
The Design and Implementation of Declarative
Networks

Boon Thau Loo

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-177

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-177.html

December 15, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

The Design and Implementation of Declarative Networks

by

Boon Thau Loo

B.S. (University of California, Berkeley) 1999
M.S. (Stanford University) 2000

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Joseph M. Hellerstein, Chair
Professor Ion Stoica

Professor John Chuang

Fall 2006

The dissertation of Boon Thau Loo is approved:

Professor Joseph M. Hellerstein, Chair Date

Professor Ion Stoica Date

Professor John Chuang Date

University of California, Berkeley

Fall 2006

The Design and Implementation of Declarative Networks

Copyright c© 2006

by

Boon Thau Loo

Abstract

The Design and Implementation of Declarative Networks

by

Boon Thau Loo

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

In this dissertation, we present the design and implementation ofdeclarative networks.

Declarative networkingproposes the use of a declarative query language for specifying and

implementing network protocols, and employs a dataflow framework at runtime for com-

munication and maintenance of network state. The primary goal of declarative networking

is to greatly simplify the process of specifying, implementing, deploying and evolving a

network design. In addition, declarative networking serves as an important step towards

an extensible, evolvable network architecture that can supportflexible, secureandefficient

deployment of new network protocols.

Our main contributions are as follows. First, we formally define theNetwork Data-

log (NDlog) language based on extensions to the Datalog recursive query language, and

proposeNDlog as a Domain Specific Language for programming network protocols. We

demonstrate thatNDlog can be used to express a large variety of network protocols in a

handful of lines of program code, resulting in orders of magnitude reduction in code size.

For example, the Chord overlay network can be specified in 48NDlog rules. In addition,

the core of the language (Datalog) has polynomial complexity, and ourNDlog extensions

can be statically analyzed for termination using standard analysis techniques.

Second, to validate the design ofNDlog, we present our implementation of P2, which

1

is a full-fledged declarative networking system that compilesNDlog and executes it via

a dataflow engine inspired by the Click modular router. We experimentally evaluate the

P2 system on hundreds of distributed machines. The P2 system is publicly available for

download and has been used in research projects at a number of institutions.

Third, based on our experiences implementing declarative networks, we explore a wide

variety of database research issues that are important for the practical realization of declar-

ative networks. These include pipelined execution of distributed recursive queries, reason-

ing about query semantics based on the well-known distributed systems notion of “eventual

consistency”, incorporating the notion of soft-state into the logical framework ofNDlog,

and the use of query optimizations to improve the performance of network protocols.

Professor Joseph M. Hellerstein, Chair Date

2

Acknowledgements

I would like to thank my outstanding co-advisors Joe Hellerstein and Ion Stoica. Joe

and Ion have been the perfect combination of advisors, and I feel very lucky to have the

opportunity to work closely with both of them.

Joe Hellerstein has been a role model and an incredible advisor throughout my years at

Berkeley. I met Joe eight years ago through Honesty Young while I was an undergraduate

summer intern at IBM Almaden Research Center. After the summer, Joe generously took

me under his wings and gave me the opportunity to work on research projects at Berkeley.

Joe is truly a visionary of databases and their applications to networking. Since I came back

to Berkeley as a doctoral student, he has infected me and several others with his enthusiasm

on new research directions at the boundaries of databases and networking. Joe has been

amazingly generous with his time and attention. Apart from his advice on technical issues,

he has helped me in many other areas, including writing, giving presentations, working

with people, balancing family and work, strategies for job search, and the list goes on. I

can never thank him enough for the positive impact that he has on my life.

In the last five years, I have also been very fortunate to work with Ion Stoica. Ion

combines depth of his technical knowledge with big picture vision. He has taught me how

to be a better researcher, through his focus, discipline, strive for perfection, and combining

attention to details with understanding of the big picture. My dissertation and graduate

career would not have been the same without Ion. He introduced me to the exciting world

of networking research, connected me with members of the networking community and

helped position my work to be of value to them.

During the course of this dissertation, I am grateful to Raghu Ramakrishnan from the

University of Wisconsin-Madison who spent substantial time helping me with my research

even though I am not his official student. His deep knowledge of deductive databases was

i

instrumental in helping me focus on relevant literature, and more importantly, identify new

database research challenges that are important to the practical realization of declarative

networks. I leave graduate school with fond memories of the time we spent at UW-Madison

and UC Berkeley brainstorming on recursive query processing.

While working on the PIER project, Scott Shenker offered me many insights into the

relevance of database technologies to networked systems. Mike Franklin has given me

great advice on doing research, giving presentations, speaking up in class and strategies

for job search. Together with John Chuang, Mike attended my qualifying examination and

gave me valuable feedback on this work. I also like to thank John Chuang for participating

on my dissertation committee.

My research in graduate school centered around the PIER and P2 projects. In the

context of these two projects, I have had the privilege of collaborating extensively with

two outstanding graduate students from the database group: Ryan Huebsch on the PIER

project, and Tyson Condie on the P2 project. Both of them made significant contributions

to the codebases that made my research possible. In addition, I would also like to thank

the rest of the P2 team which includes Minos Garofalakis, David Gay, Tristan Koo, Petros

Maniatis, and Timothy Roscoe from Intel Research Berkeley (IRB), Atul Singh from Rice

University and Alex Rasmussen from UC Berkeley. The P2 system would not have been

realized without the collective efforts of everyone. I am proud to be a part of this wonderful

team.

The NMS and PDOS groups at MIT graciously hosted Joe and myself during the second

year of my Ph.D. Apart from writing one of my first papers with Jinyang Li et al., several

ideas presented in this dissertation trace their roots back to that period. I am also grateful to

the researchers at Microsoft Research Silicon Valley for hosting me during the final stages

of this dissertation. In addition to generating some of the new ideas in the future work

section, significant improvements were made to this dissertation during my stay there.

ii

My appreciation also goes to the other graduate students from the database group for

their feedback on my work, stimulating discussions and great companionship. They in-

clude Sirish Chandrasekaran, David Chu, Owen Cooper, Matt Denny, Amol Deshpande,

Yanlei Diao, Shawn Jeffery, Sailesh Krishnamurthy, David Liu, Sam Madden, Alexandra

Meliou, Fred Reiss, Shariq Rizvi and Mehul Shah. Several graduate students from the

networking and systems groups provided valuable feedback on my papers and talks, es-

pecially during the early stages of this work. They include Cheng Tien Ee, Byung-Gon

Chun, Ling Huang, Karthik Lakshminarayanan, Sylvia Ratnasamy, Lakshmi Subramanian,

Fang Yu and Shelley Zhuang. Nina Taft from IRB gave thoughtful and detailed feedback

for my first SIGCOMM submission on declarative routing. Outside of research, Rahul Ag-

grawal, Ling Huang, Matthew Kam, Lynn Nyane, Godfrey Tan, Weehong Tan, and several

members of the UC Berkeley Singapore Malaysia Students’ Association have made my ten

years in America so much easier.

The Monetary Authority of Singapore and Kent Ridge Digital Labs in Singapore spon-

sored my undergraduate and masters degrees. Their generosity allowed me to fulfill my

dream of studying computer science in the U.S. and to see the world. My life would have

been very different without the scholarships. Limsoon Wong and Juzar Motiwalla have

been influential in my decision to embark on a career in research.

My family in Singapore has been very supportive of me all these years. Even though

they live halfway around the world, my parents, sister and brother have been constant

sources of encouragement. They cheer for me in good times, and comfort me in bad times.

In particular, my mum has been my biggest source of support. Despite her own difficulties

with kidney dialysis three times a week, she has never failed to stay positive and strong. In

times of difficulty in America, I always draw inspiration from her positive outlook in life.

I am also grateful to the National Kidney Foundation of Singapore for their support of my

family in the past ten years.

iii

I am deeply indebted to my wife Shiyan for her love and understanding. In the past

twelve years since we met, almost half the time was spent in graduate school. While the

route to a Ph.D. has not been an easy one for me, it is even harder for my immediate loved

ones. Shiyan has made tremendous sacrifices so that I could focus on my work. The biggest

joy of our lives, Kwanchi was born while I am finishing this dissertation. Shiyan, I thank

you for everything and dedicate this dissertation to you. I look forward to continuing our

journey together with Kwanchi.

iv

Dedicated to my wife Shiyan

v

Contents

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Motivation. 1

1.2 Main Contributions. 2

1.3 Distributed Recursive Query Processing. 4

1.4 Overview of Declarative Networks. 6

1.5 The Case for Declarative Networking. 7

1.6 Organization. .10

2 The Network Datalog Language 12

2.1 Introduction to Datalog. .13

2.2 Network Datalog by Example. 14

2.3 Distributed Computation. 22

2.4 Link-Restricted Communication. 23

2.5 Soft-state Data and Rules. 25

2.6 Incremental Maintenance of Network State. 29

2.7 Summary of Network Datalog. 30

vi

2.8 Summary .32

3 Declarative Routing 33

3.1 Motivation. .33

3.2 Execution Model .35

3.3 Routing Protocols By Examples. 38

3.4 Security Issues. .45

3.5 Route Maintenance. .46

3.6 Summary .48

4 P2 System Overview 50

4.1 Architecture of P2. .50

4.2 P2 Dataflow Engine. .52

4.3 Dataflow Framework Implementation. 55

4.4 Network State Storage and Management. 59

4.5 Summary .60

5 ProcessingNDlog Programs 61

5.1 Centralized Plan Generation. 62

5.2 Distributed Plan Generation. 66

5.3 Relaxing Semi-naı̈ve Evaluation . 70

5.4 Processing in a Dynamic Network. 74

5.5 Processing Soft-state Rules. 80

5.6 Summary .87

6 Declarative Overlays 88

6.1 Execution Model .89

6.2 Narada Mesh. .91

vii

6.3 Chord Distributed Hash Table. 97

6.4 Summary .109

7 Evaluation 110

7.1 Declarative Routing Evaluation. .111

7.2 Declarative Overlays Evaluation. .116

7.3 Summary .123

8 Optimization of NDlog Programs 125

8.1 Traditional Datalog Optimizations. .126

8.2 Multi-Query Optimizations. .130

8.3 Hybrid Rewrites. .131

8.4 Evaluation of Optimizations. .133

8.5 Summary .140

9 Related Work 141

9.1 Deductive Databases. .141

9.2 Internet-Scale Query Processing. .143

9.3 Extensible Networks. .144

9.4 Network Specification Languages. .145

10 Conclusion 148

10.1 Summary of Contributions. .148

10.2 Broad Use of Declarative Networking.150

10.3 Research Directions. .152

10.4 Closing .158

Bibliography 160

viii

A Proofs 176

A.1 Proofs for Pipelined Semi-naı̈ve .176

A.2 Proofs for Bursty Updates. .178

A.3 Proofs for Soft-State Rules. .180

B Examples of Declarative Overlays 183

B.1 Narada. .183

B.2 P2-Chord .185

ix

List of Figures

1.1 A Declarative Network . 6

2.1 Shortest-Path-Hop Datalog program.. 15

2.2 Shortest-Path-HopNDlogprogram. 16

2.3 Shortest-Path program example execution.l andp are used as abbreviations for

link andpathrespectively. 18

2.4 Shortest-PathNDlogprogram.. 21

2.5 Ping-PongNDlogprogram. 25

3.1 A Declarative Router.. .36

3.2 Best-Path Program.. .38

3.3 Distance-Vector Program.. .39

3.4 Distance-Vector Program with count-to-infinity fix inNDlog. 40

3.5 Policy-Based Routing Program.. 41

3.6 Dynamic Source Routing Program.. 42

3.7 Link-State Program. .42

3.8 Source-Specific-Multicast Program.. 43

3.9 Derivation of alternative shortest path from nodea to d when #link(@a,b,1)is

deleted.. .47

x

4.1 Components of a single P2 node.. 51

4.2 P2 Dataflow example at a single node.. 53

4.3 Example of expandedNetwork-InandNetwork-Outelements. 54

5.1 Rule strand for delta rule r2-1 in P2. 65

5.2 Logical query plan for distributed rule sp2 shown above the figure.. 66

5.3 Localized rules for distributed rule sp2.. 67

5.4 Delta rules and compiled rule strands for localized rules sp2a and sp2b.. 69

5.5 Rule strand for sp3 that computes an aggregatespCostover thepathtable. 74

5.6 Rule strands for the SN delta rules sp2a, sp2b-1 and sp2b-2 with incremental main-

tenance. .78

5.7 Derivation tree for derivedpathtuple froma to e. 79

5.8 Rule strands for distributed soft-state management of delta rules sp2a, sp2b-1 and

sb2b-2. .83

5.9 Rule strands for event soft-state rules pp1 and pp2.. 85

5.10 Rule strand for rule l2, an event soft-state rule with aggregation.. 85

6.1 A Declarative Overlay Node.. 90

6.2 Narada materialized tables and initialization rules. 92

6.3 Narada Membership List Maintenance. 93

6.4 Rules for neighbor liveness checks.. 95

6.5 Rules for neighbor selection based on latency.. 96

6.6 A Chord ring with the network state for node58and37, the finger entries for node

13, and stored objects0, 24, 33, 42and56. The dotted lines denote the fingers for

node13. .97

6.7 Materialized tables for P2-Chord.. 99

6.8 Rules for initializing a Chord node.. .101

xi

6.9 Rules for joining the Chord ring. .101

6.10 Rules for ring stabilization.. .102

6.11 Rules for computing best successor and first finger entry..103

6.12 Rules for successor selection.. .104

6.13 Rules for recursive lookups in Chord. .104

6.14 Rules for generating finger entries.. .105

6.15 Rules for sending keep-alives.. .106

6.16 Rules for failure detection of successors, predecessors and fingers.. 107

7.1 Network diameter (ms) vs Number of nodes..112

7.2 Convergence latency (s) vs Number of nodes..113

7.3 Per-node Communication Overhead (KB)..114

7.4 Per-node Bandwidth (KBps) for periodic link updates on latency metric (10s up-

date interval). .115

7.5 Per-node Bandwidth (KBps) for periodic link updates (interleaving 2s and 8s up-

date interval).. .116

7.6 CDF of average Narada membership at each node as fraction of total network size

over time (s). .117

7.7 Hop-count distribution for lookups.. .118

7.8 CDF for lookup latency.. .119

7.9 Per-node Bandwidth (KBps) over time (s)..120

7.10 CDF for lookup consistency fraction under churn..122

7.11 CDF for lookup latency under churn.. .123

8.1 Shortest-Path program with magic sets. .128

8.2 Magic-Shortest-Path Program.. .129

8.3 Per-node Bandwidth (KBps) with Aggregate Selections..134

xii

8.4 Results over time (seconds) with Aggregate Selections..135

8.5 Per-node Bandwidth (KBps) with periodic aggregate selections.. 136

8.6 Results over Time (seconds) with periodic aggregate selections.. 137

8.7 Aggregate communication overhead (MB) with and without magic sets and caching.138

8.8 Per-node Bandwidth (KBps) for message sharing (300 ms delay).. 139

xiii

List of Tables

2.1 Predicates and the corresponding schemas used in theShortest-Path-HopDatalog

program shown in Figure2.1. 15

2.2 Schema of tables and events used in thePing-Pongprogram 25

6.1 Predicates and corresponding schemas of materialized tables and lookup events

used in P2-Chord. .100

A.1 Proof Notation .176

xiv

Chapter 1

Introduction

1.1 Motivation

The Internet faces many challenges today, ranging from the lack of protection against un-

wanted or harmful traffic to the increasing complexity and fragility of inter-domain routing.

In addition, the proliferation of new applications on the Internet has also led to growing

demands for new functionalities such as mobility, content-based routing, and quality-of-

service (QoS) routing. As a result, there is an increasing consensus in the networking

community that the current Internet architecture is fundamentally ill-equipped to handle

the needs of future uses and challenges[8].

A radical approach suggested recently calls for a “clean-slate” redesign of the Internet,

by revisiting its original design goals and principles[31]. These clean-slate proposals have

received substantial attention from the research community, as reflected by major NSF ini-

tiatives such as Future INternet Design (FIND)[46] and Global Environment for Network

Innovations (GENI)[48].

At the same time, given the existing limitations of the Internet, the evolutionary ap-

proach that has been widely adopted today involves the deployment of overlay networks[93]

1

Chapter 1. Introduction

on the Internet. An overlay network is a virtual network of nodes and logical links that is

built on top of an existing network with the purpose of implementing a network service

that is not available in the existing network. Examples of overlay networks on today’s In-

ternet include commercial content distribution networks such as Akamai[7], peer-to-peer

(P2P) applications for file-sharing[50] and telephony[113], as well as a wide range of

experimental prototypes running on the PlanetLab[94] global testbed.

While overlay networks have been successfully used to support a variety of distributed

applications, they are viewed by some as an incremental stop-gap solution. Whether one is

a proponent of the revolutionary clean-slate redesign or the evolutionary approach of using

overlay networks, it is clear that we are entering a period of significant flux in network

services, protocols and architecture.

1.2 Main Contributions

In this dissertation, we present the design and implementation ofdeclarative networks.

Declarative networkingproposes the use of declarative query language for specifying and

implementing network protocols, and employs a dataflow framework at runtime for com-

munication and the maintenance of network state. The key idea behind declarative network-

ing is that declarative recursive queries[6; 98], which are used in the database community

for querying graph structures, are a natural fit for expressing the properties of various net-

work protocols.

The primary goal of declarative networking is to greatly simplify the process of spec-

ifying, implementing, deploying and evolving a network design. In addition, declarative

networking serves as an important step towards an extensible, evolvable network architec-

ture that can supportflexible, secureandefficientdeployment of new network protocols.

Existing solutions are either highly efficient but inflexible (e.g., hard-coded network pro-

2

Chapter 1. Introduction

tocols today), or highly flexible but insecure (e.g., active networks[119]). By using a

declarative language that is more amenable to static analysis than traditional programming

languages, we are able to strike a better balance between flexibility and security than exist-

ing solutions.

To realize the vision of declarative networking, this dissertation makes the following

key contributions:

• First, we formally define theNetwork Datalog (NDlog) language based on exten-

sions to Datalog, a traditional recursive query language used in the database com-

munity. NDlog builds upon traditional Datalog to enabledistributedandsoft-state

computations withrestricted communicationbased on the underlying physical con-

nectivity, all of which are essential in the network setting.

• In declarative routing [79; 80], we demonstrate the use of the declarative framework

for building an extensible routing infrastructure that provides flexibility, yet retains

in large the efficiency and security of today’s routing protocols. We show thatND-

log programs are a natural and compact way of expressing a variety of well-known

routing protocols, typically in a handful of lines of program code. This allows ease

of customization, where higher-level routing concepts (e.g., QoS constraints) can be

achieved via simple modifications to theNDlogprograms. We also show these these

programs can be statically analyzed for termination using standard database tech-

niques[67]. and are amenable to well-studied query optimizations from the database

literature.

• In declarative overlays[76], we show thatNDlog can be used to implement com-

plex application-level overlay networks such as multicast overlays and distributed

hash tables (DHTs). We demonstrate a working implementation of the Chord[114]

overlay network specified in 48NDlog rules, versus thousands of lines of C++ for

3

Chapter 1. Introduction

the original version, resulting in orders of magnitude reduction in code size.

• To validate the design ofNDlog, we present our implementation of P2[2], which

is a full-fledged declarative networking system with a dataflow engine inspired by

the Click modular router[65]. The P2 system takes as inputNDlog programs, com-

piles them into distributed execution plans that are then executed by a distributed

dataflow engine to implement the network protocols. We experimentally evaluate the

P2 system on hundreds of distributed machines running a wide variety of different

protocols, including traditional routing protocols as well as complex overlays such

as distributed hash tables. The P2 system is publicly available for download and has

been used in research projects at various institutions.

1.3 Distributed Recursive Query Processing

Recursive query research has often been criticized as being only of theoretical interest and

detached from practical realities[21]. In this dissertation, we not only demonstrate the

practical use of recursive queries outside of the traditional domain of stored centralized

databases, we also identify and address several important and challenging database re-

search issues[75] that are essential for the practical realization of declarative networking.

Specifically, the recursive query processing issues that we tackle in this dissertation include

the following:

• First, we extend existing techniques for recursive query processing to a distributed

context in order to generate distributed dataflow-based execution plans forNDlog

programs.

• Second, based on the execution model of our distributed dataflows, we introduce

and prove correct relaxed versions of the traditional, centralized execution strategy

4

Chapter 1. Introduction

known assemi-näıve[11; 12; 15] fixpoint evaluation. Our techniques, calledbuffered

semi-näıveandpipelined semi-näıveevaluation, overcome fundamental problems of

semi-näıve evaluation in an asynchronous distributed setting, and should be of in-

dependent interest outside the context of declarative networking: they significantly

increase the flexibility of semi-naı̈ve evaluation to reorder the derivation of facts.

• Third, in the network setting, transactional isolation of updates from concurrent

queries is often inappropriate; network protocols must incorporate concurrent up-

dates about the state of the network while they run. We address this by formalizing

the typical distributed systems notion of “eventual consistency” in our context of

derived data. Using techniques from materialized recursive view maintenance, we

incorporate updates to input tables duringNDlogprogram execution, and still ensure

well-defined eventual consistency semantics. This is of independent interest beyond

the network setting when handling updates and long-running recursive queries.

• We cleanly incorporate the notion of soft state1 into the logical framework ofNDlog,

describe new query processing and view maintenance techniques to process soft-state

data, and demonstrate how the distributed systems notion of “eventual consistency”

can be similarly achieved as above.

• We survey a number of automatic optimization opportunities that arise in the declar-

ative networking context, including applications of traditional database techniques

such as aggregate selections[118; 47] and magic-sets rewriting[16; 18], as well

as new optimizations we develop for work-sharing, caching, and cost-based opti-

mizations based on graph statistics. Many of these ideas can be applied to query

processing engines outside the context of declarative networking or distributed im-

plementations.

1Network state is typically maintained as soft state[31; 99] for reasons of robustness and scalability.

5

Chapter 1. Introduction

While recursive query processing is considered a mature field, in the course of this

work, we raise new interesting database research challenges motivated in the distributed

setting that we hope can open new avenues for research in the theory, implementation and

application of recursive queries.

1.4 Overview of Declarative Networks

Figure 1.1: A Declarative Network

Figure1.1 illustrates a declarative network at a conceptual level. Like any traditional

network, a declarative network maintains network state at each node to enable the rout-

ing and forwarding of packets. The network state is stored as relational tables distributed

across the network, similar to a traditional distributed database[90]. Network protocols are

declaratively specified as distributed recursive queries over the network state. Recursive

queries have traditionally been used in the database community for posing queries over

graph structures in deductive databases. The main observation that inspired this work on

declarative networking is that these recursive queries are a natural fit for expressing network

protocols, which themselves are based on recursive relations among nodes in the network.

6

Chapter 1. Introduction

The recursive query language that we develop is a distributed variant of Datalog called

Network Datalog(NDlog). Intuitively, one can view the forwarding tables generated by

network protocols as the output of distributed recursive queries over changing input net-

work state (network links, nodes, load, operator policies, etc.), and the query results need

to be kept consistent at all times with the changing network state.

Network protocols are specified asNDlog programs and disseminated in the network.

Upon receivingNDlog programs, each node compiles the declarative specifications into

execution plans in the form of distributed dataflows. When executed, these dataflows gen-

erate message exchanges among nodes as well as network state modifications, resulting in

the implementation of the network protocols. Multiple declarative networks can run simul-

taneously, either as separate dataflows, or compiled into a single dataflow where common

functionalities among the protocols can be shared.

1.5 The Case for Declarative Networking

Declarative networking presents three advantages over existing approaches:ease of pro-

gramming, optimizabilityandbalance between extensibility and security. We summarize

the advantages in the rest of this section. This dissertation focuses on the first two advan-

tages: ease of programming and optimizability. In addition, program analysis techniques

exist today that take advantage of the formal, high-level nature of a declarative language,

as we discuss in Section1.5.3. There are opportunities to extend these analysis techniques

that are outside the scope of the dissertation. We return to this topic as future work in

Chapter10.

7

Chapter 1. Introduction

1.5.1 Ease of Programming

A declarative language allows us to specify at a high level “what” to do, rather than “how”

to do it. When feasible, the declarative approach can lead to ease of programming and

significant reduction in code size. As we demonstrate in Chapter3, NDlog can express a

variety of well-known routing protocols (e.g., distance vector, path vector, dynamic source

routing, link state, multicast) in a compact and clean fashion, typically in a handful of lines

of program code. Moreover, higher-level routing concepts (e.g., QoS constraints) can be

achieved via simple modifications to these programs. Furthermore, in Chapter6, we show

that complex application-level overlay networks can also be expressed naturally in NDlog.

Declarative network descriptions can be extremely concise. For example, the Chord

overlay network can be specified in 48NDlog rules, versus thousands of lines of code for

the MIT Chord reference implementation, and more than 320 statements for a less complete

implementation in the Macedon[105] domain-specific language for overlays (see related

work in Chapter9 for comparisons with Macedon). Also, the high-level, declarative nature

of P2 specifications means that they decompose cleanly into logically reusable units: for

example, a Symphony DHT[83] might share many of the definitions in the Chord specifica-

tion. Moreover, by providing a uniform declarative language for distributed querying and

networking, we enable the natural integration of distributed information-gathering tasks

like resource discovery and network status monitoring.

In addition to ease of programming, there are other advantages to the use of a high level

language. For example,NDlog specifications can illustrate surprising relations between

network protocols, as we illustrate in Chapter8. In particular, we show that path vector and

dynamic source routing protocols differ only in a simple, traditional database optimization

decision: the order in which a query’s predicates are evaluated. The use of higher-level

abstractions also provides the potential to statically check network protocols for security

and correctness properties[43]. Dynamic runtime checks to test distributed properties

8

Chapter 1. Introduction

of the network can also be easily expressed as declarative queries, providing a uniform

framework for network specification, monitoring and debugging[112].

1.5.2 Optimizability

Declarative networking achieves performance comparable to traditional approaches. More-

over, by using a declarative framework rooted in databases, we can achieve even better per-

formance by utilizing query processing and optimization techniques that are well-studied

in the database community.

Our declarative approach to protocol specification reveals new opportunities for opti-

mizing network protocols. First, the use of a high-level declarative language facilitates

the identification and sharing of common functionalities among different declarative net-

works. Second, off-the-shelf database optimization techniques can be applied to declarative

routing specifications to achieve tangible performance benefits. Third, we develop new op-

timization techniques suited to the distributed, soft-state context of network protocols.

1.5.3 Balance of Extensibility and Security

In addition to the benefits of having a higher-level, compact specification, declarative net-

working achieves a better balance betweenextensibilityandsecuritycompared to existing

solutions. Extensibility, or the ability to easily add new functionality to existing systems, is

an important requirement in our setting as a means of rapid deployment and experimenta-

tion with network protocols. However, extensibility has traditionally been achieved at the

expense of security[115; 22]. In the network domain, this concern is best illustrated by ac-

tive networks[119] which, at the extreme, allow routers to download and execute arbitrary

code. While active networks provide full generality, security concerns have limited their

practical usage.

9

Chapter 1. Introduction

Declarative networking can be viewed as a safer, restricted instantiation of active net-

works, where our approach essentially proposesNDlog as a Domain Specific Language

(DSL) for programming a network. The core ofNDlog is Datalog, which has complexity

polynomial in the size of the network state[6]. While our language extensions toNDlog

alter its theoretical worst-case complexity, there exist static analysis tests on termination for

a large class of recursive queries[67]. This addresses thesafetyaspect of security, where

specified protocols can now be checked to ensure that they do not consume infinite re-

sources before execution. In addition, by “sandboxing”NDlogprograms within a database

query engine, we are also able to contain undesirable side-effects during query execution.

1.6 Organization

This dissertation is organized as follows. In Chapter2, we provide an introduction to Data-

log, and then motivate and formally define theNDlog language. Given theNDlog language,

we demonstrate in Chapter3 the expressiveness ofNDlog in compactly specifying declar-

ative routing protocols that implement a variety of well-known routing protocols.

We next demonstrate how declarative routing protocols can be realized in practice by

describing the implementation of the P2 declarative networking system in Chapter4, and

query processing techniques for compilingNDlog programs into P2 execution plans in

Chapter5.

In Chapter6, we further apply the declarative framework to more challenging scenarios,

where we useNDlog to specify complex overlay networks such as the Narada mesh[30]

for end-system multicast and the Chord distributed hash table. Our Chord implementation

is roughly two orders of magnitude less code than the original C++ implementation.

To validate declarative networking concepts, in Chapter7, we present evaluation results

from a distributed deployment on the Emulab[40] network testbed, running prototypes of

10

Chapter 1. Introduction

declarative networks. In Chapter8, we discuss and evaluate a number of query optimiza-

tions that arise in the declarative networking context.

We present in Chapter9 a survey of related work in both the database and networking

domains. We then conclude in Chapter10 summarizing the overall impact of declarative

networking in the past few months, a discussion of open issues and future research direc-

tions.

11

Chapter 2

The Network Datalog Language

In this chapter, we formally define the Network Datalog (NDlog) language for declarative

networking. TheNDlog language is based on extensions to traditional Datalog, a well-

known recursive query language traditionally designed for querying graph-structured data

in a centralized database.

The chapter is organized as follows. In Section2.1, we provide an introduction to

Datalog. In Section2.2, we present theNDlog language using an example program that

computes all-pairs shortest paths in a network from specification to execution. Based on

this example program, we highlight theNDlogextensions to traditional Datalog, and show

that the execution of this program resembles a well-known routing protocol for computing

shortest paths in a network.

Following the example, in Sections2.3, 2.4, 2.5and2.6, we formally describe the data

and query model ofNDlog that addresses its four main requirements:distributed computa-

tion, link-restricted communication, soft-state data and rules, andincremental maintenance

of network state.

12

Chapter 2. The Network Datalog Language

2.1 Introduction to Datalog

We first provide a short review of Datalog, following the conventions in Ramakrishnan

and Ullman’s survey[98]. A Datalog program consists of a set of declarativerules and

an optionalquery. Since these programs are commonly called“recursive queries” in the

database literature, we use the term “query” and “program” interchangeably when we refer

to a Datalog program.

A Datalogrule has the formp :- q1,q2, ...,qn., which can be read informally as “q1 and

q2 and... andqn implies p”. p is theheadof the rule, andq1,q2, ...,qn is a list of literals

that constitutes thebodyof the rule. Literals are eitherpredicatesover fields (variables

and constants), or function symbols applied to fields. The rules can refer to each other

in a cyclic fashion to express recursion. The order in which the rules are presented in a

program is semantically immaterial. The commas separating the predicates in a rule are

logical conjuncts (AND); the order in which predicates appear in a rule body also has no

semantic significance, though most implementations (including ours) employ a left-to-right

execution strategy. Thequeryspecifies the output of interest.

The predicates in the body and head of traditional Datalog rules are relations, and we

refer to them interchangeably as predicates, relations or tables. Each relation has aprimary

key, which consists of a set of fields that uniquely identify each tuple within the relation. In

the absence of other information, the primary key is the full set of fields in the relation.

By convention, the names of predicates, function symbols and constants begin with a

lower-case letter, while variable names begin with an upper-case letter. Most implementa-

tions of Datalog enhance it with a limited set of function calls (which start with “f ” in our

syntax), including boolean predicates and arithmetic computations. Aggregate constructs

are represented as functions with field variables within angle brackets (<>). For most of

our discussion, we do not consider negated predicates; we return to the topic of negation as

13

Chapter 2. The Network Datalog Language

part of our future work (Chapter10).

As an example, Figure2.1shows a Datalog program that computes the next hop along

the shortest paths between all pairs of nodes in a graph. The program abbreviates some of

its predicates as shown in Table2.1. The program has four rules (which for convenience

we label r1-r4), and takes as input a base (“extensional”) relationlink(Source, Destination,

Cost). Rules r1-r2 are used to derive “paths” in the graph, represented as tuples in the

derived (“intensional”) relationpath(S,D,Z,C). TheSandD fields represent the source and

destination endpoints of the path;Z contains the “next hop” in the graph along the shortest

path that a nodeSshould take in order to go to nodeD. The number and types of fields in

relations are inferred from their (consistent) use in the program’s rules.

Rule r1 producespath tuples directly from existinglink tuples, and rule r2 recursively

producespath tuples of increasing cost by matching (orunifying) the destination fields of

existing links to the source fields of previously computed paths. The matching is expressed

using the repeated “Z” variable in link(S,Z,C1)andpath(Z,D,Z2,C2)of rule r2. Intuitively,

rule r2 says that “if there is a link from nodeS to nodeZ, and there is a path from nodeZ

to nodeD, then there is a path from nodeS to nodeD via Z”.

Given thepath relation, rule r3 derives the relationspCost(S,D,C)that computes the

minimum costC for each source (S) and destination (D) for all input paths. Rule r4 takes

as inputspCostandpath tuples and then computesshortestPathHop(S,D,Z,C)tuples that

contains the next hop (Z) along the shortest path fromS to D with costC. Last, theQuery

specifies the output of interest to be theshortestPathtable.

2.2 Network Datalog by Example

Before diving into the formal definitions ofNDlog, we first introduceNDlog by example

using a distributed variant of the earlierShortest-Path-HopDatalog program. This dis-

14

Chapter 2. The Network Datalog Language

r1 path(S,D,D,C) :- link(S,D,C).

r2 path(S,D,Z,C) :- link(S,Z,C1), path(Z,D,Z2,C2), C = C1 + C2.

r3 spCost(S,D,min<C>) :- path(S,D,Z,C).

r4 shortestPathHop(S,D,C) :- spCost(S,D,C), path(S,D,Z,C).

Query shortestPathHop(S,D,Z,C).

Figure 2.1: Shortest-Path-Hop Datalog program.

Predicate Schema
link(S,D,C) path(Source,Destination,Cost)
path(S,D,Z,C) path(Source,Destination,NextHop,Cost)
spCost(S,D,C) spCost(Source,Destination,Cost)
shortestPathHop(S,D,Z,C)shortestPathHop(Source,Destination,NextHop,Cost)

Table 2.1: Predicates and the corresponding schemas used in the Shortest-Path-Hop Datalog

program shown in Figure 2.1.

tributedNDlogprogram, shown in Figure2.2, computes for every node, the next hop along

the shortest paths of all nodes in a network in a distributed fashion. We use thisNDlog

program to highlight the following key points:

• NDlog builds upon traditional Datalog in order to meet four new requirements:dis-

tributed computation, link-restricted communication, soft-state data and rules, and

incremental maintenance of network state.

• When this program is executed, the resulting communication and network state re-

sembles the well-knowndistance vectorandpath vectorrouting protocols[92].

• This example program demonstrates the compactness ofNDlog. In fourNDlog rules,

we are able to specify and implement a routing protocol widely used to compute

shortest routes in a network.

15

Chapter 2. The Network Datalog Language

materialize(#link,infinity,infinity,keys(1,2)).

materialize(path,infinity,infinity,keys(1,2,3,4)).

materialize(spCost,infinity,infinity,keys(1,2)).

materialize(shortestPathHop,infinity,infinity,keys(1,2)).

sh1 path(@S,D,D,C) :- #link(@S,D,C).

sh2 path(@S,D,Z,C) :- #link(@S,Z,C1), path(@Z,D,Z2,C2), C = C1 + C2.

sh3 spCost(@S,D,min<C>) :- path(@S,D,Z,C).

sh4 shortestPathHop(@S,D,Z,C) :- spCost(@S,D,C), path(@S,D,Z,C).

Query shortestPathHop(@S,D,Z,C).

Figure 2.2: Shortest-Path-Hop NDlog program.

