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Abstract

Task allocation and scheduling for heterogeneous multi-
core platforms must be automated for such platforms to be
successful. Techniques such as Mixed Integer Linear Pro-
gramming (MILP) provide the ability to easily customize
the allocation and scheduling problem to application or
platform-specific peculiarities. The representation of the
core problem in a MILP form has a large impact on the
solution time required. In this paper, we investigate a va-
riety of such representations and propose a taxonomy for
them. A promising representation is chosen with extensive
computational characterization. The MILP formulation is
customized for a multimedia case study involving the de-
ployment of a Motion JPEG encoder application onto a Xil-
inx Virtex II Pro FPGA platform. We demonstrate that our
approach can produce solutions that are competitive with
manual designs.

1 Introduction

Applications for embedded systems are becoming more
complex and are increasingly being realized with software
deployed on heterogeneous and highly parallel architectural
platforms. Even though these platforms may provide better
performance, they greatly complicate the programming ef-
fort – a significant road block for their adoption.

The design flow we consider starts with a concurrent de-
scription of the application and a profiling of the architec-
tural platform in terms of computational capabilities and
communication costs. The application description used in
this paper is a statically schedulable dataflow specification,
such as cyclo-static [16] dataflow. Such descriptions are
commonly used for the multimedia applications we tar-
get and can be automatically transformed into acyclic data
precedence graphs.

The core problem to be solved is to map this weighted
directed acyclic graph (DAG) representing the application
onto a set of architectural nodes. In the application DAG,
nodes represent tasks while edges represent data prece-
dence relationships. The architecture is represented with

a weighted directed graph where nodes are processing el-
ements (PEs). Edges that represent communication chan-
nels may be added explicitly to the architecture graph if
connectivity between PEs is restricted, otherwise, a fully-
connected graph is assumed. The execution time for each
task on each processor is fixed and given. The amount of
communication between each application task is given by
weights on the application graph edges. The objective is to
allocate and schedule the tasks onto the PEs such that the
completion time – or makespan – is minimized.

This paper has four main contributions. First, a clas-
sification of existing MILP representations for this prob-
lem into a taxonomy. Second, based on the taxonomy, a
core MILP formulation and useful customizations. Third,
computational characterization and a comparison of our ap-
proach with a competing approach. Finally, a representative
case study that illustrates the ability or our approach to pro-
duce competitive designs in terms of makespan and area.

2 Prior Work

The scheduling problem we consider is a generalization
of R|prec|Cmax [8] and is strongly NP-hard. R refers to the
usage of multiple heterogeneous PEs with unrelated pro-
cessing times, prec indicates that the application descrip-
tion includes precedence constraints, and Cmax indicates
the objective is to minimize the makespan.

For the special case of R||Cmax (no precedence cons-
traints), there exist polynomial-time approximation algo-
rithms that can guarantee a solution within a factor of 2 of
the optimal [19]. No poly-time approximation algorithm
exists that can provide a solution for R||Cmax within 1.5
times the optimal, unless P = NP [12]. If precedence
constraints are added, there are no known good approxima-
tion results; an overview of related work for R|prec|Cmax

is provided in [10]. A comprehensive listing of known
lower and upper approximation bounds for a variety of sch-
eduling and allocation problems can be found in [4] while
an overview of heuristics is given in [11].

Even though heuristics can often provide good solutions
in a short amount of time, they do not provide bounds on
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Figure 1. Taxonomy of MILP Approaches

solution quality. More importantly, they are brittle with re-
spect to changes in the problem assumptions. For instance,
partial solutions and side constraints are typically difficult
to add to most heuristics without sacrifices in effectiveness.
Approximation algorithms do provide bounds, but the anal-
ysis applied to produce these bounds is even less resilient
to problem changes. Consequently, even though heuris-
tics and approximation algorithms excel at clearly defined
problems, their applicability is limited within a design flow
where platform-specific constraints are needed.

An alternative to approximation algorithms and heuris-
tics is to use mathematical programming techniques such as
MILP. These techniques are much easier to customize, since
application or platform-specific constraints can be added as
required. Branch-and-bound solution techniques for MILPs
which utilize linear programming (LP) relaxations also pro-
vide a lower and upper bound on the desired cost function
at each step of the solution process. This allows us to trade
off solution time and quality.

