
High Speed Deep Packet Inspection with Hardware
Support

Fang Yu

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-156

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-156.html

November 22, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

High Speed Deep Packet Inspection with Hardware Support

by

Fang Yu

B.S. (Fudan University) 2000
M.S. (University of California, Berkeley) 2002

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

 in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Randy H. Katz, Chair
Professor David A. Patterson
Professor Dorit S. Hochbaum

Fall 2006

The dissertation of Fang Yu is approved:

 __
 Professor Randy H. Katz, Chair Date

 __
 Professor David A. Patterson Date

 __
 Professor Dorit S. Hochbaum Date

University of California, Berkeley

Fall 2006

High Speed Deep Packet Inspection with Hardware Support

Copyright © 2006

by

Fang Yu

 - 1 -

ABSTRACT

High Speed Deep Packet Inspection with Hardware Support

by

Fang Yu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Randy H. Katz, Chair

In this dissertation, we developed high speed packet processing algorithms for new services

such as network intrusion detection, high speed firewalls, Network Address Translation

(NAT), Hypertext Transfer Protocol (HTTP) load balancing, Extensible Markup Language

(XML) processing, and Transmission Control Protocol (TCP) offloading. These new services

have stringent requirements for speed, extensibility, scalability, and cost-effectiveness. For

example, some services require rapid scanning of packets against thousands of known

patterns. Traditional packet handling techniques, such as next hop forwarding, focus on

packet headers only and fail to support these demanding requirements. This thesis research

aims to provide fast and efficient deep packet inspection techniques that can function on the

entire packet content rather than just the header. To keep up with high speed packet

processing in existing networks, we proposed deep packet inspection schemes that are

optimized for new technologies such as Ternary Content Addressable Memory (TCAM) and

multi-core processors. We propose algorithms that work both on packet headers and packet

payload. Our techniques form a cohesive architecture that can perform Gigbit rate packet

scanning against thousands of sophisticated patterns.

 __
 Professor Randy H. Katz, Chair Date

 -i-

ACKNOWLEDGEMENTS

I want to sincerely thank my research advisor Professor Randy Katz for taking me as his

student and supporting me during the past five years. Although he had more than ten

students, he put tremendous efforts on each of us. He met me every week individually,

providing detailed guidance on research direction, methodology and making suggestions on

academia career. When I need his advice or help, he is always there. I feel even more

indebted to the countless hours that he spent during the weekends and holidays improving my

writing and presentations. Without his invaluable support, I could not have completed this

dissertation.

Besides my advisor, I would like to thank the rest of my qualifying exam committee:

Professors Dorit S. Hochbaum, David A. Patterson, and Ion Stoica for asking me constructive

questions, giving me insightful comments and reviewing the dissertation.

I want to thank Dr. T.V. Lakshman for introducing me into the field of deep packet

inspection. Without his encouragement and guidance, I wouldn’t be able to finish the Ph.D.

program so quickly. My gratitude also goes to my co-authors: Yanlei Diao for inspiring

conversations on research and invaluable advices on my future academic career path;

Zhifeng Chen for his support and hard work that led to the development of our regular

expression scanning system; Martin Austin Motoyama for his help in writing and conducting

tests on our SSA system.

Special thanks go to Professor Aoying Zhou, Hongjun Lu, and Dr. Wenwu Zhu, who

introduced me to the system research field and encouraged me to pursue my Ph.D. study at

UCB in the first place. I am also very grateful to my mentors in AT&T Rakesh Sinha, John

Strand, Bob Doverspike and Angela Chiu for their guide and support during the early years

of my Ph.D. study.

 -ii-

I would like to express my sincere gratitude to my groupmate Matthew Caeser for

reading most of my papers and thesis and giving me insightful suggestions. My appreciation

also goes to other members of the networking group at UC Berkeley. I acknowledge Sharad

Agarwal, Matthew Caesar, Yan Chen, Weidong Cui, Ling Huang, Karthik

Lakshminarayanan, Boon Thau Loo, Jayanthkumar Kannan, Sridhar Machiraju, George

Porter, Ananth Rao, Mukund Seshadri, Lakshminarayanan Subramanian, Shelley Zhuang for

their valuable insight, patience for numerous questions, and entertainment after work.

Special thanks to Li Yin, for being a wonderful groupmate and friend, for listening to

my complaints and frustrations during the past five years. I would like to thank the

following friends for making my years of study at UC Berkeley an enjoyable and memorable

journey: Yaping Li, Ning Ma, Yanmei Li, Minghua Chen, Wei Wei, Jianhui Zhang, Rui Xu,

Dan Huang, Li Zhuang, Shuheng Zhou, and Jingyang Li. I am also grateful for my friends

Ming Chen, Songting Chen, Chong Luo, Ye Fan, Yong Gao, Liping Ke, Lin Qiao, Li Rui,

Erming Sun, Li Wei, Qin Xin, Na Yang, Qiu Zhang, Guangyu Zhu for making the life

studying aboard a fun experience.

The research work was made possible by the financial support from many agencies and

groups including the National Science Foundation, AT&T, INTT MCL, HP, Cisco,

Microsoft, and the UC MICRO program.

Last but not least, I am deeply indebted to my parents and sister for their unconditional

love, everlasting faith in me, and encouraging support for my years of pursuit in academic

career. I would also like to thank my husband Geozheng Ge for his love. His support and

encouragement was in the end what made this dissertation possible. My family gave me the

strength to overcome the innumerable obstacles that I encountered during my PhD study. I

dedicate this dissertation to them.

 -iii-

 -iv-

To my family

 -v-

TABLE OF CONTENTS

1 Introduction ...1

1.1 Motivation..1

1.2 Today’s Packet Processing Systems in the Internet...3

1.3 Challenges for Deep Packet Inspection ...6

1.4 Focus of This Dissertation ...8

1.4.1 Evaluation Metrics..8

1.4.2 Assumptions ...9

1.4.3 Main Components and Contributions...11

1.5 Dissertation Overview ...15

2 Background ...17

2.1 Packet Scanning Systems...17

2.1.1 SNORT...17

2.1.2 Bro ..20

2.1.3 Application Layer Packet Classifier for Linux (Linux L7-filter)22

2.2 Current Packet Processing Approaches ...23

2.2.1 Packet Header Processing ..24

2.2.2 Packet Payload Inspections ..28

2.3 Hardware Opportunities...30

2.3.1 Requirements for Hardware Technologies...30

2.3.2 TCAM ..31

2.3.3 FPGA..34

2.3.4 Multi-core Processors...36

2.3.5 Summaries on Hardware Technologies..37

 -vi-

3 Multi-Match Packet Classification with TCAM ...39

3.1 Introduction..40

3.2 Characteristics of Multi-match Classification Sets..41

3.2.1 Study of Multi-match classification filter sets..42

3.2.2 Applying Single Match Classification Algorithms to the Multi-match

Classification Set ...44

3.2.3 Why TCAM?..46

3.3 Technical Challenges...47

3.4 Geometric Intersection Method ...50

3.4.1 Overview of the Geometric Intersection Method.....................................50

3.4.2 Relationship between Filters ..52

3.4.3 Generating a TCAM Compatible Order ...53

3.5 Negation Removing ...55

3.6 Simulation Results ...61

3.6.1 Effect of Geometric Intersection Method...61

3.6.2 Negation Removing Scheme ..62

3.7 Related Work ...64

3.8 Conclusions..66

4 Energy Efficient Multi-match Packet Classification...67

4.1 Introduction..68

4.2 Related Work ...71

4.2.1 Bit Vector Approach ..72

4.2.2 Current Industrial Approaches ...73

4.2.3 MUD Scheme ...73

4.2.4 Geometric Intersection Methods ..75

 -vii-

4.3 A Memory and Power Efficient Approach ..76

4.3.1 Illustration of Our Approach with Examples ...76

4.3.2 Mathematical Formulation ...81

4.3.3 Johnson’s Algorithm for the Maximum Satisfiability Problem83

4.3.4 Set Splitting Algorithm (SSA)..84

4.4 Simulation Results ...86

4.4.1 Evaluation Methodologies..87

4.4.2 Results on the SNORT Rule Header Set ..89

4.4.2.1 TCAM Memory Consumption...90

4.4.2.2 Classification Speed ...91

4.4.2.3 Update Cost..92

4.4.2.4 Power Consumption...93

4.4.3 Results on a Synthesized Multi-match Filter Set94

4.5 Conclusions..95

5 Fixed String Pattern-Matching Using TCAMs ...97

5.1 Introduction..98

5.2 Related Work ...100

5.2.1 Algorithms for Software-only Environments...101

5.2.2 FPGA-based Approaches ...102

5.2.3 Bloom-filter-based Approaches..102

5.2.4 CAM-based Approaches ..103

5.3 A study of Patterns and Problem Definition..104

5.3.1 Simple Fixed String Patterns ..104

5.3.2 Composite Patterns...105

5.3.3 Regular Expressions ...106

 -viii-

5.4 Short Fixed String Patterns ..107

5.5 Long Patterns ...108

5.5.1 Divide Long Patterns into Sub-patterns to be Stored into TCAMs........110

5.5.2 Data Structures in Memory ..112

5.5.3 Algorithms for Long Patterns...116

5.6 Composite Patterns ..119

5.6.1 Correlated Patterns ...119

5.6.2 Patterns with Negations..120

5.6.3 Patterns with Wildcards..120

5.7 Analysis of the Scheme..121

5.7.1 Analysis Considering the TCAM Width ..122

5.7.2 Analysis of Memory Lookups..125

5.7.3 Protection against Malicious Attacks ...127

5.8 Simulation Results ...128

5.8.1 Methodology ..128

5.8.2 Results on ClamAV Pattern Set ...129

5.8.3 Results on SNORT Pattern Set...133

5.9 Conclusions..135

6 Fast and Memory-Efficient Regular Expression Matching.......................................137

6.1 Introduction..138

6.2 Taxonomy ..140

6.2.1 Introduction to Regular Expression..140

6.2.2 Solution Space for Regular Expression Matching..................................141

6.3 Regular Expression Matching in Network Scanning applications144

6.3.1 Requirements and Design Considerations..145

 -ix-

6.3.2 Patterns Used in Networking Applications ..150

6.3.3 Problem Statement..153

6.4 Matching of Individual Patterns ..154

6.4.1 DFA Analysis for Individual Regular Expressions................................155

6.4.2 Regular Expression Rewrites ...159

6.4.3 Guidelines for Pattern Writers..163

6.5 Selective Grouping of Multiple Patterns ...164

6.5.1 Interactions of Regular Expressions...165

6.5.2 Interactions of Real-world Regular Expressions....................................166

6.5.3 Regular Expressions Grouping Algorithms..167

6.6 Evaluation Results ...172

6.6.1 Experimental Setup ..172

6.6.2 Effect of Rule Rewriting ..173

6.6.3 Effect of Grouping Multiple Patterns ...174

6.6.4 Interaction of Patterns...174

6.6.5 Grouping Results ..175

6.6.6 Speed Comparison..178

6.7 Summary..179

7 Concluding Remarks and Future Work...181

7.1 Summary of thesis work ..181

7.1.1 Multi-match Packet Classification ...181

7.1.2 Fixed String Matching with TCAM ...182

7.1.3 Fast Regular Expression Matching...182

7.2 Future Directions ...183

Appendix A ...185

 -x-

Appendix B..186

 -xi-

LIST OF FIGURES

FIGURE 1-1. CURRENT INTERNET ARCHITECTURE. ...4

FIGURE 1-2. DEEP PACKET INSPECTION ARCHITECTURE..10

FIGURE 2-1. SNORT ARCHITECTURE. ...18

FIGURE 2-2. SNORT RULE EXAMPLES. ...19

FIGURE 2-3. AN EXAMPLE BRO RULE FOR DETECTING THE CODE RED WORM.21

FIGURE 2-4. AN EXAMPLE OF PATRICIA TREE FOR STORING STRINGS 1, 00, 010, AND 011................25

FIGURE 2-5. TCAM..32

FIGURE 2-6. POWER CONSUMPTION FOR A 9 MIBT TCAM. ..33

FIGURE 3-1. AN EXAMPLE OF THE HICUTS ALGORITHM. ...45

FIGURE 3-2. A TCAM WITH A SRAM MATCH LIST. ...47

FIGURE 3-3. BINARY REPRESENTATION OF !80 IN A TCAM. ..49

FIGURE 3-4. GEOMETRIC INTERSECTION METHOD. ..51

FIGURE 3-5 AN EXAMPLE OF INTERSECTIONS OF THREE FILTERS. ..52

FIGURE 3-6. CODE FOR GENERATING A TCAM COMPATIBLE ORDER. ..54

FIGURE 3-7. SOURCE AND DESTINATION IP ADDRESSES SPACE. ...56

FIGURE 3-8. REGIONS THAT DO NOT CONTAIN NEGATION...57

FIGURE 3-9. REGIONS THAT CONTAIN NEGATION. ..58

FIGURE 3-10. AN ILLUSTRATION OF OUR NEGATION REMOVING SCHEME...58

FIGURE 3-11. NEGATION REMOVING SCHEME. ..63

FIGURE 4-1. RELATIONSHIPS BETWEEN TCAM MEMORY CONSUMPTION, NUMBER OF TCAM

ACCESSES, AND TCAM POWER CONSUMPTION..70

FIGURE 4-2. POWER CONSUMPTION OF DIFFERENT TCAM-BASED APPROACHES.70

FIGURE 4-3. AN ILLUSTRATION OF THE MUD SCHEME. ...74

FIGURE 4-4. AN EXAMPLE OF MATCHING PROCESS WITH MUD SCHEME. ...74

FIGURE 4-5. AN EXAMPLE OF TWO INTERSECTED FILTERS..77

FIGURE 4-6. AN EXAMPLE OF N FILTERS. ...78

FIGURE 4-7. SEPARATE FILTERS INTO TWO SETS. ...79

FIGURE 4-8. AN OVERVIEW OF SSA. ...80

 -xii-

FIGURE 4-9. EXAMPLE OF FILTER INTERSECTIONS. ..81

FIGURE 4-10. JOHNSON’S ALGORITHM. ..84

FIGURE 4-11. SET SPLITTING ALGORITHM (SSA). ...85

FIGURE 5-1. TWO EXAMPLE PATTERNS FROM SNORT RULES. ..99

FIGURE 5-2. SCANNING PROCESS. ...108

FIGURE 5-3. FLOWCHART OF LONG PATTERN MATCHING ALGORITHM. ..110

FIGURE 5-4. TABLES USED IN OUR SCHEME. ..113

FIGURE 5-5. MATCHING PROCESS FOR INPUT “DEGFABCDL”..117

FIGURE 5-6. MEMORY LOOKUP PROCESS. ..126

FIGURE 5-7. DISTRIBUTION OF PATTERN LENGTH OVER THE CLAMAV RULE SET.130

FIGURE 5-8.TCAM SPACE CONSUMED VS. TCAM WIDTH. ...130

FIGURE 5-9. MAPPING TABLE SIZE VS. TCAM WIDTH...130

FIGURE 5-10. AVERAGE OF PHL SIZE OVER SYNTHESIZED DATA. ...132

FIGURE 5-11. AVERAGE OF MAX PHL SIZE PER PACKET..132

FIGURE 5-12. MAX PHL SIZE OVER ALL PACKETS...133

FIGURE 5-13. EFFECTS OF MEMORY RATIO ON SCAN RATES. ..135

FIGURE 6-1. A DFA FOR PATTERN ^B+[^\N]{3}D ..156

FIGURE 6-2. A DFA FOR PATTERN .*A.{2}CD . ..157

FIGURE 6-3. NFA FOR THE PATTERN .*AUTH\S[^\N]{100} . ..158

FIGURE 6-4. DFA FOR REWRITING THE PATTERN .*AUTH\S[^\N]{100}161

FIGURE 6-5. TRANSFORMED NFA FOR DERIVING REWRITE RULE (1) ..161

FIGURE 6-6. A DFA FOR PATTERN .*ABCD AND .*ABAB . ..165

FIGURE 6-7. A DFA FOR PATTERN .*AB.*CD AND .*EF.*GH165

FIGURE 6-8. DFA SIZE AND PROCESSING COMPLEXITY OF MULTIPLE PATTERNS (UNSORTED ORDER,

WITHOUT USING OUR GROUPING ALGORITHM)..167

FIGURE 6-9. COMPOSITE NFA FOR TWO DFAS. ...168

 -xiii-

LIST OF TABLES

TABLE 2-1. DIFFERENT MEMORY TECHNOLOGIES. ...34

TABLE 3-1. SNORT RULE HEADERS STATISTICS. ..42

TABLE 3-2. COMPARISON OF MULTI-MATCH AND SINGLE-MATCH FILTER SETS.................................42

TABLE 3-3. APPLYING HICUTS TO THE SNORT FILTER SET...45

TABLE 3-4. EXAMPLE OF ORIGINAL FILTER SET WITH 3 FILTERS..55

TABLE 3-5. EXTENDED FILTER SET IN A TCAM COMPATIBLE ORDER. ...55

TABLE 3-6. EXTENDED FILTER SET IN A TCAM WITH NO NEGATION. ..60

TABLE 3-7. STATISTICS OF EXTENDED FILTERS SET. ..62

TABLE 3-8. PERFORMANCE OF NEGATION REMOVING SCHEME..62

TABLE 4-1. TOTAL NUMBER OF UNIQUE SORT RULE HEADER SIZE. ..87

TABLE 4-2. NUMBER OF EXTRA INTERSECTIONS FILTERS IN TCAMS. ...89

TABLE 4-3. TOTAL NUMBER OF TCAM ENTRIES USED. ..90

TABLE 4-4. UPDATE COST IN TERMS OF NEWLY INSERTED FILTERS. ...92

TABLE 4-5. TCAM ENTRIES ACCESSED PER PACKET. ...93

TABLE 4-6. TOTAL NUMBER OF EXTRA INTERSECTIONS FILTERS IN TCAMS......................................94

TABLE 5-1. PATTERNS USED IN DIFFERENT SYSTEMS. ...104

TABLE 5-2. A LONG PATTERN EXAMPLE (TCAM WIDTH W = 4). ...111

TABLE 5-3. PATTERNS IN THE TCAM..112

TABLE 5-4. PATTERN TABLE. ...114

TABLE 5-5. PARTIAL HIT LIST. ...114

TABLE 5-6. MATCHING TABLE...115

TABLE 5-7. PHL SIZE FOR CLAMAV SIGNATURE SET. ..131

TABLE 5-8. PHL SIZE FOR SNORT SIGNATURE SET...134

TABLE 6-1. FEATURES OF REGULAR EXPRESSIONS. ...140

TABLE 6-2. WORST CASE COMPARISONS OF DFA AND NFA..143

TABLE 6-3. AN ANALYSIS OF PATTERNS IN NETWORK SCANNING APPLICATIONS.151

 -xiv-

TABLE 6-4. COMPARISON OF REGULAR EXPRESSIONS IN NETWORKING APPLICATIONS AGAINST

THOSE IN XML FILTERING. ...152

TABLE 6-5. REWRITING EFFECTS...173

TABLE 6-6. INTERACTION OF REGULAR EXPRESSIONS. ..175

TABLE 6-7. RESULTS OF GROUPING ALGORITHMS FOR THE MULTI-CORE ARCHITECTURES.176

TABLE 6-8. RESULTS OF GROUPING ALGORITHMS FOR GENERAL PROCESSOR ARCHITECTURES. ..177

TABLE 6-9. COMPARISON OF THE DIFFERENT SCANNERS. ...179

 - 1 - -

1 Introduction

1.1 Motivation

Today’s Internet is by no means a safe place: hackers sniff network traffic and expend

considerable resources on attacking user’s computers, fraudulent phishing activities are on

the rise, and worms and viruses cause service disruptions with enormous economic impact.

Counter-intuitively, recent increases in network bandwidth and computing performance make

things even worse—such increases allow malicious attacks to spread even faster. The

recently introduced Slammer worm is one of the fastest spreading computer worms in history

[1], infecting more than 75,000 hosts within 10 minutes. Slammer exploits two “buffer

overflow” security holes in Microsoft SQL Server 2000 to infect vulnerable hosts. The

infected hosts launch Denial of Service (DoS) attacks that dramatically slow normal Internet

traffic. It caused around 1 billion USD of damage worldwide within its first five days of

operation [2]. Thousands of ATMs for Bank of America and Washington Mutual were

crippled; Continental Airlines flights were delayed or cancelled, the city of Seattle’s

emergency 911 network was knocked offline [3, 4], and most of South Korea’s Internet

services were blacked out for hours [5].

Mydoom is another fast spreading email worm [6]. A few hours after its first appearance,

the average load time for Web pages increased by 50%. Only after two days, new variants of

Mydoom emerged and the spread of the worm reached its peak: roughly one in five emails

sent was infected by the worm. According to the security firm mi2g [7], by February 2004,

Mydoom had caused $38.5 billion USD economic damage worldwide.

 - 2 -

Traditional mechanisms to fight against these fast spreading worms rely on passive

defense schemes. Unfortunately, these are often ill-coordinated stop-gap measures, for

example, by forcing end-users to patch their systems regularly and updating antivirus

software and firewall with latest virus patterns. These end-host based approaches have

drawbacks such as slow response to new virus threats, high maintenance cost, significant

reliance on human effort, and a disruptive update process. The inability to respond rapidly is

lethal when new worms are designed to contaminate tens of thousands of hosts quickly such

as ten minutes in the example of the Slammer worm. It is unrealistic to expect every end host

in a large enterprise network to be patched within such a short time frame, not to mention that

security software vendors also need a reasonable amount of time to develop patches.

Thus, a more effective approach against rapid worm spread is to stop worm propagation

in the network before contaminated packets reach a significant number of end users.

However, performing in-network packet inspection is not easy. To achieve this, we need

deep packet inspection techniques that scan packet payloads to analyze the meaning and

purpose of the network traffic to distinguish malicious packets from normal packets. These

inspection techniques are not only useful for detecting and filtering packets containing worm

signatures but are also required by other newly emerging edge network services such as high

speed firewalls (for protecting end hosts from security attacks), HyperText Transfer Protocol

(HTTP) load balancing (smartly redirecting packets to different servers based on their HTTP

requests), and Extensible Markup Language (XML) processing (facilitating the sharing of

data across different systems).

Unfortunately, this in-network deep packet inspection ability is not currently supported

by routers and switches. In the current Internet, most of this kind of processing is restricted to

the packet header, rather than the full packet content. It is hard to provide deep packet

 - 3 -

inspection functionalities in the routers that run at the high line rates required of today’s

Internet due to the complexity of deep packet inspection systems.

The next two sections elaborate on why deep packet inspection is a hard problem:

Section 1.2 reviews the current packet processing systems and explains why deep packet

inspection ability is not present in the current Internet. Section 1.3 identifies the technical

challenges that make it hard to incorporate such functionality in routers. The goal of this

dissertation is to address these challenges and bring the high speed deep packet inspection

techniques to the network. To keep up with packet processing in existing high-speed

networks, we propose deep packet inspection schemes that are optimized for new hardware

technologies such as Ternary Content Addressable Memory (TCAM) and multi-core

processors. We present an overview of our work in Section 1.4. Finally in Section 1.5, we

give the roadmap of this dissertation.

1.2 Today’s Packet Processing Systems in the Internet

Today’s Internet is largely built based on the famous “end-to-end” design principle [8]

proposed by Saltzer, et al., which guides placement of functions among the modules of a

distributed computer system. They observe that functions placed at low levels of a system

may be redundant or of little value when compared with the cost of providing them at that

low level. Hence, they suggest that specific application-level functions usually cannot, and

preferably should not, be built into the lower levels of the system—the core of the network.

Figure 1-1 shows that the End-to-end argument leads to dramatically different packet

processing systems at different places of the Internet. Functionalities in the core are very

simple, focused on forwarding packets. The complex functions related to application

semantics are all built on end hosts. Next, we explain these kinds of packet processing

 - 4 -

Figure 1-1. Current internet architecture.

systems by following the journey of a packet from an end host, to the edge network, then to

core of the network.

An end host is a computer that directly interacts with users. It has access to full packet

content information. Based on specific user application information such as the user’s

communication request (e.g., a Web browse request), and communication protocols, such as

HTTP, or TCP, an end host computer packs application data into packets.

When a packet leaves the end host, it traverses the edge network, where all the packets

sent by end hosts in this network gather together. Examples of such edge networks include

campus networks and local area networks in large corporations. Such edge networks typically

operate at Gigabit rates today. In these networks, packets are mostly processed based on the

header information, and the result of the processing is typically only the next hop router to be

used for forwarding this packet.

Core Routers:
forwarding based on
destination address

Edge Networks: filtering mostly based
on packet header information

Endhost: Handling based on
full packet information

Backbon

 - 5 -

After a packet leaves the edge network, it can either enter another edge network, or more

frequently, it travels to the core network of the Internet. In the core network, the packet

processing rate gets even higher, 10 Gbps is quite normal and ISPs are beginning to deploy

40 Gbps links. Under such high speed requirements, the packet processing in the core must

be very simple. Core routers do not touch the packet payload, sometimes not even the full

packet header. Typically, core routers forward packets only based on one field in the packet

header: the destination IP address.

This architecture, which has a simple core and complex end hosts, helps the Internet scale

to 390 million hosts as of January 2006 [9]. However, this architecture also leaves security

holes for the intruders to exploit. An intruder can disguise malicious packets that are

piggybacked on known valid protocols and sneak through the network without being noticed.

These packets can bypass the edge network inspection systems because they “appear” as

acceptable packets with normal packet headers. They may then travel freely in the core

network since they have valid destination IP addresses. Therefore, these malicious packets

can easily reach other end hosts and infect those machines. When new machines are infected,

new worms packets can be sent out to infect more end hosts. As a result, a worm can infect

millions of machines quickly, thus causing service disruptions with enormous economic

impact.

Recently, Network Intrusion Detection Systems (NIDS) have emerged that are built to

filter out worms in the network. The core function of NIDS is to perform full packet (both

packet header and packet payload) inspection against thousands of known virus or worm

patterns. We refer to such full packet processing as deep packet inspection. Deep packet

inspection is not supported by the routers in the Internet today. The major obstacle for

incorporating deep packet inspection functionality into the network is its slow speed.

Traditional processing algorithms are highly complex and their speed is well below Gigabits

 - 6 -

process rate at the router. If current deep packet inspection modules are integrated into the

network, it can easily become the performance bottleneck. In the next section, we study the

challenges of performing high speed deep packet inspection at high rates.

1.3 Challenges for Deep Packet Inspection

Developing high speed deep packet systems is a challenging task because of the following

factors.

• Large number of signatures: There are a wide variety of attacks and problems. One

packet needs to be matched against thousands of attack signatures. For example,

NIDS systems like the SNORT intrusion detection system [10] contains 4867 rules as

of February 2006, each containing attack signatures.

• Signatures have overlaps: One packet maybe related to multiple attacks. For

example, an HTTP packet can be vulnerable to 1096 different types of attacks known

to the SNORT system. Hence, for a given packet, we first need to identify the related

rules, and then check the packet contents against these signatures.

• Patterns are often highly complex: There are fixed string patterns with arbitrarily

lengths; correlated patterns where it is necessary to check for certain groups of

patterns occurring in sequence; and patterns with negation where it is required to

detect the absence of a pattern. Sometimes, it is impossible to enumerate the pattern

using a fixed list of strings, so regular expressions are used as a pattern language.

• Location of signatures in the packet is unknown: Due to the wide variety of

application formats, we often do not know apriori the location of signatures in the

packet payload. Hence, we need to check every byte of the packet payload at high

speed.

 - 7 -

We have shown that deep packet inspection systems are complex. To build such a

complex system, there are two design elements that are essential: high speed and low cost,

which we will explain below.

The key requirement for deep packet inspection system is high speed to match the normal

processing speed of Internet core (10 Gbps, the common speed for core links) and edge

networks (1 Gbps). We need to carefully inspect every incoming packet in both edge and

core networks to see whether there is any attack attempt. In addition, worms and viruses may

possibly originate inside the edge networks. Hence, we are also required to scan packets

inside the networks, which often have internal connections in the gigabit rates or higher

range. Therefore, deep packet inspection must be performed at Gigabit rates to build a

practical in-network worm detection system. However, current deep packet inspection system

cannot achieve such rates. The SNORT network instruction detection system [10], for

example, implements packet inspection algorithms in software. It can handle link rates only

up to 250Mbps [11] under normal traffic conditions even using SUN’s special Security

Defense Appliances [12]. In the worst case its performance is even lower. These rates are not

sufficient to meet the needs of even medium-speed access or edge networks.

The second requirement is low cost. Many low performance related problems can be

solved by using more computing power, e.g., more powerful CPUs, faster memory modules,

multiple processors or computers. However, blindly increasing the amount of computation

power increases both the hardware cost and also the maintenance cost. In addition, a large

number of computers consume a lot of energy and impose high cost on the cooling system.

Therefore, in this dissertation, we aim to develop smarter algorithms that use the smallest

possible amount of processing power exploiting the hardware that can solve the problem

most efficiently.

 - 8 -

1.4 Focus of This Dissertation

The previous section showed that high speed deep packet inspection is a challenging task.

We aim to address these challenges in this dissertation. In this section, we give an overview

of our work. We first define the problem that we address in the area of deep packet inspection

in Section 1.4.1. Deep packet inspection problem has several related problems, such as

viruses and worm signature generation, packet reassembly, packet inspection. In this

dissertation, we focus on the fast packet inspection problem and we list all the assumptions

we make in Section 1.4.2. Next, in Section 1.4.3, we present our main technical components

for deep packet inspections and state our contributions. Finally, we describe the evaluation

metrics for our measurement methodology.

1.4.1 Evaluation Metrics

This dissertation addresses the problem of building high speed packet processing systems for

services. We use the following evaluation metrics for the purpose of our study: the packet

processing rate, memory requirements, power consumption, and the ease of incorporating

new signatures.

• We define each in turn. Packet processing rate denotes the throughput of the system.

Some of the schemes that we propose have a deterministic packet processing rate,

while others are traffic sensitive. The reason for this is that the packet processing rate

varies under different types of traffic patterns.

• For all cases, we report both the worst case throughput and average throughput.

Memory requirements denote the size of memory used. Our solution leverages

different types of memory for different operations, including Static Random Access

Memory (SRAM), Ternary Content Addressable Memory (TCAM), and Dynamic

Random Access Memory (DRAM). These memories have dramatically different

 - 9 -

manufacturing costs, which in turn affect the total router cost. In our analysis, we

report the memory requirements for each type of memories separately.

• Some of the special memory we use, such as TCAMs, consume large amounts of

power. Hence, when we use it, we also report the power consumed by these devices.

• Lastly, given that new viruses and worms are continuously being developed, our deep

packet inspection schemes must be able to accommodate new signatures easily.

Hence, we analyze the ease of incorporating new signatures, which is defined as the

time to process a signature and insert it into the system.

Now we have defined the problem and explained the evaluation metrics. Before we

explain the components of our scheme in detail, we describe the assumptions we made in

throughout the thesis in the following section.

1.4.2 Assumptions

Figure 1-2 shows that our deep packet inspection scheme processes incoming packets and

compares them with a large number of signatures in parallel. We focus on developing Gigabit

rate deep packet processing schemes. There are two assumptions we make in this

architecture. First, we assume that signatures are known in advance. To ensure the signatures

we use for evaluation are realistic, we obtain signatures from open source projects and do not

attempt to generate synthetic signatures ourselves. The second assumption is that packets are

defragmented first before entering our system. Next we explain the implications of these two

assumptions in detail.

 - 10 -

Figure 1-2. Deep packet inspection architecture.

Assumption 1: Signatures are known in advance

In our deep packet inspection system, incoming packets are compared against a set of traffic

signatures. We obtain signatures from other systems in use in real-world environments. There

are many research projects aiming to generate virus and worm signatures [13-15]. Software

companies such as Microsoft and Symantec publish system vulnerabilities and corresponding

signatures. Large networking companies like Cisco generate their own proprietary signatures.

In addition, there are many open source projects aiming to generate signatures for detected

worms [10] [16, 17]. For the experiments and studies throughout this dissertation, we obtain

signatures from these open source projects. For example, the viruses and worm signatures

used in our system are from the SNORT instruction detection systems [10], the Bro intrusion

detection system [16], and the ClamAV virus signature database [17].

Rules
Rules

Packet

Deep Packet Inspection Schemes

Pattern matching on packet
payload
• For fixed string patterns (Chapter)

• For regular expression patterns
(Chapter 6)

Packet Payload

Multi-match packet
classification using TCAMs

•Efficient rule representation
in the TCAM (Chapter 3)

•Reduce memory and power
consumption (Chapter 4)

Packet Header

 - 11 -

Assumption 2: Packet are Defragmented and Reassembled

The current Internet is a packet switching network. In most of its constituent sub-networks,

such as Ethernet, there is a predefined maximum packet size that this network can carry.

When a packet reaches a network, where the maximum packet size is larger than this packet’s

size, we need to fragment it into pieces, each small enough to pass over a link.

Often, there are multiple paths between the source and destination. Packets may take

different routes. Hence, at the destination, packets can arrive in a different order from the

order that was sent out. These out-of-order packets need to be buffered and then correctly

ordered before we can get the correct application data.

The process of packet re-ordering and de-fragmentation to reconstruct the correct application

data is called TCP reassembly. Packet reassembly is a hard task because we need to keep the

states of millions of flows and we need to buffer all the out-of-order packets. There are existing

systems that are built for packet reassembly [18-20] and the typical speeds reporting are 1 to 10

Gigabits rate under normal traffic. How to deal with worst case scenario, where many packets are

fragmented and sent out of order, still remains a research topic. In this dissertation, we do not

focus on the TCP reassembly problem. We assume packets are reassembled before analysis by

our system.

Having explained the assumptions of our deep packet inspection system, next we explain

the main components of the system and highlight our contributions.

1.4.3 Main Components and Contributions

The goal of this dissertation is to develop algorithms and schemes for high speed deep

packet inspection. Accomplishing this goal requires two technical components: processing

the packet header and processing the packet payload. In this dissertation, we separate these

two because the packet header and the payload typically have significantly different

 - 12 -

structures. The packet header is well structured: it has fixed fields with known offsets. So, we

process it based on specific field information such as IP address, port number, protocol type,

etc. We call this process packet classification. In contrast, the packet payload contains

application data. Although a few application protocols, such as the HTTP protocol, have

well-known formats, many other applications may make use of arbitrary formats with no

standard rules. For this type of payload data, we need to perform pattern matching against

thousands of patterns that can start from anywhere in the payload.

Note that packet payload scanning is also called Layer 7 processing according to the

Open Systems Interconnection (OSI) reference model [21]. The OSI model has seven layers.

• Layers 1-2 are for physically transmitting the packets over wires, hence they are

not of interest to this dissertation.

• Layers 3-4 are for sending packets over the inter-connected network. The packet

classification problem may be applied in these two layers to scan packet headers.

• Layers 5 and 6 are the session layer and presentation layer, which are not widely

used now.

• Layer 7 is the application layer, and as previously mentioned the packet

classification problem may be applied at this layer to scan packet payloads.

Figure 1-2 illustrates the main technical components of our deep packet inspection

system. For packet header processing, we propose a packet classification scheme that

intelligently processes packet header information. For packet payload processing, we develop

schemes to identify both fixed string patterns and complex regular expressions. These

techniques form a cohesive architecture that can perform Gigabit rate packet scanning against

thousands of sophisticated patterns. We explain these techniques in detail below.

 - 13 -

Multi-match Packet Classification

As we mentioned before, rules in deep packet inspections may overlap with each other, so

one packet may match multiple rules. We call the problem of identifying the related rules for

one packet the multi-match classification problem. The challenge of multi-match

classification lies in finding all the matching classification rules among thousands or tens of

thousands rules within a few cycles. To address this challenge, we present our approach

based on Ternary Content Addressable Memory (TCAM), which is a type of memory that

can do fast parallel comparisons. Our approach produces multi-match classification results

with only two memory lookups per packet. In addition, some filter sets use a negation

format to represent “not-matching” (the absence of a match) of some specific values.

Negations are not directly supported by TCAMs. Hence, we present an algorithm to remove

the negations in the filter sets by translating them into equivalent operations the TCAM can

easily handle.

TCAM is expensive and consumes a large amount of power. None of the previously

published multi-match classification schemes is both memory and power efficient. Hence, we

develop a novel scheme called the Set Splitting Algorithm (SSA) that meets both

requirements. The main idea of SSA is to split filters into multiple groups and perform

separate TCAM lookups in each of these groups. SSA guarantees a reduction in the number

of filters by 50%, resulting in lower TCAM usage. In addition, it only accesses filters in the

TCAM once per packet, yielding a 75% to 95% reduction in power consumption as

compared to previously published schemes.

Fast Virus and Worm Signature Scanning with TCAM

The multi-match classification applies to the packet header only. For the packet payload, we

need to check whether it contains any signatures. Applications such as network intrusion

 - 14 -

detection require searching the packet payload against thousands of string patterns. We adopt

TCAM for pattern matching functions because of its fast speed in parallel search. However,

TCAM imposes physical limitations on the pattern length that can be directly matched. Also,

TCAM does not handle correlated patterns (detecting whether a particular patterns occurs

after another given pattern). To solve these problems, we develop algorithms that leverage

TCAM’s high speeds while not being restricted to these limitations. These algorithms can

efficiently handle long patterns, correlated patterns, and patterns with negation. Our solution

is also applicable to other Layer 7 pattern matching problems, for example, applications like

HTTP load balancing and email SPAM filtering.

Fast Regular Expression Matching for Network Security Applications

Regular expressions are replacing fixed string patterns as the pattern matching language of

choice in network security applications, such as SNORT, Bro, and the application layer

packet classifier for Linux. Unfortunately, memory consumption is prohibitively high when

traditional methods such as Deterministic Finite Automata (DFA) are used for fast regular

expression scanning. To address this problem, we proposed rewrite techniques that can

effectively reduce the size of DFA for highly complex regular expressions. Furthermore, we

developed a scheme that can compile a large set of regular expressions into a small number

of DFA, which dramatically improves the regular expression matching speed without

significantly increasing memory usage. This scheme can leverage multi-core or Network

Processing Unit (NPU) architectures to further improve performance. Experimental results

using real-world traffic and patterns have shown that my implementation achieves one to

three orders of magnitude speedup over the state-of-the-art implementation based on Non-

Deterministic Finite Automata.

 - 15 -

With our schemes that operate on both the packet header and packet payload, we can

perform Gigabit rate packet scanning against thousands of sophisticated patterns. Using these

techniques, we can obtain fine granularity analysis of the packets, and thus supporting new

services such as network intrusion detection, high speed firewalls, HTTP load balancing,

XML processing, etc., at high rates.

1.5 Dissertation Overview

The reminder of the thesis is organized as follows. Chapter 2 reviews work related to this

dissertation. We broadly review the packet processing techniques that are presented at levels

of the network, the repetitive deep packet inspection systems and show that pure-software

based solution is insufficient to meet the need of today’s network speed. At the end of

Chapter 2, we present some emerging hardware technologies that can potentially speed up

existing packet processing systems.

