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ABSTRACT 

High Speed Deep Packet Inspection with Hardware Support 

by 

Fang Yu 

Doctor of Philosophy in Computer Science 

University of California, Berkeley 

Professor Randy H. Katz, Chair 

In this dissertation, we developed high speed packet processing algorithms for new services 

such as network intrusion detection, high speed firewalls, Network Address Translation 

(NAT), Hypertext Transfer Protocol (HTTP) load balancing, Extensible Markup Language 

(XML) processing, and Transmission Control Protocol (TCP) offloading. These new services 

have stringent requirements for speed, extensibility, scalability, and cost-effectiveness. For 

example, some services require rapid scanning of packets against thousands of known 

patterns. Traditional packet handling techniques, such as next hop forwarding, focus on 

packet headers only and fail to support these demanding requirements. This thesis research 

aims to provide fast and efficient deep packet inspection techniques that can function on the 

entire packet content rather than just the header. To keep up with high speed packet 

processing in existing networks, we proposed deep packet inspection schemes that are 

optimized for new technologies such as Ternary Content Addressable Memory (TCAM) and 

multi-core processors. We propose algorithms that work both on packet headers and packet 

payload. Our techniques form a cohesive architecture that can perform Gigbit rate packet 

scanning against thousands of sophisticated patterns. 

 

 ______________________________________________  
   Professor Randy H. Katz, Chair                        Date 
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1 Introduction 

1.1 Motivation 

Today’s Internet is by no means a safe place: hackers sniff network traffic and expend 

considerable resources on attacking user’s computers, fraudulent phishing activities are on 

the rise, and worms and viruses cause service disruptions with enormous economic impact. 

Counter-intuitively, recent increases in network bandwidth and computing performance make 

things even worse—such increases allow malicious attacks to spread even faster. The 

recently introduced Slammer worm is one of the fastest spreading computer worms in history 

[1], infecting more than 75,000 hosts within 10 minutes. Slammer exploits two “buffer 

overflow” security holes in Microsoft SQL Server 2000 to infect vulnerable hosts. The 

infected hosts launch Denial of Service (DoS) attacks that dramatically slow normal Internet 

traffic. It caused around 1 billion USD of damage worldwide within its first five days of 

operation [2]. Thousands of ATMs for Bank of America and Washington Mutual were 

crippled; Continental Airlines flights were delayed or cancelled, the city of Seattle’s 

emergency 911 network was knocked offline [3, 4], and most of South Korea’s Internet 

services were blacked out for hours [5].  

Mydoom is another fast spreading email worm [6]. A few hours after its first appearance, 

the average load time for Web pages increased by 50%. Only after two days, new variants of 

Mydoom emerged and the spread of the worm reached its peak: roughly one in five emails 

sent was infected by the worm. According to the security firm mi2g [7], by February 2004, 

Mydoom had caused $38.5 billion USD economic damage worldwide. 
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Traditional mechanisms to fight against these fast spreading worms rely on passive 

defense schemes. Unfortunately, these are often ill-coordinated stop-gap measures, for 

example, by forcing end-users to patch their systems regularly and updating antivirus 

software and firewall with latest virus patterns. These end-host based approaches have 

drawbacks such as slow response to new virus threats, high maintenance cost, significant 

reliance on human effort, and a disruptive update process. The inability to respond rapidly is 

lethal when new worms are designed to contaminate tens of thousands of hosts quickly such 

as ten minutes in the example of the Slammer worm. It is unrealistic to expect every end host 

in a large enterprise network to be patched within such a short time frame, not to mention that 

security software vendors also need a reasonable amount of time to develop patches. 

Thus, a more effective approach against rapid worm spread is to stop worm propagation 

in the network before contaminated packets reach a significant number of end users. 

However, performing in-network packet inspection is not easy. To achieve this, we need 

deep packet inspection techniques that scan packet payloads to analyze the meaning and 

purpose of the network traffic to distinguish malicious packets from normal packets. These 

inspection techniques are not only useful for detecting and filtering packets containing worm 

signatures but are also required by other newly emerging edge network services such as high 

speed firewalls (for protecting end hosts from security attacks), HyperText Transfer Protocol 

(HTTP) load balancing (smartly redirecting packets to different servers based on their HTTP 

requests), and Extensible Markup Language (XML) processing (facilitating the sharing of 

data across different systems). 

Unfortunately, this in-network deep packet inspection ability is not currently supported 

by routers and switches. In the current Internet, most of this kind of processing is restricted to 

the packet header, rather than the full packet content. It is hard to provide deep packet 
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inspection functionalities in the routers that run at the high line rates required of today’s 

Internet due to the complexity of deep packet inspection systems.  

The next two sections elaborate on why deep packet inspection is a hard problem: 

Section 1.2 reviews the current packet processing systems and explains why deep packet 

inspection ability is not present in the current Internet. Section 1.3 identifies the technical 

challenges that make it hard to incorporate such functionality in routers.  The goal of this 

dissertation is to address these challenges and bring the high speed deep packet inspection 

techniques to the network. To keep up with packet processing in existing high-speed 

networks, we propose deep packet inspection schemes that are optimized for new hardware 

technologies such as Ternary Content Addressable Memory (TCAM) and multi-core 

processors. We present an overview of our work in Section 1.4. Finally in Section 1.5, we 

give the roadmap of this dissertation.   

1.2 Today’s Packet Processing Systems in the Internet 

Today’s Internet is largely built based on the famous “end-to-end” design principle [8] 

proposed by Saltzer, et al., which guides placement of functions among the modules of a 

distributed computer system. They observe that functions placed at low levels of a system 

may be redundant or of little value when compared with the cost of providing them at that 

low level. Hence, they suggest that specific application-level functions usually cannot, and 

preferably should not, be built into the lower levels of the system—the core of the network.  

Figure 1-1 shows that the End-to-end argument leads to dramatically different packet 

processing systems at different places of the Internet. Functionalities in the core are very 

simple, focused on forwarding packets. The complex functions related to application 

semantics are all built on end hosts. Next, we explain these kinds of packet processing  
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Figure 1-1. Current internet architecture. 

systems by following the journey of a packet from an end host, to the edge network, then to 

core of the network. 

An end host is a computer that directly interacts with users. It has access to full packet 

content information. Based on specific user application information such as the user’s 

communication request (e.g., a Web browse request), and communication protocols, such as 

HTTP, or TCP, an end host computer packs application data into packets.  

When a packet leaves the end host, it traverses the edge network, where all the packets 

sent by end hosts in this network gather together. Examples of such edge networks include 

campus networks and local area networks in large corporations. Such edge networks typically 

operate at Gigabit rates today. In these networks, packets are mostly processed based on the 

header information, and the result of the processing is typically only the next hop router to be 

used for forwarding this packet.   

 

Core Routers:  
forwarding based on   
destination address 

Edge Networks: filtering mostly based 
on packet header information 

Endhost: Handling based on 
full packet information  

Backbon
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After a packet leaves the edge network, it can either enter another edge network, or more 

frequently, it travels to the core network of the Internet. In the core network, the packet 

processing rate gets even higher, 10 Gbps is quite normal and ISPs are beginning to deploy 

40 Gbps links. Under such high speed requirements, the packet processing in the core must 

be very simple. Core routers do not touch the packet payload, sometimes not even the full 

packet header. Typically, core routers forward packets only based on one field in the packet 

header: the destination IP address.  

This architecture, which has a simple core and complex end hosts, helps the Internet scale 

to 390 million hosts as of January 2006 [9]. However, this architecture also leaves security 

holes for the intruders to exploit. An intruder can disguise malicious packets that are 

piggybacked on known valid protocols and sneak through the network without being noticed. 

These packets can bypass the edge network inspection systems because they “appear” as 

acceptable packets with normal packet headers. They may then travel freely in the core 

network since they have valid destination IP addresses. Therefore, these malicious packets 

can easily reach other end hosts and infect those machines. When new machines are infected, 

new worms packets can be sent out to infect more end hosts.  As a result, a worm can infect 

millions of machines quickly, thus causing service disruptions with enormous economic 

impact. 

Recently, Network Intrusion Detection Systems (NIDS) have emerged that are built to 

filter out worms in the network. The core function of NIDS is to perform full packet (both 

packet header and packet payload) inspection against thousands of known virus or worm 

patterns. We refer to such full packet processing as deep packet inspection. Deep packet 

inspection is not supported by the routers in the Internet today. The major obstacle for 

incorporating deep packet inspection functionality into the network is its slow speed. 

Traditional processing algorithms are highly complex and their speed is well below Gigabits 
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process rate at the router. If current deep packet inspection modules are integrated into the 

network, it can easily become the performance bottleneck. In the next section, we study the 

challenges of performing high speed deep packet inspection at high rates.  

1.3 Challenges for Deep Packet Inspection 

Developing high speed deep packet systems is a challenging task because of the following 

factors. 

• Large number of signatures: There are a wide variety of attacks and problems. One 

packet needs to be matched against thousands of attack signatures. For example, 

NIDS systems like the SNORT intrusion detection system [10] contains 4867 rules as 

of February 2006, each containing attack signatures.  

• Signatures have overlaps: One packet maybe related to multiple attacks. For 

example, an HTTP packet can be vulnerable to 1096 different types of attacks known 

to the SNORT system. Hence, for a given packet, we first need to identify the related 

rules, and then check the packet contents against these signatures. 

• Patterns are often highly complex: There are fixed string patterns with arbitrarily 

lengths; correlated patterns where it is necessary to check for certain groups of 

patterns occurring in sequence; and patterns with negation where it is required to 

detect the absence of a pattern. Sometimes, it is impossible to enumerate the pattern 

using a fixed list of strings, so regular expressions are used as a pattern language.  

• Location of signatures in the packet is unknown: Due to the wide variety of 

application formats, we often do not know apriori the location of signatures in the 

packet payload. Hence, we need to check every byte of the packet payload at high 

speed.  
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We have shown that deep packet inspection systems are complex. To build such a 

complex system, there are two design elements that are essential: high speed and low cost, 

which we will explain below.  

The key requirement for deep packet inspection system is high speed to match the normal 

processing speed of Internet core (10 Gbps, the common speed for core links) and edge 

networks (1 Gbps). We need to carefully inspect every incoming packet in both edge and 

core networks to see whether there is any attack attempt. In addition, worms and viruses may 

possibly originate inside the edge networks. Hence, we are also required to scan packets 

inside the networks, which often have internal connections in the gigabit rates or higher 

range. Therefore, deep packet inspection must be performed at Gigabit rates to build a 

practical in-network worm detection system. However, current deep packet inspection system 

cannot achieve such rates. The SNORT network instruction detection system [10], for 

example, implements packet inspection algorithms in software. It can handle link rates only 

up to 250Mbps [11] under normal traffic conditions even using SUN’s special Security 

Defense Appliances [12]. In the worst case its performance is even lower. These rates are not 

sufficient to meet the needs of even medium-speed access or edge networks.  

The second requirement is low cost. Many low performance related problems can be 

solved by using more computing power, e.g., more powerful CPUs, faster memory modules, 

multiple processors or computers. However, blindly increasing the amount of computation 

power increases both the hardware cost and also the maintenance cost. In addition, a large 

number of computers consume a lot of energy and impose high cost on the cooling system. 

Therefore, in this dissertation, we aim to develop smarter algorithms that use the smallest 

possible amount of processing power exploiting the hardware that can solve the problem 

most efficiently.  
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1.4 Focus of This Dissertation 

The previous section showed that high speed deep packet inspection is a challenging task. 

We aim to address these challenges in this dissertation. In this section, we give an overview 

of our work. We first define the problem that we address in the area of deep packet inspection 

in Section 1.4.1. Deep packet inspection problem has several related problems, such as 

viruses and worm signature generation, packet reassembly, packet inspection. In this 

dissertation, we focus on the fast packet inspection problem and we list all the assumptions 

we make in Section 1.4.2. Next, in Section 1.4.3, we present our main technical components 

for deep packet inspections and state our contributions. Finally, we describe the evaluation 

metrics for our measurement methodology.  

1.4.1 Evaluation Metrics 

This dissertation addresses the problem of building high speed packet processing systems for 

services. We use the following evaluation metrics for the purpose of our study: the packet 

processing rate, memory requirements, power consumption, and the ease of incorporating 

new signatures.  

• We define each in turn. Packet processing rate denotes the throughput of the system. 

Some of the schemes that we propose have a deterministic packet processing rate, 

while others are traffic sensitive. The reason for this is that the packet processing rate 

varies under different types of traffic patterns.  

• For all cases, we report both the worst case throughput and average throughput. 

Memory requirements denote the size of memory used. Our solution leverages 

different types of memory for different operations, including Static Random Access 

Memory (SRAM), Ternary Content Addressable Memory (TCAM), and Dynamic 

Random Access Memory (DRAM). These memories have dramatically different 
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manufacturing costs, which in turn affect the total router cost. In our analysis, we 

report the memory requirements for each type of memories separately.  

• Some of the special memory we use, such as TCAMs, consume large amounts of 

power. Hence, when we use it, we also report the power consumed by these devices.  

• Lastly, given that new viruses and worms are continuously being developed, our deep 

packet inspection schemes must be able to accommodate new signatures easily. 

Hence, we analyze the ease of incorporating new signatures, which is defined as the 

time to process a signature and insert it into the system.  

Now we have defined the problem and explained the evaluation metrics. Before we 

explain the components of our scheme in detail, we describe the assumptions we made in 

throughout the thesis in the following section.  

1.4.2 Assumptions 

Figure 1-2 shows that our deep packet inspection scheme processes incoming packets and 

compares them with a large number of signatures in parallel. We focus on developing Gigabit 

rate deep packet processing schemes. There are two assumptions we make in this 

architecture. First, we assume that signatures are known in advance. To ensure the signatures 

we use for evaluation are realistic, we obtain signatures from open source projects and do not 

attempt to generate synthetic signatures ourselves. The second assumption is that packets are 

defragmented first before entering our system. Next we explain the implications of these two 

assumptions in detail. 
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Figure 1-2. Deep packet inspection architecture. 

Assumption 1: Signatures are known in advance 

In our deep packet inspection system, incoming packets are compared against a set of traffic 

signatures. We obtain signatures from other systems in use in real-world environments. There 

are many research projects aiming to generate virus and worm signatures [13-15]. Software 

companies such as Microsoft and Symantec publish system vulnerabilities and corresponding 

signatures. Large networking companies like Cisco generate their own proprietary signatures. 

In addition, there are many open source projects aiming to generate signatures for detected 

worms [10] [16, 17]. For the experiments and studies throughout this dissertation, we obtain 

signatures from these open source projects. For example, the viruses and worm signatures 

used in our system are from the SNORT instruction detection systems [10], the Bro intrusion 

detection system [16], and the ClamAV virus signature database [17].  
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Assumption 2: Packet are Defragmented and Reassembled  

The current Internet is a packet switching network. In most of its constituent sub-networks, 

such as Ethernet, there is a predefined maximum packet size that this network can carry. 

When a packet reaches a network, where the maximum packet size is larger than this packet’s 

size, we need to fragment it into pieces, each small enough to pass over a link.   

Often, there are multiple paths between the source and destination. Packets may take 

different routes. Hence, at the destination, packets can arrive in a different order from the 

order that was sent out. These out-of-order packets need to be buffered and then correctly 

ordered before we can get the correct application data.  

The process of packet re-ordering and de-fragmentation to reconstruct the correct application 

data is called TCP reassembly. Packet reassembly is a hard task because we need to keep the 

states of millions of flows and we need to buffer all the out-of-order packets. There are existing 

systems that are built for packet reassembly [18-20] and the typical speeds reporting are 1 to 10 

Gigabits rate under normal traffic.  How to deal with worst case scenario, where many packets are 

fragmented and sent out of order, still remains a research topic. In this dissertation, we do not 

focus on the TCP reassembly problem. We assume packets are reassembled before analysis by 

our system. 

Having explained the assumptions of our deep packet inspection system, next we explain 

the main components of the system and highlight our contributions. 

1.4.3 Main Components and Contributions 

The goal of this dissertation is to develop algorithms and schemes for high speed deep 

packet inspection. Accomplishing this goal requires two technical components: processing 

the packet header and processing the packet payload. In this dissertation, we separate these 

two because the packet header and the payload typically have significantly different 
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structures. The packet header is well structured: it has fixed fields with known offsets. So, we 

process it based on specific field information such as IP address, port number, protocol type, 

etc. We call this process packet classification. In contrast, the packet payload contains 

application data. Although a few application protocols, such as the HTTP protocol, have 

well-known formats, many other applications may make use of arbitrary formats with no 

standard rules. For this type of payload data, we need to perform pattern matching against 

thousands of patterns that can start from anywhere in the payload.  

Note that packet payload scanning is also called Layer 7 processing according to the 

Open Systems Interconnection (OSI) reference model [21]. The OSI model has seven layers.  

• Layers 1-2 are for physically transmitting the packets over wires, hence they are 

not of interest to this dissertation.  

• Layers 3-4 are for sending packets over the inter-connected network. The packet 

classification problem may be applied in these two layers to scan packet headers.  

• Layers 5 and 6 are the session layer and presentation layer, which are not widely 

used now.  

• Layer 7 is the application layer, and as previously mentioned the packet 

classification problem may be applied at this layer to scan packet payloads. 

Figure 1-2 illustrates the main technical components of our deep packet inspection 

system.  For packet header processing, we propose a packet classification scheme that 

intelligently processes packet header information. For packet payload processing, we develop 

schemes to identify both fixed string patterns and complex regular expressions. These 

techniques form a cohesive architecture that can perform Gigabit rate packet scanning against 

thousands of sophisticated patterns. We explain these techniques in detail below. 
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Multi-match Packet Classification  

As we mentioned before, rules in deep packet inspections may overlap with each other, so 

one packet may match multiple rules. We call the problem of identifying the related rules for 

one packet the multi-match classification problem. The challenge of multi-match 

classification lies in finding all the matching classification rules among thousands or tens of 

thousands rules within a few cycles. To address this challenge, we present our approach 

based on Ternary Content Addressable Memory (TCAM), which is a type of memory that 

can do fast parallel comparisons. Our approach produces multi-match classification results 

with only two memory lookups per packet.  In addition, some filter sets use a negation 

format to represent “not-matching” (the absence of a match) of some specific values. 

Negations are not directly supported by TCAMs. Hence, we present an algorithm to remove 

the negations in the filter sets by translating them into equivalent operations the TCAM can 

easily handle.  

TCAM is expensive and consumes a large amount of power. None of the previously 

published multi-match classification schemes is both memory and power efficient. Hence, we 

develop a novel scheme called the Set Splitting Algorithm (SSA) that meets both 

requirements. The main idea of SSA is to split filters into multiple groups and perform 

separate TCAM lookups in each of these groups. SSA guarantees a reduction in the number 

of filters by 50%, resulting in lower TCAM usage.  In addition, it only accesses filters in the 

TCAM once per packet, yielding a 75% to 95% reduction in power consumption as 

compared to previously published schemes.  

Fast Virus and Worm Signature Scanning with TCAM 

The multi-match classification applies to the packet header only. For the packet payload, we 

need to check whether it contains any signatures. Applications such as network intrusion 
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detection require searching the packet payload against thousands of string patterns. We adopt 

TCAM for pattern matching functions because of its fast speed in parallel search. However, 

TCAM imposes physical limitations on the pattern length that can be directly matched. Also, 

TCAM does not handle correlated patterns (detecting whether a particular patterns occurs 

after another given pattern). To solve these problems, we develop algorithms that leverage 

TCAM’s high speeds while not being restricted to these limitations. These algorithms can 

efficiently handle long patterns, correlated patterns, and patterns with negation. Our solution 

is also applicable to other Layer 7 pattern matching problems, for example, applications like 

HTTP load balancing and email SPAM filtering.   

Fast Regular Expression Matching for Network Security Applications  

Regular expressions are replacing fixed string patterns as the pattern matching language of 

choice in network security applications, such as SNORT, Bro, and the application layer 

packet classifier for Linux. Unfortunately, memory consumption is prohibitively high when 

traditional methods such as Deterministic Finite Automata (DFA) are used for fast regular 

expression scanning. To address this problem, we proposed rewrite techniques that can 

effectively reduce the size of DFA for highly complex regular expressions. Furthermore, we 

developed a scheme that can compile a large set of regular expressions into a small number 

of DFA, which dramatically improves the regular expression matching speed without 

significantly increasing memory usage. This scheme can leverage multi-core or Network 

Processing Unit (NPU) architectures to further improve performance. Experimental results 

using real-world traffic and patterns have shown that my implementation achieves one to 

three orders of magnitude speedup over the state-of-the-art implementation based on Non-

Deterministic Finite Automata. 
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With our schemes that operate on both the packet header and packet payload, we can 

perform Gigabit rate packet scanning against thousands of sophisticated patterns. Using these 

techniques, we can obtain fine granularity analysis of the packets, and thus supporting new 

services such as network intrusion detection, high speed firewalls, HTTP load balancing, 

XML processing, etc., at high rates. 

1.5 Dissertation Overview 

The reminder of the thesis is organized as follows. Chapter 2 reviews work related to this 

dissertation. We broadly review the packet processing techniques that are presented at levels 

of the network, the repetitive deep packet inspection systems and show that pure-software 

based solution is insufficient to meet the need of today’s network speed. At the end of 

Chapter 2, we present some emerging hardware technologies that can potentially speed up 

existing packet processing systems.  

Chapters 3 to 6 are the main technical chapters. As mentioned previously, high speed 

deep packet inspection involves two technical components: processing the packet header and 

processing the packet payload. Chapters 3 and 4 address the first technical component – 

multi-match packet classification.  Chapters 5 and 6 address the second component – fast 

pattern matching on the packet payload.  

 Chapter 3 presents a TCAM-based method for high speed multi-match classification. We 

present a Geometric Intersection Method that reports the multi-match classification results 

with just two lookups. In addition, we present a negation removing algorithm that can 

efficiently map rules into the TCAM.  

The multi-match classification solution presented in Chapter 3 is extremely fast. 

However, for some applications, it will use a large amount of memory and also consume a 
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large amount of power. In Chapter 4, we develop a general and balanced scheme that takes 

into consideration classification speed, memory consumption and power consumption. 

Chapters 5 and 6 present schemes for fast pattern matching on packet payload. In Chapter 

5, we study the typical patterns in the packet payload scanning applications and define three 

types of patterns: fixed string patterns, composite string patterns and regular expression 

patterns. We address the first two types of patterns in Chapter 5 and present a TCAM-based 

string searching algorithm that can operate at gigabit rates. 

Chapter 6 deals with the complex regular expression patterns. Through studying the 

patterns, we show that some either need a significant amount of memory or have a high 

computation cost. We propose regular expression techniques that rewrite these patterns into 

one that are more memory efficient. Further, we present a fast single-pass scanning algorithm 

for simultaneously scanning thousands of patterns. We implement a fast and memory 

efficient regular expression scanner for real-world patterns of packet scanning applications. 

We demonstrate the effectiveness of our scanner through comparing it with different packet 

scanning solutions used in current packet scanning applications. 

Chapter 7 concludes the dissertation and discusses several directions for future work. The 

main contribution of this dissertation lies in using emerging hardware technologies for fast 

packet processing. In Chapters 3 to 5, we adopt TCAMs for fast processing due to its 

building parallel comparison ability. In Chapter 6, we present algorithms that are suited for 

both single core and multi-core processors. Our work can be extended to other hardware 

technologies such as FPGA and ASIC-based platforms.  
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2 Background 

The previous chapter showed that we need deep packet inspection systems to stop fast-

propagating viruses and worms. These systems typically have a large rule database and they 

compare the packet against these. Due to the complexity of rules, existing systems are all 

software-based and the packet processing speed is very limited. In this section, we first 

review these systems and taxonomize their requirements in Section 2.1. Then in Section 2.2, 

we review the existing deep packet inspection methods and show that none of them can 

operate at Gigabit rates, given thousands of complex signatures. Finally, in Section 2.3, we 

present some emerging hardware technologies that can potentially boost the deep packet 

inspection systems to Gigabit rates.  

2.1 Packet Scanning Systems 

There are many packet scanning applications that require deep packet inspections. Here, we 

review three popular ones: SNORT [10], Bro [16] and Linux L7-filter [22]. SNORT and Bro 

are two popular intrusion detections systems, while Linux L7-filter is for application protocol 

analysis. These systems are all open source systems, which allow us to perform a detailed 

analysis and show their abilities and constraints. 

2.1.1 SNORT 

SNORT is a popular open source intrusion detection system, with millions of downloads to 

date [10]. It can be configured to perform protocol analysis and content searching and 

matching on real-time traffic to detect a variety of worms, attacks and probes.  
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Figure 2-1. SNORT architecture. 

Figure 2-1 illustrates the flowchart of the SNORT system. When a packet enters the 

network, it enters the decoder. Here the link level information, such as the Ethernet packet 

header, is removed. Then, the packet enters the pre-processor, which performs packet 

defragmentation and reassembles the TCP stream. Finally and most importantly, the packet 

enters the detection engine. The detection engine examines that data against its database of 

rule. If the packet matches a rule then SNORT takes a pre-programmed action, e.g., “drop 

this packet”, or “log this packet”.  

SNORT contains thousands of rules, each containing attack signatures. Each rule in 

SNORT has two components: a rule header and a rule option. The rule header is a 

classification rule that applies to the packet header. This rule header consists of five fixed 

fields: protocol, source IP, source port, destination IP, and destination port. Figure 2-2.a gives 

an example SNORT rule that detects a MS-SQL worm probe. Here, the rule header specifies 

that this rule applied to User Datagram Protocol (UDP) packet from external network to a 

computer in the protected network (called home net) with port 1434. Figure 2-2.b is another 

example rule for detecting an RPC old password overflow attempt.  It applies to any UDP 

packet from the external network to a computer in the home network. The rule headers in 

these two examples overlap with each other, so a packet may match both rule headers and  
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Rule Headerudp $EXTERNAL_NET any
-> $HOME_NET 1434

content:"|04|"; depth:1;
content:"|81 F1 03 01 04

9B 81 F1 01|";
content:"sock";
content:"send"

Rule Option

udp $EXTERNAL_NET any -
> $HOME_NET any

content:"|00 01 86 A9|";
offset:12; depth:4;

content:"|00 00 00 01|";
distance:4; within:4;

byte_jump:4,4,relative,align;
byte_jump:4,4,relative,align;
byte_test:4,>,64,0,relative;

content:"|00 00 00 00|";
offset:4; depth:4; sid:2027;

rev:4;

1.a: A  rule for MS-SQL
Worm detection.

1.b: A  rule for RPC old
password overflow attempt

 

Figure 2-2. SNORT rule examples. 

need to be checked against both rule options. In the SNORT systems, a packet may match 

thousands of rule headers.  

The rule option is more complicated: it specifies which intrusion patterns are to be used 

to scan packet payload. As we defined in Section 1.3, there are four types of patterns: fixed 

string patterns, correlated patterns, patterns with negation and full regular expression 

patterns. The SNORT system has rules of all four pattern types. For example, the MS-SQL 

worm detection rule (Figure 2-2.a) requires a sequential matching of a correlated pattern that 

consists of four string patterns. The RPC worm detection rule (Figure 2-2.b) searches for a 

pattern with negation. After matching a pattern “USER”, if it does not detect a return 

character (\n, |0a| in ASCII format) within the next 50 bytes, it will raise an intrusion alarm 

signaling an overflow attack attempt.  Recently, SNORT also incorporates a large number of 

regular expression patterns. For example, the pattern for detecting Internet Message Access 

Protocol (IMAP) email server buffer overflow attacks is “.*AUTH\s[^\n]{100}”. This 

signature detects the case where there are 100 non-return characters “[^\n]” after matching of 

keyword AUTH\s. Matching of these signatures is the core component of the SNORT system. 

After introducing the rule structure in SNORT, next we explain the string matching 

algorithms used in SNORT. 
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For the string pattern matching, SNORT uses a “parallel Boyer-Moore” approach that has 

been explored in the literature for fast matching of multiple strings. The original Boyer-

Moore algorithms are designed for single pattern searching [23]. They build skip tables to 

avoid back tracking and help shift forward. The search time for an m byte pattern in an n byte 

packet is O(n+m). If there are k patterns, the search time is O(k(n+m)) , which grows linearly 

in k. Hence, this method is slow when there are thousands of patterns. The parallel Boyer-

Moore algorithm used in SNORT can potentially decrease the running time to sub-linear time 

in k for certain packets. However, this performance is not guaranteed, and for some packets it 

requires super-linear in k time to perform matching [24]. Recently, new pattern matching 

algorithms are proposed to boost the pattern matching speed of SNORT. For example, the 

Aho-Corasick-Boyer-Moore (AC_BM) algorithm proposed by Silicon Defense [25] 

combines the Boyer-Moore and Aho-Corasick algorithms. Another new algorithm is the 

Setwise Boyer-Moore-Horspool algorithm by Fish, et al. [26], whose average case 

performance is better than Aho-Corasick and Boyer-Moore. These algorithms greatly 

improve SNORT’s pattern matching speed to a certain level, e.g., 250Mbps with the SUN 

SDA[12]. However, it is still below the line rate needed for network deployment. 

2.1.2 Bro 

Bro [16] is an open-source intrusion detection system developed by Vern Paxson, et al. 

Similar to SNORT, it monitors network traffic and detects intrusions by comparing network 

traffic against a set of rules describing attack signatures. In addition, it records unusual 

activities such as a high number of failed connection attempts. When Bro detects a suspicious 

event, it performs a set of pre-configured actions, such as logging the event, terminating the 

connection, and sending a message to system administrators.  
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Different from SNORT, Bro does not use fixed string patterns. Instead, all the patterns 

are expressed using regular expressions. Figure 2-3 is an example rule for detecting the Code 

Red worm [27]. This rule applies to tcp packets that direct to http_ports (e.g., port 80), with 

an established tcp connection, aiming to detect a HTTP request matching the regular 

expression “/.*\.id[aq]\?.*NNNNNNNNNNNNN”. This regular expression denotes finding a 

pattern that can start from anywhere (.*) in the HTTP request, starting with a string “.id”, 

followed by character “a” or “q” and a quotation mark character “\?”,  then some arbitrary 

characters of any length (.*), finally end with the string “NNNNNNNNNNNNN”.  

Signature codered1 { 
        ip-proto == tcp 
        dst-port == http_ports 
        tcp-state established,originator 
        http /.*\.id[aq]\?.*NNNNNNNNNNNNN/ 
        event "CodeRed 1" 
}  

Figure 2-3. An example Bro rule for detecting the Code Red worm. 

Bro uses a Deterministic Finite Automaton (DFA) based approach for regular expression 

matching. A DFA consists of a finite set of states, and a transition function. At any time there 

is only one active state in the DFA. Given the next input character, DFA jumps to the next 

state following the transition function. Hence, DFA has a deterministic throughput regardless 

of the input. In addition, if we compile several regular expressions into a single DFA, the 

processing cost for one input character remains the same. This nice property helps Bro 

process thousands of patterns quickly.  

However, some regular expressions can cause a DFA to grow exponentially so that the 

states cannot fit in the memory. To solve this problem, Bro adopts a lazy DFA-based 

approach, where commonly used DFA states are cached and the DFA is extended at run-time 

if needed. This lazy DFA-based approach, although fast and memory efficient on most 
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common inputs, may be exploited by intruders to construct malicious packets that force the 

lazy DFA to enter many corner cases [24] which  result in drastically reduced performance.  

2.1.3 Application Layer Packet Classifier for Linux (Linux L7-filter) 

We have shown two intrusion detection systems, SNORT and Bro that aim to identify 

malicious packets.  In this section, we introduce another type of packet monitoring system – 

Linux L7-filter, whose goal is to identify the application protocol information of normal 

packets.  

The goal of the Linux L7-filter is to detect the application layer protocols. The examples 

of application layer protocols are Yahoo messenger protocol, Peer-to-peer (P2P) Kazza 

protocol, and online gaming protocol. Identifying these types of application traffic is 

important for providing fine granularities of quality of service. For example, according to the 

network infrastructure company CacheLogic, in 2004 over 60 percent of all Internet traffic is 

P2P traffic, such as Kazza and BitTorrent traffic. Most of these P2P traffic is illegal data 

transfer. When this P2P traffic occupies too much network bandwidth and causes network 

congestion, service providers may need to limit the bandwidth of P2P traffic so as to provide 

a better quality of service (QoS) for more important traffic such as routing HTTP and Voice 

over IP (VoIP) packets. To do this, it becomes necessary to distinguish P2P traffic from other 

types of traffic. The Linux L7-filter can help us achieve this through analyzing application 

layer protocol information. 

Currently, the Linux L7-filter contains 70 application protocol signatures, contributed by 

researchers and developers world-wide. Signatures are categorized into ten classes: P2P, 

VoIP, streaming video, streaming audio, chat, game, networking, mail, file transfer, printer 

commands. Similar to Bro, signatures are specified using regular expressions. However, 

different from SNORT and Bro, the Linux L7-filter does not look at the packet header 
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information such as port number because different some applications can be piggybacked on 

known applications protocols. Therefore, the Linux L7-filter closely checks application layer 

data to determine what protocol is being used.  

The Linux L7-filter is a pure software solution, it cannot achieve Gigabit rate. We found 

that the system throughput dropped to less than 10Mbps on a 100Mbps network using a 

computer with 750MHz PIII and 512 MB of memory. In addition, the CPU was saturated, 

leaving no computation time free for other tasks. Apparently, this speed does not satisfy the 

requirements for high speed edge networks, where Gigabit Ethernets have become the norm.  

So far, we have shown three typical deep packet inspection applications. These 

applications are highly complex, so currently they rely on purely software-based approaches 

that are designed to run on standalone computers such as Linux boxes. The packet processing 

rates of these systems are much lower than Gigabit rate. To incorporate them into the 

network, we need to increase the speed to match the high processing rate in the edge and core 

networks. In the next section, we broadly review the current packet processing systems on 

routers and show how most current packet processing systems can meet our needs. Later in 

Section 2.3, we present some emerging hardware opportunities that can potentially boost 

these packet scanning systems to Gigabit rates or higher. 

2.2 Current Packet Processing Approaches 

In this section, we broadly review the state-of-the-art packet processing technologies. As we 

mentioned in Section 1.4, deep packet inspection involves processing both the packet header 

and the packet payload. In this section, we first review packet header processing techniques 

and then we review packet payload processing methods that look beyond the packet header. 

In both parts, we review both algorithms developed by researchers as well as several 

commercial products.  
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2.2.1 Packet Header Processing 

Packet headers are typically well structured, following the pre-defined packet header formats, 

making processing a simpler task. Packet header processing is usually targeted towards 

matching specific fields in the packet header. For example, in the core of the Internet, packet 

forwarding is usually just based on one field — the destination IP address. Some edge routers 

control traffic using more fields in the packet header. Typical rules often reference the 

protocol, source IP address, destination address, source port number, destination port number 

fields of the packet. Cisco allows filtering based on these five tuples by configuration of 

Access Control Lists (ACLs). 

