RAMP: A Research Accelerator for Multiple
Processors

John Wawrzynek
Mark Oskin
Christoforos Kozyrakis
Derek Chiou

David A. Patterson
Shih-Lien Lu

James C. Hoe

Krste Asanovic

TIRREL - LL]

:

Electrical Engineering and Computer Sciences
University of California at Berkeley

- _'_5-" <33

O T

Technical Report No. UCB/EECS-2006-158
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-158.html

November 24, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

RAMP: A Research Accelerator for Multiple
Processors

John Wawrzynek (UC Berkeley) David Patterson (UC Berkeley)

Mark Oskin (U Washington) Shih-Lien Lu (Intel)
Christoforos Kozyrakis (Stanford) James C. Hoe (CMU)
Derek Chiou (UT Austin) Krste Asanovic (MIT)

I. INTRODUCTION

In 2005 there was a historic change of direction in the computer hardware industry: All microproces-
sor companies announced that their future products would be single-chip multiprocessors, and that future
performance improvements would rely on software-specified parallelism rather than additional software-
transparent parallelism extracted automatically by the microarchitecture. Several of us discussed this mile-
stone at the ISCA conference in June 2005. We were struck that a multibillion-dollar industry would bet their
future on solving the general-purpose parallel computing problem, when so many have previously attempted
but failed to provide a satisfactory approach.

To tackle the parallel processing, our industry urgently needs innovative solutions that requires extensive
co-development of hardware and software. However, the rate of such innovation is currently slowed by the
following traditional development cycle:

1) It takes approximately four years and many millions of dollars to prototype a new architecture in

hardware, even at only research quality.

2) Software engineers are ineffective until the new hardware actually shows up since simulators are too
slow to support serious software development activities. Software engineers tend to innovate only
after hardware arrives.

3) Feedback from software engineers based on the current production hardware cannot impact the imme-
diate next generation due to overlapped hardware development cycles. Instead, the feedback loop can
take several hardware generations to close fully.

Hence, we conspired on how to create an inexpensive, reconfigurable, highly-parallel platform that would
attract researchers from many disciplines (architecture, compilers, operating systems, applications, etc.) to
work together on perhaps the biggest challenge facing computing in the past fifty years. Our goal was a
platform that would allow far more rapid evolution than traditional approaches as solutions are desperately
needed.

II. RAMP VISION

Our hallway conversations led us to the idea of using Field-Programmable Gate Arrays (FPGAs) to emu-
late highly parallel architectures at hardware speeds. FPGAs enable very rapid turnaround for new hardware.
You can "tape out” a FPGA design every day, with a new system “fabricated” overnight. Another key ad-
vantage of FPGAs is that they easily exploit Moore’s Law. As the number of cores per microprocessor die
grows, FPGA density will grow at about the same rate. Today we can map about 16 simple processors onto
a single FPGA, which means we can construct a 1000-processor system in just 64 FPGAs. Such a system is
cheaper and lower power than a custom multiprocessor at about $100 and about 1 Watt per processor.

We named this project RAMP (Research Accelerator for Multiple Processors) since its goal is to ramp up
the rate of innovation in hardware and software multiprocessor research. RAMP is an open-source project
to develop and share the hardware and software necessary to create parallel architectures. RAMP is not just

a hardware architecture project. Perhaps our most important goal is to support the software community as it
struggles to take advantage of the potential capabilities of parallel microprocessors, by providing a malleable
platform through which the software community can collaborate with the hardware community.

Unlike commercial multiprocessor hardware, RAMP is designed as a research platform. We can include
research features that would be impractical or impossible to include in real hardware systems due to speed,
cost or practicality issues. For example, additional hardware to monitor any event in the system can be in-
corporated into the FPGA design. Being able to add arbitrary event probes, including arbitrary computation
on those events, provides visibility formerly only available in software simulators, but without the inevitable
slowdown faced by software simulators when introducing such visibility.