Chapters 3 to 6 are the main technical chapters. As mentioned previously, high speed

deep packet inspection involves two technical components: processing the packet header and

processing the packet payload. Chapters 3 and 4 address the first technical component –

multi-match packet classification. Chapters 5 and 6 address the second component – fast

pattern matching on the packet payload.

 Chapter 3 presents a TCAM-based method for high speed multi-match classification. We

present a Geometric Intersection Method that reports the multi-match classification results

with just two lookups. In addition, we present a negation removing algorithm that can

efficiently map rules into the TCAM.

The multi-match classification solution presented in Chapter 3 is extremely fast.

However, for some applications, it will use a large amount of memory and also consume a

 - 16 -

large amount of power. In Chapter 4, we develop a general and balanced scheme that takes

into consideration classification speed, memory consumption and power consumption.

Chapters 5 and 6 present schemes for fast pattern matching on packet payload. In Chapter

5, we study the typical patterns in the packet payload scanning applications and define three

types of patterns: fixed string patterns, composite string patterns and regular expression

patterns. We address the first two types of patterns in Chapter 5 and present a TCAM-based

string searching algorithm that can operate at gigabit rates.

Chapter 6 deals with the complex regular expression patterns. Through studying the

patterns, we show that some either need a significant amount of memory or have a high

computation cost. We propose regular expression techniques that rewrite these patterns into

one that are more memory efficient. Further, we present a fast single-pass scanning algorithm

for simultaneously scanning thousands of patterns. We implement a fast and memory

efficient regular expression scanner for real-world patterns of packet scanning applications.

We demonstrate the effectiveness of our scanner through comparing it with different packet

scanning solutions used in current packet scanning applications.

Chapter 7 concludes the dissertation and discusses several directions for future work. The

main contribution of this dissertation lies in using emerging hardware technologies for fast

packet processing. In Chapters 3 to 5, we adopt TCAMs for fast processing due to its

building parallel comparison ability. In Chapter 6, we present algorithms that are suited for

both single core and multi-core processors. Our work can be extended to other hardware

technologies such as FPGA and ASIC-based platforms.

 - 17 - -

2 Background

The previous chapter showed that we need deep packet inspection systems to stop fast-

propagating viruses and worms. These systems typically have a large rule database and they

compare the packet against these. Due to the complexity of rules, existing systems are all

software-based and the packet processing speed is very limited. In this section, we first

review these systems and taxonomize their requirements in Section 2.1. Then in Section 2.2,

we review the existing deep packet inspection methods and show that none of them can

operate at Gigabit rates, given thousands of complex signatures. Finally, in Section 2.3, we

present some emerging hardware technologies that can potentially boost the deep packet

inspection systems to Gigabit rates.

2.1 Packet Scanning Systems

There are many packet scanning applications that require deep packet inspections. Here, we

review three popular ones: SNORT [10], Bro [16] and Linux L7-filter [22]. SNORT and Bro

are two popular intrusion detections systems, while Linux L7-filter is for application protocol

analysis. These systems are all open source systems, which allow us to perform a detailed

analysis and show their abilities and constraints.

2.1.1 SNORT

SNORT is a popular open source intrusion detection system, with millions of downloads to

date [10]. It can be configured to perform protocol analysis and content searching and

matching on real-time traffic to detect a variety of worms, attacks and probes.

 - 18 -

Figure 2-1. SNORT architecture.

Figure 2-1 illustrates the flowchart of the SNORT system. When a packet enters the

network, it enters the decoder. Here the link level information, such as the Ethernet packet

header, is removed. Then, the packet enters the pre-processor, which performs packet

defragmentation and reassembles the TCP stream. Finally and most importantly, the packet

enters the detection engine. The detection engine examines that data against its database of

rule. If the packet matches a rule then SNORT takes a pre-programmed action, e.g., “drop

this packet”, or “log this packet”.

SNORT contains thousands of rules, each containing attack signatures. Each rule in

SNORT has two components: a rule header and a rule option. The rule header is a

classification rule that applies to the packet header. This rule header consists of five fixed

fields: protocol, source IP, source port, destination IP, and destination port. Figure 2-2.a gives

an example SNORT rule that detects a MS-SQL worm probe. Here, the rule header specifies

that this rule applied to User Datagram Protocol (UDP) packet from external network to a

computer in the protected network (called home net) with port 1434. Figure 2-2.b is another

example rule for detecting an RPC old password overflow attempt. It applies to any UDP

packet from the external network to a computer in the home network. The rule headers in

these two examples overlap with each other, so a packet may match both rule headers and

Decoder

Routine
Traffic

Filter out the link level
 packet structure

Pre-Processor Detection

Engine

Rule Based DetectionIP defragementation
 TCP stream reassembly

Detect suspicious packets and take
specified actions

Normal
packets

 - 19 -

Rule Headerudp $EXTERNAL_NET any
-> $HOME_NET 1434

content:"|04|"; depth:1;
content:"|81 F1 03 01 04

9B 81 F1 01|";
content:"sock";
content:"send"

Rule Option

udp $EXTERNAL_NET any -
> $HOME_NET any

content:"|00 01 86 A9|";
offset:12; depth:4;

content:"|00 00 00 01|";
distance:4; within:4;

byte_jump:4,4,relative,align;
byte_jump:4,4,relative,align;
byte_test:4,>,64,0,relative;

content:"|00 00 00 00|";
offset:4; depth:4; sid:2027;

rev:4;

1.a: A rule for MS-SQL
Worm detection.

1.b: A rule for RPC old
password overflow attempt

Figure 2-2. SNORT rule examples.

need to be checked against both rule options. In the SNORT systems, a packet may match

thousands of rule headers.

The rule option is more complicated: it specifies which intrusion patterns are to be used

to scan packet payload. As we defined in Section 1.3, there are four types of patterns: fixed

string patterns, correlated patterns, patterns with negation and full regular expression

patterns. The SNORT system has rules of all four pattern types. For example, the MS-SQL

worm detection rule (Figure 2-2.a) requires a sequential matching of a correlated pattern that

consists of four string patterns. The RPC worm detection rule (Figure 2-2.b) searches for a

pattern with negation. After matching a pattern “USER”, if it does not detect a return

character (\n, |0a| in ASCII format) within the next 50 bytes, it will raise an intrusion alarm

signaling an overflow attack attempt. Recently, SNORT also incorporates a large number of

regular expression patterns. For example, the pattern for detecting Internet Message Access

Protocol (IMAP) email server buffer overflow attacks is “.*AUTH\s[^\n]{100}”. This

signature detects the case where there are 100 non-return characters “[^\n]” after matching of

keyword AUTH\s. Matching of these signatures is the core component of the SNORT system.

After introducing the rule structure in SNORT, next we explain the string matching

algorithms used in SNORT.

 - 20 -

For the string pattern matching, SNORT uses a “parallel Boyer-Moore” approach that has

been explored in the literature for fast matching of multiple strings. The original Boyer-

Moore algorithms are designed for single pattern searching [23]. They build skip tables to

avoid back tracking and help shift forward. The search time for an m byte pattern in an n byte

packet is O(n+m). If there are k patterns, the search time is O(k(n+m)) , which grows linearly

in k. Hence, this method is slow when there are thousands of patterns. The parallel Boyer-

Moore algorithm used in SNORT can potentially decrease the running time to sub-linear time

in k for certain packets. However, this performance is not guaranteed, and for some packets it

requires super-linear in k time to perform matching [24]. Recently, new pattern matching

algorithms are proposed to boost the pattern matching speed of SNORT. For example, the

Aho-Corasick-Boyer-Moore (AC_BM) algorithm proposed by Silicon Defense [25]

combines the Boyer-Moore and Aho-Corasick algorithms. Another new algorithm is the

Setwise Boyer-Moore-Horspool algorithm by Fish, et al. [26], whose average case

performance is better than Aho-Corasick and Boyer-Moore. These algorithms greatly

improve SNORT’s pattern matching speed to a certain level, e.g., 250Mbps with the SUN

SDA[12]. However, it is still below the line rate needed for network deployment.

2.1.2 Bro

Bro [16] is an open-source intrusion detection system developed by Vern Paxson, et al.

Similar to SNORT, it monitors network traffic and detects intrusions by comparing network

traffic against a set of rules describing attack signatures. In addition, it records unusual

activities such as a high number of failed connection attempts. When Bro detects a suspicious

event, it performs a set of pre-configured actions, such as logging the event, terminating the

connection, and sending a message to system administrators.

 - 21 -

Different from SNORT, Bro does not use fixed string patterns. Instead, all the patterns

are expressed using regular expressions. Figure 2-3 is an example rule for detecting the Code

Red worm [27]. This rule applies to tcp packets that direct to http_ports (e.g., port 80), with

an established tcp connection, aiming to detect a HTTP request matching the regular

expression “/.*\.id[aq]\?.*NNNNNNNNNNNNN”. This regular expression denotes finding a

pattern that can start from anywhere (.*) in the HTTP request, starting with a string “.id”,

followed by character “a” or “q” and a quotation mark character “\?”, then some arbitrary

characters of any length (.*), finally end with the string “NNNNNNNNNNNNN”.

Signature codered1 {
 ip-proto == tcp
 dst-port == http_ports
 tcp-state established,originator
 http /.*\.id[aq]\?.*NNNNNNNNNNNNN/
 event "CodeRed 1"
}

Figure 2-3. An example Bro rule for detecting the Code Red worm.

Bro uses a Deterministic Finite Automaton (DFA) based approach for regular expression

matching. A DFA consists of a finite set of states, and a transition function. At any time there

is only one active state in the DFA. Given the next input character, DFA jumps to the next

state following the transition function. Hence, DFA has a deterministic throughput regardless

of the input. In addition, if we compile several regular expressions into a single DFA, the

processing cost for one input character remains the same. This nice property helps Bro

process thousands of patterns quickly.

However, some regular expressions can cause a DFA to grow exponentially so that the

states cannot fit in the memory. To solve this problem, Bro adopts a lazy DFA-based

approach, where commonly used DFA states are cached and the DFA is extended at run-time

if needed. This lazy DFA-based approach, although fast and memory efficient on most

 - 22 -

common inputs, may be exploited by intruders to construct malicious packets that force the

lazy DFA to enter many corner cases [24] which result in drastically reduced performance.

2.1.3 Application Layer Packet Classifier for Linux (Linux L7-filter)

We have shown two intrusion detection systems, SNORT and Bro that aim to identify

malicious packets. In this section, we introduce another type of packet monitoring system –

Linux L7-filter, whose goal is to identify the application protocol information of normal

packets.

The goal of the Linux L7-filter is to detect the application layer protocols. The examples

of application layer protocols are Yahoo messenger protocol, Peer-to-peer (P2P) Kazza

protocol, and online gaming protocol. Identifying these types of application traffic is

important for providing fine granularities of quality of service. For example, according to the

network infrastructure company CacheLogic, in 2004 over 60 percent of all Internet traffic is

P2P traffic, such as Kazza and BitTorrent traffic. Most of these P2P traffic is illegal data

transfer. When this P2P traffic occupies too much network bandwidth and causes network

congestion, service providers may need to limit the bandwidth of P2P traffic so as to provide

a better quality of service (QoS) for more important traffic such as routing HTTP and Voice

over IP (VoIP) packets. To do this, it becomes necessary to distinguish P2P traffic from other

types of traffic. The Linux L7-filter can help us achieve this through analyzing application

layer protocol information.

Currently, the Linux L7-filter contains 70 application protocol signatures, contributed by

researchers and developers world-wide. Signatures are categorized into ten classes: P2P,

VoIP, streaming video, streaming audio, chat, game, networking, mail, file transfer, printer

commands. Similar to Bro, signatures are specified using regular expressions. However,

different from SNORT and Bro, the Linux L7-filter does not look at the packet header

 - 23 -

information such as port number because different some applications can be piggybacked on

known applications protocols. Therefore, the Linux L7-filter closely checks application layer

data to determine what protocol is being used.

The Linux L7-filter is a pure software solution, it cannot achieve Gigabit rate. We found

that the system throughput dropped to less than 10Mbps on a 100Mbps network using a

computer with 750MHz PIII and 512 MB of memory. In addition, the CPU was saturated,

leaving no computation time free for other tasks. Apparently, this speed does not satisfy the

requirements for high speed edge networks, where Gigabit Ethernets have become the norm.

So far, we have shown three typical deep packet inspection applications. These

applications are highly complex, so currently they rely on purely software-based approaches

that are designed to run on standalone computers such as Linux boxes. The packet processing

rates of these systems are much lower than Gigabit rate. To incorporate them into the

network, we need to increase the speed to match the high processing rate in the edge and core

networks. In the next section, we broadly review the current packet processing systems on

routers and show how most current packet processing systems can meet our needs. Later in

Section 2.3, we present some emerging hardware opportunities that can potentially boost

these packet scanning systems to Gigabit rates or higher.

2.2 Current Packet Processing Approaches

In this section, we broadly review the state-of-the-art packet processing technologies. As we

mentioned in Section 1.4, deep packet inspection involves processing both the packet header

and the packet payload. In this section, we first review packet header processing techniques

and then we review packet payload processing methods that look beyond the packet header.

In both parts, we review both algorithms developed by researchers as well as several

commercial products.

 - 24 -

2.2.1 Packet Header Processing

Packet headers are typically well structured, following the pre-defined packet header formats,

making processing a simpler task. Packet header processing is usually targeted towards

matching specific fields in the packet header. For example, in the core of the Internet, packet

forwarding is usually just based on one field — the destination IP address. Some edge routers

control traffic using more fields in the packet header. Typical rules often reference the

protocol, source IP address, destination address, source port number, destination port number

fields of the packet. Cisco allows filtering based on these five tuples by configuration of

Access Control Lists (ACLs).

The packet classification problem on multiple fields is a complex problem [28]. For N

arbitrary non-overlapping regions in F dimensions, it is possible to achieve an optimized

query time of O(log(N)), with a complexity of O(NF) storage in the theoretical worst case

[29]. This result can be directly mapped to packet classification applications, where a filter

with F fields corresponds to a region in the F dimensional space [29, 30]. Suppose we have N

= 1000 filters and each filter has five fields (F = 5). To achieve an optimal query time

O(logN) = 10 memory accesses, we need on the order of NF = 100 terabytes of storage. On

the other hand, to achieve an optimal storage of O(N), we need on the order of logF-1N = 9840

memory accesses. Fortunately, these analyses represent a theoretical worst case; real-world

rule sets are typically simpler than the theoretical worst case. Many algorithms have been

proposed to solve the multiple filed packet classification problem. In this section, we list

several representatives. These include trie-based, hash-based, and heuristic algorithms. At the

end of this section, we review the industry approaches and state their limitations in providing

a solution for deep packet inspection.

 - 25 -

10

1

010

00

011

1
10

0

Figure 2-4. An example of Patricia Tree for storing strings 1, 00, 010, and 011.

Trie-based Algorithms:

Trie-based solutions are the most traditional solution for packet classification. A trie is a

general-purpose data structure for storing strings as shown in Figure 2-4. The IP address may

be represented as a string of bits, so we can use trie-based approach to identify IP addresses.

The most well known trie for packet classification is the Patricia Trie [31]. Patricia tries store

prefixes in a tree-like structure with a 0 and 1 on each link corresponding to the bit at the

given level in the tree. In the worst case, to obtain the final classification results, we need as

many memory accesses as the number of bits in the fields (w). This example is for the

classification for one field. For classification problems with multiple fields, Grid-of-tries [32]

builds multiple levels of tries, each level corresponds to a field. Once a match is found in one

dimension, a search is performed in a second level trie tree linked by the first level tree node.

Another trie-based approach, Area-based Quad Tree (AQT) [33] works for two dimensional

space. It keeps dividing separating the space into four regions recursively until the number of

filters in each region is smaller than a constant.

In general, trie-based schemes do not work very well at multiple-field classification

because the number of memory lookups is related with the number bits in all fields. For the

 - 26 -

popular five field classification based on protocol, source IP address, destination address,

source port number, destination port number, there are a total of 104 bits and hence in a worst

case 104 memory lookups is needed.

Hash-based Algorithms (Tuple based algorithms):

Trie based algorithms are built purely based on the classification rules. They do not take into

consideration of the incoming packets’ distributions. Hash-based algorithms, however, do

take this information into consideration. Hash based algorithms perform a series of hash

lookups for each possible prefix length to identify the highest priority matching rule. Hash-

based algorithms, in the worst case, require memory accesses to all of the hash tables and

thus need to conduct many memory accesses. However, the hash function can be optimized

based on the distribution of incoming packets. One can develop good hash functions that

require one memory access for the most common prefixes.

Srinivasan, et al., observed that in real applications, the filter database typically uses only

a small number of distinct field lengths. Therefore, they proposed that by mapping filters to

tuples, even a simple linear search of the tuple space (one hash probe for each tuple space)

can provide a significant speedup against linear search [34]. They also demonstrated an

optimized hashing technique for two dimensional spaces, called rectangle search. However,

to support lookups in more than two dimensions, the algorithm still requires at least WF-1/F!

memory accesses, where W is the number of bits in each field and F is the number of fields.

Suppose W =16 and F = 5, this yields 546 memory accesses.

Heuristic Algorithms:

Beside trie-based algorithms and hash based algorithms, there are heuristic algorithms that

work great on real-world filter sets. Here, we discuss two heuristic algorithm examples:

HiCuts [35] and HyperCuts [36]. The HiCuts algorithm works by carefully pre-processing

 - 27 -

the classifier to build a decision tree data structure. Given a packet, the decision tree is

traversed to find a leaf node, where a small number of rules are stored. A linear search among

these rules yields the classification result. HyperCuts is another decision tree based

algorithm. Unlike HiCuts, however, in which each node in the decision tree represents a

hyper plane, each node in the HyperCuts decision tree represents a multi-dimensional

hypercube. Using this extra degree of freedom and a new set of heuristics to find optimal

hyper cubes for a given amount of storage, HyperCuts can provide an order of magnitude

improvement over HiCuts classification algorithms. These heuristic approaches yield state-

of-art best results, e.g., 20-30 memory accesses per packet in the “worst case”.

We have reviewed representative algorithms developed by researchers for packet header

processing. Next, we review the state of art commercial packet header processing systems.

Commercial Packet header Processing Systems

Commercial systems usually use caches to improve performance. For packet header

processing, common packet headers can be cached to speed up future lookups. The cache hit

rate for caching full IP addresses in routers is at most 80-90% [37, 38]; cache hit rate is likely

to be much worse for caching full headers. Incurring a linear search cost to search through

100,000 filters would be a system bottleneck even if it occurs on only 10% to 20% of the

packets [39].

When there is a cache miss, there are two choices. The first is to use software-based

algorithms mentioned previously to identify the classification results. Since software-based

algorithms are slow, some high end routers use hardware based solutions with Ternary

Content Addressable Memory (TCAM). Here we give a brief description of TCAM and we

will give a more detailed analysis of TCAM later in Section 2.3.2. TCAM is a type of special

memory built for parallel searching. It has many entries and it can compare the input with all

 - 28 -

its entries in parallel. Using TCAM for packet classification is very simple: just insert all the

classification rules into the TCAM, one rule per TCAM entry. Given an input packet,

TCAMs can compare the input with all the entries in parallel and report the classification

result with just one TCAM lookup time (e.g., 4 ns), removing the uncertainty of most

software-based solutions. Large routers such as Cisco 7304 MSC [40] use TCAM to support

10 Gigabit classification rates.

Limitation of Current Packet Classification Problem

All the Layer 4 classification solutions presented above are for single matching classification,

i.e., they only report the highest priority match. As we have discussed in the Section 1.3,

rules in intrusion detection systems often overlap with each other, and demand all the

matching results (multi-match classification results). The multi-match classification problem

is more complex to implement than single-match classification since it needs to return more

than one matching result. Some of the heuristic software solutions for single match

classification are not applicable to the multi-match problem. In addition, the hardware

solution using TCAMs cannot be used to return multi-match classification results directly

since TCAMs only return the first match result. In this dissertation, we particularly focus on

algorithms for the multi-match classification problem.

2.2.2 Packet Payload Inspections

Now, we have surveyed packet header processing systems, next we survey the packet

payload processing systems. Packet payload processing is different from the packet header

processing. Packet headers have fixed formats, but packet payload may follow many

different application formats. Often we do not know where the patterns appear. Therefore, we

have to search entire packet payload.

 - 29 -

High speed payload processing is required by many deep packet inspection systems such

as SNORT, Bro, and Linux L7-filter. These systems typically have a large rule database and

they compare incoming packets against all of these rules. Due to the complexity of rules,

existing systems are all software-based and packet processing speed is very limited, as we

have shown in Section 2.1.

Router vendors are also introducing new products for Layer 7 deep packet inspection.

Some of the simple functions are supported by hardware, while most of the complicated rule

matching is still done in software. Next we describe several commercial products.

PMC Sierra introduced the PM2329 ClassiPI network classification processor that

supports 16K policy rules [41]. These rules can be spread over multiple independent engines

for rule comparisons. Rules in one engine are searched sequentially. Rules can be written

using regular expressions. However, the classification processor supports only a limited

number of regular expressions (12 reported in [41]).

Cisco’s Internetwork Operating Systems (IOS)-based Intrusion Prevention System (IPS)

contains several Signature Micro Engines (SMEs) [42]. Each SME typically corresponds to

the protocol in which the signature occurs and looks for malicious activities in that protocol.

Given a packet, there may be multiple rules associated with it so it is processed by several

SMEs. When an SME scans the packets, it extracts certain values and searches for patterns

within the packet via the regular expression software. Similar to PCM Sierra’s PM2329

ClassiPI, most of the inspections in Cisco IOS are software-based. There is no public report

of the processing power of these systems when the number of rules is large.

These existing packet payload scanning systems have limitations on the number of rules,

the type of regular expressions, and the number of bits in the packet. As the number of rules

are getting larger (e.g., SNORT has more than 4000 rules) and more complex (different types

of signatures are used), these existing software solutions is not sufficient and do not support

 - 30 -

high processing rates. Instead, we need stronger hardware support to boost the performance

to Gigabit rates. In the next section, we review the emerging hardware technologies that can

potentially help us solve the deep packet inspection problems with high rates.

2.3 Hardware Opportunities

Hardware technologies are developing fast. To speed up deep packet inspection, we need

hardware that has the following three characteristics: a high degree of parallelism, fast

processing time, low power consumption, and configurable. In this section, we first explain

these three requirements in detail. Then we list several technologically feasible hardware

components that meet these, and thus achieve the necessary speedup for the deep packet

inspection systems.

2.3.1 Requirements for Hardware Technologies

Deep packet inspection will compare a packet with thousands of signatures. We stated in

Section 1.3 that this inspection process has the following characteristics. First, we must

handle a large number of signatures. Second, these signatures are highly complex and have

overlaps. Lastly, signatures change over time. In response to these characteristics, hardware

technologies must meet the following requirements.

To support a large number of signatures, hardware technology for deep packet inspection

must have a high level of parallelism. Any solution that requires comparing the packet with

signatures one by one does not scale well. Second, hardware technology must have a fast

processing time to process complex signatures to keep up with the Gigabit line rate. Since we

must inspect packets from every line card, deep packet inspection solutions must use a

moderate amount of power so as not to impose high load on the cooling system. Lastly,

hardware must be configurable. New signatures will be developed for detecting new worms.

 - 31 -

Or even new signature languages may be introduced in the future. Hence, it must allow the

incorporation of these new signatures through flexible configuration.

 To meet the above requirements, we identify the following three types of hardware that

can be potentially used for high speed deep packet inspection. They are TCAM, FPGA, and

Multi-core processors.

2.3.2 TCAM

TCAMs are a piece of specialized hardware built for parallel comparison. A TCAM consists

of a large array of comparators which can perform parallel matching of its constituent entries.

The top entry of the TCAM has the smallest index and the bottom entry has the largest. Each

entry has several cells that can be used to store a string. A TCAM works as follows: given an

input string, it compares this string against all entries in its memory in parallel, and reports

one entry that matches the input. A TCAM has the following nice properties that make it an

excellent choice for deep packet inspection.

1. High degrees of parallelism. TCAMs can be used to store a high number of entries.

Single-chip densities of TCAMs are approaching 2 Megabytes (MB) [43]. The width

of each entry can be configured according to user requirements. For example, a 1 MB

TCAM can be programmed as 64K entries with 16 bytes per entry, or 1K entry with

1K bytes per entry, etc. Given an input string of 16 bytes, a 1MB TCAM can

compare the string with all 64K entries in parallel.

2. Efficient support for IP addresses. Unlike a binary CAM, which only has two

states: 0 or 1, each cell in a TCAM can take one of the three states: 0, 1, or ‘?’ (do not

care). With the ‘do not care’ state, TCAM can be used for matching variable prefix

CIDR IP addresses and thus can be used in high-speed IP lookups [44]. There is a 1-

to-1 correspondence between the TCAM memory bits and the number of bits in a

 - 32 -

Figure 2-5. TCAM.

classification rule. This is the total number of bits in all fields. For example, an IP

address has 32 bits and will hence uses 32 TCAM cells.

3. Fast and deterministic lookup time. The lookup time (e.g., 4 ns [43]) of TCAMs is

very short and it is deterministic for any input. In the current Internet, the average

packet size is 402.7 bytes [45]. If one packet requires one TCAM lookup for packet

header processing, TCAM-based solution can achieve an 805.4 Gbps classification

rate.

The three properties above make TCAM one of the top candidates for a deep packet

inspection system. However, TCAMs also have limitations. Current off-the-shelf TCAMs

can only report one of the matching results, even though there may have been many matches.

This limits TCAMs’ matching power in the presence of deep packet inspection rules that

overlap. In addition, TCAMs are expensive and consume a lot of power. Next, we explain

these limitations one by one.

• Only report the highest match results. Because of the ‘do not care’ state, one

input may match multiple TCAM entries. Today’s off-the-shelf TCAMs are first-

match TCAM, which gives out the lowest index match of the input string if there

are multiple matches. Figure 2-5 shows an example TCAM. If we remove the

priority encoder, a TCAM returns a matching vector. The processor needs to step

 - 33 -

0

2

4

6

8

10

12

0 20 40 60 80 100
% of Device Searched

Po
w

er
 (i

n
w

at
ts

)

100% refrequent
operation
83% refrequent
operation
66% refrequent
operation
50% refrequent
operation

Figure 2-6. Power consumption for a 9 Mibt TCAM.

through the vector to extract the matching results. This is not computationally

efficient when the number of entries in the TCAM is large and the matching

vector is sparse, which is true for SNORT filter sets as we will show later in

Section 4.4. In this dissertation, we use the off-the-shelf TCAMs and do not make

changes to the priority encoder.

• High cost. TCAMs are more expensive than Static Random Access Memories

(SRAMs). Table 2-1 shows that TCAMs cost about 30 times more per bit of

storage than DDR SRAMs [44].

• High power consumption. TCAMs consume 150 times more power per bit than

SRAMs [46]. Figure 2-6 shows the power consumption of a 9 Mibt TCAM. It is

linear to number of entries searched in parallel, and it is also directly related to

the frequency of TCAM access. Therefore, to develop a power efficient TCAM-

based solution, we need to insert limited number of entries into the TCAM and

access it as infrequent as possible.

To decrease the power consumption of TCAMs, TCAM vendors provide a

block feature. A TCAM block is a contiguous, fixed-sized chunk of TCAM

 - 34 -

entries, usually much smaller than the size of the entire TCAM [47]. For

example, a 128K entry TCAM could be divided into 8 blocks containing 16K

entries each. With this feature, we can selectively search one or several blocks,

instead of the entire TCAMs, saving the energy consumption.

• Low flexibility. Each cell in TCAMs can take one of the three states: 0, 1 or

“don’t care”. It can’t support range matching directly. A filter containing range

may require multiple TCAM entries e.g., port 2-5 is represented as 01* and 10*.

In addition, TCAMs cannot support negation form, for example “not 4”. “not 4”

is essentially two ranges: 0-3 and 5 to the maximum value.

Table 2-1. Different memory technologies.

Technology Single chip
density

$/chip
($/MByte)

Access
speed Watts/chip

Networking
DRAM 64 MB $30-$50

($0.50-$0.75) 40-80 ns 0.5-2W

SRAM 4 MB $20-$30
($5-$8) 4-8 ns 1-3W

TCAM 1 MB $200-$250
($200-$250) 4-8 ns 15-30W

As shown above, TCAMs have many nice properties, including massively parallel

comparison abilities. However, we also showed that they have several limitations. In this

dissertation, we develop algorithms that use TCAMs to achieve high speeds while not being

restricted to these limitations.

2.3.3 FPGA

Similar to TCAMs, Field Programmable Gate Arrays (FPGAs) can also support a high

degree of parallelism. FPGAs are semiconductor devices containing programmable logic

components and programmable interconnects [48]. Engineers can program the logic

components to perform different types of tasks such as AND, OR, XOR, NOT. These logic

 - 35 -

components can be linked together through programmable interconnects to build complex

functions such as data calculation.

FPGAs are an excellent candidate for deep packet inspection due to their abilities of

parallelism, easy configuration, and high efficiency.

• Support high level of parallelism. The programmable logics in FPGAs can run

in parallel, hence FPGAs can perform multiple tasks simultaneously.

• Easy configuration. The logic blocks and interconnects in FPGAs can be

programmed after the manufacturing process. When there are new signatures or

new detection architecture change, we can modify the logic blocks and

interconnects to gain the desired functionalities in the FPGA.

• High efficiency. Deep packet inspection has quite different requirements from

other applications such as 3D animation and scientific calculations. It mainly

requires logical comparisons, while complex numeric calculations such as

floating point number processing are rarely used. For FPGA-based approaches,

we can customize the chip to provide the optimal performance for the required

functions only.

The above attractive properties make FPGAs an excellent candidate for deep packet

inspection systems. In fact, FPGAs have already been used for regular expression matching

[49]. For example, Lockwood, et al., proposed a FPGA based solutions are used to detect

worms and malware that scan traffic at rates up to 600Mbps [50]. Moreover, FPGAs are a

multi-billion dollar industry, which leads to continous investments and advaces. TCAMs are

special products for switch companies.

Comparing FPGAs to TCAMs, FPGA are more flexible and can handle more complex

tasks. For example, one can build circuits for regular expression matching easily in FPGAs,

which is difficult to support in TCAM. Hence, FPGAs are ideal to handle complex deep

 - 36 -

packet inspection. However, for simple task such as straight forward string comparisons,

such as packet classification, TCAMs are still a better choice than FPGA because TCAMs

are a piece of hardware specially built for parallel comparison, it can run at higher

frequencies and yield lower cost compared to FPGAs.

2.3.4 Multi-core Processors

We have explained that FPGAs are more flexible than TCAMs. General processors are even

more flexible than FPGAs. We can program it using high level languages (e.g., C, C++) that

are simpler to program, rather than the low level VHSIC (Very High Speed Integrated

Circuit) Hardware Description Language (VHDL) for FPGAs which is relatively harder to

master.

Recently, multi-core processors are becoming popular. Different from the traditional

single core processors, multi-core processes combine two or more independent processors

into a single package. These independent processors can run in parallel hence can provide

higher computation power. As the processing power of single core processors are

approaching its limit [51], multi-core processors are becoming popular to achieve higher

computation power. For example, many PC vendors like Dell, IBM, and Apple, are selling

PCs with dual-core processors. Networking equipment vendors are also using multi-core

processors. The widely used Intel Network Processor Units (NPUs) have 8-16 cores [52].

Recently, IBM introduced cell processors with eight cores for fast processing pixels for video

games [53]. Cisco also built a Silicon Packet Processor (SPP) that contains 188 32-bit

embedded RISC cores for Cisco’s high end routers [107].

Multi-core processors are a good candidate for high speed deep packet inspection

because they have multiple cores that can provide parallel computations. In addition, they are

 - 37 -

very flexible. We can easily port software approaches such as SNORT to multi-core

environments. However, multi-core processors also have the following two limitations.

• The number of cores is limited. For example, Intel IXP2800 NPU [52] has 16 cores,

which is much smaller than the number of patterns as it’s typical to have thousands of

patterns in deep packet inspections systems. Hence, one pattern per processing unit is

infeasible. We need smart algorithms to partition different tasks and patterns into the

different cores.

• The size of fast local memory of each processing unit is limited. For example, the

newly architected IBM cell processor has 8 synergistic processor elements, each with

128 KB local memory [53].

2.3.5 Summaries on Hardware Technologies

We described three types of hardware technologies that are potentially useful for deep packet

inspection: TCAMs, FPGAs, and multi-core processors. TCAMs are very specialized devices

built just for parallel comparison. TCAMs work most efficiently, in terms of cost and speed,

for tasks that need massive comparison of input with limited length strings. FPGAs on the

other hand are more flexible, and can support more complex tasks. Multi-core processors are

even more flexible, can support an even wider variety of computation tasks. However, for

simple computation, TCAMs are sufficient.

In the next four chapters, we present our algorithms for deep packet inspections with

these hardware technologies. For tasks that require a massive amount of simple comparisons,

such as packet classification, we adopt TCAMs. As we mentioned earlier, TCAMs have four

limitations: not being able to report all matching results, inflexible to support ranges and

negations, have high costs, and consume a lot of power. We will present our TCAM-based

schemes that address these limitations. Chapter 3 describes a mechanism for mapping

 - 38 -

negations efficiently into the TCAMs, and presents an algorithm to report all the matching

results with just one TCAM lookup for packet classifications. Chapter 4 extends Chapter 3,

focusing on limiting memory and power consumption of the TCAM.

Beside packet header processing, deep packet inspection also requires payload

processing, which compares the payload with a set of signatures. For fixed string-based

signature comparison, we propose a TCAM-based solution in Chapter 5. Unfortunately, it is

an extremely difficult problem to directly support regular expression based signatures in

TCAMs. Hence, we propose algorithms for general processor and multi-core based

architectures in Chapter 6. Our schemes can be extended to FPGA-based platforms [54].

 -39-

3 Multi-Match Packet Classification with TCAM

As introduced in Chapter 1, the goal of this dissertation is to develop algorithms and system

organization for high speed deep packet inspection. Accomplishing this requires two

technical components: processing the packet header, and processing the packet payload as we

explained in Section 1.5. In this chapter, we describe our approach for the first component,

namely, multi-match packet classification that applies to the packet header. In particular, we

present a scheme based on Ternary Content Addressable Memory (TCAM), which produces

multi-match classification results with only two memory lookups per packet.

The rest of the chapter is organized as follows. We first motivate the problem in Section

3.1. Then we investigate the characteristics of multi-match classification sets in Section 3.2

and show that software-based single-match classification approaches do not work efficiently

on the multi-match classification sets: they either need a large amount of memory or have a

high computation cost. To solve these problems, we pick TCAMs due to their extraordinary

parallel comparison ability. Next, we explore some design choices and technical challenges

on using TCAMs for the multi-match classification in Section 3.3. We present our Geometric

Intersection Method to correctly order filters for reporting multi-match classification results

in Section 3.4. Then we describe our method to efficiently represent these filters into TCAM

in Section 3.5. We demonstrate the effectiveness of our TCAM-based method using the

SNORT rule sets in Section 3.6. With our approach, we can report multi-match classification

results with just two memory lookups while using a moderate TCAM size of 135 KB. Finally

we briefly review the related work in Section 3.7 and conclude in Section 3.8.

 - 40 -

3.1 Introduction

In typical packet classification, an incoming packet is compared against a set of filters. Most

traditional applications, such as IP routing, only require the highest priority match, e.g., the

longest prefix match. However, as we showed in Section 1.3, many new applications demand

multi-match packet classification, where all matching filters need to be reported. For

example, in accounting applications, multiple counters need to be updated for a given packet

[55]. As different packets are associated with different sets of counters, multi-match

classification is necessary to identify the relevant counters for each packet. Another

application of multi-match classification is network intrusion detection systems, which

monitor packets in a network and detect malicious intrusions or DOS attacks. Systems like

SNORT [10] employ thousands of rules, each containing attack signatures. Each rule has two

components: a rule header and a rule option. As we explained in Section 2.1.1, the rule

header (the focus of this chapter) is a classification filter that consists of five fixed fields:

protocol, source IP, source port, destination IP, and destination port. The rule option (the

focus of Chapter 5 and Chapter 6) is more complicated: it specifies intrusion patterns to be

used to scan packet contents. Rule headers may have overlaps, so a packet may match

multiple rule headers. Multi-match classification is used to find all the rule headers that

match a given packet so we can check the corresponding rule options one by one later.

The multi-match classification problem is relatively new, and we are among the first to

study it in depth. The related single-match classification problem, however, has been

extensively studied. We have surveyed in Section 2.2.1 various single-match classification

algorithms. We showed that the state of art heuristic approaches [30, 32, 35, 36] provide the

fastest classification results, with 20-30 memory accesses per packet in the “worst case”.

Multi-match classification problem is more complex to implement than single-match

classification since it needs all the matching results. Thus, some of the heuristic optimizations

 - 41 -

used for the single-match classification do not apply for the multiple-match case, as we will

show later in Section 3.2. Moreover, multi-match classification is usually the first step in

performing complex network system functions followed by processing that is dependent on

the classification results. For example, given a packet, it may match multiple counters and all

these counters need to be incremented. Ramabhadran and Varghese showed that counter

updating is a complicated process [56]. We first need to conduct a memory read to get the

current value of the counter, then update the counter, and finally do a memory write to write

the value back. As line rates have been increasing to 1 Gigabit or even 10 Gigabit rates (OC-

192 is 10 Gbps), each counter matched by a packet must be read and written in the even

decreasing time to receive a packet at line speeds. For example, a 40 byte packet must be

processed in 32 nanoseconds (ns) at OC-192 speeds. A high number of updates impose

stringent requirements on the bandwidth needs. For example, eight 64-bit counters in every

32 ns require 16 Gbps of memory bandwidth. These complicated follow-up processing

demands multi-match classification to be finished in the order of several nanoseconds.

In this chapter, we adopt TCAMs for the multi-match classification problem due to their

extraordinary parallel comparison ability. We present a TCAM-based approach, which

produces multi-match classification results with only two memory lookups per packet. Before

we present our algorithms in detail, next we study the characteristics of multi-match

classification sets and understand their special requirements.

3.2 Characteristics of Multi-match Classification Sets

In this section, we compare some typical multi-match classification filter sets against single

match classification filter sets. We show that multi-match filter sets are larger and create

more intersections in Section 3.2.1. Due to these characteristics, we demonstrate that

software-based approaches do not work efficiently on multi-match classification filter sets in

 - 42 -

Table 3-1. SNORT rule headers statistics.

Version Release date Filter set size Filters added Filters
deleted

2.0.0 4/14/2003 240 - -
2.0.1 7/22/2003 255 21 6
2.1.0 12/18/2003 257 3 1
2.1.1 2/25/2004 263 6 0

Table 3-2. Comparison of multi-match and single-match filter sets.

Multi-match
filter sets (SNORT)

Single-match
filter sets

2.0.0 2.0.1 2.1.0 2.1.1 S1 S2 S3 S4 S5
of filters in the set 240 255 257 263 3061 184 4557 68 264
of fields per filer 5 5 5 5 5 5 5 5 5
Average filter size
(logarithm of 2) 64.67 60.73 60.81 60.91 31.6 54.86 24.5 56.58 48.25

of intersections 3453 3754 3758 4067 3420 318 3502 70 318

Section 3.2.2. Finally, in Section 3.2.3, we explain the reasons that make TCAM a great

candidate for the multi-match classification problem.