The packet classification problem on multiple fields is a complex problem [28]. For N 

arbitrary non-overlapping regions in F dimensions, it is possible to achieve an optimized 

query time of O(log(N)),  with a complexity of O(NF) storage in the theoretical worst case 

[29]. This result can be directly mapped to packet classification applications, where a filter 

with F fields corresponds to a region in the F dimensional space [29, 30]. Suppose we have N 

= 1000 filters and each filter has five fields (F = 5). To achieve an optimal query time 

O(logN) = 10 memory accesses, we need on the order of NF = 100 terabytes of storage. On 

the other hand, to achieve an optimal storage of O(N), we need on the order of logF-1N = 9840 

memory accesses. Fortunately, these analyses represent a theoretical worst case; real-world 

rule sets are typically simpler than the theoretical worst case. Many algorithms have been 

proposed to solve the multiple filed packet classification problem. In this section, we list 

several representatives. These include trie-based, hash-based, and heuristic algorithms. At the 

end of this section, we review the industry approaches and state their limitations in providing 

a solution for deep packet inspection.  
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Figure 2-4. An example of Patricia Tree for storing strings 1, 00, 010, and 011. 

Trie-based Algorithms:  

Trie-based solutions are the most traditional solution for packet classification. A trie is a 

general-purpose data structure for storing strings as shown in Figure 2-4. The IP address may 

be represented as a string of bits, so we can use trie-based approach to identify IP addresses. 

The most well known trie for packet classification is the Patricia Trie [31]. Patricia tries store 

prefixes in a tree-like structure with a 0 and 1 on each link corresponding to the bit at the 

given level in the tree.  In the worst case, to obtain the final classification results, we need as 

many memory accesses as the number of bits in the fields (w). This example is for the 

classification for one field. For classification problems with multiple fields, Grid-of-tries [32] 

builds multiple levels of tries, each level corresponds to a field. Once a match is found in one 

dimension, a search is performed in a second level trie tree linked by the first level tree node. 

Another trie-based approach, Area-based Quad Tree (AQT) [33] works for two dimensional 

space. It keeps dividing separating the space into four regions recursively until the number of 

filters in each region is smaller than a constant.  

In general, trie-based schemes do not work very well at multiple-field classification 

because the number of memory lookups is related with the number bits in all fields. For the 



 

 - 26 - 

popular five field classification based on protocol, source IP address, destination address, 

source port number, destination port number, there are a total of 104 bits and hence in a worst 

case 104 memory lookups is needed. 

Hash-based Algorithms (Tuple based algorithms):  

Trie based algorithms are built purely based on the classification rules. They do not take into 

consideration of the incoming packets’ distributions. Hash-based algorithms, however, do 

take this information into consideration.  Hash based algorithms perform a series of hash 

lookups for each possible prefix length to identify the highest priority matching rule. Hash-

based algorithms, in the worst case, require memory accesses to all of the hash tables and 

thus need to conduct many memory accesses. However, the hash function can be optimized 

based on the distribution of incoming packets.  One can develop good hash functions that 

require one memory access for the most common prefixes.  

Srinivasan, et al., observed that in real applications, the filter database typically uses only 

a small number of distinct field lengths. Therefore, they proposed that by mapping filters to 

tuples, even a simple linear search of the tuple space (one hash probe for each tuple space) 

can provide a significant speedup against linear search [34]. They also demonstrated an 

optimized hashing technique for two dimensional spaces, called rectangle search. However, 

to support lookups in more than two dimensions, the algorithm still requires at least WF-1/F! 

memory accesses, where W is the number of bits in each field and F is the number of fields. 

Suppose W =16 and F = 5, this yields 546 memory accesses. 

Heuristic Algorithms:  

Beside trie-based algorithms and hash based algorithms, there are heuristic algorithms that 

work great on real-world filter sets. Here, we discuss two heuristic algorithm examples: 

HiCuts [35] and HyperCuts [36]. The HiCuts algorithm works by carefully pre-processing 
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the classifier to build a decision tree data structure. Given a packet, the decision tree is 

traversed to find a leaf node, where a small number of rules are stored. A linear search among 

these rules yields the classification result. HyperCuts is another decision tree based 

algorithm. Unlike HiCuts, however, in which each node in the decision tree represents a 

hyper plane, each node in the HyperCuts decision tree represents a multi-dimensional 

hypercube. Using this extra degree of freedom and a new set of heuristics to find optimal 

hyper cubes for a given amount of storage, HyperCuts can provide an order of magnitude 

improvement over HiCuts classification algorithms. These heuristic approaches yield state-

of-art best results, e.g., 20-30 memory accesses per packet in the “worst case”. 

We have reviewed representative algorithms developed by researchers for packet header 

processing. Next, we review the state of art commercial packet header processing systems. 

Commercial Packet header Processing Systems  

Commercial systems usually use caches to improve performance. For packet header 

processing, common packet headers can be cached to speed up future lookups. The cache hit 

rate for caching full IP addresses in routers is at most 80-90% [37, 38]; cache hit rate is likely 

to be much worse for caching full headers. Incurring a linear search cost to search through 

100,000 filters would be a system bottleneck even if it occurs on only 10% to 20% of the 

packets [39]. 

When there is a cache miss, there are two choices. The first is to use software-based 

algorithms mentioned previously to identify the classification results. Since software-based 

algorithms are slow, some high end routers use hardware based solutions with Ternary 

Content Addressable Memory (TCAM). Here we give a brief description of TCAM and we 

will give a more detailed analysis of TCAM later in Section 2.3.2. TCAM is a type of special 

memory built for parallel searching. It has many entries and it can compare the input with all 
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its entries in parallel. Using TCAM for packet classification is very simple: just insert all the 

classification rules into the TCAM, one rule per TCAM entry. Given an input packet, 

TCAMs can compare the input with all the entries in parallel and report the classification 

result with just one TCAM lookup time (e.g., 4 ns), removing the uncertainty of most 

software-based solutions. Large routers such as Cisco 7304 MSC [40] use TCAM to support 

10 Gigabit classification rates. 

Limitation of Current Packet Classification Problem 

All the Layer 4 classification solutions presented above are for single matching classification, 

i.e., they only report the highest priority match. As we have discussed in the Section 1.3, 

rules in intrusion detection systems often overlap with each other, and demand all the 

matching results (multi-match classification results). The multi-match classification problem 

is more complex to implement than single-match classification since it needs to return more 

than one matching result. Some of the heuristic software solutions for single match 

classification are not applicable to the multi-match problem. In addition, the hardware 

solution using TCAMs cannot be used to return multi-match classification results directly 

since TCAMs only return the first match result. In this dissertation, we particularly focus on 

algorithms for the multi-match classification problem.  

2.2.2 Packet Payload Inspections 

Now, we have surveyed packet header processing systems, next we survey the packet 

payload processing systems. Packet payload processing is different from the packet header 

processing. Packet headers have fixed formats, but packet payload may follow many 

different application formats. Often we do not know where the patterns appear. Therefore, we 

have to search entire packet payload.  
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High speed payload processing is required by many deep packet inspection systems such 

as SNORT, Bro, and Linux L7-filter. These systems typically have a large rule database and 

they compare incoming packets against all of these rules. Due to the complexity of rules, 

existing systems are all software-based and packet processing speed is very limited, as we 

have shown in Section 2.1.  

Router vendors are also introducing new products for Layer 7 deep packet inspection. 

Some of the simple functions are supported by hardware, while most of the complicated rule 

matching is still done in software. Next we describe several commercial products. 

PMC Sierra introduced the PM2329 ClassiPI network classification processor that 

supports 16K policy rules [41]. These rules can be spread over multiple independent engines 

for rule comparisons. Rules in one engine are searched sequentially. Rules can be written 

using regular expressions. However, the classification processor supports only a limited 

number of regular expressions (12 reported in [41]). 

Cisco’s Internetwork Operating Systems (IOS)-based Intrusion Prevention System (IPS) 

contains several Signature Micro Engines (SMEs) [42]. Each SME typically corresponds to 

the protocol in which the signature occurs and looks for malicious activities in that protocol. 

Given a packet, there may be multiple rules associated with it so it is processed by several 

SMEs. When an SME scans the packets, it extracts certain values and searches for patterns 

within the packet via the regular expression software.  Similar to PCM Sierra’s PM2329 

ClassiPI, most of the inspections in Cisco IOS are software-based. There is no public report 

of the processing power of these systems when the number of rules is large.    

These existing packet payload scanning systems have limitations on the number of rules, 

the type of regular expressions, and the number of bits in the packet. As the number of rules 

are getting larger (e.g., SNORT has more than 4000 rules) and more complex (different types 

of signatures are used), these existing software solutions is not sufficient and do not support 
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high processing rates. Instead, we need stronger hardware support to boost the performance 

to Gigabit rates. In the next section, we review the emerging hardware technologies that can 

potentially help us solve the deep packet inspection problems with high rates.  

2.3 Hardware Opportunities  

Hardware technologies are developing fast. To speed up deep packet inspection, we need 

hardware that has the following three characteristics: a high degree of parallelism, fast 

processing time, low power consumption, and configurable. In this section, we first explain 

these three requirements in detail. Then we list several technologically feasible hardware 

components that meet these, and thus achieve the necessary speedup for the deep packet 

inspection systems.  

2.3.1 Requirements for Hardware Technologies 

Deep packet inspection will compare a packet with thousands of signatures. We stated in 

Section 1.3 that this inspection process has the following characteristics. First, we must 

handle a large number of signatures. Second, these signatures are highly complex and have 

overlaps. Lastly, signatures change over time. In response to these characteristics, hardware 

technologies must meet the following requirements. 

To support a large number of signatures, hardware technology for deep packet inspection 

must have a high level of parallelism. Any solution that requires comparing the packet with 

signatures one by one does not scale well. Second, hardware technology must have a fast 

processing time to process complex signatures to keep up with the Gigabit line rate. Since we 

must inspect packets from every line card, deep packet inspection solutions must use a 

moderate amount of power so as not to impose high load on the cooling system.  Lastly, 

hardware must be configurable. New signatures will be developed for detecting new worms. 
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Or even new signature languages may be introduced in the future. Hence, it must allow the 

incorporation of these new signatures through flexible configuration.  

 To meet the above requirements, we identify the following three types of hardware that 

can be potentially used for high speed deep packet inspection. They are TCAM, FPGA, and 

Multi-core processors. 

2.3.2 TCAM 

TCAMs are a piece of specialized hardware built for parallel comparison. A TCAM consists 

of a large array of comparators which can perform parallel matching of its constituent entries. 

The top entry of the TCAM has the smallest index and the bottom entry has the largest. Each 

entry has several cells that can be used to store a string. A TCAM works as follows: given an 

input string, it compares this string against all entries in its memory in parallel, and reports 

one entry that matches the input. A TCAM has the following nice properties that make it an 

excellent choice for deep packet inspection. 

1. High degrees of parallelism. TCAMs can be used to store a high number of entries. 

Single-chip densities of TCAMs are approaching 2 Megabytes (MB) [43]. The width 

of each entry can be configured according to user requirements. For example, a 1 MB 

TCAM can be programmed as 64K entries with 16 bytes per entry, or 1K entry with 

1K bytes per entry, etc. Given an input string of 16 bytes, a 1MB TCAM can 

compare the string with all 64K entries in parallel.  

2. Efficient support for IP addresses. Unlike a binary CAM, which only has two 

states: 0 or 1, each cell in a TCAM can take one of the three states: 0, 1, or ‘?’ (do not 

care). With the ‘do not care’ state, TCAM can be used for matching variable prefix 

CIDR IP addresses and thus can be used in high-speed IP lookups [44]. There is a 1-

to-1 correspondence between the TCAM memory bits and the number of bits in a  
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Figure 2-5. TCAM. 

classification rule. This is the total number of bits in all fields. For example, an IP 

address has 32 bits and will hence uses 32 TCAM cells. 

3. Fast and deterministic lookup time. The lookup time (e.g., 4 ns [43]) of TCAMs is 

very short and it is deterministic for any input. In the current Internet, the average 

packet size is 402.7 bytes [45]. If one packet requires one TCAM lookup for packet 

header processing, TCAM-based solution can achieve an 805.4 Gbps classification 

rate. 

The three properties above make TCAM one of the top candidates for a deep packet 

inspection system. However, TCAMs also have limitations. Current off-the-shelf TCAMs 

can only report one of the matching results, even though there may have been many matches. 

This limits TCAMs’ matching power in the presence of deep packet inspection rules that 

overlap. In addition, TCAMs are expensive and consume a lot of power. Next, we explain 

these limitations one by one.  

• Only report the highest match results. Because of the ‘do not care’ state, one 

input may match multiple TCAM entries. Today’s off-the-shelf TCAMs are first-

match TCAM, which gives out the lowest index match of the input string if there 

are multiple matches. Figure 2-5 shows an example TCAM. If we remove the 

priority encoder, a TCAM returns a matching vector. The processor needs to step  
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Figure 2-6. Power consumption for a 9 Mibt TCAM. 

through the vector to extract the matching results. This is not computationally 

efficient when the number of entries in the TCAM is large and the matching 

vector is sparse, which is true for SNORT filter sets as we will show later in 

Section 4.4. In this dissertation, we use the off-the-shelf TCAMs and do not make 

changes to the priority encoder.  

• High cost. TCAMs are more expensive than Static Random Access Memories 

(SRAMs). Table 2-1 shows that TCAMs cost about 30 times more per bit of 

storage than DDR SRAMs [44].  

• High power consumption. TCAMs consume 150 times more power per bit than 

SRAMs [46]. Figure 2-6 shows the power consumption of a 9 Mibt TCAM. It is 

linear to number of entries searched in parallel, and it is also directly related to 

the frequency of TCAM access. Therefore, to develop a power efficient TCAM-

based solution, we need to insert limited number of entries into the TCAM and 

access it as infrequent as possible.  

To decrease the power consumption of TCAMs, TCAM vendors provide a 

block feature. A TCAM block is a contiguous, fixed-sized chunk of TCAM 



 

 - 34 - 

entries, usually much smaller than the size of the entire TCAM [47]. For 

example, a 128K entry TCAM could be divided into 8 blocks containing 16K 

entries each. With this feature, we can selectively search one or several blocks, 

instead of the entire TCAMs, saving the energy consumption.  

• Low flexibility. Each cell in TCAMs can take one of the three states: 0, 1 or 

“don’t care”. It can’t support range matching directly. A filter containing range 

may require multiple TCAM entries e.g., port 2-5 is represented as 01* and 10*. 

In addition, TCAMs cannot support negation form, for example “not 4”. “not 4” 

is essentially two ranges: 0-3 and 5 to the maximum value.  

Table 2-1. Different memory technologies. 

Technology Single chip 
density 

$/chip 
($/MByte) 

Access 
speed Watts/chip 

Networking 
DRAM 64 MB $30-$50 

($0.50-$0.75) 40-80 ns 0.5-2W 

SRAM 4 MB $20-$30 
($5-$8) 4-8 ns 1-3W 

TCAM 1 MB $200-$250 
($200-$250) 4-8 ns 15-30W 

 

As shown above, TCAMs have many nice properties, including massively parallel 

comparison abilities. However, we also showed that they have several limitations. In this 

dissertation, we develop algorithms that use TCAMs to achieve high speeds while not being 

restricted to these limitations. 

2.3.3 FPGA  

Similar to TCAMs, Field Programmable Gate Arrays (FPGAs) can also support a high 

degree of parallelism. FPGAs are semiconductor devices containing programmable logic 

components and programmable interconnects [48]. Engineers can program the logic 

components to perform different types of tasks such as AND, OR, XOR, NOT. These logic 
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components can be linked together through programmable interconnects to build complex 

functions such as data calculation.  

FPGAs are an excellent candidate for deep packet inspection due to their abilities of 

parallelism, easy configuration, and high efficiency.  

• Support high level of parallelism. The programmable logics in FPGAs can run 

in parallel, hence FPGAs can perform multiple tasks simultaneously.  

• Easy configuration. The logic blocks and interconnects in FPGAs can be 

programmed after the manufacturing process. When there are new signatures or 

new detection architecture change, we can modify the logic blocks and 

interconnects to gain the desired functionalities in the FPGA. 

• High efficiency. Deep packet inspection has quite different requirements from 

other applications such as 3D animation and scientific calculations. It mainly 

requires logical comparisons, while complex numeric calculations such as 

floating point number processing are rarely used. For FPGA-based approaches, 

we can customize the chip to provide the optimal performance for the required 

functions only.  

The above attractive properties make FPGAs an excellent candidate for deep packet 

inspection systems. In fact, FPGAs have already been used for regular expression matching 

[49]. For example, Lockwood, et al., proposed a FPGA based solutions are used to detect 

worms and malware  that scan traffic at rates up to 600Mbps [50]. Moreover, FPGAs are a 

multi-billion dollar industry, which leads to continous investments and advaces. TCAMs are 

special products for switch companies.   

Comparing FPGAs to TCAMs, FPGA are more flexible and can handle more complex 

tasks. For example, one can build circuits for regular expression matching easily in FPGAs, 

which is difficult to support in TCAM. Hence, FPGAs are ideal to handle complex deep 
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packet inspection. However, for simple task such as straight forward string comparisons, 

such as packet classification, TCAMs are still a better choice than FPGA because TCAMs 

are a piece of hardware specially built for parallel comparison, it can run at higher 

frequencies and yield lower cost compared to FPGAs. 

2.3.4 Multi-core Processors 

We have explained that FPGAs are more flexible than TCAMs. General processors are even 

more flexible than FPGAs. We can program it using high level languages (e.g., C, C++) that 

are simpler to program, rather than the low level VHSIC (Very High Speed Integrated 

Circuit) Hardware Description Language (VHDL) for FPGAs which is relatively harder to 

master.  

Recently, multi-core processors are becoming popular. Different from the traditional 

single core processors, multi-core processes combine two or more independent processors 

into a single package. These independent processors can run in parallel hence can provide 

higher computation power.  As the processing power of single core processors are 

approaching its limit [51], multi-core processors are becoming popular to achieve higher 

computation power. For example, many PC vendors like Dell, IBM, and Apple, are selling 

PCs with dual-core processors. Networking equipment vendors are also using multi-core 

processors. The widely used Intel Network Processor Units (NPUs) have 8-16 cores [52]. 

Recently, IBM introduced cell processors with eight cores for fast processing pixels for video 

games [53]. Cisco also built a Silicon Packet Processor (SPP) that contains 188 32-bit 

embedded RISC cores for Cisco’s high end routers [107]. 

Multi-core processors are a good candidate for high speed deep packet inspection 

because they have multiple cores that can provide parallel computations. In addition, they are 
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very flexible. We can easily port software approaches such as SNORT to multi-core 

environments. However, multi-core processors also have the following two limitations.  

• The number of cores is limited. For example, Intel IXP2800 NPU [52] has 16 cores, 

which is much smaller than the number of patterns as it’s typical to have thousands of 

patterns in deep packet inspections systems. Hence, one pattern per processing unit is 

infeasible. We need smart algorithms to partition different tasks and patterns into the 

different cores. 

• The size of fast local memory of each processing unit is limited. For example, the 

newly architected IBM cell processor has 8 synergistic processor elements, each with 

128 KB local memory [53].  

2.3.5 Summaries on Hardware Technologies 

We described three types of hardware technologies that are potentially useful for deep packet 

inspection: TCAMs, FPGAs, and multi-core processors. TCAMs are very specialized devices 

built just for parallel comparison. TCAMs work most efficiently, in terms of cost and speed, 

for tasks that need massive comparison of input with limited length strings. FPGAs on the 

other hand are more flexible, and can support more complex tasks. Multi-core processors are 

even more flexible, can support an even wider variety of computation tasks. However, for 

simple computation, TCAMs are sufficient. 

In the next four chapters, we present our algorithms for deep packet inspections with 

these hardware technologies. For tasks that require a massive amount of simple comparisons, 

such as packet classification, we adopt TCAMs. As we mentioned earlier, TCAMs have four 

limitations: not being able to report all matching results, inflexible to support ranges and 

negations, have high costs, and consume a lot of power. We will present our TCAM-based 

schemes that address these limitations. Chapter 3 describes a mechanism for mapping 
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negations efficiently into the TCAMs, and presents an algorithm to report all the matching 

results with just one TCAM lookup for packet classifications. Chapter 4 extends Chapter 3, 

focusing on limiting memory and power consumption of the TCAM.  

Beside packet header processing, deep packet inspection also requires payload 

processing, which compares the payload with a set of signatures. For fixed string-based 

signature comparison, we propose a TCAM-based solution in Chapter 5. Unfortunately, it is 

an extremely difficult problem to directly support regular expression based signatures in 

TCAMs. Hence, we propose algorithms for general processor and multi-core based 

architectures in Chapter 6. Our schemes can be extended to FPGA-based platforms [54].  
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3 Multi-Match Packet Classification with TCAM  

As introduced in Chapter 1, the goal of this dissertation is to develop algorithms and system 

organization for high speed deep packet inspection. Accomplishing this requires two 

technical components: processing the packet header, and processing the packet payload as we 

explained in Section 1.5. In this chapter, we describe our approach for the first component, 

namely, multi-match packet classification that applies to the packet header. In particular, we 

present a scheme based on Ternary Content Addressable Memory (TCAM), which produces 

multi-match classification results with only two memory lookups per packet.  

The rest of the chapter is organized as follows. We first motivate the problem in Section 

3.1. Then we investigate the characteristics of multi-match classification sets in Section 3.2 

and show that software-based single-match classification approaches do not work efficiently 

on the multi-match classification sets: they either need a large amount of memory or have a 

high computation cost. To solve these problems, we pick TCAMs due to their extraordinary 

parallel comparison ability. Next, we explore some design choices and technical challenges 

on using TCAMs for the multi-match classification in Section 3.3. We present our Geometric 

Intersection Method to correctly order filters for reporting multi-match classification results 

in Section 3.4. Then we describe our method to efficiently represent these filters into TCAM 

in Section 3.5. We demonstrate the effectiveness of our TCAM-based method using the 

SNORT rule sets in Section 3.6. With our approach, we can report multi-match classification 

results with just two memory lookups while using a moderate TCAM size of 135 KB. Finally 

we briefly review the related work in Section 3.7 and conclude in Section 3.8.  
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3.1 Introduction 

In typical packet classification, an incoming packet is compared against a set of filters. Most 

traditional applications, such as IP routing, only require the highest priority match, e.g., the 

longest prefix match. However, as we showed in Section 1.3, many new applications demand 

multi-match packet classification, where all matching filters need to be reported. For 

example, in accounting applications, multiple counters need to be updated for a given packet 

[55]. As different packets are associated with different sets of counters, multi-match 

classification is necessary to identify the relevant counters for each packet. Another 

application of multi-match classification is network intrusion detection systems, which 

monitor packets in a network and detect malicious intrusions or DOS attacks. Systems like 

SNORT [10] employ thousands of rules, each containing attack signatures. Each rule has two 

components: a rule header and a rule option. As we explained in Section 2.1.1, the rule 

header (the focus of this chapter) is a classification filter that consists of five fixed fields: 

protocol, source IP, source port, destination IP, and destination port. The rule option (the 

focus of Chapter 5 and Chapter 6) is more complicated: it specifies intrusion patterns to be 

used to scan packet contents. Rule headers may have overlaps, so a packet may match 

multiple rule headers. Multi-match classification is used to find all the rule headers that 

match a given packet so we can check the corresponding rule options one by one later.  

The multi-match classification problem is relatively new, and we are among the first to 

study it in depth. The related single-match classification problem, however, has been 

extensively studied. We have surveyed in Section 2.2.1 various single-match classification 

algorithms. We showed that the state of art heuristic approaches [30, 32, 35, 36] provide the 

fastest classification results, with 20-30 memory accesses per packet in the “worst case”.  

Multi-match classification problem is more complex to implement than single-match 

classification since it needs all the matching results. Thus, some of the heuristic optimizations 
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used for the single-match classification do not apply for the multiple-match case, as we will 

show later in Section 3.2. Moreover, multi-match classification is usually the first step in 

performing complex network system functions followed by processing that is dependent on 

the classification results.  For example, given a packet, it may match multiple counters and all 

these counters need to be incremented. Ramabhadran and Varghese showed that counter 

updating is a complicated process [56]. We first need to conduct a memory read to get the 

current value of the counter, then update the counter, and finally do a memory write to write 

the value back. As line rates have been increasing to 1 Gigabit or even 10 Gigabit rates (OC-

192 is 10 Gbps), each counter matched by a packet must be read and written in the even 

decreasing time to receive a packet at line speeds. For example, a 40 byte packet must be 

processed in 32 nanoseconds (ns) at OC-192 speeds. A high number of updates impose 

stringent requirements on the bandwidth needs. For example, eight 64-bit counters in every 

32 ns require 16 Gbps of memory bandwidth. These complicated follow-up processing 

demands multi-match classification to be finished in the order of several nanoseconds.  

In this chapter, we adopt TCAMs for the multi-match classification problem due to their 

extraordinary parallel comparison ability. We present a TCAM-based approach, which 

produces multi-match classification results with only two memory lookups per packet. Before 

we present our algorithms in detail, next we study the characteristics of multi-match 

classification sets and understand their special requirements.  

3.2 Characteristics of Multi-match Classification Sets 

In this section, we compare some typical multi-match classification filter sets against single 

match classification filter sets. We show that multi-match filter sets are larger and create 

more intersections in Section 3.2.1. Due to these characteristics, we demonstrate that 

software-based approaches do not work efficiently on multi-match classification filter sets in  



 

 - 42 - 

Table 3-1. SNORT rule headers statistics.  

Version Release date Filter set size Filters added Filters 
deleted 

2.0.0 4/14/2003 240 - - 
2.0.1 7/22/2003 255 21 6 
2.1.0 12/18/2003 257 3 1 
2.1.1 2/25/2004 263 6 0 

 

Table 3-2. Comparison of multi-match and single-match filter sets. 

Multi-match 
filter sets (SNORT) 

Single-match 
filter sets  

2.0.0 2.0.1 2.1.0 2.1.1 S1 S2 S3 S4 S5 
# of filters in the set 240 255 257 263 3061 184 4557 68 264 
# of fields per filer 5 5 5 5 5 5 5 5 5 
Average filter size 
(logarithm of 2) 64.67 60.73 60.81 60.91 31.6 54.86 24.5 56.58 48.25 

# of intersections 3453 3754 3758 4067 3420 318 3502 70 318 
 

Section 3.2.2.  Finally, in Section 3.2.3, we explain the reasons that make TCAM a great 

candidate for the multi-match classification problem.  

3.2.1 Study of Multi-match classification filter sets 

We pick the SNORT rule sets [10] as the test sets for multi-match classification because they 

are very popular (downloaded by approximately 2000 users per week) and also they are 

publicly available. We tested all the publicly available Versions after 2.0. Although each set 

has around 1700-2000 rules, many of the rules share a common rule header (classification 

filter), because intruders piggyback on top of known vulnerabilities, so new attacks are built 

upon old ones. As illustrated in Table 3-1, unique rule headers in each version are relatively 

stable. Note that the versions that share the same rule headers with the previous version are 

omitted.  

Table 3-2 compares the SNORT multi-match set with the single match filter sets used in 

real-world firewalls, core routers and access routers [46]. The first row records the number of 
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filters in the filter set and the second records the number of fields per filter. These filter sets 

all have the standard five fields: protocol, source IP, source port, destination IP, and 

destination port. The third row of the table records the average filter size. The size of a filter 

denotes the number of different packet headers it can match. For example, a very specific 

filter “tcp 162.208.1.1 80 138.1.1.1  80” matches only one specific tcp packet header that is 

from the source IP address 162.208.1.1 with a source port 80 to the destination IP address 

138.1.1.1 with the destination port 80. Therefore, this filter’s size is one. At the other 

extreme, a very generic filter “any any any any any” will match packets with any protocol, 

any source, any port number, to any destination IP addresses with any port number. The 

unique packet headers it can match are exponential to the number of bits in the filter. In this 

case, the number of bits in the filter is 104 (8 bits protocol id, 2 ports with 16 bits each, 2 IP 

addresses with 32 bits each). Thus the size of this generic filter is 2104.  As shown in Table 

3-2, multi-match filters are on average 264.67/243.158 ≈220 times bigger than single matching 

filter sets.  

Beside the filter size, we also record the number of intersections generated by the filter 

sets in Table 3-2. Here, two filters generate an intersection if they have overlaps; in other 

words, if there exists a packet that matches both filters. As we can see that, multi-match 

classification filters generate a much higher percentage of intersections than the single match 

classification filters. We show in the next section that large filter sizes and large numbers of 

intersections make software-based single-match solutions either need to consume a lot of 

memory or require many memory accesses. 
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3.2.2 Applying Single Match Classification Algorithms to the Multi-match 

Classification Set 

The previous subsections showed that, compared to single-match filter sets, multi-match 

filter sets have two noticeable characteristics. First, filters are significantly larger in size. 

Second, they create a large number of intersections. In this section, we show that these two 

properties make some software-based heuristic algorithms, which are great for single match 

filter set, work poorly for the multi-match case.  

Many schemes have been proposed for the single match classification problem. Some of 

them can be extended to report multi-match results. For example, Grid of Tries and Extended 

Grid of Tries (EGT) [32, 57] use the source and destination IP addresses to build a trie-like 

tree and store the related filters in the leaf nodes. By traversing the trie-like tree according the 

source and destination IP addresses, we can acquire all the related filters that apply to this 

source and destination IP combinations. Multi-match results can be obtained by comparing 

the other field information (e.g., protocol, source port, and destination port) with these filters 

one by one. Unlike EGT, where source and destination IP addresses are used to build the tree 

(trie in the EGT case), some state-of-the-art heuristic algorithms, such as HiCuts and 

Hypercuts [35, 36], use other criteria (such as port ranges) to build the tree. Similarly, they 

can be extended to provide multi-match classification results as well.  

These software solutions were developed based on the characteristics of single-match 

filter sets.  For example, EGT is based on the observation that in typical single-match filter 

sets, at most 20 rules will match any packet when considering the source and destination 

fields. Hence, we can search the tree based on the source and destination fields and then 

perform a linear search among the returned filters. This appears to be an economic solution. 

However, this observation is no longer valid for multi-match classification sets. As we 

showed in the previous section, for the SNORT filter sets, many filters intersect. For  
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Figure 3-1. An example of the HiCuts algorithm. 

Table 3-3. Applying HiCuts to the SNORT filter set. 

SNORT 
Version Tree height Number of filters in leaf nodes SRAM used(KB)

2.0.0 18 745,019 41,000 
2.0.1 19 803,645 46,297 
2.1.0 19 820,415 47,160 
2.1.1 18 827,651 49,378 

 

example, they frequently share some common source and destination addresses. Therefore, if 

we search the EGT-PC tree based on the source and destination addresses on the SNORT 

filter set, we found that EGT may return up to 153 filters for an input packet. All these filters 

have to be compared to the packet one by one in software, making the approach highly 

inefficient. 

We also apply a popular tree based single-match classification scheme -- HiCuts to the 

SNORT rule sets. The HiCuts algorithm uses hyper planes to divide up the space and build 

the tree. Figure 3-1 illustrates an example, where there are four filters in a two dimensional 

space. The first cut goes horizontally and the second goes vertically. As we can see from the 

figure, Filter 1 is divided in two through the second cut, hence it is copied into two leaf 

nodes. When we apply the HiCuts algorithm to the multi-match filter sets, the large size of 

filters causes filters to be copied into many leaf nodes. Table 3-3 shows that, for the SNORT 
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2.0.0 filter set, there are 715019 filters in the leaf nodes. Since the SNORT filter set contains 

240 unique filters, a filter is copied on average 745019/240 = 3108 times. This high degree of 

duplication results in a high demand for SRAM storage. More than 40 MBytes of SRAM are 

needed for the SNORT filter sets. This is beyond the largest single chip SRAM density 

(around 72Mbit = 9MB today [29]) and thus requires 6 SRAM chips. The number of SRAM 

interfaces per chip is usually limited. For example, the Intel IXP 2800 only has 2 SRAM 

interfaces [52]. In addition, a high degree of filter duplication calls for large update costs, as 

the insertion of a new filter or deletion of an old filter needs to touch all the leaf nodes that 

contain it. 

As we can see from the above results, due to different characteristics of multi-match and 

single-match filter sets, existing software-based solutions do not work efficiently. They either 

require high computation costs or demand a large amount of memory. Instead, we need a 

hardware approach that uses a small amount of memory and requires few memory lookups to 

keep up with the high data rate. In the next section, we will explain why TCAMs meet these 

requirements. 

3.2.3 Why TCAM? 

The previous section showed that multi-match classification filter sets have unique 

characteristics that make them hard to solve using the single match software-based 

approaches. Furthermore, multi-match classification, because of the complex follow-up 

processing, is likely to have much tighter time requirements than the single match 

classification described in Section 3.1. We need an apparoach that uses a small amount of 

memory and requires few memory lookups to keep up with the high data rate. To meet these 

requirements, TCAMs are a good candidate because they are a kind of hardware built for 

parallel comparison. A TCAM compares the input with all its entries in parallel in hardware  
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Figure 3-2. A TCAM with a SRAM match list. 

and reports the matching result in a short time, e.g., 4 ns. They have three desired properties 

as we listed in Section 2.3.2: high degree of parallelism, efficient support for IP addresses, 

and fast and deterministic lookup time. Unlike software-based solutions, which are optimized 

for most common packets, TCAMs compare filters in hardware and report matching results 

in a deterministic time for all possible inputs. Hence, a TCAM-based solution offers more 

predictable performance and not vulnerable to certain malicious attacks. 

These nice properties make TCAMs an excellent candidate for solving the classification 

problem at a multi-gigabit rate. As a result, over 6 million TCAM devices were deployed 

worldwide in 2004 [55, 58]. Given that TCAM is designed for single-match classification, in 

the next section, we will identity the technical challenges of using TCAMs for multi-match 

classification. Then in Section 3.4 and 3.5, we address these challenges and propose our 

algorithms for multi-match classification using TCAMs.  

3.3 Technical Challenges 

To use TCAMs for the multi-match classification problem, there are two challenges yet to be 

tackled: filter ordering and negation representation. In this section, we explain these in 

detail.  
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Challenge 1: Arrange filters in a TCAM compatible order 

Currently, the commercially available TCAMs report only the first matching result if there 

are multiple matches. Figure 3-2 shows an example. This type of TCAM cannot directly 

report multi-match result. If one can change the TCAM hardware and let it return a bit vector 

of all matching results, one bit matching per matching entry, this still does not solve the 

multi-match problem. We still need to process the bit vector to extract the matching result 

pattern-by-pattern. Thus, the complexity is still O(N), in the number of patterns N. In the 

remainder of the chapter, we assume the off-the-shelf first-match TCAMs without any 

modifications. 

Filters can have different relationships such as subset, intersection, and superset. These 

relationships can cause problems when reporting the matching results with first-match 

TCAMs. For example, suppose we have the following two filters: 

(a) “Tcp $SQL_SERVER 1433 →$EXTERNAL_NET any” 

(b) “Tcp Any Any →  Any 139” 

If we put filter (a) before (b) in the TACM, a packet matching both filters will report a 

match of (a) but never report (b), and vice versa. This is because filter (a) and (b) have an 

intersection relationship. That is, two filters have an interaction relationship if there exists a 

packet that matches both filters. In this case, we need an algorithm to add additional filters 

into the filter sets and order the filters in a specific way to avoid the above problem. Here, we 

define such an ordering a “TCAM compatible order,” which means: when a packet is 

compared with filters according to this storage order, we can retrieve all matching results 

solely based on the first matched filter. There should be no need to check the successive 

filters.  

