
Flush: A Reliable Bulk Transport Protocol for Multihop
Wireless Network

Sukun Kim
Rodrigo Fonseca
Prabal Dutta
Arsalan Tavakoli
David E. Culler
Philip Levis
Scott Shenker
Ion Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-169

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-169.html

December 12, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported by NSF grant #0435454 (NeTS-NOSS), NSF
GRFP, Crossbow Technology, Microsoft Corporation, and Sharp
Electronics.

Flush: A Reliable Bulk Transport Protocol for Multihop Wireless Networks

Sukun Kim†, Rodrigo Fonseca†, Prabal Dutta†, Arsalan Tavakoli†

David Culler†, Philip Levis?, Scott Shenker†‡, and Ion Stoica†

†Computer Science Division ‡ICSI ?Computer Science Department
University of California, Berkeley 1947 Center Street Stanford University

Berkeley, CA 94720 Berkeley, CA 94704 Stanford, CA 94305

Abstract

We present Flush, a reliable, single-flow transport pro-
tocol for sensornets, and show that it can efficiently
transfer bulk data across a 48-hop wireless network.
Flush provides end-to-end reliability, minimizes trans-
fer time, is energy- and memory-efficient, and adapts ro-
bustly to changing network conditions. The protocol re-
quires no special control packets to adjust its rate. Flush
nodes propagate rate information against the direction
of data flow by snooping on next hop traffic. We show
that Flush closely tracks or exceeds the maximum achiev-
able fixed rate over a wide range of path lengths. Flush
is useful for many sensor network applications whose
main requirement is to transmit all collected data to
the edge, which include environmental monitoring, struc-
tural health monitoring, and protocol testing. Indeed, we
collected the Flush performance data using Flush itself.

1 Introduction

Some sensornet applications, like data aggregation [11],
synopsis diffusion [15], and target tracking [19], require
in-network data processing. Another class of applica-
tions have much simpler requirements: they sample sen-
sors at some low frequency and deliver these readings
with best effort to the edge of the network without de-
lay [12, 23]. For these applications, collection protocols
like MintRoute [27] provide best effort service. A third
class of applications sample sensors at high frequency
and must reliably deliver these samples to the edge of the
network for post processing with relatively loose latency
requirements (e.g., minutes or hours) [16, 9, 26].

While delivery of bulk data to the network edge sounds
simple, the vagaries of multihop wireless transmission
make efficient and reliable delivery a formidable chal-
lenge [24]; intra-path interference is hard to avoid, inter-
path interference is hard to cope with, and efficient
end-to-end signaling along the reverse path is hard to

achieve. Despite the considerable progress made in ad-
dressing these issues in sensornets [8, 3, 17], some have
proposed largely sidestepping the problems of multi-
hop by positioning relatively powerful nodes, called mi-
croservers, within one or two hops of less powerful,
battery-operated nodes called motes; this approach works
wonderfully well where feasible, but there are cases
where microservers cannot be used.

The Golden Gate Bridge structural health monitoring
project [9] provides one such example: 51 nodes span
4,200 feet and must operate continuously for weeks. The
bridge’s safety requirements, limited power availability,
and linear topology prohibit the dense deployment of
microservers. Since microservers are power-hungry de-
vices, they would also need large batteries or solar cells,
but mounting such bulky equipment on a public facility
would pose a safety risk to pedestrians and vehicles. Be-
cause sink nodes can be placed at only the ends of the
bridge, we need a transport protocol that can work well
over a potentially large number of hops.

The Golden Gate Bridge application is representative
of the class of problem we consider here. The task is to
reliably deliver all data to the edge, without much con-
cern for the latency between collection and delivery, at
least not on small time scales. One way to accomplish
this task is by retrieving the data from each relevant node
sequentially, so there is never more than one active flow
in the network, but what is the benefit in doing so?

Designing congestion control mechanisms for multi-
hop wireless transport is difficult in the general case, but
the problem can be greatly simplified if there are no inter-
fering flows. In general, congestion control must address
two issues: sharing the bandwidth between flows in some
reasonably equitable manner, and adjusting the sending
rate to match the available bandwidth. When only one
flow is active at a time, the first issue disappears com-
pletely. This paper addresses the second issue. Ignoring
inter-path interference allows us to focus on maximizing
bandwidth through optimal use of pipelining.

While latency is not a pressing concern in this class
of application, energy-efficiency is. Thus, the transport
protocol should be designed to minimize transfer time.
But, there are other reasons, beyond energy-efficiency,
to minimize transfer time. For instance, some applica-
tions must alternate sensing and communications, either
because the sensing rate exceeds the radio bandwidth or
because radio operation adversely affects sensing due to
electrical interference. In these cases, reducing transfer
time increases sensing uptime.

Finally, to be viable in the sensornet regime, a protocol
must have a small memory and code footprint. As of late
2006, typical motes have 4KB to 10KB of RAM, 48KB
to 128KB of program memory, and 512KB to 1MB of
non-volatile memory. This memory must be shared be-
tween the application and system software, limiting the
amount available for message buffers and network pro-
tocol state.

Thus, our goal is to develop a protocol that deliv-
ers data reliably to the edge with minimal transfer time
and has a small memory and code footprint. Our solu-
tion, called Flush, considers a single flow at a time, and
uses rate-based hop-by-hop flow control to match the
available bandwidth. Flush was implemented in TinyOS,
the de facto operating system for sensor networks [6]
and evaluated using a 48-node subset of the Mirage
testbed [1] as well as an ad hoc, 79-node outdoor net-
work. The results show that Flush’s rate control algo-
rithm closely tracks or exceeds the maximum effective
bandwidth sustainable using a fixed rate, even over a 48-
hop wireless network. Our implementation of Flush re-
quires just 629 bytes of RAM and 6,058 bytes of ROM.

2 Flush

Flush is a receiver-initiated transport protocol for mov-
ing bulk data across a multihop, wireless sensor network.
Flush assumes that only one flow is active for a given
sink at a time. As we discussed in Section 1, this is a
reasonable assumption for a large class of data collection
applications, and makes the algorithm much simpler. The
sink sends requests for a large data object, which is di-
vided into packets and sent in a pipelined fashion in its
entirety. Reliability is guaranteed by an end-to-end neg-
ative acknowledgment scheme: the sink successively re-
quests missing packets from the source, until all packets
have been successfully received. Within a transfer, Flush
continually tries to estimate the bottleneck bandwidth by
means of a simple and effective dynamic rate control al-
gorithm. This algorithm requires no extra control pack-
ets: it obtains the necessary information by snooping.

In this section we provide an overview of Flush, and
discuss its two main components in detail: the end-to-
end reliability protocol, and the dynamic rate estimation.

Flush makes five assumptions about the link layer below
and the clients above:

• Isolation: A receiver has at most one active Flush
flow. If there are multiple flows active in the net-
work they do not interfere in any significant way.

• Snooping: A node can overhear single-hop packets
destined to other nodes.

• Acknowledgments: The link layer provides effi-
cient single-hop acknowledgments.

• Forward Routing: Flush assumes it has an under-
lying best-effort routing service that can forward
packets toward the data sink.

• Reverse Delivery: Flush assumes it has a reason-
ably reliable delivery mechanism that can forward
packets from the data sink to the data source.

The reverse delivery service need not route the packets; a
simple flood or a data-driven virtual circuit is sufficient.
The distinction between forward routing and reverse de-
livery exists because arbitrary, point-to-point routing in
sensornets is uncommon so we do not wish to depend on
it.

2.1 Flush Overview
To initiate a data transfer, the sink sends a request for a
data object to a specific source in the network using the
underlying delivery protocol. Naming of the data object
is outside of the scope of Flush, and is left to an appli-
cation running above it. After a request is made, Flush
transfers move through three phases: data transfer, ac-
knowledgment, and integrity check.