3.2.1 Study of Multi-match classification filter sets

We pick the SNORT rule sets [10] as the test sets for multi-match classification because they

are very popular (downloaded by approximately 2000 users per week) and also they are

publicly available. We tested all the publicly available Versions after 2.0. Although each set

has around 1700-2000 rules, many of the rules share a common rule header (classification

filter), because intruders piggyback on top of known vulnerabilities, so new attacks are built

upon old ones. As illustrated in Table 3-1, unique rule headers in each version are relatively

stable. Note that the versions that share the same rule headers with the previous version are

omitted.

Table 3-2 compares the SNORT multi-match set with the single match filter sets used in

real-world firewalls, core routers and access routers [46]. The first row records the number of

 - 43 -

filters in the filter set and the second records the number of fields per filter. These filter sets

all have the standard five fields: protocol, source IP, source port, destination IP, and

destination port. The third row of the table records the average filter size. The size of a filter

denotes the number of different packet headers it can match. For example, a very specific

filter “tcp 162.208.1.1 80 138.1.1.1 80” matches only one specific tcp packet header that is

from the source IP address 162.208.1.1 with a source port 80 to the destination IP address

138.1.1.1 with the destination port 80. Therefore, this filter’s size is one. At the other

extreme, a very generic filter “any any any any any” will match packets with any protocol,

any source, any port number, to any destination IP addresses with any port number. The

unique packet headers it can match are exponential to the number of bits in the filter. In this

case, the number of bits in the filter is 104 (8 bits protocol id, 2 ports with 16 bits each, 2 IP

addresses with 32 bits each). Thus the size of this generic filter is 2104. As shown in Table

3-2, multi-match filters are on average 264.67/243.158 ≈220 times bigger than single matching

filter sets.

Beside the filter size, we also record the number of intersections generated by the filter

sets in Table 3-2. Here, two filters generate an intersection if they have overlaps; in other

words, if there exists a packet that matches both filters. As we can see that, multi-match

classification filters generate a much higher percentage of intersections than the single match

classification filters. We show in the next section that large filter sizes and large numbers of

intersections make software-based single-match solutions either need to consume a lot of

memory or require many memory accesses.

 - 44 -

3.2.2 Applying Single Match Classification Algorithms to the Multi-match

Classification Set

The previous subsections showed that, compared to single-match filter sets, multi-match

filter sets have two noticeable characteristics. First, filters are significantly larger in size.

Second, they create a large number of intersections. In this section, we show that these two

properties make some software-based heuristic algorithms, which are great for single match

filter set, work poorly for the multi-match case.

Many schemes have been proposed for the single match classification problem. Some of

them can be extended to report multi-match results. For example, Grid of Tries and Extended

Grid of Tries (EGT) [32, 57] use the source and destination IP addresses to build a trie-like

tree and store the related filters in the leaf nodes. By traversing the trie-like tree according the

source and destination IP addresses, we can acquire all the related filters that apply to this

source and destination IP combinations. Multi-match results can be obtained by comparing

the other field information (e.g., protocol, source port, and destination port) with these filters

one by one. Unlike EGT, where source and destination IP addresses are used to build the tree

(trie in the EGT case), some state-of-the-art heuristic algorithms, such as HiCuts and

Hypercuts [35, 36], use other criteria (such as port ranges) to build the tree. Similarly, they

can be extended to provide multi-match classification results as well.

These software solutions were developed based on the characteristics of single-match

filter sets. For example, EGT is based on the observation that in typical single-match filter

sets, at most 20 rules will match any packet when considering the source and destination

fields. Hence, we can search the tree based on the source and destination fields and then

perform a linear search among the returned filters. This appears to be an economic solution.

However, this observation is no longer valid for multi-match classification sets. As we

showed in the previous section, for the SNORT filter sets, many filters intersect. For

 - 45 -

Figure 3-1. An example of the HiCuts algorithm.

Table 3-3. Applying HiCuts to the SNORT filter set.

SNORT
Version Tree height Number of filters in leaf nodes SRAM used(KB)

2.0.0 18 745,019 41,000
2.0.1 19 803,645 46,297
2.1.0 19 820,415 47,160
2.1.1 18 827,651 49,378

example, they frequently share some common source and destination addresses. Therefore, if

we search the EGT-PC tree based on the source and destination addresses on the SNORT

filter set, we found that EGT may return up to 153 filters for an input packet. All these filters

have to be compared to the packet one by one in software, making the approach highly

inefficient.

We also apply a popular tree based single-match classification scheme -- HiCuts to the

SNORT rule sets. The HiCuts algorithm uses hyper planes to divide up the space and build

the tree. Figure 3-1 illustrates an example, where there are four filters in a two dimensional

space. The first cut goes horizontally and the second goes vertically. As we can see from the

figure, Filter 1 is divided in two through the second cut, hence it is copied into two leaf

nodes. When we apply the HiCuts algorithm to the multi-match filter sets, the large size of

filters causes filters to be copied into many leaf nodes. Table 3-3 shows that, for the SNORT

 - 46 -

2.0.0 filter set, there are 715019 filters in the leaf nodes. Since the SNORT filter set contains

240 unique filters, a filter is copied on average 745019/240 = 3108 times. This high degree of

duplication results in a high demand for SRAM storage. More than 40 MBytes of SRAM are

needed for the SNORT filter sets. This is beyond the largest single chip SRAM density

(around 72Mbit = 9MB today [29]) and thus requires 6 SRAM chips. The number of SRAM

interfaces per chip is usually limited. For example, the Intel IXP 2800 only has 2 SRAM

interfaces [52]. In addition, a high degree of filter duplication calls for large update costs, as

the insertion of a new filter or deletion of an old filter needs to touch all the leaf nodes that

contain it.

As we can see from the above results, due to different characteristics of multi-match and

single-match filter sets, existing software-based solutions do not work efficiently. They either

require high computation costs or demand a large amount of memory. Instead, we need a

hardware approach that uses a small amount of memory and requires few memory lookups to

keep up with the high data rate. In the next section, we will explain why TCAMs meet these

requirements.

3.2.3 Why TCAM?

The previous section showed that multi-match classification filter sets have unique

characteristics that make them hard to solve using the single match software-based

approaches. Furthermore, multi-match classification, because of the complex follow-up

processing, is likely to have much tighter time requirements than the single match

classification described in Section 3.1. We need an apparoach that uses a small amount of

memory and requires few memory lookups to keep up with the high data rate. To meet these

requirements, TCAMs are a good candidate because they are a kind of hardware built for

parallel comparison. A TCAM compares the input with all its entries in parallel in hardware

 - 47 -

1 0 0 0

0 1 1 0

1 0 X X

Match1 0 0 X

Input

TCAM

Rule 1
Rule 2, 3

Rule 3

SRAM
Match list

1
2

3

n

1st entry

 nth entry

Figure 3-2. A TCAM with a SRAM match list.

and reports the matching result in a short time, e.g., 4 ns. They have three desired properties

as we listed in Section 2.3.2: high degree of parallelism, efficient support for IP addresses,

and fast and deterministic lookup time. Unlike software-based solutions, which are optimized

for most common packets, TCAMs compare filters in hardware and report matching results

in a deterministic time for all possible inputs. Hence, a TCAM-based solution offers more

predictable performance and not vulnerable to certain malicious attacks.

These nice properties make TCAMs an excellent candidate for solving the classification

problem at a multi-gigabit rate. As a result, over 6 million TCAM devices were deployed

worldwide in 2004 [55, 58]. Given that TCAM is designed for single-match classification, in

the next section, we will identity the technical challenges of using TCAMs for multi-match

classification. Then in Section 3.4 and 3.5, we address these challenges and propose our

algorithms for multi-match classification using TCAMs.

3.3 Technical Challenges

To use TCAMs for the multi-match classification problem, there are two challenges yet to be

tackled: filter ordering and negation representation. In this section, we explain these in

detail.

 - 48 -

Challenge 1: Arrange filters in a TCAM compatible order

Currently, the commercially available TCAMs report only the first matching result if there

are multiple matches. Figure 3-2 shows an example. This type of TCAM cannot directly

report multi-match result. If one can change the TCAM hardware and let it return a bit vector

of all matching results, one bit matching per matching entry, this still does not solve the

multi-match problem. We still need to process the bit vector to extract the matching result

pattern-by-pattern. Thus, the complexity is still O(N), in the number of patterns N. In the

remainder of the chapter, we assume the off-the-shelf first-match TCAMs without any

modifications.

Filters can have different relationships such as subset, intersection, and superset. These

relationships can cause problems when reporting the matching results with first-match

TCAMs. For example, suppose we have the following two filters:

(a) “Tcp $SQL_SERVER 1433 →$EXTERNAL_NET any”

(b) “Tcp Any Any → Any 139”

If we put filter (a) before (b) in the TACM, a packet matching both filters will report a

match of (a) but never report (b), and vice versa. This is because filter (a) and (b) have an

intersection relationship. That is, two filters have an interaction relationship if there exists a

packet that matches both filters. In this case, we need an algorithm to add additional filters

into the filter sets and order the filters in a specific way to avoid the above problem. Here, we

define such an ordering a “TCAM compatible order,” which means: when a packet is

compared with filters according to this storage order, we can retrieve all matching results

solely based on the first matched filter. There should be no need to check the successive

filters.

Challenge 2: Representing Negation with TCAMs

 - 49 -

1xxx xxxx xxxx xxxx
x1xx xxxx xxxx xxxx
xx1x xxxx xxxx xxxx
xxx1 xxxx xxxx xxxx
xxxx 1xxx xxxx xxxx
xxxx x1xx xxxx xxxx
xxxx xx1x xxxx xxxx
xxxx xxx1 xxxx xxxx
xxxx xxxx 0xxx xxxx
xxxx xxxx x1xx xxxx
xxxx xxxx xx0x xxxx
xxxx xxxx xxx1 xxxx
xxxx xxxx xxxx 1xxx
xxxx xxxx xxxx x1xx
xxxx xxxx xxxx xx1x
xxxx xxxx xxxx xxx1

Figure 3-3. Binary representation of !80 in a TCAM.

The negation (!) operation is common in filter sets. For example, if we wish to find packets

that are not destined for TCP port 80, we will use a filter “tcp any any → any !80”. The 16-

bit binary form of 80 is 0000 0000 0101 0000. There is no direct way to map the

negation into one TCAM entry. If we directly flip every bit, 1111 1111 1010 1111

stands for 65375, which is only a subset of !80. To represent the whole range of !80, we need

16 TCAM entries as shown in Figure 3-3. The basic approach flips one bit in one of the 16

binary positions and puts ‘do not care’ to all the others.

In addition to port negation, some filters require subnet addresses to be negated. For

example, $EXTERNAL_NET frequently appears in filter sets, where $EXTERNAL_NET =

!$HOME_NET. To represent this in the TCAM directly, we need to flip every bit in the

prefix of $HOME_NET and put ‘do not care’ in the other positions. Because IP subnet

addresses are 32 bits, each negated address costs up to 32 TCAM entries. Moreover, there

could be several negations in one filter. For example, the filter “tcp $EXTERNAL_NET any→

$EXTERNAL_NET !80” requires up to a total of 32*32*16 = 16384 TCAM entries for this

 - 50 -

single filter! This is obviously not an acceptable approach since TCAMs have a much

smaller capacity than SRAMs (e.g., 1 MB with current technology).

The next two sections describe our approaches for addressing the above technical

challenges. In Section 3.4, we develop an algorithm to automatically generate an extended

filter set that is in a TCAM compatible order. Some of the filters in the extended filter set

contain negation, which is not directly supported by TCAMs. To overcome this problem, in

Section 3.5, we present an algorithm to remove these negations and map the extended filter

set into the TCAM.

3.4 Geometric Intersection Method

This section addresses the first technical challenge as presented in Section 3.3, -- to order

filters in a TCAM compatible order. To obtain multi-match results in one lookup with first-

match TCAMs, we need to identify intersections between filters. Hence in this section, we

first propose an overview of a Geometric Intersection Method for identifying filter

intersections in Section 3.4.1. Next we study the relationships between filters in Section 3.4.2

and propose an algorithm to automatically order rules into a TCAM compatible order in

Section 3.4.3.

3.4.1 Overview of the Geometric Intersection Method

In our Geometric Intersection Method, we maintain all the intersection filters as separate

entries in the TCAM. Studies in [59, 60] show that the number of intersections between real-

world filters is significantly smaller than the theoretical upper bound (O(NF), where N is the

number of filters and F is the number of fields) because each field has a limited number of

 - 51 -

tcp $SQL_SERVER 1433 $EXTERNAL_NET 139

tcp any any any 139

Match

tcp $SQL_SERVER 1433 $EXTERNAL_NET any

Input

TCAM
Stores Rules

Filter 1

Filter 2

SRAM
Stores Match Results

(Index of rule)

tcp $SQL_SERVER 1433 $EXTERNAL_NET 139 Filter 1&2

Figure 3-4. Geometric Intersection Method.

values (e.g., all known port numbers) instead of unconstrained random values. Hence,

maintaining all the intersection filters is feasible.

Filters are inserted into the TCAM. Indices of the filters used to generate the intersection

are stored in a list. We call this list a “Match List” and store it in SRAM as shown in Figure

3-4. Given a packet, we first perform a TCAM lookup and then use the matching index to

retrieve all matching results with a secondary SRAM lookup. The extended filters we

generate plus the original filters form an extended filter set. Throughout the remainder of this

chapter, a “filter” refers to a member of the extended filter set, unless otherwise specified as a

member of the original filter set. The items in the match list are the indices of filters in the

original filter set.

Rules in the TCAM must follow a TCAM compatible order. Next, we study the

relationship between filters and present an algorithm to automatically generate an extended

filter set in this order.

 - 52 -

Figure 3-5 An example of intersections of three filters.

3.4.2 Relationship between Filters

Before we describe our algorithm for generating extended filter sets in a TCAM compatible

order, let us first study the relationship between filters. There are four possible cases between

any two different filters Fi and Fj,: exclusive, subset, superset, and intersection.

Case 1: Exclusive (Fi∩ Fj =φ), e.g., Filter 2 and Filter 4 in Figure 3-5.

Case 2: Subset (Fi⊆Fj), e.g., Filter 3 is a subset of Filter 1 in Figure 3-5.

Case 3: Superset (Fj⊂Fi), e.g., Filter 1 is a superset of Filter 3 in Figure 3-5.

Case 4: Intersection (Fi∩ Fj ≠ φ), e.g., Filter 1 and Filter 2 intersect with each other in

Figure 3-5.

As defined in Section 3.3, a TCAM compatible order requires filters to be ordered so that

the first match should record all the matching results in the match list. Mapping this

requirement into these four cases, two different filters Fi and Fj with match list Mi and Mj, we

get the following requirements regarding the order of Fi and Fj in the extended rule set:

Requirement 1: Exclusive (Fi∩ Fj =φ): then i and j can have any order.

Requirement 2: Subset (Fi⊆Fj): then i<j and Mj⊆ Mi .

Requirement 3: Superset (Fj⊂Fi): then j<i and Mi⊆ Mj .

 - 53 -

Requirement 4: Intersection (Fi∩ Fj ≠ φ): then there is a filter Fl = (Fi∩ Fj) (l<i, l<j),

and (Mi ∪Mj)⊆ Ml.

Requirement 1 is trivial: if Fi and Fj are disjoint, they can be in any order since every

packet matching Fi never matches Fj. For Requirement 2 where Fi is a subset of Fj, every

packet matching Fi will match Fj as well, so Fi should be put before Fj and match list Mi

should include Mj. In this way, packets first matching Fi will not miss matching Fj. Similar

operations are required for Case 3. Besides these three cases, partially overlapping filters lead

to Case 4. In this case, we need a new filter Fl recording the intersection of these two filters

(Fi∩ Fj) placed before both Fi and Fj with both match results included in its match list (Mi

∪Mj) ⊆ Ml). Note that the intersection of Fi and Fj may be further divided into smaller

regions by other filters (e.g., the intersection of Filter 1 and Filter 2 intersects with Filter 3 in

Figure 3-5). In this case, all the smaller regions (1∩ 2 and 1∩ 2∩ 3) have to be presented

before both Fi and Fj (Filter 1 and Filter 2 in our example). This can in fact be deduced by

Requirement 4.

3.4.3 Generating a TCAM Compatible Order

We have studied all the possible relationships between any two filters. Along with the study,

we have identified the ordering requirements of two arbitrary filters as given in Requirements

1 through 4. By applying the corresponding operations, we can meet the requirements and get

a TCAM compatible order. Figure 3-6 is the pseudo-code for creating such an order.

The algorithm takes the original filter set R = {R1, R2, …., Rn} as the input. Each filter Ri

is associated with a match list, which is an index of itself ({i}). The algorithm outputs an

extended filter set F in the TCAM compatible order. The algorithm inserts one filter at a time

into the extended filter set F, which is initially empty (the empty set obviously follows the

requirements of the TCAM compatible order). Next, we show that after each insertion, F still

 - 54 -

Extend_filter_set(R){

F = φ ;
For all the filter Ri in R

 F = Insert(Ri, F);
return F;

}
Insert(x, F){
 for all the filter Fi in F {
 Switch the relationship between Fi and x:
 Case exclusive:
 continue;
 Case subset:
 Mi = Mx∪ Mi;
 continue;
 Case superset:
 Mx = Mx∪ Mi;
 add x before Fi ;
 return F;
 Case intersection:
 If (Fi∩ x ∉F and Mx⊄ Mi)
 add t = Fi∩ x before Fi ;
 Mt = Mx∪ Mi
 }
 add x at the end of F and return F;
}

Figure 3-6. Code for generating a TCAM compatible order.
meets the requirements. Insert(x, F) is the routine to insert filter x into F. It scans every filter

Fi in F and checks the relationship between Fi and x. If they are exclusive, then we can

bypass Fi. If Fi is a subset of x, we just add match list Mx to Mi and proceed to the next filter.

If Fi is a superset of x, we add x before Fi according to the Requirement 3 and ignore all the

filters after Fi (please refer to Appendix A for proof). Otherwise, if they intersect, then

according to the Requirement 4, a new filter Fi∩ x is inserted before Fi if it is not already

been added. The match list for the new filter is Mx∪Mi. We strictly follow the four

requirements when adding every new filter, so the generated extended filter set F is in the

correct TCAM compatible order.

 - 55 -

Table 3-4. Example of original filter set with 3 filters.

 Original filter sets
1 Tcp $SQL_SERVER 1433 → $EXTERNAL_NET any
2 Tcp $EXTERNAL_NET 119 → $HOME_NET any
3 Tcp any any → any 139

Table 3-5. Extended filter set in a TCAM compatible order.

Extended Filters Match List
Tcp $SQL_SERVER 1443 →$EXTERNAL_NET 139 1,3
Tcp $SQL_SERVER 1433 →$EXTERNAL_NET any 1

Tcp $EXTERNAL_NET 119 →$HOME_NET 139 2,3
Tcp $EXTERNAL_NET 119 → $HOME_NET any 2

Tcp any any → any 139 3

Table 3-4 is an example that illustrates the algorithm. It contains three filters. To generate

extended filter set F, first we insert Filter 1. Filter 2 does not intersect with Filter 1 so it can

be added directly. Now, we have Filter 1 followed by Filter 2. When inserting Filter 3, we

find that it intersects with both Filter 1 and Filter 2, so we add two intersection filters with

match list {1, 3} and {2, 3} and put Filter 3 at the bottom of the TCAM. The final extended

filter set F is presented in Table 3-5. Notice that the first four filters contain negation

($EXTERNAL_NET, which is the negation of HOME_NET), as we have explained in

Section 3.3, filters containing negation consume a large amount of TCAM entries. In the next

section, we present a scheme to remove the negations in the filter sets so as to map filters

efficiently into the TCAM.

3.5 Negation Removing

The scheme we just presented can be used to generate a set of filters in a TCAM compatible

order. The next job is to efficiently insert these filters into the TCAM. As explained in

Section 2.3.2, each cell in the TCAM can take one of three states: 0, 1 or ‘do not care’.

Hence, each filter needs to be mapped into a representation composed of these three states.

 - 56 -

Figure 3-7. Source and destination IP addresses space.

Usually, a filter contains IP addresses, port information, protocol type, etc. IP addresses

in the CIDR form can be represented in the TCAM using the ‘do not care’ state. However,

the port number may be selected from an arbitrary range. Liu [61] has proposed a scheme to

efficiently solve port range problem. However, we do not use this scheme here because it

requires two additional memory lookups. Furthermore, the SNORT filter set does not contain

a huge number of ranges. Instead, we just directly map the range into the TCAM using

multiple entries, e.g., port 2-5 is represented as 01* and 10*. A more complicated problem

for the TCAM is that some IP and port information is in a negation form. As explained in

Section 3.3, each negation consumes many TCAM entries, so in this section, our goal is to

remove negation from the filter set to save TCAM space.

Before presenting our scheme, let us first look at the combinations of source and

destination IP address spaces as shown in Figure 3-7. Use the filter set in Table 3-4 as an

example, Filter 3 applies to all 4 regions since it is “any” source to “any” destination; Filter 1

applies to Region D because we assume $SQL_SERVER is in side $HOME_NET; and Filter

2 applies to Region A.

 - 57 -

Figure 3-8. Regions that do not contain negation.

In this two dimensional space, there are regions that do not contain negations as shown in

Figure 3-8. They are Region C ($HOME_NET to $HOME_NET), the combination of Region

C and Region D ($HOME_NET to any), the combination of Region A and Region C (any to

$HOME_NET), and the whole space (any to any). On the other hand, there are regions that

contain negation ($EXTERNAL_NET), including Region A ($EXTERNAL_NET to

$HOME_NET), D ($HOME_NET to $EXTERNAL_NET), and B ($EXTERNAL_NET to

$EXTERNAL_NET) as shown in Figure 3-9.

Consider a region containing negation, Region A, as an example: the filters in this region

are in the form of “* $EXTERNAL_NET * →$HOME_NET+ *”. Note that * means it could

match any thing (e.g. “tcp” or “any” or a specific value). $HOME_NET+ stands for

$HOME_NET and any subset of it such as $SQL_SERVER. If we can extend filters in

Region A to Region A and C as shown in Figure 3-10, we can replace $EXTERNAL_NET

 - 58 -

Figure 3-9. Regions that contain negation.

A

Home Net

Home Net

External Net

Filter 2

Source IP

Destination IP

A and C

Home Net

Home Net

External Net

Source IP

Destination IP

Separator rule
to mask out this

region C

Filter 2

Only one rule in TCAM with negation Two rules in the TCAM both without negations
1. Filter 2 1. A separator filter captures all packets in Region C
 2. Filter 2 is extended to region A and C

Figure 3-10. An illustration of our negation removing scheme.

with keyword “any” and now filters are in the format of “* any * →$HOME_NET+ *”.

However, after extending the region, we change the semantics of the filter and this may affect

packets in Region C. In other words, packet “* $HOME_NET * → $HOME_NET+ *” will

report a match of this filter as well.

This problem, however, is solvable because TCAMs only report the first matching result.

With this property, we can first extract all the filters applying to Region C and put those at

the top of the TCAM. Next, we add a separator filter between Region C and Region A: “any

 - 59 -

$HOME_NET any → $HOME_NET any” with an empty action list. In this way, all the

packets in Region C will be matched first and thus ignore all the filters afterwards. With this

separator filter, we can now extend all the filters in Region A to Region A and C. Similarly,

filters in Region D can be extended to Region C and D, filters in Region B can be extended

to Region A, B, C, D. Therefore, we will put all the filters in the following order:

Filters in Region C: “* $HOME_NET+ * →$HOME_NET+ *”

Separator 1: “any $HOME_NET any →$HOME_NET any”

Filters in Region D, specified in the form of Region C and D:

“* $HOME_NET+ * →any *”

Filters in Region A, specified in the form of Region A and C:

“* any * →$HOME_NET+ *”

Separator 2: “any $HOME_NET any → any any”

Separator 3: “any any any →$HOME_NET any”

Filters applying to Region B, specified in the form of Region A, B, C and D:

“* any * →any *”

Putting extended filter sets in this order can be achieved simply by first adding all three

separator filters to the beginning of the original filter set, then following the algorithm in

Section 3.3. If a filter applies to Region A, it will automatically intersect with the separator 1,

and generate a new filter in Region C. If a filter applies in Region B, it will intersect with all

three separators and create three intersection filters. After that, we can replace all the

$EXTERNAL_NET references with the keyword “any”. Table 3-6 shows the result of

mapping the filter set of Table 3-4 into the TCAM. The first filter in Region C is extracted

from Filter 3 that applies to all four regions. The second filter is a separator filter. With these

two filters, we can replace the $EXTERNAL_NET in filters 3-6 with the keyword “any”. At

the end, there is filter 7 that applies to all the regions. Separator filters 2 and 3 are omitted

because no filter is in the form of $EXTERNAL_NET to $EXTERNAL_NET in the original

filter set. In this example, by adding only two filters, we can completely remove the

 - 60 -

Table 3-6. Extended filter set in a TCAM with no negation.

TCAM Index TCAM entries Match list
1 Tcp $HOME_NET any →$HOME_NET 139 3
2 any $HOME_NET any →$HOME_NET any
3 Tcp $SQL_SERVER 1433 → any 139 3, 1
4 Tcp $SQL_SERVER 1433 → any any 1
5 Tcp any 119 → $HOME_NET 139 2,3
6 Tcp any 119 →$HOME_NET any 2
7 Tcp any any →any 139 3

$EXTERNAL_NET. Compared this to the approach in Table 3-5, which needs up to 4*32 +1

= 129 TCAM entries, this results in drastic 94.5% reduction in space usage.

The above example is a special case because there is only one type of negation

($EXTERNAL_NET) in one field. In the more general case, there can be more than one

negation in each field. For example, there could be both !80 and !90 or !subnet1 and !subnet2

in the same field. The proposed scheme can be easily extended to handle this. If there are k

unique negations in one field and their non-negation forms do not intersect (e.g., an exact

match of 80 and an exact match of 90), then we need k separators of the non-negation form

(80, 90), which may be in any order. If they intersect, we need up to 2k -1 separation filters

for this field. For instance, suppose the negations are !subnet1 and !subnet2. There should be

three separation filters applying to {subnet1 ∩ subnet2}, subnet2, and subnet1. k is usually a

very small number because it is limited by the number of peered subnets. In general, if each

field i needs ki separators, then at most 1)1)(k(i −+∏
 separator filters should be added. In

our previous example of removing $EXTERNAL_NET from source and destination IP

addresses, k1 = k2 =1, so we need a total of 2*2-1 = 3 separator filters.

We presented our Geometric Intersection Method for generating an extended filter set in

a TCAM compatible order in Section 3.2. In this section, we proposed an algorithm to

efficiently remove the negations in the extended filter set so as to efficiently map the filters

into the TCAM, saving the TCAM space. With these schemes, we can obtain multi-match

 - 61 -

classification results with just two memory lookups as showed in Figure 3-4: one TCAM

lookup to get an index into SRAM, and then an SRAM lookup using the index to retrieve all

the matching results. Next, we test our algorithms using different multi-match filter sets.

3.6 Simulation Results

In this section, we test the effectiveness of our TCAM-based approach. We first show that we

can use our Geometric Intersection Method to generate multi-match classification results in

Section 3.6.1. Then we show the negation removing scheme can efficiently map filters into

the TCAM in Section 3.6.2. To test the effectiveness of our algorithm, we use the SNORT

[10] filter set, which was introduced in Section 3.2.1. We tested all the publicly available

versions after 2.0 as shown in Table 3-1.

3.6.1 Effect of Geometric Intersection Method

Our goal is to put multi-match classification filters (SNORT rule headers) into a TCAM as

classification filters, and store the corresponding matching filter indices in the match list.

Hence, given an incoming packet, with one TCAM lookup and another SRAM lookup, we

can get the multi-match packet classification result.

We use the Geometric Intersection Method to produce extended filter sets that are in

TCAM compatible orders. The second column in Table 3-7 records the sizes of the extended

filter sets. The number of intersections SNORT filter sets generated is significantly lower

than the theoretical upper bound. It is roughly 15 times the original filter set, which is well

below the theoretical upper bound. This agrees with the findings in [30, 36, 59]. Hence the

Geometric Intersection Method is viable for the SNORT filter set.

 - 62 -

Table 3-7. Statistics of extended filters set.

Version # of filters
in extended set

Single
negation

Double
negations

Triple
negations

2.0.0 3,693 62.334% 0.975% 0
2.0.1 4,009 62.484% 1.422% 0.025%
2.1.0 4,015 62.540% 1.420% 0.025%
2.1.1 4,330 62.332% 1.363% 0.023%

Table 3-8. Performance of negation removing scheme.

With Negation Negation Removed
SNORT
Version

Extended
filter set
size

TCAM entries
needed

Extended
filter set size

TCAM entries
needed

TCAM space
saved

2.0.0 3,693 120,409 4,101 7,853 93.4%
2.0.1 4,009 145,208 4,411 8,124 94.4%
2.1.0 4,015 145,352 4,420 8,133 94.4%
2.1.1 4,330 151,923 4,797 8,649 94.3%

3.6.2 Negation Removing Scheme

The number of negations in the extended filter set is significant. As shown in Table 3-7, on

average 62.4% of the filters have one negation, 1.295% of the filters have two negations and

there are a very small number of filters with three negations. In our simulation, we assume

the home network is a Class C address with a 24 bit prefix, so each $EXTERNAL_NET

needs 24 TCAM entries. Negation of a port, e.g., !80, !21:23 consumes 16 TCAM entries.

Under this setting, a single negation takes up to 24 TCAM entries; a double negation

consumes up to 24*24 = 576 TCAM entries; and a triple negation requires up to 24*24*16 =

9216 TCAM entries. Hence, if directly putting all the filters with negation into the TCAM, it

takes up to 151,923 TCAM entries as shown in the third column of Table 3-8. Our negation

removing scheme presented in Section 3.4 significantly saves TCAM space. For the SNORT

filter header set, we added 2*3*2*2-1 = 23 separation filters in front of the original filter set

because there are four types of negations: $EXTERNAL_NET at source IP,

$EXTERNAL_NET at destination IP, !21:23 and !80 at source port, and !80 at destination

 - 63 -

Performance of Negation Removing Scheme

0

20000

40000

60000

80000

100000

0
0.0

8
0.1

6
0.2

4
0.3

2 0.4 0.4
8

0.5
6

0.6
4

0.7
2 0.8 0.8

8
0.9

6

% of single Negation

TC
A

M
 E

nt
ri

es
 n

ee
de

d

With Negation
Negation Removed

Figure 3-11. Negation removing scheme.

port. This approach only adds about 10% extra filters in the extended filter set (4th column of

Table 3-8). However, with these additional filters, the number of TCAM entries is reduced by

over 93%.

Note that this total number is larger than the extended filter set size. This is because some

filters contain port ranges that consume extra TCAM entries. The range mapping approach in

[61] is not used because this approach requires two additional memory lookups for key

translations, which reduces classification speed. If a lower speed is acceptable, then we can

also incorporate the range mapping technique. In this case, the total TCAM entries needed is

just the size of extended filter set after removing negations.

Each filter is 104 bits (8 bits protocol id, 2 ports with 16 bits each, 2 IP addresses with 32

bits each), which can be rounded up to use a TCAM with 128 bits per entry. The total TCAM

space needed for the SNORT filter header set in such a TCAM is only 128*8649 = 135 KB.

To study the effect of negation, we randomly vary the negation percentages in the original

filter set. In the SNORT original filter header sets, 89.7% of the filters contain single

negation and 1.1% contain double negation. So, we first test the single negation case. Figure

3-11 shows the TCAM space needed both with and without our scheme for negation removal.

When the percentage of negation is very low, the two schemes perform similarly. In fact,

 - 64 -

when the negation percentage is very small (<2%), putting negation directly using the

straight forward solution shown in Figure 3-3 is better than the proposed scheme since we

introduce extra separation filters that may intersect with other filters. However, as the

percentage of negation is higher, the TCAM space needed for the “with negation” case grows

very fast. In contrast, the curve of the proposed scheme remains flat and thus can save a

significant amount of TCAM space. For example, when 98% of the filters involve negation,

the proposed scheme saves 95.2% of the TCAM space as compared to the “with negation”

case. This is only for the single negation case. For double negations, or triple negations, the

savings would be even greater since each double/triple negation filter requires many more

TCAM entries.

3.7 Related Work

Most existing software-based packet classification algorithms are designed specifically for

single-match classification. The most relevant work on multi-match classification is on filter

conflict detection in [62]. Here, conflicts denote a packet matching multiple filters. The

single-match classification only allows one final matching result and some of the matching

results conflicts with each other, e.g., instructions to “drop the packet” or “accept the packet”.

To resolve these conflicts, usually filters are sorted in a particular order. However, [62]

shows that there are cases where this commonly used conflict resolution scheme does not

work. For these cases, they proposed to solve the problem by adding new filters in a manner

similar to our approach. However, they emphasize on finding these conflicts, while we aim

to automatically generate intersection rules and efficiently map them into the TCAM, saving

TCAM space.

There have been extensive studies of the single-match classification problem. The single-

match problem on multiple fields is complex [59]. For N arbitrary non-overlapping regions in

 - 65 -

F dimensions, it is possible to achieve an optimized query time of O(log(N)), with a

complexity of O(NF) storage in the theoretical worst case [29, 35]. However, real-world filter

sets are typically simpler than the theoretical worst case, and heuristic approaches [32, 35,

63] provide faster results, e.g., 20-30 memory accesses per packet in the “worst case”. These

software approaches were developed based on typical characteristics of single match filter

sets. We showed in Section 3.2 that two representative algorithms (EGT-PC and HiCut)

either compare the input packet against many filters one by one, or require a large amount of

memory when applied to the SNORT filter sets.

Most recently, TCAMs are used in high end routers for single-match packet classification

for routing and Quality of Service (QoS) services [61, 64, 65]. Since TCAMs are smaller and

more expensive than SRAMs, different approaches are proposed to save TCAM space or

reduce TCAM power consumption. For example, Liu [12] proposed an algorithm for

mapping range values into TCAMs. CoolCAMs [14] partitioned a TCAM so that for a given

packet, it searches only several partitions to achieve lower power consumption. Spitznagel, et

al. [66], extended this idea and organized the TCAM as a two level hierarchy in which an

index block is used to enable/disable the querying of the main blocks. In addition, they also

incorporated circuits for range comparisons within the TCAM memory array. These works

focused on single-match classification whereas this chapter aims to find a TCAM-based

multi-match solution.

Shortly after the publication of our work, Lakshminarayanan, et al., proposed another

TCAM-based approach to the multi-match packet classification problem [55]. We will

explain their approach in detail later in Section 4.2.3 and compare them to our scheme in

Section 4.4

 - 66 -

3.8 Conclusions

In this chapter, we presented a TCAM-based method to solve the multi-match classification

problem. Through inserting interactions filters into the TCAM, our scheme reports all the

matching results with a single TCAM lookup and a SRAM lookup. In addition, we propose a

scheme to remove negation in the filter sets, thus saving 93% to 95% of the TCAM space

over a straightforward implementation. From our simulation results, the SNORT filter header

set can easily fit into a small TCAM of size 135 KB, and is able to retrieve all matching

results within just one TCAM access and one SRAM access.

Our Geometric Intersection multi-match method inserts interaction filters into TCAMs to

report multi-match classification results. Theoretically, the number of intersection filters can

be O(NF), where N is the total number of filters, and F is the number of fields. Real-world

filter sets are typically simpler than the theoretical worst case, but we still observe that the

SNORT rule header set creates more than ten times more intersections than the original filter

set size. When the filter set generates many intersections, the method based on Geometric

Intersection is expensive both in memory size and thus power consumption. We address

these issues in the next chapter.

 - 67 -

4 Energy Efficient Multi-match Packet Classification

In the previous chapter, we adopt TCAMs for solving the multi-match classification problem

due to their fast parallel matching capability. Our Geometric Intersection Method reports the

multi-match classification results with just one TCAM lookup and one SRAM lookup. It

achieves this high classification speed by adding intersection filters into the TCAM.

Although processing speed is high, if there are a large number of intersections in the input

filters, there can be a significant increase in memory and power consumption. Our

experimental results on the SNORT filter sets show that this scheme increases the number of

filters in the TCAM by a factor of 10, hence consuming a large amount of TCAM memory.

In addition, these intersection filters are all compared in parallel in the TCAM, resulting in a

high power usage because the TCAM energy consumption is linear to the number of entries

searched in parallel. However, for applications that set highest priority on classification speed

and have sufficient memory, our scheme processes packets at a very high rate.

In this chapter, we develop a general and balanced scheme that takes into consideration

classification speed, memory consumption and power consumption. We present a new Set

Splitting Algorithm (SSA), which splits filters into multiple groups while performing

separate TCAM lookups within these groups. It guarantees the removal of at least half of the

intersections when a filter set is split in two, thus reducing at least 50% of the TCAM

memory and power consumption caused by intersections. SSA also accesses filters in the

TCAM only once per packet, further reducing power consumption. Our simulation results

based on the SNORT filter sets show that, compared with the Geometric Intersection Method

proposed in the previous chapter, SSA uses 90% less TCAM memory and power at the cost

of one more TCAM lookup per packet.

 - 68 -

4.1 Introduction

Multi-match classification is among the initial steps in choosing a set of functions to be

performed when processing a packet. For example, only after obtaining the multi-match

classification results may the router increment follow-up counters, such as those for protocol

type and source IP addresses. These actions are performed on every packet, so we do not

want the multi-match classification process to be the bottleneck in the system. We showed in

Section 3.1 that a purely software-based approach cannot operate at speeds that are consistent

with multi-gigabit line rates. To maintain high packet processing rates, we adopt TCAMs for

multi-match classification, as they perform fast parallel searches across all filters in

hardware. We proposed a Geometric Intersection-based approach in the previous chapter.

Shortly the publish of our work, Lakshminarayanan, et al., proposed another scheme called

MUD for multi-match classification also using TCAMs [55]

However, TCAMs have limitations as we stated in Section 2.3.2. They cost about 30

times more per bit of storage than DDR SRAMs and consume 150 times more power per bit

than SRAMs. As a result, in some high end routers, TCAMs consume around 30 to 40

percent of the total line card power. As line cards are stacked together, TCAMs impose a

high cost on the cooling system. The energy consumption level of a TCAM is related to the

TCAM size and the access frequency [65]. Figure 4-1 illustrates the relationship between

TCAM memory consumption, the number of TCAM accesses, and the TCAM power

consumption. The energy used by a TCAM grows linearly with the number of entries

searched in parallel and also scales with the frequency of TCAM accesses. For example, if

we double the TCAM memory, the energy consumption also doubles. Similarly, if we access

the TCAM twice as frequently, it uses two times as much power. If memory and access

frequency are doubled simultaneously, the power consumption grows to four times the

 - 69 -

original. To be cost and energy efficient, TCAM-based multi-match solutions must use an

economical TCAM memory size and perform a limited number of TCAM lookups for each

packet.

