
Joint Modeling and Design of Wireless Networks and
Sensor Node Software

Elaine Cheong
Edward A. Lee
Yang Zhao

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-150

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-150.html

November 17, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF award #CCR-0225610), the State of
California Micro Program, and the following companies: Agilent, DGIST,
General Motors, Hewlett Packard, Infineon, Microsoft, National
Instruments, and Toyota.

Joint Modeling and Design of
Wireless Networks and Sensor Node Software

Elaine Cheong
Department of EECS

University of California
Berkeley, CA 94720 USA

celaine@eecs.berkeley.edu

Edward A. Lee
Department of EECS

University of California
Berkeley, CA 94720 USA

eal@eecs.berkeley.edu

Yang Zhao
Department of EECS

University of California
Berkeley, CA 94720 USA

ellen zh@eecs.berkeley.edu

ABSTRACT
We present Viptos (Visual Ptolemy and TinyOS), a joint
modeling and design environment for wireless networks and
sensor node software. Viptos is built on Ptolemy II, a graph-
ical modeling and simulation environment for embedded sys-
tems, and TOSSIM, an interrupt-level discrete event simu-
lator for homogeneous TinyOS networks. Viptos includes
the full capabilities of VisualSense, a Ptolemy II environ-
ment that can model communication channels, networks,
and non-TinyOS nodes. Viptos presents a major improve-
ment over VisualSense by allowing developers to refine high-
level wireless sensor network simulations down to real-code
simulation and deployment, and adds much-needed capabil-
ities to TOSSIM by allowing simulation of heterogeneous
networks. Viptos provides a bridge between Ptolemy II and
TOSSIM by providing interrupt-level simulation of actual
TinyOS programs, with packet-level simulation of the net-
work, while allowing the developer to use other models of
computation available in Ptolemy II for modeling the physi-
cal environment and other parts of the system. This frame-
work allows application developers to easily transition be-
tween high-level simulation of algorithms to low-level im-
plementation, simulation, and deployment. In this paper,
we discuss how we integrate the semantics of two different
simulation systems. We show that the Viptos simulator per-
formance scales linearly in the number of nodes, and even
without aggressive performance tuning, can simulate mod-
erately large, heterogeneous sensor networks effectively.

1. INTRODUCTION
Wireless sensor networks provide a way to create flexi-

ble, tetherless, automated data collection and monitoring
systems. Building sensor networks today requires piecing
together a variety of hardware and software components,
each with different design methodologies and tools, mak-
ing it a challenging and error-prone process. Typical net-
worked embedded system software development may require
the design and implementation of device drivers, network

stack protocols, scheduler services, application-level tasks,
and partitioning of tasks across multiple nodes. Little or no
integration exists among the tools necessary to create these
software components, mostly because the interactions be-
tween the programming models are poorly understood. In
addition, these tools typically have little infrastructure for
building models and interactions that are not part of their
original scope or software design paradigms. The goal of
this work is to create integrated tools for networked em-
bedded application developers to model and simulate their
algorithms and quickly transition to testing their software
on real hardware in the field, while allowing them to use the
programming model most appropriate for each part of the
system.

We choose to focus on TinyOS [8], an open-source run-
time environment designed for sensor network nodes known
as motes, as our underlying programming platform. TinyOS
has a large user base – over 500 research groups and com-
panies use TinyOS on the Berkeley/Crossbow motes. It
has been ported to over a dozen platforms and numerous
sensor boards, and new releases see over 10,000 downloads.
TinyOS differs from traditional operating system models in
that events drive the behavior of the system. Using this
type of execution, battery-operated nodes can preserve en-
ergy by entering sleep mode when no interesting events are
happening. In this paper, we focus on TinyOS 1.x; we dis-
cuss TinyOS 2.x in Section 5.

A TinyOS program consists of a graph of components that
are written in an object-oriented style using nesC [4], an ex-
tension to the C programming language. TOSSIM [12], a
TinyOS simulator for the PC, can execute nesC programs
designed for a mote. TOSSIM contains a discrete event
simulation engine which allows modeling of various hard-
ware and other interrupt events. Although a large commu-
nity uses TinyOS in simulation to develop and test various
algorithms and protocols, they face some key limitations
when using the nesC/TinyOS/TOSSIM programming tool-
suite. Users may choose from a few built-in radio connectiv-
ity models in TOSSIM, but it is difficult to use other models.
TOSSIM can efficiently model large homogeneous networks
where the same nesC code is run on every simulated node,
but does not allow simulation of networks that contain dif-
ferent programs. Additionally, a TinyOS program consists
of a graph of mostly pre-existing nesC components; users
must write their programs in a multi-file, text-based for-
mat, even though a graphical block diagram programming
environment would be much more intuitive.

To address these problems, we consider VisualSense [1], a

Ptolemy II-based graphical modeling and simulation frame-
work for wireless sensor networks that supports actor-oriented
definition of sensor nodes, wireless communication channels,
physical media such as acoustic channels, and wired sub-
systems. Ptolemy II is a modeling, simulation, and design
environment for hierarchical, concurrent, real-time, and em-
bedded systems. VisualSense mainly provides an abstract,
mathematically-based modeling environment, and node mod-
els must be created from scratch. VisualSense does not pro-
vide a mechanism for transitioning from a sensor network
application developed within the framework to an imple-
mentation for real hardware without rewriting the code from
scratch for the target platform.

Integrating TinyOS and VisualSense combines the best of
both worlds. TinyOS provides a platform that works on real
hardware with a library of components that implement low-
level routines. VisualSense provides a graphical modeling
environment that supports hierarchical, heterogeneous sys-
tems. In this paper, we present Viptos (Visual Ptolemy and
TinyOS), a tool for joint modeling and design of wireless
networks and actual sensor node software.