3 MILP Taxonomy

Solution time for MILP instances is strongly affected by
the representation used for the core allocation and schedul-
ing problem. We observe that the effective encoding of task
precedence relationships is key not only for approximation
algorithms as mentioned in Section 2, but also for MILP
representations. Along these lines, we propose a taxonomy
of known MILP representations in Figure 1.

Discrete time approaches introduce a variable for each
instant of time on each PE. The resultant scheduling con-
straint requires that each such time instant be allocated to at
most one task. The advantage of this method is that the for-
mulation can easily be constrained to use only integer or bi-
nary variables. A rich variety of SAT and Pseudo-Boolean
techniques can be utilized to solve these problems. How-
ever, this formulation has a significant drawback: the num-
ber of time variables introduced can quickly become very
large, especially if diverse task execution times are present.

Continuous time approaches represent time with real-
valued variables in the formulation. Vastly different exe-
cution times can easily be handled by these approaches, but
the choice of variables and constraints used to specify a cor-

rect scheduling on each PE becomes critical in determining
performance [9].

Sequencing: Variables are used to indicate sequencing
to schedule tasks on PEs. These sequencing variables in-
dicate whether a task is executed after another task on the
same PE [1, 3]. This choice of variables can be viewed
as a straightforward extension of the well-known formu-
lations used in uniprocessor scheduling [15]. Typically, a
large number of constraints or variables is required to en-
force the scheduling requirements on each PE. Many of
these constraints can be attributed to the linearization of bi-
linear terms [13].

Slots: This method uses explicit slots on each PE [14, 5]
to which at most one task can be allocated. The start and
finish time for each slot is not fixed a priori. With slots, the
scheduling constraints between tasks on each PE become
simpler to represent. However, since the exact number of
slots on each PE is unknown, a conservative amount need to
be used. As a result, this approach may suffer from variable
blow-up if the typical number of tasks allocated to each PE
is large.

Overlap: Variables are used to indicate overlap (inde-
pendent of PE assignment) in the execution of tasks [17,
18, 20]. Constraints that prevent overlap on the tasks al-
located to each PE are used to enforce scheduling. Since
the scheduling constraints can be expressed succinctly, this
type of formulation scales well with respect to variables and
constraints than the formulations in the other categories.

In this paper, we focus on continuous-time MILP for-
mulations that use overlap variables, since this category
seems the most promising for generating problems with
fewer constraints and variables.

4 MILP Approach

In this section, our core formulation and customizations
will be described in detail.

4.1 Core Formulation

Let F represent the set of tasks in the application DAG
while E ⊂ F × F represents the set of communication
edges. The set A indicates the set of architectural PEs. The
parameter t ∈ RF×A specifies the execution time of each
task on each PE.

The variable d ∈ BF×A indicates if a task is mapped
to a PE. Variables s ∈ RF and f ∈ RF indicates the start
and finish times respectively for each task. o ∈ BF×F is
a variable which is used to determine overlap in execution
times between a pair of tasks.
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min maxi∈F fi (1)

s.t.
P

x∈A dix = 1 ∀i ∈ F (2)

fi ≤ sj ∀(i, j) ∈ E (3)

fi = si +
P

x∈A(tixdix) ∀i ∈ F (4)

fj − si ≤ Moij ∀i, j ∈ F, i 6= j (5)

oij + oji + dix + djx ≤ 3 ∀i, j ∈ F, x ∈ A, i 6= j (6)

The objective function in (1) minimizes the maximum fin-
ish time over all tasks. Constraint 2 (C2) ensures that each
task is mapped onto exactly one PE. C3 requires that the
precedence relationships between edges in the application
DAG hold. C4 relates the start times and finish times of
each task based on the execution time of the task on the ap-
propriate PE. C5 ensures that if a task j finishes after task
i begins, the corresponding variable oij is set to 1. In this
constraint, M represents a large constant, which can be no
less than the maximum finish time. Finally, C6 is a partic-
ularly elegant means of ensuring that no two tasks mapped
onto the same PE may overlap. In this constraint, the sum
oij +oji has a value of 2 iff the executions of the two tasks i
and j overlap. It is these last two sets of constraints that de-
fine task overlap and prevent it on any single PE. Note that
C6 only needs to be defined over i, j ∈ F such that neither
i nor j are in each other’s transitive fan-out (TFO). For all
other cases, the sum oij + oji must be 1.