None of the previously published multi-match classification schemes can satisfy both

requirements. For example, the MUD scheme proposed by Lakshminarayanan, et al., encodes

the extra bits in each TCAM entry to support range and multi-match lookup [55]. The amount

of TCAM memory needed is linear with the size of the filter sets. However, MUD needs at

least k TCAM lookups to get k matching results, and all the entries in the TCAM are accessed

during each lookup. We show in Section 4.4.2, k can be 12 - 20 for the SNORT filter sets,

resulting in a proportional 12-20 times increase in power consumption or processing delay

compared to the Geometric Intersection-based method. The effect is much longer processing

time and higher power consumption for packets that match many filters as shown on the

upper right side of Figure 4-2. Our Geometric Intersection Method proposed in Chapter 3

reports classification results in one TCAM lookup and one SRAM lookup [67 2004].

However, achieving this speed requires that all filter intersections (regions of overlap

between filters) be inserted as new filters in the TCAM. Theoretically, N filters with F fields

can create O(NF) intersections, thereby adding O(NF) entries to the TCAM. This approach is

not cost or energy efficient when filters have many intersections as shown in the upper left

side of Figure 4-2.

The Set Splitting Algorithm (SSA) is both memory and power efficient. It works by

splitting the filters into several sets and performing separate TCAM lookups for each.

Through this filter splitting technique, we can decrease the number of intersections required

to be stored in the TCAM, thus decreasing the TCAM memory consumption and also its

power consumption as shown in Figure 4-2. In addition, SSA performs a deterministic

number (2-4 for the SNORT rule set) of TCAM lookup per packet, yielding high

 - 70 -

Figure 4-1. Relationships between TCAM memory consumption, number of TCAM
accesses, and TCAM power consumption.

Figure 4-2. Power consumption of different TCAM-based approaches.

Power consumption

TCAM memory usage
of TCAM accesses

per packet
Inversely determine
classification speed

Determine cost

Power consumption

 low

high

Power consumption

TCAM memory
usage

of TCAM accesses
per packet

Geometric Intersection
Method

 MUD

SSA

Rule set
 size

Intersections

Geometric Intersection
Method requires

1 lookup

SSA includes
very few

intersections

SSA requires
2-4 TCAM
lookups

MUD requires
Up to 20 TCAM lookups

for SNORT rule sets
Geometric Intersection
Method includes O(NR)

intersections

 - 71 -

classification rates. The rest of the chapter is organized as follows. We start by reviewing

existing TCAM-based approaches for the multi-match classification problem in Section 4.2

and show that none of them is both memory and power efficient. Then we present our SSA

scheme in Section 4.3. We demonstrate the effectiveness of our approach by comparing it

with two previously published TCAM-based schemes (MUD and the Geometric Intersection

Method) in Section 4.4. Simulations on the SNORT filter sets show that SSA uses

approximately the same amount of TCAM memory as MUD, but yields a 75% to 95%

reduction in power consumption and up to 4 times speedup. Compared with the Geometric

Intersection Method, SSA uses 90% less TCAM memory and power at the cost of one

additional TCAM lookup per packet.

4.2 Related Work

Several approaches have been proposed to save TCAM space and reduce TCAM power

consumption. For example, methods like CoolCAMs [47] and load balancing TCAMs [68,

69] modify the TCAM and partition it so that, for a given packet, only a limited number of

partitions are searched to decrease power consumption. These approaches are designed for

one dimensional packet classification, such as destination IP lookup (also called longest-

prefix match lookup), which is a common network router operation. Spitznagel, et al., [66]

proposed a extension for the multi-dimensional case. They modify the commercially

available TCAM so as to reorganize it into a two level hierarchy where an index block is

used to enable/disable the access of the main blocks in TCAM (please refer to Section 2.3.2

for the description of block). They also incorporated circuits for range comparisons. In

addition, these approaches are all designed for single match packet classifications and thus

report only the highest priority match. In the rest of this section, we review current TCAM-

 - 72 -

based approaches to the multi-match classification problem and point out when they fall short

in providing a complete solution.

4.2.1 Bit Vector Approach

Currently, commercial TCAMs only report one matching result (usually the first match). This

is because TCAMs have priority encoding circuits that take the matching vector and output

the first matching index, as previously discussed in Figure 2-5 in Section 2.3.2. If we can

modify the TCAM and remove that priority encoder, it can output a bit vector of matching

results, one bit for each entry. This works very efficiently when each matching result is

connected directly to a hardware processing unit [70]. The related follow-up processing can

be triggered immediately, and these follow-up processing units can run in parallel.

However, if we don’t have the whole system built with the aforementioned hardware, the

bit vector approach involves significant processing overhead. In packet classification

architectures, a processor (CPU or Network Processing Unit (NPU)) is connected to a

TCAM. The processor sends packet information to the TCAM, and the TCAM sends back

the matching results. Using the matching results, the processor performs the relevant

operations on the packet (e.g., send to a port, update a counter). If the TCAM returns a

matching vector, the processor needs to step through the vector to extract the matching

results. This is not efficient when the number of entries in the TCAM N is large and the

matching vector is sparse, which is true for SNORT filter sets as we will show later in

Section 4.4. The inefficiency comes from two reasons. First, the rate to transfer the N bit

vector is limited by memory bandwidth. Second, processing complexity is O(N) to extract the

matching results.

It is hard to change the priority encoder to output the matching results only, because the

number of matching entries and how they are spread over the bit vector vary for different

 - 73 -

applications. It is also difficult for TCAM vendors to come up with a general design that

works for all applications.

4.2.2 Current Industrial Approaches

Some commercial TCAMs support multiple matching. There is a valid bit for each TCAM

entry that indicates whether or not to compare it with the input as we shown in Section 2.3.2.

These entries are initially set to valid. Given an input, the first match will be reported in the

first cycle. The valid bit for the first matching entry is then unset to be invalid, and the

TCAM will subsequently ignore that entry. The TCAM then performs another lookup to

report the second match. This process continues until there are no more matching results.

Finally, all the valid bits are set to be valid for the next packet.

As analyzed in [55], identifying k matching results requires 7k cycles, as it takes a total of

6 cycles to invalidate and later revalidate an entry. Furthermore, all entries are searched k

times. Hence, the energy consumption level is high when packets match many entries. In

addition, the match latency is high because performing a serial match loses the benefits of

parallelism.

4.2.3 MUD Scheme

Lakshminaryanan, et al., proposed a novel algorithm to support both range matching and

multiple matching in TCAMs [55]. Their approach is based on the observation that some

commercially available TCAMs have 144 bits per entry, while the 5-tuple typically used for

packet classification has only 104 bits. They proposed a scheme called Multi-match Using

Discriminators (MUD) as illustrated in Figure 4-3. The basic idea is to encode the index of

the entry and include the encoded value in each TCAM entry. For example, for the first entry

in a TCAM, attach 0001 (the value one in binary) after the filter in that entry, and for the

 - 74 -

Filter 3
Filter 2
Filter 1

Packet InfoInput

TCAM

Filter j

0011
0010
0001

Discrim-
inators

j

Figure 4-3. An illustration of the MUD scheme.

Initially the discriminators are set to don’t cares Set the discriminators as “>j”
First TCAM lookup matches the jth entry Second TCAM lookup to get another match

Figure 4-4. An example of matching process with MUD scheme.

second entry, attach 0010 (the value two in binary). When searching for a match, MUD

appends the input packet with a set of discriminators. The packet information is compared

with the filters in parallel, while the discriminators are compared with the encoding of the

indexes in parallel. Figure 4-4 shows an example of the MUD scheme. Initially,

discriminators are all set to “don’t care” states, meaning the input packet can match results at

any index. After finding a matching result at index j, the TCAM is searched again with a

discriminator field value that is set ‘greater than j’ to get the second matching result. ‘Greater

than j’ is a range, it cannot be directly supported by TCAMs because there are only three

states (0, 1, or don’t care) in the TCAM. Hence, the scheme needs to expand this range to

 - 75 -

prefixes. Consequently, MUD may need multiple TCAM lookups to obtain the second

matching result. The authors showed that MUD needs 1+d+(k-2)*(d-1) TCAM lookups to

get k matching results, where d is the logarithm of the number of entries in the TCAM. The

worst case lookups can be decreased to 1+d*(k-1)/r with Database-Independent Range Pre-

Encoding DIRPE, where r (smaller than d) is a parameter controlled by the number of

available bits in each TCAM entry [55].

MUD does not require any modification to existing TCAMs. Compared to commercial

approaches, MUD does not need to store the per-search state in the TCAM (i.e., invalidating

the previously matched TCAM entries) to get the multi-match results. Therefore, it performs

well in multi-threaded environments. However, it shares the same problem with commercial

approaches: the number of TCAM accesses needed per packet is linear in the number of

matching results. We will show later in Section 4.4 that a packet can match up to 12 unique

filters for the SNORT filter sets and thus requires a maximum of 20 TCAM lookups. This is

the worst case performance. However, even in the common case a packet will frequently

trigger many TCAM lookups. For example, a regular HTTP packet matches at least 4 unique

filters. A Napster file-sharing packet can match 8 unique filters and thus requires a maximum

of 15 TCAM lookups. In addition, all TCAM entries are accessed during each TCAM

lookup, so the power consumption of MUD can be high.

4.2.4 Geometric Intersection Methods

The Geometric Intersection Method proposed in the previous chapter inserts filter

intersections in the TCAM to handle a packet that matches multiple filters. These intersection

filters and the original filters are inserted into the TCAM and compared in parallel with the

input packet. Afterwards, the TCAM matching result can be used as an index into SRAM to

get all the matching results as shown in Figure 3-2. Theoretically, the number of intersection

 - 76 -

filters can grow exponentially in the number of fields in the filter. Real-world filter sets are

typically simpler than the theoretical worst case, but we still observe that the SNORT rule

header set creates intersections that are ten times the original filter set size [67 2004]. This

approach is expensive both in memory and power consumption when the filter set has many

intersections, as is the case for SNORT.

As we have shown in the above analysis, none of the previously proposed approaches is

both memory and power efficient. Next in Section 4.3, we present a scheme that uses off-of-

shelf TCAMs and meets both requirements with a Set Splitting Algorithm (SSA), which

greatly reduces the need of storing intersection filters in the TCAMs and accessing each filter

only once.

4.3 A Memory and Power Efficient Approach

In this section, we present our TCAM-based algorithm called Set Splitting Algorithm (SSA),

which uses a small memory size and accesses each filter in the TCAM only once per packet.

We start this section with examples to illustrate the intuition of SSA in Section 4.3.1 and we

will present the detail of the algorithm in the subsequent sections.

4.3.1 Illustration of Our Approach with Examples

Our SSA algorithm is based on the Geometric Intersection Method, which requires only one

TCAM lookup per packet. As an example, consider an input of two simple filters with only

two fields (source and destination ports). The geometric presentation of the filters in a two

dimensional space is shown in Figure 4-5 with the x axis as the source port and the y axis as

the destination port. Note that, if a filter contains F fields, its geometric presentation will be

in an F dimensional space. In this example, filter one (source port any and destination port

8080) and filter two (source port 80 and destination port any) generates an intersection filter

 - 77 -

Figure 4-5. An example of two intersected filters.

(source port 80 and destination port 8080). The Geometric Intersection approach, shown in

the right side of Figure 4-5, needs to include this intersection filter at the top of the TCAM to

capture packets matching both filters. With this intersection filter, the TCAM can report the

multi-match classification result with just one TCAM lookup. This is a very simple example

as there are two filters and they generate only one intersection. For some filter sets, this

approach can create large numbers of intersections. A more complicated example is shown in

Figure 4-6, where all the filters intersect with each other in a two dimensional space. For this

case, we need to insert O(N2) intersection filters at the top of the TCAM for reporting the

multiple matching results with just one lookup. For example, an input packet matching both

F1 and FN (shown using a dot in Figure 4-6) will match the first intersection filter in the

TCAM and hence be indexed to SRAM to get the matching result of F1 and FN.

Too many intersection filters result in high storage requirements and power consumption.

This can be solved if we are willing to sacrifice time to reduce space and power. Take the

previous example in Figure 4-6. If we split the filters into two groups, we can check those

two groups separately and report the matching results from both groups respectively (Figure

4-7). Splitting filters into multiple sets yields a very nice property: intersections generated by

 - 78 -

filters of different groups are no longer needed to be stored in TCAM. This is because the

intersection filters are used to report multiple matching results with one TCAM lookup, e.g.,

Using Geometric Intersection Method, include all intersections in the TCAM

Storage cost: N filters +O(N2) intersection
Classification speed: 1 TCAM lookup time

Figure 4-6. An example of N filters.

F1 and FN. When filters are spread over different sets and we conduct separate TCAM

lookups into these sets, the matching of these filters would be reported separately as shown

Figure 4-7. As a result, we don’t need to keep such intersection filters. However, we still

need to keep intersections that are generated by filters in the same set because we only

conduct one TCAM lookup into each set. Hence, intersection filters are still necessary to

report matching of multiple filters case in the same set. For instance, in Figure 4-7, the

intersection of filter F2 and F3 still needs to be included in the TCAM to report the matching

of both F2 and F3 with one TCAM lookup. As shown in Figure 4-7, by dividing the filter set

into two groups, most intersections are caused by filters from different groups, so they can be

removed. We can reduce the number of TCAM entries from O(N2) to N+1, but it costs two

TCAM lookups.

 - 79 -

One TCAM Lookup
Matching

One TCAM Lookup
Matching

Filter 2
Filter 1

IntSec of 2&3

Filter 2
Filter 1

Filter 2&3
1 inter-
section

N/2
filters

TCAM SRAM

Filter N Filter N

Filter N/2

TCAM SRAM

Filter N/2
N/2

filters

Divide filters into two sets, perform two TCAM lookups
Storage cost: N filters +1 intersection (F2 and F3)

Classification speed: 2 TCAM lookups time

Figure 4-7. Separate filters into two sets.

The main idea behind splitting filters into multiple sets is to reduce the number of

intersections filters needed in the TCAM. As we have shown above, intersections from

different sets are no longer needed in TCAM. Hence, if filter sets are split in a way so that

most intersections occur between filters in different sets, we can save TCAM space and

consequently also reduce power consumption. In addition, every set is accessed only once per

packet and therefore the algorithm is power efficient. Note that although filters are separated

into two sets, we do not necessarily require two TCAMs. TCAM vendors now provide a

blocking feature (introduced in Section 2.3.2) that divides a TCAM into several blocks and

allows users to selectively search one or several blocks in parallel. With this feature, different

sets of filters can be put into different blocks of the same TCAM and be accessed separately.

Since the sets generated by SSA are logically independent, these lookups can even be

pipelined to achieve a higher rate.

 - 80 -

Figure 4-8. An overview of SSA.

Next, we present our Set Splitting Algorithm (SSA) that can automatically separate filters

into multiple sets. Figure 4-8 illustrates the flow chart of SSA. Given a set of filters, it first

mathematically formulates the problem into a set splitting problem. Since the set splitting

problem is NP hard, SSA converts it into a maximum satisfiablity problem which has an

efficient approximation algorithm – Johnson’s algorithm [71]. SSA uses Johnson’s algorithm

as a subroutine to solve the maximum satisfiablity problem and then converts the solution

back to original problem to get the final splitting results. SSA guarantees the removal of at

least half of the intersections each time the filter set is split in two. In the remainder of this

section, we will follow this flow chart and first present the mathematical formulation of the

problem in Section 4.3.2. Then we quickly review Johnson’s algorithm in Section 4.3.3 and

finally present our SSA approach in detail in Section 4.3.4.

 - 81 -

Figure 4-9. Example of filter intersections.

4.3.2 Mathematical Formulation

The previous section proposed an approach to split filters into multiple groups to decrease the

number of intersection filters. In this section, we formulate the filter splitting problem as

follows.

Suppose there are N filters F1, F2, …., FN, which create M intersections I1, I2, …., IM. For

example, I1 = intersection of (F1, F5, F6). We only consider the overlapping intersections that

are different from the original filters because these intersections consume extra TCAM

entries. For the intersections that are the same as one of the original filters, we call them

contained intersections. For example, in Figure 4-9, although F1 and F2 overlap, the

intersection I is the same as F2 (I = F1 ∩ F2 =F2). This intersection is a contained intersection

and doesn’t need to be present in the TCAM because when a packet matches F2, we can

simply report a matching of both F2 and F1. When filters create overlapping intersections,

e.g., the F2 and F3 in the right hand size of Figure 4-9 intersect to create an overlapping

intersection I (I = F2 ∩ F3), we do need to add I into the TCAM because the intersection I is

different from F2 and F3 (I ≠ either F2 or F3), thus requiring an extra TCAM entry. F1 doesn’t

contribute to the generation of this intersection, so I is the intersection of F2 and F3 only. In

other words, I can be eliminated only when F2 and F3 are in different sets. Throughout the

reminder of this chapter, we use the term intersection to denote overlapping intersections.

We want to separate the filters into several sets so that filters generating intersections are

in different sets. We define the residual intersection set I’ as the overlapping intersections

 - 82 -

generated by filters in the same set. Our objective is to separate filters into a minimum

number of sets that satisfy N + |I’| < TCAM size, which is an NP hard problem.

Suppose we restrict the problem by dividing the filters into two rather than multiple sets.

Our new goal then would be to find a way to separate the filters into two sets so that number

of residual intersections is minimal. Unfortunately, this problem is still NP hard and is known

as the maximum set splitting or maximum hypergraph cut problem [72].

The best known approximation algorithm for the maximum set splitting problem yields a

performance ratio of at least 0.72 to the optimal solution [73]. Here the performance ratio is

defined as the number of clauses satisfied by the approximation algorithm to the optimal

solution. This approximation algorithm requires quadratic programming and scales poorly.

For example, [74] reports that it takes 27.35 seconds to compute the results for a set

containing 50 instances (in our problem, a filter is an instance). When the set size increases to

100, it takes 355 seconds to compute the results. When the set reaches 200, it requires 10709

seconds using a Sun SPARCstation1 machine [75]. Although the latest Version of Pentium 4

processors [75] are 190 times faster, this scheme is still too slow for multi-match

classification where there are hundreds to thousands of filters in the filter sets [10, 55]. In this

chapter, we develop an efficient algorithm SSA to quickly divide filters into multiple sets to

reduce the need of including intersection filters. SSA guarantees the removal of at least half

of the intersections each time the filter set is split into two. In addition, it has a low

complexity of O(NM), where N is the total number of filters, and M is the total number of

intersections. In reality, SSA removes almost all intersections, yielding a solution close to the

optimal solution (removing all intersections) as we will demonstrate later in Section 4.4.2.

As previously explained in Figure 4-8, after mathematically formulating the problem, our

SSA algorithm converts the set splitting problem into a maximum satisfiablity problem

because it has a fast approximate algorithm -- Johnson’s algorithm [71]. SSA uses Johnson’s

 - 83 -

algorithm to get an approximate solution to the converted maximum satisfiability problem,

and finally maps the approximate solution back to the set splitting problem. In the next

section, we briefly review Johnson’s algorithm.

4.3.3 Johnson’s Algorithm for the Maximum Satisfiability Problem

Our SSA algorithm converts the set splitting problem into a maximum satisfiablity problem.

A maximum satisfiablity problem is defined as follows. Let L be N literal pairs L = {{ 1F , 1F

}, { 2F , 2F },.., { NF , NF }}. Each literal can take either a true value or a false value. There

are M clauses, with each clause consisting of a subset of literals either in a positive or

negative form, e.g., C1 ={ 1F ∨ 2F ∨ 6F }. The goal is to find an assignment of L that satisfies

the maximum number of clauses. Define K as the minimum number of literals in each clause.

For K≥ 2, this problem is known to be NP complete [72].

Johnson’s algorithm is an approximation algorithm for the maximum satisfiability

problem. As presented in the pseudo code below in Figure 4-10, it works as follows: Initially,

it assigns each clause C a weight = 2-|c|, where |C| denotes the number of literals in C. For

example, the weight of C1 ={ 1F ∨ 2F ∨ 6F } is 2-3. Next, the algorithm examines the literals

one by one. For any literal iF that has not been assigned a value, if the weight of all clauses

containing iF is higher than the clauses containing iF , assign iF a true value. Now all the

clauses containing iF are all satisfied and hence can be removed. Clauses containing iF are

not satisfied yet, so we want the other literals within the clauses to have a higher probability

of being selected as true later. Hence, the algorithm multiplies the weight of all the clauses

containing iF by 2. For the case where the weight of all clauses containing iF is higher than

those containing iF , the algorithm performs the opposite actions.

 - 84 -

Johnson’s algorithm is simple, with O(NM) complexity. [71] proves that Johnson’s

algorithm can satisfy at least the fraction (2K-1)/ 2K of the total clauses. For instance, when K

= 2, it can satisfies at least ¾ of the clauses. Johnson’s algorithm achieves the best

approximate bound for K>2 [71].

Assign each clause with |C| literals a weight = 2-|c|;

While (not all literals assigned weight yet){

Pick any remaining literal Fi;

 If the total weight of clauses containing Fi > those containing iF {

 Assign Fi a true value;

 Remove all clauses containing Fi ;

 Double the weight of clauses containing iF ;

 }else{

 Assign Fi a false value;

Remove all clauses containing iF ;

Double the weight of clauses containing Fi

 }

}

Figure 4-10. Johnson’s algorithm.

4.3.4 Set Splitting Algorithm (SSA)

Having now explained Johnson’s algorithm, in this section, we present SSA, a memory and

power efficient algorithm for multi-match classification. As illustrated in Figure 4-8, SSA

first formulates the problem into a set splitting problem using the techniques explained in

Section 4.3.2. Then SSA converts the problem into a maximum satisfiability problem using

the following approach.

Every filter corresponds to a literal in the maximum satisfiablity problem, where literals

can either take a true or false value. A true value denotes this filter is put into Set St, while a

 - 85 -

false value denotes Set Sf. For every intersection, two clauses are added into the clause set,

one with all positive literals, and one with all negative literals. For example, if I1 represents

the intersection of 1F , 2F and 6F , add two clauses:

 C = { 1F ∨ 2F ∨ 6F } and C’ = { 1F ∨ 2F ∨ 6F }.

Clause C with all positive values denotes that at least one of the filters is in Set St.

Similarly, Clause C’ denotes that at least one of them is in Set Sf. If both clauses are satisfied,

then at least one of the filters is in Set St and another one is in Set Sf. We will prove later,

through a lemma, that if both clauses are satisfied then this intersection no longer need be

present in TCAM. The total number of clauses is 2M, where M is the number of intersections.

After converting the set splitting problem into this satisfiability problem, SSA runs Johnson’s

algorithm to solve it and assign each filter iF either a true or a false value. Below is the

pseudo code of SSA.

Reduce the filter set splitting problem into a max satisfiablity problem:

Each filter Fi corresponds to a literal

For each intersection Ii generated by j filters: Fx1, Fx2, …, Fxj, add two clauses:

C = { Fx1 ∨ Fx2∨ ,…, ∨ Fxj)

C’ = (1xF ∨ 2xF ∨ ,…, ∨
xjF)

Run Johnson’s algorithm to assign each filter Fi a true or false value

Put Fi in Set St if it is true.

Put Fi in Set Sf if it is negative.

Figure 4-11. Set Splitting Algorithm (SSA).

Next we prove that SSA has a nice property: it guarantees the removal of half of the

intersections when a filter is split into two sets. We begin with a lemma and then prove this

property through a theorem.

Lemma: If both clauses of an intersection are satisfied, this intersection is no longer needed

in the TCAM.

 - 86 -

Proof: Suppose I1, the intersection of 1F , 2F , and 6F , has both clauses C = { 1F ∨ 2F ∨ 6F } and

C’ = { 1F ∨ 2F ∨ 6F } satisfied. This means that at least one of (1F , 2F , 6F) is true and one of

them is false. According to the algorithm, these filters are split into different sets. Thus this

intersection does not need to be represented in the TCAM.□

Theorem: SSA can remove at least 50% of the intersections each time the filter set is split

into two sets.

Proof: Each clause is generated by an intersection; hence, it has at least two literals. In other

words, K >=2. From Johnson’s results, at least (2K-1)/ 2K = ¾ of the clauses are satisfied.

There are a total of 2M clauses, which means 2M*3/4 = 1.5M of the clauses are satisfied.

Since there are M intersections, each corresponding to two clauses, at least 0.5M of the

intersections have both clauses satisfied and hence can be removed according to the lemma. □

If we want to split the filter set further into more subsets (e.g., from 2 sets to 4 sets), this

result still holds. Whenever the filter set is split, we can decrease at least 50% of the

intersections. For example, if we split the filters into two sets, and then split both sets again,

we can decrease the number of intersections to less than ¼ of the original amount.

The complexity of SSA is the same as Johnson’s algorithm: O(NM). Note the analysis

above does not impose any restriction on the order for those literals examined while running

Johnson’s algorithm. In our simulation, we select literals based on the ratio of positive weight

(total weight of clauses containing positive literals) to negative weight because we want to

select literal that can satisfy the most clauses first. This results in a complexity of O(NM+N2).

4.4 Simulation Results

To demonstrate the effectiveness of SSA, we compare it with two well-known TCAM-based

approaches: MUD and our Geometric Intersection Method presented in the previous chapter.

 - 87 -

Table 4-1. Total number of unique SORT rule header size.

SNORT Version Rules
2.0.0 240
2.0.1 255
2.1.0 257
2.1.1 263

We begin this section with evaluation methodologies we used in Section 4.4.1. We use the

SNORT [76] rule headers to benchmark the three schemes and present the simulation results

in Section 4.4.2. Since the SNORT rule header sets are fairly small, we also test our

algorithms on synthesized larger filter sets in Section 4.4.3. We will show that SSA uses

approximately the same amount of TCAM memory as MUD, but yields a 75% to 95%

reduction in power consumption. Compared with the Geometric Intersection Method, SSA

uses 90% less TCAM memory and power at the cost of one additional TCAM lookup per

packet.

4.4.1 Evaluation Methodologies

We use the SNORT rule header set to evaluate performance. The unique rule headers in each

version vary from 240 to 257 as we showed previously in Table 4-1. Since the SNORT rule

header sets are fairly small, to test the scalability of our algorithm, we generate large

synthesized sets as follows. We take a real-world single-match classification set used in a

core router (3060 filters) [44] and insert new filters that intersect with the existing filters to

create multi-match filter sets. As in the SNORT rule header set, filters in this single match

classification also have five fields (protocol, source IP, source port, destination IP, and

destination port). The newly inserted synthesized filters also have five fields. Each field in

the synthesized filter is randomly selected from corresponding fields in old filter sets

according to their appearance frequencies. Since the five fields in a new filter are randomly

selected and then combined together to create a new filter, this filter is likely to intersect with

 - 88 -

the old filters to create new intersections. The performance of different algorithms is largely

dependent on the number of intersections. Therefore, we test our algorithms using different

intersection rates, defined as the percentage of newly inserted filters to the size of the original

filter set. We start at 5%, which constitutes around 150 new filters, and increase to 100%,

meaning that the number of newly inserted filters has the same size as the original filter set

(3060 filters).

We study the tradeoffs between different approaches on different data sets in terms of

both memory and power consumption. We also test classification speed and update costs

because multi-match classification solution must be fast enough to keep up with the

increasing line rates. Next we explain these four metrics in detail.

Memory consumption. We use the total number of TCAM entries to reflect memory

consumption because all entries have the same width (e.g., 144 bits). The total TCAM

memory consumption is the number of TCAM entries used times the TCAM width.

Power consumption. Figure 2-6 of Section 2.3.2 shows that the energy used by a TCAM

grows linearly with the number of entries searched in parallel and also with the number of

TCAM accesses. Hence, we use the total TCAM entries accessed per packet as a metric for

power consumption. It is defined as the product of the number of TCAM entries accessed per

lookup and the number of lookups per packet.

Classification Speed. Memory lookup is usually the bottleneck of a packet classification

system. For the three TCAM-based approaches (SSA, MUD and Geometric Intersection

Method), the number of SRAM accesses per packet is equal to the number of TCAM

accesses. This is because the TCAM output can be used as an index to fetch the results stored

in SRAM. Hence, we report the maximum number of TCAM lookups per packet to reflect

the worst case classification rate.

 - 89 -

Table 4-2. Number of extra intersections filters in TCAMs.

SSA-2 SSA-4

Version MUD Geometric
Intersection

Extra
Inter-

sections
Saving

Extra
Inter-

sections
Saving

2.0.0 0 3453 46 98.67% 1 99.97%
2.0.1 0 3754 47 98.75% 1 99.97%
2.1.0 0 3758 47 98.75% 0 100%
2.1.1 0 4067 55 98.65% 0 100%

Update costs. We randomly select 90% of the filter set as the base filter set and use the

remaining 10% as the update filters. We test the insertion cost in terms of the number of

newly inserted filters because the deletion of old filters is easier in TCAM-based approaches

(simply mask those entries out). Inserting a filter into a first match TCAM may require

moving the existing filters. There are existing approaches that prepare empty entries in

TCAMs, or associate priority [76] or extra circuits with each entry [77]. Here, we only

concentrate on the number of newly inserted filters as the metric of update cost.

4.4.2 Results on the SNORT Rule Header Set

We conduct tests on the SNORT rule header set and present the experimental results in this

section. We will show the results on the synthesized filter sets later in Section 4.4.3. For the

SNORT rule set, we test all the Versions of SNORT after 2.0. Table 4-1 shows that the

unique rule headers (classification filters) in each Version vary from 240 to 257. We compare

SSA against our previous Geometric Intersection Method and MUD in the next four

subsections using the metrics of memory consumption, power consumption, classification

speed, and update cost respectively.

 - 90 -

Table 4-3. Total number of TCAM entries used.

Version MUD Geometric
Intersection SSA-2 SSA-4

2.0.0 240 3693 286 241
2.0.1 255 4009 302 256
2.1.0 257 4015 304 257
2.1.1 263 4330 318 263

4.4.2.1 TCAM Memory Consumption

The Geometric Intersection Method inserts all the intersections into the TCAM. The second

column in Table 4-2 records the number of extra intersections (above and beyond the original

filters) that must be included. Although it is well below the theoretical upper bound O(NF), it

is still roughly 10 times the size of the original filter set. After applying SSA to divide the

filters into two sets (SSA-2), the number of extra filters that need to be included in the

TCAM falls below 55, removing more than 98% of the intersections. When splitting the

filters into four sets (SSA-4), SSA almost removes the need to include any extra filters due to

intersections. Note that the SNORT rule set contains range and negation (fields, such as “not

port 80”). These filters may need to be mapped into multiple TCAM entries. There are many

existing approaches for dealing with range and negation. For example, we can use extra

encodings [55, 61] or hardware circuits [66] to solve the range problem. Furthermore, the

negation removing scheme proposed in the previous chapter can be used to efficiently map

negations into TCAMs. We assume these known techniques are used to handle range and

negation filters. This assumption won’t affect our comparisons because they all face the same

percentage of filter size increase.

Table 4-3 shows the total number of TCAM entries required by the three approaches.

MUD uses the smallest number of TCAM entries: just the number of filters. The Geometric

Intersection Method requires a very large number of intersection filters. Hence, it consumes

 - 91 -

the largest number of TCAM entries. SSA dramatically removes the extra intersection filters

that need to be inserted into the TCAM. The number of TCAM entries needed is extremely

close to the MUD scheme. Although MUD is optimal in the memory cost, it needs to access

TCAM multiple times to get all matching results. Hence, the classification speed of MUD is

not as high as SSA, as explained in the next subsection.

4.4.2.2 Classification Speed

For a given packet, only one TCAM lookup is required by the Geometric Intersection

Method. For SSA, the number of lookups may be larger than one, yet remains deterministic.

If the filter sets are split into two sets, two separate TCAM lookups are needed. These two

TCAM lookups access different sets of filters. Because no logical relationship exists between

them, these two lookup processes can be fully parallelized. If filter sets are split four ways,

four TCAM lookups are needed. In the current Internet, packet sizes vary from 40 bytes

(TCP packets with no payloads) to 1500 bytes (Ethernet packets) [78]. [45] reports that the

average packet size is 402.7 bytes. If one packet requires four TCAM lookups of 4 ns per

lookup, SSA can achieve a 201.35 Gbps classification rate. In the worst case where packets

are 40 bytes, SSA can still achieve a 20 Gbps rate, which is well above the line rate of the

current Internet backbone.

For the MUD approach, the number of TCAM lookups is related to the number of filters

a packet matches. Packets that don’t match any filters need only one TCAM lookup, while a

packet that matches k filters requires O(k) lookups because each lookup can report at most

one matching result. In addition, multiple TCAM lookups may be required even for reporting

one matching result, because it needs to represent range using the three states of the TCAM.

[55] shows that MUD takes 1+d*k/r, for reporting k matching using MUD, where d is the

logarithm of the total number of filters and r is a parameter for encoding, which is decided by

 - 92 -

Table 4-4. Update cost in terms of newly inserted filters.

Geometric
Intersection SSA-2 SSA-4 Version MUD
Avg Max Avg Max Avg Max

2.0.0 1 31.73 157 1.33 17 1.002 2
2.0.1 1 35.24 135 1.34 19 1 1
2.1.0 1 34.71 135 1.36 20 1.002 2
2.1.1 1 36.00 172 1.41 26 1.006 2

the number of available bits in each TCAM entry. For the SNORT filter sets, d is 8 or 9 and r

can be 5 or less. One packet can match a maximum of k = 12 filters. For such packets, MUD

takes at least 12 TCAM lookups to get all the matching results. The worst case number of

TCAM lookups (1+d*(12-1)/r) can be as high as 20 using MUD.

The above analysis is the worst case performance of MUD. Since the number of TCAM

lookups is workload dependent, we looked at some high frequency packets. A HTTP packet

matches at least 4 unique filters and thus requires 5 to 9 TCAM lookups. A Napster file-

sharing packet can match 8 unique filters and thus requires 9 to 15 TCAM lookups.

4.4.2.3 Update Cost

The update cost for the Geometric Intersection Method is high, as newly inserted filters may

intersect with the existing filters and may result in many insertion operations. Table 4-4

shows the average update costs per newly inserted filter in terms of the number of newly

generated filters (including intersection filers) in the TCAM. The third column shows the

maximum number of insertions. One filter can generate up to 157 new TCAM entry

insertions. The Geometric Intersection Method is obviously slow during the update process.

The number of newly inserted filters is always 1 for MUD, as it does not need to consider

any intersections. The average insertion cost decreases to almost 1 when using SSA-2.

However, the max update cost is still high (around 20). If the filter set is split into four sets

 - 93 -

Table 4-5. TCAM entries accessed per packet.

MUD
(Worst
case)

MUD
(HTTP
Packets)

MUD
(Napster
Packets)

Geometric
Intersection

Method
SSA-2 SSA-4

2.0.0 4800 1200 2160 3693 279 233
2.0.1 5100 1275 2295 4009 292 245
2.1.0 5140 1285 2313 4015 295 247
2.1.1 5260 1315 2367 4330 309 255

(SSA-4), the number of newly inserted filters is reduced to approximately one and the worst

case cost is two, which is similar to MUD.

4.4.2.4 Power Consumption

We mentioned in Section 4.4.1, the energy used by a TCAM grows linearly with the number

of entries searched in parallel and also to the number of TCAM accesses. Hence, we use the

product of the number of TCAM entries accessed per lookup and the number of lookups per

packet as a metric for power consumption.

The power consumption of the MUD-based approach is related to the incoming packet

rates. As we explained in Section 4.4.2.2, in the worst case, a packet may need up to 20

TCAM accesses to get all the matching results. For each access, all the entries in the TCAM

are compared in parallel. Hence, the total number of TCAM entries accessed is 20 times the

filter set size in the worst case, which is over 20*240 = 4800 entries as shown in the first

column of Table 4-5. If all the packets are HTTP packets, then each packet needs at least 5

TCAM lookups, meaning that it accesses at least 5*240 = 1200 entries for one packet. A

Napster packet needs at least 9 TCAM lookups and hence accesses at least 9*240 = 2160

entries.

The Geometric Intersection Method only performs one TCAM lookup. Therefore, the

number of TCAM entries accessed per packet is the same as the number of TCAM entries

used. This value is around 4000 due to large number of intersections included in the TCAM.

 - 94 -

Table 4-6. Total number of extra intersections filters in TCAMs.

SSA-2 SSA-4 Insertion
Factor

Geometric
Intersection Intersections Saving Intersections Saving

0 359 22 93.87% 2 99.44%
0.05 418 20 95.22% 1 99.76%
0.1 488 45 90.78% 3 99.39%
0.2 733 52 92.91% 4 99.45%
0.3 1080 112 89.63% 1 99.91%
0.4 1312 78 94.05% 9 99.31%
0.6 2086 171 91.80% 9 99.57%
0.8 2488 208 91.64% 4 99.84%
1 2883 229 92.06% 7 99.76%

For SSA, although we perform several TCAM lookups, they look into different groups of

filters (stored in different TCAM blocks or different TCAMs). Each TCAM entry is accessed

only once per packet. Hence, the total number of TCAM entries accessed is just the number

of entries in the TCAMs (less than 300). The energy used by SSA-4 and SSA-2 is similar as

shown in the last two columns in Table 4-5. SSA-2 saves at least 90% of the energy

consumed by the Geometric Intersection Method. Compared to MUD, it saves over 95%

when compared to the worst case performance, and saves 76% for HTTP packets and 87%

for Napster file-sharing packets.

4.4.3 Results on a Synthesized Multi-match Filter Set

The SNORT rule header set is relatively small. To test the algorithms on larger filter sets, we

generate large synthetic multi-match classification test sets as described in Section 4.4.1. We

take a real-world single-match classification set used in a core router with 3060 filters each

with 5 fields, and insert new filters (also with 5 fields) that intersect with the existing filters

into it. We test our algorithms using different intersection rates, defined as the percentage of

newly inserted filters to the size of the original filter set. We start at 5%, which constitutes

 - 95 -

around 150 new filters, and increase to 100%, meaning that the number of newly inserted

filters is the same size as the original filter set size (3060 filters).

Although the synthesized filter sets are larger than the SNORT rule sets, they generate

relatively fewer intersections, as shown in the second column of Table 4-6. SSA also works

well for these large filter sets. Splitting the filter set into two sets removes over 90% of the

extra intersections, while splitting the set into four sets almost eliminates the need to include

extra intersections.

The results on synthesized filter sets on the classification speed and energy consumption

are similar to those of the SNORT database. SSA-2 requires only two memory lookups per

packet. However, MUD can match 12 filters in the worst case and thus requires up to 20

TCAM accesses per packet. Hence, SSA-2 is faster and more energy efficient than MUD.

4.5 Conclusions

Multi-match packet classification is a key packet-processing operation needed in important

applications such as network intrusion detection and packet-level accounting. Previously

proposed TCAM-based approaches suffer from high power consumption or high memory

usage. In this chapter, we develop a new set splitting algorithm (SSA) that reduces the

TCAM memory and power consumption by 90% when tested on the SNORT rule set. This is

accomplished by using a novel scheme that splits filters into multiple TCAM blocks such

that, for each split, the number of overlapping rules within each TCAM block is reduced by a

factor of at least two. The benefits of SSA are summarized as follows:

Low Memory Usage. We showed that it is not necessary to include the intersections

caused by filters of different sets in the TCAM. Each time a filter set is split into two sets,

SSA guarantees the removal of at least 50% of the intersections.