2.2.1 Overview of NDlog

An NDlog program is largely composed of table declaration statements and rules; we con-

sider each in turn. InNDlog, all input relations and rule derivations are stored inmateri-

alized tables. Unlike Datalog, tables must be defined explicitly inNDlog via materialize

statements, which specify constraints on the size and lifetime of tuple storage – any rela-

tions not declared as tables are treated as namedstreamsof tuples. Eachmaterialize(name,

lifetime, size, primary keys)statement specifies the relation name, lifetime of each tuple in

the relation, maximum size of the relation, and fields making up the primary key of each

relation1. If the primary key is the empty set(), then the primary key is the full set of fields

in the relation. For example, in theShortest-Path-Hop NDlogprogram, all the tables are

specified with infinite sizes and lifetimes.

The execution ofNDlog rules will result in the derivation of tuples that are stored in

materialized tables. For the duration of program execution, these materialized results are

1We have a convention of starting the offset by 1 in the P2 system, as 0 is reserved in the implementation
for the table name.

16

Chapter 2. The Network Datalog Language

incrementally recomputed as the input relations are updated. For example, the update of

#link tuples will result in new derivations and updates to existingpath, spCostandshortest-

PathHoptuples. In addition, if anNDlog rule head is prepended with an optional keyword

delete, the derived tuples are used to delete an exact match tuple in its relation instead.

Since network protocols are typically computations over distributed network state, one

of the important requirements ofNDlog is the ability to support rules that express dis-

tributed computations.NDlog builds upon traditional Datalog by providing control over

the storage location of tuples explicitly in the syntax vialocation specifiers. Each location

specifier is an attribute within a predicate that indicates the partitioning field of each re-

lation. To illustrate, in Figure2.2, each predicate in theNDlog rules has an “@” symbol

prepended to a single field denoting the location specifier. Each tuple generated is stored at

the address determined by its location specifier. For example, allpathand link tuples are

stored based on the address stored in the first field@S.

Interestingly, whileNDlog is a language to describe networks, there are no explicit

communication primitives. All communication is implicitly generated during rule execu-

tion as a result of data placement. For example, in rule sh2, thepathand#link predicates

have different location specifiers, and in order to execute the rule body of sh2 based on their

matching fields,link andpathtuples have to be shipped in the network. It is the movement

of these tuples that will generate the messages for the resulting network protocol.

2.2.2 From Query Specifications to Protocol Execution

Having provide a high-level overview ofNDlog, we demonstrate the execution of the

Shortest-Path-Hop NDlogprogram via an example network shown in Figure2.3. We show

that the resulting communication and network state generated in program execution resem-

bles the distance-vector protocol.

In our example network, each node is running theShortest-Path-Hopprogram. For

17

Chapter 2. The Network Datalog Language

simplicity, we show only the derived paths along the solid lines even though the network

connectivity is bidirectional (dashed lines). Our discussion is necessarily informal since

we have not yet presented our distributed implementation strategies; in Chapter5, we show

in greater detail the steps required to generate the execution plan. Here, we focus on a

high-level understanding of the data movement in the network during query processing.

Figure 2.3: Shortest-Path program example execution. l and p are used as abbreviations for

link and path respectively.

For our discussion here, we simplify communication by describing it initerations,

where at each iteration, each network node generatespathsof increasing hop count, and

then propagates these paths to neighbor nodes along links. Eachpath tuple contains the

nextHopfield, which indicates for each path the next hop to route the message in the net-

work. In Figure2.3, we show newly derived path tuples at each iteration. In the 1st iteration,

all nodes initialize their localpath tables to 1-hoppath tuples using rule sh1. In the 2nd

18

Chapter 2. The Network Datalog Language

iteration, using rule sh2, each node takes the inputpath tuples generated in the previous

iteration, and computes 2-hop paths, which are then propagated to its neighbors. For ex-

ample,path(@a,d,b,6)is generated at nodeb usingpath(@b,d,d,1)from the 1st iteration,

and propagated to nodea.

As pathtuples are being computed and received at nodes,spCostandshortestPathHop

tuples are also incrementally computed. For example, nodea computespath(@a,b,b,5)us-

ing rule sh1, and then derivesspCost(@a,b,5)andshortestPathHop(@a,b,b,5)using rules

sh4-sh5. In the next iteration, nodea receivespath(@a,b,c,2)from nodec which has lower

cost compared to the previous shortest cost of 5, and hence the new tuplesspCost(@a,b,2)

andshortestPathHop(@a,b,c,2)replaces the previous values.

In the presence of path cycles, theShortest-Path-Hopprogram never terminates, as rules

sp1 and sp2 will generate paths of ever increasing costs. However, this can be fixed either

by storing the entire path and adding a check for cycles within the rules. Alternatively,

a well-known optimization (Section8.1.1) can be used when costs are positive to avoid

cycles. Intuitively, this optimization reduces communication overhead by sending only the

path tuples that result in changes to the localspCostandshortestPathHoptables, hence

limiting communication to onlypathtuples that contribute to the eventual shortest paths.

Algorithm 2.1 Pseudocode for theShortest-Path-Hop NDlogprogram

path(@Z,D,D,C)← #link(@Z,D,C). [Rule sh1]
while receive< path(@Z,D,Z2,C2) >

foreach neighbor #link(@S,D,C). [Rule sh2]
send path(@S,D,Z,C1+C2) to neighbor @S

end
end

Figure2.1 shows the pseudocode of executing rules sh1-sh2 from the perspective of a

single node. Interestingly, the computation of the above program resembles the computa-

tion of the distance vector protocol[92] that is commonly used to compute shortest path

19

Chapter 2. The Network Datalog Language

routes in a network. In the distance vector protocol, each node advertises<destination,

path-cost> information to all neighbors, which is similar to thepath tuples exchanged by

nodes at each iteration. All nodes use these advertisements to update their routing tables

with the next hop along the shortest paths for each given destination. This is similar to

computing newshortestPathHoptuples frompath tuples using rules sh3-sh4. The main

difference between ourNDlog program and the actual distance vector computation is that

rather than sending individual path tuples between neighbors, the traditional distance vector

method batches together a vector of costs for all neighbors.

In the Shortest-Path-Hopprogram, the protocol only propagates thenextHopand not

the entire path. In most practical network protocols such as the Border Gateway Protocol

(BGP) [92], the entire path is included either for source routing or more commonly, to

prevent infinite path cycles. This is typically known as thepath vectorprotocol, where the

path vectoris the list of nodes from the source to the destination.

Figure 2.4 shows theShortest-Path NDlogprogram that implements the path-vector

protocol. The program is written with only minor modifications to the earlierShortest-

Path-Hop NDlogprogram. The program computes the entire path vector for a given source

to destination, by adding an extrapathVectorfield in thepathpredicate that the full path.

The functionf init(X,Y) initializes the path vector with nodesX andY, and the function

f concatPath(N,P)prepend a nodeN to an existing path vectorP. We revisit more examples

of routing protocols in Chapter3.

2.2.3 Other Requirements of NDlog

In addition to distributed computations,NDlog requires the following additional features

for link-restricted communication, soft-state data and rules, andincremental maintenance

of network state. We briefly describe them here, followed by more detailed descriptions in

the rest of the chapter.

20

Chapter 2. The Network Datalog Language

materialize(#link,infinity,infinity,keys(1,2)).

materialize(path,infinity,infinity,keys(4)).

materialize(spCost,infinity,infinity,keys(1,2)).

materialize(shortestPath,infinity,infinity,keys(1,2)).

sp1 path(@S,D,D,P,C) :- #link(@S,D,C), P = finit(S,D).

sp2 path(@S,D,Z,P,C) :- #link(@S,Z,C1), path(@Z,D,Z2,P2,C2), C = C1 + C2,

. . P = f concatPath(S,P2).

sp3 spCost(@S,D,min<C>) :- path(@S,D,Z,P,C).

sp4 shortestPath(@S,D,P,C) :- spCost(@S,D,C), path(@S,D,Z,P,C).

Query shortestPath(@S,D,P,C).

Figure 2.4: Shortest-Path NDlog program.

• Link-restricted communications: In order to send a message in a low-level net-

work, there needs to be a link between the sender and receiver. This is not a natural

construct in Datalog. Hence, to model physical networking components where full-

connectivity is not always available,NDlogprovides syntactic restrictions that can be

used to ensure that rule execution results in communication only among nodes that

are physically connected. This is syntactically achieved with the use of the special

#link predicate in allNDlogprograms.

• Soft-state data and rules:In typical network protocols, the generated network state

is maintained assoft-state[31] data. In the soft state storage model, stored data have

a lifetimeor time-to-live (TTL), and are deleted when the lifetime has expired. The

soft state storage model requires periodic communication to refresh network state.

Soft state is often favored in networking implementations because in a very simple

manner it provides well-defined eventual consistency semantics. Intuitively, periodic

refreshes to network state ensure that the eventual values are obtained even if there

21

Chapter 2. The Network Datalog Language

are transient errors such as reordered messages, node disconnection or link failures.

While soft state is useful for maintaining distributed state, we also make extensive use

of traditional“hard-state” data with infinite lifetimes for storing persistent counters,

local machine state and archival logs.

• Incremental maintenance of network state: In practice, most network protocols

are executed over a long period of time, and the protocol incrementally updates and

repairs routing tables as the underlying network changes (link failures, node depar-

tures, etc). To better map into practical networking scenarios, one key distinction that

differentiates the execution ofNDlog from earlier work in Datalog is our support for

continuous rule execution and results materialization, where all tuples derived from

NDlog rules are materialized and incrementally updated as the underlying network

changes. As in network protocols, such incremental maintenance is required both for

timely updates and for avoiding the overhead of recomputing all routing tables “from

scratch” whenever there are changes to the underlying network.

In the rest of this chapter, using theShortest-Pathprogram in Figure2.4as our primary

example, we demonstrate the extensions to both the data and query model of traditional

Datalog in order to handle the requirements of distributed computations (Section2.3),

link-restricted communications (Section2.4), soft-state data and rules (Section2.5), and

incremental maintenance of network state (Section2.6).

2.3 Distributed Computation

One novelty of our setting from a database perspective, is that data is distributed and re-

lations may be partitioned across sites.NDlog gives the program writerexplicit control of

data placement with the use oflocation specifiersin each predicate:

22

Chapter 2. The Network Datalog Language

Definition 2.1 A location specifieris a field in a predicate whose value per tuple indicates

the network storage location of that tuple.

The location specifier field is of type address having a value that represents a network

location. It is used as a partitioning field for its table across all nodes in the network,

similar to horizontally partitioned tables in distributed databases[90]. We require that

each predicate has a single location specifier field that is notated by an “@” symbol. Each

predicate has exactly one field as its location specifier. For example, the location specifier

of #link(@S,D,C)is @S. This means that all#link tuples are stored based on the address

value of the@Sfield.

Given that predicates have location specifiers, we can now distinguishlocal anddis-

tributedrules:

Definition 2.2 Local rulesare rules that have the same location specifier in each predicate,

including the head.

We refer to non-local rules asdistributed rules. Local rules can be executed without

any distributed logic. In theShortest-Pathprogram, rules sp1, sp3 and sp4 are local, while

sp2 is a distributed rule since the#link andpath body predicates are stored at different

locations.

2.4 Link-Restricted Communication

In real networking components such as routers, switches and autonomous routing systems

on the Internet, each node is connected to relatively few other nodes for communication.

To model actual physical links connecting nodes on which communication can happen, we

introduce the concept of alink relation, which is defined as follows:

23

Chapter 2. The Network Datalog Language

Definition 2.3 A link relation link(src,dst,...) represents the connectivity information of

the network being queried.

The first two fields of each link table entry contain the source and destination addresses

of a network link respectively, followed by an arbitrary number of other fields (typically

metrics) describing the link.

Definition 2.4 A link literal is a link relation that appears in the body of a rule prepended

with the “#” symbol.

In theShortest-Pathprogram, the link literal appears in the rule body of non-local rules

sp1 and sp2. We can now define a simple syntactic constraint on the rules to ensure that

communication for all distributed rules takes place only along the physical links:

Definition 2.5 A link-restricted rule is either a local rule, or a rule with the following

properties:

• There is exactly one link literal in the body

• All other literals (including the head predicate) have their location specifier set to

either the first (source) or second (destination) field of the link literal.

This syntactic constraint precisely captures the requirement that we are able to operate

directly on a network whose link connectivity is not a full mesh. For example, rule sp2 of

Figure2.4 is link-restricted but has some relations whose location specifier is the source

@S, and others whose location specifier is the destination@D. As we shall demonstrate

in Chapter5, all link-restricted rules are rewritten into a canonical form where every rule

body can be evaluated on a single node. In addition, all communication for each rewritten

rule only involves sending messages along links.

24

Chapter 2. The Network Datalog Language

2.5 Soft-state Data and Rules

In this section, we define types of relations and rules based onhard-stateandsoft state

storage models. Note that these definitions are orthogonal to our earlier definitions on

distributed and link-restricted data and rules. For example, a soft-state relation (rule) can

be link-restricted and/or distributed.

materialize(#link,10,infinity,keys(1,2)).

materialize(pingRTT,10,5,keys(1,2)).

materialize(pendingPing,10,5,keys(1,2)).

pp1 ping(@S,D,E) :- periodic(@S,E,5), #link(@S,D).

pp2 pingMsg(S,@D,E) :- ping(@S,D,E), #link(@S,D).

pp3 pendingPing(@S,D,E,T) :- ping(@S,D,E), T = fnow().

pp4 pongMsg(@S,E) :- pingMsg(S,@D,E), #link(@D,S).

pp5 pingRTT(@S,D,RTT) :- pongMsg(@S,E), pendingPing(@S,D,E,T),

. . RTT = f now() - T.

pp6 #link(@S,D) :- pingRTT(@S,D,RTT).

Query pingRTT(@S,D,RTT).

Figure 2.5: Ping-Pong NDlog program.

Predicate Schema
#link(@S,D,E) #link(@Source,Destination,EventID)
ping(@S,D,E) ping(@Source,Destination,EventID)
pingMsg(S,@D,E) pingMsg(Source,@Destination,EventID)
pongMsg(@S,E) pongMsg(@Source,EventID)
pendingPing(@S,D,E,T) pendingPing(@Source,Destination,EventID,Time)
pingRTT(@S,D,RTT) pingRTT(@Source,Destination,RoundTripTime)

Table 2.2: Schema of tables and events used in the Ping-Pong program

25

Chapter 2. The Network Datalog Language

In the rest of this section, we use thePing-Pongprogram in Figure2.5 to illustrate

NDlog rules that manipulate soft-state data. ThePing-Pongprogram implements a simple

ping program where each node periodically pings its neighbor nodes to computes the round-

trip time (RTT). Unlike the earlierShortest-Pathprogram, all relations used in thePing-

Pongprogram are declared with finite lifetimes and sizes. There are also some relations

such asping, pingMsgandpongMsgthat are not declared using thematerializekeyword.

These relations are known asevent relations, and they consist of zero-lifetime tuples that

are used to execute rules but are not stored.

Rule pp1 is triggered periodically using the specialperiodicpredicate. The

periodic(@S,E,5)predicate denotes an infinite stream ofperiodic event tuples generated

at nodeS every 5 seconds with random identifierE. This allows rule pp1 to generate at

5 seconds interval, aping(@S,D,E)event tuple at source nodeS to all its neighbors with

destinationD. Eachping is uniquely identified with an event identifierE. Eachping tuple

is then used to generate apingMsg(S,@D,E)tuple that is sent to destination nodeD (rule

pp2). A pendingPing(@S,D,E,T)tuple is also stored locally to record the creation timeT

of ping(@S,D,E).

In rule pp4, whenever a nodeD receives apingMsg(S,@D,E)tuple from the source node

S, it replies with apongMsg(@S,E)tuple to nodeS. Upon receiving thepingMsg(@S,E)

tuple, rule pp5 is used by nodeS to compute the RTT between itself and nodeD based

on the time recorded inpendingPing(@S,D,E,T). A successful reply to a ping message

indicates that the neighbor is alive. This results in the refresh of #link tuples in rule pp6.

2.5.1 Hard-state vs Soft-state Data

In NDlog, we distinguish between hard-state and soft-state relations based on the lifetime

parameter inmaterializedstatements.

26

Chapter 2. The Network Datalog Language

Definition 2.6 A hard-state relationis one that is materialized with infinite lifetime.

Hard-state relationsare similar to data stored in traditional databases, which are non-

expiring and have to be deleted explicitly. The#link relation in theShortest-Pathprogram

is an example of a hard-state relation. All#link tuples persist unless explicitly deleted. For

derivations such aspath in the Shortest-Path-Hopprogram, there can be multiple deriva-

tions for the same tuple. Hence, we need to keep track of all such derivations for hard-state

relations until all derivations are invalidated due to deletions.

Definition 2.7 A soft-state relationis one that is materialized with finite lifetime.

Tuples that are inserted into soft-state tables are stored only for the duration of the

table’s lifetime. If required by the network protocol, these soft-state tuples can be refreshed

via NDlog rules. Unlike hard-state relations, we do not need to keep track of multiple

derivations of the same tuple. Instead, arefreshoccurs when the same tuple is inserted

into the table, resulting in the extension of the tuple by its specified lifetime. For example,

the #link relation in thePing-Pongprogram is a soft-state relation, and all#link tuples

generated are deleted after ten seconds unless they are refreshed by rule pp6 before they

expire.

Definition 2.8 An event relationis a soft-state relation with zero lifetime.

Event relations can either be declared explicitly viamaterializestatements with the

lifetime parameter set to 0, or implicitly if they are not declared in anymaterializestate-

ments. Event relations are typically used to represent message “streams” (e.g., pingMsg,

pongMsgin thePing-Pongprogram), or periodically generated local events via a built-in

periodicpredicate (e.g., in rule pp1):

Definition 2.9 Theperiodic(@N,E,T,K)event relation is a built-in relation that represents

an stream of event tuples generated at nodeN everyT seconds (up to an optionalK times)

27

Chapter 2. The Network Datalog Language

with a random event identifierE. If K is omitted, the stream is generated infinitely.

Built-in streams in NDLog are akin to theforeign functions[1] of LDL++ [9] or the

table functions of SQL, but their storage semantics are those of events, as described above.

For example, theperiodic(@S,E,5)in rule pp1 denotes an infinite stream ofperiodicevent

tuples generated at nodeSevery 5 seconds with random identifierE.

2.5.2 Hard-state and Soft-state Rules

Following our definitions of hard-state and soft-state data, we present in this sectionhard-

state rulesandsoft-state rules, which differs on their use of hard-state and soft-state rela-

tions in the rules:

Definition 2.10 A hard-state rulecontains only hard-state predicates in the rule head and

body.

Definition 2.11 A soft-state rulecontains at least one soft-state predicate in the rule head

or body.

We further classify soft-state rules as follows:

Definition 2.12 A pure soft-state rulehas a soft-state predicate in the rule head, and at

least one soft-state predicate in the rule body.

Definition 2.13 A derived soft-state rulehas a soft-state predicate in the rule head, but

only hard-state predicates in the rule body.

Definition 2.14 An archival soft-state rulehas a hard-state rule head, and at least one soft-

state predicate in the rule body.

28

Chapter 2. The Network Datalog Language

Archival soft-state rules are primary used for archival or logging purposes. These rules

derive hard-state tuples that persist even after the input soft-state input tuples that generate

them have expired.

Since event relations are considered soft-state relations (with zero lifetimes), they can

be used in any of the three soft-state rules above. During rule execution, input event tuples

persist long enough for rule execution to complete and are then discarded. Since they are

not stored,NDlog does not model the possibility of two instantaneous events occurring

simultaneously. Syntactically, this possibility is prevented by allowing no more than one

event predicate in soft-state rule bodies:

Definition 2.15 An event soft-state ruleis a soft-state rule withexactly oneevent predicate

in the rule body.

Using thePing-Pongprogram as our example, all rules are pure soft-state relations

since we do not involve any hard-state relations in this program. In addition, rules pp1-

pp5 are event soft-state rules that take as input one event predicate (periodic, ping, ping,

pingMsgandpongMsgrespectively).

2.6 Incremental Maintenance of Network State

As in network protocols,NDlog rules are designed to be executed over a period of time and

incrementally updated based on changes in the underlying network. During rule execution,

depending on their specified lifetimes, all derived tuples are either stored in materialized

table or generated as events. All materialized derivations have to be incrementally recom-

puted by long-runningNDlog rules in order to maintain consistency with changes in the

input base tables.

For hard-state rules, this involves the straightforward application of traditional materi-

29

Chapter 2. The Network Datalog Language

alized view maintenance techniques[54]. We consider three types of modifications to hard-

state relations: insertions of new tuples, deletions of existing tuples, and updates (which can

be modeled as deletion followed by an insertion). Note that inserting a tuple where there is

another tuple with the same primary key is considered an update, where the existing tuple

is deleted before the new one is inserted.

Similar to traditional database materialized views, the deletions of any input relations

result incascaded deletions, where a deleted tuple maycascadeand lead to the deletion of

previously derived tuples. For example, whenever a#link tuple is deleted, allpath tuples

that are generated using this#link tuple have to be deleted as well. Since there can be

multiple derivations of each unique tuple, we need to keep track of all of them and only

delete a tuple when all its derivations are deleted.

The incremental maintenance of soft-state rules is carried out in a slightly different

fashion due to the presence of soft-state relations. Two types of modifications are con-

sidered: insertions of new tuples orrefreshesof existing soft-state tuples. Recall from

Section2.5.1that arefreshoccurs when the same tuple is inserted into the table, resulting

in the extension of the tuple by its specified lifetime. These soft-state refreshes in turn lead

to cascaded refreshes, where previously derived soft-state tuples are rederived and hence

also refreshed. Unlike the maintenance of hard-state rules, cascaded deletions do not oc-

cur in soft-state rules. Instead, all derived soft-state tuples are stored for their specified

lifetimes and timeout in a manner consistent with traditional soft-state semantics.

2.7 Summary of Network Datalog

Given these preliminaries, we are now ready to presentNDlog. TheNDlog data model is

based on the relational model with the following constraints:

1. All NDlog relations are horizontally partitioned in the network based on the location

30

Chapter 2. The Network Datalog Language

specifier attribute.

2. One of theNDlog relations, denoted by#link(src,dst,...)represents the connectivity

information of the network being queried.

3. A NDlog relation is either a hard-state or soft-state relation depending on its lifetime.

A NDlog program is a Datalog program that satisfies the following syntactic con-

straints:

1. All predicates in anNDlog rule head or rule body have a location specifier attribute.

2. Any distributedNDlog rules in the program are link-restricted by some link relation.

3. A NDlog rule is either a hard-state or soft-state rule.

In addition, the results of executingNDlog rules are materialized for their table life-

times, and incrementally maintained as described in Section2.6.

2.7.1 Discussion

Interestingly,NDlog uses a somewhat more physical data model than the relational model,

and a correspondingly somewhat more physical language. The main reason for doing this

is to capture the essence of a network protocol – communication over links – in a way

that remains largely declarative, leaving significant latitude for a compiler to choose an im-

plementation of the specification. Note that most aspects of a program other than storage

location and communication pairs are left unspecified – this includes the order in which

tuples of a set are handled and the order in which predicates of a rule are considered. In ad-

dition, the need for partitioning via location specifiers and link restriction reflects low-level

networks. In principle, given a network implemented in this manner to achieve all-pairs

31

Chapter 2. The Network Datalog Language

communication, higher-level logic could be written without reference to locations or links.

This is a natural extension toNDlog, but since this dissertation focuses on networking, we

do not explore it further.

2.8 Summary

In this chapter, we formally defined theNDlog language. Our language is based on Datalog,

and we described the extensions to addressNDlog’s four main requirements ofdistributed

computation, link-restricted communication, support for soft-state data and rules, andin-

cremental maintenance of network state. All of these extensions have been motivated by

the distributed settings we target in declarative networking, which are a departure from the

environments in which traditional Datalog was used. In subsequent sections, we provide

two concrete instances of declarative networking, namelydeclarative routinganddeclara-

tive overlays, and also describe in detail howNDlog programs are processed and executed

to implement the network protocols.

32

Chapter 3

Declarative Routing

Having given an overview of theNDlog language, this chapter focuses ondeclarative rout-

ing: the declarative specification of routing protocols for building extensible routing infras-

tructures. Declarative networking aims to strike a better balance between the extensibility

and the robustness of a routing infrastructure. In addition to being a concise and flexible

language for routing protocols, we show thatNDlog is amenable to static analysis, making

it an attractive language for building safe, extensible routing infrastructures.

The chapter is organized as follows. First, we present the motivation of declarative rout-

ing in Section3.1. Next, we provide an overview of our execution model in Section3.2.

We illustrate the flexibility ofNDlog through several declarative routing examples in Sec-

tion 3.3. We then address the challenges of security in Section3.4, and route maintenance

under dynamic networks in Section3.5.

3.1 Motivation

Designing routing protocols is a difficult process. This is not only because of the distributed

nature and scale of the networks, but also because of the need to balance the extensibility

33

Chapter 3. Declarative Routing

and flexibility of these protocols on one hand, and their robustness and efficiency on the

other hand. One need look no further than the Internet for an illustration of these different

tradeoffs.

Today’s Internet routing protocols, while arguably robust and efficient, are hard to

change to accommodate the needs of new applications such as improved resilience and

higher throughput. Upgrading even a single router is hard[57]. Getting a distributed rout-

ing protocol implemented correctly is even harder. And in order to change or upgrade a

deployed routing protocol today, one must get access toeachrouter to modify its soft-

ware. This process is made even more tedious and error prone by the use of conventional

programming languages that were not designed with networking in mind.

Several solutions have been proposed to address the lack of flexibility and extensibility

in Internet routing. Overlay networks allow third parties to replace Internet routing with

new, “from-scratch” implementations of routing functionality that run at the application

layer. However, overlay networks simply move the problem from the network to the appli-

cation layer where third parties have control: implementing or updating an overlay routing

protocol still requires a complete protocol design and implementation, and requires access

to the overlay nodes.

On the other hand, a radically different approach,active networks[119], allows net-

work packets to modify the operation of networks by allowing routers to execute code

within active network packets. This allows new functionality to be introduced to existing

active networks without the need to have direct access to routers. However, due to the gen-

eral programming models proposed for active networks, they present difficulties in both

performance and the security and reliability of the resulting infrastructure.

In this chapter, we demonstrate that declarative routing provides a new point in this

design space that aims to strike a better balance between the extensibility and the robustness

of a routing infrastructure. With declarative routing, a routing protocol is implemented by

34

Chapter 3. Declarative Routing

writing a simpleNDlog program, which is then executed in a distributed fashion at some

or all of the nodes. Declarative routing can be viewed as a restrictive instantiation of active

networks which aims to balance the concerns of expressiveness, performance and security,

properties which are needed for an extensible routing infrastructure to succeed.

Declarative routing could evolve to be used in a variety of ways. One extreme view

of the future of routing is that individual end-users (or their applications) will explicitly

request routes with particular properties, by submitting route constructionNDlogprograms

to the network. The safety and simplicity of declarative specifications would clearly be

beneficial in that context. A more incremental view is that an administrator at an ISP

might reconfigure the ISP’s routers by issuing anNDlog program to the network; different

NDlogprograms would allow the administrator to easily implement various routing policies

between different nodes or different traffic classes. Even in this managed scenario, the

simplicity and safety of declarative routing has benefits over the current relatively fragile

approaches to upgrading routers. While this second scenario is arguably the more realistic

one, in this chapter, we consider the other extreme in which any node (including end-hosts)

can issue anNDlog program. We take this extreme position in order to explore the limits

of our design.

3.2 Execution Model

We model the routing infrastructure as a directed graph, where each link is associated with

a set of parameters (e.g., loss rate, available bandwidth, delay). The router nodes in the

routing infrastructure can either be IP routers or overlay nodes.

Figure 3.1 shows the architecture of a typical declarative router. Like a traditional

router, a declarative router maintains aneighbor table, which contains the set of neighbor

routers that this router can forward messages to, and aforwarding tablein the forward-

35

Chapter 3. Declarative Routing

Figure 3.1: A Declarative Router.

ing plane, that is used to route incoming packets based on their destination addresses to

neighboring nodes along a computed path path.

The forwarding table is created by the routing protocol that executes on thecontrol

planeof each router. Each routing protocol takes as input any updates to the local neighbor

table, and implements a distributed computation where routers exchange route information

with neighboring routers to compute new routes.

In a declarative router, a P2 runtime system runs on the control plane and takes as input

local routing information such as the neighbor table. Instead of running a single routing

protocol, the P2 system allows any routing protocols expressed inNDlog to be executed

in a distributed fashion in the network. The results of the program are used to establish

router forwarding state which the routers use for forwarding data packets. Alternatively,

36

Chapter 3. Declarative Routing

the computed results can be sent back to the party that issued theNDlog, which can use

these results to perform source routing. Note that while the P2 system is used on the control

plane in declarative routing, it can be used more generally on the forwarding plane as well,

as we demonstrate in Chapter6.

NDlog program dissemination and execution can happen in a variety of ways. In static

scenarios, the program may be “baked in” to another artifact –e.g., router firmware or

peer-to-peer application software that is bundled with the P2 system. More flexibly, the

program could be disseminated upon initial declaration to all or some of the nodes running

the P2 system. It may be sufficient to perform dissemination via flooding, particularly if

the program will be long-lived, amortizing the cost of the initial flood. As an optimization,

instead of flooding the program in the network, we can instead “piggy-back” dissemination

onto program execution: the program can be embedded into the first data tuple sent to each

neighboring node as part of executing theNDlogprogram.

This execution model is based on afully distributedimplementation, where routes are

computed in a decentralized fashion. As an alternative, in acentralizeddesign such as

the Routing Control Platform[44], network information is periodically gathered from the

routing infrastructure, and stored at one or more central servers. Each program is sent to

one or more of these servers, which process the programs using their internal databases and

set up the forwarding state at the routers in the network.

During the execution ofNDlog program, the neighbor table is periodically updated in

response to link failures, new links, or link metric changes. These updates are performed by

the routers themselves using standard mechanisms such as periodic pings. The P2 system

is then notified of updates to the neighbor table, and will incrementally recompute entries

into the forwarding table. In our discussion, this simple interface is the only interaction

required between the P2 system and the router’s core forwarding logic.

37

Chapter 3. Declarative Routing

3.3 Routing Protocols By Examples

To highlight the flexibility ofNDlog, we provide several examples of useful routing pro-

tocols expressed asNDlog rules. Our examples range from well-known routing protocols

(distance vector, dynamic source routing, multicast, etc.) to higher-level routing concepts

such as QoS constraints. This is by no means intended to be an exhaustive coverage of

the possibilities of our proposal. Our main goal here is to illustrate the natural connection

between recursive programs and network routing, and to highlight the flexibility, ease of

programming, and ease of reuse afforded by a declarative language. We demonstrate that

routing protocols can be expressed in a fewNDlog rules, and additional protocols can be

created by simple modifications).

3.3.1 Best-Path Routing

We start from the base rules sp1 and sp2 used in our firstShortest-Pathprogram from the

previous chapter. That example computesall-pairs shortest paths. In practice, a more com-

mon program would computeall-pairs best paths. By modifying rules sp2, sp3 and sp4,

the Best-Pathprogram in Figure3.2 generalizes the all-pairs shortest paths computation,

and computes the best paths for any path metricC:

bp1 path(@S,D,D,P,C) :- #link(@S,D,C), P=finit(S,D).

bp2 path(@S,D,Z,P,C) :- #link(@S,Z,C1), path(@Z,D,Z2,P2,C2),

. . C = f compute(C1,C2), P = fconcatPath(S,P2).

bp3 bestPathCost(@S,D,AGG<C>) :- path(@S,D,Z,P,C).

bp4 bestPath(@S,D,P,C) :- bestPathCost(@S,D,C), path(@S,D,Z,P,C).

Query bestPath(@S,D,P,C).

Figure 3.2: Best-Path Program.

38

Chapter 3. Declarative Routing

We have left the aggregation function(AGG) unspecified. By changingAGG and the

function f computeused for computing the path costC, theBest-Pathprogram can gener-

ate best paths based on Any metric including link latency, available bandwidth and node

load. For example, if the program is used for computing the shortest paths,f sumis the

appropriate replacement forf computein rule bpr1, andmin is the replacement forAGG.

The resulting bestPath tuples are stored at the source nodes, and are used by end-hosts to

perform source routing. Instead of computing the best path between any two nodes, this

program can be easily modified to computeall paths,anypath or theBest-kpaths between

any two nodes.

To avoid generating path cycles, we can add an extra predicatef inPath(P2,S)=falseto

rule bp2 to avoiding computing best paths with cycles (e.g., when computing the longest

latency paths). We can further extend the rules from theBest-Pathprogram by including

constraints that enforce a QoS requirement specified by end-hosts. For example, we can

restrict the set of paths to those with costs below a loss or latency thresholdk by adding an

extra constraintC¡k to the rules computingpath.

3.3.2 Distance-Vector Routing

dv1 hop(@S,D,D,C) :- #link(@S,D,C).

dv2 hop(@S,D,Z,C) :- #link(@S,Z,C1), hop(@Z,D,W,C2), C = fcompute(C1,C2).

dv3 bestHopCost(@S,D,AGG<C>) :- hop(@S,D,Z,C).

dv4 bestPathHop(@S,D,Z,C) :- hop(@S,D,Z,C),bestHopCost(@S,D,C).

Query bestPathHop(@S,D,Z,C).

Figure 3.3: Distance-Vector Program.

Figure3.3shows a program that expresses the distance vector protocol for customized

best routes for any given path metric. Rules dv1 and dv2 are modified from rulesbp1and

39

Chapter 3. Declarative Routing

bp2 from our previous example to generate thehop tuple that maintains only the next hop

on the path, and not the entire path vectorP itself1. Rules dv3 and dv4 are added to set up

routing state in the network:bestPathHop(@S,D,Z,C)is stored at nodeS, whereZ is the

next hop on the best path to nodeD.

The distance vector protocol has the count-to-infinity problem[92], where link failures

may result in long (sometimes infinite) protocol convergence times. By making a modi-

fication to rule dv2 and adding rule dv5, we can apply the well-knownsplit-horizon with

poison reverse[92] fix to this problem:

#include(dv1,dv3,dv4)

dv2 hop(@S,D,Z,C) :- #link(@S,Z,C1), hop(@Z,D,W,C2), C = C1 + C2, W != S.

dv5 hop(@S,D,Z,infinity):- #link(@S,Z,C1), hop(@Z,D,S,C2).

Query bestPathHop(@S,D,Z,C).

Figure 3.4: Distance-Vector Program with count-to-infinity fix in NDlog.

#includeis a macro used to include earlier rules. Rule dv2 expresses that if nodeZ

learns about the path toD from nodeS, then nodeZ does not report this path back to to

S. Rule dv5 expresses that if nodeZ receives a path tuple with destinationD from nodeS,

then nodeZ will send a path with destinationD and infinite cost to nodeS. This ensures

that nodeSwill not eventually useZ to get toD.

3.3.3 Policy-Based Routing

Our previous examples all illustrate a typical network-wide routing policy. In some cases

we may want to restrict the scope of routing,e.g., by precluding paths that involve “unde-

sirable” nodes. An example would be finding a path among nodes in an overlay network on

1The W field in dv2 represents the next-hop to nodeD from intermediate nodeZ, and can be
ignored by nodeS in computing its next hop to nodeD.

40

Chapter 3. Declarative Routing

PlanetLab that avoids nodes belonging to untruthful or flaky ISPs. Such policy constraints

can be simply expressed by adding an additional rule:

#include(bp1,bp2) pbr1 permitPath(@S,D,Z,P,C) :- path(@S,D,Z,P,C),

. . excludeNode(@S,W), finPath(P,W)=false.

