRODUCTION

Configuring large-scale enterprise networks is often a night-
mare for network administrators. The role of configuration
has increased substantially with the threats posed by worms,
malware and attackers. To mitigate these threats, network
administrators have been forced to deploy a range of middle-
boxes including firewalls [3], NATs [14], VLANs [6] and
NIDS [10], [13] that act on the network data path to detect
and drop undesirable traffic. However, the current model of
implementing access control in such networks is both cumber-
some as well as error-prone; the process involves a complex
combination of bridging, routing and manual installation of
packet filters in routers along the data path [16], [17].

One of the fundamental reasons behind the difficulty in
configuring such networks is the incongruence in configura-
bility of the control and the data planes. Today, most of the
middle-box configuration occurs in the data plane; operators
install, along the data path, packet filters which need to
be modified with each change in topology or routing. This
incongruence stems from the fact that routing and filtering
are treated as separate problems. The management burden
increases with network size: in large-scale networks, low-level
views available to operators, that is, filters at each individual
router or switch, makes it difficult to reason about connectivity
issues within the overall network, increasing the likelihood of
misconfiguration errors.

In this paper, we describe the design of Sapheniea, a system
that introduces an explicit configuration binding between the
control and data planes using a single class parameter. In
Sapheniea, traffic is first classified based on some policy,
where the granularity of a class is configurable. Subsequently,
middle-boxes in the data plane can apply policies tailored for
each class, and the control plane allows route determination

1Sapheniea in Greek means “clarity”.

on a per-class basis. This explicit binding between the two
planes eliminates the need for operator intervention when
routes change.

Another important aspect of Sapheniea is the flexibility in
defining the most basic relationship between classes, which is
whether one class of traffic can be carried on links of another.
This relationship can be arbitrary and captured by a class-
graph which we require to be directed acyclic.2

A. Motivating Examples

We motivate routing with classes using two examples: (a)
access control, and (b) traffic channeling through choke-points.

Access Control: Operators add filters at routers to restrict
access to certain resources in the network. The placement of
filters is very much topology dependent, and legacy filters need
to be accounted for when topology changes. The difficulty of
grasping the complete picture is compounded with the fact that
operators who installed seemingly cryptic legacy filters may no
longer be available to assist in the process. Sapheniea can help
resolve this issue, beginning with the assignment of classes to
links and traffic. The level of indirection brought about by this
assignment reduces the complexity of filters: rather than say
“filter packets from 1.2.3.0/24, 1.2.4.0/24”, we instead enlist
the assistance of the routing protocol to say “never forward
packets with classes lower than B”. The association of a class
to each link enables routing based on classes and provides
the following advantages: (1) if, at a point in the network, no
route to destination exists for a certain class, that information
is automatically propagated by the routing protocol without the
need to add filters at that location; (2) the lack of any route
and hence visibility implies that traffic will not even begin to
be forwarded through the network and subsequently dropped
only at the end-host, reducing the impact on eligible traffic
being carried; (3) the effect of link addition or removal on the
admission of traffic is updated automatically by the routing
protocol without further manual configuration; (4) by using
the network and class-graphs, the operator can, at a glance,
deduce and control the type of traffic allowed at a particular
region.

Traffic Channeling: The traditional method used for chan-
neling of packets through choke-points (such as firewalls,
NIDS boxes) is the manipulation of physical network con-
nections. This requires careful planning and execution at the
ground level, and can typically result in tedious re-wiring of

2A cycle in the class-graph introduces a policy conflict across classes and
is hence not allowed.

cables when the network topology changes. Worse, uninten-
tional connections, such as those via wireless links, can bridge
two otherwise separate networks [15]. Rather than attempting
to control the physical connectivity, we instead only mandate
that the network be well connected physically, then create
logical networks with links that are a subset of the physical
network. This is similar to VLANs, except that this concept is
extended to layer-3 networks, and, as we show in §II the usage
of classes and the ability to define inter-class relationships adds
a degree of flexibility which will also be beneficial to VLANs.
Upon entering the network, traffic can be classified based on
some policy, with the traffic class subsequently resulting in
a particular logical graph being used for forwarding. Thus,
middle-boxes’ placement becomes much less dependent on the
physical topology: links’ classes can be configured remotely
such that traffic of interest can be channeled accordingly.