This paper has three main contributions. First, it ad-
dresses a need for a unified wireless sensor network devel-
opment environment that allows abstract modeling and re-
finement to low-level simulation and deployment. Second, it
provides insights into the integration of the semantics of two
different simulation systems, with different representations
of software components, programming languages, types sys-
tems, and schedulers. Third, it shows through evaluation
that the implementation of the combined system is linearly
scalable in the number of nodes.

We describe the architecture of the integrated TinyOS
and Ptolemy II toolchain and investigate the semantics of
this interface in section 2. We evaluate the performance of
Viptos in Section 3. We present related work in Section
4. We discuss design choices and areas for future work in
Section 5, and conclude in Section 6.

2. DESIGN
Viptos provides a bridge between Ptolemy II and TinyOS

by enabling the graphical development and interrupt-level
simulation of actual TinyOS programs, with packet-level
simulation of the network, while allowing the developer to
use other models of computation available in Ptolemy II for
modeling various parts of the system. We describe the ar-
chitecture of this integrated system in detail, including the
representation of nesC components, the transformation of
the nesC components into this representation, the genera-
tion of code for TinyOS programs developed in Viptos, and
the simulation of sensor network models that include nodes
running TinyOS.

2.1 Representation of nesC components
A nesC component exposes a set of interfaces. An in-

terface consists of a set of methods. A method is known
as either a command or an event. The component imple-
ments its provides methods and expects other components
to implement its uses methods. A nesC component is ei-
ther a configuration that contains a wiring of other compo-
nents, or a module that contains an implementation of its
interface methods. A TinyOS program consists of a set of
nesC components, where the top-level file that describes the
application is a nesC component that exposes no interface

configuration SenseToLeds {
} implementation {

components Main, SenseToInt,
IntToLeds, TimerC,
DemoSensorC as Sensor;

Main.StdControl -> SenseToInt;
Main.StdControl -> IntToLeds;
SenseToInt.Timer ->

TimerC.Timer[unique("Timer")];
SenseToInt.TimerControl ->

TimerC;
SenseToInt.ADC -> Sensor;
SenseToInt.ADCControl ->

Sensor;
SenseToInt.IntOutput ->

IntToLeds;
}

(a)

module SenseToInt {
provides {

interface StdControl;
}
uses {

interface Timer;
interface StdControl

as TimerControl;
interface ADC;
interface StdControl

as ADCControl;
interface IntOutput;

}
} implementation {

...
}

(b)

Figure 1: Sample nesC source code.

methods.
Figure 1a shows a TinyOS program called SenseToLeds

that displays the value of a photosensor in binary on the
LEDs of a mote. SenseToLeds contains a wiring of the com-
ponents Main, SenseToInt (shown in Figure 1b), IntToLeds,
TimerC, and DemoSensorC. These components are just a few
of the nesC components that are available in the TinyOS
library.

nesC interfaces can also be parameterized to provide mul-
tiple instances of the same interface in a single component.
In Figure 1a, the TimerC.Timer interface is parameterized.
The Timer interface of SenseToInt connects to a unique in-
stance of the corresponding interface of TimerC. If another
component connects to the TimerC.Timer interface, it will
be connected to a different instance. Each timer can be
initialized with different periods.

In Ptolemy II, basic executable code blocks are called ac-
tors and may contain input and output ports. A port may
be a simple port that allows only a single connection, or it
may be a multiport that allows multiple connections. Fan-in
to or fan-out from simple ports may be achieved by placing
a relation in the path of the connection. A code block is
stored in a class, and an actor is an instance of the class.

We have developed the following representation scheme
for the various parts of nesC components in Viptos. We rep-
resent nesC components with Ptolemy II classes, and nesC
component interfaces with Ptolemy II ports. We represent
nesC uses interfaces with Ptolemy II output ports, and nesC
provides interfaces with Ptolemy II input ports. We cur-
rently represent non-parameterized interfaces with simple
ports; and single-index, parameterized interfaces with mul-
tiports.1 Although multiple-index parameterized interfaces
are allowed in nesC, Viptos does not support them, since
they are not used in practice and do not appear in any ex-
isting components in the TinyOS component library.

Figure 2c shows a graphical representation in Viptos of
the equivalent wiring diagram for the SenseToLeds config-
uration shown in Figure 1a. Relations are represented by
diamond-shaped icons. Note that in Figure 2c, the TimerC

component provides a parameterized interface, or input mul-

1See Section 5 for limitations of this representation and
planned improvements.

tiport, as indicated by the white triangle pointing into the
block. Non-parameterized interfaces, or simple ports, are
represented by black triangles.

2.2 Transformation of nesC components
As the implementation for representing nesC components,

Viptos uses MoML (Modeling Markup Language) [11], an
XML-based language used in Ptolemy II to specify inter-
connections of parameterized, hierarchical components. As
discussed in Section 2.1, a nesC component is either a sub-
component of an application if it exposes interface methods,
or a top-level application if it does not. We treat subcompo-
nents and top-level applications differently when transform-
ing nesC files into MoML. For nesC subcomponents, we pro-
vide a tool called nc2moml ; for nesC top-level applications,
we provide a tool called ncapp2moml.

nc2moml harvests TinyOS nesC component files and con-
verts them into Viptos MoML class files. We implemented
the first version of nc2moml by modifying the nesC 1.1
compiler. The current version of nc2moml uses the XML
output feature of the nesC 1.2 compiler, which decouples
nc2moml from nesC compiler version updates. Both ver-
sions of nc2moml use information in the nesC XML output
to generate MoML syntax that specifies the name of the
component, as well as the name and input/output direction
of each port, and whether they are multiports. The result-
ing MoML files are used in Viptos to display TinyOS compo-
nents as a library of graphical blocks. The user may drag and
drop components from the library onto the workspace and
create connections between component interfaces by click-
ing and dragging between ports. Figure 3 shows generated
MoML code for the TimerC component referenced in Fig-
ure 1a. Figure 2c shows a TinyOS program created using
components from the converted library.