A second example of how RAMP is different than real hardware is reproducibility. Using the RDL frame-
work described in Section III, different researchers can construct the same deterministic parallel computing
system that will perform exactly the same way every time, clock cycle for clock cycle. By using proces-
sor designs donated by industry, RAMP users can start with familiar architectures and operating systems,
providing much more credibility than software simulations that model idealized processors or that ignore
operating system effects. RDL is designed to make constructing a full computer out of RDL-compatible
modules easy. Our target speeds of 100 to 200 MHz are slower than real hardware, but are fast enough to
run standard operating systems and large scale applications orders of magnitude faster than software simula-
tors. Finally, due to the similarities in the design flow of logic for FPGAs and custom hardware, we believe
RAMP is realistic enough to convince software developers to start aggressive development on innovative ar-
chitectures and programming models and to convince hardware and software companies that RAMP results
are relevant.

We believe this combination of cost, power, speed, flexibility, observability, reproducibility, and credibility
will make the platform attractive to software and hardware researchers interested in the parallel challenge. In
particular, it allows the research community to revive the 1980’s culture of building experimental hardware
and software systems, which has been mostly lost due to the higher cost and difficulty of building hardware
today.

Table I compares alternatives for pursuing parallel systems research in academia. The four options are a
conventional shared-memory multiprocessor (SMP), a cluster, a simulator, building a custom chip and sys-
tem, and RAMP. The rows are the features of interest. Cost rules out a large SMP for most academics. The
cost of purchase and cost of ownership makes a large cluster too expensive for most academics as well. Our
only alternative to date has been software simulation, and indeed that has been the vehicle for most archi-
tecture research in the last decade. As mentioned above, software developers rarely use software simulators
since they run too slowly and results might not be credible. In particular, it’s unclear how credible results
will be to industry, when based on simulations of 1000 processors running small snippets of applications.
The RAMP option is a compromise between these alternatives. It is so much cheaper than custom hardware
that academics can afford highly scalable systems; it is as flexible as simulators so that we can rapidly evolve
the state of the art in parallel computing; and it is so much faster than simulators that software people can be
tempted to actually try out a new hardware idea.

This speed also allows architects to explore a much larger space in their research, and then to do a more
thorough evaluation of their proposals. Although architects can achieve high “batch” simulation through-
put using multiple independent software simulations distributed over a large compute cluster, this does not
reduce the latency to obtain a single key result that can move the research forward. It also does not help
an application developer trying to debug the port of an application to the new target system (the emulated
machine is called the target, and underlying FPGA hardware is the host.) Worse, for multiprocessor targets,
simulation speed in both instructions per second per core and total instructions per second drops as more
cores are simulated and as operating system effects are included, and the amount of memory required for
each node in the host compute cluster rises rapidly.

We believe the upside potential is so compelling that RAMP could create a “watering hole” effect in
academic departments, as people from many disciplines would use RAMP in their research. RAMP is
obviously attractive to hardware and software researchers in parallelism, but it’s also excellent for those

TABLE I
RELATIVE COMPARISON OF FOUR OPTIONS FOR PARALLEL RESEARCH. FROM THE ARCHITECT’S PERSPECTIVE, THE MOST SURPRISING
ASPECT OF THIS TABLE IS THAT PERFORMANCE IS NOT ONLY THE TOP CONCERN; IT IS LAST IN THIS LIST. IT JUST NEEDS TO BE FAST
ENOUGH TO RUN THE WHOLE SOFTWARE STACK.

SMP Cluster Simulate Custom RAMP
Scalability (1k CPUs) C A A A A
Cost (1k CPUs) F ($40M) | C ($2-3M) | A+ ($0M) | F ($20M) | A ($0.1-0.2M)
Cost of ownership A D A D A
Power/Space D D A+ A B
(kilowatts, racks) (120, 12) | (120, 12) (.1,0.1) (1.5,0.3)
Development Community D A A F B
Observability D C A+ A B+
Reproducibility B D A+ A A+
Reconfigurability D C A+ C A+
Credibility of Result A+ A+ D A+ B+/A-
Performance (clock) ARGHz) | ABGHz) | F(OGHz) | B(0.4 GHz) | C (0.1 GHz)
Modeling Flexibility D D A B A
GPA C C+ B B- A-

interested in topics as varied as security, dependability, and even data center emulation. Such a watering
hole would lead to conversations between disciplines that rarely talk to each other, helping us to more
quickly develop multiprocessor systems that are easy-to-program efficiently. Indeed, to help industry win
its bet on parallelism, we will need the help of many people, for the parallel future is not just an architecture
change, but likely a change to the entire software ecosystem.

