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Abstract

Using Criticality

To Attack Performance Bottlenecks

by

Brian Allen Fields

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Rastislav Bodik, Chair

We observe that the challenges software optimizers andoarichitects face every day
boil down to a single problem: bottleneck analysis. A boitlek is any event or resource that
contributes to execution time, such as a critical cache orisgindow stall. Tasks such as tuning
processors for energy efficiency and finding the right loadprefetch all require measuring the
performance costs of bottlenecks.

In the past, simple event counts were enough to find the irmpbbottienecks. Today, the
parallelism of modern processors makes such analysis muacé difficult, rendering traditional
performance counters less useful. If two microarchitedtavents (such as a fetch stall and a cache
miss) occur in the same cycle, which event should we blaméorcycle? What cost should we
assign to each event?

In this work, we propose a new way of thinking about perforogathat employs global



view of program execution to determine theticality of program events. With the new-found
understanding that a rigorous notion of criticality prag¢dwe can correctly identify which events
are bottlenecks, something that is not generally possilitle @vent counts alone. Our work goes
even further, however. We can also quantify how much a paatidottleneckcoststo execution
time, how muchslack a non-bottleneck event has, as well as how the cost and sfackiltiple
eventsinteractwith each other.

This thesis makes the following key contributions:

e Fundamental metrics. We have gleaned from the seemingly diverse space of perfarera
related problems a few fundamental requirements of a paence analysis methodology for

modern machines: measuring and interpretingt, slack, and interactions.

e Modeling. We have shown how to construct dependence-graph modelbleaggaepresent-

ing the critical path of modern, parallel machines.

e Measuring. We have developed software algorithms for efficiently cotmguthe cost,

slack, and interactions for large numbers of micro-operations.

¢ Interpreting. We have characterized the types of interactions that arsitgesand shown

how they can be exploited in design and optimizations.

e Hardware Support. We have developed inexpensive hardware capable of megatritia
cality online and proposed a profiling infrastructure (emtiag performance counters) that
enables measuring of the more sophisticated, slack, and interaction metrics for real pro-

gram executing on real machines.



e Case Studies.We have illustrated through case studies how our performanalysis tech-

nology can tackle some of the problems that face architextoptimizers.

While this thesis focuses on microprocessors, many of ttienigues are applicable to
parallel systems in general. To illustrate the generality,briefly illustrate how to model a chip
multiprocessor using our dependence-graph abstractioice @e graph is constructed, all of the

criticality metrics discussed throughout the thesis cambasured and interpreted.

Professor Rastislav Bodik
Dissertation Committee Chair
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Chapter 1

Introduction

During the design and optimization of a microprocessor, ghmtessential question is
“Where have all the cycles gone?” The answer is they've gorimttlenecksand designers will
spend many months simply identifying the bottleneakg.(limited fetch bandwidth or a too small
instruction window) of current processors in preparationdesigning a new one. Furthermore,
optimization systems (such as compilers or cache-linesfireérs) must judiciously choose which
bottlenecks to target since most optimizations involvefficdit tradeoff between their benefit and
the overhead they incur.

Despite its importance, bottleneck analysis has not keg# path the increasing perfor-
mance complexity of computer systems. The predominant tdramalysis employed today, based
on event countge.g.,number of cache misses), was invented at a time when prosessoe sim-
ple pipelines, which means they executed one instructica tahe and did so in program order.
Today, even high latency events, such as cache misses, haghtno effect on performance due

to parallel execution with other instructions. In fact, wavé found that the effective performance



cost of individual cache misses and branch mispredicts d#ar By over an order of magnitude.
This observation points to a limitation of event counts: Wi@od is a cache-miss count if we don’t
know how costly those cache misses are?

In this work, we propose a new way of thinking about perforosathat employs global
view of program execution to determine ttwdticality of program events. By measuring criticality,
we can correctly ascertain what events in a complex, paraileroprocessor are bottlenecks and

which could be delayed without any performance harm.

1.1 Why Existing Analysis is Inadequate

Before describing our proposal, however, let's take a clasek at why existing perfor-
mance analysis is inadequate for modern machines. Theilgigvaerformance analysis is often
ineffective at answering questions important to desigaeid programmers. The problem is that
current analyses — designed for simple in-order pipelinebave been outgrown by complex ar-
chitectures that exploit parallelism aggressively. Toarmathnd why, consider a typical equation

used in Hennessey and Patterson’s textbook [48] (Figude 5.9

CPU execution time = (CPU clock cyclasMemory stall cycles)x Clock cycle time
Memory stall clock cycles = Number of missgsMiss penalty

wheremiss penaltys usually defined as miss latency.

This equation typifiesvent-count analysisvhere the contribution of a processor resource
(in this case, the memory hierarchy) is obtained by countivggnumber of eventse(g., cache
misses) and multiplying by the latency of the evang(,miss penalty). While such equations work
well for a simple in-order processor, they can be inaccuiatenachines that exploit significant

parallelism,e.qg.,out-of-order or multiple-core processors.



Considering the simple example of a nonblocking cache ngusvo cache misses to
execute completely (or partly) in parallel. The above eiguatvould attribute two miss latencies to
memory stall cycles, when, in reality, one latency was “frbecause it was hidden under the other
latency. With out-of-order execution, ALU operations caermap with each other and with cache
misses. In the latest version of the textbook, HennesseyPatterson acknowledge the problem
and lack of a good solution (p. 412).

Recognizing this problem, researchers over the past déeageoften referred informally
to concepts such as the “critical path” and “latency toleedro explain otherwise unexplainable ef-
fects on performance. Sometimes understanding thesdsaffas so important for the research that
ad-hoc methods were developed to quantify them. These uethok an underlying appreciation
for the nature of the problem, however.

For example, consider the commit-attribution breakdovirag &re common in many pa-
pers [68, 79, 80, 107, 74, 48]. With this methodology, hdigssare used to blame particular dy-
namic instructions for cycles where no instructions aremitted. Although this technique captures
some parallel behavior that simple event counts mags our experiments showed the percentage
of execution time attributed to memory stalls was mostlyuaate), it is not able to explicitly mea-
sure theinteractionsbetween groups of events. An example of a typical interadd8ALU opera-
tions overlapped with cache misses; a more subtle one waufdtbh stalls overlapped with issue
bandwidth. This lack of accounting for interactions is evitlin how the breakdowns are reported,
with one category for each resource of interesg( cache misses, branch mispredictions). We
know intuitively, however, that is impossible to account 1®0% of execution time by assigning

blame for each cycle to individual resources. Interactimasse multiple resources to be responsible



for a single cycle.

The Growing Importance of Bottleneck Analysis. We pointed out above why current perfor-
mance analysis techniques often lead to inaccurate adanguntmodern machines. What we have
not discussed is why this problem is so important to solve. glaim is that having a robust perfor-
mance analysis methodology is much more important now thaas in the past and will become
even more crucial in the systems of the future. The reasdratgdiesign and optimization tradeoffs
that could be resolved through intuition in the past are nftenotoo complex even for experts in
the field. In the next section we will discuss some of the emgles that designers and optimizers

face.

1.2 Bottleneck Analysis Applications

Processor Design. Performance effects often surprise designers, and the legitypincreases
each processor generation. For example, the effect ofldceeplay tornadoes” in the Pentium 4
— where a mispredicted data dependence of a load instrucioses cascading aborts of instruc-
tions that consume the incorrectly loaded data — can caussaadeal of performance variability in
applications. Sometimes this sophisticated selectiiayapechanism incurs penalties significantly
greater than a simple “replay everything” approach. Whéntiappens, the technique designed to
eliminate a bottleneck becomes a bigger bottleneck thaariket is targeting.

Moving forward, the increasing performance complexityl w# in the form of many-
threaded execution. Intel's Hyperthreading [65], alsoviin@s simultaneous multithreading, has
performance that is so variable that some users opt to digadttirely. The bottlenecks are difficult

to identify as they can involve complicated resource cdidarbetween multiple threads. In fact,



there is no way to know whether hyperthreading is helping wtiing except to disable it, run
again the same set of applications with the same inputs, emdf that results in a speedup. If we
could identify the bottlenecks, we could determine whettwrtention between threads or shared
resources is what is hurting performance, enabling anligelt decision as to whether to run one
or more threads.

In the past, designers have often dealt with complexity @& shme manner that civil
engineers (used to) design bridges: over-engineer amythet is not understood well enough to
be done precisely. For instance, if we suspect threads ilvAnrBachine are competing for scarce
resources, we could simply make all resources abundant -Haasi as many as chip space permits.
This solution is no longer viable. The increasing imporeantkeeping energy consumption as low
as possible necessitates judiciously choosing what wodo twhen. It has become very important
to quantify bottlenecks, determining the performancectftd performing a piece of work now
versus later.

To generalize the problem space, the processor designiapsste address in this thesis

include:

e Performance Breakdowns.How can we construct a complete breakdown of processor per-
formance? For example, what percent of execution time shoeilattributed to cache misses

or branch mispredicts; and what percent should be attdbist@ combination of the two?

e Design-space Search-ow can we search a huge design space quickly and with a high le
of confidence that we did not settle for a local optimal? Ustdsrding bottlenecks makes it
easier to avoid building an unbalanced processor that dsilidhproved by trading off, for

example, an overly large instruction window for additiolealel-one cache.



Optimization in Hardware. An ever-present challenge in computer architecture is tkenog-
timal use of scarce resources, whether those resourcemibedifunctional units or a constrained
power budget. Since some instructions and microprocessmteare bottlenecks while others are
not, a priority system seems important for optimizing perfance. This problem of resource ar-
bitration is becoming more important since, although cleigl estate is abundant, energy budgets
are becoming tighter and increasing wire delays have inoted a new scarce resource of “spatial
closeness”. A related problem is knowing when to use ressuta apply aggressive speculation
and when such efforts could be better used elsewleegefo run other threads.

In their quest to make most efficient use of available powehitects have explored ideas
to reconfigure the hardware on the fly, both in terms of dynallyi@djusting the frequency as well
as resizing hardware structures, such as the instructiodom €.9., [87], [8]). In performing
such optimizations, they encounter a problem similar to didhyperthreading above: it is very
difficult to know whether an alternative configuration iseefive without trying it out first. It is
difficult to infer from performance counts whether a pafticuresource can be degraded without
hurting performance and it is even more difficult to know wiestincreasing frequency or window
size might improve performance. What is needed is a bottleaaalysis that can identify critical
resources dynamically to guide reconfiguration.

In summary, some performance analysis hardware optiroizdtiestions designers strug-

gle with include:

e Resource Arbitration. How should we effectively arbitrate for scarce resources@reM
specifically, what priority policies should be used for sthleng instructions and micro-

operations to use limited cache ports, window slots, ortional units.



e Speculation Control. How should we control speculation to improve the risk/bdrtedide-

off?

e Dynamic Reconfiguration. How can we dynamically reconfigure the hardware and fre-

quency to match the needs of a program?

Software Optimization. The process of optimizing programs presents a set of peafocenques-
tions of its own. The traditional notion that a load that emusnany cache misses should be
prefetched, scheduled sooner, or otherwise given prjagtyio longer necessarily true. As dis-
cussed above, instruction-level parallelism can “hide’ldtency of some cache misses completely
by performing other useful work during its processing, inahhcase the cache miss is no longer
a bottleneck. In the future the problem will become much nuanenting: it may be that an entire
thread is hidden behind other threads, so that none of tHeeaadsses in that thread are critical.
Whether a thread is hidden will depend on many variables efpitogram’s execution, such as
the balance of work between processors, contention foedhaemory, and the nature of data de-
pendences between threads. A method for identifying wihetlikvidual cache misses (or other
processor events) are bottlenecks or not will somehow reedrtsider all of these effects simulta-
neously.

In the near future, programmers will be presented with a nety & many cases, ex-
tremely difficult problem: how to update their applicatidndake advantage of multiple processing
cores. Of course, the multiple cores are only useful if treay educe or eliminate the bottlenecks
present in the single-threaded execution. As of now, this tibat support programmers in this task
are woefully lacking. To determine how programs should beirtio task-sized chunks requires

a very high level of expertise and judgment. Furthermorerehs no way to know whether one



configuration is better than another except to try them battand see which one runs faster.

Software optimization problems can be summarized as:

e Performance Profiling. How can we know which instructions are bottlenecks (and kshou
be targeted for optimization) and which should be left aleimee they are already hidden

behind other useful work?

e Performance Estimation. How can we save programmer effort by telling them in advance
the effect of a given software organizatioe.d.,the division of a program into tasks for

execution on a CMP) before they rewrite the code?

1.3 Grand Challenges

Our primary thesis is that all of the above performance ambyuestions can be addressed
with a fundamental understanding of theticality of events during a program’s execution. When
we use the word “event” here, we are assuming a broad definitfich encompasses all sorts of
architectural and microarchitectural features, such ekemisses, branch mispredicts, load-store-
queue-full stalls, and multiprocessor communication. Vileexplore the notion of criticality by

posing three challenge questions that have directed thseofiour work.

e Cost. How costlyis an event to execution time®¢g., how much can execution time possibly

be reduced by optimizing the event?)

e Slack. How muchslackdoes an event have?®.d., how much can the event be slowed down

or a resource reduced in size before increasing executia?)i

¢ Interactions. How do the cost and slack of multiple eveigeractwith each other?
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It is clear how answering these questions would lead to isolsitto some of the perfor-
mance analysis problems discussed in the previous se&mwrexample, knowing how costly each
instruction execution is would make designing an effectesource arbitrationpolicy straightfor-
ward, since the most costly should be given highest prifoitgcarce resources. For other problems,
the connection may not be immediately obvioies, how can we use cost, slack and interactions to
enable a quickedesign-space searciPart of our work in developing our thesis will be to illuggra

the connection through case studies (Chapter 7).

1.4 Our Approach

We set out to tackle the above challenges in three steps. rBhésfto develop a new way
of modeling program performance that is complete enoughusoto measure criticality metrics,
since it is clear that traditional performance countersnatesufficient (Chapter 3). The second step
is to develop algorithms for measuring and interpreting,cslack, and interactions (Chapter 4).
Finally, to make the methodology usable in practical optatibns on real software, we proposed
hardware support for measuring criticality metrics onkisevell as a new profiling infrastructure to

enhance existing performance counters (Chapter 6).

Modeling. A crucial requirement to achieve our goals is to capture #ralfelism in the program
execution. The most straightforward way to do this woulddeliserve the entire set of events that
occur each machine cycle. At first glance, such a represemtabuld appear to encompass all you
would ever need to know about a program’s execution. It reigseritical component, however,
that is needed to understamdty each event occurred when it did (as opposed to earlier ai.late

For this purpose, we need to observe dependence constraintsat occur between the events. In
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fact, a graph containing these dependence constrainedethtwith latencies, is all that is needed to
effectively represent a program execution’s performareteafior.

In the dependence graph, each node represents the begofrangery low-level micro-
operation — examples include an instruction being fetchadl @n instruction being “woke-up”
once it becomes data ready. Edges between these nodeentmasstraints that must be satisfied
for each micro-operation to “fire”. For example, if the mawhrequires in-order fetching of instruc-
tions, dynamic instruction + 1 cannot be fetched until aftérs fetched. Thus, an edge would be
placed from’s fetch node ta + 1's fetch node. Ifi happened to be a branch that was mispredicted,
an edge would be placed frofis execute node to + 1's fetch node, since the correct output of
the branch must be produced before the next correct-patituation can be fetched. A complete
examination of how the graph models are constructed andateti for a particular machine is the

subject of Chapter 3.

Measuring and Interpreting. Relatively simple algorithms can be applied to these depece
graphs to computeostandslack Measuring and especially interpretimgeractionsrequires some
additional theoretical grounding, however. If two micrpesationsa andb interact, it means that
optimization decisions involving cost or slack should d¢des botha and b together. In other
words, if we make optimization decisions targetingthose decisions might impact the cost or
slack characteristics &t

We have found it most practical to treat interactions défgly when doing alack anal-
ysis than when performing @st analysis. The quintessential example of an interactioaliting
cost is two cache misses that are being serviced simultaneolfiste consider either miss in iso-

lation, it may appear there would be no benefit in performingptimization, since the other miss
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would still limit performance. In other words, the indivialucost of either miss is zero cycles.
If we optimize both misses, however, substantial perfomeamprovement could result. In other
words, theaggregate cosbf the two misses together is large. We refer to this type tefaction as
aparallel interaction since it occurs when multiple events occur in parallel.

There is no equivalent to a parallel interaction §bick. Instead, slackful events often ex-
hibit what we callserial interactionswhich, as the name implies, occurs between micro-op&stio
in series —i.e., when there is a dependence-edge chain leading from one-opem@tion to the
other. The interaction occurs when an entire (non-critidapendence-chain has some number of
slack cycles. Since increasing the latency of one micro-oparatioreases the latency of the entire
chain, the micro-operations on the chain msisarethe slack cycles when performing optimiza-
tions. For example, if eight cycles of slack are availablettmn chain, the sum of the increased
latency of all micro-operations on that chain cannot exaaghit without increasing execution time.
We deal with these sorts of interactionsdpportioninga specific share of the slack to each micro-
operation prior to performing optimizations. Since the amtaa micro-operation can be delayed is
bound by the amount it is apportioned, the apportioningcydb very important for optimization
success.

During the course of the research we were surprised to disabat serial interactions
exist forcost as well. Two micro-operations on the critical pathandb) will often exhibit a serial
interaction when there is a nearly critical secondary phitithe case of a serial interactiom,and
b share a certain number ebst cycles, meaning that improving eitheror b can eliminate those
cycles.

In summary, there are two ways of dealing with interactiofiy: measure explicitly the
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degree of interaction between each pair (or triple, etcgvents or (2) use an apportioning scheme
that takes interactions into account but, after appomigiis complete, the optimization engine does
not need to have any knowledge of them. We have found in peattiat the first scheme is most
suitable forcost analysis while the second is best fdt.ck analysis. A complete discussiond@fst,

slack, and interactions is the subject of Chapter 4.

Hardware Support. While the graph model can be used to efficiently computecatity metrics
using standard algorithms in software, hardware presenthmmore restrictive constraints on the
implementation. Due to these constraints, some innovagioaquired to effectively compuiest,
slack, and interactions for real programs running on real machine

We take two basic approaches to developing hardware sotutiepending upon how the
criticality measurements will be used. If we plan to use tleasurements for “tight-loop” dynamic
optimization, where the criticality information is consachimmediately by a control policy, a pure
hardware solution is required. On the other hand, if we wishriderstand the performance char-
acteristics of an application in order to reorganize orroe the software code, a better profiling
system analogous to currently existing hardware countessha all that is needed.

For the pure hardware approach, we developed a criticati}yaer that can efficiently
detect with high accuracy whether a single dynamic micrerafon is on the critical path or not.
The analyzer is very lightweight, requiring two componerike first is a set of hardware “probes”
that detectast-arriving edgegyoing into each node of the graph model. A last-arriving eddgbe
dependence constraint that delays the beginning of itettangcro-operation the longest. Detecting
last-arriving edges is relatively easy for the hardwaresesinluring the actual execution, it is usually

easy to simply observe which dependence constraint isvexsdhst. The second component is a
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mechanism fotoken-passingdescribed below.

The algorithm for the criticality analyzer works by plamgia token into a node and then
passing that token forward along last-arriving edges (twpthe token if a node has multiple out-
going last-arriving edges). The token-passing terminifscopies of the token reach nodes with
no outgoing last-arriving edges. Since critical edges aeessarily last-arriving edges,is defi-
nitely not on the critical path if the token-passing terntérsa The longer the token-passing proceeds
without terminating, the more likely is on the critical path. Token-passing can be implemented in
one of two ways: by a read-modify-write sequence on a smedyasr inline within the core of the
machine. We discuss the tradeoffs of the two approachesapt€n6.

While the advantages of the criticality analyzer are thatihexpensive to implement and
provides quick feedback for optimizations, the disadvgats that it only detects simple criticality
and notcost, slack, or interactions. We developed a simple enhancement tatddieck, albeit
with a substantial reduction in accuracy, but for the moghsiicated metrics a different approach
is required.

For measuringost, slack and interactions, we developed a new profiling system deitab
for replacing performance counters. The profiling systemka/dy collecting a small amount of
information from the hardware executing the program suahdbgments of the dependence graph
for that program can be constructed offline. The hardwaresf knexpensive by allowing the
sampling to be sparse: only one dynamic instruction needs toonitored by the hardware at
any one time. Dependence graph segments can still be reattest from these samples since,
empirically, the same sequence of dynamic instructionsh(aimilar microarchitectural behavior)

recurs often in a program run. It is the most frequently reogrsequences for which it is most
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important to construct a representative graph. Sampleofidual dynamic instructions are glued
together to form a sequence by matching a small numberiabarchitectural context bitsThese
context bits are collected for each sample by the hardwadecansist of one bit indications of
whether cache misses, branch mispredicts, etc., occurri ivicinity. Once the graph fragments
are constructed offline, all of the standard algorithms famputing cost, slack and interactions can
be applied. We call the systeshotgun profiling due to the similarity of the algorithm to shotgun

genome sequencing [40]. A complete discussion can be fouGdhapter 6.

Summary. The goal of our work is to provide a new set of analysis toolsatikle the difficult
performance problems facing architects and optimizeigetarg the complex, parallel computer

systems of the future. To this end, we have made the followadrygcontributions:

e Fundamental metrics. We have gleaned from the seemingly diverse space of perfarera
related problems a few fundamental requirements of a paence analysis methodology for

modern machines: measuring and interpreting, slack, and interactions.

¢ Modeling. We have shown how to construct dependence-graph modelbleagaepresent-

ing the critical path of modern, parallel machines (Chapjer

e Measuring. We have developed software algorithms for efficiently cotimguthe cost,

slack, and interactions for large numbers of micro-operatiorisafgier 4).

e Interpreting. We have characterized the types of interactions that arsitgesand shown

how they can be exploited in design and optimizations (Girapit

e Hardware Support. We have developed inexpensive hardware capable of megstriti

cality online and proposed a profiling infrastructure (emtiag performance counters) that
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enables measuring of the more sophisticated, slack, and interaction metrics for real pro-

gram executing on real machines (Chapter 6).

e Case Studies.We have illustrated through case studies how our performanalysis tech-

nology can tackle some of the problems that face architextoptimizers (Chapter 7).

Considering that it appears no longer possible to simplyeeipetter transistor technol-
ogy to provide increased value for new machines, there wilifereased pressure on designers
to produce innovative solutions, for which understandiegfgrmance is crucial. We believe our
contributions have substantially improved the statehefdrt of performance analysis, providing
methodologies that should help architects and optimizeas with the high level of parallelism in

the increasing complex machines being built today.
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Chapter 2

Related Work

The use of critical path and slack in project management wasduced by the Navy
in 1958 as part of the Polaris project, whose goal was to dpvalsystem capable of launching
ballistic missiles from submarines [115]. The Program Hatibn and Review Technique (PERT)
charts developed for this project had a node for each “noifesstand each incoming edge to a node
was a task that needed to be completed before the milestaheeached. This graph construction
has become very popular in managing large projects and baras similarities to the modeling
that we introduce for microprocessors in Chapter 3.2.1.

One of the first works that considered parallelism in micogpssors when determining
the performance effect of events (specifically, of cachesesswas by Srinivasan and Lebeck [104].
They defined an alternative measure of the critical patted#htency tolerance, that provided non-
trivial insights into the performance characteristics loé imemory system. Their methodology
illustrated how difficult it is to measure criticality evema simulator wherein a complete execution

trace is available. Their latency tolerance analysis we®lrolling back the execution, artificially
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increasing the latency of a suspected non-critical loaailinBon, re-executing the program, and ob-
serving the impact of the increased latency. While theithmo@oblogy yields an interesting analysis
of memory accesses, their analysis cannot (easily) ideatificality of a broad class of microar-
chitectural resources, something that we can achieve witimmdeling. A rollback simulator also
presents some practical problems to use a measurementirtoglitswill tend to be a very difficult

piece of software to write and is unlikely to be highly effitién his measurements.

Heuristic Predictors of Criticality. Once it became clear to the architecture community that it
was important to take parallelism into consideration whewetbping policies for optimizations,
many efforts were made to estimate which events were drgimwhich were not. Without a criti-
cality model to guide this estimation, researchers redddearious heuristics. While these heuris-
tics are sometimes successful in various circumstancesawefound through experimentation that
they do not provide the high-quality criticality identifitan over a large range of microarchitectural
events that our modeling achieves. A few of these heuristiesexplored alongside our criticality
work in later chapters.

One of the first heuristic predictors was proposed by FiskEattar [39]. They explored
hardware approximations of Srinivasan and Lebeck’s |gtéolerance analysis. Their first heuristic
used absolute performance as its indicator: if IPC degrbdksv a certain threshold while a miss
is being serviced, that load is considered critical. Thigeis/ similar to the approach used in many
hardware structure resizing papessy,[41, 8]). They also looked at heuristics based on the number
of dependencies that exist on a cache-missed load’s depemdeaph. The intuition here is that, if
aload’s data is going to be used by many instructions, perhdpimportant to performance (hence

critical).
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Calderet al. [19] guide value prediction by identifying the longest degence chain in
the instruction window, as an approximation of the critipath, without proposing a hardware
implementation. This approximation loses accuracy for teasons: (1) they are only examining a
very small, local region of the execution, while criticglis a global characteristic and (2) they only
look at data-dependence chains even though resource @otstre often a more influential factor
in determining the critical path. These two inaccuraciesralated since, as we show in Chapter 3,
it is necessary to model resource constraints in order tmmbtglobal measure of criticality.

Tuneet al. [110] presented a systematic study of a large number of $texgibased pre-
dictors, using the notion of the critical path as intuitiarhese heuristics looked for various archi-
tectural events that could indicate an instruction wascetit For instance, one of their heuristics
identified any instruction that reaches the head of the derdvuffer before being executed as criti-
cal. We have found in our experiments that their heuristitsnaniss some critical instructions and,
even more significantly, falsely identify a large number oheritical instructions as critical.

Tuneet al. also developed a methodology for judging the accuracy ofitecalrpath
predictor, which involved measuring the ratio of the parfance improvement from reducing the
latency of instructions identified as critical to those itifsed as noncritical — the higher the ratio,
the better the predictor. We use their methodology as patiofalidation procedure (Section 3.4).

Srinivasangt al.[103] proposed a heuristics-based predictor of load efiticinspired by
their above mentioned latency-tolerance analysis. Thehirtiques consider a load as critical if (a)
it feeds a mispredicted branch or another load that cachgesiizr (b) the number of independent
instructions issued soon following the load is below a thoés. The authors perform experiments

with critical-load victim caches and prefetching mecharsisas well as measurements of the critical
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data working set. Their results suggest criticality-basetiniques should not be used if they violate
data locality. The authors suggest there may be other waywifwality to co-exist with locality.

For example the critical-path could be used to schedule meatzesses.

Slack Measurement. The concept of latency tolerance explored by Srinivasam). is directly
related to slack. If the machine can “tolerate” more cyclatency than a cache miss exhibits, that
cache miss has an amount of slack equal to the differenceupleof works preceded our work on
slack.

Casmira and Grunwald [20] discussed the use of slack for peasng in a machine
with multiple-speed clusters. The notion of slack used hboevever, is limited to the number
of cycles an instruction’s execution can be delayed withimldyingany instructions immediately
consuming its data. Our experiments have shown exploitittg this local notion of slack leaves a
lot of opportunity untapped (see Chapter 4).

Following our initial critical-path modeling work, Semeoaet al. [95] used a dependence-
graph model similar to ours for doing an offline slack analysidetermine when different parts of
the machine can be executed at a slower rate, for power efficid heir notion of slack is global in
nature and very similar to ours. Their exploration was retel to how slack could be used for this

particular application, however.

Cost Measurement. The first attempt to estimate the costliness of differends#a of events in
a microprocessor were event counters [5, 119]. These comdgics have become standard and,
before superscalar, out-of-order processors, was alitastneeded. As discussed earlier, however,

parallelism complicates analysis substantially.
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In response to the problems with counters, ProfileMe [28psus pair-wise sampling,
where the latencies and events of two simultaneously ihtfligstructions are recorded. With pair-
wise samples, one can determine the degree that two iristratclatencies overlap in time. As far
as existing processors are concerned, the Pentium 4 [26 hd82a limited ability to account for
overlapping cache misses. The most significant limitatioth@se profiling infrastructures is a lack
of a methodology to interpret the results in a meaningful.wWegr example, it is not clear how to
use the collected data to compute a complete breakdown otigae time. We propose our own
profiling infrastructure that was designed with the spegbal of measuring criticality metrics in
mind (Chapter 6).

Many researchers have realized the limitation with cosniiercomputing performance
breakdowns, but have still found a need for understandingrevbxecution time is going in their
proposed systems. Their solution istitribute execution cycles to various culprits based on heuris-
tics. For examplecommit attribution[68, 79, 80, 107, 74, 48] assigns the blame for an unused
commit cycle to the (uncompleted) instruction at the heathefreorder buffer during that cycle.
Similarly, fetch attribution[31, 70] assigns blame for a wasted fetch cycle to the nektuicson to
be fetched. One work, by Sasankaal.[87], combined the attribution with some data-dependence
information to increase accuracy. We have found empisichlat these analyses do, indeed, ac-
curately estimate the cost of certain classes of events, (lata-cache misses), which was their
intended purpose. Their generality is limited, howeverthit the costs of many classes of events
cannot be accurately computeld.,fetch bandwidth) nor are they able to compute interacti®isco
at all.

Following our criticality and slack works, Tune et al. [L1ided our dependence graph to
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compute the cost ahdividual instructions in a simulator. We employ an algorithm veryigamto
theirs. The work did not consider interactions, however.

Miller, et al.[66] and Hollingsworthet al.[51] use a metric calledritical-path zeroingn
the context of parallel software that is similar to our costric. They create a program dependence
graph, taking into consideration inter-thread commuincato identify the critical path through the
program. To identify the execution time that should be laited to specific procedures, they zero
out the edges that represent that procedure and computéfénertte between the new critical path
and the old. Our cost metric differs in that edges are notetkbut insteaddealized The notion of
idealization is specific to the individual microarchitagevent(s) that are being measured.

At a higher level of abstraction, the MACS model of Boyd andvidson [14] assigns
blame for performance problems to one of four factors: thelmme, application, compiler-generated
code, or compiler scheduling. They accomplish this by ide®j one factor at a time (to determine
its cost). In comparison to this work, we do not examine Haylel compiler decisions and focus
on performance analysis at a more fine-grain scale. The MAGR also does not propose a way

to measure interactions.

Interactions. We have found in our work that measuring the cost of an evesgtoof events is not
very useful in a highly parallel machine, unless you alscsater interactions between events. The
reason is that there is often more than one event that ismegpe for a certain amount of execution
time.

Standard allocation of variation techniques do provide § t@aquantify these interac-
tions [54]. The technigues are inadequate for our purpdsasever, for two reasons. First, for

mathematical reasons, the effects are squared, but thesisgueduces interpretability, especially
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when constructing a complete breakdown of performanceor@y, no distinction is made between
positive and negative (parallel and serial) interactiols.we show in our work, this distinction is
very important for performance understanding.

Following our cost and interaction work, Karkhanis and ®ngitoposed an analytical
model for out-of-order superscalar processors [57]. Tlmany advantages of their model are its
simplicity and ability to provide quick insights by evalirgj analytical equations as opposed to re-
simulating (or performing a graph analysis.) Its disadages include a specificity to out-of-order
superscalar processors and incomplete accounting foaotiens (they only consider parallel, not
serial, interactions).