During the data transfer phase, the source sends pack-
ets to the sink using the maximum rate that does not
cause intra-path interference. Over long paths, this rate
pipelines packets over multiple hops, spatially reusing
the channel. Section 2.3 provides intuition on how this
works, and describes how Flush actively estimates this
rate. The initial request contains conservative estimates
for Flush’s runtime parameters, such as the transmit rate.
When it receives the request, the data source starts send-
ing the requested data packets, and nodes along the route
begin their dynamic rate estimation. On subsequent re-
quests or retransmissions, the sink uses estimated, rather
than conservative, parameters.

The sink keeps track of which packets it receives.
When the data transfer stage completes, the acknowledg-
ment phase begins. The sink sends the sequence numbers
of packets it did not receive back to the data source. Flush
uses negative rather than positive acknowledgments be-
cause it assumes the end-to-end reception rate exceeds

2

2 4 5

4 9

2, 4, 5

4, 9

4, 9

Figure 1: NACK transmission example. Flush has at most
one NACK packet in flight at once.

50%. When it receives a NACK packet, the source re-
enters the data transfer stage.

This process repeats until the sink has received the
requested data in toto. When that occurs, the sink veri-
fies the integrity of the data. If the integrity check fails,
the sink discards the data and sends a fresh request for
the data. If the check succeeds, the sink can request the
next data object, perhaps from another node. Integrity is
checked at the level of both packets and data items.

To minimize overhead, Flush bases its estimates on lo-
cal data and snoops on control information in forwarded
data packets. The only explicit control packets are those
used to start a flow and request end-to-end retransmis-
sions. Flush is miserly with packet headers as well: three
fields are used for rate control and one field is used for
the sequence number. The use of few control packets and
small protocol headers helps to maximize data through-
put, minimizing transfer time. Section 3 describes a con-
crete implementation of the Flush protocol.

2.2 Reliability Protocol

Flush uses an end-to-end reliability protocol in order to
be robust to node failures. Figure 1 shows an example
session of the protocol, where the data size is 9 pack-
ets, and a NACK packet can accommodate at most 3 se-
quence numbers. In the data transfer stage, the source
sends all of the data packets, some of which are lost (2,
4, 5, and 9 in the example), either due to retransmission
failures or queue overflows. The sink keeps a bitmask
of all received packets. When it believes that the source
has finished sending data, the sink sends a single NACK
packet, which can hold up to N sequence numbers, back
to the source. This NACK contains the first N (where
N = 3 in this case) sequence numbers of lost packets, 2,
4, and 5. The source retransmits the requested packets.
This process continues until the sink has received ev-
ery packet. The sink uses an estimate of the round-trip
time (RTT) to decide when to send NACK packets in the
event that all of the retransmissions are lost. A portion of
NACK protocol code is borrowed from [9].

The sink sends a single NACK packet to simplify the
end-to-end protocol. Having a series of NACKs would
require signaling the source when the series was com-
plete, to prevent interference along the path. The advan-
tage of a series of NACKs would be that it could increase
the transfer rate. In the worst case, using a single NACK
means that retransmitting a single data packet can take
two round-trip times. However, in practice Flush experi-
ences few end-to-end losses due to its rate control.

In one experiment along a 48-hop path, deployed at
the Richmond Field Station (RFS), Flush had an end-to-
end loss rate of 3.9%. For a 760 packet data item and
room for 21 NACKs per retransmission request, this con-
stitutes a cost of two extra round trip times, an acceptable
cost given the complexity savings.

2.3 Rate Control

The protocol described above achieves Flush’s first goal:
reliable delivery. Flush’s second goal is to minimize
transfer time. Sending packets as quickly as the data link
layer will allow poses serious problems in the multihop
case. First, nodes forwarding packets cannot receive and
send at the same time. Second, retransmissions of the
same packet by successive nodes may prevent the recep-
tion of the following packets, in what is called intra-path
interference [24]. One-hop medium access control algo-
rithms will not solve the problem, due to hidden-terminal
problems. Lastly, rate mismatches may cause queues fur-
ther along the path to overflow, leading to packet loss,
wasted energy, and more end-to-end retransmissions.

Flush strives to send packets at the maximum rate
that will avoid intra-path interference. On long paths, it
pipelines packets over multiple hops, maximizing spa-
tial reuse. To better understand the issues involved in
pipelining packets, we first present an idealized model
with strong simplifying assumptions. We then lift these
assumptions as we present how Flush dynamically esti-
mates its maximum sending rate.

2.3.1 A very simple model

In this simplified model there are N nodes arranged lin-
early plus a basestation B. Node N sends packets to the
basestation through N −1, ..., 1. Nodes forward a packet
as soon as possible after receiving it. Time is divided in
slots of length 1s, and nodes are synchronized. They can
send exactly 1 packet per slot, and cannot both send and
receive in the same slot. Nodes can only send and hear
packets from neighbors 1 hop away, and there is no loss.
There is however a variable range of interference, I: a
node’s transmission interferes with the reception of all
nodes that are I hops away.

3

Interference

Packet transmission time

x

1

2

3

4

N = 1(a)

(b)

(c)

(d)

N = 2

N ≥ 3

Interference = 1

N ≥ 4

Interference = 2

nodes

B

1

1

1

2

23

B

B

B

x
x

x

Rate = 1/4

Rate = 1/3

Rate = 1/2

Rate = 1

ti
m

e

ti
m

e

ti
m

e

ti
m

e

Figure 2: Maximum sending rate without collision in
the simplified pipelining model, for different number of
nodes (N) and interference ranges (I).

We ask the question: what is the fastest rate a node
can send at and not have collisions?

Figure 2 shows the maximum rate we can have in the
simplified pipeline model for key values of N and I . If
there is only one node, as in Figure 2(a), it can send to
the basestation at the maximum rate, of 1 pkt/s. There is
no contention, as no other nodes transmit. For two nodes
(b), the maximum rate falls to 1/2, because node 1 can-
not send and receive at the same time. The interference
range starts to play a role if N ≥ 3. In (c), node 3 has
to wait for node 2’s transmission to finish, and for node
1’s, because node 1’s transmission prevents node 2 from
receiving. This is true for any node beyond 3 if we keep
I constant, and the stable maximum rate is 1/3. Finally,
in (d) we set I to 2. Any node past node 3 has to wait for
its successor to send, and for its successor’s two succes-
sors to send. Generalizing, the maximum transmission
rate in this model for a node N hops away with interfer-
ence range I is given by

r(N, I) =
1

min(N, 2 + I)
.

Thus, the maximum rate at which nodes can send de-
pends on the interference range at each node, and on the
path length (for short paths). If nodes send faster than
this rate, there will be collisions and loss, and the good-
put can greatly suffer. If nodes send slower than this rate,
throughput will be lower than the maximum possible.

2.3.2 Dynamic Rate Control

We now describe how Flush dynamically estimates the
maximum sending rate that maximizes the pipeline uti-
lization. The algorithm is agile in reacting to increases
and decreases in per-hop throughput and interference

i i-1 i-2

δi

δi-1

fi-1
Hi-1 di

i-3 i-4

……

Ii-1

ti
m

e

Forward data packets

Interference

Packet transmission time

Figure 3: A detailed look at pipelining from the perspec-
tive of node i, with the quantities relevant to the algo-
rithm shown.

range, and is stable when link qualities do not vary. The
rate control algorithm follows two basic rules:

• Rule 1: A node should only transmit when its suc-
cessor is free from interference.

• Rule 2: A node’s sending rate cannot exceed the
sending rate of its successor.

Rule 1 derives from a generalization of our simple
pipelining model: after sending a packet, a node has to
wait for (i) its successor to forward the packet, and for
(ii) all nodes whose transmissions interfere with the suc-
cessor’s reception to forward the packet. This minimizes
intra-path interference. Rule 2 prevents rate mismatches:
when applied recursively from the sink to the source, it
tells us that the source cannot send faster than the slow-
est node along the path. This rule minimizes losses due
to queue overflows for all nodes.