ncapp2moml harvests TinyOS nesC application files and
converts them into Viptos MoML model files. Whereas
nc2moml only examines the nesC component interfaces, TinyOS
application files in nesC do not have interfaces. ncapp2moml
uses information about the nesC wiring graph and the ref-
erenced interfaces in the XML output from the nesC 1.2
compiler to generate MoML syntax that specifies a model
containing the class corresponding to each nesC component
used, the relations required at each port, and the links be-
tween the ports and relations such that the connections in
the model correspond to the connections between interfaces
in the nesC file. ncapp2moml can also automatically embed
the converted TinyOS application into a template model
containing a representation of the hardware interface of the
node and optionally, a default physical environment. Figure
4 shows an example of a portion of the MoML code gener-
ated from the file shown in Figure 1a.

For both nc2moml and ncapp2moml, we use the NDReader
Java class provided in the nesC compiler distribution to
parse nesC XML output and place it in nesC-specific data
structures. We use JDOM 1.0 to construct and generate
XML output. We choose not to use XSLT (Extensible Stylesheet
Language Transformations) because of the simplicity of the
Viptos MoML files.

2.3 Generation of code for target deployment
When a user compiles a TinyOS program for a sensor

node, the nesC compiler automatically searches the TinyOS
component library paths for included components, including

<?xml version="1.0"?>
<!DOCTYPE plot PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">

<class name="TimerC"
extends="ptolemy.domains.ptinyos.lib.NCComponent">

<property name="source"
value="$CLASSPATH/tos/system/TimerC.nc" />

<property name="_displayedName" class="..."
value="TimerC" />

<port name="StdControl" class="ptolemy.actor.IOPort">
<property name="input" />
<property name="_showName" class="..." />

</port>
<port name="Timer" class="ptolemy.actor.IOPort">

<property name="input" />
<property name="multiport" />
<property name="_showName" class="..." />

</port>
</class>

Figure 3: Generated MoML for TimerC.nc

...
<entity name="MicaCompositeActor"

class="ptolemy.domains.ptinyos.lib.MicaCompositeActor">
...
<entity name="DemoSensorC"

class="tos.sensorboards.micasb.DemoSensorC" />
<entity name="TimerC" class="tos.system.TimerC" />
<entity name="Main" class="tos.system.Main" />
<entity name="SenseToInt"

class="tos.lib.Counters.SenseToInt" />
<entity name="IntToLeds"

class="tos.lib.Counters.IntToLeds" />
<relation name="relation1"

class="ptolemy.actor.IORelation" />
<relation name="relation2"

class="ptolemy.actor.IORelation" />
<relation name="relation3"

class="ptolemy.actor.IORelation" />
<relation name="relation4"

class="ptolemy.actor.IORelation" />
<relation name="relation5"

class="ptolemy.actor.IORelation" />
...
<link relation="relation1" port="Main.StdControl"/>
<link port="IntToLeds.StdControl" relation="relation2"/>
<link relation1="relation2" relation2="relation1"/>
<link port="SenseToInt.StdControl" relation="relation3"/>
<link relation1="relation3" relation2="relation1"/>
<link relation="relation4" port="SenseToInt.Timer"/>
<link port="TimerC.Timer" relation="relation5"/>
<link relation1="relation5" relation2="relation4"/>
...

</entity>
...

Figure 4: Generated MoML for SenseToLeds.nc

directories containing the components that encapsulate the
hardware components specific to the target platform, such as
the clock, radio, and sensors. The nesC compiler generates
a pre-processed C file, which can then be sent to a cross
compiler for the target hardware.

Given a model of a TinyOS program (as in Figure 2c),
Viptos will transform the diagram into a nesC file. Note
that this is the opposite of ncapp2moml, which means that
it is possible to convert back and forth between Viptos mod-
els and nesC files. Viptos does this transformation by means
of a Director (called PtinyOS Director), which controls code
generation, simulation, and deployment to target hardware
for a single node. a user can configure the PtinyOS Di-

rector (Figure 2d) to compile the generated nesC code to
any target supported by the TinyOS make system, includ-
ing cross-compilation to target hardware, or TOSSIM for
external simulation. The user can also download code to
the target hardware from the Viptos interface.

Running the model in Figure 2c causes the PtinyOS Di-
rector to generate a nesC component file for SenseToLeds,
equivalent to that shown in Figure 1a, as well as a makefile.

2.4 Generation of code for simulation
For TOSSIM, the nesC compiler follows the procedure

described in Section 2.3, but replaces the TinyOS scheduler
and device drivers with TOSSIM code. Thus, the TOSSIM

c

b

a

d

f

e

Figure 2: SenseToLeds application in Viptos.

executable image depends on the particular TinyOS pro-
gram specified.

Viptos can also be used as a simulation environment,
which provides more capabilities than using TOSSIM alone.
In addition to simulating the wireless sensor node(s) running
TinyOS, Viptos users can model and simulate the physical
environment, radio channels, wired subsystems, and other
wireless nodes, including non-TinyOS nodes. The user can
take advantage of the hierarchical, heterogeneous nature
of Ptolemy II to create detailed models of physical phe-
nomena such as light, temperature, and sound; and mod-
els of entities such as buildings, servers, microservers, and
other nodes. Developers may choose from diverse mod-
els of computation, such as continuous-time, dataflow, syn-
chronous/reactive, time-triggered, and Kahn process net-
works. Users may also interface to live data through Ptolemy
II library blocks such as those that interface with the mi-
crophone or the IP network. A basic example with models
of a sensor node and a light source is shown in Figure 2a.