The rest of this paper highlights the key current developments in RAMP project. Section III describes
the RAMP Design Framework which enables the assembly of disparate hardware components on top of the
underlying FPGA emulation substrate. Section IV introduces the three reference designs, RAMP Red (trans-
actional memory), RAMP Blue (distributed systems) and RAMP White (distributed shared memory). They
are representative of complete designs as well as vehicles for demonstrating the various reusable modules
under development. Section V provides a summary and our conclusions.

III. RAMP DESIGN FRAMEWORK

From the earliest stages of the RAMP project, it was clear that a standardized design framework was
needed to enable a large community of users to cooperate and build a useful library of inter-operable hard-
ware models. This design framework has a number of challenging goals. It must support both cycle-accurate
emulation of detailed parameterized machine models and rapid functional-only emulations. The design
framework should hide the details in the underlying FPGA emulation substrate from the module designer as
much as possible, to allow groups with different FPGA emulation hardware to share designs and to allow
RAMP modules to be reused after FPGA emulation hardware upgrades. In addition, the design framework
should not dictate the hardware design language (HDL) chosen by developers. Our approach was to develop
a decoupled machine model and design discipline. This discipline is enforced by the RAMP Description
Language (RDL) and a compiler to automate the difficult task of providing cycle-accurate emulation of
distributed communicating components [8].

The RAMP design framework is based on a few central concepts. A RAMP target model is a collection
of loosely coupled target units communicating with latency-insensitive protocols over well-defined target
channels. Figure 1 gives a simple schematic example of two connected units. In practice, a unit will be a
large component corresponding to tens of thousands of gates of emulated hardware, e.g., a processor with

Sending Unit Channel Receiving Unit

Fig. 1. Basic RAMP communication model.

L1 cache, a DRAM controller, or a network router stage. All communication between units is via messages
sent over unidirectional point-to-point inter-unit channels, where each channel is buffered to allow units to
execute decoupled from each other.

Each unit faithfully models the behavior of each target clock cycle in the component. The target unit
models can be developed either as RTL code in a standard HDL (currently Verilog, VHDL, and Bluespec
are supported) for compilation onto the FPGA fabric, or as software models that execute either on attached
workstations or on hard or soft processor cores embedded within the FPGA fabric. Many target units taken
from existing RTL code will execute a single target clock cycle in one FPGA physical clock cycle, giving
a high simulation speed. However, to save FPGA resources, a unit model can be designed to take multiple
physical host clock cycles on the FPGA to emulate one target clock cycle, or might even use a varying
number of physical clock cycles. Initially, the whole RAMP host system uses the same physical clock rate
(nominally around 100 MHz), with some higher physical clock rates in off-chip I/O drivers.

Unit models are only synchronized via the point-to-point channels. The basic principle is that a unit cannot
advance by a target clock cycle until it has received a target clock cycle’s worth of activity on each input
channel and the output channels are ready to receive another target cycle’s worth of activity. This scheme
forms a distributed concurrent event simulator, where the buffering in the channels allows units to run at
varying physical speeds on the host while remaining logically synchronized in terms of target clock cycles.

Unit model designers must produce the RTL code (or “gateware”) of each unit in their chosen HDL,
and specify the range of message sizes that each input or output channel can carry. For each supported
HDL, the RAMP design framework provides tools to automatically generate a unit wrapper that interfaces
to the channels and provides target cycle synchronization. The RTL code for the channels is generated
automatically by the RDL compiler from a RDL description, which includes a structural netlist specifying
the instances of each unit and how they are connected by channels.

The benefit of enforcing a standard channel-based communication strategy between units is that many
features can be provided automatically. Users can vary the target latency, target bandwidth, and target
buffering on each channel at configuration time. The RAMP configuration tools will also provide the option
to have channels run as fast as the underlying physical hardware will allow to support fast functional-only
emulation. We are also exploring the option of allowing these parameters to be changed dynamically at target
system boot time to avoid re-running the FPGA synthesis flow when varying parameters for performance
studies.