Establishing the best rate requires each node i to de-
termine the smallest safe inter-packet delay di (from start
to start) that maintains Rule 1. As shown in Figure 3, di

comprises the time node i takes to send a packet, δi, plus
the time it takes for its successor to be free from interfer-
ence, Hi−1. δi is measured between the start of the first
attempt at transmitting a packet and the first successfully
acknowledged transmission. Hi−1 is defined for ease of
explanation, and has two components: the successor’s
own transmission time δi−1 and the time fi−1 during
which its interfering successors are transmitting. We call
the set of these interfering nodes Ii−1. In summary, for
node i, di = δi + (δi−1 + fi−1): the minimum delay is
the sum of the time it takes a node to transmit a packet,
the time it takes the next hop to transmit the packet, and
the time it takes that packet to move out of the next hop’s
interference range.

Flush can locally estimate δi by measuring the time
it takes to send each packet. It needs to obtain δi−1 and

4

fi−1 from its successor, because most likely node i can-
not detect all nodes that interfere with reception at node
(i − 1). Instead of separate control packets, Flush relies
on snooping to communicate these among neighbors. Ev-
ery Flush data packet transmitted from node (i− 1) con-
tains δi−1 and fi−1. Using these, node i is able to approx-
imate its own fi as the sum of the δs of all successors that
node i can hear. As the values δi−1 and fi−1 of its suc-
cessor may change over time and space due to environ-
mental effects such as path and noise, Flush continually
estimates and updates δi and fi.

Let us look at an example. In Figure 4, node 7 deter-
mines, by overhearing traffic, that the transmissions of
node 6 and 5 (but not node 4) can interfere with recep-
tion of traffic from node 8. This means that node 7 can
not hear a new packet from node 8 until node 5 finishes
forwarding the previous packet. Thus, f7 = δ6 + δ5.
Node 7 can not receive a packet while sending, and
H7 = δ7 + f7. Considering node 8’s own transmission
time, d8 = δ8 +H7 = δ8 + δ7 + f7 = δ8 + δ7 + δ6 + δ5.
So the interval between two packets should be separated
by at least that time.

8 7 6 5

8 6 5

4

4

3

Figure 4: Packet transfer from node 8 to node 7 interferes
with transfer from node 5 to node 4. However it does not
interfere with transfer from node 4 to node 3

As described above, each node can determine its own
fastest sending rate. This is not enough on its own to en-
sure the optimal path sending rate for the path. Rule 2
provides the necessary condition: a node should not send
faster than its successor’s sending rate.

When applied recursively, Rule 2 leads to the cor-
rect sending interval at node i: Di = max(di, Di−1).
Most importantly, this determines the sending rate at the
source, which is the maximum di over all nodes. This
rate is easy to determine at each node: all nodes simply
include Di in their data packets, so that the previous node
can learn this value by snooping. To achieve the best rate
it is necessary and sufficient that the source send at this
rate, but as we show in Section 4, it may be beneficial
to impose a rate limit of Di for each node i in the path,
and not only for the source. Figure 5 presents a concise
specification of the rate control algorithm and how it em-
bodies the two simple rules described above.

Finally, while the above formulation works in a steady
state, environmental effects and dynamics as well as sim-

The Flush rate control algorithm

(1) δi : transmission time at node i
(2) Ii : set of forward interferers at node i
(3) fi =

∑
k∈Ii

δk

(4) di = δi + (δi−1 + fi−1) (Rule 1)
(5) Di = max(di, Di−1) (Rule 2)

Figure 5: The Flush rate control algorithm. Di deter-
mines the smallest sending interval at node i.

ple probability can cause a node’s Di to increase. Be-
cause it takes n packets for a change in a delay estimate
to propagate back n hops, for a period of time there will
be a rate mismatch between incoming and outgoing rates.
In these cases, queues will begin to fill. In order to allow
the queues to drain, a node needs to temporarily tell its
previous hop to slow down. We use a simple mechanism
to do this, which has proved efficient. While a node’s
queue size is past a specified threshold, it temporarily in-
creases the delay it advertises by doubling δi.

3 Implementation

To empirically evaluate the Flush algorithms, we imple-
mented them in the nesC programming language [5] and
the TinyOS [7] operating system for sensor networks.
Our implementation runs on the Crossbow MicaZ plat-
form but we believe porting it to other platforms like the
Mica2 or Telos would be straightforward.

3.1 Protocol Engine

The Flush protocol engine implements the reliable block
transfer service. This module receives and processes data
read requests and selective NACKs from the receiver.
The requests are forwarded to the application, which is
responsible for materializing the requested data. After
the data has been materialized, the protocol engine writes
the data and identifying sequence numbers into a packet
and then submits the packet to the routing layer at the
rate specified by the packet delay estimator, which is dis-
cussed in the next section.

Although the Flush interface supports 32-bit off-
sets, our current implementation only supports a lim-
ited range of data object sizes: 917,504 bytes (64K x 14
bytes/packet), 1,114,112 bytes (64K x 17 bytes/packet),
or 2,293,760 bytes (64K x 35 bytes/packet), depending
on the number of bytes available for the data payload in
each packet. This restriction comes from the use of 16-
bit sequence numbers, which we use in part to conserve

5

data payload and in part because the largest flash mem-
ory available on today’s sensor nodes is 1 MB.

3.2 Routing Layer
MintRoute [27] is used to convergecast packets from the
source to the sink, which in our case is the root of a col-
lection tree. Flush does not place many restrictions on the
path other than it be formed by reasonably stable bidi-
rectional links. Therefore, we believe Flush should work
over most multihop routing protocols like CLDP [10],
TinyAODV, or BVR [4]. However, we do foresee some
difficulty using routing protocols that do not support rea-
sonably stable paths. Some routing protocols, for ex-
ample, dynamically choose distinct next hops for pack-
ets with identical destinations [14]. It is neither obvious
that our interference estimation algorithm would work
with such protocols nor clear that a high rate could be
achieved or sustained because Flush would be unable to
coordinate the transmissions of the distinct next hops.

Flush uses the TinyOS flooding protocol, Bcast, to
send packets from the receiver to the source for both initi-
ating a transfer and sending end-to-end selective NACKs.
Bcast implements a simple flood: each node rebroad-
casts each unique packet exactly once, assuming there is
room in the queue to do so. A packet is rebroadcast with a
small, random delay. We chose a flood rather than an epi-
demic protocol because flooding is fast and simple. We
did not use a point-to-point routable protocol because the
protocol overhead from headers would decrease Flush’s
efficiency.

3.3 Packet Delay Estimator
The packet delay estimator implements the Flush rate
control and interference estimation algorithms. The es-
timator uses the MintRoute Snoop interface to inter-
cept packets sent by a node’s next hops and previous hop
along the path of a flow, for predicting the set of inter-
ferers. The δ, f , and D fields, used by the estimator, are
extracted from the next hop’s intercepted transmissions.

The estimator also extracts the received signal strength
indicator (RSSI) of packets received from the previ-
ous hop and snooped from all successor hops along the
routing path. These RSSI values are smoothed using
an exponentially-weighted moving average to smooth
out transients on single-packet timescales. History is
weighted more heavily because RSSI is typically quite
stable and outliers are rare, so a single outlier should have
little influence on the RSSI estimate.

A node i considers an successor node (i− j) an inter-
ferer of node i + 1 at time t if for any j > 1 if

rssii+1(t)− rssii−j(t) < 10 dBm (1)

This inequality checks if an adequate signal-to-
interference-plus-noise ratio (SINR) exists to success-
fully receive packets. The SINR threshold of 10 dBm was
chosen after empirically evaluating a range of values.
Since the forwarding time fi was defined to be the time
it takes for a packet transmitted by a node i to no longer
interfere with reception at node i, we set fi accordingly,
such that for all values j for which the above inequality
holds contributes to fi. We have found that this interfer-
ence estimator works reasonably well in practice and we
further note that any better estimator would not change
the algorithm and would only improve performance. We
defer to Section 5 a deeper discussion of the challenges
in estimating interference.