II. THE SAPHENIEA FRAMEWORK

The Sapheniea framework consists primarily of three com-
ponents: classes, rules and translation boxes. We briefly de-
scribe them below, then elaborate further in the subsequent
subsections.

A. Framework Components

Classes describe traffic to be carried as well as routes.
The semantics of a particular class is defined by the network
administrator, and relationships between classes are defined
using a directed acyclic graph which we call the class-graph.
The class associated with the route for a particular destination
can alter as they propagate through the network, depending
on, for instance, the links traversed or on some network
requirement. Packets’ classes are inserted at the first hop
router, and removed just before leaving the network, thus no
changes need to be made to end-hosts.

Rules govern the selection of routes at each router. With
the introduction of class-graphs, routing effectively becomes
multi-path, and various methods of route selection exist. These
rules set up routing state within the network, much like today’s
OSPF [8] and RIP [7] and IS-IS [9].

Transformation boxes alter classes associated with routes
as they are propagated through the network. These boxes are
necessary when the network extends across perimeters, which
can, say, encompass a region in an enterprise network where
only trusted traffic can traverse. Transformation boxes can
decide to trust and upgrade traffic after verification. Also,
the semantics of a particular class may be different across
perimeters, and thus mapping of one set of classes to another
is necessary.

We elaborate on these three components in the following
subsections.

1) Classes: The semantics of a class is determined by
the network administrator. In traditional shortest-path routing,
assuming that each link is assigned a weight of one, the
class of a route advertisement received at a router is simply a

(a)

CB

A

A

Q

P

E

O

H

Z

D

(b)

D

Fig. 1. (a) An example of a class-graph. It is the structure of the graph
that matters, not the nodes’ letters. This structure, and the semantics of a
class represented by a node, can be arbitrarily determined by the network
administrator. (b) An example of a simple class-graph used in a network
providing quality of service. Class A ≡ low latency and high bandwidth; B
≡ high bandwidth; C ≡ low latency; D ≡ best-effort.

numerical value that indicates the number of hops the adver-
tising node is from the destination. Another commonly-used
class representation is the widest-path metric, which provides
upstream nodes knowledge of the bottleneck downstream.

We note that, in general, it is possible to associate classes
with representations that need not be directly comparable.3

This necessitates another method of comparison, the basic
requirement being the ability to indicate whether traffic of a
particular class (say A) can be carried on certain routes (say
of class B), or traffic of classes A and B cannot be carried on
each other’s routes. This inter-class relationship is represented
by the class-graph, which consists of nodes, each representing
a class of route or traffic, as well as directed links. A directed
path U V exists between nodes U and V if class U traffic
can be carried on class V routes. In this case, we say that
class V is higher than class U . For instance, in Figure 1(a),
class Q is higher than D. For classes of traffic that cannot be
carried on one another, say U cannot be carried on V and vice
versa, we say that these classes are disjoint. In Figure 1(a),
classes Q and H are disjoint. The length, or number of hops,
of a directed path does not have any significance.

If a cycle exists such that the directed paths U V and
V U are present, this either means that (a) traffic of all
classes in this cycle can be carried on routes of the same set
of classes, which in turn implies that all nodes in the cycle can
be collapsed into one, or (b) some policy violation has taken
place. Grouping of classes in the case of (a) results in the
class-graph being always directed and acyclic, thereby further
reducing the complexity of operations performed on the graph.
As a result, for any two distinct classes, one of them will be
higher than the other, otherwise they are disjoint.

Different notions of classes, such as access privileges and
quality of service, can be incorporated into the same graph,
with the relationships subsequently defined using directed
edges in the corresponding class-graph. This graph is used
when computing route updates (§II-B), and is disseminated
throughout the network with every router having the same
graph. Since we do not expect the class-graph to change
frequently, update costs should be low.