Note that Karkhanis and Smith confirm empirically that in the&roarchitecture they
study the interactions (called “overlaps” in their papdy@nch mispredicts and icache misses with
dcache misses are relatively insignificant (in other waltts, the resources are nearly independent.)
This discovery of near independence permits them to igmegactions with a low, bounded error.
For other resource classes or microarchitectures, irteracmay be much more significant, as

illustrated by the case studies in this thesis.

Applications of Criticality. Work related to our case studies will be discussed alongsaé

case study in Chapter 7.
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Chapter 3

Microexecution Dependence Graphs

In the informal jargon of computer architecture literatufree preposition “on the critical
path” is used to describe an event that causes other evesiall{ovaiting for its completion. For
instance, a cache miss that is fetching a result needed by imstnuctions that come later would
be considered a “critical” cache miss. This informal notibawever, is only a local characteristic
of performance. The fact that an ALU operation had to waitdarache miss to complete does
not necessarily imply the cache miss is critical, since iymat have been important that the ALU
operation be processed quickly.

The problem we tackle in this chapter is to understand whadtitates the critical path in
a modern processor exhibiting substantial parallelismthi®end, we will present a methodology
for constructing graph modethat represents the performance of a program executing jpeciis
processor. From this graph model it will be easy to deterrthegorogram execution’s critical path.

The first step is to derive the requirements for such a modpkci8cally, we seek to

understand what are the necessary components that the mosiemaintain in order to accurately
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represent the critical path of a program execution.

3.1 Requirements

To begin our requirements specification, we will consider éksential characteristics of
the critical path. The most basic ierformance sensitivity. Performance sensitivity implies two

properties:

e For critical events. If the latency of an event on the critical path is increasé@ntthe
execution time of the program should also increase. If teegtxon time stays the same, then

clearly the event is not critical.

e For noncritical events. In contrast, if an event is not on the critical path, deciregsi's

latency should not have any effect on execution time at all.

The implications of this requirement guide the rest of ourkaan criticality. As far as the
critical path in particular, we can logically deduce the ortgnt properties that it must maintain. If
we are to meet the requirement above that increasing theclatd a critical-path event increases
the latency of the entire program, it is logically true thatincreased latency delays the completion
of the last instruction in the program.

In other words, starting from any critical event, there musta sequence afependent
eventsleading all the way to the end of the program. One ewgnis dependent upon another
ey if e; needs to have occurred befarg can occur. Furthermore, since delaying the start of a
program obviously delays the completion of the program fttegram’s first event is critical), we

can conclude that the critical path must bseqjuence of dependent events that spans from the
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beginning of the program all the way to the end.

3.1.1 Implications for a Processor’s Critical Path

Supporting a rigorous notion of the critical path requirethinking the way performance
is measured by current profiling and compilation infradnees. In particular, the above require-
ments suggest the model should not be centered on evensdautrriather oependencesvhich
is similar in nature to the way compilers compute the critpah through data-dependence graphs.

The significant difference is thatata dependences alone are not enough to capture the
critical path of a program executing on a microprocessolis €haim should be intuitive to archi-
tects: it's not just data dependences that affect micré@atiiral performance. Other factors such
as instruction window stalls, branch mispredicts, and tional-unit contention are also important.
In fact, thesaesource constraintsoften have a bigger influence on overall performance thaa dat
dependences. Certainly if these factors affect perforeamey will be part of the program execu-
tion’s critical path. Thus, to generalize, the model muketato account a processor’s resource
constraints (such as stalls and mispredicts) as well asdégiendences.

The familiar model that incorporates all of these constsaiga cycle-accurate simulator.
The limitation of a simulator, however, is that it only prdes the critical-pathength (execution
time) and not itscomposition There has been some work that attempts to enhance sinsueitor
“roll-back” capability, which can provide some limited arimation about critical-path composi-
tion [104]. The roll-back approach is very cumbersome tolam@nt however, and the resulting
solution is inefficient to the point of being impractical fmany applications.

Our solution is to start with data-dependence graphs, factwihis possible to determine

critical-path composition, and add resource constramthem. We want all of the constraints to
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be incorporated in aniform way, so that the graphs can be analyzed using standard appsya

as opposed to requiring caveats and special conditionsafdr ef the various types of resources.
It is not clear how to produce a uniform model, however, gitleat processors have such a great
diversity of types of resource constraints that affectgranfince. How can such varied events such
as branch mispredictions, finite fetch bandwidth, and deobuffer stalls be included in the same

model?

Definition of Microexecution. Before discussing how to design a model, we need to setup the
problem a bit more precisely. The model will be a set of rulegdnstruct dependence graphs
representing the performancedfnamic execution tracew/here a trace is a sequence of dynamic
instructions. This is in contrast to a graph of static indfians, typical of those used by compiler
writers. Our model will be, in this way, more similar to a silawor, which operates on the dy-
namic sequence of instructions. The significant distimcfrom a simulator, however, is that we
will assume information is available concerning the&croexecutiorof the program running on the
processor. We define microexecution to be the microardhitalccharacteristics of a program’s ex-
ecution €.g.,branch mispredicts, stalls, and cache misses) as wellagritsal functional behavior.

These microarchitectural characteristics will be usedtmfsome of the rules of the model.

3.2 Constructing a Graph from a Program Execution

There is an important distinction between a model of a mieoetion and a model of a
processor implementation. The latter can accurately nmegmrformance (at least the critical-path
length) even if some aspect of the executiomltered e.g.,changing the latency of a cache miss.

(These types of alterations will be central to our more adedrcriticality analyses.) Microexe-
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cution models, however, only represent the performancepairicular execution We will begin
the discussion with a model for constructing graphs of ndrezutions (Section 3.2.1) and then
continue to the more difficult task of constructing graphgatde of representing the performance

effects of alterations (Section 3.2.2).

3.2.1 Graph of a Microexecution

The traditional way to trace the microexecution of a compgigeline is to use what is
known as a “waterfall” timeline, such as the one shown in Fégll1(a) for a three-stage out-of-order
pipeline. Here, each dynamic instruction occupies a rowtabée while each column represents a
machine cycle. The benefit of using a diagram such as thigistthisually illustrates the machine
cycle that each micro-operation occurs. This makes it essigee the performance effect of a stall
due to a particular resource constraint, since certainagviperations are delayed. Such diagrams
have limited practical use, due to their layout, but theyadten used for instructive purposes.

As a step towards creating a model of the microexecution, akenthe dependence be-
tween resource constraints and micro-operation congtrainthe waterfall diagram explicit, by
adding edges as in Figure 3.1(b). Now we have a graph wherpatigular micro-operation can-
not fire until after all the constraints represented by it®ming edges are resolved.

Asitis, however, the graph still uses the timeline to ac¢doirthe latencies of the various
operations. By labeling each edge with the appropriatadgté-igure 3.1(c)), all of the information
is included in the graph without the need of a timeline (FégBurl(d)). With the graph representation
of the microexecution, finding theritical path is trivial: it is the longest path of dependences
through the graph (the bold dependences in Figure 3.1(d))wéwill show throughout the thesis,

the graph also enables many automatic analyses employndastd graph algorithms.
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(a) Pipeline waterfall diagram. (b) Waterfall diagram with edges.
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(c) Edges labeled with latencies. (d) Directed acyclic graph (DAG).

Figure 3.1:Waterfall diagrams. Traditionally, “waterfall” timeline diagrams, such as fited in

(a), have been used to describe and analyze the performanceiafgrocessor pipeline. We illus-
trate here a very simple 2-way superscalar out-of-orderga®or consisting of three pipeline stages
(Fetch,Execute, andCommit) and an instruction window witfour entries. If we add edges to the
diagram to indicate the dependences that result in stalis @ and then label those edges with the
latencies of the operations causing the stalls (a3,imve can convert the waterfall representation
to one of a directed acycle graph (asdpn Notice how the graph representation retains all of the
information in the waterfall diagram but in a more manageatdy for computer-based analysis.
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Notice the power and generality of this transformation: amgroexecution that can be
represented by a waterfall diagram can be represented gseadince graph (and its critical path
can be identified.) Thus the long-standing problem of idginty the critical path of a program

executing on a complex processor is now possible for effelgtiany microarchitectural design.

3.2.2 Complete Dependence Graph

We will now discuss the more difficult problem of construgtia model that not only
captures the performance characteristics of the micragxes; but can also measure the effect
of alterations to the program’s execution. As a simple eXxanop why this would be necessary,
consider the problem of measuring the performarmstof a cache miss. We define the cost of the
miss as the number of cycles of execution time that can bibwtd to it. In other words, we need
to know the performance of the execution altered such tleatrtiss is turned into a hit.

Another way of thinking about the problem is that it is not eglo to simply know that
the miss is on the critical path. Instead, we need informagioout the second-most critical path —
specifically, how close it is to the critical path. For evenrensophisticated analyses (discussed in
later chapters), we might need to examine the third- or Fearost critical paths.

Our solution is to construct a graph that contains all of ¢h&secondary” paths. To
do this, we need to model those dependence constraintsxisatrethe machine which are not
the foremost limiters of performance. These dependenaiesod affect the execution time for
the current microexecution — since other dependenciey dedsaffected micro-operations longer
anyway — but they may constitute portions of secondaryoafifpaths.

As an example of such a dependence, consider the code snippijure 3.2(a). The

2-way machine’s fetch bandwidth constraint inhibits tmep R6, dnstruction from being fetched
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R6 = Id[R1]
R6 = Id[R1]
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Branch
R5 =R6 + R5 cmp R6, 0 misprediction
made correct
cmp R6, 0 bf L1
bf L1 R5 = R5 + 100
R5 = R5 + 100 RO =RS
Ret RO
RO = R5 ¢
Ret RO

1
(c) Complete dependence graph with critical pattid) Dependence graph of altered microexecution.

Figure 3.2: Dependence-graph diagrams of the microexecutionOnce a dependence graph is
constructed, it is easy for a computer to identify the citipath through the microexecution us-
ing a topological sort (as ifa)). For more sophisticated analysis that makes use of “secphd
critical path information, a more complete dependencelgrapequired (se€b)). In this graph,
edges are included for dependences that exist in the progxaaution even if they do not affect
the performance of this particular microexecution. Onemgda of the sophisticated analysis in-
cludes determining theostof a branch misprediction. This quantity can be found by carmg
the critical-path length of the graph with the mispredictio the critical-path length of the graph
without it. The critical path of the altered execution iswsian (d).
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until afterR3 = R3 + 1 The edge does not exist in the microexecution graph, hawbeeause
the fetch bandwidth is not saturated at that point in the @ti@c (instead the fetch afmp R6, (s
delayed by an instruction window limitation). In order to deb secondary critical paths, all such
dependences must be modeled.

Figure 3.2(b) illustrates a complete graph, includingralbortant dependence constraints,
for our example machine. Of course, the critical path i$ stiby to identify via a topological sort
(Figure 3.2(c)). We can also now answer questions aboubqmeaince costs. For example, the cost
of the highlighted branch misprediction is equal to theati#hce in critical path lengths for the
graphs in Figures 3.2(c) and 3.2(d).

While constructing graphs of microexecutions is a strdggttard, even automatable task,
constructing full dependence graphs requires very deta@igertise of the resource constraints a
machine imposes on an instruction stream. In the next sgeatie present a procedure that should

make the task easier, by using information architects déagijga new machine would have available

anyway.

3.3 Procedure For Graph Model Development

For the simplified example processor above, we derived andigpee graph from a water-
fall diagram and then added edges for other machine depeesiémat did not happen to cause stalls
in that particular microexecution. While this procedurg®d for explanation and useful for con-
structing a graph from a particular program execution tracéomating graph construction as well
as understanding a processor’s performance is made egsiervéloping a general graphodelof

the machine, from which a graph can be derived for any prograrecution. In this section, we
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(a) Typical superscalar pipeline.

(b) Node per-pipeline stage graph model.

Figure 3.3:Converting pipeline to graph model and reducing. A graph model can be derived
directly from a pipeline model of the processor by (1) cregntry and exit nodes for each stage
and (2) creating edges for every possible stall conditioreeh stage. Once a complete graph is
constructed, reductions are typically possible to redureptexity without sacrificing precision.
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will discuss a procedure for developing such a model givgreaification of the processor pipeline.
We will use the relatively sophisticated processor FiguB{ed of to illustrate the procedure. This
processor is still simplified compared to real processapdeally in the memory system) but is
complex enough for illustrating the procedure.

We start below with an overview of the three-step processdastructing a graph model.

e Create nodes.Create two nodes for every pipeline stage: one to signifimamic instruc-

tion entering the stage(g.,F.) and one to signify exiting that stage.g.,f.).

e Create edges.For each pipeline stage, identify all of the reasons thatranhc instruc-
tion may be “stalled”. In other words, identify the machinelgrogram dependences that
inhibit the dynamic instruction from either entering ortexy each pipeline stage. These

dependences will be represented by edges between nodesgrajth.

e Simplify. As will be clear from the example, some nodes and edges dredave will be

redundant and can be removed.

e Add latencies. Label each edge with latencies. For each edge, the latertbg iminimum

number of cycles after the source node fires that the targkt can fire.

As will become clear through an example, this procedure doésequire an architect to
think very hard to construct a graph model. In fact, all of itifermation that is required about the

machine is only a subset of what is necessary to write a typrogessor simulator.

Create nodes. For the example processor of Figure 3.3(a), we have eiglip# stages and

sixteen nodesKe., Fe,, I B., I B;, etc), as shown in Figure 3.3(b).



Pipe Stage | Stall Causes

Fe Fetch Buffer Full (B, — Fe.), Limited Fetch Bandwidth
(Fex — Fee)

IB Instruction Queue Full Q. — IB,), Reorder Buffer Full
(Co, — IB,), Limited Fetch Buffer Output Bandwidti B, —
IB;)

Re None

1Q Data Dependencied @, — 1Q.), Functional Unit Contention
(IQ, — 1Q.), Memory Request Queue FUll@, — 1Q.)

Rg None

Ex None

Da None

Co Limited Commit BandwidthCo, — Co,)

35

Table 3.1:Machine Dependences and Corresponding Graph Edges for EadPipeline Stage.

Create edges. The stall culprits for each stage of the pipeline are showhaiple 3.1; these are

directly translated into edges. For example, a dynamicungbn can be stalled in theB stage

due to the issue queue being full (resulting iIT@.— 1B, edge), the reorder buffer being full

(Co.—1B,), or fetch buffer output bandwidth being saturaté®{—IB.).

Simplify.  As you can see from Figure 3.3(b), some nodes have only opeiing and one outgo-

ing edge and, thus, are not useful to have in the graph (umelsgling them makes the graph more

readable for humans.) They can be removed to yield more simgpaph.

Add latencies. The latencies are design parameters determined from a neeehnplementation.

1Q.—1Q, edges will be labeled with execution latency of operatidrs, — F'e. edges will have a

label of one cycle since instruction fetch is delayed by gredecwhen fetch bandwidth is saturated.
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Altered Execution
Adder

Original Execution (to compute cost of inst #3
cache miss) contention
1.1dr2, [Mem] (cache miss) 1.1dr2, [Mem]  (cache miss)
2.addr3 «r2 +1 Adder 2.addr3 «r2+1 No
3.1dr4,[Mem]  (cache miss) contention  3.1dr4, [Mem]  (cache hit) contention
e 4.add6erd+1

4.add 16 < r4 +

Incorrect critical path due
to contention edge

(a) Code snippet illustrating modeling problem. (b) An alternative modeling.

Figure 3.4:Certain types of resources cause problems with graph analis While it is possible

to construct a graph model for any microexecution that caeXpeessed as a waterfall diagram,
certain resources do present problems for some forms ohgmaalysis. In(a), we attempt to find
the performance effect of a cache miss by observing the eharthe critical path when we convert
it's graph representatiofirom a miss to a hit (by reducing the latency on the edge). @atyais
yields inaccurate results, however, since we did not adcimurihe reduced adder contention after
the miss is removed (the contention edge is still preserthéngraph.) In(b), we use a different
modeling of adder contention, where it is included as a @Btahat delays execution as opposed
to a dependence edge. Empirically, we have found this reptason typically reduces the error
introduced by side effects.

3.3.1 Sources of modeling error

Side effects

There are certain types of resources which cause modelffiguities when using the
above procedure. They occur when a modification to a processgution produces unanticipated
“side-effects” as far as the graph modeling is concerneduntterstand this effect better, consider
the task of finding the performance cost of a cache miss ubmgraph, as discussed above. Our
approach would be to measure two critical-path lengths:w(fl) the cache miss included in the
graph and (2) with the cache miss’s latency reduced to thatoafche hit. The difference between
these two lengths would by the cache miss’s cost.

Notice that the only modification we made to the graph to obtla¢ critical-path length
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of (2) above was to reduce the latency of one edge in the gaptesponding to the cache miss.
Problem sometimes arise with this approach when reduciogaid latency in the real execution
has effects beyond simply this latency change. For examgdkeicing the latency might increase
the rate at which instructions reach functional units, timeseasing the effect of functional-unit
contention on execution time. If the graph is constructezhghat this increased contention is not
accounted for, some inaccuracy in the cost computationresgillt. An example of this effect is
illustrated graphically with a code snippet in Figure 3)4(a

It is important to point out at this point that most “side et& will, in fact, be accounted
for naturally in the graph model. For example, reducing #tercy of the cache miss might also
decrease the number of ROB stalls that occur. This effeataagrately modeled by th€' D edges
in the graph: fewer of them will be critical in the altered jgina Side-effects can cause inaccuracies

in the analyses for one of the following two reasons:

¢ Incomplete Modeling. When designing the model, it is often convenient to leavesonte
details, both for efficiency and ease of reasoning aboutxbeuwtion. If a resource, such as
functional-unit contention, is not explicitly modeled inet graph, its performance effect in

the altered execution would obviously not be captured.

e Dynamic Control Policies. It is common for processors to have one or more control poli-
cies in the hardware that make choices about how to alloeatgurces to instructions. For
example, an instruction scheduler might choose the olddatmady instructions to execute
each cycle (such that the newer data-ready instructions teawait.) In this case, altering
the execution might change the order in which instructicesoime data-ready, which, due to

the scheduling policy, might change how long they have td feaifunctional units. Many
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other examples exist, such as cache-replacement poleeapry bus schedulers, and cluster

assignment policies. It is very difficult to incorporate Byolicies into graph analyses.

For side-effects caused by dynamic control policies, we lesmployed two approaches in
our work. The firstis to implement the policy as part of thepgranalysis. If the policy would make
different decisions due to the altered execution, we reftexte decisions by altering the appropriate
edges and latencies in the graph. The upside of this appisdbht there are no inaccuracies in
the measurements. Unfortunately, this increase in acgw@ues at the expense of a less efficient
analysis.

An alternative is to make some graph alterations to mitighéeeffect of side-effects
without degrading efficiency. For example, Figure 3.4(bjyveh contention measured, not as a
dependence edge between instructions, but as an intradtish constraint that delays the firing of
the execute node. With this modeling, there would not, fanegle, be an extraneous dependency
between instructions two and four in the altered executifdrigure 3.4(a), but instead instruction
four’'s execution will simply be delayed by one cycle londeart it should be. In our experience,
extraneous dependencies are typically much more damagimgtision than a few extra cycles of
latency. In the next section, we discuss some approachedlittating graph models, which can

help quantify the errors due to side effects experiencel vatious modeling alternatives.

Bad-path instructions

Another potential source of inaccuracy in our modeling & ldck of accounting for in-
structions that were executed speculatively and then $afeashed. The most common example

of this is when a branch is mispredicted, causing instrastion the wrong path to be fetched and
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executed.

Note that the model does account for the cost of branch ndggiens (with EF' edges),
it's only the resource contention caused by bad-path iastms that is ignored. For example, if a
bad-path instruction used an available functional unitinga good-path instruction (from before
the branch) wait longer than it would otherwise, perforneaigcaffected, but our model does not
capture that effect. Fortunately, we have found empinychlht the resource contention imposed by
bad-path instructions is not significant and, thus, is safgriore.

The effect might be significant, however, in other types othiiae organizations, such
as a processor supporting SMT. If this is the case, bad-patihuctions would need to be included
either directly with nodes and edges or indirectly with s@s@gmation of the contention they would

impose on important resources. We have not studied thisdiypedeling in detalil.

3.4 Validation

There are several reasons why a graph model should be ealibafore use. First, there
may be important machine dependencies that were negleotétydts development. Second, it
is sometimes practical to abstract away many of the detéitkeoprocessor, in order to obtain a
simpler, more intuitive graph model. Finally, it is impamtdo quantify the inaccuracies imposed by
side effects and bad-path instructions (see Section 38.bur analyses. By validating the model,
we can reach a level of assurance that the measurementditakeit are reasonably accurate.

In our work, we have used two forms of validation. The first &raall-signal analysighat
introduces small changes to the microexecution (such asgdcycle of latency to an event) and

observes whether the performance effect of the changessasvel by the simulator match those
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taken from graph analysis. The second iamge-signal analysighat tests the model's capability
to determine the effect of large changes to the microexacffiuch as removing all cache misses).
Both forms of validation are useful since, while the secand more intense test of the model, the

first is more representative of the types of graph analyses nseful for optimization engines.

3.4.1 Small-signal Validation

Our simplest validation uses the simulator to perform thiefiong two measurements.

e Decrease the execution latency of every dynamic instmdtiy one cycle) that is found by
the graphnot be on the critical path. Since only non-critical instruoscare sped up, there

should be no effect on execution time.

e Increase the execution latency of every dynamic instradtiy one cycle) that is found to be

on the critical path. This should result in a large increasexiecution time.

Note that these measurements are merely illustrative ofehemall-signal validation ex-
periment could be designed. Since the graph model includes @& edges, not just those that
represent execution latencies, adjusting latencies tratspond to other edges could also be ben-
eficial.

Also, as a practical concern, since some instructions haexecution latency of one cy-
cle, and our simulator does not support execution lateragizero cycles, we established a baseline
by running a simulation where all the latencies were inadds/ one cycle. The critical path from
this baseline simulation was written to disk. We then ran $waulations that each read the baseline

critical path and decreased all critical (non-criticatelacies by one cycle, respectively.
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Figure 3.5:Validation of the critical-path model Comparison of the performance improvement
from reducing critical latencies vs. non-critical latexsi The performance improvement from re-
ducing critical latencies is much higher than from nonicait latencies, demonstrating the ability
of our model to differentiate critical and non-critical ingctions. The simulator methodology used
for the experiments is described in Section 7.1.

The results of the experiment over the SPECint benchmarksdionple three-node model
is shown in Figure 3.5, where each speedup is shown as cyf@@ea@ution time reduction per cycle
of latency decreased. The most important point in this figaiteat the performance improvement
from decreasing critical path latencies is much larger tiham decreasing non-critical latencies.
This indicates that our model, indeed, identifies instamgicritical to performance.

Note that even though we are directly reducing critical paténcies, not every cycle of
latency reduction turns into a reduction of a cycle of exiecutime. This is because reducing critical
latencies can causengar-critical path to emerge as the new critical path. Thus, the magnitfide o
performance improvement is an indication of the degree ofidance of the critical path. From the
figure, we see that the dominance of the critical path vaidessa the different benchmarks. To get

the most leverage from optimizations, it may be desirablgptamize this new critical path as well.
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Finally, there is a very small performance improvement frbggreasing non-critical la-
tencies. This is the result of imprecise modeling, resglfiom one of the three sources mentioned
at the beginning of this section.

In our experience, developing an accurate graph model ofreplex processor does re-
quire repeated validation and debugging. A practical tegleto quickly identify problems with
a model has been to compare the following two graphs, edgeldpy: €1) the graph that has been
altered to idealize a resource (or, for example, decreaskténcy of non-critical instructions) and
(2) a graph produced by the simulator that has been modifigdetlize a resource. If the graph
model is a perfect representation of the simulator, thesegraphs should be identical. If there are
discrepancies, it could be due to side effects (see SeciBoh)dr important machine dependencies
left out of the model. Tracing microarchitectural behavigr to one of these discrepancies will

typically unveil one or more sources of inaccuracy in the etod

3.4.2 Large-signal Validation

The validation described above involved only one cycle stdjents to latencies. The
overall change to the execution was still rather substarsitace many one cycle adjustments were
made; and the characteristic of reducing many latenciesdoyadl amount is a good match for the
performance effect of many dynamic online optimizationsonBktheless, it is a relatively modest
change to the execution compared to some of our more advanedybes. For a more rigorous test,
we perform large perturbations to the model and see if thbaages match what we would expect
based on simulator output.

For example, one such validation is to increase every icstmnis latency (in the simula-

tor) by the amount oflackthat the model determined that it had. If the slack computatiwere
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correct, the execution time of the program should not irszes all.

Another of the large-signal validation experiments inedhlealizingan entire set of pro-
cessor resources both in the simulator and on the graph. Xaonge, one measurement may be
turning all cache misses into hits on the graph, measuriagtitical-path length change this in-
duces; and then making the same modification in the simulabserving the execution time reduc-
tion. If the graph and simulator measurements are closeliefar a large range of idealizations
of this sort, we can have some assurance that the model is@ngdaccurateostresults.

We will present experiments for each of these types of vatidaas the concepts of slack,

cost, and interaction cost is presented later in the thesis.

3.5 Summary

In this section, we reasoned what the fundamental charstiter of the critical path
should be in a microprocessor. This exercise yielded oneactaistic in particular, namely per-
formance sensitivity. From this foundation, many implicat were drawn, culminating in a de-
pendence graph of the program’s microarchitectural ei@tutVe discussed a procedure used to
construct such a graph starting from a traditional pipeti@fca program’s execution (which is often
represented by a waterfall diagram). With this procedune,dritical path can be found for any
program execution for which a pipetrace exists.

For analyses that are more sophisticated than simply fintlegritical path, the depen-
dence graph that is found using a pipetrace must be augmetittedther dependence constraints
that exist in the processor — even if they are not manifestacparticular execution. When building

such a graph, a tradeoff exists between accuracy and coityplexterms of the number of nodes
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and edges). Besides complexity, accuracy can also be comgwo by aspects of some microarchi-
tectures that cannot easily (if at all) be captured in thesypf graph models used in our work. To
gauge the effectiveness of a particular graph model, we Havised validation procedures which

provide simple empirical measurements of accuracy.
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Chapter 4

Interpreting a Program’s Critical Path

In the last section, we presented a model of program perfacethat enabled the deter-
mination of which events are critical and which are not. \Wlilis information is useful for some
purposes on its own, more refined metrics are necessary fetrpractical applications. For exam-
ple, compiler use of criticality is complicated since artinstion as a whole cannot be simply stated
as critical or non-critical, since criticality is asso@dtwith much more basic micro-operations. A
second consideration is that some events are “more ctiticah others, while some non-critical
ones are very close to being critical. Even more challengding performance effect of multiple
events ofterinteract For example, when two cache misses are issued to the merysigns si-
multaneously, both could be equally critical. (More ofteme of the misses is critical and the
other is “slightly” non-critical but, as far as optimizati® are concerned, both misses should be
targeted.) In this section, we will extend our work on catity to provide a more complete picture

of performance to an analyst.
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Figure 4.1:Criticality modes. The processor can be viewed as operating in a particulacadity
mode in each cycle of execution, corresponding to whichuess the critical path is traversing
through in that cycle.

4.1 Criticality Modes

One useful way for an analyst to understand the criticalitgracteristics of a program
execution is to think of variousnodesof operation, each corresponding to the various resources
that could be limiting the processor at any given time. Irs thvay of thinking, in each cycle of
execution, the processor is in a particular mode and opditioizs can be targeted for that mode.
For example, when an execution is in “fetch mode”, the irgiom fetch resources are limiting
performance. In this case, optimizations targeting thetfemd of the machine are most likely to be
beneficial. Similarly, the execution could be in “executedey where resources such as ALUs and
the instruction window are most important to performance.

An illustration of the criticality modes using the simpledh-node graph model is shown
in Figure 4.1. The critical path determines which mode tlee@ssor is in at any given time. If the
critical path is traversindg- nodes, the processor is Fimode, meaning the instruction fetch and
dispatch resources are limiting performance. Similafiiheé critical path is traversing nodes, the
processor is ife mode and execution resourcesg,ALUs, issue logic) are limiting performance.

Finally, if the processor is i€ mode, the commit logic is most important to performance.



a7

Another way to think of modes is that a particular dynamidringion can be critical
for different reasonsi.€., due to one or more of the phases of its processing). For exairtgan
be fetch-critical, execute-critical, or commit-criticals illustrated in the figure. Moreover, when a
program execution is iaxecute modesome of the instructions will likely not be critical at adliice
the critical path traverseg E edges, which will likely “skip” over some instructions).

We show in Figure 4.2a the fraction execution timapent in each of the three modes for
a few familiar benchmarks. In this figure, the numbercpélesthe program spends in each mode
is shown. Figure 4.2b shows the fractiondyinamic instructionshat are in each mode. The latter
figure gives an indication of the number of opportunitiesdptimizing each mode are available.

We can use this type of information to design optimizatiorisere the mosteverage
exists. For instance, in the integer applications, whemode is significant, performance could be
improved through a more powerful fetch unit—maybe a traadeavould be of benefit. In many
floating point benchmarks; mode dominates. In these, a larger re-order buffer—to peimi
exploitation of more parallelism—could be of significanhbét. Value prediction has the potential
to breakEE edges. Hence, the technique is most applicable for bendéisntlat spend a lot of
execution time irE mode.

We show in Figure 4.2b the fraction ofstructionsin each of the three modes. For this
measurement, thE mode is broken into two components: the instructions thatoar the critical
path and those that are not—they are “skipped” oveE Byedges.

This breakdown illustrates the power the critical path leesnthance processor optimiza-
tions. Instruction issue scheduling, for instance, is anmyportant for instructions irE mode,

dispatch-critical and commit-critical instructions wilbt benefit from a priority-based issue pol-



48

100% —

Ininininl

80% -l ____ | I . . I ____] |OC-mode || -- 0OC-mode
BE-mode 80% O E-mode Critical
O F-mode B E-mode Non-critical
@O F-mode

Percent of Execution Time
Percent of Instructions

. Tl

compress gcc parser perl vortex mesa swim wave5 compress gcc parser perl vortex art mesa swim wave5

(a) Execution Time Breakdown (b) Instruction Count Breakdo

Figure 4.2:The critical-path model can be used to compute precise perfmance breakdowns.
(a) shows the contribution of each mode to execution timedah benchmark, suggesting what op-
timizations would be best applied. (b) shows the percenthgestructions that are limited by each
mode of operation. Optimizations should focus on thoseunsbns that will impact performance.
The simulator configuration for these experiments is dbedrin Section 7.1.

icy. Furthermore, those instructions that are criticadEimode should be given the highest priority.

For value prediction, it only makes sense to make predisttorbreak criticaEE edges.
Thus, value prediction should only be applied to execuitéal instructions. Making predictions to
other instructions would only needlessly risk a misspdia After a value prediction is made that
breaks the critical path, however, a near-critical ingtamcmay emerge on the new critical path.
This new instruction could then benefit from value predittio

The notion of near-criticality is important for a large nuenlof analysis applications. For
example, in performing dynamic reconfiguration and enegfyntizations it is often important to
know the minimum number of resources needed for processithgut increasing the length of the
critical path. In the next section, we discuss metrics fardiflying how critical or non-critical an

event is, to provide a general analysis methodology for adrange of applications.
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4.2 Criticality of a Single Event

Inherent in the notion of near-criticality is that the demyd criticality of one event typ-
ically depends on the latency and criticality of other egerthese interdependencies complicate
performance understanding considerably, since, in piecevery event in the program execution
could influence the criticality of every other event. To sthe discussion, we’'ll ignore the ex-
ponential number of interdependencies and focus on the iogbler problem of quantifying the
criticality of a single event. We'll explore the more gereration of criticality in Section 4.3.