As a template for modeling a real wireless sensor node,
Viptos provides a model of the Mica mote hardware inter-
face. The hardware representation includes ports for the
ADC (analog-to-digital converter) channels connected to sen-
sors including a thermistor, photoresistor, microphone, mag-
netometer, and accelerometer; and ports for the LEDs and
radio communication. Figure 2b shows this graphically.

Running the model in Figure 2b causes the PtinyOS Di-
rector to generate a nesC file and a makefile. It then com-
piles the nesC file against a custom version of TOSSIM to
create a shared library. The PtinyOS Director also gener-
ates a Java wrapper to load the shared library into Viptos
so that it can be run via JNI (Java Native Interface) method
calls, which is used to allow calls to be made between the
C-based TOSSIM environment and the Java-based Ptolemy
II environment.

2.5 Simulation of TinyOS in Viptos
In this section, we explain how Viptos simulates TinyOS

programs. We discuss the integration of the TOSSIM and
Ptolemy II framework in terms of scheduling, type system,
radio and I/O, and support for multiple nodes and multihop
routing.

2.5.1 Scheduling
In TinyOS, there is a single thread of control managed by

the scheduler, which may be interrupted by hardware events.
nesC component methods encapsulate hardware interrupt
handlers. Methods may transfer the flow of control to an-
other component by calling a uses method. Computation
performed in a sequence of method calls must be short, or
it may block the processing of other events. A long running
computation can be encapsulated in a task, which a method
posts to the scheduler task queue. The TinyOS scheduler
processes the tasks in the queue in FIFO order whenever it
is not executing an interrupt handler. Tasks are atomic with
respect to other tasks and do not preempt other tasks.

TOSSIM is a discrete event simulator for TinyOS. Its
scheduler contains a task queue similar to the regular TinyOS
scheduler, as well as an ordered event queue. An event in
this queue has a time stamp implemented as a long long

in C (a 64-bit integer on most systems). The smallest time
resolution is equal to 1 / 4MHz, the original CPU frequency
of the Rene/Mica motes.

Upon initialization, TOSSIM inserts a boot up event into
the event queue. The TOSSIM scheduler begins its main
loop by processing all tasks in the task queue in FIFO or-
der. If there is an event in the event queue, it updates the
simulated system time with the time stamp of the new event
and then processes the event. The processing of an event
may cause tasks to be posted to the task queue and new
events to be created with time stamps possibly equal to the
current time stamp. In TOSSIM, all components call the
queue_insert_event() function to insert new events into
the event queue.

At the top level of a model, Viptos uses a specialization
of the discrete-event (DE) domain of Ptolemy II [2] created
for modeling of wireless systems in VisualSense. The DE
domain provides execution semantics where interactions be-
tween components occur via events with time stamps. A
sophisticated calendar-queue scheduler is used to efficiently
process events in chronological order. The DE domain has
a formal semantics that ensures determinate execution of
deterministic models [10], although stochastic models for
Monte Carlo simulation are also well supported. The preci-
sion in the semantics prevents the unexpected behavior that
sometimes occurs due to modeling idiosyncrasies in some
modeling frameworks. In Viptos, the specialized DE Direc-
tor may control one or more node models.

In Viptos, a node model contains an instance of PtinyOS
Director, which compiles and loads a custom copy of TOSSIM
that simulates the code for a single node. Viptos controls
the execution of TOSSIM by instrumenting the TOSSIM
scheduler and device driver functions to notify Viptos of all
TOSSIM events. Viptos modifies the TOSSIM queue_insert_event()

function so that it also makes a JNI call to insert an event
with the TOSSIM time stamp into the event queue of the
Ptolemy II discrete event scheduler (DE Director) that con-
trols the PtinyOS Director. Thus Viptos uses the same event
time stamps as TOSSIM.

At each event time stamp, Viptos calls the custom TOSSIM
scheduler to process the event. The main loop updates the
TOSSIM system time, processes an event in the TOSSIM
event queue, and then processes all tasks in the task queue.
If the TOSSIM event queue contains another event with the
current TOSSIM system time, the scheduler processes the
event along with any tasks that may have been generated.
This last step is repeated until there are no other events with
the current TOSSIM system time. Note that the order in
the main loop of the custom TOSSIM scheduler is opposite
that of the original TOSSIM, which processes all tasks be-
fore updating the TOSSIM system time and processing an
event in the TOSSIM event queue. This change is required
in order to guarantee causal execution in Viptos, since tasks
may generate events with the current TOSSIM time stamp.
Otherwise, new events may have a time stamp that is before
the current Ptolemy II system time.

Viptos supports models with dynamically changing inter-
connection topologies. Changes in connectivity are treated
as mutations of the model structure. The software is care-
fully architected to support multithreaded access to this mu-
tation capability. Thus, one thread can be executing a sim-
ulation of the model while another changes the structure
of the model, for example by adding, deleting, or moving
actors, or changing the connectivity between actors. The
results are predictable and consistent.

2.5.2 Type system
nesC components in TinyOS and TOSSIM use the type

system provided by C. Ptolemy II provides its own type
system, in which actors, parameters, and ports may all im-
pose constraints on types, and a type resolution algorithm
identifies the most specific types that satisfy all the con-
straints. Communication between actors in Ptolemy II oc-
curs through typed tokens. Several techniques were required
to compose the C type system and the Ptolemy II type sys-
tem for Viptos.

