
Using Criticality to Attack Performance Bottlenecks

Brian Allen Fields

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-176

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-176.html

December 14, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

See inside document for the many acknowledgements.

Using Criticality
To Attack Performance Bottlenecks

by

Brian Allen Fields

B.S. (University of Cincinatti) 1999
M.S. (University of Wisconsin-Madison) 2001

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Rastislav Bodik, Chair

Professor John Wawrzynek
Professor Yale Braunstein

Fall 2006

The dissertation of Brian Allen Fields is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2006

Using Criticality

To Attack Performance Bottlenecks

Copyright 2006

by

Brian Allen Fields

1

Abstract

Using Criticality

To Attack Performance Bottlenecks

by

Brian Allen Fields

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Rastislav Bodik, Chair

We observe that the challenges software optimizers and microarchitects face every day

boil down to a single problem: bottleneck analysis. A bottleneck is any event or resource that

contributes to execution time, such as a critical cache missor window stall. Tasks such as tuning

processors for energy efficiency and finding the right loads to prefetch all require measuring the

performance costs of bottlenecks.

In the past, simple event counts were enough to find the important bottlenecks. Today, the

parallelism of modern processors makes such analysis much more difficult, rendering traditional

performance counters less useful. If two microarchitectural events (such as a fetch stall and a cache

miss) occur in the same cycle, which event should we blame forthe cycle? What cost should we

assign to each event?

In this work, we propose a new way of thinking about performance that employs aglobal

2

view of program execution to determine thecriticality of program events. With the new-found

understanding that a rigorous notion of criticality provides, we can correctly identify which events

are bottlenecks, something that is not generally possible with event counts alone. Our work goes

even further, however. We can also quantify how much a particular bottleneckcoststo execution

time, how muchslack a non-bottleneck event has, as well as how the cost and slack of multiple

eventsinteractwith each other.

This thesis makes the following key contributions:

• Fundamental metrics. We have gleaned from the seemingly diverse space of performance-

related problems a few fundamental requirements of a performance analysis methodology for

modern machines: measuring and interpretingcost, slack, and interactions.

• Modeling. We have shown how to construct dependence-graph models capable of represent-

ing the critical path of modern, parallel machines.

• Measuring. We have developed software algorithms for efficiently computing the cost,

slack, and interactions for large numbers of micro-operations.

• Interpreting. We have characterized the types of interactions that are possible and shown

how they can be exploited in design and optimizations.

• Hardware Support. We have developed inexpensive hardware capable of measuring criti-

cality online and proposed a profiling infrastructure (enhancing performance counters) that

enables measuring of the more sophisticatedcost, slack, and interaction metrics for real pro-

gram executing on real machines.

3

• Case Studies.We have illustrated through case studies how our performance analysis tech-

nology can tackle some of the problems that face architects and optimizers.

While this thesis focuses on microprocessors, many of the techniques are applicable to

parallel systems in general. To illustrate the generality,we briefly illustrate how to model a chip

multiprocessor using our dependence-graph abstraction. Once the graph is constructed, all of the

criticality metrics discussed throughout the thesis can bemeasured and interpreted.

Professor Rastislav Bodik
Dissertation Committee Chair

i

ii

Contents

List of Figures v

List of Tables xi

I First Part 1

1 Introduction 2
1.1 Why Existing Analysis is Inadequate 3
1.2 Bottleneck Analysis Applications 5
1.3 Grand Challenges .. . 9
1.4 Our Approach .10

2 Related Work 17

3 Microexecution Dependence Graphs 24
3.1 Requirements .. 25

3.1.1 Implications for a Processor’s Critical Path 26
3.2 Constructing a Graph from a Program Execution 27

3.2.1 Graph of a Microexecution .. . 28
3.2.2 Complete Dependence Graph .. 30

3.3 Procedure For Graph Model Development 32
3.3.1 Sources of modeling error .. . 36

3.4 Validation .. 39
3.4.1 Small-signal Validation 40
3.4.2 Large-signal Validation 42

3.5 Summary . 43

4 Interpreting a Program’s Critical Path 45
4.1 Criticality Modes 46
4.2 Criticality of a Single Event 49
4.3 Degree of criticality of multiple events 56

4.3.1 Quantifying Interactions 58

iii

4.3.2 Apportioning . 65
4.4 Summary . 66

5 Software Algorithms 68
5.1 Computing criticality 68
5.2 Computing Slack .. 73
5.3 Computing Cost .. 77
5.4 Algorithms for Dynamic Graphs 80
5.5 Summary . 83

6 Hardware Support 84
6.1 Criticality Analyzer and Predictor 84

6.1.1 Hardware Implementation of the Analyzer 88
6.1.2 History-based Prediction 94

6.2 Slack Analyzer .. 99
6.2.1 Locality of Slack .100
6.2.2 Implicit-Slack Predictor 103

6.3 Shotgun Profiling .. . 105
6.3.1 Design #1: The Hardware-Intensive Approach 106
6.3.2 Design #2: One sample per static instruction 108
6.3.3 Design #3: Shotgun profiler, only short signatures 110
6.3.4 Our final solution: Shotgun profiler, long and short signatures 113
6.3.5 Measuring profiler accuracy 117

6.4 Summary . 123

7 Applications of Criticality 125
7.1 Simulation Methodology 126
7.2 Hardware Control Policies 127

7.2.1 Resource Arbitration .. . 128
7.2.2 Speculation Control .. 145
7.2.3 Dynamic Hardware Reconfiguration 149

7.3 Hardware Design Help .. . 150
7.3.1 Icost Tutorial: Optimizing a long pipeline 152
7.3.2 Using Criticality in Design (Work by Others) 162

7.4 Software Design Help 164
7.5 Summary . 165

8 Future Work: Criticality in Chip Multiprocessors 170
8.1 Software Parallelization 171

8.1.1 Modeling multithreaded program execution 173
8.1.2 Automatic Parallelization 175

8.2 Summary . 178

9 Conclusions and Future Work 179

iv

Bibliography 186

v

List of Figures

3.1 Waterfall diagrams. Traditionally, “waterfall” timeline diagrams, such as pictured
in (a), have been used to describe and analyze the performance of a microprocessor
pipeline. We illustrate here a very simple 2-way superscalar out-of-order processor
consisting of three pipeline stages (Fetch,Execute, andCommit) and an instruction
window with four entries. If we add edges to the diagram to indicate the depen-
dences that result in stalls (as inb) and then label those edges with the latencies of
the operations causing the stalls (as inc), we can convert the waterfall representa-
tion to one of a directed acycle graph (as ind). Notice how the graph representation
retains all of the information in the waterfall diagram but in a more manageable way
for computer-based analysis. 29

3.2 Dependence-graph diagrams of the microexecution.Once a dependence graph
is constructed, it is easy for a computer to identify the critical path through the mi-
croexecution using a topological sort (as in(a)). For more sophisticated analysis
that makes use of “secondary” critical path information, a more complete depen-
dence graph is required (see(b)). In this graph, edges are included for dependences
that exist in the program execution even if they do not affectthe performance of
this particular microexecution. One example of the sophisticated analysis includes
determining thecostof a branch misprediction. This quantity can be found by com-
paring the critical-path length of the graph with the misprediction to the critical-path
length of the graph without it. The critical path of the altered execution is shown in
(d). 31

3.3 Converting pipeline to graph model and reducing.A graph model can be derived
directly from a pipeline model of the processor by (1) creating entry and exit nodes
for each stage and (2) creating edges for every possible stall condition for each
stage. Once a complete graph is constructed, reductions aretypically possible to
reduce complexity without sacrificing precision. 33

vi

3.4 Certain types of resources cause problems with graph analysis. While it is pos-
sible to construct a graph model for any microexecution thatcan be expressed as a
waterfall diagram, certain resources do present problems for some forms of graph
analysis. In(a), we attempt to find the performance effect of a cache miss by ob-
serving the change in the critical path when we convert it’sgraph representation
from a miss to a hit (by reducing the latency on the edge). Our analysis yields inac-
curate results, however, since we did not account for the reduced adder contention
after the miss is removed (the contention edge is still present in the graph.) In(b),
we use a different modeling of adder contention, where it is included as a latency
that delays execution as opposed to a dependence edge. Empirically, we have found
this representation typically reduces the error introduced by side effects. 36

3.5 Validation of the critical-path model Comparison of the performance improve-
ment from reducing critical latencies vs. non-critical latencies. The performance
improvement from reducing critical latencies is much higher than from non-critical
latencies, demonstrating the ability of our model to differentiate critical and non-
critical instructions. The simulator methodology used forthe experiments is de-
scribed in Section 7.1. .. . 41

4.1 Criticality modes. The processor can be viewed as operating in a particular critical-
ity mode in each cycle of execution, corresponding to which resources the critical
path is traversing through in that cycle. 46

4.2 The critical-path model can be used to compute precise performance break-
downs. (a) shows the contribution of each mode to execution time foreach bench-
mark, suggesting what optimizations would be best applied.(b) shows the percent-
age of instructions that are limited by each mode of operation. Optimizations should
focus on those instructions that will impact performance. The simulator configura-
tion for these experiments is described in Section 7.1. 48

4.3 Relationship between slack and cost.In (a) the circled cache miss latency is off
the critical path. By increasing the latency by a couple of cycles (see(b)), the
critical path changes, placing the latency on the critical path. In(a), the cache miss
has one cycle of slack. In(b), it has a cost of one cycle. The relationship between
the latency, slack, and cost of the cache miss is shown in(c). 50

4.4 Slack with and without resource modeling. Modeling processor resources ex-
poses more of the slack inherent in the execution than can be observed by a data
dependences alone. .51

4.5 Global vs. Local Slack. 52
4.6 Relationship between slack and cost for a branch mispredict. The latency of a

branch misprediction latency is circled in(a). The relationship between it’s latency
and it’s criticality is plotted in(b). Notice that the branch misprediction remains
critical (with criticality above the x-axis) until it’s latency is below negative five
cycles. 54

vii

4.7 Two types of interactions.Dependence graphs can conveniently illustrate the two
distinct types of interactions that can exist between events: parallel andserial. In
(a), the two cache missesc1 andc2 have a parallel interaction. Both cache misses
would need to be eliminated to improve performance. In(b), c3 andc4 experience
a serial interaction. Here, eliminating either cache miss will reduce execution time
by 90 cycles, but eliminating both will not improve performance any further. . . . 59

4.8 Correctly reporting breakdowns. The traditional method for reporting break-
downs does not accurately account forall execution cycles, since it attempts to
assign blame for each cycle to asingleevent when sometimes multiple events are
simultaneously responsible. We propose a new method that uses interaction costs,
discussed in Section 4.3.1. In our method, each category corresponds to an interac-
tion cost of a set of “base” categories. 62

4.9 Apportioning Slack. The circled numbers are arrival times of the edges at the far
left E node. The global slack of the shorter path is the difference in these arrival
times. This global slack can be apporitioned in many ways to individual edges along
the shorter path. Here, each edge is apportioned five cycles.. 65

5.1 Finding the critical path using last-arriving edges. 70
5.2 Articulation edges aid in finding the critical path efficiently. 72
5.3 Computing Local and Global Slack. 74
5.4 Global slack algorithm. 75
5.5 Apportioned slack algorithm. 77
5.6 Algorithm to topologically sort and assign numbers to nodesas part of an al-

gorithm to compute the cost of every node.S is the first (starting) node of the
graph.CQ is a queue for holding critical nodes.NCQ is a queue for holding non-
critical nodes. The resulting topological order is represented by the numbers stored
in ID(N) for each nodeN in the graph. 79

5.7 Algorithm to find ranges of critical nodes parallel to each noncritical node
BEGIN(N) andEND(N) contain the beginning and ending identifiers for the
range for each nodeN . 80

5.8 Algorithm to compute slack of an individual event. Note, due to the structure of
our model, this single event could occur on multiple edges. For instance, the effect
of a cache miss could occur on multiple EE edges as well as an ECedge. We could
re-structure the model to avoid such difficulties, if desired. 81

5.9 Algorithm to compute cost of an individual event. 82

6.1 The token-passing training algorithm. 87
6.2 Training path of the critical-path predictor. Training the token-passing predictor

involves reading and writing a small (less than one kilobyte) array. The implemen-
tation shown permits the simultaneous propagation of eighttokens. 91

6.3 Example of token passing in distributed criticality analyzer implementation.
The logic for passing a token into the D-node of an instruction being dispatched is
shown. Logic for the other nodes would be similar in flavor. 92

viii

6.4 Dynamic to Static Histogram. For each static instruction, the percentage of its
dynamic instances that are critical (its “criticality frequency”) was recorded. The
figure shows the percent of static instructions that had a criticality frequency within
each range specified in the legend. The y-axis is the percent of static instructions,
weightedby their dynamic frequency. 95

6.5 The token-passing predictor is very successful at identifying critical instruc-
tions. (a) Comparison of the token-passing and two heuristics-based predictors to
the “ideal” trace of the critical path, computed according to the model from Sec-
tion 3.2.2. The token-passing predictor is over 80% (88% on average) accurate
across all benchmarks and typically better than the heuristics, especially at cor-
rectly predicting nearly all critical instructions. (b) Plot of the difference of the
performance improvement from decreasing critical latencies minus the improve-
ment from decreasing non-critical latencies. Except forgalgel, the token-passing
predictor is clearly more effective. 96

6.6 Algorithm for measuring slack in hardware. 100
6.7 Mapping dynamic slack behavior to static instructions. Uses latency-plus-one-

cycle apportioning. On the y-axis, the number of slackful static instructions is
weighted by the number of each static instruction’s dynamicinstances. 101

6.8 Same static code, different microexecutions. 109
6.9 Shotgun profiling and DNA sequencing (a)The shotgun profiler works by col-

lecting random “shotgun” samples that include a signature and detailed information
about a single instruction. These samples are placed in a database and, offline,
graph fragments are constructed by finding overlaps among the signatures of differ-
ent samples. Our design uses a signature with two bits for each of the ten dynamic
instructions before and after the target instruction. For illustration, the figure uses
a smaller signature.(b) DNA researchers face a problem similar to ours. Instead
of constructing a graph, they seek to determine the sequenceof nucleotides that
comprise a strand of DNA. Their measurement apparatus, however, cannot sim-
ply observe the entire sequence at one time. Instead, they can only observe short,
random, samples of the overall sequence. Their solution to this problem is called
“shotgun” sequencing. First, many random samples are collected using their mea-
surement apparatus. Then, offline, the full DNA sequence is constructed by looking
for overlapsamong the small fragments. 112

6.10 The profiler infrastructure consists of two parts. (a) Hardware performance
monitors. Our hardware performance monitors collect two types of samples: sig-
nature samples and detailed samples. For illustration, thefigure shows one signa-
ture bit per instruction and collection of the bits for two instructions before and after
each detailed sample. For greater accuracy, our design usestwo signature bits per
instruction (see Table 6.5) and collects signature bits forten instructions before and
after each detailed sample (see Figure 6.11a).(b) Post-mortem software graph
construction. The dependence graph is constructed by concatenating detailed sam-
ples, so that the resulting graph is representative of the microexecution denoted by
the signature sample. .. 115

6.11 Algorithm for constructing a graph fragment in software. 116

ix

7.1 Critical path scheduling decreases the penalty of clustering. (a) The token-
passing predictor improves instruction scheduling in clustered architectures (8-way
unclustered; two 4-way clusters; and four 2-way clusters are shown). As the num-
ber of clusters increases, critical-path scheduling becomes more effective.(b) Re-
sults for four 2-way clusters using bothfocused instruction schedulingandsteering
shows that the heuristic-based predictors are less effective than the token-passing
predictor. 132

7.2 Across benchmarks, there is enormous potential for exploitation of slack. (a)-
(c) Measurements of local, apportioned, and global slack for SPEC2000 versions of
gcc, gzip, andperl. gccandgzip represent the two extremes in the amount of slack
available in the full set of benchmarks we ran;perl is more typical. The measure-
ments indicate that even in the least slackful benchmark,gzip, there is enormous
potential for hiding delays introduced by nonuniform machines.(d) Measurements
of apportioned slack when all available slack is apportioned to load instructions.
These results show it may be possible to tolerate technologically-induced bottle-
necks on load instructions if, for instance, wire delays cause some instructions to
endure longer L1 data cache access times than others. 166

7.3 Limit studies. Measurements for two apportioning strategies are shown:latency-
plus-one-cycleandfive-cycleapportioning. These measurements provide an indica-
tion as to what types of non-uniform machine designs can be tolerated by a slack-
based policy. For instance, latency-plus-one-cycle apportioning is relevant for the
fast/slow pipeline microarchitecture we study in this thesis. 167

7.4 The non-uniform microarchitecture used in our experiments. The processor
consists of one fast and one (or two) slow pipelines. 167

7.5 Comparing control policies on fast/slow pipeline microarchitecture. All mea-
surements are normalized to the baseline of two fast 3-wide pipelines (3f+3f). Also,
results are shown for a single fast 3-wide pipeline (3f) for reference. The rest of the
measurements are different control policies for a3f+3smachine. 168

7.6 Focusing value-prediction by removing misspeculations onnon-critical instruc-
tions. (a)A critical-path predictor can significantly reduce misspeculations.(b) For
most benchmarks, the token-passing critical-path predictor delivers at least 3-times
more improvement than either of the heuristics-based predictors. 168

7.7 Illustration of interaction between load latency and the instruction window The
dashed arrow shows how some load accessEP edges andCD window edges are in
series and, thus, have the potential to interact serially (see Section 7.3.1). Note that
some otherEP andCD edges are in parallel, thus there is also potential for parallel
interaction between loads and the finite window constraint.. 169

7.8 Speedup from increasing window size for different level-one cache latencies.
As predicted from the negative interaction cost, increasing the window size has a
larger benefit when level-one cache latencies are larger. 169

8.1 Assumed Execution Model.For the software parallelization case study, we assume
a Multiscalar-like execution model like the one pictured above. 172

x

8.2 Cutpoint illustration. If the eight instruction program represented by the graph
above were to be cut into two threads, one thread consisting of instructions 1,2,3,4,
and 5 and a second thread consisting of instructions 6, 7, and8, the execution-time
improvement could be measured by removing the edges marked with an “X” and
observing the resulting decrease in critical-path length.. 174

8.3 Distribution of execution-time reduction from cutpoints. The cumulative dis-
tribution shown in the charts is the mirror image of how they are often displayed.
In other words, from (a), for all benchmarks, greater than 75% of the dynamic
cutpoints improve performance by less than 20 cycles.(a) is the cost distribution
observed from cutting a program into two threads between each pair of consecu-
tive dynamicinstructions.(b) Speedup from parallelizing a program for a machine
with two processors. Thefixed-intervalpolicy creates a cutpoint every100 dynamic
instructions. Thesimple cost-basedpolicy picks as a cutpoint the dynamic instruc-
tion with the highest singleton cost (ignoring interactions) in every100 instruction
interval. The purpose of this experiment is to show that cost-sensitive policies for
parallelizing applications can be beneficial. Due to the simplicity of the policy,
however, it does not provide much insight into the best achievable speedup. 177

xi

List of Tables

3.1 Machine Dependences and Corresponding Graph Edges for EachPipeline Stage. 35

4.1 Idealizing events. Listed are techniques to idealize a few of the events studiedin
this paper. 55

6.1 Determining last-arriving edges. Edges are grouped by their target node. Every
node must have at least one incoming last-arriving edge. However, some nodes may
not have an outgoing last-arriving edge. Such nodes are non-critical. 85

6.2 Configuration of token-passing predictor. 95
6.3 Profiler designs. Design #4, with both long and short signatures, is our final, rec-

ommended design. 106
6.4 How dependences and latencies are collected when constructing the graph. ’D’

stands for dynamically, ’S’ for statically. Dependences and latencies that must be
determined dynamically are measured in hardware. Those that can be determined
statically are inferred from the program binary (e.g.,register data dependences) or
the machine description (e.g., fetch and issue bandwidths). Besides the informa-
tion above, a detailed sample also contains the PC of the instruction and the target
address of indirect branches. 107

6.5 Description of signature bits.The signature bits are meant to distinguish between
different microarchitectural contexts. Experimentally,we determined the above
hash function produced good results. Intuitively, the hashworks well because it
distinguishes between the most important events that occurin the microprocessor.
For a different processor implementation than the one assumed in our simulator, a
different signature might be required, perhaps one that uses more than two bits per
dynamic instruction. .. 111

6.6 Measuring accuracy of profiler. Continued in Table 6.7. 119

xii

6.7 Measuring accuracy of profiler. (Continued from Table 6.6.) Validation was
performed on the same CPI contribution breakdown (with results expressed in per-
cent of total CPI) as in Table 7.5(a). Themultisimcolumn shows the value for each
category computed through the multiple simulation approach. This serves as the
baseline for measuring accuracy. Theprofiler column shows the values the profiler
computed, while theerror column is the difference between theprofiler andmul-
tisim. The single largest percent error (considering categoriesgreater than 5%) for
each benchmark is in bold. .. 120

6.8 Sources of errors for the shotgun profiler. The breakdowns of Table 7.5(a) were
computed four ways to better understand the sources of errorin the profiler. mul-
tisim is the breakdown computed via multiple simulations; it serves as the baseline
for comparison.fullgraph indicates the dependence graph of the entire program was
used, as in Section 7.3.1;graphfragis the breakdown computed assuming the graph
fragments constructed by the profiler were perfect; andprofiler is the breakdown as
computed on the imperfect graph fragments actually constructed by the profiler (de-
scribed in Section 6.3). The numbers presented are the average percent difference
in the categories (excluding categories under 5%) between the two schemes in the
first column of each row. For instance, themultisim→fullgraph row is determined
by computingabs(multisim−fullgraph)/(multisim) for each category over 5% and
averaging the results. Note that themultisim→profiler row is the total error for the
profiler. 121

7.1 Baseline configuration of simulated processor. 127
7.2 Baseline policies for controlling fast/slow pipeline microarchitecture. 141
7.3 Hysteresis implementing the four slack bins.Note: if the slow instruction win-

dow contains four times as many instructions as the fast pipeline, the slack-based
steering decision is overridden, and the incoming instruction is sent to the fast
pipeline. Such load balancing never sends instructions to the slow pipeline. 142

7.4 Value prediction configuration. 147
7.5 Breakdowns for optimizing a long pipeline: Four-cycle level-one cache.Inter-

action costs are presented here as a percent of execution time and were calculated
using the dependence graph in a simulator. The categories are: ’dl1’ → level-one
data cache latency; ’win’→ instruction window stalls; ’bw’→ processor band-
width (fetch,issue,commit bandwidths); ’bmisp’→ branch mispredictions; ’dmiss’
→ data-cache misses; ’shalu’→ one-cycle integer operations; ’lgalu’→multi-cycle
integer and floating-point operations; and ’imiss’→ instruction cache misses. Note
that ’Other’, denoting the sum of all interaction costs not displayed, can be negative
since the interaction costs can be negative. 154

7.6 Breakdowns for optimizing a long pipeline: Two-cycle issue-wakeup loop. . . . 159
7.7 Breakdowns for optimizing a long pipeline: 15-cycle branchmispredict loop. . 160

xiii

Acknowledgments

The work described in this thesis is the result of the effortsof many people. In particular, I

worked with Chris Newburn on the concept of interaction cost. We also worked together to make the

shotgun profiler and criticality analyzer more palatable tothe engineers that would have to build it.

Shai Rubin was my early partner in the work during the initialformulations of the dependence-graph

model. Renju Thomas and Mary Vernon have also worked on the project, providing new insights

into what is and isn’t possible with the dependence graph. I’d also like to thank John Kubiatowicz,

John Wawrzynek and Yale Braunstein for serving on my committee and providing needed feedback

for my thesis.

Intensive review and suggestions also helped improve our work. I would like to especially

thank Amir Roth, Guri Sohi, and David Wood for their time, energy, and encouragement, especially

during the heady times at the beginning of the project. I’ve also benefited substantially from con-

versations with Sarita Adve, Sanjay Patel, Mark Buxton, andthe Intel Microarchitecture Research

Lab (including Konrad Lai, John Shen, Ravi Rajwar, SrikanthSrinivasan, Jared Stark, and Chris

Wilkerson).

I’d also like to thank the numerous reviewers of our work, which greatly improved com-

munication of the ideas. Besides those that remain anonymous and those mentioned above, the

following people have taken time to read less-than-polished drafts of our papers: Bradford Beck-

mann, Adam Butts, Jason Cantin, Pacia Harper, Alvy Lebeck, Jarrod Lewis, Dave Mandelin, Milo

Martin, Paramjit Oberoi, Dan Sorin, Manu Sridharan, Min Xu,and Craig Zilles. I’m very grateful

to all of them.

I started my PhD program in the computer architecture group at the University of Wisconsin-

xiv

Madison, before moving with my advisor to Berkeley midstream. The effect of attending Wisconsin

is to be enveloped by a computer architecture mindset, and I am indebted to the people there for

helping to develop my critical thinking abilities. The Architecture Industrial Affiliates Meetings

were especially vitalizing to my research efforts.

Finally, my advisors, Rastislav Bodik and Mark Hill, have helped me mature into a pro-

fessional. Both have taught me valuable research and (especially) communication skills that will

be critical to my future career success. During the course ofmy PhD education, they were patient

when I needed patience and expertly guided me towards independence by gradually reducing their

role in the work. I was lucky to have stumbled across them early in my graduate career, before I

was able to fully appreciate what being a good advisor entails.

1

Part I

First Part

2

Chapter 1

Introduction

During the design and optimization of a microprocessor, thequintessential question is

“Where have all the cycles gone?” The answer is they’ve gone to bottlenecks, and designers will

spend many months simply identifying the bottlenecks (e.g.,limited fetch bandwidth or a too small

instruction window) of current processors in preparation for designing a new one. Furthermore,

optimization systems (such as compilers or cache-line prefetchers) must judiciously choose which

bottlenecks to target since most optimizations involve a difficult tradeoff between their benefit and

the overhead they incur.

Despite its importance, bottleneck analysis has not kept pace with the increasing perfor-

mance complexity of computer systems. The predominant formof analysis employed today, based

on event counts(e.g.,number of cache misses), was invented at a time when processors were sim-

ple pipelines, which means they executed one instruction ata time and did so in program order.

Today, even high latency events, such as cache misses, mighthave no effect on performance due

to parallel execution with other instructions. In fact, we have found that the effective performance

3

cost of individual cache misses and branch mispredicts can differ by over an order of magnitude.

This observation points to a limitation of event counts: What good is a cache-miss count if we don’t

know how costly those cache misses are?

In this work, we propose a new way of thinking about performance that employs aglobal

view of program execution to determine thecriticality of program events. By measuring criticality,

we can correctly ascertain what events in a complex, parallel microprocessor are bottlenecks and

which could be delayed without any performance harm.

1.1 Why Existing Analysis is Inadequate

Before describing our proposal, however, let’s take a closer look at why existing perfor-

mance analysis is inadequate for modern machines. The prevailing performance analysis is often

ineffective at answering questions important to designersand programmers. The problem is that

current analyses — designed for simple in-order pipelines —have been outgrown by complex ar-

chitectures that exploit parallelism aggressively. To understand why, consider a typical equation

used in Hennessey and Patterson’s textbook [48] (Figure 5.9):

CPU execution time = (CPU clock cycles+ Memory stall cycles)× Clock cycle time
Memory stall clock cycles = Number of misses×Miss penalty

wheremiss penaltyis usually defined as miss latency.

This equation typifiesevent-count analysis, where the contribution of a processor resource

(in this case, the memory hierarchy) is obtained by countingthe number of events (e.g.,cache

misses) and multiplying by the latency of the event (e.g.,miss penalty). While such equations work

well for a simple in-order processor, they can be inaccuratefor machines that exploit significant

parallelism,e.g.,out-of-order or multiple-core processors.

4

Considering the simple example of a nonblocking cache causing two cache misses to

execute completely (or partly) in parallel. The above equation would attribute two miss latencies to

memory stall cycles, when, in reality, one latency was “free,” because it was hidden under the other

latency. With out-of-order execution, ALU operations can overlap with each other and with cache

misses. In the latest version of the textbook, Hennessey andPatterson acknowledge the problem

and lack of a good solution (p. 412).

Recognizing this problem, researchers over the past decadehave often referred informally

to concepts such as the “critical path” and “latency tolerance” to explain otherwise unexplainable ef-

fects on performance. Sometimes understanding these effects was so important for the research that

ad-hoc methods were developed to quantify them. These methods lack an underlying appreciation

for the nature of the problem, however.

For example, consider the commit-attribution breakdowns that are common in many pa-

pers [68, 79, 80, 107, 74, 48]. With this methodology, heuristics are used to blame particular dy-

namic instructions for cycles where no instructions are committed. Although this technique captures

some parallel behavior that simple event counts miss (e.g.,our experiments showed the percentage

of execution time attributed to memory stalls was mostly accurate), it is not able to explicitly mea-

sure theinteractionsbetween groups of events. An example of a typical interaction is ALU opera-

tions overlapped with cache misses; a more subtle one would be fetch stalls overlapped with issue

bandwidth. This lack of accounting for interactions is evident in how the breakdowns are reported,

with one category for each resource of interest (e.g.,cache misses, branch mispredictions). We

know intuitively, however, that is impossible to account for 100% of execution time by assigning

blame for each cycle to individual resources. Interactionscause multiple resources to be responsible

5

for a single cycle.

The Growing Importance of Bottleneck Analysis. We pointed out above why current perfor-

mance analysis techniques often lead to inaccurate accounting in modern machines. What we have

not discussed is why this problem is so important to solve. Our claim is that having a robust perfor-

mance analysis methodology is much more important now than it was in the past and will become

even more crucial in the systems of the future. The reason is that design and optimization tradeoffs

that could be resolved through intuition in the past are now often too complex even for experts in

the field. In the next section we will discuss some of the challenges that designers and optimizers

face.

1.2 Bottleneck Analysis Applications

Processor Design. Performance effects often surprise designers, and the complexity increases

each processor generation. For example, the effect of so-called “replay tornadoes” in the Pentium 4

— where a mispredicted data dependence of a load instructioncauses cascading aborts of instruc-

tions that consume the incorrectly loaded data — can cause a great deal of performance variability in

applications. Sometimes this sophisticated selective replay mechanism incurs penalties significantly

greater than a simple “replay everything” approach. When this happens, the technique designed to

eliminate a bottleneck becomes a bigger bottleneck than theone it is targeting.

Moving forward, the increasing performance complexity will be in the form of many-

threaded execution. Intel’s Hyperthreading [65], also known as simultaneous multithreading, has

performance that is so variable that some users opt to disable it entirely. The bottlenecks are difficult

to identify as they can involve complicated resource contention between multiple threads. In fact,

6

there is no way to know whether hyperthreading is helping or hurting except to disable it, run

again the same set of applications with the same inputs, and see if that results in a speedup. If we

could identify the bottlenecks, we could determine whethercontention between threads or shared

resources is what is hurting performance, enabling an intelligent decision as to whether to run one

or more threads.

In the past, designers have often dealt with complexity in the same manner that civil

engineers (used to) design bridges: over-engineer anything that is not understood well enough to

be done precisely. For instance, if we suspect threads in an SMT machine are competing for scarce

resources, we could simply make all resources abundant — or at least as many as chip space permits.

This solution is no longer viable. The increasing importance of keeping energy consumption as low

as possible necessitates judiciously choosing what work todo when. It has become very important

to quantify bottlenecks, determining the performance effect of performing a piece of work now

versus later.

To generalize the problem space, the processor design questions we address in this thesis

include:

• Performance Breakdowns.How can we construct a complete breakdown of processor per-

formance? For example, what percent of execution time should be attributed to cache misses

or branch mispredicts; and what percent should be attributed to a combination of the two?

• Design-space Search.How can we search a huge design space quickly and with a high level

of confidence that we did not settle for a local optimal? Understanding bottlenecks makes it

easier to avoid building an unbalanced processor that couldbe improved by trading off, for

example, an overly large instruction window for additionallevel-one cache.

7

Optimization in Hardware. An ever-present challenge in computer architecture is to make op-

timal use of scarce resources, whether those resources be limited functional units or a constrained

power budget. Since some instructions and microprocessor events are bottlenecks while others are

not, a priority system seems important for optimizing performance. This problem of resource ar-

bitration is becoming more important since, although chip real estate is abundant, energy budgets

are becoming tighter and increasing wire delays have introduced a new scarce resource of “spatial

closeness”. A related problem is knowing when to use resources to apply aggressive speculation

and when such efforts could be better used elsewhere,e.g.,to run other threads.

In their quest to make most efficient use of available power, architects have explored ideas

to reconfigure the hardware on the fly, both in terms of dynamically adjusting the frequency as well

as resizing hardware structures, such as the instruction window (e.g., [87], [8]). In performing

such optimizations, they encounter a problem similar to that of hyperthreading above: it is very

difficult to know whether an alternative configuration is effective without trying it out first. It is

difficult to infer from performance counts whether a particular resource can be degraded without

hurting performance and it is even more difficult to know whether increasing frequency or window

size might improve performance. What is needed is a bottleneck analysis that can identify critical

resources dynamically to guide reconfiguration.

In summary, some performance analysis hardware optimization questions designers strug-

gle with include:

• Resource Arbitration. How should we effectively arbitrate for scarce resources? More

specifically, what priority policies should be used for scheduling instructions and micro-

operations to use limited cache ports, window slots, or functional units.

8

• Speculation Control. How should we control speculation to improve the risk/benefit trade-

off?

• Dynamic Reconfiguration. How can we dynamically reconfigure the hardware and fre-

quency to match the needs of a program?

Software Optimization. The process of optimizing programs presents a set of performance ques-

tions of its own. The traditional notion that a load that causes many cache misses should be

prefetched, scheduled sooner, or otherwise given priority, is no longer necessarily true. As dis-

cussed above, instruction-level parallelism can “hide” the latency of some cache misses completely

by performing other useful work during its processing, in which case the cache miss is no longer

a bottleneck. In the future the problem will become much moredaunting: it may be that an entire

thread is hidden behind other threads, so that none of the cache misses in that thread are critical.

Whether a thread is hidden will depend on many variables of the program’s execution, such as

the balance of work between processors, contention for shared memory, and the nature of data de-

pendences between threads. A method for identifying whether individual cache misses (or other

processor events) are bottlenecks or not will somehow need to consider all of these effects simulta-

neously.

In the near future, programmers will be presented with a new and, in many cases, ex-

tremely difficult problem: how to update their applicationsto take advantage of multiple processing

cores. Of course, the multiple cores are only useful if they can reduce or eliminate the bottlenecks

present in the single-threaded execution. As of now, the tools that support programmers in this task

are woefully lacking. To determine how programs should be cut into task-sized chunks requires

a very high level of expertise and judgment. Furthermore, there is no way to know whether one

9

configuration is better than another except to try them both out and see which one runs faster.

Software optimization problems can be summarized as:

• Performance Profiling. How can we know which instructions are bottlenecks (and should

be targeted for optimization) and which should be left alonesince they are already hidden

behind other useful work?

• Performance Estimation. How can we save programmer effort by telling them in advance

the effect of a given software organization (e.g., the division of a program into tasks for

execution on a CMP) before they rewrite the code?

1.3 Grand Challenges

Our primary thesis is that all of the above performance analysis questions can be addressed

with a fundamental understanding of thecriticality of events during a program’s execution. When

we use the word “event” here, we are assuming a broad definition which encompasses all sorts of

architectural and microarchitectural features, such as cache misses, branch mispredicts, load-store-

queue-full stalls, and multiprocessor communication. We will explore the notion of criticality by

posing three challenge questions that have directed the course of our work.

• Cost. How costlyis an event to execution time? (i.e.,how much can execution time possibly

be reduced by optimizing the event?)

• Slack. How muchslackdoes an event have? (i.e.,how much can the event be slowed down

or a resource reduced in size before increasing execution time?)

• Interactions. How do the cost and slack of multiple eventsinteractwith each other?

10

It is clear how answering these questions would lead to solutions to some of the perfor-

mance analysis problems discussed in the previous section.For example, knowing how costly each

instruction execution is would make designing an effectiveresource arbitrationpolicy straightfor-

ward, since the most costly should be given highest priorityfor scarce resources. For other problems,

the connection may not be immediately obvious,i.e.,how can we use cost, slack and interactions to

enable a quickerdesign-space search. Part of our work in developing our thesis will be to illustrate

the connection through case studies (Chapter 7).

1.4 Our Approach

We set out to tackle the above challenges in three steps. The first is to develop a new way

of modeling program performance that is complete enough forus to measure criticality metrics,

since it is clear that traditional performance counters arenot sufficient (Chapter 3). The second step

is to develop algorithms for measuring and interpreting cost, slack, and interactions (Chapter 4).

Finally, to make the methodology usable in practical optimizations on real software, we proposed

hardware support for measuring criticality metrics onlineas well as a new profiling infrastructure to

enhance existing performance counters (Chapter 6).