As we know by now, the latency of an event is not sufficient tidate to what degree an
event is critical. Latency is directly related to critigglihowever. Consider the dependence graph
of Figure 4.3a. The circled edge weight represents thedgteha data-cache miss, @&cycles. As
can be seen, this cache miss’s latency is not on the critatél pn other words, the load has some
amount ofslack such that the latency could be increased without incrgasia execution time of
the entire program.

Now, consider increasing the latency of the cache miss fidam11 cycles, as shown in
Figure 4.3b. This change of latency puts the cache miss oaritieal path; in other words, the
longest path in the graph now includes the cache miss. Thamsthe cache miss hasastto
performance, in that decreasing its latency would decresexecution time of the entire program.

The relationship between criticality and latency can hesthated graphically by a chart,
Figure 4.3c. In the example of the cache miss, a latency ofyeles is the minimum that places
it on the critical path. At this latency, this path is tied ength to another path flowing through
the branch misprediction, completely hiding the latencyhef cache miss — or, in other words,

the miss has a cost of zero. Each cycle of additional latemmagases the cache miss’s cost by one
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Figure 4.3:Relationship between slack and costln (a) the circled cache miss latency is off the
critical path. By increasing the latency by a couple of cydieee(b)), the critical path changes,
placing the latency on the critical path. (@), the cache miss has one cycle of slack(d) it has a
cost of one cycle. The relationship between the latencgksknd cost of the cache miss is shown
in (c).
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(a) Slack without resource modeling. (b) Slack with resource modeling.

Figure 4.4: Slack with and without resource modeling. Modeling processor resources exposes
more of the slack inherent in the execution than can be obddyy a data dependences alone.

cycle; each cycle reduced (beldw cycles) increases the cache miss’s slack.

Definition of slack. The notion of slack is particularly useful to designers aochgiler optimiz-
ers. The reason is simple: resources allocated to everntarthéar from critical can be re-allocated
to critical events. Alternatively, slowing down the prosieg of those events can often lead to
energy savings.

At this point we would like to note again the importance of mality resources when
determining the amount of slack that an event has. For an@eaonsider thelata-dependence
only graph of Figure 4.4a. Here, the indicated execution evenhbalack, since it is on the critical
path of the execution. If resources are also modeled, hawiat same event has several cycles of
slack (see Figure 4.4b). In general, modeling resourcéieibase the slack observed on execution
events since the critical path often traverses resourcesedg

In the computer architecture community, there is not a abesily used formal definition
of slack. For our work, we charactered two different notje@ech of which can be useful in different
contexts. They arcal andglobal.

Thelocal slack of a dynamic event is the maximum number of cycles the processing
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Figure 4.5:Global vs. Local Slack.

of e can be delayewvithout delayingany subsequent eventtn other words, delaying an event by
its local slack does not change which edges are last-agriviior an example, consider the graph
of Figure 4.5. In the figure, each node is annotated with fite™ time, i.e., the cycle at which all
dependences into that node have been resolved. The fireralesclear that the labeled execution
edge has a local slack of only one cycle: increasing it'iagdoy more than one cycle would delay
the fire time of the target node of the dependence.

From our measurements, approximately 20% of instructi@ve local slack greater than
five cycles (see Section 7.2.1). Local slack is conservdiaeause it prevents delaying any event
in the program. To avoid impairing the overall executionwbueer, it suffices to ensure that the
program completes in the original number of cycles. Thisaraggressive notion is captured by
global slack.

Global slack of a dynamic event is the maximum number of cycles the executiore of
can be delayeavithout delayingthe lastinstruction in the program In other words, delaying an
event by its global slack does not change what edges are amitical path. From Figure 4.5, we

can see that global slack offers much more optimizationmiatethan local slack. In fact, from
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our measurements, approximately 75% of instructions hilsagslack greater than five cycles (as
opposed to 20% for local slack). Global slack serves as aarupgpund on the amount of tolerable
delay, since it is the maximum amount a particular instarcttan be delayed without increasing
execution time.

The difficulty with global slack is that, in contrast to locghck, a single cycle of slack
may be shared among many events. In other words, there aradtibns between the global slack
of various events. We can delay every event in the programsbiocal slack without increas-
ing execution time. The same is not true for global slack. Viltaddress this issue in detail in

Section 4.3.

Definition of cost. From a high level, the cost of an eventould be defined as the number of
execution cycles that should be blamedeoiThe issue of how to assign blame for execution cycles
presents some subtle issues, however, which affect thataefiof cost.

For example, consider the criticality of the edge represgrihe branch misprediction
in Figure 4.6a. How should the cost of the misprediction biendd? One possibility is to define
it as the execution time reduction that occurs when the edg&ncy is reduced to zero. Notice,
though, that even if the edge’s latency is decreased to #geEayritical path still flows through the
branch misprediction. This means that if the latency cooliehow be made negative, execution
time would decrease even more.

The relationship between the branch mispredict edge’sidgitand criticality is shown
graphically in Figure 4.6b. The branch becomes non-ctitfdgs latency reduces to less tharb
cycles. In a theoretical sense, then, we would say the cakedfranch in Figure 4.6a is its latency,

4, minus—5 for a total of9 cycles, since the maximum possible reduction of executioe from
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Figure 4.6:Relationship between slack and cost for a branch mispredictThe latency of a branch
misprediction latency is circled ifa). The relationship between it's latency and it’s criticalis
plotted in(b). Notice that the branch misprediction remains criticaltwgriticality above the x-
axis) until it's latency is below negative five cycles.



55

event type how to idealize in a simulator

Icache, Dcache, TLB misses turn misses into hits

ALU operation give ALU zero cycle latency
Fetch,lssue, or Commit Bandwidthuse infinite bandwidth

Branch mispredict turn mispredicts into correct predictions
Instruction window use infinite-sized window

Table 4.1:1dealizing events. Listed are techniques to idealize a few of the events studi¢kis
paper.

optimizing the branch i cycles.

To generalize, the ultimate cost of any evers the execution time reduction achieved if
it's latency is reduced the maximum amount, or, in other \8ptd negative infinity. Of course, it is
not possible in real life to make a latency negative. It iefbossible, however, for an optimization
to change the structure of the graph to achieve the same.dfigbe case of the branch mispredic-
tion edge, an optimization that makes the prediction cometild remove the dependence entirely,
which has exactly the same effect as reducing the latencgdative infinity.

To form a definition that is applicable across all types ofnesewe define the cost of
an event as the execution time reduction obtained when thet évidealized where “idealized”
means that the performance impact of the event was redudbd tgreatest extent possible for the
analysis application (examples of this will be presententyf). Formally, lete be an event; be
base execution time (nothing idealized), afe) be execution time witla idealized. Then, the cost

of e, cost(e), is defined as

cost(e) £t —t(e)
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The cost of an event can be naturally generalized taggmegatecost of a set of dynamic
eventsS. This allows us to compute, for example, the cost of a cachibeamtal speedup when all
cache misses are idealized.

It is often the case in practice that it is more useful to define“idealization” to be
something less dramatic than setting an edge’s latencygatine infinity. For example, a load
prefetching optimization might be able to turn a cache migs & cache hit, which would result in
a reduction of latency on the graph from a cache miss latengy,{2 cycles) to a cache hit latency
(e.g.,2 cycles). For this application, it would make sense to defirgedost of a cache miss to be
the performance improvement when the latency is reduce@myycles. A number of example

idealizations for practical applications is given in Tablé.

4.3 Degree of criticality of multiple events

As mentioned above, there is much more to performance asalyan just the slack
or criticality of a single event. When events must be considesimultaneously to understand
performance, we say those eveiriteract The simplest example of an interaction is two cache
misses starting simultaneously and being serviced in lpardalhe cost of either miss, as defined
above, is zero: removing one miss or the other does nothim@gtimrmance. To understand the
performance effect of these misses requires an analysigavfictions.

Interactions can be much more complex than in the case of anadlpl cache misses. For
one, the two misses may only partially overlap, giving the misses each a small positive cost; or,
if a third event occurs in parallel to both misses, one or loothid have a positive slack. Secondly,

the interacting events may be non-homogeneous, such asawhieache miss occurs at the same
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time as an ROB stall. Finally, events do not have to occur kanaously in order to experience
interactions. The simplest example is the one given in 8ecti2 when distinguishing between
local and global slack: if one even{ is dependent on anothes, e; andes; may both “share” the
same cycles of slack.

We have developed two ways of accounting for interactioresparallel system:

¢ Quantifying Interactions. To maintain maximum flexibility in how interactions are todse
ploited, we must explicitly quantify them. The quantificaticonsists of measuring the effect
that several events together have on execution time andamamggthat to the execution-time
effect that the individual constituent events have. In Wi, the interaction effects can be
explicitly measured. The disadvantage of this approachasthere are an exponential num-
ber of interactions in a typical program run, necessitatiegristics that reduce the amount of
information that must be observed when making optimizatiecisions. Nonetheless, well-
chosen heuristics that focus on a small subset of eventathamportant for a particular

analysis application can make explicit quantification picad.

e Apportioning. An alternative method to account for interactions is todsmlthe analyst
or optimizer from their effect. We can do this by pre-apporing the global slack or cost
to individual events, essentially converting them to logcedtrics which can be considered
in isolation. In other words, optimization decisions woblel made without considering in-
teractions explicitly, relying, instead, on an pre-apjpmihg policy to assign each event a

reasonable share of the slack or cost.
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4.3.1 Quantifying Interactions

To start off, consider the above example of the two cacheawisghile the cost of the
individual cache misses are zero, #ggregatecost of both cache misses, obtained by measuring
the execution time reduction from idealizing bathandc, simultaneously, would be large. By
knowing this aggregate cost, denotedt({c;, c2}), the program optimizer would know that while
prefetching only one load would give little benefit, prefeirg both would give significant benefit.
We term this phenomenon, whetest({c1, ca}) > cost(c1) + cost(cz), aparallel interaction

Perhaps less intuitively, it is also possible for the opigoparallelism-induced effect to
occur, wherewost({c1, ca}) < cost(c1) + cost(c2). One example is if twalependentache misses,
each with100 cycle latency, both occurred in parallel with0 cycles of ALU operations. In this
situation, prefetching both provides no more benefit thafgbching either one alone, implying that
a program optimizer would save overhead by performing only prefetch. In general, this type
of interaction can occur between two everdtsand B if they are in series with each other, but in
parallel with some other event (or evengs) We call this phenomenon serial interaction since
the two interacting events occur in series.

In summary, for two events, andes:

cost({e1, ea})= cost(ey) + cost(ez) < Independent
cost({e1,e2})> cost(e1) + cost(ez) < Parallel Interaction

cost({e1, ea})< cost(er) + cost(ez) < Serial Interaction
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(a) Parallel interaction. (b) Serial interaction.

Figure 4.7:Two types of interactions. Dependence graphs can conveniently illustrate the two dis-
tinct types of interactions that can exist between evepdsallel andserial. In (a), the two cache
missesc; andcy, have a parallel interaction. Both cache misses would nebé &iminated to im-
prove performance. Itb), c3 andcy experience a serial interaction. Here, eliminating eittamhe
miss will reduce execution time B0 cycles, but eliminating both will not improve performance
any further.

It is often convenient to visualize interactions using defsnce graphs, like the ones in
Figure 4.7.

As we show in Chapter 7, interactions are common phenomdtea él, there is potential
for interaction any time two events occur simultaneousii).inform the optimizer (automatic or
human) of the “degree” of interaction, we define interaciiost. Lete; andey be two events and
cost({e1, e2}) be the aggregate cost of both events. Thenirttezaction costof e; andes, denoted

icost({e1,ea2}), is defined as the difference between the aggregate cose divthevents and the

sum of their individual costs:

icost({e1, e2}) & cost({ey, es}) — cost(e1) — cost(ez)

Thus, for a parallel interactioncost({e1, e2}) is the number of extra cycles an opti-
mization that targets both events, instead of just one,dceuér hope to benefit. In contrast, for
a serial interactionjcost({e1,e2}) would be negative, reducing the expectation for perforreanc

improvement from targeting both events.
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The interaction cost of two sets of events,and.S,, is defined similarly, by replacing;
ande, with S andS; in the above equation. Moreover, the interaction cost ofattioan two events
(or sets) can be defined recursively. Formally,#¢t/) \ U denote the proper power set of a set of
eventsU (i.e.,all subsets ot/ except forU itself). Then the interaction cost &f is defined as the

cost ofU minus the interaction cost of each proper subséf :of

icost({HE 0

icost(U)E cost(U) — Z icost(V')
VeP(U))\U

Notice the power oficost: it characterizes the interaction between events in aeingl
number, with straightforward interpretation. The signigates the type of interaction (positive for
parallel, negative for serial); and the magnitude indis#iiedegreeof interaction. Anicost of zero
means the two events are independent and can be optimizachssp

Finally, if U above is the set ddll events in an execution it follows that total execution
time always equals the sum of thieosts for the powerset of/. This implies that completely

accounting for execution time requires all interactiontsdg be considered.

Icost optimization strategies

There are several ways that interaction costs may be used bapalyst during design
and optimization. The one we have used the most in our is ircdmstruction of performance

breakdowns.
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Performance breakdowns. A performance breakdown is a mapping of execution cyclesi¢o t
events and hardware resources that are responsible (anld $feoblamed) for those cycles. They
are often presented as stacked-bar charts in researcls papere each categorg.§.,cache misses,
branch mispredicts) is sized to reflect it's overall conttidin to execution time.

It is interesting to note that while it is very common for perhance breakdowns to be
used in research and design, the breakdowns that are useacticg are generally not a realistic
depiction of performance in a processor that exploits pdisth. The reason is that, in general,
several categories of events and resources could be résigofts a single cycle, but traditional
performance breakdowns map each cycle to only one catégageek to overcome this limitation
using interaction costs.

Figure 4.8 illustrates a breakdown that explicitly incladeteraction costs. Notice that
a complete breakdown of performance requires measuringoahlible interactions between the
breakdown categories. In practice, the less significamractions could be grouped together to
reduce the number of measurements necessary.

The table of interaction costs shown in Figure 4.8a provale®smplete breakdown of
execution time. Sometimes it is useful to visualize the ltesn something other than a table,
however. Towards that end, we present one possible vistialivin Figure 4.8b.

The most notable feature of this visualization is how we deth categories that have
negative values (due to serial interactions). In this casegllow the stacked-bar chart to grow above
100% and below 0%. The chart grows above 100% because thauotéer of cycles allocated to
the positive categories will exceed the execution time efgiogram. These extra cycles are offset

by the negative categories, which we plot below the 0% axigh Wis visualization, all interactions
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Cat. Expression for Interaction Cost Comments
Name computing icost (icost) A +7
A cost(A) 7 All A’s latency is critical 100%
B cost(B) 11 B is partially “hidden” +11
C cost(C) 0 C is totally hidden
, , 4 - BC | +2
AB cost({A,B}) - icost(A) - icost(B) 11-7-11=-7 Optimize A or B, not both
AC | cost({A.CY) - icost(A) - icost(C) 7-7-0=0 A and C are independent ABC| +7
BC cost({B,C}) - icost(B) - icost(C) 13-11-0=2 Bonus for optimizing A and B 0%
ABC cost({A,B,C}) - icost({A,B}) - 20-(-7)-0-2-7- | Bonus for optimizing all of A, AB | -7
icost({A,C}) - icost({B,C}) - 1-0=7 B, and C
icost(A) - icost(B) - icost(C) -

(a) Breakdown example (b) One possible visualization

Figure 4.8:Correctly reporting breakdowns. The traditional method for reporting breakdowns
does not accurately account falt execution cycles, since it attempts to assign blame for eacle

to asingle event when sometimes multiple events are simultaneousjyoreible. We propose a
new method that usaateraction costsdiscussed in Section 4.3.1. In our method, each category
corresponds to an interaction cost of a set of “base” caiegjor

are made apparent to the user (their sign is given by theidocet the chart). For instance, the large
negative contribution oA B in Figure 4.8 tells us optimizingl will help alleviate the costs due to

B, since they tend to occur serially.

Interpreting Breakdowns. The cost of a single event is easy to understand: it is themaxi
improvement possible by optimizing that event. If an optienicould only choose a single event to
optimize, it would pick the one with the largest cost (aftimg the difficulty of implementing the
optimization into account).

On the other hand, if an optimizer had the ability to improgeesal events, interaction
costs become important. A parallel interaction betweendvemts €.g.,B andC' in the figure) rep-

resents a “bonus” reduction in cycles for optimizing botheatiher — this bonus cannot be derived

from the individual event costs.
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A serial interaction €.9.,betweenA and B in the figure) can be applied in at least two

ways by the optimizer.

e First, it tempers the expectation of performance improwanfirem optimizing both events:

the total effect will be less than the sum of their individaasts.

e Second, it gives the optimizer a choice in what to optimihe $¢ame set of cycles (equal in
magnitude to theécosf) will be eliminated if eitherd or B is optimized — in the example,
seven cycles can be eliminated by optimizing eithesr B, whereas four cycles can only be

eliminated by optimizing3.

We make extensive use of the second application of serelactions above in the case

study of Section 7.3.1.

Optimization Heuristic.  Although not explored in detail in this thesis, one waysts are useful

is in choosing a set of events that should receive the mast effiring optimization. Unfortunately,
given an executionpptimally choosing a set of events to improve is an NP-complete prablem
Nonetheless, interaction costs enable heuristics thatwualg well in practice, such as the one

below, which assumes that the optimizer can chagsevents to improve:
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One of many possible optimization heuristics using interac tion costs

1. Initialize the expected_bene fit for each event to its individual cost.
For each event e, expected_benefit(e) « cost(e).

2. Pick event e; with largest expected benefit to optimize.
Of all events e, pick e; such that expected-benefit(e;) is largest.

3. For all events e; that have a parallel interaction with e;, increase their expected benefit by the magnitude of the icost.
For all e, if icost(e;, ;) > 0, then expected_benefit(e;) — expected.benefit(e;) + icost(e;, ;).

4. For all events e, that have a serial interaction with e;, decrease their expected benefit by the magnitude of the icost.
For all ey, if icost(e;, ex) < 0, then expected_benefit(e;) < expected_benefit(e;) — abs(icost(e;, e;)).

5. Until N events have been optimized, go to step 2.

This heuristic makes use of both parallel and serial intemas. Step 3 accounts for the
“bonus” from parallel interactions by increasing the expddenefit of events that have a positive
icost with the event that has already been chosen for optimizatitep 4 accounts for serial

interactions by tempering the expectation of improvementefents with a negativizost.

Slack Interactions. The same principles used for quantifying cost interactiabsve could be
used for slack. A couple characteristics of slack appeargkenanother approach more attractive
in practice, however. For one, slack only exhibits seriggriactions; there is no graph that causes
edges to have a parallel interaction in regards to slackor®@eve have found empirically that slack
interactions typically involve many events, such that danmairwise measurement would not be
sufficient. Attempting to explicitly consider interact®mvolving tens of events while performing
an optimization may be unwieldy.

These two observations make an alternative approach mpeakpg for most practical

applications. We will discuss this “apportioning” styleinferaction analysis in the next section.
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Global Slack = 30-20 = 10
Apportioned Slack_f\5

{20 ]

30
30 \Critical

Figure 4.9:Apportioning Slack. The circled numbers are arrival times of the edges at theefar |
E node. The global slack of the shorter path is the differencéhése arrival times. This global
slack can be apporitioned in many ways to individual edgesgthe shorter path. Here, each edge
is apportioned five cycles.

4.3.2 Apportioning

Apportioning involves making pre-optimization decisiatsout how to allocate slack (or
cost) to particular edges such that the user (or optimisdgplated from the effects of interactions.
A simple example of apportioning in the context of slack iewh in Figure 4.9. Here, the global
slack of each of the two top edgeslig cycles, since that is the difference in arrival times of the
critical and non-critical paths at the convergence points hot possible, of course, to delay each
edge byl 0 cycles, since that would delay the non-critical path to sudegree that it would become
critical. If we apportionthe global slack, however, givingcycles to each edge, each edge can be
delayed by it's apportioned slack without increasing ekieauime.

Of course, many valid apportioning policies exist. For tiyaife, giving7 cycles to one
edge and to the other is also reasonable. The central goal is to magipptimization opportunities
such that, if each edge was delayed by its apportioned sé#l@gdges would be critical. In general,
many apportioning policies will meet this goal. Which pglis most appropriate depends upon the
optimization that will be performed.

More formally, letS be an assignment of some amount of slack (possibly zero)cto ea

instruction in such a way thahe lastinstruction is not delayed Given an assignment of slack
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S, theapportioned slaclof instructioni is S(7), i.e., the slack assigned to The assignment can
be arbitrary (as long as it does not delay the last instroptand is intentionally left up to the

apportioning policy.

Apportioning Policies. The choice of apportioning policy is highly dependent ondptmization
that is to be pursued. Here are a couple policies we haveiexgatied with in the past.

Five-cycle apportioningOne way to apportion slack is to attempt to give each indtroct
say, five cycles of slack. This strategy might be useful if vemted to know how many instructions
could tolerate a long (non-uniform) bypass. From our mesaments, approximately 75% of instruc-
tions have apportioned slack of five cycles. In other wots execution contains a particular set of
75% of instructions that can be simultaneously delayed eydicles. This surprising observation
suggests tremendous optimization opportunities.

Latency-plus-one-cycle apportioningnother apportioning strategy that we consider re-
flects a control policy for a constraint-aware processartiha a (power-efficient) ALU that runs at
half the frequency of the other ALU. The goal of the contraigowould be to maximize the num-
ber of instructions steered to the slow ALU, while maintamthe performance of a two-fast-ALUs
machine. The corresponding apportioning strategy woultbbraaximize the number of instruc-
tions whose apportioned slack equals their original execuatency plus one cycle (so that they

can tolerate the doubled latency of the slow unit plus sonpagy overhead).

4.4 Summary

In this chapter, we have expanded upon our notion of critic&b distinguish not only

whether a microprocessor event is critical or not, but als@ britical or how far from critical the
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event is. Furthermore, we have discussed two ways (quanrgind apportioning) for interpreting
interactions between events that occur near each otheranadigd system. From these primitives,
we have shown how accurate and complete performance breakdmn be created.

Now that we have the underlying framework for our perforr@aanalysis, the rest of
the thesis will deal with the more practical concerns of honcompute the metrics efficiently

(Chapter 5), measure them in hardware (Chapter 6), and eseithproductive ways (Chapter 7).
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Chapter 5

Software Algorithms

In this chapter we will discuss in detail the algorithms usectfficiently compute the
metrics discussed in the previous section. These algositme useful after the graph is constructed
and available. Thus, for practical purposes, they are msefuliin a simulator or after the graph
is gleaned from performance counters (which would need terthenced via Shotgun Profiling,
discussed in Section 6.3).

We will start by discussing a memory and computational effitimechanism for comput-
ing the critical path of a program’s execution. We will themegent multiple ways to compute the

more sophisticated metrics of slack and cost, dependingepdrticular demands of the analysis.

5.1 Computing criticality

The critical path through the dependence graph is simplydhgest path through the
graph. Thus, the brute-force approach to calculatingcatity is to enumerate all of the possible

paths and pick the longest. Of course, a much more efficigiorighm is possible using a simple
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topological sort. Our efficiency requirements are even ndemanding, however. The problem is
that the natural algorithm for finding criticality would neige two passes, one for performing the
topological sort and another for identifying the criticalges and nodes. This two-pass approach is
rather expensive, however, since it requires bufferingetiitire graph, which would be very large
for a long program execution run. In this section, we willa@se our single-pass algorithm as it
would be used in a simulator. In the next section, we will usae of the same principles to develop
an efficient hardware implementation.

The first key insight is that an edgehat is on the critical patmustbe thelast-arriving
edge into its target node. In other words, the critical edge must be on the longeshigteath
from the beginning of the program to its target node. Thisukhoot be a surprising conclusion
since, by definition, a critical edge is also on the longdsiiey path through the entire program. If
there was some longer latency patmtthat did not includes, e could not be on the critical path.

So, we can find the critical path by building only a subset gfesdof the graph: those that
are last arriving. The critical path, then, is the chain sfdarriving edges from the first fetch node
to the last commit node of the program. This chain can be faasily via a backward traversal
from the end of the program. Figure 5.1 illustrates the pilace.

As described, the algorithm still requires buffering thdirengraph. The second key
insight that removes this requirement is that there are smiges in the graph that can be determined
to be critical using local analysis, rather than the globst-arriving edge traversal described above.
These edges, calledticulation edgeseffectively divide the large, whole-program-executioah
into many much smaller chunks, each of which can be operateddependently. Thus, only the

portion of the graph up to the next articulation edge mustuieked in order to compute criticality.
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(c) Backward traversal finds critical path.

Figure 5.1:Finding the critical path using last-arriving edges.
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If these articulation edges are frequent enough, the anufumiffering that is required would be
modest.

We employ two different strategies for identifying artiatibn edges. The simplest in-
volves identifyingcutsthat divide all the nodes in the graph into one of two subgsapihe cuts are
made across a set of edges, as shown in Figure 5.2a; theseagdgeferred to as tluait-set Since
the critical path is a continuous sequence of last-arriédges from the beginning of the program
to the end, one of the edges in this cut must be critical. Euantlore, we know that every critical
edge is also a last-arriving edge. Thus, if there is only asearriving edge in the cut-set, that edge
must be critical. Since identifying whether an edge is &siving can be done without buffering
the entire graph, this edge is an articulation edge for oalyars.

In practice, we have found branch mispredictidii/{) edges are likely candidates for
articulation edges. (In other words, a cut acros&@nedge often yields a cut-set with only th&”
edge as last-arriving.) Using this technique, it is tygdicalossible to identify an articulation edge
every few hundred instructions.

A second strategy for identifying articulation edges camrimployed if the simpler strat-
egy above does not yield articulation edges with sufficieeqdency. It starts with finding cuts as
above, but if there is more than one last-arriving edge irctiieset, instead of just giving up, each
edge is traversed backwards until a convergence point reifolihe edge at the convergence point
will be an articulation edge. Figure 5.2c illustrates thegadure. Since the critical path begins at
the first node of the first instruction, it is guaranteed thediavergence will be found. For the strat-
egy to be successful, convergence would need to be fourtive®yaquickly, however, otherwise a

large portion of the graph would need to be buffered in memory
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Figure 5.2:Articulation edges aid in finding the critical path efficiently.
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In general, it is possible for no articulation edges to exishe whole-program-execution
graph. If this is the case, the critical path is not very damninin other words there are one or more
secondary paths that are nearly as long as the critical annd the true critical path in this case,
the entire graph would need to be buffered. For most appitsit however, it is not that useful
to identify the true critical path if it is not dominant, smother paths are nearly as long anyway.
Any practical optimization would need to target both thdical and near-critical paths. Thus, in

practice, it is usually effective to just mark edges in altle#se paths as “critical”.

5.2 Computing Slack

Computing slack is a more difficult problem than criticalifijhis is not surprising since
criticality can be inferred from slack values: any edge wzigino slack is on the critical path. We
will start the discussion of slack algorithms with the moasioc metric (local slack) and use that as
a basis for the more complex metrics (global and apporticteck.) Note that there is a distinction
between the slack of a node versus the slack of an edge, slattieof a node can always be derived

once we know the slack of all the edges, as will be made clearasalk through the algorithms..

Local slack. The local slack of anodeis determined by first computing the local slack of each
edgein the graph. The local slack of an edge= © — v is simply the number of cycles that the
latency ofe can be increased without delaying the target ned&he local slack ot is computed
as the difference between the arrival time of the latest (ast-arriving) edge sinking omand the
arrival time ofe (see Figure 5.3(a) for an example). The local slack of a nodehen the smallest
local slack among the outgoing edgesvofThus, the local slack of the middle node in the figure is

min(Lg, L5) = 1cycle.



Local Slack = Local Slack =
2-1=1cycle 5-3=2cycles

Arrival Time 3 Local Slack =
Local Slack = 4-3=1cycle
2 -2 =0cycles
(a) Calculating local slack.
GS,= LS+ MIN(GS,,GS;)=2 GSy=LS,=2

GS;= LS,+ GS,=1

(b) Calculation global slack.

Figure 5.3:Computing Local and Global Slack.
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ComputeGlobalSlack (G)
[l initialization
arrival_time[n] < 0 for all nodes n € N[G]
/I forward pass
for each node n € V[G] in topological order
for each incoming edge eto n
if latency(e] + arrival_time[sourcele]] > arrival_time[n]
arrival time[n] — latencyle] + arrival_time[source[e]]
/I compute local slack
for each incoming edge eto n
local_slackle] = arrival_time[n] — (latencyle] + arrival_time[source[e])
/I backward pass, to compute global slack
global_slack[n] < 0 for all nodes n € N[G]
for each node n € N[G] in reverse topological order
for each outgoing edge e from n
if global_slack[e] < global_slack[n]
global_slack([n] = global_slack]e]
for each incoming edge eto n
global_slack[e] = global_slack[u] + local_slack|e]

Figure 5.4:Global slack algorithm.

Global slack. As with local slack, we start by computing global slack of eslgThe global slack
of an edgee is the number of cycles that the latencyeotan be increased without extending the
graph’s critical path. As with local slack, the global slamka nodev is the smallest global slack
available among’s outgoing edges.

While local slack was computed by merely examining nodesthanl edges, the com-
putation of global slack involves backward propagation tacumulates local slack. Consider
Figure 5.3(b) as an example. We start by knowing the valuecad#lIslackZ; of each edge; and
end up computing, for each edgg the value of global slack:; for each edge.

In the example(73, the global slack of edge;, equals the sum of the local edge slacks
L3 andLg. We can computérs recursively, as the sum df; andGg. In general, the expression for
computing the global slack of an edgés G, = L. + min(Gouty , Gouts s --» Gout,, ) WhereGy,, to
Gy, are the global slacks of the outgoing edges’'starget node.

The complete algorithm is shown in Figure 5.4. While the athm is linear, there unfor-
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tunately does not seem to be an equivalent to articulatiges@hen computing slack. For accurate
slack computation, the graph of the entire program executiast be buffered (or saved to disk).
We have found in practice, however, that global slack cangmraximated with high precision
by analyzing sufficiently large segments of the executiofeatens of thousands of instructions),

much smaller than the entire program run.

Apportioned slack. Having computed global slack, we are ready to compute ajpped slack.
The goal of the algorithm is to apportion a certain amountlatlstoas many nodes as possible
so that all nodes can be delayed (together) by the amounack sipportioned to them without
extending the critical path. The exact amount of slack wengpt to apportion to each node depends
on the apportioning strategy.

The algorithm we use does not perform an optimal apportgpnbut instead greedily
apportions slack to the first nodes encountered during agfiahwass, after computing global slack
using the algorithm above. For example, assume an analg$tedito employ an apportioning
strategy that gave five cycles of slack to as many nodes agf@sPBerforming this apportioning
optimally is intractable, but our approach would providereggly solution that is (hopefully) good
enough. As the forward pass encountered each npdecheck would determine whether enough
global slack exists to apportiom five cycles of slack. If enough existed,would be apportioned
five cycles, and it would be ensured that no other nodes fudtwnstream are apportioned those
five cycles. This process would continue until the forwardgp@aches the end of the program. The

entire algorithm is shown in Figure 5.5.
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ComputeApportionedSlack (G)
for each node n € N[G] in topological order

available_slack[n] = global_slack[n)]

for each incoming edge eton

if available_slack[n] > available_slack[e] — local_slack][e]
available_slack[n] = available_slack[e] — local_slack]e]

Apportion slack to n up to available_slack[n]| based on policy

for each outgoing edge e from n
available_slack[e] = available_slack[n] — apportioned_slack|u]

Figure 5.5:Apportioned slack algorithm.