To facilitate the embedding of a different type system
within Ptolemy II, we created a special Java base class (called
TypeOpaqueCompositeActor) that allows a Ptolemy II ac-
tor’s ports to have types, but does not require that the
actors inside use the Ptolemy II type system. A Viptos
submodel containing nesC components uses a subclass of
this base class (called PtinyOSCompositeActor), so that the
components can use the C type system.

Viptos automatically converts between the C types used in
TOSSIM and the token types used in Ptolemy II, by means
of JNI functions in the custom copy of TOSSIM. Since the
data communicated between TOSSIM and Ptolemy II in-
volve only the mote’s hardware interface, we can limit type
conversion to the data types required by the ADC interface,
the LEDs, and the packets sent and received over the radio.
However, the types provided by C usually do not match the
actual data types of the hardware interface. As a result,
arbitrary data types are used in TinyOS and TOSSIM to
represent values with different bit widths, which we explain
next.

The ADC channels of a mote use 10-bit unsigned values.
TOSSIM represents an ADC value with an unsigned short
integer masked for 10-bit usage. Sensor data modeled in
Ptolemy II typically use tokens with values of type dou-
ble. When an ADC value is requested by TOSSIM, Viptos
automatically performs the lossy conversion from a double-
valued token in Ptolemy II to a masked unsigned short in-
teger value in TOSSIM.

Although LED state is binary, TOSSIM represents an
LED value with a char. When TOSSIM updates the state
of the LEDs, Viptos automatically converts the char in
TOSSIM into a boolean-valued token in Ptolemy II, which
is used to change the animation state of the LEDs in Viptos.

In TOSSIM, TinyOS packets are represented by a C data
structure containing a char array. In order to maintain a
standard endian format and enable easy parsing of packets,
Viptos represents TinyOS packets using Ptolemy II string
tokens. Viptos automatically converts between the TOSSIM
char array representation and the Ptolemy II string token
representation whenever a packet is transmitted or received.

2.5.3 Radio and I/O
TOSSIM has built-in models for per-node ADC values

and for radio connectivity between multiple nodes, as well
as an interface for manually setting the per-node and per-
link values and probabilities.

In Viptos and VisualSense, the algorithm for determin-
ing radio connectivity is itself encapsulated in a compo-
nent as a channel model, and hence can be developed by
the model builder. Both tools provide several built-in mod-
els, including AtomicWirelessChannel, DelayChannel, Lim-
itedRangeChannel, ErasureChannel, and PowerLossChannel
(see the left-hand pane of Figure 2a. Connectivity can be

determined on the basis of the physical locations of the com-
ponents.

Viptos overrides the built-in ADC and radio models and
LED device drivers in TOSSIM so that they send data to and
receive data from the ports of the node model. This allows
the simulated node to interact with user-created models of
sources of light (see Figures 2e and 2f), temperature, radio
channels, other nodes, etc.

In the DE domain of Ptolemy II, tokens received at the
input port of an actor will cause the actor to fire at the time
of the token time stamp. The token is usually consumed, at
which point the port is empty. In Viptos, the node model
may receive tokens on the ADC ports that represent new val-
ues. To reconcile the difference in timing between when the
simulated environment makes a new ADC value available
and when the simulated node reads its ADC ports, Viptos
uses a Ptolemy II PortParameter instead of a Port for the
ADC ports. This usage of the PortParameter makes the
port value persistent between updates such that when the
TinyOS program requests data from the ADC port, it gets
the value of the most recently received token.

Figure 2a shows an example of a node running the SenseToLeds
TinyOS program with a model of a light source. Light source
data is communicated to the sensor node by means of a
photo port associated with a LimitedRangeChannel.

2.5.4 Multiple nodes and multihop routing
TOSSIM allows one or more nodes with the same TinyOS

program to be simulated by maintaining a copy of the state
of each component for each simulated node. Support for
generating arrays to store these copies is built into the nesC
compiler, so that users do not need to modify the TinyOS
program source code.

In Viptos, multiple nodes with possibly different programs
are simulated simultaneously by embedding multiple node
models, with each TinyOS node containing a different PtinyOS
Director, into the Wireless domain. Viptos separately com-
piles and loads a shared library for each node to prevent
namespace collision between different simulated TinyOS pro-
grams. Viptos performs this by passing a unique name to the
nesC compiler, which is then inserted by means of macros
into the TOSSIM source code. Since there is a global dis-
crete event scheduler, all nodes operate on the same time
reference.

Figure 5 shows an example model that contains two nodes
that communicate over a lossless radio channel with full
connectivity. The first node contains the CntToLedsAndRfm

TinyOS program, which maintains a counter on a 4Hz timer,
displays the counter value on the LEDs, and sends it over
the radio in a TinyOS packet. The second node contains the
RfmToLeds TinyOS program, which listens for radio pack-
ets and displays the received values on the LEDs. The ra-
dio channel model can easily be replaced by deleting it and
dragging in a different channel model from the menu in the
left-hand pane.

Though the application shown in Figure 5 uses broadcast,
we have also developed support for multihop routing in Vip-
tos. We accomplish this by passing a unique node ID to the
nesC compiler for each custom copy of TOSSIM. We modify
the TOSSIM code to use this node ID where it would nor-
mally be used in TinyOS, instead of the default TOSSIM
node index value.

We allow users to indicate whether a node is a base sta-

tion in the PtinyOS Director configuration screen (this new
feature is not shown in the figure). This gives users the abil-
ity to model multiple sinks in the wireless sensor network.
We have implemented a multihop routing demonstration in
Viptos that models a network with multiple TinyOS nodes
running the Surge multihop routing protocol application.

3. PERFORMANCE EVALUATION
We evaluate the scalability of Viptos in terms of execu-

tion time for an increasing number of nodes. We evaluate
execution time with and without radio usage separately.