Query permitPath(@S,D,P,C).

Figure 3.5: Policy-Based Routing Program.

In this program, we introduce an additional tableexcludeNode, whereexcludeNode(@S,W)

is a tuple that represents the fact that nodeSdoes not carry any traffic for nodeW. This table

is stored at each nodeS.

If rules bp1 and bp2 are included as rules, we can generate bestPath tuples that meet the

above policy. Other policy based decisions include ignoring the paths reported by selected

nodes or insisting that some paths have to pass through (or avoid) one or multiple pre-

determined set of nodes.

3.3.4 Dynamic Source Routing

All of our previous examples use what is calledright recursion, since the recursive pred-

icates (e.g., path in the rules sp2, bp2 and dv2) appears to the right of the matchinglink.

Given that predicates are executed in a left-to-right order, the program semantics do not

change if we flip the order ofpath and link in the body of these rules, but the execution

strategy does change. In fact, usingleft recursionas follows, we implement the Dynamic

Source Routing (dsr) protocol[64]:

Rule bp1 produces new one-hop paths from existing link tuples as before. Rule dsr2

matches the destination fields of newly computed path tuples with the source fields of link

tuples. This requires newly computed path tuples be shipped by their destination fields to

find matching links, hence ensuring that each source node will recursively follow the links

41

Chapter 3. Declarative Routing

#include(bp1,bp3,bp4)

dsr2 path(@S,D,Z,P,C) :- path(@S,Z,W,P1,C1), #link(@Z,D,C2),

. . C = f compute(C1,C2), P = fconcatPath(P1,D).

Query bestPath(@S,D,P,C).

Figure 3.6: Dynamic Source Routing Program.

along all reachable paths. Here, the functionf concatPath(P,D)returns a new path vector

with nodeD appended toP. These rules can also be used in combination with bpr1 and bpr2

to generate the best paths. By adding two extra rules not shown here, we can also express

the logic for sending each path on the reverse path from the destination to the source node.

3.3.5 Link State

To further illustrate the flexibility of our approach, we consider a link-state protocol that

moves route information around the network very differently from the best-path variants.

The following Link-Stateprogram expresses the flooding of links to all nodes in the net-

work:

ls1 floodLink(@S,S,D,C,S) :- #link(@S,D,C).

ls2 floodLink(@M,S,D,C,N) :- #link(@N,M,C1), floodLink(@N,S,D,C,W), M != W.

Query floodLink(@M,S,D,C,N)

Figure 3.7: Link-State Program.

floodLink(@M,S,D,C,N)is a tuple storing information about#link(@S,D,C). This tuple

is flooded in the network starting from source nodeS. During the flooding process, node

M is the current node it is flooded to, while nodeN is the node that forwarded this tuple to

nodeM.

42

Chapter 3. Declarative Routing

Rule ls1 generates afloodLink tuple for every link at each node. Rule ls2 states that

each nodeN that receives afloodLinktuple recursively forwards the tuple to all neighbors

M except the nodeW that it received the tuple from.NDlog is based on the relational model

that utilizes set computations, where duplicate tuples are not considered for computation

twice. This ensures that no similarfloodLinktuple is forwarded twice.

Once all the links are available at each node, a local version of theBest-Pathprogram in

Figure3.2 is then executed locally using thefloodLinktuples to generate all the best paths.

3.3.6 Multicast

The examples we have given so far support protocols for unicast routing. Here, we demon-

strate a more complex example, usingNDlog to construct a multicast dissemination tree

from a designated root node to multiple destination nodes that “subscribe” to the multicast

group. The followingSource-Specific-Multicastprogram sets up such a forwarding tree

rooted at a source nodea for groupgid:

#include(bp1,bp2,bp3,bp4)

m1 joinMessage(@I,N,P,S,G) :- joinGroup(@N,S,G), bestPath(@N,S,P1,C),

. . I = f head(P1), P = ftail(P1).

m2 joinMessage(@I,J,P,@S,G) :- joinMessage(@J,K,P1,S,G), I = fhead(P1),

. . P = f tail(P1), f isEmpty(P1) = false.

m3 forwardState(@I,@J,S,G) :- joinMessage(@I,J,P,S,G).

Query joinGroup(@N,a,gid)

Figure 3.8: Source-Specific-Multicast Program.

For simplicity of exposition, this program utilizes theBest-Pathprogram (rules bp1,

bp2, bp3, bp4) to compute the all-pairs best paths. We will discuss program optimiza-

43

Chapter 3. Declarative Routing

tion techniques to reduce the communication overhead for small multicast groups in Sec-

tion 8.1.2.

Each destination noden joins the groupgid with sourcea by issuing the programjoin-

Group(@n,a,gid). This results in the generation of the following derived tuples:

• joinMessage(@nodeID, prevNodeID, pathVector, source, gid). This tuple stores

the multicastjoin message for groupgid. It is sent by every destination node along

its best path to the@sourceaddress of the group. At each intermediate node with

addressnodeID, we keep track ofprevNodeID, which is the address of the node that

forwarded this tuple.pathVectoris the remaining path that this message needs to

traverse in order to reach the source node.

• forwardState(@nodeID, forwardNodeID, source, gid). This tuple represents source-

specific state of the multicast dissemination tree at each intermediate node with ad-

dressnodeID. If a message fromsourceof multicast groupgid is received atnodeID,

it is forwarded toforwardNodeID.

Rules m1 and m2 create thejoinMessagetuple at each participating destination nodeN,

and forward this tuple along the best path to the source nodeS. Upon receiving ajoinMes-

sagetuple, rule M3 allows each intermediate nodeI to set up the forwarding state using

the forwardState(@I,J,S,G)tuple. The predicate functionf head(P)returns the next node

in the path vectorP, andf tail(P) returns the path vectorP with the first node removed.

f isEmpty(P)returns true ifP is empty.

Instead of asource-specifictree, with minor modifications, we can constructcore-based

trees[13]. Here, each participating node sends ajoin message to a designatedcore node

to build a sharedtree rooted at the core. Messages are then unicast to the core, which

disseminates it using the shared tree.

44

Chapter 3. Declarative Routing

3.4 Security Issues

Security is a key concern with any extensible system[115; 22]. In the network domain,

this concern is best illustrated by active networks which, at the extreme, allow routers to

download and execute arbitrary code.

Our approach essentially proposesNDlogas a Domain Specific Language (DSL)[124]

for programming the control plane of a network. DSLs typically provide security benefits

by having restricted expressibility.NDlog is attractive in this respect, both because of its

strong theoretical foundations, and its practical aspects.NDlog rules written in the core2

The core Datalog language have polynomial time and space complexities in the size of the

input [6]. This property provides a natural bound on the resource consumption ofNDlog

programs.

However, many implementations ofNDlog (including our own) augment the core lan-

guage with various functions. Example of such functions are boolean predicates, arith-

metic functions, and string or list manipulation logic (e.g., f init, f concatPath, f inPath,

f isEmpty, f headandf tail). With the addition of arbitrary functions, the time complexity

of aNDlogprogram is no longer polynomial.

Fortunately, several powerful static tests have been developed to check for the termi-

nation of an augmented Datalog program on a given input[67]. In a nutshell, these tests

identify recursive definitions in the program rules, and check whether these definitions

terminate. Examples of recursive definitions that terminate are ones that evaluate mono-

tonically increasing/decreasing predicates whose values are upper/lower bounded.

TheNDlog rules that pass these checks are general enough to express a large class of

routing protocols. Thus, our augmentedNDlog language offers a good balance between

expressiveness and safety. We note that all the examples presented in this chapter pass such

2Such a “core” language does not contain predicates constructed using function symbols.

45

Chapter 3. Declarative Routing

termination tests.

In addition, the execution of the program is “sandboxed” within the program engine.

These properties prevent the program from accessing arbitrary router state such as in-flight

messages, and the router’s operating system state. As a result,NDlog eliminates many of

the risks usually associated with extensible systems.

Of course, there are many other security issues beyond the safety of theNDlog lan-

guage. Two examples are denial-of-service attacks and compromised routers. These prob-

lems are orthogonal to network extensibility, and we do not address them in this disserta-

tion. We revisit them as part of our future work in Section10.3.

3.5 Route Maintenance

During program execution, changes in the network might result in some of the computed

routes becoming stale. These can be caused by link failures, or changes in the link metrics

when these metrics are used in route computation. Ideally, the program should rapidly

recompute a new route, especially in the case of link failures.

One solution is to simply recompute the programs from scratch, either periodically

or driven by the party that has issued the programs. However, recomputing the program

from scratch is expensive, and if done only periodically, the time to react to failures is a

half-period on average.

The approach we employ in this dissertation is to utilize long-running orcontinuous

queries that incrementally recompute new results based on changes in the network. To

ensure incremental recomputations, all intermediate state of each program is retained in

the program processor until the program is no longer required. This intermediate state

includes any shipped tuples used in join computation, and any intermediate derived tuples.

As we discussed in Section3.2, each declarative router is responsible for detecting

46

Chapter 3. Declarative Routing

changes to its local information or base tables and reporting these changes to its local

program processor. These base tuple updates result in the addition of tuples into base

tables, or the replacement of existing base tuples that have the same unique key as the

update tuples. The continuous queries then utilize these updates and the intermediate state

of rule executions to incrementally recompute some of their derived tuples.

Figure 3.9: Derivation of alternative shortest path from node a to d when #link(@a,b,1) is

deleted.

To illustrate, consider theShortest-Pathprogram that we introduce in Chapter2. Fig-

ure3.9 shows a simple four node network where all four nodes are running theShortest-

Path program. l(@S,D,C), p(@S,D,Z,P,C)and sp(@S,D,P,C)abbreviateslink(@S,D,C),

path(@S,D,Z,P,C)andshortestPath(@S,D,P,C)respectively.

Prior to the link failure, we assume that all shortest paths between all pairs have been

computed. The figure shows the changes to the intermediate program states that led to the

derivation of a new shortest path from nodea to d when noded fails. For simplicity, we

show only the derived paths along the solid lines even though the network connectivity is

bidirectional (dashed lines). We denote an invalid path as one with infinite cost, although

in practice, they are deleted from thepath table. Whenl(@c,d,1)is deleted, the following

47

Chapter 3. Declarative Routing

steps are taken to derivesp(@a,d,[a,b,d],3):

1. When neighborc detects the failure of its link tod via a timeout, it generates an

updated base tuplel(@c,d,∞) locally. This replaces the previous tuplel(@c,d,1).

2. All one-hop paths at nodec that traverse throughd are set to infinite costs. For

example, nodec generatesp(@c,d,d,[c,d],∞).

3. p(@c,d,d,[c,d],∞) is joined with l(@a,c,1)to producep(@a,d,c,[a,c,d],∞) which is

sent to nodea.

4. Upon receivingp(@a,d,c[a,c,d],∞), nodea computes a new shortest

pathsp(@a,d,[a,b,d],3).

In this example, since we are computing the entire path vector, we can check for po-

tential cycles. The failure is propagated hop-by-hop. Hence, the time taken for any update

to converge is proportional to the network diameter, and bounded by the time it takes for a

program to be executed from scratch.

Updates to link costs are handled in a similar fashion, except that rather than setting the

costs to infinity, they are recomputed based on the new link costs. The updated paths may

trigger further computation. For example, when the cost of paths are changed, rules bpr1

and bpr2 of theBest-Pathprogram will generate alternative best paths accordingly.

In Chapter5, we revisit in detail the processing of continuous queries using both hard-

state and soft-state incremental view maintenance techniques[54].

3.6 Summary

In this chapter, we motivated declarative routing, as a means to permit flexible routing over

the Internet. Through several examples, we demonstrate that theNDlog language is natural

48

Chapter 3. Declarative Routing

for expressing a wide variety of network routing protocols. Interestingly, we show that two

important routing protocols (dynamic source routing and path vector protocols) differ only

in the order in which predicates are evaluated. In Chapter7 we measure the performance of

declarative routing protocols such as theBest-Pathprogram and validate that the scalability

trends are similar to that of traditional approaches.

In the next two chapters, we describe howNDlog programs can be compiled into exe-

cution plans and executed using the P2 system to implement the routing protocols.

49

Chapter 4

P2 System Overview

Having presented a variety of declarative routing protocols usingNDlog, in the next two

chapters, we describe howNDlogprograms can be compiled and executed to implement the

network protocols. This chapter primarily focus on providing an overview of the P2 sys-

tem, while the next chapter will focus specifically on the system component that processes

NDlog programs. In Section4.1, we present the architectural overview of the P2 declara-

tive networking system and its different components. We then describe in Section4.3 the

runtime dataflow engine of P2 and compare P2 with alternative dataflow-based systems.

In Section4.4, we describe how network state is stored and managed as tables in the P2

system.

4.1 Architecture of P2

Figure4.1 shows the architecture of the P2 declarative networking system from the per-

spective of a single node. There are three main components: theplanner, the dataflow

installer and thedataflow engine. The P2 system utilizes a dataflow framework at runtime

for maintaining network state. P2 dataflows are similar to database query plans, which con-

50

Chapter 4. P2 System Overview

Figure 4.1: Components of a single P2 node.

sists of graphs that connect various database “operators” with dataflow edges that represent

the passing of tuples among operators, possibly across a network.

To implement a network protocol, the planner takes as input the network specification

expressed as aNDlog program, which is compiled into a dataflow graph. As an alternative

to NDlog, the P2 system also provides a Python-based[95] scripting language that allows

programmers to “hand-wire” dataflow graphs directly as input to the dataflow installer.

In order to disseminateNDlog programs throughout a network, the P2 runtime system

provides simple mechanisms for each node to send inputNDlogprograms by flooding to its

neighbors. When a dataflow is installed, all the requiredlocal tablesand indices necessary

for the program are also created. Indices are created for every table’s primary key, and

51

Chapter 4. P2 System Overview

additional indices are constructed on any table columns that are involved in unification

(relational join). Once installed, dataflows are executed by the runtime engine until they

are canceled.

The execution of the dataflow graph results in the implementation of the network pro-

tocol itself. The dataflow graph is registered locally at each node’s dataflow engine via a

dataflow installer. Each local dataflow participates in a global,distributeddataflow, with

messages flowing among dataflows executed at different nodes, resulting in updates to the

network state used by the network protocol. The distributed dataflow when executed per-

forms the operations of a network protocol. The local tables store the state of the network

protocols, and the flow of messages entering and leaving the dataflow constitute the net-

work messages generated by the executing protocol.

4.2 P2 Dataflow Engine

The dataflow engine of P2 was inspired by prior work in both databases and networking.

Software dataflow architectures like P2 occupy a constrained but surprisingly rich design

space that has been explored in a variety of contexts1. Dataflow graphs have been used pre-

viously by parallel and distributed database query systems like Gamma[38], Volcano[51]

and PIER[59] as their basic query executables.

The use of the dataflow framework has recently been explored in related work on ex-

tensible networks. For example, software router toolkits like Scout[87], Click [65] and

XORP[56] in recent years have demonstrated that network message handling and protocol

implementation can be neatly factored into dataflow diagrams. We adopt the Click term

elementfor a node in a P2 dataflow graph, but as in database query plans, each edge in the

1There is also a rich hardware dataflow tradition in Computer Architecture (e.g.,[91; 125]), with its own
terminology and points of reference. For brevity, we do not consider those systems here, and when we refer
to dataflow architectures, we limit our discussion to software dataflow.

52

Chapter 4. P2 System Overview

Figure 4.2: P2 Dataflow example at a single node.

graph carries a stream of well structured tuples, rather than annotated IP packets. Note that

while all tuples flowing on a single edge share a structure (schema), tuples on one edge

may have very different structure than tuples on another – this is a significant distinction

with the uniform IP packets of Click.

Figure4.2shows an example of a P2 dataflow being executed at a single node. At the

edges of the dataflow, we have a chain of network packet processing elements (encapsulated

in the figure asNetwork-InandNetwork-Out) that are used to process incoming and outgo-

ing messages respectively. Figure4.3shows an example implementation of the networking-

related elements. Both theNetwork-InandNetwork-Outportion of the dataflow comprise a

longer sequence of network-related elements that implement functionality for sending and

receiving messages (UDP-Tx andUDP-Rx), and may also perform reliable transmission

(RetryandAck), and congestion control (CC-Tx andCC-Rxelements). These elements

can be dynamically adapted (reordered, added or removed from the dataflow) based on the

53

Chapter 4. P2 System Overview

Figure 4.3: Example of expanded Network-In and Network-Out elements.

requirements of the declarative network (see[122]).

Messages that arrive into the dataflow are buffered using queues, and demultiplexed

(using theDemuxelement) via the relation name of each tuple intostrands, and then dupli-

cated (using theDup element) into multiple strands that require input from the same rela-

tion. The strands are directly compiled from ourNDlog rules and implement the “logic” of

the network. Each strand consists of a chain of elements implementing relational database

operators like joins, selections, projections and aggregations. The use of joins is endemic

to P2 because of our choice ofNDlog: the unification (matching) of variables in the body

of a rule is implemented in a dataflow by an equality-based relational join (equijoin). As

shown in Figure4.2, these strands take as input tuples that arrive via the network (output

from theDupelement), local table updates (directly from the local tables) or local periodi-

cally generated events. The execution of strands either results in local table updates, or the

sending of message tuples.

On the other side of the graph (shown as theNetwork-Outelements), message tuples

are merged by aMux element, queued and then sent based on their network destinations.

Remote tuples are sent via an output queue to the network stack to be packetized, mar-

shaled, and buffered by P2’s UDP transport, while tuples destined for local consumption

are “wrapped around” to theNetwork-Inelement and queued along with other input tuples

54

Chapter 4. P2 System Overview

arriving over the network.

In the P2 runtime, theNetwork-InandNetwork-Outelements can be shared by multiple

overlays that are running concurrently. The P2 system will compile them into a single

dataflow for execution, where theNetwork-InandNetwork-Outelements will be shared

among the different overlays.

4.3 Dataflow Framework Implementation

We based our design in large part on our side-by-side comparison between the PIER peer-

to-peer query engine[59] and the Click router[65]. Like PIER, P2 can manage structured

data tuples flowing through a broad range of query processing operators, which may accu-

mulate significant state and perform substantial asynchronous processing. Like Click, P2

stresses high-performance transfers of data units, as well as dataflow elements with both

“push” and “pull” modalities. P2 differs at its core from both PIER and Click, but subsumes

many of the architectural features of both.

As in Click, nodes in a P2 dataflow graph can be chosen from a set of C++ objects

calledelements. In database systems these are often calledoperators, since they derive

from logical operators in the relational algebra. Although they perform a similar function,

P2 elements are typically smaller and more numerous than database operators. Unlike

textbook database query plans, P2 graphs need not be trees; indeed we make heavy use

of cyclic dataflow for the recursive queries that occur frequently when querying graph

structures.

Elements have some number of input and outputports. An arc in the dataflow graph

is represented by a binding between an output port on one element and an input port on

another. Tuples arrive at the element on input ports, and elements emit tuples from their

output ports. An input port of one element must be connected to an output port of another.

55

Chapter 4. P2 System Overview

Handoff of a tuple between two P2 elements takes one of two forms,pushor pull, deter-

mined when the elements are configured into a graph. In a push handoff, the source element

invokes a virtual method on the destination, passing the tuple on the call stack, while in a

pull handoff the destination calls the source requesting the tuple, which is returned as the

result of the call. We return to the choice of connection types at the end of this section.

While P2 resembles Click in its use of push and pull elements, the implementation

of dataflow elements in P2 differs from Click in significant ways, as a result of different

requirements.

First, the common case in a router is that a packet traverses a single path through the

dataflow graph. Consequently Click implements copy-on-write for packets that must be

modified (for example, to implement multicast). This has the additional benefit of very

lightweight hand-offs of packets between elements – throughput is of primary concern in

Click, and inter-element handoff is simply pointer passing through a virtual function call.

In contrast, the dataflow graphs that the P2 planner generates fromNDlog specifica-

tions have many more branching points and tuples can traverse more than one path. For

example, a tuple might be stored in a table but also forwarded to another element as an

event notification.

Second, P2 passes tuples, not packets. Elements in P2 implement database relational

operators as well as standard packet routing functions, which means flows frequently block

and unblock. In Click, a flow event is typically initiated by a packet arriving over the

network, queues rarely block when full (instead, they implement an explicit drop policy

as in most other routers), and consequently Click’s design can process packets efficiently

using only event-driven scheduling of dataflow, together with “active elements,” invoked

periodically by the Click scheduler.

In contrast, not only do P2 dataflow graphs tend to branch more, but tuples are fre-

quently generated inside the dataflow graph in response to the arrival of other tuples – most

56

Chapter 4. P2 System Overview

commonly during equijoin operations, which are fundamental toNDlog’s rule constructs.

Furthermore, the consequences of dropping tuples due to queue overflow in P2 are

much more undesirable than the dropping of a packet in a router under high load. Many

queue elements in P2 dataflow graphs therefore “block” when full or empty, and a low-

latency mechanism is required for restarting a particular dataflow when new tuples arrive

or space becomes available.

P2 therefore implements a simple signaling facility to allow elements to restart flows

they have previously blocked. An extra argument to each “push” or “pull” invocation be-

tween elements specifies a callback (in effect, a continuation) to be invoked at some later

stageif and only if the dataflow has been stalled as a result of the call.

For a “pull” transition, if the pull call returns no tuple then there is no data available.

When a tuple does become available, the callback previously passed with the pull is in-

voked. This call will typically happen as part of a push transition into the source element

(e.g., in the case of equijoins) or the passage of time (e.g., in a rate limiter), and the re-

cipient of the callback will generally schedule a deferred procedure call to retry the pull as

soon as possible.

“Push” transitions operate slightly differently, since the coupling of control flow and

dataflow means that the destination of a push has to accept the tuple – if it did not, any state

operations that occurred previously in the dataflow chain would have to be undone. As a

result, push calls are always assumed to succeed, and return a boolean indicating whether

it is acceptable to call pushagain. If not, the callback will be invoked at some later stage

as with pull.

The use of callbacks in this way removes from the element implementation itself any

scheduling decisions, while imposing a minimum of policy. P2’s transitions are not as

efficient as Click’s but are still very fast – most take about 50 machine instructions on an

IA32 processor, or 75 if the callback is invoked.

57

Chapter 4. P2 System Overview

4.3.1 Dataflow elements

This section gives a brief overview of the suite of dataflow elements implemented in P2. To

start with, P2 provides the relational operators found in most database systems, as well as

query processors like PIER[59]: selection, projection, streaming relational join operations

such as pipelined hash-joins[127], “group-by,” and various aggregation functions. Since

one of our motivations in designing P2 was to investigate the applicability of the dataflow

element model for distributed computing, we have tried to push as much functionality of

the system as possible into dataflow elements.

One example of this is in P2’s networking stack. Systems like PIER[59] abstract details

of transport protocols, message formats, marshaling, etc., away from the dataflow frame-

work, and operators only deal with fully unmarshaled tuples. In contrast, P2 explicitly

uses the dataflow model to chain together separate elements responsible for socket han-

dling, packet scheduling, congestion control, reliable transmission, data serialization, and

dispatch (see[122]).

A variety of elements form a bridge between the dataflow graph and persistent state in

the form of stored tables. P2 has elements that store incoming tuples in tables, lookup ele-

ments that can iteratively emit all tuples in a table matching a search filter, and aggregation

elements that maintain an up-to-date aggregate (such as max, min, count, etc.) on a table

and emit it whenever it changes. Tables are frequently shared between elements, though

some elements generate their own private tables. For example, the element responsible for

eliminating duplicate results in a dataflow uses a table to keep track of what it has seen

so far. Like Click, P2 includes a collection of general-purpose “glue” elements, such as a

queue, a multiplexer, a round-robin scheduler (which, when pulled, pulls tuples from its

inputs in order), etc. Finally, for debugging purposes, print elements that can be inserted to

“watch” tuples based on table name (specified via a special “watch(tableName)” statement

within theNDlogprogram) entering and leaving the dataflow.

58

Chapter 4. P2 System Overview

It is quite simple to add new elements to the collection provided by P2, but at present

the planner is not yet designed to be easily extensible. To use a new element class, one

must either “hand-wire” dataflow diagrams as in Click[65] and PIER[59], or modify the

planner to translateNDlog into dataflows that use the new element.

4.4 Network State Storage and Management

Network state is stored intables, which contain tuples with expiry times and size constraints

that are declaratively specified at table creation time as described in Chapter2. Duplicate

entries (tuples) are allowed in tables, and the mechanisms for maintaining these duplicates

differ based on whether they are hard-state or soft-state tables as defined in Chapter2. In

hard-statetables, a derivation count is maintained for each unique tuple, and each tuple is

deleted when its count reaches zero. Insoft-statetables, each unique tuple has an associ-

ated lifetime that is set based on the specified expiration of its table during creation time.

Duplicates result in extension of tuple lifetime, and each tuple is deleted upon expiration

based on its lifetime. We enforce the lifetimes of soft-state tuples by purging the soft-state

tables of any expired tuples whenever they are accessed. Tables are named using unique

IDs, and consequently can be shared between different queries and/or dataflow elements.

As basic data types, P2 usesValues, andTuples. A Valueis a reference-counted object

used to pass around any scalar item in the system;Value types include strings, integers,

timestamps, and large unique identifiers. TheValueclass, together with the rules for con-

verting between the various value types, constitute the concrete type system of P2. ATuple

is a vector ofValues, and is the basic unit of data transfer in P2. Dataflow elements, de-

scribed below, pass tuples between them, and tables hold sets of tuples.

Queries over tables can be specified by filters, providing an expressivity roughly equiv-

alent to a traditional database query over a single table. In-memory indices (implemented

59

Chapter 4. P2 System Overview

using standard hash tables) can be attached to attributes of tables to enable quick equality

lookups. Note that the table implementation – including associated indices – is a node-local

construct.

The current in-memory implementation serves our requirements for implementing the

networks discussed in this dissertation, all of which tend to view their routing tables as

soft-state. Our event-driven, run-to-completion model obviates the need for locking or

transaction support in our application, and relatively simple indices suffice to meet our

performance requirements. In the future, there is clearly scope for table implementations

that use stable storage for persistent data placement, or that wrap an existing relational

database implementation.

4.5 Summary

In this chapter, we presented an overview of the P2 declarative networking system, with

an emphasis on its architecture, various components (planner, dataflow installer, dataflow

engine), dataflow framework and network state management. In the next chapter, we will

describe theplannercomponent in greater detail, and describe howNDlog programs can

be compiled into dataflow-based execution plans to implement the network protocols using

the P2 dataflow engine.

60

Chapter 5

Processing NDlog Programs

One of the main challenges of using a declarative language is to ensure that the declarative

specifications, when compiled and executed, result in correct and efficient implementa-

tions that are faithful to the program specifications. This is particularly challenging in a

distributed context, where asynchronous messaging and the unannounced failure of partic-

ipants make it hard to reason about the flow of data and events in the system as a whole. In

this chapter, we address this challenge by describing the steps required for the P2 planner

to automatically and correctly generate execution plans from theNDlog rules.

The chapter is organized as follows. In Section5.1, we describe the steps required to

generate execution plans for a centralized Datalog program in the P2 system using standard

recursive query processing techniques. We then extend the centralized techniques to exe-

cute distributedNDlog rules in Section5.2. Based on the distributed execution plans, we

motivate, propose and prove correct in Section5.3 pipelined query evaluation techniques

that are necessary for efficiency in the distributed settings. In Section5.4, we discuss how

we can ensure correct semantics of long-runningNDlog programs in dynamic networks

using incremental view maintenance techniques. In Section5.5, we build upon all of the

above techniques for processing distributedsoft-staterules, which can gracefully tolerate

61

Chapter 5. Processing NDlog Programs

failures and lost messages.

5.1 Centralized Plan Generation

In this section, we describe the steps required to generate execution plans of a centralized

Datalog program in the P2 system. We utilize thesemi-näıve [11; 12; 15] fixpoint evalua-

tion mechanism, which is the standard method used to evaluate Datalog programs correctly

with no redundant computations. We provide a high-level overview of semi-naı̈ve evalua-

tion (SN), and then use theShortest-Pathprogram (Figure2.4 in Chapter2) as an example

to demonstrate how SN is achieved in the P2 system.

5.1.1 Semi-näıve Evaluation

The first step in SN is thesemi-näıve rewrite, where each datalog rule is rewritten to gen-

erate a number ofdelta rulesto be evaluated. Consider the following rule:

p :−p1, p2, ..., pn,b1,b2, ...,bm. (5.1)

p1, ..., pn arederived predicatesandb1, ...,bm arebase predicates. Derived predicates refer

to intensional relations that are derived during rule execution. Base predicates refer to

extensional (stored) relations whose values are not changed during rule execution. TheSN

rewrite generates ndelta rules, one for each derived predicate, where thekth delta rule has

the form1:

4pnew :−pold
1 , ..., pold

k−1,4pold
k , pk+1, ..., pn,b1,b2, ...,bm. (5.2)

1These delta rules are logically equivalent to rules of the form4pnew
j :- p1, p2, ..., pk−1,4pold

k ,pk+1, ...,
pn,b1,b2, ...,bm, and have the advantage of avoiding redundant inferences within each iteration.

62

Chapter 5. Processing NDlog Programs

In each delta rule,4pold
k is thedelta predicate, and refers topk tuples generated for the

first time in the previous iteration.pold
k refers to allpk tuples generated before the previous

iteration. For example, the following rule r2-1 is the delta rule for the recursive rule r2 from

the Datalog program shown in Figure2.1from Chapter2:

r2−14pathnew(S,D,Z,C) :−#link(S,Z,C1),4pathold(Z,D,Z2,C2),C = C1+C2.

(5.3)

The only derived predicate in rule r2 ispath, and hence, one delta rule is generated.

All the delta rules generated from the rewrite are then executed in synchronous rounds

(or iterations) of computation, where input tuples computed in the previous iteration of a

recursive rule execution are used as input in the current iteration to compute new tuples.

Any new tuples that are generated for the first time in the current iteration are then used as

input to the next iteration. This is repeated until a fixpoint is achieved (i.e., no new tuples

are produced).

Algorithm 5.1summarizes the basic semi-naı̈ve evaluation used to execute these rules

in the P2 system. In this algorithm, P2 maintains a buffer for each delta rule, denoted byBk.

This buffer is used to storepk tuples generated in the previous iteration (4pold
k). Initially,

pk, pold
k ,4pold

k and4pnew
k are empty. As a base case, we execute all the rules to generate

the initial pk tuples, which are inserted into the correspondingBk buffers. Each iteration of

the while loop consists of flushing all existing4pold
k tuples fromBk and executing all the

delta rules to generate4pnew
j tuples, which are used to updatepold

j , B j andp j accordingly.

Note that only newp j tuples generated in the current iteration are inserted intoB j for use

in the next iteration. Fixpoint is reached when all buffers are empty.

63

Chapter 5. Processing NDlog Programs

Algorithm 5.1 Semi-näıve Evaluation in P2

execute all rules
foreach derived predicate pk

Bk← pk

end
while ∃Bk.size> 0

∀Bk where Bk.size> 0,4pold
k ← Bk. f lush()

execute all delta rules
foreach derived predicate p j

pold
j ← pold

j ∪4pold
j

B j ←4pnew
j − pold

j

p j ← pold
j ∪B j

4pnew
j ← /0

end
end

5.1.2 Dataflow Generation

Algorithm 5.1 requires executing the delta rules at every iteration. These delta rules are

each compiled into an execution plan, which is in the form of a P2 dataflowstrand, using

the conventions of the P2 dataflow framework described in Chapter4. Each dataflow strand

implements a delta rule via a chain of relational operators. In the rest of this chapter, we

refer to the dataflow strand for each delta rule as arule strand.

For each delta rule, each rule strand takes as input itsdelta predicate(prepended with

4). This input is then used as input to the strand which implements a sequence of elements

implementing relational equijoins. Since tables are implemented as main-memory data

structures with local indices over them, tuples from the stream are pushed into an equijoin

element, and all matches in the table are found via an index lookup.

After the translation of the equijoins in a rule, the planner creates elements for any

selection filters, which evaluate the selection predicate over each tuple, dropping those for

which the result is false. In some cases, we can optimize the dataflow to push a selection

64

Chapter 5. Processing NDlog Programs

upstream of an equijoin, to limit the state and work in the equijoin, following traditional

database rules on the commutativity of join and selection.

Aggregate operations likemin or count are translated after equijoins and selections,

since they operate on fields in the rule head. Aggregate elements generally hold internal

state, and when a new tuple arrives, compute the aggregate incrementally. The final part

of translating each rule is the addition of a “projection” element that constructs a tuple

matching the head of the rule.

r2-14pathnew(S,D,Z,C) :- #link(S,Z,C1),4pathold(Z,D,Z2,C2), C = C1 + C2.

Figure 5.1: Rule strand for delta rule r2-1 in P2.

Figure5.1shows the dataflow realization for delta rule r2-1. We repeat the rule above

the dataflow for convenience. The example rule strand receives new4pathold tuples gen-

erated in the previous iteration to generate new paths (4pathnew) which are then “wrapped-

around” and inserted into thepathtable (with duplicate elimination) for further processing

in the next iteration. In effect, semi-naı̈ve evaluation achieves the computation of paths in

synchronous rounds of increasing hop counts, where paths that have been previously in the

previous round are used to generate new paths in the next iteration.

65

Chapter 5. Processing NDlog Programs

5.2 Distributed Plan Generation

In this section, we demonstrate the steps required to generate the execution plans for dis-

tributedNDlog rules. In Chapter2, we introduced the concept of distributedNDlog rules,

where the rule body predicates have different location specifiers. These distributed rules

cannot be executed at a single node, since the tuples that must be joined are situated at

different nodes in the network. Prior to the SN rewrite step, an additionallocalization

rewrite step ensures that all body predicates for tuples to be joined are at the same node.

After applying the localization rewrite to all distributed rules, all localized rules will have

rule bodies that are locally computable and hence can be processed in a similar fashion as

centralized Datalog rules.

sp2 path(@S,D,Z,P,C) :- #link(@S,Z,C1), path(@Z,D,Z2,P2,C2), C = C1 + C2,

. . P = f concatPath(S,P2).

Figure 5.2: Logical query plan for distributed rule sp2 shown above the figure.

66

Chapter 5. Processing NDlog Programs

5.2.1 Localization Rewrite

To provide a high-level intuition for the localization rewrite, we consider the distributed

rule sp2 from theShortest-Pathprogram presented in Chapter2. This rule is distributed

because thelink and path predicates in the rule body have different location specifiers,

but are joined by a common “Z” field. Figure5.2 shows the corresponding logical query

plan depicting the distributed join. The clouds represent an “exchange”-like operator[51]

that forwards tuples from one network node to another; clouds are labeled with the link

attribute that determines the tuple’s recipient. The first cloud (#link.@Z) sends link tu-

ples to the neighbor nodes indicated by their destination address fields. The second cloud

(path.@S) transmits newpathtuples computed from the join for further processing, setting

the recipient according to the source address field.

Based on the above distributed join, rule sp2 can be rewritten into the following two

rules. Note that all predicates in the body of sp2a have the same location specifiers; the

same is true of sp2b. SincelinkD is derived from the materialized table#link, we need to

also declarelinkD via thematerializestatement, and set its lifetime and size parameters to

be the same as that of the#link table.

materialize(linkD,infinity,infinity,1,2).

sp2a linkD(S,@Z,C) :- #link(@S,Z,C).

sp2b path(@S,D,Z,P,C) :- #link(@Z,S,C3),linkD(S,@Z,C1),path(@Z,D,Z2,P2,C2),

. . C = C1 + C2, P = fconcatPath(S,P2).