5.3 Computing Cost

The most straightforward way to compute tlaet of an evente, is to run two simulations:
one withe idealized and one with no idealizations. Thenst(e) is simply the difference between
the execution times of the non-idealized and idealized wi@ts. Furthermorejcosts can be
computed similarly, since they are derived from simple cosasurementse(g.,icost(e;, e2) =
cost(ey,e2) — cost(er) — cost(ez)).

In practice, though, this multiple-simulation approackxpensive, especially if the num-
ber of cost measurements to be taken is very high. For instance, if avweals to know the cost of
every data cache miss, running so many simulations is watdssi In other cases, a simulator may
not even be available. Fortunately, we have developeditigws to computeost much more effi-
ciently using our dependence graph, which can be built frata dollected by modified hardware
performance counters.

The natural algorithm for computing the cost of an event ergitaph would be to idealize
the edge representing the event, and then measure the aghamigieal-path length this graph mod-
ification induces. While more efficient than running a fulhsilation, some analysis applications

would require many critical-path length measurementsh aitorresponding long analysis time.
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In particular, if an analyst wished to measure the cost ofyegdge in the graph, the complexity
would be quadratic, since each critical path measureménfris), wherem is the number of edges.

We employ some optimizations that reduce this complexityractice (see Section 5.4 below), but
before we get to those, we will first discuss a special-puemdgorithm that can compute the cost

of every single edge in the graph in near linear time.

Near-linear-time algorithm. The key observation to the algorithm is to realize the cosihaédge
on the critical path is equal to the the slack of the secondtrrritical path. In other words, the cost
of a critical edgee is equal to the minimum of the slacks of all edges parallel.t@he intuition
behind this is that, since the cost of an edge is the redugtioritical-path length realized when the
edge is idealized, the maximum reduction possible is tHerdifice between the current critical-path
length and the length of the second-most critical path. Valige is precisely the global slack of the
second-most critical path.

This observation alone is not enough to yield a linear tigehm, however. In general,
finding the set of edges parallel to an edgequiresO(m) time, wherem is the number of edges.
Thus, to find such sets for every possible edge, the straigidfd algorithm would requir® (m?)
time. Careful bookkeeping is required to reduce this coriyle

The first step is to topologically sort the critical-path eedand assign each a numlaer
such that if nodeu; is assigned:; andns is assigned, andk; < ko, nq is an ancestor of, (see
Figure 5.6). Then, for each non-critical edgea range is found> = (k, k.) where every edge
on the critical path betweek), andk, is parallel toe. These ranges can be found with two passes
of a simple dataflow analysis (see Figure 5.7). Finally, ttiical-path is traversed in a forward

direction, maintaining a priority queue of all edges palaib each critical-path edge. The cost of
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AssignNumbers (G, S)
CURID «— 0
ID(N) «— @ foral N
ENQUEUE(CQ,S) while CQ notempty or NCQ not empty
if NCQ not empty
N — DEQUEUE(NCQ)
else
N — DEQUEUE(CQ)
ID(N) « CURID
CURID «— CURID +1
for N.in CHILDREN(N)
if ID(N.) =@
if N, not critical
ENQUEUE(NCQ, N,)
else
ENQUEUE(CQ, N.)

Figure 5.6:Algorithm to topologically sort and assign numbers to nodess part of an algorithm
to compute the cost of every nodeS is the first (starting) node of the grapb'@ is a queue for
holding critical nodes.NCQ is a queue for holding noncritical nodes. The resulting logical
order is represented by the numbers storef/i V) for each nodéV in the graph.

each critical edge is the non-critical edge in the prioritege with the least global slack.

The complexity of the algorithm i©(mlogn) since the priority queue implementation
requires at mosO (logn) complexity for each critical edge. In practice, howeveg ttumber of
edges parallel to a critical-path edge will be bounded byg\ware resource constrainesg.,due to
a finite-sized reorder buffer. Thus, the complexity is affety linear.

Note that the algorithm presented computes the cost of esirgje edge in the graph.
In other words, the algorithm does not compute the aggregstieof two or more edges, which is
necessary for determining interaction costs. It seemstiraputing the cost of every pair of edges
is more difficult than for every single edge, probably remgjran algorithm of quadratic complexity.

In practice there are a some mitigating conditions, howelMast importantly, it is not
interesting to compute the cost of every pair of edges siniseeiasily determined that some edges

are too distant from each other to have any interaction. f&ogtiadratic complexity is only within
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FindExtent (G)

for each node N of G in topological order

if N is critical
EXTENT(N) — ID(N)

else
k — minimum EXTENT(j) of all nodes j that are parents (immediate ancestors) of n
EXTENT(N) — k

return EXTENT (n)

FindRanges (G)
BEGIN(N) <« FindExtent(G)
Let G’ be G with all edges reversed
END(N) « FindEztent(G")

Figure 5.7: Algorithm to find ranges of critical nodes parallel to each nacritical node
BEGIN(N) and END(N) contain the beginning and ending identifiers for the rangeséwh
nodeN.

a local region of the graph.

5.4 Algorithms for Dynamic Graphs

The algorithms for slack and cost discussed above make aortamp assumption con-
cerning the graphs that they are operating on: that theytatie Sunchanging) during the analysis.
For most analyses, this is an acceptable assumption. Iivistdmes useful, however, to modify the
graph while the processing is occurring. For instance, ianeeusing the graph to determine good
cutpoints in which to divide a program into multiple thredds application sketched in a later chap-
ter), inter-processor latencies would be placed on diffieedges for each possible cutpoint. Such an
application is going to necessarily require a more timesaamng analysis, but by taking advantage
of the unique structure of a microexecution graph, the amalan be done in a reasonably tractable
way.

The basic approach we take is to measure slack and cost rggraightforward ap-

proach of computing critical-path lengths, but instead efasuring the critical path of the entire
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ComputeSlack (G, Em, localSlack)
Il initialization
count < 0
lastSlackNode «— @
for eachn € N
slackNode[n] « oo
for each em, € Em
slackEdgelem] « localSlack[em]
/I do propagation
for each n € N in program order (starting at earliest target Node[em € Em]) {
for each e; € IncomingEdges[n] — Em
slackEdgele;] < slackNode[sourceNode[e;]] + localSlack[e;]
slackNode[n] < MIN(slackEdgele; € IncomingEdges|n]])
/I check condition for ending propagation
if slackNode[n] = lastSlackNode
count < count + 1
else {
lastSlackNode «— slackNode[n]
count < 0
}
if count > ROB_SIZFE
return slackNode[n]

Figure 5.8:Algorithm to compute slack of an individual event. Note, due to the structure of our
model, this single event could occur on multiple edges. Rstance, the effect of a cache miss
could occur on multiple EE edges as well as an EC edge. We cetdttucture the model to avoid
such difficulties, if desired.

microexecution for each measurement, we introducerarergenceondition such that the entire
graph need not be examined. The convergence condition &l ks specific knowledge of how
the graph is structured, specifically that parallelismnstied to the span of the reorder buffer. Any
dynamic alterations to the graph will be done individualty éach slack or cost measuremem,,
each measurement in essence has its own graph. Note trapsopagation only proceeds a limited
amount before convergence is reached, we avoid consiguatoopy of theentire graph for each
measurement. The algorithms are shown in Figure 5.8.

Both algorithms accept three inputs.= (N, E) is the graph of the microexecution and
contains a set of node¥ and a set of edgeE. The function/ncomingFEdges|n] returns the set

of incoming edges into node; function target N odele| and source N odele] return, respectively,
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ComputeCost (G, Em, localSlack)
Il initialization
count < 0
lastCostNode «— &
for eachn € N
costNode[n] < 0
for each em, € Em
costEdgelem] — oo
/I do propagation
for each n € N in program order (starting at earliest target Node[em € Em]) {
for each e; € IncomingEdges[n] — Em
costEdgele;] < costNode[sourceNodele;]] + localSlack|e;)
costNode[n] < MIN(costEdgele; € IncomingEdges[n]])
/I check condition for ending propagation
if costNode[n] = lastCostNode
count < count + 1
else {
lastCostNode < costNode[n]
count < 0
}
if count > ROB_SIZE
return costNode[n]

Figure 5.9:Algorithm to compute cost of an individual event.

the target and source nodes of edgeThe inputFE,, is the set of edges that are to be measured
for slack or cost. The final inpubcalSlack is an array containing the local slack of each edge
in the graph. Local slack of an edgencoming to a node: is defined ad.A_EdgeCycle[n] —
EdgeCyclele] whereLA_EdgeCycle[n] returns the cycle the last arriving edge intds resolved
and EdgeCyclele] returns the cycle edgewas resolved.

The algorithms are very similar except for initializatiom. the slack algorithm, we start
with a small value of slack (just the local slack at the edgadeneasuredF,,) and continually
refine this value as we observe more slack on edges in patfisdetiom E,,,. Conceptually, we
can think of the algorithm as searching for the path frB to the critical path that has tHeast
cumulative slack. This cumulative slack is reported as keksfor E,,,.

In the cost algorithm, we know thdf,, must be on the critical path (else it has a slack
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rather than a cost.) We start with a large value of cest,and continually refine this value as we
discover paths that are closer and closer to the critical. gaonceptually, we are trying to determine
how far E,,, is from the second-most critical path.

The convergence condition is the same for both algorithfrieelsame slack or cost value
has been propagated across every edge for th&las® _size instructions, we know that the value

will never change.

5.5 Summary

In this chapter, we discussed the graph algorithms thatatgpem a dependence graph
of the microexecution to extract the metrics of interestdor criticality analysisi(e., the critical
path, slack, cost, and interaction cost). These algoritarasused in two ways in our work. The
first is to implement them directly in a simulator to help cartgy architects better understand the
performance characteristics of the machines they areibgildSecondly, the algorithms form the

basis for some of the hardware techniques and profilingstrinatures discussed in the next chapter.
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Chapter 6

Hardware Support

For many applications of our performance metrics, we wapetform measurements of
real programs executing on real machines. To make thiskgessie provide hardware support for
measuring criticality, slack, and interaction cost. Intieet two sections, we describe our solutions
for detecting criticality and slack in hardware. Then, irct8m 6.3, we describe an alteration to
traditional performance counter infrastructure that éemlus to build full-featured graphs from

scant information collected during a program’s execution.

6.1 Criticality Analyzer and Predictor

Recall the observation of the previous chapter that the&alkipath consists of only last-
arriving edges (see Section 5.1). For the hardware ciitycahalyzer, we take this observation a step
further: for the goal of detecting criticality, the portiari the graph consisting of non-lastarriving
edges does not even need to be constructed. Furthermoce, thim critical path consists of the

chain(s) of last-arriving edges spanning from the begmprihthe program to the end, it can be
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target node edge last-arriving condition
E;_1 — F; | if iis the first committed instruction since a mispredicted bhan
F C;_w — F; | if the re-order buffer was stalled the previous cycle.

F;,_1 — F; | if neither EF nor CF arrived last.

F;,_1 — E; | ifall the operands for instructiohare ready by the timeis dispatched.
E E; — E; | ifthe value produced by instructionis the last-arriving operand of
and the operand arrives after instructiomas been dispatched.

E; — C; | ifinstruction: delays the in-order commit pointeg.§., the instruction
is at the head of the re-order buffer but has not completedutiom and,
C hence, cannot commit).

Ci—1 — C; | if edgeEC does not arrive last.g., instruction; was ready to commit
before in-order commit pointer permitted it to commit).

Table 6.1:Determining last-arriving edges. Edges are grouped by their target node. Every node
must have at least one incoming last-arriving edge. Howeeene nodes may not have an outgoing
last-arriving edge. Such nodes are non-critical.
found without knowing the operation latencies associatéd the edges. (If more than one such
chain of last-arriving edges exist, each chain is equaltjcat.) So, if we can find a simple way of
identifying last-arriving edges, it may not be necessarhfirdware to measure latencies at all.

Fortunately, it is possible to identify last-arriving edga hardware using simple rules.
A few examples: for execution edges, the issue logic musaéir detect when a dependence is the
last-arriving one, since that is the cue for the dependeetatipn to issue. For fetch nodes, moni-
toring processor events is enoughg.,if a branch misprediction prohibits a fetch from occurring,
the misprediction is the last-arriving edge. A summary ttra rules for a three node model are
shown in Figure 6.1. These rules are all the hardware needistéomine last-arriving edges and,
hence, the critical path.

Nonetheless, even with this dramatic reduction in work megufor creating the graph,
the algorithm is still very expensive for a hardware impletagion. The reason is that a relatively
large portion of the graph (between articulation edgesiisi¢ée be buffered before the critical-path

can be found via backwards traversal of last-arriving edges Section 5.1). This involves a large
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amount of storage and control logic within a processor.

We solve this problem by transforming thackwarddraversal into d&rward one. We do
this by employing the following property: if there existsl@am of last-arriving edges from a node
N to the end of the prograniy is critical. We know this because i is delayed by any amount
(e.g.,one cycle), the execution time of the entire program willessarily be increased (due to the
lack of any slack). So, if a forward traversal along lastvamg edges fromV reaches the end of
the program, we know thaV is critical. On the other hand, if there is no such chaihcannot
be critical, since it has some (global) slack. Below we dbscthe algorithm we use in detail.
Note that, in order to gain criticality information whiledlprogram is still running, we employ an

approximation that could, potentially, lead to some inginns being falsely identified as critical.

Token-passing Algorithm. The complete token-passing training algorithm is showrigife 6.1.
It works through frequensamplingof the criticality of individual nodes of instructions. Take a
criticality sample of node:, a token is planted inta (step 1) and propagatetbrward alongall
last-arriving edgesstep 9. If there is more than one outgoing last-arriving edge dken is repli-
cated. At some nodes, there may be no outgoing last-arredygs for the token to propagate
further. If all copies of the token reach such nodes, thertakes indicating that node must not
be on the critical path, as there is definitely no chain otéastzing edges from the beginning of the
program to the end that contains nadeOn the other hand, if a token remains alive and continues
to propagate, it isncreasingly likely that noden is on the critical path.

This is the point where our approximation comes in. Instelagropagating the token
all the way to the end of the program, we stop after the pracdsads committed some threshold

number of instructions (called theken-propagation-distangeAt this point, we check if the token
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1. Plant token at node n.

2. Propagate token forward along /ast-arriving edges.
If a node does not have an outgoing last-arriving edge,
the token is not propagated (i.e.,, it dies.)

3. After allowing token to propagate for some time,
check if the token is still alive.

4. If token is alive, train node n as critical;
otherwise, train n as non-critical.

Figure 6.1:The token-passing training algorithm.

is still alive (step 3. If it is, we assume that nodewas critical; otherwise, we know that node
was non-critical. The larger the token-propagation-distéa the less likely any instructions will be
falsely identified as critical (the token analyzer nevenreggmrds to the graph, incorrectly identifies
an instruction as non-critical).

The result of the token propagation is then used to train tbdigtor Etep 4. More will

be said about the predictor in Section 6.1.2.

Token-passing analyzer parameters discussion.There are several parameters that are important
to consider in the design of the analyzer. One of the mostitapbis thetoken _propagation_distance,
which is the number of instructions that must commit duringken'’s lifetime in order for the node

in which the token was planted to be considered critistéf{ 3 of Figure 6.1). The larger the
token_propagation_distance, the more accurate the analyzer will be in detecting cliticaOn

the other hand, more nodes will be sampled if theen_propagation_distance is smaller, since
the token will be available to be replanted more quickly. didition, the criticality information for

a node is obviously not available until after the detectiompletes, which may cause us to miss
out on optimization opportunities if one or more dynamidamges of the static instruction being
sampled are fetched and executed while waitingtéden_propagation_distance instructions to

commit.
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One way to get the benefits of a larggen_propagation_distance while maintaining
a high sampling rate is to increase the number of tokens. dthiges at the cost of replicating the
token-array used for storing and propagating a token. As ie&e in the next section, however,
the cost of implementing the token-passing analyzer is woth@t such replication is relatively
inexpensive.

A final parameter of the analyzer is the policy used to decidelvnodes to plant tokens
into (step 1), which determines how many samples would be taken of eatih sistruction. Exper-
imentally, we have found that this policy does not matter Imincpractice. If tokens were planted
in a completely deterministic manner, howeverg(,immediately after they are freed), there are
pathological cases that would lead to many static inswastnever being sampled. For this reason,

we use a randomized policy.

6.1.1 Hardware Implementation of the Analyzer

We'll discuss two approaches to implementing the tokersipgsalgorithm in hardware.
The first performs the token propagation via read-modifitevoperations on a small array. The
benefit of this approach is that (except for the last-arguinige detection) all of the logic for the
token-passing is located outside any datapaths of the ggoce The only information that must
be provided by the processor are the last-arriving edge® d¥advantage is that the bandwidth
required to transmit the last-arriving edges from the pssoe core to the analyzer is fairly high.
As an estimate, the number of bits the must be transmitteld ®axde would be equal toumber of
instructions committed per cycle number of nodes per instruction number of bits to represent
the origin of a last-arriving edge For a 6-wide machine with 3 nodes per instruction and a 256

instruction ROB, the expression yields< 3 x 8 = 124 bits. More importantly, the wires for this
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information will be coming from all over the chip, which caeal to routing problems. Our alterna-
tive implementation performs the token-passing in a digtéd manner, local to where each of the
last-arriving edges are determined. This approach eliméde read-modify-write operations and
the large number of wires coming out of the processor at tperese of some modularity, since the

analyzer is no longer centralized.

Centralized (Off-the-core) Implementation

Our centralized implementation performs the token passingide of the main processing
core by performing read-modify-write operations to a snaathy (Figure 6.2). The array stores
information about the segment of the dependence graph édR@B sizemost recent instructions
committed. One bit is stored for each node of these insbustiindicating whether the token was
propagated into that node. Note that the array does not erenogldependence edges; their effect
is implemented by the propagation step (see step 2 below).

As each instruction commits, it is allocated an entry in theya replacing the oldest
instruction in a FIFO fashion. A token is planted into a noithe instruction by setting a bit in the
newly allocated entrystep 1of Figure 6.1).

To perform the token propagatiostép 2, the processor core provides, for each com-
mitting instruction, identification of the source nodes lod tast-arriving edges targeting the three
nodes of the committing instruction. (An identifier for atlasriving edge is simply the instruction
number assigned to the instruction containing the sourde,nalong with the node type. The in-
struction numbers are assigned in program order in the rah@eo RO B _size, wrapping when
the maximum extent is reached.) For each source node, itg ianthe token array is read (using

its identifier as the index) and then written into the targedenin the committing instruction. This
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simple operation achieves the desired propagation eff@wlly, note that the reason why the token
array does not need more thROB sizeentries is the observation that no critical-path depenglenc
can span more thaRORB sizeinstructions.

Checking if the token is still alivesfep 3 can be easily implemented without a scan
of the array, by monitoring whether any instruction comettin the recent past has written (and
therefore propagated) the token. If the token has not bemagated in the laROB sizecommitted
instructions, it can be deduced that none of the nodes irolkentarray holds the token, and, hence,
the token isnot alive. Finally, based on the result of the liveness chedk,itilstruction where the
token was planted is trainedtép 4 by writing into the critical-path prediction table, usirige
hysteresis-based training rules in Table 6.2.

After the liveness check, the tokenfrsedand can be re-plantedtép 1) and propagated
again. The token planting strategy is a design parametéeshuald be tuned to avoid repeatedly
sampling some nodes while rarely sampling others. In ouigdesve chose to randomly re-plant

the token in one of the next 10 instructions after it is freed.

Hardware Costs. Now we will analyze the hardware expense of the token-pgsairay in the
centralized implementation. As mentioned above, the ®aqu of the sampling is influenced by
both the token-propagation-distance and the number ohtokegailable for planting. In this im-
plementation, additional tokens increase the size and auwitports required of the token array;
but they are inexpensive in terms of additional control dagjnce all of the tokens can be read and
written together during propagation. For the propagatistadce we chose (500 + ROB size = 1012
dynamic instructions), eight simultaneous in-flight tokevas sufficient. For this configuration, the

token array size is 1.5 kilobytes (reorder buffer sizaodesx tokens= 512 x 3 x 8 bits).
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Assume for the figure:

256 entry ROB The last-arriving nodes are detected
log,(256) = 8 bit instruction ID using the last-arriving rules inside the
8 tokens in flight simultaneously processor core.

3 node model (F, E, and C)
(8-bit inst ID, 2-bit node ID)

F node's last-arriving source node 10 The wires from the processor

core and token array are

. shown here for just one

C node’s last-arriving source node  1(, committing instruction.

Processor l
A, A,
Core Read Index

(3 ports x # of committing instrui:tions)

E node’s last-arriving source node 10

Token Array

Committing instruction ID 256 entries x 3 nodes x 8 tokens
C § (~1KB)
C
) > F Wi
The token bits of the source nodes »E rite
C (1 ports x # of committing instructions)

are written into the committing
instruction’s entry in the token array.
8 tokens
8

8

The token bits of the source nodes
(the read index above)

Figure 6.2: Training path of the critical-path predictor. Training the token-passing predictor
involves reading and writing a small (less than one kilopgaay. The implementation shown
permits the simultaneous propagation of eight tokens.

Although the number of ports of the token array is propodido the maximum commit
bandwidth (as well as to the number of simultaneous lastiagredges), due to its small size, the
array may be feasible to implement using multi-ported cafid replication. Alternatively, it may

be designed for the average bandwidth. Bursty periods dmeildandled by buffering or dropping

the tokens.

Distributed (Throughout-the-core) Implementation

The key to the distributed implementation is that the tokamesattached as extra control
bits to each instruction as it flows through the pipeline. réhgould be one bit for each node, and

multiple sets of these bits if multiple tokens are supportéithough it may sound expensive to
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Figure 6.3:Example of token passing in distributed criticality analyzer implementation. The
logic for passing a token into the D-node of an instructiompelispatched is shown. Logic for the
other nodes would be similar in flavor.

Branch Mispredict

attach a few bits to every dynamic instruction as they flowoulgh the machine, most processor
implementations transmit hundreds of bits for each insivncalready. A few extra bits represents
rather small overhead.

In this style of implementation tokens are plantetep 1) into a node of an instruction by
setting the node’s token bit as the instruction is fetched{deast before the corresponding stage
of the pipeline).

Token propagationstep 2 is performed “inline” as the instruction flows through the
pipeline. By inline we mean that the token-passing logi@eswithin the core of the machine and
that the token is passed as soon as the last-arriving edgeégt@cted. While at first this may sound
intrusive to the operation of the processor core, the prafiagy operation is exceedingly simple,

perhaps even simpler than recording the last-arriving ®€dlgelater propagation in the centralized
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scheme. When one of the last-arriving rules is observetkadsof recording the minimal informa-
tion to communicate to a token-passing backend as in theatizetl scheme, a single bit is set in
the consuming instruction.

For example, consider the token-passing logic for tokengitfig into the ' node of in-
structions, illustrated in Figure 6.3. If an ROB stall occurred sucht tive fetch ofi was delayed,
the value of the” node at the instruction that caused the stall is written tinéobit representing's
F' node. On the other hand,iifis the first correct-path instruction after a branch misjatéah, the
value of theE node of the mispredicted branch is written it /' node. Finally, if neither of the
other conditions are met, the value of the previous fetchstiuction’s { — 1's) F' node is written
into i's F' node.

Checking if the token is still alivesfep 3 is performed the same way as in the centralized
scheme. The token bits attached to the instructions aren@gs@s each instruction commits. If
none of the bits for a token are set for the IR8B sizeinstructions, we can conclude the token is
dead. After the token dies (or the token propagation digtéexhausted), the token can be “freed”

and replantedstep 1.

Hardware Cost. When considering the design parameters of the token-gpasialyzer, there is

one significant difference as far as incremental hardwaperese between the centralized and dis-
tributed implementations: the cost of additional tokenmtoease sampling rate. In the distributed
implementation, increasing the number of tokens incurssaafoextra bits attached to each instruc-
tion as it flows through the pipeline. This expense, sincedupies precious real estate within the

processor core, suggests that extra tokens are more expdémsi in the centralized scheme.
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6.1.2 History-based Prediction

In the previous section, we discussed implementationseottiticality analyzer which
determines with a high degree of accuracy the criticalita gfingle dynamic instruction (or, more
specifically, micro-operation). Due to token propagatiatethcy, however, the analyzer does not
return a criticality result until long after the instruatidnas completed execution, which is far too
late for applying most optimizations. For example, a caiity-based instruction scheduling policy
would obviously need to know which instructions are critisafore the instructions are scheduled
for execution.

Our solution is to use the analyzer to train a critical-patblé, which is indexed by the
PC of the instruction. As another dynamic instance of a praly analyzed static instruction is
fetched, a prediction of criticality is retrieved from trabte. Then, this information can be used to
make optimization decisions.

For this type of prediction scheme to work, the criticalityimstructions must exhibit
“locality”, in the sense that different dynamic instancéshe same static instruction have similar
criticality characteristics. Of course, this will not alygabe true. For example, a branch instruc-
tion and the instructions it depends upon are likely to be-eritical when the branch is predicted
correctly and critical when it is predicted incorrectly. IQwpe is that some static instructions are
much more likely to be critical than other instructions. Tgwal of our hardware analyzers, then,
would be to identify this more-likely-to-be-critical seftiastructions.

Since the criticality of different nodes (fetch, executemenit) have very different char-
acteristics, we will discuss each individually. Figure 8lfbws a characterization of criticality for

the execute ' node) of instructions. From the figure we see that very fewrdctions are critical
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Figure 6.4:Dynamic to Static Histogram. For each static instruction, the percentage of its dynamic
instances that are critical (its “criticality frequencyilas recorded. The figure shows the percent
of static instructions that had a criticality frequencyhiit each range specified in the legend. The
y-axis is the percent of static instructiomggightedby their dynamic frequency.

all the time. At first glance, this seems to be bad news fortaiyidased predictor, since few static

instructions can be identified as always critical. There hosvever, many instructions which are

never critical, and it is certainly true that some statid¢rimstions are more often critical than others.

The goal of our predictor, then, will not to predict the pseccriticality of every dynamic instruction

but instead to identify those static instructions whichibileriticality more frequently than others.

Critical path
prediction table

12 kilobytes
(16K entries * 6 bit hysteresis)

Distance

Token propagation

1012 dynamic instructions
(500 + ROB size)

simultaneously

Maximum number
of Tokens in flight

8

Hysteresis

Saturate at 63, increment by 8 wh
training critical, decrement by
one when training non-critical.
Instruction is predicted critical

if hysteresis is above 8.

(D

Planting Tokens

A Token is planted randomly in the
next 10 instructions after it
becomes available.

Table 6.2:Configuration of token-passing predictor.
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Figure 6.5:The token-passing predictor is very successful at identifpg critical instructions.

(a) Comparison of the token-passing and two heuristicedasedictors to the “ideal” trace of the
critical path, computed according to the model from Sec8¢h2. The token-passing predictor is
over 80% (88% on average) accurate across all benchmarky@odlly better than the heuristics,
especially at correctly predicting nearly all critical tingctions. (b) Plot of the difference of the per-
formance improvement from decreasing critical latenci@susithe improvement from decreasing
non-critical latencies. Except fgralgel the token-passing predictor is clearly more effective.

Consider the number of samples required to obtain a goodureeas$ criticality for a
static instruction. Remember we are attempting to ideriiéyset of static instructions that are most
likely to be critical. If instructions in that set are cricduring, say, one-fourth of their dynamic
instances, on average of four samples will need to be takdataxt its criticality.

We have found that this goal is best achieved by using a pgoedibat has hysteresis
biased towards predicting that an instruction is crititalother words, a static instruction is quickly
learned to be critical when one of its dynamic instances usdoto be critical, while many of its
dynamic instances must be detected noncritical beforddltie mstruction is considered noncritical.

Empirically, we found the scheme described in Table 6.2 workll.

Predictor Accuracy

The two most meaningful measures of accuracy of the prediotodynamic hardware

optimizations are (1) what fraction of dynamic instrucgdhat are critical are predicted as critical?
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and (2) what fraction of noncritical dynamic instructiorre @redicted noncritical? Both questions
are interesting, since a typical optimization using caiity, e.g.,resource arbitration, would per-

form best if all critical instructions are given high prityriand all noncritical instructions are given

lower priority.

Recall that the locality measurements of the previous aechowed that few static in-
structions are critical for a majority of their dynamic exgions. That fact combined with our design
decision to identify those static instructions that are erldtely than others to be critical (even if
they are only occasionally critical) causes us to expectéoaslarge number of noncritical dynamic
instructions predicted as critical. From Figure 6.5, hogvewe are pleasantly surprised to find only
approximately 10% of instructions are incorrectly pregictritical. In addition, very few dynamic
critical instructions are predicted noncritical (lessrttzdo). All in all, only 15% of the instructions
are predicted critical and that 15% includes nearly all efdhtually critical instructions. This result

speaks well for using the criticality predictor for resoaiarbitration and policy decisions.

Comparison to Heuristics-based Approaches. Our token-passing predictor is designed using a
global view of the critical path. An alternative is to usecal heuristics that observe the machine
and train an instruction as critical if it exhibits a potafitr harmful behavior €.g., when it stalls
the reorder buffer). A potential advantage of a heuriséisdal predictor is that its implementation
could be trivially simple.

Our evaluation suggest that heuristics are much less ieffetttan a model-based pre-
dictor. We compare our predictor to two heuristic predidesigns of the style used in Turet,
al. [110]. The first predictor marks in each cycle the oldegstommittednstruction as critical. The

second predictor marks in each cycle the oldesssuednstruction if it is not ready to issue. We
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used the hysteresis strategy presented in their paper.

We first compare the three predictors to the “trace” of théoati path computed by the
simulator using our model from Section 3.2.2. (The tracei@rgnteed to accurately identify critical
or noncritical instructions to the extent that they can beeamily identified using the dependence
graph.) The results, shown in Figure 6.5(a), show that weigtrenore than 80% of dynamic instruc-
tions correctly (both critical and non-critical) in all beimarks (88% on average). Our predictor
does a better job of correctly predictiegtical instructions than either of the two heuristics-based
predictors. Note that theldest-unissueg@redictor has a relatively low misprediction rate, but ®nd
to miss many critical instructions, which could signifidgraffect its optimization potential.

Second, to perform a end-to-end comparison that factorswutritical-path model, we
study the effectiveness of the various predictors with #aesexperiment that we used for validat-
ing the model—extending all latencies by one cycle and themressing critical and non-critical
latencies. For an informative comparison, we plot the diffiee of the performance improvement
from decreasing critical latencies minus the improveméstaioed when decreasing non-critical
latencies. This yields a metric of how good the predictortigdantifying performance-critical
instructions. The larger the difference, the better thaliptmns. The results are shown in Fig-
ure 6.5(b). The token-passing predictor typically outperfs either of the heuristics, often by a
wide margin. Also, notice that the heuristics-based ptedicare ineffective on some benchmarks,
such agldest-uncommittedn gccandmesaand botholdest-uncommittedndoldest-unissuedn
vortex While a heuristic could be devised to work well for one banalk or even a set of bench-
marks, explicitly modeling the critical path has the sigrdfit advantage of robust performance over

a variety of workloads.
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6.2 Slack Analyzer

On the surface, slack seems much more difficult to analyzeidviare than criticality.
After all, the software algorithm we use requires us to mesakiencies on the edges and perform
two passes over the entire graph. There is no obvious waytefrdming slack using only last-
arriving edges or only one forward pass.