The configuration tool will include support for inter-unit channels to be tapped and controlled to provide
monitoring and debugging facilities. For example, by controlling stall signals from the channels, a unit can
be single stepped. Using a separate automatically-inserted debugging network, invisible to target system
software, messages can be inserted and read out from the channels entering and leaving any unit, and all sig-
nificant events can be logged. We believe these monitoring and debugging facilities will provide significant
advantages compared with running applications on commercial hardware.

IV. RAMP PROTOTYPES

Though RAMPants are all volunteers, the project is on a fairly aggressive schedule. Figure IV shows
the timeline for the RAMP project. We began RAMP development using pre-existing FPGA boards—see

June 6, 2005 | Hallway discussions lead to RAMP vision
June 13, 2005 | The name “RAMP” coined; BEE2 [6] selected as RAMP-1; a dozen
people identified to develop RAMP
January 2006 | RAMP retreat and RDL tutorial at Berkeley
March 2006 | NSF infrastructure grant awarded
June 2006 | RAMP retreat at MIT; RAMP Red running with 8 processors on
RAMP-1 boards
January 2007 | RAMP Blue running with 64 to 128 processors on 8 RAMP-1 boards
June 2007 | RAMP Red, White, and Blue running with 128 to 256 processors on
16 RAMP-1 boards; accurate clock cycle accounting and I/0O model
December 2007 | RAMP-2 boards redesigned based on Virtex-5 and available for pur-
chase; RAMP web site has downloadable designs

Fig. 2. RAMP Timeline

side-bar on RAMP hardware. To seed the collaborative effort, we are developing three prototype systems,
named RAMP Red, RAMP Blue, and RAMP White. Each of our initial prototypes contains a complete gate-
ware/software configuration of a scalable multiprocessor populated with standard processor cores, switches,
and operating systems. Once the base system is assembled and software installed, users will be able to easily
run complex system benchmarks, and then modify this working system as desired or start from the ground up
using the basic components to build a new system. We expect that users will release back to the community
any enhancements and new gateware/software modules. A similar usage model has led to the proliferation
of the SimpleScalar framework which now covers a range of instruction sets and processor designs.

A. RAMP Red

RAMP Red is the first multiprocessor system with hardware support for transactional memory (TM).
Transactional memory transfers the responsibility for concurrency control from the programmer to the sys-
tem [1]. It introduces database semantics to the shared memory in a parallel system, which allows software
tasks (transactions) to execute atomically and in isolation without the use of locks. Hardware support for
TM reduces the overhead of detecting and enforcing atomicity violations between concurrently executing
transactions and guarantees correct execution under all cases.

RAMP Red implements the Stanford TCC architecture for transactional memory [9]. The design uses 9
PowerPC 405 hardcores (embedded in the Xilinx Virtex-II-Pro FPGAs) connected to a shared main memory
system through a packet-switched network. The built-in data cache in each PowerPC 405 core is disabled and
replaced by a custom cache (emulated in FPGA) with transactional memory support. Each 32-KByte cache
buffers the memory locations read and written by a transaction during its execution and detects atomicity
violations with other on-going transactions. An interesting feature of RAMP Red is the use of a transaction
completion mechanism that eliminates the need for a conventional cache coherence protocol.

From an application’s point of view, RAMP Red is a fully featured Linux workstation. The operating
system is actually running on just one of the cores while the remaining 8 cores are used for application
execution. A light-weight kernel in each application core forwards exceptions and system calls to the OS
core. The programming model is multithreaded C or Java with locks replaced by transactional constructs.
RAMP Red includes an extensive hardware/software framework for debugging, bottleneck identification,
and performance tuning.

The RAMP Red design has been fully operational since June 2006. It runs at 100 MHz on RAMP-1,
which is 100 times faster than the same architecture simulated in software on a 2 GHz workstation. Early
experiments with enterprise, scientific, and artificial intelligence applications have demonstrated the simplic-
ity of parallel programming with transactional memory and that RAMP Red achieves scalable performance.
In the future, RAMP Red will be the basis for further research in transactional memory, focusing mostly on
software productivity and system software support [5].

Fig. 3. Photograph of RAMP Blue Prototype.