 - 96 -

Low Power Consumption. SSA uses a small amount of TCAM memory and accesses

each TCAM entry once per packet. Hence, the power consumption is low.

Deterministic Lookup Rates. If SSA splits filters into k sets, then k TCAM lookups are

needed. The number of TCAM lookups is independent of the input packet.

Supports Parallelism. The filter sets generated by SSA are uncorrelated. Thus, the

lookups into these filter sets can be parallelized or pipelined.

Low Update Cost. Since filters are split into uncorrelated sets, the update cost is local to

one set and all other sets remain the same.

This chapter and Chapter 3 presented packet inspection schemes suitable for handling the

fixed fields of the packet header. Chapter 3 emphasizes developing a very high speed

solution, while this chapter provides a more general and balanced solution taking into

consideration three factors: memory size, classification speed and power consumption. We

provided a solution for multi-match classification while doing it fast, with little power and

few TCAM entries.

Besides packet header processing, as explained in Section 1.3, high speed deep packet

inspection also involves a more difficult and less structured problem -- packet payload

scanning. There are two types of payload matching requirements: fixed string matching and

regular expression matching. We will present a solution for matching fixed strings using

TCAMs in Chapter 5. In Chapter 6, we will study the typical regular expressions in payload

scanning network applications and propose a fast regular expression matching scheme

suitable for both single-core and multi-core processor based architectures.

 - 97 -

5 Fixed String Pattern-Matching Using TCAMs

As explained in Chapter 1, high speed deep packet inspection involves two aspects: packet

classification on the packet header, and pattern matching on the packet payload. For the first

aspect, Chapters 3 and 4 proposed TCAM-based approaches that perform multi-match packet

classification on the packet header. In this and the next chapter, we propose pattern matching

algorithms for the packet payload.

Performing pattern-matching at high speeds is an extremely hard problem. In typical

network applications like intrusion detection [10], there are thousands of patterns that must

be matched against each packet’s payload. Due to the wide variety of application formats, we

often do not know apriori the anchor location, that is, the byte offset where the pattern starts

in the packet. Hence, we need to check every byte of the packet payload, at the line speed of

the network. In addition, these patterns are often highly complex. There are fixed string

patterns with arbitrarily lengths; correlated patterns where it is necessary to check for certain

pattern sequences; and patterns with negation where it is necessary to detect the absence of a

pattern. Sometimes, it is infeasible to enumerate the pattern using a fixed list of strings, so

regular expressions are used as a pattern language. We will explore the use of regular

expression pattern matching in the next chapter. Although fixed strings patternscan be

specified using regular expressions, we show later in Section 6.5.2 that correlated patterns are

very hard to match using regular expression techniques. They make exponential interactions and

generate large DFAs. Therefore, for these types of patterns, it is still better to identify them

individually and then correlate the matching to find the composite patterns. TCAMs are good at

finding these individual patterns. In this chapter, we propose a TCAM-based fixed strong

 - 98 -

matching scheme. In particular, we propose algorithms for arbitrarily long patterns, correlated

patterns, and patterns with negation.

The rest of the chapter is organized as follows. We motivate the chapter in Section 5.1

and review related work and show that no existing approaches can perform pattern-matching

on thousands of complex patterns at high rates in Section 5.2. Then we study the typical

patterns used in payload scanning applications and define generalized pattern formats based

on the analysis of different signature sets in Section 5.3. These pattern formats are short fixed

strings that are smaller than the TCAM width, long fixed strings that exceed the TCAM

width, and composite patterns that are composed of a series of patterns. Sections 5.4 through

5.6 present our schemes to address these pattern formats respectively, with Section 5.4

addressing the short fixed strings, Section 5.5 presenting schemes for long patterns, and

Section 5.6 providing algorithms for composite patterns. Section 5.7 analyzes our scheme

and discusses strategies against malicious attacks. We present simulation studies on both the

real world traces and synthesized worst case traffic in Section 5.8. For the ClamAV virus

database [46] with 1768 patterns whose sizes vary from 6 bytes to 2189 bytes, the proposed

scheme can operate at a 2 Gbps rate with only a 240 KB TCAM.

5.1 Introduction

Many applications such as HTTP load balancing and email SPAM filtering, require packet

payload scanning. For example, network intrusion detection systems monitor packets in the

network and scan packet payloads to detect malicious intrusions or Denial of Service (DoS)

attacks. SNORT[10], a popular open source Network Intrusion Detection System (NIDS),

has thousands of rules, each specifying a particular pattern representing a signature of an

intrusion method. Besides a large number of patterns, another difficulty is that virus signature

databases often have correlated patterns, which must match sequentially to indicate the

 - 99 -

1.b: POP3 User
Overflow Attempt

content:"USER"; nocase;
content:!"|0a|"; within:50;

Figure 5-1. Two example patterns from SNORT rules.

presence of an attack. For example, Figure 5-1.a shows a rule for Simple Mail Transfer

Protocol (SMTP) root verify attempt, which requires matching two patterns (“vefy” and

“root”) in sequence. The rule in Figure 5-1.b is another example where the system searches

for the first pattern “USER”. If it does not detect a return character (\n, |0a| in ASCII format)

within the next 50 bytes, it will raise an intrusion alarm signaling an overflow attack attempt.

A large number of these complicated patterns make it hard for pure software-based

pattern matching algorithms to keep up with network line rates. The SNORT system, for

example, implements its pattern matching algorithms in software. It can handle link rates

only up to 250Mbps [11] under normal traffic conditions even using SUN’s special Security

Defense Appliances [12] and has significantly poorer worst-case performance. These rates

are not sufficient to meet the needs of even medium-speed access or edge networks. Since

worms and viruses may possibly originate inside the network, NIDS are also required to scan

packets inside the network, which is usually Gigabit rates or higher.

Building SNORT-like intrusion detection systems to run at Gigabit rates is a challenging

task. Since patterns can appear anywhere in the packet payload, we need to examine every

byte. The processing on every byte must complete within eight nanoseconds. Even with the

latest Pentium processor (3.8 GHz) [79], eight nanoseconds of processing time yields just

30.4 CPU cycles. Clearly it is impossible to compare each incoming packet with thousands of

patterns in a serial fashion. Moreover, since there are thousands of patterns, storing them all

content:"vefy";
content:"root”;
distance 1;

Root verify attempt
1.a: A rule for SMTP

 - 100 -

in registers requires too much space. The majority will need to be kept in cache or the main

memory. Eight nanoseconds is sufficient for only one or two memory accesses using fast

Static Random Access Memory (SRAM) [80] for each byte in the packet payload. Multi-core

processors can harness parallelism to speed up the pattern matching. However, the number of

cores in today’s state-of-the-art processors is limited. For example, the Intel network

processor IXP2850 has 16 cores [52]. This approach cannot scale to the number of patterns

(usually thousands) required by many networked applications. From the above analyses, we

can see that purely software-based pattern matching schemes cannot process thousands of

patterns at Gigabit and higher rates.

To perform high speed pattern matching, we must resort to hardware-based accelerators

that have the ability to perform high speed parallel comparison. TCAMs meet this

requirement and thus are a natural fit for the pattern matching problem. As introduced in

Chapter 2.3.2, TCAMs are widely used for IP header based processing such as longest prefix

match. Because of their intrinsic parallel search capability, they can also be used effectively

for the pattern matching functions such as those for intrusion detection systems. However,

TCAMs, because of their limited width, do impose limitations on the pattern length that can

be directly matched. Also, there is no direct method to handle correlated patterns such as the

example patterns shown in Figure 5-1. In this chapter, we develop algorithms that use

TCAMs as a building block for both high-speed and fixed string pattern matching. Before we

present the detail of our algorithms, we first review the related work on fast string matching

in the next section.

5.2 Related Work

The research community has extensively studied the fixed string matching problems. In this

section, we only discuss approaches that are relevant to the network payload scanning

 - 101 -

problem. We first review representative software-based schemes and then discuss FPGA and

Bloom filter based schemes that are amenable to hardware implementation. Finally we state

the reasons for picking TCAMs as a candidate solution and related work that uses TCAMs

for payload scanning. The main reason for picking TCAMs is that TCAMs have strong

parallel comparison abilities.

5.2.1 Algorithms for Software-only Environments

The most influential software-only algorithms are: Knuth-Morris-Pratt(KMP) [81], Boyer-

Moore [82], Aho-Corasick [83], and Commentz-Walter [84].

The KMP and Boyer-Moore algorithms work most efficiently for single pattern searching

[23]. They build skip tables that record the characters that do not appear in the pattern. If we

identify a character in the input that is in the skip table, we can skip the character and thus

avoid backtracking. The search time for an m byte pattern in a n bytes packet is O(n+m). If

there are k patterns, the search time is O(k(n+m)), which grows linearly in k. Hence, this

method is slow when there are thousands of patterns.

The Aho-Corasick and Commentz-Walter algorithms match multiple patterns

simultaneously. They both pre-process the patterns and build a finite automaton that can

process the input packet in O(n) time. Although both algorithms are fast, they suffer from an

exponential state requirement. One of the network intrusion detection systems, Bro [25], uses

a similar deterministic finite automaton based approach. Bro generates so many states that

only a part of the automaton is kept in memory. The system dynamically extends the

automaton based on runtime information. This degrades the system performance.

Recently, new pattern matching algorithms specifically for content-based packet handling

have been proposed. The Aho-Corasick-Boyer-Moore (AC_BM) algorithm proposed by

Silicon Defense [25] combines the Boyer-Moore and Aho-Corasick algorithms. Another new

 - 102 -

algorithm is the Setwise Boyer-Moore-Horspool algorithm by Fish, et al. [26], whose average

case performance is better than Aho-Corasick and Boyer-Moore. These algorithms greatly

improve SNORT’s pattern matching speed (e.g., 250Mbps). However, their performance is

still one order of magnitude less than the line rate needed for deployment in modern

networks.

5.2.2 FPGA-based Approaches

FPGAs can be programmed for fast pattern matching due to their exploitation of

reconfigurable hardware capability and their ability for parallelism. To search for a regular

expression of length n on an FPGA, one approach is to build a Deterministic Finite

Automaton (DFA) that requires O(2n) memory and takes O(1) time per text character. Sidhu,

et al., proposed a Nondeterministic Finite Automaton (NFA) approach using FPGAs [49].

Their approach requires only O(n2) space and is still able to process each text character in

O(1) time.

The above two approaches are optimized for single keyword searching and do not scale

well for multiple patterns. The recent work by Baker, et al., uses a modified KMP algorithm

[85]. Each pattern is still treated independently; however, multiple (100 reported in [85])

patterns can be pipelined at gigabit rates. The downside of this approach is that patterns are

searched sequentially, so the overall latency increases proportionally with the number of

patterns.

5.2.3 Bloom-filter-based Approaches

Dharmapurikar, et al., proposed a multiple-pattern matching approach using parallel Bloom

filters [86]. Their approach can handle thousands of patterns. The proposed scheme builds a

Bloom filter for each possible pattern length. This could impose parallelism limits in some

 - 103 -

virus databases because pattern lengths vary from tens to thousands of bytes and there are

hundreds of possible patterns lengths as we will show later in Section 5.8.2.

5.2.4 CAM-based Approaches

There are two types of CAMs, binary CAMs where each bit can only take one of the two

states (0 or 1), and ternary CAMs (TCAM, introduced in Section 2.3.2) where each bit can

take one of the three states (0, 1 and “don’t care?”). In both Binary CAM and TCAMs, each

entry is a bit vector of cells, where every cell can store one bit. Therefore, a CAM entry can

be used to store a string. CAMs are built for parallel comparison of the input against a large

number of entries. Hence, it is a good candidate for a solution to our multiple-pattern

matching problem.

Gokhake, et al., proposed a pattern matching approach using binary CAM [87]. They

restrict each pattern to be exactly w bytes and insert these patterns to the CAM, one pattern

per entry. The space needed for k patterns each with w bytes is only kw bytes of CAM. Given

an input, their approach first looks up the first w bytes of the payload in the CAM. Then it

shifts one byte and does a CAM lookup with the second byte to get the next w+1 bytes of

payload. This process is repeated until reaching the end of the payload. To search a packet of

length n, the CAM-based approach can provide an answer in a deterministic time of O(n+w)

CAM lookups. One limitation of the proposed approach is that all patterns must have lengths

equal to the CAM width. In this chapter, we develop algorithms for arbitrarily length patterns

and other complex patterns, including correlated patterns and patterns with negations. In the

next section, we present the definition of the complex patterns that we are going to address in

this chapter.

 - 104 -

Table 5-1. Patterns used in different systems.

 Total # of
patterns

Simple fixed
string patterns

Composite fixed
string patterns

Regular
expressions

SNORT (Version 2.1.2) 1693 1039 527 127
BRO (Version 0.8) 2870 0 0 2870
ClamAV (Version 0.15) 1768 1768 0 0
Linux layer 7 70 0 0 70

5.3 A study of Patterns and Problem Definition

We studied the typical patterns that appear in the network payload scanning applications

including the SNORT intrusion detection system [10], Bro intrusion detection system [16],

ClamAV anti-virus system [17], and the Linux Layer 7 filter [22]. The number of patterns in

these systems varies from 70 to 400. We identify three types of patterns from these systems

as shown in Table 5-1, namely simple string patterns, composite string patterns, and regular

expressions. Next, we present the detailed definition of these pattern types. In particular, we

study the simple fixed string patterns in Section 5.3.1, composite fixed string patterns in

Section 5.3.2 and regular expression patterns in Section 5.3.3. In this chapter, we will present

schemes for detecting the first two types of patterns. We will address the regular expression

patterns in Chapter 6.

5.3.1 Simple Fixed String Patterns

Simple string patterns are quite common in network payload scanning applications. A simple

fixed string pattern P of m bytes can be written as P = b1b2… bm, where each bi represents a

byte. Sometimes, a fixed string pattern is associated with case sensitive or case insensitive

options, where case insensitive distinguishes whether an upper case character or a lower case

character, e.g., a or A, matches the pattern.

 - 105 -

Fixed string patterns are very common in network payload scanning applications. For

example, the ClamAV anti-virus system (Version 0.15) has 1768 simple patterns. The

SNORT intrusion detection system (Version 2.1.2) contains 1693 patterns, of which 1039 are

fixed string patterns. The fixed string patterns in these systems vary widely in length. In

ClamAV, patterns range from 6 bytes to 2189 bytes, with an average of 55 bytes. In SNORT,

patterns vary from one byte to 100 bytes, with many short patterns of one or four bytes. This

large length variation breaks the assumption of some previously proposed approaches, such

as the Bloom filters and the CAM-based methods mentioned in Section 5.2, that patterns

have a limited number of lengths.

In addition to fixed string patterns, the SNORT filter rule set also has a large percentage

of composite patterns. Next, we describe the structure of these composite patterns.

5.3.2 Composite Patterns

Simple patterns can be extended to form composite patterns. From SNORT [10], we identify

the following two types of composite patterns:

1. Negation (!). !P denotes no appearance of pattern P.

2. Correlated patterns. If P1 and P2 are two patterns, P3 = P1 .* P2 is a correlated

pattern, where “.” denotes arbitrary characters and “*” denotes any length. This pattern

requires matching P1 first, then some arbitrary content “.*”, and finally matching pattern P2.

Note that “.*” can have infinite length, but in practice a length limitation is placed on it, e.g.,

equal to four bytes, or less than four bytes.

SNORT (Version 2.1.2) has 527 composite patterns, with 50 negation patterns and 477

correlated patterns. The former are usually for detecting buffer overflow attempts. For

example, for a web login attempt, if we see the pattern “Authorization” with no return key

“!\n” within the next 512 bytes, it is likely to be a buffer overflow attempt. On the other hand,

 - 106 -

correlated patterns are often used to identify known application formats. Packets using a

specific application protocol typically follow that application format and contain some user

specific data. Therefore, correlated patterns may be expressed as a sequence of sub-patterns

(application formats), while allowing distances between these sub-patterns to skip user

specific data. For example, in Figure 5-1.a, four sub-patterns are used for detecting the MS

SQL worm. In the SNORT rule set, the number of sub-patterns in one correlated pattern can

go up to seven. None of the previously proposed schemes can handle these patterns at line

rate. In Section 5.5, we will propose fast mechanisms to detect these patterns.

5.3.3 Regular Expressions

Besides fixed string patterns and composite patterns, the rest of the patterns in the four

networking payload applications we studied are regular expressions. A regular expression

describes a set of strings without enumerating them explicitly. We will present a more formal

definition in the next chapter. Here we use an example to give a general sense of how these

patterns are expressed. Consider a regular expression from the Linux L7-filter [1] for

detecting Yahoo traffic: “^(ymsg|ypns|yhoo).?.?.?.?.?.?.?[lwt].*\xc0\x80”. This pattern

matches any packet payload that starts with ymsg, ypns, or yhoo, followed by seven or fewer

arbitrary characters, and then a letter l, w or t, and some arbitrary characters, and finally the

ASCII letters c0 and 80 in the hexadecimal form.

Regular expressions are widely used for pattern matching due to their rich expressive

power. In the Linux Application Protocol Classifier (L7-filter) [45], all protocol identifiers

are expressed as regular expressions. Another intrusion detection system, Bro [46], also uses

regular expressions as its pattern language. Recently, regular expressions are replacing

explicit string patterns as the pattern matching language of choice in packet scanning

applications. For example, SNORT [1] has evolved from a system with no regular

 - 107 -

expressions in its ruleset in April 2003 (Version 2.0.0), to 127 in May 2004 (Version 2.1.2),

and to 1131 regular expressions as of February 2006 (Version 2.4).

We will present algorithms for regular expression pattern matching in the next chapter. In

this chapter, we propose fast pattern matching methods for the first two types of patterns,

namely fixed string patterns and composite patterns. As discussed in Section 5.2.4, TCAMs

are built for parallel comparison of thousands of entries and are an attractive candidate for

fast pattern matching. Hence, next we propose TCAM-based methods for pattern matching.

In particular, we propose algorithms for fixed strings that are shorter than the TCAM width

in Section 5.4, for long patterns in Section 5.5, and for composite patterns in Section 5.6.

5.4 Short Fixed String Patterns

Let us first look at the simple case where all the patterns are simple deterministic patterns,

with length shorter or equal to w bytes, where w is the width of the TCAM. Our approach is

simply to place patterns into TCAM, with one pattern occupying one entry. If a pattern is

shorter than w bytes, we pad it with “?” (don’t care) bit as shown in Figure 5-2. For ease of

explanation, in the rest of the chapter, we use alphabetic characters rather than binary forms

as pattern examples. We assume that each character is one byte.

Patterns should be organized according to their lengths in descending order. This is

because a TCAM only reports the first matching result and we want to identify all matching

patterns. For example, if a pattern “ABC” is put in a lower index (top end in the example) in

TCAM, matching of the “ABC” includes matching of a shorter prefix pattern “AB”. If we

place patterns in the other order, we cannot infer the matching of the longer pattern from

matching the shorter pattern. Thus we may miss out some matching results.

The process of finding patterns in a packet is as follows: The first w bytes in the packet

are mapped into TCAM (Figure 5-2.a). If there is a hit, we report the matched pattern. Next,

 - 108 -

w bytes

A B C D E F

C D E F

A B ? ?

A B C ?

Input

TCAM

a. First Position

1st entry

kth entry

w bytes

A B C D E F

C D E F

A B ? ?

A B C ?

b. Second Position

Figure 5-2. Scanning process.

shift one byte and check TCAM again as shown in Figure 5-2.b. This process is repeated

until we have read the whole packet. Note that when we are at the end of the packet and the

remaining packet size t is less than the TCAM width, we can pad it with all 0s and look it up

in TCAM. However, only patterns less than t bytes should be reported as matches.

One TCAM lookup is needed for every byte position in the packet. Assuming the TCAM

lookup time is 4 nanoseconds (ns), it can support a deterministic scan rate of 8 bits/4 ns =

2Gbps against thousands of patterns and is able to report all the matching patterns.

The scheme proposed in this section only applies to patterns that are shorter than the

TCAM width. As we have shown in Section 5.3.1, patterns in network applications vary from

several bytes to several thousands bytes and some of them may not be able to fit in one

TCAM entry. In the next section, we present our methods for handling these long patterns.

5.5 Long Patterns

The previous section proposed a method for patterns that are shorter than the TCAM width.

The TCAM width is configurable as we mentioned in Section 2.3.2. For example, a 1Mbyte

TCAM can be programmed as 64K entries with 16 bytes per entry, or 1K entry with 1K bytes

per entry etc. Given a pattern sets with variable lengths, one choice is to configure the

TCAM width to be greater or equal to the longest pattern length and pad short patterns with

 - 109 -

the ‘do not care’ states to reach the TCAM width. However this wastes precious TCAM

resources when the pattern set has a large variation in pattern length, as in the ClamAV

pattern set. The relatively small size and high cost of TCAM makes this a very inefficient

approach.

Instead, our approach divides long patterns into shorter patterns (more patterns of shorter

lengths) to save TCAM space, thereby allowing the TCAM width to be smaller. The overall

process of matching long patterns is shown in Figure 5-3. Given a set of patterns, we first

perform pre-processing. We divide long patterns into sub-patterns and store them in the

TCAM. Then, we build a pattern table to record the actions upon matching of these sub-

patterns. We also set up a matching table to store correlations between sub-patterns, so that

we can re-link them together later to report matching of a long pattern. Given a packet, we

take the first w bytes from it, where w is the TCAM width, and do a TCAM lookup. If there

is no match, we shift one byte and perform another TCAM lookup. If we match a sub-pattern

at the ith position of the packet, we record it in a table in a memory data structure called the

partial hit list. Later, if we match a sub-pattern at position i+j (0 < j <=w), we check the

matching table to see whether the concatenation of this sub-pattern and a previously matched

one forms a long pattern. If so, we report a matching of the long pattern.

The rest of the section is organized according to the flowchart in Figure 5-3. There are

many ways to divide long patterns into smaller patterns. Next, in Section 5.5.1, we explain

the tradeoffs of different pattern division methods and then present our division algorithm.

After dividing a long pattern into sub-patterns and inserting them into the TCAM, we get the

TCAM match results of these sub-patterns separately. Next, we need to link all the related

match results together to report the matching of a long pattern. To achieve this, we keep a set

of tables (pattern table, matching table, and partial hit list as shown in the grey boxes of

Figure 5-3) in the memory to record the matching sub-patterns and relationship between

 - 110 -

Break long patterns into sub-patterns
(Section 5.3.1)

Sub-patterns in
TCAMs:

(Section 5.3.1)

Patterns

Pattern table in SRAMs:
Stores information of

sub-patterns
(Section 5.3.2)

Packets

Pre-processing

Matching Process (Section 5.3.3)

Runtime table in cache or SRAMs:
Partial Hit List (PHL):

Stores matching results of previous positions
(Section 5.3.2)

Matching table in SRAMs:
Stores relationships

between sub-patterns
(Section 5.3.2)

Match, Report
long pattern

Shift one byte in the input

Tables in
the SRAMs

Tables in
the TCAMs

No Match

First bits

Figure 5-3. Flowchart of long pattern matching algorithm.

these them. These tables are explained in detail in Subsection 5.5.2 and we explain the

algorithm for linking sub-pattern matching results to infer a matching of long patterns in

Section 5.5.3.

5.5.1 Divide Long Patterns into Sub-patterns to be Stored into TCAMs

For the time being, let us assume that we have identified a good TCAM width w for the given

signature set. For example, Table 5-2 shows a pattern set with four patterns and the TCAM

width is set to be four bytes. Long patterns (Patterns 1-3) are divided into shorter patterns.

We call the first w bytes prefix patterns and the remaining part suffix patterns. Patterns

shorter than w bytes (Patten 4) remain intact. The selection of w and the tradeoff between a

single cycle “long” match and many cycles of “short” matches will be discussed in Section

5.7.

 - 111 -

Table 5-2. A Long pattern example (TCAM width w = 4).

Pattern
Index

Pattern
Contents

Prefix
Patterns

Suffix
Patterns

1 ABCDABCD ABCD ABCD
2 DEFGABCDL DEFG ABCDL
3 DEFGDEF DEFG DEF
4 DEF - -

Prefix patterns can be fit into TCAM directly since they are w bytes. After matching a

prefix pattern, one option is to use software to compare the suffix patterns. However, there

may be multiple suffix patterns sharing the same prefix pattern as in patterns 2 and 3 in Table

5-2. In such cases, the computation costs for software comparisons are quite high.

Our approach places the suffix patterns into the same TCAM as the prefix patterns. If a

suffix pattern is longer than w bytes, we need to divide it into multiple sub-patterns of w

bytes each. The suffix patterns can be less than w bytes, or not exactly a multiple of w bytes.

Hence, they may generate very short sub-patterns. For example, a pattern “ABCDE”

generates a short sub-pattern “E” for w = 4. We can pad these short patterns with ‘do not

care’ states to make them w bytes. The problem with this approach is that small patterns that

are only one or two bytes greatly increase the probability of TCAM hits. Each TCAM hit

demands extra processing to check whether the match is a valid pattern or if combining it

with any previously matched pattern constitutes a long pattern match. Hence, it is

computationally inefficient to divide long patterns into very short suffix patterns that generate

many TCAM hits.

To overcome this problem, we pad the short suffix pattern in the front by the tail of

previous pattern. For example, the suffix pattern of “DEFGDEF” is “DEF”. We pad it with

the tail of previous prefix pattern (“G”) to make it exactly w bytes (“GDEF”). Another

example is “DEFGABCDL”, the suffix pattern “ABCDL” is divided into two suffix patterns

of w bytes each: “ABCD” and “BCDL”.

 - 112 -

Table 5-3. Patterns in the TCAM.

TCAM Index Content
1 ABCD
2 DEFG
3 BCDL
4 GDEF
5 DEF?

We can order the unique prefix patterns and suffix patterns in any order because they all

have the length w, so none of them covers another unless they are identical. For patterns that

are naturally shorter than w bytes (e.g., pattern 4 in Table 5-2), as before, we pad them with

‘do not care’ at the end and sort them according to the descending order of lengths. Table 5-3

shows the TCAM layout for patterns in Table 5-2.

Now, we have broken long patterns into sub-patterns and stored them in the TCAM.

When we perform a lookup in the TCAM, it reports matching of these sub-patterns. For these

sub-pattern matching results, we need to record them in the memory so that we can correlate

them with the future suffix pattern matching to identify long patterns. In the next subsection,

we introduce several in-memory data structures for helping us correlate the sub-pattern

matching results.

5.5.2 Data Structures in Memory

As in shown in Figure 5-3, in addition to the patterns stored in the TCAM, there are three

data structures to be stored in memory (e.g., SRAM) for matching long patterns: the pattern

table, the matching table and the partial hit list. We illustrate the detail information of these

tables in Figure 5-4. The pattern table and the matching table are pre-computed based on

pattern information and partial hit list is generated at runtime. The pattern table stores the

information for each sub-pattern. It helps to identify whether the current matched pattern is a

short pattern, a prefix pattern or a suffix pattern. The partial hit list records the previously

 - 113 -

Sub-patterns in TCAMs:
Sub-patterns include

short patterns,
prefix patterns,

 and suffix patterns

 in SRAMs:
Help identify the type of
matched sub-pattern:

whether it is short patterns,
prefix patterns,

 or suffix patterns

Packets

Tables generated by pre-processing

One TCAM
lookup

Runtime table in cache or SRAMs
:

Store the matching results at positions

in SRAMs:
Store the relationship

between prefix and suffix
patterns, help recognize

long patterns

Identify Long patterns
(Section 5.3.3)

Match, Report
long pattern

Shift one byte in the input

No Match

Match

No Match
Update

PHL

Identify whether
the string
contains a

pattern
W bytes

string

Get the
detailed info of

the
matched string

Get pattern
correlation info

match
results

Figure 5-4. Tables used in our scheme.

matched sub-patterns. The matching table records the correlations between sub-patterns.

Using these three tables, we can correlate the current match pattern with the previously

matched patterns to identify long patterns. Next, we explain these tables in detail.

Pattern Table

All the patterns (simple, prefix, and suffix patterns) are put into a single TCAM. When

matching an entry in TCAM, we need to check whether it is a short pattern, a prefix pattern,

or a suffix pattern. The pattern table (Table 5-4) records such information. Each line in the

table corresponds to one TCAM entry.

The second column records whether it is a matching of a short pattern. For example, from

a hit of “DEFG”, we can infer a matching of “DEF”. The third column shows the prefix

pattern information. A positive number illustrates a valid pattern while “-1” indicates

otherwise. Since not every entry in TCAM is related to a prefix pattern, we number the valid

prefix patterns and refer to an entry in the resulting enumeration by a prefix pattern index.

 - 114 -

Table 5-4. Pattern table.

Index
(Content)

Simple
Pattern Index

Prefix
Index

Suffix
Index

1(ABCD) -1 1 1

2(DEFG) 4(DEF) 2 -1

3(BCDL) -1 -1 2
4(GDEF) -1 -1 3
5(DEF ?) 4(DEF) -1 -1

Table 5-5. Partial hit list.

Index Position
1 1

Column four stores the suffix pattern index. Note that this index is separately built and thus is

independent of the prefix pattern index.

Now, we can identify sub-patterns through a TCAM lookup and then use the matched

index to perform one SRAM lookup into the pattern table to get the information of these sub-

patterns. Next we need to store the matched prefix patterns in a table called partial hit list in

memory so that later we can correlate them with suffix patterns to identify long patterns.

Partial Hit List (PHL)

The Partial Hit List (PHL) is used to record the matched pattern results as shown in Table 5-5.

When matching a prefix pattern, record it in the PHL. For example, when matching pattern

“ABCD” at the first four bytes of the packet, we record the index (1 in this example) and the

starting position of the pattern in the packet (1st byte in this example) in the PHL. Later, when

we match its matching suffix, e.g., “ABCD”, we can retrieve the previous matching result of

“ABCD” and concatenate these two patterns into a long pattern “ABCDABCD”. Not all

prefix patterns and suffix patterns can be put together to generate long patterns. Hence, we

also need a table to record the valid combination of suffix and prefix patterns. In the

 - 115 -

Table 5-6. Matching table.

Prefix
Index

Suffix
Index Distance Matched Long

Pattern Index

1(ABCD) 1(ABCD) 4 1(ABCDABCD)

2(DEFG) 1(ABCD) 4 3*(DEGFABCD)

2(DEFG) 3(GDEF) 3 3(DEGFDEF)
3(DEGFABCD) 1(ABCD) 4 1(ABCDABCD)
3(DEGFABCD) 2(BCDL) 1 2(DEFDABCDL)

following, we explain how the matching table stores the correlation information between

patterns.

Matching Table

After identifying the prefix and suffix patterns, we assemble them to recover long patterns. A

matching table (Table 5-6) stores all the valid combinations. For example, the combination of

the prefix pattern “DEFG” and the suffix pattern “ABCD” yields a new prefix pattern

(annotated by 3*). We give the new prefix pattern (“DEFGABCD”) a value of 3 as the prefix

pattern index and store it back to the PHL. Later, when we match suffix pattern “BCDL” at

the next position, we can lookup the matching table and conclude that we have matched

pattern “DEGFHIJKL”.

At first glance, looking up entries in the mapping table appears to be a slow process,

since we need to search through the mapping table to check whether one combination is

valid. However, in a real system, we can trade space for speed. The first three columns

(prefix index, suffix index, and distance between patterns) can be used as indices of a three-

dimensional array and we do not need to store those columns. Only long patterns matched at

the corresponding indexed space are stored and ‘no match’ (-1) are placed at all the other

invalid combination places. In this manner, we can decide whether a combination is valid or

 - 116 -

not with only one memory lookup. The total memory consumption is a*b*w, where a is the

prefix index size, b is the suffix pattern index size, and w is the TCAM width.

5.5.3 Algorithms for Long Patterns

As described in Section 5.5.1, long patterns are handled by dividing them into sub-patterns

which are then stored in TCAM. This section presents an algorithm for identifying long

patterns, by linking the matched sub-patterns together to identify long patterns.

Our approach for identifying a long pattern is as follows. Initially we pre-process the

patterns and generate the pattern table and mapping table using the methods we previously

described in Section 5.5.2. The PHL is initially set to empty. Given an input, we take the first

w-byte (byte 1 through w) string and perform a TCAM lookup to check whether this string

matches any of the sub-patterns. If there is no match, we shift forward one byte and perform

a TCAM lookup at the next position (bytes 2 through w+1) in the packet. If we find a TCAM

match at a given position, we consult the pattern table to check whether it is a short pattern,

and/or prefix pattern, and/or suffix pattern. Note that string can be a short, prefix and suffix

pattern at the same time. For example, in the string “DEFG” in the example in Table 5-4 is a

prefix pattern, but it also contains a short pattern “DEF”. After identifying the types of the

string, we perform one or several of the following three actions.

• Action 1 (short pattern case): if the matched pattern implies a short pattern, report the

matching result immediately.

• Action 2 (suffix pattern case): we check whether the combination of this pattern with any

prefix pattern in PHL forms a valid long pattern through consulting the mapping table.

• Action 3 (prefix pattern case): we insert the pattern into the PHL if it was not previously

inserted by Action 2.

 - 117 -

Position 5: match “ABCD”
“ABCD” is a suffix pattern, combined with

prefix pattern 2 (“DEFG”) in the PHL yields
another prefix pattern “DEFGABCD” (index
in the mapping table is 3). The old record in
PHL can now be deleted since it is
position away from the next position.

“ABCD” is prefix pattern, but it can be
implied through “DEFGABCD”, so won’t
insert it into the PHL again.

Position 6: match “BCDL”.
 “BCDL” is a suffix pattern.

Combining with “DEFGABCD” in
the PHL, report a long pattern
“DEGFABCDL”.

Figure 5-5. Matching process for input “DEGFABCDL”

 - 118 -

Note that suffix patterns must immediately follow the prefix patterns to form long

patterns, so we can delete prefix patterns that are more than w bytes. In addition, at each

position, we only insert one item into the PHL (according to the restriction in Action 3).

Therefore, the size of PHL is bounded by the TCAM width w.

We use an example (Figure 5-5) to illustrate our pattern matching algorithm for long

patterns. Suppose the input packet is “DEFGABCDL” and we want to search for the patterns

shown in Table 5-2. First we divide each of the patterns into sub-patterns and insert them into

the TCAM (Table 5-3). We then pre-compute the pattern table (Table 5-4) and matching

table (Table 5-6) using the scheme we proposed in the previous section. These tables remain

static during the pattern matching process. The only table that changes during the matching

process is the partial hit list (PHL). Initially, it is set to be empty.

 At the first position, we match “DEFG”. Through consulting the pattern table, we know

that “DEFG” is a short pattern and also a prefix pattern. Hence, we perform Actions 1 and 3.

“DEFG” implies a match of pattern “DEF”, so we report a matching of “DEF” right away

according to Action 1. This string is again a prefix pattern, so we store such information in

the PHL according to Action 3. We’ve finished the two actions for this position. Next we

shift one character to position 2 and lookup “EFGA” into the TCAM. Here the lookup will

not result in a match, so we move on to the next position in the pattern. Similarly, we find no

match for position 3 and 4.

When we move to the 5th position, we get a match on the pattern “ABCD”. “ABCD” is

both a suffix pattern and a prefix pattern, so we perform Actions 2 and 3. According to

Action 2, we try the combination of this pattern and the prefix pattern in the PHL (“DEFG”).

Through consulting the mapping table, we get another prefix pattern “DEFGABCD”. We

store this prefix pattern back to the PHL. Since we already inserted one item into the PHL,

 - 119 -

we do not need to insert “ABCD” as a prefix pattern again according to Action 3. This is

because “DEGFABCD” is already in PHL that implies “ABCD”.

Finally, we move to the 6th position and match “BCDL”. “BCDL” is a suffix pattern so

we only need to perform Action 3. Upon combining it with the prefix pattern “DEFGABCD”

in PHL, we identify the long pattern “DEFGABCDL”.

5.6 Composite Patterns

The methods presented in the previous two sections are for fixed strings. They are not

sufficient for intrusion detection systems such as SNORT, which require many composite

patterns. In this section, we extend our algorithm to handle these composite patterns.

According to the definition in Section 5.3, there are two types of composite patterns,

correlated patterns and patterns with negations. In this section, we explain these two cases. At

the end of the section, we propose a method to support case-insensitive patterns.

5.6.1 Correlated Patterns

Correlated patterns denote a series of patterns, i.e., patterns followed by other patterns like

“ABCD” followed by the pattern “DEFG” within 4 bytes from the end of the first pattern.

We call the units of the pattern series sub-patterns (in this example, “ABCD” and “DEFG”).

Matching a correlated pattern is similar to a long pattern: a long pattern is just several sub-

patterns and the distance of these patterns must be exactly w. Hence, the scheme for long

patterns can be extended to correlated patterns. The matched sub-patterns are also recorded in

the PHL. The only difference between matching correlated and long patterns is that the

partial hit record for sub-patterns cannot be removed after w positions because the distance

between two sub-patterns can be larger than w.

 - 120 -

5.6.2 Patterns with Negations

The negation (!) of a pattern refers to detecting the absence of the pattern from the input.

Negations typically occur in conjunction with another pattern and when they do they are

usually the second pattern in the sequence. For example, content : "USER" ; nocase ; content

: !"|0a|" ; within: 50. This pattern corresponds to an observation of the pattern “USER” and

the absence of the pattern "|0a|" (return) within the next 50 bytes.

The identification of a pattern’s negation is similar to the identification of a correlated

pattern. We first ignore the negation (!) and put the second pattern (|0a| in our example) into

the TCAM. After matching the first sub-pattern “USER”, we record this matching

information in the PHL. In the next 50 bytes, we then inspect whether there is a hit for "|0a|".

The difference between matching a negation pattern and a correlated pattern is that the action

performed upon observation of the second pattern is the opposite. If we find the second

pattern (|0a|), this means we did not match the first pattern and so we can now remove the

index for “USER” from the PHL. Otherwise, after 50 bytes with no matching of the second

pattern, we report a hit of pattern "USER" and !"|0a|".

5.6.3 Patterns with Wildcards

Some signature databases specify patterns with the “no case” keyword. This means that

either an upper case or a lower case of the pattern is considered valid. In ASCII, the numeric

difference between a lower case character and its corresponding upper case character is 32.

Since this happens to be a power of 2, TCAMs can support case-insensitive matching easily

with a ‘do not care’ bit. For example, the ASCII code for letter “A” is 65 (binary form 0100

0001) and letter “a” is 97 (binary form 0110 0001). So we can represent case insensitive

letter a in the TCAM as (01?0 0001). If there is a requirement for a fixed width wildcard for

 - 121 -

any characters, then we can just put ‘do not care’ states in all their corresponding positions in

the TCAM.

5.7 Analysis of the Scheme

In the previous three sections, we have proposed fast matching methods for fixed string

patterns, long patterns, and composite patterns. In this section, we analyze the performance of

the proposed schemes using two metrics.

The first metric is memory consumption. We want to minimize usage of SRAM, and

more importantly TCAM, as TCAM is comparatively expensive with current manufacturing

technologies.

The second metric is pattern scanning rate as pattern matching schemes must sustain the

line rates. Memory lookups are usually the bottleneck of packet processing systems [88].