Timing information was collected on a Intel Pentium M
760 processor (2.0GHz, 2MB L2 Cache, 533MHz FSB) with
1024MB of SDRAM, running Ubuntu 6.06 LTS (Dapper
Drake) with Linux kernel 2.6.15-27-386. We use nesC 1.2.7a,
gcc 3.4.3, TinyOS 1.x, and Sun Java VM 1.4.2 13-b06 with
a heap size of 512MB. In order to run large models, we in-
crease the maximum number of open file descriptors allowed
in the Bash shell from 1024 to 20000 with the ulimit -n

command.
To eliminate timing variance due to random boot times,

we set all nodes to boot at virtual time 0.0 seconds. We do
not set the DBG environment variable, which affects which
event debug messages are generated in TOSSIM. We send all
printed debug messages (on stdout or stderr) from all copies
of TOSSIM to /dev/null, to eliminate timing variance from
printing to the screen under X11.

3.1 Comparison to TOSSIM
We use the SenseToLeds application to evaluate the scal-

ability of Viptos and compare it to TOSSIM.
For TOSSIM, we use the /usr/bin/time command to

measure the execution time of the SenseToLeds application
from the tinyos-1.x CVS tree. We discard the timing mea-
surement for the first run to eliminate timing variance due
to caching.

For Viptos, we instrument the PtinyOS Director with calls
to the Java Date().getTime() and Runtime.getRuntime()

methods to measure elapsed time when running the SenseToLeds
application displayed in Figure 2. We eliminate the model
of the environment in order to make a fair comparison to
TOSSIM, since TOSSIM uses random ADC values by de-
fault. For models with multiple nodes, we use the timing
information from the last node to start, since nodes must
wait until all internal copies of TOSSIM have been invoked
before simulation can proceed because they all operate on
the same time reference. For a given number of nodes, we
collect multiple runs from the same instantiation of Viptos.
We discard the timing measurement for the first run in order
to eliminate timing delay due to loading of new Java classes,
instantiation of Java objects, and caching. To model addi-
tional nodes, we copy and paste additional nodes into the
graph, save the model, restart Viptos, and take additional
measurements.

In order to measure the overhead due to integrating TOSSIM
with Ptolemy II, we start timing right before invoking the
internal copy of TOSSIM. We do not include the overhead of
running the nesC compiler and loading the TOSSIM shared
object into memory. We stop timing at the beginning of
wrapup(), in order to eliminate timing delay due to waiting
for remaining threads to join, since this is only necessary
for running the model multiple times within a graphical en-
vironment. To reduce timing variance due to Java garbage
collection, we call System.gc() to perform garbage collec-
tion before starting the timing measurement.

We do not present timing overhead in Viptos for opening
files; running the nesC, gcc, and Java compilers; or loading
shared objects. This overhead scales linearly with the num-
ber of nodes, and is on the order of a few seconds for small
models, and several minutes for large models.

Figure 6 shows the average execution time of the SenseToLeds
application with a virtual run time of 300.0 seconds for an
increasing number of nodes. The figure shows that Viptos
has more overhead when compared to TOSSIM, but both
simulators scale linearly in the number of nodes. We con-
clude that in exchange for slightly increased execution time,

Figure 5: SendAndReceive application in Viptos.

Figure 6: Execution time of the SenseToLeds applica-

tion as a function of the number of nodes. Each simula-

tion ran for 300.0 virtual seconds.

the user gains increased modeling and simulation capabil-
ities and flexibility, and an interactive, graphical program-
ming environment. Using a least squares linear regression,
we find that approximately 410 nodes can be simulated in
300.0 real seconds or less, which means that networks up
to this size can be simulated in real-time. The exact num-
ber depends on the fidelity of simulation required and the
complexity of the application.

3.2 Radio
We evaluate the scalability of models that use the radio

using the same techniques described above. We create a
model similar to that of Figure 5 (described in Section 2.5.4)
with a lossless radio channel model with full connectivity,
but with a varying number of senders and receivers. Senders
send packets at 4 Hz. To eliminate timing variance due to
the graphical interface, we disable animation of the LEDs in
Viptos. In this analysis, we use a virtual run time of 120.0
seconds for all nodes.

From the plot shown in Figure 7, the main determinant
of execution time is the total number of nodes. The number
of senders versus receivers has no noticeable effect. We con-
clude that the execution time of the model increases linearly
with the number of nodes, whether or not the radio is used.

4. RELATED WORK
A number of frameworks for modeling wireless systems

exist, though none include all of the capabilities of Viptos.
ns-2 is a well-established, open-source network simulator.

It is a discrete event simulator with extensive support for
simulating TCP/IP, routing, and multicast protocols over
wired and wireless (local and satellite) networks. Wire-
less and mobility support in ns-2 comes from the Monarch
project, which provides channel models and wireless network
layer components in the physical, link, and routing layers.

OPNET Modeler is a commercial tool that offers sophisti-
cated modeling and simulation of communication networks.
An OPNET model is hierarchical, where the top level is a
discrete event simulation and nodes can be constructed using
finite state machine (FSM) models. The OPNET Wireless
Module provides support for wireless and mobile communi-

Figure 7: Execution time of a radio send and receive

model in Viptos as a function of the number of senders

and receivers. Each simulation ran for 120.0 virtual sec-

onds.

cations.
OMNET++ [16] is an open source tool for discrete-event

modeling. With the Mobility Framework extension, it shares
many concepts, solutions and features with OPNET. But in-
stead of using FSM models for processes, it defines a compo-
nent interface for the basic module, with an object-oriented
approach similar to the abstract semantics of Ptolemy II [3].
The NesCT tool of the EYES WSN project allows users
to run TinyOS applications directly in OMNeT++ simula-
tions.