4.2 Customizing the Formulation

The core formulation does not support communication
cost, restricted architectural topologies, partially specified
task allocation on the platform, and real-time requirements
on portions of the application. Of these, the first three are
crucial for the case study we target in Section 6.

The additional set C ⊆ A × A represents the directed
edges between PEs. The parameter c ∈ RE denotes the
communication cost for each edge in the application DAG.
The parameter n ∈ BF×F indicates whether two tasks are
required to be mapped onto the same PE. Parameter e ∈
B

F×A indicates if a particular task must be mapped onto a
particular PE. The variables r ∈ RF and w ∈ RF represent
the reading and writing time required for each task.

fi = si +
P

x∈A(tixdix) + ri + wi ∀i ∈ F (7)

ri ≥
P

(j,i)∈E cji(dix − djx) ∀i ∈ F, x ∈ A (8)

wi ≥
P

(i,j)∈E cij(dix − djx) ∀i ∈ F, x ∈ A (9)

diy + djz ≤ 1 ∀(i, j) ∈ E, (y, z) 6∈ C (10)

dix ≥ eix ∀i ∈ F, x ∈ A (11)

nij − 1 ≤ dix − djx ≤ 1− nij ∀i, j ∈ F, x ∈ A (12)

C7 replaces C4 from the core formulation and considers
the reading and writing time for each task. C8 charges time

Figure 2. Sequence vs. Overlap Runtime

for reading iff the predecessor task is assigned to a differ-
ent PE. Likewise, C9 charges the corresponding write time.
C10 ensures that the mapping conforms to the restricted ar-
chitectural topology. C11 is a forcing constraint that allows
some allocations to be fixed. Finally, C12 restricts certain
pairs of tasks to be allocated to the same PE. This is useful
when considering applications derived from dataflow speci-
fications, where multiple invokations of the same actor may
be constrained to occur on a single PE.

5 Characterizing the Formulation

In this section, we compare our formulation against the
sequence-based formulation and identify characteristics of
problem instances that affect the runtime of the MILP for-
mulation.

The experimental setup involves coding the sequence-
based formulation from [3] and our core formulation in
AMPL [7] and evaluating them with a set of 45 test cases.
The test cases were generated with the TGFF [6] tool with
three random seeds. Five problem sizes, ranging from 10 to
50 tasks, were generated from each seed. Each task graph
was allocated to different numbers of PEs to keep the av-
erage task/PE ratio the same. The test cases were solved
using CPLEX 9.1.2 on 2.8GHz Linux machines with 2GB
of memory under a time limit of 1000 seconds.

5.1 Comparison: Sequencing vs. Overlap

For the 45 test cases, on average, our overlap-based for-
mulation has 30% more variables than the sequence-based
formulation. However, our formulation also has 63% fewer
constraints, which substantially reduces overall problem
size.

For solving problems to optimality in a balanced branch-
and-bound exploration of the solution space, the sequence-
based approach is an order of magnitude slower than our
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approach, as shown in Figure 2. LP relaxations of the prob-
lems are usually quite tight, often within 10-15% of the op-
timal value. This means that good lower bounds can be ob-
tained in polynomial time for these problem instances. For
instances that could not be solved to optimality within the
time limit, feasible solutions within 14% of optimal were
obtained on average.

If a solution within 10% of the optimal is sufficient, we
can bias the branch-and-bound exploration to find feasible
solutions. These results are also plotted in Figure 2 and
show that solution time can be decreased by 1-2 orders of
magnitude with biasing and a 10% optimality gap. For very
few cases, feasibility biasing may increase solution time.

5.2 Factors Influencing Solution Time

Solution time is typically analyzed with respect to the
number of tasks, the number of constraints or the number
of PEs for a given problem instance. None of these factors
is a good indicator of solution time for this formulation.
For a problem with same number of tasks, as the number
of PEs available decreases, we discover a counterintuitive
trend: the number of constraints (and variables) drops, but
the runtime increases.