Modeling. A crucial requirement to achieve our goals is to capture the parallelism in the program

execution. The most straightforward way to do this would be to observe the entire set of events that

occur each machine cycle. At first glance, such a representation would appear to encompass all you

would ever need to know about a program’s execution. It misses a critical component, however,

that is needed to understandwhy each event occurred when it did (as opposed to earlier or later).

For this purpose, we need to observe thedependence constraintsthat occur between the events. In

11

fact, a graph containing these dependence constraints, labeled with latencies, is all that is needed to

effectively represent a program execution’s performance behavior.

In the dependence graph, each node represents the beginningof a very low-level micro-

operation — examples include an instruction being fetched and an instruction being “woke-up”

once it becomes data ready. Edges between these nodes represent constraints that must be satisfied

for each micro-operation to “fire”. For example, if the machine requires in-order fetching of instruc-

tions, dynamic instructioni + 1 cannot be fetched until afteri is fetched. Thus, an edge would be

placed fromi’s fetch node toi + 1’s fetch node. Ifi happened to be a branch that was mispredicted,

an edge would be placed fromi’s execute node toi + 1’s fetch node, since the correct output of

the branch must be produced before the next correct-path instruction can be fetched. A complete

examination of how the graph models are constructed and validated for a particular machine is the

subject of Chapter 3.

Measuring and Interpreting. Relatively simple algorithms can be applied to these dependence

graphs to computecostandslack. Measuring and especially interpretinginteractionsrequires some

additional theoretical grounding, however. If two micro-operationsa andb interact, it means that

optimization decisions involving cost or slack should consider botha and b together. In other

words, if we make optimization decisions targetinga, those decisions might impact the cost or

slack characteristics ofb.

We have found it most practical to treat interactions differently when doing aslack anal-

ysis than when performing acost analysis. The quintessential example of an interaction involving

cost is two cache misses that are being serviced simultaneously.If we consider either miss in iso-

lation, it may appear there would be no benefit in performing an optimization, since the other miss

12

would still limit performance. In other words, the individual cost of either miss is zero cycles.

If we optimize both misses, however, substantial performance improvement could result. In other

words, theaggregate costof the two misses together is large. We refer to this type of interaction as

aparallel interaction, since it occurs when multiple events occur in parallel.

There is no equivalent to a parallel interaction forslack. Instead, slackful events often ex-

hibit what we callserial interactions, which, as the name implies, occurs between micro-operations

in series —i.e., when there is a dependence-edge chain leading from one micro-operation to the

other. The interaction occurs when an entire (non-critical) dependence-chain has some number of

slack cycles. Since increasing the latency of one micro-operation increases the latency of the entire

chain, the micro-operations on the chain mustsharethe slack cycles when performing optimiza-

tions. For example, if eight cycles of slack are available onthe chain, the sum of the increased

latency of all micro-operations on that chain cannot exceedeight without increasing execution time.

We deal with these sorts of interactions byapportioninga specific share of the slack to each micro-

operation prior to performing optimizations. Since the amount a micro-operation can be delayed is

bound by the amount it is apportioned, the apportioning policy is very important for optimization

success.

During the course of the research we were surprised to discover that serial interactions

exist forcost as well. Two micro-operations on the critical path (a andb) will often exhibit a serial

interaction when there is a nearly critical secondary path.In the case of a serial interaction,a and

b share a certain number ofcost cycles, meaning that improving eithera or b can eliminate those

cycles.

In summary, there are two ways of dealing with interactions:(1) measure explicitly the

13

degree of interaction between each pair (or triple, etc.) ofevents or (2) use an apportioning scheme

that takes interactions into account but, after apportioning is complete, the optimization engine does

not need to have any knowledge of them. We have found in practice that the first scheme is most

suitable forcost analysis while the second is best forslack analysis. A complete discussion ofcost,

slack, and interactions is the subject of Chapter 4.

Hardware Support. While the graph model can be used to efficiently compute criticality metrics

using standard algorithms in software, hardware presents much more restrictive constraints on the

implementation. Due to these constraints, some innovationis required to effectively computecost,

slack, and interactions for real programs running on real machines.

We take two basic approaches to developing hardware solutions depending upon how the

criticality measurements will be used. If we plan to use the measurements for “tight-loop” dynamic

optimization, where the criticality information is consumed immediately by a control policy, a pure

hardware solution is required. On the other hand, if we wish to understand the performance char-

acteristics of an application in order to reorganize or optimize the software code, a better profiling

system analogous to currently existing hardware counters may be all that is needed.

For the pure hardware approach, we developed a criticality analyzer that can efficiently

detect with high accuracy whether a single dynamic micro-operation is on the critical path or not.

The analyzer is very lightweight, requiring two components. The first is a set of hardware “probes”

that detectlast-arriving edgesgoing into each node of the graph model. A last-arriving edgeis the

dependence constraint that delays the beginning of its target micro-operation the longest. Detecting

last-arriving edges is relatively easy for the hardware since, during the actual execution, it is usually

easy to simply observe which dependence constraint is resolved last. The second component is a

14

mechanism fortoken-passing, described below.

The algorithm for the criticality analyzer works by planting a token into a noden and then

passing that token forward along last-arriving edges (copying the token if a node has multiple out-

going last-arriving edges). The token-passing terminatesif all copies of the token reach nodes with

no outgoing last-arriving edges. Since critical edges are necessarily last-arriving edges,n is defi-

nitely not on the critical path if the token-passing terminates. The longer the token-passing proceeds

without terminating, the more likelyn is on the critical path. Token-passing can be implemented in

one of two ways: by a read-modify-write sequence on a small array or inline within the core of the

machine. We discuss the tradeoffs of the two approaches in Chapter 6.

While the advantages of the criticality analyzer are that itis inexpensive to implement and

provides quick feedback for optimizations, the disadvantage is that it only detects simple criticality

and notcost, slack, or interactions. We developed a simple enhancement to detect slack, albeit

with a substantial reduction in accuracy, but for the more sophisticated metrics a different approach

is required.

For measuringcost, slack and interactions, we developed a new profiling system suitable

for replacing performance counters. The profiling system works by collecting a small amount of

information from the hardware executing the program such that segments of the dependence graph

for that program can be constructed offline. The hardware is kept inexpensive by allowing the

sampling to be sparse: only one dynamic instruction needs tobe monitored by the hardware at

any one time. Dependence graph segments can still be reconstructed from these samples since,

empirically, the same sequence of dynamic instructions (with similar microarchitectural behavior)

recurs often in a program run. It is the most frequently recurring sequences for which it is most

15

important to construct a representative graph. Samples of individual dynamic instructions are glued

together to form a sequence by matching a small number ofmicroarchitectural context bits. These

context bits are collected for each sample by the hardware and consist of one bit indications of

whether cache misses, branch mispredicts, etc., occurred in the vicinity. Once the graph fragments

are constructed offline, all of the standard algorithms for computing cost, slack and interactions can

be applied. We call the systemshotgun profiling, due to the similarity of the algorithm to shotgun

genome sequencing [40]. A complete discussion can be found in Chapter 6.

Summary. The goal of our work is to provide a new set of analysis tools totackle the difficult

performance problems facing architects and optimizers targeting the complex, parallel computer

systems of the future. To this end, we have made the followingkey contributions:

• Fundamental metrics. We have gleaned from the seemingly diverse space of performance-

related problems a few fundamental requirements of a performance analysis methodology for

modern machines: measuring and interpretingcost, slack, and interactions.

• Modeling. We have shown how to construct dependence-graph models capable of represent-

ing the critical path of modern, parallel machines (Chapter3).

• Measuring. We have developed software algorithms for efficiently computing the cost,

slack, and interactions for large numbers of micro-operations (Chapter 4).

• Interpreting. We have characterized the types of interactions that are possible and shown

how they can be exploited in design and optimizations (Chapter 4).

• Hardware Support. We have developed inexpensive hardware capable of measuring criti-

cality online and proposed a profiling infrastructure (enhancing performance counters) that

16

enables measuring of the more sophisticatedcost, slack, and interaction metrics for real pro-

gram executing on real machines (Chapter 6).

• Case Studies.We have illustrated through case studies how our performance analysis tech-

nology can tackle some of the problems that face architects and optimizers (Chapter 7).

Considering that it appears no longer possible to simply expect better transistor technol-

ogy to provide increased value for new machines, there will be increased pressure on designers

to produce innovative solutions, for which understanding performance is crucial. We believe our

contributions have substantially improved the state-of-the-art of performance analysis, providing

methodologies that should help architects and optimizers deal with the high level of parallelism in

the increasing complex machines being built today.

17

Chapter 2

Related Work

The use of critical path and slack in project management was introduced by the Navy

in 1958 as part of the Polaris project, whose goal was to develop a system capable of launching

ballistic missiles from submarines [115]. The Program Evaluation and Review Technique (PERT)

charts developed for this project had a node for each “milestone” and each incoming edge to a node

was a task that needed to be completed before the milestone was reached. This graph construction

has become very popular in managing large projects and baressome similarities to the modeling

that we introduce for microprocessors in Chapter 3.2.1.

One of the first works that considered parallelism in microprocessors when determining

the performance effect of events (specifically, of cache misses) was by Srinivasan and Lebeck [104].

They defined an alternative measure of the critical path, called latency tolerance, that provided non-

trivial insights into the performance characteristics of the memory system. Their methodology

illustrated how difficult it is to measure criticality even in a simulator wherein a complete execution

trace is available. Their latency tolerance analysis involves rolling back the execution, artificially

18

increasing the latency of a suspected non-critical load instruction, re-executing the program, and ob-

serving the impact of the increased latency. While their methodology yields an interesting analysis

of memory accesses, their analysis cannot (easily) identify criticality of a broad class of microar-

chitectural resources, something that we can achieve with our modeling. A rollback simulator also

presents some practical problems to use a measurement tool since it will tend to be a very difficult

piece of software to write and is unlikely to be highly efficient in his measurements.

Heuristic Predictors of Criticality. Once it became clear to the architecture community that it

was important to take parallelism into consideration when developing policies for optimizations,

many efforts were made to estimate which events were critical and which were not. Without a criti-

cality model to guide this estimation, researchers resorted to various heuristics. While these heuris-

tics are sometimes successful in various circumstances, wehave found through experimentation that

they do not provide the high-quality criticality identification over a large range of microarchitectural

events that our modeling achieves. A few of these heuristicsare explored alongside our criticality

work in later chapters.

One of the first heuristic predictors was proposed by Fisk andBahar [39]. They explored

hardware approximations of Srinivasan and Lebeck’s latency-tolerance analysis. Their first heuristic

used absolute performance as its indicator: if IPC degradesbelow a certain threshold while a miss

is being serviced, that load is considered critical. This isvery similar to the approach used in many

hardware structure resizing papers (e.g.,[41, 8]). They also looked at heuristics based on the number

of dependencies that exist on a cache-missed load’s dependence graph. The intuition here is that, if

a load’s data is going to be used by many instructions, perhaps it is important to performance (hence

critical).

19

Calderet al. [19] guide value prediction by identifying the longest dependence chain in

the instruction window, as an approximation of the criticalpath, without proposing a hardware

implementation. This approximation loses accuracy for tworeasons: (1) they are only examining a

very small, local region of the execution, while criticality is a global characteristic and (2) they only

look at data-dependence chains even though resource constraints are often a more influential factor

in determining the critical path. These two inaccuracies are related since, as we show in Chapter 3,

it is necessary to model resource constraints in order to obtain a global measure of criticality.

Tuneet al. [110] presented a systematic study of a large number of heuristics-based pre-

dictors, using the notion of the critical path as intuition.These heuristics looked for various archi-

tectural events that could indicate an instruction was critical. For instance, one of their heuristics

identified any instruction that reaches the head of the re-order buffer before being executed as criti-

cal. We have found in our experiments that their heuristics often miss some critical instructions and,

even more significantly, falsely identify a large number of noncritical instructions as critical.

Tune et al. also developed a methodology for judging the accuracy of a critical-path

predictor, which involved measuring the ratio of the performance improvement from reducing the

latency of instructions identified as critical to those identified as noncritical — the higher the ratio,

the better the predictor. We use their methodology as part ofour validation procedure (Section 3.4).

Srinivasan,et al.[103] proposed a heuristics-based predictor of load criticality inspired by

their above mentioned latency-tolerance analysis. Their techniques consider a load as critical if (a)

it feeds a mispredicted branch or another load that cache misses or (b) the number of independent

instructions issued soon following the load is below a threshold. The authors perform experiments

with critical-load victim caches and prefetching mechanisms, as well as measurements of the critical

20

data working set. Their results suggest criticality-basedtechniques should not be used if they violate

data locality. The authors suggest there may be other ways for criticality to co-exist with locality.

For example the critical-path could be used to schedule memory accesses.

Slack Measurement. The concept of latency tolerance explored by Srinivasan,et al. is directly

related to slack. If the machine can “tolerate” more cycles of latency than a cache miss exhibits, that

cache miss has an amount of slack equal to the difference. A couple of works preceded our work on

slack.

Casmira and Grunwald [20] discussed the use of slack for power saving in a machine

with multiple-speed clusters. The notion of slack used here, however, is limited to the number

of cycles an instruction’s execution can be delayed withoutdelayingany instructions immediately

consuming its data. Our experiments have shown exploiting only this local notion of slack leaves a

lot of opportunity untapped (see Chapter 4).

Following our initial critical-path modeling work, Semeraro, et al. [95] used a dependence-

graph model similar to ours for doing an offline slack analysis to determine when different parts of

the machine can be executed at a slower rate, for power efficiency. Their notion of slack is global in

nature and very similar to ours. Their exploration was restricted to how slack could be used for this

particular application, however.

Cost Measurement. The first attempt to estimate the costliness of different classes of events in

a microprocessor were event counters [5, 119]. These counter metrics have become standard and,

before superscalar, out-of-order processors, was all thatwas needed. As discussed earlier, however,

parallelism complicates analysis substantially.

21

In response to the problems with counters, ProfileMe [28] supports pair-wise sampling,

where the latencies and events of two simultaneously in-flight instructions are recorded. With pair-

wise samples, one can determine the degree that two instructions’ latencies overlap in time. As far

as existing processors are concerned, the Pentium 4 [26, 102] has a limited ability to account for

overlapping cache misses. The most significant limitation of these profiling infrastructures is a lack

of a methodology to interpret the results in a meaningful way. For example, it is not clear how to

use the collected data to compute a complete breakdown of execution time. We propose our own

profiling infrastructure that was designed with the specificgoal of measuring criticality metrics in

mind (Chapter 6).

Many researchers have realized the limitation with counters in computing performance

breakdowns, but have still found a need for understanding where execution time is going in their

proposed systems. Their solution is toattributeexecution cycles to various culprits based on heuris-

tics. For example,commit attribution[68, 79, 80, 107, 74, 48] assigns the blame for an unused

commit cycle to the (uncompleted) instruction at the head ofthe reorder buffer during that cycle.

Similarly, fetch attribution[31, 70] assigns blame for a wasted fetch cycle to the next instruction to

be fetched. One work, by Sasanka,et al. [87], combined the attribution with some data-dependence

information to increase accuracy. We have found empirically that these analyses do, indeed, ac-

curately estimate the cost of certain classes of events (e.g.,data-cache misses), which was their

intended purpose. Their generality is limited, however, inthat the costs of many classes of events

cannot be accurately computed (e.g.,fetch bandwidth) nor are they able to compute interaction costs

at all.

Following our criticality and slack works, Tune et al. [111]used our dependence graph to

22

compute the cost ofindividual instructions in a simulator. We employ an algorithm very similar to

theirs. The work did not consider interactions, however.

Miller, et al.[66] and Hollingsworth,et al.[51] use a metric calledcritical-path zeroingin

the context of parallel software that is similar to our cost metric. They create a program dependence

graph, taking into consideration inter-thread communication, to identify the critical path through the

program. To identify the execution time that should be attributed to specific procedures, they zero

out the edges that represent that procedure and compute the difference between the new critical path

and the old. Our cost metric differs in that edges are not zeroed but insteadidealized. The notion of

idealization is specific to the individual microarchitecture event(s) that are being measured.

At a higher level of abstraction, the MACS model of Boyd and Davidson [14] assigns

blame for performance problems to one of four factors: the machine, application, compiler-generated

code, or compiler scheduling. They accomplish this by idealizing one factor at a time (to determine

its cost). In comparison to this work, we do not examine high-level compiler decisions and focus

on performance analysis at a more fine-grain scale. The MACS work also does not propose a way

to measure interactions.

Interactions. We have found in our work that measuring the cost of an event orset of events is not

very useful in a highly parallel machine, unless you also consider interactions between events. The

reason is that there is often more than one event that is responsible for a certain amount of execution

time.

Standard allocation of variation techniques do provide a way to quantify these interac-

tions [54]. The techniques are inadequate for our purposes,however, for two reasons. First, for

mathematical reasons, the effects are squared, but this squaring reduces interpretability, especially

23

when constructing a complete breakdown of performance. Secondly, no distinction is made between

positive and negative (parallel and serial) interactions.As we show in our work, this distinction is

very important for performance understanding.

Following our cost and interaction work, Karkhanis and Smith proposed an analytical

model for out-of-order superscalar processors [57]. The primary advantages of their model are its

simplicity and ability to provide quick insights by evaluating analytical equations as opposed to re-

simulating (or performing a graph analysis.) Its disadvantages include a specificity to out-of-order

superscalar processors and incomplete accounting for interactions (they only consider parallel, not

serial, interactions).

Note that Karkhanis and Smith confirm empirically that in themicroarchitecture they

study the interactions (called “overlaps” in their paper) of branch mispredicts and icache misses with

dcache misses are relatively insignificant (in other words,that the resources are nearly independent.)

This discovery of near independence permits them to ignore interactions with a low, bounded error.

For other resource classes or microarchitectures, interactions may be much more significant, as

illustrated by the case studies in this thesis.

Applications of Criticality. Work related to our case studies will be discussed alongsideeach

case study in Chapter 7.

24

Chapter 3

Microexecution Dependence Graphs

In the informal jargon of computer architecture literature, the preposition “on the critical

path” is used to describe an event that causes other events tostall, waiting for its completion. For

instance, a cache miss that is fetching a result needed by many instructions that come later would

be considered a “critical” cache miss. This informal notion, however, is only a local characteristic

of performance. The fact that an ALU operation had to wait fora cache miss to complete does

not necessarily imply the cache miss is critical, since it may not have been important that the ALU

operation be processed quickly.

The problem we tackle in this chapter is to understand what constitutes the critical path in

a modern processor exhibiting substantial parallelism. Tothis end, we will present a methodology

for constructing agraph modelthat represents the performance of a program executing on a specific

processor. From this graph model it will be easy to determinethe program execution’s critical path.

The first step is to derive the requirements for such a model. Specifically, we seek to

understand what are the necessary components that the modelmust maintain in order to accurately

25

represent the critical path of a program execution.

3.1 Requirements

To begin our requirements specification, we will consider the essential characteristics of

the critical path. The most basic isperformance sensitivity. Performance sensitivity implies two

properties:

• For critical events. If the latency of an event on the critical path is increased, then the

execution time of the program should also increase. If the execution time stays the same, then

clearly the event is not critical.

• For noncritical events. In contrast, if an event is not on the critical path, decreasing it’s

latency should not have any effect on execution time at all.

The implications of this requirement guide the rest of our work on criticality. As far as the

critical path in particular, we can logically deduce the important properties that it must maintain. If

we are to meet the requirement above that increasing the latency of a critical-path evente increases

the latency of the entire program, it is logically true thate’s increased latency delays the completion

of the last instruction in the program.

In other words, starting from any critical event, there mustbe a sequence ofdependent

eventsleading all the way to the end of the program. One evente2 is dependent upon another

e1 if e1 needs to have occurred beforee2 can occur. Furthermore, since delaying the start of a

program obviously delays the completion of the program (theprogram’s first event is critical), we

can conclude that the critical path must be asequence of dependent events that spans from the

26

beginning of the program all the way to the end.

3.1.1 Implications for a Processor’s Critical Path

Supporting a rigorous notion of the critical path requires rethinking the way performance

is measured by current profiling and compilation infrastructures. In particular, the above require-

ments suggest the model should not be centered on event counts but rather ondependences, which

is similar in nature to the way compilers compute the critical path through data-dependence graphs.

The significant difference is thatdata dependences alone are not enough to capture the

critical path of a program executing on a microprocessor. This claim should be intuitive to archi-

tects: it’s not just data dependences that affect microarchitectural performance. Other factors such

as instruction window stalls, branch mispredicts, and functional-unit contention are also important.

In fact, theseresource constraintsoften have a bigger influence on overall performance than data

dependences. Certainly if these factors affect performance they will be part of the program execu-

tion’s critical path. Thus, to generalize, the model must take into account a processor’s resource

constraints (such as stalls and mispredicts) as well as datadependences.

The familiar model that incorporates all of these constraints is a cycle-accurate simulator.

The limitation of a simulator, however, is that it only provides the critical-pathlength (execution

time) and not itscomposition. There has been some work that attempts to enhance simulators with

“roll-back” capability, which can provide some limited information about critical-path composi-

tion [104]. The roll-back approach is very cumbersome to implement however, and the resulting

solution is inefficient to the point of being impractical formany applications.

Our solution is to start with data-dependence graphs, for which it is possible to determine

critical-path composition, and add resource constraints to them. We want all of the constraints to

27

be incorporated in auniform way, so that the graphs can be analyzed using standard approaches,

as opposed to requiring caveats and special conditions for each of the various types of resources.

It is not clear how to produce a uniform model, however, giventhat processors have such a great

diversity of types of resource constraints that affect performance. How can such varied events such

as branch mispredictions, finite fetch bandwidth, and re-order buffer stalls be included in the same

model?

Definition of Microexecution. Before discussing how to design a model, we need to setup the

problem a bit more precisely. The model will be a set of rules to construct dependence graphs

representing the performance ofdynamic execution traces, where a trace is a sequence of dynamic

instructions. This is in contrast to a graph of static instructions, typical of those used by compiler

writers. Our model will be, in this way, more similar to a simulator, which operates on the dy-

namic sequence of instructions. The significant distinction from a simulator, however, is that we

will assume information is available concerning themicroexecutionof the program running on the

processor. We define microexecution to be the microarchitectural characteristics of a program’s ex-

ecution (e.g.,branch mispredicts, stalls, and cache misses) as well as itsnormal functional behavior.

These microarchitectural characteristics will be used to form some of the rules of the model.

3.2 Constructing a Graph from a Program Execution

There is an important distinction between a model of a microexecution and a model of a

processor implementation. The latter can accurately measure performance (at least the critical-path

length) even if some aspect of the execution isaltered, e.g.,changing the latency of a cache miss.

(These types of alterations will be central to our more advanced criticality analyses.) Microexe-

28

cution models, however, only represent the performance of aparticular execution. We will begin

the discussion with a model for constructing graphs of microexecutions (Section 3.2.1) and then

continue to the more difficult task of constructing graphs capable of representing the performance

effects of alterations (Section 3.2.2).

3.2.1 Graph of a Microexecution

The traditional way to trace the microexecution of a complexpipeline is to use what is

known as a “waterfall” timeline, such as the one shown in Figure 3.1(a) for a three-stage out-of-order

pipeline. Here, each dynamic instruction occupies a row of atable while each column represents a

machine cycle. The benefit of using a diagram such as this is that it visually illustrates the machine

cycle that each micro-operation occurs. This makes it easier to see the performance effect of a stall

due to a particular resource constraint, since certain micro-operations are delayed. Such diagrams

have limited practical use, due to their layout, but they areoften used for instructive purposes.

As a step towards creating a model of the microexecution, we make the dependence be-

tween resource constraints and micro-operation constraints in the waterfall diagram explicit, by

adding edges as in Figure 3.1(b). Now we have a graph where anyparticular micro-operation can-

not fire until after all the constraints represented by its incoming edges are resolved.

As it is, however, the graph still uses the timeline to account for the latencies of the various

operations. By labeling each edge with the appropriate latency (Figure 3.1(c)), all of the information

is included in the graph without the need of a timeline (Figure 3.1(d)). With the graph representation

of the microexecution, finding thecritical path is trivial: it is the longest path of dependences

through the graph (the bold dependences in Figure 3.1(d)). As we will show throughout the thesis,

the graph also enables many automatic analyses employing standard graph algorithms.

29

(a) Pipeline waterfall diagram. (b) Waterfall diagram with edges.

(c) Edges labeled with latencies. (d) Directed acyclic graph (DAG).

Figure 3.1:Waterfall diagrams. Traditionally, “waterfall” timeline diagrams, such as pictured in
(a), have been used to describe and analyze the performance of a microprocessor pipeline. We illus-
trate here a very simple 2-way superscalar out-of-order processor consisting of three pipeline stages
(Fetch,Execute, andCommit) and an instruction window withfour entries. If we add edges to the
diagram to indicate the dependences that result in stalls (as inb) and then label those edges with the
latencies of the operations causing the stalls (as inc), we can convert the waterfall representation
to one of a directed acycle graph (as ind). Notice how the graph representation retains all of the
information in the waterfall diagram but in a more manageable way for computer-based analysis.

30

Notice the power and generality of this transformation: anymicroexecution that can be

represented by a waterfall diagram can be represented as a dependence graph (and its critical path

can be identified.) Thus the long-standing problem of identifying the critical path of a program

executing on a complex processor is now possible for effectively any microarchitectural design.

3.2.2 Complete Dependence Graph

We will now discuss the more difficult problem of constructing a model that not only

captures the performance characteristics of the microexecution, but can also measure the effect

of alterations to the program’s execution. As a simple example of why this would be necessary,

consider the problem of measuring the performancecostof a cache miss. We define the cost of the

miss as the number of cycles of execution time that can be attributed to it. In other words, we need

to know the performance of the execution altered such that the miss is turned into a hit.

Another way of thinking about the problem is that it is not enough to simply know that

the miss is on the critical path. Instead, we need information about the second-most critical path —

specifically, how close it is to the critical path. For even more sophisticated analyses (discussed in

later chapters), we might need to examine the third- or fourth-most critical paths.

Our solution is to construct a graph that contains all of these “secondary” paths. To

do this, we need to model those dependence constraints that exist in the machine which are not

the foremost limiters of performance. These dependencies do not affect the execution time for

the current microexecution — since other dependencies delay the affected micro-operations longer

anyway — but they may constitute portions of secondary critical paths.

As an example of such a dependence, consider the code snippetof Figure 3.2(a). The

2-way machine’s fetch bandwidth constraint inhibits thecmp R6, 0instruction from being fetched

31

(a) Dependence graph with critical path. (b) Complete dependence graph.

(c) Complete dependence graph with critical path.(d) Dependence graph of altered microexecution.

Figure 3.2: Dependence-graph diagrams of the microexecution.Once a dependence graph is
constructed, it is easy for a computer to identify the critical path through the microexecution us-
ing a topological sort (as in(a)). For more sophisticated analysis that makes use of “secondary”
critical path information, a more complete dependence graph is required (see(b)). In this graph,
edges are included for dependences that exist in the programexecution even if they do not affect
the performance of this particular microexecution. One example of the sophisticated analysis in-
cludes determining thecostof a branch misprediction. This quantity can be found by comparing
the critical-path length of the graph with the misprediction to the critical-path length of the graph
without it. The critical path of the altered execution is shown in (d).

32

until after R3 = R3 + 1. The edge does not exist in the microexecution graph, however, because

the fetch bandwidth is not saturated at that point in the execution (instead the fetch ofcmp R6, 0is

delayed by an instruction window limitation). In order to model secondary critical paths, all such

dependences must be modeled.

Figure 3.2(b) illustrates a complete graph, including all important dependence constraints,

for our example machine. Of course, the critical path is still easy to identify via a topological sort

(Figure 3.2(c)). We can also now answer questions about performance costs. For example, the cost

of the highlighted branch misprediction is equal to the difference in critical path lengths for the

graphs in Figures 3.2(c) and 3.2(d).

While constructing graphs of microexecutions is a straightforward, even automatable task,

constructing full dependence graphs requires very detailed expertise of the resource constraints a

machine imposes on an instruction stream. In the next section, we present a procedure that should

make the task easier, by using information architects designing a new machine would have available

anyway.

3.3 Procedure For Graph Model Development

For the simplified example processor above, we derived a dependence graph from a water-

fall diagram and then added edges for other machine dependences that did not happen to cause stalls

in that particular microexecution. While this procedure isgood for explanation and useful for con-

structing a graph from a particular program execution trace, automating graph construction as well

as understanding a processor’s performance is made easier by developing a general graphmodelof

the machine, from which a graph can be derived for any program’s execution. In this section, we

33

(a) Typical superscalar pipeline.

(b) Node per-pipeline stage graph model.

Figure 3.3:Converting pipeline to graph model and reducing. A graph model can be derived
directly from a pipeline model of the processor by (1) creating entry and exit nodes for each stage
and (2) creating edges for every possible stall condition for each stage. Once a complete graph is
constructed, reductions are typically possible to reduce complexity without sacrificing precision.

34

will discuss a procedure for developing such a model given a specification of the processor pipeline.

We will use the relatively sophisticated processor Figure 3.3(a) of to illustrate the procedure. This

processor is still simplified compared to real processors (especially in the memory system) but is

complex enough for illustrating the procedure.

We start below with an overview of the three-step process forconstructing a graph model.

• Create nodes.Create two nodes for every pipeline stage: one to signify thedynamic instruc-

tion entering the stage (e.g.,Fe) and one to signify exiting that stage (e.g.,Fx).

• Create edges.For each pipeline stage, identify all of the reasons that a dynamic instruc-

tion may be “stalled”. In other words, identify the machine and program dependences that

inhibit the dynamic instruction from either entering or exiting each pipeline stage. These

dependences will be represented by edges between nodes in the graph.

• Simplify. As will be clear from the example, some nodes and edges created above will be

redundant and can be removed.

• Add latencies. Label each edge with latencies. For each edge, the latency isthe minimum

number of cycles after the source node fires that the target node can fire.

As will become clear through an example, this procedure doesnot require an architect to

think very hard to construct a graph model. In fact, all of theinformation that is required about the

machine is only a subset of what is necessary to write a typical processor simulator.

Create nodes. For the example processor of Figure 3.3(a), we have eight pipeline stages and

sixteen nodes (Fee, Fex, IBe, IBx, etc), as shown in Figure 3.3(b).

35

Pipe Stage Stall Causes
Fe Fetch Buffer Full (IBx → Fee), Limited Fetch Bandwidth

(Fex → Fee)
IB Instruction Queue Full (IQx → IBx), Reorder Buffer Full

(Cox → IBx), Limited Fetch Buffer Output Bandwidth (IBx →
IBx)

Re None
IQ Data Dependencies (IQx → IQx), Functional Unit Contention

(IQx → IQx), Memory Request Queue Full (IQx → IQx)
Rg None
Ex None
Da None
Co Limited Commit Bandwidth (Cox → Cox)

Table 3.1:Machine Dependences and Corresponding Graph Edges for EachPipeline Stage.

Create edges. The stall culprits for each stage of the pipeline are shown inTable 3.1; these are

directly translated into edges. For example, a dynamic instruction can be stalled in theIB stage

due to the issue queue being full (resulting in aIQe→IBe edge), the reorder buffer being full

(Coe→IBe), or fetch buffer output bandwidth being saturated (IBe→IBe).

Simplify. As you can see from Figure 3.3(b), some nodes have only one incoming and one outgo-

ing edge and, thus, are not useful to have in the graph (unlessincluding them makes the graph more

readable for humans.) They can be removed to yield more simpler graph.

Add latencies. The latencies are design parameters determined from a machine’s implementation.

IQx→IQx edges will be labeled with execution latency of operations.Fex→Fee edges will have a

label of one cycle since instruction fetch is delayed by one cycle when fetch bandwidth is saturated.

36

(a) Code snippet illustrating modeling problem. (b) An alternative modeling.

Figure 3.4:Certain types of resources cause problems with graph analysis. While it is possible
to construct a graph model for any microexecution that can beexpressed as a waterfall diagram,
certain resources do present problems for some forms of graph analysis. In(a), we attempt to find
the performance effect of a cache miss by observing the change in the critical path when we convert
it’s graph representationfrom a miss to a hit (by reducing the latency on the edge). Our analysis
yields inaccurate results, however, since we did not account for the reduced adder contention after
the miss is removed (the contention edge is still present in the graph.) In(b), we use a different
modeling of adder contention, where it is included as a latency that delays execution as opposed
to a dependence edge. Empirically, we have found this representation typically reduces the error
introduced by side effects.

3.3.1 Sources of modeling error

Side effects

There are certain types of resources which cause modeling difficulties when using the

above procedure. They occur when a modification to a processor execution produces unanticipated

“side-effects” as far as the graph modeling is concerned. Tounderstand this effect better, consider

the task of finding the performance cost of a cache miss using the graph, as discussed above. Our

approach would be to measure two critical-path lengths: (1)with the cache miss included in the

graph and (2) with the cache miss’s latency reduced to that ofa cache hit. The difference between

these two lengths would by the cache miss’s cost.

Notice that the only modification we made to the graph to obtain the critical-path length

37

of (2) above was to reduce the latency of one edge in the graph,corresponding to the cache miss.

Problem sometimes arise with this approach when reducing a load’s latency in the real execution

has effects beyond simply this latency change. For example,reducing the latency might increase

the rate at which instructions reach functional units, thusincreasing the effect of functional-unit

contention on execution time. If the graph is constructed such that this increased contention is not

accounted for, some inaccuracy in the cost computation willresult. An example of this effect is

illustrated graphically with a code snippet in Figure 3.4(a).

It is important to point out at this point that most “side effects” will, in fact, be accounted

for naturally in the graph model. For example, reducing the latency of the cache miss might also

decrease the number of ROB stalls that occur. This effect is accurately modeled by theCD edges

in the graph: fewer of them will be critical in the altered graph. Side-effects can cause inaccuracies

in the analyses for one of the following two reasons:

• Incomplete Modeling. When designing the model, it is often convenient to leave outsome

details, both for efficiency and ease of reasoning about the execution. If a resource, such as

functional-unit contention, is not explicitly modeled in the graph, its performance effect in

the altered execution would obviously not be captured.

• Dynamic Control Policies. It is common for processors to have one or more control poli-

cies in the hardware that make choices about how to allocate resources to instructions. For

example, an instruction scheduler might choose the oldest data-ready instructions to execute

each cycle (such that the newer data-ready instructions have to wait.) In this case, altering

the execution might change the order in which instructions become data-ready, which, due to

the scheduling policy, might change how long they have to wait for functional units. Many

38

other examples exist, such as cache-replacement policies,memory bus schedulers, and cluster

assignment policies. It is very difficult to incorporate such policies into graph analyses.

For side-effects caused by dynamic control policies, we have employed two approaches in

our work. The first is to implement the policy as part of the graph analysis. If the policy would make

different decisions due to the altered execution, we reflectthose decisions by altering the appropriate

edges and latencies in the graph. The upside of this approachis that there are no inaccuracies in

the measurements. Unfortunately, this increase in accuracy comes at the expense of a less efficient

analysis.

An alternative is to make some graph alterations to mitigatethe effect of side-effects

without degrading efficiency. For example, Figure 3.4(b) shows contention measured, not as a

dependence edge between instructions, but as an intra-instruction constraint that delays the firing of

the execute node. With this modeling, there would not, for example, be an extraneous dependency

between instructions two and four in the altered execution of Figure 3.4(a), but instead instruction

four’s execution will simply be delayed by one cycle longer than it should be. In our experience,

extraneous dependencies are typically much more damaging to precision than a few extra cycles of

latency. In the next section, we discuss some approached to validating graph models, which can

help quantify the errors due to side effects experienced with various modeling alternatives.

Bad-path instructions

Another potential source of inaccuracy in our modeling is the lack of accounting for in-

structions that were executed speculatively and then latersquashed. The most common example

of this is when a branch is mispredicted, causing instructions on the wrong path to be fetched and

39

executed.

Note that the model does account for the cost of branch mispredictions (withEF edges),

it’s only the resource contention caused by bad-path instructions that is ignored. For example, if a

bad-path instruction used an available functional unit, making a good-path instruction (from before

the branch) wait longer than it would otherwise, performance is affected, but our model does not

capture that effect. Fortunately, we have found empirically that the resource contention imposed by

bad-path instructions is not significant and, thus, is safe to ignore.

The effect might be significant, however, in other types of machine organizations, such

as a processor supporting SMT. If this is the case, bad-path instructions would need to be included

either directly with nodes and edges or indirectly with someestimation of the contention they would

impose on important resources. We have not studied this typeof modeling in detail.

3.4 Validation

There are several reasons why a graph model should be validated before use. First, there

may be important machine dependencies that were neglected during its development. Second, it

is sometimes practical to abstract away many of the details of the processor, in order to obtain a

simpler, more intuitive graph model. Finally, it is important to quantify the inaccuracies imposed by

side effects and bad-path instructions (see Section 3.3.1)on our analyses. By validating the model,

we can reach a level of assurance that the measurements takenfrom it are reasonably accurate.