Challenge 2: Representing Negation with TCAMs 
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1xxx xxxx xxxx xxxx 
x1xx xxxx xxxx xxxx 
xx1x xxxx xxxx xxxx 
xxx1 xxxx xxxx xxxx 
xxxx 1xxx xxxx xxxx 
xxxx x1xx xxxx xxxx 
xxxx xx1x xxxx xxxx 
xxxx xxx1 xxxx xxxx 
xxxx xxxx 0xxx xxxx 
xxxx xxxx x1xx xxxx 
xxxx xxxx xx0x xxxx 
xxxx xxxx xxx1 xxxx 
xxxx xxxx xxxx 1xxx 
xxxx xxxx xxxx x1xx 
xxxx xxxx xxxx xx1x 
xxxx xxxx xxxx xxx1 

Figure 3-3. Binary representation of !80 in a TCAM. 

The negation (!) operation is common in filter sets. For example, if we wish to find packets 

that are not destined for TCP port 80, we will use a filter “tcp any any →  any !80”. The 16-

bit binary form of 80 is 0000 0000 0101 0000. There is no direct way to map the 

negation into one TCAM entry. If we directly flip every bit, 1111 1111 1010 1111 

stands for 65375, which is only a subset of !80. To represent the whole range of !80, we need 

16 TCAM entries as shown in Figure 3-3. The basic approach flips one bit in one of the 16 

binary positions and puts ‘do not care’ to all the others. 

In addition to port negation, some filters require subnet addresses to be negated. For 

example, $EXTERNAL_NET frequently appears in filter sets, where $EXTERNAL_NET = 

!$HOME_NET. To represent this in the TCAM directly, we need to flip every bit in the 

prefix of $HOME_NET and put ‘do not care’ in the other positions. Because IP subnet 

addresses are 32 bits, each negated address costs up to 32 TCAM entries. Moreover, there 

could be several negations in one filter. For example, the filter “tcp $EXTERNAL_NET any→  

$EXTERNAL_NET !80” requires up to a total of 32*32*16 = 16384 TCAM entries for this 
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single filter!  This is obviously not an acceptable approach since TCAMs have a much 

smaller capacity than SRAMs (e.g., 1 MB with current technology). 

The next two sections describe our approaches for addressing the above technical 

challenges. In Section 3.4, we develop an algorithm to automatically generate an extended 

filter set that is in a TCAM compatible order. Some of the filters in the extended filter set 

contain negation, which is not directly supported by TCAMs. To overcome this problem, in 

Section 3.5, we present an algorithm to remove these negations and map the extended filter 

set into the TCAM. 

3.4 Geometric Intersection Method  

This section addresses the first technical challenge as presented in Section 3.3, -- to order 

filters in a TCAM compatible order. To obtain multi-match results in one lookup with first-

match TCAMs, we need to identify intersections between filters. Hence in this section, we 

first propose an overview of a Geometric Intersection Method for identifying filter 

intersections in Section 3.4.1. Next we study the relationships between filters in Section 3.4.2 

and propose an algorithm to automatically order rules into a TCAM compatible order in 

Section 3.4.3.   

3.4.1 Overview of the Geometric Intersection Method 

In our Geometric Intersection Method, we maintain all the intersection filters as separate 

entries in the TCAM. Studies in [59, 60] show that the number of intersections between real-

world filters is significantly smaller than the theoretical upper bound (O(NF), where N is the 

number of filters and F is the number of fields) because each field has a limited number of  
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Figure 3-4. Geometric Intersection Method. 

values (e.g., all known port numbers) instead of unconstrained random values. Hence, 

maintaining all the intersection filters is feasible.  

Filters are inserted into the TCAM. Indices of the filters used to generate the intersection 

are stored in a list. We call this list a “Match List” and store it in SRAM as shown in Figure 

3-4. Given a packet, we first perform a TCAM lookup and then use the matching index to 

retrieve all matching results with a secondary SRAM lookup. The extended filters we 

generate plus the original filters form an extended filter set. Throughout the remainder of this 

chapter, a “filter” refers to a member of the extended filter set, unless otherwise specified as a 

member of the original filter set. The items in the match list are the indices of filters in the 

original filter set.  

Rules in the TCAM must follow a TCAM compatible order. Next, we study the 

relationship between filters and present an algorithm to automatically generate an extended 

filter set in this order.  
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Figure 3-5  An example of intersections of three filters. 

3.4.2 Relationship between Filters 

Before we describe our algorithm for generating extended filter sets in a TCAM compatible 

order, let us first study the relationship between filters. There are four possible cases between 

any two different filters Fi and Fj,: exclusive, subset, superset, and intersection.  

Case 1: Exclusive (Fi∩ Fj =φ ), e.g., Filter 2 and Filter 4 in Figure 3-5. 

Case 2: Subset (Fi⊆Fj), e.g., Filter 3 is a subset of Filter 1 in Figure 3-5. 

Case 3: Superset (Fj⊂Fi), e.g., Filter 1 is a superset of Filter 3 in Figure 3-5. 

Case 4: Intersection (Fi∩ Fj ≠ φ ), e.g., Filter 1 and Filter 2 intersect with each other in 

Figure 3-5. 

As defined in Section 3.3, a TCAM compatible order requires filters to be ordered so that 

the first match should record all the matching results in the match list.  Mapping this 

requirement into these four cases, two different filters Fi and Fj with match list Mi and Mj, we 

get the following requirements regarding the order of Fi and Fj in the extended rule set:  

Requirement 1: Exclusive (Fi∩ Fj =φ ): then i and j can have any order. 

Requirement 2: Subset (Fi⊆Fj): then i<j and Mj⊆  Mi .  

Requirement 3: Superset (Fj⊂Fi): then j<i and Mi⊆  Mj .  
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Requirement 4: Intersection (Fi∩ Fj ≠ φ ): then there is a filter Fl = (Fi∩  Fj) (l<i, l<j), 

and (Mi ∪Mj )⊆  Ml.  

Requirement 1 is trivial: if Fi and Fj are disjoint, they can be in any order since every 

packet matching Fi never matches Fj. For Requirement 2 where Fi is a subset of Fj, every 

packet matching Fi will match Fj as well, so Fi should be put before Fj and match list Mi 

should include Mj. In this way, packets first matching Fi will not miss matching Fj. Similar 

operations are required for Case 3. Besides these three cases, partially overlapping filters lead 

to Case 4. In this case, we need a new filter Fl recording the intersection of these two filters 

(Fi∩  Fj) placed before both Fi and Fj with both match results included in its match list (Mi 

∪Mj) ⊆  Ml). Note that the intersection of Fi and Fj may be further divided into smaller 

regions by other filters (e.g., the intersection of Filter 1 and Filter 2 intersects with Filter 3 in 

Figure 3-5). In this case, all the smaller regions (1∩  2 and 1∩  2∩  3) have to be presented 

before both Fi and Fj (Filter 1 and Filter 2 in our example). This can in fact be deduced by 

Requirement 4. 

3.4.3 Generating a TCAM Compatible Order 

We have studied all the possible relationships between any two filters. Along with the study, 

we have identified the ordering requirements of two arbitrary filters as given in Requirements 

1 through 4. By applying the corresponding operations, we can meet the requirements and get 

a TCAM compatible order. Figure 3-6 is the pseudo-code for creating such an order.  

The algorithm takes the original filter set R = {R1, R2, …., Rn} as the input. Each filter Ri 

is associated with a match list, which is an index of itself ({i}). The algorithm outputs an 

extended filter set F in the TCAM compatible order. The algorithm inserts one filter at a time 

into the extended filter set F, which is initially empty (the empty set obviously follows the 

requirements of the TCAM compatible order). Next, we show that after each insertion, F still 
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_____________________________________________________________________ 
Extend_filter_set(R){ 

F = φ ; 
For all the filter Ri in R 

  F = Insert(Ri, F); 
return F; 

} 
Insert(x, F){ 
     for all the filter Fi in F { 
           Switch the relationship between Fi and x: 
             Case exclusive: 
  continue;  
      Case subset: 
  Mi = Mx∪  Mi; 
                continue; 
                 Case superset: 
  Mx = Mx∪  Mi; 
                 add x before Fi ; 
  return F; 
      Case intersection: 
  If (Fi∩ x ∉F and Mx⊄  Mi) 
               add t = Fi∩ x before Fi ; 
              Mt = Mx∪  Mi        
          }    
         add x at the end of F and  return F; 
} 

_______________________________________________________________________  

Figure 3-6. Code for generating a TCAM compatible order. 
meets the requirements. Insert(x, F) is the routine to insert filter x into F. It scans every filter 

Fi in F and checks the relationship between Fi and x. If they are exclusive, then we can 

bypass Fi. If Fi is a subset of x, we just add match list Mx to Mi and proceed to the next filter. 

If Fi is a superset of x, we add x before Fi according to the Requirement 3 and ignore all the 

filters after Fi (please refer to Appendix A for proof). Otherwise, if they intersect, then 

according to the Requirement 4, a new filter Fi∩ x is inserted before Fi if it is not already 

been added. The match list for the new filter is Mx∪Mi. We strictly follow the four 

requirements when adding every new filter, so the generated extended filter set F is in the 

correct TCAM compatible order. 
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Table 3-4. Example of original filter set with 3 filters. 

   Original filter sets 
1 Tcp $SQL_SERVER 1433 →  $EXTERNAL_NET any 
2 Tcp $EXTERNAL_NET 119 →  $HOME_NET any 
3 Tcp any any →  any 139 

Table 3-5. Extended filter set in a TCAM compatible order.  

Extended Filters Match List 
Tcp $SQL_SERVER 1443 →$EXTERNAL_NET 139 1,3 
Tcp $SQL_SERVER 1433  →$EXTERNAL_NET any 1 

Tcp $EXTERNAL_NET 119  →$HOME_NET 139 2,3 
Tcp $EXTERNAL_NET 119  →  $HOME_NET any 2 

Tcp any any →  any 139 3 
 

Table 3-4 is an example that illustrates the algorithm. It contains three filters. To generate 

extended filter set F, first we insert Filter 1. Filter 2 does not intersect with Filter 1 so it can 

be added directly. Now, we have Filter 1 followed by Filter 2. When inserting Filter 3, we 

find that it intersects with both Filter 1 and Filter 2, so we add two intersection filters with 

match list {1, 3} and {2, 3} and put Filter 3 at the bottom of the TCAM. The final extended 

filter set F is presented in Table 3-5. Notice that the first four filters contain negation 

($EXTERNAL_NET, which is the negation of HOME_NET), as we have explained in 

Section 3.3, filters containing negation consume a large amount of TCAM entries. In the next 

section, we present a scheme to remove the negations in the filter sets so as to map filters 

efficiently into the TCAM.  

3.5 Negation Removing 

The scheme we just presented can be used to generate a set of filters in a TCAM compatible 

order. The next job is to efficiently insert these filters into the TCAM. As explained in 

Section 2.3.2, each cell in the TCAM can take one of three states: 0, 1 or ‘do not care’. 

Hence, each filter needs to be mapped into a representation composed of these three states. 
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Figure 3-7. Source and destination IP addresses space. 

Usually, a filter contains IP addresses, port information, protocol type, etc. IP addresses 

in the CIDR form can be represented in the TCAM using the ‘do not care’ state. However, 

the port number may be selected from an arbitrary range. Liu [61] has proposed a scheme to 

efficiently solve port range problem. However, we do not use this scheme here because it 

requires two additional memory lookups. Furthermore, the SNORT filter set does not contain 

a huge number of ranges. Instead, we just directly map the range into the TCAM using 

multiple entries, e.g., port 2-5 is represented as 01* and 10*. A more complicated problem 

for the TCAM is that some IP and port information is in a negation form. As explained in 

Section 3.3, each negation consumes many TCAM entries, so in this section, our goal is to 

remove negation from the filter set to save TCAM space.  

Before presenting our scheme, let us first look at the combinations of source and 

destination IP address spaces as shown in Figure 3-7. Use the filter set in Table 3-4 as an 

example,  Filter 3 applies to all 4 regions since it is “any” source to “any” destination; Filter 1 

applies to Region D because we assume $SQL_SERVER is in side $HOME_NET; and Filter 

2 applies to Region A.  
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Figure 3-8. Regions that do not contain negation. 

In this two dimensional space, there are regions that do not contain negations as shown in 

Figure 3-8. They are Region C ($HOME_NET to $HOME_NET), the combination of Region 

C and Region D ($HOME_NET to any), the combination of Region A and Region C (any to 

$HOME_NET), and the whole space (any to any). On the other hand, there are regions that 

contain negation ($EXTERNAL_NET), including Region A ($EXTERNAL_NET to 

$HOME_NET), D ($HOME_NET to $EXTERNAL_NET), and B ($EXTERNAL_NET to 

$EXTERNAL_NET) as shown in Figure 3-9. 

Consider a region containing negation, Region A, as an example: the filters in this region 

are in the form of “* $EXTERNAL_NET * →$HOME_NET+ *”. Note that * means it could 

match any thing (e.g. “tcp” or “any” or a specific value). $HOME_NET+ stands for 

$HOME_NET and any subset of it such as $SQL_SERVER. If we can extend filters in 

Region A to Region A and C as shown in Figure 3-10, we can replace $EXTERNAL_NET  
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Figure 3-9. Regions that contain negation. 
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1. Filter 2 1. A separator filter captures all packets in Region C  
 2. Filter 2 is extended to region A and C  

Figure 3-10. An illustration of our negation removing scheme. 

with keyword “any” and now filters are in the format of “* any * →$HOME_NET+ *”. 

However, after extending the region, we change the semantics of the filter and this may affect 

packets in Region C. In other words, packet “* $HOME_NET * →  $HOME_NET+ *” will 

report a match of this filter as well.  

This problem, however, is solvable because TCAMs only report the first matching result. 

With this property, we can first extract all the filters applying to Region C and put those at 

the top of the TCAM. Next, we add a separator filter between Region C and Region A: “any 
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$HOME_NET any →  $HOME_NET any” with an empty action list. In this way, all the 

packets in Region C will be matched first and thus ignore all the filters afterwards. With this 

separator filter, we can now extend all the filters in Region A to Region A and C. Similarly, 

filters in Region D can be extended to Region C and D, filters in Region B can be extended 

to Region A, B, C, D. Therefore, we will put all the filters in the following order: 

Filters in Region C:  “* $HOME_NET+ * →$HOME_NET+ *” 

Separator 1:  “any $HOME_NET any →$HOME_NET any” 

Filters in Region D, specified in the form of Region C and D:  

“* $HOME_NET+ * →any *” 

Filters in Region A, specified in the form of Region A and C:  

“* any  * →$HOME_NET+ *” 

Separator 2:  “any $HOME_NET any →  any any” 

Separator 3:  “any any any →$HOME_NET any” 

Filters applying to Region B, specified in the form of Region A, B, C and D:  

“* any * →any *” 

Putting extended filter sets in this order can be achieved simply by first adding all three 

separator filters to the beginning of the original filter set, then following the algorithm in 

Section 3.3. If a filter applies to Region A, it will automatically intersect with the separator 1, 

and generate a new filter in Region C. If a filter applies in Region B, it will intersect with all 

three separators and create three intersection filters. After that, we can replace all the 

$EXTERNAL_NET references with the keyword “any”. Table 3-6 shows the result of 

mapping the filter set of Table 3-4 into the TCAM. The first filter in Region C is extracted 

from Filter 3 that applies to all four regions. The second filter is a separator filter. With these 

two filters, we can replace the $EXTERNAL_NET in filters 3-6 with the keyword “any”. At 

the end, there is filter 7 that applies to all the regions. Separator filters 2 and 3 are omitted 

because no filter is in the form of $EXTERNAL_NET to $EXTERNAL_NET in the original 

filter set. In this example, by adding only two filters, we can completely remove the  
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Table 3-6. Extended filter set in a TCAM with no negation. 

TCAM Index TCAM entries Match list 
1 Tcp $HOME_NET any →$HOME_NET 139 3 
2 any $HOME_NET any →$HOME_NET any  
3 Tcp $SQL_SERVER 1433 →  any 139 3, 1 
4 Tcp $SQL_SERVER 1433 →  any any 1 
5 Tcp any 119 →  $HOME_NET 139 2,3 
6 Tcp any 119 →$HOME_NET any 2 
7 Tcp any any →any 139 3 

 

$EXTERNAL_NET. Compared this to the approach in Table 3-5, which needs up to 4*32 +1 

= 129 TCAM entries, this results in drastic 94.5% reduction in space usage. 

The above example is a special case because there is only one type of negation 

($EXTERNAL_NET) in one field. In the more general case, there can be more than one 

negation in each field. For example, there could be both !80 and !90 or !subnet1 and !subnet2 

in the same field. The proposed scheme can be easily extended to handle this. If there are k 

unique negations in one field and their non-negation forms do not intersect (e.g., an exact 

match of 80 and an exact match of 90), then we need k separators of the non-negation form 

(80, 90), which may be in any order. If they intersect, we need up to 2k -1 separation filters 

for this field. For instance, suppose the negations are !subnet1 and !subnet2. There should be 

three separation filters applying to {subnet1 ∩ subnet2}, subnet2, and subnet1. k is usually a 

very small number because it is limited by the number of peered subnets. In general, if each 

field i needs ki separators, then at most  1)1)(k( i −+∏
 separator filters should be added. In 

our previous example of removing $EXTERNAL_NET from source and destination IP 

addresses, k1 = k2 =1, so we need a total of 2*2-1 = 3 separator filters. 

We presented our Geometric Intersection Method for generating an extended filter set in 

a TCAM compatible order in Section 3.2. In this section, we proposed an algorithm to 

efficiently remove the negations in the extended filter set so as to efficiently map the filters 

into the TCAM, saving the TCAM space. With these schemes, we can obtain multi-match 
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classification results with just two memory lookups as showed in Figure 3-4: one TCAM 

lookup to get an index into SRAM, and then an SRAM lookup using the index to retrieve all 

the matching results. Next, we test our algorithms using different multi-match filter sets.  

3.6 Simulation Results 

In this section, we test the effectiveness of our TCAM-based approach. We first show that we 

can use our Geometric Intersection Method to generate multi-match classification results in 

Section 3.6.1. Then we show the negation removing scheme can efficiently map filters into 

the TCAM in Section 3.6.2.  To test the effectiveness of our algorithm, we use the SNORT 

[10] filter set, which was introduced in Section 3.2.1. We tested all the publicly available 

versions after 2.0 as shown in Table 3-1.  

3.6.1 Effect of Geometric Intersection Method   

Our goal is to put multi-match classification filters (SNORT rule headers) into a TCAM as 

classification filters, and store the corresponding matching filter indices in the match list. 

Hence, given an incoming packet, with one TCAM lookup and another SRAM lookup, we 

can get the multi-match packet classification result. 

We use the Geometric Intersection Method to produce extended filter sets that are in 

TCAM compatible orders. The second column in Table 3-7 records the sizes of the extended 

filter sets. The number of intersections SNORT filter sets generated is significantly lower 

than the theoretical upper bound. It is roughly 15 times the original filter set, which is well 

below the theoretical upper bound. This agrees with the findings in [30, 36, 59]. Hence the 

Geometric Intersection Method is viable for the SNORT filter set.  
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Table 3-7. Statistics of extended filters set. 

Version # of filters 
in extended set 

Single 
negation 

Double  
negations

Triple 
negations 

2.0.0 3,693 62.334% 0.975% 0 
2.0.1 4,009 62.484% 1.422% 0.025% 
2.1.0 4,015 62.540% 1.420% 0.025% 
2.1.1 4,330 62.332% 1.363% 0.023% 

Table 3-8. Performance of negation removing scheme. 

With Negation Negation Removed  
SNORT 
Version 

Extended 
filter set 
size 

TCAM entries 
needed 

Extended 
filter set size

TCAM entries 
needed 

TCAM space 
saved 

2.0.0 3,693 120,409 4,101 7,853 93.4% 
2.0.1 4,009 145,208 4,411 8,124 94.4% 
2.1.0 4,015 145,352 4,420 8,133 94.4% 
2.1.1 4,330 151,923 4,797 8,649 94.3% 

 

3.6.2 Negation Removing Scheme   

The number of negations in the extended filter set is significant. As shown in Table 3-7, on 

average 62.4% of the filters have one negation, 1.295% of the filters have two negations and 

there are a very small number of filters with three negations. In our simulation, we assume 

the home network is a Class C address with a 24 bit prefix, so each $EXTERNAL_NET 

needs 24 TCAM entries. Negation of a port, e.g., !80, !21:23 consumes 16 TCAM entries. 

Under this setting, a single negation takes up to 24 TCAM entries; a double negation 

consumes up to 24*24 = 576 TCAM entries; and a triple negation requires up to 24*24*16 = 

9216 TCAM entries. Hence, if directly putting all the filters with negation into the TCAM, it 

takes up to 151,923 TCAM entries as shown in the third column of Table 3-8. Our negation 

removing scheme presented in Section 3.4 significantly saves TCAM space. For the SNORT 

filter header set, we added 2*3*2*2-1 = 23 separation filters in front of the original filter set 

because there are four types of negations: $EXTERNAL_NET at source IP, 

$EXTERNAL_NET at destination IP, !21:23 and !80 at source port, and !80 at destination  
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Performance of Negation Removing Scheme
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Figure 3-11. Negation removing scheme. 

port. This approach only adds about 10% extra filters in the extended filter set (4th column of 

Table 3-8). However, with these additional filters, the number of TCAM entries is reduced by 

over 93%. 

Note that this total number is larger than the extended filter set size. This is because some 

filters contain port ranges that consume extra TCAM entries. The range mapping approach in 

[61] is not used because this approach requires two additional memory lookups for key 

translations, which reduces classification speed. If a lower speed is acceptable, then we can 

also incorporate the range mapping technique. In this case, the total TCAM entries needed is 

just the size of extended filter set after removing negations. 

Each filter is 104 bits (8 bits protocol id, 2 ports with 16 bits each, 2 IP addresses with 32 

bits each), which can be rounded up to use a TCAM with 128 bits per entry. The total TCAM 

space needed for the SNORT filter header set in such a TCAM is only 128*8649 = 135 KB. 

To study the effect of negation, we randomly vary the negation percentages in the original 

filter set. In the SNORT original filter header sets, 89.7% of the filters contain single 

negation and 1.1% contain double negation. So, we first test the single negation case. Figure 

3-11 shows the TCAM space needed both with and without our scheme for negation removal. 

When the percentage of negation is very low, the two schemes perform similarly. In fact, 
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when the negation percentage is very small (<2%), putting negation directly using the 

straight forward solution shown in Figure 3-3  is better than the proposed scheme since we 

introduce extra separation filters that may intersect with other filters. However, as the 

percentage of negation is higher, the TCAM space needed for the “with negation” case grows 

very fast. In contrast, the curve of the proposed scheme remains flat and thus can save a 

significant amount of TCAM space. For example, when 98% of the filters involve negation, 

the proposed scheme saves 95.2% of the TCAM space as compared to the “with negation” 

case. This is only for the single negation case. For double negations, or triple negations, the 

savings would be even greater since each double/triple negation filter requires many more 

TCAM entries. 

3.7 Related Work 

Most existing software-based packet classification algorithms are designed specifically for 

single-match classification. The most relevant work on multi-match classification is on filter 

conflict detection in [62]. Here, conflicts denote a packet matching multiple filters. The 

single-match classification only allows one final matching result and some of the matching 

results conflicts with each other, e.g., instructions to “drop the packet” or “accept the packet”.  

To resolve these conflicts, usually filters are sorted in a particular order. However, [62] 

shows that there are cases where this commonly used conflict resolution scheme does not 

work. For these cases, they proposed to solve the problem by adding new filters in a manner 

similar to our approach.  However, they emphasize on finding these conflicts, while we aim 

to automatically generate intersection rules and efficiently map them into the TCAM, saving 

TCAM space.  

There have been extensive studies of the single-match classification problem. The single-

match problem on multiple fields is complex [59]. For N arbitrary non-overlapping regions in 
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F dimensions, it is possible to achieve an optimized query time of O(log(N)),  with a 

complexity of O(NF) storage in the theoretical worst case [29, 35]. However, real-world filter 

sets are typically simpler than the theoretical worst case, and heuristic approaches [32, 35, 

63] provide faster results, e.g., 20-30 memory accesses per packet in the “worst case”. These 

software approaches were developed based on typical characteristics of single match filter 

sets. We showed in Section 3.2 that two representative algorithms (EGT-PC and HiCut) 

either compare the input packet against many filters one by one, or require a large amount of 

memory when applied to the SNORT filter sets.  

Most recently, TCAMs are used in high end routers for single-match packet classification 

for routing and Quality of Service (QoS) services [61, 64, 65]. Since TCAMs are smaller and 

more expensive than SRAMs, different approaches are proposed to save TCAM space or 

reduce TCAM power consumption. For example, Liu [12] proposed an algorithm for 

mapping range values into TCAMs. CoolCAMs [14] partitioned a TCAM so that for a given 

packet, it searches only several partitions to achieve lower power consumption. Spitznagel, et 

al. [66], extended this idea and organized the TCAM as a two level hierarchy in which an 

index block is used to enable/disable the querying of the main blocks. In addition, they also 

incorporated circuits for range comparisons within the TCAM memory array. These works 

focused on single-match classification whereas this chapter aims to find a TCAM-based 

multi-match solution. 

Shortly after the publication of our work, Lakshminarayanan, et al., proposed another 

TCAM-based approach to the multi-match packet classification problem [55]. We will 

explain their approach in detail later in Section 4.2.3 and compare them to our scheme in 

Section 4.4 
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3.8 Conclusions 

In this chapter, we presented a TCAM-based method to solve the multi-match classification 

problem. Through inserting interactions filters into the TCAM, our scheme reports all the 

matching results with a single TCAM lookup and a SRAM lookup. In addition, we propose a 

scheme to remove negation in the filter sets, thus saving 93% to 95% of the TCAM space 

over a straightforward implementation. From our simulation results, the SNORT filter header 

set can easily fit into a small TCAM of size 135 KB, and is able to retrieve all matching 

results within just one TCAM access and one SRAM access.  

Our Geometric Intersection multi-match method inserts interaction filters into TCAMs to 

report multi-match classification results. Theoretically, the number of intersection filters can 

be O(NF), where N is the total number of filters, and F is the number of fields. Real-world 

filter sets are typically simpler than the theoretical worst case, but we still observe that the 

SNORT rule header set creates more than ten times more intersections than the original filter 

set size. When the filter set generates many intersections, the method based on Geometric 

Intersection is expensive both in memory size and thus power consumption. We address 

these issues in the next chapter.      
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4 Energy Efficient Multi-match Packet Classification 

In the previous chapter, we adopt TCAMs for solving the multi-match classification problem 

due to their fast parallel matching capability. Our Geometric Intersection Method reports the 

multi-match classification results with just one TCAM lookup and one SRAM lookup. It 

achieves this high classification speed by adding intersection filters into the TCAM. 

Although processing speed is high, if there are a large number of intersections in the input 

filters, there can be a significant increase in memory and power consumption. Our 

experimental results on the SNORT filter sets show that this scheme increases the number of 

filters in the TCAM by a factor of 10, hence consuming a large amount of TCAM memory. 

In addition, these intersection filters are all compared in parallel in the TCAM, resulting in a 

high power usage because the TCAM energy consumption is linear to the number of entries 

searched in parallel. However, for applications that set highest priority on classification speed 

and have sufficient memory, our scheme processes packets at a very high rate.  

In this chapter, we develop a general and balanced scheme that takes into consideration 

classification speed, memory consumption and power consumption. We present a new Set 

Splitting Algorithm (SSA), which splits filters into multiple groups while performing 

separate TCAM lookups within these groups. It guarantees the removal of at least half of the 

intersections when a filter set is split in two, thus reducing at least 50% of the TCAM 

memory and power consumption caused by intersections. SSA also accesses filters in the 

TCAM only once per packet, further reducing power consumption. Our simulation results 

based on the SNORT filter sets show that, compared with the Geometric Intersection Method 

proposed in the previous chapter, SSA uses 90% less TCAM memory and power at the cost 

of one more TCAM lookup per packet.  
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4.1 Introduction 

Multi-match classification is among the initial steps in choosing a set of functions to be 

performed when processing a packet. For example, only after obtaining the multi-match 

classification results may the router increment follow-up counters, such as those for protocol 

type and source IP addresses. These actions are performed on every packet, so we do not 

want the multi-match classification process to be the bottleneck in the system. We showed in 

Section 3.1 that a purely software-based approach cannot operate at speeds that are consistent 

with multi-gigabit line rates. To maintain high packet processing rates, we adopt TCAMs for 

multi-match classification, as they perform fast parallel searches across all filters in 

hardware. We proposed a Geometric Intersection-based approach in the previous chapter. 

Shortly the publish of our work, Lakshminarayanan, et al., proposed another scheme called 

MUD for  multi-match classification also using TCAMs [55] 

However, TCAMs have limitations as we stated in Section 2.3.2. They cost about 30 

times more per bit of storage than DDR SRAMs and consume 150 times more power per bit 

than SRAMs. As a result, in some high end routers, TCAMs consume around 30 to 40 

percent of the total line card power. As line cards are stacked together, TCAMs impose a 

high cost on the cooling system. The energy consumption level of a TCAM is related to the 

TCAM size and the access frequency [65].  Figure 4-1 illustrates the relationship between 

TCAM memory consumption, the number of TCAM accesses, and the TCAM power 

consumption. The energy used by a TCAM grows linearly with the number of entries 

searched in parallel and also scales with the frequency of TCAM accesses. For example, if 

we double the TCAM memory, the energy consumption also doubles. Similarly, if we access 

the TCAM twice as frequently, it uses two times as much power. If memory and access 

frequency are doubled simultaneously, the power consumption grows to four times the 
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original. To be cost and energy efficient, TCAM-based multi-match solutions must use an 

economical TCAM memory size and perform a limited number of TCAM lookups for each 

packet. 

None of the previously published multi-match classification schemes can satisfy both 

requirements. For example, the MUD scheme proposed by Lakshminarayanan, et al., encodes 

the extra bits in each TCAM entry to support range and multi-match lookup [55]. The amount 

of TCAM memory needed is linear with the size of the filter sets. However, MUD needs at 

least k TCAM lookups to get k matching results, and all the entries in the TCAM are accessed 

during each lookup. We show in Section 4.4.2, k can be 12 - 20 for the SNORT filter sets, 

resulting in a proportional 12-20 times increase in power consumption or processing delay 

compared to the Geometric Intersection-based method. The effect is much longer processing 

time and higher power consumption for packets that match many filters as shown on the 

upper right side of Figure 4-2. Our Geometric Intersection Method proposed in Chapter 3 

reports classification results in one TCAM lookup and one SRAM lookup [67 2004]. 

However, achieving this speed requires that all filter intersections (regions of overlap 

between filters) be inserted as new filters in the TCAM. Theoretically, N filters with F fields 

can create O(NF) intersections, thereby adding O(NF) entries to the TCAM. This approach is 

not cost or energy efficient when filters have many intersections as shown in the upper left 

side of Figure 4-2. 

The Set Splitting Algorithm (SSA) is both memory and power efficient. It works by 

splitting the filters into several sets and performing separate TCAM lookups for each. 

Through this filter splitting technique, we can decrease the number of intersections required 

to be stored in the TCAM, thus decreasing the TCAM memory consumption and also its 

power consumption as shown in Figure 4-2. In addition, SSA performs a deterministic 

number (2-4 for the SNORT rule set) of TCAM lookup per packet, yielding high 
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Figure 4-1. Relationships between TCAM memory consumption, number of TCAM 
accesses, and TCAM power consumption. 

 

 

Figure 4-2. Power consumption of different TCAM-based approaches. 

Power consumption 

TCAM memory usage 
# of TCAM accesses 

per packet
Inversely determine 
classification speed
 

Determine cost 

Power consumption 

 low 
 

high 

Power  consumption 

TCAM memory 
usage 

# of TCAM accesses 
per packet

Geometric Intersection 
Method  

 MUD 

  

SSA

Rule set 
 size 

Intersections 

Geometric Intersection 
Method requires 

1 lookup 

SSA includes 
very few 

intersections 

SSA requires  
2-4 TCAM 
lookups 

MUD requires  
Up to 20 TCAM lookups 

for SNORT rule sets 
Geometric Intersection 
Method includes O(NR) 

intersections 



 

 - 71 - 

classification rates. The rest of the chapter is organized as follows. We start by reviewing 

existing TCAM-based approaches for the multi-match classification problem in Section 4.2 

and show that none of them is both memory and power efficient. Then we present our SSA 

scheme in Section 4.3. We demonstrate the effectiveness of our approach by comparing it 

with two previously published TCAM-based schemes (MUD and the Geometric Intersection 

Method) in Section 4.4. Simulations on the SNORT filter sets show that SSA uses 

approximately the same amount of TCAM memory as MUD, but yields a 75% to 95% 

reduction in power consumption and up to 4 times speedup. Compared with the Geometric 

Intersection Method, SSA uses 90% less TCAM memory and power at the cost of one 

additional TCAM lookup per packet.  

4.2 Related Work 

Several approaches have been proposed to save TCAM space and reduce TCAM power 

consumption. For example, methods like CoolCAMs [47] and load balancing TCAMs [68, 

69] modify the TCAM and partition it so that, for a given packet, only a limited number of 

partitions are searched to decrease power consumption. These approaches are designed for 

one dimensional packet classification, such as destination IP lookup (also called longest-

prefix match lookup), which is a common network router operation. Spitznagel, et al., [66] 

proposed a extension for the multi-dimensional case. They modify the commercially 

available TCAM so as to reorganize it into a two level hierarchy where an index block is 

used to enable/disable the access of the main blocks in TCAM (please refer to Section 2.3.2 

for the description of block). They also incorporated circuits for range comparisons. In 

addition, these approaches are all designed for single match packet classifications and thus 

report only the highest priority match. In the rest of this section, we review current TCAM-
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based approaches to the multi-match classification problem and point out when they fall short 

in providing a complete solution. 

4.2.1 Bit Vector Approach  

Currently, commercial TCAMs only report one matching result (usually the first match). This 

is because TCAMs have priority encoding circuits that take the matching vector and output 

the first matching index, as previously discussed in Figure 2-5 in Section 2.3.2. If we can 

modify the TCAM and remove that priority encoder, it can output a bit vector of matching 

results, one bit for each entry. This works very efficiently when each matching result is 

connected directly to a hardware processing unit [70]. The related follow-up processing can 

be triggered immediately, and these follow-up processing units can run in parallel.  

However, if we don’t have the whole system built with the aforementioned hardware, the 

bit vector approach involves significant processing overhead. In packet classification 

architectures, a processor (CPU or Network Processing Unit (NPU)) is connected to a 

TCAM. The processor sends packet information to the TCAM, and the TCAM sends back 

the matching results. Using the matching results, the processor performs the relevant 

operations on the packet (e.g., send to a port, update a counter). If the TCAM returns a 

matching vector, the processor needs to step through the vector to extract the matching 

results. This is not efficient when the number of entries in the TCAM N is large and the 

matching vector is sparse, which is true for SNORT filter sets as we will show later in 

Section 4.4. The inefficiency comes from two reasons. First, the rate to transfer the N bit 

vector is limited by memory bandwidth. Second, processing complexity is O(N) to extract the 

matching results.  

It is hard to change the priority encoder to output the matching results only, because the 

number of matching entries and how they are spread over the bit vector vary for different 
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applications. It is also difficult for TCAM vendors to come up with a general design that 

works for all applications.  

4.2.2 Current Industrial Approaches  

Some commercial TCAMs support multiple matching. There is a valid bit for each TCAM 

entry that indicates whether or not to compare it with the input as we shown in Section 2.3.2. 