As an example, suppose the network administrator assigns
the semantics to the following classes of routes: class A ≡ low

3 In the sense that the relationship between a route of class 23 and another
of class 27 doesn’t have to depend solely on numerical comparison of “23”
and “27”.

latency and high bandwidth, class B ≡ high bandwidth, class
C ≡ low latency, and class D ≡ best-effort. The relationships
between these classes are subsequently determined using
edges in a class-graph, shown in Figure 1(b). It is easy to
check that the resulting configuration is sane: best-effort
traffic can be carried on links that incur low latency or have
high bandwidth or both; traffic requiring high bandwidth
cannot be carried on routes that guarantee low latency only;
and traffic requiring low latency cannot be carried on routes
providing best-effort service.

2) Rules: Route selection (RS) rules govern the selection
of one route amongst multiple available ones. We propose two
RS rules, either one but not both can be used in a network:

RS1: Given a set R of incoming routes for a destination,
select the subset R′ such that no route in R is higher than
any within R′. Using Figure 1(a) as an example, the set of
classes R′ include H , E, P and Q. Clearly, classes in R′ are
disjoint. In the case of multiple equivalent routes from different
neighboring routers, ties can be broken arbitrarily based on
route preference, hop distance, router interface address etc.

RS2: Rather than selecting the highest classes, we propagate
routes for all classes received. For a particular class, incoming
routes eligible for consideration include those of higher and
equivalent classes. Again, ties amongst routes can be broken
arbitrarily.

In general, RS2 results in better distribution of traffic
than RS1, which tends to load traffic of various classes
onto routes of higher classes. The tradeoff is an increase in
control overhead incurred when propagating routes’ class
information. The use of selection rules will be discussed later
in §II-B, where we describe the routing process in detail.

3) Transformation Boxes: Currently, middle-boxes placed
within a network affect the data and not the control plane.
Functions performed by these boxes include firewalling, NAT,
NIDS etc, and are also present in the transformation boxes (t-
boxes). In addition, t-boxes are given the ability to manipulate
the control plane by altering classes associated with routes
propagated through them. Thus, t-boxes have a degree of
control over the flow of traffic, and can complement that with
data plane functionalities. For instance, to authenticate traffic
of a certain class, a t-box can effectively channel that traffic
through itself so that verification can be performed.

B. Routing On Classes

In this section, we describe in detail how routing on classes
is performed for link-state and distance-vector protocols, as
well as for ethernets.

1) Link-State (LS): Link-state protocols propagate each
edge’s information throughout the entire network, allowing
every node to maintain the complete network graph. The graph
considered for a given class consists of all vertices and the
set of eligible edges that are of higher or equivalent class. In
general this means that the cardinality of the set of eligible

(e)

(b)

(c) (d)

(a)

class B linkclass A link class C link

Key

C

B

A

Fig. 2. An example of reduction in set of eligible edges with higher
traffic classes. (a) Original network graph showing classes associated with
each edge. (b)-(d) Connectivity graphs used with classes C, B and A traffic
respectively. (e) Class-graph for the network.

B C

B E

FA D

(a) (b)

D E

AAF

5

2 3

4

6

1

Fig. 3. (a) Network using distance-vector routing and (b) class-graph in use.

edges decreases with higher traffic classes, an example of
which is shown in Figure 2. In general, the subgraph can differ
with the class of traffic under consideration. There are two
ways to compute routes based on these graphs, corresponding
to the route selection rules in §II-A.2.

LS1: Each node performs shortest-path computation for
every class of traffic on their corresponding connectivity
graphs, obtaining the next-hop to the destination. A router
uses an incoming packet’s class and destination to look up the
next hop.

LS2: An alternate scheme is to compute the shortest
paths only for the highest classes (§II-A.1). For traffic
of a particular class, the highest available class at that
node is determined, and forwarding is performed on the
corresponding subgraph. In this case, we trade a decrease
in control traffic for an increase in per-packet processing time.

2) Distance-Vector (DV): These routing protocols propa-
gate the cost of reaching a destination without revealing details
of intermediate hops. Similar to link-state routing, both route
selection rules result in slightly different class routing versions:

DV1: A router receiving advertisements for various classes
computes the next hop for each class by selecting, amongst
the subset of routes of equal or higher class, the route with
the least cost. The next hops for each class are subsequently
broadcasted to the router’s immediate neighbors.

DV2: A router selects and uses routes only from the highest
possible and disjoint classes.