In our work, we have used two forms of validation. The first is asmall-signal analysisthat

introduces small changes to the microexecution (such as adding a cycle of latency to an event) and

observes whether the performance effect of the changes as observed by the simulator match those

40

taken from graph analysis. The second is alarge-signal analysisthat tests the model’s capability

to determine the effect of large changes to the microexecution (such as removing all cache misses).

Both forms of validation are useful since, while the second is a more intense test of the model, the

first is more representative of the types of graph analyses most useful for optimization engines.

3.4.1 Small-signal Validation

Our simplest validation uses the simulator to perform the following two measurements.

• Decrease the execution latency of every dynamic instruction (by one cycle) that is found by

the graphnot be on the critical path. Since only non-critical instructions are sped up, there

should be no effect on execution time.

• Increase the execution latency of every dynamic instruction (by one cycle) that is found to be

on the critical path. This should result in a large increase in execution time.

Note that these measurements are merely illustrative of howa small-signal validation ex-

periment could be designed. Since the graph model includes alot of edges, not just those that

represent execution latencies, adjusting latencies that correspond to other edges could also be ben-

eficial.

Also, as a practical concern, since some instructions have an execution latency of one cy-

cle, and our simulator does not support execution latenciesof zero cycles, we established a baseline

by running a simulation where all the latencies were increased by one cycle. The critical path from

this baseline simulation was written to disk. We then ran twosimulations that each read the baseline

critical path and decreased all critical (non-critical) latencies by one cycle, respectively.

41

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

crafty eon gcc gzip parser perl twolf vortex ammp art galgel mesa

E
xe

cu
tio

n
T

im
e

R
ed

uc
tio

n
(in

 c
yc

le
s)

 p
er

 C
yc

le
 o

f
La

te
nc

y
R

ed
uc

ed

Reducing CP Latencies
Reducing non-CP Latencies

Figure 3.5:Validation of the critical-path model Comparison of the performance improvement
from reducing critical latencies vs. non-critical latencies. The performance improvement from re-
ducing critical latencies is much higher than from non-critical latencies, demonstrating the ability
of our model to differentiate critical and non-critical instructions. The simulator methodology used
for the experiments is described in Section 7.1.

The results of the experiment over the SPECint benchmarks for a simple three-node model

is shown in Figure 3.5, where each speedup is shown as cycles of execution time reduction per cycle

of latency decreased. The most important point in this figureis that the performance improvement

from decreasing critical path latencies is much larger thanfrom decreasing non-critical latencies.

This indicates that our model, indeed, identifies instructions critical to performance.

Note that even though we are directly reducing critical pathlatencies, not every cycle of

latency reduction turns into a reduction of a cycle of execution time. This is because reducing critical

latencies can cause anear-critical path to emerge as the new critical path. Thus, the magnitude of

performance improvement is an indication of the degree of dominance of the critical path. From the

figure, we see that the dominance of the critical path varies across the different benchmarks. To get

the most leverage from optimizations, it may be desirable tooptimize this new critical path as well.

42

Finally, there is a very small performance improvement fromdecreasing non-critical la-

tencies. This is the result of imprecise modeling, resulting from one of the three sources mentioned

at the beginning of this section.

In our experience, developing an accurate graph model of a complex processor does re-

quire repeated validation and debugging. A practical technique to quickly identify problems with

a model has been to compare the following two graphs, edge by edge: (1) the graph that has been

altered to idealize a resource (or, for example, decrease the latency of non-critical instructions) and

(2) a graph produced by the simulator that has been modified toidealize a resource. If the graph

model is a perfect representation of the simulator, these two graphs should be identical. If there are

discrepancies, it could be due to side effects (see Section 3.3.1) or important machine dependencies

left out of the model. Tracing microarchitectural behaviorup to one of these discrepancies will

typically unveil one or more sources of inaccuracy in the model.

3.4.2 Large-signal Validation

The validation described above involved only one cycle adjustments to latencies. The

overall change to the execution was still rather substantial, since many one cycle adjustments were

made; and the characteristic of reducing many latencies by asmall amount is a good match for the

performance effect of many dynamic online optimizations. Nonetheless, it is a relatively modest

change to the execution compared to some of our more advancedanalyses. For a more rigorous test,

we perform large perturbations to the model and see if those changes match what we would expect

based on simulator output.

For example, one such validation is to increase every instruction’s latency (in the simula-

tor) by the amount ofslack that the model determined that it had. If the slack computations were

43

correct, the execution time of the program should not increase at all.

Another of the large-signal validation experiments involve idealizingan entire set of pro-

cessor resources both in the simulator and on the graph. For example, one measurement may be

turning all cache misses into hits on the graph, measuring the critical-path length change this in-

duces; and then making the same modification in the simulator, observing the execution time reduc-

tion. If the graph and simulator measurements are close in value for a large range of idealizations

of this sort, we can have some assurance that the model is producing accuratecostresults.

We will present experiments for each of these types of validation as the concepts of slack,

cost, and interaction cost is presented later in the thesis.

3.5 Summary

In this section, we reasoned what the fundamental characteristics of the critical path

should be in a microprocessor. This exercise yielded one characteristic in particular, namely per-

formance sensitivity. From this foundation, many implications were drawn, culminating in a de-

pendence graph of the program’s microarchitectural execution. We discussed a procedure used to

construct such a graph starting from a traditional pipetrace of a program’s execution (which is often

represented by a waterfall diagram). With this procedure, the critical path can be found for any

program execution for which a pipetrace exists.

For analyses that are more sophisticated than simply findingthe critical path, the depen-

dence graph that is found using a pipetrace must be augmentedwith other dependence constraints

that exist in the processor — even if they are not manifested in a particular execution. When building

such a graph, a tradeoff exists between accuracy and complexity (in terms of the number of nodes

44

and edges). Besides complexity, accuracy can also be compromised by aspects of some microarchi-

tectures that cannot easily (if at all) be captured in the types of graph models used in our work. To

gauge the effectiveness of a particular graph model, we havedevised validation procedures which

provide simple empirical measurements of accuracy.

45

Chapter 4

Interpreting a Program’s Critical Path

In the last section, we presented a model of program performance that enabled the deter-

mination of which events are critical and which are not. While this information is useful for some

purposes on its own, more refined metrics are necessary for most practical applications. For exam-

ple, compiler use of criticality is complicated since an instruction as a whole cannot be simply stated

as critical or non-critical, since criticality is associated with much more basic micro-operations. A

second consideration is that some events are “more critical” than others, while some non-critical

ones are very close to being critical. Even more challenging, the performance effect of multiple

events ofteninteract. For example, when two cache misses are issued to the memory system si-

multaneously, both could be equally critical. (More often,one of the misses is critical and the

other is “slightly” non-critical but, as far as optimizations are concerned, both misses should be

targeted.) In this section, we will extend our work on criticality to provide a more complete picture

of performance to an analyst.

46

Figure 4.1:Criticality modes. The processor can be viewed as operating in a particular criticality
mode in each cycle of execution, corresponding to which resources the critical path is traversing
through in that cycle.

4.1 Criticality Modes

One useful way for an analyst to understand the criticality characteristics of a program

execution is to think of variousmodesof operation, each corresponding to the various resources

that could be limiting the processor at any given time. In this way of thinking, in each cycle of

execution, the processor is in a particular mode and optimizations can be targeted for that mode.

For example, when an execution is in “fetch mode”, the instruction fetch resources are limiting

performance. In this case, optimizations targeting the front end of the machine are most likely to be

beneficial. Similarly, the execution could be in “execute mode”, where resources such as ALUs and

the instruction window are most important to performance.

An illustration of the criticality modes using the simple three-node graph model is shown

in Figure 4.1. The critical path determines which mode the processor is in at any given time. If the

critical path is traversingF nodes, the processor is inF mode, meaning the instruction fetch and

dispatch resources are limiting performance. Similarly, if the critical path is traversingE nodes, the

processor is inE mode and execution resources (e.g.,ALUs, issue logic) are limiting performance.

Finally, if the processor is inC mode, the commit logic is most important to performance.

47

Another way to think of modes is that a particular dynamic instruction can be critical

for different reasons (i.e., due to one or more of the phases of its processing). For example, it can

be fetch-critical, execute-critical, or commit-critical, as illustrated in the figure. Moreover, when a

program execution is inexecute mode, some of the instructions will likely not be critical at all (since

the critical path traversesEE edges, which will likely “skip” over some instructions).

We show in Figure 4.2a the fraction ofexecution timespent in each of the three modes for

a few familiar benchmarks. In this figure, the number ofcyclesthe program spends in each mode

is shown. Figure 4.2b shows the fraction ofdynamic instructionsthat are in each mode. The latter

figure gives an indication of the number of opportunities foroptimizing each mode are available.

We can use this type of information to design optimizations where the mostleverage

exists. For instance, in the integer applications, whereF mode is significant, performance could be

improved through a more powerful fetch unit—maybe a trace cache would be of benefit. In many

floating point benchmarks,C mode dominates. In these, a larger re-order buffer—to permit the

exploitation of more parallelism—could be of significant benefit. Value prediction has the potential

to breakEE edges. Hence, the technique is most applicable for benchmarks that spend a lot of

execution time inE mode.

We show in Figure 4.2b the fraction ofinstructionsin each of the three modes. For this

measurement, theE mode is broken into two components: the instructions that are on the critical

path and those that are not—they are “skipped” over byEE edges.

This breakdown illustrates the power the critical path has to enhance processor optimiza-

tions. Instruction issue scheduling, for instance, is onlyimportant for instructions inE mode,

dispatch-critical and commit-critical instructions willnot benefit from a priority-based issue pol-

48

(a) Execution Time Breakdown (b) Instruction Count Breakdown

Figure 4.2:The critical-path model can be used to compute precise performance breakdowns.
(a) shows the contribution of each mode to execution time foreach benchmark, suggesting what op-
timizations would be best applied. (b) shows the percentageof instructions that are limited by each
mode of operation. Optimizations should focus on those instructions that will impact performance.
The simulator configuration for these experiments is described in Section 7.1.

icy. Furthermore, those instructions that are critical inE mode should be given the highest priority.

For value prediction, it only makes sense to make predictions to break criticalEE edges.

Thus, value prediction should only be applied to execute-critical instructions. Making predictions to

other instructions would only needlessly risk a misspeculation. After a value prediction is made that

breaks the critical path, however, a near-critical instruction may emerge on the new critical path.

This new instruction could then benefit from value prediction.

The notion of near-criticality is important for a large number of analysis applications. For

example, in performing dynamic reconfiguration and energy optimizations it is often important to

know the minimum number of resources needed for processing without increasing the length of the

critical path. In the next section, we discuss metrics for quantifying how critical or non-critical an

event is, to provide a general analysis methodology for a broad range of applications.

49

4.2 Criticality of a Single Event

Inherent in the notion of near-criticality is that the degree of criticality of one event typ-

ically depends on the latency and criticality of other events. These interdependencies complicate

performance understanding considerably, since, in principle, every event in the program execution

could influence the criticality of every other event. To start the discussion, we’ll ignore the ex-

ponential number of interdependencies and focus on the muchsimpler problem of quantifying the

criticality of a single event. We’ll explore the more general notion of criticality in Section 4.3.

As we know by now, the latency of an event is not sufficient to indicate to what degree an

event is critical. Latency is directly related to criticality, however. Consider the dependence graph

of Figure 4.3a. The circled edge weight represents the latency of a data-cache miss, at9 cycles. As

can be seen, this cache miss’s latency is not on the critical path. In other words, the load has some

amount ofslack, such that the latency could be increased without increasing the execution time of

the entire program.

Now, consider increasing the latency of the cache miss from9 to 11 cycles, as shown in

Figure 4.3b. This change of latency puts the cache miss on thecritical path; in other words, the

longest path in the graph now includes the cache miss. This means the cache miss has acost to

performance, in that decreasing its latency would decreasethe execution time of the entire program.

The relationship between criticality and latency can be illustrated graphically by a chart,

Figure 4.3c. In the example of the cache miss, a latency of tencycles is the minimum that places

it on the critical path. At this latency, this path is tied in length to another path flowing through

the branch misprediction, completely hiding the latency ofthe cache miss — or, in other words,

the miss has a cost of zero. Each cycle of additional latency increases the cache miss’s cost by one

50

(a)

(b)

(c)

Figure 4.3:Relationship between slack and cost.In (a) the circled cache miss latency is off the
critical path. By increasing the latency by a couple of cycles (see(b)), the critical path changes,
placing the latency on the critical path. In(a), the cache miss has one cycle of slack. In(b), it has a
cost of one cycle. The relationship between the latency, slack, and cost of the cache miss is shown
in (c).

51

(a) Slack without resource modeling. (b) Slack with resource modeling.

Figure 4.4:Slack with and without resource modeling. Modeling processor resources exposes
more of the slack inherent in the execution than can be observed by a data dependences alone.

cycle; each cycle reduced (below10 cycles) increases the cache miss’s slack.

Definition of slack. The notion of slack is particularly useful to designers and compiler optimiz-

ers. The reason is simple: resources allocated to events that are far from critical can be re-allocated

to critical events. Alternatively, slowing down the processing of those events can often lead to

energy savings.

At this point we would like to note again the importance of modeling resources when

determining the amount of slack that an event has. For an example, consider thedata-dependence

onlygraph of Figure 4.4a. Here, the indicated execution event has no slack, since it is on the critical

path of the execution. If resources are also modeled, however, that same event has several cycles of

slack (see Figure 4.4b). In general, modeling resources will increase the slack observed on execution

events since the critical path often traverses resource edges.

In the computer architecture community, there is not a consistently used formal definition

of slack. For our work, we charactered two different notions, each of which can be useful in different

contexts. They arelocal andglobal:

The local slack of a dynamic evente is the maximum number of cycles the processing

52

Figure 4.5:Global vs. Local Slack.

of e can be delayedwithout delayingany subsequent events. In other words, delaying an event by

its local slack does not change which edges are last-arriving. For an example, consider the graph

of Figure 4.5. In the figure, each node is annotated with it’s “fire” time, i.e., the cycle at which all

dependences into that node have been resolved. The fire timesmake clear that the labeled execution

edge has a local slack of only one cycle: increasing it’s latency by more than one cycle would delay

the fire time of the target node of the dependence.

From our measurements, approximately 20% of instructions have local slack greater than

five cycles (see Section 7.2.1). Local slack is conservativebecause it prevents delaying any event

in the program. To avoid impairing the overall execution, however, it suffices to ensure that the

program completes in the original number of cycles. This more aggressive notion is captured by

global slack.

Global slack of a dynamic evente is the maximum number of cycles the execution ofe

can be delayedwithout delayingthe last instruction in the program. In other words, delaying an

event by its global slack does not change what edges are on thecritical path. From Figure 4.5, we

can see that global slack offers much more optimization potential than local slack. In fact, from

53

our measurements, approximately 75% of instructions have global slack greater than five cycles (as

opposed to 20% for local slack). Global slack serves as an upper bound on the amount of tolerable

delay, since it is the maximum amount a particular instruction can be delayed without increasing

execution time.

The difficulty with global slack is that, in contrast to localslack, a single cycle of slack

may be shared among many events. In other words, there are interactions between the global slack

of various events. We can delay every event in the program by its local slack without increas-

ing execution time. The same is not true for global slack. We will address this issue in detail in

Section 4.3.

Definition of cost. From a high level, the cost of an evente could be defined as the number of

execution cycles that should be blamed one. The issue of how to assign blame for execution cycles

presents some subtle issues, however, which affect the definition of cost.

For example, consider the criticality of the edge representing the branch misprediction

in Figure 4.6a. How should the cost of the misprediction be defined? One possibility is to define

it as the execution time reduction that occurs when the edge’s latency is reduced to zero. Notice,

though, that even if the edge’s latency is decreased to zero,the critical path still flows through the

branch misprediction. This means that if the latency could somehow be made negative, execution

time would decrease even more.

The relationship between the branch mispredict edge’s latency and criticality is shown

graphically in Figure 4.6b. The branch becomes non-critical if its latency reduces to less than−5

cycles. In a theoretical sense, then, we would say the cost ofthe branch in Figure 4.6a is its latency,

4, minus−5 for a total of9 cycles, since the maximum possible reduction of execution time from

54

(a)

(b)

Figure 4.6:Relationship between slack and cost for a branch mispredict. The latency of a branch
misprediction latency is circled in(a). The relationship between it’s latency and it’s criticality is
plotted in(b). Notice that the branch misprediction remains critical (with criticality above the x-
axis) until it’s latency is below negative five cycles.

55

event type how to idealize in a simulator
Icache, Dcache, TLB misses turn misses into hits
ALU operation give ALU zero cycle latency
Fetch,Issue, or Commit Bandwidthuse infinite bandwidth
Branch mispredict turn mispredicts into correct predictions
Instruction window use infinite-sized window

Table 4.1:Idealizing events. Listed are techniques to idealize a few of the events studiedin this
paper.

optimizing the branch is9 cycles.

To generalize, the ultimate cost of any evente is the execution time reduction achieved if

it’s latency is reduced the maximum amount, or, in other words, to negative infinity. Of course, it is

not possible in real life to make a latency negative. It is often possible, however, for an optimization

to change the structure of the graph to achieve the same effect. In the case of the branch mispredic-

tion edge, an optimization that makes the prediction correct would remove the dependence entirely,

which has exactly the same effect as reducing the latency to negative infinity.

To form a definition that is applicable across all types of events, we define the cost of

an event as the execution time reduction obtained when the event is idealized, where “idealized”

means that the performance impact of the event was reduced tothe greatest extent possible for the

analysis application (examples of this will be presented shortly). Formally, lete be an event,t be

base execution time (nothing idealized), andt(e) be execution time withe idealized. Then, the cost

of e, cost(e), is defined as

cost(e)
def
= t− t(e)

56

The cost of an event can be naturally generalized to anaggregatecost of a set of dynamic

eventsS. This allows us to compute, for example, the cost of a cache asthe total speedup when all

cache misses are idealized.

It is often the case in practice that it is more useful to definean “idealization” to be

something less dramatic than setting an edge’s latency to negative infinity. For example, a load

prefetching optimization might be able to turn a cache miss into a cache hit, which would result in

a reduction of latency on the graph from a cache miss latency (e.g.,12 cycles) to a cache hit latency

(e.g.,2 cycles). For this application, it would make sense to define the cost of a cache miss to be

the performance improvement when the latency is reduced by ten cycles. A number of example

idealizations for practical applications is given in Table4.1.

4.3 Degree of criticality of multiple events

As mentioned above, there is much more to performance analysis than just the slack

or criticality of a single event. When events must be considered simultaneously to understand

performance, we say those eventsinteract. The simplest example of an interaction is two cache

misses starting simultaneously and being serviced in parallel. The cost of either miss, as defined

above, is zero: removing one miss or the other does nothing toperformance. To understand the

performance effect of these misses requires an analysis of interactions.

Interactions can be much more complex than in the case of two parallel cache misses. For

one, the two misses may only partially overlap, giving the two misses each a small positive cost; or,

if a third event occurs in parallel to both misses, one or bothcould have a positive slack. Secondly,

the interacting events may be non-homogeneous, such as whenan icache miss occurs at the same

57

time as an ROB stall. Finally, events do not have to occur simultaneously in order to experience

interactions. The simplest example is the one given in Section 4.2 when distinguishing between

local and global slack: if one evente1 is dependent on anothere2, e1 ande2 may both “share” the

same cycles of slack.

We have developed two ways of accounting for interactions ina parallel system:

• Quantifying Interactions. To maintain maximum flexibility in how interactions are to beex-

ploited, we must explicitly quantify them. The quantification consists of measuring the effect

that several events together have on execution time and comparing that to the execution-time

effect that the individual constituent events have. In thisway, the interaction effects can be

explicitly measured. The disadvantage of this approach is that there are an exponential num-

ber of interactions in a typical program run, necessitatingheuristics that reduce the amount of

information that must be observed when making optimizationdecisions. Nonetheless, well-

chosen heuristics that focus on a small subset of events thatare important for a particular

analysis application can make explicit quantification practical.

• Apportioning. An alternative method to account for interactions is to isolate the analyst

or optimizer from their effect. We can do this by pre-apportioning the global slack or cost

to individual events, essentially converting them to localmetrics which can be considered

in isolation. In other words, optimization decisions wouldbe made without considering in-

teractions explicitly, relying, instead, on an pre-apportioning policy to assign each event a

reasonable share of the slack or cost.

58

4.3.1 Quantifying Interactions

To start off, consider the above example of the two cache misses. While the cost of the

individual cache misses are zero, theaggregatecost of both cache misses, obtained by measuring

the execution time reduction from idealizing bothc1 andc2 simultaneously, would be large. By

knowing this aggregate cost, denotedcost({c1, c2}), the program optimizer would know that while

prefetching only one load would give little benefit, prefetching both would give significant benefit.

We term this phenomenon, wherecost({c1, c2}) > cost(c1) + cost(c2), aparallel interaction.

Perhaps less intuitively, it is also possible for the opposite parallelism-induced effect to

occur, wherecost({c1, c2}) < cost(c1)+ cost(c2). One example is if twodependentcache misses,

each with100 cycle latency, both occurred in parallel with100 cycles of ALU operations. In this

situation, prefetching both provides no more benefit than prefetching either one alone, implying that

a program optimizer would save overhead by performing only one prefetch. In general, this type

of interaction can occur between two eventsA andB if they are in series with each other, but in

parallel with some other event (or events)C. We call this phenomenon aserial interaction, since

the two interacting events occur in series.

In summary, for two eventse1 ande2:

cost({e1, e2})= cost(e1) + cost(e2)⇔ Independent

cost({e1, e2})> cost(e1) + cost(e2)⇔ Parallel Interaction

cost({e1, e2})< cost(e1) + cost(e2)⇔ Serial Interaction

59

(a) Parallel interaction. (b) Serial interaction.

Figure 4.7:Two types of interactions.Dependence graphs can conveniently illustrate the two dis-
tinct types of interactions that can exist between events:parallel andserial. In (a), the two cache
missesc1 andc2 have a parallel interaction. Both cache misses would need tobe eliminated to im-
prove performance. In(b), c3 andc4 experience a serial interaction. Here, eliminating eithercache
miss will reduce execution time by90 cycles, but eliminating both will not improve performance
any further.

It is often convenient to visualize interactions using dependence graphs, like the ones in

Figure 4.7.

As we show in Chapter 7, interactions are common phenomena (after all, there is potential

for interaction any time two events occur simultaneously).To inform the optimizer (automatic or

human) of the “degree” of interaction, we define interactioncost. Lete1 ande2 be two events and

cost({e1, e2}) be the aggregate cost of both events. Then, theinteraction costof e1 ande2, denoted

icost({e1, e2}), is defined as the difference between the aggregate cost of the two events and the

sum of their individual costs:

icost({e1, e2})
def
= cost({e1, e2})− cost(e1)− cost(e2)

Thus, for a parallel interaction,icost({e1, e2}) is the number of extra cycles an opti-

mization that targets both events, instead of just one, could ever hope to benefit. In contrast, for

a serial interaction,icost({e1, e2}) would be negative, reducing the expectation for performance

improvement from targeting both events.

60

The interaction cost of two sets of events,S1 andS2, is defined similarly, by replacinge1

ande2 with S1 andS2 in the above equation. Moreover, the interaction cost of more than two events

(or sets) can be defined recursively. Formally, letP(U) \ U denote the proper power set of a set of

eventsU (i.e.,all subsets ofU except forU itself). Then the interaction cost ofU is defined as the

cost ofU minus the interaction cost of each proper subset ofU :

icost({})
def
= 0

icost(U)
def
= cost(U)−

∑

V ∈P(U)\U

icost(V)

Notice the power oficost: it characterizes the interaction between events in a single

number, with straightforward interpretation. The sign indicates the type of interaction (positive for

parallel, negative for serial); and the magnitude indicates thedegreeof interaction. Anicost of zero

means the two events are independent and can be optimized separately.

Finally, if U above is the set ofall events in an execution it follows that total execution

time always equals the sum of theicosts for the powerset ofU . This implies that completely

accounting for execution time requires all interaction costs to be considered.

Icost optimization strategies

There are several ways that interaction costs may be used by an analyst during design

and optimization. The one we have used the most in our is in theconstruction of performance

breakdowns.

61

Performance breakdowns. A performance breakdown is a mapping of execution cycles to the

events and hardware resources that are responsible (and should be blamed) for those cycles. They

are often presented as stacked-bar charts in research papers, where each category (e.g.,cache misses,

branch mispredicts) is sized to reflect it’s overall contribution to execution time.

It is interesting to note that while it is very common for performance breakdowns to be

used in research and design, the breakdowns that are used in practice are generally not a realistic

depiction of performance in a processor that exploits parallelism. The reason is that, in general,

several categories of events and resources could be responsible for a single cycle, but traditional

performance breakdowns map each cycle to only one category.We seek to overcome this limitation

using interaction costs.

Figure 4.8 illustrates a breakdown that explicitly includes interaction costs. Notice that

a complete breakdown of performance requires measuring allpossible interactions between the

breakdown categories. In practice, the less significant interactions could be grouped together to

reduce the number of measurements necessary.

The table of interaction costs shown in Figure 4.8a providesa complete breakdown of

execution time. Sometimes it is useful to visualize the results in something other than a table,

however. Towards that end, we present one possible visualization in Figure 4.8b.

The most notable feature of this visualization is how we dealwith categories that have

negative values (due to serial interactions). In this case,we allow the stacked-bar chart to grow above

100% and below 0%. The chart grows above 100% because the total number of cycles allocated to

the positive categories will exceed the execution time of the program. These extra cycles are offset

by the negative categories, which we plot below the 0% axis. With this visualization, all interactions

62

Figure 4.8:Correctly reporting breakdowns. The traditional method for reporting breakdowns
does not accurately account forall execution cycles, since it attempts to assign blame for eachcycle
to a singleevent when sometimes multiple events are simultaneously responsible. We propose a
new method that usesinteraction costs, discussed in Section 4.3.1. In our method, each category
corresponds to an interaction cost of a set of “base” categories.

are made apparent to the user (their sign is given by the location in the chart). For instance, the large

negative contribution ofAB in Figure 4.8 tells us optimizingA will help alleviate the costs due to

B, since they tend to occur serially.

Interpreting Breakdowns. The cost of a single event is easy to understand: it is the maximum

improvement possible by optimizing that event. If an optimizer could only choose a single event to

optimize, it would pick the one with the largest cost (after taking the difficulty of implementing the

optimization into account).

On the other hand, if an optimizer had the ability to improve several events, interaction

costs become important. A parallel interaction between twoevents (e.g.,B andC in the figure) rep-

resents a “bonus” reduction in cycles for optimizing both together — this bonus cannot be derived

from the individual event costs.

63

A serial interaction (e.g.,betweenA andB in the figure) can be applied in at least two

ways by the optimizer.

• First, it tempers the expectation of performance improvement from optimizing both events:

the total effect will be less than the sum of their individualcosts.

• Second, it gives the optimizer a choice in what to optimize: the same set of cycles (equal in

magnitude to theicost) will be eliminated if eitherA or B is optimized — in the example,

seven cycles can be eliminated by optimizing eitherA or B, whereas four cycles can only be

eliminated by optimizingB.

We make extensive use of the second application of serial interactions above in the case

study of Section 7.3.1.

Optimization Heuristic. Although not explored in detail in this thesis, one wayicosts are useful

is in choosing a set of events that should receive the most effort during optimization. Unfortunately,

given an execution,optimally choosing a set of events to improve is an NP-complete problem.

Nonetheless, interaction costs enable heuristics that maywork well in practice, such as the one

below, which assumes that the optimizer can chooseN events to improve:

64

One of many possible optimization heuristics using interac tion costs

1. Initialize the expected benefit for each event to its individual cost.

For each event e, expected benefit(e)← cost(e).

2. Pick event ei with largest expected benefit to optimize.

Of all events e, pick ei such that expected benefit(ei) is largest.

3. For all events ej that have a parallel interaction with ei, increase their expected benefit by the magnitude of the icost.

For all ej , if icost(ei, ej) > 0, then expected benefit(ej)← expected benefit(ej) + icost(ei, ej).

4. For all events ek that have a serial interaction with ei, decrease their expected benefit by the magnitude of the icost.

For all ek, if icost(ei, ek) < 0, then expected benefit(ej)← expected benefit(ej)− abs(icost(ei, ej)).

5. Until N events have been optimized, go to step 2.

This heuristic makes use of both parallel and serial interactions. Step 3 accounts for the

“bonus” from parallel interactions by increasing the expected benefit of events that have a positive

icost with the event that has already been chosen for optimization. Step 4 accounts for serial

interactions by tempering the expectation of improvement for events with a negativeicost.

Slack Interactions. The same principles used for quantifying cost interactionsabove could be

used for slack. A couple characteristics of slack appear to make another approach more attractive

in practice, however. For one, slack only exhibits serial interactions; there is no graph that causes

edges to have a parallel interaction in regards to slack. Second, we have found empirically that slack

interactions typically involve many events, such that simple pairwise measurement would not be

sufficient. Attempting to explicitly consider interactions involving tens of events while performing

an optimization may be unwieldy.

These two observations make an alternative approach more appealing for most practical

applications. We will discuss this “apportioning” style ofinteraction analysis in the next section.

65

Figure 4.9:Apportioning Slack. The circled numbers are arrival times of the edges at the far left
E node. The global slack of the shorter path is the difference in these arrival times. This global
slack can be apporitioned in many ways to individual edges along the shorter path. Here, each edge
is apportioned five cycles.

4.3.2 Apportioning

Apportioning involves making pre-optimization decisionsabout how to allocate slack (or

cost) to particular edges such that the user (or optimizer) is isolated from the effects of interactions.

A simple example of apportioning in the context of slack is shown in Figure 4.9. Here, the global

slack of each of the two top edges is10 cycles, since that is the difference in arrival times of the

critical and non-critical paths at the convergence point. It is not possible, of course, to delay each

edge by10 cycles, since that would delay the non-critical path to sucha degree that it would become

critical. If we apportion the global slack, however, giving5 cycles to each edge, each edge can be

delayed by it’s apportioned slack without increasing execution time.

Of course, many valid apportioning policies exist. For the figure, giving7 cycles to one

edge and3 to the other is also reasonable. The central goal is to maximize optimization opportunities

such that, if each edge was delayed by its apportioned slack,all edges would be critical. In general,

many apportioning policies will meet this goal. Which policy is most appropriate depends upon the

optimization that will be performed.

More formally, letS be an assignment of some amount of slack (possibly zero) to each

instruction in such a way thatthe last instruction is not delayed. Given an assignment of slack

66

S, theapportioned slackof instructioni is S(i), i.e., the slack assigned toi. The assignment can

be arbitrary (as long as it does not delay the last instruction) and is intentionally left up to the

apportioning policy.

Apportioning Policies. The choice of apportioning policy is highly dependent on theoptimization

that is to be pursued. Here are a couple policies we have experimented with in the past.

Five-cycle apportioning.One way to apportion slack is to attempt to give each instruction,

say, five cycles of slack. This strategy might be useful if we wanted to know how many instructions

could tolerate a long (non-uniform) bypass. From our measurements, approximately 75% of instruc-

tions have apportioned slack of five cycles. In other words, the execution contains a particular set of

75% of instructions that can be simultaneously delayed by five cycles. This surprising observation

suggests tremendous optimization opportunities.

Latency-plus-one-cycle apportioning.Another apportioning strategy that we consider re-

flects a control policy for a constraint-aware processor that has a (power-efficient) ALU that runs at

half the frequency of the other ALU. The goal of the control policy would be to maximize the num-

ber of instructions steered to the slow ALU, while maintaining the performance of a two-fast-ALUs

machine. The corresponding apportioning strategy would beto maximize the number of instruc-

tions whose apportioned slack equals their original execution latency plus one cycle (so that they

can tolerate the doubled latency of the slow unit plus some bypass overhead).

4.4 Summary

In this chapter, we have expanded upon our notion of criticality to distinguish not only

whether a microprocessor event is critical or not, but also how critical or how far from critical the

67

event is. Furthermore, we have discussed two ways (quantifying and apportioning) for interpreting

interactions between events that occur near each other in a parallel system. From these primitives,

we have shown how accurate and complete performance breakdowns can be created.

Now that we have the underlying framework for our performance analysis, the rest of

the thesis will deal with the more practical concerns of how to compute the metrics efficiently

(Chapter 5), measure them in hardware (Chapter 6), and use them in productive ways (Chapter 7).

68

Chapter 5

Software Algorithms

In this chapter we will discuss in detail the algorithms usedto efficiently compute the

metrics discussed in the previous section. These algorithms are useful after the graph is constructed

and available. Thus, for practical purposes, they are most useful in a simulator or after the graph

is gleaned from performance counters (which would need to beenhanced via Shotgun Profiling,

discussed in Section 6.3).

We will start by discussing a memory and computational efficient mechanism for comput-

ing the critical path of a program’s execution. We will then present multiple ways to compute the

more sophisticated metrics of slack and cost, depending on the particular demands of the analysis.

5.1 Computing criticality

The critical path through the dependence graph is simply thelongest path through the

graph. Thus, the brute-force approach to calculating criticality is to enumerate all of the possible

paths and pick the longest. Of course, a much more efficient algorithm is possible using a simple

69

topological sort. Our efficiency requirements are even moredemanding, however. The problem is

that the natural algorithm for finding criticality would require two passes, one for performing the

topological sort and another for identifying the critical edges and nodes. This two-pass approach is

rather expensive, however, since it requires buffering theentire graph, which would be very large

for a long program execution run. In this section, we will describe our single-pass algorithm as it

would be used in a simulator. In the next section, we will use some of the same principles to develop

an efficient hardware implementation.

The first key insight is that an edgee that is on the critical pathmustbe thelast-arriving

edge into its target noden. In other words, the critical edge must be on the longest latency path

from the beginning of the program to its target node. This should not be a surprising conclusion

since, by definition, a critical edge is also on the longest latency path through the entire program. If

there was some longer latency path ton that did not includee, e could not be on the critical path.

So, we can find the critical path by building only a subset of edges of the graph: those that

are last arriving. The critical path, then, is the chain of last-arriving edges from the first fetch node

to the last commit node of the program. This chain can be foundeasily via a backward traversal

from the end of the program. Figure 5.1 illustrates the procedure.

As described, the algorithm still requires buffering the entire graph. The second key

insight that removes this requirement is that there are someedges in the graph that can be determined

to be critical using local analysis, rather than the global last-arriving edge traversal described above.

These edges, calledarticulation edges, effectively divide the large, whole-program-execution graph

into many much smaller chunks, each of which can be operated on independently. Thus, only the

portion of the graph up to the next articulation edge must be buffered in order to compute criticality.

70

(a) Latency labeled dependence graph.

(b) Only last-arriving edges are relevant.

(c) Backward traversal finds critical path.

Figure 5.1:Finding the critical path using last-arriving edges.

71

If these articulation edges are frequent enough, the amountof buffering that is required would be

modest.

We employ two different strategies for identifying articulation edges. The simplest in-

volves identifyingcutsthat divide all the nodes in the graph into one of two subgraphs. The cuts are

made across a set of edges, as shown in Figure 5.2a; these edges are referred to as thecut-set. Since

the critical path is a continuous sequence of last-arrivingedges from the beginning of the program

to the end, one of the edges in this cut must be critical. Furthermore, we know that every critical

edge is also a last-arriving edge. Thus, if there is only one last-arriving edge in the cut-set, that edge

must be critical. Since identifying whether an edge is last-arriving can be done without buffering

the entire graph, this edge is an articulation edge for our analysis.

In practice, we have found branch misprediction (EF) edges are likely candidates for

articulation edges. (In other words, a cut across anEF edge often yields a cut-set with only theEF

edge as last-arriving.) Using this technique, it is typically possible to identify an articulation edge

every few hundred instructions.

A second strategy for identifying articulation edges can beemployed if the simpler strat-

egy above does not yield articulation edges with sufficient frequency. It starts with finding cuts as

above, but if there is more than one last-arriving edge in thecut-set, instead of just giving up, each

edge is traversed backwards until a convergence point is found. The edge at the convergence point

will be an articulation edge. Figure 5.2c illustrates the procedure. Since the critical path begins at

the first node of the first instruction, it is guaranteed that aconvergence will be found. For the strat-

egy to be successful, convergence would need to be found relatively quickly, however, otherwise a

large portion of the graph would need to be buffered in memory.

72

(a) A graph cut.

(b) Same as above but only showing last-arriving edges.

(c) More sophisticated articulation point algorithm.

Figure 5.2:Articulation edges aid in finding the critical path efficiently.

73

In general, it is possible for no articulation edges to existin the whole-program-execution

graph. If this is the case, the critical path is not very dominant, in other words there are one or more

secondary paths that are nearly as long as the critical one. To find the true critical path in this case,

the entire graph would need to be buffered. For most applications, however, it is not that useful

to identify the true critical path if it is not dominant, since other paths are nearly as long anyway.

Any practical optimization would need to target both the critical and near-critical paths. Thus, in

practice, it is usually effective to just mark edges in all ofthese paths as “critical”.