These entries are initially set to valid. Given an input, the first match will be reported in the 

first cycle. The valid bit for the first matching entry is then unset to be invalid, and the 

TCAM will subsequently ignore that entry. The TCAM then performs another lookup to 

report the second match. This process continues until there are no more matching results. 

Finally, all the valid bits are set to be valid for the next packet. 

As analyzed in [55], identifying k matching results requires 7k cycles, as it takes a total of 

6 cycles to invalidate and later revalidate an entry. Furthermore, all entries are searched k 

times. Hence, the energy consumption level is high when packets match many entries. In 

addition, the match latency is high because performing a serial match loses the benefits of 

parallelism. 

4.2.3 MUD Scheme 

Lakshminaryanan, et al., proposed a novel algorithm to support both range matching and 

multiple matching in TCAMs [55]. Their approach is based on the observation that some 

commercially available TCAMs have 144 bits per entry, while the 5-tuple typically used for 

packet classification has only 104 bits. They proposed a scheme called Multi-match Using 

Discriminators (MUD) as illustrated in Figure 4-3. The basic idea is to encode the index of 

the entry and include the encoded value in each TCAM entry. For example, for the first entry 

in a TCAM, attach 0001 (the value one in binary) after the filter in that entry, and for the  
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Figure 4-3. An illustration of the MUD scheme. 

 

Initially the discriminators are set to don’t cares                    Set the discriminators as “>j” 
First TCAM lookup matches the jth entry     Second TCAM lookup to get another match 

Figure 4-4. An example of matching process with MUD scheme. 

second entry, attach 0010 (the value two in binary). When searching for a match, MUD 

appends the input packet with a set of discriminators. The packet information is compared 

with the filters in parallel, while the discriminators are compared with the encoding of the 

indexes in parallel. Figure 4-4 shows an example of the MUD scheme. Initially, 

discriminators are all set to “don’t care” states, meaning the input packet can match results at 

any index. After finding a matching result at index j, the TCAM is searched again with a 

discriminator field value that is set ‘greater than j’ to get the second matching result. ‘Greater 

than j’ is a range, it cannot be directly supported by TCAMs because there are only three 

states (0, 1, or don’t care) in the TCAM. Hence, the scheme needs to expand this range to 
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prefixes. Consequently, MUD may need multiple TCAM lookups to obtain the second 

matching result. The authors showed that MUD needs 1+d+(k-2)*(d-1) TCAM lookups to 

get k matching results, where d is the logarithm of the number of entries in the TCAM. The 

worst case lookups can be decreased to 1+d*(k-1)/r with Database-Independent Range Pre-

Encoding DIRPE, where r (smaller than d) is a parameter controlled by the number of 

available bits in each TCAM entry [55].  

MUD does not require any modification to existing TCAMs. Compared to commercial 

approaches, MUD does not need to store the per-search state in the TCAM (i.e., invalidating 

the previously matched TCAM entries) to get the multi-match results. Therefore, it performs 

well in multi-threaded environments. However, it shares the same problem with commercial 

approaches: the number of TCAM accesses needed per packet is linear in the number of 

matching results. We will show later in Section 4.4 that a packet can match up to 12 unique 

filters for the SNORT filter sets and thus requires a maximum of 20 TCAM lookups. This is 

the worst case performance. However, even in the common case a packet will frequently 

trigger many TCAM lookups. For example, a regular HTTP packet matches at least 4 unique 

filters. A Napster file-sharing packet can match 8 unique filters and thus requires a maximum 

of 15 TCAM lookups. In addition, all TCAM entries are accessed during each TCAM 

lookup, so the power consumption of MUD can be high. 

4.2.4 Geometric Intersection Methods 

The Geometric Intersection Method proposed in the previous chapter inserts filter 

intersections in the TCAM to handle a packet that matches multiple filters. These intersection 

filters and the original filters are inserted into the TCAM and compared in parallel with the 

input packet. Afterwards, the TCAM matching result can be used as an index into SRAM to 

get all the matching results as shown in Figure 3-2. Theoretically, the number of intersection 
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filters can grow exponentially in the number of fields in the filter. Real-world filter sets are 

typically simpler than the theoretical worst case, but we still observe that the SNORT rule 

header set creates intersections that are ten times the original filter set size [67 2004]. This 

approach is expensive both in memory and power consumption when the filter set has many 

intersections, as is the case for SNORT. 

As we have shown in the above analysis, none of the previously proposed approaches is 

both memory and power efficient. Next in Section 4.3, we present a scheme that uses off-of-

shelf TCAMs and meets both requirements with a Set Splitting Algorithm (SSA), which 

greatly reduces the need of storing intersection filters in the TCAMs and accessing each filter 

only once.  

4.3 A Memory and Power Efficient Approach  

In this section, we present our TCAM-based algorithm called Set Splitting Algorithm (SSA), 

which uses a small memory size and accesses each filter in the TCAM only once per packet. 

We start this section with examples to illustrate the intuition of SSA in Section 4.3.1 and we 

will present the detail of the algorithm in the subsequent sections. 

4.3.1  Illustration of Our Approach with Examples 

Our SSA algorithm is based on the Geometric Intersection Method, which requires only one 

TCAM lookup per packet. As an example, consider an input of two simple filters with only 

two fields (source and destination ports). The geometric presentation of the filters in a two 

dimensional space is shown in Figure 4-5 with the x axis as the source port and the y axis as 

the destination port.  Note that, if a filter contains F fields, its geometric presentation will be 

in an F dimensional space. In this example, filter one (source port any and destination port 

8080) and filter two (source port 80 and destination port any) generates an intersection filter  
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Figure 4-5. An example of two intersected filters. 

(source port 80 and destination port 8080). The Geometric Intersection approach, shown in 

the right side of Figure 4-5, needs to include this intersection filter at the top of the TCAM to 

capture packets matching both filters. With this intersection filter, the TCAM can report the 

multi-match classification result with just one TCAM lookup. This is a very simple example 

as there are two filters and they generate only one intersection. For some filter sets, this 

approach can create large numbers of intersections. A more complicated example is shown in 

Figure 4-6, where all the filters intersect with each other in a two dimensional space. For this 

case, we need to insert O(N2) intersection filters at the top of the TCAM for reporting the 

multiple matching results with just one lookup. For example, an input packet matching both 

F1 and FN (shown using a dot in Figure 4-6) will match the first intersection filter in the 

TCAM and hence be indexed to SRAM to get the matching result of F1 and FN.   

Too many intersection filters result in high storage requirements and power consumption. 

This can be solved if we are willing to sacrifice time to reduce space and power. Take the 

previous example in Figure 4-6. If we split the filters into two groups, we can check those 

two groups separately and report the matching results from both groups respectively (Figure 

4-7). Splitting filters into multiple sets yields a very nice property: intersections generated by 
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filters of different groups are no longer needed to be stored in TCAM. This is because the 

intersection filters are used to report multiple matching results with one TCAM lookup, e.g.,  

 

 
Using Geometric Intersection Method, include all intersections in the TCAM 

Storage cost: N filters +O(N2) intersection 
Classification speed: 1 TCAM lookup time 

Figure 4-6. An example of N filters.  

 

F1 and FN.  When filters are spread over different sets and we conduct separate TCAM 

lookups into these sets, the matching of these filters would be reported separately as shown 

Figure 4-7. As a result, we don’t need to keep such intersection filters. However, we still 

need to keep intersections that are generated by filters in the same set because we only 

conduct one TCAM lookup into each set. Hence, intersection filters are still necessary to 

report matching of multiple filters case in the same set. For instance, in Figure 4-7, the 

intersection of filter F2 and F3 still needs to be included in the TCAM to report the matching 

of both F2 and F3 with one TCAM lookup. As shown in Figure 4-7, by dividing the filter set 

into two groups, most intersections are caused by filters from different groups, so they can be 

removed. We can reduce the number of TCAM entries from O(N2) to N+1, but it costs two 

TCAM lookups.  
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Classification speed: 2 TCAM lookups time 

Figure 4-7. Separate filters into two sets. 

The main idea behind splitting filters into multiple sets is to reduce the number of 

intersections filters needed in the TCAM. As we have shown above, intersections from 

different sets are no longer needed in TCAM. Hence, if filter sets are split in a way so that 

most intersections occur between filters in different sets, we can save TCAM space and 

consequently also reduce power consumption. In addition, every set is accessed only once per 

packet and therefore the algorithm is power efficient. Note that although filters are separated 

into two sets, we do not necessarily require two TCAMs. TCAM vendors now provide a 

blocking feature (introduced in Section 2.3.2) that divides a TCAM into several blocks and 

allows users to selectively search one or several blocks in parallel. With this feature, different 

sets of filters can be put into different blocks of the same TCAM and be accessed separately. 

Since the sets generated by SSA are logically independent, these lookups can even be 

pipelined to achieve a higher rate. 
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Figure 4-8. An overview of SSA. 

Next, we present our Set Splitting Algorithm (SSA) that can automatically separate filters 

into multiple sets. Figure 4-8 illustrates the flow chart of SSA. Given a set of filters, it first 

mathematically formulates the problem into a set splitting problem. Since the set splitting 

problem is NP hard, SSA converts it into a maximum satisfiablity problem which has an 

efficient approximation algorithm – Johnson’s algorithm [71]. SSA uses Johnson’s algorithm 

as a subroutine to solve the maximum satisfiablity problem and then converts the solution 

back to original problem to get the final splitting results. SSA guarantees the removal of at 

least half of the intersections each time the filter set is split in two.  In the remainder of this 

section, we will follow this flow chart and first present the mathematical formulation of the 

problem in Section 4.3.2. Then we quickly review Johnson’s algorithm in Section 4.3.3 and 

finally present our SSA approach in detail in Section 4.3.4. 
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Figure 4-9. Example of filter intersections. 

4.3.2 Mathematical Formulation  

The previous section proposed an approach to split filters into multiple groups to decrease the 

number of intersection filters. In this section, we formulate the filter splitting problem as 

follows. 

Suppose there are N filters F1, F2, …., FN, which create M intersections I1, I2, …., IM. For 

example, I1 = intersection of (F1, F5, F6). We only consider the overlapping intersections that 

are different from the original filters because these intersections consume extra TCAM 

entries. For the intersections that are the same as one of the original filters, we call them 

contained intersections. For example, in Figure 4-9, although F1 and F2 overlap, the 

intersection I is the same as F2  (I = F1 ∩ F2 =F2). This intersection is a contained intersection 

and doesn’t need to be present in the TCAM because when a packet matches F2, we can 

simply report a matching of both F2 and F1. When filters create overlapping intersections, 

e.g., the F2 and F3 in the right hand size of Figure 4-9 intersect to create an overlapping 

intersection I (I = F2 ∩ F3), we do need to add I into the TCAM because the intersection I  is 

different from F2 and F3 (I ≠ either F2 or F3), thus requiring an extra TCAM entry. F1 doesn’t 

contribute to the generation of this intersection, so I is the intersection of F2 and F3 only. In 

other words, I can be eliminated only when F2 and F3 are in different sets. Throughout the 

reminder of this chapter, we use the term intersection to denote overlapping intersections.  

We want to separate the filters into several sets so that filters generating intersections are 

in different sets. We define the residual intersection set I’ as the overlapping intersections 
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generated by filters in the same set. Our objective is to separate filters into a minimum 

number of sets that satisfy N + |I’| < TCAM size, which is an NP hard problem.  

Suppose we restrict the problem by dividing the filters into two rather than multiple sets. 

Our new goal then would be to find a way to separate the filters into two sets so that number 

of residual intersections is minimal. Unfortunately, this problem is still NP hard and is known 

as the maximum set splitting or maximum hypergraph cut problem [72].  

The best known approximation algorithm for the maximum set splitting problem yields a 

performance ratio of at least 0.72 to the optimal solution [73]. Here the performance ratio is 

defined as the number of clauses satisfied by the approximation algorithm to the optimal 

solution. This approximation algorithm requires quadratic programming and scales poorly. 

For example, [74] reports that it takes 27.35 seconds to compute the results for a set 

containing 50 instances (in our problem, a filter is an instance). When the set size increases to 

100, it takes 355 seconds to compute the results. When the set reaches 200, it requires 10709 

seconds using a Sun SPARCstation1 machine [75]. Although the latest Version of Pentium 4 

processors [75] are 190 times faster, this scheme is still too slow for multi-match 

classification where there are hundreds to thousands of filters in the filter sets [10, 55]. In this 

chapter, we develop an efficient algorithm SSA to quickly divide filters into multiple sets to 

reduce the need of including intersection filters. SSA guarantees the removal of at least half 

of the intersections each time the filter set is split into two. In addition, it has a low 

complexity of O(NM), where N is the total number of filters, and M is the total number of 

intersections. In reality, SSA removes almost all intersections, yielding a solution close to the 

optimal solution (removing all intersections) as we will demonstrate later in Section 4.4.2. 

As previously explained in Figure 4-8, after mathematically formulating the problem, our 

SSA algorithm converts the set splitting problem into a maximum satisfiablity problem 

because it has a fast approximate algorithm -- Johnson’s algorithm [71]. SSA uses Johnson’s 
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algorithm to get an approximate solution to the converted maximum satisfiability problem, 

and finally maps the approximate solution back to the set splitting problem. In the next 

section, we briefly review Johnson’s algorithm. 

4.3.3 Johnson’s Algorithm for the Maximum Satisfiability Problem 

Our SSA algorithm converts the set splitting problem into a maximum satisfiablity problem. 

A maximum satisfiablity problem is defined as follows. Let L be N literal pairs L = {{ 1F , 1F  

},  { 2F , 2F },.., { NF , NF  }}. Each literal can take either a true value or a false value. There 

are M clauses, with each clause consisting of a subset of literals either in a positive or 

negative form, e.g., C1 ={ 1F ∨  2F ∨ 6F }. The goal is to find an assignment of L that satisfies 

the maximum number of clauses. Define K as the minimum number of literals in each clause. 

For K≥ 2, this problem is known to be NP complete [72].  

Johnson’s algorithm is an approximation algorithm for the maximum satisfiability 

problem. As presented in the pseudo code below in Figure 4-10, it works as follows: Initially, 

it assigns each clause C a weight = 2-|c|, where |C| denotes the number of literals in C. For 

example, the weight of C1 ={ 1F ∨  2F ∨ 6F } is 2-3. Next, the algorithm examines the literals 

one by one. For any literal iF  that has not been assigned a value, if the weight of all clauses 

containing iF  is higher than the clauses containing iF , assign iF  a true value. Now all the 

clauses containing iF  are all satisfied and hence can be removed. Clauses containing iF  are 

not satisfied yet, so we want the other literals within the clauses to have a higher probability 

of being selected as true later. Hence, the algorithm multiplies the weight of all the clauses 

containing iF  by 2. For the case where the weight of all clauses containing iF  is higher than 

those containing iF , the algorithm performs the opposite actions.  
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Johnson’s algorithm is simple, with O(NM) complexity. [71] proves that Johnson’s 

algorithm can satisfy at least the fraction  (2K-1)/ 2K of the total clauses. For instance, when K 

= 2, it can satisfies at least ¾ of the clauses. Johnson’s algorithm achieves the best 

approximate bound for K>2 [71].  

 

Assign each clause with |C| literals a weight = 2-|c|; 

While (not all literals assigned weight yet){ 

Pick any remaining literal Fi;  

 If the total weight of clauses containing Fi > those containing iF { 

  Assign Fi  a true value; 

  Remove all clauses containing Fi ; 

  Double the weight of clauses containing iF ; 

 }else{ 

               Assign Fi a false value; 

Remove all clauses containing iF ; 

Double the weight of clauses containing Fi  

          } 

} 

Figure 4-10. Johnson’s algorithm. 

4.3.4 Set Splitting Algorithm (SSA) 

Having now explained Johnson’s algorithm, in this section, we present SSA, a memory and 

power efficient algorithm for multi-match classification. As illustrated in Figure 4-8, SSA 

first formulates the problem into a set splitting problem using the techniques explained in 

Section 4.3.2. Then SSA converts the problem into a maximum satisfiability problem using 

the following approach.  

Every filter corresponds to a literal in the maximum satisfiablity problem, where literals 

can either take a true or false value. A true value denotes this filter is put into Set St, while a 
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false value denotes Set Sf. For every intersection, two clauses are added into the clause set, 

one with all positive literals, and one with all negative literals. For example, if I1 represents 

the intersection of 1F , 2F and 6F , add two clauses: 

  C = { 1F ∨ 2F ∨ 6F } and C’ = { 1F ∨ 2F ∨ 6F }.  

Clause C with all positive values denotes that at least one of the filters is in Set St. 

Similarly, Clause C’ denotes that at least one of them is in Set Sf. If both clauses are satisfied, 

then at least one of the filters is in Set St and another one is in Set Sf. We will prove later, 

through a lemma, that if both clauses are satisfied then this intersection no longer need be 

present in TCAM. The total number of clauses is 2M, where M is the number of intersections. 

After converting the set splitting problem into this satisfiability problem, SSA runs Johnson’s 

algorithm to solve it and assign each filter iF  either a true or a false value. Below is the 

pseudo code of SSA. 
 

Reduce the filter set splitting problem into a max satisfiablity problem: 

Each filter Fi corresponds to a literal  

For each intersection Ii generated by j filters: Fx1, Fx2,  …, Fxj, add two clauses: 

C = { Fx1 ∨  Fx2∨ ,…, ∨ Fxj) 

C’ = ( 1xF ∨  2xF ∨ ,…, ∨
xjF ) 

Run Johnson’s algorithm to assign each filter Fi  a true or false value 

Put Fi in Set St if it is true. 

Put Fi in Set Sf if it is negative. 

Figure 4-11. Set Splitting Algorithm (SSA). 

Next we prove that SSA has a nice property: it guarantees the removal of half of the 

intersections when a filter is split into two sets. We begin with a lemma and then prove this 

property through a theorem. 

Lemma: If both clauses of an intersection are satisfied, this intersection is no longer needed 

in the TCAM.  
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Proof: Suppose I1, the intersection of 1F , 2F , and 6F , has both clauses C = { 1F ∨ 2F ∨ 6F } and 

C’ = { 1F ∨ 2F ∨ 6F } satisfied. This means that at least one of ( 1F , 2F , 6F ) is true and one of 

them is false. According to the algorithm, these filters are split into different sets. Thus this 

intersection does not need to be represented in the TCAM.□ 

Theorem: SSA can remove at least 50% of the intersections each time the filter set is split 

into two sets. 

Proof: Each clause is generated by an intersection; hence, it has at least two literals. In other 

words, K >=2. From Johnson’s results, at least (2K-1)/ 2K = ¾ of the clauses are satisfied. 

There are a total of 2M clauses, which means 2M*3/4 = 1.5M of the clauses are satisfied. 

Since there are M intersections, each corresponding to two clauses, at least 0.5M of the 

intersections have both clauses satisfied and hence can be removed according to the lemma. □ 

If we want to split the filter set further into more subsets (e.g., from 2 sets to 4 sets), this 

result still holds. Whenever the filter set is split, we can decrease at least 50% of the 

intersections. For example, if we split the filters into two sets, and then split both sets again, 

we can decrease the number of intersections to less than ¼ of the original amount.  

The complexity of SSA is the same as Johnson’s algorithm: O(NM). Note the analysis 

above does not impose any restriction on the order for those literals examined while running 

Johnson’s algorithm. In our simulation, we select literals based on the ratio of positive weight 

(total weight of clauses containing positive literals) to negative weight because we want to 

select literal that can satisfy the most clauses first. This results in a complexity of O(NM+N2).  

4.4 Simulation Results 

To demonstrate the effectiveness of SSA, we compare it with two well-known TCAM-based 

approaches: MUD and our Geometric Intersection Method presented in the previous chapter.  



 

 - 87 - 

Table 4-1. Total number of unique SORT rule header size. 

SNORT Version Rules
2.0.0 240 
2.0.1 255 
2.1.0 257 
2.1.1 263 

 

We begin this section with evaluation methodologies we used in Section 4.4.1. We use the 

SNORT [76] rule headers to benchmark the three schemes and present the simulation results 

in Section 4.4.2. Since the SNORT rule header sets are fairly small, we also test our 

algorithms on synthesized larger filter sets in Section 4.4.3. We will show that SSA uses 

approximately the same amount of TCAM memory as MUD, but yields a 75% to 95% 

reduction in power consumption. Compared with the Geometric Intersection Method, SSA 

uses 90% less TCAM memory and power at the cost of one additional TCAM lookup per 

packet.  

4.4.1 Evaluation Methodologies  

We use the SNORT rule header set to evaluate performance. The unique rule headers in each 

version vary from 240 to 257 as we showed previously in Table 4-1. Since the SNORT rule 

header sets are fairly small, to test the scalability of our algorithm, we generate large 

synthesized sets as follows. We take a real-world single-match classification set used in a 

core router (3060 filters) [44] and insert new filters that intersect with the existing filters to 

create multi-match filter sets. As in the SNORT rule header set, filters in this single match 

classification also have five fields (protocol, source IP, source port, destination IP, and 

destination port). The newly inserted synthesized filters also have five fields. Each field in 

the synthesized filter is randomly selected from corresponding fields in old filter sets 

according to their appearance frequencies. Since the five fields in a new filter are randomly 

selected and then combined together to create a new filter, this filter is likely to intersect with 
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the old filters to create new intersections. The performance of different algorithms is largely 

dependent on the number of intersections. Therefore, we test our algorithms using different 

intersection rates, defined as the percentage of newly inserted filters to the size of the original 

filter set. We start at 5%, which constitutes around 150 new filters, and increase to 100%, 

meaning that the number of newly inserted filters has the same size as the original filter set 

(3060 filters). 

We study the tradeoffs between different approaches on different data sets in terms of 

both memory and power consumption. We also test classification speed and update costs 

because multi-match classification solution must be fast enough to keep up with the 

increasing line rates. Next we explain these four metrics in detail.  

Memory consumption. We use the total number of TCAM entries to reflect memory 

consumption because all entries have the same width (e.g., 144 bits). The total TCAM 

memory consumption is the number of TCAM entries used times the TCAM width. 

Power consumption. Figure 2-6 of Section 2.3.2 shows that the energy used by a TCAM 

grows linearly with the number of entries searched in parallel and also with the number of 

TCAM accesses. Hence, we use the total TCAM entries accessed per packet as a metric for 

power consumption. It is defined as the product of the number of TCAM entries accessed per 

lookup and the number of lookups per packet.  

Classification Speed. Memory lookup is usually the bottleneck of a packet classification 

system. For the three TCAM-based approaches (SSA, MUD and Geometric Intersection 

Method), the number of SRAM accesses per packet is equal to the number of TCAM 

accesses. This is because the TCAM output can be used as an index to fetch the results stored 

in SRAM. Hence, we report the maximum number of TCAM lookups per packet to reflect 

the worst case classification rate. 
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Table 4-2. Number of extra intersections filters in TCAMs. 

SSA-2 SSA-4 

Version MUD Geometric 
Intersection 

Extra 
Inter-

sections 
Saving 

Extra 
Inter-

sections 
Saving

2.0.0 0 3453 46 98.67% 1 99.97%
2.0.1 0 3754 47 98.75% 1 99.97%
2.1.0 0 3758 47 98.75% 0 100% 
2.1.1 0 4067 55 98.65% 0 100% 
 

Update costs. We randomly select 90% of the filter set as the base filter set and use the 

remaining 10% as the update filters. We test the insertion cost in terms of the number of 

newly inserted filters because the deletion of old filters is easier in TCAM-based approaches 

(simply mask those entries out). Inserting a filter into a first match TCAM may require 

moving the existing filters. There are existing approaches that prepare empty entries in 

TCAMs, or associate priority [76] or extra circuits with each entry [77]. Here, we only 

concentrate on the number of newly inserted filters as the metric of update cost.  

4.4.2 Results on the SNORT Rule Header Set 

We conduct tests on the SNORT rule header set and present the experimental results in this 

section. We will show the results on the synthesized filter sets later in Section 4.4.3. For the 

SNORT rule set, we test all the Versions of SNORT after 2.0. Table 4-1 shows that the 

unique rule headers (classification filters) in each Version vary from 240 to 257. We compare 

SSA against our previous Geometric Intersection Method and MUD in the next four 

subsections using the metrics of memory consumption, power consumption, classification 

speed, and update cost respectively. 
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Table 4-3. Total number of TCAM entries used. 

Version MUD Geometric 
Intersection SSA-2 SSA-4 

2.0.0 240 3693 286 241 
2.0.1 255 4009 302 256 
2.1.0 257 4015 304 257 
2.1.1 263 4330 318 263 

 

4.4.2.1 TCAM Memory Consumption  

The Geometric Intersection Method inserts all the intersections into the TCAM. The second 

column in Table 4-2 records the number of extra intersections (above and beyond the original 

filters) that must be included. Although it is well below the theoretical upper bound O(NF), it 

is still roughly 10 times the size of the original filter set. After applying SSA to divide the 

filters into two sets (SSA-2), the number of extra filters that need to be included in the 

TCAM falls below 55, removing more than 98% of the intersections. When splitting the 

filters into four sets (SSA-4), SSA almost removes the need to include any extra filters due to 

intersections. Note that the SNORT rule set contains range and negation (fields, such as “not 

port 80”). These filters may need to be mapped into multiple TCAM entries. There are many 

existing approaches for dealing with range and negation. For example, we can use extra 

encodings [55, 61] or hardware circuits [66] to solve the range problem. Furthermore, the 

negation removing scheme proposed in the previous chapter can be used to efficiently map 

negations into TCAMs. We assume these known techniques are used to handle range and 

negation filters. This assumption won’t affect our comparisons because they all face the same 

percentage of filter size increase.  

Table 4-3 shows the total number of TCAM entries required by the three approaches. 

MUD uses the smallest number of TCAM entries: just the number of filters. The Geometric 

Intersection Method requires a very large number of intersection filters. Hence, it consumes 
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the largest number of TCAM entries. SSA dramatically removes the extra intersection filters 

that need to be inserted into the TCAM. The number of TCAM entries needed is extremely 

close to the MUD scheme. Although MUD is optimal in the memory cost, it needs to access 

TCAM multiple times to get all matching results. Hence, the classification speed of MUD is 

not as high as SSA, as explained in the next subsection. 

4.4.2.2 Classification Speed  

For a given packet, only one TCAM lookup is required by the Geometric Intersection 

Method. For SSA, the number of lookups may be larger than one, yet remains deterministic. 

If the filter sets are split into two sets, two separate TCAM lookups are needed. These two 

TCAM lookups access different sets of filters. Because no logical relationship exists between 

them, these two lookup processes can be fully parallelized. If filter sets are split four ways, 

four TCAM lookups are needed. In the current Internet, packet sizes vary from 40 bytes 

(TCP packets with no payloads) to 1500 bytes (Ethernet packets) [78]. [45] reports that the 

average packet size is 402.7 bytes. If one packet requires four TCAM lookups of 4 ns per 

lookup, SSA can achieve a 201.35 Gbps classification rate. In the worst case where packets 

are 40 bytes, SSA can still achieve a 20 Gbps rate, which is well above the line rate of the 

current Internet backbone. 

For the MUD approach, the number of TCAM lookups is related to the number of filters 

a packet matches. Packets that don’t match any filters need only one TCAM lookup, while a 

packet that matches k filters requires O(k) lookups because each lookup can report at most 

one matching result. In addition, multiple TCAM lookups may be required even for reporting 

one matching result, because it needs to represent range using the three states of the TCAM. 

[55] shows that MUD takes 1+d*k/r, for reporting k matching using MUD, where d is the 

logarithm of the total number of filters and r is a parameter for encoding, which is decided by  
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Table 4-4. Update cost in terms of newly inserted filters. 

Geometric 
Intersection SSA-2 SSA-4 Version MUD 
Avg Max Avg Max Avg Max 

2.0.0 1 31.73 157 1.33 17 1.002 2 
2.0.1 1 35.24 135 1.34 19 1 1 
2.1.0 1 34.71 135 1.36 20 1.002 2 
2.1.1 1 36.00 172 1.41 26 1.006 2 

 

the number of available bits in each TCAM entry. For the SNORT filter sets, d is 8 or 9 and r 

can be 5 or less. One packet can match a maximum of k = 12 filters. For such packets, MUD 

takes at least 12 TCAM lookups to get all the matching results. The worst case number of 

TCAM lookups (1+d*(12-1)/r) can be as high as 20 using MUD.  

The above analysis is the worst case performance of MUD. Since the number of TCAM 

lookups is workload dependent, we looked at some high frequency packets. A HTTP packet 

matches at least 4 unique filters and thus requires 5 to 9 TCAM lookups. A Napster file-

sharing packet can match 8 unique filters and thus requires 9 to 15 TCAM lookups.  

4.4.2.3 Update Cost  

The update cost for the Geometric Intersection Method is high, as newly inserted filters may 

intersect with the existing filters and may result in many insertion operations. Table 4-4 

shows the average update costs per newly inserted filter in terms of the number of newly 

generated filters (including intersection filers) in the TCAM. The third column shows the 

maximum number of insertions. One filter can generate up to 157 new TCAM entry 

insertions. The Geometric Intersection Method is obviously slow during the update process.  

The number of newly inserted filters is always 1 for MUD, as it does not need to consider 

any intersections. The average insertion cost decreases to almost 1 when using SSA-2. 

However, the max update cost is still high (around 20). If the filter set is split into four sets  
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Table 4-5. TCAM entries accessed per packet.  

 
MUD 
(Worst 
case) 

MUD 
(HTTP 
Packets) 

MUD 
(Napster 
Packets) 

Geometric 
Intersection 

Method 
SSA-2 SSA-4 

2.0.0 4800 1200 2160 3693 279 233 
2.0.1 5100 1275 2295 4009 292 245 
2.1.0 5140 1285 2313 4015 295 247 
2.1.1 5260 1315 2367 4330 309 255 

 

(SSA-4), the number of newly inserted filters is reduced to approximately one and the worst 

case cost is two, which is similar to MUD.  

4.4.2.4 Power Consumption  

We mentioned in Section 4.4.1, the energy used by a TCAM grows linearly with the number 

of entries searched in parallel and also to the number of TCAM accesses. Hence, we use the 

product of the number of TCAM entries accessed per lookup and the number of lookups per 

packet as a metric for power consumption.  

The power consumption of the MUD-based approach is related to the incoming packet 

rates. As we explained in Section 4.4.2.2, in the worst case, a packet may need up to 20 

TCAM accesses to get all the matching results. For each access, all the entries in the TCAM 

are compared in parallel. Hence, the total number of TCAM entries accessed is 20 times the 

filter set size in the worst case, which is over 20*240 = 4800 entries as shown in the first 

column of Table 4-5. If all the packets are HTTP packets, then each packet needs at least 5 

TCAM lookups, meaning that it accesses at least 5*240 = 1200 entries for one packet. A 

Napster packet needs at least 9 TCAM lookups and hence accesses at least 9*240 = 2160 

entries. 

The Geometric Intersection Method only performs one TCAM lookup. Therefore, the 

number of TCAM entries accessed per packet is the same as the number of TCAM entries 

used. This value is around 4000 due to large number of intersections included in the TCAM.  
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Table 4-6. Total number of extra intersections filters in TCAMs.  

SSA-2 SSA-4 Insertion 
Factor 

 

Geometric 
Intersection Intersections Saving Intersections Saving

0 359 22 93.87% 2 99.44%
0.05 418 20 95.22% 1 99.76%
0.1 488 45 90.78% 3 99.39%
0.2 733 52 92.91% 4 99.45%
0.3 1080 112 89.63% 1 99.91%
0.4 1312 78 94.05% 9 99.31%
0.6 2086 171 91.80% 9 99.57%
0.8 2488 208 91.64% 4 99.84%
1 2883 229 92.06% 7 99.76%

 

For SSA, although we perform several TCAM lookups, they look into different groups of 

filters (stored in different TCAM blocks or different TCAMs). Each TCAM entry is accessed 

only once per packet. Hence, the total number of TCAM entries accessed is just the number 

of entries in the TCAMs (less than 300). The energy used by SSA-4 and SSA-2 is similar as 

shown in the last two columns in Table 4-5. SSA-2 saves at least 90% of the energy 

consumed by the Geometric Intersection Method. Compared to MUD, it saves over 95% 

when compared to the worst case performance, and saves 76% for HTTP packets and 87% 

for Napster file-sharing packets. 

4.4.3 Results on a Synthesized Multi-match Filter Set 

The SNORT rule header set is relatively small. To test the algorithms on larger filter sets, we 

generate large synthetic multi-match classification test sets as described in Section 4.4.1. We 

take a real-world single-match classification set used in a core router with 3060 filters each 

with 5 fields, and insert new filters (also with 5 fields) that intersect with the existing filters 

into it. We test our algorithms using different intersection rates, defined as the percentage of 

newly inserted filters to the size of the original filter set. We start at 5%, which constitutes 
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around 150 new filters, and increase to 100%, meaning that the number of newly inserted 

filters is the same size as the original filter set size (3060 filters).  

Although the synthesized filter sets are larger than the SNORT rule sets, they generate 

relatively fewer intersections, as shown in the second column of Table 4-6. SSA also works 

well for these large filter sets. Splitting the filter set into two sets removes over 90% of the 

extra intersections, while splitting the set into four sets almost eliminates the need to include 

extra intersections. 

The results on synthesized filter sets on the classification speed and energy consumption 

are similar to those of the SNORT database. SSA-2 requires only two memory lookups per 

packet. However, MUD can match 12 filters in the worst case and thus requires up to 20 

TCAM accesses per packet. Hence, SSA-2 is faster and more energy efficient than MUD.  

4.5 Conclusions 

Multi-match packet classification is a key packet-processing operation needed in important 

applications such as network intrusion detection and packet-level accounting. Previously 

proposed TCAM-based approaches suffer from high power consumption or high memory 

usage. In this chapter, we develop a new set splitting algorithm (SSA) that reduces the 

TCAM memory and power consumption by 90% when tested on the SNORT rule set. This is 

accomplished by using a novel scheme that splits filters into multiple TCAM blocks such 

that, for each split, the number of overlapping rules within each TCAM block is reduced by a 

factor of at least two. The benefits of SSA are summarized as follows: 

Low Memory Usage. We showed that it is not necessary to include the intersections 

caused by filters of different sets in the TCAM. Each time a filter set is split into two sets, 

SSA guarantees the removal of at least 50% of the intersections.  
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Low Power Consumption. SSA uses a small amount of TCAM memory and accesses 

each TCAM entry once per packet. Hence, the power consumption is low.  

Deterministic Lookup Rates. If SSA splits filters into k sets, then k TCAM lookups are 

needed. The number of TCAM lookups is independent of the input packet.  

Supports Parallelism. The filter sets generated by SSA are uncorrelated. Thus, the 

lookups into these filter sets can be parallelized or pipelined. 

Low Update Cost. Since filters are split into uncorrelated sets, the update cost is local to 

one set and all other sets remain the same.  

This chapter and Chapter 3 presented packet inspection schemes suitable for handling the 

fixed fields of the packet header. Chapter 3 emphasizes developing a very high speed 

solution, while this chapter provides a more general and balanced solution taking into 

consideration three factors: memory size, classification speed and power consumption. We 

provided a solution for multi-match classification while doing it fast, with little power and 

few TCAM entries.  