We simplify the problem considerably, however, with a triblat effectively reduces the
problem of slack computation to one of criticality. Remembw®t the slack of an event is the
number of cycles that event can be delayed without incrgaskecution time. So, if we delayed
an event by: cycles, but the execution time remained unchanged, we @auldude that the event
has at least cycles of slack. Determining whether execution time insesadue to a delay is very
difficult, however, since execution time is not generallykm until the program completes.

Our solution uses the criticality of an event as an indicatid whether execution time
increased. From the definition of criticality, an event tisatot on the critical path has no effect on
execution time. So, if the event is non-critical after a glafin cycles, the event must have at least
n+ 1 cycles of slack. (The event has at least 1 cycles of slack since slack is defined by the delay
that can be incurred withoinicreasingthe length of the critical path, as opposed to simply making
the event critical.)

The hardware algorithm, thus, answers the question “dazslffhamic micro-operation
evente represented by nodehavek cycles of slack?”, using the procedure of Figure 6.6.

Notice that the procedure does not detect the precise anobgidck a micro-operation
has. Our approach is to obtain an approximate, averaged wahlsiack for astatic instruction by

repeatedly applying the above procedure with differendyielto many of its dynamic instances.
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Delay e by k cycles
Plant token into node n
Propagate token and detect criticality as in Section 6.1
If n is detected critical:
e does not have k cycles of slack
else:
e does have k cycles of slack

Figure 6.6:Algorithm for measuring slack in hardware.

This approach has the implicit requirement that thereliscality of slack meaning that different
dynamic instances of a static instruction have similar amwuof slack. (Otherwise the algorithm
would be searching for a single slack value that does not.gXe will discuss the characteristics

of slack locality that we discovered in our benchmarks below

6.2.1 Locality of Slack

From the locality of criticality experiments above, we fduthat many static instructions
are always noncritical across all (or the vast majority) ladit dynamic instances. That data did
not tell us, however, whether the dynamic instances of tetegic instructions each have the same
amount of slack. In this section we perform locality expemts to test whether the implicit analyzer
above can be converted into a history-based predictor.

Our experiments present good news: 68% of static instmgt{dynamically weighted)
almost alwayshave enough slack to double their latency (precisely, tlase lenough slack on at
least 90% of their dynamic instances; see Figure 6.7). Mgrefeantly, this slack represents about
80% of all apportioned slack (that is, 80% of slack expldedty an oracle predictor that correctly
predicts the slack of every dynamic instruction).

The methodology we used is as follows. First, we computedfiportioned slack using

one of the many possible optimization-specific apportignnlices é.g..the latency-plus-one strat-
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90 1 90 |
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Percent of (weighted) static instructions
Percent of (weighted) static instructions

ammp art gce gzip mesa parser  perl  vortex average ammp art gee gzip mesa parser  perl  vortex average

Figure 6.7:Mapping dynamic slack behavior to static instructions.Uses latency-plus-one-cycle
apportioning. On the y-axis, the number of slackful stat&tiuctions is weighted by the number of
each static instruction’s dynamic instances.

egy introduced in Section 4.3.2). Next, we identif@ackfulstatic instructions. A static instruction
is slackful if D% of its dynamic instructions contained apportioned sladiere D was varied from
90 to 100.

Figure 6.7a plots the amount of slackful static instrucifor the latency-plus-one appor-
tioning strategy. The chart also plots the total amount goaiioned slack (labeleitleal). This
slack could be exploited with an oracle predictor that isextron each dynamic instruction. Note
that while relatively few static instructions are slackdillithe time (28%, on average), allowing just
5% “misprediction rate”i(e., requiring them to be slackful 95% of the time) brings thisoamt to
62%, on average.

As a second example, Figure 6.7b plots the same data usiritygheycle apportioning
policy, which attempts to apportion five cycles of slack tonaeny instructions as possible (see
Section 4.3.2). From this chart, we see that slightly leas thalf of the static instructions can be

apportioned five cycles of slack with a low 5% mispredictiater
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Sampling Requirements. Now consider the number of samples required to measure drage
slack of a static instruction. If we could assume every dyindnstance of a static instruction had
the same slack, a binary search would arrive at the corréwt Walogs (M ax_Slack) steps, where
Max_Slack is the largest value of slack that would be explored. So, itlida’t care about precise
values of slack over28 cycles,log,(128) = 7 samples would be required.

Unfortunately, slack does vary substantially from one dyitdinstance of a static instruc-
tion to the next, according to the microarchitectural baétrasurrounding the dynamic instruction’s
execution. Not only does this variance increase the nunfisamoples required to obtain an accurate
reading, it also complicates the binary search used to cgeven an average value. In our exper-
imentation, we have found that obtaining precise valuedawksusing this “delay-and-observe”
approach is very difficult, possibly intractable.

Fortunately, precise values of slack are not usually netulethke effective use of slack
information in optimizations. Instead, we are generallyhaaned whether an instruction has
enoughslack, where “enough” is defined by the specific applicattoat the analyst is interested
in.

Besides this, the types of machines for which slack is eafigciseful may not provide
the capability to measure slack independent of its hetemes resources. For example, on a
machine with both fast and slow functional units, an ingtorcwill appear to have different slack,
depending on which functional units it (and its dependentsje executing when its slack was

sampled. Below we discuss a predictor design that takes tieadities into account.
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6.2.2 Implicit-Slack Predictor

We call the predictor described above that attempts toeaatithe precise value of slack an
explicit slack predictor. Here we describe an alternative whictieatsof arriving at a precise value,
produces a slack-based categorization of instructionsrdirg to the optimization or heterogeneous
resources being employed. We call this style of slack ptediagmplicit, since an instruction is
known to have slack due to its ability to be delayed by some sksource without increasing
execution time, but the precise value of slack is unknown.

The implicit-slack predictor works by dividing instructis intoslack bins according to
the resources that these instructions can tolerate. Théeuaf bins is determined by the number
of decisions a control policy must make for each instructiéor an example, let us consider a
machine that has two pipelines, one fast and one slow. Lay'she control policy for this machine
must make two decisions for each instructiorfl) should: be steered to the fast or slow pipeline?
and (2) shouldi be scheduled with high priority or low priority within a pilie? These two

decisions lead to four slack bins:

1. steer to fast pipeline & schedule with high priority,

2. steer to fast pipeline & schedule with low priority,

3. steer to slow pipeline & schedule with high priority,

4. steer to slow pipeline & schedule with low priority.

These four bins can be viewed as corresponding to ¥atmal heterogeneous resources, where
each dynamic instruction is assigned to one resource. largknf a control policy must makg

decisions for each instruction (with two choices for eactiglen), we have* virtual resources,
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each corresponding to a slack bin.

Notice that, unlike the explicit-slack predictor, measgrslack implicitly avoids the need
for dedicated logic to artificially delay an instruction. stead, the slack analyzer can delay the
instructionnaturally, by steering it to the resource whose latency needs to betete An impli-
cation of this characteristic is that the precise amountaafksrequired of an instruction to belong
to each bin does not need to be explicitly known: the actulydeexperienced by the instruction
in the hardware are used to control policy decisions. Alsoning is much faster, since there are a

relatively small number of bins.

Cost Analyzer. It is theoretically possible to determine the cost of a migperation in hardware
in a way similar to the “delay and observe” approach empldyethe slack analyzer above. The
idea would be to use the property exploited in the cost cafimrl algorithm of Section 5.3. Specif-
ically the cost of an edge is the minimum of the slacks of all edges paralleletoThus, using
the explicit slack analyzer above along with a mechanisneterdhine which events are parallel to
others would be enough to determine the cost of an event., Toemputing interaction costs would
require determining the cost of groups of events.

Unfortunately, computing cost in this way places even maeahds on locality than
did the explicit slack predictor, and we have already disedsabove why computing slack may
be intractable due to the variance of microarchitecturdabmr. In the next section, we discuss
a method to enhance performance counters to such a degtee rtiaroexecution graph can be
constructed offline. With this graph, cost (as well as angottesired metric) becomes possible to

compute accurately.
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6.3 Shotgun Profiling

While the above analyzers for criticality and slack are egefibr quick-feedback online
optimization, they are much less flexible than the graphyaisive can do in software. For example,
the apportioning policies used in the slack analyzer woelgdto be very simple, and we have not
discussed any analyzers that can measure cost and interaost.

To enable these and other advanced measurements of progkamging on real hard-
ware, we propose an improved version of traditional hardwaunters. Instead of simply recording
the events that occurred to a specific instructiem (as in the ProfileMe infrastructure), we would
also record a few bits aofontextaround the instruction. This context could include infotioa
about whether branch mispredicts or cache misses occurtbé instruction’s vicinity.

Offline, we can then build dependence graphs for statisticapresentative fragments of
the execution using the collected information. The corftelps in the process by identifying which
instruction samples should be placed in the same graph éaggriVe call this procedurghotgun
profiling due to its similarity to shotgun genome sequencing [40].63he graph is constructed, we
can perform any measurement that is desired, using thea@ftalgorithms described in Chapter 4.

The task of enhancing performance counters with enoughniretion such that the graph
can be constructed while introducing relatively little thaare complexity is very challenging.
Rather than immediately presenting our final solution, wk edscribe an evolution of designs
that will provide a better understanding of the motivati@hind our approach, discussed in full at

the end.
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Design

Problem

Solution

1. Hardware-intensive measur
ment.
2. Sample each static instructig
once.

3. Record short microarchited
tural signature around each sali

eHardware too expensive since it geng
ates information too rapidly.

rDoesn’t distinguish between differel
microarchitectural behavioe(g.,an it-
eration of a loop with a branch misprg¢
diction versus an iteration without one
-Accumulates error as each instructi

mis stitched together to form a graph.

biSample instruc-
tions sparsely.

ntUse microarchi-
tectural  contex{
e{in the form of a

Jsignature).
piJse long signa-
ture that spans

pled instruction. length of graph.
4. Record long signature as
baseline and patch in sample pr

files using short signatures.

a
0-

Table 6.3:Profiler designs. Design #4, with both long and short signatures, is our firedpm-
mended design.

6.3.1 Design #1: The Hardware-Intensive Approach

The conceptually simplest design would be to collect dedalatency and dependence
information for every dynamic instruction as it flows thréudpe machine, as is done in a simulator.
The detailed information would be enough to construct athefnodes and edges for each dynamic
instruction, such that software could easily constructdramh offline. The exact information re-
quired will depend heavily on the processor implementatiBar the simulated processor used in
this paper, the information in Table 6.4 is sufficient.

Although this approach would be as accurate as construttiengraph in the simulator, it
is not reasonably implementable. The primary reason ighieatensityof information collection is
too great, in that too much data needs to be collected simedtzsly. To measure just one latency
for every instruction would require a counter for each instion in the machine at any one time —
and to collect all of the information in Table 6.4, many suatehcies would need to be measured.
Furthermore, moving all of this information through the miae would require many wires, which

could easily cause serious routing problems.
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dependence col latencies col
In-order dispatchdD) S icache misses, itlb misses D
Finite fetch bandwidthKBW) S constant latency (1 cycle) S
Finite re-order buffer¢D) S constant latency (0 cycle) 9
Control dependencdD) D branch recovery latency 9
Execution follows dispatchOR) S constant pipeline latency S
Data dependencePR) reg: S, mem: D| constant latency (0 cycle) 9
Execute after readyRE) S functional unit contention D
Complete after execut&P) S Execution latency D
Cache-line sharingqP) D constant latency (0 cycle) S
Commit follows completionC) S constant pipeline latency 9
In-order commit CC) S store BW contention D
Finite commit bandwidth@BW) S constant latency (1 cycle) 9

Table 6.4: How dependences and latencies are collected when construngt the graph. 'D’
stands for dynamically, 'S’ for statically. Dependencesd &atencies that must be determined dy-
namically are measured in hardware. Those that can be datatrstatically are inferred from the
program binary €.g.,register data dependences) or the machine descripign fetch and issue
bandwidths). Besides the information above, a detailedptmaiso contains the PC of the instruc-
tion and the target address of indirect branches.

From this observation, we derive the most important comdtoa the hardware: instruc-
tions should be profiledparsely in a sampling manner. This significantly reduces the amotint
hardware required, since there would need to be counternfgra single instruction currently in
the machine, as opposed to all of them. The wire count is thamatically reduced, with corre-
sponding less affect on the hardware design. This desigsideavas also made for many current
performance counter designs as well as the most populapgatgpfor enhancements,g., Pro-
fileMe [28].

The sparse sampling constraint does make the task much mmalterging, however. Re-
member our goal was to construct graph fragments of the laetaaution, which include the nodes
and edges representative of a sequence of dynamic instnractiow can we obtain a representation

of a sequence of dynamic instructions if we can only sampéeinstruction in that sequence?
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The key, of course, is to exploit the temporally locality get in software (that the same
dynamic sequences of instructions are executed over amchgan). As we will show in the next
design, however, we can not exploit this characteristibértypical manner of simply mapping mea-
surements of static instructions back to their dynamic\edents. Instead, a new way of thinking

about performance counters is required.

6.3.2 Design #2: One sample per static instruction

In the second design, the hardware measures only one itistriat a time and software
periodically retrieves the collected information. Theta@ire maintains a data structure indexed
by the PC of the instruction, recording each sample in its@miate entry. Then, the software
selects a sequence of dynamic instructions from the birara fandom sampling manner) and
constructs a graph fragment using the information coltebiethe hardware and stored by PC. The
assumption is that different dynamic instances of the saate snstruction will exhibit similar
microarchitectural behavior, so that the graph will actelyarepresent actual program execution.

Unfortunately, we found that graph fragments construateithis way are not representa-
tive: empirically, the icosts computed are typically off @yactor of two or more when compared
to those computed in the simulator. The problem is that tiseiraption that different dynamic
instances of an instruction exhibit similar behavior is acgjood one. As an example, consider
Figure 6.8. In the first iteration of the loop, the instruatiat PC 0x30 experiences an icache miss,
while on the second iteration it does not. Thus, the graplhiefirst iteration is different than the
graph for the second iteration, even though the same stadie is executed (specifically, the DD
edge latency is different).

The obvious lesson here is that variations in the microdi@tumeed to be distinguished
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Dynamic Execution

0x30 Id
0x34 brz 0x20
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0x20 Id
0x24 st
0x28 add : 8
0x2C mul ’
o0 W o
0x34 brz 0x20
0x20 Id

Dep. Graph representation

lteration with
icache miss

Different DD
latency

A4

~ Ty o=

lteration 0x24 st 0
WIthOUt 0x28 add

icache miss

0x34 brz0x20

0x20 Id : 0
0x24 st

0x28 add

0x2C mul

0x30 Id

0x34 brz 0x20

0x20 Id

S

A4

Figure 6.8:Same static code, different microexecutions.
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in order to construct accurate graph fragments. In othedsyamultiple profiles for each static
instruction need to be maintained. Specifically, we shodi&hily maintain one profile for each
microarchitectural contexte.g.,in the example above, one sample for each instruction in @th
an iteration with the icache miss and (b) an iteration withou

For the next two design proposals, the primary goal will bédeelop arinexpensivavay

to distinguish between microarchitectural contexts.

6.3.3 Design #3: Shotgun profiler, only short signatures

We distinguish between microarchitectural contexts byiragldsignatureto each sample
collected from the hardware. The signature distinguiske¢wden contexts by encoding microarchi-
tectural events and state that surrounds the single dyraanget” instruction. Thus, each sample
consists of two things(i) detailed latency and dependence information about thettargtruction
and(ii) a signature surrounding that instruction. If the signatuwitwo samples match, we assume
the samples are from the same context.

The signature should uniquely identify the microexecutoamtext while keeping the
hardware cost as low as possible. More specifically, wherileesignatures for two samples are
the same, the detailed latency and dependence informatidhd target instruction should also be
the same. For our design, we chose to record two bits per dgriastruction for ten instructions
before and after the targeted instruction. The two bits arexgperimentally determined hash of
microarchitectural context, specified in Table 6.5. A moetaded description of the process for
designing these bits is below.

The graph construction algorithm uses the signatures &rméaie which samples should

be placed side-by-side within a graph fragment. As an exengphsider Figure 6.9a. Two samples



111

Bit | When to setto '1’

1 Set to 1 if the instruction is a (Xakenbranch or (2) load or store.
Reset to 0 if L2 dcache miss.

2 Set to 1 if the instruction experiences a (1) L1 or L2 icachesn(2) L1 or
L2 dcache miss, (3) tlb miss, or (4) branch mispredict.

Table 6.5:Description of signature bits. The signature bits are meant to distinguish between differ-
ent microarchitectural contexts. Experimentally, we dataed the above hash function produced

good results. Intuitively, the hash works well becausestidguishes between the most important

events that occur in the microprocessor. For a differentgssor implementation than the one as-
sumed in our simulator, a different signature might be nexgljiperhaps one that uses more than
two bits per dynamic instruction.

are taken; in this case, they are of two different staticrircstons from two iterations of the same
loop. By finding overlap among the appropriate signature ligtween the two samples, we see that
they “fit” together. Thus, they come from iterations of thepowith the same context and should
be placed together in the graph fragment. By repeatedlyyeqgpthis matching process, we can
construct a graph fragment of arbitrary size.

This algorithm is very similar to a popular algorithm for DN&quencing, calleshotgun
sequencind40] (see Figure 6.9b). Due to the similarity, we refer to temeral class of profil-
ers which use signatures abotgun profilers There is a large space of possible algorithms and
infrastructures that exploit shotgun profiling, only a cleupf which are presented in this paper.

Returning to the example of Figure 6.8, consider how a sigeatould help distinguish
between loop iterations with different behavior. For thetfiteration of the loop, an icache miss will
appear in the signature; while in the second iteration it mat. Thus, the samples with the icache
miss will be attached together in one portion of the grapgrfrant while the samples without the
miss will be in another portion.

Empirically, we have found this design reduces the erromay tb four times over one

that does not distinguish between different microexeaoutiehavior. Nonetheless, the performance
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Two bits of signature

H O WO @ O m OO .
“Shotgun” samples = +
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Match!
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Find overlaps O]

Link overlapping
samples together

(a) Shotgun profiling

Four nucleotides

DNA (Sequence of nucleotides)
EEEN EEN

“Shotgun” samples

Find overlaps among samples

(b) Shotgun DNA sequencing

Figure 6.9:Shotgun profiling and DNA sequencing (a)The shotgun profiler works by collecting
random “shotgun” samples that include a signature andlddtaiformation about a single instruc-
tion. These samples are placed in a database and, offlin fyje@yments are constructed by finding
overlaps among the signatures of different samples. Ougrleses a signature with two bits for
each of the ten dynamic instructions before and after thgetanstruction. For illustration, the
figure uses a smaller signaturé) DNA researchers face a problem similar to ours. Instead of
constructing a graph, they seek to determine the sequenugct#otides that comprise a strand of
DNA. Their measurement apparatus, however, cannot simpdgree the entire sequence at one
time. Instead, they can only observe short, random, samplbg overall sequence. Their solution
to this problem is called “shotgun” sequencing. First, meanydom samples are collected using
their measurement apparatus. Then, offline, the full DNAuseqe is constructed by looking for
overlapsamong the small fragments.
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is still far from acceptable. The reason is that error acdates for each sample placed into the

graph, for a couple of reasons:

e Missed correlation of distant evenfBhe context is only of nearby instructions, over a range
of twenty instructions. If, for instance, the latency of astruction is affected by an event that
occurs forty instructions away, this correlation cannothptured. Since modern machines

exploit parallelism across a rather large range of ingtvast this effect can be significant.

e Missing samples.If an exact signature match cannot be found, the closestbozippate
match is used. In our experience, the missing samples am#wewith the rarest signatures,
since they have the lowest probability to be collected. Thigses rare events.§.,branch
mispredictions) to be under-represented in the consttuptaphs. Collecting more samples
would reduce the error, but considering the exponentialberrof possible signatures, it may

be infeasible to collect sufficiently many to eliminate theoe

To improve over this design, we need to reduce the accuroolati error. In the next
section, we do this by adding a stable microarchitecturakecd “skeleton” on top of which the

graph is constructed.

6.3.4 Our final solution: Shotgun profiler, long and short sighatures

Our final and recommended design introduces a second tyengfis to be collected by
the hardware, in addition to the one collected in design #8 fdew sample is calledsagnature
sampleand consists of a single “start” PC and the two signature fbiteach of the nex2000
dynamic instructions. Signature samples are a natural wagentify correlation between distant

events, and, as we’ll show below, can also mitigate the effemissing samples.
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The software graph construction algorithm works by firsésthg a long signature sam-
ple at random, which serves as a “skeleton” for the graph tolle (The random selection ensures
each signature sample is chosen with equal probabilityckvhaturally gives priority to hot mi-
croexecution paths.) The goal of the algorithm is to fill ifstekeleton withdetailed sampleso
form a latency-labeled dependence graph. A detailed saslentical to the samples collected in
design #3 above. To construct the graph, a detailed sampddeisted for each dynamic instruction
in the signature sample, where the selection is based baHP@hmatch and a signature match.

For example, consider building the graph nodes for the fistruction in the signature
sample of Figure 6.10. The first instruction has P@:024, so we look up detailed samples with
this PC. Then, we select the one whose signature bits magatotinesponding bits in the signature
sample. Finally, the nodes for this instruction are corséd from the selected detailed sample.

If no detailed samples for the PC are found at all, which eirgily happens less than 2%
of the time, we infer what we can from the signature samplethadinary, using default values
for unknown latencies. For example, if bit two of the sigmatis set to one and we know from the
binary the instruction is a branch, we will infer that thermrh was mispredicted. (In this instance,
it is possible that an icache miss occurred instead of thechranispredict, but we would guess a
branch mispredict occurred for branch instructions.) Hem see one advantage of the signature
sample design over design #3: the signature sample givesnus mformation €.g.,whether a
branch mispredict occurred) even when no matching detadetple has been collected.

If some detailed samples are found, but none have an exaecttsig match, the detailed
sample with the closest match is selected. An inexact matshreduce accuracy for that selection,

but (unlike design #3) the signature sample provides aestsl@leton for future matches. Thus,
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Signature Sample (Design #4)

0x20  Id 1 Detailed Samples (Designs #3 & #4) Dep. Graph representation
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(a) Hardware performance monitors
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(b) Software graph construction

Figure 6.10: The profiler infrastructure consists of two parts. (a) Hardware performance
monitors. Our hardware performance monitors collect two types of $asagignature samples and
detailed samples. For illustration, the figure shows oneadige bit per instruction and collection
of the bits for two instructions before and after each dethdample. For greater accuracy, our
design uses two signature bits per instruction (see TaBledahd collects signature bits for ten
instructions before and after each detailed sample (sagd-11a).(b) Post-mortem software
graph construction. The dependence graph is constructed by concatenatindedesaimples, so
that the resulting graph is representative of the micragtk@e denoted by the signature sample.
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a single mismatch doesn’t cause error to propagate thrdughest of the graph. The complete

algorithm for constructing a graph fragment is in Figurel6.1

1. Randomly select a signature sample for the skeleton.
Call the starting PC in this sample the StartPC.
2. For each instruction ¢ from StartPC to end of fragment
2a. Get from database all detailed samples with i's PC.
2b.  Select the detailed sample whose signature bits most closely
matches the portion of the signature sample 10 instruction
before 7 to 10 instructions after. The closeness of a match is
judged by the number of identical bits.
2c.  Append sample’s nodes and edges to the graph (see Fig. 6.10).
2d.  Determine PC of next instruction, : + 1 (call PC of i Cur PC
and PC of i + 1 NextPC):
2d1. If 7 is not a branch, NextPC «— CurPC + 4
2d2. If 7 is a direct branch and signature bit 1 of 4 is 1,
Compute branch target and set NextPC equal to it
Else NextPC «+ CurPC + 4
2d3. If 7 is a call, push target PC onto stack
For returns, pop stack (if nonempty) and set NexztPC' to
that PC
2d4. If 7 is an indirect branch, set NexztPC equal to target PC in
detailed sample for ¢
2e.  Check for illegal signature bit/opcode combinations (see text).

Figure 6.11:Algorithm for constructing a graph fragment in software.

Determining PCs

Remember that a signature sample consists solely of a staené the signature bits,
i.e.,to reduce hardware costs the PCs of other instructions anecorded. Thus, we need to use
some intelligence to infer the PC of each dynamic instructiothe signature sample. For direct
conditional branches, we include the branch direction énsilgnature bits and lookup the binary for
the target address of taken branches.

For indirect branches, we include the branch target addinetbe detailed samples. As-
suming a signature match is a good indication of which taagdtess an indirect branch will resolve
to, the normal matching procedure described above wilblyile¢ correct next PC. We have found,

empirically, that this procedure yields the correct taapdress most of the time, for 60—99% of the
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indirect branches, depending on the benchmark. (Notelgatcuracy is highly dependent on the
choice of signature; other signatures, perhaps using nitxecbuld achieve greater accuracy.)

In the cases where the matching sample’s target addressdemect, there could be seri-
ous error in the graph fragment construction. To mitigageettior, we take advantage of the fact that
some combinations of opcodes and signature bits could maoer down a correctly determined
path. For instance, if an instruction on the long signatare@e has its first bit set to one, it should
be a load, store, or branch. If the computed PC (&tém the algorithm) does not correspond to
one of these instruction types in the program binary, we kti@ve is an inconsistency and abort
building the graph segment — building such a graph would teagfror in the results. We have
found that 95-100% of errant graphs are indeed discarded tlss technique.

Finally, note that for return instructions whose call cawptrt occurs within the graph
fragment, a stack of call addresses can provide the coamgttaddress. If the call counterpart is

outside the graph fragment, a return is treated the sameiadiegct branch.

6.3.5 Measuring profiler accuracy

In this section, we measure the accuracy of the shotgun grofifor the baseline, we
use themultiple-simulation approachwhich computes the cost of a set of evefitey comparing
the execution time reported by a normal simulation to that simulation with all the events ifi
idealized. For example, for the category labeled “bmispisdina simulation is run where (simul-
taneously) all branch mispredictions are made correct Halaals hit in the level-one cache. The
result from the multiple-simulation approach is then coregao that obtained through analysis on
the dependence graph constructed by the profiler.

We find that the profiler’s error in icost measurement is, @rage, 9% off of the baseline,
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as measured via multiple simulations. From the breakdowermr sources, we found that the
modeling of the microprocessor as a dependence graphlmatetimore error than either the sparse

sampling or the profiler algorithm. A more thorough discasdollows below.

Discussion of category errors

Tables 6.6 and 6.7 shows breakdowns computed with the proglegive to multiple sim-
ulations for the categories in Table 7.5(a). A couple of olm#ons can be made from the break-
downs. First, the type of interaction (parallel or serialalways the same with the profiler as the
multisimbaseline. Second, the profiler comes very close torthkisimbaseline most of the time,
typically with error less than a few percent of the overak@xtion time.

There are some examples, however, where the error in thiedalasilation is substantial.
One category that tends to exhibit significant error for séamechmarks is the instruction window
(win). For example, fogap, the error is—11.3% and forvortex, it is —8.4%. The cause of this
error is the profiler’'s inability to completely accuratetiealize the instruction window. Specifically,
since the graph fragments constructed by the profiler araité ize, it is not possible to accurately
model a very large instruction window — needed when perfogrthe idealization. Thus, the
effective window size modeled by the profiler for idealipatipurposes will be smaller than that of
the simulator, and thus it will likely under-predict the \@ow’s cost. This error could be reduced

by increasing the size of the graph fragments constructed.

Sources of error

In Table 6.8 we attempt to understand the sources of errtneiprtofiler. To this end, the

breakdowns of Table 7.5(a) are computed in four differentsvmultisimis the baseline, as above.
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bzip crafty eon
multisim  profiler error| multisim profiler error| multisim profiler error
dil 20.3 23.2 +2.9 23.4 24.2 +0.8 17.0 17.7 +0.7
win 15.9 155 -0.4 17.3 154 -1.9 18.2 15.2 -3.0
bw 6.5 39 -25 8.7 6.7 -2.0 10.5 6.6 -3.9
bmisp 37.3 383 +1.1 26.0 241 -1.9 14.2 144 +0.2
dmiss 23.3 235 +0.2 6.9 6.5 -0.4 0.8 0.6 -0.2
shalu 8.9 10.0 +1.1 10.7 11.2 +0.5 4.5 52 +0.7
Igalu 0.3 0.3 +0.0 0.7 0.8 +0.1 12.6 121 -0.5
imiss 0.0 0.2 +0.2 0.7 0.2 -05 9.2 87 -05
di1+win -4.8 -5.2 -05 -11.5 -11.7 -0.2 1.7 -7.2 +0.5
dil+bw 6.9 59 -1.2 10.0 105 +0.5 6.9 6.8 -0.1
di1l+bmisp 9.1 96 -04 -4.9 -4.2 +0.7 -3.8 -39 -0.1
dl1+dmiss -0.8 -0.7 +0.1 -04 -1.3  -0.9 -0.2 -0.3 -0.1
dil+shalu -3.5 -43 -0.8 -4.0 -45 -05 -0.6 -1.0 -0.4
di1+lgalu -0.2 -0.3 -0.1 0.3 0.2 -0.1 -0.5 -0.8 -0.3
dl1+imiss 0.0 0.0 +0.0 0.0 0.0 -0.0 1.3 1.0 -0.3
gap gce gzip
multisim profiler  error| multisim profiler error| multisim profiler error
dil 12.6 12.6 +0.0 17.4 170 -0.4 29.9 31.7 +1.8
win 41.2 29.9 -11.3 14.4 13.0 -1.4 14.7 131 -1.6
bw 4.1 24 -17 9.0 71 -1.9 6.6 55 -1.1
bmisp 11.3 114 +0.1 23.9 215 -2.4 23.8 234 -04
dmiss 22.6 21.8 -0.8 255 277 +2.2 8.1 7.8 -0.3
shalu 13.8 11.2 -2.6 5.4 47 -0.7 18.9 20.7 +1.8
Igalu 5.3 57 +04 0.6 0.2 -04 0.5 0.5 +0.0
imiss 1.3 09 -04 2.1 1.4 -07 0.1 0.0 -0.1
dl1+win -6.3 -6.1 +0.2 -4.1 -3.5 +0.6 -9.3 96 -0.3
dil+bw 3.0 3.3 +0.3 10.9 124 +1.5 6.2 57 -05
dil+bmisp -2.9 2.7 +0.2 -6.3 -5.4 +0.9 -3.6 -3.1 +05
dl1+dmiss 0.4 0.3 -01 -0.9 -1.4 -05 -0.2 -1.3 -1.1
dli1+shalu -0.3 21 -1.8 2.1 1.4 +0.7 -7.6 94 -1.8
di1+lgalu -0.2 -05 -03 -0.5 -0.2 +0.3 -0.5 -05 -0.0
dl1+imiss 0.3 0.4 +0.1 0.3 0.2 -0.1 -0.0 -0.0 +0.0

Table 6.6: Measuring accuracy of profiler. Continued in Table 6.7.
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mcf parser perl
multisim  profiler error| multisim profiler error| multisim profiler error
di1 7.1 74 +0.3 17.9 19.1 +1.2 30.7 31.3 +0.6
win 4.8 43 -05 17.1 13.2 -3.9 6.2 56 -0.6
bw 0.6 04 -0.2 4.0 3.0 -1.0 10.3 81 -22
bmisp 25.3 251 -0.2 15.8 149 -0.9 35.4 38.0 +2.6
dmiss 80.8 79.0 -1.8 32.1 28.1 -4.0 1.3 0.8 -0.6
shalu 14 1.4 +0.0 17.9 171 -0.8 7.4 8.2 +0.8
lgalu 0.0 0.0 +0.0 0.1 0.1 -0.0 0.7 06 -0.1
imiss -0.0 -0.0 +0.0 0.1 0.1 +0.0 5.3 27 -2.6
di1+win -0.0 -0.1 -01 -6.3 -6.2 +0.1 -5.9 -5.4 +0.5
di1+bw 0.4 03 -01 4.9 49 -0.0 9.9 9.7 -0.2
dil+bmisp -2.3 -2.3 -0.0 -2.5 -24  +0.1 -8.4 -8.2 +0.2
di1+dmiss -0.4 -0.5 -0.1 -0.9 -1.7 -0.8 -0.1 -0.1 -0.0
dil+shalu -0.2 -0.1 +0.1 -4.1 -49 -0.8 -2.2 -2.0 +0.2
dil+lgalu 0.0 0.0 -0.0 -0.1 -0.0 +0.1 -0.7 -0.5 +0.2
di1+imiss 0.0 0.0 +0.0 -0.0 -0.0 +0.0 1.0 06 -04
twolf vortex vpr
multisim  profiler error| multisim profiler error| multisim profiler error
di1 17.1 19.2 +2.1 27.4 304 +3.0 18.5 20.3 +1.8
win 24.2 223 -1.9 42.8 34.4 -8.4 22.9 219 -1.0
bw 4.5 35 -1.0 8.0 53 2.7 5.9 44 -15
bmisp 22.2 22.6 +0.4 15 08 -0.7 23.4 23.1 -03
dmiss 34.3 343 -0.0 19.8 18.7 -1.1 325 32.1  -0.4
shalu 7.7 7.7 -0.0 3.9 54 +15 7.3 8.2 +0.9
Igalu 4.2 42 +0.0 15 15 -0.0 4.1 40 -01
imiss 0.1 00 -01 3.3 09 -24 0.0 0.0 -0.0
di1+win -3.6 -45 -0.9 -25.7 -27.0 -1.3 -6.2 -6.9 -0.7
di1+bw 1.7 15 -0.2 17.7 17.7 +0.0 1.9 21 +0.2
dil+bmisp -5.8 -5.8 +0.0 -0.2 -0.1 +0.1 -4.6 4.4 +0.2
di1+dmiss -0.1 -19 -18 -1.6 -1.2 +04 -1.4 -22 -0.8
dil+shalu -0.5 -0.3 +0.2 -3.3 4.7 -14 -1.5 -19 -04
dil+lgalu -0.0 -0.1 -0.1 -1.2 -1.3 -0.1 -0.3 -0.6 -0.3
dll+imiss -0.0 -0.0 +0.0 0.5 01 -04 0.0 0.0 +0.0

Table 6.7: Measuring accuracy of profiler.