J-Sim [15] is an open-source, component-based, compo-
sitional network simulation environment that is developed
entirely in Java. A new wireless sensor framework [14] is
being developed that provides an object-oriented definition
of (i) target, sensor and sink nodes, (ii) sensor and wire-
less communication channels, and (iii) physical media such
as seismic channels, mobility model and power model (both
energy-producing and energy-consuming components).

Prowler [13] is a probabilistic wireless network simulator
running under MATLAB capable of simulating wireless dis-
tributed systems, from the application to the physical com-
munication layer. Prowler is an event-driven simulator that
can be set to operate in either deterministic mode (to pro-
duce replicable results while testing the application) or in
probabilistic mode that simulates the nondeterministic na-
ture of the communication channel and the low-level com-
munication protocol of the motes.

Em* [6] is toolsuite for developing sensor network applica-
tions on Linux-based hardware platforms called microservers.
It supports deployment, simulation, emulation, and visual-
ization of live systems, both real and simulated. EmTOS [7]
is an extension to Em* that enables an entire nesC/TinyOS
application to run as a single module in an Em* system.

TinyViz [12] is a Java-based graphical user interface for
TOSSIM. TinyViz supports software plugins that watch for
events coming from the simulation – such as debug mes-
sages, radio messages, and so forth – and react by drawing
information on the display, setting simulation parameters,

or actuating the simulation itself, for example, by setting
the sensor values that simulated motes will read.

All of these systems provide extension points where model-
builders can define functionality by adding code. Some
are also open-source software, like Viptos. None provide
the ability to transition from high-level modeling to real
code simulation and deployment. All except EmStar provide
some form of discrete-event simulation, but none provide
the ability that Viptos inherits from Ptolemy II to integrate
diverse models of computation, such as continuous-time,
dataflow, synchronous/reactive, and time-triggered. This
capability can be used, for example, to model the physical
environment, as well as the physical dynamics of mobility
of sensor nodes, their digital circuits, energy consumption
and production, signal processing, or real-time software be-
havior. Such models would have to be built with low-level
code. Viptos and Ptolemy II support hierarchical nesting
of heterogeneous models of computation [3]. It also appears
to be unique among these modeling environments in that
FSM models can be arbitrarily nested with other models;
i.e., they are not restricted to be leaf nodes [5]. It also ap-
pears to be the only one to provide a modern type system
at the actor level (vs. the code level) [17].

5. DISCUSSION AND FUTURE WORK
We faced a number of design choices and implementation

issues when creating Viptos.
Viptos currently compiles and loads a separate copy of

TOSSIM for each node, and loads a new copy for each run,
even if the model has not changed. This was done to min-
imize changes to TOSSIM. To reuse an existing copy of
TOSSIM, all of its variables must be returned to their ini-
tial states after a run has completed, which TOSSIM does
not do. It was not feasible to track down all of these vari-
ables. An area of improvement for scalability would be to
condense similar programs into the same copy of TOSSIM,
and to reuse previously loaded copies of TOSSIM.

A running copy of TOSSIM opens two TCP network sock-
ets to communicate with external tools like TinyViz [12].
We chose not to use this feature to connect TOSSIM to
Ptolemy II, since we wanted full control of the TOSSIM
scheduler, which would not have been possible with the net-
work message interface provided by TOSSIM. However, we
retained these network sockets for backwards compatibility
with TinyViz. In retrospect, it would have been better to
eliminate usage of the network sockets entirely, since they
caused major implementation problems when porting Vip-
tos from Linux to Cygwin on Windows. Viptos contained
many types of threads, including pthreads used by TOSSIM
to manage the network sockets, and Java threads used by
Ptolemy II to manage the graphical user interface. When
porting to Cygwin, we found that there were both thread
library problems and thread deadlock problems due to the
underlying implementation of Cygwin on Windows. To cir-
cumvent these problems, we replaced all of the pthread and
POSIX socket library usages in TOSSIM with their equiv-
alents in Java, and we created a C-based launcher program
that starts the Viptos Java process under Cygwin.

An interesting area of future work is TinyOS 2.0, which
was released in November 2006. The TinyOS 2.0 scheduler
has slightly different, but improved semantics compared to
the TinyOS 1.x scheduler. The TinyOS 2.0 library was writ-
ten from scratch, with the explicit goal of cleaning up prob-

lems and inconsistencies in the TinyOS 1.x library. Also,
TOSSIM in TinyOS 2.0 does not use pthreads or sockets.
These features make TinyOS 2.0 an ideal platform for a fu-
ture version of Viptos.

Other interesting topics include how to enable code dis-
semination algorithms such as Deluge [9]; and distributed
compilation, simulation, and execution. We are also investi-
gating how to represent the individual methods of an inter-
face using ports or an alternate visual syntax. We describe
reasons for this change in the next section.

5.1 Ports
The current mapping of non-parameterized nesC inter-

faces to Ptolemy II simple ports and parameterized nesC
interfaces to Ptolemy II multiports leads to an inability to
express certain types of nesC configurations. For example,
suppose a configuration contains the following wiring, where
a, b, c, and d are non-parameterized interfaces:

a -> d

b -> d

a -> c

Then, the original Viptos mapping will produce an extra
connection between b and c, since in Ptolemy II, relations
are required to create multiple connections to port d, and
relations that are connected to each other are considered
to be part of a relation group in which the relations are
indistinguishable from each other, and connections between
relations are directionless.

Similarly, multiple connections between the same uses

and provides interfaces may be lost or lead to extra con-
nections when translating from nesC to MoML. Since rela-
tions in a group are indistinguishable from each other, mul-
tiple connections between relations cannot be represented in
Ptolemy II.