B. RAMP Blue

RAMP Blue is a family of emulated message-passing machines, which can be used to run parallel ap-
plications written for the Message-Passing Interface (MPI) standard, or for partitioned global address space
languages such as Unified Parallel C (UPC). RAMP Blue can also be used to model a networked server
cluster.

The first RAMP Blue prototype is currently under development at UC Berkeley. The hardware platform
for this prototype is shown in Figure 3. It comprises a collection of RAMP-1 boards housed in 2U chassis and
assembled in a standard 19” rack. Physical connection among the eight boards is through 10 Gbps Infiniband
cables (light blue cables in the photograph). The RAMP-1 boards are wired in an all-to-all configuration with
a direct connection from each board to all others through 10 Gbps links. System configuration, debugging,
and monitoring is through a 100 Mbps Ethernet switch with connection to the control FPGA of each board
(dark blue wires in the photograph). For system management and control, each board runs a full-featured
Linux kernel on one PowerPC 405 hardcore embedded in the control FPGA. Our initial target applications
are the UPC version of the NAS Parallel Benchmarks.

The four user FPGAs per RAMP-1 board are configured to hold a collection of 100 MHz Xilinx MicroB-
laze soft processor cores running uCLinux. We have mapped eight processor cores per FPGA. The first
prototype, with 32 user FPGAs, will emulate a 256-way cluster system. In the future, the number of pro-
cessor cores can still be scaled up through several means. More RAMP-1 boards will be added—the simple
all-to-all wiring configuration will accommodate up to 17 boards. More cores will be added per FPGA—the
current configuration of eight processor cores per FPGA only consumes 40% of the FPGA’s logic resources.
Overall, we expect to reach 16 MicroBlaze cores per FPGA, and 1024 cores in a system.

All necessary multiprocessor components are implemented within the user FPGAs. In addition to the soft
processor cores, each FPGA holds a packet network switch (one for each core) for connection to cores on

Processor Processor

Mem — MCU | v = VO i eemeeemceees Mem | — MCU — v

NIU NIU

]

Fig. 4. A High-Level View of RAMP White

the same and other FPGAs, shared memory controllers, shared double-precision floating-point units (FPUs),
and a shared “console” switch for connection to the control FPGA.

In RAMP Blue, each processor is assigned its own DRAM memory space (at least 250 MB per processor).
The external memory interface of the MicroBlaze L1 cache connects to external DDR2 DRAM through a
memory arbiter, as each DRAM channel is shared among a set of MicroBlaze cores. Since each RAMP-1
user FPGA has four independent DRAM memory channels, four processor cores would share one channel in
the maximum-sized configuration (16 processor cores per FPGA). With each processor running at 100 MHz
and each memory channel running a 200 MHz DDR 72-bit data interface, each processor can transfer 72
bits of data at 100 MHz, which is more than each processor core can consume even in our maximum-sized
configuration. A simple round-robin scheme is used to arbitrate among the cores.

The processor—processor network switch currently uses a simple interrupt-driven programmed I/O ap-
proach. A Linux driver provides an Ethernet interface so applications can access the processor network via
traditional socket interfaces. We are planning a next generation network interface with direct memory access
through special ports into the memory controller.

A 256-core (8 per FPGA) version of the RAMP blue prototype is currently nearing completion. At present,
all cores successfully run uCLinux and communicate over the “console” switch with the control FPGAs. As
of this writing, the processor—processor network switch is not fully functional, however, several UPC NAS
Parallel Benchmark programs have been run successfully on a limited number of cores. We expect the system
will be fully functional soon and will report on its operation running the benchmark suite in the final version
of the paper.

C. RAMP White

RAMP White is a distributed shared memory machine that will demonstrate the open component nature
of RAMP by integrating modules from RAMP Red, RAMP Blue and individual RAMPants contributions.
The initial version is being designed and integrated at the University of Texas at Austin. The RAMP White
effort started in the summer of 2006, somewhat after Red and Blue, and will be implemented in the phases
listed below.

1) Global distributed shared memory without caches. All requests to remote global memory will be

serviced directly from remote memory. Communication will be performed over a ring network.

2) Ring-based snoopy coherency. The basic infrastructure of the cache-less system will be expanded to

include a snoopy cache that will snoop the ring.