(Continued from Table 6.6.) Validation was per-

formed on the same CPI contribution breakdown (with resedgressed in percent of total CPI)

as in Table 7.5(a). Thmultisimcolumn shows the value for each category computed through th

multiple simulation approach. This serves as the basetinm&asuring accuracy. Tlpeofiler col-
umn shows the values the profiler computed, whiledtrer column is the difference between the
profiler andmultisim The single largest percent error (considering categayieater than 5%) for

each benchmark is in bold.
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bzip | crafty | eon | gap | gcc | gzip | mcf | parser | perl | twolf | vortex | vpr

multisim—fullgraph | 11.1| 7.0 91| 84| 86 |14.3| 2.2 4.9 79 | 5.1 9.7 9.0
fullgraph—graphfrag | 3.6 2.8 35132 31| 21| 0.2 3.3 29| 24 4.0 2.4
graphfrag—profiler | 4.9 34 23| 3.7|106| 3.9 | 0.1 2.1 54| 34 4.6 5.0
multisim—fullgraph | 11.1| 7.0 91| 84| 86 |14.3| 2.2 4.9 79 | 5.1 9.7 9.0
multisim—graphfrag | 129| 7.8 | 11.0| 89| 95| 139| 24 6.9 9.8 | 6.0 13.0 | 94
multisim—profiler | 11.1| 7.8 95|89 |11.7| 93| 25 9.0 |126| 3.7 124 | 9.2

Table 6.8: Sources of errors for the shotgun profiler. The breakdowns of Table 7.5(a) were
computed four ways to better understand the sources of errtre profiler. multisim is the
breakdown computed via multiple simulations; it serveshasbiaseline for comparisofullgraph
indicates the dependence graph of the entire program wak asein Section 7.3.1graphfrag

is the breakdown computed assuming the graph fragmentdrootesl by the profiler were per-
fect; andprofiler is the breakdown as computed on the imperfect graph fragreaitially con-
structed by the profiler (described in Section 6.3). The remnipresented are the average per-
cent difference in the categories (excluding categorieeub%) between the two schemes in the
first column of each row. For instance, thaultisim—fullgraph row is determined by computing
abs(multisim-fullgraph) /(multisim) for each category over 5% and averaging the results. Note
that themultisim—profiler row is the total error for the profiler.

fullgraph is the breakdown computed with the dependence graph of tire program, just as was
done for the results of Section 7.3.graphfragis the breakdown computed assuming the graph
fragments constructed by the profiler were perféet (exactly as they exist in the full graph), and
profiler is the breakdown as computed on the imperfect graph fragnaettally constructed by the
profiler (using the signature-based algorithm).

The first series of measurements examines the accuracy losegz of the full profiling
scheme. multisim—fullgraph is the error introduced by modeling the machine as a depeeden
graph, as opposed to using a detailed simulator. Typidally,error is less than 10%; but, nonethe-
less, it does often contribute the largest fraction of therall error of the profiler. It can potentially
be reduced by increasing the detail of the model to includeently unmodeled aspects of the
microarchitecture, such as contention for memory busses.

Thefullgraph—graphfragrow shows the error caused by measuring the breakdowns us-

ing only a relatively small number of graph fragments as ggpldo the entire graph. Thiampling
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error is a significant component of the overall error for sddveachmarkse.g.,vortexz. The good
news here is that this error can be reduced by simply runtiagptogram longer to collect more
samples.

Thegraphfrag—profiler row shows the error introduced by the profiler's signatueieeul
algorithm for constructing graph fragments. The error ie ttutwo factors: (1) the signature not
being sulfficient to identify the correct detailed sample &stp into the graph and (2) a signature-
matching detailed sample not being in the database. Thendesmwor factor can be reduced by
simply collecting more samples, while the first requires seadesign of the signature bits.

For most benchmarks, the signature-based algorithm batgs only a modest amount
to the error, typically less thab%. An exception isgee, with an error 0f10.6%. Upon closer
inspection, we found that this large error is primarily dodhe target address of indirect branches
not being determined correctly, leading to many graphsdodiacarded (see Section 6.3.4). One
way to reduce the error would be to construct smaller graghnfients, so that the probability of
encountering a difficult indirect branch in any one fragmesmeduced. We found that reducing the
fragment size fron2000 to 1000 reduced the error t6.1% (but, averaged over all benchmarks, the
larger size improved accuracy). Another method would bentaace the signature to improve its
ability to distinguish indirect branch targetsg.,by adding an additional bit that is set equal to one
of the bits of the PC.

The second series of measurements shows the error of thtke bfeakdown computa-
tions —fullgraph, graphfrag andprofiler — relative tomultisim The purpose of these measure-
ments is to show how each individual source of error conteibuo the overall error of the profiler.

Notice that the overall error is not always monotonicallgreasing as each new source of error is in-
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cluded. For example, thaultisim—graphfragerror foreon is 11.0%, while themultisim—profiler
error is less9.5%. The reason is that the error introduced at each stage beyddsitive or negative,
independent of the direction of errors at previous staghssTit is statistically likely that the errors
will compensate sometimes. In the case of the exampleiorthe graphfrag—profiler error was
mostly in the opposite direction of the errors in the presitwo stages.

The overall error for the profiler is shown in the last row oblEa6.8, labelednulti-
sim—profiler. The range of errors for the benchmarks is fré¥h (for mcf) to 13% (for perl), with
the average error beirfi§o. Since the ability to compute costs and icosts from hardweaofiles is
gualitatively new, standards for accuracy have not beerbaean error 0B% seems small enough
to perform meaningful analysis. If a smaller error is dekiiacreasing the precision of the graph

model appears to offer the greatest opportunity for impnoset.

6.4 Summary

In this section, we have discussed hardware mechanism$)fde(ecting criticality and
slack, (2) predicting the criticality and slack of futuresfructions based on past detections, and
(3) a profiler designed to overcome the limitations of perfance counters by providing insights
into how parallelism affects program performance. Thekséax criticality predictors are designed
for quick “turnaround”: the characteristics are quicklytet#ed and recorded for use later in the
same program run. The profiler, however, collects inforamatiuring a program run for offline
graph analysis. It may be possible to use the result of thigsinan the same program run that the
information was collected(g.,via a dynamic optimization system), but, in any case, theaitigund

time is much longer. The gain from the profiler is the much nmpoeerful analysis that it provides
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over the purely hardware predictoesd.,computation of interaction costs). Thus, as we will see in
the next chapter, the types of applications that can makefube slack and criticality predictors

have a very different nature than for the profiler.
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Chapter 7

Applications of Criticality

In this chapter we discuss how the criticality metrics, ek, and software algorithms
can be put to practical use — improving performance, savireggy, and reducing the amount of
human effort required in both hardware and software dedigrarganize the discussion, we divide

the application space into three broad categories:

e Hardware Control Policies Criticality can be very useful in dynamic optimizations bypp
viding intelligent policies for resource arbitration, sp&ation control, and combating energy

and wire delay constraints.

e Hardware Design.The ability to produce complete breakdowns of performaimuauding
the contribution to performance of each hardware resourdéte interactions between them,

can reveal tradeoffs designers did not know even know ekiste

e Software Optimization and DesigrCriticality can point to the most expensive portions of
code that need optimization — for example, the most expers&ds to prefetch, the most

expensive branches to predicate, and the procedures thdtlimnefit the most from dynamic
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code modifications. Moreover, the ability to quickly modet effects of software modifica-
tions without actually performing them allows software ters to test out the performance
of many different organizations (which is especially intpat when writing multithreaded

programs).

Since the goal of this chapter is to illustrate the many jpraktises criticality can have in
the real world, we intermix our work with that of others (mo$twhich built upon our foundation).

It will be made clear where credit resides for each effort.

7.1 Simulation Methodology

The simulator we used is built upon the SimpleScalar too[E&}twith the majority of
the timing model rewritten to better reflect possible nexiagation microarchitectures. The base-
line configuration for the experiments is described in Fegarl. Alterations to this configuration
are made for particular experiments.d.,clustered machines) and are mentioned along with the
results. We used the SPEC2000int suite as optimized Alphexibs using reference inputs. Since
the reference input runs are too long for practical simafgtand some of our simulations/analyses
are very demanding, we performed detailed timing simutat@ only a 100 million dynamic in-
struction segment of each binary. To avoid simulating oniidlization code, we skipped the first
eight billion dynamic instructions. The caches were thermwel up (over 500 million instructions)

before beginning the 100 million instruction detailed siation run.
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Dynamically

128-entry instruction window, 6-way issue, 15-cycle pipel perfect memory disambiguatio

Scheduled Core fetch stops at second taken branch in a cycle.

Branch Prediction | Combined bimodal (8k entry)/gshare (8k entry) predictathvein 8k meta predictor,

4K entry 2-way associative BTB, 64-entry return addressksta

Memory System 32KB 2-way associative L1 instruction and data (2 cyclerey@ caches,

shared 1 MB 4-way associative 12-cycle latency L2 cache;ciélz memory latency,
128-entry DTLB; 64-entry ITLB, 30-cycle TLB miss handlingténcy.

Functional Units 6 Integer ALUs (1), 2 Integer MULT (3).

(latency) 4 Floating ALU (2), 2 Floating MULT/DIV (4/12), 3 LD/ST port&).
Table 7.1:Baseline configuration of simulated processor.
7.2 Hardware Control Policies

Much of research into computer architecture focuses on reagdwaremechanismso

improve performance — for example trace caches, grid psacesand larger instruction windows.

We, instead, focus on thmliciesthat enable these structures to perform welk-g.,replacement

policies for trace caches, scheduling policies for gridcpssors, and policies for deciding which

instructions should be allocated slots in the window. Tglhy¢ these policies are designed in an

ad-hoc manner using heuristics that are tuned over patitidnchmarks. Our goal is to develop

policies based on criticality analysis that dynamicallytchathe policy to the needs of whatever

program is running. We explore three categories of policies

e Resource ArbitrationCriticality can be used to decide which instructions shdaddillocated

scarce resourceseg., issue slots in an out-of-order processor. Resource dibitrégs espe-
cially important in the distributed and non-uniform prosaisarchitectures being proposed to

deal with technological constraints, such as increasimg delays and energy dissipation.

e Speculation Control.Criticality indicates which events could benefit from sgation and

which cannot. Since speculation involves overhead andiskeof mis-speculation, intelli-
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gently deciding which predictions to make can improve penfance. Furthermore, avoiding
the risk of misspeculation when little reward is possibléuees the extra energy dissipated

by work that must later be squashed.

e Dynamic Hardware Reconfiguratioi popular way to reduce energy dissipation, as well as
adjust the allocation of hardware resources to meet progiemands, is to reconfigure the

hardware at runtime.

7.2.1 Resource Arbitration

Resource arbitration is useful whenever there is conteifitinscarce resources within the
processor. This occurs not only when there are fewer regssut@an desireck.g.,3 adders when
4 add instructions are ready to execute, but also when resepare available at different “quality
levels”, e.g.,a fast instruction window versus a slow one. Sometimes theurees are at effectively
different quality levels even when they are designed idaliyi. For example, in an instruction-level
distributed processor, resources close to each other arigher quality level than those far apart.

Our primary investigation with using criticality for arbdgition was with instruction-level
distributed processing (ILDP) [98]. ILDP is important panily for two reasons: (1) increasing wire
delays relative to logic make distributing the architeetamecessity and (2) distributed architectures
often have less energy dissipation than their monolithiovadents. The reasons for the less energy
dissipation is that (1) many hardware structures have poagrirements that grow quadratically
with their size and (2) distributing instruction procesggstructures enables some portions of the
machine to run at different frequencies than other portions

For our case study, we explore applying criticality to cohpolicies of a modest instance
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of ILDP where the instruction window is distributed. Microhitectures employing simple varia-
tions on this design already exist and more advanced versidhlikely exist in the near future. In
the first set of experiments, we use criticality to steerrucdions to the most appropriatduster,
where each cluster contains a portion of the machine’suastm window and functional units.
The goal in the steering policy is to reduce the effectivdggarance penalty due to inter-cluster
communication. We also use criticality for resource adbitm within each cluster, since distribut-
ing the functional units will inevitably lead to greater tbembalance and hence greater contention.
Together, the criticality-based policies improved pearfance by up to 21% (10% on average) over
the standard register-dependence based policies.

The second set of experiments uses criticality to reduceygrakssipation. The microar-
chitecture explored has two clusters, one of which is fa@tggher quality) than the other. The
slower cluster requires less power due to the quadratitior&nip between power and clock fre-
guency. Thus the goal is to steer as many instructions tddtectuster as possible without reducing
performance. Slack is a perfect fit for this task since thasgtictions that have enough slack to
afford the slower execution should be steered to the slolustar. Our slack-based policies reduced
the 12—-15% performance loss incurred using pre-existitigips to a negligibly small amount.

To illustrate other resource arbitration applications riticality, we also discuss two re-
lated works produced by other researchers. One uses lifjtita control a non-uniform cache
architecture, where one cache has a higher latency thaheanét second study uses slack to more
efficiently allocate scarce instruction window slots totinstions as required to maximize perfor-

mance (as opposed to the normal program-order policy).
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Criticality in a Uniform ILDP Architecture

Focused instruction schedulirapdsteeringare optimizations that use the critical path to
arbitrate access to contended resources (scheduling) gigaitenthe effect of long latency inter-
cluster communication (steering). The scheduling andisigare focused in the sense that they
directly target the computation that needs to be sped upppesed to applying the same policies
to all computation. Our experiments show that the two o@ations improve the performance of
a next-generation clustered processor architecture by @i% (10% on average), with focused

instruction scheduling providing the bulk of the benefit.

The Problem. The complexity of implementing a large instruction windowvittwa wide issue
width has led to proposals of designs where the instructimtew and functional units are parti-
tioned, orclustered[10, 32, 58, 69, 82]. Clustering has already been used tdtiparthe integer
functional units of the Alpha 21264 [46]. Considering thentls of growing issue width and instruc-
tion windows, future high-performance processors wilklikcluster both the instruction window
and functional units.

Clustering introduces two primary performance challeng€hke first is thelatency to
bypassa result from the output of a functional unit in one clustethte input of a functional unit in
a different cluster. This latency is likely to be increagingjgnificant as wire delays worsen [69]. If
this latency occurs for an instruction on the critical péathyill add directly to execution time.

The second potential for performance loss is due to incdsfasetional unit contention
Since each cluster has a smaller issue width, imperfectictgin load balancing can cause instruc-
tions to wait for a functional unit longer than in an unclustedesign. If the instruction forced to

wait is on the critical path, the contention will translaieedtly to an increase in execution time.
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Furthermore, steering policies have conflicting goals at thscheme that provides good load bal-
ance may do a poor job at minimizing the effect of inter-adudtypass latency.

The critical path can mitigate both of these performancélpros. First, to reduce the ef-
fect of inter-cluster bypass latency, we perfdisnused instruction steerind he goal is to incur the
inter-cluster bypass latency for non-critical (as oppdsectitical) instructions where performance
is less likely to be impacted. The baseline instructionrgtgealgorithm for our experiments is the
industry-standardegister-dependenckeuristic. This heuristic assigns an incoming instruction
the cluster that will produce one of its operands. If moretbae cluster will produce an operand
for the instruction (die), the producing cluster with the fewest instructions issgro If all producer
instructions have finished execution, a load balancingcpadi used where the incoming instruction
is assigned to the cluster with the fewest instructions.omgarison to previous work, this policy is
similar to the scheme used by the highly regarded distribimstruction window work of Palacharla
et al.[69]. Ourfocused instruction steeringptimization improves the baseline heuristic in how it
handles ties: if a tied instruction is critical, it is placido the cluster of its critical predecessor.
This optimization was also performed by Tueteal.[110].

Second, to reduce the effect of functional unit contentiwe,evaluatedocused instruc-
tion schedulingwhere critical instructions are scheduled for executiefol® non-critical instruc-
tions. The goal is to add contention only to non-criticaltiastions, since they are less likely to
degrade performance. The oldest-first scheduling policgésl to prioritize among critical instruc-
tions, but our experiments found this policy does not havehrimpact due to the small number
of critical instructions. The baseline instruction scHedualgorithm gives priority tdong latency

instructions. Our experiments found this heuristic perfed slightly better than theldest-first
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(a) Scheduling in clustered architectures. (b) Comparison to heuristics-based predictors.

Figure 7.1:Critical path scheduling decreases the penalty of clusteng. (a) The token-passing
predictor improves instruction scheduling in clustereth@ectures (8-way unclustered; two 4-way
clusters; and four 2-way clusters are shown). As the numbetusters increases, critical-path
scheduling becomes more effectib) Results for four 2-way clusters using bdtitused instruc-
tion schedulingand steeringshows that the heuristic-based predictors are less effettian the
token-passing predictor.

scheduling policy.

Experiments. The improvements due timcused instruction schedulirendfocused instruction
steeringare shown in Figure 7.1(a) for three organizations of an §+#asue machine: unclustered,
two clusters, and four clusters. The execution time is ntimee to the baseline machine (unclus-

tered without any focused optimizations). We find that:

¢ On an unclustered organization, the critical path-basdidypproduces a speedup of as much

as 7% (3.5% on average).

e On a 2-cluster organization, the critical path turns an ayerslowdown of 7% to a small
speedupof 1% over the baseline. This is a speedup of up to 17% (7% orage® over

register-dependence steering alone.

e On a 4-cluster organization, the critical path reducesgpernce degradation from 19%

to a much more tolerable 6% degradation. Measured as speedeupegister-dependence
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steering, we improve performance by up to 21% (10% on avgrage

From these results, we see that the token-passing predidtareasingly effective as the
number of clusters increases. This is an important resakidering that technological trends may
necessitate an aggressive next-generation micropraocassh as the one we model, to be heavily
partitioned in order to meet clock cycle goals [2].

From Figure 7.1(a) we also see tliatused instruction schedulimovides most of the
benefit. We believe this is becauseused instruction steeringses the critical path only to break
ties, which occur in the register-dependence steeringisieumfrequently. Nonetheless, a few
benchmarks do gain significantly from the enhanced steeeigg gzipgains 3% andjalgelgains

14%.

Comparison to Prior Work.  An alternative tdocused instruction scheduling to use a steering
policy that prevents load imbalance that might lead to estgesfunctional unit contention, de-
creasing the importance of instruction scheduling withitiuster. We implemented several such
policies, including the best performing non-adaptive fetier (MOD3) studied by Baniasadi and
Moshovos [10]. MOD3 allocates instructions to clusters ioand-robin fashion, three instructions
at a time. While these schemes sometimes performed betterrédgister-dependence steering,
register-dependence performed better on average in o@rimgnts. Most importantly, register-
dependence steering with focused instruction schedaliwgysperformed better (typically much
better) than MOD3.

In Figure 7.1(b), we compare the token-passing predicttnegdawo heuristics-based pre-
dictors described in Section 6.1.2 (oldest-uncommitted @idest-unissued) performing botb-

cused instruction schedulirmndfocused instruction steeringn a 4-cluster organization. Clearly,
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neither heuristics-based predictor is consistently &ffecand they even degrade performance for
some benchmark®(g., for vortex perl, andcrafty). Our conjecture is that instruction scheduling
optimizations require higher precision than heuristias affer.

Note that even fopgalgel where the oldest-unissued scheme compared favorablyeto th
token-passing predictor in Section 6.1.2, Figure 7.1(® token-passing predictor produces a larger
speedup. Upon further examination, we found that (acrossémchmarks) the oldest-unissued
predictor's accuracy degrades significantly afierused instruction scheduling applied. This
may be due to the oldest-unissued predictor’s inhererdrredi on the order of instructions in the
instruction window. Since scheduling critical instrucisofirst changes the order of issue such that
critical instructions are unlikely to be the oldest, thedicéor's performance may degrade as the
optimization is applied. In general, a predictor based oexglicit model of the critical path, rather
than on an artifact of the microexecution, is less likelyxpexience this sort of interference with a
particular optimization.

In summary, it is worth noting that the significant improvemnseseen for scheduling ex-
ecution resources speak well for applying criticality theduling other scarce resources, such as
ports on predictor structures or bus bandwidth. In gen#ralcritical path can be used for intelligent
resource arbitration whenever a resource is contended Hyphatnstructions. The multipurpose
nature of a critical-path predictor can enable a large perdmce gain from the aggregate benefit of

many such simple optimizations.

Criticality in a Non-uniform ILDP Architecture

In this section, we evaluate the success of slack in guidingrauniform control pol-

icy. Since the design of the underlying machine is largelyetielent upon the characteristics of the
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workload, we start our exploration with a characterizatidnthe slack available in our benchmark
suite. We use this characterization to define an aggregsioal-uniform (power-aware) microarchi-
tecture whose non-uniformities can be effectively hiddgeimploying a slack-based control policy.
We compare our slack-based policy with several policiegthas existing control techniques and
discover that slack is remarkably more successful at hitlingperformance penalties that arise due

to non-uniform resources.

Slack Characterization. As discussed in Chapter 4, there are three notions of slatknight
be relevant to non-uniform architecture design: localbglpand apportioned. Local slack is the
easiest to measure in hardware, since it involves simplysoreay the difference in arrival times of
two events at a nodee(g.,for the instructionADD «— R1, R2, how many cycles sooner wadsl
ready thank2?). In contrast, global and apportioned slack involve a pgagion-style analysis, for
which we would employ the token-passing analyzer. So, ortbefoals of the characterization
will be to determine if local slack is sufficient for drivingowtrol policies. Another will be to
gain information as to how to design a non-uniform microdetture to match the needs of the
workload. For simplicity, we only look at the slack charastiecs of £ nodes for this study.

To start off, Figures 7.2(a)-7.2(c) plot the local, globablaapportioned slack found in
gcq gzip andperl, respectively. These three benchmarks were chosen beiteys#lustrate the
two extreme resultsgEcandgzip) and a typical resultgerl) from the full set of measurements we
performed.

Local and global slack.The slack measurements reported in the charts should ke inte
preted as follows: for each data poirt §), y% of (dynamic) instructions haveor morecycles of

slack. Ingcg for instance, approximately 36% of instructions have lietack of five or more cy-
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cles. In general, we observe that relatively few instrungiocontain local slack that is large enough
to be exploitable: on average only about 20% of instructiomge local slack of five or more cycles.
At the same time, we notice that a small number of instrustioontain extremely large local slack
(in gzip, about 2% of instructions have more than 80 cycles of loealldl This large local slack is
promising because a single instruction is unlikely to be ablexploit it all, allowing us to apportion
it to instructions without enough local slack.

Note that, while the figures only show local slack for #ecutionof instructions E
nodes in our model), other micro-operations associateld avitinstruction may also exhibit local
slack. For instance, we may be able to delaydbmmitof an instruction (represented K/nodes
in our model) without delaying any other instructions. ®iocir dependence-graph model accounts
for this commit micro-operation, we can also apportion tbcal slack to other instructions.

To determine to what extent large local slacks can be useeilghiboring instructions, we
examine global slack. Since the global slack of an instonds the accumulation of all local slacks
that could be “stolen” from other instructions, observinigtaof global slack on many instructions
would speak well for the potential for exploitation, sinéestwould mean that lots of local slack
is “freely movable” across the microexecution. Indeeds thithe case: about 40% of instructions
have more than 50 cycles of global slack. The key question isomhat fraction of this global
slack remains if we spread it out across neighboring instms. We answer this question using
apportioned slack.

Apportioned slackTo calculate apportioned slack, we must first decide on tperipn-
ing strategy. Let us first consider givingcycles of slack to as many instructions as possible. The

amount of such apportioned slack is shown along with locdlgdobal slack in Figures 7.2(a)-7.2(c)
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for a range of values of.

Again, the experiments present good news: not only does itr@@execution contain a lot
of apportionable local slack (which we knew from global klateasurements), but this slack is also
able to satisfy many instructions: on average, 75% of ietitvas can be apportioned slack of five
cycles. Even in the least slackful benchmagkip, there are 64% of instructions that have 5 cycles
of slack. This means, for instance, that most instructi@rstolerate long-latency communication
across a chip without hurting performance—as long as thayddlinstructions are chosen wisely
(i.e, with a good slack predictor and a good policy).

Of course, the above apportioning strategy does not refllgbieanon-uniformities that a
control policy may have to tolerate. For instance, anothtresting question is how many loads
can tolerate a long latency to the L1 data cache, a concerirefoonstrained designs such as the
Grid Architecture [86]. To maximize slack on loads, we mgdlie above apportioning strategy
such that no slack is apportioned to non-load instructiéiigure 7.2(d) reports the results of such
an apportioning. We see that a remarkable number of loadd tolerate a long-latency L1 data
cache hit. Namely, there are more than 65% of load instmstiith a slack of 12 cycles, enough
to tolerate an L2 hit. Together, the data suggest an opgtyrtiarbuild selective L1-cache bypasses.

Breakdown of slack per opcodmn Figure 7.3, we examine how much apportioned slack
is available to instructions of various types. The figure patas the breakdown for the two appor-
tioning strategies described in Section 4.3.2: five-cyplesinstruction and latency-plus-one-cycle.
The figure classifies instructions into four categoriesdatores, integer operations, and floating-
point operations. (Note that our simulator discards all N@#ructions after fetch, and, thus, they

are not included in any of the slack measurements.)
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Figure 7.3 leads to several conclusions about what typesremiformities can be toler-

ated with slack.

e Most instructions (on average, greater than 75%) have dnslagk to tolerate doubling their
latency. This means we can run most functional units at $fadled without losing perfor-
mance, provided we are successful at predicting whichuostms have slack. This result is

good news for the fast/slow pipelines microarchitecturestuely in the next section.

e Alarge percentage of instructions of each type can haveltdiency doubled; this holds even

for longer latency floating-point operations.

e There is no instruction type which nearly always has slackusT a machine design that

simply makes all functional units of a particular type slovedikely to degrade performance.

The Non-uniform Architecture. Based on the conclusions of the slack characterization awec
up with microarchitecture pictured in Figure 7.4. In thisida, the microarchitecture is divided
into two pipelines with each pipeline consisting of half of thestruction window, issue logic, and
functional units and a copy of the register file. The design saves power byimgrone pipeline at
half frequency, exploiting the (approximate) relatiomshl o« F'V2 between powelP, voltageV’
and frequency’. By halving the frequency, we can reduce voltage enoughttigabverall power
consumption is reduced roughly to a fourth ¢x F2). (Note that reducing the frequency of such
a large portion of the pipeline is a more aggressive powearawesign than one that only reduces
the speed of the functional units.)

We find that by employing a slack-based control policy, we kagp performance loss

due to reducing the frequency of one cluster to 3-4%, whicimasy times better than the best
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non-slack based scheme. Furthermore, if we are willing emdpmore area, we can add an extra
slow cluster to completely eliminate any performance deéatian while still maintaining most of

the power benefits.

Control Policies At a first glance, it may seem that reducing the frequency enpapeline intro-
duces only one kind of non-uniformity. The reality is thaoar design we need to deal with three

forms of non-uniformity:

1. Theexecution latenciesf functional units in the slow pipeline will be twice as largs those

in the fast pipeline.

2. Thebypass latencypetween the two pipelines will be longer than the intra-ligebypass

latency, due to not only the physical distance but also deedssing voltage domains.

3. Theeffective issue bandwiditf the slow pipeline will be half of the bandwidth of the fast
pipeline, because the slow pipeline issues instructiorsyesther fast cycle. This reduction
in issue bandwidth manifests itself as increased conterftitiich happens to be the hardest

constraint to deal with).

The important consequence of the third point is that frequeeduction reduces the effective band-
width of theentiremachine. This observation is important because it setsditeat expectation on
the control policy: when a workload is bandwidth-limitede(j exhibits high IPC rate), no control
policy will be able to avoid the performance penalty.

To attack the above three non-uniformities, we design &dtased policy that controls

two machine aspects:

e Instruction steeringwhich determines into which pipeline a dynamic instructi® sent.
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¢ Instruction schedulingwhich determines which of the data-ready instructions pipeline

are executed.

We assume that the steering decision is performed beforedmduling decisions are carried out.

Our slack-based policy employs four bins, as introduced rantivated in Section 6.2.
These four bins control to which pipeline an instructionl wé steered, and also how the instruction
will be scheduled within the pipeline (see Table 7.3). Nbi&t twe also experimented with two-
bin policies (which performed steering but no slack-basgteduling), but the four-bin scheme
performed up to 5% better.