5.2 Computing Slack

Computing slack is a more difficult problem than criticality. This is not surprising since

criticality can be inferred from slack values: any edge withzero slack is on the critical path. We

will start the discussion of slack algorithms with the most basic metric (local slack) and use that as

a basis for the more complex metrics (global and apportionedslack.) Note that there is a distinction

between the slack of a node versus the slack of an edge, but theslack of a node can always be derived

once we know the slack of all the edges, as will be made clear aswe walk through the algorithms..

Local slack. The local slack of anodeis determined by first computing the local slack of each

edgein the graph. The local slack of an edgee = u → v is simply the number of cycles that the

latency ofe can be increased without delaying the target nodev. The local slack ofe is computed

as the difference between the arrival time of the latest (i.e., last-arriving) edge sinking onv and the

arrival time ofe (see Figure 5.3(a) for an example). The local slack of a nodev is then the smallest

local slack among the outgoing edges ofv. Thus, the local slack of the middle node in the figure is

min(L3, L5) = 1 cycle.

74

(a) Calculating local slack.

(b) Calculation global slack.

Figure 5.3:Computing Local and Global Slack.

75

ComputeGlobalSlack (G)
// initialization
arrival time[n]← 0 for all nodes n ∈ N [G]
// forward pass
for each node n ∈ V [G] in topological order

for each incoming edge e to n

if latency[e] + arrival time[source[e]] > arrival time[n]
arrival time[n]← latency[e] + arrival time[source[e]]

// compute local slack
for each incoming edge e to n

local slack[e] = arrival time[n]− (latency[e] + arrival time[source[e])
// backward pass, to compute global slack
global slack[n]← 0 for all nodes n ∈ N [G]
for each node n ∈ N [G] in reverse topological order

for each outgoing edge e from n

if global slack[e] < global slack[n]
global slack[n] = global slack[e]

for each incoming edge e to n

global slack[e] = global slack[u] + local slack[e]

Figure 5.4:Global slack algorithm.

Global slack. As with local slack, we start by computing global slack of edges. The global slack

of an edgee is the number of cycles that the latency ofe can be increased without extending the

graph’s critical path. As with local slack, the global slackof a nodev is the smallest global slack

available amongv’s outgoing edges.

While local slack was computed by merely examining nodes andtheir edges, the com-

putation of global slack involves backward propagation that accumulates local slack. Consider

Figure 5.3(b) as an example. We start by knowing the value of local slackLi of each edgeei and

end up computing, for each edgeei, the value of global slackGi for each edge.

In the example,G3, the global slack of edgee3, equals the sum of the local edge slacks

L3 andL6. We can computeG3 recursively, as the sum ofL3 andG6. In general, the expression for

computing the global slack of an edgee is Ge = Le + min(Gout1 , Gout2 , .., Goutn) whereGout1 to

Goutn are the global slacks of the outgoing edges ofe’s target node.

The complete algorithm is shown in Figure 5.4. While the algorithm is linear, there unfor-

76

tunately does not seem to be an equivalent to articulation edges when computing slack. For accurate

slack computation, the graph of the entire program execution must be buffered (or saved to disk).

We have found in practice, however, that global slack can be approximated with high precision

by analyzing sufficiently large segments of the execution (afew tens of thousands of instructions),

much smaller than the entire program run.

Apportioned slack. Having computed global slack, we are ready to compute apportioned slack.

The goal of the algorithm is to apportion a certain amount of slack toas many nodes as possible,

so that all nodes can be delayed (together) by the amount of slack apportioned to them without

extending the critical path. The exact amount of slack we attempt to apportion to each node depends

on the apportioning strategy.

The algorithm we use does not perform an optimal apportioning, but instead greedily

apportions slack to the first nodes encountered during a forward pass, after computing global slack

using the algorithm above. For example, assume an analyst wished to employ an apportioning

strategy that gave five cycles of slack to as many nodes as possible. Performing this apportioning

optimally is intractable, but our approach would provide a greedy solution that is (hopefully) good

enough. As the forward pass encountered each nodev, a check would determine whether enough

global slack exists to apportionv five cycles of slack. If enough existed,v would be apportioned

five cycles, and it would be ensured that no other nodes further downstream are apportioned those

five cycles. This process would continue until the forward pass reaches the end of the program. The

entire algorithm is shown in Figure 5.5.

77

ComputeApportionedSlack (G)
for each node n ∈ N [G] in topological order

available slack[n] = global slack[n]
for each incoming edge e to n

if available slack[n] > available slack[e]− local slack[e]
available slack[n] = available slack[e]− local slack[e]

Apportion slack to n up to available slack[n] based on policy
for each outgoing edge e from n

available slack[e] = available slack[n]− apportioned slack[u]

Figure 5.5:Apportioned slack algorithm.

5.3 Computing Cost

The most straightforward way to compute thecost of an event,e, is to run two simulations:

one withe idealized and one with no idealizations. Then,cost(e) is simply the difference between

the execution times of the non-idealized and idealized executions. Furthermore,icosts can be

computed similarly, since they are derived from simple costmeasurements (e.g.,icost(e1, e2) =

cost(e1, e2)− cost(e1)− cost(e2)).

In practice, though, this multiple-simulation approach isexpensive, especially if the num-

ber ofcost measurements to be taken is very high. For instance, if a userwants to know the cost of

every data cache miss, running so many simulations is undesirable. In other cases, a simulator may

not even be available. Fortunately, we have developed algorithms to computecost much more effi-

ciently using our dependence graph, which can be built from data collected by modified hardware

performance counters.

The natural algorithm for computing the cost of an event on the graph would be to idealize

the edge representing the event, and then measure the changein critical-path length this graph mod-

ification induces. While more efficient than running a full simulation, some analysis applications

would require many critical-path length measurements, with a corresponding long analysis time.

78

In particular, if an analyst wished to measure the cost of every edge in the graph, the complexity

would be quadratic, since each critical path measurement isO(m), wherem is the number of edges.

We employ some optimizations that reduce this complexity inpractice (see Section 5.4 below), but

before we get to those, we will first discuss a special-purpose algorithm that can compute the cost

of every single edge in the graph in near linear time.

Near-linear-time algorithm. The key observation to the algorithm is to realize the cost ofan edge

on the critical path is equal to the the slack of the second-most critical path. In other words, the cost

of a critical edgee is equal to the minimum of the slacks of all edges parallel toe. The intuition

behind this is that, since the cost of an edge is the reductionin critical-path length realized when the

edge is idealized, the maximum reduction possible is the difference between the current critical-path

length and the length of the second-most critical path. Thisvalue is precisely the global slack of the

second-most critical path.

This observation alone is not enough to yield a linear time algorithm, however. In general,

finding the set of edges parallel to an edgee requiresO(m) time, wherem is the number of edges.

Thus, to find such sets for every possible edge, the straightforward algorithm would requireO(m2)

time. Careful bookkeeping is required to reduce this complexity.

The first step is to topologically sort the critical-path nodes and assign each a numberk

such that if noden1 is assignedk1 andn2 is assignedk2 andk1 < k2, n1 is an ancestor ofn2 (see

Figure 5.6). Then, for each non-critical edgee, a range is foundD = (kb, ke) where every edge

on the critical path betweenkb andke is parallel toe. These ranges can be found with two passes

of a simple dataflow analysis (see Figure 5.7). Finally, the critical-path is traversed in a forward

direction, maintaining a priority queue of all edges parallel to each critical-path edge. The cost of

79

AssignNumbers (G, S)
CURID ← 0
ID(N)← ∅ for all N

ENQUEUE(CQ,S) while CQ not empty or NCQ not empty
if NCQ not empty

N ← DEQUEUE(NCQ)
else

N ← DEQUEUE(CQ)
ID(N)← CURID

CURID← CURID + 1
for Nc in CHILDREN(N)

if ID(Nc) = ∅

if Nc not critical
ENQUEUE(NCQ,Nc)

else
ENQUEUE(CQ,Nc)

Figure 5.6:Algorithm to topologically sort and assign numbers to nodesas part of an algorithm
to compute the cost of every node.S is the first (starting) node of the graph.CQ is a queue for
holding critical nodes.NCQ is a queue for holding noncritical nodes. The resulting topological
order is represented by the numbers stored inID(N) for each nodeN in the graph.

each critical edge is the non-critical edge in the priority queue with the least global slack.

The complexity of the algorithm isO(mlogn) since the priority queue implementation

requires at mostO(logn) complexity for each critical edge. In practice, however, the number of

edges parallel to a critical-path edge will be bounded by hardware resource constraints,e.g.,due to

a finite-sized reorder buffer. Thus, the complexity is effectively linear.

Note that the algorithm presented computes the cost of everysingleedge in the graph.

In other words, the algorithm does not compute the aggregatecost of two or more edges, which is

necessary for determining interaction costs. It seems thatcomputing the cost of every pair of edges

is more difficult than for every single edge, probably requiring an algorithm of quadratic complexity.

In practice there are a some mitigating conditions, however. Most importantly, it is not

interesting to compute the cost of every pair of edges since it is easily determined that some edges

are too distant from each other to have any interaction. So, the quadratic complexity is only within

80

FindExtent (G)
for each node N of G in topological order
if N is critical

EXTENT (N)← ID(N)
else

k ← minimum EXTENT (j) of all nodes j that are parents (immediate ancestors) of n

EXTENT (N)← k

return EXTENT (n)

FindRanges (G)
BEGIN(N)← F indExtent(G)
Let G′ be G with all edges reversed
END(N)← F indExtent(G′)

Figure 5.7: Algorithm to find ranges of critical nodes parallel to each noncritical node
BEGIN(N) andEND(N) contain the beginning and ending identifiers for the range for each
nodeN .

a local region of the graph.

5.4 Algorithms for Dynamic Graphs

The algorithms for slack and cost discussed above make an important assumption con-

cerning the graphs that they are operating on: that they are static (unchanging) during the analysis.

For most analyses, this is an acceptable assumption. It is sometimes useful, however, to modify the

graph while the processing is occurring. For instance, if weare using the graph to determine good

cutpoints in which to divide a program into multiple threads(an application sketched in a later chap-

ter), inter-processor latencies would be placed on different edges for each possible cutpoint. Such an

application is going to necessarily require a more time-consuming analysis, but by taking advantage

of the unique structure of a microexecution graph, the analysis can be done in a reasonably tractable

way.

The basic approach we take is to measure slack and cost using the straightforward ap-

proach of computing critical-path lengths, but instead of measuring the critical path of the entire

81

ComputeSlack (G, Em, localSlack)
// initialization
count← 0
lastSlackNode← ∅

for each n ∈ N

slackNode[n]←∞
for each em ∈ Em

slackEdge[em]← localSlack[em]
// do propagation
for each n ∈ N in program order (starting at earliest targetNode[em ∈ Em]) {

for each ei ∈ IncomingEdges[n]− Em

slackEdge[ei]← slackNode[sourceNode[ei]] + localSlack[ei]
slackNode[n]← MIN(slackEdge[ei ∈ IncomingEdges[n]])
// check condition for ending propagation
if slackNode[n] = lastSlackNode

count← count + 1
else {

lastSlackNode← slackNode[n]
count← 0

}
if count > ROB SIZE

return slackNode[n]
}

Figure 5.8:Algorithm to compute slack of an individual event. Note, due to the structure of our
model, this single event could occur on multiple edges. For instance, the effect of a cache miss
could occur on multiple EE edges as well as an EC edge. We couldre-structure the model to avoid
such difficulties, if desired.

microexecution for each measurement, we introduce aconvergencecondition such that the entire

graph need not be examined. The convergence condition is based on specific knowledge of how

the graph is structured, specifically that parallelism is limited to the span of the reorder buffer. Any

dynamic alterations to the graph will be done individually for each slack or cost measurement,i.e.,

each measurement in essence has its own graph. Note that since propagation only proceeds a limited

amount before convergence is reached, we avoid constructing a copy of theentire graph for each

measurement. The algorithms are shown in Figure 5.8.

Both algorithms accept three inputs.G = (N,E) is the graph of the microexecution and

contains a set of nodesN and a set of edgesE. The functionIncomingEdges[n] returns the set

of incoming edges into noden; function targetNode[e] andsourceNode[e] return, respectively,

82

ComputeCost (G, Em, localSlack)
// initialization
count← 0
lastCostNode ← ∅

for each n ∈ N

costNode[n]← 0
for each em ∈ Em

costEdge[em]←∞
// do propagation
for each n ∈ N in program order (starting at earliest targetNode[em ∈ Em]) {

for each ei ∈ IncomingEdges[n]− Em

costEdge[ei]← costNode[sourceNode[ei]] + localSlack[ei]
costNode[n]← MIN(costEdge[ei ∈ IncomingEdges[n]])
// check condition for ending propagation
if costNode[n] = lastCostNode

count← count + 1
else {

lastCostNode ← costNode[n]
count← 0

}
if count > ROB SIZE

return costNode[n]
}

Figure 5.9:Algorithm to compute cost of an individual event.

the target and source nodes of edgee. The inputEm is the set of edges that are to be measured

for slack or cost. The final inputlocalSlack is an array containing the local slack of each edge

in the graph. Local slack of an edgee incoming to a noden is defined asLA EdgeCycle[n] −

EdgeCycle[e] whereLA EdgeCycle[n] returns the cycle the last arriving edge inton is resolved

andEdgeCycle[e] returns the cycle edgee was resolved.

The algorithms are very similar except for initialization.In the slack algorithm, we start

with a small value of slack (just the local slack at the edge being measured,Em) and continually

refine this value as we observe more slack on edges in paths leading from Em. Conceptually, we

can think of the algorithm as searching for the path fromEm to the critical path that has theleast

cumulative slack. This cumulative slack is reported as the slack forEm.

In the cost algorithm, we know thatEm must be on the critical path (else it has a slack

83

rather than a cost.) We start with a large value of cost,∞, and continually refine this value as we

discover paths that are closer and closer to the critical path. Conceptually, we are trying to determine

how farEm is from the second-most critical path.

The convergence condition is the same for both algorithms. If the same slack or cost value

has been propagated across every edge for the lastROB size instructions, we know that the value

will never change.

5.5 Summary

In this chapter, we discussed the graph algorithms that operate on a dependence graph

of the microexecution to extract the metrics of interest forour criticality analysis (i.e., the critical

path, slack, cost, and interaction cost). These algorithmsare used in two ways in our work. The

first is to implement them directly in a simulator to help computer architects better understand the

performance characteristics of the machines they are building. Secondly, the algorithms form the

basis for some of the hardware techniques and profiling infrastructures discussed in the next chapter.

84

Chapter 6

Hardware Support

For many applications of our performance metrics, we want toperform measurements of

real programs executing on real machines. To make this possible, we provide hardware support for

measuring criticality, slack, and interaction cost. In thenext two sections, we describe our solutions

for detecting criticality and slack in hardware. Then, in Section 6.3, we describe an alteration to

traditional performance counter infrastructure that enables us to build full-featured graphs from

scant information collected during a program’s execution.

6.1 Criticality Analyzer and Predictor

Recall the observation of the previous chapter that the critical path consists of only last-

arriving edges (see Section 5.1). For the hardware criticality analyzer, we take this observation a step

further: for the goal of detecting criticality, the portionof the graph consisting of non-lastarriving

edges does not even need to be constructed. Furthermore, since the critical path consists of the

chain(s) of last-arriving edges spanning from the beginning of the program to the end, it can be

85

target node edge last-arriving condition
Ei−1 → Fi if i is the first committed instruction since a mispredicted branch.

F Ci−w → Fi if the re-order buffer was stalled the previous cycle.
Fi−1 → Fi if neitherEF nor CF arrived last.
Fi−1 → Ei if all the operands for instructioni are ready by the timei is dispatched.

E Ej → Ei if the value produced by instructionj is the last-arriving operand ofi
and the operand arrives after instructioni has been dispatched.

Ei → Ci if instruction i delays the in-order commit pointer (e.g.,, the instruction
is at the head of the re-order buffer but has not completed execution and,

C hence, cannot commit).
Ci−1 → Ci if edgeEC does not arrive last (i.e.,, instructioni was ready to commit

before in-order commit pointer permitted it to commit).

Table 6.1:Determining last-arriving edges. Edges are grouped by their target node. Every node
must have at least one incoming last-arriving edge. However, some nodes may not have an outgoing
last-arriving edge. Such nodes are non-critical.

found without knowing the operation latencies associated with the edges. (If more than one such

chain of last-arriving edges exist, each chain is equally critical.) So, if we can find a simple way of

identifying last-arriving edges, it may not be necessary for hardware to measure latencies at all.

Fortunately, it is possible to identify last-arriving edges in hardware using simple rules.

A few examples: for execution edges, the issue logic must already detect when a dependence is the

last-arriving one, since that is the cue for the dependent operation to issue. For fetch nodes, moni-

toring processor events is enough:e.g.,if a branch misprediction prohibits a fetch from occurring,

the misprediction is the last-arriving edge. A summary of all the rules for a three node model are

shown in Figure 6.1. These rules are all the hardware needs todetermine last-arriving edges and,

hence, the critical path.

Nonetheless, even with this dramatic reduction in work required for creating the graph,

the algorithm is still very expensive for a hardware implementation. The reason is that a relatively

large portion of the graph (between articulation edges) needs to be buffered before the critical-path

can be found via backwards traversal of last-arriving edges(see Section 5.1). This involves a large

86

amount of storage and control logic within a processor.

We solve this problem by transforming thebackwardstraversal into aforward one. We do

this by employing the following property: if there exists a chain of last-arriving edges from a node

N to the end of the program,N is critical. We know this because ifN is delayed by any amount

(e.g.,one cycle), the execution time of the entire program will necessarily be increased (due to the

lack of any slack). So, if a forward traversal along last-arriving edges fromN reaches the end of

the program, we know thatN is critical. On the other hand, if there is no such chain,N cannot

be critical, since it has some (global) slack. Below we describe the algorithm we use in detail.

Note that, in order to gain criticality information while the program is still running, we employ an

approximation that could, potentially, lead to some instructions being falsely identified as critical.

Token-passing Algorithm. The complete token-passing training algorithm is shown in Figure 6.1.

It works through frequentsamplingof the criticality of individual nodes of instructions. To take a

criticality sample of noden, a token is planted inton (step 1) and propagatedforward alongall

last-arriving edges (step 2). If there is more than one outgoing last-arriving edge the token is repli-

cated. At some nodes, there may be no outgoing last-arrivingedges for the token to propagate

further. If all copies of the token reach such nodes, the token dies, indicating that noden must not

be on the critical path, as there is definitely no chain of last-arriving edges from the beginning of the

program to the end that contains noden. On the other hand, if a token remains alive and continues

to propagate, it isincreasingly likely that noden is on the critical path.

This is the point where our approximation comes in. Instead of propagating the token

all the way to the end of the program, we stop after the processor has committed some threshold

number of instructions (called thetoken-propagation-distance). At this point, we check if the token

87

1. Plant token at node n.
2. Propagate token forward along last-arriving edges.

If a node does not have an outgoing last-arriving edge,
the token is not propagated (i.e.,, it dies.)

3. After allowing token to propagate for some time,
check if the token is still alive.

4. If token is alive, train node n as critical;
otherwise, train n as non-critical.

Figure 6.1:The token-passing training algorithm.

is still alive (step 3). If it is, we assume that noden was critical; otherwise, we know that noden

was non-critical. The larger the token-propagation-distance, the less likely any instructions will be

falsely identified as critical (the token analyzer never, asregards to the graph, incorrectly identifies

an instruction as non-critical).

The result of the token propagation is then used to train the predictor (step 4). More will

be said about the predictor in Section 6.1.2.

Token-passing analyzer parameters discussion.There are several parameters that are important

to consider in the design of the analyzer. One of the most important is thetoken propagation distance,

which is the number of instructions that must commit during atoken’s lifetime in order for the node

in which the token was planted to be considered critical (step 3 of Figure 6.1). The larger the

token propagation distance, the more accurate the analyzer will be in detecting criticality. On

the other hand, more nodes will be sampled if thetoken propagation distance is smaller, since

the token will be available to be replanted more quickly. In addition, the criticality information for

a node is obviously not available until after the detection completes, which may cause us to miss

out on optimization opportunities if one or more dynamic instances of the static instruction being

sampled are fetched and executed while waiting fortoken propagation distance instructions to

commit.

88

One way to get the benefits of a largetoken propagation distance while maintaining

a high sampling rate is to increase the number of tokens. Thiscomes at the cost of replicating the

token-array used for storing and propagating a token. As we will see in the next section, however,

the cost of implementing the token-passing analyzer is so low that such replication is relatively

inexpensive.

A final parameter of the analyzer is the policy used to decide which nodes to plant tokens

into (step 1), which determines how many samples would be taken of each static instruction. Exper-

imentally, we have found that this policy does not matter much in practice. If tokens were planted

in a completely deterministic manner, however (e.g., immediately after they are freed), there are

pathological cases that would lead to many static instructions never being sampled. For this reason,

we use a randomized policy.

6.1.1 Hardware Implementation of the Analyzer

We’ll discuss two approaches to implementing the token-passing algorithm in hardware.

The first performs the token propagation via read-modify-write operations on a small array. The

benefit of this approach is that (except for the last-arriving edge detection) all of the logic for the

token-passing is located outside any datapaths of the processor. The only information that must

be provided by the processor are the last-arriving edges. One disadvantage is that the bandwidth

required to transmit the last-arriving edges from the processor core to the analyzer is fairly high.

As an estimate, the number of bits the must be transmitted each cycle would be equal tonumber of

instructions committed per cycle× number of nodes per instruction× number of bits to represent

the origin of a last-arriving edge. For a 6-wide machine with 3 nodes per instruction and a 256

instruction ROB, the expression yields6 × 3 × 8 = 124 bits. More importantly, the wires for this

89

information will be coming from all over the chip, which can lead to routing problems. Our alterna-

tive implementation performs the token-passing in a distributed manner, local to where each of the

last-arriving edges are determined. This approach eliminates the read-modify-write operations and

the large number of wires coming out of the processor at the expense of some modularity, since the

analyzer is no longer centralized.

Centralized (Off-the-core) Implementation

Our centralized implementation performs the token passingoutside of the main processing

core by performing read-modify-write operations to a smallarray (Figure 6.2). The array stores

information about the segment of the dependence graph for the ROBsizemost recent instructions

committed. One bit is stored for each node of these instructions, indicating whether the token was

propagated into that node. Note that the array does not encode any dependence edges; their effect

is implemented by the propagation step (see step 2 below).

As each instruction commits, it is allocated an entry in the array, replacing the oldest

instruction in a FIFO fashion. A token is planted into a node of the instruction by setting a bit in the

newly allocated entry (step 1of Figure 6.1).

To perform the token propagation (step 2), the processor core provides, for each com-

mitting instruction, identification of the source nodes of the last-arriving edges targeting the three

nodes of the committing instruction. (An identifier for a last-arriving edge is simply the instruction

number assigned to the instruction containing the source node, along with the node type. The in-

struction numbers are assigned in program order in the rangeof 0 to ROB size, wrapping when

the maximum extent is reached.) For each source node, its entry in the token array is read (using

its identifier as the index) and then written into the target node in the committing instruction. This

90

simple operation achieves the desired propagation effect.Finally, note that the reason why the token

array does not need more thanROBsizeentries is the observation that no critical-path dependence

can span more thanROBsizeinstructions.

Checking if the token is still alive (step 3) can be easily implemented without a scan

of the array, by monitoring whether any instruction committed in the recent past has written (and

therefore propagated) the token. If the token has not been propagated in the lastROBsizecommitted

instructions, it can be deduced that none of the nodes in the token array holds the token, and, hence,

the token isnot alive. Finally, based on the result of the liveness check, the instruction where the

token was planted is trained (step 4) by writing into the critical-path prediction table, usingthe

hysteresis-based training rules in Table 6.2.

After the liveness check, the token isfreedand can be re-planted (step 1) and propagated

again. The token planting strategy is a design parameter that should be tuned to avoid repeatedly

sampling some nodes while rarely sampling others. In our design, we chose to randomly re-plant

the token in one of the next 10 instructions after it is freed.

Hardware Costs. Now we will analyze the hardware expense of the token-passing array in the

centralized implementation. As mentioned above, the frequency of the sampling is influenced by

both the token-propagation-distance and the number of tokens available for planting. In this im-

plementation, additional tokens increase the size and number of ports required of the token array;

but they are inexpensive in terms of additional control logic since all of the tokens can be read and

written together during propagation. For the propagation distance we chose (500 + ROB size = 1012

dynamic instructions), eight simultaneous in-flight tokens was sufficient. For this configuration, the

token array size is 1.5 kilobytes (reorder buffer size× nodes× tokens= 512× 3× 8 bits).

91

Figure 6.2: Training path of the critical-path predictor. Training the token-passing predictor
involves reading and writing a small (less than one kilobyte) array. The implementation shown
permits the simultaneous propagation of eight tokens.

Although the number of ports of the token array is proportional to the maximum commit

bandwidth (as well as to the number of simultaneous last-arriving edges), due to its small size, the

array may be feasible to implement using multi-ported cellsand replication. Alternatively, it may

be designed for the average bandwidth. Bursty periods couldbe handled by buffering or dropping

the tokens.

Distributed (Throughout-the-core) Implementation

The key to the distributed implementation is that the tokensare attached as extra control

bits to each instruction as it flows through the pipeline. There would be one bit for each node, and

multiple sets of these bits if multiple tokens are supported. Although it may sound expensive to

92

Figure 6.3:Example of token passing in distributed criticality analyzer implementation. The
logic for passing a token into the D-node of an instruction being dispatched is shown. Logic for the
other nodes would be similar in flavor.

attach a few bits to every dynamic instruction as they flow through the machine, most processor

implementations transmit hundreds of bits for each instruction already. A few extra bits represents

rather small overhead.

In this style of implementation tokens are planted (step 1) into a node of an instruction by

setting the node’s token bit as the instruction is fetched (or at least before the corresponding stage

of the pipeline).

Token propagation (step 2) is performed “inline” as the instruction flows through the

pipeline. By inline we mean that the token-passing logic resides within the core of the machine and

that the token is passed as soon as the last-arriving edges are detected. While at first this may sound

intrusive to the operation of the processor core, the propagation operation is exceedingly simple,

perhaps even simpler than recording the last-arriving edges for later propagation in the centralized

93

scheme. When one of the last-arriving rules is observed, instead of recording the minimal informa-

tion to communicate to a token-passing backend as in the centralized scheme, a single bit is set in

the consuming instruction.

For example, consider the token-passing logic for tokens flowing into theF node of in-

structioni, illustrated in Figure 6.3. If an ROB stall occurred such that the fetch ofi was delayed,

the value of theC node at the instruction that caused the stall is written intothe bit representingi’s

F node. On the other hand, ifi is the first correct-path instruction after a branch misprediction, the

value of theE node of the mispredicted branch is written intoi’s F node. Finally, if neither of the

other conditions are met, the value of the previous fetched instruction’s (i − 1’s) F node is written

into i’s F node.

Checking if the token is still alive (step 3) is performed the same way as in the centralized

scheme. The token bits attached to the instructions are observed as each instruction commits. If

none of the bits for a token are set for the lastROBsizeinstructions, we can conclude the token is

dead. After the token dies (or the token propagation distance is exhausted), the token can be “freed”

and replanted (step 1).

Hardware Cost. When considering the design parameters of the token-passing analyzer, there is

one significant difference as far as incremental hardware expense between the centralized and dis-

tributed implementations: the cost of additional tokens toincrease sampling rate. In the distributed

implementation, increasing the number of tokens incurs a cost of extra bits attached to each instruc-

tion as it flows through the pipeline. This expense, since it occupies precious real estate within the

processor core, suggests that extra tokens are more expensive than in the centralized scheme.

94

6.1.2 History-based Prediction

In the previous section, we discussed implementations of the criticality analyzer, which

determines with a high degree of accuracy the criticality ofa single dynamic instruction (or, more

specifically, micro-operation). Due to token propagation latency, however, the analyzer does not

return a criticality result until long after the instruction has completed execution, which is far too

late for applying most optimizations. For example, a criticality-based instruction scheduling policy

would obviously need to know which instructions are critical before the instructions are scheduled

for execution.

Our solution is to use the analyzer to train a critical-path table, which is indexed by the

PC of the instruction. As another dynamic instance of a previously analyzed static instruction is

fetched, a prediction of criticality is retrieved from the table. Then, this information can be used to

make optimization decisions.

For this type of prediction scheme to work, the criticality of instructions must exhibit

“locality”, in the sense that different dynamic instances of the same static instruction have similar

criticality characteristics. Of course, this will not always be true. For example, a branch instruc-

tion and the instructions it depends upon are likely to be non-critical when the branch is predicted

correctly and critical when it is predicted incorrectly. Our hope is that some static instructions are

much more likely to be critical than other instructions. Thegoal of our hardware analyzers, then,

would be to identify this more-likely-to-be-critical set of instructions.

Since the criticality of different nodes (fetch, execute, commit) have very different char-

acteristics, we will discuss each individually. Figure 6.4shows a characterization of criticality for

the execute (E node) of instructions. From the figure we see that very few instructions are critical

95

Figure 6.4:Dynamic to Static Histogram. For each static instruction, the percentage of its dynamic
instances that are critical (its “criticality frequency”)was recorded. The figure shows the percent
of static instructions that had a criticality frequency within each range specified in the legend. The
y-axis is the percent of static instructions,weightedby their dynamic frequency.

all the time. At first glance, this seems to be bad news for a history-based predictor, since few static

instructions can be identified as always critical. There are, however, many instructions which are

never critical, and it is certainly true that some static instructions are more often critical than others.

The goal of our predictor, then, will not to predict the precise criticality of every dynamic instruction

but instead to identify those static instructions which exhibit criticality more frequently than others.

Critical path 12 kilobytes
prediction table (16K entries * 6 bit hysteresis)
Token propagation 1012 dynamic instructions
Distance (500 + ROB size)
Maximum number 8
of Tokens in flight
simultaneously
Hysteresis Saturate at 63, increment by 8 when

training critical, decrement by
one when training non-critical.
Instruction is predicted critical
if hysteresis is above 8.

Planting Tokens A Token is planted randomly in the
next 10 instructions after it
becomes available.

Table 6.2:Configuration of token-passing predictor.

96

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
yn

am
ic

 In
st

ru
ct

io
ns

Incorrectly Predicted Non-critical
Incorrectly Predicted Critical
Correctly Predicted Non-critical
Correctly Predicted Critical

 oldest-uncommitted

 oldest-unissued

 token-passing

eoncrafty gcc gzip parser perl twolf vortex ammp art galgel mesa -0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

crafty eon gcc gzip parser perl twolf vortex ammp art galgel mesa

S
pe

ed
up

 D
iff

er
en

ce
 (C

P
 -

no
nC

P
)

oldest-uncommited
oldest-unissued
token-passing

(a) Comparison against “ideal” CP, computed offline. (b) Comparison via latency reduction.

Figure 6.5:The token-passing predictor is very successful at identifying critical instructions.
(a) Comparison of the token-passing and two heuristics-based predictors to the “ideal” trace of the
critical path, computed according to the model from Section3.2.2. The token-passing predictor is
over 80% (88% on average) accurate across all benchmarks andtypically better than the heuristics,
especially at correctly predicting nearly all critical instructions. (b) Plot of the difference of the per-
formance improvement from decreasing critical latencies minus the improvement from decreasing
non-critical latencies. Except forgalgel, the token-passing predictor is clearly more effective.

Consider the number of samples required to obtain a good measure of criticality for a

static instruction. Remember we are attempting to identifythe set of static instructions that are most

likely to be critical. If instructions in that set are critical during, say, one-fourth of their dynamic

instances, on average of four samples will need to be taken todetect its criticality.

We have found that this goal is best achieved by using a predictor that has hysteresis

biased towards predicting that an instruction is critical.In other words, a static instruction is quickly

learned to be critical when one of its dynamic instances is found to be critical, while many of its

dynamic instances must be detected noncritical before the static instruction is considered noncritical.

Empirically, we found the scheme described in Table 6.2 works well.

Predictor Accuracy

The two most meaningful measures of accuracy of the predictor for dynamic hardware

optimizations are (1) what fraction of dynamic instructions that are critical are predicted as critical?

97

and (2) what fraction of noncritical dynamic instructions are predicted noncritical? Both questions

are interesting, since a typical optimization using criticality, e.g.,resource arbitration, would per-

form best if all critical instructions are given high priority andall noncritical instructions are given

lower priority.

Recall that the locality measurements of the previous section showed that few static in-

structions are critical for a majority of their dynamic executions. That fact combined with our design

decision to identify those static instructions that are more likely than others to be critical (even if

they are only occasionally critical) causes us to expect to see a large number of noncritical dynamic

instructions predicted as critical. From Figure 6.5, however, we are pleasantly surprised to find only

approximately 10% of instructions are incorrectly predicted critical. In addition, very few dynamic

critical instructions are predicted noncritical (less than 2%). All in all, only 15% of the instructions

are predicted critical and that 15% includes nearly all of the actually critical instructions. This result

speaks well for using the criticality predictor for resource arbitration and policy decisions.

Comparison to Heuristics-based Approaches. Our token-passing predictor is designed using a

global view of the critical path. An alternative is to uselocal heuristics that observe the machine

and train an instruction as critical if it exhibits a potentially harmful behavior (e.g.,, when it stalls

the reorder buffer). A potential advantage of a heuristic-based predictor is that its implementation

could be trivially simple.

Our evaluation suggest that heuristics are much less effective than a model-based pre-

dictor. We compare our predictor to two heuristic predictordesigns of the style used in Tune,et

al. [110]. The first predictor marks in each cycle the oldestuncommittedinstruction as critical. The

second predictor marks in each cycle the oldestunissuedinstruction if it is not ready to issue. We

98

used the hysteresis strategy presented in their paper.

We first compare the three predictors to the “trace” of the critical path computed by the

simulator using our model from Section 3.2.2. (The trace is guaranteed to accurately identify critical

or noncritical instructions to the extent that they can be correctly identified using the dependence

graph.) The results, shown in Figure 6.5(a), show that we predict more than 80% of dynamic instruc-

tions correctly (both critical and non-critical) in all benchmarks (88% on average). Our predictor

does a better job of correctly predictingcritical instructions than either of the two heuristics-based

predictors. Note that theoldest-unissuedpredictor has a relatively low misprediction rate, but tends

to miss many critical instructions, which could significantly affect its optimization potential.

Second, to perform a end-to-end comparison that factors outour critical-path model, we

study the effectiveness of the various predictors with the same experiment that we used for validat-

ing the model—extending all latencies by one cycle and then decreasing critical and non-critical

latencies. For an informative comparison, we plot the difference of the performance improvement

from decreasing critical latencies minus the improvement obtained when decreasing non-critical

latencies. This yields a metric of how good the predictor is at identifying performance-critical

instructions. The larger the difference, the better the predictions. The results are shown in Fig-

ure 6.5(b). The token-passing predictor typically outperforms either of the heuristics, often by a

wide margin. Also, notice that the heuristics-based predictors are ineffective on some benchmarks,

such asoldest-uncommittedon gccandmesaand botholdest-uncommittedandoldest-unissuedon

vortex. While a heuristic could be devised to work well for one benchmark or even a set of bench-

marks, explicitly modeling the critical path has the significant advantage of robust performance over

a variety of workloads.

99

6.2 Slack Analyzer

On the surface, slack seems much more difficult to analyze in hardware than criticality.

After all, the software algorithm we use requires us to measure latencies on the edges and perform

two passes over the entire graph. There is no obvious way of determining slack using only last-

arriving edges or only one forward pass.

We simplify the problem considerably, however, with a trickthat effectively reduces the

problem of slack computation to one of criticality. Remember that the slack of an event is the

number of cycles that event can be delayed without increasing execution time. So, if we delayed

an event byn cycles, but the execution time remained unchanged, we couldconclude that the event

has at leastn cycles of slack. Determining whether execution time increases due to a delay is very

difficult, however, since execution time is not generally known until the program completes.

Our solution uses the criticality of an event as an indication of whether execution time

increased. From the definition of criticality, an event thatis not on the critical path has no effect on

execution time. So, if the event is non-critical after a delay of n cycles, the event must have at least

n+1 cycles of slack. (The event has at leastn+1 cycles of slack since slack is defined by the delay

that can be incurred withoutincreasingthe length of the critical path, as opposed to simply making

the event critical.)

The hardware algorithm, thus, answers the question “does the dynamic micro-operation

evente represented by noden havek cycles of slack?”, using the procedure of Figure 6.6.

Notice that the procedure does not detect the precise amountof slack a micro-operation

has. Our approach is to obtain an approximate, averaged value of slack for astatic instruction by

repeatedly applying the above procedure with different delays to many of its dynamic instances.

100

Delay e by k cycles
Plant token into node n

Propagate token and detect criticality as in Section 6.1
If n is detected critical:

e does not have k cycles of slack
else:

e does have k cycles of slack

Figure 6.6:Algorithm for measuring slack in hardware.

