The Design and Implementation of Declarative
Networks

Boon Thau Loo

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-177
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-177.html

December 15, 2006




Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



The Design and Implementation of Declarative Networks
by
Boon Thau Loo
B.S. (University of California, Berkeley) 1999
M.S. (Stanford University) 2000
A dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
in
Computer Science
in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Joseph M. Hellerstein, Chair
Professor lon Stoica
Professor John Chuang

Fall 2006



The dissertation of Boon Thau Loo is approved:

Professor Joseph M. Hellerstein, Chair Date
Professor lon Stoica Date
Professor John Chuang Date

University of California, Berkeley

Fall 2006



The Design and Implementation of Declarative Networks

Copyright(© 2006

by

Boon Thau Loo



Abstract

The Design and Implementation of Declarative Networks
by
Boon Thau Loo
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

In this dissertation, we present the design and implementatidaaarative networks
Declarative networkingrroposes the use of a declarative query language for specifying and
implementing network protocols, and employs a dataflow framework at runtime for com-
munication and maintenance of network state. The primary goal of declarative networking
is to greatly simplify the process of specifying, implementing, deploying and evolving a
network design. In addition, declarative networking serves as an important step towards
an extensible, evolvable network architecture that can sufipgitble secureandefficient
deployment of new network protocols.

Our main contributions are as follows. First, we formally define Negwork Data-
log (NDlog) language based on extensions to the Datalog recursive query language, and
proposeNDlog as a Domain Specific Language for programming network protocols. We
demonstrate thdiiDlog can be used to express a large variety of network protocols in a
handful of lines of program code, resulting in orders of magnitude reduction in code size.
For example, the Chord overlay network can be specified iNB&g rules. In addition,
the core of the language (Datalog) has polynomial complexity, andN®log extensions
can be statically analyzed for termination using standard analysis techniques.

Second, to validate the designDlog, we present our implementation of P2, which
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is a full-fledged declarative networking system that compN&dog and executes it via

a dataflow engine inspired by the Click modular router. We experimentally evaluate the
P2 system on hundreds of distributed machines. The P2 system is publicly available for
download and has been used in research projects at a number of institutions.

Third, based on our experiences implementing declarative networks, we explore a wide
variety of database research issues that are important for the practical realization of declar-
ative networks. These include pipelined execution of distributed recursive queries, reason-
ing about query semantics based on the well-known distributed systems notion of “eventual
consistency”, incorporating the notion of soft-state into the logical framewoNDibg,

and the use of query optimizations to improve the performance of network protocols.

Professor Joseph M. Hellerstein, Chair Date
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Chapter 1

Introduction

1.1 Motivation

The Internet faces many challenges today, ranging from the lack of protection against un-
wanted or harmful traffic to the increasing complexity and fragility of inter-domain routing.
In addition, the proliferation of new applications on the Internet has also led to growing
demands for new functionalities such as mobility, content-based routing, and quality-of-
service (QoS) routing. As a result, there is an increasing consensus in the networking
community that the current Internet architecture is fundamentally ill-equipped to handle
the needs of future uses and challeni@s

A radical approach suggested recently calls for a “clean-slate” redesign of the Internet,
by revisiting its original design goals and princip[&4]. These clean-slate proposals have
received substantial attention from the research community, as reflected by major NSF ini-
tiatives such as Future INternet Design (FINB¥] and Global Environment for Network
Innovations (GENIJ48].

At the same time, given the existing limitations of the Internet, the evolutionary ap-

proach that has been widely adopted today involves the deployment of overlay nei®8brks
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on the Internet. An overlay network is a virtual network of nodes and logical links that is
built on top of an existing network with the purpose of implementing a network service
that is not available in the existing network. Examples of overlay networks on today’s In-
ternet include commercial content distribution networks such as AkEfhagbeer-to-peer
(P2P) applications for file-sharin@0] and telephony113, as well as a wide range of
experimental prototypes running on the Planet[24) global testbed.

While overlay networks have been successfully used to support a variety of distributed
applications, they are viewed by some as an incremental stop-gap solution. Whether one is
a proponent of the revolutionary clean-slate redesign or the evolutionary approach of using
overlay networks, it is clear that we are entering a period of significant flux in network

services, protocols and architecture.

1.2 Main Contributions

In this dissertation, we present the design and implementatiatedfrative networks
Declarative networkingproposes the use of declarative query language for specifying and
implementing network protocols, and employs a dataflow framework at runtime for com-
munication and the maintenance of network state. The key idea behind declarative network-
ing is that declarative recursive queriés 98], which are used in the database community

for querying graph structures, are a natural fit for expressing the properties of various net-
work protocols.

The primary goal of declarative networking is to greatly simplify the process of spec-
ifying, implementing, deploying and evolving a network design. In addition, declarative
networking serves as an important step towards an extensible, evolvable network architec-
ture that can suppoftexible secureand efficientdeployment of new network protocols.

Existing solutions are either highly efficient but inflexibkeg;, hard-coded network pro-
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tocols today), or highly flexible but insecure.d., active network§119). By using a
declarative language that is more amenable to static analysis than traditional programming
languages, we are able to strike a better balance between flexibility and security than exist-
ing solutions.

To realize the vision of declarative networking, this dissertation makes the following

key contributions:

o First, we formally define thé&letwork Datalog (NDlog) language based on exten-
sions to Datalog, a traditional recursive query language used in the database com-
munity. NDlog builds upon traditional Datalog to enaldestributedand soft-state
computations withrestricted communicatiobased on the underlying physical con-

nectivity, all of which are essential in the network setting.

¢ In declarative routing [79; 80], we demonstrate the use of the declarative framework
for building an extensible routing infrastructure that provides flexibility, yet retains
in large the efficiency and security of today’s routing protocols. We showNBat
log programs are a natural and compact way of expressing a variety of well-known
routing protocols, typically in a handful of lines of program code. This allows ease
of customization, where higher-level routing conceptg.( QoS constraints) can be
achieved via simple modifications to thidlog programs. We also show these these
programs can be statically analyzed for termination using standard database tech-
niques|67]. and are amenable to well-studied query optimizations from the database

literature.

¢ In declarative overlays[76], we show thatNDlog can be used to implement com-
plex application-level overlay networks such as multicast overlays and distributed
hash tables (DHTs). We demonstrate a working implementation of the ¢hi4H

overlay network specified in 4BDlog rules, versus thousands of lines of C++ for

3
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the original version, resulting in orders of magnitude reduction in code size.

¢ To validate the design dfiDlog, we present our implementation of 2|, which

is a full-fledged declarative networking system with a dataflow engine inspired by
the Click modular routef65]. The P2 system takes as inpliblog programs, com-

piles them into distributed execution plans that are then executed by a distributed
dataflow engine to implement the network protocols. We experimentally evaluate the
P2 system on hundreds of distributed machines running a wide variety of different
protocols, including traditional routing protocols as well as complex overlays such
as distributed hash tables. The P2 system is publicly available for download and has

been used in research projects at various institutions.