The rising solution time for test cases with fewer PEs and
constraints can be explained with three observations. First,
when there are relatively fewer PEs, more unrelated tasks
(tasks not in each other’s TFOs) have to be sequentialized
onto each PE. A formulation that relies on binary variables
and big M constants to enforce non-overlapping of tasks
(C5) has a weaker LP lower bound with more tasks/PE.
Secondly, when many unrelated tasks have similar process-
ing times, many feasible solutions have similar makespans,
this prevents effective pruning of the branch and bound tree
based on known feasible solution upper bounds. Thirdly,
the number of feasible permutations of task ordering ex-
plodes with more tasks/PE. If we have k unrelated tasks al-
located on the same processor, many of the k! permutations
must be considered in the branch and bound tree. The total
number of permutations increases as a function of the maxi-
mum clique (fully connected component) of the inverse ap-
plication graph. Making more PEs available disperses unre-
lated tasks - fragmenting the cliques and improving the LP
lower bound.

6 Case Study

We now turn our attention to demonstrating the applica-
bility of our customized MILP formulation on a case study.
The chosen application is a Motion JPEG encoder. The
architectural platform we consider contains soft-core pro-
cessors and processing elements on a Xilinx Virtex II Pro
FPGA fabric. For various manual and automated mappings,

Forward
DCT

Quantization
Huffman
Encoding

Source Sink

Table
Modification

Figure 3. Motion JPEG Encoder

we compare the performance in terms of system throughput
and area utilization. For applications derived from dataflow
specifications, the makespan of an unrolled dataflow graph
is equivalent to throughput.

6.1 Motion JPEG Application

The motion JPEG encoder application, shown in Figure
3, carries out video encoding without inter-frame compres-
sion. A motion JPEG encoder is commonly implemented in
consumer and security cameras as well as high-resolution
video editing.

The application compresses a stream of raw image data
in 4:4:4 format as per the JPEG [21] standard and emits a
stream of compressed JPEG images. This application was
chosen since it is relatively simple, yet representative of a
wide class of multimedia applications.

The input to the JPEG encoder application is a stream of
8x8 blocks coded in the YCbCr color space in scan order.
DCT, quantization, and Huffman encoding is carried out on
these blocks. Finally, the actual compression ratio is com-
pared against the desired ratio, and the quantization coeffi-
cients are changed accordingly. Figure 3 gives an overview
of this flow.

6.2 Xilinx Virtex II Pro Platform

The Xilinx Virtex II Pro FPGA provides a set of hard
and soft processor cores, bus and FIFO interfaces between
cores, and the ability to create customized IP blocks. This
case study uses a 2VP30 part on Xilinx XUP board with a
maximum frequency of 100 MHz.

The uBlaze 32-bit soft processor is a standard RISC-
based engine. All peripherals are interfaced using the On-
chip Peripheral Bus (OPB).

Fast Simplex Links (FSLs) are a low-overhead method of
communication between uBlaze cores and the fabric. FSL
depth can range from 1 to 8,192 entries, each of which may
be 4 bytes in width. Reads and writes to the FSL FIFOs
from the uBlaze take only a single cycle. Both blocking
and non-blocking read/write access to FSLs is provided.

Finally, processing elements can be directly synthesized
onto the fabric. For this case study, we use a DCT-specific
PE with FSL interfaces created using the XPilot [2] synthe-
sis system.
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6.3 Manual Design Space Exploration

The goals in manual design space exploration are to
utilize various numbers of uBlaze processors and DCT-
specific PEs to maximize the throughput of the Motion-
JPEG application. A nominal frame size of 96x72 is as-
sumed for all implementations. We start from a baseline
topology where the entire application is mapped onto a sin-
gle uBlaze processor. As additional PEs are utilized, por-
tions of the application are migrated to these PEs to improve
throughput.

The PEs in the various designs are connected with FSL
queues that are accessed in blocking-read, blocking-write
mode. Data is fed to and retrieved from the device with a
100 Mbps Ethernet connection. An Ethernet MAC device
is instantiated on the fabric to handle this communication.
One of the uBlaze PEs in each design is designated as the
I/O processor and connects to the Ethernet device. In ad-
dition, this uBlaze is connected to peripherals to allow for
debugging and performance measurement. In all designs
except the baseline topology, a single uBlaze is reserved for
quantization table update.