Besides packet header processing, as explained in Section 1.3, high speed deep packet 

inspection also involves a more difficult and less structured problem -- packet payload 

scanning. There are two types of payload matching requirements: fixed string matching and 

regular expression matching. We will present a solution for matching fixed strings using 

TCAMs in Chapter 5. In Chapter 6, we will study the typical regular expressions in payload 

scanning network applications and propose a fast regular expression matching scheme 

suitable for both single-core and multi-core processor based architectures.  
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5 Fixed String Pattern-Matching Using TCAMs 

As explained in Chapter 1, high speed deep packet inspection involves two aspects: packet 

classification on the packet header, and pattern matching on the packet payload. For the first 

aspect, Chapters 3 and 4 proposed TCAM-based approaches that perform multi-match packet 

classification on the packet header. In this and the next chapter, we propose pattern matching 

algorithms for the packet payload.  

Performing pattern-matching at high speeds is an extremely hard problem. In typical 

network applications like intrusion detection [10], there are thousands of patterns that must 

be matched against each packet’s payload. Due to the wide variety of application formats, we 

often do not know apriori the anchor location, that is, the byte offset where the pattern starts 

in the packet. Hence, we need to check every byte of the packet payload, at the line speed of 

the network. In addition, these patterns are often highly complex. There are fixed string 

patterns with arbitrarily lengths; correlated patterns where it is necessary to check for certain 

pattern sequences; and patterns with negation where it is necessary to detect the absence of a 

pattern. Sometimes, it is infeasible to enumerate the pattern using a fixed list of strings, so 

regular expressions are used as a pattern language. We will explore the use of regular 

expression pattern matching in the next chapter. Although fixed strings patternscan be 

specified using regular expressions, we show later in Section 6.5.2 that correlated patterns are 

very hard to match using regular expression techniques. They make exponential interactions and 

generate large DFAs. Therefore, for these types of patterns, it is still better to identify them 

individually and then correlate the matching to find the composite patterns. TCAMs are good at 

finding these individual patterns. In this chapter, we propose a TCAM-based fixed strong 
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matching scheme. In particular, we propose algorithms for arbitrarily long patterns, correlated 

patterns, and patterns with negation.  

The rest of the chapter is organized as follows. We motivate the chapter in Section 5.1 

and review related work and show that no existing approaches can perform pattern-matching 

on thousands of complex patterns at high rates in Section 5.2. Then we study the typical 

patterns used in payload scanning applications and define generalized pattern formats based 

on the analysis of different signature sets in Section 5.3. These pattern formats are short fixed 

strings that are smaller than the TCAM width, long fixed strings that exceed the TCAM 

width, and composite patterns that are composed of a series of patterns. Sections 5.4 through 

5.6 present our schemes to address these pattern formats respectively, with Section 5.4 

addressing the short fixed strings, Section 5.5 presenting schemes for long patterns, and 

Section 5.6 providing algorithms for composite patterns. Section 5.7 analyzes our scheme 

and discusses strategies against malicious attacks. We present simulation studies on both the 

real world traces and synthesized worst case traffic in Section 5.8. For the ClamAV virus 

database [46] with 1768 patterns whose sizes vary from 6 bytes to 2189 bytes, the proposed 

scheme can operate at a 2 Gbps rate with only a 240 KB TCAM.   

5.1 Introduction 

Many applications such as HTTP load balancing and email SPAM filtering, require packet 

payload scanning. For example, network intrusion detection systems monitor packets in the 

network and scan packet payloads to detect malicious intrusions or Denial of Service (DoS) 

attacks. SNORT[10], a popular open source Network Intrusion Detection System (NIDS), 

has thousands of rules, each specifying a particular pattern representing a signature of an 

intrusion method. Besides a large number of patterns, another difficulty is that virus signature 

databases often have correlated patterns, which must match sequentially to indicate the  
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1.b: POP3 User
Overflow Attempt

content:"USER"; nocase;
content:!"|0a|"; within:50;

 

Figure 5-1. Two example patterns from SNORT rules. 

presence of an attack. For example, Figure 5-1.a shows a rule for Simple Mail Transfer 

Protocol (SMTP) root verify attempt, which requires matching two patterns (“vefy” and 

“root”) in sequence. The rule in Figure 5-1.b is another example where the system searches 

for the first pattern “USER”. If it does not detect a return character (\n, |0a| in ASCII format) 

within the next 50 bytes, it will raise an intrusion alarm signaling an overflow attack attempt.  

A large number of these complicated patterns make it hard for pure software-based 

pattern matching algorithms to keep up with network line rates. The SNORT system, for 

example, implements its pattern matching algorithms in software. It can handle link rates 

only up to 250Mbps [11] under normal traffic conditions even using SUN’s special Security 

Defense Appliances [12] and has significantly poorer worst-case performance. These rates 

are not sufficient to meet the needs of even medium-speed access or edge networks. Since 

worms and viruses may possibly originate inside the network, NIDS are also required to scan 

packets inside the network, which is usually Gigabit rates or higher.  

Building SNORT-like intrusion detection systems to run at Gigabit rates is a challenging 

task. Since patterns can appear anywhere in the packet payload, we need to examine every 

byte. The processing on every byte must complete within eight nanoseconds. Even with the 

latest Pentium processor (3.8 GHz) [79], eight nanoseconds of processing time yields just 

30.4 CPU cycles. Clearly it is impossible to compare each incoming packet with thousands of 

patterns in a serial fashion. Moreover, since there are thousands of patterns, storing them all 

content:"vefy"; 
content:"root”; 
distance 1;

Root verify attempt
1.a: A  rule for SMTP 
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in registers requires too much space. The majority will need to be kept in cache or the main 

memory. Eight nanoseconds is sufficient for only one or two memory accesses using fast 

Static Random Access Memory (SRAM) [80] for each byte in the packet payload. Multi-core 

processors can harness parallelism to speed up the pattern matching. However, the number of 

cores in today’s state-of-the-art processors is limited. For example, the Intel network 

processor IXP2850 has 16 cores [52]. This approach cannot scale to the number of patterns 

(usually thousands) required by many networked applications. From the above analyses, we 

can see that purely software-based pattern matching schemes cannot process thousands of 

patterns at Gigabit and higher rates.  

To perform high speed pattern matching, we must resort to hardware-based accelerators 

that have the ability to perform high speed parallel comparison. TCAMs meet this 

requirement and thus are a natural fit for the pattern matching problem. As introduced in 

Chapter 2.3.2, TCAMs are widely used for IP header based processing such as longest prefix 

match. Because of their intrinsic parallel search capability, they can also be used effectively 

for the pattern matching functions such as those for intrusion detection systems. However, 

TCAMs, because of their limited width, do impose limitations on the pattern length that can 

be directly matched. Also, there is no direct method to handle correlated patterns such as the 

example patterns shown in Figure 5-1. In this chapter, we develop algorithms that use 

TCAMs as a building block for both high-speed and fixed string pattern matching. Before we 

present the detail of our algorithms, we first review the related work on fast string matching 

in the next section.  

5.2 Related Work 

The research community has extensively studied the fixed string matching problems. In this 

section, we only discuss approaches that are relevant to the network payload scanning 
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problem. We first review representative software-based schemes and then discuss FPGA and 

Bloom filter based schemes that are amenable to hardware implementation. Finally we state 

the reasons for picking TCAMs as a candidate solution and related work that uses TCAMs 

for payload scanning. The main reason for picking TCAMs is that TCAMs have strong 

parallel comparison abilities.  

5.2.1  Algorithms for Software-only Environments  

The most influential software-only algorithms are: Knuth-Morris-Pratt(KMP) [81], Boyer-

Moore [82], Aho-Corasick [83], and Commentz-Walter [84]. 

The KMP and Boyer-Moore algorithms work most efficiently for single pattern searching 

[23]. They build skip tables that record the characters that do not appear in the pattern. If we 

identify a character in the input that is in the skip table, we can skip the character and thus 

avoid backtracking. The search time for an m byte pattern in a n bytes packet is O(n+m). If 

there are k patterns, the search time is O(k(n+m)), which grows linearly in k. Hence, this 

method is slow when there are thousands of patterns.  

The Aho-Corasick and Commentz-Walter algorithms match multiple patterns 

simultaneously. They both pre-process the patterns and build a finite automaton that can 

process the input packet in O(n) time. Although both algorithms are fast, they suffer from an 

exponential state requirement. One of the network intrusion detection systems, Bro [25], uses 

a similar deterministic finite automaton based approach. Bro generates so many states that 

only a part of the automaton is kept in memory. The system dynamically extends the 

automaton based on runtime information. This degrades the system performance. 

Recently, new pattern matching algorithms specifically for content-based packet handling 

have been proposed. The Aho-Corasick-Boyer-Moore (AC_BM) algorithm proposed by 

Silicon Defense [25] combines the Boyer-Moore and Aho-Corasick algorithms. Another new 
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algorithm is the Setwise Boyer-Moore-Horspool algorithm by Fish, et al. [26], whose average 

case performance is better than Aho-Corasick and Boyer-Moore. These algorithms greatly 

improve SNORT’s pattern matching speed (e.g., 250Mbps). However, their performance is 

still one order of magnitude less than the line rate needed for deployment in modern 

networks. 

5.2.2 FPGA-based Approaches 

FPGAs can be programmed for fast pattern matching due to their exploitation of 

reconfigurable hardware capability and their ability for parallelism. To search for a regular 

expression of length n on an FPGA, one approach is to build a Deterministic Finite 

Automaton (DFA) that requires O(2n) memory and takes O(1) time per text character. Sidhu, 

et al., proposed a Nondeterministic Finite Automaton (NFA) approach using FPGAs [49]. 

Their approach requires only O(n2) space and is still able to process each text character in 

O(1) time.  

The above two approaches are optimized for single keyword searching and do not scale 

well for multiple patterns. The recent work by Baker, et al., uses a modified KMP algorithm 

[85]. Each pattern is still treated independently; however, multiple (100 reported in [85]) 

patterns can be pipelined at gigabit rates. The downside of this approach is that patterns are 

searched sequentially, so the overall latency increases proportionally with the number of 

patterns.  

5.2.3 Bloom-filter-based Approaches 

Dharmapurikar, et al., proposed a multiple-pattern matching approach using parallel Bloom 

filters [86]. Their approach can handle thousands of patterns. The proposed scheme builds a 

Bloom filter for each possible pattern length. This could impose parallelism limits in some 
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virus databases because pattern lengths vary from tens to thousands of bytes and there are 

hundreds of possible patterns lengths as we will show later in Section 5.8.2. 

5.2.4 CAM-based Approaches 

There are two types of CAMs, binary CAMs where each bit can only take one of the two 

states (0 or 1), and ternary CAMs (TCAM, introduced in Section 2.3.2) where each bit can 

take one of the three states (0, 1 and “don’t care?”). In both Binary CAM and TCAMs, each 

entry is a bit vector of cells, where every cell can store one bit. Therefore, a CAM entry can 

be used to store a string. CAMs are built for parallel comparison of the input against a large 

number of entries. Hence, it is a good candidate for a solution to our multiple-pattern 

matching problem.  

Gokhake, et al., proposed a pattern matching approach using binary CAM [87]. They 

restrict each pattern to be exactly w bytes and insert these patterns to the CAM, one pattern 

per entry. The space needed for k patterns each with w bytes is only kw bytes of CAM. Given 

an input, their approach first looks up the first w bytes of the payload in the CAM. Then it 

shifts one byte and does a CAM lookup with the second byte to get the next w+1 bytes of 

payload. This process is repeated until reaching the end of the payload. To search a packet of 

length n, the CAM-based approach can provide an answer in a deterministic time of O(n+w) 

CAM lookups. One limitation of the proposed approach is that all patterns must have lengths 

equal to the CAM width. In this chapter, we develop algorithms for arbitrarily length patterns 

and other complex patterns, including correlated patterns and patterns with negations. In the 

next section, we present the definition of the complex patterns that we are going to address in 

this chapter.  
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Table 5-1. Patterns used in different systems. 

 Total # of 
patterns 

Simple fixed 
string patterns 

Composite fixed 
string patterns 

Regular 
expressions

SNORT (Version 2.1.2) 1693 1039 527 127 
BRO (Version 0.8) 2870 0 0 2870 
ClamAV (Version 0.15) 1768 1768 0 0 
Linux layer 7 70 0 0 70 

 

5.3 A study of Patterns and Problem Definition 

We studied the typical patterns that appear in the network payload scanning applications 

including the SNORT intrusion detection system [10], Bro intrusion detection system [16], 

ClamAV anti-virus system [17], and the Linux Layer 7 filter [22].  The number of patterns in 

these systems varies from 70 to 400. We identify three types of patterns from these systems 

as shown in Table 5-1, namely simple string patterns, composite string patterns, and regular 

expressions. Next, we present the detailed definition of these pattern types. In particular, we 

study the simple fixed string patterns in Section 5.3.1, composite fixed string patterns in 

Section 5.3.2 and regular expression patterns in Section 5.3.3. In this chapter, we will present 

schemes for detecting the first two types of patterns. We will address the regular expression 

patterns in Chapter 6. 

5.3.1 Simple Fixed String Patterns 

Simple string patterns are quite common in network payload scanning applications. A simple 

fixed string pattern P of m bytes can be written as P = b1b2… bm, where each bi represents a 

byte. Sometimes, a fixed string pattern is associated with case sensitive or case insensitive 

options, where case insensitive distinguishes whether an upper case character or a lower case 

character, e.g., a or A, matches the pattern.  
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Fixed string patterns are very common in network payload scanning applications. For 

example, the ClamAV anti-virus system (Version 0.15) has 1768 simple patterns. The 

SNORT intrusion detection system (Version 2.1.2) contains 1693 patterns, of which 1039 are 

fixed string patterns. The fixed string patterns in these systems vary widely in length. In 

ClamAV, patterns range from 6 bytes to 2189 bytes, with an average of 55 bytes. In SNORT, 

patterns vary from one byte to 100 bytes, with many short patterns of one or four bytes. This 

large length variation breaks the assumption of some previously proposed approaches, such 

as the Bloom filters and the CAM-based methods mentioned in Section 5.2, that patterns 

have a limited number of lengths.  

In addition to fixed string patterns, the SNORT filter rule set also has a large percentage 

of composite patterns. Next, we describe the structure of these composite patterns.  

5.3.2 Composite Patterns 

Simple patterns can be extended to form composite patterns. From SNORT [10], we identify 

the following two types of composite patterns: 

1. Negation (!). !P denotes no appearance of pattern P. 

2. Correlated patterns. If P1 and P2 are two patterns, P3 = P1 .* P2 is a correlated 

pattern, where “.” denotes arbitrary characters and “*” denotes any length. This pattern 

requires matching P1 first, then some arbitrary content “.*”, and finally matching pattern P2.  

Note that “.*” can have infinite length, but in practice a length limitation is placed on it, e.g., 

equal to four bytes, or less than four bytes.  

SNORT (Version 2.1.2) has 527 composite patterns, with 50 negation patterns and 477 

correlated patterns. The former are usually for detecting buffer overflow attempts. For 

example, for a web login attempt, if we see the pattern “Authorization” with no return key 

“!\n” within the next 512 bytes, it is likely to be a buffer overflow attempt. On the other hand, 
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correlated patterns are often used to identify known application formats.  Packets using a 

specific application protocol typically follow that application format and contain some user 

specific data. Therefore, correlated patterns may be expressed as a sequence of sub-patterns 

(application formats), while allowing distances between these sub-patterns to skip user 

specific data. For example, in Figure 5-1.a, four sub-patterns are used for detecting the MS 

SQL worm. In the SNORT rule set, the number of sub-patterns in one correlated pattern can 

go up to seven. None of the previously proposed schemes can handle these patterns at line 

rate. In Section 5.5, we will propose fast mechanisms to detect these patterns. 

5.3.3 Regular Expressions 

Besides fixed string patterns and composite patterns, the rest of the patterns in the four 

networking payload applications we studied are regular expressions. A regular expression 

describes a set of strings without enumerating them explicitly. We will present a more formal 

definition in the next chapter. Here we use an example to give a general sense of how these 

patterns are expressed. Consider a regular expression from the Linux L7-filter [1] for 

detecting Yahoo traffic: “^(ymsg|ypns|yhoo).?.?.?.?.?.?.?[lwt].*\xc0\x80”. This pattern 

matches any packet payload that starts with ymsg, ypns, or yhoo, followed by seven or fewer 

arbitrary characters, and then a letter l, w or t, and some arbitrary characters, and finally the 

ASCII letters c0 and 80 in the hexadecimal form.  

Regular expressions are widely used for pattern matching due to their rich expressive 

power. In the Linux Application Protocol Classifier (L7-filter) [45], all protocol identifiers 

are expressed as regular expressions. Another intrusion detection system, Bro [46], also uses 

regular expressions as its pattern language. Recently, regular expressions are replacing 

explicit string patterns as the pattern matching language of choice in packet scanning 

applications. For example, SNORT [1] has evolved from a system with no regular 
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expressions in its ruleset in April 2003 (Version 2.0.0), to 127 in May 2004 (Version 2.1.2), 

and to 1131 regular expressions as of February 2006 (Version 2.4). 

We will present algorithms for regular expression pattern matching in the next chapter. In 

this chapter, we propose fast pattern matching methods for the first two types of patterns, 

namely fixed string patterns and composite patterns. As discussed in Section 5.2.4, TCAMs 

are built for parallel comparison of thousands of entries and are an attractive candidate for 

fast pattern matching. Hence, next we propose TCAM-based methods for pattern matching. 

In particular, we propose algorithms for fixed strings that are shorter than the TCAM width 

in Section 5.4, for long patterns in Section 5.5, and for composite patterns in Section 5.6.  

5.4 Short Fixed String Patterns 

Let us first look at the simple case where all the patterns are simple deterministic patterns, 

with length shorter or equal to w bytes, where w is the width of the TCAM. Our approach is 

simply to place patterns into TCAM, with one pattern occupying one entry. If a pattern is 

shorter than w bytes, we pad it with “?” (don’t care) bit as shown in Figure 5-2. For ease of 

explanation, in the rest of the chapter, we use alphabetic characters rather than binary forms 

as pattern examples. We assume that each character is one byte. 

Patterns should be organized according to their lengths in descending order. This is 

because a TCAM only reports the first matching result and we want to identify all matching 

patterns. For example, if a pattern “ABC” is put in a lower index (top end in the example) in 

TCAM, matching of the “ABC” includes matching of a shorter prefix pattern “AB”. If we 

place patterns in the other order, we cannot infer the matching of the longer pattern from 

matching the shorter pattern. Thus we may miss out some matching results.  

The process of finding patterns in a packet is as follows: The first w bytes in the packet 

are mapped into TCAM (Figure 5-2.a). If there is a hit, we report the matched pattern. Next,  



 

 - 108 - 

w bytes

A     B    C    D     E      F   

C     D    E     F

A     B    ?    ?

A     B    C    ?

Input

TCAM

a. First Position

1st entry

kth entry

w bytes

A     B    C    D     E      F   

C     D    E     F

A     B    ?    ?

A     B    C    ?

b. Second Position  
 

Figure 5-2. Scanning process. 

shift one byte and check TCAM again as shown in Figure 5-2.b. This process is repeated 

until we have read the whole packet. Note that when we are at the end of the packet and the 

remaining packet size t is less than the TCAM width, we can pad it with all 0s and look it up 

in TCAM. However, only patterns less than t bytes should be reported as matches. 

One TCAM lookup is needed for every byte position in the packet. Assuming the TCAM 

lookup time is 4 nanoseconds (ns), it can support a deterministic scan rate of 8 bits/4 ns = 

2Gbps against thousands of patterns and is able to report all the matching patterns.  

The scheme proposed in this section only applies to patterns that are shorter than the 

TCAM width. As we have shown in Section 5.3.1, patterns in network applications vary from 

several bytes to several thousands bytes and some of them may not be able to fit in one 

TCAM entry. In the next section, we present our methods for handling these long patterns.  

5.5 Long Patterns 

The previous section proposed a method for patterns that are shorter than the TCAM width. 

The TCAM width is configurable as we mentioned in Section 2.3.2. For example, a 1Mbyte 

TCAM can be programmed as 64K entries with 16 bytes per entry, or 1K entry with 1K bytes 

per entry etc.  Given a pattern sets with variable lengths, one choice is to configure the 

TCAM width to be greater or equal to the longest pattern length and pad short patterns with 
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the ‘do not care’ states to reach the TCAM width. However this wastes precious TCAM 

resources when the pattern set has a large variation in pattern length, as in the ClamAV 

pattern set. The relatively small size and high cost of TCAM makes this a very inefficient 

approach.  

Instead, our approach divides long patterns into shorter patterns (more patterns of shorter 

lengths) to save TCAM space, thereby allowing the TCAM width to be smaller. The overall 

process of matching long patterns is shown in Figure 5-3. Given a set of patterns, we first 

perform pre-processing. We divide long patterns into sub-patterns and store them in the 

TCAM. Then, we build a pattern table to record the actions upon matching of these sub-

patterns. We also set up a matching table to store correlations between sub-patterns, so that 

we can re-link them together later to report matching of a long pattern.  Given a packet, we 

take the first w bytes from it, where w is the TCAM width, and do a TCAM lookup. If there 

is no match, we shift one byte and perform another TCAM lookup. If we match a sub-pattern 

at the ith position of the packet, we record it in a table in a memory data structure called the 

partial hit list. Later, if we match a sub-pattern at position i+j (0 < j <=w), we check the 

matching table to see whether the concatenation of this sub-pattern and a previously matched 

one forms a long pattern. If so, we report a matching of the long pattern. 

The rest of the section is organized according to the flowchart in Figure 5-3. There are 

many ways to divide long patterns into smaller patterns. Next, in Section 5.5.1, we explain 

the tradeoffs of different pattern division methods and then present our division algorithm. 

After dividing a long pattern into sub-patterns and inserting them into the TCAM, we get the 

TCAM match results of these sub-patterns separately. Next, we need to link all the related 

match results together to report the matching of a long pattern. To achieve this, we keep a set 

of tables (pattern table, matching table, and partial hit list as shown in the grey boxes of 

Figure 5-3) in the memory to record the matching sub-patterns and relationship between  
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Break long patterns into sub-patterns
(Section 5.3.1)

Sub-patterns in 
TCAMs:

(Section 5.3.1) 

Patterns

Pattern table in SRAMs:
Stores information of  

sub-patterns 
(Section 5.3.2)

Packets

Pre-processing

Matching Process (Section 5.3.3)

Runtime table in cache or SRAMs:
Partial Hit List (PHL):

Stores matching results of previous positions
(Section 5.3.2)

Matching table in SRAMs:
Stores relationships 

between sub-patterns 
(Section 5.3.2)

Match, Report 
long pattern

Shift one byte in the input

Tables in 
the SRAMs

Tables in 
the TCAMs

No Match

First  bits

 

Figure 5-3. Flowchart of long pattern matching algorithm.  

these them. These tables are explained in detail in Subsection 5.5.2 and we explain the 

algorithm for linking sub-pattern matching results to infer a matching of long patterns in 

Section 5.5.3. 

5.5.1 Divide Long Patterns into Sub-patterns to be Stored into TCAMs 

For the time being, let us assume that we have identified a good TCAM width w for the given 

signature set. For example, Table 5-2 shows a pattern set with four patterns and the TCAM 

width is set to be four bytes. Long patterns (Patterns 1-3) are divided into shorter patterns. 

We call the first w bytes prefix patterns and the remaining part suffix patterns. Patterns 

shorter than w bytes (Patten 4) remain intact. The selection of w and the tradeoff between a 

single cycle “long” match and many cycles of “short” matches will be discussed in Section 

5.7.  
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Table 5-2. A Long pattern example (TCAM width w = 4). 

Pattern 
Index 

Pattern  
Contents 

Prefix 
Patterns 

Suffix 
Patterns  

1 ABCDABCD ABCD ABCD 
2 DEFGABCDL DEFG ABCDL 
3 DEFGDEF DEFG DEF 
4 DEF - - 

 

Prefix patterns can be fit into TCAM directly since they are w bytes. After matching a 

prefix pattern, one option is to use software to compare the suffix patterns. However, there 

may be multiple suffix patterns sharing the same prefix pattern as in patterns 2 and 3 in Table 

5-2. In such cases, the computation costs for software comparisons are quite high. 

Our approach places the suffix patterns into the same TCAM as the prefix patterns. If a 

suffix pattern is longer than w bytes, we need to divide it into multiple sub-patterns of w 

bytes each. The suffix patterns can be less than w bytes, or not exactly a multiple of w bytes. 

Hence, they may generate very short sub-patterns. For example, a pattern “ABCDE” 

generates a short sub-pattern “E” for w = 4. We can pad these short patterns with ‘do not 

care’ states to make them w bytes. The problem with this approach is that small patterns that 

are only one or two bytes greatly increase the probability of TCAM hits. Each TCAM hit 

demands extra processing to check whether the match is a valid pattern or if combining it 

with any previously matched pattern constitutes a long pattern match. Hence, it is 

computationally inefficient to divide long patterns into very short suffix patterns that generate 

many TCAM hits.  

To overcome this problem, we pad the short suffix pattern in the front by the tail of 

previous pattern. For example, the suffix pattern of “DEFGDEF” is “DEF”. We pad it with 

the tail of previous prefix pattern (“G”) to make it exactly w bytes (“GDEF”). Another 

example is “DEFGABCDL”, the suffix pattern “ABCDL” is divided into two suffix patterns 

of w bytes each: “ABCD” and “BCDL”. 
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Table 5-3. Patterns in the TCAM. 

TCAM Index Content 
1 ABCD 
2 DEFG 
3 BCDL 
4 GDEF 
5 DEF? 

 

We can order the unique prefix patterns and suffix patterns in any order because they all 

have the length w, so none of them covers another unless they are identical. For patterns that 

are naturally shorter than w bytes (e.g., pattern 4 in Table 5-2), as before, we pad them with 

‘do not care’ at the end and sort them according to the descending order of lengths. Table 5-3 

shows the TCAM layout for patterns in Table 5-2.  

Now, we have broken long patterns into sub-patterns and stored them in the TCAM. 

When we perform a lookup in the TCAM, it reports matching of these sub-patterns. For these 

sub-pattern matching results, we need to record them in the memory so that we can correlate 

them with the future suffix pattern matching to identify long patterns. In the next subsection, 

we introduce several in-memory data structures for helping us correlate the sub-pattern 

matching results.  

5.5.2 Data Structures in Memory 

As in shown in Figure 5-3, in addition to the patterns stored in the TCAM, there are three 

data structures to be stored in memory (e.g., SRAM) for matching long patterns: the pattern 

table, the matching table and the partial hit list. We illustrate the detail information of these 

tables in Figure 5-4. The pattern table and the matching table are pre-computed based on 

pattern information and partial hit list is generated at runtime. The pattern table stores the 

information for each sub-pattern. It helps to identify whether the current matched pattern is a 

short pattern, a prefix pattern or a suffix pattern. The partial hit list records the previously  
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Figure 5-4. Tables used in our scheme.  

matched sub-patterns. The matching table records the correlations between sub-patterns. 

Using these three tables, we can correlate the current match pattern with the previously 

matched patterns to identify long patterns. Next, we explain these tables in detail. 

Pattern Table 

All the patterns (simple, prefix, and suffix patterns) are put into a single TCAM. When 

matching an entry in TCAM, we need to check whether it is a short pattern, a prefix pattern, 

or a suffix pattern. The pattern table (Table 5-4) records such information. Each line in the 

table corresponds to one TCAM entry. 

The second column records whether it is a matching of a short pattern. For example, from 

a hit of “DEFG”, we can infer a matching of “DEF”. The third column shows the prefix 

pattern information. A positive number illustrates a valid pattern while “-1” indicates 

otherwise. Since not every entry in TCAM is related to a prefix pattern, we number the valid 

prefix patterns and refer to an entry in the resulting enumeration by a prefix pattern index.   
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Table 5-4. Pattern table. 

Index 
(Content) 

Simple 
Pattern Index 

Prefix 
Index 

Suffix 
Index 

1(ABCD) -1 1 1 

2(DEFG) 4(DEF) 2 -1 

3(BCDL) -1 -1 2 
4(GDEF) -1 -1 3 
5(DEF ?) 4(DEF) -1 -1 

 

Table 5-5. Partial hit list. 

Index Position
1 1 

 

Column four stores the suffix pattern index. Note that this index is separately built and thus is 

independent of the prefix pattern index. 

Now, we can identify sub-patterns through a TCAM lookup and then use the matched 

index to perform one SRAM lookup into the pattern table to get the information of these sub-

patterns. Next we need to store the matched prefix patterns in a table called partial hit list in 

memory so that later we can correlate them with suffix patterns to identify long patterns.  

Partial Hit List (PHL) 

The Partial Hit List (PHL) is used to record the matched pattern results as shown in Table 5-5.  

When matching a prefix pattern, record it in the PHL. For example, when matching pattern 

“ABCD” at the first four bytes of the packet, we record the index (1 in this example) and the 

starting position of the pattern in the packet (1st byte in this example) in the PHL. Later, when 

we match its matching suffix, e.g., “ABCD”, we can retrieve the previous matching result of 

“ABCD” and concatenate these two patterns into a long pattern “ABCDABCD”.  Not all 

prefix patterns and suffix patterns can be put together to generate long patterns. Hence, we 

also need a table to record the valid combination of suffix and prefix patterns. In the  
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Table 5-6. Matching table. 

Prefix 
Index 

Suffix 
Index Distance Matched Long 

Pattern Index 

1(ABCD) 1(ABCD) 4 1(ABCDABCD) 

2(DEFG) 1(ABCD) 4 3*(DEGFABCD) 

2(DEFG) 3(GDEF) 3 3(DEGFDEF) 
3(DEGFABCD) 1(ABCD) 4 1(ABCDABCD) 
3(DEGFABCD) 2(BCDL) 1 2(DEFDABCDL) 

 

following, we explain how the matching table stores the correlation information between 

patterns.  

Matching Table 

After identifying the prefix and suffix patterns, we assemble them to recover long patterns. A 

matching table (Table 5-6) stores all the valid combinations. For example, the combination of 

the prefix pattern “DEFG” and the suffix pattern “ABCD” yields a new prefix pattern 

(annotated by 3*). We give the new prefix pattern (“DEFGABCD”) a value of 3 as the prefix 

pattern index and store it back to the PHL. Later, when we match suffix pattern “BCDL” at 

the next position, we can lookup the matching table and conclude that we have matched 

pattern “DEGFHIJKL”. 

At first glance, looking up entries in the mapping table appears to be a slow process, 

since we need to search through the mapping table to check whether one combination is 

valid. However, in a real system, we can trade space for speed. The first three columns 

(prefix index, suffix index, and distance between patterns) can be used as indices of a three-

dimensional array and we do not need to store those columns. Only long patterns matched at 

the corresponding indexed space are stored and ‘no match’ (-1) are placed at all the other 

invalid combination places. In this manner, we can decide whether a combination is valid or 
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not with only one memory lookup. The total memory consumption is a*b*w, where a is the 

prefix index size, b is the suffix pattern index size, and w is the TCAM width.  

5.5.3 Algorithms for Long Patterns 

As described in Section 5.5.1, long patterns are handled by dividing them into sub-patterns 

which are then stored in TCAM. This section presents an algorithm for identifying long 

patterns, by linking the matched sub-patterns together to identify long patterns.   

Our approach for identifying a long pattern is as follows. Initially we pre-process the 

patterns and generate the pattern table and mapping table using the methods we previously 

described in Section 5.5.2. The PHL is initially set to empty. Given an input, we take the first 

w-byte (byte 1 through w) string and perform a TCAM lookup to check whether this string 

matches any of the sub-patterns. If there is no match, we shift forward one byte and perform 

a TCAM lookup at the next position (bytes 2 through w+1) in the packet. If we find a TCAM 

match at a given position, we consult the pattern table to check whether it is a short pattern, 

and/or prefix pattern, and/or suffix pattern. Note that string can be a short, prefix and suffix 

pattern at the same time. For example, in the string “DEFG” in the example in Table 5-4 is a 

prefix pattern, but it also contains a short pattern “DEF”. After identifying the types of the 

string, we perform one or several of the following three actions.  

• Action 1 (short pattern case): if the matched pattern implies a short pattern, report the 

matching result immediately.  

• Action 2 (suffix pattern case): we check whether the combination of this pattern with any 

prefix pattern in PHL forms a valid long pattern through consulting the mapping table.  

• Action 3 (prefix pattern case): we insert the pattern into the PHL if it was not previously 

inserted by Action 2.   
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Position 5: match “ABCD”
“ABCD” is a suffix pattern, combined with 

prefix pattern 2 (“DEFG”) in the PHL yields 
another prefix pattern “DEFGABCD” (index 
in the mapping table is 3). The old record in 
PHL can now be deleted since it is 
position away from the next position. 

“ABCD” is prefix pattern, but it can be 
implied through “DEFGABCD”, so won’t 
insert it into the PHL again.

Position 6: match “BCDL”. 
   “BCDL” is a suffix pattern. 

Combining with “DEFGABCD” in 
the PHL, report a long pattern 
“DEGFABCDL”.

 

Figure 5-5. Matching process for input “DEGFABCDL” 
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Note that suffix patterns must immediately follow the prefix patterns to form long 

patterns, so we can delete prefix patterns that are more than w bytes. In addition, at each 

position, we only insert one item into the PHL (according to the restriction in Action 3). 

Therefore, the size of PHL is bounded by the TCAM width w. 

We use an example (Figure 5-5) to illustrate our pattern matching algorithm for long 

patterns. Suppose the input packet is “DEFGABCDL” and we want to search for the patterns 

shown in Table 5-2. First we divide each of the patterns into sub-patterns and insert them into 

the TCAM (Table 5-3). We then pre-compute the pattern table (Table 5-4) and matching 

table (Table 5-6) using the scheme we proposed in the previous section. These tables remain 

static during the pattern matching process.  The only table that changes during the matching 

process is the partial hit list (PHL). Initially, it is set to be empty. 

 At the first position, we match “DEFG”. Through consulting the pattern table, we know 

that “DEFG” is a short pattern and also a prefix pattern. Hence, we perform Actions 1 and 3.  

“DEFG” implies a match of pattern “DEF”, so we report a matching of “DEF” right away 

according to Action 1. This string is again a prefix pattern, so we store such information in 

the PHL according to Action 3. We’ve finished the two actions for this position. Next we 

shift one character to position 2 and lookup “EFGA” into the TCAM. Here the lookup will 

not result in a match, so we move on to the next position in the pattern. Similarly, we find no 

match for position 3 and 4. 

When we move to the 5th position, we get a match on the pattern “ABCD”. “ABCD” is 

both a suffix pattern and a prefix pattern, so we perform Actions 2 and 3. According to 

Action 2, we try the combination of this pattern and the prefix pattern in the PHL (“DEFG”). 

Through consulting the mapping table, we get another prefix pattern “DEFGABCD”. We 

store this prefix pattern back to the PHL. Since we already inserted one item into the PHL, 
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we do not need to insert “ABCD” as a prefix pattern again according to Action 3. This is 

because “DEGFABCD” is already in PHL that implies “ABCD”.  

Finally, we move to the 6th position and match “BCDL”. “BCDL” is a suffix pattern so 

we only need to perform Action 3. Upon combining it with the prefix pattern “DEFGABCD” 

in PHL, we identify the long pattern “DEFGABCDL”.  

5.6 Composite Patterns 

The methods presented in the previous two sections are for fixed strings. They are not 

sufficient for intrusion detection systems such as SNORT, which require many composite 

patterns. In this section, we extend our algorithm to handle these composite patterns. 