Figure 5.3: Localized rules for distributed rule sp2.

The rewrite is achievable because thelink andpath predicates, although at different

locations, share a common join address field. In Algorithm5.2, we summarize the general

rewrite technique for an input set of link-restricted rules R. In the pseudocode, for sim-

plicity, we assume that the location specifiers of all the body predicates are sorted (@S

67

Chapter 5. Processing NDlog Programs

followed by @D); this can be done as a preprocessing step. The algorithm as presented

here assumes that all links are bidirectional, and may add a#link(@D,S)to a rewritten rule

to allow for backward propagation of messages. If links are not bidirectional, this means

that distributed rules whose rewritten rules require the backward propagation of messages

along#link(@D,S)cannot be localized; this can be syntactically checked at the time of

parsing. From this point on we assume bidirectional links in our discussion.

Algorithm 5.2 Rule Localization Rewrite for Link-Restricted Rules

proc RuleLocalization(R)
while ∃ rule r ∈ R: h(@L, ...) :−#link(@S,D,...), p1(@S,..),..,p i(@S,...),

p i+1(@D,...),..,pn(@D,..)
R.remove(r)
R.add(hD(S,@D, ..) :−#link(@S,D,..),..,p i(@S,..).)
if @L = @D

then R.add(h(@D,..) :- hD(S,@D,..), p i+1(@D,..),.., pn(@D,..).)
elseR.add(h(@S,..) :- #link(@D,S), hD(,@D..), p i+1(@D,..),.., pn(@D,..).)

Observation 5.1 Every link-restrictedNDlogprogram, when rewritten using Algorithm5.2,

produces an equivalent program where the following holds:

1. The body of each rule can be evaluated at a single node.

2. The communication required to evaluate a rule is limited to sending derived tuples

over links that exists in a link relation.

The equivalence statement in the above observation can be easily shown, by examining

the simple factoring of each removed rule into two parts. The remainder of the observation

can be verified syntactically in the added rules in Algorithm5.2.

68

Chapter 5. Processing NDlog Programs

sp2a4linkDnew(S,@Z,C) :-4#linkold(@S,Z,C).

sp2b-14pathnew(@S,D,Z,P,C) :- #link(@Z,S,C3), linkD(S,@Z,C1),

. . 4pathold(@Z,D,Z2,P2,C2), C = C1 + C2,

. . P = f concatPath(S,P2).

sp2b-24pathnew(@S,D,Z,P,C) :- #link(@Z,S,C3),4linkDold(S,@Z,C1),

. . path(@Z,D,Z2,P2,C2), C = C1 + C2,

. . P = f concatPath(S,P2).

Figure 5.4: Delta rules and compiled rule strands for localized rules sp2a and sp2b.

5.2.2 Distributed Dataflow Generation

After rule localization, the SN rewrite described in Section5.1.1is used to generate delta

rules that are compiled into rule strands. In Figure5.4, we provide an example of the delta

rules and compiled rule strands for the localized rules sp2a and sp2b shown in Figure5.3.

In addition to creating the relational operations described in the previous section on

rule strand generation, the planner also constructs the other portions of the dataflow graph

in order to support distribution: the network processing elements which includes multiplex-

ing and demultiplexing tuples, marshaling, unmarshaling and congestion control. As with

Click, it also inserts explicit queue elements where there is a push/pull mismatch between

two elements that need to be connected.

For simplicity, we represent the network packet processing, demultiplexing and mul-

tiplexing elements described in Section4.2 asNetwork-InandNetwork-Outblocks in the

69

Chapter 5. Processing NDlog Programs

figure, and only show the elements for the rule strands. Unlike the centralized strand in

Figure5.1, there are now three rule strands. The extra two strands (sp2a@S and sp2b-

2@Z) are used as follows. Rule strand sp2a@S sends all existing links to the destination

address field aslinkD tuples. Rule strand sp2b-2@Z takes the newlinkD tuples it received

via the network, stores them using theInsert element. Each newlinkD tuple (with duplicate

elimination) is then used to perform a join operation with the localpath table to generate

new paths.

5.3 Relaxing Semi-näıve Evaluation

In our distributed implementation, the execution of rule strands can depend on tuples arriv-

ing via the network, and can also result in new tuples being sent over the network. Tradi-

tional SN completely evaluates all rules on a given set of facts,i.e., completes theiteration,

before considering any new facts. In a distributed execution environment where messages

can be delayed or lost, the completion of an iteration in the traditional sense can only be

detected by a consensus computation across multiple nodes, which is prohibitively expen-

sive. Further, the requirement that many nodes complete the iteration together (a “barrier

synchronization” in parallel computing terminology) limits parallelism significantly by re-

stricting the rate of progress to that of the slowest node.

We address this by making the notion of iteration local to a node. New facts might

be generated through local rule execution, or might be received from another node while a

local iteration is in progress. We propose and prove correct two variations of SN iteration to

handle this situation:buffered SN(BSN) andpipelined semi-naive(PSN). Both approaches

extend SN to work in an asynchronous distributed setting, while generating the same results

as SN. We further prove that these techniques avoid duplicate inferences, which would

otherwise result in generating unnecessary network messages.

70

Chapter 5. Processing NDlog Programs

5.3.1 Buffered Semi-näıve Evaluation

Buffered SN(BSN) is the standard SN algorithm described in Algorithm5.1 with the fol-

lowing modifications: a node can start a local SN iteration at any time its localBk buffers are

non-empty. Tuples arriving over the network while an iteration is in progress are buffered

for processing in the next iteration.

By relaxing the need to run an iteration to global completion, BSN relaxes SN sub-

stantially, by allowing a tuple from a traditional SN iteration to be buffered arbitrarily, and

handled in some future iteration of our choice. Consequently, BSN may generate fewer

tuples per iteration, but all results will eventually be generated. We observe that since BSN

uses the basic SN algorithm, BSN generates the same results as SN.

The flexibility offered by BSN on when to process a tuple could also be valuable outside

the network setting,e.g., a disk-based hash join could accumulate certain tuples across

iterations, spill them to disk in value-based partitions, and process them in value batches,

rather than in order of iteration number. Similar arguments for buffering apply to other

query processing tricks: achieving locality in B-tree lookups, improving run-lengths in

tournament sorts, etc.

5.3.2 Pipelined Semi-näıve Evaluation

As an alternative to BSN,pipelined SN(PSN) relaxes SN to the extreme of processing

each tuple as it is received. This provides opportunities for additional optimizations on a

per-tuple basis, at the potential cost of batch, set-oriented optimizations of local process-

ing. New tuples that are generated from the SN rules, as well as tuples received from

other nodes, are used immediately to compute tuples without waiting for the current (local)

iteration to complete.

71

Chapter 5. Processing NDlog Programs

Algorithm 5.3 Pipelined SN (PSN) Evaluation.

execute all rules
foreach tk ∈ derived predicate pk

tk.T← current time()
Bk← tk

end
while ∃Qk.size> 0

told,i
k ←Qk.dequeueTuple()
foreach delta rule execution

4pnew,i+1
j :−p1, p2, ..., pk−1, t

old,i
k , pk+1, .., pn,b1,b2, ...,bm,

told,i .T ≥ p1.T, told,i .T ≥ p2.T, ..., told,i .T ≥ pk−1.T, told,i .T ≥ pk+1.T, ...,
told,i .T ≥ pn.T, told,i .T ≥ b1.T., told,i .T ≥ b2.T, ..., told,i .T ≥ bm.T

foreach tnew,i+1
j ∈4pnew,i+1

j

if tnew,i+1
j /∈ p j

then p j ← p j ∪ tnew,i+1
j

tnew,i+1
j .T← current time()

Q j .enqueueTuple(tnew,i+1
j)

Algorithm 5.3shows the pseudocode for PSN. In PSN, thekth delta rule is of the form:

pnew,i+1
j :−p1, .., pk−1, t

old,i
k , pk+1, .., pn,b1,b2, ...,bm. (5.4)

Each tuple, denotedt, has a superscript (old/new, i) wherei is its corresponding iteration

number in SN. Each processing step in PSN consists of dequeuing a tupletold,i
k from Qk

and then using it as input into all corresponding rule strands. Each resultingtnew,i+1
j tuple is

pipelined, stored in its respectivep j table (if a copy is not already there), and enqueued into

Q j for further processing. Note that in a distributed implementation,Q j can be a queue on

another node, and the node that receives the new tuple can immediately process the tuple

after the enqueue intoQ j . For example, the dataflow in Figure5.4is based on a distributed

implementation of PSN, where incomingpath and linkD tuples received via the network

are stored locally, and enqueued for processing in the corresponding rule strands.

72

Chapter 5. Processing NDlog Programs

To fully pipeline evaluation, we have also removed the distinctions betweenpold
j andp j

in the rules. Instead, a timestamp (or monotonically increasing sequence number) is added

to each tuple upon its arrival (or when inserted into its table), and the join operator matches

each tuple only with tuples that have the same or older timestamp. In Algorithm5.3, we

denote the timestamp of each tuple as aT field (assigned via a system callcurrent time())

and add additional selection predicates (highlighted in bold) to thekth delta rule:

pnew,i+1
j :−p1, .., pk−1, t

old,i
k , pk+1, .., pn,b1,b2, ...,bm,

. told,i .T ≥ p1.T, told,i .T ≥ p2.T, ..., told,i .T ≥ pk−1.T, told,i .T ≥ pk+1.T, ...,,

. told,i .T ≥ pn.T, told,i .T ≥ b1.T., told,i .T ≥ b2.T, ..., told,i .T ≥ bm.T.

Each selection predicatetold,i .T ≥ pk.T ensures that the timestamp oftold,i is greater

than or equal to the timestamp of a tuplet ∈ pk. By relaxing SN, we allow for the processing

of tuples immediately upon arrival, which is natural for network message handling. The

timestamp represents an alternative “book-keeping” strategy to the rewriting used in SN to

ensure no repeated inferences. Note that the timestamp only needs to be assigned locally,

since all the rules are localized.

While PSN enables fully pipelined evaluation, it is worth noting that PSN can allow

just as much buffering as BSN with the additional flexibility of full pipelining. Consider a

rule withn derived predicates andm base predicates:

p :−p1, p2, ..., pn,b1,b2, ...,bm. (5.5)

In AppendixA.1, we prove that PSN generates the same results as SN, and does not repeat

any inferences. LetFPS(p) andFPP(p) denote the result set forp for using SN and PSN

respectively. We show that:

TheoremA.1: FPS(p) = FPP(p)

73

Chapter 5. Processing NDlog Programs

TheoremA.2: There are no repeated inferences in computing FPP(p).

In order to compute rules with aggregation (such as sp3), we utilize incremental fix-

point evaluation techniques[97] that are amenable to pipelined query processing. These

techniques can computemonotonic aggregatessuch asmin, maxandcount incrementally

based on the current aggregate and each new input tuple. Figure5.5shows the rule strand

for rule sp3 from theShortest-Pathprogram, which computes the shortest cost (C) for any

pair of source and destination paths. For each new inputpathtuple, theAggregateelement

incrementally recomputesspCosttuples which are inserted into thespCosttable.

sp3 spCost(@S,D,min<C>) :- path(@S,D,Z,P,C).

Figure 5.5: Rule strand for sp3 that computes an aggregate spCost over the path table.

5.4 Processing in a Dynamic Network

In practice, the state of the network is constantly changing during the execution ofNDlog

programs. In contrast to transactional databases, changes to network state are not isolated

from NDlog programs while they are running. Instead, as in network protocols,NDlog

rules are expected to perform dynamic recomputations to reflect the most current state of

the network. To better understand the semantics in a dynamic network, we consider the

following two degrees of dynamism:

• Continuous Update Model: In this model, we assume that updates occur very fre-

quently – at a period that is shorter than the expected time for a typical program to

74

Chapter 5. Processing NDlog Programs

reach a fixpoint. Hence, the query results never fully reflect the state of the network.

• Bursty Update Model: In this more constrained (but still fairly realistic) model,

updates are allowed to happen during query processing. However, we make the as-

sumption that after a burst of updates, the network eventuallyquiesces(does not

change) for a time long enough to allow all the rule computations in the system to

reach a fixpoint.

In our discussion, we focus on the bursty model, since it is amenable to analysis; our

results on that model provide some intuition as to the behavior in the continuous update

model. Our goal in the bursty model is to achieve a variant of the typical distributed systems

notion ofeventual consistency, customized to the particulars ofNDlog: we wish to ensure

that the eventual state of the quiescent system corresponds to what would be achieved by

rerunning the rules from scratch in that state. We briefly sketch the ideas here, and follow

up with details in the remainder of the section.

To ensure well-defined semantics, we use techniques from materialized view mainte-

nance[54], and consider three types of changes:

• Insertion: The insertion of a new tuple at any stage of processing can be naturally

handled by (pipelined) semi-naı̈ve evaluation.

• Deletion: The deletion of a base tuple leads to the deletion of any tuples that were

derived from that base tuple (cascaded deletions). Deletions are carried out incre-

mentally via (pipelined) semi-naı̈ve evaluation by incrementally deriving all tuples

that are to be deleted.

• Update: An update is treated as a deletion followed by an insertion. An update to

a base tuple may itself result in derivation of more updates that are propagated via

(pipelined) semi-näıve evaluation.

75

Chapter 5. Processing NDlog Programs

We further allow implicit updates by primary key, where a newly generated tuple re-

places an existing tuple with the same primary key (but differs on other fields). The use of

pipelined SN evaluation in the discussion can be replaced with buffered SN without chang-

ing our analysis. Since some tuples in hard-state tables may have multiple derivations, we

make use of thecount algorithm[54] for keeping track of the number of derivations for

each tuple, and only delete a tuple when the count is 0. We proceed to discuss these issues

in detail.

5.4.1 Dataflow Generation for Incremental View Maintenance

Algorithm 5.4 Rule strands generation for incremental insertion of hard-state SN delta rules.

foreachkth delta rule4p :−p1, p2, ...,4pk, ..., pn,b1,b2, ...,bm

RSins← addElement(NULL, Insert-Listener(4pk))
foreach derived predicate p j where j 6= k

RSins← addElement(RSins,Join(p j))
end
foreach base predicate b j

RSins← addElement(RSins,Join(b j))
end
RSins← addElement(RSins, pro ject(4p))
RSins← addElement(RSins,Network-Out)
RS1ins← addElement(NULL,Network-In(4p))
RS1ins← addElement(RS1ins, Insert(4p))

end

Algorithms5.4and5.5shows the pseudocode for generating the rule strands for a typ-

ical delta rule of the form:4p :−p1, p2, ...,4pk, ..., pn,b1,b2, ...,bm, with n derived predi-

cates andmbase predicates. The first algorithm generates rule strands RSins and RS1ins for

incremental insertions, and the second algorithm generates rule strands RSdel and RS1del

for for incremental deletions. In both algorithm, the functionRS←addElement(RS,element)

adds an element to the input rule strand RS, and then returns RS itself. For correctness, each

76

Chapter 5. Processing NDlog Programs

strand has to execute completely before another strand is executed.

In Algorithm 5.4, each RSins strand takes as input anInsert-Listener(4pk) element that

register callbacks for new insertions in thepk table. Upon insertion of a new tupletk into the

pk table, theInsert-Listenerelement outputs the new tuple, which is then used to perform

a series of joins with the other input tables in its rule strand to derive newp tuples. Each

newly derivedp tuple is then passed to aProject(4p), and then sent out via theNetwork-

Out elements2. Each RS1ins strand takes as input newp tuples that arrives via the network,

and inserts these tuples into its localp table using theInsert(4p) element.

Algorithm 5.5 Rule strands generation for incremental deletion of hard-state SN delta rules.

foreachkth delta rule4p :−p1, p2, ...,4pk, ..., pn,b1,b2, ...,bm

RSdel← addElement(NULL,Delete-Listener(4pk,del))
foreach derived predicate p j where j 6= k

RSdel← addElement(RSdel,Join(p j))
end
foreach base predicate b j

RSdel← addElement(RSdel,Join(b j))
end
RSdel← addElement(RSdel,Pro ject(4pdel)
RSdel← addElement(RSdel,NetworkOut)
RS1del← addElement(NULL,Network-In(4pdel))
RS1del← addElement(RS1del,Delete(4p))

end

The RSdel and RS1del strands in Algorithm5.5are generated in a similar fashion for in-

cremental deletions. The RSdel strand take as input tuples from aDelete-Listener(4pk,del)

element that outputspdel tuples that have been deleted from thepk table. The RS1del strand

receives these tuples, and then delete those with the same values from the localp table using

theDelete(4p) element.

To provide a concrete example, Figure5.6 shows an example of compiled dataflow

2Note that outboundp tuples generated by RSins that are destined for local consumption are “wrapped
around” to theNetwork-Inelement as input to RS1ins of the same dataflow locally, as described in Section4.2

77

Chapter 5. Processing NDlog Programs

Figure 5.6: Rule strands for the SN delta rules sp2a, sp2b-1 and sp2b-2 with incremental

maintenance.

with rule strands for the delta rules sp2a, sp2b-1 and sp2b-2 that we presented earlier in

Section5.2. For each delta rule, applying Algorithms5.4 and5.5 result in several strands

for incremental insertions and deletions. These are denoted by strand labels with subscripts

ins anddel respectively in Figure5.6. For example, strands sp2ains@S and sp2adel@S are

generated from the delta rule sp2a, and used to implement the incremental recomputation

of linkD table based on modifications to the#link table. Similarly, strands sp2b-1ins@S

and sp2b-1del@S are generated from delta rule sp2b-1, and strands sp2b-2ins@S and sp2b-

2del@S are generated from delta rule sp2b-2.

In handling rules with aggregates, we apply techniques for incremental computation of

aggregates[97] in the presence of updates. The arrival of new tuples may invalidate exist-

ing aggregates, and incremental recomputations can be cheaper than computing the entire

aggregate from scratch. For example, the re-evaluation cost for min and max aggregates

are shown to beO(log n) time andO(n) space[97]. This is implemented using theAggre-

78

Chapter 5. Processing NDlog Programs

gateelement shown previously in Figure5.5. TheAggregateelement will recompute and

output anyspCosttuples whose aggregate value has been updated as a result of updates to

the underlyingpathtable.

5.4.2 Centralized Execution Semantics

Before considering the distributed execution semantics ofNDlog programs, we first pro-

vide an intuitive example for the centralized case. Figure5.7 shows aderivation treefor

path(@e,d,a,[e,a,b,d],7)based on theShortest-Pathprogram. The leaves in the tree are the

#link base tuples. The root and the intermediate nodes are tuples recursively derived from

the children inputs by applying either rules sp1 and sp2. When updates occur to the base

tuples, changes are propagated up the tree to the root. The left diagram shows updating the

tree due to a change in base tuple#link(@a,b,5), and the right diagram shows the deletion

of #link(@b,e,1).

Figure 5.7: Derivation tree for derived path tuple from a to e.

For example, when the cost of#link(@a,b,5)is updated from 5 to 1, there is a dele-

tion of #link(@a,b,5)followed by an insertion of#link(@a,b,1). This in turn results in the

deletion ofpath(@a,d,b,[a,b,d],6)and path(@e,d,a,[e,a,b,d],7), followed by the deriva-

tion of path(@a,d,b,[a,b,d],2)and path(@e,d,a,[e,a,b,d],3). Similarly, the deletion of

79

Chapter 5. Processing NDlog Programs

#link(@b,d,1)leads to the deletion ofpath(@b,d,d,[b,d],1), path(@a,d,b,[a,b,d],2), and

thenpath(@e,d,a,[e,a,b,d],3).

Let FPp be the set of tuples derived using PSN under the bursty model, andFFPp be

the set of tuples that would be computed by PSN if starting from the quiesced state. In

AppendixA.2, we prove the following theorem:

TheoremA.3: FPp = FFPp in a centralized setting.

The proof requires that all changes (inserts, deletes, updates) are applied in the same

order in which they arrive. This is guaranteed by the FIFO queue of PSN and the use of

timestamps.

5.4.3 Distributed Execution Semantics

In order for incremental evaluation to work in a distributed environment, it is essential that

along any link in the network, there is a FIFO ordering of messages. That is, along any link

literal #link(s,d), facts derived at node s should arrive at node d in the same order in which

they are derived (and vice versa). This guarantees that updates can be applied in order.

Using the same definition ofFPp andFFPp as before, assuming the link FIFO ordering, in

AppendixA.2, we prove the following theorem:

Theorem A.4: FPp = FFPp in a distributed setting with FIFO links.

5.5 Processing Soft-state Rules

Up to this point in the chapter, we have focused on the processing ofhard-state rules. In

this section, we build upon the earlier techniques to processsoft-states rules. Recall from

Section2.5 that a rule is considered soft-state if it contains at least one soft-state predicate

in the rule head or body.

80

Chapter 5. Processing NDlog Programs

Soft-state relations are stored insoft-state tableswithin the P2 System as described in

Section4.4. Unlike hard-state tables, these tables store tuples only for their specified life-

times and expire them in a manner consistent with traditional soft-state semantics. Time-

outs can be managed lazily in soft-state tables by purging any expired soft-state tuples

whenever table are accessed. Unlike hard-state tables, these soft-state tables do not require

maintaining a derivation count for each unique tuple. Instead, soft-state tuples that are

inserted into their respective tables will extend the lifetime of identical tuples.

Prior to applying SN rewrite, the processing of soft-state rules require the samelocal-

ization rewritestep described in Section5.2. After localization, the SN rewrite is applied

to all soft-state rules. Consider a soft-state rule of the form:

p :−s1,s2, ...sm,h1,h2, ...,hn,b1,b2, ...bo (5.6)

wheres1,s2, ...,sm are m soft-state derived predicates,h1,h2, ...,hn are hard-state derived

predicates, andb1,b2, ...,bo are base predicates. The SN rewrite generatesm+ n delta

rules, one for each soft-state and hard-state derived predicate, where thekth soft-state delta

rule takes as input4sk tuples:

4p :−s1,s2, ...,4sk, ...,sm,h1,h2, ...,hn,b1,b2, ...bo. (5.7)

In addition, thejth hard-state delta ruletakes as input4h j tuples:

4p :−s1, ...,sk, ...,sm,h1,h2, ...,4h j , ...,hn,b1,b2, ...,bo. (5.8)

Following the generation of delta rules, the same Algorithm5.4 is used to generate

the strands for incremental insertions in a similar fashion as hard-state rules. However,

instead of using Algorithm5.5 for generating strands for incremental deletions, Algo-

rithm 5.6is used to generate strands forincremental refreshes. The difference is due to soft-

81

Chapter 5. Processing NDlog Programs

state rules being incrementally maintained usingcascaded refreshesinstead ofcascaded

deletions(See Section2.5). In Algorithm 5.4, the strand RSre f takes as input aRefresh-

Listener(4pk,re f) element that outputs soft-statepk tuples that have been refreshed. These

pk tuples are then used to derivep tuples, which are then inserted by the RS1re f into localp

tables. Ifp is a soft-state relation, these new insertions will lead to further refreshes being

generated, hence achieving cascaded refreshes.

Algorithm 5.6 Rule Strands generation for incremental refresh of soft-state delta rules.

foreach delta rule4p :−p1, p2, ...,4pk, ..., pn,b1,b2, ...,bm

RSre f ← addElement(NULL,Refresh-Listener(4pk,re f))
foreach derived predicate p j where j 6= k

RSre f ← addElement(RSre f ,Join(p j))
end
foreach base predicate b j

RSre f ← addElement(RSre f ,Join(b j))
end
RSre f ← addElement(RSre f ,Pro ject(4p)
if (p.loc = pk.loc)

then RSins← addElement(RSins, Insert(4p))
else

RSre f ← addElement(RSre f ,NetworkOut)
RS1re f ← addElement(NULL,Network-In(4p))
RS1re f ← addElement(RS1re f , Insert(4p))

end

For completeness, Figure5.8shows an example dataflow for a soft-state version of rule

sp2, assuming that#link andpath have been declared as soft-state relations. In contrast

to Figure5.6, Refresh-Listenerelements are used instead ofDelete-Listenerelements to

generate soft-state refreshes.

82

Chapter 5. Processing NDlog Programs

Figure 5.8: Rule strands for distributed soft-state management of delta rules sp2a, sp2b-1 and

sb2b-2.

5.5.1 Event Soft-state Rules

Having presented the general steps required to process soft-state rules, in this section, we

focus on a special-case soft-state rule: theevent soft-state rulepresented in Section2.5. As

a quick recap, an event soft-state rule is of the form:

p :−e, p1, p2, ..., pn,b1,b2, ...,bm. (5.9)

The rule body consists of one event predicatee; the other predicatesp, p1, p2, ..., pn can

either soft or hard-state predicates, andb1,b2, ...,bm are base predicates as before.

The dataflow generation for event soft-state rules is simplified due to the fact that events

are not materialized. As we discussed in Section2.5.2, NDlog’s event model does not

permit two events to coincide in time. Hence a rule with more than one event table would

never produce any output. The only delta rule that generates any output tuples is theevent

83

Chapter 5. Processing NDlog Programs

delta rulethat takes as input neweevent tuples of the form:

4p :−4e, p1, p2, ..., pn,b1,b2,bm. (5.10)

Since the delta predicate (prepended with4) is essentially a stream of update events, all

other delta rules do not generate any output and we can exclude them from dataflow gener-

ation.

Algorithm 5.7 Rule Strands generation for event delta rules.

foreach delta rule4p :−4e, p1, p2, ..., pn,b1,b2,bm

/* Strand Generation */
RS← addElement(NULL,Network-In(4e))
foreach derived predicate p j

RS← addElement(RSins,Join(p j))
end
foreach base predicate b j

RS← addElement(RS,Join(b j))
end
RS← addElement(RS, pro ject(4p))
RS← addElement(RS,Network-Out)
if li f etime(p) > 0

RS1← addElement(NULL,Network-In(4p))
RS1← addElement(RS1, Insert(4p))

end
end

Algorithm 5.7 shows the pseudocode for compiling an event delta rule into its rule

strands. The first strandRStakes each event tuplee that arrives over the network as input

into the strand. After performing joins with all the derived predicates (p1, p2, ..., pn) and

base predicates (b1,b2, ...bm), the computedp tuples are projected and sent over the net-

work. If p is a materialized table (lifetime> 0), the second strand RS1 receivesp tuples

via the network, and then inserted them into the localp table using theInsert(4p) element.

As a concrete example, Figure5.9shows the execution plan for rules pp1 and pp2 from

84

Chapter 5. Processing NDlog Programs

pp1 ping(@S,D,E) :- periodic(@S,E,5), #link(@S,D).

pp2 pingMsg(S,@D,E) :- ping(@S,D,E), #link(@S,D).

Figure 5.9: Rule strands for event soft-state rules pp1 and pp2.

l2 bestLookupDist(@NI,K,R,E,min<D>) :- nodeID(@NI,N),

. . lookup(@NI,K,R,E), finger(@NI,I,B,BI),

. . D = K - B - 1, B in (N,K).

Figure 5.10: Rule strand for rule l2, an event soft-state rule with aggregation.

the Ping-Pongprogram from Chapter2 The first strand pp1@S takes as input aPeriodic

element that generates aperiodic(@S,E,5)tuple every 5 seconds at node S with random

event identifierE. This tuple is then used to join with #link tuples to generate aping event

tuple that is then used in strand pp2@S to generatepingMsgevent tuples.

The output of event soft-state rules can also be an aggregate computation, which is

done on aper-eventbasis. Examples of such aggregate computations are shown in rules

l2 and l3 from the declarative Chord specifications in AppendixB.1. These rules computes

85

Chapter 5. Processing NDlog Programs

aggregateminvalues stored inbestLookupDistandlookuptuples respectively, one for each

input event.

Figure5.10shows the strand l2@NI generated for rule l2. This strand takes as input

newlookupevent tuples, which are then executed within the strand by joining with thenode

andfinger tables to generate a set of matching output tuples. These output tuples are then

used by theAggregateelement to compute abestLookupDisttuple that stores the computed

minvalue. Note that in this case, we have additional runtime checks in place in the dataflow

execution to ensure that eachlookup tuple is executed in its entirety within the strand to

generate thebestLookupDisttuple before the strand processes the nextlookuptuple.

5.5.2 Distributed Soft State Semantics

Having described the processing of soft-state rules, we examine the distributed execution

semantics of soft-state rules in dynamic networks. We consider the three types of soft-

state rules defined in Section2.5: pure soft-state rules, derived soft-state rulesandarchival

soft-state rules.

In AppendixA.3, we prove that the eventual consistency semantics described in Sec-

tion 5.4 can be achieved for pure soft-state rules and derived soft-state rules. Consider a

pure soft-state rule of the forms : −s1,s2, ...sm, h1,h2, ...hn where there arem soft-state

predicates andn hard-state predicates. The rule derives a soft-state predicates. In order for

each deriveds tuple to have a stable derivation at the eventual state, we require the condi-

tion that the lifetime ofs exceeds the lifetime of all input soft-state relationss1,s2, ...,sm.

This ensures that all deriveds tuples will not time out in between the refreshes of the soft-

state inputs. This condition can be done via syntactic checks to ensure the lifetime of the

derived soft-state head exceeds the lifetime of all the soft-state body predicates.

However, eventual consistency is not achievable for archival soft-state rules of the form

h : −s1,s2, ...sm, h1,h2, ...hn, where there arem soft-state predicates,n hard-state predi-

86

Chapter 5. Processing NDlog Programs

cates and a hard-state rule head. This is because the derived hard-stateh tuples are stored

even after the soft-state inputs have expired. In order to guarantee eventual consistency

semantics, archival soft-state rules should be treated as separate from the rest of theNDlog

program and use strictly for archival purposes only. Derivations from these rules should not

be used as input to any other rules. This additional constraint on the use of archival soft-

state rules can also be enforced via syntactic checks. Interestingly, if cascaded deletions are

allowed for soft-state rules, eventual consistency can be achieved for these archival rules,

at the expense of losing the “history” (archived data). We leave the exploration of cascaded

deletions in soft-state rules as future work.

5.6 Summary

In this chapter, we described howNDlog programs can be processed by generating dis-

tributed dataflows. We first demonstrated how traditional semi-naı̈ve evaluation for cen-

tralized Datalog programs can be realized in our system, and further extend the techniques

to handle distributed and soft-stateNDlog rules. We further showed how we can ensure

correct semantics of long-runningNDlog programs in dynamic networks for both hard-

state and soft-state rules. In the next chapter, we present the use ofNDlog to express more

complex overlay networks.

87

Chapter 6

Declarative Overlays

In Chapter3, we demonstrated the flexibility and compactness ofNDlog for specifying a

variety of routing protocols. In practice, most distributed systems are much more com-

plex than simple routing protocols; in addition to routing, they typically also perform

application-level message forwarding and handle the formation and maintenance of a net-

work as well.

All large-scale distributed systems inherently use one or more application-level overlay

networks as part of their operation. In some cases, the overlay is prominent: for exam-

ple, file-sharing networks maintain neighbor tables to route queries. In other systems, the

overlay or overlays may not be as explicit: for example, Microsoft Exchange email servers

within an enterprise maintain an overlay network among themselves using a link-state al-

gorithm over TCP for routing mail and status messages.

In this chapter ondeclarative overlays, we demonstrate the use ofNDlog to implement

practical application-level overlay networks. In declarative overlays, applications submit

to P2 a conciseNDlog program which describes an overlay network, and the P2 system

executes the program to maintain routing tables, perform neighbor discovery and provide

forwarding for the overlay.

88

Chapter 6. Declarative Overlays

The rest of the chapter is organized as follows. In Section6.1, we present the execu-

tion model of declarative overlays. We then present two exampleNDlog programs: the

Narada[30] mesh for end-system multicast in Section6.2, and the Chord[114] distributed

hash table in Section6.3respectively.

6.1 Execution Model

A typical overlay network consists of three functionalities:

• Routing involves the computation and maintenance of routing tables at each node

based on input neighbor tables. This functionality is typically known as thecontrol

planeof a network.

• Forwarding involves the delivery of overlay messages along the computed routes

based on the destination addresses of the messages. This functionality is typically

known as theforwardingplane of a network.

• Overlay formation and maintenance involves the process of joining an overlay

network and maintaining the neighbor set at each node. The selected neighbors are

used as input to the control plane for route computations.

In declarative routing presented in Chapter3, NDlog programs are used solely for pro-

gramming the control plane. Hence, all our routing examples consist ofNDlog rules that

compute routes based on input links. On the other hand, in declarative overlays,NDlog

programs implement the additional functionalities offorwarding and overlay formation

and maintenance. As we see from our examples later in this chapter, these programs are

more complex due to the handling of message delivery, acknowledgments, failure detec-

tion and timeouts required by the additional functionalities. Not surprisingly, the programs

89

Chapter 6. Declarative Overlays

presented in this section utilize soft-state data and soft-state rules introduced in Chapter2

extensively. Despite the increased complexity, we demonstrate that ourNDlog programs

are significantly more compact compared to equivalent C++ implementations.

Figure 6.1: A Declarative Overlay Node.

Figure6.1 illustrates the execution model of declarative overlays. The P2 system re-

sides at the application level, and all messages are routed via the default Internet routing.

In addition, by using the default Internet for routing between overlay nodes at the applica-

tion level, we assume that there is full connectivity in the underlying network. Every node

participating in the overlay network can send a message to another node via the underlying

network, and there is an entry in the #link table for every source and destination pair of

90

Chapter 6. Declarative Overlays

nodes. As a syntactic simplification, we do not use link-restricted rules in our examples

below. In practice, this simplification could be supported by anNDlog precompiler, which

allows a programmer to declare that a fully-connected topology exists, and have the parser

turn off checks for link-restriction.

6.2 Narada Mesh

To provide a simple but concrete example of a declarative overlay, we first present a pop-

ular overlay network for End System Multicast (ESM) called Narada[30]. A typical ESM

overlay consists of two layers: the first layer constructs and maintains a mesh connect-

ing all members in the group, while the second layer constructs delivery trees on top of

the mesh using typical multicast algorithms such as the distance vector multicast protocol

(DVMRP) [36] (see Sections3.3.2and3.3.6for examples on DVMRP). In this section, we

focus on the first layer: constructing a Narada-like mesh here as an example of the use of

NDlog.

Briefly, the mesh maintenance algorithm works as follows. Each node maintains a set

of neighbors, and the set of all members in the group. Every member epidemically propa-

gates keep-alive messages for itself, associated with a monotonically increasing sequence

number. At the same time, neighbors exchange information about membership liveness and

sequence numbers, ensuring that every member will eventually learn of all the other group

members’ liveness. If a member fails to hear from a direct neighbor for a period, it declares

its neighbor dead, updating its own membership state and propagating this information to

the rest of the population.

In addition, each node periodically probes a random group member to measuring the

round-trip latency. Based on the measured round-trip latencies to all group members, each

node selects a subset of the members to be its neighbors so that its predefined utility func-

91

Chapter 6. Declarative Overlays

tion is maximized. In the rest of this section, we show how the mesh maintenance portion

of Narada can be expressed inNDlog. We begin with the following table definitions and

initialization rules:

materialize(sequence, infinity, 1, keys(2)).

materialize(neighbor, infinity, infinity, keys(2)).

materialize(member, 120, infinity, keys(2)).

e1 neighbor(@X,Y) :- periodic(@X,E,0,1), env(@X,H,Y), H = ”neighbor”.

e2 member(@X,A,S,T,L) :- periodic(@X,E,0,1), T = fnow(), S = 0, L = 1, A = X.

e3 member(@X,Y,S,T,L) :- periodic(@X,E,0,1), neighbor(@X,Y), T = fnow(),

. . S = 0, L = 1.

e4 sequence(@X,Sequence) :- periodic(@X,E,0,1), Sequence = 0.