Hence, the pattern scanning rate is mostly controlled by the memory access speed and the

number of memory lookup. For each byte position, our scheme needs to lookup TCAM once.

Besides this fixed overhead, the number of extra memory lookups is affected by two factors.

First is the number of TCAM hits since each TCAM hit requires one memory lookup in the

pattern table. Second is the size of the PHL because we need to access the mapping table

once for each item in the PHL for a matched suffix pattern.

As the TCAM width is configurable, in Section 5.7.1, we study the effect of changing

TCAM width on the memory consumption and the number of memory lookups. In Section

5.7.2, we explain the memory access process and study the effect of memory access rate on

the overall scanning rate. As our pattern matching schemes are designed for packet payload

scanning applications, our scheme as described thus far is subject to malicious attack. Finally,

in Section 5.7.3, we explain the methods for detecting malicious packets that are aimed at

slowing down the system. Note that in this section, we make an assumption that patterns are

 - 122 -

independent of each other for ease of analysis. This assumption may not be true in real

pattern sets. We will present simulations results using the real pattern set in Section 5.8 and

show that our analyses mostly agree with the real life cases.

5.7.1 Analysis Considering the TCAM Width

As we mentioned in Section 5.2, the width (w) of TCAM is configurable. In this section, we

study the impact of TCAM width on matching long patterns. We will perform analysis of

correlated patterns in Section 5.7.3. In this section, we first study the effects of TCAM width

on memory usage, including the TCAM space usage and SRAM space usage. Then we study

how modifying these parameters affects the number of memory accesses, which in turn

determines the pattern matching rate. As explained previously, the number of memory

accesses is affected by two factors: the number of TCAM hits and the size of partial hit list.

Therefore, we explain the effect of TCAM width on these two factors later in this section.

Effects on TCAM Space

Suppose we have a total of k patterns, each with mi bytes. If we set the TCAM width to w,

then each pattern will be divided into ⎡ ⎤wmi / prefix or suffix patterns, where ⎡ ⎤ denotes

rounding up. As each TCAM entry is w bytes and ⎡ ⎤wmi / entries are needed, the total TCAM

space required to accommodate these patterns is ⎡ ⎤∑ wmw i /* . It increases as w increases

because short patterns and suffix patterns need to be padded (the padding effect is

represented by ⎡ ⎤ in the equation) to the TCAM width.

Effects on SRAM Memory Space for Mapping Table

The mapping table is a three dimensional table that can be accessed with the prefix index,

suffix index, and the distance between them. The size of the prefix pattern index is

⎡ ⎤)1/(−∑
i

i wm , which can be proved through two cases. Case 1: If a pattern is shorter than w

 - 123 -

bytes, it has no prefix pattern. This agrees with ⎡ ⎤ 01/ =−wmi . Case 2: For a pattern longer

than w, although there is one prefix pattern, it generates new prefix patterns after intermediate

suffix patterns are matched. Hence, it also requires ⎡ ⎤ 1/ −wmi indices. Therefore, independent

of the pattern length, the number of prefix indices is ⎡ ⎤ 1/ −wmi per pattern and the total

is ⎡ ⎤)1/(−∑
i

i wm for all patterns. Similarly, the size of the suffix pattern indices is also

⎡ ⎤)1/(−∑
i

i wm . For long patterns, the maximum distance between a prefix pattern and a suffix

pattern is w. The mapping table size is the product of the above three dimensions, which are

⎡ ⎤)1/(−∑
i

i wm , ⎡ ⎤)1/(−∑
i

i wm , and w respectively. Multiplying them together, we get

⎡ ⎤ 2))1/((* −∑
i

i wmw = O(1/w). Therefore, the size of mapping table decreases as w increases.

We have shown that the TCAM width greatly affects TCAM and SRAM memory usage.

In summary, the TCAM space increases as the TCAM width increases, while the SRAM

memory decreases when the TCAM width increases. Next, we check the effect of the TCAM

width on the number of memory lookups. As mentioned previously, besides the fixed

overhead – one TCAM lookup per byte position, the number of memory lookups is affected

by two factors: the probability of TCAM hits, and the size of the partial hit list. Next, we

study these two factors in detail.

Probability of TCAM Hits

We distinguish between two types of TCAM hits. The first is a real hit, which reports a

pattern match immediately. For a pattern longer than w, we define the matching of the last

suffix pattern as a real hit. As at least one real hit is required for one matched pattern, the

number of real hits is the lower bound of the number of TCAM hits for identifying all the

patterns. The other type of hit is an associate hit—an intermediate hit that may lead to a real

hit, i.e., each prefix pattern hit is an associate hit. Associate hits incur extra computation, so

 - 124 -

we want to minimize the probability of associate hits. Assuming packet contents are random,

for any w bytes in the packet, there are (28)w possible values and the probability of matching

one particular pattern of length w is 1/(28)w. As we have analyzed before, there are

⎡ ⎤)1/(−∑
i

i wm prefix patterns of w bytes each. If we assume patterns are independent, the

probability of having an associated hit at each position is ⎡ ⎤
w

i
i wm

)2(

)1/(

8

−∑ , which decreases

dramatically when w increases. For example, suppose we have 2000 patterns of 200 bytes

each. Setting w to be 4 bytes, the associate hit rate at each position is 2.2e-5. If w is 8, it is

2.6e-15, which is very low. Therefore, to decrease the extra cost for unnecessary TCAM hits,

a large w is preferred.

Effects on PHL size

As discussed in Section 5.5.3, PHL has an upper bound of w for pattern sets that contain long

patterns only. Let’s study the probability of two neighboring overlapping TCAM hits.

Suppose we observe a match at position i. Such an observation imposes extra constraints on

whether a match could occur at position i+j (j<w) because the last w-j bytes of the first

position must be identical to the first w-j bytes of position i+j. Assume that patterns are

independent, the number of overlapped pattern pairs is small and hence PHL is small. If we

relax this constraint and assume these positions are independent, the expected prefix pattern

list size is w times the independent TCAM associate hit rate (⎡ ⎤
w

i
i wm

)2(

)1/(

8

−∑ as we showed

previously). This comes to ⎡ ⎤
w

i
i wm

w
)2(

)1/(
* 8

−∑ , which approaches zero quickly as w grows. For

example, suppose there are 2000 patterns with 200 bytes each. If w is set to be 4 bytes, the

expected size of PHL at each position is 8.8e-5. If w is 8, it is 2e-14, which is well below 1.

We will analyze the PHL for correlated patterns in the Section 5.7.3.

 - 125 -

Summary on the impacts of TCAM width

The above analyses show that a small value of w can save TCAM space. However, a small w

also generates many prefix and suffix patterns, which results in a large mapping table. In

addition, since each entry in the TCAM is small, a small w reports many matches, creates a

large PHL and requires many matching table lookups. Therefore, if there is enough TCAM

space, we should set w larger than most of the pattern sizes and allow only a very small

number of patterns to be divided into prefix and suffix patterns.

5.7.2 Analysis of Memory Lookups

Memory lookups are usually the bottleneck of packet processing systems [88]. There are two

types of memory lookups in our scheme: TCAM lookups and regular memory (e.g., SRAM)

lookups in the pattern table and matching table. TCAM lookups and memory lookups can be

pipelined as illustrated in Figure 5-6. We can perform memory lookups for a current position

while consulting TCAM with the data at next position. Suppose we have a packet of n bytes

and the TCAM lookup time is a for each lookup. We will have a deterministic TCAM

processing time of n*a.

If the TCAM reports a miss, no extra memory lookup will be initiated in this position i

and the memory lookup process is idle. Otherwise, the proposed scheme will first perform

one memory lookup in the pattern table. If the matched pattern is a valid suffix pattern and

there are ji items in the current PHL, we need another ji memory lookups in the matching

table. Hence, a maximum of ji+1 memory lookups will be issued for a TCAM hit. The

memory lookup time may be shorter or longer than the TCAM lookup time, thus the memory

lookup process may be backlogged. For example, in Figure 5-6, positions 1, 2, and 3 all have

 - 126 -

a aTCAM
Lookup

time

Position

a a a a a a a a

1 2 3 4 5 6 7 8 9 10

Memory
Lookup

time

Performing Memory Lookups Idle

hit hit hit miss miss miss miss miss hit

n'

hit

Figure 5-6. Memory lookup process.

TCAM hits, increasing the amount of time spent processing memory lookups. Later when

there are some TCAM misses, the memory lookup process can catch up with the TCAM

lookup speed. Therefore, only the last memory backlog position (n’) is important. The overall

packet scan time is the sum of the time needed for the TCAM accesses up to this position

(n’*a) and the memory lookup time after this position (∑ += ii
n

ni hj *)1('). Here hi is the

TCAM hit rate. ji is usually a very small number (<1) and the TCAM hit rate (hi) is also low

as we analyzed in Section 5.7.1. Therefore, the second term ∑ += ii
n

ni hj *)1(' is small. In

such a case, the speed of the pattern matching is dominated by the TCAM lookup time.

Assuming TCAM lookup time is 4 ns, the total time to scan an n bytes packet is 4n ns. This

yields a matching speed of 8*n/4n = 2 Gbps if we have a small TCAM hit rate and PHL size.

We will verify these analyses through simulation later in Section 5.8.3.

Having explained the memory access process (which affects the packet scanning rate),

next we study the policies for protecting the system against malicious attack. We study this

because high speed processing is an essential requirement for packet processing systems.

Many existing systems process normal traffic at high speeds, but perform slowly for certain

rarely-occurring packets. Hence, without protection techniques, intruders could flood the

system with these hard-to-process packets to substantially reduce system performance.

 - 127 -

5.7.3 Protection against Malicious Attacks

One application of our proposed pattern matching scheme is network intrusion detection

systems. Such a system itself can be exposed to malicious attacks. For example, packet

generators like SNOT [89] generate packets that demand a lot of processing power to slow

down the intrusion detection systems. We need to protect our pattern matching scheme

against such attacks.

Our pattern matching scheme for the correlated patterns is subject to such attacks. Unlike

long patterns, where we can discard the partial hit results that are w positions away, for

correlated patterns, the distance between two sub-patterns can be larger than w. In addition,

each sub-pattern can be smaller than w bytes, which generates a higher TCAM hit rate than

longer patterns. Intruders may intentionally send packets that cause a lot of partial hits for the

correlated pattern to create a long PHL. Later, when a suffix pattern is matched, a large

number of memory lookups have to be issued and the system performance degrades

dramatically.

To deal with this kind of attack, we study the size of PHL for correlated patterns. First we

answer the question: if we match a pattern of length m at position i, what is the probability

that we can construct an input to match another pattern at position i+j? If j is one, this means

matching two overlapping patterns that are one byte apart. Such probability is low because it

requires the first m-1 bytes of the second pattern are the same as the last m-1 bytes of the first

pattern. Given k independent patterns, the probability of two overlapping patterns that are one

byte apart is 1-)))2)!*(()2/((()!)2((181818 kmmm k −−− − . For example, k = 1000 and m = 4, it is

0.029, which is low.

When j = m and the two patterns do not overlap, intruders can pack the sub-patterns

consecutively to form an n byte packet. This packet generates matches at every n/m positions,

 - 128 -

where m is the shortest sub-pattern length. Thus the PHL can have n/m items or more. To

limit the PHL size, we recommend limiting the maximum distance between two sub-patterns

to be considered as correlated. This recommendation is reasonable because in practice,

patterns very far apart are unlikely to be considered correlated. For example, the maximum

distance between patterns in SNORT patterns is 255.

Now, we have finished analyzing our proposed scheme’s worst-case performance using

theoretical techniques. This is based on the assumption that patterns are independent. Next

we apply our scheme to the real world pattern sets and traces to demonstrate the effectiveness

of the proposed scheme.

5.8 Simulation Results

In this section, we test the effectiveness of our proposed TCAM-based pattern matching

scheme. We use two pattern sets. The first is a virus signature set from ClamAV [46], which

contains simple patterns only. The second is from the SNORT intrusion detection [10] system

with many correlated patterns. We start this section with a methodology section in 5.8.1. We

present simulation results on the ClamAV pattern sets in Section 5.8.2 and SNORT patter

sets in Section 5.8.3.

5.8.1 Methodology

We test our scheme on two complex pattern sets: ClamAV [46] and SNORT. ClamAV

(Version 0.15) contains 1768 simple fixed string patterns. The SNORT system (v2.1.2) has

1836 string patterns. 1039 of them are simple patterns and 527 are correlated patterns with up

to seven sub-patterns in one correlated pattern.

Two sets of real-world packet traces are used during the experiments. The first set is the

intrusion detection evaluation data set from the MIT DARPA project [22]. It contains more

 - 129 -

than a million packets. The second data set is from a local LAN with 20 machines at the UC

Berkeley networking group, which contains more than six million packets. The

characteristics of the MIT dump are very different from Berkeley dump. The former consists

mostly of long packets containing some worms (but not viruses), with the average packet

payload length 507 bytes. In the Berkeley dump, however, most packets are normal traffic

without worms and viruses, with 68 bytes on average in the packet payload. A large fraction

of packets in the Berkeley trace are ICMP and ARP packets that have very short packet

payloads, which makes detection very easy because not many patterns can occur in such a

small payload.

Although the MIT dump contains intrusions, it does not contain many computer viruses.

To test the performance of our scheme on ClamAV virus database under malicious input, we

generate synthetic traffic containing viruses to stress test our scheme. We generated four sets

of synthesized data, each with 1, 10, and 100 randomly inserted virus patterns per testing

packet respectively.

For all the test traces we record the average and maximum Partial Hit List (PHL) size for

each packet. As we mentioned in Section 5.7, the size of PHL denotes the number of memory

lookups needed per byte position. Hence, the size of PHL transitively affects the scanning

rate. We used three metrics for the PHL size over the entire trace data. Avg is the mean of the

average PHL size over all packets. AvgMax denotes the mean of the maximum PHL sizes

over different packets. Max records the maximum size over all packets, which denotes the

maximum number of entries in memory during the run.

5.8.2 Results on ClamAV Pattern Set

ClamAV (Version 0.15) has 1768 simple patterns. The average pattern length is 55 bytes.

Figure 5-7 plots the distribution of the pattern length. It varies from 6 bytes to 2189 bytes.

 - 130 -

Figure 5-7. Distribution of pattern length over the ClamAV rule set.

Figure 5-8.TCAM space consumed vs. TCAM width.

1
10

100
1000

10000
100000

1000000
10000000

4 16 64 25
6

10
24

40
96

TCAM width(byte)

 S
R

A
M

 s
iz

e
(K

B
)

Figure 5-9. Mapping table size vs. TCAM width.

With such a large variance in pattern lengths, selection of the TCAM width w is critical.

Figure 5-8 shows the total TCAM space needed to accommodate all the patterns under

different values of w. When w increases, the TCAM space requirement increases too due to

the padding for short and suffix patterns. This agrees with our analysis in Section 5.7.1. The

100

1000

10000

4 16 64 256 1024 4096
TCAM width (byte)

T
C

A
M

 S
pa

ce
 (K

B
)

0
50

100
150
200
250
300
350
400

1 10 100 1000 10000
Length (bytes)

N
um

be
r o

f P
at

te
rn

s

 - 131 -

Table 5-7. PHL size for ClamAV signature set.

MIT Dump Berkeley Dump TCAM
Width Avg AvgMax Max Avg AvgMax Max

4 0.042 0.27 4 0.03 0.48 4
8 4.8e-6 5.6e-4 8 1.e-6 1.9e-5 7

16 0 0 0 4.3e-7 5.8e-6 3
32 0 0 0 0 0 0
64 0 0 0 0 0 0

128 0 0 0 0 0 0

size of the mapping table in SRAM, however, is negatively correlated to the TCAM width as

shown in Figure 5-9. When w is small, a long pattern generates many prefix and suffix

patterns. Therefore, the number of prefix and suffix indices grows, resulting in a large

mapping table. Combining the analyses from Figure 5-8 and Figure 5-9, we choose w to be

128 bytes and use a 240 KB TCAM and 657 KB SRAM.

5.6.2.1 Test Results on Real Data

Table 5-7 shows the PHL size for both the MIT and Berkeley traces. Since these two traces

do not contain many viruses, the PHL size is extremely low when the window size is

reasonably large. When the size of PHL is small, the memory lookup process is mostly idle

and the system performance is bounded by the TCAM access rate only. So, we can achieve

2Gbps rate with a 240 KB TCAM.

5.6.2.2 Test on Synthesized “Worst-case” Packets

We create synthesized data that contains a large number of virus signatures to stress test our

scheme. We generate three sets of data, the first set contains a single virus patterns per packet,

the second set contains ten patterns in a sequence per packet, and the last set contains one

hundred patterns per packet. For these synthesized packets, many TCAM hits are generated,

resulting in a larger PHL size compared to the real traffic. Figure 5-10 shows the average

PHL size. It decreases quickly as we increase the TCAM width w. In addition,

 - 132 -

0

0.05

0.1

0.15

0.2

0.25

0.3

16 32 64 128 256 512 1024
TCAM width(in bytes)

A
ve

ra
ge

 P
H

L
Si

ze

1 Pattern/packet

10 Patterns/packet

100 Patterns/packet

Figure 5-10. Average of PHL size over synthesized data.

0

1

2

3

4

5

16 32 64 128 256 512 1024
TCAM Width (in bytes)

A
Vg

M
ax

 P
H

L
Si

ze

1 Pattern/packet

10 Patterns/packet

100 Patterns/packet

Figure 5-11. Average of Max PHL size per packet.

having multiple patterns in the packets does not increase the PHL size dramatically. This is

because we can delete the prefix patterns that are w bytes ahead, so the number of patterns in

a w byte window may not increase proportionally to the increase of the total number of

patterns per packet.

The AvgMax PHL size per packet is notably larger than Avg as plotted in Figure 5-11.

This shows that some contents in the packets cause backlogs in the memory lookup process.

The effect of the TCAM width again has significant impact—if we set w to be 128 bytes or

longer, the AvgMax PHL size is around one per packet. This means that even with this

“worst-case” data, the memory lookup process can still finish within one or two cycles after

the TCAM lookup process finishes. This has the same effect as increasing the packet size by

one or two bytes. Given the fact that IP packets typically consist of at least tens of bytes and

 - 133 -

0

5

10

15

20

16 32 64 128 256 512 1024
TCAM width (bytes)

M
ax

P
HL

 S
iz

e

1 Pattern/packet

10 Patterns/packet

100 Patterns/packet

Figure 5-12. Max PHL size over all packets.

we do not need to perform pattern matching on the packet header, the impact of slightly

increasing the “effective packet length” for matching purposes is negligible. Hence the

packet scan rate is still 2Gbps over this set of synthesized data. Figure 5-12 illustrates the

maximum PHL size over all packets. When w is small (e.g., 16), the maximum is small

because the max PHL size is bounded by w. When w gets larger, the PHL size increases and

then drops quickly because the probability of a TCAM hit becomes small for large w. There

is a big difference in the PHL sizes between packets containing one virus pattern and ten

patterns. However, as we increase the number of viruses per packet, the growth of max PHL

size slows. This is because within w bytes, the number of viruses is limited, even though we

can have a hundred viruses in the whole packet.

5.8.3 Results on SNORT Pattern Set

The current Version of SNORT (v2.1.2) contains 1836 string patterns. The lengths of

patterns are much shorter than the ClamAV signature set: mostly from 10 bytes to 100 bytes.

In addition, there is a noticeable amount of short patterns of one or four bytes. Among these

string pattern patterns, 1039 are simple patterns and 527 are correlated patterns with up to

 - 134 -

Table 5-8. PHL size for SNORT signature set.

MIT Dump Berkeley Dump Window
Size Avg AvgMax Max Avg AvgMax Max
20 0.5523 2.7683 8 0.4702 1.5765 12
40 0.9881 3.5376 14 0.6500 1.8661 18
60 1.3151 3.9960 14 0.7313 1.9652 23
80 1.5491 4.2158 16 0.7587 2.0373 24

100 1.6867 4.3485 18 0.7661 2.0740 25
120 1.7725 4.4475 18 0.7669 2.0768 25
140 1.8308 4.5722 19 0.7669 2.0768 25
160 1.8800 4.6643 19 0.7669 2.0768 25
180 1.9244 4.7386 19 0.7669 2.0768 25
200 1.9662 4.8079 20 0.7669 2.0768 25

seven sub-patterns in one correlated pattern. We set the TCAM width to 128 bytes and the

patterns can be mapped into a TCAM size of 295 KB.

Since SNORT has correlated patterns, we first test the impact of different window sizes

ranging from 20 to 200 bytes. Compared to ClamAV, the PHL size is much larger as shown

in Table 5-8. This is because the SNORT signature set contains a lot of short patterns. In

addition, the size of PHL increases when the window size increases because it needs to keep

the partial hit information longer. However, as the window size grows larger, PHL increases

at a slower rate.

A large PHL is problematic since it requires many memory lookups and slows down the

system. Therefore, we studied the total scanning time (including memory lookups and TCAM

lookups). Since memory (e.g., SRAM) access is usually slightly faster than TCAM access

rates, we simulated scenarios with different ratios of memory to TCAM access times, (which

we call the memory ratio). For example, a value of one means memory access speed is equal

to TCAM access speed, while 0.2 denotes that memory access speed is 5 times the TCAM

access rate.

 - 135 -

1

1.2

1.4

1.6

1.8

2

2.2

60 70 80 90 100
% of Packets

Sc
an

 R
at

e

0.2
0.4
0.6
0.8
1

Memory Ratio

Figure 5-13. Effects of memory ratio on scan rates.

Figure 5-13 shows the impact of memory ratio on the scan rate, with each curve standing

for one memory ratio setup. The y axis is the scanning rate, while the x axis is the percentage

of packets that were processed at that rate. For example, a value of two (y axis) at 60 percent

(x axis) means that 60% of the packets have a scan rate of 2 Gbps. Simulation results show

that the scan rate is close to 2Gbps for most of the packets (80%) under all settings. Since the

TCAM access rate is 2Gbps, the TCAM access speed is the bottleneck for these packets. For

the remaining around 20% of packets, the memory access process is backlogged and

therefore the overall system performance is lower than the TCAM access rate. Nevertheless,

the scan rate is over 1Gbps for all memory ratios we tested. Sung, et al., reported that a 10

Gbps rate can be achieved by extending our scheme to jump multiple bytes at a time [90].

5.9 Conclusions

With the increasing importance of network protection from cyber-attacks, it is essential to

develop mechanisms for building effective defenses against virus, worm, and denial of

service attacks. The rapid rise in link bandwidths implies that network protection

mechanisms must be capable of operating at multi-gigabit rates. A key operation for network

(G
bp

s)

 - 136 -

protection is pattern-matching to check for virus and worm signatures. In this chapter, we

developed a TCAM-based scheme for matching fixed string patterns and composite patterns.

Our proposed scheme can scan thousands of patterns simultaneously at gigabit rates. By

evaluating its performance using multiple real-network traces we showed that it is indeed

suitable for multi-gigabit operation. The scheme can also be extended to achieve even higher

rates with larger TCAMs.

The methods presented in this chapter are only for fixed string and composite patterns.

As mentioned in Section 5.3, there are many regular expression patterns in addition to these

two patterns that are used in the network payload scanning applications. In the next chapter,

we present schemes for fast regular expression matching.

 - 137 -

6 Fast and Memory-Efficient Regular Expression

Matching

Previous chapters provided schemes for high-speed, fixed-string matching. More recently,

fixed string patterns are being replaced with the need to support regular expression pattern

matching in packet scanning applications. This chapter explores algorithms for fast regular

expression matching. We first show that memory requirements using the well-known

traditional methods for this problem are prohibitively high for some patterns used in packet

scanning applications. We then propose regular expression rewrite techniques that rewrite

these patterns into memory efficient ones. In addition, we present grouping schemes that

strategically compile a set of regular expressions into several scanners that run in parallel,

resulting in a significant improvement of regular expression matching speed without much

increase in memory consumption. We implement a fast and memory efficient regular

expression scanner for real-world patterns of packet scanning applications. Our experimental

results using real-world traffic collected from Berkeley and MIT show that our

implementation achieves a factor of 12 to 42 speed improvement over a commonly used

DFA-based scanner. Compared to the state-of-art NFA-based implementation, our DFA-

based packet scanner achieves a 50 to 700 times speedup with just a 2.6 to 8.4 times increase

in memory usage.

 - 138 -

6.1 Introduction

As described in Chapter 2, packet content scanning (also known as Layer-7 filtering or

payload scanning) is crucial to network security and network monitoring applications. The

payload of packets in a traffic stream is matched against a given set of patterns to identify

specific classes of applications, viruses, protocol definitions and so on.

Viruses and worms have been structured by their authors so as to defeat simple pattern

matching approaches. For example, polymorphic worms and attacks to complex protocols

make it impossible to enumerate all the possible signatures using explicit strings. Regular

expressions, however, can express these patterns due to their rich expressive power. For

example, a regular expression “^Entry /file/[0-9.]{71,}//.*\x0aannotate\x0a” is for detecting

a Concurrent Versions System (CVS) revision overflow attack. This pattern searches for a

fixed pattern “Entry/file/” followed by 71 or more 0 to 9 digits, then a fixed pattern “//”

followed by some arbitrary characters (.*), finally the pattern “\x0aannotate\x0a”.

Obviously, it is very hard to catch this type of attacks using fixed string patterns. As a result,

regular expressions are replacing explicit string patterns as the pattern matching language of

choice in packet scanning applications. In the Linux Application Protocol Classifier (L7-

filter) [22], all protocol identifiers are expressed as regular expressions. Similarly, the

SNORT [10] intrusion detection system has evolved from no regular expressions in its rule

set in April 2003 (Version 2.0) to 1131 out of 4867 rules using regular expressions as of

February 2006 (Version 2.4). Another intrusion detection system, Bro [91], also uses regular

expressions as its pattern language.

As regular expressions gain wider adoption for packet content scanning, it is imperative

that out matching algorithms maintain line-speed while using moderate amounts of memory.

Unfortunately, these requirements are not met in many existing payload scanning

 - 139 -

implementations. For example, when all 70 protocol filters are enabled in the Linux L7-filter

[22], we found that the system throughput drops to less than 10Mbps on a 100Mbps network

using a computer with 750 MHz PIII and 512 MB of memory, which does not satisfy the

requirements for high speed edge networks, where gigabit Ethernets have become the norm.

Moreover, we found that over 90% of the CPU time is spent in regular expression matching,

leaving little time for other intrusion detection or monitoring functions. At the same time, the

memory requirements using traditional methods are prohibitively high for many patterns used

in packet scanning applications. Although many schemes (including our approach in Chapter

5) for fast string matching [85, 86, 92-97] have been developed recently in intrusion detection

systems, they focus only on explicit string patterns and cannot be easily extended for fast

regular expression matching.

In this chapter, we study the reasons that traditional regular expression techniques fail to

provide high speed regular expression matching for networking applications, and then

propose our scheme for constructing fast regular expression recognizers. The previous

chapter already gave a brief review of the patterns used in packet scanning systems and states

the general pattern processing goal. In this chapter, we focus on the regular expression

patterns. We begin with a brief survey of traditional regular expression pattern matching

methods in Section 6.2. In Section 6.3, we study the special characteristics of typical regular

expression patterns used in network scanning applications. We show that some of these

patterns lead to exponential memory usage or low matching speed when using the traditional

methods. Based on these analyses, we propose two rewrite rules for specific regular

expressions in Section 6.4. The rewrite rules can dramatically reduce the size of resulting

DFAs, making them small enough to fit in memory. In Section 6.5, we develop techniques to

intelligently combine multiple DFAs into a small number of groups to accelerate the

matching speed, while avoiding the exponential growth in the number of states in memory.

 - 140 -

Table 6-1. Features of Regular Expressions.

Syntax Meaning Example
^ Pattern to be matched at the

start of the input
^AB means the input starts with AB.
A pattern without ‘^’, e.g., AB, can be
matched anywhere in the input.

| OR relationship A|B denotes an occurrence of either A or B.
. A single character wildcard

? A quantifier denoting one or
less

A? denotes A or an empty string.

* A quantifier denoting zero
or more

A* means an arbitrary number of As.

[97] Repeat A{100} denotes a sequence of 100 As.
[] A class of characters [lwt] denotes a letter l, w, or t.
[^] Anything but [^\n] denotes any character except \n.

Finally, we demonstrate the effectiveness of our rewriting and grouping algorithms through a

detailed performance analysis using real-world payload scanning pattern sets in Section 6.6.

6.2 Taxonomy

In this section, we give a brief overview of regular expressions with a survey of the existing

approaches for regular expression matching.

6.2.1 Introduction to Regular Expression

A regular expression describes a set of strings without explicitly enumerating them. Table 6-1

lists the regular expressions operators used to describe patterns within packets. An anchor

(“^”) enforces that a pattern must be matched at the beginning of the input. “|” denotes or

relationship. “.” is a single character wildcard. In other words, any character can be matched

using “.”. “?” is a quantifier representing zero or one and “*” denotes zero or more. “{}” can

be used to define more specific occurrence restrictions. For example, “{3, 5}” stands for

repeating three to five times. We can also use “[]” to define a class, i. e., characters inside the

brackets form a class and they have or relationships. When “^” appears in “[]”, it has a

special meaning of exception. For example, “[^\n]” denotes anything but the return key.

 - 141 -

Let us take the regular expression for detecting Yahoo messenger traffic as an example:

“^(ymsg|ypns|yhoo).?.?.?.?.?.?.?[lwt].*\xc0\x80”. Yahoo messenger now has more than 76

million users in April 2006 according to comScore Media Metrix [91] and it is significant

source of network traffic. This particular pattern is included in the popular Linux L7-filter set

[22] for detecting Yahoo messenger traffic. According to the analysis by Venkat [99], all the

Yahoo messenger commands start with ymsg, ypns or yhoo. Therefore, this pattern first

identifies “(ymsg|ypns|yhoo)”. The next seven or fewer bytes contain command length and

Version information that varies among packets. So this pattern ignores those by using

“.?.?.?.?.?.?.?”. Then it identifies a letter l, w or t. l stands for "Yahoo service verify”, w

denotes "encryption challenge command", and t represents "login command". This pattern

ends with ASCII letters c0 and 80 in the hexadecimal form because 0xC080 is the standard

argument separator in hexadecimal notation.

6.2.2 Solution Space for Regular Expression Matching

Regular expression matching has been studied for decades. In this section, we quickly review

the traditional approaches to the general regular expression recognition problem. At the end

of this section, we point out typical patterns that are easy to match using these traditional

methods as well as patterns that are relatively expensive (in terms of computation or memory

consumption).

 Finite automata are a natural formalism for regular expressions matching. There are two

main categories: Deterministic Finite Automaton (DFA) and Nondeterministic Finite

Automaton (NFA). This section provides a brief survey of existing methods using these two

types of automata.

A DFA consists of a finite set of input symbols, denoted as ∑, a finite set of states, and a

transition function δ [100]. In networking applications, ∑ contains the 28 symbols from the

 - 142 -

extended ASCII code. Among the states, there is a single start state q0 and a set of accepting

states. The transition function δ takes a state and an input symbol as arguments and returns a

state. A key feature of DFA is that at any time there is only one active state in the DFA. An

NFA is similar to a DFA except that the δ function maps from a state and a symbol to a set of

new states. Therefore, multiple states can be active simultaneously in an NFA.

Using automata to recognize regular expressions introduces two types of complexity:

automata storage and processing costs. A theoretical worst case study [100] shows that a

single regular expression of length n can be expressed as an NFA with O(n) states. When the

NFA is converted into a DFA, it may generate O(∑n) states, where ∑ is the set of symbols.

The processing complexity for each character in the input is O(1) in a DFA, but is O(n2) for

an NFA when all n states are active at the same time.

To handle m regular expressions, two choices are possible: processing them individually

in m automata, or compiling them into a single automaton. The former is used in SNORT [2]

and Linux L7-filter [1]. The latter is proposed in recent studies [101, 102] so that the single

composite NFA can support shared matching of common prefixes of those expressions.

Despite the demonstrated performance gains over using m separate NFAs, in practice this

approach requires large numbers of active states. This has the same worst case complexity as

the sum of m separate NFAs. Therefore, this approach on a serial processor can be slow. As

given any input character, each active state must be serially examined to obtain new states.

In DFA-based systems, compiling m regular expressions into a composite DFA decreases

the processing complexity over running m individual DFA. Specifically, a composite DFA

reduces processing cost from O(m) (O(1) for each automaton) to O(1), i.e., a single lookup to

obtain the next state for any given character. However, the number of states in the composite

automaton grows to O(∑mn) in the theoretical worst case. In fact, we will show in Section

 - 143 -

Table 6-2. Worst case comparisons of DFA and NFA.

One regular expression
of length n

m regular expressions
compiled together

Processing
complexity

Storage cost Processing
complexity

Storage cost

NFA O(n2) O(n) O(n2m) O(nm)

DFA O(1) O(∑n) O(1) O(∑nm)

6.5.2 that typical patterns in packet payload scanning applications indeed interact with each

other and can cause the creation of an exponential number of states in the composite DFA.

There is a middle ground between DFA and NFA, called lazy DFA. Lazy DFAs are

designed to reduce the memory consumption of conventional DFAs [24, 101]: a lazy DFA

keeps a subset of the DFA that matches the most common strings in memory; for uncommon

strings, it extends the subset from the corresponding NFA at runtime. As such, a lazy DFA is

usually much smaller than the corresponding fully-compiled DFA and provides good

performance for common input strings. The Bro intrusion detection system [3] adopts this

approach. However, malicious senders can easily construct packets with uncommon strings

to keep the system busy and slow down the matching process. As a result, the system will

start dropping packets and malicious packets can sneak through.

Having explained the complexity of DFA-based approaches and NFA-based approaches,

next we present some typical patterns that are easy, in terms of computation and memory

requirement, to match and patterns that are hard to match.

Easy-to-match patterns

It is obvious that patterns with fixed strings only are very easy to match. Patterns starting

with an anchor (“^”), known to start at the initial position, are relatively easier to match than

those without. Many protocol patterns, such as the previously mentioned Yahoo messenger

example, use anchors and place identifying prefix string in the first position after the anchor

 - 144 -

(“^(ymsg|ypns|yhoo)” for the Yahoo pattern). For an input that does not start with a valid

prefix of the pattern, we can easily tell from the beginning of the input that it will not match

the pattern. Patterns without an anchor, however, force us to check every byte in the input to

make such a conclusion.

Hard-to-match patterns

Generally speaking, patterns with many wildcards (“.” and “*”) are hard to match. This is

because wildcards will interact with other wildcards to form large DFA components, when

using DFA-based approaches. For NFA-based approaches, wildcards will activate multiple

states simultaneously, causing the processing complexity to increase dramatically. Similarly,

patterns with classes of characters “[]” are also be hard to match because it yet is another

form of wildcards.

The most complicated patterns we encountered in the real world are those with semantic

ambiguity. If there are multiple ways of matching an input against a pattern, DFA-based

approaches require many states to remember all the possible ways that patterns could match.

This causes a high memory requirement. At the same time, NFA-base approaches will

generate many active states, hence resulting in high processing complexity. A more detailed

analysis of these hard-to-match patterns will be shown later in Section 6.4.1.

6.3 Regular Expression Matching in Network Scanning

applications

The previous section surveyed the most representative traditional approaches to regular

expression matching. In this session, we show that these techniques sometimes do not work

efficiently for the patterns in networking applications. We begin this session with the special

matching requirements of networking applications. Next, we study the typical structures of

patterns in the networking applications. After that, we show that certain structures in

 - 145 -

networking applications patterns are hard to match using traditional methods: they either

require a large memory usage or yield a high computation cost. Finally we present our

problem statement.

6.3.1 Requirements and Design Considerations

Unlike traditional pattern matching applications, e.g., searching for a pattern in a local file,

network applications have unique requirements for pattern matching. First, the target is a

continuous input stream rather than a fixed length string. Second, matching must be

performed at high speed. Third, the memory consumption must be within the capacity and

budget of modern computers or routers. Finally, the pattern matching scheme must be

resilient to malicious attacks. In this section, we explain these points in detail.

6.3.1.1 Identify Patterns in an Input Stream

Most existing studies of regular expressions focus on a specific type of evaluation, that is,

checking if a fixed length string belongs to the language defined by a regular expression.

More specifically, a fixed length string is said to be in the language of a regular expression, if

the string is matched from start to end by a DFA corresponding to that regular expression. In

contrast, in packet payload scanning, a regular expression pattern can be matched by the

entire input or specific substrings of the input. Without a priori knowledge of the starting and

ending positions of those substrings (unless the pattern starts with “^” that restricting it to be

matched at the beginning of the input), the DFAs created for recognizing all substring

matches can be highly complex. This is because the DFA needs to remember all the possible

sub-prefixes it has encountered. When there are many patterns with a lot of wildcards, they

can be simultaneously active (recognizing part of the pattern). Hence, a DFA needs many

states to record all possible combinations of partially matched patterns.

 - 146 -

For a better understanding of the matching model, we next present a few concepts

pertaining to the completeness of matching results and the DFA execution model for

substring matching. Given a regular expression pattern and an input string, a complete set of

results contains all substrings of the input that the pattern can possibly match. For example,

given a pattern ab* and an input abbb, three possible matches can be reported, ab, abb, and

abbb. We call this style of matching Exhaustive Matching. It is formally defined as below:

Exhaustive Matching: Consider the matching process M as a function from a pattern P

and a string S to a power set of S, such that, M(P, S) = {substring S' of S| S' is accepted by the

DFA of P}.

In practice, it is expensive and often unnecessary to report all matching substrings, as

most applications can be satisfied by a subset of those matches. For example, if we are

searching for the pattern for the Oracle user name buffer overflow attempt

“^USR\s[^\n]{100,}”, which searches for packets starting with “USR\s” and followed by 100

or more non-return characters. An incoming packet with “USR\s” followed by 200 none

return characters, may have 100 ways of matching the pattern because each combination of

the “USR\s” with the sequential 100 to 200 characters is a valid match of the pattern. In

practice, reporting just one of the matching results is sufficient to detect the buffer overflow

attack. Therefore, we propose a new concept, Non-overlapping Matching, that relaxes the

requirements of exhaustive matching.

Non-overlapping Matching: Consider the matching process M as a function from a

pattern P and a string S to a set of strings, specifically, M(P, S) = {substring Si of S| ∀ Si, Sj

accepted by the DFA of P, Si ∩ Sj = φ }.

If a pattern appears in multiple locations of the input, this matching process reports all

non-overlapping substrings that match the pattern. We revisit our example above. For the

pattern ab* and the input abbb, the three matches overlap by sharing the prefix ab. For this

 - 147 -

example, if we assume non-overlapping matching, we only need to report one match instead

of three.

For most payload scanning applications, we expect that non-overlapping matching would

suffice, as those applications are mostly interested in knowing if certain attacks or application

layer patterns appear in a packet. In fact, most existing scanning tools like grep and Flex and

systems like SNORT [10] and Bro [28] implement special cases of non-overlapping matching

such as left-most longest matching or left-most shortest matching. As we show later this

section, by restricting the solutions for non-overlapping matching, we can construct more

memory-efficient DFAs.

Note that it is possible for patterns to be fragmented into multiple packets since each

packet has a limited size. In SNORT and Bro, packets are passed to a defragmenter before

entering the pattern matching system. We also assume having such a defragmentation

component as explained earlier in Section 1.4.2.