Based in part on the preceding information, the esti-
mator computes di, the minimum delay between adja-
cent packet transmissions. The estimator provides the de-
lay information, Di, to the protocol engine to allow the
source to set the sending rate. The estimator also pro-
vides the parameters δi, fi, Di to the queuing component
so that it can insert the current values of these variables
into a packet immediately prior to transmission.

3.4 Queuing

Queues provide buffer space during transient rate mis-
matches which are typically due to changes in link qual-
ity. In Flush, these mismatches can occur over short time
scales because rate estimates are based on averaged inter-
val values, so unexpected losses or retransmissions can
occur. Also, control information can take longer to prop-
agate than data: at a node i along the path of a flow, data
packets are forwarded with a rate 1

δi
while control in-

formation propagates in the reverse direction with a rate
1

δi+fi
. The forwarding interference time fi is typically

two to three times larger than the packet sending delay
δi, so control information flows two to three times slower
than data. Since it can take some time for the control
information to propagate to the source, queues provide
buffering during this time.

Our implementation of Flush uses a 16-deep rate
limited queue. Our queue is a modified version of
QueuedSend, the standard TinyOS packet queue. Our
version, called RatedQueuedSend, implements sev-
eral functions that are not available in the standard com-
ponent. First, our version measures the local forwarding
delay, δ, and keeps an exponentially-weighted moving
average over it. This smoothed version of δ is provided
to the packet estimator. Second, RatedQueuedSend
enforces the queue departure delay Di specified by the
packet delay estimator. Third, when a node becomes
congested, it doubles the delay advertised to its descen-
dants but continues to drain its own queue with the
smaller delay until it is no longer congested. Fourth,

6

the queue inserts the then-current local delay informa-
tion into a packet immediately preceding transmission.
Fifth, RatedQueuedSend retransmits a packet up to
four times (for a total for five transmissions) before drop-
ping it and attempting to send the next packet. Finally,
the maximum queuing delay is bounded, which ensures
the queue will be drained eventually, even if a node finds
itself neighborless. We chose a queue depth of 5, about
one-third of the queue size, as our congestion threshold.

3.5 Link Layer
Flush employs link-layer retransmissions to reduce the
number of expensive end-to-end transmissions that are
needed. Flush also snoops on the channel to overhear
next hop’s delay information and the previous hop and
succesor hops’ RSSI values. Unfortunately, these two re-
quirements are at odds with each other for the CC2420
radio used in the MicaZ mote, as the radio does not si-
multaneously support both acknowledgments and snoop-
ing in hardware, and the default TinyOS distribution does
not provide software acknowledgments. Our implemen-
tation enables the snooping feature of the CC2420 and
disables hardware acknowledgments. We use a modified
version of the TinyOS MAC, CC2420RadioM, which
provides software acknowledgments [17].

3.6 Protocol Overhead
Our implementation of Flush uses the default TinyOS
packet which provides 29 bytes of payload above the
link layer. The allocation of these bytes is as follow:
MintRoute (7 bytes), sequence numbers (2 bytes), Flush
rate control fields (6 bytes), and application payload
(14 bytes). Since in the default implementation, only 14
bytes are available for the application payload, Flush’s
effective data throughput suffers. The initial implemen-
tation of Flush used two bytes for each of the δ, f , D
fields, with the least significant bit representing 1 ms.
Through experimentation, we discovered that the distri-
bution of delay values take on a narrow range that very
rarely exceeds 255 ms, so we changed these three fields
to 1 byte each, and the application payload to 35-bytes,
during subsequent experiments. Future work might con-
sider an A-law style compressor/expander (compander),
used in audio compression, to provide high resolution for
expected delay values while allowing small or large out-
liers to be represented.

4 Evaluation

We perform a series of experiments to evaluate Flush’s
performance. First, we establish a baseline using fixed
rates against which we compare Flush’s performance.

This baseline also allows us to factor out overhead com-
mon to all protocols and avoid concerning ourselves with
questions like, “why is there a large disparity between the
raw radio rate of 250 kbps and Flush?” Next, we compare
two variants of Flush against the baseline. One variant,
Flush Source, adjusts the sending rate only at the source
while the other variant, Flush Hop-by-Hop, adjusts the
sending rate all along the path. Then, we consider the
effects of abrupt link quality changes on Flush’s perfor-
mance and analyze Flush’s response to a parent change in
the middle of a transfer. The preceding experiments are
carried out on the Mirage testbed [1]. Next, we consider
Flush’s scalability by evaluating its performance over a
48-hop, ad hoc, outdoor wireless network. To the best of
our knowledge, this is the longest multihop path used in
evaluating a protocol in the wireless literature. Finally,
we present Flush’s code and memory footprint.

4.1 Testbed Methodology
We evaluate the effectiveness of Flush through a series
of experiments on the Intel Research Berkeley sensor-
net testbed, Mirage, as well as a 79-node, ad hoc, out-
door testbed. The Mirage testbed consists of 100 MicaZ
nodes, although we use the 48 node subset depicted in
Figure 6. This subset was sufficient to construct the set
of longest possible paths in the testbed (using the un-
derlying tree-building protocol). We used node 0, in the
bottom left corner, as the sink, or basestation. Setting the
MicaZ node’s CC2420 radio power level to -15 dBm, the
diameter of the resulting network varied between 6 and
8 hops in our experiments, with a typical path shown in
Figure 6. The end-to-end quality of the paths was gener-
ally good, but in Section 4.4 we present the results of an
experiment in which the quality of a link was artificially
degraded. The outdoor testbed consisted of 79 nodes de-
ployed in a linear fashion with 3ft spacing in an open
area, creating an approximately 48 hop network.

0

13

10

20

36

71

78 95

105

142

143

119

148

146

122

124

134

149

111

115

140

11237 68

61

100 103

107

130

6 70 74 96

131

145

123

141

120

132

144

116

117104102 12540 62 72

10m

Figure 6: The Mirage indoor testbed used for all experi-
ments except scalability. A path we used in one of the ex-
periments is highlighted. A subset of nodes are selected
such that a longer path can be obtained.

We use the MintRoute [27] protocol to form a collec-

7

tion tree with the sink located at the root. MintRoute uses
periodic beacons to update link quality estimates. Prior
to starting Flush, we allow MintRoute to form a rout-
ing tree, and then freeze this tree for the duration of the
Flush transfer. In Section 5, we discuss Flush’s interac-
tions with other protocols and applications.

In our experiments the basestation issues a request for
data from a specific node. All the nodes are time synchro-
nized prior to each trial, and they log to flash memory the
following information for each packet sent: the Flush se-
quence number, timestamp, the values of δ, f , and D,
and the instantaneous queue length. After each run we
collect the data from all of the nodes using Flush itself.
We compare two variants of Flush with a static algorithm
that fixes the sending rate:

• Flush Source: Uses the full rate estimation algo-
rithm, but only limits the rate at the source. The in-
termediary nodes still estimate the delays and prop-
agate them as described in Section 2.3.

• Flush Hop-by-Hop: Adds rate limiting at each
node.

To better appreciate the choice of evaluation metrics
presented in this section, we revisit Flush’s design goals.
First, Flush requires complete reliability, which the pro-
tocol design itself provides (and our experiments val-
idate, across all trials, networks, and data sizes). The
remaining goals are to maximize throughput, minimize
energy consumption, and adapt gracefully to dynamic
changes in the network.

4.2 High Level Performance
We examine the effective packet throughput and effective
bandwidth by comparing the two variants of Flush with
various values of the static fixed-rate algorithm.

To establish a baseline for comparison, we first look
at the packet throughput achieved by the fixed rate al-
gorithm. For each sending interval of 10, 15, 20, 30,
and 40ms, we transferred 715 packets along a fixed 6-
hop path. The smallest inter-packet interval our hardware
platform could physically sustain was 8ms, which we
empirically measured over one hop.