Figure 6.2: Narada materialized tables and initialization rules

The materialized tablesneighborandmemberare soft-state relations with lifetime of

120 seconds, and have unbounded size. Thesequencetable is a hard-state table with un-

bounded size. Though not explicitly specified in thematerializestatements, theneigh-

bor contains tuples of the formneighbor(MyAddr, NeighborAddr)and themembertable

contains tuples of the form member(MyAddr, MemberAddr, MemberS, MemberInsertion-

Time, MemberLive).MemberLiveis a boolean indicating whether the local node believes

a member is alive or has failed.

rule e1 initializes the neighbor table at each node based on its localenv table which

contains its initial set of neighbors that have been preloaded into the table when the node is

started. Rulese2-4are used to initialize themembertable andsequencetables respectively.

As described in Chapter2, periodic(@X,E,T,K)is a built-in event predicate that is used

to generate a stream ofperiodic tuples at nodeX with random event identifierE everyT

seconds for up toK tuples. Hence, the initialization rules e1 ande2are only invoked once.

92

Chapter 6. Declarative Overlays

Rule e2-3 initialize themembertable at each node to itself and its initial set of neighbors.

The sequence(@X,Seq)is a hard-state relation of size 1, which stores a single tuple that

keeps track of the current sequence numberSeqused in the gossip protocol.

6.2.1 Membership List Maintenance

r1 refreshEvent(@X) :- periodic(@X,E,5).

r2 refreshSeq@X(X,NewS) :- refreshEvent@X(X), sequence@X(X,S), NewS = S + 1.

r3 sequence@X(X,NewS) :- refreshSeq@X(X,NewS).

r4 refreshMsg(@Y,X,NewS,Addr,AS,ALive) :- refreshSeq(@X,NewS),

. . member(@X,Addr,AS,Time,ALive),

. . neighbor(@X,Y).

r5 membersCount(@X,Addr,AS,ALive,count<*>) :-

. . refreshMsg(@X,Y,YS,Addr,AS,ALive),

. . member(@X,Addr,MyS,MyTime,MyLive), X != Addr.

r6 member(@X,Addr,AS,T,ALive) :- membersCount(@X,Addr,AS,ALive,C),

. . C = 0, T = f now().

r7 member(@X,Addr,AS,T,ALive) :- membersCount(@X,Addr,AS,ALive,C),

. . member(@X,Addr,MyS,MyT,MyLive),

. . T = f now(), C> 0, MyS< AS.

r8 neighbor(@X,Y) :- refresh(@X,Y,YS,A,AS,L).

Figure 6.3: Narada Membership List Maintenance

We assume that at the start, each node begins with an initial neighbor set. Narada then

periodically gossips with neighbors to refresh membership information. In Figure6.3, the

rules r1-r9 specify the rules for the periodic maintenance of the membership lists.

93

Chapter 6. Declarative Overlays

Rule r1 generates arequestEventtuple every 3 seconds at nodeX. The request interval

is set by the programmer and is used to determine the rate at which nodes in the Narada

exchange membership lists.

Before a Narada node can refresh its neighbors’ membership lists, it must update its

own sequence number, stored in thesequencetable. Upon generating arefreshEvent, rule

r2 creates a new refresh sequence numberNewSfor X by incrementing the currently stored

sequence numberNewSin thesequencetable. Rule r3 updates the stored sequence number.

Becausesequenceis a materialized table, whenever a newsequencetuple is produced, as

is done with rule r3, it is implicitly inserted into the associated table. Since the primary key

is the sequence number itself, this newsequencetuple replaces the existing tuple based on

our update semantics defined in Chapter2.

In rule r4, therefreshSeq(@X,NewS)that is generated is then used to generate arefresh

message tuple that is sent to each ofX’s neighbors. Eachrefreshmessage tuple contains

information about a membership entry as well as the current sequence numberNewS.

Upon receiving therefreshmessage, rule r5 checks to see if the memberAddr reported

in the refreshmessage exists in the membership list. If such a member does not exist, the

new member is inserted into the membership table (rule r6). If the member already exists,

it is inserted into the membership table only if the sequence number in therefreshmessage

is larger than that of the existing sequence number in the membership list (rule r7). The

functionf now() is used to timestamp eachmembertuple stored.

To join the mesh, a new node need only know one member of the mesh, placing that

member into itsneighbortable. Rule r8 ensures that whenever a node receives arefresh

message from its neighbor, it adds the sender to its neighbor set. This ensures that neighbor

relationships are mutual.

94

Chapter 6. Declarative Overlays

6.2.2 Neighbor Selection

There are two aspects of neighbor selection in Narada: first, evicting neighbors that are

no longer responding to heartbeats, and second, to select neighbors that meet certain user-

defined criteria.

Figure6.3 shows the rules l1-l4 that can be used to check neighbor liveness. Every

second, rulel1 initiates a neighbor check by which rule l2 declaresdeada neighboring

member that has failed to refresh for longer than 20 seconds. Dead neighbors are deleted

from theneighbortable by rule l3 and rule l4 sets a dead neighbor’s member entry to be

“dead” and further propagated to the rest of the mesh during refreshes.

l1 neighborProbe(@X) :- periodic(@X,E,1).

l2 deadNeighbor(@X,Y) :- neighborProbe(@X), T = fnow(),

. . neighbor(@X,Y), member(@X,Y,YS,YT,L), T - YT> 20.

l3 delete neighbor(@X,Y) :- deadNeighbor(@X,Y).

l4 member(@X,Neighbor,DeadSequence,T,Live) :- deadNeighbor(@X,Neighbor),

. . member(@X,Neighbor,S,T1,L), Live = 0,

. . DeadSequence = S + 1, T = fnow().

Figure 6.4: Rules for neighbor liveness checks.

Figure6.5shows the rules (n0-n3) for probing neighbors for latency measurements. Ev-

ery 2 seconds, rule n0 picks a member at random with which to measure round-trip latency.

Specifically, it associates a random number with each known member, and then chooses

the member associated with the maximum random number. Recall thataggregate¡fields¿

denotes an aggregation function,maxin this example. When a tuple appears in data stream

pingEvent, rule n1 pings the randomly chosen member stored in the event, rule n2 echoes

that ping, and rulen3computes the round-trip latency of the exchange.

Nodes use such latency measurements – along with the paths computed by a routing

95

Chapter 6. Declarative Overlays

n0 pingEvent(@X,Y,E,max<R>) :- periodic(@X,E,2), member(@X,Y,U,V,Z),

. . R = f rand().

n1 ping(@Y,X,E,T) :- pingEvent(@X,Y,E,MR), T = fnow().

n2 pong(@X,Y,E,T) :- ping(@Y,X,E,T).

n3 latency(@X,Y,T) :- pong@X(X,Y,E,T1), T = fnow() - T1.

n4 ugain(@X,Z,sum<UGain>) :- latency(@X,Z,T), bestPathHop(@Z,Y,W,C),

. . bestPathHop(@X,Y,Z,UCurr), UNew = T + C,

. . UNew< UCurr, UGain = (UCurr - UNew) / UCurr.

n5 neighbor(@X,Z) :- ugain(@X,Z,UGain), UGain> addThresh.

Figure 6.5: Rules for neighbor selection based on latency.

protocol operating on top of the mesh – to compute a utility function. A node may choose

a new member to add to its current neighbor set, if adding the new member increases

its utility gain above anaddition threshold. Similarly, if the cost of maintaining a current

neighbor is greater than aremoval threshold, the node may break its link with that neighbor.

In the rules n4 andn5shown in Figure6.5, we show how neighbor addition would work

in anNDlog implementation of Narada. We assume that each node maintains a routing table

over the mesh which contains for each member the next hop to that member and the cost

of the resulting path; e.g.,bestPathHop(@S,D,Z,C)indicates that nodeS must route via

next-hop nodeZ to get to destinationD with a path latency ofC. This bestPathHoptable

can be computed by running thedistance-vectorprotocol described in Section3.3, taking

as input theneighbortable as the input topology.

Rule n4 measures the utility gain that could be obtained if nodeZ were to becomeX’s

immediate neighbor, as per the Narada definition[30]. For an individual destinationY, this

is computed by taking the latency ofZ’s path toY and adding the latency betweenX and

Z to it. If this new path latency (assumingZ becomes the next hop fromX) is lower than

96

Chapter 6. Declarative Overlays

the current latency ofX’s route toY, then the relative decrease in latency contributes to the

utility gain by adding neighborZ. If this utility gain is above a thresholdaddThresh, then

rulen5adds this new neighbor

6.3 Chord Distributed Hash Table

In this section, we presentP2-Chord, which is a full-fledged implementation of the Chord

distributed hash table[114] implemented in 48NDlog rules. The entire P2-Chord specifi-

cation is shown uninterrupted by discussion in AppendixB.2.

Figure 6.6: A Chord ring with the network state for node 58 and 37, the finger entries for node

13, and stored objects 0, 24, 33, 42 and 56. The dotted lines denote the fingers for node 13.

Chord is essentially a mechanism for maintaining a ring-based network and routing

efficiently on it. Figure6.6 shows an example of a Chord ring. Each node in the Chord

ring has a unique 160-bit node identifier. For simplicity in the figure, we show them as

integers ranging from 0 to 60. Each Chord node is responsible for storing objects within

97

Chapter 6. Declarative Overlays

a range of key-space. This is done by assigning each object with keyK to the first node

whose identifier is equal to or followsK in the identifier space. This node is called the

successorof the keyK. Note that data items and nodes are mapped into the same identifier

space. Therefore each node also has a successor: the node with the next-higher identifier.

For example, the objects with key 42 and 56 are served by node 58.

In Chord, each node maintains the IP addresses of multiple successors to form a ring

of nodes that is resilient to failure. Once a node has joined the Chord ring, it maintains

network state forSsuccessors in the ring (thesucctable) with the closest identifier distance

to the node, and a single predecessor (thepred table of size 1) that stores the address of

the node whose identifier just precedes the node. ThebestSuccstores the address of the

successor whose identifier is the closest among all the successors to the current node. For

example, ifS= 2, the successors of node 58 in Figure6.6are 60 and 3, its best successor

is 60 and its predecessor is 40.

In order to perform scalable lookups, each Chord node also holds afinger table, point-

ing at peers whose identifier distances exponentially increase by powers of two from itself.

The entries in thefinger table are used for efficiently routing lookup requests for specific

keys. There are typically 160 finger entries at each Chord node with identifierN, where the

ith entry stores the node that is responsible for the key 2i +N. In our example Chord ring,

node 13 has finger entries to nodes 14, 16, 28 and 37, as denoted by the dotted lines.

6.3.1 Chord Network State

Figure 6.7 shows the materialized tables that are used to store the network state of P2-

Chord. For convenience, we also show the corresponding schemas of the tables with their

abbreviations are shown in Table6.1.

Each node stores a singlelandmarktuple denoting the address of the node that it uses

to join the Chord network. It also stores anodeIDtuple that contains its node identifier. In

98

Chapter 6. Declarative Overlays

materialize(nodeID, infinity, 1, keys(1)).

materialize(landmark, infinity, 1, keys(1)).

materialize(finger, 180, 160, keys(2)).

materialize(uniqueFinger, 180, 160, keys(2)).

materialize(bestSucc, 180, 1, keys(1)).

materialize(succ, 30, 16, keys(2)).

materialize(pred, infinity, 1, keys(1)).

materialize(join, 10, 5, keys(1)).

materialize(pendingPing, 10, infinity, keys(3)).

materialize(fFix, 180, 160, keys(2)).

materialize(nextFingerFix, 180, 1, keys(1)).

Figure 6.7: Materialized tables for P2-Chord.

addition, each node stores the network state for Chord in thesucc, pred, bestSuccandfinger

tables. To illustrate, Figure6.6 shows the network state stored at node58 that consists of

the following tuples:

• A node(@IP58,58) tuple, where IP58 denotes the IP address of node 58, and 58 is the

actual identifier itself

• succ(@IP58,60,IP60) and succ(@IP58,3,IP3) tuples storing the immediate identifier

and IP addresses of the two successors of node 58.

• bestSucc(@IP58,60,IP60) and pred(@IP58,40,IP40) tuples storing the identifier and IP

addresses of the best successor and predecessor of node 58.

The figure also shows similar network state for node 37, and the four finger entries for

node 13: finger(@IP13,0,14,IP14), finger(@IP13,1,16,IP16), finger(@IP13,3,28,IP28) and

99

Chapter 6. Declarative Overlays

Predicate Schema
nodeID(@NI,N) nodeID(@NodeIP,NodeID)
landmark(@NI,N) landmark(@NodeIP,NodeID)
finger(@NI,I,BI,B) finger(@NodeIP,EntryNumber,BestFingerIP,

BestFingerID)
uniqueFinger(@NI,I,BI,B) uniqueFinger(@NodeIP,FingerIP)
bestSucc(@NI,N) bestSuccessor(@NodeIP,NodeID)
succ(@NI,N) successor(@NodeIP,NodeID)
pred(@NI,N) predecessor(@NodeIP,NodeID)
join(@NI,E) join(@NodeIP,EventID)
pendingPing(@NI,PI,E,T) pendingPing(@nodeIP,PingNodeID,EventID, Ping-

Time)
lookup(@NI,K,R,E) lookup(@currentNodeIP,Key,RequestingNode,

EventID)
lookupResults(@NI,K,R,RI,E) lookupResults(@RequestingNodeIP,Key,ResultKey,

ResultNodeIP,EventID)

Table 6.1: Predicates and corresponding schemas of materialized tables and lookup events used

in P2-Chord

finger(@IP13,4,37,IP37). Since there can be multiple finger entries pointing to the same

node, theuniqueFingertable is used to keep track of only the unique nodes that are pointed

by the finger entries.

In addition, there are other materialized tables such asjoin, pendingPing, fFix and

nextFingerFixthat are used to store intermediate state in our P2-Chord implementation. In

the rest of the section, we demonstrate how different aspects of Chord can be specified in

NDlog: joining the Chord network, ring maintenance, finger maintenance and routing, and

failure detection.

6.3.2 Joining the Chord Network

When a node is started, rules i1-i4 from Figure6.8 can immediately deduce facts that set

the initial state of the node. Rule i1 sets thepred to point to NIL indicating that there are

100

Chapter 6. Declarative Overlays

i1 pred(@NI,P,PI) :- periodic(@NI,E,0,1), P = “NIL”, PI = ”NIL”.

i2 nextFingerFix(@NI, 0) :- periodic(@NI,E,0,1).

i3 node(@NI,N) :- periodic(@NI,E,0,1), env(@NI,H,N), H = ”node”.

i4 landmark(@NI,LI) :- periodic(@NI,E,0,1), env(@NI,H,LI), H = ”landmark”.

Figure 6.8: Rules for initializing a Chord node.

no predecessors. Rule i2 initializes thenextFingerFixto be0 for use in finger maintenance,

as described in Section6.3.4. Rule i3 initializes alandmark(@NI,LI)tuple in thelandmark

table of each nodeNI storing the address of the landmark nodeLI. This address is input to

the P2 system via a preloaded localenv table. The landmarkLI is set to NIL if the node

itself is the landmark. Each node also stores anode(@NI,N)tuple that contains the random

node identifierN that is also preloaded from the localenvtable.

j1 joinEvent(@NI,E) :- periodic(@NI,E,1,2).

j2 join(@NI,E) :- joinEvent(@NI,E).

j3 joinReq@LI(LI,N,NI,E) :- joinEvent(@NI,E), nodeID(@NI,N),

. . landmark(@NI,LI), LI != “NIL”.

j4 succ(@NI,N,NI) :- landmark(@NI,LI), joinEvent(@NI,E),

. . nodeID(@NI,N), LI = “NIL”.

j5 lookup@LI(LI,N,NI,E) :- joinReq@LI(LI,N,NI,E).

j6 succ(@NI,S,SI) :- join(@NI,E), lookupResults(@NI,K,S,SI,E).

Figure 6.9: Rules for joining the Chord ring.

Figure6.9 shows the rules for joining the Chord ring. To enter the ring, a nodeNI

generates ajoinEvent tuple locally (rule j1) whose arrival triggers rules j2-j6. Rule j2

creates ajoin tuple upon the arrival of thejoinEventtuple. In rule j3, if the landmark node

is known (i.e., not NIL), ajoinReqtuple is sent to the landmark node; otherwise rule j4 sets

101

Chapter 6. Declarative Overlays

the node to point to itself as a successor, forming an overlay by itself and awaiting others

to join in. When the landmark receives ajoinReqtuple, rule j5 initiates a lookup from

the landmark node for the successor of the joining node’s identifierN, and set the return

address of the lookup to beNI. If the lookup is successful, alookupResultsevent is received

at nodeNI. Rule j6 then defines the joining node’s successor (succtable) to be the result of

the lookup.

6.3.3 Chord Ring Maintenance

sb1 succ(@NI,P,PI) :- periodic(@NI,E,10), nodeID(@NI,N),

. . bestSucc(@NI,S,SI), pred(@SI,P,PI),

. . PI != “NIL”, P in (N,S).

sb2 succ(@NI,S1,SI1) :- periodic(@NI,E,10), succ(@NI,S,SI), succ(@SI,S1,SI1).

sb3 pred@SI(SI,N,NI) :- periodic(@NI,E,10), nodeID(@NI,N),

. . succ(@NI,S,SI), pred(@SI,P,PI),

. . node(@SI,N1), ((PI = “NIL”) (N in (P,N1))).

Figure 6.10: Rules for ring stabilization.

After joining the Chord network, each node performs the ring maintenance protocol in

order to maintain a set of successors and a single predecessor. Candidate successors (and

the single predecessor) are found during thestabilizationphase of the Chord overlay main-

tenance. The rules specifying the stabilization phase in Figure6.10. Stabilization is done

periodically at time intervals of 15 seconds by the rules sb1,sb2andsb3. Rule sb1 ensures

that a node’s best successor’s predecessor is also stored in its successor table. In rule sb2,

each successor periodically asks all of its successors to send it their own successors. In rule

sb3, a node periodically notifies its successors about itself, allowing its successors to point

102

Chapter 6. Declarative Overlays

their respective predecessors to the notifying node if it is closer in key-space compared to

their current predecessors.

n1 newSuccEvent(@NI) :- succ(@NI,S,SI).

n2 newSuccEvent(@NI) :- deleteSucc(@NI,S,SI).

n3 bestSuccDist(@NI,min<D>) :- newSuccEvent(@NI),nodeID(@NI,N),

. . succ(@NI,S,SI), D = S - N - 1.

n4 bestSucc(@NI,S,SI) :- succ(@NI,S,SI), bestSuccDist(@NI,D), nodeID(@NI,N),

. . D = S - N - 1.

n5 finger(@NI,0,S,SI) :- bestSucc(@NI,S,SI).

Figure 6.11: Rules for computing best successor and first finger entry.

Based on the set of candidate successors obtained from stabilization, additional rules

are required in order to select the best successor, and also evict successors that are no longer

required. In Figure6.11, rule n1 generates anewSuccEventevent tuple upon the insertion

(refresh) of a new (existing) successor. Rule n2 generates anewSuccEventfor deletions of

an existing successor. ThenewSuccEventevent tuple triggers rules n3 andn4, which are

used to define as “best” the successor among those stored in thesuccstored table whose

identifier distance from the current node’s identifier is the lowest. Rule n5 further ensures

that the first finger entry (used for routing lookups) is always the same as the best successor.

As new successors are discovered, successor selection only keeps those successors clos-

est to a node in the table, evicting at each discovery the single remaining node (rules s1-s4

in Figure6.12).

6.3.4 Finger Maintenance and Routing

The finger table is used in Chord to route lookup requests. Figure6.13 shows the three

rules that are used to implement lookups in Chord. Eachlookup(@NI,K,R,E)event tuple

103

Chapter 6. Declarative Overlays

s1 succCount(@NI,count<*>) :- newSuccEvent(@NI), succ(@NI,S,SI).

s2 evictSucc(@NI) :- succCount(@NI,C), C> 4.

s3 maxSuccDist(@NI,max<D>) :- succ(@NI,S,SI),

. . nodeID(@NI,N), evictSucc(@NI),

. . D = S - N - 1.

s4 delete succ(@NI,S,SI) :- nodeID(@NI,N), succ(@NI,S,SI),

. . maxSuccDist(@NI,D), D = S - N - 1.

Figure 6.12: Rules for successor selection.

l1 lookupResults(@R,K,S,SI,E) :- nodeID(@NI,N), lookup(@NI,K,R,E),

. . bestSucc(@NI,S,SI), K in (N,S].

l2 bestLookupDist(@NI,K,R,E,min<D>) :- nodeID(@NI,N),

. . lookup(@NI,K,R,E), finger(@NI,I,B,BI),

. . D = K - B - 1, B in (N,K).

l3 lookup(min<@BI>,K,R,E) :- nodeID(@NI,N),

. . bestLookupDist(@NI,K,R,E,D), finger(@NI,I,B,BI),

. . D = K - B - 1, B in (N,K).

Figure 6.13: Rules for recursive lookups in Chord

denotes a lookup request at nodeNI for keyK, originates from nodeRwith event identifier

E.

From our earlier introduction to the Chord protocol, we note that all lookup requests

for key K seek the node whose identifier is the immediate successor on the ring ofK. Rule

l1 is the base case, returning a successful lookup result if the received lookup seeks a key

K found between the receiving node’s identifier and that of its best successor (we come

back to the best successor below). Rulel2 is used in non-base cases, to find the minimum

104

Chapter 6. Declarative Overlays

distance (in key identifier space modulo 2160) from the local node’s fingers toK for every

finger nodeBI whose identifierB lies between the local node’s identifierN andK. Rule

l3 then selects one of the finger entries with the minimum distance to keyK as the target

nodeBI to receive the lookup request. Since there can be multiple such finger entries,

the min¡BI¿ aggregate ensures that only one of the finger entries receives the forwarded

lookup.

f1 fFix(@NI,E,I) :- periodic(@NI,E,10), nextFingerFix(@NI,I).

f2 fFixEvent(@NI,E,I) :- fFix(@NI,E,I).

f3 lookup(@NI,K,NI,E) :- fFixEvent(@NI,E,I), nodeID(@NI,N), K = 0x1I<< I + N.

f4 eagerFinger(@NI,I,B,BI) :- fFix(@NI,E,I), lookupResults(@NI,K,B,BI,E).

f5 finger(@NI,I,B,BI) :- eagerFinger(@NI,I,B,BI).

f6 eagerFinger(@NI,I,B,BI) :- nodeID(@NI,N),

. . eagerFinger(@NI,I1,B,BI), I = I1 + 1,

. . K = 0x1I << I + N, K in (N,B), BI != NI.

f7 delete fFix(@NI,E,I1) :- eagerFinger(@NI,I,B,BI), fFix(@NI,E,I1),

. . I > 0, I1 = I - 1.

f8 nextFingerFix(@NI,0) :- eagerFinger(@NI,I,B,BI), ((I = 159) (BI = NI)).

f9 nextFingerFix(@NI,I) :- nodeID(@NI,N),

. . eagerFinger(@NI,I1,B,BI), I = I1 + 1,

. . K = 0x1I << I + N, K in (B,N), NI != BI.

f10 uniqueFinger(@NI,BI) :- finger(@NI,I,B,BI).

Figure 6.14: Rules for generating finger entries.

Figure6.14shows the rules for generating the entries in thefinger table. There are two

additional materialized tablesfFix andnextFingerFixthat store intermediate state for the

finger fixing protocol. ThenextFingerFixtable stores one tuplenextFingerFix(@NI,I)that

105

Chapter 6. Declarative Overlays

stores the next finger entryI to be picked for fixing at nodeNI.

Every 10 seconds, rule f1 selects theI finger to fix, and then generates afFix(@NI,E,I)

tuple that denotes that theI finger is selected for fixing with event identifierE. This results

in the generating of afFixEvent(@NI,E,I)event tuple in rulef2 which will generate alookup

request for keyK = 2I + N with the corresponding event identifierE. When the lookup

succeeds, rule f4 receives alookupResultsevent tuple, which it then uses to update all

the corresponding finger entries (f5-6). Rules f7-f9 then deletes thefFix tuple, and then

increments theI field of nextFingerFixby 1 for fixing the next finger entry in the next

period. Rule f10 sets theuniqueFingerbased on newfingerentries.

6.3.5 Failure Detection

pp1 pendingPing(@NI,SI,E1,T) :- periodic(@NI,E,5), succ(@NI,S,SI),

. . E1 = f rand(), SI != NI, T = f now().

pp2 pendingPing(@NI,PI,E1,T) :- periodic(@NI,E,5), pred(@NI,P,PI),

. . E1 = f rand(), PI ! = “NIL”, T = f now().

pp3 pendingPing(@NI,FI,E1,T) :- periodic(@NI,E,5), uniqueFinger(@NI,FI),

. . E1:=f rand(), T:=f now().

pp4 pingResp(@RI,NI,E) :- pingReq(@NI,RI,E).

pp5 pingReq(@PI,NI,E) :- periodic(@NI,E1,3),

. . pendingPing(@NI,PI,E,T).

pp6 delete pendingPing(@NI,SI,E,T) :- pingResp(@NI,SI,E), pendingPing(@NI,SI,E,T).

Figure 6.15: Rules for sending keep-alives.

Figure6.15shows the rules that a node utilizes for sending keep-alive messages to its

neighbors. The rules are similar to that of thePing-Pongprogram presented in Chapter2.

At regular intervals of 5 seconds, each node generates onependingPingtuple for each

106

Chapter 6. Declarative Overlays

fd1 nodeFailure(@NI,PI,E1,D) :- periodic(@NI,E,1), pendingPing(@NI,PI,E1,T),

. . T1 = f now(), D = T-T1, D> 7.

fd2 delete pendingPing(@NI,PI,E,T) :- nodeFailure(@NI,PI,E,D),

. . pendingPing(@NI,PI,E,T).

fd3 deleteSucc(@NI,S,SI) :- succ(@NI,S,SI), nodeFailure(@NI,SI,E,D).

fd4 delete succ(@NI,S,SI) :- deleteSucc(@NI,S,SI).

fd5 pred(@NI,”NIL”,”NIL”) :- pred(@NI,P,PI), nodeFailure(@NI,PI,E,D).

fd6 delete finger(@NI,I,B,BI) :- finger(@NI,I,B,BI), nodeFailure(@NI,BI,E,D).

fd7 delete uniqueFinger(@NI,FI) :- uniqueFinger(@NI,FI), nodeFailure(@NI,FI,E,D).

Figure 6.16: Rules for failure detection of successors, predecessors and fingers.

one of its neighbors (rules pp1,pp2 andpp3). This results inpingReqmessages that are

periodically (every 3 seconds as indicated in rule pp3) sent to the respective neighbors for

the lifetime of eachpendingPingtuple. ThesependingPingsare deleted upon receiving the

correspondingpingRespmessages.

Figure6.16shows the rules for detecting failure of successors, predecessors and fingers.

Here, rule fd1 generatesnodeFailureevents when there are outstandingpendingPingtuples

that are unanswered after a period of time. The choices of 7 seconds in rule fd1 and 3

seconds in rule pp5 determine the frequency in whichpingReqmessages are sent, and the

number unanswered replies that are required before we conclude a node is “dead”. In

our example, a node is considered “dead” if there are two successive unansweredpingReq

messages. ThenodeFailureevent then results in deletion ofpendingPing, succandfinger

entries, and resetting the singlepredentry (rules fd3-fd7). AdeleteSuccevent is generated

to allow the recomputation of the best successor in rules n2-n5.

107

Chapter 6. Declarative Overlays

6.3.6 Summary of Chord

In this section, we have presented theNDlog rules that are necessary for implementing the

Chord distributed hash table. In doing so, we have also demonstrated the compactness of

NDlog: Chord is specified in only 48 rules, which is two orders of magnitude less code

compared to an equivalent C++ implementation[85]. In addition, in order to deal with

issues related to message delivery, acknowledgments, failure detection and timeouts, we

have made extensive use of soft-state tables and soft-state rules that were presented in

Chapter2

As a summary, in addition to thematerializestatements and initialization rules i1-i4,

we review ourNDlog rules based on the three functionalities of a typical overlay network

that we presented earlier:

• Overlay formation and maintenance: rules j1-j6 are used by a node joining the

Chord network via a landmark. Once a node has joined the ring, rules sb1-sb3 are

used to execute the ring stabilization to learn about new successors and refine the

predecessor. Based on the successors learned, rules n1-n5 are used for selecting

the best successor, and rules s1-s4 are used for evicting unnecessary successors. To

ensure that all overlay neighbors are alive, rules pp1-pp5 andfd1-fd7for periodically

pinging all successors, predecessors and finger entries, and deleting them if they do

not respond to heartbeats.

• Routing: Given the basic ring network, rules f1-f9 for generating finger table entries

that ensures scalable lookups.

• Forwarding: With the finger table in place, rules l1-l3 are used for routing lookup

requests via the finger table.

We note thatoverlay formationconstitutes the majority of P2-Chord rules, and clearly

108

Chapter 6. Declarative Overlays

illustrates the additional challenges in specifying declarative overlays compared to the rela-

tively simplerNDlogprograms for implementing routing protocols presented in Chapter3.

6.4 Summary

In this chapter, we demonstrated the use ofNDlog for expressing two complex overlay

networks, namely the Narada mesh formation and a full-fledged implementation of the

Chord distributed hash table in 16 and 48 rules respectively.

We note that our Chord implementation is roughly two orders of magnitude less code

than the original C++ implementation. This is a quantitative difference that is sufficiently

large that it becomes qualitative: in our opinion (and experience), declarative programs that

are a few dozen lines of code are markedly easier to understand, debug and extend than

multi-thousand-line imperative programs. In the next chapter, we present experimental

results that validate the correctness of ourNDlogprograms for Narada and Chord.

109

Chapter 7

Evaluation

In this chapter, we evaluate the performance of P2’s implementation ofNDlog. Our exper-

iments take as inputNDlog programs, and compile them into P2 dataflows as described in

Chapter5. These dataflows are then executed using the P2 system. As our experimental

testbed, we make use of Emulab[40], a cluster-based testbed that supports realistic emula-

tion of latency and bandwidth constraints seen on the Internet, while providing repeatable

experiments in a controlled environment.

The goal of our evaluation is twofold. First, we aim to validate that our declarative

specifications result in the expected network properties in terms of topology and messaging.

Second, we examine our raw performance with an eye toward feasibility: we do not expect

our per-node performance to be as good as a highly-tuned hand-coded implementation, but

we would like it to be acceptable and exhibit scalability trends that one would expect.

The chapter is organized as follows. In Section7.1 we present our evaluation of the

path vector protocol. In Section7.2, we present evaluations of theNarada meshand the

Chord distributed hash table.

110

Chapter 7. Evaluation

7.1 Declarative Routing Evaluation

In our first experiment, we evaluate the performance of declarative routing protocols written

in NDlogusing the P2 system. The main metrics that we use in our evaluation are:

Convergence time: Given a quiesced network, the time taken for the network protocol

to generate all its eventual network state. This is equivalent to achievingfixpoint during

NDlogprogram execution, where there are no new derivations from all rules that are being

executed.

Communication overhead:The number of bytes transferred for each network protocol in

order to achieve convergence in a quiesced network. We consider both aggregate commu-

nication overhead (MB), as well as per-node bandwidth (KBps).

As input to the Emulab testbed, we use transit-stub topologies generated using GT-

ITM [53], a package that is widely used to model Internet topologies. Our topology has

four transit nodes, eight nodes per stub and three stubs per transit node. Latency between

transit nodes is 50 ms, latency between transit nodes and their stub nodes is 10 ms, and

latency between any two nodes in the same stub is 2 ms. The link capacity is set to 10

Mbps. Given the small size of our network, we limited our topology to four transit domains.

We construct an overlay network over the base GT-ITM topology where each overlay

node is assigned to one of the stub nodes. Each overlay node runs the P2 system on one

Emulab machine, and picks four randomly selected overlay neighbors which are stored as

facts in each local#link table.

7.1.1 Scalability of Path-Vector Protocol

In our first experiment, we measure the performance of our system when all nodes are run-

ning theShortest-Pathprogram of Chapter2, which implements the path-vector protocol

used to compute the shortest latency paths between all pairs of nodes. In our implementa-

111

Chapter 7. Evaluation

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200

D
ia

m
et

er
 (m

s)

Figure 7.1: Network diameter (ms) vs Number of nodes.

tion, we use theaggregate selectionsoptimization to avoid sending redundant path tuples

(Section8.1.1), where the most recently computed shortest paths are batched and sent to

neighboring nodes every 500 ms. The duration of 500 ms is chosen as it is an upper bound

on the latency between any two nodes. This ensures that computed paths at each iteration

have sufficient time to be propagated and accumulated at every node for periodic aggregate

selections to be most effective.

Figure 7.1 shows the diameter of the network (computed from the maximum of all

shortest-path latencies) used in our experiments as the number of nodes increases from 25

to 200. Figures7.2 and7.3 show the convergence latency and per-node communication

overhead for theShortest-Pathprogram as the number of nodes increases. We make two

observations.

• The convergence latency for theShortest-Pathprogram is proportional to the network

diameter. This is expected because in a static network, the convergence time of the

path vector protocol depends on the time taken to compute thelongestshortest paths,

112

Chapter 7. Evaluation

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200

C
on

ve
rg

en
ce

 T
im

e
(s

)

Figure 7.2: Convergence latency (s) vs Number of nodes.

which in our case is bounded by the time taken for the computed shortest paths to

propagate in the network (i.e., 500ms×Dhop, whereDhop is the network diameter in

terms of hop count).

• The per-node communication overhead increases linearly with the number of nodes.

This is because each node needs to compute the shortest path to every other node in

the network.

We note that both these observations are consistent with the scalability properties of

the traditional distance vector and path vector protocols, suggesting that our approach does

not introduce any fundamental overheads when used to implement traditional routing pro-

tocols.

113

Chapter 7. Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200

P
er

-n
od

e
ba

nd
w

id
th

 (K
B

)

Figure 7.3: Per-node Communication Overhead (KB).

7.1.2 Incremental Evaluation in Dynamic Networks

In our next experiment, we examine the overhead of incrementally maintainingNDlog

program results in a dynamic network. We run the sameShortest-Pathprogram on 100

Emulab nodes over a period of time, and subject the network to bursty updates as described

in Section5.4. Each update burst involves randomly selecting 10% of all links, and then

updating the cost metric by up to 10%.

We use the shortest-path random metric since executing theNDlog program using this

metric is most demanding in terms of bandwidth usage and convergence time. This is

because as we noted in Section8.1.1, aggregate selections are most useful for queries whose

input tuples tend to arrive over the network out of order in terms of the monotonic aggregate

– e.g., computing “shortest” paths for metrics that are not correlated with the network

delays that dictate the arrival of the tuples during execution.

Figure7.4 plots the per-node communication overhead, when applying a batch of up-

dates every 10 seconds. Two points are worth noting. First, the time it takes the program

114

Chapter 7. Evaluation

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

P
er

-n
od

e
B

an
dw

id
th

 (K
B

ps
)

Figure 7.4: Per-node Bandwidth (KBps) for periodic link updates on latency metric (10s update

interval).

to converge after a burst of updates is well within the convergence time of running the

program from scratch. This is reflected in the communication overhead, which increases

sharply after a burst of updates is applied, but then disappears long before the next burst

of updates (Figure7.4). Second, each burst peaks at 19 KBps, which is only 32% of the

peak bandwidth and 28% of the aggregate bandwidth of the original computation. Our re-

sults clearly demonstrate the usefulness of performing incremental evaluation in response

to changes in the network, as opposed to recomputing the queries from scratch

We repeat our experiment using a more demanding update workload (Figure7.5), where

we interleave update intervals that are 2 seconds and 8 seconds, the former interval being

less than the from-scratch convergence time of 3.6 seconds. We observe that despite the

fact that bursts are sometimes occurring faster than queries can run, bandwidth usage is

similar to the less demanding update workload, peaking at 24 KBps and converging within

the from-scratch convergence time.