We plan to change the current multiport/simple port dis-
tinction and represent both parameterized and non-parameterized
nesC interfaces with multiports. We plan to attach a Ptolemy
II parameter to multiports that represent parameterized nesC
interfaces. The value of the parameter will be an array of
integers that is constrained to have a length equal to the
number of connections made to the port. Using multiports
for all connections will allow all types of connections that
can be made in nesC. Note that multiple connections to the
same provides port may actually be a sign of a possible
race condition, since the provided code can be triggered by
simultaneous events from the physical world. However, to
avoid duplicate functionality, we rely on the nesC compiler
to do a complete analysis of the connected interface meth-
ods to detect incorrect usage of commands or events marked
with the async keyword and hence possible race conditions.

6. CONCLUSION
We have described an extensible software framework for

modeling sensor networks. This tool, called Viptos, is built
upon Ptolemy II and TinyOS, and provides an integrated
graphical design and simulation environment. It allows users
to easily transition from high-level, hierarchical, heteroge-
neous modeling to low-level implementation, simulation, and
deployment. We showed that Viptos simulator performance
is scalable, and execution time scales linearly as a function
of the number of nodes, and even without aggressive per-

formance tuning, can simulate moderately large sensor net-
works effectively.

Viptos is open-source software, freely available at http:

//ptolemy.eecs.berkeley.edu/viptos. We hope that the
community can use this framework to encapsulate and ex-
change methods and expertise in channel modeling, sensor
node design, and application development.

Acknowledgments
This work was supported in part by the Center for Hybrid
and Embedded Software Systems (CHESS) at UC Berkeley,
which receives support from the National Science Founda-
tion (NSF award #CCR-0225610), the State of California
Micro Program, and the following companies: Agilent, DG-
IST, General Motors, Hewlett Packard, Infineon, Microsoft,
National Instruments, and Toyota.

The authors would like to thank Christopher Brooks for
Viptos release management, David Gay for the nesC 1.2
XML output feature and associated Java tools, Jie Liu for
helpful feedback, Heather Taylor for work on Surge, and
Andrew Mihal and Erik Steltz for assistance with the per-
formance analysis.

7. REFERENCES
[1] P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao.

Modeling of sensor nets in Ptolemy II. In IPSN’04:
Proceedings of the Third International Aymposium on
Information Processing in Sensor Networks, pages
359–368, New York, NY, USA, 2004. ACM Press.

[2] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer,
Y. Zhao, and H. Z. (eds.). Heterogeneous concurrent
modeling and design in Java: Volume 3: Ptolemy II
domains. Technical Report Technical Memorandum
UCB/ERL M05/23, University of California, Berkeley,
July 15 2005.

[3] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity – the Ptolemy approach.
Proceedings of the IEEE, Special Issue on Modeling
and Design of Embedded Software, 91(1):127–144,
January 2003.

[4] D. Gay, P. Levis, R. von Behren, M. Welsh,
E. Brewer, and D. Culler. The nesC language: A
holistic approach to networked embedded systems. In
Proceedings of Programming Language Design and
Implementation (PLDI) 2003, June 2003.

[5] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite
state machines with multiple concurrency models.
IEEE Transactions On Computer-Aided Design Of
Integrated Circuits and Systems, 18(6), June 1999.

[6] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos,
N. Ramanathan, and D. Estrin. EmStar: A software
environment for developing and deploying wireless
sensor networks. In USENIX 2004 Annual Technical
Conference, pages 283–296, 2004.

[7] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson,
D. Estrin, E. Osterweil, and T. Schoellhammer. A
system for simulation, emulation, and deployment of
heterogeneous sensor networks. In Proceedings of the
2nd International Conference on Embedded Networked
Sensor Systems, pages 201–213. ACM Press, 2004.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for
networked sensors. In Proceedings of the Ninth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 93–104. ACM Press, 2000.

[9] J. W. Hui and D. Culler. The dynamic behavior of a
data dissemination protocol for network programming
at scale. In Proceedings of the 2nd international
conference on Embedded networked sensor systems,
pages 81–94. ACM Press, 2004.

[10] E. A. Lee. Modeling concurrent real-time processes
using discrete events. Ann. Softw. Eng., 7(1-4):25–45,
1999.

[11] E. A. Lee and S. Neuendorffer. MoML – a modeling
markup language in XML – version 0.4. Technical
report, University of California at Berkeley, March
2000.

[12] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
accurate and scalable simulation of entire tinyos
applications. In Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems
(SenSys 2003), pages 126–137. ACM Press, 2003.

[13] G. Simon, P. Völgyesi, M. Maróti, and Ákos Lédeczi.
Simulation-based optimization of communication
protocols for large-scale wireless sensor networks. In
Proceedings 2003 IEEE Aerospace Conference,
volume 3, pages 3 1339–3 1346, 2003. See also
http://www.isis.vanderbilt.edu/projects/nest/prowler/.

[14] A. Sobeih, W.-P. Chen, J. C. Hou, L.-C. Kung, N. Li,
H. Lim, H.-Y. Tyan, and H. Zhang. J-Sim: A
simulation and emulation environment for wireless
sensor networks. online, 2005.
http://www.j-sim.org/v1.3/sensor/JSim.pdf.

[15] H.-Y. Tyan. Design, realization and evaluation of a
component-based compositional software architecture
for network simulation. PhD thesis, 2002. See also
http://www.j-sim.org.

[16] A. Varga. The OMNeT++ discrete event simulation
system. In Proceedings of the European Simulation
Multiconference (ESM’2001), Prague, Czech Republic,
June 6-9 2001. http://www.omnetpp.org/.

[17] Y. Xiong. An extensible type system for
component-based design. Technical Report UCB/ERL
M02/13, EECS Department, University of California,
Berkeley, 2002.