We began by initiating a multihop transfer from a
source node six hops away. Subsequently, after this trans-
fer completed, we performed a different transfer from the
5th hop, and continued this process up to, and includ-
ing, a transfer in which the source node was only one
hop away. Figure 7 shows the results of these trials. Each
point in the graph is the average of four runs, with the
vertical bars indicating the standard deviation.

Each path length has a fixed sending rate which per-
forms best. When transferring over one hop there is no

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
pk

t/s
)

Hops from Sink

Fixed 10ms
Fixed 15ms
Fixed 20ms
Fixed 30ms
Fixed 40ms

Figure 7: Packet goodput of fixed rate streams over dif-
ferent hop counts. The optimal fixed rate depends on the
distance from the sink.

forward interference, and a node can send packets as fast
as the hardware itself can handle. As the path length in-
creases, the rate has to be throttled down, as packets fur-
ther along in the pipeline interfere with subsequent ones.
For example, sending with an interval of 30ms provides
the best packet throughput over 4, 5, and 6 hop trans-
fers, as there are too many losses due to queue overflows
when sending faster. Slower rates do not cause interfer-
ence, but also do not achieve the full packet throughput
as the network is underutilized.

Figure 8(a) shows the results of the same experiments
with the two variations of Flush. The circles in the fig-
ure show the performance of the best fixed rate at the
specific path length. Flush performs very close, or bet-
ter, than this envelope, on a packets/second basis. These
results suggest that Flush’s rate control algorithm is au-
tomatically adapting to select the best possible sending
rate along the path, optimizing for changing link quali-
ties and forward interference.

Figure 8(b) shows the effective data bandwidth on a
bytes/second basis. The effective bandwidth of Flush is
lower than the best fixed rate because we adjust for pro-
tocol overhead. In this figure, Flush’s rate control header
fields account for 6 bytes (δ, f , and D each require 2
bytes), leaving only 14 bytes for the payload. We discov-
ered, however, that the δ, f , and D values never exceeded
255, so these fields were reduced to a single byte each in
the later scalability experiments.

These figures show that fixing a sending interval may
work best for a specific environment, but no single fixed
rate performs well across different path lengths, topolo-
gies, and link qualities. We could fine tune the rate for a
specific deployment and perhaps get slightly better per-
formance than Flush, but that process is cumbersome,
because it requires tuning the rate for every node, and

8

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
pk

t/s
)

Hops from Sink

Flush Hop by Hop
Flush Source

Best Fixed Rate

(a) Effective packet throughput of the two variants of Flush rate control
compared to the best fixed rate at each hop, taken from Figure 7

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6

E
ffe

ct
iv

e
B

an
dw

id
th

 (
B

/s
)

Hops from Sink

Flush Hop by Hop
Flush Source

Best Fixed Rate

(b) Effective bandwidth of the two variants of Flush rate control com-
pared to the best fixed rate at each hop, taken from Figure 7.

Figure 8: (a) Flush tracks the best fixed packet rate. (b) Flush’s protocol overhead reduces the effective data rate.

brittle because it does not handle changes in the network
topology or variations in link quality gracefully.

Figure 9 compares the energy efficiency of the differ-
ent alternatives from the experiment above. We use the
average number of packets sent per hop in our trans-
fer of 715 packets as an indicator for how much energy
each node consumed, as radio communication is the most
power-intensive operation of a sensor node. Effective
bandwidth is negatively correlated with the number of
messages transmitted, as the transfers with a small fixed
interval lose many packets due to queue overflows. As
in the previous graphs, Flush performs close to the best
fixed rate at each path length. Note that the extra packets
transmitted by Flush and by the “Fixed 40ms” flow are
mostly due to link level retransmissions, which depend
on the link qualities along the path. The Flush Source,
Flush Hop-by-Hop, and “Fixed 40ms” flow experienced
no losses due to queue overflows. In contrast, the retrans-
missions of the “Fixed 10ms” and “Fixed 20ms” curves
include both the link level retransmissions and end-to-
end retransmissions for packets losses due to queue over-
flows at intermediate nodes.

4.3 A More Detailed Look

A more detailed analysis provides additional insight into
why Flush performs well, and how the two variants be-
have differently. Using the detailed logs collected for a
sample transfer of 900 packets (12600 bytes) over a 7
hop path, we are able to look at the real sending rate at
each node, as well as the instantaneous queue length at
each node as each packet is transmitted.

Figure 10 shows the sending rate of one node over a
particular interval, where the rates are averaged over the

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5 6

Av
er

ag
e

Tr
an

sm
iss

io
ns

 P
er

 N
od

e

Hops from Sink

Flush Hop by Hop
Flush Source
Fixed 10ms
Fixed 20ms
Fixed 40ms
Optimal

Figure 9: Average number of transmissions per node for
sending a page of 715 packets. The optimal algorithm
assumes no retransmissions.

last k packets received. We set k to 16, which is the max-
imum queue length. Other nodes had very similar curves.
We compare the two variants of Flush, Source and Hop-
by-Hop, with the best performing fixed-rate sending in-
terval at this path length, 30ms. Sending at this interval
did not congest the network. As expected, under stable
network conditions, the fixed-rate algorithm maintains a
stable rate. Although the two Flush variants showed very
similar high-level performance in terms of throughput
and bandwidth, we see here that the Hop-by-Hop vari-
ant is much more stable, although not to the same extent
as the fixed interval transfer.

Another benefit of the hop-by-hop rate limiting, as
opposed to source-only limiting, can be seen in Fig-
ure 11. This plot shows the maximum queue occupancy
for all nodes in the path, versus the packet sequence num-

9

 0
 20
 40
 60
 80

 100

 0 5 10 15 20

Ra
te

 (p
kt

/s
)

Time (s)

Fixed 30ms

 0
 20
 40
 60
 80

 100

 0 5 10 15 20

Ra
te

 (p
kt

/s
) Flush Source

 0
 20
 40
 60
 80

 100

 0 5 10 15 20

Ra
te

 (p
kt

/s
) Flush Hop by Hop

Figure 10: Packet rate over time for a source node 7 hops
away from the base station. Packet rate averaged over 16
values, which is the max size of the queue. Flush Hop-
by-Hop approximates the best fixed rate with the least
variance.

ber. Note that we use sequence number here instead of
time because two of the nodes were not properly time-
synchronized due to errors in the timesync protocol. The
results are very similar, though, as the rates do not vary
much. The queue length in the hop-by-hop case is al-
ways close to 5, which is the congestion threshold we set
for increasing the advertised delay (c.f. Section 2.3). Our
simple scheme of advertising our delay as doubled when
the queue is above the threshold seems to work well in
practice. It is actually good to have some packets in the
queue, because it allows the node to quickly increase its
rate if there is a sudden increase in available bandwidth.

In contrast, Flush Source produces highly variable
queue lengths. The lack of rate limiting at intermedi-
ary nodes induces a cascading effect in queue lengths, as
shown in Figure 12. The bottom graph provides a closer
look at the queue lengths for 5 out of the 7 nodes in the
transfer during a small subset of the entire period. The
queue is drained as fast as possible when bandwidth in-
creases, thus increasing the queue length at the next hop.
This fast draining of queues also explains the less stable
rate shown in Figure 10.

4.4 Adapting to Network Changes

We also conduct experiments to assess how well Flush
adapts to changing network conditions. Our first exper-
iment consists of introducing artificial losses for a link
in the middle of a 6-hop path in the testbed for a limited
period of time. We did this by programmatically having
the link layer drop each packet sent with a 50% proba-
bility. This effectively doubled the expected number of
transmissions along the link, and thus the delay.