3) Directory-based coherency. A directory-based coherence engine eliminates the need for each cache to

snoop all transactions but will use the same snoopy cache.

RAMP White will eventually be composed of processor units from the University of Washington and
RAMP Blue teams that will be connected by a simple ring network (Figure 4.) For expediency, the initial

RAMP White will use the embedded PowerPC processors. Each processor unit contains one processor that
is connected to an Intersection Unit (IU) that provides connections to a memory controller (MCU), a network
interface unit (NIU), and I/O if the processor unit supports it. The NIU will be connected to a simple ring
network.

The IU switches requests and replies between the processor, local memory, I/O and the network. The
initial IU is very simple. Memory requests from the processor are divided into local memory requests,
global memory requests (both handled by memory), I/O requests (handled by the I/O module) and remote
requests (handled by the NIU). Remote requests from the NIU are forwarded to the memory. Since the
initial version of RAMP White does not cache global locations, incoming remote requests do not need to be
snooped by the processor.

I/O will be handled by a centralized I/O subsystem mapped into the global address space. Each processor
will run a separate SMP-capable Linux that will take locks to access I/O. The global memory support then
transparently handles shared 1/0. Later versions will add a coherency support using a soft cache (emulated
in FPGA). RAMP White’s first snoopy cache will be based on RAMP Red’s snoopy cache. It is possible that
some or all of the data in the emulated cache will actually reside in DRAM if there is not sufficient space
in the FPGA itself. In the coherent versions of RAMP White, the IU passes all incoming remote requests to
the coherent cache for snooping before allowing the remote request to proceed to the next stage.

V. CONCLUSIONS

This paper presented RAMP, an open-source, community developed, FPGA-based emulator of parallel
architectures. We presented the RAMP design framework to enable an emulator comprising reusable and
composable design modules to be maintained and developed by a large collaborative community. We high-
lighted the on-going development of three reference full-system designs. We are planning a full public
release of the RAMP infrastructure described in this paper in 2007.

RAMP is a return to building hardware/software systems by the research community. Hardware architec-
ture, operating system, compiler, application and programming model research will all benefit. RAMP is
designed to be the right cost/performance/density/visibility tradeoffs for system research. Moreover, since
the system is not frozen, we can use it to both rapidly evolve and spread successful ideas across the commu-
nity.

ACKNOWLEDGMENTS

This work was funded in part by the National Science Foundation, grant number CNS-0551739. Special
thanks to Xilinx for their continuing financial support and donation of FPGAs, and development tools. We
appreciate the financial support provided by the Gigascale Systems Research Center (GSRC). Thanks to
IBM for their financial support through faculty fellowships and donation of processor cores, and to Sun
Microsystems for processor cores. There is an extensive list of industry and academic friends who have
given valuable feedback and guidance. Here we especially give thanks to Arvind (MIT) and Jan Rabaey
(UCB) for their advice. The work presented in this paper are the efforts by the RAMP students and staft:
Hari Angepat, Dan Burke, Jared Casper, Chen Chang, Pierre-Yves Droz, Greg Gibeling, Alex Krasnov,
Martha Mercaldi, Nju Njoroge, Andrew Putnam, Andrew Schutlz, and Sewook Wee.

REFERENCES

[1] Ali-Reza Adl-Tabatabai, Christos Kozyrakis, and Bratin Saha. Tutorial: Transactional programming in a multi-core environment. Tutorial
at the 15th International Conference on Parallel Architecture and Compilation Techniques (PACT), September 2006.

[2] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G. Saidi, and Steven K. Reinhardt. The m5 simulator: Modeling
networked systems. IEEE Micro, 26(4):52-60, 2006.

[3] Nathan L. Binkert, Erik G. Hallnor, and Steven K. Reinhardt. Network-oriented full-system simulation using MS. In Proceedings of Sixth
Workshop on Computer Architecture Evaluation using Commercial Workloads, February 2003.

[4] Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0. Technical Report 1342, Computer Sciences Department,
University of Wisconsin, Madison, June 1997.