Classes of links incident on a router need to be taken into
account when disseminating routes: if the link class is lower
than a selected route, then the highest class of route lower or

(a)

A

AA

BBBB

(b)

A

B4 5

6

321

Fig. 4. Class B traffic originating from node 5 and destined for 1 can
oscillate between 4 and 5.

equivalent to the link class is propagated instead. Clearly, this
adjustment can be done at the neighboring router instead. For
instance, assume that, in Figure 3, node 5 is the destination
node and 6 receives advertisements with classes A and D
from 4 and 3 respectively. Subsequently, 6 informs 1 of
the availability of routes with classes B and E, and 2 of class B.

3) Ethernets: Ethernets are layer-2 networks utilizing an
effective broadcast medium. In order to expand the coverage
of an ethernet, bridges, or switches, are typically used, and
spanning-tree protocols [4], [5] ensure that redundant bridging
links are logically removed to eliminate forwarding loops for
broadcast packets. Sapheniea in this scenario can be thought
of as an extension to VLANs [6], which tag packets from
end-hosts based on the ports they are attached to, or on
their MAC address. The difference between the two is that
in Sapheniea both end-hosts and ports are assigned classes.
Packets received at destination ports are checked and dropped
if the former’s class is lower or disjoint. Thus, by altering the
class of a port, an end-host will be able to receive packets
from senders of different classes, not just from those of the
same class.

4) Loop-Free Guarantee: Unlike traditional routing, which
can be thought of as routing on a single class, loop-free routing
on multiple classes requires guarantees in both the control and
data planes. For the former, usage of shortest paths ensures that
loops will be absent. The latter requires more thought: routing
on classes can effectively result in multi-path routing. In this
case, for traffic of a particular class, it can conceivably be
carried on any route of equivalent or higher class. In Figure 4,
traffic of class B originating from node 5 and destined for 1
can oscillate between 4 and 5 if the former chooses routes of
class A and the latter, B, to forward the traffic. Two methods
are available to guarantee loop-freeness:

Monotonically-increasing most-recent class: Packets re-
ceived on a link can only be forwarded along routes with
classes equivalent to or higher than that link’s. Only knowledge
of the previous link’s class is required, no additional state has
to be carried within the packet.4 Using the same example in
Figure 4, packets forwarded on class A links will not subse-
quently traverse class B links, thus eliminating oscillations.

Decreasing distance to destination: Each packet stores the
previous hop’s distance to destination, based on the class it was
last routed on. The next hop chosen thus needs to satisfy both

4Although depending on the router implementation, the previous link’s class
can be carried with the packet as meta-data.

the class and per-packet distance requirement. It is easy to see
that with a decreasing distance at each hop, the actual path
traversed is guaranteed to terminate at the destination.

III. ENTERPRISE ACCESS CONTROL

In this section we describe how Sapheniea can be used to
ease management of access control within an enterprise. The
discussion is applicable to large-sized networks using distance-
vector or link-state routing, and also to small and medium-
sized ones using ethernet. To make the discussion more
concrete, we begin with the necessary steps taken by system
administrators to realize access control within an enterprise,
using Figure 5 as an example.

Step 1, Traffic-to-class mapping: We begin by mapping
traffic to classes. This process is highly dependent on policies:
accountants from the financial department are likely to be
placed in a class (say F) disjoint from the research division’s
(say R). This mapping can be managed at a central location
then disseminated to the routers, and is used to tag packets
entering the network. Tags can also be dynamically determined
via 802.1x [1], an authentication and key management proto-
col. Traffic not matching any entry can be assigned a default
class.

Step 2, Initial class-graph: At this time, the class-graph
should consist only of disjoint classes from the previous step.
Directed edges reflecting relationship between classes are then
added. For instance, superusers of class S are given access to
parts of the network open to either the financial department
or the research division, thus directed paths S F and S
R should exist in the class-graph. No additional classes are
introduced in this step.

Step 3, Link-to-class mapping: Next, links in the net-
work are assigned classes. In general, only links incident on
restricted zones require careful assignment, remaining links
can be set to allow the traversal of all traffic. In the case
of ethernets, we can imagine that the routers and links at the
center of the network form a common broadcast medium, with
the links at the edges representing connections from end-hosts
to ports (more details in §IV). A simple rule to decide on the
assignment is as follows: (1) Select the highest and disjoint
classes of traffic allowed on the link. If there is more than
one such class, create another that is higher than all of them,
adding the necessary directed edges. (2) Otherwise the link’s
class is set to be that of the highest traffic class.