 2
 4
 6
 8

 10
 12
 14
 16

 0 100 200 300 400 500 600 700 800 900

M
ax

im
um

 Q
ue

ue
 L

en
gt

h

Flush Sequence Number

Flush Hop by Hop
Congestion Threshold

 2
 4
 6
 8

 10
 12
 14
 16

 0 100 200 300 400 500 600 700 800 900

M
ax

im
um

 Q
ue

ue
 L

en
gt

h

Flush Sequence Number

Flush Source

Figure 11: Maximum queue occupancy across all nodes
for each packet. Flush Hop-By-Hop exhibits more stable
queue occupancies than Flush Source.

 2
 4
 6
 8

 10
 12
 14
 16

 0 100 200 300 400 500 600 700 800 900

Q
ue

ue
 L

en
gt

h

Flush Sequence Number

Flush Source

 2

 4

 6

 8

 10

 12

 14

 16

 760 770 780 790 800 810 820

Q
ue

ue
 L

en
gt

h

Queue at Hop 5
Queue at Hop 4
Queue at Hop 3
Queue at Hop 2
Queue at Hop 1

Figure 12: Detailed view of instantaneous queue length
for Flush Source. Queue fluctuations ripple through
nodes along a flow.

Figure 13 provides the instantaneous sending rate over
the link with the forced losses for Flush Hop-by-Hop,
Flush Source, and Fixed 30ms. Again, 30ms was the best
fixed rate for this path before the link quality change was
initiated. In the test, the link between two nodes, 3 and
2 hops from the sink, respectively, has its quality halved
between the 7 and 17 second marks, relative to the start
of the experiment. We see that the static algorithm rate
becomes unstable during this period; due to the required
retransmissions, the link can no longer sustain the fixed
rate. Flush Hop-by-Hop adapts gracefully to the change,
with a slight decrease in the sending rate. The variabil-
ity remains constant during the entire experiment. Flush
Source is not very stable when we introduce the extra
losses, and is also less stable after the link quality is re-
stored.

Figure 14 compares the queue lengths for the same

10

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20

Pk
ts

/s

Time(s)

Fixed 30ms

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20

Pk
ts

/s

Flush Source

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20

Pk
ts

/s
Flush Hop-by-Hop

Figure 13: Sending rates at the lossy node for the forced
loss experiment. Packets were dropped with 50% proba-
bility from between 7 and 17 seconds. Both Flush vari-
ants adapt while the fixed rate overflows its queue.

experiment for all three algorithms, and the reasons for
the rate instability become apparent, especially for the
fixed rate case. The queue at the lossy node becomes full
as its effective rate increases, and is rapidly drained once
the link quality is reestablished.

 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20

Q
ue

ue
 L

en
gt

h

Time(s)

Fixed 30ms

 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20

Q
ue

ue
 L

en
gt

h Flush Source

 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20

Q
ue

ue
 L

en
gt

h Flush Hop-by-Hop

Figure 14: Queue length at the lossy node for the forced
loss experiment. Packets were dropped with 50% proba-
bility from between 7 and 17 seconds. Both Flush vari-
ants adapt while the fixed rate overflows its queue.

The last experiment looks at the effect of a route
change during a transfer on the performance of Flush.
We started a transfer over a 5 hop path, and approxi-
mately 21 seconds into the experiment forced the node 4
hops from the sink to switch its next hop. Consequently,
the entire subpath from the node to the sink changed.
Note that this scenario does not simulate node failure,
but rather a change in the next hop, so packets should
not be lost. The high level result is that the change had

 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20 25 30 35 40 45

Q
ue

ue
 L

en
gt

h

Time(s)

Queue at Hop 4

 0
 5

 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35 40 45

Pk
ts

/s

Hop 1a
Hop 2a
Hop 3a

 0
 5

 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35 40 45

Pk
ts

/s

Hop 1b
Hop 2b
Hop 3b

 0
 5

 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35 40 45

Pk
ts

/s

Hop 0 (sink)
Hop 4 (parent change)

Figure 15: Detailed look at the route change experiment.
Node 4’s next hop is changed, changing all nodes in
the subpath to the root. No packets were lost, and Flush
adapted quickly to the change. The only noticeable queue
increase was at node 4, shown in the bottom graph. This
figure shows Flush adapts when the next hop changes
suddenly.

a negligible effect on performance. Figure 15 presents
a detailed look at the rates for all nodes, and the queue
length at the node that had its next hop changed. There
was no packet loss, and the rate control algorithm was
able to quickly reestablish a stable rate. Right after the
change there was a small increase in the affected node’s
queue, but that was rapidly drained once the delays were
adjusted.

While we do not show any results for node failure,
we expect the algorithm will considerably slow down the
source rate, because the node before the failure will have
to perform a large number of retransmissions. If the rout-
ing layer selects a new route in time, the results we have
lead us to believe Flush would quickly readjust itself to
use the full bandwidth of the new path.

4.5 Scalability
Finally, to evaluate the scalability of Flush, we deployed
an outdoor network consisting of 79 MicaZ nodes. These
nodes were placed in a line on the ground, with neighbor-
ing nodes separated by 3ft. The physical extent of the
network spanned 243ft. The radio transmission power
was lowered to decrease range, but not so much so that
the network would be void of interference. The result-
ing topology is shown in Figure 16, where the rightmost
node is 48 hops from the root, which is the leftmost node.

11

3
0

4

6
8

9 15
14

19
18

23
22

27
26

31
30

35
34

49
48

59
57

71
69

76
75

7977737270
6867666564

626058
55

535250
47464544434241

3938373632282420161210

1

5
7

11

13 17 21 25 29 33 40

51

54 56

61

63 74

Figure 16: The network used for the scalability experiment. Of the 79 total nodes, the 48 nodes shown in gray were on
the test path.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40 45 50

E
ffe

ct
iv

e
B

an
dw

id
th

 (
B

/s
)

Hops from Sink

Flush Hop by Hop
Flush Source

Fixed 20ms
Fixed 40ms
Fixed 60ms

Figure 17: Effective bandwidth from the real-world scal-
ability test where 79 nodes formed 48 hop network. The
Flush header is 3 bytes and the Flush payload is 35-
bytes (versus a 38 byte payload for the fixed rates). Flush
closely tracks or exceeds the best possible fixed rate
across at all hop distances that we tested.

For the following experiments, we increased the data
payload size to 38 bytes (from 20 bytes used previously)
for the fixed rate and 35 bytes (from 14 bytes used previ-
ously) for Flush. The size of the Flush rate control header
was reduced to 3 bytes (from 6 bytes used previously),
leaving us with a protocol overhead of about 8%. We
transfer a 26,600 byte data item from the node with a
depth of 48 (node 79), and then perform similar transfers
from nodes at depths 40, 30, 20, 15, 10, 7, 5, 4, 3, 2, and
1. The experiment is repeated for Flush Source, Flush
Hop-by-Hop, and fixed rates of 20ms, 40ms, and 60ms.
Each experiment is performed twice and the results are
averaged. We omit error bars for clarity. Figure 17 shows
the results of this experiment. The results indicate that
Flush efficiently transfers data over very long networks
– 48 hops in this case.

4.6 Memory and Code Footprint

We round out our evaluation of Flush by reviewing its
footprint. Flush uses 629 bytes of RAM and 6,058 bytes
of code, including the routines used to debug, record
performance statistics, and log traces. These constitute
15.4% of RAM and 4.62% of program ROM space on
the MicaZ platform. Table 1 shows a detailed breakdown

Table 1: Memory and code footprint for key Flush com-
ponents compared with the regular TinyOS distribution
of these components (where applicable). Flush increases
RAM by 629 bytes and ROM by 6,058 bytes.

Memory Footprint Code Size
Component Regular Flush Regular Flush
Queue 230 265 380 1,320
Routing 754 938 76 2,022
Proto Eng - 301 - 2,056
Delay Est - 109 - 1,116

Total 984 1,613 456 6,514
Increase 629 6,058

of memory footprint and code size. The Protocol Engine
accounts for 301 out of 629 bytes of RAM, or 47.9%
of Flush’s memory usage. A significant fraction of this
memory (180 bytes) is used for message buffers, which
are used to hold prefetched data.