[5] Brian D. Calrstrom, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. The software stack for transactional memory: Challenges
and opportunities. In Proc. 1st Workshop on Software Tools for Multicore Systems (STMCS) at CGO-4, March 2006.
[6] C. Chang, J. Wawrzynek, and R. W. Brodersen. BEE2: A High-End Reconfigurable Computing System. [EEE Design and Test of
Computers, 22(2):114-125, Mar/Apr 2005.
[7] Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, Chi-Keung Luk, Srilatha Manne, Shubbendu S. Mukherjee, Harish Patil, Steven
Wallace, Nathan Binkert, Roger Espasa, and Toni Juan. Asim: A performance model framework. IEEE Micro, Feb 2002.
[8] G. Gibeling, A. Schultz, and K. Asanovi¢. RAMP architecture and description language. In 2nd Workshop on Architecture Research using
FPGA Platforms, HPCA-12, February 2006.
[9] Lance Hammond, Brian Carlstrom, Vicky Wong, Ben Hertzberg, Mike Chen, Christos Kozyrakis, and Kunle Olukotun. Programming with
transactional coherence and consistency (tcc). In Proc. of the 11th Intl. Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), June 2006.
[10] A. KleinOsowski and D. Lilja. Minnespec: A new spec benchmark workload for simulation-based computer architecture research, 2002.
[11] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D.
Hill, and David A. Wood. Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset. Computer Architecture News,
2005.
[12] K. Oner, L. A. Barroso, S. Iman, J. Jeong, K. Ramamurthy, and M. Dubois. The Design of RPM: An FPGA-based Multiprocessor
Emulator. In Proc. 3rd ACM International Symposium onField-Programmable Gate Arrays (FPGA’95), February 1995.
[13] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. Rsim reference manual. version 1.0. Technical Report 9705, Electrical and
Computer Engineering Department, Rice University, July 1997.
[14] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta. Complete computer system simulation: The SimOS approach.
IEEE parallel and distributed technology: systems and applications, 3(4):34-43, Winter 1995.
[15] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to find periodic behavior and simulation points in applications,
2001.
[16] Simflex: Fast, accurate & flexible computer architecture simulation. http://www.ece.cmu.edu/ simflex/flexus.html.
[17] Virtutech. Simics.
[18] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe. Smarts: Accelerating microarchitecture simulation via rigorous statistical sampling,
2003.

VI. SIDEBAR: RAMP HARDWARE

Rather than begin the RAMP project by designing yet another FPGA board, we have adopted the Berkeley
Emulation Engine (BEE2 [6]) for the RAMP-1 system. BEE2 boards serve as a platform of the first RAMP
machine prototypes and to help us understand our wish list of features for the next generation board. The
RAMP-2 system, currently in design, will be based on a new board design employing the recently announced
Virtex-5 FPGA architecture.

The BEE2 Compute Module is shown in Figure 5. Each compute module consists of five Xilinx Virtex-
2 Pro-70 FPGA chips each directly connected to four DDR2 240-pin DRAM DIMMs, with a maximum
capacity of 4 GB per FPGA. The four DIMMs are organized into four independent DRAM channels, each
running at 200 MHz (400DDR) with a 72-bit data interface. Therefore, peak aggregate memory bandwidth
is 12.8 GBps per FPGA.

The five FPGAs on the same module are organized into four compute FPGAs and one control FPGA.
The control FPGA has additional global interconnect interfaces and control signals to the secondary system
components. The connectivity on the compute module can be classified into two classes: on-board LVCMOS
connections and off-board Multi Gigabit Transceiver (MGT) connections. The local mesh connects the four
compute FPGAs on a two-by-two 2D grid. Each link between the adjacent FPGAs on the grid provides over
40 Gbps data throughput per link. The four down links from the control FPGA to each of the computing
FPGA s provide up to 20 Gbps per link. These direct FPGA-to-FPGA mesh links form a high-bandwidth low-
latency mesh network for the FPGAs on the same compute module, so all five FPGAs can be aggregated to
form a virtual FPGA with five times the capacity.

All off-module connections use the MGTs on the FPGA. Each individual MGT channel is configured in
software to run at 2.5 Gbps or 3.125 Gbps with 8B/10B encoding, and every 4 MGTs are channel-bonded
into a physical Infiniband 4X (IB4X) electrical connector, to form a 10 Gbps full duplex (20 Gbps total)
interface. The IB4X connections are AC coupled on the receiving end to comply with the Infiniband and
10GBase-CX4 specification.