Note that both the forward and reverse paths between
two end-hosts should be taken into account. In our example,
packets from superusers are tagged with class S, and can
traverse class A links (ports) that researchers are connected
to. Replies from researchers on the other hand are tagged
with R, and in this case the link (port) to which superusers
are attached have sufficiently high class for them to traverse.
Alternatively, if superusers are attached via a link of class
S, per-flow state can be stored at the researchers’ end-router,
allowing that router to promote the class of returning packets
from R to S.

research
database

financial
database

financial
department

research
division

R

F

A

A

A

A

A

A F

A

R

(b)

(a)

superusers

R

admin
information

S

S

Fig. 5. Enterprise access control: (a) Link class assignment providing
the required access control using the class-graph in (b), where accountants’
packets are tagged with F, researchers’ with R, and superusers’ with S.

A

S

A

A

A

A

A

S

S

S

S

S

(a)
(b)trusted end-hosts

(tagged with “S”)

foreign end-hosts
(tagged with “A”)

databases

Fig. 6. Traffic channeling: (S ≡ secure traffic only, A ≡ all traffic). By
altering classes of routes to the databases as they propagate, the firewall is
able to channel foreign traffic destined for them through itself. Once verified
(and not dropped), foreign traffic’s class is converted, thereby allowing it to
traverse secure parts of the network.

Figure 5 shows the final class-graph and link class as-
signments, it is easy to see that (1) packets from superusers
and researchers can reach one another, as can those from
accountants and researchers, but packets from accountants
cannot be forwarded towards superusers; (2) superusers have
access to all parts of the network, including the financial and
research databases, as well as administrative information; and
finally (3) the financial database can be accessed only by
superusers and accountants. Similarly, the research database
is accessible only by researchers and superusers.

IV. TRAFFIC CHANNELING

Perimeters around restricted zones can be set up within a
network to control access to them. The major problem lies
in ensuring that there are no unchecked data paths, which is
difficult since these can exist because of wireless links, or
even because of portable media that was infected with worms
[15]. We attempt to reduce instances of unintentional access by
minimizing configuration errors when constructing perimeters.

A step in this direction is the removal of dependence of
middle-boxes on the physical topology. Rather than deter-
mining all possible data-paths and placing choke-points on
all of them, we instead prefer directing traffic through them.
Transformation-boxes (t-boxes) are middle-boxes with typical
data-plane functionalities such as NATs and firewalls, but
are also endowed with the ability to manipulate the control
plane. The latter is achieved by altering the class of a route
propagating through it: raising a route’s class allows the
forwarding of more classes of traffic. In Figure 6, the firewall

(a)

AS

AA

A

S

S A

foreign

trusted

(b)

A

A

A

A

A

A A trusted

foreign

da
ta

ba
se

s’

A

da
ta

ba
se

s

3 5

64

31’

44’

3’51

2’2 6

�
�
�

�
�
�

Fig. 7. Link-state network graph (from Figure 6) manipulation: (a) the t-box,
denoted by the firewall symbol, translates links of class S to A by (b) creating
a logically different part of the network corresponding to the class of traffic it
can forward. It also inserts an additional link (4’, 4) bridging the two parts.

converts classes of routes terminating at the databases from S
to A, thereby allowing foreign hosts access to them but only
via the firewall. Below, we describe how routing protocols can
be altered to enable this.

A. Link-state

Since every router is aware of the entire network graph,
enabling route transformation in link-state routing requires
some thought. Two methods can be used, we assume that class
S routes are to be transformed to class A:

T1, Propagation of additional link information: For each
advertised link of class S, the t-box generates an additional
link of class A, as well as logically different nodes at the end-
points of that link. Furthermore, a link representing the firewall
is added between the two parts of the network. Figure 7 gives
an example of this.

T2, Consideration during local computation: Each router
in the network is notified of the t-box’s presence. When
computing the shortest path to each destination, the class
associated with the current route is altered accordingly.