5 Discussion

We freeze the MintRoute collection tree immediately
prior to a Flush transfer and then let the tree thaw af-
ter the transfer. This freeze-thaw cycle prevents col-
lisions between routing beacons and Flush traffic.
MintRoute [27] generates periodic routing beacons but
these beacons use a separate, unregulated data path to
the radio. With no rate control at the link layer, the bea-
cons are transmitted at inopportune times, collide with
Flush traffic, and are lost. Since MintRoute depends on
these beacons for route updates, and it evicts stale routes
aggressively, Flush freezes the MintRoute state during a
transfer to avoid stale route evictions.

Our freeze-thaw approach sidesteps the issue and
works well in practice. Over small time scales on the or-
der of a Flush session, routing paths are generally stable,
even if instantaneous link qualities vary somewhat. Our
results show that Flush can easily adapt to these changes.
In Figure 15, we also showed that Flush adapts robustly
to a sudden change in the next hop. If the underlying
routing protocol can find an alternate route, then Flush
will adapt to it. But if the physical topology changes, and
routing cannot adapt, then new routes will need to be re-
built and the Flush session will have to be restarted.

It may seem that forcing all traffic to pass through a

12

single (rate-limited) queue would address the issue, but
it does not. Nodes located on the flow path would be able
to fairly queue routing and Flush traffic. However, nodes
located off the flow path, but within interference range
of the flow, would not be able to contend for bandwidth
and successfully transmit beacons. Hence, if the physical
topology changes along the flow path during a transfer,
the nodes along the path may not be able to find an alter-
nate route since beacons from these alternate routes may
have been lost. A solution may be an interference-aware
fair MAC. Many pieces are already in place [8, 3, 17]
but the complete solution would require rate-controlling
all protocols at the MAC layer across all nodes within
interference range of the path.

One potential issue with the interference estimation al-
gorithm presented in Section 3.3 is that it only works
for packets actually received from the successors. Since
the interference range of radios may exceed the recep-
tion range, an successor that is within interference range
but beyond reception range might undetectably interfere
with the previous hop’s transmissions. Our current im-
plementation does not address this issue in part because
we have not seen any evidence that this condition occurs
and in part because we are unclear how it might be de-
tected and addressed without some tradeoffs.

If such interference were found to cause problems, it
may be possible to address it in at least two ways. The
network layer could prune the set of next hop candi-
dates to only those links with at least 10 dBm of re-
ceive link margin. Alternately, the estimator could add
some padding to the estimated forwarding time. Unfor-
tunately, both of these approaches have some drawbacks.
Choosing links with at least 10 dBm of link margin may
increase the network diameter as short links that are at
least 10 dBm above the noise floor will be chosen over
longer links with lower link margins. In the extreme case,
there may be no links with at least 10 dBm margin. Still,
there is some hope that this approach would not appre-
ciably reduce the throughput even though it would in-
crease RTT slightly. In contrast, artificially padding the
estimated forwarding time would decrease throughput.
We defer for future work a careful analysis of these trade-
offs.

6 Related Work

Our work is heavily influenced by earlier work in conges-
tion mitigation, congestion control, and reliable transfer
in wired, wireless, and sensor networks. Architecturally,
our work was influenced by Mishra’s hop-by-hop rate
control [13], which established analytically that a hop-
by-hop scheme reacts faster to changes in the traffic in-
tensity and thus, utilizes resources at the bottleneck bet-
ter and loses fewer packets than an end-to-end scheme.

Kung et al’s work on credit-based flow control for ATM
networks [2] also influenced our work. Their approach of
using flow-controlled virtual circuits (FCVC) with guar-
anteed per-hop buffer space is similar to our design. We
adapted ideas of in-network processing in high-speed
wired networks to wireless networks where transmis-
sions interfere due to the nature of the broadcast medium.

ATP [22] and W-TCP [20], two wireless transport pro-
tocols that use rate-based transmission due to the high
rates on wireless links, have also influenced our work. In
ATP, each node in a path keeps track of its local delay
and puts it in the data packet. Intermediate nodes inspect
the delay information embedded in the packet, and com-
pare it with its own delay, and then insert the larger of
the two. This way, the receiver learns the largest delay
experienced by a node on the path. The receiver reports
this delay in each epoch, and the sender uses this delay
to set its sending rate. In contrast, W-TCP uses purely
end-to-end mechanisms. In particular, it uses the ratio of
the inter-packet separation at the receiver and the inter-
packet separation at the sender as the primary metric for
rate control. As a result, ATP and W-TCP reduce the ef-
fect of non-congestion related packet losses on the com-
putation of transmission rate. We apply rate control to
the problem of optimizing pipelining and interference,
neither of which is addressed in ATP and W-TCP.

Wisden [16], like Flush, is a reliable data collection
protocol. Nodes send data concurrently at a static rate
over a collection routing tree and use local repair and
end-to-end negative acknowledgments. The paper re-
ports on data collected from 14 nodes in a tree with a
maximum depth of 4 hops. Of the entire dataset, 41.3%
was transferred over a single hop, and it took over 700
seconds to collect 39,096 bytes from each node. To com-
pare with Flush, we assume the same distribution of
path lengths. Based on the data from our experiments, it
would take Flush 465 seconds for an equivalent transfer.
We ran a microbenchmark in which we collected 51,680
bytes using a packet size of 80 bytes (the same as Wis-
den) and 68 byte payload. This experiment, repeated four
times, shows that Flush achieved 2,226 bytes per second
from a single hop compared with Wisden’s 782 bytes per
second. This difference can be explain by the static rate
at every node in Wisden. Incorrectly tuned rates or net-
work dynamics can cause buffer overflows and conges-
tion collapse at one extreme and poor utilization at the
other extreme. Since in Wisden, nodes are sending with-
out avoidance and adjustment to interference, cascading
losses can happen, leading to inefficiency.

A number of protocols have been proposed in the sen-
sor network space which investigate aspects of this prob-
lem. RMST [21] outlines many of the theoretical and de-
sign considerations that influenced our thinking includ-
ing architectural choices, link layer retransmission poli-

13

cies, end-to-end vs hop-by-hop semantics, and choice of
ACKs, NACKs, SACKs, and SNACKs, even though their
work was focused on analytical results and ns-2 simula-
tions of 802.11 traffic. Fusion [8], IFRC [17], and the
work in [3] address the problems of rate and congestion
control for collection, but are focused on a fair allocation
of bandwidth among several senders, rather than efficient
and reliable end-to-end delivery. Fusion [8] uses only
buffer occupancy to measure congestion and does not try
to directly estimate forward path interference. IFRC esti-
mates the set of interferers on a collection tree with mul-
tiple senders, and searches for a fair rate among these
with an AIMD scheme. It does not focus on reliability,
and the sawtooh pattern of rate fluctuations makes for
less overall efficiency than Flush’s estimated rate. Event-
to-Sink Reliable Transport (ESRT) [18] defines reliabil-
ity as “the number of data packets required for reliable
event detection” collectively received from all nodes ex-
periencing an event and without identifying individual
nodes. This does not satisfy our more stringent defini-
tion of reliability. PSFQ [25] is a transport protocol for
sensor networks aimed at node reprogramming. This is a
different problem than ours, as the data moves from the
basestation to a large number of nodes.