115

Chapter 7. Evaluation

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 50 100 150 200 250

P
er

-n
od

e
B

an
dw

id
th

 (K
B

ps
)

Figure 7.5: Per-node Bandwidth (KBps) for periodic link updates (interleaving 2s and 8s update

interval).

7.2 Declarative Overlays Evaluation

In this section, we present performance results of the Narada mesh and the Chord DHT. Our

experiments are carried out on 100 machines on the Emulab testbed[40]. In both overlay

networks, the latency between any two overlay nodes is set to 100 ms, and link capacity is

set to 10 MBps.

7.2.1 Narada Mesh Formation

We evaluate the Narada specifications on mesh formation shown in AppendixB.1. Our

experiment consists of 100 Narada nodes, one on each Emulab node. All nodes join the

network over a span of 10 seconds. Each Narada node has an initial set of neighbors, and

at regular intervals of 5 seconds, propagate its entire membership list to its neighbors. We

measure the per-node bandwidth (KBps) of periodically sending the membership list in

116

Chapter 7. Evaluation

the steady state, and also the convergence time (seconds) taken for all Narada nodes have

achieved full membership knowledge of the entire network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F
(M

em
be

rs
hi

p
Fr

ac
tio

n)

Time (s)

NS=2
NS=4

Figure 7.6: CDF of average Narada membership at each node as fraction of total network size

over time (s).

Figure 7.6 shows the CDF of membership at each node as a fraction of the entire

network size over time (seconds) for a network size of 100 for two experimental runs

(NS=2, NS=4) where we vary the number of neighbors that each node has (2 and 4 neigh-

bors). Each data point(x,y) shows the average fractiony of the network that each node

knows at timex. Upon convergence, all nodes learn about every other node in the network

(i.e., y = 1).

Our results show that our Narada implementation converges on the sparser network

(NS= 2) within 60 seconds, while requiring less than 40 seconds to converge on the denser

network (NS= 4). The convergence time includes the initial 10 seconds as nodes join

the Narada network. Our results clearly demonstrate the tradeoffs between bandwidth and

convergence in propagating the membership list. The faster convergence of the denser

117

Chapter 7. Evaluation

network comes at the expense of bandwidth utilization (33KBps) as compared to 13KBps

for the sparser network.

7.2.2 P2-Chord

In this section, we focus on measuring the full Chord DHT specification in AppendixB.2.

Chord is a good stress test of our architecture, being relatively complex compared to other

overlay examples like gossip and end-system multicast. Chord also has the advantage of

being well-studied. Our P2-Chord deployment on the Emulab testbed[40] consists of 100

machines executing up to 500 P2-Chord instances (5 P2 processes running on each Emulab

machine). We utilize the same network topology as the Narada experiment. Since we are

running up to 5 P2 processes per Emulab node, we selected Emulab machines with newer

hardware (64-bit Xeon 3000 series with 2 GB memory) to run our experiments.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10 12

Fr
eq

ue
nc

y

Hop Count

100 nodes
300 nodes
500 nodes

Figure 7.7: Hop-count distribution for lookups.

118

Chapter 7. Evaluation

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Latency (s)

100 nodes
300 nodes
500 nodes

Figure 7.8: CDF for lookup latency.

7.2.2.1 Static Network Validation

In our first round of experiment, we validate the high-level characteristics of the Chord

overlay. We generate a uniform workload of DHT “lookup” requests to a static set of nodes

in the overlay, with no nodes joining or leaving. This is somewhat unrealistic but it allows

us to ensure we are achieving the static properties of Chord. In each experiment, we start

a landmark node, and have all other nodes join the landmark node at regular intervals.

Once all the nodes have joined the Chord overlay, we issue lookups every 15 seconds

simultaneously (with the same lookup keyK) from 10 nodes.

Figure7.7shows the hop-count distribution for our workload. Except for a few outliers,

99% of all lookups complete within 10 hops. The average hop count of lookups are 3.3,

4.0 and 4.5 for node sizes of 100, 300 and 500 respectively, approximating the theoretical

average of 0.5× log2(N), whereN is the number of nodes.

119

Chapter 7. Evaluation

Figure7.8shows the CDF of lookup latencies for different network sizes. As expected,

the average latency increases in proportion to the average lookup hop count for each net-

work size. On a 500 node static network, 99% of all lookups complete in less than 3.4

seconds. The average (median) latencies are 0.81 seconds (0.72 seconds), 0.92 seconds

(0.82 seconds) and 1.09 seconds (0.98 seconds) for node sizes of 100, 300 and 500 respec-

tively. Our average and median latency numbers are within the same order of magnitude as

the published numbers[114] of the MIT Chord deployment.

In addition to achieving expected latency numbers, our lookups are also “correct”.

All lookup requests return successfully with the lookup requests. In addition, all lookups

achieve 100% consistency, where all lookup requests for the same key issued from different

nodes return identical results.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 3000 2000 1000 0

P
er

-n
od

e
B

an
dw

id
th

 (K
B

ps
)

Time (s)

Figure 7.9: Per-node Bandwidth (KBps) over time (s).

Figure7.9 shows the per-node bandwidth (KBps) consumption over time (in seconds)

for a static P2-Chord network where fingers are fixed every 10 seconds, and ring stabiliza-

tion (exchange of successors and predecessors among neighbors) happen every 10 seconds.

120

Chapter 7. Evaluation

Each node periodically send ping messages to neighbors every 3 seconds. After an initial

linear increase in bandwidth as nodes join the Chord ring, the bandwidth utilization stabi-

lizes at 0.34 KBps, well within the published bandwidth consumption of 1 KBps[103] of

other high consistency and low latency DHTs.

7.2.2.2 Churn Performance

In our second round of experiments, we focus on the performance of our Chord imple-

mentation under varying degrees of membership churn. Again, our goal is to validate that

our compact specification of Chord faithfully captures its salient properties following the

methodology in[103]. We bring up a 100 node Chord network, and once the network is

stable, induce churn on the network for 20 minutes as follows. Periodically, we select a

node at random to fail. Upon each node failure, a new node immediately joins the Chord

network with a different node identifier. We vary the interval between every node fail-

ure/restart event to achieve different average node session times (8, 16, 47 and 90 minutes).

In the steady state under constant churn, we issued lookups for the same key simulta-

neously from 10 different nodes every 15 seconds. Following the methodology in[103],

we define aconsistentlookup when a majority of the lookups (>5) see a consistent result

that points to the same node that owns the key. For each group of 10 lookups, we compute

the maximum fraction of lookups that share a consistent result. P2-Chord’s churn param-

eters are set as follows: (1) the fix finger and ring-stabilization periods are both set to 10

seconds as before; (2) Each node periodically send ping messages to neighbor nodes every

3 seconds, and remove entries from the local neighbor tables if they do not respond to two

successive pings.

Figure7.10shows the CDF (log-scale for Y-axis) for theconsistent fractionof lookups,

which is defined as the fraction of lookups with consistent result for each group of simulta-

neous lookups. To interpret the graph, each data-point(x,y) shows the fractiony of lookups

121

Chapter 7. Evaluation

with lookup consistency less thanx. Our results show that P2 Chord does well under low

churn (session times of 90 minutes and 47 minutes), generating 99% and 96% consistent

lookups. Under high churn (session times of 16 minutes and 8 minutes), P2 Chord performs

well, producing 95% and 79% consistent lookups.

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Consistent Fraction

8 mins
16 mins
47 mins
90 mins

Figure 7.10: CDF for lookup consistency fraction under churn.

Figure7.11 shows the CDF of the lookup latencies for diferent churn rates. At low

churn rates, the lookup latencies are similar to those measured under a stable Chord network

with no churn. At high churn rates, the average lookup latency increased from 0.81 seconds

to 1.01 seconds and 1.32 seconds respectively.

While P2-Chord performs acceptably, it clearly does not attain the published figures

for the MIT implementation (at least 99.9% consistency for a session time of 47 minutes).

Ultimately, an evaluation of a system like P2 rests on an assessment of the ideal tradeoff

between code size and performance. It may be the case that churn performance can be at

the expense of additional rules that implements lookup retries on a per-hop basis, and better

failure detection techniques with adaptive timers.

122

Chapter 7. Evaluation

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6

C
D

F

Latency (s)

8 mins
16 mins
47 mins
90 mins

Figure 7.11: CDF for lookup latency under churn.

7.3 Summary

In this chapter, we evaluated a variety of declarative networking protocols on the Emulab

testbed. We demonstrated that (1)NDlog programs are faithful to their specifications, and

(2) the P2 system correctly executed the declarative specifications to achieve the correct

network implementation. We based our correctness criteria of a declarative network on

its ability to achieve expected network properties in terms of topology and messaging, and

also to incur maintenance overhead and forwarding performance that were within published

results of other equivalent implementations.

In summary, we made the following observations from our evaluation results:

• Our Shortest-Path NDlogprogram exhibited scalability trends similar to that of tra-

ditional distance vector and path vector protocols. We observed that the convergence

time of this program was proportional to the network diameter, and generated com-

munication overhead that was linear to the number of nodes. This validated our

123

Chapter 7. Evaluation

routing protocol and demonstrated that there were no fundamental overheads in our

approach relative to traditional approaches.

• We further demonstrated the usefulness of performing incremental evaluation of the

Shortest-Path NDlogprogram in a dynamic network, where the shortest paths was

computed at a bandwidth cost that was a fraction of recomputing the programs from

scratch. As in network protocols, such incremental evaluation is required both for

timely updates and for avoiding the overhead of recomputing all routing tables when-

ever there are changes to the underlying network.

• TheNDlogdeclarative overlay programs for the Narada mesh and Chord achieve the

expected high-level properties of their respective overlay networks for both static and

dynamic networks. For example, in a static network of up to 500 nodes, the measured

hop-count of lookup requests in the Chord network conformed to the theoretical av-

erage of 0.5× log2N hops, and the latency numbers were within the same order of

magnitude as published Chord numbers. The steady state maintenance overhead was

also within the published bandwidth consumption of other high consistency and low

latency DHTs. In a dynamic network, our Chord implementation was able to achieve

good lookup performance under low churn and respectable performance under high

churn.

In the next chapter, we describe a number of optimizations that are useful in the declar-

ative networking setting, and present evaluation results to validate the effectiveness of these

optimizations.

124

Chapter 8

Optimization of NDlog Programs

One of the promises of a declarative approach to networking is that it can enable auto-

matic optimizations of protocols, much as relational databases can automatically optimize

queries. These not only reduces the burden on programmers, it also enables what Codd

calleddata independence[33]: the ability for the implementation of a program to adapt to

different underlying execution substrates.

Our main goals in this chapter are to demonstrate that our declarative approach is

amenable to automatic query optimizations, and to illustrate the close connection between

network optimizations and query optimizations. In doing so, we open up what appears to

be a rich new set of research opportunities.

The chapter is organized as follows. In Section8.1, we explore the application of

traditional Datalog optimizations in the declarative networking context. We then propose

new techniques for multi-query optimizations and cost-based optimizations in Sections8.2

and8.3respectively. To validate our proposed optimizations, in Section8.4, we present our

measurements of the performance of the P2 system executing optimized declarative routing

queries on the Emulab testbed.

125

Chapter 8. Optimization of NDlog Programs

8.1 Traditional Datalog Optimizations

We first explore the applicability of three traditional Datalog optimization techniques:ag-

gregate selections, magic setsandpredicate reordering. We focus primarily on optimizing

declarative routing queries which are generally variants of transitive closure queries. There

have been substantial previous work on optimizing such queries in centralized settings. In

Section10.3, we discuss how these optimization techniques can be extended to support

more complex declarative overlay networks.

8.1.1 Aggregate Selections

A näıve execution of theShortest-pathprogram computes all possible paths, even those

paths that do not contribute to the eventual shortest paths. This inefficiency can be avoided

with an optimization technique known asaggregate selections[118; 47].

Aggregate selections are useful when the running state of a monotonic aggregate func-

tion can be used to prune program evaluation. For example, by applying aggregate selec-

tions to theShortest-pathprogram, each node only needs to propagate the current shortest

paths for each destination to neighbors. This propagation can be done whenever a shorter

path is derived.

A potential problem with this approach is that the propagation of new shortest paths

may be unnecessarily aggressive, resulting in wasted communication. As an enhancement,

we propose a modified scheme, calledperiodic aggregate selections, where a node buffers

up new paths received from neighbors, recomputes any new shortest paths incrementally,

and then propagates the new shortest paths periodically. The periodic technique has the

potential for reducing network bandwidth consumption, at the expense of increasing con-

vergence time. It is useful for queries whose input tuples tend to arrive over the network in

an order that is not positively correlated with the monotonic aggregate –e.g., computing

126

Chapter 8. Optimization of NDlog Programs

“shortest” paths for metrics that are not correlated with the network delays that dictate the

arrival of the tuples during execution.

In addition, aggregate selections are necessary for the termination of some queries. For

example, with aggregate selections, even if paths with cycles are permitted, theShortest-

Pathprogram will terminate, avoiding cyclic paths of increasing lengths.

8.1.2 Magic Sets and Predicate Reordering

The Shortest-Pathprogram in our example computesall-pairs shortest paths. This leads

to unnecessary overhead when querying for paths between a limited set of sources and/or

destinations. This problem can be alleviated by applying two optimization techniques:

magic-sets rewritingandpredicate reordering.

Magic-Sets Rewriting: To limit computation to the relevant portion of the network, we

use a query rewrite technique calledmagic sets rewriting[16; 18]. The Magic Sets method

is closely related to methods such as Alexander[106] and QSQ[71], all of which are

designed to avoid computing facts that do not contribute to the final answer to a recur-

sive query. The proposed processing techniques in Chapter5 are based on bottom-up (or

forward-chaining) evaluation[96] where the bodies of the rules are evaluated to derive

the heads. This has the advantage of permitting set-oriented optimizations while avoiding

infinite recursive loops, but may result in computing redundant facts not required by the

program. For example, even when theShortest-Pathprogram (Figure2.4 in Chapter2)

specifiesshortestPath(@a,b,Z,P,C)as the “goal” of the query, naı̈vely applying bottom-up

evaluation results in the computation ofall paths betweenall pairs of nodes.

The magic sets rewrite avoids these redundant computations and yet retains the two

advantages of bottom-up evaluation. The key ideas behind the rewrite include (1) the in-

troduction of “magic predicates” to represent variable bindings in queries that a top-down

127

Chapter 8. Optimization of NDlog Programs

search would ask, and (2) the use of “supplementary predicates” to represent how answers

are passed from left-to-right in a rule. The rewritten program is still evaluated in a bottom-

up fashion, but the additional predicates generated during the rewrite ensure that there are

no redundant computations.

We illustrate the use of magic sets in an example: by modifying rule sp1 from the

Shortest-Pathprogram, the following program in Figure8.1 computes only those paths

leading to destinations in themagicDsttable.

#include(sp2,sp3,sp4)

sp1-d path(@S,D,D,P,C) :- magicDst(@D),#link(@S,D,C), P = finit(S,D).

m1 magicDst(@a).

Query shortestPath(@S,a,P,C).

Figure 8.1: Shortest-Path program with magic sets

Rule sp1-d initializes 1-hop paths for destinations whosemagicDst(@D)is present in

themagicDsttable. Rule m1 adds amagicDst(@a)fact in themagicDsttable. Intuitively,

the set ofmagicDst(@D)facts is used as a “magic predicate” or “filter” in the rules defining

paths. This ensures that rule sp2 propagates paths to selected destinations based on the

magicDsttable (in this case, paths to only nodea). The shortest paths are then computed

as before using rules sp3 and sp4.

Predicate Reordering: The use of magic sets in the previous program is not useful for

pruning paths from sources. This is because paths are derived in a“Bottom-Up” (BU)

fashion starting from destination nodes, where the derived paths are shipped “backwards”

along neighbor links from destinations to sources. Interestingly, switching the search strat-

egy can be done simply byreorderingthepathand #link predicates. Recall from Chapter2

that predicates in a rule are evaluated in a default left-to-right order. This has the effect of

turning sp2 from aright-recursiveto a left-recursiverule: the recursive predicate is now

128

Chapter 8. Optimization of NDlog Programs

to the left of the non-recursive predicate in the rule body. Together with the use of magic

sets, theMagic-Shortest-Pathprogram in Figure8.2 allows filtering onboth sources and

destinations, as we proceed to describe.

sp1-sd pathDst(S,@D,D,P,C) :- magicSrc(@S), #link(@S,D,C),

. . P = f init(S,D).

sp2-sd pathDst(S,@D,Z,P,C) :- pathDst(S,@Z,Z1,P1,C1),#link(@Z,D,C2),

. . C = C1 + C2, P = fconcatPath(P1,D).

sp3-sd spCost(@D,S,min<C>) :- magicDst(@D),pathDst(S,@D,Z,P,C).

sp4-sd shortestPath(S,@D,P,C) :- spCost(S,@D,C),pathDst(S,@D,Z,P,C).

Figure 8.2: Magic-Shortest-Path Program.

The left-recursiveShortest-Pathprogram computes 1-hop paths starting from each

magicSrcusing rule sp1-sd. Rulesp2-sdthen recursively computes new paths by follow-

ing all reachable links, and stores these paths aspathDsttuples at each destination. Rules

sp3-sd and sp4-sd then filter relevant paths based onmagicDst, and compute the shortest

paths, which can then be propagated along the shortest paths back to the source node. In

fact, executing the program in this“Top-Down” (TD) fashion resembles a network protocol

calleddynamic source routing(DSR)[64] which we presented in Section3.3.4as a declar-

ative routing example program. DSR is proposed for ad-hoc wireless environments, where

the high rate of change in the network makes such targeted path discovery more efficient

compared to computing all-pairs shortest paths.

Interestingly, the use of magic sets and predicate reordering reveals close connections

between query optimizations and network optimizations. By specifying routing protocols

in NDlogat a high level, we demonstrate that the two well-known protocols – one for wired

networks and one for wireless – differ only in applying a standard query optimization: the

order of two predicates in a single rule body. In addition, the use of magic sets allows us to

129

Chapter 8. Optimization of NDlog Programs

do a more targeted path discovery suited in the wireless setting. Ultimately, we hope that

such connections between query optimizations and network optimizations will provide a

better understanding of the design space of routing protocols.

8.2 Multi-Query Optimizations

In a distributed setting, it is likely that many related queries will be concurrently executed

independently by different nodes. A key requirement for scalability is the ability to share

common query computations (e.g., pairwise shortest paths) among a potentially large num-

ber of queries. We outline two basic strategies for multi-query sharing in this environment:

query-result cachingandopportunistic message sharing.

Query-Result Caching. Consider theMagic-Shortest-Pathprogram where nodea com-

putesshortestPath(@a,d,[a,b,d],6)to noded. This cached value can be reused by all

queries for destinationd that pass througha, e.g., the path frome to d. Currently, our

implementation generates the cache internally, building a cache of all the query results (in

this caseshortestPathtuples) as they are sent back on the reverse path to the source node.

Since the subpaths of shortest paths are optimal, these can also be cached as an enhance-

ment.

Opportunistic Message Sharing.In the previous example, we considered how different

nodes (src/dst) could share their work in running thesameprogram logic with different

constants. Sharing acrossdifferentqueries is a more difficult problem, since it is non-trivial

to detect query containment in general[25]. However, we observe that in many cases, there

can be correlation in the message patterns even for different queries. One example arises

when different queries request “shortest” paths based on different metrics, such as latency,

reliability and bandwidth;path tuples being propagated for these separate queries may be

identical modulo the metric attribute being optimized.

130

Chapter 8. Optimization of NDlog Programs

A strategy that we have implemented isopportunistic message sharing, where multiple

outgoing tuples that share common attribute values are essentially joined into one tuple if

they are outbound to the same destination; they are re-partitioned at the receiving end. This

achieves the effects of jointly rewriting the queries in a fashion, but on an opportunistic

basis: derivations are done in this combined fashion only in cases that are spatiotempo-

rally convenient during processing. In order to improve the odds of achieving this sharing,

outbound tuples may be buffered for a time and combined in batch before being sent.

As an alternative to this opportunistic sharing at the network level, one can achieve ex-

plicit sharing at a logical level,e.g., using correlated aggregate selections for pruning dif-

ferent paths based on a combination of metrics. For example, consider running two queries:

one that computes shortest latency paths, and another that computes max-bandwidth paths.

We can rewrite these as a singleNDlog program by checking two aggregate selections,

i.e., only prune paths that satisfybothaggregate selections.

8.3 Hybrid Rewrites

Currently, rules are expressed using a left-recursive (BU) or right-recursive (TD) syntax

(Section8.1.2). Our main goal during query execution isnetwork efficiency(i.e., reducing

the burden on the underlying network), which, typically, also implies faster query con-

vergence. It is not difficult to see that neither BU nor TD execution is universally superior

under different network/query settings. Even in the simple case of a shortest-path discovery

queryshortestPath(@S,@D,P,C)between two given nodes(@S,@D), minimizing message

overhead implies that our query processor should prefer a strategy that restricts execution to

“sparser” regions of the network (e.g., doing a TD exploration from a sparsely-connected

source@S).

We argue thatcost-basedquery optimization techniques are needed to guarantee effec-

131

Chapter 8. Optimization of NDlog Programs

tive query execution plans. While such techniques have long been studied in the context of

relational database systems, optimizing distributed recursive queries for network efficiency

raises several novel challenges. In the remainder of this section, we briefly discuss some of

our preliminary ideas in this area and their ties with work in network protocols.

The Neighborhood Function Statistic.As with traditional query optimization, cost-based

techniques must rely on appropriatestatisticsfor the underlying execution environment that

can drive the optimizer’s choices. One such key statistic for network efficiency is thelo-

cal neighborhood density N(). Formally,N(X, r) is the number of distinct network nodes

within r hops of nodeX. The neighborhood function is a natural generalization of the

size of the transitive closure (i.e., reachability set) of a node, that can be estimated locally

(e.g., through other recursive queries running in the background/periodically).N(X, r)

can also be efficientlyapproximatedthrough approximate-counting techniques using small

(log-size) messages[108]. To see the relevance ofN() for our query-optimization prob-

lem, consider our exampleshortestPath(@s,@d,P,C)query, and letdist(s,d) denote the

distance ofs, d in the network. A TD search would explore the network starting from node

s, and (modulo network batching) result in a total ofN(s,dist(s,d)) messages (since it

reaches all nodes within a radius ofdist(s,d) from s). Note that each node only forwards

the query message once, even though it may receive it along multiple paths. Similarly, the

cost for a BU query execution isN(d,dist(s,d)). However, neither of these strategies is

necessarily optimal in terms of message cost. The optimal strategy is actually ahybrid

schemethat “splits” the search radius dist(s,d) betweens andd to minimize the overall

messages; that is, it first findsrs andrd such that:

(rs, rd) = arg min
rs+rd=dist(s,d)

{ N(s, rs)+N(d, rd) },

and then runs concurrent TD and BU searches from nodess andd (with radii rs and rd,

132

Chapter 8. Optimization of NDlog Programs

respectively). At the end of this process, both the TD and the BU search have intersected

in at least one network node, which can easily assemble the shortest (s,d) path. While

the above optimization problem is trivially solvable inO(dist(s,d)) time, generalizing

this hybrid-rewrite scheme to the case of multiple sources and destinations raises difficult

algorithmic challenges. And, of course, adapting such cost-based optimization algorithms

to work in the distributed, dynamic setting poses system challenges. Finally, note that

neighborhood-function information can also provide a valuable indicator for the utility of

a node as a result cache (Section8.2) during query processing.

Adaptive Network Routing Protocols. As further illustrations on the close connection

between networking routing and query optimizations, we note that the networking literature

has considered adaptive routing protocols that strongly resemble our use of hybrid rewrites;

hence, we believe this is an important area for future investigation and generalization. One

interesting example is the class ofZone-Routing Protocols(ZRP) [55]. A ZRP algorithm

works by each node precomputingk-hop-radiusshortest paths to neighboring nodes (in its

“zone”) using a BU strategy. Then, a shortest-path route from a source to destination is

computed in a TD fashion, using essentially theMagic-Shortest-Pathprogram described

above, utilizing any precomputed shortest paths along the way. Each node sets its zone

radiusk adaptively based on the density and rate of change of links in its neighborhood; in

fact, recent work[101] on adjusting the zone radius for ZRP-like routing uses exactly the

neighborhood-function statistic.

8.4 Evaluation of Optimizations

In this section, we examine the effectiveness of the optimizations that are proposed in this

chapter. We base our workload primarily on declarative routing protocols, and measure

four variants of the sameShortest-Pathprogram, differing in the link metric each seeks

133

Chapter 8. Optimization of NDlog Programs

to minimize. Our experimental setup is similar to Section7.1, where we executed the

Shortest-Pathprogram on an overlay network in which each node has four neighbors. In

addition, for each neighbor link, we generate additional metrics that include reliability, and

a randomly generated value. Note that our reliability metric for each link is synthetically

generated to be correlated with latency.

On all our graphs, we label these queries by their link metric:Hop-Count, Latency,

ReliabilityandRandom, respectively. Recall from Section7.1.2thatRandomserves as our

stress case: we expect it to have the worst performance among the different metrics. This is

due to aggregate selections being less effective when the aggregate metric is uncorrelated

with the network latency.

8.4.1 Aggregate Selections

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6

B
an

dw
id

th
(K

B
ps

)

Time (s)

Hop Count
Latency

Reliability
Random

Figure 8.3: Per-node Bandwidth (KBps) with Aggregate Selections.

We first investigate the effectiveness of aggregate selections for different queries. Fig-

ure8.3shows the per-node bandwidth usage against time for theShortest-Pathprogram on

134

Chapter 8. Optimization of NDlog Programs

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6

%
 R

es
ul

ts

Time (s)

Hop Count
Latency

Reliability
Random

Figure 8.4: Results over time (seconds) with Aggregate Selections.

all four metrics. Figure8.4shows the percentage of eventual best paths completed against

time. Our results show thatHop-Counthas the fastest convergence time of 2.9 seconds,

followed byLatencyandReliability in 3.5 seconds and 3.9 seconds respectively.Random

has the worst convergence time of 5.5 seconds.

During program execution, the communication overhead incurred by all four queries

shows a similar trend (Figure8.3). Initially, the communication overhead increases as

more and more paths (of increasing length) are derived. After it peaks at around 53KBps

per-node, the communication overhead decreases, as fewer and fewer optimal paths are left

to be derived. In terms of aggregate communication overhead,Randomincurs the most

overhead (18.2 MB), while Hop-Count, LatencyandReliability use 9.1 MB, 12.0 MB and

12.8 MB, respectively. The relatively poor performance ofRandomis due to the lack

of correlation between the metric and network latency, leading to a greater tendency for

out-of-order arrival of path tuples that results in less effective use of aggregate selection,

translating to more messaging overhead and delays.

135

Chapter 8. Optimization of NDlog Programs

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 1 2 3 4 5 6 7

B
an

dw
id

th
(K

B
ps

)

Time (s)

Hop Count
Latency

Reliability
Random

Figure 8.5: Per-node Bandwidth (KBps) with periodic aggregate selections.

The results in Figures8.5and8.6 illustrate the effectiveness of theperiodic aggregate

selectionsapproach, as described in Section8.1.1, where the wait period is set to 500 ms.

In particular, this approach reduces the bandwidth usage ofHop-Count, Latency, Reliabil-

ity andRandomby 19%, 15%, 23% and 34%, respectively.Randomshows the greatest

reduction in communication overhead, demonstrating the effectiveness of this technique

for improving the performance of queries on metrics that are uncorrelated with network

delay.

8.4.2 Magic Sets and Predicate Reordering

Next, we study the effectiveness of combining the use of magic sets and predicate re-

ordering for lowering communication overhead when the requested shortest paths are con-

strained by randomly chosen sources and destinations. Our workload consists of queries

that request source-to-destination paths based on theHop-Countmetric. For each query,

we execute theMagic-Shortest-Pathprogram (Section8.1.2).

136

Chapter 8. Optimization of NDlog Programs

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6 7

%
 R

es
ul

ts

Time (s)

Hop Count
Latency

Reliability
Random

Figure 8.6: Results over Time (seconds) with periodic aggregate selections.

Figure8.7 shows the aggregate communication overhead as the number of queries in-

creases. TheNo-MSline represents our baseline, and shows the communication overhead

in the absence of rewrites (this essentially reduces to computing all-pairs least-hop-count).

TheMSline shows the communication overhead when running the program optimized with

magic sets, but without any sharing across queries. When there are few queries, the com-

munication overhead ofMS is significantly lower than that ofNO-MS. As the number of

queries increases, the communication overhead ofMSincreases linearly, exceedingNo-MS

after 170 queries.

In addition, Figure8.7 also illustrates the effectiveness of caching (Section8.2). The

MSCline shows the aggregate communication overhead for magic sets with caching. For

fewer than 170 queries, there is some overhead associated with caching. This is due to

false positive cache hits, where a cache result does not contribute to computing the even-

tual shortest path. However, as the number of queries increases, the overall cache hit rate

improves, resulting in a dramatic reduction of bandwidth. When limiting the choice of

137

Chapter 8. Optimization of NDlog Programs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 50 100 150 200 250 300

A
gg

re
ga

te
 C

om
m

un
ic

at
io

n
(M

B
)

Number of Queries

No-MS
MS

MSC
MSC-30%
MSC-10%

Figure 8.7: Aggregate communication overhead (MB) with and without magic sets and caching.

destination nodes to 30% (MSC-30%) and 10% (MSC-10%), the communication overhead

levels of at 1.8 MB, and 1 MB, respectively. The smaller the set of requested destinations,

the higher the cache hit rate, and the greater the opportunity for sharing across different

queries. e

8.4.3 Opportunistic Message Sharing

We study the impact of performing opportunistic message sharing across concurrent queries

that have some correlation in the messages being sent. Figure8.8 shows per-node band-

width usage for running the queries on different metrics concurrently. To facilitate sharing,

we delay each outbound tuple by 500 ms in anticipation of possible sharing opportunities.

The Latency, Reliability andRandomlines show the bandwidth usage of each query in-

dividually. TheNo-Shareline shows the total aggregate bandwidth of these three queries

without sharing. TheShareline shows the aggregate bandwidth usage with sharing. Our

results clearly demonstrate the potential effectiveness of message sharing, which reduces

138

Chapter 8. Optimization of NDlog Programs

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 2 4 6 8 10 12

P
er

-n
od

e
B

an
dw

id
th

 (K
B

ps
)

Time (s)

Share
No-Share

Hop
Latency

Reliability

Figure 8.8: Per-node Bandwidth (KBps) for message sharing (300 ms delay).

the peak of the per-node communication overhead from 46 KBps to 31 KBps, and the total

communication overhead by 39%.

8.4.4 Summary of Optimizations

We summarize our evaluation as follows:

1. The aggregate selections optimization indeed reduces communication overhead. Us-

ing periodic aggregate selectionsreduces this overhead further.

2. The use of magic sets and predicate reordering reduces communication overhead

when only a limited number of paths are queried.

3. Multi-query sharing techniques such as reusing previously computed results and op-

portunistic result caching demonstrate the potential to reduce communication over-

head when there are several concurrent queries.

139

Chapter 8. Optimization of NDlog Programs

8.5 Summary

In this chapter, we applied a variety of query optimizations to declarative networks. We

explored the use of traditional query optimizations and proposed new optimizations moti-

vated by the distributed setting. We demonstrated that declarative networks are amenable to

automatic optimizations, and showed that many of these optimizations can improve the per-

formance of declarative networks substantially. In addition, we validated the effectiveness

of several of our optimization techniques on the Emulab testbed.

Interestingly, we revealed surprising relationships between network optimizations and

query optimizations,e.g., a wired protocol can be translated to a wireless protocol by ap-

plying the standard database optimizations of magic sets rewrite and predicate reordering.

This suggests that these protocols are more similar than the are often made out to be. By

drawing the connections between network optimizations and query optimizations, we set

the groundwork for a series of more focused investigations in the future. We revisit these

issues as future work in Section10.3.

140

Chapter 9

Related Work

In this chapter, we summarize related work in both the database and networking domain,

focusing on deductive databases for processing recursive queries, distributed query proces-

sors, extensible networks and network specification languages. In addition, there is also a

wide variety of related work in dataflow architectures such as Click[65] which we have

reviewed and compared with our system in Chapter4.

9.1 Deductive Databases

A deductive databasesystem is a database system which can make deductions (i.e., infer

additional rules or facts) based on rules and facts stored in the database. Datalog is a query

and rule language for deductive databases that syntactically is a subset of Prolog[32].

Unlike Prolog, Datalog utilizes a bottom-up (or forward-chaining) evaluation strategy that

guarantees termination, and also permits set operations. This comes at the potential expense

of redundant computations which can be avoided with query optimizations such as the

magic sets rewrite[18; 16] described in Chapter8.

One of the key features of Datalog is its support for recursive queries[14]. A pri-

141

Chapter 9. Related Work

mary use of deductive database systems is hence for supporting queries over graphs that

themselves exhibit recursive properties. The database literature has a rich tradition of re-

search on recursive query languages and processing. This work has influenced commercial

database systems to a certain extent. However, recursion is still considered an esoteric fea-

ture by most practitioners, and research in the area has had limited practical impact. Even

within the database research community, there is longstanding controversy over the prac-

tical relevance of recursive queries, going back at least to the Laguna Beach Report[21],

and continuing into relatively recent textbooks[117].

In addition to our work, there has been recent renewed enthusiasm for applications

of recursive queries. There are other contemporary examples from outside the traditional

database research literature, including software analysis[126], trust management[17] and

diagnosis of distributed systems[5] and network security analysis[128]. Our concept of

link-restrictedrules is similar in spirit tod3log [63], a query language based on Datalog

proposed for dynamic site discovery along web topologies.

In terms of distributed systems, the closest analog is the recent work by Abiteboulet

al. [5]. They adapt the QSQ[71] technique to a distributed domain in order to diagnose

distributed systems. An important limitation of their approach is that they do not consider

partitioning of relations across sites as we do; they assume each relation is stored in its

entirety in one network location. Further, they assume full connectivity and do not consider

updates concurrent with query processing.

Much research in the parallel execution of recursive queries[24] has focused on high

throughput within a cluster. In contrast, our strategies and optimizations are geared towards

bandwidth efficiency and fast convergence in a distributed setting. Instead of hash-based

partitioning schemes that assume full connectivity among nodes, we are required to perform

query execution only along physical network links, and to deal with network changes dur-

ing query execution. There is also previous empirical work on the performance of parallel

142

Chapter 9. Related Work

pipelined execution of recursive queries[111]. Our results extend that work by providing

new, provably correct pipelining variants of semi-naı̈ve evaluation.

9.2 Internet-Scale Query Processing

There has been substantial work in the area of distributed[89; 116] and parallel database

systems[39]. While parallelism per se is not an explicit motivation of our work, algo-

rithms for parallel query processing form one natural starting point for systems that pro-

cess queries on multiple machines. For example, ourlocalization rewritedescribed in

Chapter5.2 builds upon previous work on data repartitioning during joins in systems like

Gamma[38] and Volcano[51]. Of greater relevance to our work on declarative networking

is research onInternet-scalequery processing, where the focus is on building distributed

querying facilities over data on the Internet. Examples of these systems include PIER[60;

59; 78; 81], Iris Net [49], Astrolabe[104] etc.