T1 has the advantage that routers need not be aware of its
presence and do not require T2’s special route computation
ability. The tradeoff is an increase in bandwidth consumption
for disseminating additional link information, as well as mem-
ory for storing them.

B. Distance-vector

Since distance-vector routing hides details of the network
path chosen, no other changes to the protocol is required: a
chosen route is simply propagated with the new class.

C. Ethernets

In ethernets, the route between source and destination is
determined dynamically, by storing the next hops from which
the broadcast ARP [11] query and resulting unicast reply
arrive. We tweak this process slightly, and show that traffic
can be directed to flow through our t-box. We step through
the process below, using Figure 8 where node S is the sender
(class A), R the receiver (class B), and T is the t-box, and
denoting a sender X with class Y and port Z by X.Y:Z.

Step 1, Broadcast from S: The query packet is tagged with
S’ and S’ outgoing port’s class (both A) as it enters the switch.
In addition to storing the incoming port and MAC address of
the broadcast query, the switch also store the sender’s and
port’s class. Since the query (class A) will be dropped at R’s
port (class B), R will not respond to it.

T S.AA

C1

Step 1

A

B

P1 P2 P3

P1 P2

1

1

1

R.B

Switch 2
Port
P1

Switch 1
Port
P3

S.A:A

Addr
S.A:A

Addr

T S.AA

C

S.B 3

Step 3

A

B

P1 P2 P3

P1 P2

R.B3

Switch 2

3

Switch 1

Port

P2
P1
P1

P2
P1

Port
P3

Addr
S.A:A
S.B:C
R.B:B

Addr
S.A:A
S.B:C
R.B:B

S.AA

C

T

R.A

4 4A

B

P1 P2 P3

P1 P2

R.B

Step 4

S.B

Switch 2
Port

P2
P1
P1

Switch 1

P1
P2
P1

Port
P3

Addr
S.A:A
S.B:C
R.B:B

Addr
S.A:A
S.B:C
R.B:B
R.A:C

C

A

B

Class−graph

2 ARP Request (Source S, Destination broadcast, Route class C, Pkt class B)

3 ARP Reply (Source R, Destination S, Route class B, Pkt class B)

4 ARP Reply (Source R, Destination S, Route class C, Pkt class A)

1 ARP Request (Source S, Destination broadcast, Route class A, Pkt class A)

A

B

P1 P2 P3

P1 P2

2

R.B2

Step 2

Port

P1
P1

P1

Port
P3

S.A:A
S.B:C

Addr
Switch 2

Switch 1
Addr
S.A:A
S.B:C

Key

T S.AA

C2 2

S.B

Fig. 8. The t-box uses the broadcast and address learning mechanisms of ethernet to effectively assume the end-host roles in alternate class domains.

Step 2, Rebroadcast from T (S.B): T reacts to the query,
with the response being triggered either by looking up R’s
IP and class,5 or after some timeout period if no response is
heard from R. T rebroadcasts the same packet, this time with
R’s class (if known), or otherwise with a special broadcast
class that can be accepted by all classes of ports. Thus, T
effectively takes on the role of S.B. As the rebroadcast packet
travels through the network, switches store the previous hops
to S.B. Now the query (with its class removed upon exiting the
network) will be able to reach R, which subsequently replies
with its MAC address.

Step 3, Reverse path to T (S.B): Since the ARP reply is
addressed to S and is of class B, it can either be forwarded
towards T or S (which does not violate policy). However, to
prevent loops (see Step 4), we look up the exact address and
class match and thus forward the packet to T, where its class
is changed to A after which it is sent back into the network.

Step 4, Reverse path to S.A: Since the packet can be
forwarded back to S.B (i.e. T), we mandate sending to the port
associated with the address and class that exactly matches the
packet’s destination and class. If no such entry in the MAC
table exists, then a consistent method of selecting next hop
ports should be used. Also, T’s port should be assigned a class
different from any hosts’, otherwise the network may end up
with two S.A entities. Once these conditions are met, no loops
will exist and the packet reaches S.A.

After this initial learning phase, all subsequent packets
between S and R will traverse T.

V. RELATED WORK

SANE [2] is an enterprise-level security architecture that
uses a centralized domain controller to provide routes and
capabilities to for each connection in the network. SANE
requires substantial changes to the network, such as link
advertisements instead of the commonly-used spanning tree
protocols, and may not scale up to an intra-domain level.