1.3 Distributed Recursive Query Processing

Recursive query research has often been criticized as being only of theoretical interest and
detached from practical realiti¢g1]. In this dissertation, we not only demonstrate the
practical use of recursive queries outside of the traditional domain of stored centralized
databases, we also identify and address several important and challenging database re-
search issuel¥5] that are essential for the practical realization of declarative networking.
Specifically, the recursive query processing issues that we tackle in this dissertation include

the following:

e First, we extend existing techniques for recursive query processing to a distributed
context in order to generate distributed dataflow-based execution plaiDiog

programs.

e Second, based on the execution model of our distributed dataflows, we introduce

and prove correct relaxed versions of the traditional, centralized execution strategy

4
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known assemi-ndve[11; 12; 15| fixpoint evaluation. Our techniques, calledffered
semi-ndve andpipelined semi-niae evaluation, overcome fundamental problems of
semi-ndve evaluation in an asynchronous distributed setting, and should be of in-
dependent interest outside the context of declarative networking: they significantly

increase the flexibility of semi-iige evaluation to reorder the derivation of facts.

e Third, in the network setting, transactional isolation of updates from concurrent
gueries is often inappropriate; network protocols must incorporate concurrent up-
dates about the state of the network while they run. We address this by formalizing
the typical distributed systems notion of “eventual consistency” in our context of
derived data. Using techniques from materialized recursive view maintenance, we
incorporate updates to input tables duri@log program execution, and still ensure
well-defined eventual consistency semantics. This is of independent interest beyond

the network setting when handling updates and long-running recursive queries.

e We cleanly incorporate the notion of soft staiieto the logical framework oRDlog,
describe new query processing and view maintenance technigues to process soft-state
data, and demonstrate how the distributed systems notion of “eventual consistency”

can be similarly achieved as above.

e We survey a number of automatic optimization opportunities that arise in the declar-
ative networking context, including applications of traditional database techniques
such as aggregate selectiddd 8 47] and magic-sets rewritinfll6; 18], as well
as new optimizations we develop for work-sharing, caching, and cost-based opti-
mizations based on graph statistics. Many of these ideas can be applied to query
processing engines outside the context of declarative networking or distributed im-

plementations.

INetwork state is typically maintained as soft sti#& 99| for reasons of robustness and scalability.
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While recursive query processing is considered a mature field, in the course of this
work, we raise new interesting database research challenges motivated in the distributed
setting that we hope can open new avenues for research in the theory, implementation and

application of recursive queries.

1.4 Overview of Declarative Networks

NDlog

program
D= / =
Dataflow !
1 Datafl
Dataflow program

Figure 1.1: A Declarative Network

Figurel.lillustrates a declarative network at a conceptual level. Like any traditional
network, a declarative network maintains network state at each node to enable the rout-
ing and forwarding of packets. The network state is stored as relational tables distributed
across the network, similar to a traditional distributed datab@@e Network protocols are
declaratively specified as distributed recursive queries over the network state. Recursive
gueries have traditionally been used in the database community for posing queries over
graph structures in deductive databases. The main observation that inspired this work on
declarative networking is that these recursive queries are a natural fit for expressing network

protocols, which themselves are based on recursive relations among nodes in the network.



Chapter 1. Introduction

The recursive query language that we develop is a distributed variant of Datalog called
Network Datalog(NDlog). Intuitively, one can view the forwarding tables generated by
network protocols as the output of distributed recursive queries over changing input net-
work state (network links, nodes, load, operator policies, etc.), and the query results need
to be kept consistent at all times with the changing network state.

Network protocols are specified ADlog programs and disseminated in the network.
Upon receivingNDlog programs, each node compiles the declarative specifications into
execution plans in the form of distributed dataflows. When executed, these dataflows gen-
erate message exchanges among nodes as well as network state modifications, resulting in
the implementation of the network protocols. Multiple declarative networks can run simul-
taneously, either as separate dataflows, or compiled into a single dataflow where common

functionalities among the protocols can be shared.

1.5 The Case for Declarative Networking

Declarative networking presents three advantages over existing approaealsesof pro-
gramming optimizabilityandbalance between extensibility and securiye summarize

the advantages in the rest of this section. This dissertation focuses on the first two advan-
tages: ease of programming and optimizability. In addition, program analysis techniques
exist today that take advantage of the formal, high-level nature of a declarative language,
as we discuss in Sectidn5.3 There are opportunities to extend these analysis techniques
that are outside the scope of the dissertation. We return to this topic as future work in
Chapterl0.
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1.5.1 Ease of Programming

A declarative language allows us to specify at a high level “what” to do, rather than “how”
to do it. When feasible, the declarative approach can lead to ease of programming and
significant reduction in code size. As we demonstrate in Ch&ytdDlog can express a
variety of well-known routing protocols(g., distance vector, path vector, dynamic source
routing, link state, multicast) in a compact and clean fashion, typically in a handful of lines
of program code. Moreover, higher-level routing conceptg.( QoS constraints) can be
achieved via simple modifications to these programs. Furthermore, in Cléaptershow

that complex application-level overlay networks can also be expressed naturally in NDlog.

Declarative network descriptions can be extremely concise. For example, the Chord
overlay network can be specified in ADlog rules, versus thousands of lines of code for
the MIT Chord reference implementation, and more than 320 statements for a less complete
implementation in the Maceddri05 domain-specific language for overlays (see related
work in Chapte® for comparisons with Macedon). Also, the high-level, declarative nature
of P2 specifications means that they decompose cleanly into logically reusable units: for
example, a Symphony DH[B3] might share many of the definitions in the Chord specifica-
tion. Moreover, by providing a uniform declarative language for distributed querying and
networking, we enable the natural integration of distributed information-gathering tasks
like resource discovery and network status monitoring.

In addition to ease of programming, there are other advantages to the use of a high level
language. For exampl®&Dlog specifications can illustrate surprising relations between
network protocols, as we illustrate in ChapBetn particular, we show that path vector and
dynamic source routing protocols differ only in a simple, traditional database optimization
decision: the order in which a query’s predicates are evaluated. The use of higher-level
abstractions also provides the potential to statically check network protocols for security

and correctness properti¢43]. Dynamic runtime checks to test distributed properties
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of the network can also be easily expressed as declarative queries, providing a uniform

framework for network specification, monitoring and debugdihity].

1.5.2 Optimizability

Declarative networking achieves performance comparable to traditional approaches. More-
over, by using a declarative framework rooted in databases, we can achieve even better per-
formance by utilizing query processing and optimization techniques that are well-studied
in the database community.

Our declarative approach to protocol specification reveals new opportunities for opti-
mizing network protocols. First, the use of a high-level declarative language facilitates
the identification and sharing of common functionalities among different declarative net-
works. Second, off-the-shelf database optimization techniques can be applied to declarative
routing specifications to achieve tangible performance benefits. Third, we develop new op-

timization techniques suited to the distributed, soft-state context of network protocols.