This approach has the implicit requirement that there is alocality of slack, meaning that different

dynamic instances of a static instruction have similar amounts of slack. (Otherwise the algorithm

would be searching for a single slack value that does not exist.) We will discuss the characteristics

of slack locality that we discovered in our benchmarks below.

6.2.1 Locality of Slack

From the locality of criticality experiments above, we found that many static instructions

are always noncritical across all (or the vast majority) of their dynamic instances. That data did

not tell us, however, whether the dynamic instances of thosestatic instructions each have the same

amount of slack. In this section we perform locality experiments to test whether the implicit analyzer

above can be converted into a history-based predictor.

Our experiments present good news: 68% of static instructions (dynamically weighted)

almost alwayshave enough slack to double their latency (precisely, they have enough slack on at

least 90% of their dynamic instances; see Figure 6.7). More significantly, this slack represents about

80% of all apportioned slack (that is, 80% of slack exploitable by an oracle predictor that correctly

predicts the slack of every dynamic instruction).

The methodology we used is as follows. First, we computed theapportioned slack using

one of the many possible optimization-specific apportioning polices (e.g.,the latency-plus-one strat-

101

0

10

20

30

40

50

60

70

80

90

100

ammp art gcc gzip mesa parser perl vortex average

P
er

ce
nt

 o
f (

w
ei

gh
te

d)
 s

ta
tic

 in
st

ru
ct

io
ns

ideal

95%

100%

90%

0

10

20

30

40

50

60

70

80

90

100

ammp art gcc gzip mesa parser perl vortex average

P
er

ce
nt

 o
f (

w
ei

gh
te

d)
 s

ta
tic

 in
st

ru
ct

io
ns

ideal

95%

100%

90%

Figure 6.7:Mapping dynamic slack behavior to static instructions.Uses latency-plus-one-cycle
apportioning. On the y-axis, the number of slackful static instructions is weighted by the number of
each static instruction’s dynamic instances.

egy introduced in Section 4.3.2). Next, we identifiedslackfulstatic instructions. A static instruction

is slackful ifD% of its dynamic instructions contained apportioned slack,whereD was varied from

90 to 100.

Figure 6.7a plots the amount of slackful static instructions for the latency-plus-one appor-

tioning strategy. The chart also plots the total amount of apportioned slack (labeledideal). This

slack could be exploited with an oracle predictor that is correct on each dynamic instruction. Note

that while relatively few static instructions are slackfulall the time (28%, on average), allowing just

5% “misprediction rate” (i.e., requiring them to be slackful 95% of the time) brings this amount to

62%, on average.

As a second example, Figure 6.7b plots the same data using thefive-cycle apportioning

policy, which attempts to apportion five cycles of slack to asmany instructions as possible (see

Section 4.3.2). From this chart, we see that slightly less than half of the static instructions can be

apportioned five cycles of slack with a low 5% misprediction rate.

102

Sampling Requirements. Now consider the number of samples required to measure the average

slack of a static instruction. If we could assume every dynamic instance of a static instruction had

the same slack, a binary search would arrive at the correct value in log2(Max Slack) steps, where

Max Slack is the largest value of slack that would be explored. So, if wedidn’t care about precise

values of slack over128 cycles,log2(128) = 7 samples would be required.

Unfortunately, slack does vary substantially from one dynamic instance of a static instruc-

tion to the next, according to the microarchitectural behavior surrounding the dynamic instruction’s

execution. Not only does this variance increase the number of samples required to obtain an accurate

reading, it also complicates the binary search used to converge on an average value. In our exper-

imentation, we have found that obtaining precise values of slack using this “delay-and-observe”

approach is very difficult, possibly intractable.

Fortunately, precise values of slack are not usually neededto make effective use of slack

information in optimizations. Instead, we are generally concerned whether an instruction has

enoughslack, where “enough” is defined by the specific application that the analyst is interested

in.

Besides this, the types of machines for which slack is especially useful may not provide

the capability to measure slack independent of its heterogeneous resources. For example, on a

machine with both fast and slow functional units, an instruction will appear to have different slack,

depending on which functional units it (and its dependents)were executing when its slack was

sampled. Below we discuss a predictor design that takes these realities into account.

103

6.2.2 Implicit-Slack Predictor

We call the predictor described above that attempts to arrive at the precise value of slack an

explicit slack predictor. Here we describe an alternative which, instead of arriving at a precise value,

produces a slack-based categorization of instructions according to the optimization or heterogeneous

resources being employed. We call this style of slack prediction implicit, since an instruction is

known to have slack due to its ability to be delayed by some slow resource without increasing

execution time, but the precise value of slack is unknown.

The implicit-slack predictor works by dividing instructions intoslack bins, according to

the resources that these instructions can tolerate. The number of bins is determined by the number

of decisions a control policy must make for each instruction. For an example, let us consider a

machine that has two pipelines, one fast and one slow. Let’s say the control policy for this machine

must make two decisions for each instructioni: (1) shouldi be steered to the fast or slow pipeline?

and (2) should i be scheduled with high priority or low priority within a pipeline? These two

decisions lead to four slack bins:

1. steer to fast pipeline & schedule with high priority,

2. steer to fast pipeline & schedule with low priority,

3. steer to slow pipeline & schedule with high priority,

4. steer to slow pipeline & schedule with low priority.

These four bins can be viewed as corresponding to fourvirtual heterogeneous resources, where

each dynamic instruction is assigned to one resource. In general, if a control policy must makek

decisions for each instruction (with two choices for each decision), we have2k virtual resources,

104

each corresponding to a slack bin.

Notice that, unlike the explicit-slack predictor, measuring slack implicitly avoids the need

for dedicated logic to artificially delay an instruction. Instead, the slack analyzer can delay the

instructionnaturally, by steering it to the resource whose latency needs to be tolerated. An impli-

cation of this characteristic is that the precise amount of slack required of an instruction to belong

to each bin does not need to be explicitly known: the actual delays experienced by the instruction

in the hardware are used to control policy decisions. Also, training is much faster, since there are a

relatively small number of bins.

Cost Analyzer. It is theoretically possible to determine the cost of a micro-operation in hardware

in a way similar to the “delay and observe” approach employedby the slack analyzer above. The

idea would be to use the property exploited in the cost calculation algorithm of Section 5.3. Specif-

ically the cost of an edgee is the minimum of the slacks of all edges parallel toe. Thus, using

the explicit slack analyzer above along with a mechanism to determine which events are parallel to

others would be enough to determine the cost of an event. Then, computing interaction costs would

require determining the cost of groups of events.

Unfortunately, computing cost in this way places even more demands on locality than

did the explicit slack predictor, and we have already discussed above why computing slack may

be intractable due to the variance of microarchitectural behavior. In the next section, we discuss

a method to enhance performance counters to such a degree that a microexecution graph can be

constructed offline. With this graph, cost (as well as any other desired metric) becomes possible to

compute accurately.

105

6.3 Shotgun Profiling

While the above analyzers for criticality and slack are needed for quick-feedback online

optimization, they are much less flexible than the graph analysis we can do in software. For example,

the apportioning policies used in the slack analyzer would need to be very simple, and we have not

discussed any analyzers that can measure cost and interaction cost.

To enable these and other advanced measurements of programsexecuting on real hard-

ware, we propose an improved version of traditional hardware counters. Instead of simply recording

the events that occurred to a specific instruction (e.g.,as in the ProfileMe infrastructure), we would

also record a few bits ofcontextaround the instruction. This context could include information

about whether branch mispredicts or cache misses occurred in the instruction’s vicinity.

Offline, we can then build dependence graphs for statistically representative fragments of

the execution using the collected information. The contexthelps in the process by identifying which

instruction samples should be placed in the same graph fragment. We call this procedureshotgun

profiling due to its similarity to shotgun genome sequencing [40]. Once the graph is constructed, we

can perform any measurement that is desired, using the software algorithms described in Chapter 4.

The task of enhancing performance counters with enough information such that the graph

can be constructed while introducing relatively little hardware complexity is very challenging.

Rather than immediately presenting our final solution, we will describe an evolution of designs

that will provide a better understanding of the motivation behind our approach, discussed in full at

the end.

106

Design Problem Solution
1. Hardware-intensive measure-
ment.

Hardware too expensive since it gener-
ates information too rapidly.

Sample instruc-
tions sparsely.

2. Sample each static instruction
once.

Doesn’t distinguish between different
microarchitectural behavior (e.g.,an it-
eration of a loop with a branch mispre-
diction versus an iteration without one.)

Use microarchi-
tectural context
(in the form of a
signature).

3. Record short microarchitec-
tural signature around each sam-
pled instruction.

Accumulates error as each instruction
is stitched together to form a graph.

Use long signa-
ture that spans
length of graph.

4. Record long signature as a
baseline and patch in sample pro-
files using short signatures.

Table 6.3:Profiler designs. Design #4, with both long and short signatures, is our final, recom-
mended design.

6.3.1 Design #1: The Hardware-Intensive Approach

The conceptually simplest design would be to collect detailed latency and dependence

information for every dynamic instruction as it flows through the machine, as is done in a simulator.

The detailed information would be enough to construct all ofthe nodes and edges for each dynamic

instruction, such that software could easily construct thegraph offline. The exact information re-

quired will depend heavily on the processor implementation. For the simulated processor used in

this paper, the information in Table 6.4 is sufficient.

Although this approach would be as accurate as constructingthe graph in the simulator, it

is not reasonably implementable. The primary reason is thatthedensityof information collection is

too great, in that too much data needs to be collected simultaneously. To measure just one latency

for every instruction would require a counter for each instruction in the machine at any one time —

and to collect all of the information in Table 6.4, many such latencies would need to be measured.

Furthermore, moving all of this information through the machine would require many wires, which

could easily cause serious routing problems.

107

dependence col latencies col
In-order dispatch (DD) S icache misses, itlb misses D
Finite fetch bandwidth (FBW) S constant latency (1 cycle) S
Finite re-order buffer (CD) S constant latency (0 cycle) S
Control dependence (PD) D branch recovery latency S
Execution follows dispatch (DR) S constant pipeline latency S
Data dependences (PR) reg: S, mem: D constant latency (0 cycle) S
Execute after ready (RE) S functional unit contention D
Complete after execute (EP) S Execution latency D
Cache-line sharing (PP) D constant latency (0 cycle) S
Commit follows completion (PC) S constant pipeline latency S
In-order commit (CC) S store BW contention D
Finite commit bandwidth (CBW) S constant latency (1 cycle) S

Table 6.4: How dependences and latencies are collected when constructing the graph. ’D’
stands for dynamically, ’S’ for statically. Dependences and latencies that must be determined dy-
namically are measured in hardware. Those that can be determined statically are inferred from the
program binary (e.g.,register data dependences) or the machine description (e.g.,fetch and issue
bandwidths). Besides the information above, a detailed sample also contains the PC of the instruc-
tion and the target address of indirect branches.

From this observation, we derive the most important constraint on the hardware: instruc-

tions should be profiledsparsely, in a sampling manner. This significantly reduces the amountof

hardware required, since there would need to be counters foronly a single instruction currently in

the machine, as opposed to all of them. The wire count is thus dramatically reduced, with corre-

sponding less affect on the hardware design. This design decision was also made for many current

performance counter designs as well as the most popular proposals for enhancements,e.g.,Pro-

fileMe [28].

The sparse sampling constraint does make the task much more challenging, however. Re-

member our goal was to construct graph fragments of the actual execution, which include the nodes

and edges representative of a sequence of dynamic instructions. How can we obtain a representation

of a sequence of dynamic instructions if we can only sample one instruction in that sequence?

108

The key, of course, is to exploit the temporally locality present in software (that the same

dynamic sequences of instructions are executed over and over again). As we will show in the next

design, however, we can not exploit this characteristic in the typical manner of simply mapping mea-

surements of static instructions back to their dynamic equivalents. Instead, a new way of thinking

about performance counters is required.

6.3.2 Design #2: One sample per static instruction

In the second design, the hardware measures only one instruction at a time and software

periodically retrieves the collected information. The software maintains a data structure indexed

by the PC of the instruction, recording each sample in its appropriate entry. Then, the software

selects a sequence of dynamic instructions from the binary (in a random sampling manner) and

constructs a graph fragment using the information collected by the hardware and stored by PC. The

assumption is that different dynamic instances of the same static instruction will exhibit similar

microarchitectural behavior, so that the graph will accurately represent actual program execution.

Unfortunately, we found that graph fragments constructed in this way are not representa-

tive: empirically, the icosts computed are typically off bya factor of two or more when compared

to those computed in the simulator. The problem is that the assumption that different dynamic

instances of an instruction exhibit similar behavior is nota good one. As an example, consider

Figure 6.8. In the first iteration of the loop, the instruction at PC 0x30 experiences an icache miss,

while on the second iteration it does not. Thus, the graph forthe first iteration is different than the

graph for the second iteration, even though the same static code is executed (specifically, the DD

edge latency is different).

The obvious lesson here is that variations in the microexecution need to be distinguished

109

Figure 6.8:Same static code, different microexecutions.

110

in order to construct accurate graph fragments. In other words, multiple profiles for each static

instruction need to be maintained. Specifically, we should ideally maintain one profile for each

microarchitectural context, e.g.,in the example above, one sample for each instruction in both(a)

an iteration with the icache miss and (b) an iteration without.

For the next two design proposals, the primary goal will be todevelop aninexpensiveway

to distinguish between microarchitectural contexts.

6.3.3 Design #3: Shotgun profiler, only short signatures

We distinguish between microarchitectural contexts by adding asignatureto each sample

collected from the hardware. The signature distinguishes between contexts by encoding microarchi-

tectural events and state that surrounds the single dynamic“target” instruction. Thus, each sample

consists of two things:(i) detailed latency and dependence information about the target instruction

and(ii) a signature surrounding that instruction. If the signatures of two samples match, we assume

the samples are from the same context.

The signature should uniquely identify the microexecutioncontext while keeping the

hardware cost as low as possible. More specifically, whenever the signatures for two samples are

the same, the detailed latency and dependence information for the target instruction should also be

the same. For our design, we chose to record two bits per dynamic instruction for ten instructions

before and after the targeted instruction. The two bits are an experimentally determined hash of

microarchitectural context, specified in Table 6.5. A more detailed description of the process for

designing these bits is below.

The graph construction algorithm uses the signatures to determine which samples should

be placed side-by-side within a graph fragment. As an example, consider Figure 6.9a. Two samples

111

Bit When to set to ’1’
1 Set to 1 if the instruction is a (1)takenbranch or (2) load or store.

Reset to 0 if L2 dcache miss.
2 Set to 1 if the instruction experiences a (1) L1 or L2 icache miss, (2) L1 or

L2 dcache miss, (3) tlb miss, or (4) branch mispredict.

Table 6.5:Description of signature bits.The signature bits are meant to distinguish between differ-
ent microarchitectural contexts. Experimentally, we determined the above hash function produced
good results. Intuitively, the hash works well because it distinguishes between the most important
events that occur in the microprocessor. For a different processor implementation than the one as-
sumed in our simulator, a different signature might be required, perhaps one that uses more than
two bits per dynamic instruction.

are taken; in this case, they are of two different static instructions from two iterations of the same

loop. By finding overlap among the appropriate signature bits between the two samples, we see that

they “fit” together. Thus, they come from iterations of the loop with the same context and should

be placed together in the graph fragment. By repeatedly applying this matching process, we can

construct a graph fragment of arbitrary size.

This algorithm is very similar to a popular algorithm for DNAsequencing, calledshotgun

sequencing[40] (see Figure 6.9b). Due to the similarity, we refer to thegeneral class of profil-

ers which use signatures asshotgun profilers. There is a large space of possible algorithms and

infrastructures that exploit shotgun profiling, only a couple of which are presented in this paper.

Returning to the example of Figure 6.8, consider how a signature could help distinguish

between loop iterations with different behavior. For the first iteration of the loop, an icache miss will

appear in the signature; while in the second iteration it will not. Thus, the samples with the icache

miss will be attached together in one portion of the graph fragment while the samples without the

miss will be in another portion.

Empirically, we have found this design reduces the error by two to four times over one

that does not distinguish between different microexecution behavior. Nonetheless, the performance

112

(a) Shotgun profiling

(b) Shotgun DNA sequencing

Figure 6.9:Shotgun profiling and DNA sequencing (a)The shotgun profiler works by collecting
random “shotgun” samples that include a signature and detailed information about a single instruc-
tion. These samples are placed in a database and, offline, graph fragments are constructed by finding
overlaps among the signatures of different samples. Our design uses a signature with two bits for
each of the ten dynamic instructions before and after the target instruction. For illustration, the
figure uses a smaller signature.(b) DNA researchers face a problem similar to ours. Instead of
constructing a graph, they seek to determine the sequence ofnucleotides that comprise a strand of
DNA. Their measurement apparatus, however, cannot simply observe the entire sequence at one
time. Instead, they can only observe short, random, samplesof the overall sequence. Their solution
to this problem is called “shotgun” sequencing. First, manyrandom samples are collected using
their measurement apparatus. Then, offline, the full DNA sequence is constructed by looking for
overlapsamong the small fragments.

113

is still far from acceptable. The reason is that error accumulates for each sample placed into the

graph, for a couple of reasons:

• Missed correlation of distant events.The context is only of nearby instructions, over a range

of twenty instructions. If, for instance, the latency of an instruction is affected by an event that

occurs forty instructions away, this correlation cannot becaptured. Since modern machines

exploit parallelism across a rather large range of instructions, this effect can be significant.

• Missing samples.If an exact signature match cannot be found, the closest approximate

match is used. In our experience, the missing samples are theones with the rarest signatures,

since they have the lowest probability to be collected. Thiscauses rare events (e.g.,branch

mispredictions) to be under-represented in the constructed graphs. Collecting more samples

would reduce the error, but considering the exponential number of possible signatures, it may

be infeasible to collect sufficiently many to eliminate the error.

To improve over this design, we need to reduce the accumulation of error. In the next

section, we do this by adding a stable microarchitectural context “skeleton” on top of which the

graph is constructed.

6.3.4 Our final solution: Shotgun profiler, long and short signatures

Our final and recommended design introduces a second type of sample to be collected by

the hardware, in addition to the one collected in design #3. The new sample is called asignature

sampleand consists of a single “start” PC and the two signature bitsfor each of the next2000

dynamic instructions. Signature samples are a natural way to identify correlation between distant

events, and, as we’ll show below, can also mitigate the effect of missing samples.

114

The software graph construction algorithm works by first selecting a long signature sam-

ple at random, which serves as a “skeleton” for the graph to bebuilt. (The random selection ensures

each signature sample is chosen with equal probability, which naturally gives priority to hot mi-

croexecution paths.) The goal of the algorithm is to fill in this skeleton withdetailed samplesto

form a latency-labeled dependence graph. A detailed sampleis identical to the samples collected in

design #3 above. To construct the graph, a detailed sample isselected for each dynamic instruction

in the signature sample, where the selection is based both ona PC match and a signature match.

For example, consider building the graph nodes for the first instruction in the signature

sample of Figure 6.10. The first instruction has PC of0x24, so we look up detailed samples with

this PC. Then, we select the one whose signature bits match the corresponding bits in the signature

sample. Finally, the nodes for this instruction are constructed from the selected detailed sample.

If no detailed samples for the PC are found at all, which empirically happens less than 2%

of the time, we infer what we can from the signature sample andthe binary, using default values

for unknown latencies. For example, if bit two of the signature is set to one and we know from the

binary the instruction is a branch, we will infer that the branch was mispredicted. (In this instance,

it is possible that an icache miss occurred instead of the branch mispredict, but we would guess a

branch mispredict occurred for branch instructions.) Here, we see one advantage of the signature

sample design over design #3: the signature sample gives us some information (e.g.,whether a

branch mispredict occurred) even when no matching detailedsample has been collected.

If some detailed samples are found, but none have an exact signature match, the detailed

sample with the closest match is selected. An inexact match may reduce accuracy for that selection,

but (unlike design #3) the signature sample provides a stable skeleton for future matches. Thus,

115

(a) Hardware performance monitors

(b) Software graph construction

Figure 6.10: The profiler infrastructure consists of two parts. (a) Hardware performance
monitors. Our hardware performance monitors collect two types of samples: signature samples and
detailed samples. For illustration, the figure shows one signature bit per instruction and collection
of the bits for two instructions before and after each detailed sample. For greater accuracy, our
design uses two signature bits per instruction (see Table 6.5) and collects signature bits for ten
instructions before and after each detailed sample (see Figure 6.11a).(b) Post-mortem software
graph construction. The dependence graph is constructed by concatenating detailed samples, so
that the resulting graph is representative of the microexecution denoted by the signature sample.

116

a single mismatch doesn’t cause error to propagate through the rest of the graph. The complete

algorithm for constructing a graph fragment is in Figure 6.11.

1. Randomly select a signature sample for the skeleton.
Call the starting PC in this sample the StartPC.

2. For each instruction i from StartPC to end of fragment
2a. Get from database all detailed samples with i’s PC.
2b. Select the detailed sample whose signature bits most closely

matches the portion of the signature sample 10 instruction
before i to 10 instructions after. The closeness of a match is
judged by the number of identical bits.

2c. Append sample’s nodes and edges to the graph (see Fig. 6.10).
2d. Determine PC of next instruction, i + 1 (call PC of i CurPC

and PC of i + 1 NextPC):
2d1. If i is not a branch, NextPC ← CurPC + 4
2d2. If i is a direct branch and signature bit 1 of i is 1,

Compute branch target and set NextPC equal to it
Else NextPC ← CurPC + 4

2d3. If i is a call, push target PC onto stack
For returns, pop stack (if nonempty) and set NextPC to
that PC

2d4. If i is an indirect branch, set NextPC equal to target PC in
detailed sample for i

2e. Check for illegal signature bit/opcode combinations (see text).

Figure 6.11:Algorithm for constructing a graph fragment in software.

Determining PCs

Remember that a signature sample consists solely of a start PC and the signature bits,

i.e., to reduce hardware costs the PCs of other instructions are not recorded. Thus, we need to use

some intelligence to infer the PC of each dynamic instruction in the signature sample. For direct

conditional branches, we include the branch direction in the signature bits and lookup the binary for

the target address of taken branches.

For indirect branches, we include the branch target addressin the detailed samples. As-

suming a signature match is a good indication of which targetaddress an indirect branch will resolve

to, the normal matching procedure described above will yield the correct next PC. We have found,

empirically, that this procedure yields the correct targetaddress most of the time, for 60–99% of the

117

indirect branches, depending on the benchmark. (Note that this accuracy is highly dependent on the

choice of signature; other signatures, perhaps using more bits, could achieve greater accuracy.)

In the cases where the matching sample’s target address is not correct, there could be seri-

ous error in the graph fragment construction. To mitigate the error, we take advantage of the fact that

some combinations of opcodes and signature bits could neveroccur down a correctly determined

path. For instance, if an instruction on the long signature sample has its first bit set to one, it should

be a load, store, or branch. If the computed PC (step2d in the algorithm) does not correspond to

one of these instruction types in the program binary, we knowthere is an inconsistency and abort

building the graph segment — building such a graph would leadto error in the results. We have

found that 95–100% of errant graphs are indeed discarded using this technique.

Finally, note that for return instructions whose call counterpart occurs within the graph

fragment, a stack of call addresses can provide the correct target address. If the call counterpart is

outside the graph fragment, a return is treated the same as anindirect branch.

6.3.5 Measuring profiler accuracy

In this section, we measure the accuracy of the shotgun profiler. For the baseline, we

use themultiple-simulation approach, which computes the cost of a set of eventsS by comparing

the execution time reported by a normal simulation to that ofa simulation with all the events inS

idealized. For example, for the category labeled “bmisp+dmiss”, a simulation is run where (simul-

taneously) all branch mispredictions are made correct and all loads hit in the level-one cache. The

result from the multiple-simulation approach is then compared to that obtained through analysis on

the dependence graph constructed by the profiler.

We find that the profiler’s error in icost measurement is, on average, 9% off of the baseline,

118

as measured via multiple simulations. From the breakdown oferror sources, we found that the

modeling of the microprocessor as a dependence graph contributed more error than either the sparse

sampling or the profiler algorithm. A more thorough discussion follows below.

Discussion of category errors

Tables 6.6 and 6.7 shows breakdowns computed with the profiler relative to multiple sim-

ulations for the categories in Table 7.5(a). A couple of observations can be made from the break-

downs. First, the type of interaction (parallel or serial) is always the same with the profiler as the

multisimbaseline. Second, the profiler comes very close to themultisimbaseline most of the time,

typically with error less than a few percent of the overall execution time.

There are some examples, however, where the error in the icost calculation is substantial.

One category that tends to exhibit significant error for somebenchmarks is the instruction window

(win). For example, forgap, the error is−11.3% and forvortex, it is −8.4%. The cause of this

error is the profiler’s inability to completely accurately idealize the instruction window. Specifically,

since the graph fragments constructed by the profiler are of finite size, it is not possible to accurately

model a very large instruction window — needed when performing the idealization. Thus, the

effective window size modeled by the profiler for idealization purposes will be smaller than that of

the simulator, and thus it will likely under-predict the window’s cost. This error could be reduced

by increasing the size of the graph fragments constructed.

Sources of error

In Table 6.8 we attempt to understand the sources of error in the profiler. To this end, the

breakdowns of Table 7.5(a) are computed in four different ways. multisimis the baseline, as above.

119

bzip crafty eon
multisim profiler error multisim profiler error multisim profiler error

dl1 20.3 23.2 +2.9 23.4 24.2 +0.8 17.0 17.7 +0.7
win 15.9 15.5 -0.4 17.3 15.4 -1.9 18.2 15.2 -3.0
bw 6.5 3.9 -2.5 8.7 6.7 -2.0 10.5 6.6 -3.9

bmisp 37.3 38.3 +1.1 26.0 24.1 -1.9 14.2 14.4 +0.2
dmiss 23.3 23.5 +0.2 6.9 6.5 -0.4 0.8 0.6 -0.2
shalu 8.9 10.0 +1.1 10.7 11.2 +0.5 4.5 5.2 +0.7
lgalu 0.3 0.3 +0.0 0.7 0.8 +0.1 12.6 12.1 -0.5
imiss 0.0 0.2 +0.2 0.7 0.2 -0.5 9.2 8.7 -0.5

dl1+win -4.8 -5.2 -0.5 -11.5 -11.7 -0.2 -7.7 -7.2 +0.5
dl1+bw 6.9 5.9 -1.2 10.0 10.5 +0.5 6.9 6.8 -0.1

dl1+bmisp -9.1 -9.6 -0.4 -4.9 -4.2 +0.7 -3.8 -3.9 -0.1
dl1+dmiss -0.8 -0.7 +0.1 -0.4 -1.3 -0.9 -0.2 -0.3 -0.1
dl1+shalu -3.5 -4.3 -0.8 -4.0 -4.5 -0.5 -0.6 -1.0 -0.4
dl1+lgalu -0.2 -0.3 -0.1 0.3 0.2 -0.1 -0.5 -0.8 -0.3
dl1+imiss 0.0 0.0 +0.0 0.0 0.0 -0.0 1.3 1.0 -0.3

gap gcc gzip
multisim profiler error multisim profiler error multisim profiler error

dl1 12.6 12.6 +0.0 17.4 17.0 -0.4 29.9 31.7 +1.8
win 41.2 29.9 -11.3 14.4 13.0 -1.4 14.7 13.1 -1.6
bw 4.1 2.4 -1.7 9.0 7.1 -1.9 6.6 5.5 -1.1

bmisp 11.3 11.4 +0.1 23.9 21.5 -2.4 23.8 23.4 -0.4
dmiss 22.6 21.8 -0.8 25.5 27.7 +2.2 8.1 7.8 -0.3
shalu 13.8 11.2 -2.6 5.4 4.7 -0.7 18.9 20.7 +1.8
lgalu 5.3 5.7 +0.4 0.6 0.2 -0.4 0.5 0.5 +0.0
imiss 1.3 0.9 -0.4 2.1 1.4 -0.7 0.1 0.0 -0.1

dl1+win -6.3 -6.1 +0.2 -4.1 -3.5 +0.6 -9.3 -9.6 -0.3
dl1+bw 3.0 3.3 +0.3 10.9 12.4 +1.5 6.2 5.7 -0.5

dl1+bmisp -2.9 -2.7 +0.2 -6.3 -5.4 +0.9 -3.6 -3.1 +0.5
dl1+dmiss 0.4 0.3 -0.1 -0.9 -1.4 -0.5 -0.2 -1.3 -1.1
dl1+shalu -0.3 -2.1 -1.8 -2.1 -1.4 +0.7 -7.6 -9.4 -1.8
dl1+lgalu -0.2 -0.5 -0.3 -0.5 -0.2 +0.3 -0.5 -0.5 -0.0
dl1+imiss 0.3 0.4 +0.1 0.3 0.2 -0.1 -0.0 -0.0 +0.0

Table 6.6: Measuring accuracy of profiler. Continued in Table 6.7.

120

mcf parser perl
multisim profiler error multisim profiler error multisim profiler error

dl1 7.1 7.4 +0.3 17.9 19.1 +1.2 30.7 31.3 +0.6
win 4.8 4.3 -0.5 17.1 13.2 -3.9 6.2 5.6 -0.6
bw 0.6 0.4 -0.2 4.0 3.0 -1.0 10.3 8.1 -2.2

bmisp 25.3 25.1 -0.2 15.8 14.9 -0.9 35.4 38.0 +2.6
dmiss 80.8 79.0 -1.8 32.1 28.1 -4.0 1.3 0.8 -0.6
shalu 1.4 1.4 +0.0 17.9 17.1 -0.8 7.4 8.2 +0.8
lgalu 0.0 0.0 +0.0 0.1 0.1 -0.0 0.7 0.6 -0.1
imiss -0.0 -0.0 +0.0 0.1 0.1 +0.0 5.3 2.7 -2.6

dl1+win -0.0 -0.1 -0.1 -6.3 -6.2 +0.1 -5.9 -5.4 +0.5
dl1+bw 0.4 0.3 -0.1 4.9 4.9 -0.0 9.9 9.7 -0.2

dl1+bmisp -2.3 -2.3 -0.0 -2.5 -2.4 +0.1 -8.4 -8.2 +0.2
dl1+dmiss -0.4 -0.5 -0.1 -0.9 -1.7 -0.8 -0.1 -0.1 -0.0
dl1+shalu -0.2 -0.1 +0.1 -4.1 -4.9 -0.8 -2.2 -2.0 +0.2
dl1+lgalu 0.0 0.0 -0.0 -0.1 -0.0 +0.1 -0.7 -0.5 +0.2
dl1+imiss 0.0 0.0 +0.0 -0.0 -0.0 +0.0 1.0 0.6 -0.4

twolf vortex vpr
multisim profiler error multisim profiler error multisim profiler error

dl1 17.1 19.2 +2.1 27.4 30.4 +3.0 18.5 20.3 +1.8
win 24.2 22.3 -1.9 42.8 34.4 -8.4 22.9 21.9 -1.0
bw 4.5 3.5 -1.0 8.0 5.3 -2.7 5.9 4.4 -1.5

bmisp 22.2 22.6 +0.4 1.5 0.8 -0.7 23.4 23.1 -0.3
dmiss 34.3 34.3 -0.0 19.8 18.7 -1.1 32.5 32.1 -0.4
shalu 7.7 7.7 -0.0 3.9 5.4 +1.5 7.3 8.2 +0.9
lgalu 4.2 4.2 +0.0 1.5 1.5 -0.0 4.1 4.0 -0.1
imiss 0.1 0.0 -0.1 3.3 0.9 -2.4 0.0 0.0 -0.0

dl1+win -3.6 -4.5 -0.9 -25.7 -27.0 -1.3 -6.2 -6.9 -0.7
dl1+bw 1.7 1.5 -0.2 17.7 17.7 +0.0 1.9 2.1 +0.2

dl1+bmisp -5.8 -5.8 +0.0 -0.2 -0.1 +0.1 -4.6 -4.4 +0.2
dl1+dmiss -0.1 -1.9 -1.8 -1.6 -1.2 +0.4 -1.4 -2.2 -0.8
dl1+shalu -0.5 -0.3 +0.2 -3.3 -4.7 -1.4 -1.5 -1.9 -0.4
dl1+lgalu -0.0 -0.1 -0.1 -1.2 -1.3 -0.1 -0.3 -0.6 -0.3
dl1+imiss -0.0 -0.0 +0.0 0.5 0.1 -0.4 0.0 0.0 +0.0

Table 6.7: Measuring accuracy of profiler. (Continued from Table 6.6.) Validation was per-
formed on the same CPI contribution breakdown (with resultsexpressed in percent of total CPI)
as in Table 7.5(a). Themultisimcolumn shows the value for each category computed through the
multiple simulation approach. This serves as the baseline for measuring accuracy. Theprofiler col-
umn shows the values the profiler computed, while theerror column is the difference between the
profiler andmultisim. The single largest percent error (considering categoriesgreater than 5%) for
each benchmark is in bold.

121

bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
multisim→fullgraph 11.1 7.0 9.1 8.4 8.6 14.3 2.2 4.9 7.9 5.1 9.7 9.0

fullgraph→graphfrag 3.6 2.8 3.5 3.2 3.1 2.1 0.2 3.3 2.9 2.4 4.0 2.4
graphfrag→profiler 4.9 3.4 2.3 3.7 10.6 3.9 0.1 2.1 5.4 3.4 4.6 5.0
multisim→fullgraph 11.1 7.0 9.1 8.4 8.6 14.3 2.2 4.9 7.9 5.1 9.7 9.0

multisim→graphfrag 12.9 7.8 11.0 8.9 9.5 13.9 2.4 6.9 9.8 6.0 13.0 9.4
multisim→profiler 11.1 7.8 9.5 8.9 11.7 9.3 2.5 9.0 12.6 3.7 12.4 9.2

Table 6.8: Sources of errors for the shotgun profiler. The breakdowns of Table 7.5(a) were
computed four ways to better understand the sources of errorin the profiler. multisim is the
breakdown computed via multiple simulations; it serves as the baseline for comparison.fullgraph
indicates the dependence graph of the entire program was used, as in Section 7.3.1;graphfrag
is the breakdown computed assuming the graph fragments constructed by the profiler were per-
fect; andprofiler is the breakdown as computed on the imperfect graph fragments actually con-
structed by the profiler (described in Section 6.3). The numbers presented are the average per-
cent difference in the categories (excluding categories under 5%) between the two schemes in the
first column of each row. For instance, themultisim→fullgraph row is determined by computing
abs(multisim−fullgraph)/(multisim) for each category over 5% and averaging the results. Note
that themultisim→profiler row is the total error for the profiler.

fullgraph is the breakdown computed with the dependence graph of the entire program, just as was

done for the results of Section 7.3.1.graphfrag is the breakdown computed assuming the graph

fragments constructed by the profiler were perfect (i.e.,exactly as they exist in the full graph), and

profiler is the breakdown as computed on the imperfect graph fragments actually constructed by the

profiler (using the signature-based algorithm).

The first series of measurements examines the accuracy of each step of the full profiling

scheme. multisim→fullgraph is the error introduced by modeling the machine as a dependence

graph, as opposed to using a detailed simulator. Typically,this error is less than 10%; but, nonethe-

less, it does often contribute the largest fraction of the overall error of the profiler. It can potentially

be reduced by increasing the detail of the model to include currently unmodeled aspects of the

microarchitecture, such as contention for memory busses.

The fullgraph→graphfrag row shows the error caused by measuring the breakdowns us-

ing only a relatively small number of graph fragments as opposed to the entire graph. Thissampling

122

error is a significant component of the overall error for somebenchmarks,e.g.,vortex. The good

news here is that this error can be reduced by simply running the program longer to collect more

samples.

Thegraphfrag→profiler row shows the error introduced by the profiler’s signature-based

algorithm for constructing graph fragments. The error is due to two factors: (1) the signature not

being sufficient to identify the correct detailed sample to paste into the graph and (2) a signature-

matching detailed sample not being in the database. The second error factor can be reduced by

simply collecting more samples, while the first requires some redesign of the signature bits.

For most benchmarks, the signature-based algorithm contributes only a modest amount

to the error, typically less than5%. An exception isgcc, with an error of10.6%. Upon closer

inspection, we found that this large error is primarily due to the target address of indirect branches

not being determined correctly, leading to many graphs being discarded (see Section 6.3.4). One

way to reduce the error would be to construct smaller graph fragments, so that the probability of

encountering a difficult indirect branch in any one fragmentis reduced. We found that reducing the

fragment size from2000 to 1000 reduced the error to5.1% (but, averaged over all benchmarks, the

larger size improved accuracy). Another method would be to enhance the signature to improve its

ability to distinguish indirect branch targets,e.g.,by adding an additional bit that is set equal to one

of the bits of the PC.

The second series of measurements shows the error of three ofthe breakdown computa-

tions — fullgraph, graphfrag, andprofiler — relative tomultisim. The purpose of these measure-

ments is to show how each individual source of error contributes to the overall error of the profiler.