Of these Internet-scale query processing systems, the architecture of P2 has been most

inspired by the PIER system. In Chapter4, we describe the similar ties in terms of the

dataflow framework of PIER and P2. While the focus of PIER has been on supporting

SQL-like queries, PIER also supports recursive dataflows that have been used for building

distributed crawlers for the web[82] and overlay networks[77].

One major distinction with PIER is the fact that PIER couples its design tightly with

the use of a distributed hash table[103; 114; 107; 130; 102] as its basic common substrate,

which is then employed to instantiate query-specific overlay networks such as aggregation

trees. In contrast, P2 simply uses whatever underlying network is present, and each node

can be configured with a relatively small set of “base facts” (such as addresses of a few

nearby neighbors). Knowledge of the rest of the network is then built up in the declarative

domain. It is possible to construct a DHT using P2 – indeed, one of our examples in

143

Chapter 9. Related Work

this dissertation is a version of Chord – but P2 in no way requires a DHT to be present,

nor relies on the assumptions a DHT typically exploits (such as full-mesh connectivity

between nodes, and lack of explicit control over node and data placement). Interestedly,

the generality of P2 means that it is possible to reimplement PIER entirely by expressing

relational queries over a declarative version of Chord specified using the P2 system.

9.3 Extensible Networks

There have been many recent proposals for increasing the flexibility of routing in the con-

text of the Internet. Proposed solutions include enabling end-hosts to choose paths at the

AS level[129; 69], separating routing from the forwarding infrastructure[68; 44], central-

izing some of the routing decisions[44], and building extensible routers such as XORP[57;

56]. Our proposal is mostly complementary to these efforts. The increased flexibility pro-

vided by a declarative interface can enhance the usability and programmability of these

systems. Our proposal is also orthogonal to the separation of the control plane and the data

plane. As discussed in Chapter3, our system can be deployed fully centralized, distributed

or partially centralized for supporting Internet-scale routing.

Several type-safe languages have been proposed to improve the security and robustness

of active networks. Three examples are PLAN[58], PLAN-P [120] and SafetyNet[109].

Compared to these languages, Datalog is particularly attractive because of its strong theo-

retical foundations, the fact that it is a side-effect-free language sandboxed within a query

engine, and its elegance in expressing routing protocols in a compact way. Unlike previous

proposals, as a declarative query language, Datalog is also amenable to automatic query

optimization techniques from the database literature.

144

Chapter 9. Related Work

9.4 Network Specification Languages

In recent years, there have been efforts at high-level specifications of network protocols[52;

42]. These specifications aim at verifying correctness properties of Internet-routing proto-

cols. They are less general than our work on declarative networking. One can conceivably

implement some of these specifications using the P2 system, as a way of bridging specifi-

cations and implementation.

In the past, distributed systems have typically been characterized in one of two ways.

The protocol-centricapproach favored by Macedon[105] traces its roots to event lan-

guages[45; 121] that specify overlay execution via automata for event and message han-

dling. This style emphasizes the dynamics of the overlay and its maintenance, but makes it

difficult to determine the overlay’s coarse structure and invariant properties. The alternative

is astructure-centricapproach, whose roots can be traced to the specification of parallel in-

terconnection networks[72]. This style, which has influenced the literature on distributed

hash tables (DHTs), specifies overlays by focusing on a network graph structure (hyper-

cube, torus, de Bruijn graph, small-world graph, etc.), whose invariant properties must be

maintained via asynchronous messaging. Unfortunately, graph-theoretic descriptions tend

to be expressed at a high level in natural language, and often gloss over details of the actual

runtime messaging. As a result, implementing structure-centric overlays often requires a

fair bit of engineering[103; 34], and different implementations of the same overlay can

vary significantly in their actual execution.

P2 spans the two approaches above, and expands upon them in a way that is particu-

larly attractive for overlay specification and runtime. The interface of P2 is closer in spirit

to the structure-centric approach, in that it encourages the specification of overlays as log-

ical structures with invariants. However, it also automatically compiles this specification

to a dataflow program for managing asynchronous messages, which looks closer to the

145

Chapter 9. Related Work

protocol-centric approach. We believe P2 improves upon previous overlay specification

work in either camp, by providing a machine-interpretable description language based on

relations among node states in the network, and by using a dataflow runtime model instead

of automaton-based protocols.

The combination of a declarative language and a dataflow runtime forms a powerful and

surprisingly natural environment for overlay specification and runtime. The obvious alter-

native to our approach is the automaton approach used in traditional protocol specifications

and implementations, and in the Macedon overlay toolkit. Relative to automata, logical

specifications and dataflow graphs have a number of software engineering advantages:

• Scoping: In principle, automata must handle any possible event (message) in each

state. While automata can in principle be nested or encapsulated as a matter of design

discipline, the potentially arbitrary interplay between states and events leads to rela-

tively few design constraints, making automata difficult both to specify correctly, and

to understand once specified. By contrast, in a dataflow diagram compiled from an

NDlogprogram, the inputs to an element are by definition coming from other specific

elements whose behavior is well specified. This constrains what needs to be handled

in each element implementation, aiding in both specification and comprehension.

• Typing: Similarly, the events or messages handled in automata are of any type pos-

sible in the system. In dataflow diagrams, all tuples that pass along an edge share

the same schema, hence a dataflow element implementation need only worry about a

stream of similar, well-formed tuples.

• Encapsulation and Reuse:Because automata interrelate possible events and states,

they are difficult to reuse in other contexts that may involve different sets of events,

or additional states with different interactions. By contrast, subsets of rules inNDlog

programs can be easily extracted and reused in other programs. Moreover, even the

146

Chapter 9. Related Work

compiled dataflow diagrams often have discrete subgraphs that are clearly reusable:

a dataflow subgraph typically has a few well-specified inputs (incoming edges) and

outputs (outgoing edges), and in many cases has easily interpretable behavior. This

admits the possibility of allowing incoming programs to opportunistically “jump

on” to existing dataflows, in the spirit of adaptive stream query engines like Tele-

graphCQ[27].

147

Chapter 10

Conclusion

In this chapter, we conclude the dissertation by (1) summarizing our contributions, (2)

surveying some recent use cases of the P2 system, and (3) proposing several directions for

future work.

10.1 Summary of Contributions

Our work on declarative networking has two high-level goals. First, through the use of a

declarative language, we aim to greatly simplify the process of specifying, implementing,

deploying and evolving a network design. Second, we aim to address the challenge of de-

signing flexible, secure and efficient network architectures that can achieve a better balance

between flexibility and security compared to existing solutions. We summarize our key

contributions as follows:

• We formally define theNetwork Datalog (NDlog) language for declarative network-

ing. TheNDlog language has its roots in logic programming and recursive query

languages[98]. It is based on the observation that recursive queries are a natural

148

Chapter 10. Conclusion

way to express network protocols that themselves exhibit recursive properties.ND-

log builds upon Datalog, a traditional recursive query language, to enabledistributed

andsoft-statecomputations withrestricted communicationbased on the underlying

physical connectivity, all of which are essential in the network setting.

We show that theNDlog language is a compact and natural way of expressing a vari-

ety of routing protocols[79; 80] and overlay networks[76], often resulting in orders

of magnitude savings in code sizes.NDlog programs are compiled into dataflow

execution plans which are then executed using a distributed query engine in the P2

system to implement the network protocols. In addition to being concise, we further

show thatNDlog programs are amenable to query optimizations and static analysis,

making it an attractive language for building safe, extensible network architectures.

• Second, to validate the design ofNDlog, we present our implementation of P2[2],

which is a full-fledged declarative networking system with a dataflow engine inspired

by the Click modular router[65]. The P2 system takes as inputNDlog programs,

compiles them into distributed execution plans that are then executed by a distributed

dataflow engine to implement the network protocols. We experimentally evaluate the

P2 system on hundreds of distributed machines running a wide variety of different

protocols, including traditional routing protocols as well as complex overlays such as

distributed hash tables. Our experiments validate that our declarative specifications

result in the expected network properties in terms of topology and performance. In

addition, our Emulab experiments demonstrate that query optimizations are effective

in improving the performance of declarative networks.

• Based on our experiences in implementing declarative networks, we make fundamen-

tal contributions that further advance the state of the art in recursive query processing.

We explore a wide-variety of database research issues that are important for the prac-

149

Chapter 10. Conclusion

tical realization of declarative networks. These include reasoning about correctness

of query results based on the well-known distributed systems notion of “eventual

consistency”, pipelined execution of distributed recursive queries to deal with asyn-

chrony in networks, incremental view materialization over dynamic and soft-state

data, and query optimizations. Interestingly, we show that theNDlog specifications

for two well-known protocols – one for wired networks and one for wireless – differ

only in applying a standard query optimization: the order of two predicates in a single

rule body. We believe that the connections we have drawn between automatic query

optimizations and network protocol design can both provide a better understanding

of the design space of routing protocols, and also open up significant new avenues of

research in both query optimization and protocol design.

10.2 Broad Use of Declarative Networking

One of the metrics of long-term success for this work will be the adoption of declara-

tive networking ideas, both within academia and industry. Our short-term goal is to pro-

mote declarative networking as a tool for rapid prototyping and experimentation with new

network designs. In addition, a variety of practical Internet-scale data intensive applica-

tions can be built to leverage declarative networks. These applications include network

monitoring[59], information retrieval[78; 73], distributed web and network crawling[60;

82] and distributed replication protocols[19; ?]. In the long term, one ambitious goal is

that declarative networks can serve as a core for future Internet designs, and help fuel the

next generation of “clean-slate” Internet architectures.

The P2 implementation currently runs over Linux and Mac OS X and consists of around

50,000 lines of C++ and python, plus 3rd-party support libraries. The system has been

available for download at http://p2.cs.berkeley.edu since February 2006. The implementa-

150

Chapter 10. Conclusion

tion includes a runtime system that allows for incremental rule planning and query dissem-

ination. In addition to running on local clusters and Emulab, we have also deployed the P2

system on Planetlab[94].

In making the P2 system publicly available, one of our objectives is to explore more

use cases of the system that will enable us to better understand the strengths and limitations

of NDlog. This will also enable us to identify common constructs that can be factored out

of particular network specifications and shared. Following our code release, the P2 system

has been used in research projects at various institutions (e.g., Cambridge University, Har-

vard University, Intel Research at Berkeley, KAIST, Max Planck Institute, Rice University,

University of California-Berkeley and University of Texas-Austin). We survey some recent

uses of the system:

• Singh et al.[112] demonstrated that the P2 system not only can implement declara-

tive networks, but also conveniently provide powerful distributeddebuggingfacilities

for these networks. Using runtime system invariants that are expressed as additional

NDlog rules, they demonstrate logging, monitoring, causality and debugging facili-

ties that they built on top of the P2 system. They used the P2 system to implement a

range of on-line distributed diagnosis tools that range from simple, local state asser-

tions to sophisticated global property detectors on consistent snapshots.

• Condie et al.[122] proposed a highly decomposable and componentized transport

layer for the networking stack of the P2 system. This reconfigurable networking

stack is implemented at the dataflow level of the P2 system, and can be utilized by

declarative networks to adapt at run-time to application-specific requirements.

• As a class project, students from Harvard University implemented the Paxos consen-

sus protocol[20] in 42NDlog rules using the P2 system.

151

Chapter 10. Conclusion

• There are several ongoing projects that are either using the P2 system or applying

declarative networking concepts in their own systems. These projects range from im-

plementing the Pastry[107] DHT with induced churn[123], prototyping replication

algorithms (e.g., PRACTI [19]), programming sensor networks[29] and implement-

ing parallel dataflow processing in clusters[35].

In order to achieve our long-term goal of having an impact on future Internet design, an

important future step is to encourage the adoption of declarative networking by ISPs. This

will involve integrating distributed query processors like P2 with commercial routers, and

ensuring that declarative networks can interoperate with existing intra-domain and inter-

domain routing protocols. Once deployed in routers, these query processors can concur-

rently be used for extensible routing and network monitoring.

10.3 Research Directions

Broadly, we believe that our work can impact the networking and database communities

in the following ways. For the networking community, our work has the potential to dra-

matically alter the way networking protocols are designed, implemented and verified. For

the database community, this dissertation can be a first step towards not only rekindling

interest in recursive query research, but also generating new insights into wide area data

management, communication, and synergies available by intertwining the two within a

single declarative framework. In general, we are optimistic that this research can lead to

significant results in this domain, in terms both of theoretical work and systems challenges.

In this section, we highlight some future directions beyond what has been presented in

this thesis.

152

Chapter 10. Conclusion

10.3.1 Static and Runtime Analysis of Networks

An important potential of declarative networking that we have not fully explored ischeck-

ability: the promise of static program checks for desirable network protocol properties

(e.g., convergence and stability) to ensure program safety in extensible networks.

Static checks are unlikely to solve all problems. However in cases where static checking

is not able to provide a sound and complete analysis, there is hope that runtime checks[112]

could beautomatically synthesizedby a compiler, and added to the program as additional

datalog rules to ensure desirable properties. Together with these runtime checks, declar-

ative networking can potentially serve as an integrated system for network specification,

implementation and verification.

In the short term, one immediate challenge is to study the applicability of static anal-

ysis techniques from the Datalog literature[67] on query safety, and extend these analysis

techniques to handle soft-state data and rules, distributed computations and link-restricted

communication. In addition, there are open questions as to whether these techniques can

be easily integrated with recent attempts at building verifiable network specifications[52;

42]. An interesting first step will be to build a compiler that translates these verifiable net-

work specifications toNDlog programs for execution using P2. A longer term challenge

involves incorporating verification techniques from the formal methods community[121;

70] and software model checking approaches[41] into analyzing declarative networks.

10.3.2 Processing NDlog Programs with Negation

In this dissertation, we do not consider negated predicates in theNDlog language. The

main reason lies in the difficulties in ensuring correct semantics if negation[61] is incor-

porated into our model and implementation. Here, we provide high-level intuitions on the

difficulties of handling negation inNDlogand possible approaches.

153

Chapter 10. Conclusion

In the context of traditional deductive databases, there are several proposals on defining

the “right” meaning to rules with negated predicates. The straightforward case involves

Datalog programs withstratified negation. These programs do not have cyclical (recursive)

dependencies involving negated predicates. The standard technique for processing these

rules involve the use ofstratification, where the program is broken up into differentstrata

or layers based on the dependency graph of the predicates across all the rules. The program

is then executed one stratum at a time.

Unfortunately, stratified negation is overly restrictive, and in practice, many Datalog

programs contain cyclical dependencies involving negated predicates. Over the years, there

have been several different proposals on coming up with the appropriate model for these

programs. These models includelocal stratification, well-founded negation, stable-model

negationandmodularly stratified negation(See[61] for a good overview on the different

models). Despite active research by the deductive database community in the past, picking

the appropriate model remains an open challenge.

In the distributed setting, even for programs with stratified negations, there are chal-

lenges involved in efficiently implementing stratified negation. A prohibitively expensive

solution involves achieving consensus among multiple nodes executing the same stratum

before moving to a new stratum. The practical alternative involves incorporating pipelined

execution, where results are “eagerly” computed across stratum, and incrementally updated

to deal with cases when there is a “late” counterexample to a negated subgoal. The use of

pipelined execution ofNDlog programs with negation raises additional challenges due to

the presence of dynamic data, and can be a rich area of future exploration. It is also inter-

esting to come up with compelling examples of declarative networks where negation would

be useful.

154

Chapter 10. Conclusion

10.3.3 Declarative Language and System for Secure Networking

Beyond static and runtime analysis ofNDlog programs, there still remains the possibility

of other security challenges, including malicious routers and denial of service attacks. In

response to these attacks, independent of our work, the security community has proposed

several mechanisms, and these have been formalized in several declarative logic-based se-

curity languages such as Binder[37], SD3 [62], D1LP [74] and SecPAL[86] for access

control[3] and trust management[23].

Interestingly, Binder andNDlog extend traditional Datalog in similar ways: by sup-

porting the notion of location (orcontext) to identify nodes (orcomponents) in distributed

systems. This suggests the possibility of unifying these languages to create an integrated

system, exploiting good language features, execution and optimizations. From a practical

standpoint, this integration has several benefits, including ease of management, one fewer

language to learn, one fewer set of optimizations, finer-grain control over the interaction

between security and network protocol, and the possibility of doing analysis and optimiza-

tions across levels. This integrated system could have broad applicability, ranging from

building secured networks[26], secure distributed information sharing[84], to enforcing

access control policies on extensible testbeds such as GENI[48].

This further suggests that we may be able to dispense with much of the special ma-

chinery proposed for access control, and instead process security policies using distributed

database engines. This allows us to leverage well-studied query processing and optimiza-

tion techniques. Interestingly, it has been shown previously[4] that Binder is similar to data

integration languages such as Tsimmis[28] proposed by the database community, further

indicating that ideas and methods from the database community are directly applicable to

secure networking.

155

Chapter 10. Conclusion

10.3.4 Database Techniques for Network Optimizations

In Chapter8, we identified a few well-known query optimization techniques and showed

how they can be used to generate efficient protocols. While the application of query opti-

mizations automatically achieves some well-known optimizations for routing protocols, it

will be interesting to see how they can help inform new routing protocol designs, especially

when applied to more complex networks.

One promising direction stems from our surprising observation in Chapter8 on the syn-

ergies between query optimization and network routing: a wired protocol can be translated

to a wireless protocol by applying the standard database optimizations of magic sets rewrite

and predicate reordering. This suggests that these protocols are more similar than they are

often perceived to be. It suggests that protocol selection can be achieved by cost estimation

a la traditional database query optimization rather than rules of thumb about “what kind of

network” is in place. In fact, many future architectures for the Internet envision a very het-

erogeneous network that combines wired infrastructure with wireless “clouds” at the edges

in a more seamless way than we have today. In those situations, it would be nice for the

infrastructure to choose efficient protocols based on cost estimation. It also suggests that

sites could make the decision about whether to apply this optimization locally (or within a

neighborhood), allowing for the hybridization of the protocol within the network.

Building upon our techniques for cost-based optimizations proposed in Section8.3, it

would be interesting to study the possibility of using a number of other potential optimiza-

tion strategies: random walks driven by statistics on graph expansion; cost-based[110]

decisions on the application of magic sets; adaptive[10] query processing techniques to

react to network dynamism; and multi-query optimizations motivated by more complex

overlay networks. The ultimate goal is to fully understand the synergies between query

optimization and network routing, with the hope of informing new protocol designs that

can improve upon the performance of existing networks.

156

Chapter 10. Conclusion

In Section8.2, we highlighted some techniques for sharing across multiple declara-

tive routing programs. In future, these sharing techniques can be extended for more com-

plex overlay networks. Sharing of declarative overlays is intriguing not only in terms of

code reuse, but also for the possibility that multiple overlays can execute simultaneously,

sharing state, communication, and computation by sharing dataflow subgraphs. Sharing

between multiple declarative overlays can allow a single application to achieve different

performance goals for different tasks, by efficiently deploying multiple overlay variants si-

multaneously. For example, a peer-to-peer file sharing network that combines search with

parallel download might choose to construct two different overlays for these very different

tasks. These overlays might fruitfully share rules for liveness checking, latency and band-

width estimation, etc. Runtime sharing across overlays can also allow separately deployed

systems to co-exist efficiently within a shared network infrastructure; this might become

important if overlays emerge as a prevalent usage model for the Internet. The naı̈ve ap-

proach for sharing is to do so explicitly at theNDlog level, by sharing standard libraries

of rule specifications or caching previously computed results. However, we hope to apply

multiquery optimization techniques from the database literature to identify further sharing

opportunities automatically within a sophisticated query optimizer.

10.3.5 Application-Aware Extensible Networks

Traditional distributed databases, or even recent proposals on Internet-scale distributed

query engines, have all made thefixed-protocolassumption. While the set of nodes partic-

ipating in these systems may change over time, the protocols used to organize nodes and

route data remain unchanged. This has constrained the way data is placed and queried.

One example of this constraint is in P2P search, where the available indexing and search

techniques are limited by the underlying network topology[78].

One promising use of declarative networks is in buildingapplication-aware extensible

157

Chapter 10. Conclusion

networksthat can be declaratively specified, and then reconfigured at runtime based on

application requirements and network conditions. In parallel, several optimization strate-

gies in distributed systems have been recently studied as cost-aware resource management

frameworks[100; 88] by both the networking and database communities. It will be inter-

esting and useful to explore incorporating some of these optimizations into a cost-based

optimizer for declarative networks. These application-aware extensible networks will have

wide applicability, in the domain of data intensive wide-area applications including P2P

search, network monitoring, data integration and content-based routing systems.

Related to this effort is the language challenge of developing usefulnetwork abstrac-

tions (or building blocks) that make it easier for network designers to specify networks.

For example, it has been shown that one can abstractly reason about distributed hash ta-

bles in terms of their components[66]: geometry, route selection and neighbor selection

policies. It is an interesting challenge to extendNDlog to support such abstractions in an

encapsulated way. The cost-based optimizer can then individually and jointly optimize

each component based on application requirements.

10.4 Closing

In the coming years, we are entering a period of significant flux in network services, proto-

cols and architecture. Extensible networks will be required so that a multiplicity of unfore-

seeable new applications and services can be handled easily in a unified manner.

This dissertation presents a declarative language and system that can greatly simplify

the process of specifying, implementing, deploying and evolving a network. We demon-

strate thatNDlog programs are a natural and compact way of expressing a variety of well-

known network protocols. We further show thatNDlog programs can be compiled into

distributed dataflows and executed using the P2 system to correctly implement the network

158

Chapter 10. Conclusion

protocols. Our experience with the P2 system suggests that implementing this new tech-

nology is a manageable and viable undertaking for any extensible network architecture.

159

Bibliography

[1] Foreign Language Functions in LDL++. http://www.cs.ucla.edu/ldl/tutorial/foreign.html.

[2] P2: Declarative Networking. http://p2.cs.berkeley.edu.

[3] ABADI , M. Logic in Access Control. InSymposium on Logic in Computer Science

(2003).

[4] ABADI , M. On Access Control, Data Integration and Their Languages.Com-

puter Systems: Theory, Technology and Applications, A Tribute to Roger Needham

Springer-Verlag(2004), 9–14.

[5] ABITEBOUL, S., ABRAMS, Z., HAAR , S., AND M ILO , T. Diagnosis of Asyn-

chronous Discrete Event Systems - Datalog to the Rescue! InACM Symposium on

Principles of Database Systems(2005).

[6] ABITEBOUL, S., HULL , R., AND V IANU , V. Foundations of Databases. Addison-

Wesley, 1995.

[7] AKAMAI . Akamai Content Distribution Network. http://www.akamai.com.

[8] ANDERSON, T., PETERSON, L., SHENKER, S.,AND TUNER, J. Overcoming bar-

riers to disruptive innovation in networking. Report of NSF Workshop, Jan. 2005.

160

BIBLIOGRAPHY

[9] ARNI, F., ONG, K., TSUR, S., WANG, H., AND ZANIOLO , C. The Deductive

Database System LDL++.The Theory and Practice of Logic Programming 2(2003),

61–94.

[10] AVNUR, R., AND HELLERSTEIN, J. M. Eddies: Continuously adaptive query pro-

cessing. InProceedings of ACM SIGMOD International Conference on Management

of Data(2000).

[11] BALBIN , I., AND RAMAMOHANARAO , K. ”a generalization of the differential

approach to recursive query evaluation”.Journal of Logic Programming 4, 3 (1987).

[12] BALBIN , I., AND RAMAMOHANARAO , K. A Generalization of the Differential

Approach to Recursive Query Evaluation.Journal of Logic Prog, 4(3):259–262

(1987).

[13] BALLARDIE , T., FRANCIS, P.,AND CROWCROFT, J. Core Based Trees (CBT): An

Architecture for Scalable Inter-Domain Multicast Routing. InProceedings of ACM

SIGCOMM Conference on Data Communication(2003).

[14] BANCHILLON , F., AND RAMAKRISHNAN , R. An amateur’s introduction to recur-

sive query processing strategies. InProceedings of ACM SIGMOD International

Conference on Management of Data(1986).

[15] BANCILHON , F. Naive Evaluation of Recursively Defined Relations.On Knowledge

Base Management Systems: Integrating AI and DB Technologies(1986).

[16] BANCILHON , F., MAIER, D., SAGIV, Y., AND ULLMAN , J. Magic Sets and Other

Strange Ways to Implement Logic Programs. InProceedings of ACM SIGMOD

International Conference on Management of Data(1986).

161

BIBLIOGRAPHY

[17] BECKER, M. Y., AND SEWELL, P. Cassandra: Distributed Access Control Policies

with Tunable Expressiveness. In5th IEEE International Workshop on Policies for

Distributed Systems and Networks(2004).

[18] BEERI, C., AND RAMAKRISHNAN , R. On the Power of Magic. InACM Symposium

on Principles of Database Systems(1987).

[19] BELARAMANI , N., DAHLIN , M., GAO, L., NAYATE , A., VENKATARAMANI , A.,

YALAGANDULA , P.,AND ZHENG, J. Practi replication. InUSENIX Symposium on

Networked Systems Design and Implementation(2006).

[20] BENJAMIN SZEKELY AND ELIAS TORRES. A Paxon Evaluation of P2.

http://www.klinewoods.com/papers/p2paxos.pdf.

[21] BERNSTEIN, P. A., DAYAL , U., DEWITT, D. J., GAWLICK , D., GRAY, J.,

JARKE, M., L INDSAY, B. G., LOCKEMANN, P. C., MAIER, D., NEUHOLD, E. J.,

REUTER, A., ROWE, L. A., SCHEK, H.-J., SCHMIDT, J. W., SCHREFL, M., AND

STONEBRAKER, M. Future Directions in DBMS Research.SIGMOD Record 18, 1

(1989), 17–26.

[22] BERSHAD, B., SAVAGE , S., PARDYAK , P., SIRER, E. G., BECKER, D., FIUCZYN-

SKI, M., CHAMBERS, C., AND EGGERS, S. Extensibility, Safety and Performance

in the SPIN Operating System. InACM Symposium on Operating Systems Principles

(1995).

[23] BLAZE , M., FEIGENBAUM, J., AND KEROMYTIS, A. D. The role of trust man-

agement in distributed systems security. InSecure Internet Programming(1999),

pp. 185–210.

162

BIBLIOGRAPHY

[24] CACACE, F., CERI, S., AND HOUTSMA, M. A. W. A survey of parallel execu-

tion strategies for transitive closure and logic programs.Distributed and Parallel

Databases 1, 4 (1993), 337–382.

[25] CALVANESE, D., GIACOMO, G. D., AND VARDI , M. Y. Decidable Containment

of Recursive Queries. InICDT (2003).

[26] CASTRO, M., DRUSHEL, P., GANESH, A., ROWSTRON, A., AND WALLACH , D.

Secure Routing for Structured Peer-to-peer Overlay Networks. InProceedings of

Usenix Symposium on Operating Systems Design and Implementation(2002).

[27] CHANDRASEKARAN, S., COOPER, O., DESHPANDE, A., FRANKLIN , M. J.,

HELLERSTEIN, J. M., HONG, W., KRISHNAMURTHY, S., MADDEN, S., RAMAN ,

V., REISS, F., AND SHAH , M. A. TelegraphCQ: Continuous dataflow processing

for an uncertain world. InCIDR (2003).

[28] CHAWATHE , S., GARCIA-MOLINA , H., HAMMER , J., IRELAND, K., PAPAKON-

STANTINOU, Y., ULLMAN , J. D., AND WIDOM , J. The TSIMMIS Project: Inte-

gration of heterogeneous information sources. In16th Meeting of the Information

Processing Society of Japan(Tokyo, Japan, 1994), pp. 7–18.

[29] CHU, D., TAVAKOLI , A., POPA, L., AND HELLERSTEIN, J. M. Entirely Declara-

tive Sensor Network Systems. InProceedings of VLDB Conference Demonstrations

(September 2006).

[30] CHU, Y.-H., RAO, S. G.,AND ZHANG, H. A Case for End System Multicast. In

Proc. of ACM SIGMETRICS(2000), pp. 1–12.

163

BIBLIOGRAPHY

[31] CLARK , D. D. The design philosophy of the DARPA internet protocols. InPro-

ceedings of ACM SIGCOMM Conference on Data Communication(Stanford, CA,

Aug. 1988), ACM, pp. 106–114.

[32] CLOCKSIN, W. F., AND MELISH, C. S. Programming in Prolog. Springer-Verlag,

1987.

[33] CODD, E. F. A Relational Model of Data for Large Shared Data Banks.Commun.

ACM 13, 6 (1970), 377–387.

[34] DABEK , F., LI , J., SIT, E., KAASHOEK, F., MORRIS, R., AND BLAKE , C. De-

signing a DHT for low latency and high throughput. InUSENIX Symposium on

Networked Systems Design and Implementation(Month 2004).

[35] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data processing on large

clusters. InProceedings of Usenix Symposium on Operating Systems Design and

Implementation(December 2004).

[36] DEERING, S.,AND CHERITON, D. R. Multicast routing in datagram internetworks

and extended LANs.ACM Transactions on Computer Systems 8, 2 (May 1990),

85–111.

[37] DETREVILLE , J. Binder: A logic-based security language. InIEEE Symposium on

Security and Privacy(2002).

[38] DEWITT, D. J., GERBER, R. H., GRAEFE, G., HEYTENS, M. L., KUMAR , K. B.,

AND MURALIKRISHNA , M. Gamma - a high performance dataflow database ma-

chine. InProceedings of VLDB Conference(1986), pp. 228–237.

[39] DEWITT, D. J., AND GRAY, J. Parallel Database Systems: The Future of High

Performance Database Systems.CACM 35, 6 (1992), 85–98.

164

BIBLIOGRAPHY

[40] EMULAB . Network Emulation Testbed. http://www.emulab.net.

[41] ENGLER, D., AND MUSUVATHI , M. Model-checking Large Network Protocol Im-

plementations. InUSENIX Symposium on Networked Systems Design and Imple-

mentation(2004).

[42] FEAMSTER, N., AND BALAKRISHNAN , H. Towards a Logic for Wide-Area Internet

Routing. InProceedings of FDNA-03(2003).

[43] FEAMSTER, N., AND BALAKRISHNAN , H. Correctness properties for Internet rout-

ing. In Allerton Conference on Communication, Control, and Computing(Sept.

2005).

[44] FEAMSTER, N., BALAKRISHNAN , H., REXFORD, J., SHAIKH , A., AND VAN DER

MERWE, J. The Case for Separating Routing From Routers. InFDNA (2004).

[45] FECKO, M., UYAR , M., AMER, P., SETHI, A., DZIK , T., MENELL, R., AND

MCMAHON, M. A success story of formal description techniques: Estelle spec-

ification and test generation for MIL-STD 188-220.Computer Communications

(Special Edition on FDTs in Practice) 23(2000).

[46] FIND. NSF NETS Future INternet Design Program. http://find.isi.edu/.

[47] FURFARO, F., GRECO, S., GANGULY, S., AND ZANIOLO , C. Pushing Extrema

Aggregates to Optimize Logic Queries.Inf.Sys. 27, 5 (2002), 321–343.

[48] GENI. Global Environment for Network Innovations. http://www.geni.net/.

[49] GIBBONS, P. B., KARP, B., KE, Y., NATH , S., AND SESHAN, S. IrisNet: An Ar-

chitecture for a World-Wide Sensor Web.IEEE Pervasive Computing 2, 4 (October-

December 2003).

165

BIBLIOGRAPHY

[50] GNUTELLA . http://www.gnutella.com.

[51] GRAEFE, G. Encapsulation of Parallelism in the Volcano Query Processing System.

In Proceedings of ACM SIGMOD International Conference on Management of Data

(1990).

[52] GRIFFIN, T. G., AND SOBRINHO, J. L. Metarouting. InProceedings of ACM

SIGCOMM Conference on Data Communication(2005).

[53] GT-ITM. Modelling topology of large networks.

http://www.cc.gatech.edu/projects/gtitm/.

[54] GUPTA, A., MUMICK , I. S., AND SUBRAHMANIAN , V. S. Maintaining Views

Incrementally. InProceedings of ACM SIGMOD International Conference on Man-

agement of Data(1993).

[55] HAAS, Z. J. A New Routing Protocol for the Reconfigurable Wireless Networks.

In IEEE Int. Conf. on Universal Personal Communications(1997).

[56] HANDLEY, M., GHOSH, A., RADOSLAVOV, P., HODSON, O., AND KOHLER, E.

Designing Extensible IP Router Software. InUSENIX Symposium on Networked

Systems Design and Implementation(May 2005).

[57] HANDLEY, M., GHOSH, A., RADOSLAVOV, P., HODSON, O., AND KOHLER, E.

Designing IP Router Software. InUSENIX Symposium on Networked Systems De-

sign and Implementation(2005).

[58] HICKS, M. W., KAKKAR , P., MOORE, J. T., GUNTER, C. A., AND NETTLES,

S. PLAN: A packet language for active networks. InInternational Conference on

Functional Programming(1998), pp. 86–93.

166

BIBLIOGRAPHY

[59] HUEBSCH, R., CHUN, B., HELLERSTEIN, J., LOO, B. T., MANIATIS , P.,

ROSCOE, T., SHENKER, S., STOICA, I., AND YUMEREFENDI, A. R. The Ar-

chitecture of PIER: an Internet-Scale Query Processor. InCIDR (2005).

[60] HUEBSCH, R., HELLERSTEIN, J. M., LANHAM , N., LOO, B. T., SHENKER, S.,

AND STOICA, I. Querying the Internet with PIER. InProceedings of VLDB Con-

ference(Sep 2003).

[61] JEFFERY ULLMAN . Assigning an Appropriate Meaning to Database Logic with

Negation.Computers as Our Better Partners(1994), 216–225.

[62] JIM , T. SD3: A Trust Management System With Certified Evaluation. InIEEE

Symposium on Security and Privacy(May 2001).

[63] JIM , T., AND SUCIU, D. Dynamically Distributed Query Evaluation. InACM

Symposium on Principles of Database Systems(2001).

[64] JOHNSON, D. B., AND MALTZ , D. A. Dynamic Source Routing in Ad Hoc Wire-

less Networks. InMobile Computing, vol. 353. 1996.

[65] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI , J.,AND KAASHOEK, M. F. The

Click Modular Router. 263–297.

[66] KRISHNA P. GUMMADI AND RAMAKRISHNA GUMMADI AND STEVEN D. GRIB-

BLE AND SYLVIA RATNASAMY AND SCOTT SHENKER AND ION STOICA. The

Impact of DHT Routing Geometry on Resilience and Proximity. InProceedings of

ACM SIGCOMM Conference on Data Communication(2003).

[67] KRISHNAMURTHY, R., RAMAKRISHNAN , R., AND SHMUELI , O. A Framework

for Testing Safety and Effective Computability.J. Comp. Sys. Sci. 52(1):100-124

(1996).

167

BIBLIOGRAPHY

[68] LAKSHMAN , T. V., NANDAGOPAL, T., RAMJEE, R., SABNANI , K., AND WOO,

T. The SoftRouter Architecture. InHotNets-III (2004).

[69] LAKSHMINARAYANAN , K., STOICA, I., AND SHENKER, S. Routing as a Service.

Tech. Rep. UCB-CS-04-1327, UC Berkeley, 2004.

[70] LAMPORT, L. The temporal logic of actions.ACM Transactions on Programming

Languages and Systems 16, 3 (May 1994), 872–923.

[71] LAURENT V IEILLE . Recursive Axioms in Deductive Database: The Query-

Subquery Approach. In1st International Conference on Expert Database Systems

(1986).

[72] LEIGHTON, F. T. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. Morgan Kaufmann, San Mateo, CA, 1992.