1.5.3 Balance of Extensibility and Security

In addition to the benefits of having a higher-level, compact specification, declarative net-
working achieves a better balance betwegtensibilityandsecuritycompared to existing
solutions. Extensibility, or the ability to easily add new functionality to existing systems, is
an important requirement in our setting as a means of rapid deployment and experimenta-
tion with network protocols. However, extensibility has traditionally been achieved at the
expense of securify 15 22]. In the network domain, this concern is best illustrated by ac-
tive networkg 119 which, at the extreme, allow routers to download and execute arbitrary
code. While active networks provide full generality, security concerns have limited their

practical usage.
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Declarative networking can be viewed as a safer, restricted instantiation of active net-
works, where our approach essentially propds&dog as a Domain Specific Language
(DSL) for programming a network. The core WDlog is Datalog, which has complexity
polynomial in the size of the network std®]. While our language extensions KbDlog
alter its theoretical worst-case complexity, there exist static analysis tests on termination for
a large class of recursive queri&y]. This addresses theafetyaspect of security, where
specified protocols can now be checked to ensure that they do not consume infinite re-
sources before execution. In addition, by “sandboxiN@log programs within a database

guery engine, we are also able to contain undesirable side-effects during query execution.

1.6 Organization

This dissertation is organized as follows. In Cha@exe provide an introduction to Data-
log, and then motivate and formally define tiBloglanguage. Given thdDloglanguage,
we demonstrate in Chapt8ithe expressiveness biDlog in compactly specifying declar-
ative routing protocols that implement a variety of well-known routing protocols.

We next demonstrate how declarative routing protocols can be realized in practice by
describing the implementation of the P2 declarative networking system in Claated
qguery processing techniques for compiliNdplog programs into P2 execution plans in
Chapterb.

In Chaptei6, we further apply the declarative framework to more challenging scenarios,
where we uséDlog to specify complex overlay networks such as the Narada f8@h
for end-system multicast and the Chord distributed hash table. Our Chord implementation
is roughly two orders of magnitude less code than the original C++ implementation.

To validate declarative networking concepts, in Chapt&re present evaluation results

from a distributed deployment on the Emulaf)] network testbed, running prototypes of

10
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declarative networks. In Chapt8y we discuss and evaluate a number of query optimiza-
tions that arise in the declarative networking context.

We present in Chapt& a survey of related work in both the database and networking
domains. We then conclude in Chapi€rsummarizing the overall impact of declarative
networking in the past few months, a discussion of open issues and future research direc-

tions.

11
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The Network Datalog Language

In this chapter, we formally define the Network Datal®&g>(og) language for declarative
networking. TheNDlog language is based on extensions to traditional Datalog, a well-
known recursive query language traditionally designed for querying graph-structured data
in a centralized database.

The chapter is organized as follows. In Sectd, we provide an introduction to
Datalog. In Sectior2.2, we present th&lDlog language using an example program that
computes all-pairs shortest paths in a network from specification to execution. Based on
this example program, we highlight tiNDlog extensions to traditional Datalog, and show
that the execution of this program resembles a well-known routing protocol for computing
shortest paths in a network.

Following the example, in Sectio2s3, 2.4, 2.5and2.6, we formally describe the data
and query model dDlog that addresses its four main requiremenistributed computa-
tion, link-restricted communicatiqisoft-state data and ruleandincremental maintenance

of network state

12
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2.1 Introduction to Datalog

We first provide a short review of Datalog, following the conventions in Ramakrishnan
and Ullman’s surveyf98]. A Datalog program consists of a set of declarativies and

an optionalquery. Since these programs are commonly cafiegursive queries”in the
database literature, we use the term “query” and “program” interchangeably when we refer
to a Datalog program.

A Datalogrule has the fornp :- g1,0p, -..,0n., Which can be read informally as|i'and
g2 and... andg, implies p”. p is theheadof the rule, andy;, qp, ..., qn is a list ofliterals
that constitutes theody of the rule. Literals are eithguredicatesover fields (variables
and constants), or function symbols applied to fields. The rules can refer to each other
in a cyclic fashion to express recursion. The order in which the rules are presented in a
program is semantically immaterial. The commas separating the predicates in a rule are
logical conjuncts AND); the order in which predicates appear in a rule body also has no
semantic significance, though most implementations (including ours) employ a left-to-right
execution strategy. Thgueryspecifies the output of interest.

The predicates in the body and head of traditional Datalog rules are relations, and we
refer to them interchangeably as predicates, relations or tables. Each relatiqorimagry
key, which consists of a set of fields that uniquely identify each tuple within the relation. In
the absence of other information, the primary key is the full set of fields in the relation.

By convention, the names of predicates, function symbols and constants begin with a
lower-case letter, while variable names begin with an upper-case letter. Most implementa-
tions of Datalog enhance it with a limited set of function calls (which start withift our
syntax), including boolean predicates and arithmetic computations. Aggregate constructs
are represented as functions with field variables within angle bracket$. (For most of

our discussion, we do not consider negated predicates; we return to the topic of negation as

13
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part of our future work (ChapterQ).

As an example, Figur2.1shows a Datalog program that computes the next hop along
the shortest paths between all pairs of nodes in a graph. The program abbreviates some of
its predicates as shown in Tal##el. The program has four rules (which for convenience
we label r1-r4), and takes as input a base (“extensional”) reléitik(Source, Destination,
Cost) Rules rl-r2 are used to derive “paths” in the graph, represented as tuples in the
derived (“intensional”) relatiopath(S,D,Z,C)TheSandD fields represent the source and
destination endpoints of the pathrontains the “next hop” in the graph along the shortest
path that a nod& should take in order to go to nod® The number and types of fields in
relations are inferred from their (consistent) use in the program’s rules.

Rule r1 producepathtuples directly from existingink tuples, and rule r2 recursively
producegathtuples of increasing cost by matching (amifying) the destination fields of
existing links to the source fields of previously computed paths. The matching is expressed
using the repeated?” variable inlink(S,Z,C1l)andpath(Z,D,Z2,C2pf rule r2. Intuitively,
rule r2 says that “if there is a link from nod&to nodeZ, and there is a path from node
to nodeD, then there is a path from no&to nodeD via Z".

Given thepathrelation, rule r3 derives the relati@pCost(S,D,Cjhat computes the
minimum costC for each sourceS) and destination[d) for all input paths. Rule r4 takes
as inputspCostand path tuples and then computefiortestPathHop(S,D,Z,@)ples that
contains the next hof] along the shortest path froBito D with costC. Last, theQuery

specifies the output of interest to be gfertestPathable.

2.2 Network Datalog by Example

Before diving into the formal definitions diDlog, we first introduceNDlog by example

using a distributed variant of the earli8hortest-Path-Hofpatalog program. This dis-

14
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rl path(S,D,D,C) :- link(S,D,C).

r2 path(S,D,Z,C) :- link(S,Z,C1), path(Z,D,z22,C2), C=C1 + C2.
r3 spCost(S,D,miaC>) :- path(S,D,Z,C).

r4 shortestPathHop(S,D,C) :- spCost(S,D,C), path(S,D,Z,C).
Query shortestPathHop(S,D,Z,C).