Notice that the overall error is not always monotonically increasing as each new source of error is in-

123

cluded. For example, themultisim→graphfragerror foreon is 11.0%, while themultisim→profiler

error is less,9.5%. The reason is that the error introduced at each stage couldbe positive or negative,

independent of the direction of errors at previous stages. Thus, it is statistically likely that the errors

will compensate sometimes. In the case of the example, foreon, thegraphfrag→profiler error was

mostly in the opposite direction of the errors in the previous two stages.

The overall error for the profiler is shown in the last row of Table 6.8, labeledmulti-

sim→profiler. The range of errors for the benchmarks is from3% (for mcf) to 13% (for perl), with

the average error being9%. Since the ability to compute costs and icosts from hardware profiles is

qualitatively new, standards for accuracy have not been set; but an error of9% seems small enough

to perform meaningful analysis. If a smaller error is desired, increasing the precision of the graph

model appears to offer the greatest opportunity for improvement.

6.4 Summary

In this section, we have discussed hardware mechanisms for (1) detecting criticality and

slack, (2) predicting the criticality and slack of future instructions based on past detections, and

(3) a profiler designed to overcome the limitations of performance counters by providing insights

into how parallelism affects program performance. The slack and criticality predictors are designed

for quick “turnaround”: the characteristics are quickly detected and recorded for use later in the

same program run. The profiler, however, collects information during a program run for offline

graph analysis. It may be possible to use the result of the analysis in the same program run that the

information was collected (e.g.,via a dynamic optimization system), but, in any case, the turnaround

time is much longer. The gain from the profiler is the much morepowerful analysis that it provides

124

over the purely hardware predictors (e.g.,computation of interaction costs). Thus, as we will see in

the next chapter, the types of applications that can make useof the slack and criticality predictors

have a very different nature than for the profiler.

125

Chapter 7

Applications of Criticality

In this chapter we discuss how the criticality metrics, hardware, and software algorithms

can be put to practical use — improving performance, saving energy, and reducing the amount of

human effort required in both hardware and software design.To organize the discussion, we divide

the application space into three broad categories:

• Hardware Control Policies.Criticality can be very useful in dynamic optimizations by pro-

viding intelligent policies for resource arbitration, speculation control, and combating energy

and wire delay constraints.

• Hardware Design.The ability to produce complete breakdowns of performance,including

the contribution to performance of each hardware resource and the interactions between them,

can reveal tradeoffs designers did not know even know existed.

• Software Optimization and Design.Criticality can point to the most expensive portions of

code that need optimization — for example, the most expensive loads to prefetch, the most

expensive branches to predicate, and the procedures that could benefit the most from dynamic

126

code modifications. Moreover, the ability to quickly model the effects of software modifica-

tions without actually performing them allows software writers to test out the performance

of many different organizations (which is especially important when writing multithreaded

programs).

Since the goal of this chapter is to illustrate the many practical uses criticality can have in

the real world, we intermix our work with that of others (mostof which built upon our foundation).

It will be made clear where credit resides for each effort.

7.1 Simulation Methodology

The simulator we used is built upon the SimpleScalar tool set[18] with the majority of

the timing model rewritten to better reflect possible next generation microarchitectures. The base-

line configuration for the experiments is described in Figure 7.1. Alterations to this configuration

are made for particular experiments (e.g.,clustered machines) and are mentioned along with the

results. We used the SPEC2000int suite as optimized Alpha binaries using reference inputs. Since

the reference input runs are too long for practical simulation, and some of our simulations/analyses

are very demanding, we performed detailed timing simulation for only a 100 million dynamic in-

struction segment of each binary. To avoid simulating only initialization code, we skipped the first

eight billion dynamic instructions. The caches were then warmed up (over 500 million instructions)

before beginning the 100 million instruction detailed simulation run.

127

Dynamically 128-entry instruction window, 6-way issue, 15-cycle pipeline, perfect memory disambiguation,
Scheduled Core fetch stops at second taken branch in a cycle.
Branch Prediction Combined bimodal (8k entry)/gshare (8k entry) predictor with an 8k meta predictor,

4K entry 2-way associative BTB, 64-entry return address stack.
Memory System 32KB 2-way associative L1 instruction and data (2 cycle latency) caches,

shared 1 MB 4-way associative 12-cycle latency L2 cache, 100-cycle memory latency,
128-entry DTLB; 64-entry ITLB, 30-cycle TLB miss handling latency.

Functional Units 6 Integer ALUs (1), 2 Integer MULT (3).
(latency) 4 Floating ALU (2), 2 Floating MULT/DIV (4/12), 3 LD/ST ports(2).

Table 7.1:Baseline configuration of simulated processor.

7.2 Hardware Control Policies

Much of research into computer architecture focuses on new hardwaremechanismsto

improve performance — for example trace caches, grid processors, and larger instruction windows.

We, instead, focus on thepoliciesthat enable these structures to perform well —e.g.,replacement

policies for trace caches, scheduling policies for grid processors, and policies for deciding which

instructions should be allocated slots in the window. Typically, these policies are designed in an

ad-hoc manner using heuristics that are tuned over particular benchmarks. Our goal is to develop

policies based on criticality analysis that dynamically match the policy to the needs of whatever

program is running. We explore three categories of policies:

• Resource Arbitration.Criticality can be used to decide which instructions shouldbe allocated

scarce resources,i.e., issue slots in an out-of-order processor. Resource arbitration is espe-

cially important in the distributed and non-uniform processor architectures being proposed to

deal with technological constraints, such as increasing wire delays and energy dissipation.

• Speculation Control.Criticality indicates which events could benefit from speculation and

which cannot. Since speculation involves overhead and the risk of mis-speculation, intelli-

128

gently deciding which predictions to make can improve performance. Furthermore, avoiding

the risk of misspeculation when little reward is possible reduces the extra energy dissipated

by work that must later be squashed.

• Dynamic Hardware Reconfiguration.A popular way to reduce energy dissipation, as well as

adjust the allocation of hardware resources to meet programdemands, is to reconfigure the

hardware at runtime.

7.2.1 Resource Arbitration

Resource arbitration is useful whenever there is contention for scarce resources within the

processor. This occurs not only when there are fewer resources than desired,e.g.,3 adders when

4 add instructions are ready to execute, but also when resources are available at different “quality

levels”,e.g.,a fast instruction window versus a slow one. Sometimes the resources are at effectively

different quality levels even when they are designed identically. For example, in an instruction-level

distributed processor, resources close to each other are ata higher quality level than those far apart.

Our primary investigation with using criticality for arbitration was with instruction-level

distributed processing (ILDP) [98]. ILDP is important primarily for two reasons: (1) increasing wire

delays relative to logic make distributing the architecture a necessity and (2) distributed architectures

often have less energy dissipation than their monolithic equivalents. The reasons for the less energy

dissipation is that (1) many hardware structures have powerrequirements that grow quadratically

with their size and (2) distributing instruction processing structures enables some portions of the

machine to run at different frequencies than other portions.

For our case study, we explore applying criticality to control policies of a modest instance

129

of ILDP where the instruction window is distributed. Microarchitectures employing simple varia-

tions on this design already exist and more advanced versions will likely exist in the near future. In

the first set of experiments, we use criticality to steer instructions to the most appropriatecluster,

where each cluster contains a portion of the machine’s instruction window and functional units.

The goal in the steering policy is to reduce the effective performance penalty due to inter-cluster

communication. We also use criticality for resource arbitration within each cluster, since distribut-

ing the functional units will inevitably lead to greater load imbalance and hence greater contention.

Together, the criticality-based policies improved performance by up to 21% (10% on average) over

the standard register-dependence based policies.

The second set of experiments uses criticality to reduce energy dissipation. The microar-

chitecture explored has two clusters, one of which is faster(higher quality) than the other. The

slower cluster requires less power due to the quadratic relationship between power and clock fre-

quency. Thus the goal is to steer as many instructions to the slow cluster as possible without reducing

performance. Slack is a perfect fit for this task since those instructions that have enough slack to

afford the slower execution should be steered to the slower cluster. Our slack-based policies reduced

the 12–15% performance loss incurred using pre-existing policies to a negligibly small amount.

To illustrate other resource arbitration applications of criticality, we also discuss two re-

lated works produced by other researchers. One uses criticality to control a non-uniform cache

architecture, where one cache has a higher latency than another. A second study uses slack to more

efficiently allocate scarce instruction window slots to instructions as required to maximize perfor-

mance (as opposed to the normal program-order policy).

130

Criticality in a Uniform ILDP Architecture

Focused instruction schedulingandsteeringare optimizations that use the critical path to

arbitrate access to contended resources (scheduling) and mitigate the effect of long latency inter-

cluster communication (steering). The scheduling and steering are focused in the sense that they

directly target the computation that needs to be sped up, as opposed to applying the same policies

to all computation. Our experiments show that the two optimizations improve the performance of

a next-generation clustered processor architecture by up to 21% (10% on average), with focused

instruction scheduling providing the bulk of the benefit.

The Problem. The complexity of implementing a large instruction window with a wide issue

width has led to proposals of designs where the instruction window and functional units are parti-

tioned, orclustered[10, 32, 58, 69, 82]. Clustering has already been used to partition the integer

functional units of the Alpha 21264 [46]. Considering the trends of growing issue width and instruc-

tion windows, future high-performance processors will likely cluster both the instruction window

and functional units.

Clustering introduces two primary performance challenges. The first is thelatency to

bypassa result from the output of a functional unit in one cluster tothe input of a functional unit in

a different cluster. This latency is likely to be increasingly significant as wire delays worsen [69]. If

this latency occurs for an instruction on the critical path,it will add directly to execution time.

The second potential for performance loss is due to increased functional unit contention.

Since each cluster has a smaller issue width, imperfect instruction load balancing can cause instruc-

tions to wait for a functional unit longer than in an unclustered design. If the instruction forced to

wait is on the critical path, the contention will translate directly to an increase in execution time.

131

Furthermore, steering policies have conflicting goals in that a scheme that provides good load bal-

ance may do a poor job at minimizing the effect of inter-cluster bypass latency.

The critical path can mitigate both of these performance problems. First, to reduce the ef-

fect of inter-cluster bypass latency, we performfocused instruction steering. The goal is to incur the

inter-cluster bypass latency for non-critical (as opposedto critical) instructions where performance

is less likely to be impacted. The baseline instruction steering algorithm for our experiments is the

industry-standardregister-dependenceheuristic. This heuristic assigns an incoming instructionto

the cluster that will produce one of its operands. If more than one cluster will produce an operand

for the instruction (atie), the producing cluster with the fewest instructions is chosen. If all producer

instructions have finished execution, a load balancing policy is used where the incoming instruction

is assigned to the cluster with the fewest instructions. In comparison to previous work, this policy is

similar to the scheme used by the highly regarded distributed instruction window work of Palacharla

et al. [69]. Our focused instruction steeringoptimization improves the baseline heuristic in how it

handles ties: if a tied instruction is critical, it is placedinto the cluster of its critical predecessor.

This optimization was also performed by Tuneet al. [110].

Second, to reduce the effect of functional unit contention,we evaluatedfocused instruc-

tion scheduling, where critical instructions are scheduled for execution before non-critical instruc-

tions. The goal is to add contention only to non-critical instructions, since they are less likely to

degrade performance. The oldest-first scheduling policy isused to prioritize among critical instruc-

tions, but our experiments found this policy does not have much impact due to the small number

of critical instructions. The baseline instruction scheduling algorithm gives priority tolong latency

instructions. Our experiments found this heuristic performed slightly better than theoldest-first

132

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10
IP

C
 N

or
m

al
iz

ed
 to

 U
nc

lu
st

er
ed

 W
ith

ou
t C

P

Reg-Dep Steering (DEP)

Focused Scheduling (SCH) + DEP

Focused Steering + DEP + SCH

unclustered

4-cluster

2-cluster

eoncrafty gcc gzip parser perl twolf vortex ammp art galgel mesa -5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

cr
afty eon

gcc

gzip

pars
er

perl

tw
olf

vo
rte

x

am
m

p art

galgel

m
esa

S
pe

ed
up

 o
ve

r n
o

C
P

oldest-uncommited

oldest-unissued

token-passing

(a) Scheduling in clustered architectures. (b) Comparison to heuristics-based predictors.

Figure 7.1:Critical path scheduling decreases the penalty of clustering. (a) The token-passing
predictor improves instruction scheduling in clustered architectures (8-way unclustered; two 4-way
clusters; and four 2-way clusters are shown). As the number of clusters increases, critical-path
scheduling becomes more effective.(b) Results for four 2-way clusters using bothfocused instruc-
tion schedulingand steeringshows that the heuristic-based predictors are less effective than the
token-passing predictor.

scheduling policy.

Experiments. The improvements due tofocused instruction schedulingand focused instruction

steeringare shown in Figure 7.1(a) for three organizations of an 8-way issue machine: unclustered,

two clusters, and four clusters. The execution time is normalized to the baseline machine (unclus-

tered without any focused optimizations). We find that:

• On an unclustered organization, the critical path-based policy produces a speedup of as much

as 7% (3.5% on average).

• On a 2-cluster organization, the critical path turns an average slowdown of 7% to a small

speedupof 1% over the baseline. This is a speedup of up to 17% (7% on average) over

register-dependence steering alone.

• On a 4-cluster organization, the critical path reduces performance degradation from 19%

to a much more tolerable 6% degradation. Measured as speed upover register-dependence

133

steering, we improve performance by up to 21% (10% on average).

From these results, we see that the token-passing predictoris increasingly effective as the

number of clusters increases. This is an important result considering that technological trends may

necessitate an aggressive next-generation microprocessor, such as the one we model, to be heavily

partitioned in order to meet clock cycle goals [2].

From Figure 7.1(a) we also see thatfocused instruction schedulingprovides most of the

benefit. We believe this is becausefocused instruction steeringuses the critical path only to break

ties, which occur in the register-dependence steering heuristic infrequently. Nonetheless, a few

benchmarks do gain significantly from the enhanced steering, e.g.,, gzipgains 3% andgalgelgains

14%.

Comparison to Prior Work. An alternative tofocused instruction schedulingis to use a steering

policy that prevents load imbalance that might lead to excessive functional unit contention, de-

creasing the importance of instruction scheduling within acluster. We implemented several such

policies, including the best performing non-adaptive heuristic (MOD3) studied by Baniasadi and

Moshovos [10]. MOD3 allocates instructions to clusters in around-robin fashion, three instructions

at a time. While these schemes sometimes performed better than register-dependence steering,

register-dependence performed better on average in our experiments. Most importantly, register-

dependence steering with focused instruction schedulingalwaysperformed better (typically much

better) than MOD3.

In Figure 7.1(b), we compare the token-passing predictor tothe two heuristics-based pre-

dictors described in Section 6.1.2 (oldest-uncommitted and oldest-unissued) performing bothfo-

cused instruction schedulingandfocused instruction steeringon a 4-cluster organization. Clearly,

134

neither heuristics-based predictor is consistently effective, and they even degrade performance for

some benchmarks (e.g.,, for vortex, perl, andcrafty). Our conjecture is that instruction scheduling

optimizations require higher precision than heuristics can offer.

Note that even forgalgel, where the oldest-unissued scheme compared favorably to the

token-passing predictor in Section 6.1.2, Figure 7.1(b), the token-passing predictor produces a larger

speedup. Upon further examination, we found that (across the benchmarks) the oldest-unissued

predictor’s accuracy degrades significantly afterfocused instruction schedulingis applied. This

may be due to the oldest-unissued predictor’s inherent reliance on the order of instructions in the

instruction window. Since scheduling critical instructions first changes the order of issue such that

critical instructions are unlikely to be the oldest, the predictor’s performance may degrade as the

optimization is applied. In general, a predictor based on anexplicit model of the critical path, rather

than on an artifact of the microexecution, is less likely to experience this sort of interference with a

particular optimization.

In summary, it is worth noting that the significant improvements seen for scheduling ex-

ecution resources speak well for applying criticality to scheduling other scarce resources, such as

ports on predictor structures or bus bandwidth. In general,the critical path can be used for intelligent

resource arbitration whenever a resource is contended by multiple instructions. The multipurpose

nature of a critical-path predictor can enable a large performance gain from the aggregate benefit of

many such simple optimizations.

Criticality in a Non-uniform ILDP Architecture

In this section, we evaluate the success of slack in guiding anon-uniform control pol-

icy. Since the design of the underlying machine is largely dependent upon the characteristics of the

135

workload, we start our exploration with a characterizationof the slack available in our benchmark

suite. We use this characterization to define an aggressively non-uniform (power-aware) microarchi-

tecture whose non-uniformities can be effectively hidden by employing a slack-based control policy.

We compare our slack-based policy with several policies based on existing control techniques and

discover that slack is remarkably more successful at hidingthe performance penalties that arise due

to non-uniform resources.

Slack Characterization. As discussed in Chapter 4, there are three notions of slack that might

be relevant to non-uniform architecture design: local, global, and apportioned. Local slack is the

easiest to measure in hardware, since it involves simply measuring the difference in arrival times of

two events at a node (e.g.,for the instructionADD ← R1, R2, how many cycles sooner wasR1

ready thanR2?). In contrast, global and apportioned slack involve a propagation-style analysis, for

which we would employ the token-passing analyzer. So, one ofthe goals of the characterization

will be to determine if local slack is sufficient for driving control policies. Another will be to

gain information as to how to design a non-uniform microarchitecture to match the needs of the

workload. For simplicity, we only look at the slack characteristics ofE nodes for this study.

To start off, Figures 7.2(a)-7.2(c) plot the local, global and apportioned slack found in

gcc, gzip, andperl, respectively. These three benchmarks were chosen becausethey illustrate the

two extreme results (gccandgzip) and a typical result (perl) from the full set of measurements we

performed.

Local and global slack.The slack measurements reported in the charts should be inter-

preted as follows: for each data point (x, y), y% of (dynamic) instructions havex or morecycles of

slack. Ingcc, for instance, approximately 36% of instructions have local slack of five or more cy-

136

cles. In general, we observe that relatively few instructions contain local slack that is large enough

to be exploitable: on average only about 20% of instructionshave local slack of five or more cycles.

At the same time, we notice that a small number of instructions contain extremely large local slack

(in gzip, about 2% of instructions have more than 80 cycles of local slack). This large local slack is

promising because a single instruction is unlikely to be able to exploit it all, allowing us to apportion

it to instructions without enough local slack.

Note that, while the figures only show local slack for theexecutionof instructions (E

nodes in our model), other micro-operations associated with an instruction may also exhibit local

slack. For instance, we may be able to delay thecommitof an instruction (represented byC nodes

in our model) without delaying any other instructions. Since our dependence-graph model accounts

for this commit micro-operation, we can also apportion thislocal slack to other instructions.

To determine to what extent large local slacks can be used by neighboring instructions, we

examine global slack. Since the global slack of an instruction is the accumulation of all local slacks

that could be “stolen” from other instructions, observing alot of global slack on many instructions

would speak well for the potential for exploitation, since this would mean that lots of local slack

is “freely movable” across the microexecution. Indeed, this is the case: about 40% of instructions

have more than 50 cycles of global slack. The key question nowis what fraction of this global

slack remains if we spread it out across neighboring instructions. We answer this question using

apportioned slack.

Apportioned slack.To calculate apportioned slack, we must first decide on the apportion-

ing strategy. Let us first consider givingx cycles of slack to as many instructions as possible. The

amount of such apportioned slack is shown along with local and global slack in Figures 7.2(a)-7.2(c)

137

for a range of values ofx.

Again, the experiments present good news: not only does the microexecution contain a lot

of apportionable local slack (which we knew from global slack measurements), but this slack is also

able to satisfy many instructions: on average, 75% of instructions can be apportioned slack of five

cycles. Even in the least slackful benchmark,gzip, there are 64% of instructions that have 5 cycles

of slack. This means, for instance, that most instructions can tolerate long-latency communication

across a chip without hurting performance—as long as the delayed instructions are chosen wisely

(i.e, with a good slack predictor and a good policy).

Of course, the above apportioning strategy does not reflect all the non-uniformities that a

control policy may have to tolerate. For instance, another interesting question is how many loads

can tolerate a long latency to the L1 data cache, a concern of wire-constrained designs such as the

Grid Architecture [86]. To maximize slack on loads, we modify the above apportioning strategy

such that no slack is apportioned to non-load instructions.Figure 7.2(d) reports the results of such

an apportioning. We see that a remarkable number of loads could tolerate a long-latency L1 data

cache hit. Namely, there are more than 65% of load instructions with a slack of 12 cycles, enough

to tolerate an L2 hit. Together, the data suggest an opportunity to build selective L1-cache bypasses.

Breakdown of slack per opcode.In Figure 7.3, we examine how much apportioned slack

is available to instructions of various types. The figure computes the breakdown for the two appor-

tioning strategies described in Section 4.3.2: five-cycles-per-instruction and latency-plus-one-cycle.

The figure classifies instructions into four categories: loads, stores, integer operations, and floating-

point operations. (Note that our simulator discards all NOPinstructions after fetch, and, thus, they

are not included in any of the slack measurements.)

138

Figure 7.3 leads to several conclusions about what types of non-uniformities can be toler-

ated with slack.

• Most instructions (on average, greater than 75%) have enough slack to tolerate doubling their

latency. This means we can run most functional units at half-speed without losing perfor-

mance, provided we are successful at predicting which instructions have slack. This result is

good news for the fast/slow pipelines microarchitecture westudy in the next section.

• A large percentage of instructions of each type can have their latency doubled; this holds even

for longer latency floating-point operations.

• There is no instruction type which nearly always has slack. Thus, a machine design that

simply makes all functional units of a particular type slower is likely to degrade performance.

The Non-uniform Architecture. Based on the conclusions of the slack characterization, we came

up with microarchitecture pictured in Figure 7.4. In this design, the microarchitecture is divided

into two pipelines, with each pipeline consisting of half of theinstruction window, issue logic, and

functional units; and a copy of the register file. The design saves power by running one pipeline at

half frequency, exploiting the (approximate) relationship P ∝ FV 2 between powerP , voltageV

and frequencyF . By halving the frequency, we can reduce voltage enough thatthe overall power

consumption is reduced roughly to a fourth (P ∝ F 2). (Note that reducing the frequency of such

a large portion of the pipeline is a more aggressive power-aware design than one that only reduces

the speed of the functional units.)

We find that by employing a slack-based control policy, we cankeep performance loss

due to reducing the frequency of one cluster to 3-4%, which ismany times better than the best

139

non-slack based scheme. Furthermore, if we are willing to spend more area, we can add an extra

slow cluster to completely eliminate any performance degradation while still maintaining most of

the power benefits.

Control Policies At a first glance, it may seem that reducing the frequency on one pipeline intro-

duces only one kind of non-uniformity. The reality is that inour design we need to deal with three

forms of non-uniformity:

1. Theexecution latenciesof functional units in the slow pipeline will be twice as large as those

in the fast pipeline.

2. Thebypass latencybetween the two pipelines will be longer than the intra-pipeline bypass

latency, due to not only the physical distance but also due tocrossing voltage domains.

3. Theeffective issue bandwidthof the slow pipeline will be half of the bandwidth of the fast

pipeline, because the slow pipeline issues instructions every other fast cycle. This reduction

in issue bandwidth manifests itself as increased contention (which happens to be the hardest

constraint to deal with).

The important consequence of the third point is that frequency reduction reduces the effective band-

width of theentiremachine. This observation is important because it sets the correct expectation on

the control policy: when a workload is bandwidth-limited (i.e., exhibits high IPC rate), no control

policy will be able to avoid the performance penalty.

To attack the above three non-uniformities, we design a slack-based policy that controls

two machine aspects:

• Instruction steering, which determines into which pipeline a dynamic instruction is sent.

140

• Instruction scheduling, which determines which of the data-ready instructions in apipeline

are executed.

We assume that the steering decision is performed before anyscheduling decisions are carried out.

Our slack-based policy employs four bins, as introduced andmotivated in Section 6.2.

These four bins control to which pipeline an instruction will be steered, and also how the instruction

will be scheduled within the pipeline (see Table 7.3). Note that we also experimented with two-

bin policies (which performed steering but no slack-based scheduling), but the four-bin scheme

performed up to 5% better.

To assign a slack bin to each static instruction, our slack policy uses a 4K-entry array of

6-bit saturating counters, indexed by PC. The counter is decremented by one if the slack sampling

(see Section 6.2) detects that the instruction can toleratea given pipeline and a given scheduling

policy (i.e., is slackful enough for the pipeline/scheduling combination). The instruction is moved

to a lower-numbered bin when the counter reaches zero and to ahigher-bin if it is detected that it

does not have enough slack for the given bin.

For best performance, we need to maintain a relative balanceof instructions in each bin.

For the fast/slow clusters application, we want approximately a third to a half of the instructions to

be sent to the slow cluster and the rest to the fast (considering the steady-state execution bandwidth

provided by the slow cluster is one half that of the fast). Furthermore, we want a fairly small

percentage of instructions to have high-priority and be scheduled first in each cluster. If too many

are scheduled first, the benefit of the optimization is diminished.

To maintain the desired balance, the hysteresis is specially designed for each bin. In order

to have fewer instructions reside in a particular bin, we usehysteresis to make it more difficult

141

Name Policy
Reg-Dependence Perform load balancing if one pipeline

is four times as full as another.
Otherwise, steer instruction to pipeline
that will produce one or more of its
inputs. Steer to least-filled pipeline
if all operands are ready

Fast-first Window Send instructions to the fast pipeline
until its window becomes half full, then
apply register-dependence steering.

Fast-first Ready Send instructions to fast pipeline until
there were more ready instructions then
issue slots over the last 5 cycles. Then,
apply register-dependence steering.

Table 7.2:Baseline policies for controlling fast/slow pipeline microarchitecture.

to transition into that bin. For the fast/slow clusters application, the hysteresis used is shown in

Table 7.3.

To avoid extreme load imbalance between the two clusters (which happens when too

many instructions are detected as slackful, overloading the slow cluster), our policy occasionally

overrides the the slack-based steering to correct the imbalance. Load balancing is invoked under

the following condition: If the slow instruction window contains four times as many instructions

as the fast window, the incoming instruction is sent to the fast cluster. Load balancing never steers

instructions to the slow cluster.

We compare our slack-based policy to several policies basedon existing (non-slack-based)

control techniques. While we experimented with many such policies, we only present three that

performed best (see Table 7.2). The first is a simple register-dependence steering policy, while

the other two “favor” the fast pipeline over the slow one in that instructions are steered to the fast

pipeline until some condition is met. We also evaluate the use of the ALOLD criticality predictor

from Tune, et al. [110], as a replacement for the token-passing criticality analyzer [34] in the slack

142

Slack bin # Policy decisions Hysteresis counter
4 Fast pipeline, high priority schedule Initialize to 0 upon entering level.

Increase by 8 if detected not slackful.
3 Fast pipeline, low priority schedule Initialize to 63 upon entering level.

Immediately go to level 4 if detected not slackful.
2 Slow pipeline, high priority schedule Initialize to 63 upon entering level.

Immediately go to level 3 if detected not slackful.
1 Slow pipeline, low priority schedule Initialize to 63 upon entering level.

Immediately go to level 2 if detected not slackful.

Table 7.3:Hysteresis implementing the four slack bins.Note: if the slow instruction window
contains four times as many instructions as the fast pipeline, the slack-based steering decision is
overridden, and the incoming instruction is sent to the fastpipeline. Such load balancing never
sends instructions to the slow pipeline.

detector. (We also experimented with the QOLD criticality predictor from the same work [96, 110],

but the ALOLD predictor performed considerably better in our context.)

Experimental Evaluation We evaluate the set of control policies on a machine with one 3-wide

fast pipeline and one 3-wide slow pipeline (3f+3s). The results, presented in Figure 7.5, yield two

overall conclusions. First, our slack-based policy performs better than any non-slack policy, by

10% on average. Second, using slack reduces the performancedegradation (with respect to the

high-power3f+3f configuration) from an average of 16% to only 3%.

It is interesting to observe the effect of replacing the token-passing detector with the

ALOLD predictor: while ALOLD performs better than the non-slack schemes, degrading perfor-

mance by 10%, it appears that the token-passing detector is needed to accurately measure slack.

In an attempt to recoup the small performance loss of3f+3s, we experimented with other

configurations where issue bandwidth is made equal to3f+3f through the addition of another slow

pipeline. In these equi-bandwidth configurations, we foundthat our slack-based policy actually

slightly improved performance over3f+3f, while the non-slack policies significantly degraded it, by

143

12–15% on average. Specifically, the additional configurations explored are summarized below:

• 3f+3s+3s: one 3-wide fast pipeline and two 3-wide slow pipelines. Thisconfiguration has

the same issue bandwidth as the3f+3f but a larger effective instruction window. While the

performance for all policies improved over3f+3s, the relative performance of the four poli-

cies remained roughly the same: our slack predictor actually improved performance by 1%

(compared to the 3f+3f machine), while all other policies degraded it, by 12-15% on average.

• Half 3f+3s+3s: one 3-wide fast pipeline and two 3-wide slow pipelines, where the window

size of each slow pipeline is halved. This configuration has the same issue bandwidth and

effective window size as3f+3f. Across the policies, performance was 1-2% worse than for

3f+3s+3s, indicating the increased effective window size does have some performance bene-

fit. Most of the gains, however, come from increased issue bandwidth.

Power Savings While the focus of this work is to evaluate slack as a tool for designing control

policies, it is interesting to estimate the power savings ofour non-uniform machine configurations.

While an accurate power analysis is beyond our scope, we willcomputeasymptoticsavings. (Actual

power savings will, in any case, depend upon the power contribution of the machine core (i.e., the

instruction window, issue logic, register file, and functional units), which is highly dependent upon

the particulars of the processor implementation).

To estimate the fraction of thecore power that we save with each configuration, we

can employ the quadratic relationship of frequency/voltage reduction to power (naturally, practi-

cal device considerations may change this ratio to some degree). Assuming that halving the fre-

quency decreases the power consumption to a quarter, we have: in the 3f+3s configuration, we save

144

100 − 50 + 50 ∗ 1/4 = 37.5% of the power of the core; and in the 3f+3s+3s configuration wesave

100 − 50 + 50 ∗ 1/4 + 50 ∗ 1/4 = 25%.

To estimate savings to overall chip power, we employ a methodology similar to Bahar

and Manne [8], which extrapolated the savings from available power estimates of real machines.

Wilcox showed the 8-way issue Alpha 21464 was expected to have 66% of its power dissipation in

its core [116]. Since we assumed a 6-way machine for this study, we estimate 50% of total chip

power going to the core. Under this assumption, the 3f+3s configuration would reduce the overall

chip power by approximately 18%, while the 3f+3s+3s machinesaves approximately 12%.

Of course, our slack policy itself consumes some power, but we expect it to be a very

small amount of overall chip power, for the following reasons: the criticality detector is a very

simple hardware structure consisting of two small arrays, an array of size ROBsize∗3 nodes per

instruction∗8 tokens= 768 bytes that is read and written during training and a 4KB arrayto store

the slack bin predictions. Furthermore, the predictor can be used for hiding many different non-

uniformities (as opposed to just the single optimization explored in this section) and, thus, its power

dissipation may be amortized across numerous applications.

Other Resource Arbitration Applications

In this section, we will further illustrate the value of using criticality for resource arbitra-

tion by briefly discussing some applications developed by others.

Heterogeneous cache organization. Rakvic,et al. [75] propose introducing avital cache, which

is a small, fast-access cache that sits in front of the traditional L1 cache (inclusivity is maintained).

Such a small cache cannot hold the data working set of most workloads. However, it is large enough

145

to hold most of thecritical portion of the working set of many workloads. The estimate they use

for identifying criticality is what we would call local slack. If a load has some local slack (i.e., it’s

data is not consumed immediately), it is considerednon-vitaland not stored in the vital cache. They

achieve an average of a 12% speedup with this cache organization. It may be possible to improve

upon this result with a more global computation of criticality.

Instruction window utilization. Crowe,et al.[27] identified which instructions had enough slack

such that they can tolerate some delay before being placed into the instruction window. These

instructions are placed into adeferredqueue, giving priority to the more critical instructions. They

identify the slack of each static instruction through an offline analysis, where the static slack of an

instruction is defined as the minimum global slack over all dynamic instances of that instruction.

They achieved an 11% speedup over their baseline four-wide out-of-order processor.

7.2.2 Speculation Control

Another class of control-policy applications of criticality is speculation control. The goal

of speculation control is to only make predictions when there is potential for performance improve-

ment. Performance improvement is possible when the speculation attacks an event with positive

cost, while it is not possible if that event has a positive slack. Reducing the number of useless pre-

dictions in this manner has two benefits: (1) fewer misspeculations and (2) less overhead due to the

speculation.

It is easy to see how speculation control could reduce the number of misspeculations. For

example, value prediction is only potentially useful for instructions that are on the critical path. If

the instruction is off the critical path, predicting it’s output will not help at all, since speeding up

146

the instruction’s execution will not improve program performance. On the other hand, if we attempt

a prediction for a noncritical instruction and are incorrect, performance will likely be substantially

impacted due to the recovery cost.

Speculation control can also reduce overhead in situationswhere the speculation has a cost

associated with it. One example is pre-execution, where a chain of dependent instructions leading

up to a frequently cache-missing load (or frequently mispredicted branch) are processed early, well

before the load or branch is encountered in program order. The benefit in pre-execution is that the

load’s data can be prefetched (or the branch outcome can be known) by the time they are normally

encountered. The downside of this technique is that the pre-execution uses resources (functional

units, window slots) that could be used for the normal program execution. So, it is logical that

pre-execution should only be applied where there is potential for substantial benefit, something that

criticality (icost in particular) can indicate.

Reducing Misspeculations

Focused value predictionis an optimization that uses the critical path for reducing the

frequency of (costly) misspeculations while maintaining the benefits of useful predictions. By pre-

dicting only critical instructions, we improved performance by as much as 5%, due to removing

nearly half of all value misspeculations.

The Problem. Value prediction is a technique for breaking data-flow dependences and thus also

shortening the critical path of a program [62]. In fact, the optimization is only effective when the

dependences are on the critical path. Any value prediction made fornon-critical dependences will

not improve performance; even worse, if such a prediction isincorrect, it may severely degrade

147

performance. Infocused value prediction, we only make predictions for critical path instructions,

thus reducing the risk of misspeculation while maintainingthe benefits of useful predictions.

Table Sizes Context: 1st-level table: 64K entries, 2nd-level
table: 64K entries, Stride: 64K entries. The tables
form a hybrid predictor similar to the one in [113]

Confidence 4-bits, saturating: Increase by one if correct
prediction, decrease by 7 if incorrect, perform
speculation only if equal to 15 (This is similar
to the mechanism used in [19]).

Mis- When an instruction is misspeculated, squash
speculation all instructions before it in the pipeline
Recovery and re-fetch (like branch mispredictions.)

Table 7.4:Value prediction configuration.

Experiments. We used a hybrid context/stride predictor similar to the predictor of Wang and

Franklin [113]. The value predictor configuration, detailed in Table 7.4, deserves two comments: In

order to isolate the effect of value misspeculations from the effects of value-predictor aliasing, we

used rather large value prediction tables. Second, while a more aggressive recovery mechanism than

our squash-and-refetch policy might reduce the cost of misspeculations, it would also significantly

increase the implementation cost. We performed experiments with focused value prediction on the

seven benchmarks that our baseline value predictor could improve. We evaluate our token-passing

predictor and the two heuristics predictors.

Figure 7.6(a) shows the number of misspeculations obtainedwith and without filtering

predictions using the critical path. While the oldest-unissued heuristic eliminated the most misspec-

ulations, it is clear from Figure 7.6(b) that it also eliminated many beneficial correct speculations.

The more precise token-passing predictor consistently improves performance over the baseline value

predictor and typically delivers more improvement than either heuristic. The absolute performance

gain is modest because the powerful confidence mechanism in the baseline value predictor already

148

filters out most of the misspeculations. Nonetheless, the potential for using the critical path to im-

prove speculation techniques via misspeculation reduction is illustrated by 5 times more effective

value prediction forperl and 7–20% more effectiveness for the rest of the benchmarks.

Reducing Speculation Overhead

In addition to reducing the number of mispredictions, criticality can also be used to reduce

the overhead caused by various forms of speculation. There are two principle ways the overhead

reduction can be achieved. The first and most direct is to eliminate speculation when it is not

possible that it could improve performance, as we did for thevalue prediction case study above. A

second is to use slack analysis to “hide” the overhead behindother computation. For example, pre-

execution requires fetching and executing a chain of instructions before they arrive in the normal

program stream. If we could detect when there is fetch slack available, we would know when we

could fetch the pre-execution stream without hurting program performance.