6.3.1.2 High Speed

The above section discussed that we need to matching strings inside data stream. The rate of

the input packet stream is usually at at least 1 Gigabit rate and hence the packet payload

matching must also be performed at least at 1 Gigabit rate. In this section, we map this

requirement into the regular expression matching process and explore the tradeoff of different

matching methods.

As discussed in Section 6.2.2, NFA-based approaches have O(n2) processing complexity

given an input character for a regular expression of length n, while DFA-based approaches

have a significantly lower computation cost of O(1). Hence, in this chapter, we adopt DFA-

based approaches to achieve a high matching speed. There are two DFA-based automata

 - 148 -

processing: repeated searches and one pass search. Next we explain these processing

approaches in detail.

Repeated searches. A DFA can be created directly from a pattern using standard DFA

construction techniques [100, 101]. To find the set of matching substrings (using either

exhaustive or non-overlapping matching), the DFA execution needs to be augmented with

repeated searches of the input: an initial search starts from the beginning of the input, reading

characters until (1) it has reported all matches (if exhaustive matching is used) or one match

(if non-overlapping matching is used), or (2) it has reached the end of the input. In the former

case, the new search will start from the next character in input (if exhaustive matching is

used) or from the character after the reported match (if non-overlapping matching is used). In

the latter case, a new search is initiated from the next character in the input. This style of

repeated scanning using DFAs is commonly used in language parsers. However, this repeated

scanning process is slow for packet payload scanning where the probability of the packet

payload matching any particular pattern is low (verified in Section 6.6.6).

One-pass search. In the second approach, “.*” is pre-pended to each pattern without ‘^’,

which explicitly states that the pattern can be matched anywhere in the input. Then, a DFA is

created for the extended pattern. As the input is scanned from start to end, the DFA can

recognize all substring matches that may start at different positions of the input. Using one

pass search, this approach can truly achieve O(1) computation cost per character, thus

suitable for networking applications. To achieve a high scanning rate, we adopt this approach

in the rest of the study. This approach, however, may generate a larger number of DFA states

compared one based on repeated searches. We will address this problem in Section 6.4 and

6.5, with Section 6.4 emphasizing on matching a single regular expression and Section 6.5 on

multiple ones. Later, we will compare the performance this one-pass search approach and the

repeated search approach in Section 6.6.6

 - 149 -

6.3.1.3 Low Memory Requirements

Packet processing systems usually have limited memory, especially limited fast memory. The

most popular fast memory used in routers today is Static Random Access Memory (SRAM).

The largest single-chip SRAM currently available from Cypress is only 72Mb [91]. The size

of slow memory, i.e., Dynamic random access memory (DRAM), can easily go to Giga-

bytes. However, its access latency is ten times that of SRAM, which makes it a distant

second choice for fast regular expression matching purpose. Even if a large DRAM is

adopted, it still has some fixed capacity. The exponential growth of DFA can easily eat this

up. Thus, the focus of our approach is to reduce memory overhead of DFA while

approaching the optimal processing speed of O(1) per character.

It is worth noting that there are two sources of memory usage in DFAs: states and

transitions. The number of transitions is linear with respect to the number of states because

for each state there can be at most 28 (for all ASCII characters) links to next states. Therefore,

the number of states (in the minimized DFA) is the primary factor in determining the memory

usage in the rest of the chapter. Also, due to the need for high performance, DFAs using any

table compression techniques is not adopted because such techniques incur extra memory

accesses per input character and thus slow the matching process.

6.3.1.4 Resilience to Attacks

Many network packet scanning applications are designed for intrusion detection purposes,

i.e., for filtering out virus or worm attack packets. Therefore, the regular expression scanning

system itself must be resilient to attacks. Most existing packet scanning systems are

optimized for common traffic. They spend a longer time or use more memory on packets that

contain complicated patterns or infrequent appearing patterns. There are two types of attacks

to these systems. The first is overloading attacks. Intruders (e.g., SNORT system [91]) attack

 - 150 -

these systems by maliciously sending a high volume of packets that require heavy

processing. When the intrusion system slows down and starts to drop the incoming packets, a

malicious packet can sneak through. The second type of attack is to crash the system.

Intruders maliciously send packets that require a lot of dynamic memory, thus causing the

system to crash.

To be resilient to attacks, the pattern matching system must guarantee good throughput

even under worst case traffic. In other words, it must deliver deterministic performance both

in terms of processing complexity and memory usage.

6.3.2 Patterns Used in Networking Applications

Having identified the design goals, next we take a detailed look at the patterns in networking

applications. We study the complexity of DFA for typical patterns used in real-world packet

payload scanning applications such as Linux L7-filter (as of Feb 2006), SNORT (Version

2.4), and Bro (Version 0.8V88). The study is based on the use of exhaustive matching and

one-pass search as we presented in Subsections 6.3.1.1 and 6.3.1.2. Table 6-3 summarizes

the results.

Explicit strings generate DFAs of size linear to the number of characters in the pattern.

25% of the networking patterns, in the three applications we studied (Linux L7-filter,

SNORT, and Bro), fall into this category and they generate relatively small DFAs with an

average of 24 states. Usually patterns starting with the anchor “^” generate small DFAs,

while patterns with wildcards generate large ones. However, patterns in networking

applications may not follow this form. For example, a buffer overflow attempt string may be

hidden in a series of valid commands. Wildcards “.*” alone need not create a large number of

states. 19% of the patterns contain wildcards, but still generate a small number of states (on

average 27). In these patterns, usually there is only a single wildcard and it doesn’t

 - 151 -

Table 6-3. An analysis of patterns in network scanning applications.

 Pattern features Example # of
states

% of
patterns

Average #
of states

1) Explicit strings with k characters ^ABCD
.*ABCD

k+1 25.1% 23.6

2) Wildcards ^AB.*CD
.*AB.*CD

k+1 18.8% 27.2

3) Patterns with ^, a wildcard, and a
length restriction j

^AB.{j+}CD
^AB.{0, j}CD
^AB.{j}CD

O(k*j) 44.7% 180.3

4) Patterns with ^, a class of characters
overlaps with the prefix, and a length
restriction j

^A+[A-Z]{j}D O(k+j2)
j~370

5.1% 136903

5) Patterns with a length restriction j,
where a wildcard or a class of
characters overlaps with the prefix

.*AB.{j}CD

.*A[A-Z]{j+}D
O(k+2j)
j~344

6.3% >2214

interact with other parts of the pattern. For patterns starting with “^’, they create DFAs of

polynomial complexity with respect to the pattern length k and the length restriction j. Our

observation from the existing payload scanning rule sets is that the pattern length k is usually

limited. The length restriction j is usually small too, unless it is for buffer overflow attempts.

In that case, it will be more than 300 hundred on average and sometimes even reaches

thousands. Given large j, some patterns starting with anchors (Case 4) can also result in a

large DFA with the number of state grows quadratic in j. Although this type of patterns only

constitutes 5.1% of the total patterns, they create DFAs with an average of 136903 states.

There are also a small percent (6.8%) of patterns starting with “.*” and having length

restrictions (Case 5). These create DFAs of exponential sizes. We will address these two

cases in detail later in Section 6.4.

We compare the regular expressions used in these three networking applications,

SNORT, Bro, and the Linux L7-filter, against those used in emerging Extensible Markup

Language (XML) filtering applications [101, 102] where regular expressions are matched

over text documents encoded in XML, see Table 6-4. We notice three main differences:

 - 152 -

 Table 6-4. Comparison of regular expressions in networking applications against those
in XML filtering.

 SNORT Bro L7-
filter

XML
filtering

of regular expressions analyzed 1555 2780 70 1,000-
100,000

% of patterns starting with “^” 74.4% 2.6% 72.8% ≥80%
% of patterns with wildcards “., +, ?, *” 74.9% 98.8% 75.7% 50% -

100%
Average # of wildcards per pattern 4.7 4.3 7.0 1-2
% of patterns with class “[]” 31.6% 65.8% 52.8% 0
Average # of classes per pattern 8.0 3.4 4.8 0
% of patterns with length restrictions on
classes or wildcards

56.3% 23.8.
%

21.4% ≈0

 (1) While both types of applications use wildcards (‘.’, ‘?’, ‘+’, ‘*’), the patterns for

packet scanning applications contain larger numbers of them. Many such patterns use

multiple wildcard metacharacters (e.g., ‘.’, ‘*’). For example, the pattern for identifying the

Internet radio protocol, “membername.*session.*player”, has two wildcard fragments “.*”.

Some even contain over ten such wildcard fragments. For example, the pattern for a Domain

Name Server (DNS) request is “^.?.?.?.?[\x01\x02].?.?.?.?.?.?[\x01-?][a-z0-9][\x01-?a-

z]*[\x02-\x06][a-z][a-z][fglmoprstuvz]?[aeop]?(um)?[\x01\x10\x1c]

[\x01\x03\x04\xFF]”, which contains 14 wildcard fragments. As regular expressions are

converted into state machines for pattern matching, large numbers of wildcards can cause the

corresponding DFAs to grow exponentially.

(2) Classes of characters (“[]”) are used in packet scanning applications, but not in XML

processing applications. For example, the pattern for matching the ftp protocol, “^220[\x09-

\x0d -~]*ftp”, contains a class (inside the brackets) that includes all the printing characters

and space characters. The class of characters may intersect with other classes or wildcards.

For example, the pattern for detecting buffer overflow attacks to the Network News

Transport Protocol (NNTP) is “^SEARCH\s+[^\n]{1024}”, where a class of character “[^\n]”

 - 153 -

interacts with its preceding white space characters “\s+”. When given an input with SEARCH

followed by a series of white spaces, there is ambiguity whether these white spaces match

“\s+” or the none return class “[^\n]”. As we will show later in the Case 4 of Section 6.4.1,

such interaction can result in a highly complex state machine.

(3) A high percentage of patterns in packet payload scanning applications have length

restrictions on some of the classes or wildcards, while such length restrictions usually do not

occur in XML filtering. For example, the pattern for detecting Internet Message Access

Protocol (IMAP) email server buffer overflow attack is as follows “.*AUTH\s[^\n]{100}”.

This pattern contains the restriction that there would be 100 non-return characters “[^\n]”

after matching of keyword AUTH and any number of white spaces “\s”. As we shall show

later in the Case 5 of Section 6.4.1, such length restrictions can increase the resource needs

for expression matching.

The above study demonstrates that, compared to the XML filtering application, network

packet scanning applications face additional challenges. These challenges lead to a

significant increase in the complexity of regular expression matching, as we will show later

in detail in Section 6.4.1.

6.3.3 Problem Statement

The last subsection shows that patterns in networking applications have uniquely complex

features that can lead to complex processing using traditional methods. In this chapter, we

seek a fast and memory-efficient solution to regular expression matching for packet payload

scanning. The scope of the problem is defined as follows:

We consider DFA-based approaches, as NFA-based approaches are computationally

inefficient on serial processors or processors with limited parallelism (e.g., multi-core CPUs

in comparison to FPGAs). Our goal is to achieve O(1) computation cost for each incoming

 - 154 -

character, which cannot be accomplished by any existing DFA-based approaches due to their

excessive memory usage. Thus, the focus of the study is to give an approach that reduces

memory overhead from that of a traditional DFA-based approach while approaching the

optimal processing speed of O(1) per character.

This chapter focuses on algorithm designs geared towards network processor and

general-purpose processor-based architectures, and explores the limits of regular expression

matching in these environments. Wherever appropriate, it leverages of the parallel processing

capabilities of multi-core processors, which are rapidly becoming prevalent in those

architectures. Nevertheless, the results can be used in FPGA-based and ASIC-based

approaches as well [103]. Note that the number of cores and the amount of local memory in

the multi-core processors are usually limited. For example, the IBM cell processor has 8

cores, each with only 128 KB local memory [53] .

As stated in Section 6.3.1, our goal is to design a fast regular expression matching system

that has O(1) per character with minimum memory requirement.

6.4 Matching of Individual Patterns

In this section, we present our algorithm for matching individual regular expression patterns.

The main technical challenge is to create DFAs that can fit in memory, thus making a fast

DFA-based approach feasible. We first analyze the size of DFAs for hard-to-match patterns

in typical payload scanning applications in Section 6.4.1. Although theoretical analyses [100,

101] have shown that DFAs are subject to an exponential increase in state as the pattern size

increases, here, we identify specific structures that can lead to exponential growth of DFAs.

Based on the insights from this analysis, in Section 6.4.2, we propose pattern rewrite

techniques that explore the possibility of trading off exhaustive pattern matching (defined in

 - 155 -

Section 6.3.1.1) for memory efficiency. Finally, we offer guidelines to pattern writers on how

to write patterns amenable to efficient implementation in Section 6.4.3.

6.4.1 DFA Analysis for Individual Regular Expressions

In Section 6.3.2, we analyzed the typical patterns in networking applications. A large

percentage of them are easy to match. There are two exceptions, one case generates DFAs of

quadratic size (Case 4 of Table 6-3) and the other generates exponential-size DFAs (Case 5

of Table 6-3). Next, we explain these two cases in more detail.

DFAs of Quadratic Size

A common misconception is that patterns starting with ‘^’ create simple DFAs. However,

even with ‘^’, classes of characters that overlap with the prefix pattern can still yield a

complex DFA. Consider the pattern ^B+[^\n]{3}D, where the class of character [^\n] denotes

any character but the return character (\n). Figure 6-1 shows that the corresponding DFA has

a quadratic number of states. The quadratic complexity comes from the fact that the letter B

overlaps with the class of character [^\n] and, hence, there is inherent ambiguity in the

pattern: A second B letter can be matched either as part of B+, or as part of [^\n]{3}.

Therefore, if an input contains multiple Bs, the DFA needs to remember the number it has

seen and their locations i to make a correct decision with the next input character. If the class

of characters has length restriction of j bytes, DFA needs O(j2) states to remember the

combination of distance to the first B and the distance to the last B.

Seventeen patterns in the SNORT rule set fall into this quadratic states category. For

example, the regular expression for the NNTP rule is “^SEARCH\s+[^\n]{1024}”. Similar to

the example in Figure 6-1, \s overlaps with ^\n. White space characters cause ambiguity of

whether they should match \s+ or be counted as part of the 1024 non-return characters

[^\n]{1024}. Specifically, an input of SEARCH followed by 1024 white spaces and then 1024

 - 156 -

Figure 6-1. A DFA for pattern ^B+[^\n]{3}D .

 ‘a’s will have 1024 ways of matching strings, i.e., one white space matches \s+ and the rest

as part of [^\n]{1024}, or two white spaces match \s+ and the rest as part of [^\n]{1024}, and

so on. By using 10242 states to remember all possible sequences of these white spaces, the

DFA accommodates all the ways to match the substrings of different lengths. Note that all

these substrings start with SEARCH and hence are overlapping matches.

This type of quadratic state problem cannot be solved by an NFA-based approach.

Specifically, the corresponding NFA contains 1042 states; among these, one is for the

matching of SEARCH, one for the matching of \s+, and the rest of the 1024 states for the

counting of [\^n]{1024} with one state for each count. An intruder can easily construct an

input as “SEARCH” followed by 1024 white spaces. With this input, both the \s+ state and all

the 1023 non-return states would be active at the same time. Given the next character, the

NFA needs to check these 1024 states sequentially to compute a new set of active states.

This problem cannot be solved by a fixed string pre-filtering scheme (as used by

SNORT), which first identifies the fixed string and then directs the suspicious packets to a

second level checking. Pre-filtering can only recognize the presence of the fixed string

“SEARCH” in the input. After that, an NFA or DFA-based matching scheme is still needed in

post processing to check whether the input matches the pattern. Another choice is to count

 - 157 -

Figure 6-2. A DFA for pattern .*A.{2}CD .

the subsequent characters in post processing after identifying the prefix “SEARCH”. This

approach does not solve the problem because every packet (even normal traffic) with the

prefix will incur the counting process. In addition, intruders can easily construct packets with

multiple (different) prefixes to invoke many requests for such post processing.

DFA of Exponential Size

The previous case presents the patterns leading to quadratic DFA sizes. Next, we study

patterns generating exponential DFA sizes. In real life, many payload scanning patterns

contain an exact distance requirement. Figure 6-2 shows the DFA for an example pattern

“.*A..CD”. An exponential number of states (22+1) are needed to represent these two wildcard

characters. This is because we need to remember all possible effects of the preceding As as

they may yield different results when combined with subsequent inputs. For example, an

input AAB is different from ABA because a subsequent input BCD forms a valid pattern with

AAB (AABBCD), but not so with ABA (ABABCD). In general, if a pattern matches exactly j

arbitrary characters, O(2j) states are needed to handle the requirement that the distance

exactly equals j . This result is also reported in [101]. Similar results apply to the case where

the class of characters overlaps with the prefix, e.g., “.*A[A-Z]{j}D”.

 - 158 -

Figure 6-3. NFA for the pattern .*AUTH\s[^\n]{100} .

Similar structures exit in real world pattern sets. In the intrusion detection system

SNORT, 53.8% of the patterns (mostly for detecting buffer overflow attempts) contain a

fixed length restriction. Around 80% of the rules start with ^; hence, they will not cause

exponential growth of DFA. The remaining 20% of the patterns do suffer from the state

explosion problem. For example, consider the rule for detecting IMAP authentication

overflow attempts, which uses the regular expression “.*AUTH\s[^\n]{100}”. This rule

detects any input that contains AUTH, then a white space, and no return character in the

following 100 bytes. If we directly compile this rule into a DFA, the DFA will contain more

than 10,000 states because it needs to remember all the possible consequences that an

AUTH\s subsequent to the first AUTH\s can lead to. For example, the second AUTH\s can

either match [^\n]{100} or be counted as a new match of the prefix of the regular expression.

It is obvious that the exponential blow-up cannot be mitigated by using an NFA-based

approach. Figure 6-3 shows the NFA for the pattern “.*AUTH\s[^\n]{100}”. Because the first

state has a self-loop marked with Σ, the input “AUTH\sAUTH\sAUTH\s…” can cause a large

number of states to be simultaneously active, resulting in significantly degraded system

performance, as demonstrated by our results reported in Section 6.6.6. Another approach is

clearly needed to achieve fast regular expression matching without causing memory

explosion.

 - 159 -

6.4.2 Regular Expression Rewrites

The previous section has identified the typical patterns that yield large DFAs. This section

investigates the possibility of rewriting some of those patterns to reduce the DFA size. Such

rewriting is enabled by relaxing the requirement of exhaustive matching to that of non-

overlapping matching. In particular, we propose two rewrite rules, one for rewriting specific

patterns belonging to the case of quadratic-sized DFAs (Case 4 in Section 6.4.1), and the

other for rewriting specific patterns that generate exponential-sized DFAs (Case 5 of Section

6.4.1). Those patterns amenable to rewrites have the following characteristic. Their have a

class of characters with length restrictions that overlap with their prefixes. Taken the previous

example “.*AUTH\s[^\n]{100}”, “[^\n]” has a length restriction and it overlaps with

“AUTH” . These patterns are typical in real-world rulesets such as SNORT and Bro. For

these patterns, as shown in Section 6.4.1, neither the NFA-based approaches nor the fixed

string pre-filtering scheme can handle them efficiently. In contrast, the rewrites rules can

convert these patterns into DFAs with their sizes successfully reduced from quadratic or

exponential to only linear.

Rewrite Rule (1)

As shown in Section 6.4.1, patterns that start with ‘^’ and contain classes of characters with

length restrictions, e.g., “^SEARCH\s+[^\n]{1024}”, can generate DFAs of quadratic size

with respect to the length restriction. Below, we first explain the intuition behind Rewrite

Rule (1) using the above example and then state and prove a theorem for more general cases.

We explained in Section 6.3.3.1 that we want to identify non-overlapping patterns. Under

this assumption, pattern “^SEARCH\s+[^\n]{1024}” can be rewritten to

“^SEARCH\s[^\n]{1024}”. The new pattern specifies that after matching SEARCH and a

single white space \s, it starts counting non-return characters for [^\n]{1024} regardless of

the content. In this way, the ambiguity of matching \s is removed. Hence, this pattern requires

 - 160 -

a number of states linear in the length restriction j (1024 in the example). Although this new

pattern greatly reduces the number of states, it is still equivalent to the original pattern in

identifying non-overlapping patterns. This is because the new pattern essentially implements

non-overlapping left-most shortest match. Next, we provide a theorem to prove the

equivalence of two patterns.

Theorem 1: Pattern “^A[A-Z]{j}” is equivalent to the original pattern “^A+[A-Z]{j}” for

detecting non-overlapping shortest string.

Theorem 1 (proved in Appendix A) is for a more general case where the suffix of a

pattern contains a class of characters overlapping with its prefix and a length restriction,

“^A+[A-Z]{j}”. The theorem proves that this type of pattern can be rewritten to “^A[A-Z]{j}”

with equivalence guaranteed under the condition of non-overlap matching. Note that our

rewrite rule can also be extended to patterns with various types of length restriction such as

“^A+[A-Z]{j+}” and “^A+[A-Z]{j,k}”.

Using Rewrite Rule (1), 17 similar patterns in the SNORT rule set can be rewritten to

patterns with smaller DFAs. Detailed results regarding these rewrites are reported in Section

6.6.2.

Rewrite Rule (2)

As discussed in Section 6.4.1, patterns like “.*AUTH\s[^\n]{100}” generate exponential

numbers of states to keep track of all the AUTH\s subsequent to the first AUTH\s. If non-

overlapping matching is used, the intuition of our rewriting is that after matching the first

AUTH\s, we do not need to keep track of the second AUTH\s. This is because:

• If there is a ‘\n’ character within the next 100 bytes, the return character must also

be within 100 bytes to the second AUTH\s, and

• If there is no ‘\n’ character within the next 100 bytes, the first AUTH\s and the

following characters have already matched the pattern.

 - 161 -

Figure 6-4. DFA for rewriting the pattern .*AUTH\s[^\n]{100} .

1029
2

Not A

Start
1

A U
43

HT

A[^U]

65
Not \n

105104
Not \n\s 97

Similar
states

AU[^T]

AUT[^H]

AUTH[^\s]

AUTH\s[^\n]{0,99}\n

Figure 6-5. Transformed NFA for deriving Rewrite Rule (1) .

The intuition is that we can rewrite the pattern such that it only attempts to capture one match

of the prefix pattern. Following the intuition, we can simplify the DFA by removing the

states that deal with the successive AUTH\s. As shown in Figure 6-4, the simplified DFA first

searches for AUTH in the first 4 states, then looks for a white space, and after that starts to

count and check whether the next 100 bytes contains a return character. After rewriting, the

DFA only contains 106 states.

The rewrite pattern can be derived from the simplified DFA shown in Figure 6-4.

Applying a standard technique that maps a DFA/NFA to a regular expression [100], we can

transform this DFA to an equivalent NFA in Figure 6-5. For the link that moves from state 1

 - 162 -

back to the start state in Figure 6-4 (i.e., matching A then not U), the transformed NFA places

it right at the start state and labels it with A[^U]. The transformed NFA does the same for

each link moving from state i (1≤i≤105) to the start state in Figure 6-4. The transformed NFA

can be directly described using the following regular expression:

“([^A]|A[^U]|AU[^T]|AUT[^H]|AUTH[^\s]|AUTH\s [^\n]{0,99}\n)*AUTH\s[^\n]{100}”.

This rule first enumerates all the cases that do not satisfy the pattern and then attaches the

original pattern to the end of the new pattern. In other words, “.*” is replaced with the cases

that do not match the pattern, represented by:

 ([^A]|A[^U]|AU[^T]|AUT[^H]|AUTH[^\s]|AUTH\s[^\n]{0,99}\n)*.

Then, when the DFA comes to the states for AUTH\s[^\n]{100}, it must be able to match

the pattern. Since the rewritten pattern is directly obtained from a DFA of size j+5, it

generates a DFA of a linear number of states rather than an exponential number before

applying the rewrite.

Theorem 2. Pattern “.*AB[A-Z]{j}” can be rewritten as “([^A]|A[^B]|AB[A-Z]{j-1}[^(A-

Z)])*AB[A-Z]{j}”. These two patterns are equivalent for detecting non-overlapping strings.

For a more general case “.*AB[A-Z]{j}”, Theorem 2 (proved in Appendix B) states the

equivalence of the new pattern and the original pattern under the condition of non-

overlapping matching. Moreover, it offers rewrite rules for patterns in other forms of length

restriction, e.g., “.*AB[A-Z]{j+}”.

Rewrite Rule (2) is applicable to 54 expressions in the SNORT rule sets and 49 in the Bro

rule set. We wrote a script to automatically rewrite these patterns and observed significant

reduction in DFA size. Detailed simulation results are reported in Section 6.5.2.

 - 163 -

6.4.3 Guidelines for Pattern Writers

As mentioned above, an important implication of this work is that the pattern rewriter can

automatically perform both types of rewriting. An additional benefit is that our analysis

provides insight into how to write regular expression patterns that are amenable to efficient

DFA implementation.

From the analysis in Section 6.4.1, we can see that sometimes patterns with length

restrictions can generate large DFAs. There are two categories. One is starting with an

anchor, but length restriction overlaps with the proceeding class. The other type is patterns

without anchor but containing length restrictions.

In typical packet payload scanning pattern sets including Linux L7-filter, SNORT, and

Bro, 21.4-56.3% of the length restrictions are associated with classes of characters. The most

common of these are “[^\n]”, “[^\]]” (not ‘]’), and “[^\]”” (not ”), used for detecting buffer

overflow attempts. The length restrictions of these patterns are typically large (233 on the

average and reaching up to 1024). For these types of patterns, we highly encourage the

pattern writer to add “^” so as to avoid the exponential state growth as shown in Section

6.4.2. For patterns that cannot start with “^”, the pattern writers can use the Rewrite Rule 2 to

generate patterns with linear numbers of states to the length restriction requirements.

Even for patterns starting with “^”, we need to avoid the interactions between a character

class and its preceding character, as shown in Rewrite Rule 1. One may wonder why a

pattern writer uses \s+ in the pattern “^SEARCH\s+[^\n]{1024}”, when it can be simplified

as \s. Our understanding is that, in reality, a server implementation of a search task usually

interprets the input in one of the two ways: either skips a white space after SEARCH and

takes the following up to 1024 characters to conduct a search, or skips all white spaces and

takes the rest for the search. The original pattern writer may want to catch intrusion into

systems of either implementation. However, the way the original pattern is written generates

 - 164 -

false positives if the server does the first type of implementation (skipping all the white

spaces). This is because if an input is followed by 1024 white spaces and then some non-

whitespace regular command of less than 1024 bytes, the server can skip these white spaces

and take the follow-up command successfully. However, this legitimate input will be caught

by the original pattern as an intrusion because these white spaces themselves can trigger the

alarm. To catch attacks to this type of server implementation, while not generating false

positives, we need the following pattern.

 “^SEARCH\s+[^\s][^\n]{1023}”

In this pattern, \s+ matches all white spaces and [^\s] means the first non-white space

character. If there are more than 1023 non-return characters following the first non white

space character, it is a buffer overflow attack. By adding [^\s], the ambiguity in the original

pattern is removed; given an input, there is the only way of matching each packet. As a result,

this new pattern generates a DFA of linear size.

To generalize, we recommend pattern writers to avoid all the possible overlaps between

the neighboring segments in the pattern. Here, overlap denotes an input can match both

segments simultaneously, e.g., \s+ and [^\n]. Overlaps will generate a large number of states

in a DFA because the DFA needs to enumerate all the possible ways to match the pattern.

6.5 Selective Grouping of Multiple Patterns

The previous section focused on how certain patterns can lead to exponential DFA sizes and

presented two rewrite techniques that limit the DFA growth for such patterns to be sub-

exponential. As mentioned in Section 6.2.2, it is well known that the computation complexity

for processing m patterns reduces from O(m) to O(1) per character, when the m patterns are

compiled into a single composite DFA. However, it is usually infeasible to compile together

a large set of patterns due to the complicated interactions.

 - 165 -

Figure 6-6. A DFA for pattern .*ABCD and .*ABAB .

Figure 6-7. A DFA for pattern .*AB.*CD and .*EF.*GH .
We first present two examples illustrating the interactions between patterns in Subsection

6.5.1. Then we use a real-world payload scanning ruleset to demonstrate that exponential

growth happens for real-world rule sets in Subsection 6.5.2. Based on these observations, we

propose a new class of grouping algorithms that selectively divide patterns into groups while

avoiding the adverse interaction among patterns in Subsection 6.5.3.

6.5.1 Interactions of Regular Expressions

When patterns share prefixes, some states can be merged. For example, states 1 and 2 shown

in Figure 6-6 are shared by “.*ABCD” and “.*ABAB”. Combining these patterns can save

 - 166 -

both storage and computation. However, if the patterns do not share the same prefix, thus

putting m patterns together may generate 2m states.

Figure 6-7 shows a composite DFA for matching “.*AB.*CD” and “.*EF.*GH”. This

DFA contains many states that did not exist in the individual DFAs. Among them, state 8 is

created to record the case of matching both prefixes AB and EF. Generally speaking, if there

are l patterns with one wildcard per pattern, we need O(2l) states to record the matching of

the power set of the prefixes. In such scenarios, adding one more pattern into the DFA

doubles its size. If there are x wildcards per pattern, then (x+1)l states are required. 74.1% of

patterns in the Linux L7-filter set contain two or more wildcards. For example, the pattern for

the remote desktop protocol is “.*rdpdr.*cliprdr.*rdpsnd”, it contains three wildcards.

SNORT also has similar patterns and the number of “.*” in a pattern can be as high as six.

6.5.2 Interactions of Real-world Regular Expressions

We use the Linux L7-filter as an example to show that patterns do interact heavily with each

other in real world application. If 70 patterns are compiled separately into 70 DFAs, each

DFA has tens to hundreds of states. The total number of DFA states is 3533. When starting to

group multiple patterns into a composite DFA (patterns are selected with a random order),

the processing complexity decreases since it is no longer necessary to run the input separately

through each DFA. However, the total number of DFA states (i.e., the sum of the composite

DFAs generated by grouped patterns and those ungroup patterns) grows to over 136,786

states with just 40 patterns, as illustrated by the increasing dotted line in Figure 6-8. We

could not add more patterns into the composite DFA because it exceeded the memory limit in

the test machine that we used: 1.5 GB. However, only a certain subset of patterns cause

significant DFA growth. For example, patterns 12, 37, and 38 as shown in Figure 6-8 all

result in large DFAs. Similar to the previous example in Figure 6-7, these patterns all contain

 - 167 -

Figure 6-8. DFA size and processing complexity of multiple patterns (unsorted order,
without using our grouping algorithm).

large numbers of wildcards and classes of characters “[]”. We figure out that pattern 12

contains a fixed length (20) of wildcards. Pattern 37 contains three unrestricted wildcards

(“.*”). Pattern 38 contains 19 classes of characters, 4 unrestricted wildcards, and 8 length

restricted wildcards.

6.5.3 Regular Expressions Grouping Algorithms

As discussed above, certain patterns interact with each other when compiled together, which

can result in a large composite DFA. In this section, we propose algorithms to selectively

partition m patterns into k groups such that the patterns in each group do not adversely

interact with each other. We define interaction as follows: patterns interact with each other if

their composite DFA contains more states than the sum of their individual ones. If m patterns

can be divided into k groups, where patterns in each group do not interact with each other, we

can reduce the computation complexity from O(m) to O(k).

To calculate the number of states in the composite DFA, an NFA is first created. Figure

6-9 shows that the NFA is constructed by adding a new start state, twoε edges leading to the

0

10000

20000

30000

40000

50000

60000

1 6 11 16 21 26 31

of patterns compiled together

Total N
um

ber of States

 - 168 -

ε

ε

ε

ε

Figure 6-9. Composite NFA for two DFAs.

 individual DFA, a new accepting state, and two ε edges from the DFA accepting states to

the new accepting state. Then we run the NFA to DFA conversion algorithm and the DFA

minimization algorithm to obtain the composite DFA.

We use the information on pairwise interaction to group a set of m regular expressions.

The intuition is that if there is no interaction between any pair selected from R1, R2, and R3,

the composite DFA of R1, R2, R3 is not likely to exceed the sum of individual ones. We

validate this assumption using empirical results in Section 6.6.4.

We devise grouping algorithms both for multi-core processor architectures, where groups

of patterns can be processed in parallel among different processing units, and for general

processor architectures, where the DFA for one group corresponds to one process or thread.

Next, we present the algorithm for the former architecture first and then the algorithm for the

latter.

In hardware systems with multi-core architectures, there are multiple parallel processing

units, as we introduced in Section 2.3.4. The number of cores is usually limited. Hence, one

DFA per pattern per processing unit is infeasible. Our goal is to design an algorithm that

divides regular expressions into several groups, so that one processing unit can run one or

several composite DFAs simultaneously. In addition, the size of local memory of each

 - 169 -

processing unit is quite limited. For example, the newly architected IBM cell processor has 8

synergistic processor elements, each with 128 KB local memory [53]. Generally speaking,

the fewer the total groups, the less processing complexity, because each group requires O(1)

processing for each input character. A side-effect of grouping is increasing the number of

DFA states due to the interactions of patterns. Hence, our goal is to achieve the fewest groups

possible under these memory limitations. In our algorithm, we continuously group patterns

until they meet the local memory limit. The pseudo-code of the algorithm is provided below.

For regular expression Ri in the set
For regular expression Rj in the set
 Compute pairwise interaction of Ri and Rj
Construct a graph G(V, E)
V is the set of regular expressions, with one vertex per regular expression
E is the set of edges between vertices, with an edge (Vi, Vj) if Ri and Rj interact with each other.
Repeat
New group (NG) = φ
Pick a regular expression that has the least interaction with others and add it into new group NG
Repeat
Pick a regular expression R has the least number of edges connected to the new group
 Compile NG ∪ {R} into a DFA
 if this DFA is larger than the limit
 break;
 else
 Add R into NG
Until every regular expression in G is examined
Delete NG from G
Until no regular expression is left in G
__

Figure 6-10. Algorithm for Multi-core Processor Architectures with limited total
memory size

In this algorithm, we first compute the pairwise interaction of regular expressions. With

this pairwise information, we construct a graph with each pattern as a vertex and an edge

between patterns Ri and Rj if they interact with each other. Using this graph, we can start with

a pattern that has the least interaction with others, and then try to add patterns that have least

interactions into the same group. We keep adding until the composite DFA is larger than the

 - 170 -

local memory limit. Then we proceed to create a new group from the patterns that remain

ungrouped.

General processor architecture. In the general processor architectures, if there are multiple

composite DFAs to be run, the processor executes each of them sequentially. Usually all the

DFAs are kept in the main memory for performance purposes. Since the memory is shared

among all DFAs, we want to group all patterns into the smallest number of groups (hence the

smallest number of DFA) while not exceeding the available memory size. Finding the

smallest number of groups is an NP hard problem. In this work, we apply heuristics to find a

small number of groups that can serve as a good approximation. The pseudo-code of our

algorithm for the general processor architectures is shown in the following.

__
Leftover memory L = Total memory
For regular expression Ri in the set
Compute the DFA size Di for Ri
Leftover memory = Leftover memory - Di

Repeat
New group (NG) = φ
Pick a regular expression which has the least interaction with others and add it into new group
NG
Repeat
 Pick a regular expression R that has the least number of edges connected to the new
group
 Compile NG ∪ {R} into a DFA
 if D(NG) > ∑

∈NGR
i

i

RD)(+L*|NG|/(#left patterns)

 break;
 else
 Add R into NG
Until every regular expression in G is examined
Leftover memory L = L - D(NG) - ∑

∈NGR
i

i

RD)(

Delete NG from G
Until no regular expression is left in G

Figure 6-11. Algorithm for General-Processor Architectures

 - 171 -

Unlike the multi-core case, in this algorithm we first compute the DFA of individual

patterns and compute the leftover memory size. At any stage, we always try to distribute the

leftover memory evenly among the ungrouped expressions, which is the heuristic that we

apply to increase the number of grouping operations which in turn reduces the number of

resulting groups. In this algorithm, we group patterns using a similar routine as the

previously. However, we stop grouping when the size of the composite DFA (denoted as

D(NG)) exceeds its share of the leftover memory. Here, the DFA’s share of the leftover

memory is calculated using the formula = (Leftover memory L) * (Number of patterns in the

group) / (Number of ungrouped patterns).

Discussion: Grouping multiple regular expressions into one composite DFA is a well

known technique to enhance matching performance. Our algorithms focus on picking the

“right” patterns to be grouped together. Here, “right” means patterns don not interact with

each other exponentially; therefore grouping them together will not generate a large DFA.

Similar to our approach, systems like Bro group patterns into one group, instead of

partitioning them into several. They adopt a lazy DFA-based approach, where commonly

used DFA states are cached and the DFA is extended at run-time if needed. The distinction

between our approach and Bro’s is that our grouping algorithm produces scanners of

deterministic complexity (O(1) per input character). The lazy DFA-based approach, although

fast and memory efficient on most common inputs, may be exploited by intruders to

construct malicious packets that force the lazy DFA to enter many corner cases [24] (also in

Section 6.3.1.4), this may result in drastically slowed performance. Our fully-developed DFA

does not have performance degradation under such attacks. This is because no matter what

kind of input characters a packet contains, our scheme only does one memory lookup per

packet. The computation cost is deterministic to any input.

 - 172 -

6.6 Evaluation Results

We implement a DFA scanner with rewriting and grouping functionality for fast and memory

efficient regular expression matching. In this section, we evaluate the effectiveness of our

rewriting techniques for reducing DFA size, and the effectiveness of the grouping algorithms

for creating memory-efficient composite DFA. We also compare the speed of our scanner

against a DFA-based repeated scanner generated by the widely used Flex system [104] and a

best-known NFA-based scanner [60]. Compared to the DFA-based repeated scanning

approach, our approach based on one pass scanning has a 12 to 42 times performance

improvement. Compared to the NFA-based implementation, our DFA scanner is 50 to 700

times faster on traffic dumps obtained form MIT and Berkeley networks.

6.6.1 Experimental Setup

Certain aspects of the experimental setup in this section are similar to that given in Chapter 5.

Chapter 5 focused on fixed string patterns and used the SNORT system and ClamAV rule

set. This chapter focuses on regular expression patterns. We still use the SNORT rule set, but

not the ClamAV rule set for the experiments, because Clam AV does not contain any regular

expressions. To supplement the SNORT rule set, we add two more rule sets that contain

regular expressions. The first is from the Linux layer 7 filter (as of February 2006) [22]

which contains 70 regular expressions for detecting different protocols. The second one is

from the Bro intrusion detection system (Version 0.8V88) [28], with a total of 2781 regular

expressions.

As in Chapter 5, we use two sets of real-world packet traces are used during the

experiments. The first set is the intrusion detection evaluation data set from the MIT DARPA

project and the second data set is from Berkeley local LAN.

 - 173 -

Table 6-5. Rewriting effects.