Figure 2.1: Shortest-Path-Hop Datalog program.

Predicate Schema

link(S,D,C) path(Source,Destination,Cost)

path(S,D,z,C) path(Source,Destination,NextHop,Cost)
spCost(S,D,C) spCost(Source,Destination,Cost)
shortestPathHop(S,D,Z,C)shortestPathHop(Source,Destination,NextHop,Cost)

Table 2.1: Predicates and the corresponding schemas used in the Shortest-Path-Hop Datalog
program shown in Figure 2.1.

tributedNDlog program, shown in Figure.2, computes for every node, the next hop along
the shortest paths of all nodes in a network in a distributed fashion. We udgdihog

program to highlight the following key points:

e NDlog builds upon traditional Datalog in order to meet four new requiremetiss:
tributed computationlink-restricted communicatigrsoft-state data and rulesand

incremental maintenance of network state

e When this program is executed, the resulting communication and network state re-

sembles the well-knowdistance vectoandpath vectorouting protocol§92].

e This example program demonstrates the compactndéBlofg. In four NDlogrules,
we are able to specify and implement a routing protocol widely used to compute

shortest routes in a network.
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materialize(#link,infinity,infinity,keys(1,2)).
materialize(path,infinity,infinity,keys(1,2,3,4)).
materialize(spCost,infinity,infinity,keys(1,2)).
materialize(shortestPathHop, infinity,infinity,keys(1,2)).

shl path(@S,D,D,C) :- #link(@S,D,C).

sh2 path(@S,D,Z,C) :- #link(@S,Z,C1), path(@Z,D,zZ2,C2), C = C1 + C2.
sh3 spCost(@S,D,minC>) :- path(@S,D,Z,C).

sh4 shortestPathHop(@S,D,Z,C) :- spCost(@S,D,C), path(@S,D,Z,C).
Query shortestPathHop(@$S,D,Z,C).

Figure 2.2: Shortest-Path-Hop NDlog program.

2.2.1 Overview of NDlog

An NDlog program is largely composed of table declaration statements and rules; we con-
sider each in turn. IMNDIlog, all input relations and rule derivations are storednateri-
alizedtables. Unlike Datalog, tables must be defined explicitiNiDlog via materialize
statements, which specify constraints on the size and lifetime of tuple storage — any rela-
tions not declared as tables are treated as natneamsof tuples. Eachmaterialize(name,
lifetime, size, primary keystatement specifies the relation name, lifetime of each tuple in
the relation, maximum size of the relation, and fields making up the primary key of each
relation'. If the primary key is the empty s€t, then the primary key is the full set of fields
in the relation. For example, in tHighortest-Path-Hop NDIlogrogram, all the tables are
specified with infinite sizes and lifetimes.

The execution ofNDlog rules will result in the derivation of tuples that are stored in

materialized tables. For the duration of program execution, these materialized results are

lWe have a convention of starting the offset by 1 in the P2 system, as 0 is reserved in the implementation
for the table name.
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incrementally recomputed as the input relations are updated. For example, the update of
#link tuples will result in new derivations and updates to exisgiath, spCostandshortest-
PathHoptuples. In addition, if atNDlog rule head is prepended with an optional keyword
delete the derived tuples are used to delete an exact match tuple in its relation instead.

Since network protocols are typically computations over distributed network state, one
of the important requirements &Dlog is the ability to support rules that express dis-
tributed computationsNDlog builds upon traditional Datalog by providing control over
the storage location of tuples explicitly in the syntax ieation specifiersEach location
specifier is an attribute within a predicate that indicates the partitioning field of each re-
lation. To illustrate, in Figur@.2, each predicate in thidDlog rules has an@®” symbol
prepended to a single field denoting the location specifier. Each tuple generated is stored at
the address determined by its location specifier. For examplpatdlandlink tuples are
stored based on the address stored in the first @&

Interestingly, whileNDlog is a language to describe networks, there are no explicit
communication primitives. All communication is implicitly generated during rule execu-
tion as a result of data placement. For example, in rule shdtieand#link predicates
have different location specifiers, and in order to execute the rule body of sh2 based on their
matching fieldslink andpathtuples have to be shipped in the network. It is the movement

of these tuples that will generate the messages for the resulting network protocol.

2.2.2 From Query Specifications to Protocol Execution

Having provide a high-level overview dfiDlog, we demonstrate the execution of the
Shortest-Path-Hop NDlogrogram via an example network shown in Figdra We show

that the resulting communication and network state generated in program execution resem-
bles the distance-vector protocol.

In our example network, each node is running 8tertest-Path-Hoprogram. For
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simplicity, we show only the derived paths along the solid lines even though the network
connectivity is bidirectional (dashed lines). Our discussion is necessarily informal since
we have not yet presented our distributed implementation strategies; in Chapteshow

in greater detail the steps required to generate the execution plan. Here, we focus on a

high-level understanding of the data movement in the network during query processing.

I(@e,a,‘l)@ p(@e,a,a,1)

(@a,b,5)
(@a,c,1)

p(@e,b,a,6)
p(@e,c,a,1)

p(@a,b,b,5)
p(@a,c,c,1)

Oth Iteration 1st Iteration 2nd lteration

Figure 2.3: Shortest-Path program example execution. [/ and p are used as abbreviations for
link and path respectively.

For our discussion here, we simplify communication by describing itdrations
where at each iteration, each network node geneg#ssof increasing hop count, and
then propagates these paths to neighbor nodes along links. pagittuple contains the
nextHopfield, which indicates for each path the next hop to route the message in the net-
work. In Figure2.3, we show newly derived path tuples at each iteration. In thisetation,

all nodes initialize their locapath tables to 1-hopath tuples using rule shl. In thé'®
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iteration, using rule sh2, each node takes the iqgath tuples generated in the previous
iteration, and computes 2-hop paths, which are then propagated to its neighbors. For ex-
ample,path(@a,d,b,6)s generated at nodeusingpath(@b,d,d,1jrom the F iteration,
and propagated to node

As pathtuples are being computed and received at nagf@SpstandshortestPathHop
tuples are also incrementally computed. For example, aadenputepath(@a,b,b,5us-
ing rule shl, and then derivepCost(@a,b,5andshortestPathHop(@a,b,b,b)sing rules
sh4-sh5. In the next iteration, nodeeceivegath(@a,b,c,2jrom nodec which has lower
cost compared to the previous shortest cost of 5, and hence the newspplest(@a,b,2)
andshortestPathHop(@a,b,c,Bplaces the previous values.

In the presence of path cycles, tBeortest-Path-Hoprogram never terminates, as rules
spl and sp2 will generate paths of ever increasing costs. However, this can be fixed either
by storing the entire path and adding a check for cycles within the rules. Alternatively,
a well-known optimization (SectioB.1.]) can be used when costs are positive to avoid
cycles. Intuitively, this optimization reduces communication overhead by sending only the
path tuples that result in changes to the losalCostand shortestPathHopables, hence

limiting communication to onlypathtuples that contribute to the eventual shortest paths.