To assign a slack bin to each static instruction, our sladicypases a 4K-entry array of
6-bit saturating counters, indexed by PC. The counter isetieented by one if the slack sampling
(see Section 6.2) detects that the instruction can tolerafiwen pipeline and a given scheduling
policy (i.e., is slackful enough for the pipeline/schedglicombination). The instruction is moved
to a lower-numbered bin when the counter reaches zero anthighar-bin if it is detected that it
does not have enough slack for the given bin.

For best performance, we need to maintain a relative balahicestructions in each bin.
For the fast/slow clusters application, we want approxatyaa third to a half of the instructions to
be sent to the slow cluster and the rest to the fast (consigiéine steady-state execution bandwidth
provided by the slow cluster is one half that of the fast). tiemmore, we want a fairly small
percentage of instructions to have high-priority and beedaked first in each cluster. If too many
are scheduled first, the benefit of the optimization is disfiad.

To maintain the desired balance, the hysteresis is spediadigned for each bin. In order

to have fewer instructions reside in a particular bin, we luggteresis to make it more difficult
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Name Poalicy
Reg-Dependence Perform load balancing if one pipeling
is four times as full as another.
Otherwise, steer instruction to pipelin
that will produce one or more of its
inputs. Steer to least-filled pipeline
if all operands are ready
Fast-first Window| Send instructions to the fast pipeline
until its window becomes half full, then
apply register-dependence steering.
Fast-first Ready | Send instructions to fast pipeline until
there were more ready instructions then
issue slots over the last 5 cycles. Then,
apply register-dependence steering.

1%

Table 7.2:Baseline policies for controlling fast/slow pipeline micoarchitecture.

to transition into that bin. For the fast/slow clusters &milon, the hysteresis used is shown in
Table 7.3.

To avoid extreme load imbalance between the two clustersctwhappens when too
many instructions are detected as slackful, overloadiegstbw cluster), our policy occasionally
overrides the the slack-based steering to correct the anbal Load balancing is invoked under
the following condition: If the slow instruction window ctains four times as many instructions
as the fast window, the incoming instruction is sent to ttst ¢duster. Load balancing never steers
instructions to the slow cluster.

We compare our slack-based policy to several policies basedisting (non-slack-based)
control techniques. While we experimented with many sudfcies, we only present three that
performed best (see Table 7.2). The first is a simple regisipendence steering policy, while
the other two “favor” the fast pipeline over the slow one iattinstructions are steered to the fast
pipeline until some condition is met. We also evaluate theafg¢he ALOLD criticality predictor

from Tune, et al. [110], as a replacement for the token-pgssiiticality analyzer [34] in the slack
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Slack bin # Policy decisions Hysteresis counter
4 Fast pipeline, high priority schedule Initialize to O upon entering level.
Increase by 8 if detected not slackful.

3 Fast pipeline, low priority schedulg Initialize to 63 upon entering level.
Immediately go to level 4 if detected not slackful.

2 Slow pipeline, high priority schedule Initialize to 63 upon entering level.
Immediately go to level 3 if detected not slackful.

1 Slow pipeline, low priority schedulg Initialize to 63 upon entering level.
Immediately go to level 2 if detected not slackful.

Table 7.3:Hysteresis implementing the four slack bins.Note: if the slow instruction window
contains four times as many instructions as the fast pipglime slack-based steering decision is
overridden, and the incoming instruction is sent to the f@gseline. Such load balancing never
sends instructions to the slow pipeline.

detector. (We also experimented with the QOLD criticalitgglictor from the same work [96, 110],

but the ALOLD predictor performed considerably better im context.)

Experimental Evaluation We evaluate the set of control policies on a machine with onéde
fast pipeline and one 3-wide slow pipelin&g<{3s). The results, presented in Figure 7.5, yield two
overall conclusions. First, our slack-based policy pen®metter than any non-slack policy, by
10% on average. Second, using slack reduces the perfornaggeadation (with respect to the
high-power3f+3f configuration) from an average of 16% to only 3%.

It is interesting to observe the effect of replacing the tepassing detector with the
ALOLD predictor: while ALOLD performs better than the nolask schemes, degrading perfor-
mance by 10%, it appears that the token-passing detecteeded to accurately measure slack.

In an attempt to recoup the small performance los3fe8s, we experimented with other
configurations where issue bandwidth is made equaf+8f through the addition of another slow
pipeline. In these equi-bandwidth configurations, we fotimat our slack-based policy actually

slightly improved performance ov8f+3f, while the non-slack policies significantly degraded it, by
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12-15% on average. Specifically, the additional configonatiexplored are summarized below:

e 3f+3s+3s: one 3-wide fast pipeline and two 3-wide slow pipelines. Tdosfiguration has
the same issue bandwidth as @Bfe3f but a larger effective instruction window. While the
performance for all policies improved ovef+3s, the relative performance of the four poli-
cies remained roughly the same: our slack predictor agtualbroved performance by 1%

(compared to the 3f+3f machine), while all other policiegraeled it, by 12-15% on average.

e Half_3f+3s+3s: one 3-wide fast pipeline and two 3-wide slow pipelines, vehtiie window
size of each slow pipeline is halved. This configuration lesgame issue bandwidth and
effective window size a8f+3f. Across the policies, performance was 1-2% worse than for
3f+3s+3s indicating the increased effective window size does hameesperformance bene-

fit. Most of the gains, however, come from increased issuelwalth.

Power Savings While the focus of this work is to evaluate slack as a tool fesigning control
policies, it is interesting to estimate the power savingswfnon-uniform machine configurations.
While an accurate power analysis is beyond our scope, wearitputeasymptoticsavings. Actual
power savings will, in any case, depend upon the power d¢mtioin of the machine core (i.e., the
instruction window, issue logic, register file, and funofbunits), which is highly dependent upon
the particulars of the processor implementation).

To estimate the fraction of theore power that we save with each configuration, we
can employ the quadratic relationship of frequency/vatagduction to power (naturally, practi-
cal device considerations may change this ratio to somesdigiAssuming that halving the fre-

guency decreases the power consumption to a quarter, weihakie 3f+3s configuration, we save
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100 — 50 4 50 * 1/4 = 37.5% of the power of the core; and in the 3f+3s+3s configuratiorsawe
100 — 50 4 50 % 1/4 + 50 * 1/4 = 25%.

To estimate savings to overall chip power, we employ a metlogy similar to Bahar
and Manne [8], which extrapolated the savings from availgdmwer estimates of real machines.
Wilcox showed the 8-way issue Alpha 21464 was expected te B&¥ of its power dissipation in
its core [116]. Since we assumed a 6-way machine for thisysiud estimate 50% of total chip
power going to the core. Under this assumption, the 3f+3§igaration would reduce the overall
chip power by approximately 18%, while the 3f+3s+3s mackies approximately 12%.

Of course, our slack policy itself consumes some power, [®iexpect it to be a very
small amount of overall chip power, for the following reasorihe criticality detector is a very
simple hardware structure consisting of two small arrapsar@ay of size ROBsize «3 nodes per
instruction*8 tokens= 768 bytes that is read and written during training and a 4KB atoastore
the slack bin predictions. Furthermore, the predictor carmused for hiding many different non-
uniformities (as opposed to just the single optimizatioplesed in this section) and, thus, its power

dissipation may be amortized across numerous applications

Other Resource Arbitration Applications

In this section, we will further illustrate the value of ugiariticality for resource arbitra-

tion by briefly discussing some applications developed hgiat

Heterogeneous cache organization. Rakvic, et al.[75] propose introducing dital cache, which
is a small, fast-access cache that sits in front of the toadit L1 cache (inclusivity is maintained).

Such a small cache cannot hold the data working set of mosieaals. However, it is large enough
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to hold most of thecritical portion of the working set of many workloads. The estimatythse
for identifying criticality is what we would call local sl&c If a load has some local slackd., it's
data is not consumed immediately), it is considemed-vitaland not stored in the vital cache. They
achieve an average of a 12% speedup with this cache organiz#t may be possible to improve

upon this result with a more global computation of critityali

Instruction window utilization.  Crowe,et al.[27] identified which instructions had enough slack
such that they can tolerate some delay before being pladedhia instruction window. These
instructions are placed intodeferredqueue, giving priority to the more critical instructionshély
identify the slack of each static instruction through animdflanalysis, where the static slack of an
instruction is defined as the minimum global slack over alaiyic instances of that instruction.

They achieved an 11% speedup over their baseline four-witefeorder processor.

7.2.2 Speculation Control

Another class of control-policy applications of critidglis speculation control. The goal
of speculation control is to only make predictions whenéfismpotential for performance improve-
ment. Performance improvement is possible when the spaulattacks an event with positive
cost, while it is not possible if that event has a positivelsldReducing the number of useless pre-
dictions in this manner has two benefits: (1) fewer missdituis and (2) less overhead due to the
speculation.

It is easy to see how speculation control could reduce théoeuiwf misspeculations. For
example, value prediction is only potentially useful fostiictions that are on the critical path. If

the instruction is off the critical path, predicting it's tput will not help at all, since speeding up
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the instruction’s execution will not improve program perf@ance. On the other hand, if we attempt
a prediction for a noncritical instruction and are incoty@erformance will likely be substantially
impacted due to the recovery cost.

Speculation control can also reduce overhead in situatiiese the speculation has a cost
associated with it. One example is pre-execution, whereamatf dependent instructions leading
up to a frequently cache-missing load (or frequently midjated branch) are processed early, well
before the load or branch is encountered in program ordes.bEnefit in pre-execution is that the
load’s data can be prefetched (or the branch outcome candveniirby the time they are normally
encountered. The downside of this technique is that theepeeution uses resources (functional
units, window slots) that could be used for the normal progexecution. So, it is logical that
pre-execution should only be applied where there is pakfuir substantial benefit, something that

criticality (icost in particular) can indicate.

Reducing Misspeculations

Focused value predictiois an optimization that uses the critical path for reducing t
frequency of (costly) misspeculations while maintainihg benefits of useful predictions. By pre-
dicting only critical instructions, we improved perforntanby as much as 5%, due to removing

nearly half of all value misspeculations.

The Problem. Value prediction is a technique for breaking data-flow delesices and thus also
shortening the critical path of a program [62]. In fact, thgtimization is only effective when the
dependences are on the critical path. Any value predictiadarornon-critical dependences will

not improve performance; even worse, if such a predictioimdsrrect, it may severely degrade



147

performance. Irfocused value predictiogrwe only make predictions for critical path instructions,

thus reducing the risk of misspeculation while maintairtimg benefits of useful predictions.

Table Sizes | Context: 1st-level table: 64K entries, 2nd-level
table: 64K entries, Stride: 64K entries. The tables
form a hybrid predictor similar to the one in [113]
Confidence | 4-bits, saturating: Increase by one if correct
prediction, decrease by 7 if incorrect, perform
speculation only if equal to 15 (This is similar
to the mechanism used in [19]).

Mis- When an instruction is misspeculated, squash
speculation | all instructions before it in the pipeline
Recovery | and re-fetch (like branch mispredictions.)

Table 7.4:Value prediction configuration.

Experiments. We used a hybrid context/stride predictor similar to thedmter of Wang and
Franklin [113]. The value predictor configuration, detdile Table 7.4, deserves two comments: In
order to isolate the effect of value misspeculations fromefiects of value-predictor aliasing, we
used rather large value prediction tables. Second, whilera aggressive recovery mechanism than
our squash-and-refetch policy might reduce the cost ofgeimdations, it would also significantly
increase the implementation cost. We performed expersneith focused value prediction on the
seven benchmarks that our baseline value predictor coudove. We evaluate our token-passing
predictor and the two heuristics predictors.

Figure 7.6(a) shows the number of misspeculations obtaw#dand without filtering
predictions using the critical path. While the oldest-so&d heuristic eliminated the most misspec-
ulations, it is clear from Figure 7.6(b) that it also elimi@é many beneficial correct speculations.
The more precise token-passing predictor consistentlyaugs performance over the baseline value
predictor and typically delivers more improvement thaheitheuristic. The absolute performance

gain is modest because the powerful confidence mechanidme imeiseline value predictor already
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filters out most of the misspeculations. Nonetheless, thengtial for using the critical path to im-
prove speculation techniques via misspeculation redudtidllustrated by 5 times more effective

value prediction foperl and 7-20% more effectiveness for the rest of the benchmarks.

Reducing Speculation Overhead

In addition to reducing the number of mispredictions, caility can also be used to reduce
the overhead caused by various forms of speculation. Theréa@ principle ways the overhead
reduction can be achieved. The first and most direct is toimdita speculation when it is not
possible that it could improve performance, as we did fonéilee prediction case study above. A
second is to use slack analysis to “hide” the overhead bedtmer computation. For example, pre-
execution requires fetching and executing a chain of iottns before they arrive in the normal
program stream. If we could detect when there is fetch slaakable, we would know when we
could fetch the pre-execution stream without hurting parogperformance.

We have not studied the pre-execution application in ddbail there has been some re-
lated work that tackled part of the problem. Specificallyrieeand Roth [71] used criticality con-
structed from our graph model to identify cache misses nmastéd of being pre-executed, meaning
that the data-dependence chain leading up to the miss iggdigiward in the program stream. The
specific metric they use is simptmst i.e., the benefit that could be achieved by pre-executing a
load (in isolation). Of course, since multiple loads arepfbeing serviced simultaneously (and
thus have very low individual costs), using simple cost withaccounting for interactions would
miss many optimization opportunities. Instead of exgiiciheasuring interaction costs, they av-
erage two values to obtain an adjusted cost metric: (1) tisé alothe load as we define it and

(2) a more optimistic cost value assuming all other loadshaen successfully prefetched. By
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employing this metric as part of their overall pre-executgystem, they were able to avoid some
unnecessary work, both saving energy and increasing peafure.

Note that Petric and Roth’s work improves pre-execution\mjding unnecessary work;
it does not attempt to use criticality to hide the overheathefpre-execution threads. It may be
possible to use criticality (especially for fetch nodesjdentify when the main thread can afford
to lose some bandwidth without performance loss. No workyeasattempted this optimization,

however.

7.2.3 Dynamic Hardware Reconfiguration

One of the techniques that architects have explored forciaduenergy dissipation is
to change the hardware configuration dynamically to matehpitogram’s needs. There are two
general strategies. The firstis to resize hardware stregtirch that the machine is more “balanced”
or matched to the needs of the program. In other words, neatgei resource has slack in that it
could be reduced in size without impacting performance.c&iior many structures, such as the
instruction window, there is a quadratic relationship leswtheir size and their energy dissipation,
resizing has the potential to help substantially. The sgcirategy, which is more popular in
industry, is to dynamically adjust the frequency to meetgregram’s needs. Since frequency also

has a quadratic relationship with energy, reducing frequean have a very substantial benefit.

Structure Resizing. Criticality is very directly applicable to the problem ofsiging hardware
structures. Consider the problem of resizing the instonctvindow. The instruction window con-
straint is represented by D edges in the graph model. If t@D edge is critical, the (limited)

size of the instruction window is impacting performanceeTiverse is also true, so a non-critical
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CD edge means the instruction window size can be reduced wtithating performance. This
approach can be applied for resizing any hardware resonatéstmodeled in the graph.

Some work by Sasankat al. [87] developed a specialized hardware cost estimator for
making resizing decisions. The design of their estimatos #mapired by our last-arriving edge
criticality analyzer, but, by specializing it to the taskrekizing the instruction window, it is made
less expensive to implement. We compared their cost estimtatour more general criticality
detector and found that both perform similarly well. Thaitticality-based policy saved slightly

more energy than the state-of-the-art policies at the time.

Frequency Scaling. The most advanced proposals for frequency scaling divieletip real estate
into multiple clock domains, each with an independentlytaaiable frequency. The goal with this
sort of architecture is to set each zone’s frequency as lopoasible while still maintaining good
performance. Semeraret al. [95] used an offline microarchitecture graph-based slackyais to
determine good frequencies for different segments of cddatculescu [64] furthered this work
to include dynamic criticality information, concludingata hybrid between our token-passing
analyzer and the heuristic predictors provide the bestggfrformance tradeoff for MCDs. In
a similar work, Chin,et al. [21] used slack to control the frequencies of different fipEs in a

clustered architecture.

7.3 Hardware Design Help

The typical approach architects use to better understamndnimachine alterations affect
performance is to run many simulations with many of the d#ifé configurations under considera-

tion. The execution time reported by the simulations previtsight into what configurations will
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likely perform best in practice. To gain more fine-grain urstiEnding of why performance is as it
is, architects will examine counters. For example, if theheamiss count increases when a simula-
tion is run with a larger instruction window, one might logily conclude that there is an interaction
between the window and cache misses.

Our work on criticality can improve the state of hardwareigiesn three ways:

e Early ResultsWhen exploring new architectural ideas, it is typicallyw&me consuming to
write an entire simulator to test their performance. A garc&nd easier alternative is to alter
the graph model to reflect the new architecture. A perforraastimate can then be obtained
by measuring critical path lengths of instances of the newleho This methodology can
enable architects to quickly explore a larger portion ofdheign space than would otherwise

be practical.

e Test more configurations quicklyA related advantage is the ability to test out many con-
figurations very quickly. For example, testing the crossdpod of all possible instruction
window sizes, fetch bandwidths, issue bandwidths, and-$vak queue sizes results in an
exponential blowup in the number of simulations requiredsting these configurations on
the graph still results in an exponential blowup, but eaephranalysis is much, much faster
than running a simulation — resulting in the ability to exj@l@ larger portion of the design

space.

e Costs, Interactions, and Performance BreakdowAdinal application of criticality, which
we have spent the most time exploring, is a better altematvperformance counters for
gaining insight intawhya particular architecture performs the way that it doess phoblem

is important since it can lead to new insights quickly. Intfakhe methodology can provide
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interpretations of performance (almost) automaticalygse interpretations would otherwise

require substantial effort from an experienced architect.

Our work has focused on developing the alternative to perdmce counters (the last
bullet). Below we present a case study that illustrates mb@raction costs and performance break-

downs can be used to gain insights into performance.

7.3.1 Icost Tutorial: Optimizing a long pipeline

Several recent studies have found significant performampecvements possible by in-
creasing the length of the processor pipeline. The impreveraomes from increased clock fre-
guency, but this improvement is unfortunately offset by ithereasing latency operformance-
critical loops. A loop is a feedback path in the pipeline, where the resutinaf stage is needed by
an earlier stage. Three of the most critical loops includethé latency of a level-one data cache
access, (ii) the latency to issue back-to-back operatithresigsue-wakeup loop), and (iii) branch
mispredictions [101, 53, 47, 13].

In this section, we present a tutorial on how interactioniasan help architects during
design of a new processor. Specifically, interaction costsshow us how to mitigate the perfor-
mance impact of critical loops in processors with long piped. Finally, we compare our icost

analysis conclusions to those of a conventional sensitstitdy.

The level-one data cache access loop

Let’'s assume that the circuit designers optimized the lewel data cache access as much

as possible, but nonetheless the latency was higher thattexp) say four cycles instead of the
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typical one or two. The question now is: What is thest effectivevay to change the microarchi-
tecture to mitigate the effect of the high latency? Wouldeiipto: (a) enlarge the branch predictor;
(b) increase the number of load ports; (c) increase the dathecsize; or (d) increase the fetch
bandwidth? Certainly these changes will reduce the cosadi ef these resources (if they were on
the critical path), but will they also reduce the cost of dztehe accesses?

What we are looking for is a choice of something other thaa datesses to optimize that
will indirectly reduce the cost of those accesses. Optimgizome resource such as fetch bandwidth
certainly will not affect the latency of data accesses, hetaptimization might cause some of
the latency to be removed from the critical path (or, in otlverds, “hidden” or “tolerated” by the
machine). In essence, we are lookinggerialinteractions, since any resource that serially interacts
with data accesses provides us an alternative resourcetioripation that will enable us to remove
the same set of cycles.

In our case study, before computing the interaction costshypothesized what the out-
come of the analysis could be, which amounted to predictadnghereserial interactions would
occur. We thought data dependences between data-cachiegrissds or ALU operations and
level-one data-cache accesses might cause such a sesiaktian. Another possibility would be
an interaction between branch mispredicts and data-cadesses, since loads often feed branches.

The results of the analysis is shown in Table 7.5 (simulatoameters are in Table 7.1 in
Section 6.3.5). For brevity, the breakdown presents ordgdhnteraction costs that involve data-
cache accesses, labeled 'dI1’ in the table. In total, thendlsvbe2® — 1 = 255 costs and interaction
costs if all of them were shown.

Before examining the correctness of our hypotheses, l¢mat to gauge the importance
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Category | bzip | crafty| eon | gap | gcc | gzip
dil | 222 | 242 | 18.2 | 13.5| 18.3 | 30.5
win | 16.4 | 151 | 15.7 | 41.0 | 13.6 | 23.0
bw| 4.4 8.0 7.7 2.8 8.2 5.7
bmisp| 41.0 | 28.6 | 158 | 12.3 | 26.3 | 25.8
dmiss| 23.8 | 7.1 0.7 | 235 | 263 | 7.7
shortalu| 9.9 | 114 | 54 | 13.8 | 51 | 204
longalu| 0.3 09 | 11.8| 56 0.4 0.7
imiss | 0.0 0.7 7.8 0.7 2.2 0.1
dli+win | -5.2 | -105| -6.8 | -6.0 | 4.2 | -15.3
dil+bw | 5.6 9.9 8.1 28 | 100 | 6.0
dli+bmisp | -108| -54 | -49 | -29 | -70 | -34
dli+dmiss| -0.7 | -1.2 | -04 | -04 | -14 | -04
dil+shortalu | -4.1 | 43 | -1.0 | -0.2 | -1.6 | -8.2
dil+longalu| -0.3 0.1 -0.3 0.1 -0.3 | -04
dil+imiss| 0.0 0.0 0.8 0.1 0.3 0.0
Other| -25 | 154 | 214 | -6.7 | 3.8 7.8
Total | 100.0| 100.0| 100.0| 100.0| 100.0| 100.0

Category | mcf | parser| perl | twolf | vortex | vpr
dil | 7.7 19.0 | 31.6 | 194 | 28.8 | 19.7

win | 4.2 173 | 44 | 251 | 47.1 | 23.2

bw| 0.5 2.9 8.6 3.9 5.3 5.8

bmisp| 26.9 | 16.5 | 38.0 | 24.1 1.9 24.9
dmiss| 81.0 | 329 | 14 | 344 | 218 | 33.7
shortalu| 1.4 19.7 | 7.3 7.8 4.9 7.6
longalu| 0.0 0.1 0.8 4.2 1.6 3.6
imiss | 0.0 0.1 5.2 0.0 2.8 0.0
dii+win | -0.2 | 6.1 | 43 | 41 | -27.6 | -5.7
dil+bw | 0.3 4.9 9.6 15 176 | 1.8
dii+bmisp | -24 | -28 | -76 | -6.5 | -0.2 | -4.6
dll+dmiss| -05 | -1.4 | -0.2 | -1.3 -1.8 -2.5
dll+shortalu | -0.1 | -3.6 | -1.4 | -0.3 | -40 | -1.3
dil+longalu| 0.0 -0.0 | -0.7 0.0 -1.3 | -03
dil+imiss| 0.0 0.0 1.0 0.0 0.4 0.0
Other| -18.8| 0.5 6.3 | -82 2.7 -5.9
Total | 100.0| 100.0 | 100.0| 100.0| 100.0 | 100.0

Table 7.5:Breakdowns for optimizing a long pipeline: Four-cycle levéone cache.Interaction
costs are presented here as a percent of execution time aaccaleulated using the dependence
graph in a simulator. The categories are: 'dit’level-one data cache latency; 'wir> instruction
window stalls; 'bw’ — processor bandwidth (fetch,issue,commit bandwidthsjjisp’ — branch
mispredictions; 'dmiss— data-cache misses; 'shals> one-cycle integer operations; ’lgals>
multi-cycle integer and floating-point operations; andi&si— instruction cache misses. Note that
'Other’, denoting the sum of all interaction costs not diseld, can be negative since the interaction
costs can be negative.
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of interactions in general. If we sum up the singleton castg,forcra fty, we get a very high value,
24.54+16.34+ 6.0+ 16.4 4+ 6.7+ 11.3 + 0.8 + 0.6 = 92.6%. Does this mean interactions are only
important for a small portion of the execution timeg.,7.4% for crafty? The answer is “no”,
since these singleton costs could be counting the samescyuldtiple times — in other words,
serial interactions (negative icosts) may exist. In faug, $um of the singleton costs fosrtez is
over100, at104%, which is only explainable by serial interactions. As estpd,vortexr does have
interactions (in fact, large ones), both parallel and $éaizd this is seen even when only considering
interactions includingll1). So, we cannot make conclusions on the importance of ictieres by
looking at singleton costs alone.

In analyzing the data, notice first that data-cache accéssesa large singleton cost, typ-
ically contributing 15-25% of the execution time. This medmat 15-25% of the execution time
would be eliminated if the data-cache access latency wageedto zero. As for the interactions,
we see that some of our hypotheses were correct: for instémeme are significant serial interac-
tions between data-cache accesses and ALU operatitihsshalu), suggesting we could mitigate
the long data-cache loop by reducing ALU latency (perhapsutih value prediction [63, 19] or
instruction reuse [99]).

However, other conclusions from the analysis were not ptedibeforehand. For ex-
ample, it was hypothesized that large serial interactioghtnéxist between data-cache misses and
data-cache accesses. Inreality, this interaction is wvesflsreducing data-cache misses is unlikely
to mitigate the effect of the high latency data-cache loop.

We also see that the largest serial interaction for mosthbaadks is with instruction win-

dow stalls. Thus, perhaps the most effective mitigatiorhefdata-cache loop would be to increase
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the size of the instruction window — a result that may be diffito predict before performing the
analysis.

Also, note that thenagnitudeof the interactions vary significantly across benchmarks.
This variability suggests that interaction costs could beful in workload characterization: their
magnitude gives a designer early insights into what opttiohs would be most suitable for the

most important workloads.

Balanced machine design. One particularly interesting interpretation of interaaticosts enables
microarchitects to determine hoalanceda machine design is, as well as determine where the
imbalances exist.

We start with a definition of “balanced”. A machine is said tobdalanced if no processor
resource can be reduced in size or made slower without inmgagkecution time. In other words,
there is no wasted effort (slack) in any stage of any instva& processing. In terms of the graph,
all paths are of equal length — hence, there is no dominatitalrpath.

Interaction cost makes it easy to determine if a machinelanbad. Consider the icost
between two resources,g.,data-cache accesse#l) and the instruction windowa{in). The ma-
chine is balanced with respect to these two resources if alydiothe individual cost of each of
the resources is zeredst(dll) = cost(win) = 0); and, thus, all of the cycles for which the re-
sources are responsible are contained in the (non-nepatieeaction cost between the resources
(icost(dll,win) > 0). As an example, consider the effect on costs and interactists when

increasing the size of the window from 64 to 256, presenteddotex below.
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64 128 256
dil | 28.5 9.8 4.3
win | 39.4 21.3 13.6
dil+win | -25.9 -8.14 -2.7
Exe Time| 100.0 80.8 75.0
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Notice how increasing the window sizeducesthe cost of the individual resources but
increasesthe size of the interaction. (In this case, increasing tlosticauses it to become less
negative.) From this observation, we know the critical patless dominant when the window size
is larger —i.e., the parallel paths are closer in length to the critical pegtlucing the magnitude of
the serial interaction. In other words, the machine is matarted when the window is larger.

To generalize, for any set of resources, a larger icost (eggtive or more positive)
implies a more balanced machine design. A machine can bdashiel completely balanced when
all of the execution time exists as a parallel interactioroagnall of the processor resources. For
example, if the machine has three resourcésH, andC'), the machine is balanced if and only if
all of the individual costs and lower-term interactions 2eeo (ost(A) = cost(B) = cost(C) =
icost(A, B) = icost(B,C) = icost(A,C) = 0) while the highest-term interaction is equal to
the execution timeitost(A, B,C) = exe.time). Large individual costs and significant serial

interactions indicate where the imbalances exist.

The issue-wakeup loop

Suppose that a long pipeline demanded a two-cycle issuewpalatency, instead of the
typical one. This will, of course, reduce performance, sidtU operations will not be able to
issue back-to-back. Can we use serial interactions torméierhow to mitigate the performance

loss?
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From the breakdown of Table 7.6, we see significant seriataations between ALU op-
erations and several event classes: window stalls, braimspredicts, and level-one cache accesses.
The most significant interaction is, again, with window Istait is as large as-24% for gap. Be-
cause of this serial interaction, increasing the window &zanore beneficial when the issue-wakeup
latency is higher. For instance, we found that the speedugsfowhen the window size is increased
from 64 to 128 is 12% if the issue-wakeup latency is one and it &8¢ latency is two, a difference
of 50%.

The negative interaction costs also reveal for which berckait is not going to be
possible to mitigate the effect of longer pipeline loops Ipyimizing other parts of the machine.

This is the situation irgcg which exhibits very little serial interaction.

The branch misprediction loop

Finally, we consider the branch misprediction loop. Can veelify the microarchitecture
to reduce branch misprediction costs? How about increabiagvindow size? Will that work to
reduce branch misprediction loop cost in the same way itatidhfe other two loops?

The interaction costs in Table 7.7 reveal that the answebisInstead of a serial in-
teraction between branch mispredictions and window stilsre is aparallel interaction. This
parallel interaction tells us there are a significant nundferycles that can be eliminated only by
optimizing both classes of events simultaneousl., by optimizing both branch mispredictions
and window size. In other words, reducing window stalls al@not likely to significantly reduce
branch misprediction costs.