Using the 4X Infiniband physical connections, the compute modules can be wired into many network
topologies, such as a 3D mesh. For applications requiring high bisection bandwidth random communication
among many compute modules, the BEE2 system is designed to take advantage of commercial network
switch technology, such as Infiniband or 10G Ethernet. The regular 10/100Base-T Ethernet connection,

) T G 4GB DOR2 DRAM
o 12.8GB/s (400DDR)

LT E . BGs «OF
L JE— ==
- [T i——————r =

Infiniband 4X
10Ghb/s X4

Infiniband 4X
10Gh's X4

10087 Infiniband 4X
Ethemet 10Gh/s X2

2VPTOFF1704

Infiniband 4X
10Gh/s X4

Infiniband 4X
10Gh/s X4

2VPTO

Fig. 5. BEE2 module photograph and architecture diagram.

available on the control FPGA, provides an out-of-band communication network for user interface, low
speed system control, monitoring, and data archiving purposes. The compute module runs the Linux OS on
the control FPGA with a full IP network stack.

In our preliminary work developing the first RAMP prototypes, we have made extensive use of the Xilinx
XUP Virtex-II Pro Development System. As with the BEE2 board, the XUP uses Xilinx Virtex-II Pro
FPGA technology; In this case, a single XC2VP30 instead of five XC2VP70s. It also includes an FPGA-
SDRAM interface (DDR instead of DDR2) and includes a number of I/O interfaces, such as video, USB2,
and Ethernet. In spite of its reduced capacity, the XUP has been a convenient development platform for key
gateware blocks before moving them to the BEE2 system.

VII. SIDEBAR: SIMULATION AND EMULATION TECHNOLOGIES

Early computer architecture research relied upon convincing argument or simple analytical models to jus-
tify design decisions. Beginning in the early 1980’s computers became fast enough that simple simulations of
architectural ideas could be performed. By the 1990’s, and onward to today, computer architecture research
has come to rely extensively on software simulation. Many sophisticated software simulation frameworks
exist, including SimpleScalar [4], SImOS [14], RSIM [13], Simics [17], ASIM [7] and M5 [2]. As our
field’s research focus shifts to multi-core, multi-threading systems, a new crop of multiprocessor full-system
simulators—with accurate OS and I/O support—have more recently emerged (e.g., [16], [11], [3]). Software
simulation has significantly changed the computer architecture research field because it is comparably easy
to use, and it can be parallelized effectively by using separate program instances to simultaneously explore
the design space of architectural choices.

Nevertheless, even for studying single core architectures, software simulation is slow to generate a single
datapoint. Detailed simulations of out-of-order microprocessors typically execute in the kilo-instructions
per second range. In the case of the multiprocessor simulation, the performance bottleneck is magnified
since the simulators slow down commensurably as the number of cores studied continues to rise. A number
of researchers have explored mechanisms to speedup simulation. The first of these techniques relied upon
modifying the inputs used to benchmarks in order to reduce their total running time [10]. Later, researchers
recognized that the repetitive nature of program execution could be exploited to subset the amount of time
on which a detailed microarchitectural model is exercised. The first technique to exploit this was basic block
vectors [15]. Later researchers proposed techniques that continuously sample program execution to find
demonstrably accurate subsets [18].

As previously discussed, it is now widely accepted that the challenges facing our field will find solutions
only by innovating both hardware and software. In order to engage software researchers, proposed new

11

architectures must be usable for real software development. The possibility of FPGA prototyping and sim-
ulation acceleration has garnered the interest of computer architects for as long as the technology existed.
Unfortunately, until recently, this avenue has met only limited success due to the restrictive capacity of ear-
lier generation FPGAs and the relative ease of simulating uniprocessor systems in software. An example
of a large-scale FPGA prototyping effort is RPM [12]. The RPM system enabled flexible evaluation of the
memory subsystem, but it was limited in scalability (8 processors) and did not execute OS code. With cur-
rent FPGA capacity, RAMP and other like-minded efforts stand to provide a much needed, scalable research
vehicle for full-system multiprocessor research.