Algorithm 2.1 Pseudocode for th8hortest-Path-Hop NDlogrogram

path(@Z,D, D,C) — #ink(@Z,D,C) [Rule shi]
while receive< path(@z,D,Z2,C2) >
foreach neighbor #link(@S, D, C) [Rule sh2]
send path(@S,D, Z,C1+ C2) to neighbor @S
end
end

Figure2.1shows the pseudocode of executing rules sh1-sh2 from the perspective of a
single node. Interestingly, the computation of the above program resembles the computa-

tion of the distance vector protocf®2] that is commonly used to compute shortest path
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routes in a network. In the distance vector protocol, each node advertgeEsination,
path-cost- information to all neighbors, which is similar to tipathtuples exchanged by
nodes at each iteration. All nodes use these advertisements to update their routing tables
with the next hop along the shortest paths for each given destination. This is similar to
computing newshortestPathHopuples frompath tuples using rules sh3-sh4. The main
difference between oudDlog program and the actual distance vector computation is that
rather than sending individual path tuples between neighbors, the traditional distance vector
method batches together a vector of costs for all neighbors.

In the Shortest-Path-Hoprogram, the protocol only propagates tiextHopand not
the entire path. In most practical network protocols such as the Border Gateway Protocol
(BGP) [92], the entire path is included either for source routing or more commonly, to
prevent infinite path cycles. This is typically known as gah vectomprotocol, where the
path vectoris the list of nodes from the source to the destination.

Figure 2.4 shows theShortest-Path NDlogprogram that implements the path-vector
protocol. The program is written with only minor modifications to the eafibortest-
Path-Hop NDIlogorogram. The program computes the entire path vector for a given source
to destination, by adding an extpathVectorfield in the path predicate that the full path.

The functionf_init(X,Y) initializes the path vector with node§ andY, and the function
f_concatPath(N,Pprepend a nodd to an existing path vectdt. We revisit more examples

of routing protocols in Chapté.

2.2.3 Other Requirements of NDlog

In addition to distributed computationslDlog requires the following additional features
for link-restricted communicatigrsoft-state data and rulesindincremental maintenance
of network stateWe briefly describe them here, followed by more detailed descriptions in

the rest of the chapter.
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materialize(#link,infinity,infinity,keys(1,2)).

materialize(path,infinity,infinity,keys(4)).

materialize(spCost,infinity,infinity,keys(1,2)).

materialize(shortestPath,infinity,infinity,keys(1,2)).

spl path(@S,D,D,P,C) :- #link(@S,D,C), P inft(S,D).

sp2 path(@S,D,Z,P,C) :- #link(@S,Z,C1), path(@Z,D,zZ2,P2,C2), C=C1 + C2,
P = f_concatPath(S,P2).

sp3 spCost(@S,D,minC>) :- path(@S,D,Z,P,C).

sp4 shortestPath(@S,D,P,C) :- spCost(@S,D,C), path(@S,D,Z,P,C).

Query shortestPath(@S,D,P,C).

Figure 2.4: Shortest-Path NDlog program.

e Link-restricted communications: In order to send a message in a low-level net-
work, there needs to be a link between the sender and receiver. This is not a natural
construct in Datalog. Hence, to model physical networking components where full-
connectivity is not always availablsDlog provides syntactic restrictions that can be
used to ensure that rule execution results in communication only among nodes that
are physically connected. This is syntactically achieved with the use of the special

#link predicate in aINDlog programs.

e Soft-state data and rules:In typical network protocols, the generated network state
is maintained asoft-statd31] data. In the soft state storage model, stored data have
alifetime or time-to-live (TTL), and are deleted when the lifetime has expired. The
soft state storage model requires periodic communication to refresh network state.
Soft state is often favored in networking implementations because in a very simple
manner it provides well-defined eventual consistency semantics. Intuitively, periodic

refreshes to network state ensure that the eventual values are obtained even if there
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are transient errors such as reordered messages, node disconnection or link failures.
While soft state is useful for maintaining distributed state, we also make extensive use
of traditional“hard-state” data with infinite lifetimes for storing persistent counters,

local machine state and archival logs.

e Incremental maintenance of network state: In practice, most network protocols
are executed over a long period of time, and the protocol incrementally updates and
repairs routing tables as the underlying network changes (link failures, node depar-
tures, etc). To better map into practical networking scenarios, one key distinction that
differentiates the execution dfDlog from earlier work in Datalog is our support for
continuous rule execution and results materialization, where all tuples derived from
NDlog rules are materialized and incrementally updated as the underlying network
changes. As in network protocols, such incremental maintenance is required both for
timely updates and for avoiding the overhead of recomputing all routing tables “from

scratch” whenever there are changes to the underlying network.

In the rest of this chapter, using tBéortest-Patprogram in Figur€.4as our primary
example, we demonstrate the extensions to both the data and query model of traditional
Datalog in order to handle the requirements of distributed computations (S&c8pn
link-restricted communications (Secti@¥), soft-state data and rules (Sectid), and

incremental maintenance of network state (Sec2i@h

2.3 Distributed Computation

One novelty of our setting from a database perspective, is that data is distributed and re-
lations may be partitioned across sit®log gives the program writegxplicit control of

data placement with the uselotation specifiersn each predicate:
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Definition 2.1 A location specifiers a field in a predicate whose value per tuple indicates

the network storage location of that tuple.

The location specifier field is of type address having a value that represents a network
location. It is used as a partitioning field for its table across all nodes in the network,
similar to horizontally partitioned tables in distributed databd®&s. We require that
each predicate has a single location specifier field that is notated b@'asymbol. Each
predicate has exactly one field as its location specifier. For example, the location specifier
of #link(@S,D,C)is @S This means that a#link tuples are stored based on the address
value of the@ Sfield.

Given that predicates have location specifiers, we can now distintngahand dis-

tributedrules:

Definition 2.2 Local rulesare rules that have the same location specifier in each predicate,

including the head.

We refer to non-local rules adistributed rules Local rules can be executed without
any distributed logic. In th&hortest-Patlprogram, rules spl, sp3 and sp4 are local, while
sp2 is a distributed rule since th#ink and path body predicates are stored at different

locations.

2.4 Link-Restricted Communication

In real networking components such as routers, switches and autonomous routing systems
on the Internet, each node is connected to relatively few other nodes for communication.
To model actual physical links connecting nodes on which communication can happen, we

introduce the concept oflank relation, which is defined as follows:
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Definition 2.3 A link relation link(src,dst,...) represents the connectivity information of

the network being queried.

The first two fields of each link table entry contain the source and destination addresses
of a network link respectively, followed by an arbitrary number of other fields (typically

metrics) describing the link.

Definition 2.4 A link literal is a link relation that appears in the body of a rule prepended

with the “#” symbol.

In the Shortest-Patlprogram, the link literal appears in the rule body of non-local rules
spl and sp2. We can now define a simple syntactic constraint on the rules to ensure that

communication for all distributed rules takes place only along the physical links:

Definition 2.5 A link-restrictedrule is either a local rule, or a rule with the following

properties:
e There is exactly one link literal in the body

e All other literals (including the head predicate) have their location specifier set to

either the first (source) or second (destination) field of the link literal.