According to the definition in Section 5.3, there are two types of composite patterns, 

correlated patterns and patterns with negations. In this section, we explain these two cases. At 

the end of the section, we propose a method to support case-insensitive patterns.  

5.6.1 Correlated Patterns 

Correlated patterns denote a series of patterns, i.e., patterns followed by other patterns like 

“ABCD” followed by the pattern “DEFG” within 4 bytes from the end of the first pattern. 

We call the units of the pattern series sub-patterns (in this example, “ABCD” and “DEFG”). 

Matching a correlated pattern is similar to a long pattern: a long pattern is just several sub-

patterns and the distance of these patterns must be exactly w. Hence, the scheme for long 

patterns can be extended to correlated patterns. The matched sub-patterns are also recorded in 

the PHL. The only difference between matching correlated and long patterns is that the 

partial hit record for sub-patterns cannot be removed after w positions because the distance 

between two sub-patterns can be larger than w.  
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5.6.2 Patterns with Negations 

The negation (!) of a pattern refers to detecting the absence of the pattern from the input. 

Negations typically occur in conjunction with another pattern and when they do they are 

usually the second pattern in the sequence. For example, content : "USER" ; nocase ; content 

: !"|0a|" ; within: 50. This pattern corresponds to an observation of the pattern “USER” and 

the absence of the pattern "|0a|" (return) within the next 50 bytes.  

The identification of a pattern’s negation is similar to the identification of a correlated 

pattern. We first ignore the negation (!) and put the second pattern (|0a| in our example) into 

the TCAM. After matching the first sub-pattern “USER”, we record this matching 

information in the PHL. In the next 50 bytes, we then inspect whether there is a hit for "|0a|". 

The difference between matching a negation pattern and a correlated pattern is that the action 

performed upon observation of the second pattern is the opposite. If we find the second 

pattern (|0a|), this means we did not match the first pattern and so we can now remove the 

index for “USER” from the PHL. Otherwise, after 50 bytes with no matching of the second 

pattern, we report a hit of pattern "USER" and !"|0a|".  

5.6.3  Patterns with Wildcards 

Some signature databases specify patterns with the “no case” keyword. This means that 

either an upper case or a lower case of the pattern is considered valid. In ASCII, the numeric 

difference between a lower case character and its corresponding upper case character is 32. 

Since this happens to be a power of 2, TCAMs can support case-insensitive matching easily 

with a ‘do not care’ bit. For example, the ASCII code for letter “A” is 65 (binary form 0100 

0001) and letter “a” is 97 (binary form 0110 0001). So we can represent case insensitive 

letter a in the TCAM as (01?0 0001). If there is a requirement for a fixed width wildcard for 
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any characters, then we can just put ‘do not care’ states in all their corresponding positions in 

the TCAM.  

5.7 Analysis of the Scheme 

In the previous three sections, we have proposed fast matching methods for fixed string 

patterns, long patterns, and composite patterns. In this section, we analyze the performance of 

the proposed schemes using two metrics.  

The first metric is memory consumption. We want to minimize usage of SRAM, and 

more importantly TCAM, as TCAM is comparatively expensive with current manufacturing 

technologies.  

The second metric is pattern scanning rate as pattern matching schemes must sustain the 

line rates. Memory lookups are usually the bottleneck of packet processing systems [88]. 

Hence, the pattern scanning rate is mostly controlled by the memory access speed and the 

number of memory lookup. For each byte position, our scheme needs to lookup TCAM once. 

Besides this fixed overhead, the number of extra memory lookups is affected by two factors. 

First is the number of TCAM hits since each TCAM hit requires one memory lookup in the 

pattern table. Second is the size of the PHL because we need to access the mapping table 

once for each item in the PHL for a matched suffix pattern.  

As the TCAM width is configurable, in Section 5.7.1, we study the effect of changing 

TCAM width on the memory consumption and the number of memory lookups. In Section 

5.7.2, we explain the memory access process and study the effect of memory access rate on 

the overall scanning rate. As our pattern matching schemes are designed for packet payload 

scanning applications, our scheme as described thus far is subject to malicious attack. Finally, 

in Section 5.7.3, we explain the methods for detecting malicious packets that are aimed at 

slowing down the system. Note that in this section, we make an assumption that patterns are 
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independent of each other for ease of analysis. This assumption may not be true in real 

pattern sets. We will present simulations results using the real pattern set in Section 5.8 and 

show that our analyses mostly agree with the real life cases.  

5.7.1 Analysis Considering the TCAM Width 

As we mentioned in Section 5.2, the width (w) of TCAM is configurable. In this section, we 

study the impact of TCAM width on matching long patterns. We will perform analysis of 

correlated patterns in Section 5.7.3. In this section, we first study the effects of TCAM width 

on memory usage, including the TCAM space usage and SRAM space usage. Then we study 

how modifying these parameters affects the number of memory accesses, which in turn 

determines the pattern matching rate.  As explained previously, the number of memory 

accesses is affected by two factors: the number of TCAM hits and the size of partial hit list. 

Therefore, we explain the effect of TCAM width on these two factors later in this section.  

Effects on TCAM Space  

Suppose we have a total of k patterns, each with mi bytes. If we set the TCAM width to w, 

then each pattern will be divided into ⎡ ⎤wmi /  prefix or suffix patterns, where ⎡ ⎤  denotes 

rounding up. As each TCAM entry is w bytes and ⎡ ⎤wmi /  entries are needed, the total TCAM 

space required to accommodate these patterns is ⎡ ⎤∑ wmw i /* . It increases as w increases 

because short patterns and suffix patterns need to be padded (the padding effect is 

represented by ⎡ ⎤  in the equation) to the TCAM width.  

Effects on SRAM Memory Space for Mapping Table 

The mapping table is a three dimensional table that can be accessed with the prefix index, 

suffix index, and the distance between them. The size of the prefix pattern index is 

⎡ ⎤ )1/( −∑
i

i wm  , which can be proved through two cases. Case 1: If a pattern is shorter than w 
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bytes, it has no prefix pattern. This agrees with ⎡ ⎤ 01/ =−wmi .  Case 2: For a pattern longer 

than w, although there is one prefix pattern, it generates new prefix patterns after intermediate 

suffix patterns are matched. Hence, it also requires ⎡ ⎤ 1/ −wmi  indices. Therefore, independent 

of the pattern length, the number of prefix indices is ⎡ ⎤ 1/ −wmi  per pattern and the total 

is ⎡ ⎤ )1/( −∑
i

i wm  for all patterns. Similarly, the size of the suffix pattern indices is also 

⎡ ⎤ )1/( −∑
i

i wm . For long patterns, the maximum distance between a prefix pattern and a suffix 

pattern is w. The mapping table size is the product of the above three dimensions, which are 

⎡ ⎤ )1/( −∑
i

i wm , ⎡ ⎤ )1/( −∑
i

i wm , and w respectively.  Multiplying them together, we get 

⎡ ⎤ 2))1/((* −∑
i

i wmw  = O(1/w). Therefore, the size of mapping table decreases as w increases. 

We have shown that the TCAM width greatly affects TCAM and SRAM memory usage. 

In summary, the TCAM space increases as the TCAM width increases, while the SRAM 

memory decreases when the TCAM width increases. Next, we check the effect of the TCAM 

width on the number of memory lookups. As mentioned previously, besides the fixed 

overhead – one TCAM lookup per byte position, the number of memory lookups is affected 

by two factors: the probability of TCAM hits, and the size of the partial hit list. Next, we 

study these two factors in detail.  

Probability of TCAM Hits 

We distinguish between two types of TCAM hits. The first is a real hit, which reports a 

pattern match immediately. For a pattern longer than w, we define the matching of the last 

suffix pattern as a real hit. As at least one real hit is required for one matched pattern, the 

number of real hits is the lower bound of the number of TCAM hits for identifying all the 

patterns. The other type of hit is an associate hit—an intermediate hit that may lead to a real 

hit, i.e., each prefix pattern hit is an associate hit. Associate hits incur extra computation, so 
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we want to minimize the probability of associate hits. Assuming packet contents are random, 

for any w bytes in the packet, there are (28)w possible values and the probability of matching 

one particular pattern of length w is 1/(28)w. As we have analyzed before, there are 

⎡ ⎤ )1/( −∑
i

i wm  prefix patterns of w bytes each. If we assume patterns are independent, the 

probability of having an associated hit at each position is ⎡ ⎤
w

i
i wm

)2(

)1/(

8

−∑ , which decreases 

dramatically when w increases. For example, suppose we have 2000 patterns of 200 bytes 

each. Setting w to be 4 bytes, the associate hit rate at each position is 2.2e-5. If w is 8, it is 

2.6e-15, which is very low. Therefore, to decrease the extra cost for unnecessary TCAM hits, 

a large w is preferred. 

Effects on PHL size 

As discussed in Section 5.5.3, PHL has an upper bound of w for pattern sets that contain long 

patterns only. Let’s study the probability of two neighboring overlapping TCAM hits. 

Suppose we observe a match at position i. Such an observation imposes extra constraints on 

whether a match could occur at position i+j (j<w) because the last w-j bytes of the first 

position must be identical to the first w-j bytes of position i+j. Assume that patterns are 

independent, the number of overlapped pattern pairs is small and hence PHL is small. If we 

relax this constraint and assume these positions are independent, the expected prefix pattern 

list size is w times the independent TCAM associate hit rate ( ⎡ ⎤
w

i
i wm

)2(

)1/(

8

−∑  as we showed 

previously). This comes to ⎡ ⎤
w

i
i wm

w
)2(

)1/(
* 8

−∑ , which approaches zero quickly as w grows. For 

example, suppose there are 2000 patterns with 200 bytes each. If w is set to be 4 bytes, the 

expected size of PHL at each position is 8.8e-5. If w is 8, it is 2e-14, which is well below 1. 

We will analyze the PHL for correlated patterns in the Section 5.7.3.  
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Summary on the impacts of TCAM width 

The above analyses show that a small value of w can save TCAM space. However, a small w 

also generates many prefix and suffix patterns, which results in a large mapping table. In 

addition, since each entry in the TCAM is small, a small w reports many matches, creates a 

large PHL and requires many matching table lookups. Therefore, if there is enough TCAM 

space, we should set w larger than most of the pattern sizes and allow only a very small 

number of patterns to be divided into prefix and suffix patterns. 

5.7.2 Analysis of Memory Lookups 

Memory lookups are usually the bottleneck of packet processing systems [88]. There are two 

types of memory lookups in our scheme: TCAM lookups and regular memory (e.g., SRAM) 

lookups in the pattern table and matching table. TCAM lookups and memory lookups can be 

pipelined as illustrated in Figure 5-6. We can perform memory lookups for a current position 

while consulting TCAM with the data at next position. Suppose we have a packet of n bytes 

and the TCAM lookup time is a for each lookup. We will have a deterministic TCAM 

processing time of n*a.  

If the TCAM reports a miss, no extra memory lookup will be initiated in this position i 

and the memory lookup process is idle. Otherwise, the proposed scheme will first perform 

one memory lookup in the pattern table. If the matched pattern is a valid suffix pattern and 

there are ji items in the current PHL, we need another ji memory lookups in the matching 

table. Hence, a maximum of ji+1 memory lookups will be issued for a TCAM hit. The 

memory lookup time may be shorter or longer than the TCAM lookup time, thus the memory 

lookup process may be backlogged. For example, in Figure 5-6, positions 1, 2, and 3 all have  
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Figure 5-6. Memory lookup process. 

TCAM hits, increasing the amount of time spent processing memory lookups. Later when 

there are some TCAM misses, the memory lookup process can catch up with the TCAM 

lookup speed. Therefore, only the last memory backlog position (n’) is important. The overall 

packet scan time is the sum of the time needed for the TCAM accesses up to this position 

(n’*a) and the memory lookup time after this position (∑ += ii
n

ni hj *)1(' ). Here hi is the 

TCAM hit rate. ji is usually a very small number (<1) and the TCAM hit rate (hi) is also low 

as we analyzed in Section 5.7.1. Therefore, the second term ∑ += ii
n

ni hj *)1(' is small. In 

such a case, the speed of the pattern matching is dominated by the TCAM lookup time. 

Assuming TCAM lookup time is 4 ns, the total time to scan an n bytes packet is 4n ns. This 

yields a matching speed of 8*n/4n = 2 Gbps if we have a small TCAM hit rate and PHL size. 

We will verify these analyses through simulation later in Section 5.8.3. 

Having explained the memory access process (which affects the packet scanning rate), 

next we study the policies for protecting the system against malicious attack. We study this 

because high speed processing is an essential requirement for packet processing systems. 

Many existing systems process normal traffic at high speeds, but perform slowly for certain 

rarely-occurring packets. Hence, without protection techniques, intruders could flood the 

system with these hard-to-process packets to substantially reduce system performance. 
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5.7.3 Protection against Malicious Attacks 

One application of our proposed pattern matching scheme is network intrusion detection 

systems. Such a system itself can be exposed to malicious attacks. For example, packet 

generators like SNOT [89] generate packets that demand a lot of processing power to slow 

down the intrusion detection systems. We need to protect our pattern matching scheme 

against such attacks.  

Our pattern matching scheme for the correlated patterns is subject to such attacks. Unlike 

long patterns, where we can discard the partial hit results that are w positions away, for 

correlated patterns, the distance between two sub-patterns can be larger than w. In addition, 

each sub-pattern can be smaller than w bytes, which generates a higher TCAM hit rate than 

longer patterns. Intruders may intentionally send packets that cause a lot of partial hits for the 

correlated pattern to create a long PHL. Later, when a suffix pattern is matched, a large 

number of memory lookups have to be issued and the system performance degrades 

dramatically. 

To deal with this kind of attack, we study the size of PHL for correlated patterns. First we 

answer the question: if we match a pattern of length m at position i, what is the probability 

that we can construct an input to match another pattern at position i+j? If j is one, this means 

matching two overlapping patterns that are one byte apart. Such probability is low because it 

requires the first m-1 bytes of the second pattern are the same as the last m-1 bytes of the first    

pattern. Given k independent patterns, the probability of two overlapping patterns that are one 

byte apart is 1- )))2)!*(()2/((()!)2(( 181818 kmmm k −−− − . For example, k = 1000 and m = 4, it is 

0.029, which is low.  

When j = m and the two patterns do not overlap, intruders can pack the sub-patterns 

consecutively to form an n byte packet. This packet generates matches at every n/m positions, 



 

 - 128 - 

where m is the shortest sub-pattern length. Thus the PHL can have n/m items or more. To 

limit the PHL size, we recommend limiting the maximum distance between two sub-patterns 

to be considered as correlated. This recommendation is reasonable because in practice, 

patterns very far apart are unlikely to be considered correlated. For example, the maximum 

distance between patterns in SNORT patterns is 255. 

Now, we have finished analyzing our proposed scheme’s worst-case performance using 

theoretical techniques. This is based on the assumption that patterns are independent. Next 

we apply our scheme to the real world pattern sets and traces to demonstrate the effectiveness 

of the proposed scheme.  

5.8 Simulation Results 

In this section, we test the effectiveness of our proposed TCAM-based pattern matching 

scheme. We use two pattern sets. The first is a virus signature set from ClamAV [46], which 

contains simple patterns only. The second is from the SNORT intrusion detection [10] system 

with many correlated patterns. We start this section with a methodology section in 5.8.1. We 

present simulation results on the ClamAV pattern sets in Section 5.8.2 and SNORT patter 

sets in Section 5.8.3.  

5.8.1 Methodology 

We test our scheme on two complex pattern sets: ClamAV [46] and SNORT. ClamAV 

(Version 0.15) contains 1768 simple fixed string patterns. The SNORT system (v2.1.2) has 

1836 string patterns. 1039 of them are simple patterns and 527 are correlated patterns with up 

to seven sub-patterns in one correlated pattern. 

Two sets of real-world packet traces are used during the experiments. The first set is the 

intrusion detection evaluation data set from the MIT DARPA project [22]. It contains more 
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than a million packets. The second data set is from a local LAN with 20 machines at the UC 

Berkeley networking group, which contains more than six million packets. The 

characteristics of the MIT dump are very different from Berkeley dump. The former consists 

mostly of long packets containing some worms (but not viruses), with the average packet 

payload length 507 bytes. In the Berkeley dump, however, most packets are normal traffic 

without worms and viruses, with 68 bytes on average in the packet payload. A large fraction 

of packets in the Berkeley trace are ICMP and ARP packets that have very short packet 

payloads, which makes detection very easy because not many patterns can occur in such a 

small payload. 

Although the MIT dump contains intrusions, it does not contain many computer viruses. 

To test the performance of our scheme on ClamAV virus database under malicious input, we 

generate synthetic traffic containing viruses to stress test our scheme. We generated four sets 

of synthesized data, each with 1, 10, and 100 randomly inserted virus patterns per testing 

packet respectively.  

For all the test traces we record the average and maximum Partial Hit List (PHL) size for 

each packet. As we mentioned in Section 5.7, the size of PHL denotes the number of memory 

lookups needed per byte position. Hence, the size of PHL transitively affects the scanning 

rate. We used three metrics for the PHL size over the entire trace data. Avg is the mean of the 

average PHL size over all packets. AvgMax denotes the mean of the maximum PHL sizes 

over different packets. Max records the maximum size over all packets, which denotes the 

maximum number of entries in memory during the run.  

5.8.2 Results on ClamAV Pattern Set 

ClamAV (Version 0.15) has 1768 simple patterns. The average pattern length is 55 bytes. 

Figure 5-7 plots the distribution of the pattern length. It varies from 6 bytes to 2189 bytes.  
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Figure 5-7. Distribution of pattern length over the ClamAV rule set.  

 

Figure 5-8.TCAM space consumed vs. TCAM width. 
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Figure 5-9. Mapping table size vs. TCAM width.  

With such a large variance in pattern lengths, selection of the TCAM width w is critical.  

Figure 5-8 shows the total TCAM space needed to accommodate all the patterns under 

different values of w. When w increases, the TCAM space requirement increases too due to 

the padding for short and suffix patterns. This agrees with our analysis in Section 5.7.1. The  

100 

1000 

10000

4 16 64 256 1024 4096
TCAM width (byte)

T
C

A
M

  S
pa

ce
 (K

B
) 

0
50

100
150
200
250
300
350
400

1 10 100 1000 10000
Length (bytes)

N
um

be
r o

f P
at

te
rn

s



 

 - 131 - 

Table 5-7. PHL size for ClamAV signature set. 

MIT Dump Berkeley Dump TCAM 
Width Avg AvgMax Max Avg AvgMax Max 

4 0.042 0.27 4 0.03 0.48 4 
8 4.8e-6 5.6e-4 8 1.e-6 1.9e-5 7 

16 0 0 0 4.3e-7 5.8e-6 3 
32 0 0 0 0 0 0 
64 0 0 0 0 0 0 

128 0 0 0 0 0 0 
 

size of the mapping table in SRAM, however, is negatively correlated to the TCAM width as 

shown in Figure 5-9. When w is small, a long pattern generates many prefix and suffix 

patterns. Therefore, the number of prefix and suffix indices grows, resulting in a large 

mapping table. Combining the analyses from Figure 5-8 and Figure 5-9, we choose w to be 

128 bytes and use a 240 KB TCAM and 657 KB SRAM.  

5.6.2.1 Test Results on Real Data 

Table 5-7 shows the PHL size for both the MIT and Berkeley traces. Since these two traces 

do not contain many viruses, the PHL size is extremely low when the window size is 

reasonably large. When the size of PHL is small, the memory lookup process is mostly idle 

and the system performance is bounded by the TCAM access rate only. So, we can achieve 

2Gbps rate with a 240 KB TCAM. 

5.6.2.2 Test on Synthesized “Worst-case” Packets 

We create synthesized data that contains a large number of virus signatures to stress test our 

scheme. We generate three sets of data, the first set contains a single virus patterns per packet, 

the second set contains ten patterns in a sequence per packet, and the last set contains one 

hundred patterns per packet. For these synthesized packets, many TCAM hits are generated, 

resulting in a larger PHL size compared to the real traffic. Figure 5-10 shows the average 

PHL size. It decreases quickly as we increase the TCAM width w. In addition,  
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Figure 5-10.  Average of PHL size over synthesized data.  
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Figure 5-11. Average of Max PHL size per packet.  

having multiple patterns in the packets does not increase the PHL size dramatically. This is 

because we can delete the prefix patterns that are w bytes ahead, so the number of patterns in 

a w byte window may not increase proportionally to the increase of the total number of 

patterns per packet.  

The AvgMax PHL size per packet is notably larger than Avg as plotted in Figure 5-11. 

This shows that some contents in the packets cause backlogs in the memory lookup process. 

The effect of the TCAM width again has significant impact—if we set w to be 128 bytes or 

longer, the AvgMax PHL size is around one per packet. This means that even with this 

“worst-case” data, the memory lookup process can still finish within one or two cycles after 

the TCAM lookup process finishes. This has the same effect as increasing the packet size by 

one or two bytes. Given the fact that IP packets typically consist of at least tens of bytes and  
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Figure 5-12. Max PHL size over all packets. 

we do not need to perform pattern matching on the packet header, the impact of slightly 

increasing the “effective packet length” for matching purposes is negligible. Hence the 

packet scan rate is still 2Gbps over this set of synthesized data. Figure 5-12 illustrates the 

maximum PHL size over all packets. When w is small (e.g., 16), the maximum is small 

because the max PHL size is bounded by w. When w gets larger, the PHL size increases and 

then drops quickly because the probability of a TCAM hit becomes small for large w. There 

is a big difference in the PHL sizes between packets containing one virus pattern and ten 

patterns. However, as we increase the number of viruses per packet, the growth of max PHL 

size slows. This is because within w bytes, the number of viruses is limited, even though we 

can have a hundred viruses in the whole packet. 

5.8.3 Results on SNORT Pattern Set 

The current Version of SNORT (v2.1.2) contains 1836 string patterns. The lengths of 

patterns are much shorter than the ClamAV signature set: mostly from 10 bytes to 100 bytes. 

In addition, there is a noticeable amount of short patterns of one or four bytes. Among these 

string pattern patterns, 1039 are simple patterns and 527 are correlated patterns with up to  
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Table 5-8. PHL size for SNORT signature set. 

MIT Dump Berkeley Dump Window 
Size Avg AvgMax Max Avg AvgMax Max 
20 0.5523 2.7683 8 0.4702 1.5765 12 
40 0.9881 3.5376 14 0.6500 1.8661 18 
60 1.3151 3.9960 14 0.7313 1.9652 23 
80 1.5491 4.2158 16 0.7587 2.0373 24 

100 1.6867 4.3485 18 0.7661 2.0740 25 
120 1.7725 4.4475 18 0.7669 2.0768 25 
140 1.8308 4.5722 19 0.7669 2.0768 25 
160 1.8800 4.6643 19 0.7669 2.0768 25 
180 1.9244 4.7386 19 0.7669 2.0768 25 
200 1.9662 4.8079 20 0.7669 2.0768 25 

 

seven sub-patterns in one correlated pattern. We set the TCAM width to 128 bytes and the 

patterns can be mapped into a TCAM size of 295 KB.  

Since SNORT has correlated patterns, we first test the impact of different window sizes 

ranging from 20 to 200 bytes. Compared to ClamAV, the PHL size is much larger as shown 

in Table 5-8. This is because the SNORT signature set contains a lot of short patterns. In  

addition, the size of PHL increases when the window size increases because it needs to keep 

the partial hit information longer. However, as the window size grows larger, PHL increases 

at a slower rate. 

A large PHL is problematic since it requires many memory lookups and slows down the 

system. Therefore, we studied the total scanning time (including memory lookups and TCAM 

lookups). Since memory (e.g., SRAM) access is usually slightly faster than TCAM access 

rates, we simulated scenarios with different ratios of memory to TCAM access times, (which 

we call the memory ratio). For example, a value of one means memory access speed is equal 

to TCAM access speed, while 0.2 denotes that memory access speed is 5 times the TCAM 

access rate. 



 

 - 135 - 

 

1

1.2

1.4

1.6

1.8

2

2.2

60 70 80 90 100
% of Packets

Sc
an

 R
at

e

0.2
0.4
0.6
0.8
1

Memory Ratio

 
Figure 5-13. Effects of memory ratio on scan rates. 

Figure 5-13 shows the impact of memory ratio on the scan rate, with each curve standing 

for one memory ratio setup. The y axis is the scanning rate, while the x axis is the percentage 

of packets that were processed at that rate. For example, a value of two (y axis) at 60 percent 

(x axis) means that 60% of the packets have a scan rate of 2 Gbps. Simulation results show 

that the scan rate is close to 2Gbps for most of the packets (80%) under all settings. Since the 

TCAM access rate is 2Gbps, the TCAM access speed is the bottleneck for these packets. For 

the remaining around 20% of packets, the memory access process is backlogged and 

therefore the overall system performance is lower than the TCAM access rate. Nevertheless, 

the scan rate is over 1Gbps for all memory ratios we tested. Sung, et al., reported that a 10 

Gbps rate can be achieved by extending our scheme to jump multiple bytes at a time [90].   

5.9 Conclusions  

With the increasing importance of network protection from cyber-attacks, it is essential to 

develop mechanisms for building effective defenses against virus, worm, and denial of 

service attacks. The rapid rise in link bandwidths implies that network protection 

mechanisms must be capable of operating at multi-gigabit rates. A key operation for network 

(G
bp
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protection is pattern-matching to check for virus and worm signatures. In this chapter, we 

developed a TCAM-based scheme for matching fixed string patterns and composite patterns. 

Our proposed scheme can scan thousands of patterns simultaneously at gigabit rates. By 

evaluating its performance using multiple real-network traces we showed that it is indeed 

suitable for multi-gigabit operation. The scheme can also be extended to achieve even higher 

rates with larger TCAMs. 

The methods presented in this chapter are only for fixed string and composite patterns. 

As mentioned in Section 5.3, there are many regular expression patterns in addition to these 

two patterns that are used in the network payload scanning applications. In the next chapter, 

we present schemes for fast regular expression matching.  
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6 Fast and Memory-Efficient Regular Expression 

Matching  

Previous chapters provided schemes for high-speed, fixed-string matching. More recently, 

fixed string patterns are being replaced with the need to support regular expression pattern 

matching in packet scanning applications. This chapter explores algorithms for fast regular 

expression matching. We first show that memory requirements using the well-known 

traditional methods for this problem are prohibitively high for some patterns used in packet 

scanning applications. We then propose regular expression rewrite techniques that rewrite 

these patterns into memory efficient ones. In addition, we present grouping schemes that 

strategically compile a set of regular expressions into several scanners that run in parallel, 

resulting in a significant improvement of regular expression matching speed without much 

increase in memory consumption. We implement a fast and memory efficient regular 

expression scanner for real-world patterns of packet scanning applications. Our experimental 

results using real-world traffic collected from Berkeley and MIT show that our 

implementation achieves a factor of 12 to 42 speed improvement over a commonly used 

DFA-based scanner. Compared to the state-of-art NFA-based implementation, our DFA-

based packet scanner achieves a 50 to 700 times speedup with just a 2.6 to 8.4 times increase 

in memory usage.  
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6.1 Introduction 

As described in Chapter 2, packet content scanning (also known as Layer-7 filtering or 

payload scanning) is crucial to network security and network monitoring applications. The 

payload of packets in a traffic stream is matched against a given set of patterns to identify 

specific classes of applications, viruses, protocol definitions and so on.  

Viruses and worms have been structured by their authors so as to defeat simple pattern 

matching approaches. For example, polymorphic worms and attacks to complex protocols 

make it impossible to enumerate all the possible signatures using explicit strings. Regular 

expressions, however, can express these patterns due to their rich expressive power. For 

example, a regular expression “^Entry /file/[0-9.]{71,}//.*\x0aannotate\x0a” is for detecting 

a Concurrent Versions System (CVS) revision overflow attack.  This pattern searches for a 

fixed pattern “Entry/file/” followed by 71 or more 0 to 9 digits, then a fixed pattern “//” 

followed by some arbitrary characters (.*), finally the pattern “\x0aannotate\x0a”.  

Obviously, it is very hard to catch this type of attacks using fixed string patterns. As a result, 

regular expressions are replacing explicit string patterns as the pattern matching language of 

choice in packet scanning applications. In the Linux Application Protocol Classifier (L7-

filter) [22], all protocol identifiers are expressed as regular expressions. Similarly, the 

SNORT [10] intrusion detection system has evolved from no regular expressions in its rule 

set in April 2003 (Version 2.0) to 1131 out of 4867 rules using regular expressions as of 

February 2006 (Version 2.4). Another intrusion detection system, Bro [91], also uses regular 

expressions as its pattern language.  

As regular expressions gain wider adoption for packet content scanning, it is imperative 

that out matching algorithms maintain line-speed while using moderate amounts of memory. 

Unfortunately, these requirements are not met in many existing payload scanning 
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implementations. For example, when all 70 protocol filters are enabled in the Linux L7-filter 

[22], we found that the system throughput drops to less than 10Mbps on a 100Mbps network 

using a computer with 750 MHz PIII and 512 MB of memory, which does not satisfy the 

requirements for high speed edge networks, where gigabit Ethernets have become the norm. 

Moreover, we found that over 90% of the CPU time is spent in regular expression matching, 

leaving little time for other intrusion detection or monitoring functions. At the same time, the 

memory requirements using traditional methods are prohibitively high for many patterns used 

in packet scanning applications. Although many schemes (including our approach in Chapter 

5) for fast string matching [85, 86, 92-97] have been developed recently in intrusion detection 

systems, they focus only on explicit string patterns and cannot be easily extended for fast 

regular expression matching.  

In this chapter, we study the reasons that traditional regular expression techniques fail to 

provide high speed regular expression matching for networking applications, and then 

propose our scheme for constructing fast regular expression recognizers. The previous 

chapter already gave a brief review of the patterns used in packet scanning systems and states 

the general pattern processing goal. In this chapter, we focus on the regular expression 

patterns. We begin with a brief survey of traditional regular expression pattern matching 

methods in Section 6.2. In Section 6.3, we study the special characteristics of typical regular 

expression patterns used in network scanning applications. We show that some of these 

patterns lead to exponential memory usage or low matching speed when using the traditional 

methods. Based on these analyses, we propose two rewrite rules for specific regular 

expressions in Section 6.4. The rewrite rules can dramatically reduce the size of resulting 

DFAs, making them small enough to fit in memory. In Section 6.5, we develop techniques to 

intelligently combine multiple DFAs into a small number of groups to accelerate the 

matching speed, while avoiding the exponential growth in the number of states in memory.  
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Table 6-1. Features of Regular Expressions. 

Syntax Meaning Example 
^ Pattern to be matched at the 

start of the input 
^AB means the input starts with AB. 
A pattern without ‘^’, e.g., AB, can be 
matched anywhere in the input. 

| OR relationship A|B denotes an occurrence of either A or B. 
. A single character wildcard  

? A quantifier denoting one or 
less 

A? denotes A or an empty string. 

* A quantifier denoting zero 
or more 

A* means an arbitrary number of As. 

[97] Repeat A{100} denotes a sequence of 100 As. 
[ ] A class of characters [lwt] denotes a letter l, w, or t. 
[^] Anything but [^\n] denotes any character except \n.  

Finally, we demonstrate the effectiveness of our rewriting and grouping algorithms through a 

detailed performance analysis using real-world payload scanning pattern sets in Section 6.6. 

6.2 Taxonomy 

In this section, we give a brief overview of regular expressions with a survey of the existing 

approaches for regular expression matching.  

6.2.1 Introduction to Regular Expression 

A regular expression describes a set of strings without explicitly enumerating them. Table 6-1 

lists the regular expressions operators used to describe patterns within packets. An anchor 

(“^”) enforces that a pattern must be matched at the beginning of the input. “|” denotes or 

relationship. “.” is a single character wildcard. In other words, any character can be matched 

using “.”. “?” is a quantifier representing zero or one and “*” denotes zero or more. “{}” can 

be used to define more specific occurrence restrictions. For example, “{3, 5}” stands for 

repeating three to five times. We can also use “[]” to define a class, i. e., characters inside the 

brackets form a class and they have or relationships. When “^” appears in “[]”, it has a 

special meaning of exception. For example, “[^\n]” denotes anything but the return key.  
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Let us take the regular expression for detecting Yahoo messenger traffic as an example: 

“^(ymsg|ypns|yhoo).?.?.?.?.?.?.?[lwt].*\xc0\x80”. Yahoo messenger now has more than 76 

million users in April 2006 according to comScore Media Metrix [91] and it is significant 

source of network traffic. This particular pattern is included in the popular Linux L7-filter set 

[22] for detecting Yahoo messenger traffic. According to the analysis by Venkat [99], all the 

Yahoo messenger commands start with ymsg, ypns or yhoo. Therefore, this pattern first 

identifies “(ymsg|ypns|yhoo)”. The next seven or fewer bytes contain command length and 

Version information that varies among packets. So this pattern ignores those by using 

“.?.?.?.?.?.?.?”. Then it identifies a letter l, w or t. l stands for "Yahoo service verify”, w 

denotes "encryption challenge command", and t represents "login command". This pattern 

ends with ASCII letters c0 and 80 in the hexadecimal form because 0xC080 is the standard 

argument separator in hexadecimal notation.  

6.2.2 Solution Space for Regular Expression Matching 

Regular expression matching has been studied for decades. In this section, we quickly review 

the traditional approaches to the general regular expression recognition problem. At the end 

of this section, we point out typical patterns that are easy to match using these traditional 

methods as well as patterns that are relatively expensive (in terms of computation or memory 

consumption). 

 Finite automata are a natural formalism for regular expressions matching. There are two 

main categories: Deterministic Finite Automaton (DFA) and Nondeterministic Finite 

Automaton (NFA). This section provides a brief survey of existing methods using these two 

types of automata. 

A DFA consists of a finite set of input symbols, denoted as ∑, a finite set of states, and a 

transition function δ [100]. In networking applications, ∑ contains the 28 symbols from the 
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extended ASCII code. Among the states, there is a single start state q0 and a set of accepting 

states. The transition function δ takes a state and an input symbol as arguments and returns a 

state. A key feature of DFA is that at any time there is only one active state in the DFA. An 

NFA is similar to a DFA except that the δ function maps from a state and a symbol to a set of 

new states. Therefore, multiple states can be active simultaneously in an NFA.  

Using automata to recognize regular expressions introduces two types of complexity: 

automata storage and processing costs. A theoretical worst case study [100] shows that a 

single regular expression of length n can be expressed as an NFA with O(n) states. When the 

NFA is converted into a DFA, it may generate O(∑n) states, where ∑ is the set of symbols. 

The processing complexity for each character in the input is O(1) in a DFA, but is O(n2) for 

an NFA when all n states are active at the same time.  

To handle m regular expressions, two choices are possible: processing them individually 

in m automata, or compiling them into a single automaton. The former is used in SNORT [2] 

and Linux L7-filter [1]. The latter is proposed in recent studies [101, 102] so that the single 

composite NFA can support shared matching of common prefixes of those expressions. 

Despite the demonstrated performance gains over using m separate NFAs, in practice this 

approach requires large numbers of active states. This has the same worst case complexity as 

the sum of m separate NFAs. Therefore, this approach on a serial processor can be slow. As 

given any input character, each active state must be serially examined to obtain new states. 