For a couple of benchmarkscf andparser, we do see significant serial interactions with

data cache misses (dmiss), however. In particulannfcl the serial interaction of
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bzip | crafty| eon | gap | gcc | gzip
shortalu | 19.7 | 25.6 | 13.2 | 39.7 | 18.9 | 40.0

win | 229 | 211 | 185 | 514 | 93 | 323

bw| 2.9 5.7 8.0 15 6.2 3.4

bmisp| 345 | 25.1 | 154 | 80 | 39.9 | 20.3

dmiss| 28.3 | 145 | 4.1 | 165 | 12.7 | 17.9

dil| 12.2 | 121 | 100 | 46 | 16.1 | 154

imiss| 0.4 5.4 9.4 2.8 8.9 0.4

longalu| 0.2 0.7 125 | 44 0.5 0.6
shortalu+win | -4.7 | -11.9| -3.8 | -32.0| -3.3 | -19.7
shortalu+bw| 8.0 7.4 3.7 6.4 4.0 4.9
shortalu+bmisp | -9.6 | -5.8 | -1.6 1.1 -8.7 | -4.6
shortalu+dmisg -0.4 | -0.2 0.1 1.9 0.1 -0.8
shortalu+dll | -59 | -56 | -22 | -1.2 | -54 | -8.2
shortalu+imiss| 0.0 0.1 0.2 0.1 0.5 0.0
shortalu+longalu] -0.1 | -0.6 0.4 -20 | -0.3 | -04
Other| -8.4 6.4 | 121 | -3.2 | 0.6 | -15
Total | 100.0| 100.0| 100.0| 100.0| 100.0| 100.0

mcf | parser| perl | twolf | vortex | vpr
shortalu | 3.1 120 | 17.7 | 175 | 13.2 | 148

win | 3.5 118 | 46 | 274 | 395 | 26.7

bw| 0.3 3.3 8.1 2.1 5.9 3.9

bmisp| 249 | 23.1 | 388 | 205 | 25 22.3

dmiss| 83.6 | 49.2 | 4.7 | 43.7 | 24.0 | 46.7

dilr| 45 11.8 | 182 | 8.6 171 | 8.7

imiss | 0.0 0.3 9.1 0.8 114 | 04

longalu| 0.0 0.0 0.7 3.8 1.1 2.8
shortalu+win | 0.0 43 | -34 | -14 | -122 | -3.2
shortalu+bw| 0.4 3.9 6.0 2.7 4.4 1.6
shortalu+bmisp | -20 | -1.6 | 47 | -48 | -04 | -5.6
shortalu+dmisg 0.2 0.1 0.0 0.9 -0.3 0.2
shortalu+dil | -0.3 | -43 | 40 | -0.7 | -104 | -1.3
shortalu+imiss| 0.0 0.0 0.4 0.0 0.2 0.0
shortalu+longalyy -0.0 | -0.0 | -0.1 | -0.9 0.5 0.0
Other| -18.2 | -5.3 39 | -20.2| 35 | -18.0
Total | 100.0| 100.0 | 100.0| 100.0| 100.0 | 100.0

Table 7.6:Breakdowns for optimizing a long pipeline: Two-cycle issuevakeup loop.
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bzip | crafty | eon | gap | gcc | gzip
bmisp | 34.0 | 26.6 | 15.6 | 11.7 | 39.8 | 23.5
dil1| 106 | 116 | 94 6.7 | 155 | 182
win | 22.0 | 154 | 16.3 | 404 | 7.8 | 28.8
bw | 6.0 96 | 10.7 | 34 8.3 5.8
dmiss| 32.2 | 174 | 46 | 25.0 | 142 | 225
shortalu| 85 | 11.8 | 45 | 175 | 9.3 | 23.1
longalu| 0.3 08 | 142 | 55 0.5 0.7
imiss | 0.5 6.5 | 11.8| 39 | 10.7 | 05
bmisp+dll| -66 | -35 | -3.7 | -1.7 | -83 | -1.9
bmisp+win | 10.2 | 10.8 | 7.0 78 | 11.8 | 83
bmisp+bw| -1.6 | -25 | -23 | -1.1 | -24 | -15
bmisp+dmiss| -2.4 0.5 -0.2 0.2 -0.7 | -0.9
bmisp+shortalu| -5.6 | -3.7 | -0.7 0.6 -5.0 | -3.3
bmisp+longalu| -0.0 0.2 -0.5 0.3 0.0 0.1
bmisp+imiss| -0.0 | -0.2 | -1.6 | -04 | -0.5 0.0
Other| -81 | -1.3 | 149 | -19.8| -1.0 | -23.9
Total | 100.0| 100.0| 100.0| 100.0| 100.0| 100.0

mcf | parser| perl | twolf | vortex | vpr
bmisp | 242 | 243 | 40.3 | 198 | 25 214

dil| 45 101 | 175 | 9.8 119 | 95

win | 3.6 9.7 22 | 300 | 344 | 27.0

bw| 0.4 5.2 116 | 3.6 8.5 5.2

dmiss| 85.2 | 53.2 | 52 | 495 | 26.0 | 51.1
shortalu| 1.4 5.0 8.2 8.2 5.4 7.4
longalu| 0.0 0.0 0.7 4.1 1.2 3.3

imiss | 0.0 0.3 10.8 | 0.8 13.0 | 05
bmisp+dll| -1.2 | -3.2 | -6.7 | -3.7 | -0.3 | -2.3
bmisp+win | 54.4 | 39.3 | 123 | 319 | 2.1 31.6
bmisp+bw| -0.2 | -21 | -55 | -1.1 | -0.1 | -2.3
bmisp+dmiss| -14.6 | -6.0 | -0.7 | -0.6 | -0.1 -2.1
bmisp+shortaluf -09 | -1.1 | -26 | -2.3 | -0.2 -3.1
bmisp+longalu| 0.0 0.0 0.7 1.1 0.0 1.4
bmisp+imiss| 0.0 0.0 -1.2 0.0 -0.3 0.0
Other| -56.8 | -34.7 | 7.2 | -51.1| -4.0 | -48.6
Total | 100.0| 100.0 | 100.0| 100.0| 100.0 | 100.0

Table 7.7:Breakdowns for optimizing a long pipeline: 15-cycle branchmispredict loop.
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-16.2% tells us that as much as 60% of the cost of branch ndigpiens (16.226.5*100%) could
be eliminated through optimization of data cache missetuitively, this effect is likely due to
cache-missing loads providing data that is used to determioranch direction. Again, interaction
costs help: we can quantify the importance of this effecptaticular workloads, even determining

the static instructions where it occurs, helping to guidsfgtch optimizations.

Comparing with sensitivity study

A sensitivity study is an evaluation of one or more procegsmameters made by varying
the parameters over a range of values, usually through niemylagions. Interaction costs can
be viewed as a way toterpret the data obtained from a sensitivity study. Regardless of ho
they are computed, through multiple simulations or grapiiyesis, interaction costs explaimhy
performance phenomena occur in a veoyciseway.

Let's explore this relationship by validating that the clmscons obtained from interaction-
cost analysis and conventional sensitivity studies arsdhge. We perform the comparison by using
a corollary of the serial interaction between the instarcivindow and load latency (the main result
of Section 7.3.1). As the load latency becomes larger, &sing the size of the instruction window
has increasing benefit. Since load latencies and windovs statur in series with each other (be-
causeF P edges are in series with D edges, as can be seen in Figure 7.7), increasing the latency
of one will make both more dominant on the critical path.

Using this corollary, we performed the comparison by rugriaveral simulations to ob-
serve the speedup with increasing window size at differache latencies (see Figure 7.8). Indeed,
the interaction costs correctly predicted what the sefitsitstudy reveals: for instance, 50% greater

speedup ((9-6)/6 x 100%) is obtained from increasing thedawnsize from 64 to 128 when the
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data-cache latency is four instead of one.

From this example, we see the relationship between the tpestpf analyses. A full
sensitivity study provides more information,g., whether the curves in the plot are concave or
convex; but interaction costs provide easmerpretationand concisecommunicatiorof results.
The interpretation is easy since the type and magnitudeeoicthsts have well defined meanings.
The ease in communication comes from the ability to summasidarge quantity of data very
succinctly. For example, the entire chart of Figure 7.8 carsttimmarized by simply stating that
the two resources interact serially. Furthermore, duedgddhmulaic nature of interaction cost, the

interpretation is availablautomatically without the effort of a human analyst.

Summary. In this section, we showed that interaction costs can hetpaaichitects during the
design process. When the dependence graph is constructd lsymulator, architects can use
interaction-cost-based breakdowns as a standard outmsobf simulation run. The overhead of
building the graph during simulation in our research prgietis approximately a two-fold slow-
down, which we did not find overly burdensome, consideringghbstantial benefit of the added
insight. Furthermore, using the same principles of sargptmat facilitate the profiling solution of
Section 6.3, we found that the overhead could be reducedpmeamately 10% without signifi-

cantly impacting accuracy (with only 1-2% error due to sang)!

7.3.2 Using Criticality in Design (Work by Others)

Before leaving the section on using criticality in hardweesign, we discuss two works
by others that fall into this category. The first used the @dtve of our model to gain insight very

early in the design process. Specifically, they used clittyct understand the tradeoffs between
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dataflow and superscalar processors. The second usedlityitireakdowns to gain insight into the

performance of their proposed new microarchitecturaluieat

Comparing dataflow and superscalar processors. Budiu, et al. [17] use the critical path to

understand the limitations of the traditional dataflow nmamempared to speculative out-of-order
processors. They find the dependences eliminated by sapmrgrocessors through speculation
(control and data) are on the critical path of dataflow exeoudf many programs, accounting for

much of the performance advantage of superscalar prosessor

Simple Criticality Breakdowns. Petric and Roth [71] and Petriet al.[72] used our graph model
to compute critical-path breakdowns of the execution taédbatnderstand why the optimizations
they proposed worked better on some benchmarks than ofhleey. discovered, for instance, that
their RENO optimizer did not effectively tackle memory tettecks and, when it was successful,
their optimizer caused the machine to become more fetchdum, the execution time was pri-
marily determined by the instruction fetch engine). Thusjpting RENO with increased fetch

bandwidth could yield higher speedups.

Criticality Analysis of Clustered Processors. Salverda and Zilles [85] use a critical-path analysis
similar to our criticality modes discussed in Section 4.hisTanalysis helped them discover several
important characteristics of the performance of machinigls @ustered execution units. For one,
the criticality analysis showed them when the machine ethiftom being fetch-critical to execute-
critical due to the extra latency imposed by the clustersaldd showed what component of the
steering policy was most responsible for the slowdown. {Reir policy the largest contributer was

load-balance steering, which causes an instruction tortaséhe least-filled cluster when its most
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desired cluster is full.)

They also discovered that contention for functional uniésaleen predicted-critical in-
structions was a significant cause of the slowdown. ThisodiEy led them to introduce a refined
predictor based on thikelihood of criticality. With this metric, a static instruction is not only
predicted critical or not but, instead, the criticality i®ighted by the percentage of its previous
dynamic instances that were critical. If 40% of a staticringion’s dynamic instances are critical,
it would get priority over one that was critical only 20% okttime. With these improvements,
they were able to obtain performance on a clustered machéaiest only a few percent worse than

a monolithic one.

7.4 Software Design Help

Criticality can be useful to performance-conscious safémangineers for a variety of
purposes. The simplest is better understanding of whaibpgrof code take the longest to execute,
focusing optimization efforts. Since, in machines thatleparallelism, performance counters
are not sufficient for recognizing cost in this manner, cost iateraction costs could be a valuable
addition to a profiling tool, such as Intel’s Vtune [24].

While we believe there are great oppurtunities in improwoffware through criticality
analysis, in particular using the shotgun profiler, our aesle has not delved much into those pos-
sibilities. In the next chapter, however, we do discuss hiticality analysis could be useful when
writing multithreaded applications, which will be a very portant problem with the increasing

popularity of chip multiprocessors.
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7.5 Summary

In this section we showed how alterations to our dependeragghgan illustrate the per-
formance effect of a software change without actually penfog the change. This capacity enables
software engineers to try out more configurations than atiserwould be feasible. Criticality anal-
ysis can also help in deciding where to place prefetch intms, predicate branches, cut a program
into threads, or — in general — where to focus human optirdnagffort. We need criticality for
these tasks since increasing parallelism is making sim@eteounters less and less representative

of what are the most important factors of execution time.
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Figure 7.2:Across benchmarks, there is enormous potential for explogtion of slack. (a)-(c)
Measurements of local, apportioned, and global slack f&@@&E00 versions ajcc gzip, andperl.
gccandgziprepresent the two extremes in the amount of slack availaltkeeifull set of benchmarks
we ran;perl is more typical. The measurements indicate that even iretl& klackful benchmark,
gzip, there is enormous potential for hiding delays introducgednuniform machines(d) Mea-
surements of apportioned slack when all available slackj®adioned to load instructions. These
results show it may be possible to tolerate technologigaliyiced bottlenecks on load instructions
if, for instance, wire delays cause some instructions tauemtbnger L1 data cache access times
than others.
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Figure 7.3:Limit studies. Measurements for two apportioning strategies are shéstency-plus-
one-cycleandfive-cycleapportioning. These measurements provide an indicatidéo abat types
of non-uniform machine designs can be tolerated by a slaskd policy. For instance, latency-
plus-one-cycle apportioning is relevant for the fast/sfppeline microarchitecture we study in this
thesis.
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Figure 7.4:The non-uniform microarchitecture used in our experiments The processor consists
of one fast and one (or two) slow pipelines.
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Figure 7.5:Comparing control policies on fast/slow pipeline microartitecture. All measure-
ments are normalized to the baseline of two fast 3-wide pipel@f+3f). Also, results are shown

for a single fast 3-wide pipeline3{) for reference. The rest of the measurements are different

control policies for &f+3s machine.
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(b) Speedup of focused value prediction.

Figure 7.6: Focusing value-prediction by removing misspeculations omon-critical instruc-
tions. (a) A critical-path predictor can significantly reduce misggations. (b) For most bench-

marks, the token-passing critical-path predictor de$ivar least 3-times more improvement than

either of the heuristics-based predictors.
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Dynamic Inst. Trace

Figure 7.7:lllustration of interaction between load latency and the irstruction window The
dashed arrow shows how some load acé&g3gdges anCD window edges are in series and, thus,
have the potential to interact serially (see Section 7.3bje that some othdétP andCD edges are
in parallel, thus there is also potential for parallel iatgron between loads and the finite window

constraint.
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Figure 7.8: Speedup from increasing window size for different level-oa cache latenciesAs
predicted from the negative interaction cost, increasirgvtindow size has a larger benefit when
level-one cache latencies are larger.
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Chapter 8

Future Work: Criticality in Chip

Multiprocessors

Our work has focused primarily on analyzing and exploiting ¢triticality characteristics
of complex superscalar processors. There is a recent tremtcroarchitecture design, however,
towards multiple simpler cores that coordinate to proviugeased performance for applications.
In this chapter, | will outline some ways in which criticglitan be used to improve the usabilty and
effectiveness of these chip multiprocessors.

There has been some research already that has adapted éutovbe newly popular
domain. In particular, Ligt al. [61] extended our critical-path model to be applicable toajel
multithreaded applications. They showed how analyzingctiteal path can provide insights into
how a program is performing. For example, they can identifyclv threads are very costly in terms
of execution time and which have slack and can be delayed.

The basic mechanism used in the work by &t,al. was to first create a dependence
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graph for each thread independently and then link the tlsreatth dependence edges correspond-
ing to synchronizing communication. The extra dependenmigee® connect executé’} nodes of
one application to another. Their methodology is most udafanalyzing existing multithreaded

applications to help identify where software improvemerutsid be made.

8.1 Software Parallelization

In the rest of this section, we outline a technique for usiriticelity to help with a dif-
ferent task, parallelizing a single-threaded applicatmrun on multiprocessor hardware. This task
will be at the forefront of the agenda for those software eagis that want their programs to take
full advantage of chip multiprocessors. The complete tdskutomatically parallelizing a single-
threaded application is a very challenging unsolved protileat is beyond the scope of our work.
Nonetheless, we will show how the graph model and critigadibalysis has promise for aiding
software designers in the parallelization effort. Our higpiiat the reasoning used in adapting our
graph models and applying the criticality analysis will kseful in helping future researchers and
designers in developing new techniques for chip multipssoes.

Specifically, we will show new insights into simplified vayss of the problem that may
still be realistic enough to be useful in practice. The pryrgimplification we impose is that no
changes to the binary are allowed. We also assume a muétididad [100] execution model, where
sequential tasks are extracted from the program streamsaighad to processors that communicate
in a round-robin fashion (illustrated in Figure 8.1). Fanplicity, we’ll assume the communication
is very efficient, {ie., through direct register-register transfers and a sharelegabut the models

we describe could be altered to model longer latenciese&raiccinctly, the problem we will look
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Communication Channels

P4

Tasks assigned to processors

......................

Cutpoints First (Oldest)
instruction

Program Stream

Figure 8.1:Assumed Execution Model.For the software parallelization case study, we assume a
Multiscalar-like execution model like the one pictured ao

at isGiven an existing binary, what are the best “cut-points” fiividing it into n threads?

There are many factors that must be considered to answelsgeéstion. For example,
the nature otlata dependences the program will determine the inter-thread communaatCon-
trol dependenceare obviously important since they determine whether a segof code is going
to be executed at all. Achieving propead balancingamong processors represents a host of other
challenges, such as determining the amount of work requarezkecute each thread — which is
dependent upon the execution latency of instructions, diggg@ndences, cache behavior and branch
prediction among a myriad of other microarchitectural destaffecting performance.

One of the most useful aspects of our dependence graph clmtraf program perfor-
mance is that we do not need to model these factors sepairataiger to devise an analysis that is
faithful to all of them. Instead, the dependence graph ples/imost of this detailniformlyonce an

accurate model is developed. Next we’ll discuss how it candsel for our present purpose.
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8.1.1 Modeling multithreaded program execution

The first version of the problem we will attempt to address fed for software engi-
neers. Assume that the programmer picks a section of codén¢hevould like to split off as a
separate thread, say a particular subroutine call. Effegticreating this thread involves “cutting”
the program before and after the subroutine call. Our gahbwito tell the programmer what per-
formance improvement he should expect from the specifiedagtitout requiring any human effort
in implementing synchronization and communication, nor taime-consuming recompilation. In
fact, we would like to know the speedup very quickly so tha finogrammer can try out many
alternatives until he finds one that works well.

We will use our graph model to provide such a tool. Since theletspresented thus
far have been for the execution of a program on a single scaglars out-of-order core, we need to
modify this graph so that it models the same program exegutmmultiple cores. Let’s start with
the simplest possible example. Assume the dynamic progracugon is 1,000 instructions long
and we want to break into two 500 instruction threads for etien on two processors. How could
we use the graph to find the speedup from this optimization?

The most important property to model is that (in a multiplegassor system) the two
threads can be started at the same time. In other wordsyatistns: and: + 500 can be fetched
at the same time, each on its own processor. In terms of marbactural constraints, there is no
in-order fetch dependence betweeand: + 500. The single-core model, however, includes such
a dependence (transitively) with tlef’ edges from instruction to ¢ + 1 to ¢ + 2 all the way to
1 4+ 500. To model the multithreaded execution, we need to relaxdbistraint.

The simplest way to relax the in-order fetch constraint is ifistance is to remove ther’
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Remove edges

Figure 8.2:Cutpoint illustration. If the eight instruction program represented by the gragivab
were to be cut into two threads, one thread consisting ofuosons 1,2,3,4, and 5 and a second
thread consisting of instructions 6, 7, and 8, the exectttrmr improvement could be measured by
removing the edges marked with a¥™and observing the resulting decrease in critical-patigtien

edge from instructior+ 499 to i + 500. This way, the fetch node af+ 500 is “fired” immediately,
at the same time as the fetch node for instructiofin illustration of this simple graph manipulation
is shown in Figure 8.2.

Notice how the model naturally accounts for communicatietween the threads: the
data dependenceZ(y) edges remain intact, so that the later thread will haveat i§the earlier
thread has yet to produce data that it needs. In a real systame extra latency would result due
to this communication. We can enhance the model to accourth&b by increasing the weights

(a.k.a. latencies) on the appropriateF’ edges. If other chip-multiprocessor specific constrairds a
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Test the benefit of cutting the program at static PC x

1. Construct graph of the dynamic program execution on a single core.
2. Remove the F'F' edges immediately preceeding each instance of x.
3. Measure the critical path length. This is an estimate of the
execution time of the parallelized program.

deemed important, we could continue to tune the model to bletaled as needed. One of the nice
features of the model is that approximate results can beatelll very easily and rapidly and then
made more precise over time as effort is expended tuningathadies and constraints.

Using the model, it is clear how to test a programmer-specifigpoint. For instance,
splitting off a procedure call as another thread involve&inacuts before and after each dynamic
instance of that call. Thus, the first step is constructingaply of the program executing on a
single core, which could be obtained either through shofgofiling or simulation. Then the graph
modification described above, removing thé" edge, would need to be performed for each cut.
The resulting critical-path length would be an estimatiérthe runtime of the new multithreaded
program. Since finding the critical-path length can be datleer quickly, the programmer would
be able to test out many different parallelized variatiohki® program. The algorithm is shown at

a high-level in Figure 8.1.1.

8.1.2 Automatic Parallelization

Above we presented a tool to help software engineers decither a parallelization
that they propose via intuition is indeed good for perforoear not. A more challenging problem
is to come up with the thread cutpoints automatically, withbuman intuition. We cannot solve
that more general problem, but we will discuss in this sechiow interaction costs may be useful

in such an effort.
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Let's say we have a relatively short segment of code that Ietdivided into/V threads
for execution onV processors. The goal here is to find tNe— 1 cutpoints in this segment that
would yield the highest performance possible. Stated imseof ourcost metric, the goal is to
maximizecost({p1,p2, .., PN—1}), Wherep; to py_; are theF'F' edges to be cut in the graph.

Unfortunately, finding a set of optimal cutpoints is an NPrpdete problem. We can use
interaction cost, however, to help us converge on a goodytibptimal, solution quickly. To see
how, consider the interaction cost of two cutpoiptsaandp,. If icost({p1, p2}) << 0, indicating a
serial interaction between the two cutpoints, we know tbates of the benefit obtained from is
also obtained bys. In other words, the two cutpoints are doing redundant welijinating many
of the same execution cycles. This behavior is probablydtresp, andp, being placed too close
to each other in the program stream. Another way to look attihé thread betweem andp, is
too small relative to the other threads. A good heuristidadtte designed to take advantage of this
effect, looking for serial interactions between adjaceripaints and moving them further apart if
the magnitude is too high.

Figure 8.3(a) shows some results from preliminary expanismmeasuring the distribution
of costs for every possible dynamic cutpoint. In other wotle benefit, in terms of execution time
reduction, was measured for cutting the program into tweatis between every pair of consecutive
instructions in the program. If we did not have the graph, yrtilwusand simulations would need
to be run for each benchmark to obtain the same results.

The results indicate that relatively few cutpoints yieléstantial execution time savings.
In fact, for most benchmarks, greater than 70% of the passilipoints yield benefits of less than

10 cycles. This suggests that a cost-sensitive policy for simgocutpoints may be important for
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Figure 8.3:Distribution of execution-time reduction from cutpoints. The cumulative distribution
shown in the charts is the mirror image of how they are oftapldyed. In other words, from (a),
for all benchmarks, greater than 75% of the dynamic cutpdimprove performance by less than 20
cycles. (a) is the cost distribution observed from cutting a prograro imto threads between each
pair of consecutivelynamicinstructions.(b) Speedup from parallelizing a program for a machine
with two processors. Thixed-intervalpolicy creates a cutpoint eveiy)0 dynamic instructions.
The simple cost-basegdolicy picks as a cutpoint the dynamic instruction with thghlest single-
ton cost (ignoring interactions) in eveityO instruction interval. The purpose of this experiment
is to show that cost-sensitive policies for parallelizimgplications can be beneficial. Due to the
simplicity of the policy, however, it does not provide muakight into the best achievable speedup.
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achieving the best performance.

As a crude test of this hypothesis, Figure 8.3(b) shows tbedyp obtained from paral-
lelizing the benchmarks using two different policies, orfeve a cut in the program was made every
100 dynamic instructions and another where a cut was made aighedt singleton cost within each
100 dynamic-instruction interval. Thus, both policies cretite same number of threads for each

benchmark. The cost-sensitive policy achieved-7 times the speedup of the fixed-interval policy.

8.2 Summary

Although the bulk of our work has focused on complex supdasqaocessors, our criti-
cality techniques are not limited to only this style of presar implementation. In this chapter, we
illustrated how our dependence graph and criticality asialgould be adapted for one architectural
style that is gaining in popularity: chip multiprocessof$ere is a lot of work to do beyond what
is presented here to fully adapt our technology, but we hbpethis chapter gave a reasonable

introduction as to how that work might proceed.
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Chapter 9

Conclusions and Future Work

Our work set out to deal with the inadequacy of event countguidging performance,
both in optimizations and pure analysis. We quickly realitet the key ingredient to a performance
analysis methodology for parallel microarchitecturesisiaderstanding of the critical path through
a program execution. Once you have the fundamental unddistpof what the critical path is and
how to measure it, a remarkably large class of performanalysia questions can be answered.

Of course, the critical path has long been used by compiléemsrand others as an aid
in making optimization decisions. In these cases, thecatifpath was found on a graph consisting
of instructions interconnected by data dependences. Hn&lgm of thinking of nodes as instruc-
tions and edges as data dependences inhibited architect&ffectively exploiting the critical path
through microprocessor program executions. Intuitivéélyas clear that there existed limiters to
performance other than data dependences, but it wasnitlotsato deduce a global critical path
that included them. Our insight of breaking a program’s ekea into smaller bits than just in-

structions enabled a more complete modeling of performance
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In this thesis, we attempted to lay the groundwork for a ss&fcé performance analysis.
Nonetheless, there are still many topics that merit furthgrloration. Below we discuss a few

potential research projects.

Modeling and Queuing Theory. Certain types of hardware resources for which an instroctio
could use any one of many, such as functional units, causeslmgddifficulties using our tech-
nigues. We discussed some possible work-arounds for tbldeam in Chapter 3, but a complete
solution probably requires incorporating new ideas fromthar domain, perhaps queuing theory.
Our preliminary work in this area revealed that it may be ay\difficult task, since a standard

memoryless queue did not provide any increased accuracy.

Automatic Model Deduction. In this thesis, all of the graph models have been construayed
hand, using our human intuition. Since this procedure reguiot only knowledge of the processor
but also understanding of how to use a graph to model varieaisifes, a better solution would be
to deduce the model automatically from a specification. $hicification should be of a standard
format that designers are naturally accustomed to usiniggltineir normal design effort. In fact,
some work has attempted to deduce a model directly from tHedR&cification [16]. While this
may be useful, the models constructed from RTL may be tooedfarsmany practical purposes.
A higher-level specification language that could be used évecarly stages of the research and

design process would ease the use of our criticality arslysi

Criticality in Other Domains.  Our basic graphical analysis and metrics, including theasttar-
ization of interactions, is applicable to any parallel syst not just complex microarchitectures. We

discussed some preliminary work on applying these teclasitpichip multiprocessors in Chapter 7.
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Previous work, discussed in Chapter 2, used the criticél jpgprofile performance at a higher-level
of abstraction, useful to programmers [61]. Many other dasanight also benefit from this form
of analysis as well. For example, network protocols mighbpgmized by measuring interaction

costs of communication during typical patterns of use.

Application-Specific Analyzers. The work by Sasankat al.[87] used a token-passing hardware
structure similar but simpler than our token-passingaality analyzer for the very specific task of
resizing the instruction window. The advantage of this mpgibn-specific approach is not just a
simpler implementation, however. Sasan&hal’s work actually computes a reasonable approx-
imation of thecost(as opposed to just criticality) of the instruction windofs we discussed in
Chapter 6, building a general hardwamestestimator seems intractable, but it may be possible to
do so on a limited basis for specific applications. For examiplwould be very useful to have

a hardware mechanism that could estimate dbst and interactions of cache misses (or branch

mispredicts.)

Predictors for Fetch and Commit Criticality.  The token-passing analyzer was meant primarily
to detect the criticality of execute (df) nodes, as opposed to fetch)( commit (C), or nodes
representing other micro-operations. There are many lpesgptimizations that target these other
stages of instruction processor, however, and criticalityld help guide them. For example, the
limited space available in a trace cache could be more efédgtutilized by storing critical fetch
blocks. In fact, a frontend mechanism more effective thaora frace cache may be possible if we
can identify those fetch blocks that must be fetched quigklgus those that can be delayed.

In principle, the token-passing analyzer that worksfAonodes also works for any of the
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other nodes — all that is necessary is to plant a token intdeveanode that should be tested for
criticality. The analyzer is just as effective at detectimigether anF' or C node is critical as it is
for £ nodes. The problem arises when attempting to predict alitiycof future nodes based on
past detections. We have observed thand(C criticality do not experience the same type of static
instruction “locality” as do the® nodes. In other words, the typical approach of training dipter
that is indexed by PC does not work well.

A solution will likely have to rely on the characteristics pfogram executions peculiar
to the specific micro-operations that are targeted. For pl@mve have noticed that fetch nodes
are most often critical after disruptions in the prograneasn, such as those caused by branch
mispredictions and, to a lesser extent, fetch stalls dueftdl anstruction window. Furthermore,
we have found that the number of consecutive critical fetwieis after a branch misprediction does
have static instruction locality. In other words, when aaiyic instance of a particular static branch
instruction is mispredicted, the length of the resultingical chain of F' nodes is fairly similar in
length to that resulting from other mispredicted dynamitances of the same static instruction.

Recording this length could form the basis of an effectitefaode criticality predictor.

Using Interaction Costs. While we provided some heuristics and illustrated how terpitet and

use interaction costs in this thesis, we still left much taekplored. In particular, we have found
it challenging in practice to pick the correct interactidnsmeasure. It's also difficult to reason
intuitively about interactions between more than two esefithis space provides ample room for

new graph and, perhaps, data mining algorithms to extratuLisformation automatically.
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Criticality in Configurable Hardware. In this thesis, we have assumed the traditional restric-
tions as to what is feasible to be done in hardware and thesict®mns have formed the basis for
our hardware/software boundaries. In particular, muck gas taken to reduce the hardware re-
guirements for the shotgun profiler. These simplificatioasriiced some amount of accuracy in
the outcome of the criticality analysis in exchange for aitgle implementation.

Configurable hardware, such as the FPGAs common in ASIC alewvaint, present a
different environment for deciding the hardware/softwhoeindary. The fluidity of the hardware
allows more or fewer transistors to be dedicated to analyspgending upon what is desired at
different phases of ASIC development. For instance, whigrhost time-consuming portions of
the application are being optimized, much of the chip retdtescould be devoted to providing
very accurate analysis. The most natural way to use the gatraistors would be to construct very
accurate graphs by monitoring all (or most) of the dynamierafions as they occur. If it is not
possible to record statistics for each dynamic instrudticalong stream, the extra transistors could
still be used to increase the accuracy of the shotgun prdifilféncreasing the number of samples
recorded.

A second way those extra transistors could be used is to dentipeidesired metrics in the
hardware itself. For example, the effectively linear tingoathm used to compute the cost of each
individual edge in a graph (see Section 5.3) could be impteetedirectly in the hardware. The
advantage of this approach is that less information wouddine be communicated to some external
source for analysis, assuming that the result of the amsaiggnore compact than the information
required to construct the graph. The hardware/softwadetffs in this environment could be an

interesting research topic.
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Using Criticality in FPGA emulators.  The advantages of the flexibility of configurable hardware
in producing accurate analysis can be extended even to nfigaable processors by employing a

system such as in the RAMP project [6]. This approach usefigtmable hardwareg(g.,FPGAS)

to model the functional and performance characteristiasoofconfigurable processors. Although

the timing characteristics of FPGAs differs from custonduwaare, emulation or scaling of latencies

can be used to mimic the behavior of a full custom chip.

Our dependence graph and criticality analysis work very wigh such a system. For the
simplest example, the critical path through our dependegnagh is equal to the execution time of
the program. Thus, the dependence graph, along with thalaging rule, tells us exactly what the
hardware needs to keep track of in order to report executiom accurately.

Perhaps more interestingly, however, the dependence grapites a framework for how
to report performance information back to the user of theéesys In a typical software simulator,
many (often redundant) performance counters are usedri@ganse of not only how well hardware
performed but also why it performed the way it did. The deperng graph makes it easier to
determine the minimal amount of information that must beasted from an emulator in order to
provide the user of the system a complete picture of perfocmaThat dependence graph can be
constructed using a technique such as the shotgun proft@sevaccuracy is tunable by increasing

the number of samples that are captured.

Summary. In this dissertation, we have a provided a framework andsté@lmodel, measure
and interpret the criticality cpst, slack, and interaction) characteristics of program executions.
We have also developed hardware support for detecting asdigting critical-path instructions

and their slack for use in online optimizations. Finally, tave proposed a profiler to replace or



185

enhance traditional hardware performance counters — ieigadphisticated criticality analysis of
real programs. There are many ways that the framework amiiMaae structures could be improved
further, but perhaps the most exciting prospect is to useetiwting tools for optimizations and
analysis applications beyond the case studies exploredriwork. As of the writing of this thesis,

some researchers have already begun to do so, but therelismaue to be explored.
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