This syntactic constraint precisely captures the requirement that we are able to operate
directly on a network whose link connectivity is not a full mesh. For example, rule sp2 of
Figure2.4is link-restricted but has some relations whose location specifier is the source
@S and others whose location specifier is the destina@dh As we shall demonstrate
in Chapter5, all link-restricted rules are rewritten into a canonical form where every rule
body can be evaluated on a single node. In addition, all communication for each rewritten

rule only involves sending messages along links.
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2.5 Soft-state Data and Rules

In this section, we define types of relations and rules baselaoh-stateand soft state
storage models. Note that these definitions are orthogonal to our earlier definitions on
distributed and link-restricted data and rules. For example, a soft-state relation (rule) can

be link-restricted and/or distributed.

materialize(#link,10,infinity,keys(1,2)).

materialize(pingRTT,10,5,keys(1,2)).

materialize(pendingPing,10,5,keys(1,2)).

ppl ping(@S,D,E) :- periodic(@S,E,5), #link(@S,D).

pp2 pingMsg(S,@D,E) :- ping(@S,D,E), #link(@S,D).

pp3 pendingPing(@S,D,E,T) :- ping(@S,D,E), T_-Adw().

pp4 pongMsg(@S,E) :- pingMsg(S,@D,E), #link(@D,S).

pp5 pingRTT(@S,D,RTT) :- pongMsg(@S,E), pendingPing(@S,D,E,T),
RTT =fnow() - T.

pp6 #link(@S,D) :- pingRTT(@S,D,RTT).

Query pingRTT(@S,D,RTT).

Figure 2.5: Ping-Pong NDlog program.

Predicate Schema

#link(@S,D,E) #link(@Source,Destination,EventID)
ping(@S,D,E) ping(@Source,Destination,EventlD)
pingMsg(S,@D,E) pingMsg(Source,@Destination,EventID)
pongMsg(@S,E) pongMsg(@Source,EventID)
pendingPing(@S,D,E,T) pendingPing(@ Source,Destination,EventID, Time)
piIngRTT(@S,D,RTT) | pingRTT(@Source,Destination,RoundTripTime

Table 2.2: Schema of tables and events used in the Ping-Pong program
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In the rest of this section, we use tRéng-Pongprogram in Figure2.5 to illustrate
NDlog rules that manipulate soft-state data. Fheg-Pongprogram implements a simple
ping program where each node periodically pings its neighbor nodes to computes the round-
trip time (RTT). Unlike the earlieGhortest-Pattprogram, all relations used in th&ng-
Pongprogram are declared with finite lifetimes and sizes. There are also some relations
such aging, pingMsgandpongMsgthat are not declared using theaterializekeyword.
These relations are known asent relationsand they consist of zero-lifetime tuples that
are used to execute rules but are not stored.

Rule pplis triggered periodically using the spepiatiodicpredicate. The
periodic(@S,E,5predicate denotes an infinite streampefriodic event tuples generated
at nodeS every 5 seconds with random identifiér This allows rule ppl to generate at
5 seconds interval, ping(@S,D,E)event tuple at source nodto all its neighbors with
destinatiorD. Eachpingis uniquely identified with an event identifiéx Eachping tuple
is then used to generatepangMsg(S,@D,Euple that is sent to destination noBe(rule
pp2). ApendingPing(@S,D,E,Ttuple is also stored locally to record the creation time
of ping(@S,D,E)

In rule pp4, whenever a nodereceives @pingMsg(S,@D,Euple from the source node
S it replies with apongMsg(@S,Eduple to nodeS. Upon receiving theingMsg(@S,E)
tuple, rule pp5 is used by nodgto compute the RTT between itself and nddebased
on the time recorded ipendingPing(@S,D,E,TA successful reply to a ping message

indicates that the neighbor is alive. This results in the refresh of #link tuples in rule pp6.

2.5.1 Hard-state vs Soft-state Data

In NDlog, we distinguish between hard-state and soft-state relations based on the lifetime

parameter iimmaterializedstatements.
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Definition 2.6 A hard-state relations one that is materialized with infinite lifetime.

Hard-state relationsare similar to data stored in traditional databases, which are non-
expiring and have to be deleted explicitly. THink relation in theShortest-Patiprogram
is an example of a hard-state relation. Aliink tuples persist unless explicitly deleted. For
derivations such apathin the Shortest-Path-Hoprogram, there can be multiple deriva-
tions for the same tuple. Hence, we need to keep track of all such derivations for hard-state

relations until all derivations are invalidated due to deletions.

Definition 2.7 A soft-state relations one that is materialized with finite lifetime.

Tuples that are inserted into soft-state tables are stored only for the duration of the
table’s lifetime. If required by the network protocol, these soft-state tuples can be refreshed
via NDlog rules. Unlike hard-state relations, we do not need to keep track of multiple
derivations of the same tuple. Insteadiefreshoccurs when the same tuple is inserted
into the table, resulting in the extension of the tuple by its specified lifetime. For example,
the #link relation in thePing-Pongprogram is a soft-state relation, and #link tuples
generated are deleted after ten seconds unless they are refreshed by rule pp6 before they

expire.
Definition 2.8 An event relatioris a soft-state relation with zero lifetime.

Event relations can either be declared explicitly materializestatements with the
lifetime parameter set to 0, or implicitly if they are not declared in araterializestate-
ments. Event relations are typically used to represent message “streagaspingMsg
pongMsgin the Ping-Pongprogram), or periodically generated local events via a built-in

periodicpredicate €.g., in rule ppl):

Definition 2.9 Theperiodic(@N,E, T,Kpevent relation is a built-in relation that represents

an stream of event tuples generated at ndaeryT seconds (up to an optionkltimes)
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with a random event identifidt. If K is omitted, the stream is generated infinitely.

Built-in streams in NDLog are akin to thfereign functiond 1] of LDL++ [9] or the
table functions of SQL, but their storage semantics are those of events, as described above.
For example, theeriodic(@S,E,5 rule ppl denotes an infinite streampariodicevent

tuples generated at no&every 5 seconds with random identifter

2.5.2 Hard-state and Soft-state Rules

Following our definitions of hard-state and soft-state data, we present in this seattn
state rulesandsoft-state ruleswhich differs on their use of hard-state and soft-state rela-

tions in the rules:

Definition 2.10 A hard-state rulecontains only hard-state predicates in the rule head and
body.

Definition 2.11 A soft-state rulecontains at least one soft-state predicate in the rule head

or body.

We further classify soft-state rules as follows:

Definition 2.12 A pure soft-state ruldas a soft-state predicate in the rule head, and at

least one soft-state predicate in the rule body.

Definition 2.13 A derived soft-state ruldas a soft-state predicate in the rule head, but

only hard-state predicates in the rule body.

Definition 2.14 An archival soft-state ruldas a hard-state rule head, and at least one soft-

state predicate in the rule body.
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Archival soft-state rules are primary used for archival or logging purposes. These rules
derive hard-state tuples that persist even after the input soft-state input tuples that generate
them have expired.