[73] L I , J., LOO, B. T., HELLERSTEIN, J., KAASHOEK, F., KARGER, D., AND MOR-

RIS, R. On the Feasibility of Peer-to-Peer Web Indexing and Search. InInternational

Workshop on Peer-to-Peer Systems(2003).

[74] L I , N., GROSOF, B. N., AND FEIGENBAUM, J. Delegation Logic: A logic-based

approach to distributed authorization.ACM Transaction on Information and System

Security (TISSEC)(Feb. 2003).

[75] LOO, B. T., CONDIE, T., GAROFALAKIS , M., GAY, D. E., HELLERSTEIN, J. M.,

MANIATIS , P., RAMAKRISHNAN , R., ROSCOE, T., AND STOICA, I. Declarative

networking: Language, execution and optimization. InProceedings of ACM SIG-

MOD International Conference on Management of Data(June 2006).

168

BIBLIOGRAPHY

[76] LOO, B. T., CONDIE, T., HELLERSTEIN, J. M., MANIATIS , P., ROSCOE, T., AND

STOICA, I. Implementing Declarative Overlays. InACM Symposium on Operating

Systems Principles(2005).

[77] LOO, B. T., HELLERSTEIN, J. M., HUEBSCH, R., ROSCOE, T., AND STOICA, I.

Analyzing P2P Overlays with Recursive Queries. Tech. Rep. UCB-CS-04-1301, UC

Berkeley, 2004.

[78] LOO, B. T., HELLERSTEIN, J. M., HUEBSCH, R., SHENKER, S.,AND STOICA, I.

Enhancing P2P File-Sharing with an Internet-Scale Query Processor. InProceedings

of VLDB Conference(September 2004).

[79] LOO, B. T., HELLERSTEIN, J. M., AND STOICA, I. Customizable Routing with

Declarative Queries. InACM SIGCOMM Hot Topics in Networks(2004).

[80] LOO, B. T., HELLERSTEIN, J. M., STOICA, I., AND RAMAKRISHNAN , R. Declar-

ative Routing: Extensible Routing with Declarative Queries. InProceedings of ACM

SIGCOMM Conference on Data Communication(2005).

[81] LOO, B. T., HUEBSCH, R., STOICA, I., AND HELLERSTEIN, J. M. The Case

for a Hybrid P2P Search Infrastructure. InInternational Workshop on Peer-to-Peer

Systems(San Diego, CA, February 2004).

[82] LOO, B. T., KRISHNAMURTHY, S., AND COOPER, O. Distributed Web Crawling

over DHTs. Tech. Rep. UCB-CS-04-1305, UC Berkeley, 2004.

[83] MANKU , G., BAWA , M., AND RAGHAVAN , P. Symphony: Distributed hashing in

a small world. InProc. USITS(2003).

169

BIBLIOGRAPHY

[84] M ILTCHEV, S., PREVELAKIS, V., IOANNIDIS, S., IOANNIDIS, J., KEROMYTIS,

A. D., AND SMITH , J. M. Secure and flexible global file sharing. InUSENIX

Technical Conference(June 2003).

[85] MIT. The Chord/DHash Project. http://pdos.csail.mit.edu/chord/.

[86] MORITZ Y. BECKER AND CEDRIC FOURNET AND ANDREW D. GORDON. Sec-

PAL: Design and Semantics of a Decentralized Authorization Language. Tech. Rep.

MSR-TR-2006-120, Microsoft Research, 2006.

[87] MOSBERGER, D., AND PETERSON, L. L. Making paths explicit in the Scout op-

erating system. InProceedings of Usenix Symposium on Operating Systems Design

and Implementation(1996), ACM Press, pp. 153–167.

[88] O. PAPAEMMANOUIL AND Y. A HMAD AND U. CETINTEMEL AND J. JANNOTTI

AND Y. Y ILDIRIM . Extensible Optimization in Overlay Dissemination Tree. In

Proceedings of ACM SIGMOD International Conference on Management of Data

(1996).

[89] OZSU, M. T., AND VALDURIEZ , P. Principles of Distributed Database Systems

(2nd Edition). Prentice Hall, 1999.

[90] OZSU, M. T., AND VALDURIEZ , P. Principles of Distributed Database Systems,

Second Edition. Prentice Hall, 1999.

[91] PAPADOPOULOS, G. M., AND CULLER, D. E. Monsoon: An explicit token store

architecture. InProc. ISCA(May 1990).

[92] PETERSON, L., AND DAVIE , B. Computer Networks: A Systems Approach.

Morgan-KaufMann, 2003.

170

BIBLIOGRAPHY

[93] PETERSON, L., SHENKER, S.,AND TURNER, J. Overcoming the Internet Impasse

Through Virtualization. InHotNets-III (2004).

[94] PLANETLAB. Global testbed. http://www.planet-lab.org/.

[95] PYTHON PROGRAMMING LANGUAGE. http://www.python.org.

[96] RAGHU RAMAKRISHNAN AND S. SUDARSHAN. Bottom-Up vs Top-Down Revis-

ited. InProceedings of the International Logic Programming Symposium(1999).

[97] RAMAKRISHNAN , R., ROSS, K. A., SRIVASTAVA , D., AND SUDARSHAN, S. Effi-

cient Incremental Evaluation of Queries with Aggregation. InProceedings of ACM

SIGMOD International Conference on Management of Data(1992).

[98] RAMAKRISHNAN , R., AND ULLMAN , J. D. A Survey of Research on Deductive

Database Systems.Journal of Logic Programming 23, 2 (1993), 125–149.

[99] RAMAN , S., AND MCCANNE, S. A model, analysis, and protocol framework for

soft state-based communication. InProceedings of ACM SIGCOMM Conference on

Data Communication(1999), pp. 15–25.

[100] RAMASUBRAMANIAN , V. Cost-Aware Resource Management for Decentralized

Internet Services. Tech. rep., Cornell University, 2007.

[101] RAMASUBRAMANIAN , V., HAAS, Z. J., AND SIRER, E. G. SHARP: A Hybrid

Adaptive Routing Protocol for Mobile Ad Hoc Networks. InACM MobiHoc(2003).

[102] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. A

Scalable Content Addressable Network. InProc. of the ACM SIGCOM Conference

(Berkeley, CA, August 2001).

171

BIBLIOGRAPHY

[103] RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ , J. Handling Churn in a

DHT. In USENIX Technical Conference(June 2004).

[104] ROBBERT, V. R., BIRMAN , K. P., DUMITRIU , D., AND VOGEL, W. Scalable

management and data mining using astrolabe. InInternational Workshop on Peer-

to-Peer Systems(Cambridge, MA, Mar. 2002).

[105] RODRIGUEZ, A., K ILLIAN , C., BHAT, S., KOSTIC, D., AND VAHDAT, A. MACE-

DON: Methodology for Automatically Creating, Evaluating, and Designing Overlay

Networks”,. InUSENIX Symposium on Networked Systems Design and Implemen-

tation (March 2004).

[106] ROHMER, J., LESCOEUR, R., AND KERISIT, J. M. Alexander Method - A Tech-

nique for the Processing of Recursive Axioms in Deductive Databases.New Gener-

ation Computing 4:522-528(1986).

[107] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, Decentralized Object Loca-

tion, and Routing for Large-Scale Peer-to-Peer Systems.Lecture Notes in Computer

Science 2218(2001).

[108] R.PALMER , C., GIBBONS, P. B.,AND FALOUTSOS, C. ANF: A Fast and Scalable

Tool for Data Mining in Massive Graphs. InACM SIGKDD(2002), pp. 102–111.

[109] SAFETYNET. The SafetyNet Project. http://www.cogs.susx.ac.uk/projects/safetynet/.

[110] SESHADRI, P., HELLERSTEIN, J. M., PIRAHESH, H., LEUNG, T. C., RAMAKR -

ISHNAN, R., SRIVASTAVA , D., STUCKEY, P. J.,AND SUDARSHAN, S. Cost-based

Optimization for Magic: Algebra and Implementation. InProceedings of ACM SIG-

MOD International Conference on Management of Data(1996).

172

BIBLIOGRAPHY

[111] SHAO, J., BELL , D. A., AND HULL , M. E. C. An Experimental Performance Study

of a pipelined recursive query processing strategy. InInternational Symposium on

Databases for Parallel and Distributed Systems(1990).

[112] SINGH, A., MANIATIS , P., ROSCOE, T., AND DRUSCHEL, P. Distributed Monitor-

ing and Forensics in Overlay Networks. InEurosys(2006).

[113] SKYPE. Skype P2P Telephony. http://www.skype.com.

[114] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISH -

NAN , H. Chord: A scalable peer-to-peer lookup service for internet applications. In

Proceedings of ACM SIGCOMM Conference on Data Communication(2001).

[115] STONEBRAKER, M. Inclusion of New Types in Relational Data Base Systems. In

ICDE (1986).

[116] STONEBRAKER, M., AOKI , P. M., LITWIN , W., PFEFFER, A., SAH , A., SIDELL ,

J., STAELIN , C., AND YU, A. Mariposa: A wide-area distributed database system.

VLDB Journal 5, 1 (1996), 48–63.

[117] STONEBRAKER, M., AND HELLERSTEIN, J. M., Eds.Readings in Database Sys-

tems, Third Edition. Morgan Kaufmann, San Francisco, 1998.

[118] SUDARSHAN, S., AND RAMAKRISHNAN , R. Aggregation and Relevance in De-

ductive Databases. InProceedings of VLDB Conference(1991).

[119] TENNENHOUSE, D., SMITH , J., SINCOSKIE, W., WETHERALL, D., AND M IN-

DEN, G. A Survey of Active Network Research. InIEEE Communications Maga-

zine(1997).

[120] THIBAULT , S., CONSEL, C., AND MULLER, G. Safe and Efficient Active Network

Programming. In17th IEEE Symposium on Reliable Distributed Systems(1998).

173

BIBLIOGRAPHY

[121] TURNER, K. J., Ed. Using formal description techniques – An Introduction to Es-

telle, LOTOS and SDL. Wiley, 1993.

[122] TYSON CONDIE AND JOSEPH M. HELLERSTEIN AND PETROS MANIATIS AND

SEAN RHEA AND TIMOTHY ROSCOE. Finally, a Use for Componentized Transport

Protocols. InACM SIGCOMM Hot Topics in Networks(2005).

[123] TYSON CONDIE AND VARUN KACHOLIA AND SRIRAM SANKARARAMAN AND

JOSEPH M. HELLERSTEIN AND PETROS MANIATIS . Induced Churn as Shelter

from Routing-Table Poisoning. InNetwork and Distributed System Security(2006).

[124] VAN DEURSEN, A., KLINT, P., AND V ISSER, J. Domain-Specific Languages: An

Annotated Bibliography.SIGPLAN Notices 35, 6 (2000).

[125] VEEN, A. H. Dataflow machine architecture.ACM Computing Surveys 18, 4 (Dec.

1986).

[126] WHALEY, J., AND LAM , M. S. Cloning-Based Context-Sensitive Pointer Alias

Analysis Using Binary Decision Diagrams. InPLDI (2004).

[127] WILSCHUT, A. N., AND APERS, P. M. G. Pipelining in Query Execution. InInter-

national Conf on Databases, Parallel Architectures and their Applications(1991).

[128] X INMING OU AND SUDHAKAR GOVINDAVAJHALA AND ANDREW W. APPEL.

MulVAL: A Logic-based Network Security Analyzer. InUSENIX Security Sympo-

sium(2006).

[129] YANG, X. NIRA: A New Internet Routing Architecture. InProceedings of the ACM

SIGCOMM workshop on Future directions in network architecture(2003).

174

BIBLIOGRAPHY

[130] ZHAO, B. Y., KUBIATOWICZ , J. D.,AND JOSEPH, A. D. Tapestry: An Infrastruc-

ture for Fault-tolerant Wide-area Location and Routing. Tech. Rep. UCB/CSD-01-

1141, UC Berkeley, Apr. 2001.

175

Appendix A

Proofs

A.1 Proofs for Pipelined Semi-näıve

Symbol Representation
t A tuple generated at any iteration.
t i A tuple generated at theith iteration.
pk The table corresponding to thekth re-

cursive predicate in the rule body.
bk A table for thekth base predicate in

the rule body.
FPS(p) Result set forp using SN evaluation.
FPP(p) Result set forp using PSN evaluation.
FPi

S(p) Result set forp using SN evaluation
at theith iteration or less.

FPi
P(p) Result set forp using PSN evaluation

for all p tuples that are marked with
iteration numberi or less.

Table A.1: Proof Notation

In our proofs, we use the notation in TableA.1. Consider a rule with n recursive predi-

catesp1, p2,..., pn and m base predicatesb1,b2, ...,bm:

176

Chapter A. Proofs

p :−p1, p2, ..., pn,b1,b2, ...,bm.

For the purposes of the proof of TheoremA.1, we assume that there is a unique deriva-

tion for each tuplet.

Claim A.1 ∀t i ∈ FPi
S(p),∃t j ∈ FPi−1

S (p j) s.t. t :−t1, t2, ..., tn,b1,b2, ...,bm∧ t /∈ FPi−1
S (p).

Same for FPP.

Theorem A.1 FPS(p) = FPP(p)

Proof: (By induction). The base caseFP0
S(p) = FP0

P(p) is trivial since this is the initial

set of inputp0 tuples. Assume inductivelyFPi−1
S (p) = FPi−1

P (p) is true, we show that

FPi
S(p) = FPi

P(p) using the following two lemmas below.

Lemma A.1 FPi
S(p)⊆ FPi

P(p)

Proof: Consider tuplet i ∈FPi
S(p) derived using SN evaluationt :−t1, t2, ..., tn,b1,b2, ...,bm.

By Claim A.1, t j ∈ FPi−1
S (p j) ∧ t /∈ FPi−1

S (p). One of the inputt j ’s (tk) must be in4pold
k

in the SN algorithm.t i−1
k ∈ FPi−1

S ⇒ t i−1
k ∈ FPi−1

P . By the PSN algorithm,t i−1
j must have

been enqueued, hence generatingt i . Sot i ∈ FPi
S.

Lemma A.2 FPi
P(p)⊆ FPi

S(p)

Proof: Consider a tuplet i ∈FPi
S(p) derived using modified PSN evaluationt :−t1, t2, ..., tn,

b1,b2, ...,bm. From claimA.1, tk ∈ FPi−1
P (pk) ∧ t /∈ FPi−1

P (p). By the PSN algorithm, one

of t j ’s (tk) is4told,i−1
k . This means thatt i−1

k ∈ FPi−1
S (pk)⇒ t i−1

k ∈4pold
k in theith iteration

of the SN algorithm. This will result in the rule being used to generatet in the ith iteration.

Hence,t i ∈ FPi
S.

If there are multiple derivations for the same tuple, we can apply the same proof above

for TheoremA.1 using the following modified PSN: if there are two derivationst i andt j

177

Chapter A. Proofs

(j > i) for the same tuple, the modified PSN algorithm guarantees thatt i is generated by

enqueuingt i even if t j was previously generated. Note that the modified PSN algorithm

leads to repeated inferences, but generates the same results as PSN.

Theorem A.2 There are no repeated inferences in computing FPP(p).

Proof: For linear rules, the theorem is trivially true since we only add a new derived tuple

into the PSN queue if it does not exist previously. This guarantees that each invocation of

the rule is unique

For non-linear rules, we continue from TheoremA.1’s proof. Letts(t) be the sequence

number or timestamp of derived tuplet. Following the proof for LemmaA.1, only thekth

rule, wherets(t i−1
k) = max(ts(t i−1

1), ts(t i−1
2), ..., ts(t i−1

n)) will be used to generatet i
0 at the

inductive step, ensuring no repeated inferences.

A.2 Proofs for Bursty Updates

Let E be the set of all extensional tuples that appear during the execution of a program. Let

D be the set of all tuples that can be derived fromE (we assumeE ⊆ D for simplicity). A

tuplet ∈ D derived by the rulet:-t1, t2, ..., tn has a correspondingtree fragment, with parent

t and childrent j . Thederivation treefor D is built by assembling the tree fragments for all

possible derivations of tuples inD. We distinguish the multiple tree fragments for multiple

derivations oft, but to simplify notation, we uset, t1, . . . to name tree nodes. Leaves of this

tree are elements ofE.

A series of insertions and deletions to the extensional relations is modeled as a sequence

of valuest(0), t(1), . . . , t(j) for eacht ∈ E, where 1 means present and 0 means absent.

Similarly, for all tree nodest, we remember the sequence of values (presence or absence)

assigned tot by the PSN algorithm after each child change. We writet(∞) to represent the

178

Chapter A. Proofs

value oft once the network has quiesced.

Let t be a tree node whose children aret1, t2, ..., tn.

Claim A.2 Along any tree edge tk→ t, value changes are applied in the order in which tk’s

change. This property is guaranteed by PSN’s FIFO queue.

Lemma A.3 t(∞) is derived using t1(∞), t2(∞), . . . , tn(∞).

Proof: (By induction) t(0) is computed from the initial values of its children. Assume

inductively thatt(j−1) is derived based on the(j−1)th change in its children. If childtk

changes,t(j) is rederived, and based on ClaimA.2, reflects the latest value oftk. Hence,

t(∞) is derived from the last value of all its children.

Let FPp be the set of tuples derived using PSN under the bursty model, andFFPp be

the set of tuples that would be computed by PSN if starting from the quiesced state.

Theorem A.3 FPp = FFPp in a centralized setting.

Proof: We writet(ω) for the values derived by PSN when its starting state ise(∞) for e∈E.

If ∀t ∈ D’s derivation tree, t(ω) = t(∞) thenFPp = FFPp. We prove this by induction on

the height of tuples in the derivation tree. We defineDi to be all nodes ofD’s derivation

tree at heighti, with D0 = E.

In the base case,∀t ∈ D0, t(∞) = t(ω) by definition of the base tuple values. In the

inductive step, we assume that∀ j < i, ∀t ∈ D j , t(∞) = t(ω). Considert ∈ Di . Based on

LemmaA.3, t(∞) will be derived from thetk(∞) values of its children, which by induction

are equal totk(ω). Hencet(∞) = t(ω).

Claim A.3 As long as all network links obey FIFO for transmitted messages, ClaimA.2is

true for any children of t that are generated using link-restricted Datalog rules.

Theorem A.4 FPp = FFPp in a distributed setting.

179

Chapter A. Proofs

Proof: With Claim A.3, the proof is similar to that of TheoremA.3.

A.3 Proofs for Soft-State Rules

Let H be the set of hard-state tuples, andS be the set of soft-state tuples. A series of

insertions and refreshes to the relations is modeled as a sequence oft(0), t(1), . . . , t(j) for

eacht ∈ (H ∪S), where 1 means present and 0 means absent. We writet(∞) to represent

the value oft when the network has quiesced.

We define theeventual steady stateof the network after it has quiesced, which includes

all hard state tuplesth ∈ H s.t. th(∞) = 1, and all soft-state tuplests∈ S s.t. ts(∞) = 1.

Since soft-state tuples have finite lifetimes, in the eventual steady state, all soft-state tuples

that satisfyts(∞) = 1 are periodically refreshed and recomputed at time intervals less than

their lifetime. Letl(ts) , p(ts) andr(ts) be the lifetime, derivation time and refresh interval

of a soft-state tuplets∈ S. We observe thatts(∞) = 1 is true iff l(ts)≥ p(ts)+ r(ts) is true.

In the rest of the section, we consider the three types of soft-state rules defined in

Section2.5: pure soft-state rules, derived soft-state rulesandarchival soft-state rules.

A.3.1 Pure Soft-State Rule

A pure soft-state rule is of the form:s:−s1,s2, ...sm,h1,h2, ...hn where there aremsoft-state

predicates andn hard-state predicates. The rule derives a soft-state predicates. Let ts∈ s

be a soft-state tuple derived fromts : −ts1, ts2, ..., tsm, th1, th2, ..., thn, where∀i (tsi ∈ si)

and∀ j (th j ∈ h j). For eventual consistency, we want to show thatts(∞) is derived using

ts1(∞), ts2(∞), . . . , tsn(∞), th1(∞), th2(∞), . . . , thn(∞).

The inductive proof is similar to that of TheoremA.3, where we model refreshes instead

of deletions of tuples. In addition, we consider the following two cases:

180

Chapter A. Proofs

1. Case 1: l(ts) ≥ max(l(ts1), l(ts2), ..., l(tsm)). In the first case, the derived soft-state

tuple ts has a lifetime that exceeds all of its soft-state inputsts1, ts2, ..., tsm. Given

that ts has a finite lifetime, in the eventual steady state of the network, eachts s.t.

ts(∞) = 1 is periodically refreshed. At each refresh of one of the inputtsi , ts is re-

computed based on the most recent values ofts1, ts2, ...tsm, th1, th2, ...thn of the qui-

esced network. Hence,ts(∞) is derived usingts1(∞), . . . , tsn(∞), th1(∞), . . . , thn(∞).

In addition, for a given inputtsi , if tsi(∞) = 1, thenl(tsi) ≥ p(tsi) + r(tsi) is true.

Hence, from the case 1 condition,l(ts) ≥ max(r(ts1), l(rs2), ..., r(tsm)). For a given

ts that is present at the eventual steady state,ts(∞) = 1 is true until the next refresh

of one of the inputtsi .

2. Case 2: l(ts) < max(l(ts1), l(ts2), ..., l(tsm)). Similarly, in the eventual steady state

of the network, at each refresh oftsi , ts will be derived based on the most recent

values ofts1, ts2, ...tsm, th1, th2, ...thn of the quiesced network. However, from the

case 2 condition, it is possible thatl(ts) < max(r(ts1), r(ts2), ..., r(tsm)). This means

thattsmay expire before the next refresh of any inputtsi . Hence,ts(∞) will oscillate

between 0 and 1 in the eventual steady state of the network.

In conclusion, we can achieve eventual consistency for pure soft-state rules. However,

in case 2, the eventual state of the network may not be stable and some soft-state derivations

will oscillate being derived and timing out. To avoid such oscillations, we can disallow

rules that satisfy the second condition. This can be enforced via syntactic checks to ensure

the lifetime of the derived soft-state head exceeds the lifetime of all the soft-state body

predicates.

181

Chapter A. Proofs

A.3.2 Derived Soft-State Rule

We next consider a derived soft-state rule of the forms :−h1,h2, ...hn, which takes as input

n hard-state predicates, and derive a soft-state predicates. Give that the rule body consist

only of hard-state predicates, the proof is similar to that of TheoremA.3. However, given

the lack of refreshes in the inputs and the fact that all derivedts∈ s tuples have finite

lifetimes,ts(∞) = 0 in the eventual steady state.

A.3.3 Archival Soft-state Rules

Last, we consider archival soft-state rule of the formh : −s1,s2, ...sm, h1,h2, ...hn, where

there arem soft-state predicates andn hard-state predicates. The rule derives a hard-

state predicateh. Consider a hard-state tupleth ∈ H derived usingth : −ts1, ts2, ...tsm,

th1, th2, ...thn. Unlike soft-state tuples,thneeds to be explicitly deleted. Given that there are

no cascaded deletions in soft-state rules,th is not deleted even when one ofts1, ts2, ..., tsm

has expired. Hence,th(∞) is not derived usingts1(∞), . . . , tsn(∞), th1(∞), . . . , thn(∞).

182

Appendix B

Examples of Declarative Overlays

B.1 Narada

We provide an executableNDlog implementation of Narada’s mesh maintenance algo-

rithms that includes (1) membership list maintenance, and (2) liveness checks on neighbors.

/* Materialized table declarations */

materialize(sequence, infinity, 1, keys(2)).

materialize(env, infinity, infinity, keys(2,3)).

materialize(neighbor, infinity, infinity, keys(2)).

materialize(member, 120, infinity, keys(2)).

/* Initial facts */

e1 neighbor(@X,Y) :- periodic(@X,E,0,1), env(@X,H,Y), H = ”neighbor”.

e2 member(@X,A,S,T,L) :- periodic(@X,E,0,1), T = fnow(), S = 0, L = 1, A = X.

e3 member(@X,Y,S,T,L) :- periodic(@X,E,0,1), neighbor(@X,Y), T = fnow(),

. . S = 0, L = 1.

183

Chapter B. Examples of Declarative Overlays

e4 sequence(@X,Sequence) :- periodic(@X,E,0,1), Sequence = 0.

/* Membership list maintenance */

r1 refreshEvent(@X) :- periodic(@X,E,5).

r2 refreshSeq@X(X,NewS) :- refreshEvent@X(X), sequence@X(X,S), NewS = S + 1.

r3 sequence@X(X,NewS) :- refreshSeq@X(X,NewS).

r4 refreshMsg(@Y,X,NewS,Addr,AS,ALive) :- refreshSeq(@X,NewS),

. . member(@X,Addr,AS,Time,ALive),

. . neighbor(@X,Y).

r5 membersCount(@X,Addr,AS,ALive,count<*>) :- refreshMsg(@X,Y,YS,Addr,AS,ALive),

. . member(@X,Addr,MyS,MyTime,MyLive),

. . X != Addr.

r6 member(@X,Addr,AS,T,ALive) :- membersCount(@X,Addr,AS,ALive,C),

. . C = 0, T = f now().

r7 member(@X,Addr,AS,T,ALive) :- membersCount(@X,Addr,AS,ALive,C),

. . member(@X,Addr,MyS,MyT,MyLive),

. . T = f now(), C> 0, MyS< AS.

r8 neighbor(@X,Y) :- refresh(@X,Y,YS,A,AS,L).

/* Liveness checks on neighbors */

l1 neighborProbe(@X) :- periodic(@X,E,1).

l2 deadNeighbor(@X,Y) :- neighborProbe(@X), T = fnow(),

. . neighbor(@X,Y), member(@X,Y,YS,YT,L), T - YT> 20.

l3 delete neighbor(@X,Y) :- deadNeighbor(@X,Y).

l4 member(@X,Neighbor,DeadSequence,T,Live) :- deadNeighbor(@X,Neighbor),

. . member(@X,Neighbor,S,T1,L), Live = 0,

184

Chapter B. Examples of Declarative Overlays

. . DeadSequence = S + 1, T = fnow().

B.2 P2-Chord

Here we provide the fullNDlog specification for Chord. This specification deals with

lookups, ring maintenance with a fixed number of successors, finger-table maintenance

and opportunistic finger table population, joins, stabilization, and node failure detection.

/* Materialized table declarations */

materialize(nodeID, infinity, 1, keys(1)).

materialize(landmark, infinity, 1, keys(1)).

materialize(finger, 180, 160, keys(2)).

materialize(uniqueFinger, 180, 160, keys(2)).

materialize(bestSucc, 180, 1, keys(1)).

materialize(succ, 30, 16, keys(2)).

materialize(pred, infinity, 1, keys(1)).

materialize(join, 10, 5, keys(1)).

materialize(pendingPing, 10, infinity, keys(3)).

materialize(fFix, 180, 160, keys(2)).

materialize(nextFingerFix, 180, 1, keys(1)).

/* Initial bootstrapping facts */

i1 pred(@NI,P,PI) :- periodic(@NI,E,0,1), P = “NIL”, PI = ”NIL”.

i2 nextFingerFix(@NI, 0) :- periodic(@NI,E,0,1).

i3 node(@NI,N) :- periodic(@NI,E,0,1), env(@NI,H,N), H = ”node”.

185

Chapter B. Examples of Declarative Overlays

i4 landmark(@NI,LI) :- periodic(@NI,E,0,1), env(@NI,H,LI), H = ”landmark”.

/* Lookups */

l1 lookupResults(@R,K,S,SI,E) :- nodeID(@NI,N), lookup(@NI,K,R,E),

. . bestSucc(@NI,S,SI), K in (N,S].

l2 bestLookupDist(@NI,K,R,E,min<D>) :- nodeID(@NI,N),

. . lookup(@NI,K,R,E), finger(@NI,I,B,BI),

. . D = K - B - 1, B in (N,K).

l3 lookup(min<@BI>,K,R,E) :- nodeID(@NI,N),

. . bestLookupDist(@NI,K,R,E,D), finger(@NI,I,B,BI),

. . D = K - B - 1, B in (N,K).

/* Best successor and first finger selection */

n1 newSuccEvent(@NI) :- succ(@NI,S,SI).

n2 newSuccEvent(@NI) :- deleteSucc(@NI,S,SI).

n3 bestSuccDist(@NI,min<D>) :- newSuccEvent(@NI),nodeID(@NI,N), succ(@NI,S,SI),

. . D = S - N - 1.

n4 bestSucc(@NI,S,SI) :- succ(@NI,S,SI), bestSuccDist(@NI,D), nodeID(@NI,N),

. . D = S - N - 1.

n5 finger(@NI,0,S,SI) :- bestSucc(@NI,S,SI).

/* Successor eviction */

s1 succCount(@NI,count<*>) :- newSuccEvent(@NI), succ(@NI,S,SI).

s2 evictSucc(@NI) :- succCount(@NI,C), C> 4.

s3 maxSuccDist(@NI,max<D>) :- succ(@NI,S,SI),

. . nodeID(@NI,N), evictSucc(@NI),

186

Chapter B. Examples of Declarative Overlays

. . D = S - N - 1.

s4 delete succ(@NI,S,SI) :- nodeID(@NI,N), succ(@NI,S,SI),

. . maxSuccDist(@NI,D), D = S - N - 1.

/* Finger fixing */

f1 fFix(@NI,E,I) :- periodic(@NI,E,10), nextFingerFix(@NI,I).

f2 fFixEvent(@NI,E,I) :- fFix(@NI,E,I).

f3 lookup(@NI,K,NI,E) :- fFixEvent(@NI,E,I), nodeID(@NI,N), K = 0x1I<< I + N.

f4 eagerFinger(@NI,I,B,BI) :- fFix(@NI,E,I), lookupResults(@NI,K,B,BI,E).

f5 finger(@NI,I,B,BI) :- eagerFinger(@NI,I,B,BI).

f6 eagerFinger(@NI,I,B,BI) :- nodeID(@NI,N),

. . eagerFinger(@NI,I1,B,BI), I = I1 + 1,

. . K = 0x1I << I + N, K in (N,B), BI != NI.

f7 delete fFix(@NI,E,I1) :- eagerFinger(@NI,I,B,BI), fFix(@NI,E,I1),

. . I > 0, I1 = I - 1.

f8 nextFingerFix(@NI,0) :- eagerFinger(@NI,I,B,BI), ((I = 159) (BI = NI)).

f9 nextFingerFix(@NI,I) :- nodeID(@NI,N),

. . eagerFinger(@NI,I1,B,BI), I = I1 + 1,

. . K = 0x1I << I + N, K in (B,N), NI != BI.

f10 uniqueFinger(@NI,BI) :- finger(@NI,I,B,BI).

/* Join network */

j1 joinEvent(@NI,E) :- periodic(@NI,E,1,2).

j2 join(@NI,E) :- joinEvent(@NI,E).

j3 joinReq@LI(LI,N,NI,E) :- joinEvent(@NI,E), nodeID(@NI,N),

. . landmark(@NI,LI), LI != “NIL”.

187

Chapter B. Examples of Declarative Overlays

j4 succ(@NI,N,NI) :- landmark(@NI,LI), joinEvent(@NI,E), nodeID(@NI,N), LI = “NIL”.

j5 lookup@LI(LI,N,NI,E) :- joinReq@LI(LI,N,NI,E).

j6 succ(@NI,S,SI) :- join(@NI,E), lookupResults(@NI,K,S,SI,E).

/* Stabilization */

sb1 succ(@NI,P,PI) :- periodic(@NI,E,10), nodeID(@NI,N),

. . bestSucc(@NI,S,SI), pred(@SI,P,PI),

. . PI != “NIL”, P in (N,S).

sb2 succ(@NI,S1,SI1) :- periodic(@NI,E,10), succ(@NI,S,SI), succ(@SI,S1,SI1).

sb3 pred@SI(SI,N,NI) :- periodic(@NI,E,10), nodeID(@NI,N),

. . succ(@NI,S,SI), pred(@SI,P,PI),

. . node(@SI,N1), ((PI = “NIL”) (N in (P,N1))).

/* Ping-Pong messages to neighbors */

pp1 pendingPing(@NI,SI,E1,T) :- periodic(@NI,E,5), succ(@NI,S,SI),

. . E1 = f rand(), SI != NI, T = f now().

pp2 pendingPing(@NI,PI,E1,T) :- periodic(@NI,E,5), pred(@NI,P,PI),

. . E1 = f rand(), PI ! = “NIL”, T = f now().

pp3 pendingPing(@NI,FI,E1,T) :- periodic(@NI,E,5), uniqueFinger(@NI,FI),

. . E1:=f rand(), T:=f now().

pp4 pingResp(@RI,NI,E) :- pingReq(@NI,RI,E).

pp5 pingReq(@PI,NI,E) :- periodic(@NI,E1,3),

. . pendingPing(@NI,PI,E,T).

pp6 delete pendingPing(@NI,SI,E,T) :- pingResp(@NI,SI,E), pendingPing(@NI,SI,E,T).

188

Chapter B. Examples of Declarative Overlays

/* Failure Detection */

fd1 nodeFailure(@NI,PI,E1,D) :- periodic(@NI,E,1), pendingPing(@NI,PI,E1,T),

. . T1 = f now(), D = T-T1, D> 7.

fd2 delete pendingPing(@NI,PI,E,T) :- nodeFailure(@NI,PI,E,D), pendingPing(@NI,PI,E,T).

fd3 deleteSucc(@NI,S,SI) :- succ(@NI,S,SI), nodeFailure(@NI,SI,E,D).

fd4 delete succ(@NI,S,SI) :- deleteSucc(@NI,S,SI).

fd5 pred(@NI,”NIL”,”NIL”) :- pred(@NI,P,PI), nodeFailure(@NI,PI,E,D).

fd6 delete finger(@NI,I,B,BI) :- finger(@NI,I,B,BI), nodeFailure(@NI,BI,E,D).

fd7 delete uniqueFinger(@NI,FI) :- uniqueFinger(@NI,FI), nodeFailure(@NI,FI,E,D).

189

	List of Figures
	List of Tables
	Introduction
	Motivation
	Main Contributions
	Distributed Recursive Query Processing
	Overview of Declarative Networks
	The Case for Declarative Networking
	Organization

	The Network Datalog Language
	Introduction to Datalog
	Network Datalog by Example
	Distributed Computation
	Link-Restricted Communication
	Soft-state Data and Rules
	Incremental Maintenance of Network State
	Summary of Network Datalog
	Summary

	Declarative Routing
	Motivation
	Execution Model
	Routing Protocols By Examples
	Security Issues
	Route Maintenance
	Summary

	P2 System Overview
	Architecture of P2
	P2 Dataflow Engine
	Dataflow Framework Implementation
	Network State Storage and Management
	Summary

	Processing NDlog Programs
	Centralized Plan Generation
	Distributed Plan Generation
	Relaxing Semi-naïve Evaluation
	Processing in a Dynamic Network
	Processing Soft-state Rules
	Summary

	Declarative Overlays
	Execution Model
	Narada Mesh
	Chord Distributed Hash Table
	Summary

	Evaluation
	Declarative Routing Evaluation
	Declarative Overlays Evaluation
	Summary

	Optimization of NDlog Programs
	Traditional Datalog Optimizations
	Multi-Query Optimizations
	Hybrid Rewrites
	Evaluation of Optimizations
	Summary

	Related Work
	Deductive Databases
	Internet-Scale Query Processing
	Extensible Networks
	Network Specification Languages

	Conclusion
	Summary of Contributions
	Broad Use of Declarative Networking
	Research Directions
	Closing

	Bibliography
	Proofs
	Proofs for Pipelined Semi-naïve
	Proofs for Bursty Updates
	Proofs for Soft-State Rules

	Examples of Declarative Overlays
	Narada
	P2-Chord