Predicate routing [12] is similar to Sapheniea in that links
are associated with predicates defining the kind of packets

5Thus necessitating existence and configuration of the map in T.

allowed, then a suitable path for a flow satisfying all condi-
tions is picked. Thus, routing and firewalling are integrated.
However, because of the need to know all the predicates along
a path, it does not work with distance-vector protocols which
hide details of the path beyond the next hop, and computation
resource consumption can be significant since the routing is
performed on a per-flow basis.

VI. SUMMARY

We introduced the Sapheniea framework, which provides (1)
a simple, graphical way of representing access control policies
in the network using class-graphs, (2) routing based on classes,
eliminating the need to reinstall filters when topology changes,
and (3) transformation boxes, which are middle-boxes with the
ability to alter routing and thus traffic flow. We believe that
Sapheniea will significantly reduce configuration errors and
improve the manageability of networks.

REFERENCES

[1] L. Blunk and J. Vollbrecht. RFC 2284: PPP extensible authentication
protocol (EAP), Mar. 1998.

[2] M. Casado, T. Garfinkle, A. Akella, M. J. Freedman, D. Boneh,
N. McKeown, and S. Shenker. SANE: A protection architecture for
enterprise networks. In 15th USENIX Security Symposium, Aug. 2006.

[3] W. Cheswick and S. Bellovin. Firewalls and Internet Security. Addison-
Wesley, 1994.

[4] LAN/MAN Standards Committee of the IEEE Computer Society. IEEE
Standard for Information Technology - Telecommunications and In-
formation Exchange Between Systems - Local and Metropolitan Area
Networks - Common Specifications Part 3: Media Access Control
(MAC) Bridges, 1998.

[5] LAN/MAN Standards Committee of the IEEE Computer Society. IEEE
Standard for Local and Metropolitan Area Networks - Common Speci-
fications Part 3: Media Access Control (MAC) Bridges - Ammendment
2: Rapid Reconfiguration, June 2001.

[6] LAN/MAN Standards Committee of the IEEE Computer Society. IEEE
802.1Q, IEEE Standards for Local and Metropolitan Area Networks -
Virtual Bridged Local Area Networks, 2003.

[7] G. Malkin. RFC 2453: RIP version 2, Nov. 1998.
[8] J. Moy. RFC 1247: OSPF version 2, July 1991.
[9] D. Oran. RFC 1142: OSI IS-IS intra-domain routing protocol, Feb. 1990.

[10] V. Paxson. Bro: a system for detecting network intruders in real-time.
Comput. Networks, 31(23-24):2435–2463, 1999.

[11] D. C. Plummer. RFC 826: Ethernet Address Resolution Protocol: Or
converting network protocol addresses to 48.bit Ethernet address for
transmission on Ethernet hardware, Nov. 1982.

[12] T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jardetzky. Predicate
routing: enabling controlled networking. SIGCOMM Comput. Commun.
Rev., 33(1):65–70, 2003.

[13] Snort.org. Snort, the open source network intrusion detection system.
http://www.snort.org.

[14] P. Srisuresh and K. Egevang. RFC 3022: Traditional IP network address
translator (traditional NAT), Jan. 2001.

[15] N. Weaver, D. Ellis, S. Staniford, and V. Paxson. Worms vs perimeters:
The case for hardLANs. In Hot Interconnects, Aug. 2004.

[16] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, and G. Hjlmtsson.
Routing design in operational networks: a look from the inside. In
SIGCOMM ’04: Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer communications,
pages 27–40, New York, NY, USA, 2004. ACM Press.

[17] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalm-
tysson, and J. Rexford. On static reachability analysis of IP networks.
In Infocom, 2005.

http://www.snort.org

	Introduction
	Motivating Examples

	The Sapheniea Framework
	Framework Components
	Classes
	Rules
	Transformation Boxes

	Routing On Classes
	Link-State (LS)
	Distance-Vector (DV)
	Ethernets
	Loop-Free Guarantee

	Enterprise Access Control
	Traffic Channeling
	Link-state
	Distance-vector
	Ethernets

	Related Work
	Summary
	References