Since event relations are considered soft-state relations (with zero lifetimes), they can
be used in any of the three soft-state rules above. During rule execution, input event tuples
persist long enough for rule execution to complete and are then discarded. Since they are
not stored,NDlog does not model the possibility of two instantaneous events occurring
simultaneously. Syntactically, this possibility is prevented by allowing no more than one

event predicate in soft-state rule bodies:

Definition 2.15 An event soft-state rulis a soft-state rule witexactly oneevent predicate

in the rule body.

Using thePing-Pongprogram as our example, all rules are pure soft-state relations
since we do not involve any hard-state relations in this program. In addition, rules pp1-
pp5 are event soft-state rules that take as input one event predieaid(c, ping, ping,

pingMsgandpongMsgespectively).

2.6 Incremental Maintenance of Network State

As in network protocolsNDlogrules are designed to be executed over a period of time and
incrementally updated based on changes in the underlying network. During rule execution,
depending on their specified lifetimes, all derived tuples are either stored in materialized
table or generated as events. All materialized derivations have to be incrementally recom-
puted by long-runningNDlog rules in order to maintain consistency with changes in the
input base tables.

For hard-state rules, this involves the straightforward application of traditional materi-
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alized view maintenance techniquéd]. We consider three types of modifications to hard-
state relations: insertions of new tuples, deletions of existing tuples, and updates (which can
be modeled as deletion followed by an insertion). Note that inserting a tuple where there is
another tuple with the same primary key is considered an update, where the existing tuple
is deleted before the new one is inserted.

Similar to traditional database materialized views, the deletions of any input relations
result incascaded deletionsvhere a deleted tuple mapascadeand lead to the deletion of
previously derived tuples. For example, whenevétiak tuple is deleted, albathtuples
that are generated using thi#fink tuple have to be deleted as well. Since there can be
multiple derivations of each unique tuple, we need to keep track of all of them and only
delete a tuple when all its derivations are deleted.

The incremental maintenance of soft-state rules is carried out in a slightly different
fashion due to the presence of soft-state relations. Two types of modifications are con-
sidered: insertions of new tuples mfreshesof existing soft-state tuples. Recall from
Section2.5.1that arefreshoccurs when the same tuple is inserted into the table, resulting
in the extension of the tuple by its specified lifetime. These soft-state refreshes in turn lead
to cascaded refreshesvhere previously derived soft-state tuples are rederived and hence
also refreshed. Unlike the maintenance of hard-state rules, cascaded deletions do not oc-
cur in soft-state rules. Instead, all derived soft-state tuples are stored for their specified

lifetimes and timeout in a manner consistent with traditional soft-state semantics.

2.7 Summary of Network Datalog

Given these preliminaries, we are now ready to prebddibg. TheNDlog data model is

based on the relational model with the following constraints:

1. All NDlogrelations are horizontally partitioned in the network based on the location

30



Chapter 2. The Network Datalog Language

specifier attribute.

2. One of theNDlog relations, denoted b#link(src,dst,...)represents the connectivity

information of the network being queried.

3. A NDlogrelation is either a hard-state or soft-state relation depending on its lifetime.

A NDlog program is a Datalog program that satisfies the following syntactic con-

straints:

1. All predicates in arNDlog rule head or rule body have a location specifier attribute.
2. Any distributedNDlogrules in the program are link-restricted by some link relation.

3. A NDlogrule is either a hard-state or soft-state rule.

In addition, the results of executingDlog rules are materialized for their table life-

times, and incrementally maintained as described in Se2tidn

2.7.1 Discussion

Interestingly,NDlog uses a somewhat more physical data model than the relational model,
and a correspondingly somewhat more physical language. The main reason for doing this
is to capture the essence of a network protocol — communication over links — in a way
that remains largely declarative, leaving significant latitude for a compiler to choose an im-
plementation of the specification. Note that most aspects of a program other than storage
location and communication pairs are left unspecified — this includes the order in which
tuples of a set are handled and the order in which predicates of a rule are considered. In ad-
dition, the need for partitioning via location specifiers and link restriction reflects low-level

networks. In principle, given a network implemented in this manner to achieve all-pairs
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communication, higher-level logic could be written without reference to locations or links.
This is a natural extension tdDlog, but since this dissertation focuses on networking, we

do not explore it further.

2.8 Summary

In this chapter, we formally defined tiNDloglanguage. Our language is based on Datalog,
and we described the extensions to addMiB®g's four main requirements afistributed
computationlink-restricted communicatiqrsupport for soft-state data and rulesndin-
cremental maintenance of network statdl of these extensions have been motivated by
the distributed settings we target in declarative networking, which are a departure from the
environments in which traditional Datalog was used. In subsequent sections, we provide
two concrete instances of declarative networking, nardebfarative routinganddeclara-

tive overlaysand also describe in detail hdMDlog programs are processed and executed

to implement the network protocols.
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Declarative Routing

Having given an overview of thDlog language, this chapter focusesdgclarative rout-
ing: the declarative specification of routing protocols for building extensible routing infras-
tructures. Declarative networking aims to strike a better balance between the extensibility
and the robustness of a routing infrastructure. In addition to being a concise and flexible
language for routing protocols, we show thidlog is amenable to static analysis, making
it an attractive language for building safe, extensible routing infrastructures.

The chapter is organized as follows. First, we present the motivation of declarative rout-
ing in Section3.1 Next, we provide an overview of our execution model in Sec8d¢h
We illustrate the flexibility oNDlog through several declarative routing examples in Sec-
tion 3.3 We then address the challenges of security in Se@i¢rand route maintenance

under dynamic networks in Secti@mb.

3.1 Motivation

Designing routing protocols is a difficult process. This is not only because of the distributed

nature and scale of the networks, but also because of the need to balance the extensibility
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and flexibility of these protocols on one hand, and their robustness and efficiency on the
other hand. One need look no further than the Internet for an illustration of these different
tradeoffs.

Today’s Internet routing protocols, while arguably robust and efficient, are hard to
change to accommodate the needs of new applications such as improved resilience and
higher throughput. Upgrading even a single router is &l Getting a distributed rout-
ing protocol implemented correctly is even harder. And in order to change or upgrade a
deployed routing protocol today, one must get accessatthrouter to modify its soft-
ware. This process is made even more tedious and error prone by the use of conventional
programming languages that were not designed with networking in mind.

Several solutions have been proposed to address the lack of flexibility and extensibility
in Internet routing. Overlay networks allow third parties to replace Internet routing with
new, “from-scratch” implementations of routing functionality that run at the application
layer. However, overlay networks simply move the problem from the network to the appli-
cation layer where third parties have control: implementing or updating an overlay routing
protocol still requires a complete protocol design and implementation, and requires access
to the overlay nodes.

On the other hand, a radically different approaattive networkg119, allows net-
work packets to modify the operation of networks by allowing routers to execute code
within active network packets. This allows new functionality to be introduced to existing
active networks without the need to have direct access to routers. However, due to the gen-
eral programming models proposed for active networks, they present difficulties in both
performance and the security and reliability of the resulting infrastructure.