We have not studied the pre-execution application in detail, but there has been some re-

lated work that tackled part of the problem. Specifically, Petric and Roth [71] used criticality con-

structed from our graph model to identify cache misses most in need of being pre-executed, meaning

that the data-dependence chain leading up to the miss is pushed forward in the program stream. The

specific metric they use is simplecost, i.e., the benefit that could be achieved by pre-executing a

load (in isolation). Of course, since multiple loads are often being serviced simultaneously (and

thus have very low individual costs), using simple cost without accounting for interactions would

miss many optimization opportunities. Instead of explicitly measuring interaction costs, they av-

erage two values to obtain an adjusted cost metric: (1) the cost of the load as we define it and

(2) a more optimistic cost value assuming all other loads have been successfully prefetched. By

149

employing this metric as part of their overall pre-execution system, they were able to avoid some

unnecessary work, both saving energy and increasing performance.

Note that Petric and Roth’s work improves pre-execution by avoiding unnecessary work;

it does not attempt to use criticality to hide the overhead ofthe pre-execution threads. It may be

possible to use criticality (especially for fetch nodes) toidentify when the main thread can afford

to lose some bandwidth without performance loss. No work hasyet attempted this optimization,

however.

7.2.3 Dynamic Hardware Reconfiguration

One of the techniques that architects have explored for reducing energy dissipation is

to change the hardware configuration dynamically to match the program’s needs. There are two

general strategies. The first is to resize hardware structures such that the machine is more “balanced”

or matched to the needs of the program. In other words, no resizable resource has slack in that it

could be reduced in size without impacting performance. Since for many structures, such as the

instruction window, there is a quadratic relationship between their size and their energy dissipation,

resizing has the potential to help substantially. The second strategy, which is more popular in

industry, is to dynamically adjust the frequency to meet theprogram’s needs. Since frequency also

has a quadratic relationship with energy, reducing frequency can have a very substantial benefit.

Structure Resizing. Criticality is very directly applicable to the problem of resizing hardware

structures. Consider the problem of resizing the instruction window. The instruction window con-

straint is represented byCD edges in the graph model. If theCD edge is critical, the (limited)

size of the instruction window is impacting performance. The inverse is also true, so a non-critical

150

CD edge means the instruction window size can be reduced without hurting performance. This

approach can be applied for resizing any hardware resource that is modeled in the graph.

Some work by Sasanka,et al. [87] developed a specialized hardware cost estimator for

making resizing decisions. The design of their estimator was inspired by our last-arriving edge

criticality analyzer, but, by specializing it to the task ofresizing the instruction window, it is made

less expensive to implement. We compared their cost estimator to our more general criticality

detector and found that both perform similarly well. Their criticality-based policy saved slightly

more energy than the state-of-the-art policies at the time.

Frequency Scaling. The most advanced proposals for frequency scaling divide the chip real estate

into multiple clock domains, each with an independently controllable frequency. The goal with this

sort of architecture is to set each zone’s frequency as low aspossible while still maintaining good

performance. Semeraro,et al. [95] used an offline microarchitecture graph-based slack analysis to

determine good frequencies for different segments of code.Marculescu [64] furthered this work

to include dynamic criticality information, concluding that a hybrid between our token-passing

analyzer and the heuristic predictors provide the best energy/performance tradeoff for MCDs. In

a similar work, Chin,et al. [21] used slack to control the frequencies of different pipelines in a

clustered architecture.

7.3 Hardware Design Help

The typical approach architects use to better understand how machine alterations affect

performance is to run many simulations with many of the different configurations under considera-

tion. The execution time reported by the simulations provide insight into what configurations will

151

likely perform best in practice. To gain more fine-grain understanding of why performance is as it

is, architects will examine counters. For example, if the cache miss count increases when a simula-

tion is run with a larger instruction window, one might logically conclude that there is an interaction

between the window and cache misses.

Our work on criticality can improve the state of hardware design in three ways:

• Early Results.When exploring new architectural ideas, it is typically very time consuming to

write an entire simulator to test their performance. A quicker and easier alternative is to alter

the graph model to reflect the new architecture. A performance estimate can then be obtained

by measuring critical path lengths of instances of the new model. This methodology can

enable architects to quickly explore a larger portion of thedesign space than would otherwise

be practical.

• Test more configurations quickly.A related advantage is the ability to test out many con-

figurations very quickly. For example, testing the cross product of all possible instruction

window sizes, fetch bandwidths, issue bandwidths, and load-store queue sizes results in an

exponential blowup in the number of simulations required. Testing these configurations on

the graph still results in an exponential blowup, but each graph analysis is much, much faster

than running a simulation — resulting in the ability to explore a larger portion of the design

space.

• Costs, Interactions, and Performance Breakdowns.A final application of criticality, which

we have spent the most time exploring, is a better alternative to performance counters for

gaining insight intowhya particular architecture performs the way that it does. This problem

is important since it can lead to new insights quickly. In fact, the methodology can provide

152

interpretations of performance (almost) automatically; these interpretations would otherwise

require substantial effort from an experienced architect.

Our work has focused on developing the alternative to performance counters (the last

bullet). Below we present a case study that illustrates how interaction costs and performance break-

downs can be used to gain insights into performance.

7.3.1 Icost Tutorial: Optimizing a long pipeline

Several recent studies have found significant performance improvements possible by in-

creasing the length of the processor pipeline. The improvement comes from increased clock fre-

quency, but this improvement is unfortunately offset by theincreasing latency ofperformance-

critical loops. A loop is a feedback path in the pipeline, where the result ofone stage is needed by

an earlier stage. Three of the most critical loops include: (i) the latency of a level-one data cache

access, (ii) the latency to issue back-to-back operations (the issue-wakeup loop), and (iii) branch

mispredictions [101, 53, 47, 13].

In this section, we present a tutorial on how interaction costs can help architects during

design of a new processor. Specifically, interaction costs can show us how to mitigate the perfor-

mance impact of critical loops in processors with long pipelines. Finally, we compare our icost

analysis conclusions to those of a conventional sensitivity study.

The level-one data cache access loop

Let’s assume that the circuit designers optimized the level-one data cache access as much

as possible, but nonetheless the latency was higher than expected, say four cycles instead of the

153

typical one or two. The question now is: What is themost effectiveway to change the microarchi-

tecture to mitigate the effect of the high latency? Would it help to: (a) enlarge the branch predictor;

(b) increase the number of load ports; (c) increase the data cache size; or (d) increase the fetch

bandwidth? Certainly these changes will reduce the cost of each of these resources (if they were on

the critical path), but will they also reduce the cost of datacache accesses?

What we are looking for is a choice of something other than data accesses to optimize that

will indirectly reduce the cost of those accesses. Optimizing some resource such as fetch bandwidth

certainly will not affect the latency of data accesses, but the optimization might cause some of

the latency to be removed from the critical path (or, in otherwords, “hidden” or “tolerated” by the

machine). In essence, we are looking forserial interactions, since any resource that serially interacts

with data accesses provides us an alternative resource for optimization that will enable us to remove

the same set of cycles.

In our case study, before computing the interaction costs, we hypothesized what the out-

come of the analysis could be, which amounted to predictionsof whereserial interactions would

occur. We thought data dependences between data-cache missing loads or ALU operations and

level-one data-cache accesses might cause such a serial interaction. Another possibility would be

an interaction between branch mispredicts and data-cache accesses, since loads often feed branches.

The results of the analysis is shown in Table 7.5 (simulator parameters are in Table 7.1 in

Section 6.3.5). For brevity, the breakdown presents only those interaction costs that involve data-

cache accesses, labeled ’dl1’ in the table. In total, there would be28−1 = 255 costs and interaction

costs if all of them were shown.

Before examining the correctness of our hypotheses, let’s attempt to gauge the importance

154

Category bzip crafty eon gap gcc gzip
dl1 22.2 24.2 18.2 13.5 18.3 30.5
win 16.4 15.1 15.7 41.0 13.6 23.0
bw 4.4 8.0 7.7 2.8 8.2 5.7

bmisp 41.0 28.6 15.8 12.3 26.3 25.8
dmiss 23.8 7.1 0.7 23.5 26.3 7.7

shortalu 9.9 11.4 5.4 13.8 5.1 20.4
longalu 0.3 0.9 11.8 5.6 0.4 0.7

imiss 0.0 0.7 7.8 0.7 2.2 0.1
dl1+win -5.2 -10.5 -6.8 -6.0 -4.2 -15.3
dl1+bw 5.6 9.9 8.1 2.8 10.0 6.0

dl1+bmisp -10.8 -5.4 -4.9 -2.9 -7.0 -3.4
dl1+dmiss -0.7 -1.2 -0.4 -0.4 -1.4 -0.4

dl1+shortalu -4.1 -4.3 -1.0 -0.2 -1.6 -8.2
dl1+longalu -0.3 0.1 -0.3 0.1 -0.3 -0.4

dl1+imiss 0.0 0.0 0.8 0.1 0.3 0.0
Other -2.5 15.4 21.4 -6.7 3.8 7.8
Total 100.0 100.0 100.0 100.0 100.0 100.0

Category mcf parser perl twolf vortex vpr
dl1 7.7 19.0 31.6 19.4 28.8 19.7
win 4.2 17.3 4.4 25.1 47.1 23.2
bw 0.5 2.9 8.6 3.9 5.3 5.8

bmisp 26.9 16.5 38.0 24.1 1.9 24.9
dmiss 81.0 32.9 1.4 34.4 21.8 33.7

shortalu 1.4 19.7 7.3 7.8 4.9 7.6
longalu 0.0 0.1 0.8 4.2 1.6 3.6

imiss 0.0 0.1 5.2 0.0 2.8 0.0
dl1+win -0.2 -6.1 -4.3 -4.1 -27.6 -5.7
dl1+bw 0.3 4.9 9.6 1.5 17.6 1.8

dl1+bmisp -2.4 -2.8 -7.6 -6.5 -0.2 -4.6
dl1+dmiss -0.5 -1.4 -0.2 -1.3 -1.8 -2.5

dl1+shortalu -0.1 -3.6 -1.4 -0.3 -4.0 -1.3
dl1+longalu 0.0 -0.0 -0.7 0.0 -1.3 -0.3

dl1+imiss 0.0 0.0 1.0 0.0 0.4 0.0
Other -18.8 0.5 6.3 -8.2 2.7 -5.9
Total 100.0 100.0 100.0 100.0 100.0 100.0

Table 7.5:Breakdowns for optimizing a long pipeline: Four-cycle level-one cache.Interaction
costs are presented here as a percent of execution time and were calculated using the dependence
graph in a simulator. The categories are: ’dl1’→ level-one data cache latency; ’win’→ instruction
window stalls; ’bw’→ processor bandwidth (fetch,issue,commit bandwidths); ’bmisp’→ branch
mispredictions; ’dmiss’→ data-cache misses; ’shalu’→ one-cycle integer operations; ’lgalu’→
multi-cycle integer and floating-point operations; and ’imiss’→ instruction cache misses. Note that
’Other’, denoting the sum of all interaction costs not displayed, can be negative since the interaction
costs can be negative.

155

of interactions in general. If we sum up the singleton costs,say forcrafty, we get a very high value,

24.5 + 16.3 + 6.0 + 16.4 + 6.7 + 11.3 + 0.8 + 0.6 = 92.6%. Does this mean interactions are only

important for a small portion of the execution time,e.g.,7.4% for crafty? The answer is “no”,

since these singleton costs could be counting the same cycles multiple times — in other words,

serial interactions (negative icosts) may exist. In fact, the sum of the singleton costs forvortex is

over100, at104%, which is only explainable by serial interactions. As expected,vortex does have

interactions (in fact, large ones), both parallel and serial (and this is seen even when only considering

interactions includingdl1). So, we cannot make conclusions on the importance of interactions by

looking at singleton costs alone.

In analyzing the data, notice first that data-cache accesseshave a large singleton cost, typ-

ically contributing 15–25% of the execution time. This means that 15–25% of the execution time

would be eliminated if the data-cache access latency was reduced to zero. As for the interactions,

we see that some of our hypotheses were correct: for instance, there are significant serial interac-

tions between data-cache accesses and ALU operations (dl1+shalu), suggesting we could mitigate

the long data-cache loop by reducing ALU latency (perhaps through value prediction [63, 19] or

instruction reuse [99]).

However, other conclusions from the analysis were not predicted beforehand. For ex-

ample, it was hypothesized that large serial interaction might exist between data-cache misses and

data-cache accesses. In reality, this interaction is very small: reducing data-cache misses is unlikely

to mitigate the effect of the high latency data-cache loop.

We also see that the largest serial interaction for most benchmarks is with instruction win-

dow stalls. Thus, perhaps the most effective mitigation of the data-cache loop would be to increase

156

the size of the instruction window — a result that may be difficult to predict before performing the

analysis.

Also, note that themagnitudeof the interactions vary significantly across benchmarks.

This variability suggests that interaction costs could be useful in workload characterization: their

magnitude gives a designer early insights into what optimizations would be most suitable for the

most important workloads.

Balanced machine design. One particularly interesting interpretation of interaction costs enables

microarchitects to determine howbalanceda machine design is, as well as determine where the

imbalances exist.

We start with a definition of “balanced”. A machine is said to be balanced if no processor

resource can be reduced in size or made slower without impacting execution time. In other words,

there is no wasted effort (slack) in any stage of any instruction’s processing. In terms of the graph,

all paths are of equal length — hence, there is no dominant critical path.

Interaction cost makes it easy to determine if a machine is balanced. Consider the icost

between two resources,e.g.,data-cache accesses (dl1) and the instruction window (win). The ma-

chine is balanced with respect to these two resources if and only if the individual cost of each of

the resources is zero (cost(dl1) = cost(win) = 0); and, thus, all of the cycles for which the re-

sources are responsible are contained in the (non-negative) interaction cost between the resources

(icost(dl1, win) ≥ 0). As an example, consider the effect on costs and interaction costs when

increasing the size of the window from 64 to 256, presented for vortex below.

157

vortex
64 128 256

dl1 28.5 9.8 4.3
win 39.4 21.3 13.6

dl1+win -25.9 -8.14 -2.7
Exe Time 100.0 80.8 75.0

Notice how increasing the window sizereducesthe cost of the individual resources but

increasesthe size of the interaction. (In this case, increasing the icost causes it to become less

negative.) From this observation, we know the critical pathis less dominant when the window size

is larger —i.e., the parallel paths are closer in length to the critical path,reducing the magnitude of

the serial interaction. In other words, the machine is more balanced when the window is larger.

To generalize, for any set of resources, a larger icost (lessnegative or more positive)

implies a more balanced machine design. A machine can be saidto be completely balanced when

all of the execution time exists as a parallel interaction among all of the processor resources. For

example, if the machine has three resources (A, B, andC), the machine is balanced if and only if

all of the individual costs and lower-term interactions arezero (cost(A) = cost(B) = cost(C) =

icost(A,B) = icost(B,C) = icost(A,C) = 0) while the highest-term interaction is equal to

the execution time (icost(A,B,C) = exe.time). Large individual costs and significant serial

interactions indicate where the imbalances exist.

The issue-wakeup loop

Suppose that a long pipeline demanded a two-cycle issue-wakeup latency, instead of the

typical one. This will, of course, reduce performance, since ALU operations will not be able to

issue back-to-back. Can we use serial interactions to determine how to mitigate the performance

loss?

158

From the breakdown of Table 7.6, we see significant serial interactions between ALU op-

erations and several event classes: window stalls, branch mispredicts, and level-one cache accesses.

The most significant interaction is, again, with window stalls; it is as large as−24% for gap. Be-

cause of this serial interaction, increasing the window size is more beneficial when the issue-wakeup

latency is higher. For instance, we found that the speedup for gapwhen the window size is increased

from 64 to 128 is 12% if the issue-wakeup latency is one and 18%if the latency is two, a difference

of 50%.

The negative interaction costs also reveal for which benchmarks it is not going to be

possible to mitigate the effect of longer pipeline loops by optimizing other parts of the machine.

This is the situation ingcc, which exhibits very little serial interaction.

The branch misprediction loop

Finally, we consider the branch misprediction loop. Can we modify the microarchitecture

to reduce branch misprediction costs? How about increasingthe window size? Will that work to

reduce branch misprediction loop cost in the same way it did for the other two loops?

The interaction costs in Table 7.7 reveal that the answer is no. Instead of a serial in-

teraction between branch mispredictions and window stalls, there is aparallel interaction. This

parallel interaction tells us there are a significant numberof cycles that can be eliminated only by

optimizing both classes of events simultaneously,i.e., by optimizing both branch mispredictions

and window size. In other words, reducing window stalls alone is not likely to significantly reduce

branch misprediction costs.

For a couple of benchmarks,mcf andparser, we do see significant serial interactions with

data cache misses (dmiss), however. In particular, formcf, the serial interaction of

159

bzip crafty eon gap gcc gzip
shortalu 19.7 25.6 13.2 39.7 18.9 40.0

win 22.9 21.1 18.5 51.4 9.3 32.3
bw 2.9 5.7 8.0 1.5 6.2 3.4

bmisp 34.5 25.1 15.4 8.0 39.9 20.3
dmiss 28.3 14.5 4.1 16.5 12.7 17.9

dl1 12.2 12.1 10.0 4.6 16.1 15.4
imiss 0.4 5.4 9.4 2.8 8.9 0.4

longalu 0.2 0.7 12.5 4.4 0.5 0.6
shortalu+win -4.7 -11.9 -3.8 -32.0 -3.3 -19.7

shortalu+bw 8.0 7.4 3.7 6.4 4.0 4.9
shortalu+bmisp -9.6 -5.8 -1.6 1.1 -8.7 -4.6

shortalu+dmiss -0.4 -0.2 0.1 1.9 0.1 -0.8
shortalu+dl1 -5.9 -5.6 -2.2 -1.2 -5.4 -8.2

shortalu+imiss 0.0 0.1 0.2 0.1 0.5 0.0
shortalu+longalu -0.1 -0.6 0.4 -2.0 -0.3 -0.4

Other -8.4 6.4 12.1 -3.2 0.6 -1.5
Total 100.0 100.0 100.0 100.0 100.0 100.0

mcf parser perl twolf vortex vpr
shortalu 3.1 12.0 17.7 17.5 13.2 14.8

win 3.5 11.8 4.6 27.4 39.5 26.7
bw 0.3 3.3 8.1 2.1 5.9 3.9

bmisp 24.9 23.1 38.8 20.5 2.5 22.3
dmiss 83.6 49.2 4.7 43.7 24.0 46.7

dl1 4.5 11.8 18.2 8.6 17.1 8.7
imiss 0.0 0.3 9.1 0.8 11.4 0.4

longalu 0.0 0.0 0.7 3.8 1.1 2.8
shortalu+win 0.0 -4.3 -3.4 -1.4 -12.2 -3.2

shortalu+bw 0.4 3.9 6.0 2.7 4.4 1.6
shortalu+bmisp -2.0 -1.6 -4.7 -4.8 -0.4 -5.6

shortalu+dmiss 0.2 0.1 0.0 0.9 -0.3 0.2
shortalu+dl1 -0.3 -4.3 -4.0 -0.7 -10.4 -1.3

shortalu+imiss 0.0 0.0 0.4 0.0 0.2 0.0
shortalu+longalu -0.0 -0.0 -0.1 -0.9 0.5 0.0

Other -18.2 -5.3 3.9 -20.2 3.5 -18.0
Total 100.0 100.0 100.0 100.0 100.0 100.0

Table 7.6:Breakdowns for optimizing a long pipeline: Two-cycle issue-wakeup loop.

160

bzip crafty eon gap gcc gzip
bmisp 34.0 26.6 15.6 11.7 39.8 23.5

dl1 10.6 11.6 9.4 6.7 15.5 18.2
win 22.0 15.4 16.3 40.4 7.8 28.8
bw 6.0 9.6 10.7 3.4 8.3 5.8

dmiss 32.2 17.4 4.6 25.0 14.2 22.5
shortalu 8.5 11.8 4.5 17.5 9.3 23.1
longalu 0.3 0.8 14.2 5.5 0.5 0.7

imiss 0.5 6.5 11.8 3.9 10.7 0.5
bmisp+dl1 -6.6 -3.5 -3.7 -1.7 -8.3 -1.9

bmisp+win 10.2 10.8 7.0 7.8 11.8 8.3
bmisp+bw -1.6 -2.5 -2.3 -1.1 -2.4 -1.5

bmisp+dmiss -2.4 0.5 -0.2 0.2 -0.7 -0.9
bmisp+shortalu -5.6 -3.7 -0.7 0.6 -5.0 -3.3
bmisp+longalu -0.0 0.2 -0.5 0.3 0.0 0.1

bmisp+imiss -0.0 -0.2 -1.6 -0.4 -0.5 0.0
Other -8.1 -1.3 14.9 -19.8 -1.0 -23.9
Total 100.0 100.0 100.0 100.0 100.0 100.0

mcf parser perl twolf vortex vpr
bmisp 24.2 24.3 40.3 19.8 2.5 21.4

dl1 4.5 10.1 17.5 9.8 11.9 9.5
win 3.6 9.7 2.2 30.0 34.4 27.0
bw 0.4 5.2 11.6 3.6 8.5 5.2

dmiss 85.2 53.2 5.2 49.5 26.0 51.1
shortalu 1.4 5.0 8.2 8.2 5.4 7.4
longalu 0.0 0.0 0.7 4.1 1.2 3.3

imiss 0.0 0.3 10.8 0.8 13.0 0.5
bmisp+dl1 -1.2 -3.2 -6.7 -3.7 -0.3 -2.3

bmisp+win 54.4 39.3 12.3 31.9 2.1 31.6
bmisp+bw -0.2 -2.1 -5.5 -1.1 -0.1 -2.3

bmisp+dmiss -14.6 -6.0 -0.7 -0.6 -0.1 -2.1
bmisp+shortalu -0.9 -1.1 -2.6 -2.3 -0.2 -3.1
bmisp+longalu 0.0 0.0 0.7 1.1 0.0 1.4

bmisp+imiss 0.0 0.0 -1.2 0.0 -0.3 0.0
Other -56.8 -34.7 7.2 -51.1 -4.0 -48.6
Total 100.0 100.0 100.0 100.0 100.0 100.0

Table 7.7:Breakdowns for optimizing a long pipeline: 15-cycle branchmispredict loop.

161

-16.2% tells us that as much as 60% of the cost of branch mispredictions (16.2/26.5*100%) could

be eliminated through optimization of data cache misses. Intuitively, this effect is likely due to

cache-missing loads providing data that is used to determine a branch direction. Again, interaction

costs help: we can quantify the importance of this effect forparticular workloads, even determining

the static instructions where it occurs, helping to guide prefetch optimizations.

Comparing with sensitivity study

A sensitivity study is an evaluation of one or more processorparameters made by varying

the parameters over a range of values, usually through many simulations. Interaction costs can

be viewed as a way tointerpret the data obtained from a sensitivity study. Regardless of how

they are computed, through multiple simulations or graph analysis, interaction costs explainwhy

performance phenomena occur in a veryconciseway.

Let’s explore this relationship by validating that the conclusions obtained from interaction-

cost analysis and conventional sensitivity studies are thesame. We perform the comparison by using

a corollary of the serial interaction between the instruction window and load latency (the main result

of Section 7.3.1). As the load latency becomes larger, increasing the size of the instruction window

has increasing benefit. Since load latencies and window stalls occur in series with each other (be-

causeEP edges are in series withCD edges, as can be seen in Figure 7.7), increasing the latency

of one will make both more dominant on the critical path.

Using this corollary, we performed the comparison by running several simulations to ob-

serve the speedup with increasing window size at different cache latencies (see Figure 7.8). Indeed,

the interaction costs correctly predicted what the sensitivity study reveals: for instance, 50% greater

speedup ((9-6)/6 x 100%) is obtained from increasing the window size from 64 to 128 when the

162

data-cache latency is four instead of one.

From this example, we see the relationship between the two types of analyses. A full

sensitivity study provides more information,e.g.,whether the curves in the plot are concave or

convex; but interaction costs provide easierinterpretationand concisecommunicationof results.

The interpretation is easy since the type and magnitude of the icosts have well defined meanings.

The ease in communication comes from the ability to summarize a large quantity of data very

succinctly. For example, the entire chart of Figure 7.8 can be summarized by simply stating that

the two resources interact serially. Furthermore, due to the formulaic nature of interaction cost, the

interpretation is availableautomatically, without the effort of a human analyst.

Summary. In this section, we showed that interaction costs can help microarchitects during the

design process. When the dependence graph is constructed bythe simulator, architects can use

interaction-cost-based breakdowns as a standard output ofeach simulation run. The overhead of

building the graph during simulation in our research prototype is approximately a two-fold slow-

down, which we did not find overly burdensome, considering the substantial benefit of the added

insight. Furthermore, using the same principles of sampling that facilitate the profiling solution of

Section 6.3, we found that the overhead could be reduced to approximately 10% without signifi-

cantly impacting accuracy (with only 1–2% error due to sampling).

7.3.2 Using Criticality in Design (Work by Others)

Before leaving the section on using criticality in hardwaredesign, we discuss two works

by others that fall into this category. The first used the a derivative of our model to gain insight very

early in the design process. Specifically, they used criticality to understand the tradeoffs between

163

dataflow and superscalar processors. The second used criticality breakdowns to gain insight into the

performance of their proposed new microarchitectural feature.

Comparing dataflow and superscalar processors. Budiu, et al. [17] use the critical path to

understand the limitations of the traditional dataflow model compared to speculative out-of-order

processors. They find the dependences eliminated by superscalar processors through speculation

(control and data) are on the critical path of dataflow execution of many programs, accounting for

much of the performance advantage of superscalar processors.

Simple Criticality Breakdowns. Petric and Roth [71] and Petric,et al.[72] used our graph model

to compute critical-path breakdowns of the execution to better understand why the optimizations

they proposed worked better on some benchmarks than others.They discovered, for instance, that

their RENO optimizer did not effectively tackle memory bottlenecks and, when it was successful,

their optimizer caused the machine to become more fetch bound (i.e., the execution time was pri-

marily determined by the instruction fetch engine). Thus, coupling RENO with increased fetch

bandwidth could yield higher speedups.

Criticality Analysis of Clustered Processors. Salverda and Zilles [85] use a critical-path analysis

similar to our criticality modes discussed in Section 4.1. This analysis helped them discover several

important characteristics of the performance of machines with clustered execution units. For one,

the criticality analysis showed them when the machine shifted from being fetch-critical to execute-

critical due to the extra latency imposed by the clusters. Italso showed what component of the

steering policy was most responsible for the slowdown. (Fortheir policy the largest contributer was

load-balance steering, which causes an instruction to be sent to the least-filled cluster when its most

164

desired cluster is full.)

They also discovered that contention for functional units between predicted-critical in-

structions was a significant cause of the slowdown. This discovery led them to introduce a refined

predictor based on thelikelihood of criticality. With this metric, a static instruction is not only

predicted critical or not but, instead, the criticality is weighted by the percentage of its previous

dynamic instances that were critical. If 40% of a static instruction’s dynamic instances are critical,

it would get priority over one that was critical only 20% of the time. With these improvements,

they were able to obtain performance on a clustered machine that is only a few percent worse than

a monolithic one.

7.4 Software Design Help

Criticality can be useful to performance-conscious software engineers for a variety of

purposes. The simplest is better understanding of what portions of code take the longest to execute,

focusing optimization efforts. Since, in machines that exploit parallelism, performance counters

are not sufficient for recognizing cost in this manner, cost and interaction costs could be a valuable

addition to a profiling tool, such as Intel’s Vtune [24].

While we believe there are great oppurtunities in improvingsoftware through criticality

analysis, in particular using the shotgun profiler, our research has not delved much into those pos-

sibilities. In the next chapter, however, we do discuss how criticality analysis could be useful when

writing multithreaded applications, which will be a very important problem with the increasing

popularity of chip multiprocessors.

165

7.5 Summary

In this section we showed how alterations to our dependence graph can illustrate the per-

formance effect of a software change without actually performing the change. This capacity enables

software engineers to try out more configurations than otherwise would be feasible. Criticality anal-

ysis can also help in deciding where to place prefetch instructions, predicate branches, cut a program

into threads, or — in general — where to focus human optimization effort. We need criticality for

these tasks since increasing parallelism is making simple event counters less and less representative

of what are the most important factors of execution time.

166

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Number of Cycles of Slack (gcc)

P
er

ce
nt

 o
f D

yn
am

ic
 In

st
ru

ct
io

ns
th

at
 h

av
e

sl
ac

k
>=

 x
 c

yc
le

s

global slack

local slack

apportioned slack

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Number of Cycles of Slack (gzip)

P
er

ce
nt

 o
f D

yn
am

ic
 In

st
ru

ct
io

ns
th

at
 h

av
e

sl
ac

k
>=

 x
 c

yc
le

s

global slack

local slack

apportioned slack

(a) gccslack results. (b) gzipslack results.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Number of Cycles of Slack (perl)

P
er

ce
nt

 o
f D

yn
am

ic
 In

st
ru

ct
io

ns
th

at
 h

av
e

sl
ac

k
>=

 x
 c

yc
le

s global slack

local slack

apportioned slack

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Number of Cycles of Slack on Load Instructions

P
er

ce
nt

 o
f D

yn
am

ic
 L

oa
ds

th
at

 h
av

e
sl

ac
k

>=
 x

 c
yc

le
s

gcc
perl

gzip

(c) perl slack results. (d) All slack apportioned to loads.

Figure 7.2:Across benchmarks, there is enormous potential for exploitation of slack. (a)-(c)
Measurements of local, apportioned, and global slack for SPEC2000 versions ofgcc, gzip, andperl.
gccandgziprepresent the two extremes in the amount of slack available in the full set of benchmarks
we ran;perl is more typical. The measurements indicate that even in the least slackful benchmark,
gzip, there is enormous potential for hiding delays introduced by nonuniform machines.(d) Mea-
surements of apportioned slack when all available slack is apportioned to load instructions. These
results show it may be possible to tolerate technologically-induced bottlenecks on load instructions
if, for instance, wire delays cause some instructions to endure longer L1 data cache access times
than others.

167

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
P

er
ce

nt
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

Loads Stores Int Ops Flt Ops Loads Stores Int Ops Flt Ops

art gcc gzip perl vortex average

Nonslackfull

Slackfull

ammp mesa parser

latency + 1

five cycles

Figure 7.3:Limit studies. Measurements for two apportioning strategies are shown:latency-plus-
one-cycleandfive-cycleapportioning. These measurements provide an indication asto what types
of non-uniform machine designs can be tolerated by a slack-based policy. For instance, latency-
plus-one-cycle apportioning is relevant for the fast/slowpipeline microarchitecture we study in this
thesis.

��������	�

�����

����

���	��

���	��

���
����

���
����

�����

�����

����
�����

��������	
��	

�
�����	
��	
����������

Figure 7.4:The non-uniform microarchitecture used in our experiments. The processor consists
of one fast and one (or two) slow pipelines.

168

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ammp art gcc gzip mesa parser perl vortex average

N
or

m
al

iz
ed

 IP
C

2 high-power fast pipelines

token-passing slack

register-dependence

ALOLD with bins

fast-first window

fast-first ready

one fast pipeline

Figure 7.5:Comparing control policies on fast/slow pipeline microarchitecture. All measure-
ments are normalized to the baseline of two fast 3-wide pipelines (3f+3f). Also, results are shown
for a single fast 3-wide pipeline (3f) for reference. The rest of the measurements are different
control policies for a3f+3smachine.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

gcc gzip parser perl twolf ammp art

V
al

ue
 M

is
pr

ed
ic

ts
 p

er
 1

00
0

In
st

ru
ct

io
ns

unfocused VP

oldest-uncommited

oldest-unissued

token-passing

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

gcc gzip parser perl twolf ammp art

S
pe

ed
up

 o
ve

r n
o

va
lu

e
pr

ed
ic

tio
n

unfocused VP
oldest-uncommited
oldest-unissued
token-passing

(a) Value misspeculations. (b) Speedup of focused value prediction.

Figure 7.6: Focusing value-prediction by removing misspeculations onnon-critical instruc-
tions. (a) A critical-path predictor can significantly reduce misspeculations. (b) For most bench-
marks, the token-passing critical-path predictor delivers at least 3-times more improvement than
either of the heuristics-based predictors.

169

Figure 7.7: Illustration of interaction between load latency and the instruction window The
dashed arrow shows how some load accessEPedges andCD window edges are in series and, thus,
have the potential to interact serially (see Section 7.3.1). Note that some otherEPandCD edges are
in parallel, thus there is also potential for parallel interaction between loads and the finite window
constraint.

Figure 7.8: Speedup from increasing window size for different level-one cache latencies.As
predicted from the negative interaction cost, increasing the window size has a larger benefit when
level-one cache latencies are larger.

170

Chapter 8

Future Work: Criticality in Chip

Multiprocessors

Our work has focused primarily on analyzing and exploiting the criticality characteristics

of complex superscalar processors. There is a recent trend in microarchitecture design, however,

towards multiple simpler cores that coordinate to provide increased performance for applications.

In this chapter, I will outline some ways in which criticality can be used to improve the usabilty and

effectiveness of these chip multiprocessors.

There has been some research already that has adapted our work to the newly popular

domain. In particular, Li,et al. [61] extended our critical-path model to be applicable to parallel

multithreaded applications. They showed how analyzing thecritical path can provide insights into

how a program is performing. For example, they can identify which threads are very costly in terms

of execution time and which have slack and can be delayed.

The basic mechanism used in the work by Li,et al. was to first create a dependence

171

graph for each thread independently and then link the threads with dependence edges correspond-

ing to synchronizing communication. The extra dependence edges connect execute (E) nodes of

one application to another. Their methodology is most useful in analyzing existing multithreaded

applications to help identify where software improvementscould be made.

8.1 Software Parallelization

In the rest of this section, we outline a technique for using criticality to help with a dif-

ferent task, parallelizing a single-threaded applicationto run on multiprocessor hardware. This task

will be at the forefront of the agenda for those software engineers that want their programs to take

full advantage of chip multiprocessors. The complete task of automatically parallelizing a single-

threaded application is a very challenging unsolved problem that is beyond the scope of our work.

Nonetheless, we will show how the graph model and criticality analysis has promise for aiding

software designers in the parallelization effort. Our hopeis that the reasoning used in adapting our

graph models and applying the criticality analysis will be useful in helping future researchers and

designers in developing new techniques for chip multiprocessors.

Specifically, we will show new insights into simplified versions of the problem that may

still be realistic enough to be useful in practice. The primary simplification we impose is that no

changes to the binary are allowed. We also assume a multiscalar-like [100] execution model, where

sequential tasks are extracted from the program stream and assigned to processors that communicate

in a round-robin fashion (illustrated in Figure 8.1). For simplicity, we’ll assume the communication

is very efficient, (i.e., through direct register-register transfers and a shared cache), but the models

we describe could be altered to model longer latencies. Stated succinctly, the problem we will look

172

Figure 8.1:Assumed Execution Model.For the software parallelization case study, we assume a
Multiscalar-like execution model like the one pictured above.

at isGiven an existing binary, what are the best “cut-points” fordividing it into n threads?

There are many factors that must be considered to answer sucha question. For example,

the nature ofdata dependencesin the program will determine the inter-thread communication. Con-

trol dependencesare obviously important since they determine whether a segment of code is going

to be executed at all. Achieving properload balancingamong processors represents a host of other

challenges, such as determining the amount of work requiredto execute each thread — which is

dependent upon the execution latency of instructions, datadependences, cache behavior and branch

prediction among a myriad of other microarchitectural factors affecting performance.

One of the most useful aspects of our dependence graph abstraction of program perfor-

mance is that we do not need to model these factors separatelyin order to devise an analysis that is

faithful to all of them. Instead, the dependence graph provides most of this detailuniformlyonce an

accurate model is developed. Next we’ll discuss how it can beused for our present purpose.

173

8.1.1 Modeling multithreaded program execution

The first version of the problem we will attempt to address is atool for software engi-

neers. Assume that the programmer picks a section of code that he would like to split off as a

separate thread, say a particular subroutine call. Effectively, creating this thread involves “cutting”

the program before and after the subroutine call. Our goal will be to tell the programmer what per-

formance improvement he should expect from the specified cut, without requiring any human effort

in implementing synchronization and communication, nor any time-consuming recompilation. In

fact, we would like to know the speedup very quickly so that the programmer can try out many

alternatives until he finds one that works well.

We will use our graph model to provide such a tool. Since the models presented thus

far have been for the execution of a program on a single superscalar, out-of-order core, we need to

modify this graph so that it models the same program executing on multiple cores. Let’s start with

the simplest possible example. Assume the dynamic program execution is 1,000 instructions long

and we want to break into two 500 instruction threads for execution on two processors. How could

we use the graph to find the speedup from this optimization?

The most important property to model is that (in a multiple processor system) the two

threads can be started at the same time. In other words, instructionsi andi + 500 can be fetched

at the same time, each on its own processor. In terms of microarchitectural constraints, there is no

in-order fetch dependence betweeni andi + 500. The single-core model, however, includes such

a dependence (transitively) with theFF edges from instructioni to i + 1 to i + 2 all the way to

i + 500. To model the multithreaded execution, we need to relax thisconstraint.