Type of Rewrite Rule Set Number
of
Patterns

Average
length
restriction

DFA
Reduction
Rate

SNORT 17 370 >98% Rewrite Rule 1:
(Quadratic case) Bro 0 0 0

SNORT 54 344 >99%1 Rewrite Rule 2:
(Exponential
Case)

Bro 49 214.4 >99%1

We use Flex [104] to convert regular expressions into DFAs. Our implementation of the

DFA scanner eliminates backtracking operations [104]. It only performs a one-pass search

over the input and is able to report matching results at the position of the end of each

matching substring. All the experimental results reported were obtained on PCs with 3.4 GHz

CPU and 3.7 GB memory.

6.6.2 Effect of Rule Rewriting

The rewriting scheme presented in Section 6.4.1 is applied to the Linux L7-filter, SNORT

and Bro pattern sets. For the Linux L7-filter pattern set, it does not identify any pattern that

needs to be rewritten. For the SNORT pattern set, however, 71 rules need to be rewritten. For

Bro, 49 patterns (mostly imported from SNORT) need to be rewritten using Rewrite Rule 2.

For these patterns, the rewriting scheme gains significant memory savings as shown in Table

6-5. For both types of rewrite, the DFA size reduction rate is over 98%.

Seventeen patterns belong to the category for which Rewrite Rule 1 can be applied.

These patterns (e.g., “^SEARCH\s+[^\n] {1024}”) all contain a character (e.g., \s) that is

allowed to appear multiple times before a class of characters (e.g., [^\n]) with a fixed length

restriction (e.g., 1024). As discussed in Section 6.4.1, this type of pattern generates DFAs

that expand quadratically in the length restriction. After rewriting, the DFA sizes decrease to

 - 174 -

become linear in the length restriction. A total of 103 patterns need to be rewritten using

Rewrite Rule 2. Before rewriting, most of them generate exponential sized DFAs that cannot

even be compiled successfully. With the rewriting techniques, the collection of DFAs created

for all the patterns in the SNORT system can fit into 95 MB memory, which can be satisfied

in most PC-based systems.

6.6.3 Effect of Grouping Multiple Patterns

In this section, the grouping techniques are applied to regular expression sets. We will show

that our grouping techniques can intelligently group patterns to boost system throughput,

while avoiding extensive memory usages.

The patterns of the L7-filter can be grouped because the payload of an incoming packet is

compared against all the patterns, regardless of the packet header information. For the Bro

pattern set, as most rules are related to packets with specific header information, the http

related patterns (a total of 648) that share the same header information is picked as the test

set, as well as 222 payload scanning patterns that share the same header information. Note we

do not report the results of using the SNORT rule set because its patterns overlap

significantly with those of the Bro rule set.

6.6.4 Interaction of Patterns

For all three sets, a majority of patterns are non-interactive (the interactive was defined in

Section 6.5.1) , particularly in Bro http patterns set where all patterns are non-interactive. As

a result, most patterns in these rulesets can be combined pair-wise. This nice property offers a

significant potential for the grouping algorithms to produce small numbers of groups. To

achieve that, one assumption that the grouping algorithms use must be verified. As stated in

1Some patterns create too many states to be compiled. The 99% number was obtained only from observing successful rewrites.

 - 175 -

Table 6-6. Interaction of regular expressions.

 No-interaction
Pair-wise

Pair-wise No-interaction lead to No-
interaction three patterns

Linux L7-filter 71.18% 99.87%
Bro http 100% 100%

Bro payload 93.3% 99.99%

Section 6.5.2, the assumption is that if three patterns are pair-wise non-interactive, it is highly

likely that the size of the composite DFA will not exceed the sum of the individual sizes. We

compute all the two-pattern composite DFAs and three-pattern composite DFAs and check

the validity this assumption on these composites DFAs. Table 6-6 shows that this assumption

is valid for over 99.8% of the cases from all three pattern sets.

6.6.5 Grouping Results

We apply the grouping algorithms to all three pattern sets to partition them into small groups.

For the Bro’s http pattern set, since patterns do not interact with each other, it is possible to

compile all 648 patterns into one composite DFA of 6218 states. The other two sets,

however, cannot be grouped into one group due to interactions (defined in Section 6.5.1).

Below, the results obtained using the grouping algorithm for the multi-core architectures,

where local memory is limited, are reported in Table 6-7. The results for the general

processor architectures are in Table 6-8.

Table 6-7 (a) shows the results for the Linux L7-filter pattern set. We start by limiting the

number of states in each composite DFA to 617, the size of the largest DFA created for a

single pattern in the Linux L7-filter set. This is the base line, which determines the least

amount of memory required without applying our techniques. The actual memory cost is 617

times 256 next state pointers times log(617) bits for each pointer, which amounts to 192 KB.

 - 176 -

Table 6-7. Results of grouping algorithms for the multi-core architectures.

7 (a) Linux L7-filter (70 Patterns)

Composite DFA
state limit Groups Total Number of

States
Compilation

Time (s)
617 10 4267 3.3

2000 5 6181 12.6
4000 4 9307 29.1
16000 3 29986 54.5

7(b) Payload patterns from Bro (222 Patterns)

Composite DFA
state limit Groups Total Number of

States
Compilation
Time (s)

540 11 4868 20
1000 7 4656 118
2000 5 5430 780
6000 4 9197 1038

Considering that most modern processors have large data caches (>0.5 MB), the memory cost

for a single composite DFA is comparatively small. After applying our algorithm, it

generates 10 groups when the limit on the DFA size is set to 617. This shows that our

grouping algorithm decreases the simultaneous active DFA from 70 (original number of

patterns, without grouping) into 10 (after grouping), without additional memory

requirements. When we increase the amount of available memory, there is more room for the

composite DFA to record the interactions of patterns. As a result, the algorithm creates fewer

(from 10 to 3) groups. As today’s multi-core network processors have 8-16 engines, it is

feasible to allocate each composite DFA to one processor and take advantage of parallelism.

When the total state limit is increased to 16000, the grouping algorithms can decrease the

number of pattern groups from 70 (originally ungrouped) to 3. This means that, given a

character, the generated packet content scanner needs to perform only three state transitions

instead of the 70 state transitions that were necessary with the original ungrouped case. This

results in a significant performance enhancement (show later in Section 6.6.6).

 - 177 -

Table 6-8. Results of grouping algorithms for general processor architectures.

8(a) Linux L7-filter (70 Patterns)

Total DFA
state limit Groups Total Number

of States
Compilation Time
(s)

3533 12 3371 5.602
4000 10 3753 7.335
10000 5 7280 37.928
32000 3 25215 49.976

8(b) Payload patterns from Bro (223 Patterns)

Composite DFA
state limit Groups Total Number of

States
Compilation
Time (s)

5221 6 4697 1050
8000 4 6854 1030

For Bro’s payload pattern set, the grouping algorithm can group more patterns into one

group. Similar to the previous case, we start from 540, which is the largest individual DFA

size. As Table 6-7(b) shows, we can group 222 patterns into 11 groups in this baseline case.

As the DFA state limit increases, the number of groups decreases down to 4.

Table 6-8 demonstrates that the grouping algorithm for the general processor

architectures can effectively reduce the number of groups generated as the memory limit

imposed on the algorithm is increased. In addition, the total number of DFA states is close to

the memory limit, showing the algorithm can fully utilize the memory allocated to the packet

scanner. Note that we start the memory limit at 3533 DFA states for Linux L7-filter, which is

the total number of the states of individual DFAs. This is the baseline of memory requirement

without applying our algorithm for shared memory architectures. Some patterns can be

grouped together without any extra memory usage because they do not interact with each

other. In fact, we can group 70 patterns into 12 groups with no extra memory usage. When

we increase the memory limit, more patterns can be grouped together because there is room

for the DFAs to record the pattern interactions. As shown in the Table 6-8, we can decrease

 - 178 -

the total number of groups to 3 when the state limit is 32000. Similarly to the Linux L7-filter,

we start with 5221 DFA states for Bro payload set, which is the sum of 233 individual DFAs.

Even without extra memory, the number of groups can be decreased from 233 to 6.

Beyond the effectiveness, Table 6-7 and Table 6-8 also present the running time of the

proposed grouping algorithms. This overhead is a one-time cost. In networking

environments, the packet content scanner operates continuously until there are new patterns

to be inserted to the system. As patterns in the Linux L7-filter or the Bro system do not

change frequently, the occasional overhead of several minutes associated with recomputation

of groupings is affordable. The reason that these patterns do not change frequently is that the

Linux L7-filter is for protocol detection and usually new protocols are not a common event.

The intrusion detection systems like Bro and SNORT introduce new rules more often than

Linux L7-filter, but still not on daily basis. It’s on the average of once every ten days. A new

pattern does not trigger a regroup of all patterns. We can just compute its pairwise

interactions with existing patterns and pick a group that yields the fewest total interactions.

This type of incremental update averages less than 1 second on the Bro payload pattern set

using PCs with 3.4 GHz CPU and 3.7 GB memory.

6.6.6 Speed Comparison

We compare the proposed DFA-based algorithms with the state-of-the-art NFA-based regular

expression matching algorithm. Both L7-filter and SNORT systems use this NFA-based

library. We also compare it with the DFA-based repeated scan approach generated by Flex

[104]. The results are summarized in Figure 6-9. The proposed DFA-based one pass scanner

is 48 to 704 times faster than the NFA-based scanner. Compared to DFA-based repeated scan

engine, our scanner yields a speed improvement of 11 to 42 times. Also note that although

these dumps have dramatically different characteristics, our scanner provides similar

 - 179 -

Table 6-9. Comparison of the different scanners.

 Throughputs (Mb/s)

Memory
Consumption
(KB)

 MIT dump
Berkeley
dump

NFA 1.0 3.4 1636
DFA RP 16.3 34.6 7632

Linux
L-7 filter

DFA OP 3 groups 690.8 728.3 13596
NFA 30.4 56.1 1632
DFA RP 117.2 83.2 1624 Bro

Http DFA OP 1 group 1458.0 1612.8 4264
NFA 5.8 14.8 1632
DFA RP 17.1 25.6 7628 Bro

Payload DFA OP 4 groups 566.1 568.3 4312
NFA—NFA-based implementation

DFA RP – Flex generated DFA-based repeated scan engine
DFA OP – Our DFA one pass scanning engine

throughputs over these dumps because it scans each character only once. The other two

approaches are subject to dramatic change in throughput (1.8 to 3.4 times) over these traces,

because they need to do backtracking or repeated scans. Although the memory usage of our

scanner is 2.6 to 8.4 times the NFA-based approach, the largest scanner we created (Linux

L7-filter, 3 groups) uses 13.3 MB memory, which is well under the memory limit of most

modern systems.

6.7 Summary

In this chapter, we considered the implementation of fast regular expression matching for

packet payload scanning applications. Although regular expression matching has been a well

studied problem, support for the specific class of patterns common in networking

applications is new. We showed that the traditional NFA-based approaches are slow and

naïve DFA implementations can have exponentially growing memory costs in the worst case.

In this chapter, we analyzed the computational and storage cost of building individual DFAs

 - 180 -

for matching regular expressions, and identify the structural characteristics of the regular

expressions in networking applications that lead to exponential growth of DFAs. Based on

this analysis, we proposed two rewrite rules for specific regular expressions. The rewritten

rules can dramatically reduce the size of resulting DFAs, making them small enough to fit in

memory. While we do not claim to handle all possible cases of dramatic DFA growth (in fact

the worse case cannot be improved), rewrite rules do cover those patterns present in common

payload scanning rulesets like SNORT and Bro, thus making fast DFA-based pattern

matching feasible for today’s payload scanning applications. It is possible that a new type of

attack also generates signatures of large DFAs. For those cases, unfortunately, we need to study

the signature structures before we can rewrite them. Besides rewriting, we presented a scheme

that selectively groups patterns together to further accelerate the matching process.

The proposed DFA-based implementation is 2 to 3 orders of magnitude faster than the

widely used NFA implementation and 1 to 2 orders of magnitude faster than a commonly

used DFA-based parser. Our grouping scheme can run on general processor architectures,

where the DFA for one group corresponds to one process or thread, as well as to multi-core

architectures, where groups of patterns can be processed in parallel using independent

processing units. In the future, it would be an interesting study to apply different DFA

compression techniques and explore tradeoffs between the overhead of compression and the

savings in memory usage.

We have finished all the technical chapters. Chapters 3 and 4 provided high speed multi-

match classification algorithms for packet header processing. Chapter 5 and this chapter

proposed schemes for pattern matching on packet payload, with Chapter 5 focusing on fixed

patterns and this on the more general regular expressions. These algorithms together make

high speed deep packet inspection possible. We will conclude this thesis in the next chapter

and also discuss future directions.

 - 181 -

7 Concluding Remarks and Future Work

This chapter concludes the dissertation by summarizing the major contributions of the thesis

and suggesting the key direction for future work.

7.1 Summary of thesis work

In this dissertation, we designed high speed packet processing algorithms that function on the

entire packet including both the header and the payload. These algorithms can enable new

services such as network intrusion detection. To keep up with high speed packet processing

in existing networks, our algorithms are optimized for new technologies such as Ternary

Content Addressable Memory (TCAM) and multi-core processors.

For packet header processing, in Chapters 3 and 4, we proposed a multi-match packet

classification scheme that intelligently processes packet header information. For packet

payload processing, we developed schemes to identify fixed string patterns in Chapter 5 and

complex regular expressions in Chapter 6. These techniques form a cohesive architecture that

can perform gigabit rate packet scanning against thousands of sophisticated patterns. We

summarize these techniques in detail below.

7.1.1 Multi-match Packet Classification

In Chapter 3, we developed a TCAM-based approach called Geometric Intersection Method

that can report multi-match classification results with just two memory lookups: one TCAM

lookup and one SRAM lookup. In addition, our negation removing scheme can efficiently

map filters into the TCAMs, which can save 95% of TCAM memory compared to the

straightforward solution.

 - 182 -

The Geometric Intersection Method is fast, but it may not be power efficient because it

can generate many intersection filters. To address this problem, we developed scheme called

the Set Splitting Algorithm (SSA) to split filters into multiple groups. Through filter splitting,

SSA guarantees a reduction in the number of intersection filters by 50% when a filter set is

split into two. In addition, each filter in the TCAM is accessed once per packet, further

reducing power consumption. Compared to previously published schemes, SSA saves 75% to

95% of power consumption.

7.1.2 Fixed String Matching with TCAM

For fixed string matching, we adopted TCAM because of its fast speed in parallel search. In

Chapter 5, we developed TCAM-based algorithms for detecting long patterns, correlated

patterns, and patterns with negation. Our simulation results showed that our scheme can

handle patterns with dramatic variation in size, and can perform Gigabit rate pattern matching

on both the SNORT and ClamAV virus database. Our scheme is also applicable to other

Layer 7 pattern matching problems, for example, applications like HTTP load balancing and

email SPAM filtering.

7.1.3 Fast Regular Expression Matching

In Chapter 6, we proposed fast regular expression matching scheme using general processors.

We studied the typical patterns used in the networking applications. We showed that some

pattern generate exponential size DFA when using traditional methods. To address this, we

proposed rewrite techniques that can effectively reduce the size of. In addition, we developed

grouping algorithms that compile a large set of regular expressions into a small number of

DFA, which dramatically improves the regular expression matching speed without

significantly increasing memory usage. We showed through simulation results that our

implementation achieved one to three orders of magnitude speedup over the state-of-the-art

 - 183 -

NFA-based implementation. Our scheme can be applied to both general processor-based and

multi-core-based architectures. In addition, it can also be extended to FPGA and ASIC-based

platforms.

7.2 Future Directions

Our work to date has demonstrated that Gigabit rate deep packet inspection can be achieved

by combining well-designed algorithms and high performance hardware technologies. There

are several interesting directions for future work that one could pursue based on the work

presented in this dissertation. The first two are related to making the deep packet inspection

system more powerful and the third one is on the application of our proposed schemes to a

problem unrelated to detecting attackers.

1) Detecting attacks in real time without signatures: This dissertation is based on the

assumption that virus and worm signatures are known in advance. We rely on third parties to

provide these. Disseminating new signatures quickly after the worm breaks out is also a

challenging task. This is because worm breakouts, such as the Slammer worm devastation,

can consume a large portion of the Internet bandwidth and thus cause congestion [105]. To

address this problem, we need algorithms to detect suspicious traffic without using signatures

and limit the rate of suspicious traffic before obtaining the signatures, so as to provide better

Quality of Service (QoS) for more important traffic, including routing information and

signature dissemination. By limiting the rate of suspicious traffic, we can slow down the

propagation of worms, which can buy us more time to filter them more precisely with attack

signatures.

2) Coordinated attack detection architecture. There are thousands of routers in the

Internet. It is highly inefficient to deploy the same set of signatures at every router. Because

a packet travels through multiple routers, it also makes no sense to do redundant searches for

 - 184 -

the same groups of signatures at different routers. To build a more efficient and coordinated

packet scanning architecture, we need an intelligent scheme to deploy selected sets of

signatures at different routers. The scheme must guarantee that a packet will be checked by

the complete pattern set, no matter which path it chooses to travel in the Internet. This

scheme can also help decrease per packet computation costs at routers and hence can

potentially increase the pattern matching speed.

The above directions for future work are based on devising techniques to make the deep

packet inspection systems easier to deploy in today’s Internet. Next we point out a direction

that is based on using the deep packet inspection in other high speed data processing

applications.

3) High speed data processing such as XML message processing and biomedical data

processing: XML message dissemination and bioinformatics systems, similar to network

applications, generate a huge amount of data and require high speed pattern processing

capabilities to search and locate desired information. The XML query processing language

XPath is similar to regular expressions and we believe that our regular expression scheme can

be applied to signatures expressed in XPath.

Some of the gene search algorithms such as BLAST [106] require pattern searching. We

believe that our high speed fixed string matching solutions for network applications can be

extended to apply to this area. However, our scheme needs to be modified as many gene

searching algorithms aims to identify approximate patterns, rather than exact strings.

 - 185 -

Appendix A

Claim in Section 3.4: If Ei is the first superset of x (x⊂ Ei) in E, we can add x before Ei

according to requirement (3) and bypass all the rules after Ei.

Proof: For any rule Ej after Ei, there could be four cases. We will study it one by one and

show why we can bypass all of them.

First, we can bypass any rule Ej that is disjoint with x, according to requirement (1).

Second, it is impossible that Ej ⊂ x. If so, Ej ⊂ x⊂ Ei, which contradicts with requirement

(2).

Third, If x ⊂Ej, Ej must also be a superset of Ei. Otherwise, the intersection of Ej and Ei

must be a superset of x as well and it must be presented before Ei , according to requirement

(4). This contradicts with the assumption that Ei is the first superset of x in E. Therefore, Ei

⊂ Ej and we have Mj ⊂ Mi according to requirement (2). In this case, we don’t need to

process Ej since we can extract all the information from Mi.

Fourth case, if Ej intersects with x and suppose z = Ej∩ x, then z must have appeared

before Ei. This is because Ej must intersect with Ei as well since Ei is a superset of x. Let Ek =

Ei∩ Ej, according to requirement (4), k < i. In addition, z = Ej∩ x = Ej∩ x ∩ Ei = Ek ∩ x,

because x⊂ Ei. Therefore, we must have generated z when processing Ek which is before Ei.

This meets the requirement (4), so we can bypass Ej.

Hence, all the rules after Ei are either exclusive to x, or their intersections have already

been included, so we can skip all those rules.

 - 186 -

Appendix B

Theorem 1: Pattern P1 “^A[A-Z]{j}” is equivalent to the original pattern P2 “^A+[A-

Z]{j}” for detecting non-overlapping shortest string.

Proof: We prove this theorem through the following Claims 1 and 2.

Claim 1: Any input matching P1 must match P2 as well, and the shortest matched string S1

for P1 is the same as the shortest matched sting S2 for P2.

Proof of Claim 1: For any input matching P1, it must match pattern P2 because we can use

“\s” to match “\s+” and the remaining j characters as [A-Z]{j}. Next we prove their matched

string S1 and S2 are identical. For P1, there is only one way of selecting S1 and its length is

j+1. There maybe multiple ways of selecting S2 (same start position, overlapping strings),

with length from j+1 to infinity. If we pick the shortest match, its length would also be j+1.

In addition, S1 and S2 must start from the beginning of the input due to the requirement of ^.

Given that they have the same length, S1 and S2 must be identical.

Claim 2: Any input matching P2 must match P1 as well, and both patterns report matching

of the same shortest string.

Proof of Claim 2: For any input matching P2 “^A+[A-Z]{j}”, it must have x “A”s (x >= 1)

matched as “^A+”, y “A”s and z [A-Z] characters (starting from a none “A”) matched as

“[A-Z]{j}” (y >= 0, z >= 0, y+z = j). This input must match P1 “^A[A-Z]{j}” because the

input have x-1+y+z >= j [A-Z] characters after the first A. Similar to (1), the shortest matched

strings are the same.

Since pattern starts with ^, P1 and P2 report at most one match for one line. Given

Cliams 1 and 2, P1 and P2 report the same results for any input, hence they are equivalent. 

 - 187 -

Theorem 2. Patter P1 “.*AB[A-Z]{j}” can be rewritten as pattern P2 “([^A]|A[^B]|AB[A-

Z]{j-1}[^(A-Z)])*AB[A-Z]{j}”. These two patterns are equivalent for detecting non-

overlapping strings.

Proof: It is trivial that these two patterns are equivalent when the input does not contain AB\s

because none of them match the input. It is also trivial if the input only contains one AB\s.

Next, we prove the case where we have multiple ABs without [^(A-Z)] in between and they

are within j bytes to the first AB through Claims 3, 4, and 5.

Claim 3: Any input not matching P2 does not match P1 either.

Proof of Claim 3: Since the input does not match P2, there must be a [^(A-Z)] character

within the next j bytes of the first AB, this character must also be located within j bytes to the

following ABs. Hence, P1 will not be matched either.

Claim 4: Any input matching P2 must match P1. P2 and P1 generate matching results at the

same position.

Proof of Claim 4: For any input matching P2, it must report matching result at j positions

after the first AB. If there is no [^(A-Z)] character within the next j bytes to one of the ABs,

then there will not be [^(A-Z)] within the next j bytes to the first AB because there is no [^(A-

Z)] in between of these ABs. Therefore, the match result of P1 will be generated j bytes after

the first AB as well. Hence, S1 and S2 are the same.

Claim 5: P1 and P2 report the same number of matches.

Proof of Claim 5: When there are multiple ABs without [^(A-Z)] between them and they are

within j bytes to the first AB. P1 would only report one match, because these ABs are within j

bytes and their matching strings overlap with each other. P2 would report one match too.

Hence, P1 and P2 report the same number of matches. If there are multiple non-overlapping

patterns in the input (ABs are at least j apart or with [^(A-Z)] in between), P1 and P2 still

 - 188 -

report the same number of matches because we can divide the input to segments, where only

one match is reported in one segment.

Given (1), (2) and (3), for any input, patterns P1 and P2 report the same matching results

and hence they are equivalent. 

 - 189 -

Reference:

[1] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, "The Spread

of the Sapphire/Slammer Worm." http://www.cs.berkeley.edu/~nweaver/sapphire/.

[2] R. Lemos, "Counting the Cost of Slammer (CNET News.com)."

http://news.zdnet.com/2100-3513_22-982955.html?tag=nl.

[3] R. Lemos, "'Slammer' Attacks May Become Way of Life for Net."

http://news.com.com/Damage+control/2009-1001_3-983540.html.

[4] R. Lemos, "Slammer Report: More Headaches." http://news.zdnet.com/2100-1009_22-

983736.html.

[5] S. Cowley and M. Williams, "Slammer Worm Slaps Net Down, But Not Out (IDG

News)." http://www.pcworld.com/news/article/0,aid,108988,00.asp.

[6] Wikipedia.org, "Mydoom." http://en.wikipedia.org/wiki/MyDoom.

[7] mi2g, "MyDoom Becomes Most Damaging Malware as SCO is Paralysed."

http://www.mi2g.com/cgi/mi2g/frameset.php?pageid=http%3A//www.mi2g.com/cgi/mi2

g/press/010204.php.

[8] J. H. Saltzer, D. P. Reed, and D. D. Clark, "End-to-end arguments in system design,"

ACM Transactions on Computer Systems (TOCS), vol. 2, 1984.

[9] "ISC Domain Survey: Number of Internet Hosts."

http://www.isc.org/index.pl?/ops/ds/host-count-history.php.

[10] "SNORT Network Intrusion Detection System." http://www.snort.org.

[11] "Sun Managed Security Services."

http://www.sun.com/service/managedservices/MSSequipment.pdf.

[12] "Sun Managed Security Services: Multidimensional Defense-in-Depth," A Sun

Microsystems White Paper.

http://www.sun.com/service/managedservices/Man_Sec_WP11.15.pdf.

 - 190 -

[13] H. A. Kim and B. Karp, "Autograph: Toward Automated, Distributed Worm Signature

Detection," Proc. 13th Usenix Security Symposium, August 2004.

[14] C. Kruegel, D. M. E. Kirda, W. Robertson, and G. Vigna, "Polymorphic Worm Detection

Using Structural Information of Executables," Proc. 8th InternationalSymposium on

Recent Advances in Intrusion Detection (RAID), 2005.

[15] Z. Liang and R. Sekar, "Automatic generation of buffer overflow attack signatures: An

approach based on program behavior models," Proc. ACSAC, 2005.

[16] "Bro Intrusion Detection System." http://bro-ids.org/Overview.html.

[17] "Clam AntiVirus signature database." www.clamav.net.

[18] Richard E White, D. M. James, and I. Buchholz (Wheeling, "Packet reassembly method

and apparatus." US, 1995.

[19] M. Necker, D. Contis, and D. Schimmel, "TCP-Stream Reassembly and State Tracking in

Hardware," Proc. 10th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, 2002.

[20] S. Dharmapurikar and V. Paxson, "Robust TCP Stream Reassembly In the Presence of

Adversaries," Proc. 14th USENIX Security Symposium, 2005.

[21] H. Zimmermann, "OSI Reference Model--The ISO Model of Architecture for Open

Systems Interconnection," IEEE Transactions on Communications, 1980.

[22] J. Levandoski, E. Sommer, and M. Strait, "Application Layer Packet Classifier for

Linux." http://l7-filter.sourceforge.net/.

[23] B. W. Watson, "The Performance of Single-keyword and Multiple-keyword Pattern

Matching Algorithms," Computing Science Note, Eindhoven University of Technology,

1994.

[24] R. Sommer and V. Paxson, "Enhancing Byte-Level Network Intrusion Detection

Signatures with Context," Proc. ACM Conference on Computer and Communications

Security (CCS), 2003.

 - 191 -

[25] C. J. Coit, S. Staniford, and J. McAlerney, "Towards Faster String Matching for Intrusion

Detection or Exceeding the Speed of SNORT," DARPA Information Survivability

Conference and Exposi-tion (DISCEX II'01), 2001.

[26] M. Fish and G. Varghese, "Fast Content-Based Packet Handling for Intrusion Detection,"

UCSD technical report CS2001-0670,, 2001.

[27] "CERT® Advisory CA-2001-19 "Code Red" Worm Exploiting Buffer Overflow In IIS

Indexing Service DLL." http://www.cert.org/advisories/CA-2001-19.html.

[28] M. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. Campbell, "Directions in Packet

Classification for Network Processors," Proc. NP2 Workshop, February 2003.

[29] M. H. O. a. A. F. Stappen, "Range searching and point location among fat objects,"

European Symposium on Algorithms, pp. 240-253, 1994.

[30] P. Gupta and N. McKeown, "Packet classification on multiple fields," Proc. SIGCOMM,

August 1999.

[31] D.R.Morrison, "PATRICIA - Practical Algorithm to Retrieve Information Coded in

Alphanumeric," Journal of the ACM (JACM) archive, vol. 15, 1968.

[32] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, "Fast and Scalable Layer Four

Switching," Proc. Sigcomm, Spetember 1998.

[33] M. M. Buddhikot, S. Suri, and M. Waldvogel, "Space Decomposition Techniques for

Fast Layer-4 Switching," Protocols for High Speed Network, vol. 66, 1999.

[34] V. Srinivasan, S. Suri, and G. Varghese, "Packet classification using tuple space search,"

Proc. ACM Sigcomm, 1999.

[35] P. Gupta and N. McKeown, "Packet classification using hierarchical intelligent cuttings,"

Proc. Hot Interconnects, August, 1999.

[36] S. Singh, F. Baboescu, G. Varghese, and J. Wang, "Packet Classification Using

Multidimensional Cutting," Proc. Sigcomm, August 2003.

 - 192 -

[37] C. Partridge, "Locality and route caches," Proc. NSF Workshop on Internet Statistics

Measurement and Analysis, 1996.

[38] P. Newman, G. Minshall, and L. Huston, "IP switching and gigabit routers," in IEEE

Communications Magazine, 1997.

[39] M. Gokhale, D. Dubois, A. Dubois, M.Boorman, S. Poole, and V. Hogsett, "Granidt:

Towards Gigabit Rate Network Intrusion Detection Technology," Proc. FPL, Lecture

Notes in Computer Scienc,e, 2002.

[40] "Overview of the Fast Ethernet and Gigabit Ethernet SPAs," Cisco Systems.

[41] "PM2329 Classipi Network Classification Processor Datasheet," in Cypress cooperation,

2001.

[42] "Security Features on Cisco 1800, 2800 and 3800 Integrated Services Routers," 2004.

[43] "5512GLQ TCAM from NetLogic Microsystems."

[44] D. E. Taylor, "Survey Taxonomy of Packet Classification Techniques."

[45] "Measurement & Operations Analysis Team from the National Library for Applied

Network Research (NLANR) project," 2001.

[46] D. E. Taylor, "Survey Taxonomy of Packet Classification Techniques," Proc. Tech

Report, WUCSE-2004-24, May 2003.

[47] F. Zane, G. Narlikar, and A. Basu, "CoolCAMs: Power-Efficient TCAMs for Forwarding

Engines," INFOCOM, March 2003.

[48] "FPGA." http://en.wikipedia.org/wiki/Fpga.

[49] R. Sidhu and V. K. Prasanna, "Fast regular expression matching using FPGAs," Proc.

IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), April

2001.

[50] J. W. Lockwood, J. Moscola, D. Reddick, M. Kulig, and T. Brooks, "Application of

hardware accelerated extensible network nodes for internet worm and virus protection,"

International Working Conference on Active Networks (IWAN), 2003.

 - 193 -

[51] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K. Olukotun, "The Stanford

Hydra CMP," in IEEE MICRO Magazine, 2000.

[52] "Intel® IXP2800 network processor."

http://www.intel.com/design/network/products/npfamily/ixp2800.htm.

[53] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy,

"Introduction to the Cell multiprocessor," IBM J. RES. & DEV., vol. 49,

JULY/SEPTEMBER 2005.

[54] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, "Algorithms to

Accelerate Multiple Regular Expressions Matching for Deep Packet Inspection," Proc.

ACM SIGCOMM, 2006.

[55] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, "Algorithms for Advanced

Packet Classification with Ternary CAMs," Proc. ACM Sigcomm, 2005.

[56] S. Ramabhadran and G. Varghese, "Efficient Implementation of a Statistics Counter

Architecture," ACM SIGMETRICS Performance Evaluation Review, vol. 31.

[57] F. Baboescu, S. Singh, and G. Varghese, "Packet Classification for Core Routers: Is there

an alternatives to CAMs?" Proc. IEEE Infocom, 2003.

[58] J. Bolaria and L. Gwennap, "A Guide to Search Engines and Networking Memory."

http://www.linleygroup.com/Reports/memory_guide.html.

[59] M. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. Campbell, "Directions in Packet

Classification for Network Processors," Proc. NP2 Workshop, Feburary 2003.

[60] A. Hari, S. Suri, and G. Parulkar, "Detecting and Resolving Packet Filter Conflicts,"

Proc. INFOCOM, 2000.

[61] H. Liu, "Reducing Routing Table Size Using Ternary-CAM," Proc. Hot Interconnects,

2001.

[62] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, "Fast and Scalable Layer Four

Switching," Proc. Sigcomm, September 1998.

 - 194 -

[63] V. Srinivasan and G. Varghese, "Faster IP lookups using controlled prefix expansion,"

Proc. ACM SIGMETRICS joint international conference on Measurement and modeling

of computer systems, 1998.

[64] S. Iyer, R. R. Kompella, and A. Shelat, "ClassiPI: An Architecture for Fast and Flexible

Packet Classification," IEEE Network Spec. Issue, vol. 15, 2001.

[65] M. Kobayashi, T. Murase, and A. Kuriyama, "A longest prefix

match search engine for multi-gigabit ip processing," Proc. ICC 2000, June 2000.

[66] E. Spitznagel, D. Taylor, and J. Turner, "Packet Classification Using Extended TCAMs,"

Proc. IEEE International Conference on Network Protocols (ICNP), 2003.

[67] F. Yu and R. H. Katz, "Efficient Multi-Match Packet Classification with TCAM," Hot

Interconnects, August, 2004.

[68] R. Panigrahy and S. Sharma, "Reducing TCAM Power Consumption and Increasing

Throughput," Proc. Hot Interconnects, 2001.

[69] K. Zheng, H. Che, Z. Wang, and B. Liu, "an ultra high throughput and power efficient

TCAM based IP lookup engine," Proc. IEEE Infocom, 2004.

[70] H. Song and J. W. Lockwood, "Efficient packet classification for network intrusion

detection using FPGA," Proc. International Symposium on Field Programmable Gate

Arrays (FPGA), Monterey, USA, 2005.

[71] D. S. Johnson, "Approximation algorithms for combinatorial problems," Proc. the fifth

annual ACM symposium on Theory of computing, 1973.

[72] P. Crescenzi and V. Kann, "A compendium of NP optimization problems."

http://www.nada.kth.se/~viggo/wwwcompendium/node145.html.

[73] G. Andersson and L. Engebretsen, "Better Approximation Algorithms and Tighter

Analysis for SET SPLITTING and NOT-ALL-EQUAL SAT," Proc. technical reports,

ECCCTR: Electronic Colloquium on Computational Complexity, 1998.

 - 195 -

[74] M. X. Goemans and D. P. Williamson, "Improved Approximation Algorithms for

Maximum Cut and Satisfiability Problems Using Semidefinite Programming," J. Assoc.

Comput. Mach, vol. 42, pp. 1115--1145, 1995.

[75] Z. Kerekes, "History of SPARC systems," SPARC Product Directory, 1997.

[76] M. Hidell, P. Sjödin, and O. Hagsand, "Router Architectures," Tutorial at Networking

2004.

[77] M. Kobayashi, T. Murase, and A. Kuriyama, "A longest prefix match search engine for

multi-gigabit ip processing," Proc. International Conference on Communications (ICC

2000).

[78] E. Nordmark, "Contribution of packet sizes to packet and byte volumes."

http://www.nlanr.net/NA/Learn/packetsizes.html.

[79] "Intel Pentium 4 Processor."

http://www.intel.com/products/processor/pentium4/index.htm.

[80] "Sync SRAM Products," Cypress Coperation,.

http://www.cypress.com/portal/server.pt?space=CommunityPage&control=SetCommunit

y&CommunityID=209&PageID=215&gid=5&fid=39&category=All&showall=false.

[81] D. E. Knuth, J. Morris, and V. R. Pratt, "Fast Pattern Matching in Strings," SIAM Journal

on Computing, 1997.

[82] R. S. Boyer and J. S. Moore, "A Fast String Searching Algorithm," Communications of

ACM, vol. 20, 1997.

[83] A. V. Aho and M. J. Corasick, "Efficient String Matching: An Aid to Bibliographic

Search," Communications of ACM, vol. 18, 1975.

[84] B. Commentz-Walter, "A String Matching Algorithm Fast on the Average," ICALP,

LNCS, vol. 6, 1979.

 - 196 -

[85] Z. K. Baker and V. K. Prasanna, "A methodology for synthesis of efficient intrusion

detection systems on FPGAs.," Proc. Field-Programmable Custom Computing Machines

(FCCM), 2004.

[86] S. Dharmapurikar, M. Attig, and J. Lockwood, "Deep packet inspection using parallel

bloom filters," IEEE Micro, 2004.

[87] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and V. Hogsett, "Granidt:

Towards Gigabit Rate Network Intrusion Detection," Proc. The international conference

on Field-Programmable Logic and its Applications (FPL), 2002.

[88] J. Mudigonda, H. M., and R. Yavatkar, "Overcoming the memory wall in packet

processing: hammers or ladders," Proc. Symposium On Architecture For Networking And

Communications Systems, 2005.

[89] "Snot Packet Generator," Discussion on SecurityFocus IDS Mailing List.

http://www.securityfocus.com/ids.

[90] J.-S. Sung, e.-M. Kang, Y. Lee, T.-G. Kwon, and B.-T. Kim, "A multi-gigabit rate deep

packet inspection algorithm using TCAM," Proc. IEEE Global Telecommunications

Conference GLOBECOM, 2005.

[91] "Europe Surpasses North America In Instant Messenger Users," comScore Networks

Study. http://www.comscore.com/press/release.asp?press=800.

[92] L. Tan and T. Sherwood, "A High Throughput String Matching Architecture for Intrusion

Detection and Prevention," Proc. 32nd Annual International Symposium on Computer

Architecture (LISA), Madison, Wisconsin, 2005.

[93] Y. Cho and W. Mangione-Smith, "Deep packet filter with dedicated logic and read only

memories," Proc. Symposium on Field-Programmable Custom Computing Machines,

2004.

[94] Z. K. Baker and V. K. Prasanna, "Time and area efficient pattern matching on FPGAs,"

Proc. International Symposium on Field Programmable Gate Arrays (FPGA), 2004.

 - 197 -

[95] M. Aldwairi, T. Conte, and P. Franzon, "Configurable string matching hardware for

speedup up intrusion detection," Proc. Workshop on Architectural Support for Security

and Anti-virus (WASSA) Held in Cooperation with ASPLOS XI, 2004.

[96] F. Yu, R. H. Katz, and T. V. Lakshman, "Gigabit Rate Packet Pattern Matching with

TCAM," Proc. ICNP, Berlin, Germany, October, 2004.

[97] Y. H. Cho and W. H. MangioneSmith, "A Pattern Matching Coprocessor for Network

Security," Proc. DAC, 2005.

[99] Venkat, "Yahoo Messenger Protocol." http://www.venkydude.com/articles/yahoo.htm.

[100] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,

Languages, and Computation, Second ed: Addison Wesley, 2001.

[101] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu, "Processing XML Streams

with Deterministic Automata and Stream Indexes," ACM TODS, vol. 29, 2004.

[102] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer, "Path Sharing and

Predicate Evaluation for High-Performance XML Filtering," ACM TODS, 28(4), 2003.

[103] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, J. Turner, "Algorithms to accelerate

Multiple Regular Expression Matching for Deep Packet Inspection," ACM Sigcomm,

2006.

[104] V. Paxson and etc., "Flex: A fast scanner generator." http://www.gnu.org/software/flex/.

[105] M. Lad, X. Zhao, B. Zhang, D. Massey, and L. Zhang, "Analysis of BGP update surge

during Slammer worm attack," Proc. International Workshop on Distributed Computing,

2003.

[106] S. F. Altschul, W. Gish, Miller W., M. E.W., and D. J. Lipman, "Basic local alignment

search tool," J. Mol. Biol., 1990.

[107] W. Eatherton, "The Push of Network Processing to the Top of the Pyramid", ANCS
2005.