7 Conclusion

In this paper, we present Flush, a reliable, single-flow
transport protocol for transferring bulk data from a
source to a sink over a multihop wireless sensor net-
work. Flush achieves end-to-end reliability through se-
lective negative acknowledgments and with its adaptive
rate control algorithm, Flush can automatically match or
exceed the best fixed rate possible for a multihop flow.
We show that Flush is scalable; it provides an effective
bandwidth exceeding 550 bytes/second over a 48-hop
wireless network, more than one-third of the rate achiev-
able over one hop. Flush achieves these results by al-
lowing just one flow at a time (a reasonable restriction
for many sensornet applications), and by following two
simple rules. First, a node should only transmit when its
successor is free from interference. At each node, Flush
attempts to send as fast as possible without causing inter-
ference at the next hop along the flow. Second, a node’s
sending rate cannot exceed the sending rate of its suc-
cessor. Again, Flush attempts to send as fast as possible
without increasing the average queue occupancy at the
next hop along the flow. These two rules, applied recur-
sively along the path, explain Flush’s performance.

8 Acknowledgments

This work was supported by NSF grant #0435454
(“NeTS-NOSS”), NSF GRFP, Crossbow Technology,
Microsoft Corporation, and Sharp Electronics.

References
[1] http://mirage.berkeley.intel-research.net/.

[2] BLACKWELL, T., CHANG, K., KUNG, H., AND LIN, D. Credit-
based flow control for ATM networks. In Proc. of the First An-
nual Conference on Telecommunications R&D in Massachusetts
(1994).

[3] EE, C. T., AND BAJCSY, R. Congestion control and fairness
for many-to-one routing in sensor networks. In SenSys ’04: Pro-
ceedings of the 2nd International Conference on Embedded Net-
worked Sensor Systems (2004), ACM Press, pp. 148–161.

[4] FONSECA, R., RATNASAMY, S., ZHAO, J., EE, C.-T., CULLER,
D., SHENKER, S., AND STOICA, I. Beacon-vector routing: Scal-
able point-to-point routing in wireless sensor networks. In Pro-
ceedings of the Second USENIX/ACM NSDI (May 2005).

[5] GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M., BREWER,
E., AND CULLER, D. The nesC language: A holistic approach
to networked embedded systems. In Programming Language De-
sign and Implementation (PLDI) (June 2003).

[6] HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER,
D. E., AND PISTER, K. S. J. System Architecture Directions for
Networked Sensors. In Architectural Support for Programming
Languages and Operating Systems (2000), pp. 93–104. TinyOS
is available at http://webs.cs.berkeley.edu.

[7] HILL, J., SZEWCZYK, R., WOO, A., LEVIS, P., WHITE-
HOUSE, K., POLASTRE, J., GAY, D., MADDEN, S., WELSH,
M., CULLER, D., AND BREWER, E. Tinyos: An operating sys-
tem for sensor networks, 2003.

[8] HULL, B., JAMIESON, K., AND BALAKRISHNAN, H. Mitigat-
ing congestion in wireless sensor networks. In SenSys ’04: Pro-
ceedings of the 2nd international conference on Embedded net-
worked sensor systems (Nov. 2004).

[9] KIM, S., PAKZAD, S., CULLER, D. E., DEMMEL, J., FENVES,
G., GLASER, S., AND TURON, M. Health monitoring of
civil infrastructures using wireless sensor networks. Tech. Rep.
UCB/EECS-2006-121, EECS Department, University of Califor-
nia, Berkeley, October 2 2006.

[10] KIM, Y., GOVINDAN, R., KARP, B., AND SHENKER, S. Ge-
ographic routing made practical. In Proceedings of the Second
USENIX/ACM Symposium on Networked System Design and Im-
plementation (NSDI 2005) (Boston, MA, May 2005).

[11] MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND
HONG, W. Tag: a tiny aggregation service for ad-hoc sensor net-
works. In OSDI (2002).

[12] MAINWARING, A., POLASTRE, J., SZEWCZYK, R., CULLER,
D., AND ANDERSON, J. Wireless Sensor Networks for Habitat
Monitoring. In Proceedings of the ACM International Workshop
on Wireless Sensor Networks and Applications (Sept. 2002).

[13] MISHRA, P. P., KANAKIA, H., AND TRIPATHI, S. K. On hop-
by-hop rate-based congestion control. IEEE/ACM Trans. Netw.
4, 2 (1996), 224–239.

[14] NAIK, V., ARORA, A., SINHA, P., AND ZHANG, H. Sprin-
kler: A reliable and energy efficient data dissemination service
for wireless embedded devices. In Proceedings of the 26th IEEE
Real-Time Systems Symposium (RTSS 2005).

14

[15] NATH, S., GIBBONS, P. B., SESHAN, S., AND ANDERSON,
Z. R. Synopsis diffusion for robust aggregation in sensor net-
works. In Proceedings of the 2nd ACM Conference on Embedded
Networked Sensor Systems (Sensys) (New York, NY, USA, 2004),
ACM Press, pp. 250–262.

[16] PAEK, J., CHINTALAPUDI, K., CAFFEREY, J., GOVINDAN, R.,
AND MASRI, S. A wireless sensor network for structural health
monitoring: Performance and experience. In Proceedings of
the Second IEEE Workshop on Embedded Networked Sensors
(EmNetS-II).

[17] RANGWALA, S., GUMMADI, R., GOVINDAN, R., AND PSOU-
NIS, K. Interference-aware fair rate control in wireless sensor
networks. In SIGCOMM 2006 (Pisa, Italy, August 2006).

[18] SANKARASUBRAMANIAM, Y., AKAN, O., AND AKYILDIZ, I.
ESRT: Event-to-sink reliable transport in wireless sensor net-
works. In In Proceedings of MobiHoc (June 2003).

[19] SHARP, C., SCHAFFERT, S., WOO, A., SASTRY, N., KARLOF,
C., SASTRY, S., AND CULLER, D. Design and implementation
of a sensor network system for vehicle tracking and autonomous
interception. In Second European Workshop on Wireless Sensor
Networks (January – February 2005).

[20] SINHA, P., NANDAGOPAL, T., VENKITARAMAN, N., SIVAKU-
MAR, R., AND BHARGHAVAN, V. WTCP: A reliable transport
protocol for wireless wide-area networks. Wireless Networks 8,
2-3 (2002), 301–316.

[21] STANN, F., AND HEIDEMANN, J. RMST: Reliable data trans-
port in sensor networks. In Proceedings of the First International
Workshop on Sensor Net Protocols and Applications (Apr. 2003),
IEEE, pp. 102–112.

[22] SUNDARESAN, K., ANANTHARAMAN, V., HSIEH, H.-Y., AND
SIVAKUMAR, R. ATP: a reliable transport protocol for ad-hoc
networks. In Proceedings of the 4th ACM international sympo-
sium on Mobile ad hoc networking & computing (MobiHoc ’03)
(2003), pp. 64–75.

[23] TOLLE, G., POLASTRE, J., SZEWCZYK, R., TURNER, N., TU,
K., BUONADONNA, P., BURGESS, S., GAY, D., HONG, W.,
DAWSON, T., AND CULLER, D. A macroscope in the redwoods.
In Proceedings of the 3rd ACM Conference on Embedded Net-
worked Sensor Systems (Sensys 05), San Diego (November 2005),
ACM Press.

[24] VYAS, A. K., AND TOBAGI, F. A. Impact of interference on
the throughput of a multihop path in a wireless network. In The
Third International Conference on Broadband Communications,
Networks, and Systems (Broadnets 2006).

[25] WAN, C.-Y., CAMPBELL, A. T., AND KRISHNAMURTHY, L.
PSFQ: a reliable transport protocol for wireless sensor networks.
In WSNA ’02: Proceedings of the 1st ACM international work-
shop on Wireless sensor networks and applications (2002).

[26] WERNER-ALLEN, G., JOHNSON, J., RUIZ, M., LEES, J., AND
WELSH, M. Monitoring volcanic eruptions with a wireless sen-
sor network. In Proceedings of the First European Workshop on
Sensor Networks (EWSN) (2005).

[27] WOO, A., TONG, T., AND CULLER, D. Taming the underlying
challenges of reliable multihop routing in sensor networks. In
Proceedings of the first international conference on Embedded
networked sensor systems (2003), ACM Press, pp. 14–27.

15