The simplest way to relax the in-order fetch constraint in this instance is to remove theFF

174

Figure 8.2:Cutpoint illustration. If the eight instruction program represented by the graph above
were to be cut into two threads, one thread consisting of instructions 1,2,3,4, and 5 and a second
thread consisting of instructions 6, 7, and 8, the execution-time improvement could be measured by
removing the edges marked with an “X” and observing the resulting decrease in critical-path length.

edge from instructioni+499 to i+500. This way, the fetch node ofi+500 is “fired” immediately,

at the same time as the fetch node for instructioni. An illustration of this simple graph manipulation

is shown in Figure 8.2.

Notice how the model naturally accounts for communication between the threads: the

data dependence (EE) edges remain intact, so that the later thread will have to stall if the earlier

thread has yet to produce data that it needs. In a real system,some extra latency would result due

to this communication. We can enhance the model to account for that by increasing the weights

(a.k.a.,latencies) on the appropriateEE edges. If other chip-multiprocessor specific constraints are

175

Test the benefit of cutting the program at static PC x

1. Construct graph of the dynamic program execution on a single core.
2. Remove the FF edges immediately preceeding each instance of x.
3. Measure the critical path length. This is an estimate of the
execution time of the parallelized program.

deemed important, we could continue to tune the model to be asdetailed as needed. One of the nice

features of the model is that approximate results can be collected very easily and rapidly and then

made more precise over time as effort is expended tuning the latencies and constraints.

Using the model, it is clear how to test a programmer-specified cutpoint. For instance,

splitting off a procedure call as another thread involves making cuts before and after each dynamic

instance of that call. Thus, the first step is constructing a graph of the program executing on a

single core, which could be obtained either through shotgunprofiling or simulation. Then the graph

modification described above, removing theFF edge, would need to be performed for each cut.

The resulting critical-path length would be an estimation of the runtime of the new multithreaded

program. Since finding the critical-path length can be done rather quickly, the programmer would

be able to test out many different parallelized variations of his program. The algorithm is shown at

a high-level in Figure 8.1.1.

8.1.2 Automatic Parallelization

Above we presented a tool to help software engineers decide whether a parallelization

that they propose via intuition is indeed good for performance or not. A more challenging problem

is to come up with the thread cutpoints automatically, without human intuition. We cannot solve

that more general problem, but we will discuss in this section how interaction costs may be useful

in such an effort.

176

Let’s say we have a relatively short segment of code that is tobe divided intoN threads

for execution onN processors. The goal here is to find theN − 1 cutpoints in this segment that

would yield the highest performance possible. Stated in terms of ourcost metric, the goal is to

maximizecost({p1, p2, .., pN−1}), wherep1 to pN−1 are theFF edges to be cut in the graph.

Unfortunately, finding a set of optimal cutpoints is an NP-complete problem. We can use

interaction cost, however, to help us converge on a good, if not optimal, solution quickly. To see

how, consider the interaction cost of two cutpointsp1 andp2. If icost({p1, p2}) << 0, indicating a

serial interaction between the two cutpoints, we know that some of the benefit obtained fromp1 is

also obtained byp2. In other words, the two cutpoints are doing redundant work,eliminating many

of the same execution cycles. This behavior is probably a result of p1 andp2 being placed too close

to each other in the program stream. Another way to look at it is the thread betweenp1 andp2 is

too small relative to the other threads. A good heuristic could be designed to take advantage of this

effect, looking for serial interactions between adjacent cutpoints and moving them further apart if

the magnitude is too high.

Figure 8.3(a) shows some results from preliminary experiments measuring the distribution

of costs for every possible dynamic cutpoint. In other words, the benefit, in terms of execution time

reduction, was measured for cutting the program into two threads between every pair of consecutive

instructions in the program. If we did not have the graph, many thousand simulations would need

to be run for each benchmark to obtain the same results.

The results indicate that relatively few cutpoints yield substantial execution time savings.

In fact, for most benchmarks, greater than 70% of the possible cutpoints yield benefits of less than

10 cycles. This suggests that a cost-sensitive policy for choosing cutpoints may be important for

177

(a) (b)

Figure 8.3:Distribution of execution-time reduction from cutpoints. The cumulative distribution
shown in the charts is the mirror image of how they are often displayed. In other words, from (a),
for all benchmarks, greater than 75% of the dynamic cutpoints improve performance by less than 20
cycles. (a) is the cost distribution observed from cutting a program into two threads between each
pair of consecutivedynamicinstructions.(b) Speedup from parallelizing a program for a machine
with two processors. Thefixed-intervalpolicy creates a cutpoint every100 dynamic instructions.
The simple cost-basedpolicy picks as a cutpoint the dynamic instruction with the highest single-
ton cost (ignoring interactions) in every100 instruction interval. The purpose of this experiment
is to show that cost-sensitive policies for parallelizing applications can be beneficial. Due to the
simplicity of the policy, however, it does not provide much insight into the best achievable speedup.

178

achieving the best performance.

As a crude test of this hypothesis, Figure 8.3(b) shows the speedup obtained from paral-

lelizing the benchmarks using two different policies, one where a cut in the program was made every

100 dynamic instructions and another where a cut was made at the highest singleton cost within each

100 dynamic-instruction interval. Thus, both policies createthe same number of threads for each

benchmark. The cost-sensitive policy achieved1.5–7 times the speedup of the fixed-interval policy.

8.2 Summary

Although the bulk of our work has focused on complex superscalar processors, our criti-

cality techniques are not limited to only this style of processor implementation. In this chapter, we

illustrated how our dependence graph and criticality analysis could be adapted for one architectural

style that is gaining in popularity: chip multiprocessors.There is a lot of work to do beyond what

is presented here to fully adapt our technology, but we hope that this chapter gave a reasonable

introduction as to how that work might proceed.

179

Chapter 9

Conclusions and Future Work

Our work set out to deal with the inadequacy of event counts for judging performance,

both in optimizations and pure analysis. We quickly realized that the key ingredient to a performance

analysis methodology for parallel microarchitectures is an understanding of the critical path through

a program execution. Once you have the fundamental understanding of what the critical path is and

how to measure it, a remarkably large class of performance analysis questions can be answered.

Of course, the critical path has long been used by compiler writers and others as an aid

in making optimization decisions. In these cases, the critical path was found on a graph consisting

of instructions interconnected by data dependences. This paradigm of thinking of nodes as instruc-

tions and edges as data dependences inhibited architects from effectively exploiting the critical path

through microprocessor program executions. Intuitively,it was clear that there existed limiters to

performance other than data dependences, but it wasn’t clear how to deduce a global critical path

that included them. Our insight of breaking a program’s execution into smaller bits than just in-

structions enabled a more complete modeling of performance.

180

In this thesis, we attempted to lay the groundwork for a successful performance analysis.

Nonetheless, there are still many topics that merit furtherexploration. Below we discuss a few

potential research projects.

Modeling and Queuing Theory. Certain types of hardware resources for which an instruction

could use any one of many, such as functional units, cause modeling difficulties using our tech-

niques. We discussed some possible work-arounds for this problem in Chapter 3, but a complete

solution probably requires incorporating new ideas from another domain, perhaps queuing theory.

Our preliminary work in this area revealed that it may be a very difficult task, since a standard

memoryless queue did not provide any increased accuracy.

Automatic Model Deduction. In this thesis, all of the graph models have been constructedby

hand, using our human intuition. Since this procedure requires not only knowledge of the processor

but also understanding of how to use a graph to model various features, a better solution would be

to deduce the model automatically from a specification. Thisspecification should be of a standard

format that designers are naturally accustomed to using during their normal design effort. In fact,

some work has attempted to deduce a model directly from the RTL specification [16]. While this

may be useful, the models constructed from RTL may be too dense for many practical purposes.

A higher-level specification language that could be used even in early stages of the research and

design process would ease the use of our criticality analysis.

Criticality in Other Domains. Our basic graphical analysis and metrics, including the character-

ization of interactions, is applicable to any parallel system, not just complex microarchitectures. We

discussed some preliminary work on applying these techniques to chip multiprocessors in Chapter 7.

181

Previous work, discussed in Chapter 2, used the critical path to profile performance at a higher-level

of abstraction, useful to programmers [61]. Many other domains might also benefit from this form

of analysis as well. For example, network protocols might beoptimized by measuring interaction

costs of communication during typical patterns of use.

Application-Specific Analyzers. The work by Sasanka,et al. [87] used a token-passing hardware

structure similar but simpler than our token-passing criticality analyzer for the very specific task of

resizing the instruction window. The advantage of this application-specific approach is not just a

simpler implementation, however. Sasanka,et al.’s work actually computes a reasonable approx-

imation of thecost (as opposed to just criticality) of the instruction window.As we discussed in

Chapter 6, building a general hardwarecostestimator seems intractable, but it may be possible to

do so on a limited basis for specific applications. For example, it would be very useful to have

a hardware mechanism that could estimate thecost and interactions of cache misses (or branch

mispredicts.)

Predictors for Fetch and Commit Criticality. The token-passing analyzer was meant primarily

to detect the criticality of execute (orE) nodes, as opposed to fetch (F), commit (C), or nodes

representing other micro-operations. There are many possible optimizations that target these other

stages of instruction processor, however, and criticalitycould help guide them. For example, the

limited space available in a trace cache could be more effectively utilized by storing critical fetch

blocks. In fact, a frontend mechanism more effective than a pure trace cache may be possible if we

can identify those fetch blocks that must be fetched quicklyversus those that can be delayed.

In principle, the token-passing analyzer that works forE nodes also works for any of the

182

other nodes — all that is necessary is to plant a token into whatever node that should be tested for

criticality. The analyzer is just as effective at detectingwhether anF or C node is critical as it is

for E nodes. The problem arises when attempting to predict criticality of future nodes based on

past detections. We have observed thatF andC criticality do not experience the same type of static

instruction “locality” as do theE nodes. In other words, the typical approach of training a predictor

that is indexed by PC does not work well.

A solution will likely have to rely on the characteristics ofprogram executions peculiar

to the specific micro-operations that are targeted. For example, we have noticed that fetch nodes

are most often critical after disruptions in the program stream, such as those caused by branch

mispredictions and, to a lesser extent, fetch stalls due to afull instruction window. Furthermore,

we have found that the number of consecutive critical fetch nodes after a branch misprediction does

have static instruction locality. In other words, when a dynamic instance of a particular static branch

instruction is mispredicted, the length of the resulting critical chain ofF nodes is fairly similar in

length to that resulting from other mispredicted dynamic instances of the same static instruction.

Recording this length could form the basis of an effective fetch node criticality predictor.

Using Interaction Costs. While we provided some heuristics and illustrated how to interpret and

use interaction costs in this thesis, we still left much to beexplored. In particular, we have found

it challenging in practice to pick the correct interactionsto measure. It’s also difficult to reason

intuitively about interactions between more than two events. This space provides ample room for

new graph and, perhaps, data mining algorithms to extract useful information automatically.

183

Criticality in Configurable Hardware. In this thesis, we have assumed the traditional restric-

tions as to what is feasible to be done in hardware and these restrictions have formed the basis for

our hardware/software boundaries. In particular, much care was taken to reduce the hardware re-

quirements for the shotgun profiler. These simplifications sacrificed some amount of accuracy in

the outcome of the criticality analysis in exchange for a feasible implementation.

Configurable hardware, such as the FPGAs common in ASIC development, present a

different environment for deciding the hardware/softwareboundary. The fluidity of the hardware

allows more or fewer transistors to be dedicated to analysisdepending upon what is desired at

different phases of ASIC development. For instance, while the most time-consuming portions of

the application are being optimized, much of the chip real estate could be devoted to providing

very accurate analysis. The most natural way to use the extratransistors would be to construct very

accurate graphs by monitoring all (or most) of the dynamic operations as they occur. If it is not

possible to record statistics for each dynamic instructionin a long stream, the extra transistors could

still be used to increase the accuracy of the shotgun profilerby increasing the number of samples

recorded.

A second way those extra transistors could be used is to compute the desired metrics in the

hardware itself. For example, the effectively linear time algorithm used to compute the cost of each

individual edge in a graph (see Section 5.3) could be implemented directly in the hardware. The

advantage of this approach is that less information would need to be communicated to some external

source for analysis, assuming that the result of the analysis is more compact than the information

required to construct the graph. The hardware/software tradeoffs in this environment could be an

interesting research topic.

184

Using Criticality in FPGA emulators. The advantages of the flexibility of configurable hardware

in producing accurate analysis can be extended even to nonconfigurable processors by employing a

system such as in the RAMP project [6]. This approach uses configurable hardware (e.g.,FPGAs)

to model the functional and performance characteristics ofnonconfigurable processors. Although

the timing characteristics of FPGAs differs from custom hardware, emulation or scaling of latencies

can be used to mimic the behavior of a full custom chip.

Our dependence graph and criticality analysis work very well with such a system. For the

simplest example, the critical path through our dependencegraph is equal to the execution time of

the program. Thus, the dependence graph, along with the last-arriving rule, tells us exactly what the

hardware needs to keep track of in order to report execution time accurately.

Perhaps more interestingly, however, the dependence graphprovides a framework for how

to report performance information back to the user of the system. In a typical software simulator,

many (often redundant) performance counters are used to gain a sense of not only how well hardware

performed but also why it performed the way it did. The dependence graph makes it easier to

determine the minimal amount of information that must be extracted from an emulator in order to

provide the user of the system a complete picture of performance. That dependence graph can be

constructed using a technique such as the shotgun profiler, whose accuracy is tunable by increasing

the number of samples that are captured.

Summary. In this dissertation, we have a provided a framework and tools to model, measure

and interpret the criticality (cost, slack, and interaction) characteristics of program executions.

We have also developed hardware support for detecting and predicting critical-path instructions

and their slack for use in online optimizations. Finally, wehave proposed a profiler to replace or

185

enhance traditional hardware performance counters — enabling sophisticated criticality analysis of

real programs. There are many ways that the framework and hardware structures could be improved

further, but perhaps the most exciting prospect is to use theexisting tools for optimizations and

analysis applications beyond the case studies explored in our work. As of the writing of this thesis,

some researchers have already begun to do so, but there is much more to be explored.

186

Bibliography

[1] Sixth International Symposium on High-Performance Computer Architecture, Toulouse,

France, Jan.

[2] V. Agarwal, M.S. Hrishikesh, S. Keckler, and D. Burger. Clock rate versus ipc: The end of

the road for conventional microarchitectures. In27th International Symposium on Computer

Architecture (ISCA’00), Vancouver, June 10–14 2000.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSson a modern processor:

Where does time go? In Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stan-

ley B. Zdonik, and Michael L. Brodie, editors,Twenty-fifth International Conference on Very

Large Databases, Edinburgh, Scotland, UK, 7–10 September,1999, pages 266–277, Los Al-

tos, CA 94022, USA, 1999. Morgan Kaufmann Publishers.

[4] A. R. Alameldeen, C. J. Mauer, M. Xu, M.M.K. Martin P. J. Harper, D. J. Sorin, M. D. Hill,

and D. A. Wood. Evaluating non-deterministic multi-threaded commercial workloads. In

Computer Architecture Evaluation using Commercial Workloads (CAECW ’02) in conjunc-

tion with HPCA ’02, February 2002.

[5] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S. A. Leung, R. L.

187

Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl.Continuous profiling: Where

have all the cycles gone?ACM Transactions on Computer Systems, Nov 1997.

[6] Arvind, K. Asanovic, D. Chiou, J.C. Hoe, C. Kozyrakis, S.L. Lu, M. Oskin, D. Patterson,

J. Rabaey, and J. Wawrzynek. Ramp: Research accelerator formultiple processors - a com-

munity vision for a shared experimental parallel hw/sw platform. Technical report, 2006.

[7] T. M. Austin and G. S. Sohi. Dynamic dependency analysis of ordinary programs. InThe

19th International Symposium on Computer Architecture (ISCA), pages 342–351, 1992.

[8] R. Iris Bahar and Srilatha Manne. Power and energy reduction via pipeline balancing. In

28th International Symposium on Computer Architecture, pages 218–229, Göteborg, Swe-

den, June30–July4, 2001. IEEE Computer Society and ACM SIGARCH.

[9] T. Ball and J. R. Larus. Efficient path profiling. In29th International Symposium on Mi-

croarchitecture, pages 46–57, 1996.

[10] A. Baniasadi and A. Moshovos. Instruction distribution heuristics for quad-cluster,

dynamically-scheduled superscalar processors. In33th International Symposium on Microar-

chitecture, Dec 2000.

[11] P. Barford and M. Crovella. Critical path analysis of tcp transactions. InProceedings of ACM

SIGCOMM 2000, January 2000.

[12] L. Barroso, K. Gharachorloo, and F. Bugnion. Memory system characterization of commer-

cial workloads. In25th International Symposium on Computer Architecture (ISCA-98), pages

3–14, New York, June 27–July 1 1998.

188

[13] E. Borch, E. Tune, B. Manne, and J. Emer. Loose loops sinkchips. In8th International

Symposium on High-Performance Computer Architecture, Feb 2002.

[14] E. L. Boyd and E. S. Davidson. Hierarchical performancemodeling with MACS: A case

study of the Convex C-240. In20th International Symposium on Computer Architecture,

May 1993.

[15] M. D. Brown, J. Stark, and Y. N. Patt. Select-free instruction scheduling logic. In34th

International Symposium on Microarchitecture, pages 204–213, Austin, Texas, December1–

5, 2001. IEEE Computer Society TC-MICRO and ACM SIGMICRO.

[16] M. Budiu, P. V. Artigas, and S. C. Goldstein. Dataflow: A complement to superscalar. In

IEEE International Symposium on Performance Analysis of Systems and Software, March

2005.

[17] Mihai Budiu, Pedro Artigas, and Seth Copen Goldstein. Dataflow: A complement to super-

scalar. InIEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS), pages 177–186, Austin, TX, March 2005.

[18] D. C. Burger and T. M. Austin. The simplescalar tool set,version 2.0. Technical Report

CS-TR-1997-1342, University of Wisconsin, Madison, Jun 1997.

[19] B. Calder, G. Reinman, and D. Tullsen. Selective value prediction. In26th International

Symposium on Computer Architecture, May 1999.

[20] J. Casmira and D. Grunwald. Dynamic instruction scheduling slack. InKool Chips Workshop

in conjunction with MICRO 33, Dec 2000.

189

[21] Y. Chin, J. Sheu, and D. Brooks. Evaluating techniques for exploiting instruction slack. In

International Conference on Computer Design, October 2004.

[22] Y. Chou and J. P. Shen. Instruction path coprocessors. In 27th International Symposium

on Computer Architecture, pages 270–281, Vancouver, British Columbia, June12–14, 2000.

IEEE Computer Society and ACM SIGARCH.

[23] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y. Lee, D. Lavery, and J. P. Shen. Specula-

tive precomputation: Long-range prefetching of delinquent loads. In28th International Sym-

posium on Computer Architecture, pages 14–25, Göteborg, Sweden, June30–July4, 2001.

[24] Intel Corporation. Vtune: A visual tuning environment.

http://support.intel.com/support/performancetools/vtune/.

[25] Intel Corporation. Intel Itanium 2 processor reference manual for software development and

optimization. Apr 2003.

[26] Intel Corporation. Intel Pentium 4 processor manual. In

[http://developer.intel.com/design/pentium4/manuals/] , 2003.

[27] D. Crowe, G. A. Muthler, S. J. Patel, and Steven S. Lumetta. Instruction fetch deferral using

static slack, January 30 2002.

[28] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos. ProfileMe: Hard-

ware support for instruction-level profiling on out-of-order processors. In30th International

Symposium on Microarchitecture, Dec 1997.

[29] A. El-Moursy, R. Garg, D.H. Albonesi, and S. Dwarkadas.Partitioning multi-threaded pro-

190

cessors with a large number of threads. InInternational Symposium on Performance Analysis

of Systems and Software, March 2005.

[30] D. Ernst and T. Austin. Efficient dynamic scheduling through tag elimination. In29th Annual

International Symposium on Computer Architecture, pages 37–46, 2002.

[31] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. J. Patel, and S. S. Lumetta.

Performance characterization of a hardware mechanism for dynamic optimization. In34th

International Symposium on Microarchitecture, Dec 2001.

[32] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The multicluster architecture: Reducing

cycle time through partitioning. In30th International Symposium on Microarchitecture, pages

149–159, Los Alamitos, December 1–3 1997.

[33] B. Fields, R. Bodı́k, and M. D. Hill. Slack: Maximizing performance under technological

constraints. In29th International Symposium on Computer Architecture, May 2002.

[34] B. Fields, S. Rubin, and R. Bodı́k. Focusing processor policies via critical-path prediction.

In 28th International Symposium on Computer Architecture, Jun 2001.

[35] B. A. Fields, Rastislav Bodik, Mark D. Hill, and Chris J.Newburn. Using interaction costs

for microarchitectural bottleneck analysis. In36th International Symposium on Microarchi-

tecture, Dec 2003.

[36] B. A. Fields, Rastislav Bodik, Mark D. Hill, and Chris J.Newburn. Interaction cost and

shotgun profiling.ACM Transactions on Architecture and Compiler Optimization, 2004.

[37] B. A. Fields, Rastislav Bodik, Mark D. Hill, and Chris J.Newburn. Interaction cost: For

191

when event counts just don’t add up.IEEE Micro Special Issue: Micro’s Top Picks from

Microarchitecture Conferences, 2004.

[38] Brian A. Fields.Using Criticality To Attack Performance Bottlenecks. PhD thesis, University

of California—Berkeley, December 2006.

[39] B. R. Fisk and R. I. Bahar. The non-critical buffer: Using load latency tolerance to improve

data cache efficiency. Oct 1999.

[40] R. D. Fleischmann et al. Whole-genome random sequencing and assembly of haemophilus-

influenzae.Science, 269:496–512, 1995.

[41] D. Folegnani and Antonio González. Energy-efficient issue logic. In28th International

Symposium on Computer Architecture, July.

[42] F. Gabbay and A. Mendelson. The effect of instruction fetch bandwidth on value prediction.

In 25th International Symposium on Computer Architecture (ISCA-98), volume 26,3 ofACM

Computer Architecture News, pages 272–281, New York, June 27–July 1 1998. ACM Press.

[43] S. Ghiasi, J. Casmira, and D. Grunwald. Using ipc variation in workloads with externally

specified rates to reduce power consumption. InWorkshop on Complexity-Effective Design

in conjunction with ISCA 2000, Vancouver, British Columbia, June 2000. IEEE Computer

Society and ACM SIGARCH.

[44] J. González and A. González. The potential of data value speculation to boost ILP. In

International Conference on Supercomputing, pages 21–28, Melbourne, Australia, July13–

17, 1998. ACM SIGARCH.

192

[45] J. González and A. González. Control-flow speculation through value prediction for super-

scalar processors. In1999 International Conference on Parallel Architectures and Compila-

tion Techniques (PACT ’99), pages 57–65, Newport Beach, California, October12–16, 1999.

IEEE Computer Society Press.

[46] L. Gwennap. Digital 21264 sets new standard.Microprocessor Report, 10:9–15, October

1996.

[47] A. Hartstein and T. R. Puzak. The optimum pipeline depthfor a microprocessor. In29th

International Symposium on Computer Architecture, 2002.

[48] J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative Approach. Mor-

gan Kaufmann Publishers, Los Altos, CA,3rd edition, 2002.

[49] John L. Hennessy and David A. Patterson.Computer Architecture — A Quantitative Ap-

proach. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 1990.

[50] J. K. Hollingsworth. Critical path profiling of messagepassing and shared-memory programs.

IEEE Transactions on Parallel and Distributed Systems, 9(10), October 1998.

[51] J. K. Hollingsworth and B. P. Miller. Parallel program performance metrics: A comparison

and validation. InProc. Supercomputing, Nov 1992.

[52] M. Horowitz and K. Mai R. Ho. The future of wires. InSemiconductor Research Corporation

Workshop on Interconnects for System on a Chip, May 1999.

[53] M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W. Keckler, and P. Shivakumar.

193

The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays. In29th International

Symposium on Computer Architecture, 2002.

[54] Raj Jain.The Art of Cumpter Systems Performance Analysis. Wiley Professional Computing,

1991.

[55] M. Johnson and K. Roy. Optimal selection of supply voltages and level conversions dur-

ing data path scheduling under resource constraints. InIEEE International Conference on

Computer Design: VLSI in Computers and Processors, pages 72–77, Washington - Brussels

- Tokyo, October 1996. IEEE Computer Society.

[56] I. Kadayif and M. T. Kandemir. An integer linear programming based approach for par-

allelizing applications in on-chip multiprocessors. InDesign Automation Conference, Jun

2002.

[57] T. Karkhanis and J. E. Smith. A first-order superscalar processor model. In31st International

Symposium on Computer Architecture, Jun 2004.

[58] G. Kemp and M. Franklin. Pews: A decentralized dynamic scheduling algorithm for ilp

processing. InInternational Conference on Parallel Processing, pages 239–246, Aug 1996.

[59] D. R. Kerns and S. J. Eggers. Balanced scheduling: instruction scheduling when memory

latency is uncertain.ACM SIGPLAN Notices, 28(6):278–289, June 1993.

[60] M. S. Lam and R. P. Wilson. Limits of control flow on parallelism. InThe19th International

Symposium on Computer Architecture (ISCA), pages 46–57, 1992.

[61] T. Li, A.R. Lebeck, and D. J. Sorin. Quantify instruction criticality for shared memory

194

multiprocessors. In25th Symposium on Parallelism in Algorithms and Architectures, June

2003.

[62] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limitvia value prediction. In29th

International Symposium on Microarchitecture, pages 226–237, Paris, France, December2–

4, 1996.

[63] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limitvia value prediction. In29th

International Symposium on Microarchitecture, Dec 1996.

[64] D. Marculescu. Application adaptive energy efficient clustered architectures. InInternational

Symposium on Low Power Electronics and Design, August 2004.

[65] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty,J. A. Miller, and M. Upton. Hyper-

threading techonology architecture and microarchitecture. Intel Technology Journal, 6:4–15,

February 2002.

[66] B. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S.Lim, and T. Torzewski. IPS-2: The

second generation of a parallel program measurement system. IEEE Trans. Parallel and

Distributed Syst., 1(2):206–217, 1990.

[67] V. S. Pai and S. Adve. Code transformations to improve memory parallelism. In32nd

International Symposium on Microarchitecture, pages 147–155, Haifa, Israel, November16–

18, 1999.

[68] V. S. Pai, P. Ranganathan, and S. V. Adve. The impact of instruction-level parallelism on

multiprocessor performance and simulation methodology. In 3rd International Symposium

on High Performance Computer Architecture, Feb 1997.

195

[69] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar processors. In

24th International Symposium on Computer Architecture, pages 206–218, 1997.

[70] S. Patel, M. Evers, and Y. Patt. Improving trace cache effectiveness with branch promotion

and trace packing. In25th International Symposium on Computer Architecture, Jun 1998.

[71] V. Petric and A. Roth. Energy aspects of pre-execution and energy-aware p-thread selection.

In 32th International Symposium on Computer Architecture, June 2005.

[72] V. Petric, T. Sha, and A. Roth. Reno: A rename-based instruction optimizer. In32th Inter-

national Symposium on Computer Architecture, June 2005.

[73] R. Pyreddy and G. Tyson. Evaluating design tradeoffs indual speed pipelines. InWorkshop

on Complexity-Effective Design in conjunction with ISCA 2001, Goteborg, Sweden, June

2001. IEEE Computer Society and ACM SIGARCH.

[74] R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling highly concurrent multi-

threaded execution. In34th International Symposium on Microarchitecture, December 2001.

[75] R. Rakvic, B. Black, D. Limaye, and J. P. Shen. Non-vitalloads. In8th International Sym-

posium on High-Performance Computer Architecture, Feb 2002.

[76] R. Rakvic, B. Black, D. Limaye, and J.P. Shen. Non-vitalloads. In8th International Sympo-

sium on High-Performance Computer Architecture, February 2002.

[77] Ryan Rakvic, Deepak Limaye, and John P. Shen. Non-vitalloads. Technical Report

CMuART-2000-02, Carnegie Mellon University, 2000.

196

[78] P. Ramarao. An adiabatic framework for a low energy u-architecture and compiler. InWork-

shop on Interaction Between Compilers and Computer Architecture, July 2003.

[79] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso. Performance of database

workloads on shared-memory systems with out-of-order processors. Oct 1998.

[80] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta. The impact of archi-

tectural trends on operating system performance. In15th Symposium on Operating Systems

Principles, Dec 1995.

[81] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: Alow latency approach to high band-

width instruction fetching. In29th International Symposium on Microarchitecture, pages

24–34, Paris, France, December2–4, 1996.

[82] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace processors. In30th IEEE/ACM

International Symposium on Microarchitecture (MICRO-97), pages 138–148, Los Alamitos,

December 1–3 1997.

[83] A. Roth and G.S. Sohi. Speculative data-driven sequencing for imperative programs. Tech-

nical Report CS-TR-2000-1411, University of Wisconsin, Madison, February 2000.

[84] A. Roth and G.S. Sohi. Speculative data-driven multithreading. In7th International Sympo-

sium on High-Performance Computer Architecture, Jan 2001.

[85] P. Salverda and C. Zilles. A criticality analysis of clustering in superscalar processors. In

38th International Conference on Microarchitecture, Dec 2005.

[86] K. Sankaralingam, R. Nagarajan, D.C. Burger, and S.W. Keckler. A design space evaluation

197

of grid processor architectures. In34th IEEE/ACM International Symposium on Microarchi-

tecture (MICRO-01), Austin, TX, December 2001.

[87] R. Sasanka, C. J. Hughes, and S. V. Adve. Joint local and global hardware adaptations

for energy. In10th International Conference on Architectural Support for Programming

Languages and Operating Systems, Oct 2002.

[88] T. Sato and I. Arita. Energy reduction via critical pathprediction. In Workshop on

Complexity-Effective Design, May 2002.

[89] M. Schlansker and V. Kathail. Acceleration of algebraic recurrences on processors with

instruction level parallelism. technical report HPL-93-55, HP Laboratories, 1993.

[90] M. Schlansker and V. Kathail. Acceleration of first and higher order recurrences on proces-

sors with instruction level parallelism. In Uptal Banerjee, David Gelernter, Alex Nicolau,

and David Padua, editors,6th International Workshop on Languages and Compilers for Par-

allel Computing, Lecture Notes in Computer Science, pages 406–429, Portland, Oregon,

August12–14, 1993. Intel Corp. and the Portland Group, Inc., Springer-Verlag.

[91] M. Schlansker and V. Kathail. Techniques for critical path reduction of scalar programs.

International Journal of Parallel Programming, 25(3):147–181, June 1997.

[92] M. Schlansker, V. Kathail, and S. Anik. Height reduction of control recurrences for ILP

processors. In27th International Symposium on Microarchitecture, pages 40–51, San Jose,

California, November30–December2, 1994.

[93] M. Schlansker, V. Kathail, and S. Anik. Parallelization of control recurrences for ILP pro-

cessors.International Journal of Parallel Programming, 24(1):65–102, February 1996.

198

[94] M. Schlansker, S. Mahlke, and R. Johnson. Control CPR: Abranch height reduction opti-

mization for EPIC architectures. InACM SIGPLAN ’99 Conference on Programming Lan-

guage Design and Implementation, pages 155–168, 1999.

[95] G. Semeraro, G. Magklis, R. Balasubramonian, D.H. Albonesi, S. Dwarkadas, and M.L.

Scott. Energy-efficient processor design using multiple clock domains with dynamic volt-

age and frequency scaling. In8th International Symposium on High-Performance Computer

Architecture, Feb 2002.

[96] J. S. Seng, E. S. Tune, and D. M. Tullsen. Reducing power with dynamic critical path infor-

mation. In34th International Symposium on Microarchitecture, Dec 2001.

[97] J. S. Seng, E. S. Tune, and D. M. Tullsen. Reducing power with dynamic critical path infor-

mation. In34th International Symposium on Microarchitecture, Dec 2001.

[98] J.E. Smith. Instruction level distributed processing. In 7th International Conference on High

Performance Computing, Dec 2000.

[99] A. Sodani and G. S. Sohi. Dynamic instruction reuse. In24th International Symposium on

Computer Architecture, 1997.

[100] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. InProc. of the

22nd International Symposium on Computer Architecture (22nd ISCA’95), pages 414–425,

Santa Margherita, Italy, June 1995. Published as Proc. of the 22nd International Symposium

on Computer Architecture (22nd ISCA’95) ACM SIGARCH Computer Architecture News,

volume 23, number 6.

199

[101] E. Sprangle and D. Carmean. Increasing processor performance by implementing deeper

pipelines. In29th International Symposium on Computer Architecture, 2002.

[102] B. Sprunt. Pentium 4 performance-monitoring features. IEEE Micro, Jul 2002.

[103] S. T. Srinivasan, R. Dz ching Ju, A. R. Lebeck, and C. Wilkerson. Locality vs. criticality. In

28th International Symposium on Computer Architecture, Jun 2001.

[104] S. T. Srinivasan and A. R. Lebeck. Load latency tolerance in dynamically scheduled proces-

sors. In31st International Symposium on Microarchitecture, Nov 1998.

[105] S.T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Continual flow pipelines.

In 11th International Conference on Architectural Support for Programming Languages and

Operating Systems, Oct 2004.

[106] J. Stark, P. Racunas, and Y. N. Patt. Reducing the performance impact of instruction cache

misses by writing instructions into the reservation stations out-of-order. In30th IEEE/ACM

International Symposium on Microarchitecture (MICRO-97), pages 34–45, Los Alamitos,

December 1–3 1997.

[107] J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry. A scalable

approach to thread-level speculation. In27th International Symposium on Computer Archi-

tecture, Jun 2000.

[108] N. Tuck and D. M. Tullsen. Multithreaded value prediction. In11th International Symposium

on High-Performance Computer Architecture, February 2005.

200

[109] D. Tullsen and B. Calder. Computing along the criticalpath. Technical report, University of

California, San Diego, Oct 1998.

[110] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamicprediction of critical path in-

structions. In7th International Symposium on High-Performance Computer Architecture,

Jan 2001.

[111] E. Tune, D. Tullsen, and B. Calder. Quantifying instruction criticality. In11th International

Conference on Parallel Architectures and Compilation Techniques, Sep 2002.

[112] Kimiyoshi Usami, Mutsunori Igarashi, Takashi Ishikawa, Masahiro Kanazawa, Masafumi

Takahashi, Mototsugu Hamada, Hideho Arakida, Toshihiro Terazawa, and Tadahiro Kuroda.

Design methodology of ultra low-power MPEG4 codec core exploiting voltage scaling tech-

niques. In1998 Conference on Design Automation (DAC-98), pages 483–488, Los Alamitos,

CA, June15–19 1998. ACM/IEEE.

[113] K. Wang and M. Franklin. Highly accurate data value prediction using hybrid predictors.

In 30th IEEE/ACM International Symposium on Microarchitecture (MICRO-97), pages 281–

291, Los Alamitos, December 1–3 1997.

[114] J. Weber and E. Myers. Human whole genome shotgun sequencing. InGenome Research,

pages 401–409, 1997.

[115] Jerome D. Wiest and Ferdinand K. Levy.A Management Guide to PERT/CPM. Prentice-Hall,

1974.

[116] K. Wilcox and S. Manne. Alpha processors: A history of power issues and a look into the

future. InCool-Chips Tutorial in cunjunction with MICRO 1999., Nov 1999.

201

[117] J. J. Yi, D. J. Lilja, and D. M. Hawkins. A statisticallyrigorous approach for improving

simulation methodology. In9th International Symposium on High Performance Computer

Architecture, Feb 2003.

[118] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Speculativetechniques for improving load

related instruction scheduling. In26th International Symposium on Computer Architecture,

page ???, June 1999.

[119] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance analysis using the MIPS

R10000 performance counters. InSupercomputing ’96, 1996.

[120] W Zhang, N Vijaykrishnan, M Kandemir, M.J. Irwin, D. Duarte, and Y-T. Fai. Exploiting

vliw schedule slacks for dynamic and leakage energy reduction. InTo Appear in 34th Inter-

national Symposium on Microarchitecture, Austin, Texas, December 2001. IEEE Computer

Society and ACM SIGARCH.

[121] Q. Zhao and D.J. Lilja. Using compiler-generated approximate critical path information to

prioritise instructions for value predictions.Computers and Digital Techniques, 151(5), 2004.

[122] C. Zilles and G. S. Sohi. Understanding the backward slices of performance degrading in-

structions. In27th International Symposium on Computer Architecture (ISCA’00), Vancou-

ver, June 10–14 2000.

[123] C. B. Zilles and G. S. Sohi. Understanding the backwardslices of performance degrading

instructions. In27th International Symposium on Computer Architecture, pages 172–181,

Vancouver, British Columbia, June12–14, 2000.

202

[124] C.B. Zilles and G.S. Sohi. A Programmable Co-processor for Profiling. Jan 2001. Proc. 7th

International Symposium on High Performance Computer Architecture.

[125] C.B. Zilles and G.S. Sohi. Execution-based Prediction Using Speculative Slices. July 2001.

Proc. 28th International Symposium on Computer Architecture.