In DFA-based systems, compiling m regular expressions into a composite DFA decreases 

the processing complexity over running m individual DFA. Specifically, a composite DFA 

reduces processing cost from O(m) (O(1) for each automaton) to O(1), i.e., a single lookup to 

obtain the next state for any given character. However, the number of states in the composite 

automaton grows to O(∑mn) in the theoretical worst case. In fact, we will show in Section  
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Table 6-2. Worst case comparisons of DFA and NFA. 

One regular expression 
of length n 

m regular expressions 
compiled together 

 

Processing  
complexity 

Storage cost Processing  
complexity 

Storage cost 

NFA O(n2) O(n) O(n2m) O(nm) 

DFA O(1) O(∑n) O(1) O(∑nm) 
 

6.5.2 that typical patterns in packet payload scanning applications indeed interact with each 

other and can cause the creation of an exponential number of states in the composite DFA.  

There is a middle ground between DFA and NFA, called lazy DFA. Lazy DFAs are 

designed to reduce the memory consumption of conventional DFAs [24, 101]: a lazy DFA 

keeps a subset of the DFA that matches the most common strings in memory; for uncommon 

strings, it extends the subset from the corresponding NFA at runtime. As such, a lazy DFA is 

usually much smaller than the corresponding fully-compiled DFA and provides good 

performance for common input strings. The Bro intrusion detection system [3] adopts this 

approach. However, malicious senders can easily construct packets with uncommon strings 

to keep the system busy and slow down the matching process. As a result, the system will 

start dropping packets and malicious packets can sneak through.  

Having explained the complexity of DFA-based approaches and NFA-based approaches, 

next we present some typical patterns that are easy, in terms of computation and memory 

requirement, to match and patterns that are hard to match.  

Easy-to-match patterns 

It is obvious that patterns with fixed strings only are very easy to match. Patterns starting 

with an anchor (“^”), known to start at the initial position, are relatively easier to match than 

those without. Many protocol patterns, such as the previously mentioned Yahoo messenger 

example, use anchors and place identifying prefix string in the first position after the anchor 
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(“^(ymsg|ypns|yhoo)” for the Yahoo pattern).   For an input that does not start with a valid 

prefix of the pattern, we can easily tell from the beginning of the input that it will not match 

the pattern. Patterns without an anchor, however, force us to check every byte in the input to 

make such a conclusion. 

Hard-to-match patterns 

Generally speaking, patterns with many wildcards (“.” and “*”) are hard to match. This is 

because wildcards will interact with other wildcards to form large DFA components, when 

using DFA-based approaches. For NFA-based approaches, wildcards will activate multiple 

states simultaneously, causing the processing complexity to increase dramatically. Similarly, 

patterns with classes of characters “[]” are also be hard to match because it yet is another 

form of wildcards. 

The most complicated patterns we encountered in the real world are those with semantic 

ambiguity. If there are multiple ways of matching an input against a pattern, DFA-based 

approaches require many states to remember all the possible ways that patterns could match. 

This causes a high memory requirement. At the same time, NFA-base approaches will 

generate many active states, hence resulting in high processing complexity. A more detailed 

analysis of these hard-to-match patterns will be shown later in Section 6.4.1. 

6.3 Regular Expression Matching in Network Scanning 

applications 

The previous section surveyed the most representative traditional approaches to regular 

expression matching. In this session, we show that these techniques sometimes do not work 

efficiently for the patterns in networking applications. We begin this session with the special 

matching requirements of networking applications. Next, we study the typical structures of 

patterns in the networking applications. After that, we show that certain structures in 
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networking applications patterns are hard to match using traditional methods: they either 

require a large memory usage or yield a high computation cost. Finally we present our 

problem statement.  

6.3.1 Requirements and Design Considerations 

Unlike traditional pattern matching applications, e.g., searching for a pattern in a local file, 

network applications have unique requirements for pattern matching. First, the target is a 

continuous input stream rather than a fixed length string. Second, matching must be 

performed at high speed. Third, the memory consumption must be within the capacity and 

budget of modern computers or routers. Finally, the pattern matching scheme must be 

resilient to malicious attacks. In this section, we explain these points in detail. 

6.3.1.1 Identify Patterns in an Input Stream 

Most existing studies of regular expressions focus on a specific type of evaluation, that is, 

checking if a fixed length string belongs to the language defined by a regular expression. 

More specifically, a fixed length string is said to be in the language of a regular expression, if 

the string is matched from start to end by a DFA corresponding to that regular expression. In 

contrast, in packet payload scanning, a regular expression pattern can be matched by the 

entire input or specific substrings of the input. Without a priori knowledge of the starting and 

ending positions of those substrings (unless the pattern starts with “^” that restricting it to be 

matched at the beginning of the input), the DFAs created for recognizing all substring 

matches can be highly complex. This is because the DFA needs to remember all the possible 

sub-prefixes it has encountered. When there are many patterns with a lot of wildcards, they 

can be simultaneously active (recognizing part of the pattern). Hence, a DFA needs many 

states to record all possible combinations of partially matched patterns. 
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For a better understanding of the matching model, we next present a few concepts 

pertaining to the completeness of matching results and the DFA execution model for 

substring matching. Given a regular expression pattern and an input string, a complete set of 

results contains all substrings of the input that the pattern can possibly match. For example, 

given a pattern ab* and an input abbb, three possible matches can be reported, ab, abb, and 

abbb. We call this style of matching Exhaustive Matching. It is formally defined as below:  

Exhaustive Matching: Consider the matching process M as a function from a pattern P 

and a string S to a power set of S, such that, M(P, S) = {substring S' of S| S' is accepted by the 

DFA of P}. 

In practice, it is expensive and often unnecessary to report all matching substrings, as 

most applications can be satisfied by a subset of those matches. For example, if we are 

searching for the pattern for the Oracle user name buffer overflow attempt 

“^USR\s[^\n]{100,}”, which searches for packets starting with “USR\s” and followed by 100 

or more non-return characters. An incoming packet with “USR\s” followed by 200 none 

return characters, may have 100 ways of matching the pattern because each combination of 

the “USR\s” with the sequential 100 to 200 characters is a valid match of the pattern. In 

practice, reporting just one of the matching results is sufficient to detect the buffer overflow 

attack. Therefore, we propose a new concept, Non-overlapping Matching, that relaxes the 

requirements of exhaustive matching.  

Non-overlapping Matching: Consider the matching process M as a function from a 

pattern P and a string S to a set of strings, specifically, M(P, S) = {substring Si of S| ∀ Si, Sj 

accepted by the DFA of P, Si ∩ Sj  = φ }.  

If a pattern appears in multiple locations of the input, this matching process reports all 

non-overlapping substrings that match the pattern. We revisit our example above. For the 

pattern ab* and the input abbb, the three matches overlap by sharing the prefix ab. For this 
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example, if we assume non-overlapping matching, we only need to report one match instead 

of three.  

For most payload scanning applications, we expect that non-overlapping matching would 

suffice, as those applications are mostly interested in knowing if certain attacks or application 

layer patterns appear in a packet. In fact, most existing scanning tools like grep and Flex and 

systems like SNORT [10] and Bro [28] implement special cases of non-overlapping matching 

such as left-most longest matching or left-most shortest matching. As we show later this 

section, by restricting the solutions for non-overlapping matching, we can construct more 

memory-efficient DFAs.  

Note that it is possible for patterns to be fragmented into multiple packets since each 

packet has a limited size. In SNORT and Bro, packets are passed to a defragmenter before 

entering the pattern matching system. We also assume having such a defragmentation 

component as explained earlier in Section 1.4.2.   

6.3.1.2 High Speed  

The above section discussed that we need to matching strings inside data stream. The rate of 

the input packet stream is usually at at least 1 Gigabit rate and hence the packet payload 

matching must also be performed at least at 1 Gigabit rate. In this section, we map this 

requirement into the regular expression matching process and explore the tradeoff of different 

matching methods.  

As discussed in Section 6.2.2, NFA-based approaches have O(n2) processing complexity 

given an input character for a regular expression of length n, while DFA-based approaches 

have a significantly lower computation cost of O(1). Hence, in this chapter, we adopt DFA-

based approaches to achieve a high matching speed. There are two DFA-based automata 



 

 - 148 - 

processing: repeated searches and one pass search. Next we explain these processing 

approaches in detail. 

Repeated searches. A DFA can be created directly from a pattern using standard DFA 

construction techniques [100, 101]. To find the set of matching substrings (using either 

exhaustive or non-overlapping matching), the DFA execution needs to be augmented with 

repeated searches of the input: an initial search starts from the beginning of the input, reading 

characters until (1) it has reported all matches (if exhaustive matching is used) or one match 

(if non-overlapping matching is used), or (2) it has reached the end of the input. In the former 

case, the new search will start from the next character in input (if exhaustive matching is 

used) or from the character after the reported match (if non-overlapping matching is used). In 

the latter case, a new search is initiated from the next character in the input. This style of 

repeated scanning using DFAs is commonly used in language parsers. However, this repeated 

scanning process is slow for packet payload scanning where the probability of the packet 

payload matching any particular pattern is low (verified in Section 6.6.6).  

One-pass search. In the second approach, “.*” is pre-pended to each pattern without ‘^’, 

which explicitly states that the pattern can be matched anywhere in the input. Then, a DFA is 

created for the extended pattern. As the input is scanned from start to end, the DFA can 

recognize all substring matches that may start at different positions of the input. Using one 

pass search, this approach can truly achieve O(1) computation cost per character, thus 

suitable for networking applications. To achieve a high scanning rate, we adopt this approach 

in the rest of the study. This approach, however, may generate a larger number of DFA states 

compared one based on repeated searches. We will address this problem in Section 6.4 and 

6.5, with Section 6.4 emphasizing on matching a single regular expression and Section 6.5 on 

multiple ones. Later, we will compare the performance this one-pass search approach and the 

repeated search approach in Section 6.6.6 
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6.3.1.3 Low Memory Requirements 

Packet processing systems usually have limited memory, especially limited fast memory. The 

most popular fast memory used in routers today is Static Random Access Memory (SRAM). 

The largest single-chip SRAM currently available from Cypress is only 72Mb [91]. The size 

of slow memory, i.e., Dynamic random access memory (DRAM), can easily go to Giga- 

bytes. However, its access latency is ten times that of SRAM, which makes it a distant 

second choice for fast regular expression matching purpose. Even if a large DRAM is 

adopted, it still has some fixed capacity. The exponential growth of DFA can easily eat this 

up. Thus, the focus of our approach is to reduce memory overhead of DFA while 

approaching the optimal processing speed of O(1) per character.  

It is worth noting that there are two sources of memory usage in DFAs: states and 

transitions. The number of transitions is linear with respect to the number of states because 

for each state there can be at most 28 (for all ASCII characters) links to next states. Therefore, 

the number of states (in the minimized DFA) is the primary factor in determining the memory 

usage in the rest of the chapter. Also, due to the need for high performance, DFAs using any 

table compression techniques is not adopted because such techniques incur extra memory 

accesses per input character and thus slow the matching process. 

6.3.1.4 Resilience to Attacks 

Many network packet scanning applications are designed for intrusion detection purposes, 

i.e., for filtering out virus or worm attack packets. Therefore, the regular expression scanning 

system itself must be resilient to attacks. Most existing packet scanning systems are 

optimized for common traffic. They spend a longer time or use more memory on packets that 

contain complicated patterns or infrequent appearing patterns. There are two types of attacks 

to these systems. The first is overloading attacks. Intruders (e.g., SNORT system [91] ) attack 
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these systems by maliciously sending a high volume of packets that require heavy 

processing. When the intrusion system slows down and starts to drop the incoming packets, a 

malicious packet can sneak through. The second type of attack is to crash the system. 

Intruders maliciously send packets that require a lot of dynamic memory, thus causing the 

system to crash. 

To be resilient to attacks, the pattern matching system must guarantee good throughput 

even under worst case traffic. In other words, it must deliver deterministic performance both 

in terms of processing complexity and memory usage. 

6.3.2 Patterns Used in Networking Applications 

Having identified the design goals, next we take a detailed look at the patterns in networking 

applications. We study the complexity of DFA for typical patterns used in real-world packet 

payload scanning applications such as Linux L7-filter (as of Feb 2006), SNORT (Version 

2.4), and Bro (Version 0.8V88). The study is based on the use of exhaustive matching and 

one-pass search as we presented in Subsections 6.3.1.1 and 6.3.1.2. Table 6-3 summarizes 

the results.  

Explicit strings generate DFAs of size linear to the number of characters in the pattern. 

25% of the networking patterns, in the three applications we studied (Linux L7-filter, 

SNORT, and Bro), fall into this category and they generate relatively small DFAs with an 

average of 24 states. Usually patterns starting with the anchor “^” generate small DFAs, 

while patterns with wildcards generate large ones. However, patterns in networking 

applications may not follow this form. For example, a buffer overflow attempt string may be 

hidden in a series of valid commands. Wildcards “.*” alone need not create a large number of 

states. 19% of the patterns contain wildcards, but still generate a small number of states (on 

average 27). In these patterns, usually there is only a single wildcard and it doesn’t  
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Table 6-3. An analysis of patterns in network scanning applications. 

    Pattern features Example # of  
states 

% of 
patterns 

Average # 
of states 

1) Explicit strings with k characters ^ABCD 
.*ABCD 

k+1 25.1% 23.6 

2) Wildcards ^AB.*CD 
.*AB.*CD  

k+1 18.8% 27.2 

3) Patterns with ^, a wildcard, and  a 
length restriction j  

^AB.{j+}CD 
^AB.{0, j}CD 
^AB.{j}CD 

O(k*j) 44.7% 180.3 

4) Patterns with ^, a class of characters 
overlaps with the prefix, and a length 
restriction j  

^A+[A-Z]{j}D O(k+j2) 
j~370 

5.1% 136903 

5) Patterns with a length restriction j, 
where a wildcard or a class of 
characters overlaps with the prefix 

.*AB.{j}CD 

.*A[A-Z]{j+}D
O(k+2j) 
j~344 

6.3% >2214 

  

interact with other parts of the pattern. For patterns starting with “^’, they create DFAs of 

polynomial complexity with respect to the pattern length k and the length restriction j. Our 

observation from the existing payload scanning rule sets is that the pattern length k is usually 

limited. The length restriction j is usually small too, unless it is for buffer overflow attempts. 

In that case, it will be more than 300 hundred on average and sometimes even reaches 

thousands. Given large j, some patterns starting with anchors (Case 4) can also result in a 

large DFA with the number of state grows quadratic in j. Although this type of patterns only 

constitutes 5.1% of the total patterns, they create DFAs with an average of 136903 states. 

There are also a small percent (6.8%) of patterns starting with “.*” and having length 

restrictions (Case 5). These create DFAs of exponential sizes. We will address these two 

cases in detail later in Section 6.4.  

We compare the regular expressions used in these three networking applications, 

SNORT, Bro, and the Linux L7-filter, against those used in emerging Extensible Markup 

Language (XML) filtering applications [101, 102] where regular expressions are matched 

over text documents encoded in XML, see Table 6-4. We notice three main differences: 
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 Table 6-4. Comparison of regular expressions in networking applications against those 
in XML filtering. 

 SNORT Bro L7-
filter 

XML 
filtering 

# of regular expressions analyzed 1555 2780 70 1,000-
100,000 

% of patterns starting with “^” 74.4% 2.6% 72.8% ≥80% 
% of patterns with wildcards “., +, ?, *” 74.9% 98.8% 75.7% 50% - 

100% 
Average # of wildcards per pattern  4.7 4.3 7.0 1-2 
% of patterns with class “[ ]” 31.6% 65.8% 52.8% 0 
Average # of classes per pattern 8.0 3.4 4.8 0 
% of patterns with length restrictions on 
classes or wildcards 

56.3% 23.8. 
% 

21.4% ≈0 

 

 (1) While both types of applications use wildcards (‘.’, ‘?’, ‘+’, ‘*’), the patterns for 

packet scanning applications contain larger numbers of them. Many such patterns use 

multiple wildcard metacharacters (e.g., ‘.’, ‘*’). For example, the pattern for identifying the 

Internet radio protocol, “membername.*session.*player”, has two wildcard fragments “.*”. 

Some even contain over ten such wildcard fragments. For example, the pattern for a Domain 

Name Server (DNS) request is “^.?.?.?.?[\x01\x02].?.?.?.?.?.?[\x01-?][a-z0-9][\x01-?a-

z]*[\x02-\x06][a-z][a-z][fglmoprstuvz]?[aeop]?(um)?[\x01\x10\x1c] 

[\x01\x03\x04\xFF]”, which contains 14 wildcard fragments. As regular expressions are 

converted into state machines for pattern matching, large numbers of wildcards can cause the 

corresponding DFAs to grow exponentially.  

(2) Classes of characters (“[]”) are used in packet scanning applications, but not in XML 

processing applications. For example, the pattern for matching the ftp protocol, “^220[\x09-

\x0d -~]*ftp”, contains a class (inside the brackets) that includes all the printing characters 

and space characters. The class of characters may intersect with other classes or wildcards. 

For example, the pattern for detecting buffer overflow attacks to the Network News 

Transport Protocol (NNTP) is “^SEARCH\s+[^\n]{1024}”, where a class of character “[^\n]” 
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interacts with its preceding white space characters “\s+”. When given an input with SEARCH 

followed by a series of white spaces, there is ambiguity whether these white spaces match 

“\s+” or the none return class “[^\n]”. As we will show later in the Case 4 of Section 6.4.1, 

such interaction can result in a highly complex state machine. 

(3) A high percentage of patterns in packet payload scanning applications have length 

restrictions on some of the classes or wildcards, while such length restrictions usually do not 

occur in XML filtering. For example, the pattern for detecting Internet Message Access 

Protocol (IMAP) email server buffer overflow attack is as follows “.*AUTH\s[^\n]{100}”. 

This pattern contains the restriction that there would be 100 non-return characters “[^\n]” 

after matching of keyword AUTH and any number of white spaces “\s”. As we shall show 

later in the Case 5 of Section 6.4.1, such length restrictions can increase the resource needs 

for expression matching.  

The above study demonstrates that, compared to the XML filtering application, network 

packet scanning applications face additional challenges. These challenges lead to a 

significant increase in the complexity of regular expression matching, as we will show later 

in detail in Section 6.4.1. 

6.3.3 Problem Statement 

The last subsection shows that patterns in networking applications have uniquely complex 

features that can lead to complex processing using traditional methods. In this chapter, we 

seek a fast and memory-efficient solution to regular expression matching for packet payload 

scanning. The scope of the problem is defined as follows:  

We consider DFA-based approaches, as NFA-based approaches are computationally 

inefficient on serial processors or processors with limited parallelism (e.g., multi-core CPUs 

in comparison to FPGAs). Our goal is to achieve O(1) computation cost for each incoming 



 

 - 154 - 

character, which cannot be accomplished by any existing DFA-based approaches due to their 

excessive memory usage. Thus, the focus of the study is to give an approach that reduces 

memory overhead from that of a traditional DFA-based approach while approaching the 

optimal processing speed of O(1) per character.  

This chapter focuses on algorithm designs geared towards network processor and 

general-purpose processor-based architectures, and explores the limits of regular expression 

matching in these environments. Wherever appropriate, it leverages of the parallel processing 

capabilities of multi-core processors, which are rapidly becoming prevalent in those 

architectures. Nevertheless, the results can be used in FPGA-based and ASIC-based 

approaches as well [103]. Note that the number of cores and the amount of local memory in 

the multi-core processors are usually limited. For example, the IBM cell processor has 8 

cores, each with only 128 KB local memory [53] .   

As stated in Section 6.3.1, our goal is to design a fast regular expression matching system 

that has O(1) per character with minimum memory requirement.  

6.4 Matching of Individual Patterns 

In this section, we present our algorithm for matching individual regular expression patterns. 

The main technical challenge is to create DFAs that can fit in memory, thus making a fast 

DFA-based approach feasible. We first analyze the size of DFAs for hard-to-match patterns 

in typical payload scanning applications in Section 6.4.1. Although theoretical analyses [100, 

101] have shown that DFAs are subject to an exponential increase in state as the pattern size 

increases, here, we identify specific structures that can lead to exponential growth of DFAs. 

Based on the insights from this analysis, in Section 6.4.2, we propose pattern rewrite 

techniques that explore the possibility of trading off exhaustive pattern matching (defined in 
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Section 6.3.1.1) for memory efficiency. Finally, we offer guidelines to pattern writers on how 

to write patterns amenable to efficient implementation in Section 6.4.3. 

6.4.1 DFA Analysis for Individual Regular Expressions 

In Section 6.3.2, we analyzed the typical patterns in networking applications. A large 

percentage of them are easy to match. There are two exceptions, one case generates DFAs of 

quadratic size (Case 4 of  Table 6-3) and the other generates exponential-size DFAs (Case 5 

of Table 6-3). Next, we explain these two cases in more detail.  

DFAs of Quadratic Size 

A common misconception is that patterns starting with ‘^’ create simple DFAs. However, 

even with ‘^’, classes of characters that overlap with the prefix pattern can still yield a 

complex DFA. Consider the pattern ^B+[^\n]{3}D, where the class of character [^\n] denotes 

any character but the return character (\n).  Figure 6-1 shows that the corresponding DFA has 

a quadratic number of states. The quadratic complexity comes from the fact that the letter B 

overlaps with the class of character [^\n] and, hence, there is inherent ambiguity in the 

pattern: A second B letter can be matched either as part of B+, or as part of [^\n]{3}. 

Therefore, if an input contains multiple Bs, the DFA needs to remember the number it has 

seen and their locations i to make a correct decision with the next input character. If the class 

of characters has length restriction of j bytes, DFA needs O(j2) states to remember the 

combination of distance to the first B and the distance to the last B. 

Seventeen patterns in the SNORT rule set fall into this quadratic states category. For 

example, the regular expression for the NNTP rule is “^SEARCH\s+[^\n]{1024}”. Similar to 

the example in Figure 6-1, \s overlaps with ^\n. White space characters cause ambiguity of 

whether they should match \s+ or be counted as part of the 1024 non-return characters 

[^\n]{1024}. Specifically, an input of SEARCH followed by 1024 white spaces and then 1024  
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Figure 6-1. A DFA for pattern ^B+[^\n]{3}D . 

 ‘a’s will have 1024 ways of matching strings, i.e., one white space matches \s+ and the rest 

as part of [^\n]{1024}, or two white spaces match \s+ and the rest as part of [^\n]{1024}, and 

so on. By using 10242 states to remember all possible sequences of these white spaces, the 

DFA accommodates all the ways to match the substrings of different lengths. Note that all 

these substrings start with SEARCH and hence are overlapping matches.  

This type of quadratic state problem cannot be solved by an NFA-based approach. 

Specifically, the corresponding NFA contains 1042 states; among these, one is for the 

matching of SEARCH, one for the matching of \s+, and the rest of the 1024 states for the 

counting of [\^n]{1024} with one state for each count. An intruder can easily construct an 

input as “SEARCH” followed by 1024 white spaces. With this input, both the \s+ state and all 

the 1023 non-return states would be active at the same time. Given the next character, the 

NFA needs to check these 1024 states sequentially to compute a new set of active states. 

This problem cannot be solved by a fixed string pre-filtering scheme (as used by 

SNORT), which first identifies the fixed string and then directs the suspicious packets to a 

second level checking. Pre-filtering can only recognize the presence of the fixed string 

“SEARCH” in the input. After that, an NFA or DFA-based matching scheme is still needed in 

post processing to check whether the input matches the pattern. Another choice is to count  
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Figure 6-2. A DFA for pattern .*A.{2}CD . 

the subsequent characters in post processing after identifying the prefix “SEARCH”. This 

approach does not solve the problem because every packet (even normal traffic) with the 

prefix will incur the counting process. In addition, intruders can easily construct packets with 

multiple (different) prefixes to invoke many requests for such post processing. 

DFA of Exponential Size  

The previous case presents the patterns leading to quadratic DFA sizes. Next, we study 

patterns generating exponential DFA sizes. In real life, many payload scanning patterns 

contain an exact distance requirement. Figure 6-2 shows the DFA for an example pattern 

“.*A..CD”. An exponential number of states (22+1) are needed to represent these two wildcard 

characters. This is because we need to remember all possible effects of the preceding As as 

they may yield different results when combined with subsequent inputs. For example, an 

input AAB is different from ABA because a subsequent input BCD forms a valid pattern with 

AAB (AABBCD), but not so with ABA (ABABCD). In general, if a pattern matches exactly j 

arbitrary characters, O(2j) states are needed to handle the requirement that the distance 

exactly equals j . This result is also reported in [101]. Similar results apply to the case where 

the class of characters overlaps with the prefix, e.g., “.*A[A-Z]{j}D”.  
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Figure 6-3. NFA for the pattern .*AUTH\s[^\n]{100} . 

Similar structures exit in real world pattern sets. In the intrusion detection system 

SNORT, 53.8% of the patterns (mostly for detecting buffer overflow attempts) contain a 

fixed length restriction. Around 80% of the rules start with ^; hence, they will not cause 

exponential growth of DFA. The remaining 20% of the patterns do suffer from the state 

explosion problem. For example, consider the rule for detecting IMAP authentication 

overflow attempts, which uses the regular expression “.*AUTH\s[^\n]{100}”. This rule 

detects any input that contains AUTH, then a white space, and no return character in the 

following 100 bytes. If we directly compile this rule into a DFA, the DFA will contain more 

than 10,000 states because it needs to remember all the possible consequences that an 

AUTH\s subsequent to the first AUTH\s can lead to. For example, the second AUTH\s can 

either match [^\n]{100} or be counted as a new match of the prefix of the regular expression.  

It is obvious that the exponential blow-up cannot be mitigated by using an NFA-based 

approach. Figure 6-3 shows the NFA for the pattern “.*AUTH\s[^\n]{100}”. Because the first 

state has a self-loop marked with Σ, the input “AUTH\sAUTH\sAUTH\s…” can cause a large 

number of states to be simultaneously active, resulting in significantly degraded system 

performance, as demonstrated by our results reported in Section 6.6.6. Another approach is 

clearly needed to achieve fast regular expression matching without causing memory 

explosion.  
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6.4.2 Regular Expression Rewrites 

The previous section has identified the typical patterns that yield large DFAs. This section 

investigates the possibility of rewriting some of those patterns to reduce the DFA size. Such 

rewriting is enabled by relaxing the requirement of exhaustive matching to that of non-

overlapping matching. In particular, we propose two rewrite rules, one for rewriting specific 

patterns belonging to the case of quadratic-sized DFAs (Case 4 in Section 6.4.1), and the 

other for rewriting specific patterns that generate exponential-sized DFAs (Case 5 of Section 

6.4.1). Those patterns amenable to rewrites have the following characteristic. Their have a 

class of characters with length restrictions that overlap with their prefixes. Taken the previous 

example “.*AUTH\s[^\n]{100}”, “[^\n]” has a length restriction and it overlaps with 

“AUTH” . These patterns are typical in real-world rulesets such as SNORT and Bro. For 

these patterns, as shown in Section 6.4.1, neither the NFA-based approaches nor the fixed 

string pre-filtering scheme can handle them efficiently. In contrast, the rewrites rules can 

convert these patterns into DFAs with their sizes successfully reduced from quadratic or 

exponential to only linear.  

Rewrite Rule (1)  

As shown in Section 6.4.1, patterns that start with ‘^’ and contain classes of characters with 

length restrictions, e.g., “^SEARCH\s+[^\n]{1024}”, can generate DFAs of quadratic size 

with respect to the length restriction. Below, we first explain the intuition behind Rewrite 

Rule (1) using the above example and then state and prove a theorem for more general cases. 

We explained in Section 6.3.3.1 that we want to identify non-overlapping patterns. Under 

this assumption, pattern “^SEARCH\s+[^\n]{1024}” can be rewritten to 

“^SEARCH\s[^\n]{1024}”. The new pattern specifies that after matching SEARCH and a 

single white space \s, it starts counting non-return characters for [^\n]{1024} regardless of 

the content. In this way, the ambiguity of matching \s is removed. Hence, this pattern requires 
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a number of states linear in the length restriction j (1024 in the example). Although this new 

pattern greatly reduces the number of states, it is still equivalent to the original pattern in 

identifying non-overlapping patterns. This is because the new pattern essentially implements 

non-overlapping left-most shortest match.  Next, we provide a theorem to prove the 

equivalence of two patterns.  

Theorem 1:  Pattern “^A[A-Z]{j}”  is equivalent to the original pattern “^A+[A-Z]{j}” for 

detecting non-overlapping shortest string.  

Theorem 1 (proved in Appendix A) is for a more general case where the suffix of a 

pattern contains a class of characters overlapping with its prefix and a length restriction, 

“^A+[A-Z]{j}”. The theorem proves that this type of pattern can be rewritten to “^A[A-Z]{j}” 

with equivalence guaranteed under the condition of non-overlap matching. Note that our 

rewrite rule can also be extended to patterns with various types of length restriction such as 

“^A+[A-Z]{j+}” and “^A+[A-Z]{j,k}”.  

Using Rewrite Rule (1), 17 similar patterns in the SNORT rule set can be rewritten to 

patterns with smaller DFAs. Detailed results regarding these rewrites are reported in Section 

6.6.2. 

Rewrite Rule (2) 

As discussed in Section 6.4.1, patterns like “.*AUTH\s[^\n]{100}” generate exponential 

numbers of states to keep track of all the AUTH\s subsequent to the first AUTH\s. If non-

overlapping matching is used, the intuition of our rewriting is that after matching the first 

AUTH\s, we do not need to keep track of the second AUTH\s. This is because: 

• If there is a ‘\n’ character within the next 100 bytes, the return character must also 

be within 100 bytes to the second AUTH\s, and  

• If there is no ‘\n’ character within the next 100 bytes, the first AUTH\s and the 

following characters have already matched the pattern.  
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Figure 6-4. DFA for rewriting the pattern .*AUTH\s[^\n]{100} . 
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Figure 6-5. Transformed NFA for deriving Rewrite Rule (1) . 

The intuition is that we can rewrite the pattern such that it only attempts to capture one match 

of the prefix pattern. Following the intuition, we can simplify the DFA by removing the 

states that deal with the successive AUTH\s. As shown in Figure 6-4, the simplified DFA first 

searches for AUTH in the first 4 states, then looks for a white space, and after that starts to 

count and check whether the next 100 bytes contains a return character. After rewriting, the 

DFA only contains 106 states. 

The rewrite pattern can be derived from the simplified DFA shown in Figure 6-4. 

Applying a standard technique that maps a DFA/NFA to a regular expression [100], we  can 

transform this DFA to an equivalent NFA in Figure 6-5. For the link that moves from state 1 
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back to the start state in Figure 6-4 (i.e., matching A then not U), the transformed NFA places 

it right at the start state and labels it with A[^U]. The transformed NFA does the same for 

each link moving from state i (1≤i≤105) to the start state in Figure 6-4. The transformed NFA 

can be directly described using the following regular expression:  

“([^A]|A[^U]|AU[^T]|AUT[^H]|AUTH[^\s]|AUTH\s [^\n]{0,99}\n)*AUTH\s[^\n]{100}”.   

This rule first enumerates all the cases that do not satisfy the pattern and then attaches the 

original pattern to the end of the new pattern. In other words, “.*” is replaced with the cases 

that do not match the pattern, represented by: 

 ([^A]|A[^U]|AU[^T]|AUT[^H]|AUTH[^\s]|AUTH\s[^\n]{0,99}\n)*.  

Then, when the DFA comes to the states for AUTH\s[^\n]{100}, it must be able to match 

the pattern. Since the rewritten pattern is directly obtained from a DFA of size j+5, it 

generates a DFA of a linear number of states rather than an exponential number before 

applying the rewrite.  

Theorem 2. Pattern “.*AB[A-Z]{j}”  can be rewritten as “([^A]|A[^B]|AB[A-Z]{j-1}[^(A-

Z)])*AB[A-Z]{j}”. These two patterns are equivalent for detecting non-overlapping strings. 

For a more general case “.*AB[A-Z]{j}”, Theorem 2 (proved in Appendix B) states the 

equivalence of the new pattern and the original pattern under the condition of non-

overlapping matching. Moreover, it offers rewrite rules for patterns in other forms of length 

restriction, e.g., “.*AB[A-Z]{j+}”. 

Rewrite Rule (2) is applicable to 54 expressions in the SNORT rule sets and 49 in the Bro 

rule set. We wrote a script to automatically rewrite these patterns and observed significant 

reduction in DFA size. Detailed simulation results are reported in Section 6.5.2. 
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6.4.3 Guidelines for Pattern Writers 

As mentioned above, an important implication of this work is that the pattern rewriter can 

automatically perform both types of rewriting. An additional benefit is that our analysis 

provides insight into how to write regular expression patterns that are amenable to efficient 

DFA implementation. 

From the analysis in Section 6.4.1, we can see that sometimes patterns with length 

restrictions can generate large DFAs. There are two categories. One is starting with an 

anchor, but length restriction overlaps with the proceeding class. The other type is patterns 

without anchor but containing length restrictions.  

In typical packet payload scanning pattern sets including Linux L7-filter, SNORT, and 

Bro, 21.4-56.3% of the length restrictions are associated with classes of characters. The most 

common of these are “[^\n]”, “[^\]]” (not ‘]’), and “[^\]”” (not ”), used for detecting buffer 

overflow attempts. The length restrictions of these patterns are typically large (233 on the 

average and reaching up to 1024). For these types of patterns, we highly encourage the 

pattern writer to add “^” so as to avoid the exponential state growth as shown in Section 

6.4.2. For patterns that cannot start with “^”, the pattern writers can use the Rewrite Rule 2 to 

generate patterns with linear numbers of states to the length restriction requirements.  

Even for patterns starting with “^”, we need to avoid the interactions between a  character 

class and its preceding character, as shown in Rewrite Rule 1. One may wonder why a 

pattern writer uses \s+ in the pattern “^SEARCH\s+[^\n]{1024}”, when it can be simplified 

as \s. Our understanding is that, in reality, a server implementation of a search task usually 

interprets the input in one of the two ways: either skips a white space after SEARCH and 

takes the following up to 1024 characters to conduct a search, or skips all white spaces and 

takes the rest for the search. The original pattern writer may want to catch intrusion into 

systems of either implementation. However, the way the original pattern is written generates 
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false positives if the server does the first type of implementation (skipping all the white 

spaces). This is because if an input is followed by 1024 white spaces and then some non-

whitespace regular command of less than 1024 bytes, the server can skip these white spaces 

and take the follow-up command successfully. However, this legitimate input will be caught 

by the original pattern as an intrusion because these white spaces themselves can trigger the 

alarm. To catch attacks to this type of server implementation, while not generating false 

positives, we need the following pattern.  

 “^SEARCH\s+[^\s][^\n]{1023}”  

In this pattern, \s+ matches all white spaces and [^\s] means the first non-white space 

character. If there are more than 1023 non-return characters following the first non white 

space character, it is a buffer overflow attack. By adding [^\s], the ambiguity in the original 

pattern is removed; given an input, there is the only way of matching each packet. As a result, 

this new pattern generates a DFA of linear size.  

To generalize, we recommend pattern writers to avoid all the possible overlaps between 

the neighboring segments in the pattern. Here, overlap denotes an input can match both 

segments simultaneously, e.g., \s+ and [^\n]. Overlaps will generate a large number of states 

in a DFA because the DFA needs to enumerate all the possible ways to match the pattern.  