The different manual designs obtained are shown in Fig-
ure 4. The blocks used include the data source (So), DCT
(D), quantization (Q), Huffman encoder (H), and table up-
date (T). A combiner (C) is necessary when the Huffman
block is split into 3 parts. Salient characteristics of each im-
plementation – the number of uBlaze and DCT PEs used,
the frames processed per second, and the area (% slices oc-
cupied on the FPGA) – are summarized in Table 1. Designs
M1D and M3D are obtained from M1 and M3 respec-
tively by substituting uBlazes with DCT PEs where possi-
ble.

The manual designs exploit the task-level and data-level
parallelism in the application. The designs first attempt to
use task-level parallelism between the different stages and
the exploit the natural data-level parallelism between the
three color channels.

Design uBlaze DCT fps Area
Base 1 0 26.5 21%
M1 5 0 51.1 39%
M1D 4 1 72.0 53%
M2 6 0 85.1 47%
M3 9 0 85.3 62%
M3D 6 3 85.6 94%
M4 12 0 148.8 83%

Table 1. Manual Designs

6.4 Automated Design Space Exploration

Automated Design Space Exploration uses the MILP
formulation developed in Section 4 to determine the sched-
uling and allocation for tasks in the case study. The aim is to
show that the cost model in the formulation accurately cap-
tures the design space and can be used to implement com-
petitive designs.

The first step is to create a representation for the applica-
tion which identifies the maximal amount of available con-
currency. Since we would like to compare against the man-
ual implementations, we create a task representation which
extracts no more concurrency than is utilized in the man-
ual designs. We also reserve a separate uBlaze for the table
update portion of the application, just as in the manual de-
signs. Note that this restriction can be relaxed to obtain
higher quality automated designs.

The next step is to characterize the application so that
the task execution times (the t parameters) can be obtained.
For the uBlaze processors, the cycle times obtained from
the timer peripheral are as follows: Source - 200, DCT -
4,760, Quant - 2,572, Huffman - 3,442, Combiner - 2,542.
On the DCT PE, the DCT task has a latency of 328 cycles.

If these parameters are used in our MILP formulation,
any legal solution produces a static estimate for throughput.
The accuracy of this estimate is important in determining
the effectiveness of an automated approach. We compare
the estimates for the base design and the 6 manual designs
from Section 6.3 against the actual implementation results
obtained from the development board.

The makespan estimated from the formulation is, on av-
erage, within 5% of the execution time measured on the de-
velopment board. Most of the predictions overestimate the
makespan, since the formulation does not consider simul-
taneity between reads and writes on each FIFO.

With this accurate model of the design space, we can
automatically evaluate a number of different solutions from
the MILP formulation. Based on the characteristics of the
manual designs, we picked three promising MILP solutions
and implemented them on the development board. These
three automated solutions (A1, A2, and A3) use 3, 5, and
8 uBlazes and were obtained with a 100s time limit on the
solver. The MILP solution also confirms that design M4 is
optimal given the chosen granularity of the task graph.

Both the manual and automated solutions can be plotted
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Figure 5. Manual vs. Automated Designs

in terms of frame rate vs. FPGA slices consumed - which
is roughly proportional to the number of uBlazes and DCT
PEs used. Figure 5 shows this tradeoff and indicates that
the automated designs do indeed result in competitive im-
plementations that lie on the Pareto curve.

7 Conclusions and Future Work

In this work, we considered a number of MILP ap-
proaches for solving the task allocation and scheduling
problem. Based on their treatment of precedence constr-
aints, a taxonomy of known MILP representations was pro-
posed, and the most promising core formulation was se-
lected. Extensions were then added to customize the formu-
lation for our needs. With extensive computational testing,
we showed that our overlap-based formulation has better so-
lution time than a competing sequence-based formulation,
and demonstrated that tight lower bounds could be obtained
in polynomial time. We also identified key metrics for de-
termining the difficulty of problem instances - demonstrat-
ing that for a given application, larger platforms actually
decrease solution time. Our formulation was applied to a
case study that considers the deployment of an MJPEG ap-
plication on a Xilinx FPGA platform. We showed that our
formulation can accurately predict the performance of the
system and quickly produce solutions that are competitive
with manual designs.

In the future, we plan to further extend the customiza-
tions used here to enable the targeting of more complex
platforms. For instance, by handling the allocation of dis-
tributed memory. Also, we would like to consider more
specialized solution techniques. In particular, the addi-
tion of constraints corresponding to critical paths during the
branch-and-bound process seems promising.
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