6.5 Selective Grouping of Multiple Patterns 

The previous section focused on how certain patterns can lead to exponential DFA sizes and 

presented two rewrite techniques that limit the DFA growth for such patterns to be sub-

exponential. As mentioned in Section 6.2.2, it is well known that the computation complexity 

for processing m patterns reduces from O(m) to O(1) per character, when the m patterns are 

compiled into a single composite DFA. However, it is usually infeasible to compile together 

a large set of patterns due to the complicated interactions.  
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Figure 6-6. A DFA for pattern .*ABCD and .*ABAB . 

 

Figure 6-7. A DFA for pattern .*AB.*CD and .*EF.*GH . 
We first present two examples illustrating the interactions between patterns in Subsection 

6.5.1. Then we use a real-world payload scanning ruleset to demonstrate that exponential 

growth happens for real-world rule sets in Subsection 6.5.2. Based on these observations, we 

propose a new class of grouping algorithms that selectively divide patterns into groups while 

avoiding the adverse interaction among patterns in Subsection 6.5.3. 

6.5.1 Interactions of Regular Expressions   

When patterns share prefixes, some states can be merged. For example, states 1 and 2 shown 

in Figure 6-6 are shared by “.*ABCD” and “.*ABAB”. Combining these patterns can save 
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both storage and computation. However, if the patterns do not share the same prefix, thus 

putting m patterns together may generate 2m states. 

Figure 6-7 shows a composite DFA for matching “.*AB.*CD” and “.*EF.*GH”. This 

DFA contains many states that did not exist in the individual DFAs. Among them, state 8 is 

created to record the case of matching both prefixes AB and EF. Generally speaking, if there 

are l patterns with one wildcard per pattern, we need O(2l) states to record the matching of 

the power set of the prefixes. In such scenarios, adding one more pattern into the DFA 

doubles its size. If there are x wildcards per pattern, then (x+1)l states are required. 74.1% of 

patterns in the Linux L7-filter set contain two or more wildcards. For example, the pattern for 

the remote desktop protocol is “.*rdpdr.*cliprdr.*rdpsnd”, it contains three wildcards. 

SNORT also has similar patterns and the number of “.*” in a pattern can be as high as six.   

6.5.2 Interactions of Real-world Regular Expressions   

We use the Linux L7-filter as an example to show that patterns do interact heavily with each 

other in real world application. If 70 patterns are compiled separately into 70 DFAs, each 

DFA has tens to hundreds of states. The total number of DFA states is 3533. When starting to 

group multiple patterns into a composite DFA (patterns are selected with a random order), 

the processing complexity decreases since it is no longer necessary to run the input separately 

through each DFA. However, the total number of DFA states (i.e., the sum of the composite 

DFAs generated by grouped patterns and those ungroup patterns) grows to over 136,786 

states with just 40 patterns, as illustrated by the increasing dotted line in Figure 6-8. We 

could not add more patterns into the composite DFA because it exceeded the memory limit in 

the test machine that we used: 1.5 GB. However, only a certain subset of patterns cause 

significant DFA growth. For example, patterns 12, 37, and 38 as shown in Figure 6-8 all 

result in large DFAs. Similar to the previous example in Figure 6-7, these patterns all contain  
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Figure 6-8. DFA size and processing complexity of multiple patterns (unsorted order, 
without using our grouping algorithm).  

large numbers of wildcards and classes of characters “[]”. We figure out that pattern 12 

contains a fixed length (20) of wildcards. Pattern 37 contains three unrestricted wildcards 

(“.*”). Pattern 38 contains 19 classes of characters, 4 unrestricted wildcards, and 8 length 

restricted wildcards.  

6.5.3 Regular Expressions Grouping Algorithms 

As discussed above, certain patterns interact with each other when compiled together, which 

can result in a large composite DFA. In this section, we propose algorithms to selectively 

partition m patterns into k groups such that the patterns in each group do not adversely 

interact with each other. We define interaction as follows: patterns interact with each other if 

their composite DFA contains more states than the sum of their individual ones. If m patterns 

can be divided into k groups, where patterns in each group do not interact with each other, we 

can reduce the computation complexity from O(m) to O(k). 

To calculate the number of states in the composite DFA, an NFA is first created. Figure 

6-9 shows that the NFA is constructed by adding a new start state, twoε edges leading to the  
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Figure 6-9. Composite NFA for two DFAs. 

 individual DFA, a new accepting state, and two ε edges from the DFA accepting states to 

the new accepting state. Then we run the NFA to DFA conversion algorithm and the DFA 

minimization algorithm to obtain the composite DFA.  

We use the information on pairwise interaction to group a set of m regular expressions. 

The intuition is that if there is no interaction between any pair selected from R1, R2, and R3, 

the composite DFA of R1, R2, R3 is not likely to exceed the sum of individual ones. We 

validate this assumption using empirical results in Section 6.6.4. 

We devise grouping algorithms both for multi-core processor architectures, where groups 

of patterns can be processed in parallel among different processing units, and for general 

processor architectures, where the DFA for one group corresponds to one process or thread. 

Next, we present the algorithm for the former architecture first and then the algorithm for the 

latter.  

In hardware systems with multi-core architectures, there are multiple parallel processing 

units, as we introduced in Section 2.3.4. The number of cores is usually limited. Hence, one 

DFA per pattern per processing unit is infeasible. Our goal is to design an algorithm that 

divides regular expressions into several groups, so that one processing unit can run one or 

several composite DFAs simultaneously. In addition, the size of local memory of each 
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processing unit is quite limited. For example, the newly architected IBM cell processor has 8 

synergistic processor elements, each with 128 KB local memory [53]. Generally speaking, 

the fewer the total groups, the less processing complexity, because each group requires O(1) 

processing for each input character. A side-effect of grouping is increasing the number of 

DFA states due to the interactions of patterns. Hence, our goal is to achieve the fewest groups 

possible under these memory limitations. In our algorithm, we continuously group patterns 

until they meet the local memory limit. The pseudo-code of the algorithm is provided below.  

_______________________________________________________________________________________________________________________________________________ 
For regular expression Ri in the set 
For regular expression Rj in the set 
 Compute pairwise interaction of Ri and Rj 
Construct a graph G(V, E) 
V is the set of regular expressions, with one vertex per regular expression 
E is the set of edges between vertices, with an edge (Vi, Vj) if Ri and Rj interact with each other.  
Repeat 
New group (NG) = φ  
Pick a regular expression that has the least interaction with others and add it into new group NG 
Repeat 
Pick a regular expression R has the least number of edges connected to the new group 
 Compile NG ∪ {R} into a DFA 
 if this DFA is larger than the limit  
  break; 
 else 
  Add R into NG 
Until every regular expression in G is examined 
Delete NG from G 
Until no regular expression is left in G 
______________________________________________________________________________________________________________________________________________ 

Figure 6-10. Algorithm for Multi-core Processor Architectures with limited total 
memory size 

In this algorithm, we first compute the pairwise interaction of regular expressions. With 

this pairwise information, we construct a graph with each pattern as a vertex and an edge 

between patterns Ri and Rj if they interact with each other. Using this graph, we can start with 

a pattern that has the least interaction with others, and then try to add patterns that have least 

interactions into the same group. We keep adding until the composite DFA is larger than the 
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local memory limit. Then we proceed to create a new group from the patterns that remain 

ungrouped. 

General processor architecture. In the general processor architectures, if there are multiple 

composite DFAs to be run, the processor executes each of them sequentially. Usually all the 

DFAs are kept in the main memory for performance purposes. Since the memory is shared 

among all DFAs, we want to group all patterns into the smallest number of groups (hence the 

smallest number of DFA) while not exceeding the available memory size. Finding the 

smallest number of groups is an NP hard problem. In this work, we apply heuristics to find a 

small number of groups that can serve as a good approximation. The pseudo-code of our 

algorithm for the general processor architectures is shown in the following.  

__________________________________________________________________________ 
Leftover memory L = Total memory  
For regular expression Ri in the set 
Compute the DFA size Di for Ri 
Leftover memory = Leftover memory - Di 
 
Repeat 
New group (NG) = φ  
Pick a regular expression which has the least interaction with others and add it into new group 
NG 
Repeat 
 Pick a regular expression R that has the least number of edges connected to the new 
group 
 Compile NG ∪ {R} into a DFA 
  if D(NG) > ∑

∈NGR
i

i

RD )( +L*|NG|/(#left patterns) 

  break; 
 else 
  Add R into NG 
Until every regular expression in G is examined 
Leftover memory L = L - D(NG) - ∑

∈NGR
i

i

RD )(   

Delete NG from G 
Until no regular expression is left in G 
_____________________________________________________________________________ 

Figure 6-11. Algorithm for General-Processor Architectures 
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Unlike the multi-core case, in this algorithm we first compute the DFA of individual 

patterns and compute the leftover memory size. At any stage, we always try to distribute the 

leftover memory evenly among the ungrouped expressions, which is the heuristic that we 

apply to increase the number of grouping operations which in turn reduces the number of 

resulting groups. In this algorithm, we group patterns using a similar routine as the 

previously. However, we stop grouping when the size of the composite DFA (denoted as 

D(NG)) exceeds its share of the leftover memory. Here, the DFA’s share of the leftover 

memory is calculated using the formula = (Leftover memory L) * (Number of patterns in the 

group) / (Number of ungrouped patterns).  

Discussion: Grouping multiple regular expressions into one composite DFA is a well 

known technique to enhance matching performance. Our algorithms focus on picking the 

“right” patterns to be grouped together. Here, “right” means patterns don not interact with 

each other exponentially; therefore grouping them together will not generate a large DFA. 

Similar to our approach, systems like Bro group patterns into one group, instead of 

partitioning them into several. They adopt a lazy DFA-based approach, where commonly 

used DFA states are cached and the DFA is extended at run-time if needed. The distinction 

between our approach and Bro’s is that our grouping algorithm produces scanners of 

deterministic complexity (O(1) per input character). The lazy DFA-based approach, although 

fast and memory efficient on most common inputs, may be exploited by intruders to 

construct malicious packets that force the lazy DFA to enter many corner cases [24] (also in 

Section 6.3.1.4), this may result in drastically slowed performance. Our fully-developed DFA 

does not have performance degradation under such attacks. This is because no matter what 

kind of input characters a packet contains, our scheme only does one memory lookup per 

packet. The computation cost is deterministic to any input.   
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6.6 Evaluation Results 

We implement a DFA scanner with rewriting and grouping functionality for fast and memory 

efficient regular expression matching. In this section, we evaluate the effectiveness of our 

rewriting techniques for reducing DFA size, and the effectiveness of the grouping algorithms 

for creating memory-efficient composite DFA. We also compare the speed of our scanner 

against a DFA-based repeated scanner generated by the widely used Flex system [104] and a 

best-known NFA-based scanner [60]. Compared to the DFA-based repeated scanning 

approach, our approach based on one pass scanning has a 12 to 42 times performance 

improvement. Compared to the NFA-based implementation, our DFA scanner is 50 to 700 

times faster on traffic dumps obtained form MIT and Berkeley networks. 

6.6.1 Experimental Setup 

Certain aspects of the experimental setup in this section are similar to that given in Chapter 5. 

Chapter 5 focused on fixed string patterns and used the SNORT system and ClamAV rule 

set. This chapter focuses on regular expression patterns. We still use the SNORT rule set, but 

not the ClamAV rule set for the experiments, because Clam AV does not contain any regular 

expressions. To supplement the SNORT rule set, we add two more rule sets that contain 

regular expressions. The first is from the Linux layer 7 filter (as of February 2006) [22] 

which contains 70 regular expressions for detecting different protocols. The second one is 

from the Bro intrusion detection system (Version 0.8V88) [28], with a total of 2781 regular 

expressions.  

As in Chapter 5, we use two sets of real-world packet traces are used during the 

experiments. The first set is the intrusion detection evaluation data set from the MIT DARPA 

project and the second data set is from Berkeley local LAN.  
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Table 6-5. Rewriting effects.  

Type of Rewrite Rule Set Number 
of 
Patterns  

Average 
length 
restriction 

DFA 
Reduction 
Rate 

SNORT 17 370 >98% Rewrite Rule 1: 
(Quadratic case) Bro 0 0 0 

SNORT 54 344 >99%1 Rewrite Rule 2: 
(Exponential 
Case) 

Bro 49 214.4 >99%1 

 

We use Flex [104] to convert regular expressions into DFAs. Our implementation of the 

DFA scanner eliminates backtracking operations [104]. It only performs a one-pass search 

over the input and is able to report matching results at the position of the end of each 

matching substring. All the experimental results reported were obtained on PCs with 3.4 GHz 

CPU and 3.7 GB memory. 

6.6.2 Effect of Rule Rewriting 

The rewriting scheme presented in Section 6.4.1 is applied to the Linux L7-filter, SNORT 

and Bro pattern sets. For the Linux L7-filter pattern set, it does not identify any pattern that 

needs to be rewritten. For the SNORT pattern set, however, 71 rules need to be rewritten. For 

Bro, 49 patterns (mostly imported from SNORT) need to be rewritten using Rewrite Rule 2. 

For these patterns, the rewriting scheme gains significant memory savings as shown in Table 

6-5. For both types of rewrite, the DFA size reduction rate is over 98%.  

Seventeen patterns belong to the category for which Rewrite Rule 1 can be applied. 

These patterns (e.g., “^SEARCH\s+[^\n] {1024}”)  all contain a character (e.g., \s) that is 

allowed to appear multiple times before a class of characters (e.g., [^\n]) with a fixed length 

restriction (e.g., 1024). As discussed in Section 6.4.1, this type of pattern generates DFAs 

that expand quadratically in the length restriction. After rewriting, the DFA sizes decrease to 
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become linear in the length restriction. A total of 103 patterns need to be rewritten using 

Rewrite Rule 2. Before rewriting, most of them generate exponential sized DFAs that cannot 

even be compiled successfully. With the rewriting techniques, the collection of DFAs created 

for all the patterns in the SNORT system can fit into 95 MB memory, which can be satisfied 

in most PC-based systems.  

6.6.3 Effect of Grouping Multiple Patterns  

In this section, the grouping techniques are applied to regular expression sets. We will show 

that our grouping techniques can intelligently group patterns to boost system throughput, 

while avoiding extensive memory usages.  

The patterns of the L7-filter can be grouped because the payload of an incoming packet is 

compared against all the patterns, regardless of the packet header information. For the Bro 

pattern set, as most rules are related to packets with specific header information, the http 

related patterns (a total of 648) that share the same header information is picked as the test 

set, as well as 222 payload scanning patterns that share the same header information. Note we 

do not report the results of using the SNORT rule set because its patterns overlap 

significantly with those of the Bro rule set.    

6.6.4 Interaction of Patterns 

For all three sets, a majority of patterns are non-interactive (the interactive was defined in 

Section 6.5.1) , particularly in Bro http patterns set where all patterns are non-interactive. As 

a result, most patterns in these rulesets can be combined pair-wise. This nice property offers a 

significant potential for the grouping algorithms to produce small numbers of groups. To 

achieve that, one assumption that the grouping algorithms use must be verified. As stated in  

                                                                                                                                                       

1Some patterns create too many states to be compiled. The 99% number was obtained only from observing successful rewrites. 
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Table 6-6. Interaction of regular expressions. 

 No-interaction 
Pair-wise 

Pair-wise No-interaction lead to No-
interaction three patterns 

Linux L7-filter 71.18% 99.87% 
Bro http 100% 100% 

Bro payload 93.3% 99.99% 
 

Section 6.5.2, the assumption is that if three patterns are pair-wise non-interactive, it is highly 

likely that the size of the composite DFA will not exceed the sum of the individual sizes. We 

compute all the two-pattern composite DFAs and three-pattern composite DFAs and check 

the validity this assumption on these composites DFAs. Table 6-6 shows that this assumption 

is valid for over 99.8% of the cases from all three pattern sets. 

6.6.5 Grouping Results 

We apply the grouping algorithms to all three pattern sets to partition them into small groups. 

For the Bro’s http pattern set, since patterns do not interact with each other, it is possible to 

compile all 648 patterns into one composite DFA of 6218 states. The other two sets, 

however, cannot be grouped into one group due to interactions (defined in Section 6.5.1). 

Below, the results obtained using the grouping algorithm for the multi-core architectures, 

where local memory is limited, are reported in Table 6-7. The results for the general 

processor architectures are in Table 6-8. 

Table 6-7 (a) shows the results for the Linux L7-filter pattern set. We start by limiting the 

number of states in each composite DFA to 617, the size of the largest DFA created for a 

single pattern in the Linux L7-filter set. This is the base line, which determines the least 

amount of memory required without applying our techniques. The actual memory cost is 617 

times 256 next state pointers times log(617) bits for each pointer, which amounts to 192 KB. 
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Table 6-7. Results of grouping algorithms for the multi-core architectures. 

7 (a) Linux L7-filter (70 Patterns) 

Composite DFA 
state limit Groups Total Number of 

States 
Compilation 

Time (s) 
617 10 4267 3.3 

2000 5 6181 12.6 
4000 4 9307 29.1 
16000 3 29986 54.5 

7(b) Payload patterns from Bro (222 Patterns) 

Composite DFA 
state limit  Groups Total Number of 

States 
Compilation 
Time (s) 

540 11 4868 20 
1000 7 4656 118 
2000 5 5430 780 
6000 4 9197 1038 

 

Considering that most modern processors have large data caches (>0.5 MB), the memory cost 

for a single composite DFA is comparatively small. After applying our algorithm, it 

generates 10 groups when the limit on the DFA size is set to 617. This shows that our 

grouping algorithm decreases the simultaneous active DFA from 70 (original number of 

patterns, without grouping) into 10 (after grouping), without additional memory 

requirements. When we increase the amount of available memory, there is more room for the 

composite DFA to record the interactions of patterns. As a result, the algorithm creates fewer 

(from 10 to 3) groups. As today’s multi-core network processors have 8-16 engines, it is 

feasible to allocate each composite DFA to one processor and take advantage of parallelism. 

When the total state limit is increased to 16000, the grouping algorithms can decrease the 

number of pattern groups from 70 (originally ungrouped) to 3. This means that, given a 

character, the generated packet content scanner needs to perform only three state transitions 

instead of the 70 state transitions that were necessary with the original ungrouped case. This 

results in a significant performance enhancement (show later in Section 6.6.6). 
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Table 6-8. Results of grouping algorithms for general processor architectures. 

8(a) Linux L7-filter (70 Patterns) 

Total DFA 
state limit Groups Total Number 

of States 
Compilation Time 
(s) 

3533 12 3371 5.602 
4000 10 3753 7.335 
10000 5 7280 37.928 
32000 3 25215 49.976 

8(b) Payload patterns from Bro (223 Patterns) 

Composite DFA 
state limit  Groups Total Number of 

States 
Compilation 
Time (s) 

5221 6 4697 1050 
8000 4 6854 1030 

 

For Bro’s payload pattern set, the grouping algorithm can group more patterns into one 

group. Similar to the previous case, we start from 540, which is the largest individual DFA 

size. As Table 6-7(b) shows, we can group 222 patterns into 11 groups in this baseline case. 

As the DFA state limit increases, the number of groups decreases down to 4.  

Table 6-8 demonstrates that the grouping algorithm for the general processor 

architectures can effectively reduce the number of groups generated as the memory limit 

imposed on the algorithm is increased. In addition, the total number of DFA states is close to 

the memory limit, showing the algorithm can fully utilize the memory allocated to the packet 

scanner. Note that we start the memory limit at 3533 DFA states for Linux L7-filter, which is 

the total number of the states of individual DFAs. This is the baseline of memory requirement 

without applying our algorithm for shared memory architectures. Some patterns can be 

grouped together without any extra memory usage because they do not interact with each 

other. In fact, we can group 70 patterns into 12 groups with no extra memory usage. When 

we increase the memory limit, more patterns can be grouped together because there is room 

for the DFAs to record the pattern interactions. As shown in the Table 6-8, we can decrease 
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the total number of groups to 3 when the state limit is 32000. Similarly to the Linux L7-filter, 

we start with 5221 DFA states for Bro payload set, which is the sum of 233 individual DFAs. 

Even without extra memory, the number of groups can be decreased from 233 to 6. 

Beyond the effectiveness, Table 6-7 and Table 6-8 also present the running time of the 

proposed grouping algorithms. This overhead is a one-time cost. In networking 

environments, the packet content scanner operates continuously until there are new patterns 

to be inserted to the system. As patterns in the Linux L7-filter or the Bro system do not 

change frequently, the occasional overhead of several minutes associated with recomputation 

of groupings is affordable. The reason that these patterns do not change frequently is that the 

Linux L7-filter is for protocol detection and usually new protocols are not a common event. 

The intrusion detection systems like Bro and SNORT introduce new rules more often than 

Linux L7-filter, but still not on daily basis. It’s on the average of once every ten days. A new 

pattern does not trigger a regroup of all patterns. We can just compute its pairwise 

interactions with existing patterns and pick a group that yields the fewest total interactions. 

This type of incremental update averages less than 1 second on the Bro payload pattern set 

using PCs with 3.4 GHz CPU and 3.7 GB memory.  

6.6.6 Speed Comparison 

We compare the proposed DFA-based algorithms with the state-of-the-art NFA-based regular 

expression matching algorithm. Both L7-filter and SNORT systems use this NFA-based 

library. We also compare it with the DFA-based repeated scan approach generated by Flex 

[104]. The results are summarized in Figure 6-9. The proposed DFA-based one pass scanner 

is 48 to 704 times faster than the NFA-based scanner. Compared to DFA-based repeated scan 

engine, our scanner yields a speed improvement of 11 to 42 times. Also note that although 

these dumps have dramatically different characteristics, our scanner provides similar 



 

 - 179 - 

Table 6-9. Comparison of the different scanners.  

 Throughputs (Mb/s) 

Memory 
Consumption 
(KB) 

 MIT dump 
Berkeley 
dump  

NFA 1.0 3.4 1636 
DFA RP 16.3 34.6 7632 

Linux  
L-7 filter 

DFA OP 3 groups 690.8 728.3 13596 
NFA 30.4 56.1 1632 
DFA RP 117.2 83.2 1624 Bro 

Http DFA OP 1 group 1458.0 1612.8 4264 
NFA 5.8 14.8 1632 
DFA RP 17.1 25.6 7628 Bro 

Payload DFA OP 4 groups 566.1 568.3 4312 
NFA—NFA-based implementation 

DFA RP – Flex generated DFA-based repeated scan engine 
DFA OP – Our DFA one pass scanning engine 

 

throughputs over these dumps because it scans each character only once. The other two 

approaches are subject to dramatic change in throughput (1.8 to 3.4 times) over these traces, 

because they need to do backtracking or repeated scans. Although the memory usage of our 

scanner is 2.6 to 8.4 times the NFA-based approach, the largest scanner we created (Linux 

L7-filter, 3 groups) uses 13.3 MB memory, which is well under the memory limit of most 

modern systems. 

6.7 Summary 

In this chapter, we considered the implementation of fast regular expression matching for 

packet payload scanning applications. Although regular expression matching has been a well 

studied problem, support for the specific class of patterns common in networking 

applications is new. We showed that the traditional NFA-based approaches are slow and 

naïve DFA implementations can have exponentially growing memory costs in the worst case. 

In this chapter, we analyzed the computational and storage cost of building individual DFAs 
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for matching regular expressions, and identify the structural characteristics of the regular 

expressions in networking applications that lead to exponential growth of DFAs. Based on 

this analysis, we proposed two rewrite rules for specific regular expressions. The rewritten 

rules can dramatically reduce the size of resulting DFAs, making them small enough to fit in 

memory. While we do not claim to handle all possible cases of dramatic DFA growth (in fact 

the worse case cannot be improved), rewrite rules do cover those patterns present in common 

payload scanning rulesets like SNORT and Bro, thus making fast DFA-based pattern 

matching feasible for today’s payload scanning applications. It is possible that a new type of 

attack also generates signatures of large DFAs. For those cases, unfortunately, we need to study 

the signature structures before we can rewrite them. Besides rewriting, we presented a scheme 

that selectively groups patterns together to further accelerate the matching process.  

The proposed DFA-based implementation is 2 to 3 orders of magnitude faster than the 

widely used NFA implementation and 1 to 2 orders of magnitude faster than a commonly 

used DFA-based parser. Our grouping scheme can run on general processor architectures, 

where the DFA for one group corresponds to one process or thread, as well as to multi-core 

architectures, where groups of patterns can be processed in parallel using independent 

processing units. In the future, it would be an interesting study to apply different DFA 

compression techniques and explore tradeoffs between the overhead of compression and the 

savings in memory usage.  

We have finished all the technical chapters. Chapters 3 and 4 provided high speed multi-

match classification algorithms for packet header processing. Chapter 5 and this chapter 

proposed schemes for pattern matching on packet payload, with Chapter 5 focusing on fixed 

patterns and this on the more general regular expressions. These algorithms together make 

high speed deep packet inspection possible.  We will conclude this thesis in the next chapter 

and also discuss future directions.  
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7 Concluding Remarks and Future Work 

This chapter concludes the dissertation by summarizing the major contributions of the thesis 

and suggesting the key direction for future work.  

7.1 Summary of thesis work 

In this dissertation, we designed high speed packet processing algorithms that function on the 

entire packet including both the header and the payload. These algorithms can enable new 

services such as network intrusion detection. To keep up with high speed packet processing 

in existing networks, our algorithms are optimized for new technologies such as Ternary 

Content Addressable Memory (TCAM) and multi-core processors.  

For packet header processing, in Chapters 3 and 4, we proposed a multi-match packet 

classification scheme that intelligently processes packet header information. For packet 

payload processing, we developed schemes to identify fixed string patterns in Chapter 5 and 

complex regular expressions in Chapter 6. These techniques form a cohesive architecture that 

can perform gigabit rate packet scanning against thousands of sophisticated patterns. We 

summarize these techniques in detail below. 

7.1.1 Multi-match Packet Classification  

In Chapter 3, we developed a TCAM-based approach called Geometric Intersection Method 

that can report multi-match classification results with just two memory lookups: one TCAM 

lookup and one SRAM lookup. In addition, our negation removing scheme can efficiently 

map filters into the TCAMs, which can save 95% of TCAM memory compared to the 

straightforward solution.  



 

 - 182 - 

The Geometric Intersection Method is fast, but it may not be power efficient because it 

can generate many intersection filters. To address this problem, we developed scheme called 

the Set Splitting Algorithm (SSA) to split filters into multiple groups. Through filter splitting, 

SSA guarantees a reduction in the number of intersection filters by 50% when a filter set is 

split into two.  In addition, each filter in the TCAM is accessed once per packet, further 

reducing power consumption. Compared to previously published schemes, SSA saves 75% to 

95% of power consumption.  

7.1.2 Fixed String Matching with TCAM 

For fixed string matching, we adopted TCAM because of its fast speed in parallel search. In 

Chapter 5, we developed TCAM-based algorithms for detecting long patterns, correlated 

patterns, and patterns with negation. Our simulation results showed that our scheme can 

handle patterns with dramatic variation in size, and can perform Gigabit rate pattern matching 

on both the SNORT and ClamAV virus database. Our scheme is also applicable to other 

Layer 7 pattern matching problems, for example, applications like HTTP load balancing and 

email SPAM filtering.  

7.1.3 Fast Regular Expression Matching  

In Chapter 6, we proposed fast regular expression matching scheme using general processors. 

We studied the typical patterns used in the networking applications. We showed that some 

pattern generate exponential size DFA when using traditional methods. To address this, we 

proposed rewrite techniques that can effectively reduce the size of. In addition, we developed 

grouping algorithms that compile a large set of regular expressions into a small number of 

DFA, which dramatically improves the regular expression matching speed without 

significantly increasing memory usage. We showed through simulation results that our 

implementation achieved one to three orders of magnitude speedup over the state-of-the-art 
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NFA-based implementation. Our scheme can be applied to both general processor-based and 

multi-core-based architectures. In addition, it can also be extended to FPGA and ASIC-based 

platforms. 

7.2 Future Directions 

Our work to date has demonstrated that Gigabit rate deep packet inspection can be achieved 

by combining well-designed algorithms and high performance hardware technologies. There 

are several interesting directions for future work that one could pursue based on the work 

presented in this dissertation. The first two are related to making the deep packet inspection 

system more powerful and the third one is on the application of our proposed schemes to a 

problem unrelated to detecting attackers. 

1) Detecting attacks in real time without signatures: This dissertation is based on the 

assumption that virus and worm signatures are known in advance. We rely on third parties to 

provide these. Disseminating new signatures quickly after the worm breaks out is also a 

challenging task. This is because worm breakouts, such as the Slammer worm devastation, 

can consume a large portion of the Internet bandwidth and thus cause congestion [105].  To 

address this problem, we need algorithms to detect suspicious traffic without using signatures 

and limit the rate of suspicious traffic before obtaining the signatures, so as to provide better 

Quality of Service (QoS) for more important traffic, including routing information and 

signature dissemination. By limiting the rate of suspicious traffic, we can slow down the 

propagation of worms, which can buy us more time to filter them more precisely with attack 

signatures.   

2) Coordinated attack detection architecture. There are thousands of routers in the 

Internet. It is highly inefficient to deploy the same set of signatures at every router.  Because 

a packet travels through multiple routers, it also makes no sense to do redundant searches for 
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the same groups of signatures at different routers. To build a more efficient and coordinated 

packet scanning architecture, we need an intelligent scheme to deploy selected sets of 

signatures at different routers. The scheme must guarantee that a packet will be checked by 

the complete pattern set, no matter which path it chooses to travel in the Internet. This 

scheme can also help decrease per packet computation costs at routers and hence can 

potentially increase the pattern matching speed.  

The above directions for future work are based on devising techniques to make the deep 

packet inspection systems easier to deploy in today’s Internet. Next we point out a direction 

that is based on using the deep packet inspection in other high speed data processing 

applications. 

3) High speed data processing such as XML message processing and biomedical data 

processing: XML message dissemination and bioinformatics systems, similar to network 

applications, generate a huge amount of data and require high speed pattern processing 

capabilities to search and locate desired information. The XML query processing language 

XPath is similar to regular expressions and we believe that our regular expression scheme can 

be applied to signatures expressed in XPath.  

Some of the gene search algorithms such as BLAST [106] require pattern searching. We 

believe that our high speed fixed string matching solutions for network applications can be 

extended to apply to this area. However, our scheme needs to be modified as many gene 

searching algorithms aims to identify approximate patterns, rather than exact strings.  
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Appendix A 

Claim in Section 3.4: If Ei is the first superset of x (x⊂  Ei) in E, we can add x before Ei 

according to requirement (3) and bypass all the rules after Ei. 

Proof: For any rule Ej after Ei, there could be four cases. We will study it one by one and 

show why we can bypass all of them. 

First, we can bypass any rule Ej that is disjoint with x, according to requirement (1). 

Second, it is impossible that Ej ⊂  x. If so, Ej ⊂  x⊂  Ei, which contradicts with requirement 

(2).  

Third, If x ⊂Ej, Ej must also be a superset of Ei. Otherwise, the intersection of Ej and Ei 

must be a superset of x as well and it must be presented before Ei , according to requirement 

(4). This contradicts with the assumption that Ei is the first superset of x in E. Therefore, Ei 

⊂  Ej and we have Mj ⊂  Mi according to requirement (2). In this case, we don’t need to 

process Ej since we can extract all the information from Mi. 

Fourth case, if Ej intersects with x and suppose z = Ej∩ x, then z must have appeared 

before Ei. This is because Ej must intersect with Ei as well since Ei is a superset of x. Let Ek = 

Ei∩ Ej, according to requirement (4), k < i. In addition, z = Ej∩ x = Ej∩ x ∩  Ei = Ek ∩ x, 

because x⊂  Ei. Therefore, we must have generated z when processing Ek which is before Ei. 

This meets the requirement (4), so we can bypass Ej. 

Hence, all the rules after Ei are either exclusive to x, or their intersections have already 

been included, so we can skip all those rules. 
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Appendix B 

Theorem 1:  Pattern P1 “^A[A-Z]{j}”  is equivalent to the original pattern P2 “^A+[A-

Z]{j}” for detecting non-overlapping shortest string. 

Proof: We prove this theorem through the following Claims 1 and 2.  

Claim 1: Any input matching P1 must match P2 as well, and the shortest matched string S1 

for P1 is the same as the shortest matched sting S2 for P2. 

Proof of Claim 1:  For any input matching P1, it must match pattern P2 because we can use 

“\s” to match “\s+” and the remaining j characters as [A-Z]{j}. Next we prove their matched 

string S1 and S2 are identical. For P1, there is only one way of selecting S1 and its length is 

j+1. There maybe multiple ways of selecting S2 (same start position, overlapping strings), 

with length from j+1 to infinity. If we pick the shortest match, its length would also be j+1. 

In addition, S1 and S2 must start from the beginning of the input due to the requirement of ^. 

Given that they have the same length, S1 and S2 must be identical. 

Claim 2: Any input matching P2 must match P1 as well, and both patterns report matching 

of the same shortest string. 

Proof of Claim 2: For any input matching P2 “^A+[A-Z]{j}”, it must have x “A”s (x >= 1) 

matched as “^A+”,  y “A”s and z [A-Z] characters (starting from a none “A”) matched as 

“[A-Z]{j}” (y >= 0,  z >= 0,  y+z = j). This input must match P1 “^A[A-Z]{j}” because the 

input have x-1+y+z >= j [A-Z] characters after the first A. Similar to (1), the shortest matched 

strings are the same. 

Since pattern starts with ^, P1 and P2 report at most one match for one line. Given 

Cliams 1 and 2, P1 and P2 report the same results for any input, hence they are equivalent.  
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Theorem 2. Patter P1 “.*AB[A-Z]{j}”  can be rewritten as pattern P2 “([^A]|A[^B]|AB[A-

Z]{j-1}[^(A-Z)])*AB[A-Z]{j}”. These two patterns are equivalent for detecting non-

overlapping strings. 

Proof: It is trivial that these two patterns are equivalent when the input does not contain AB\s 

because none of them match the input. It is also trivial if the input only contains one AB\s. 

Next, we prove the case where we have multiple ABs without [^(A-Z)] in between and they 

are within j bytes to the first AB through  Claims 3, 4, and 5.  

Claim 3: Any input not matching P2 does not match P1 either. 

Proof of Claim 3:  Since the input does not match P2, there must be a [^(A-Z)] character 

within the next j bytes of the first AB, this character must also be located within j bytes to the 

following ABs. Hence, P1 will not be matched either. 

Claim 4: Any input matching P2 must match P1. P2 and P1 generate matching results at the 

same position. 

Proof of Claim 4: For any input matching P2, it must report matching result at j positions 

after the first AB. If there is no [^(A-Z)] character within the next j bytes to one of the ABs, 

then there will not be [^(A-Z)] within the next j bytes to the first AB because there is no [^(A-

Z)] in between of these ABs. Therefore, the match result of P1 will be generated j bytes after 

the first AB as well. Hence, S1 and S2 are the same.  

Claim 5: P1 and P2 report the same number of matches. 

Proof of Claim 5: When there are multiple ABs without [^(A-Z)] between them and they are 

within j bytes to the first AB. P1 would only report one match, because these ABs are within j 

bytes and their matching strings overlap with each other. P2 would report one match too. 

Hence, P1 and P2 report the same number of matches. If there are multiple non-overlapping 

patterns in the input (ABs are at least j apart or with [^(A-Z)] in between), P1 and P2 still 
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report the same number of matches because we can divide the input to segments, where only 

one match is reported in one segment.  

Given (1), (2) and (3), for any input, patterns P1 and P2 report the same matching results 

and hence they are equivalent.  
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