In this chapter, we demonstrate that declarative routing provides a new point in this
design space that aims to strike a better balance between the extensibility and the robustness

of a routing infrastructure. With declarative routing, a routing protocol is implemented by
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writing a simpleNDlog program, which is then executed in a distributed fashion at some
or all of the nodes. Declarative routing can be viewed as a restrictive instantiation of active
networks which aims to balance the concerns of expressiveness, performance and security,
properties which are needed for an extensible routing infrastructure to succeed.
Declarative routing could evolve to be used in a variety of ways. One extreme view
of the future of routing is that individual end-users (or their applications) will explicitly
request routes with particular properties, by submitting route construgdiidog programs
to the network. The safety and simplicity of declarative specifications would clearly be
beneficial in that context. A more incremental view is that an administrator at an ISP
might reconfigure the ISP’s routers by issuingNiblog program to the network; different
NDlog programs would allow the administrator to easily implement various routing policies
between different nodes or different traffic classes. Even in this managed scenario, the
simplicity and safety of declarative routing has benefits over the current relatively fragile
approaches to upgrading routers. While this second scenario is arguably the more realistic
one, in this chapter, we consider the other extreme in which any node (including end-hosts)
can issue amMNDlog program. We take this extreme position in order to explore the limits

of our design.

3.2 Execution Model

We model the routing infrastructure as a directed graph, where each link is associated with
a set of parameter®.(., loss rate, available bandwidth, delay). The router nodes in the
routing infrastructure can either be IP routers or overlay nodes.

Figure 3.1 shows the architecture of a typical declarative router. Like a traditional
router, a declarative router maintaing@ighbor table which contains the set of neighbor

routers that this router can forward messages to, afwivearding tablein the forward-
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Figure 3.1: A Declarative Router.

ing plane that is used to route incoming packets based on their destination addresses to
neighboring nodes along a computed path path.

The forwarding table is created by the routing protocol that executes ocotiteol
planeof each router. Each routing protocol takes as input any updates to the local neighbor
table, and implements a distributed computation where routers exchange route information
with neighboring routers to compute new routes.

In a declarative router, a P2 runtime system runs on the control plane and takes as input
local routing information such as the neighbor table. Instead of running a single routing
protocol, the P2 system allows any routing protocols expresséiDing to be executed
in a distributed fashion in the network. The results of the program are used to establish

router forwarding state which the routers use for forwarding data packets. Alternatively,
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the computed results can be sent back to the party that issuétDtlog, which can use

these results to perform source routing. Note that while the P2 system is used on the control
plane in declarative routing, it can be used more generally on the forwarding plane as well,
as we demonstrate in Chapter

NDlog program dissemination and execution can happen in a variety of ways. In static
scenarios, the program may be “baked in” to another artifaeg~ router firmware or
peer-to-peer application software that is bundled with the P2 system. More flexibly, the
program could be disseminated upon initial declaration to all or some of the nodes running
the P2 system. It may be sufficient to perform dissemination via flooding, particularly if
the program will be long-lived, amortizing the cost of the initial flood. As an optimization,
instead of flooding the program in the network, we can instead “piggy-back” dissemination
onto program execution: the program can be embedded into the first data tuple sent to each
neighboring node as part of executing tBlog program.

This execution model is based oriudly distributedimplementation, where routes are
computed in a decentralized fashion. As an alternative, ¢erdralizeddesign such as
the Routing Control Platfornté4], network information is periodically gathered from the
routing infrastructure, and stored at one or more central servers. Each program is sent to
one or more of these servers, which process the programs using their internal databases and
set up the forwarding state at the routers in the network.

During the execution oNDlog program, the neighbor table is periodically updated in
response to link failures, new links, or link metric changes. These updates are performed by
the routers themselves using standard mechanisms such as periodic pings. The P2 system
is then notified of updates to the neighbor table, and will incrementally recompute entries
into the forwarding table. In our discussion, this simple interface is the only interaction

required between the P2 system and the router’s core forwarding logic.
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3.3 Routing Protocols By Examples

To highlight the flexibility ofNDlog, we provide several examples of useful routing pro-
tocols expressed a¢Dlog rules. Our examples range from well-known routing protocols
(distance vector, dynamic source routing, multicast, etc.) to higher-level routing concepts
such as QoS constraints. This is by no means intended to be an exhaustive coverage of
the possibilities of our proposal. Our main goal here is to illustrate the natural connection
between recursive programs and network routing, and to highlight the flexibility, ease of
programming, and ease of reuse afforded by a declarative language. We demonstrate that
routing protocols can be expressed in a fdlog rules, and additional protocols can be

created by simple modifications).

3.3.1 Best-Path Routing

We start from the base rules spl and sp2 used in ourSirsttest-Patliprogram from the
previous chapter. That example compuatgairs shortest pathsin practice, a more com-
mon program would computal-pairs best paths By modifying rules sp2, sp3 and sp4,
the Best-Pathprogram in Figure8.2 generalizes the all-pairs shortest paths computation,

and computes the best paths for any path mélric

bpl path(@S,D,D,P,C) :- #link(@S,D,C), Pit(S,D).
bp2 path(@S,D,Z,P,C) :- #link(@S,Z,C1), path(@Z,D,22,P2,C2),

C =f_.compute(C1,C2), P =€oncatPath(S,P2).
bp3 bestPathCost(@S,D,AGE&>) :- path(@S,D,Z,P,C).
bp4 bestPath(@S,D,P,C) :- bestPathCost(@S,D,C), path(@S,D,Z,P,C).
Query bestPath(@S,D,P,C).

Figure 3.2: Best-Path Program.
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We have left the aggregation functigAGG) unspecified. By changingGG and the
functionf_computeused for computing the path cdSt the Best-Pathprogram can gener-
ate best paths based on Any metric including link latency, available bandwidth and node
load. For example, if the program is used for computing the shortest gagbmis the
appropriate replacement fbicomputen rule bprl, andninis the replacement fohGG.
The resulting bestPath tuples are stored at the source nodes, and are used by end-hosts to
perform source routing. Instead of computing the best path between any two nodes, this
program can be easily modified to compatepaths,anypath or theBest-kpaths between
any two nodes.

To avoid generating path cycles, we can add an extra prediga®ath(P2,S)=fals¢o
rule bp2 to avoiding computing best paths with cycleg.( when computing the longest
latency paths). We can further extend the rules fromBast-Pathprogram by including
constraints that enforce a QoS requirement specified by end-hosts. For example, we can
restrict the set of paths to those with costs below a loss or latency thréshpladding an

extra constrain€ik to the rules computingath

3.3.2 Distance-Vector Routing

dvl hop(@S,D,D,C) :- #link(@S,D,C).
dv2 hop(@S,D,Z,C) :- #link(@S,Z,C1), hop(@Z,D,W,C2), C.edmpute(C1,C2).
dv3 bestHopCost(@S,D,AGE&C>) :- hop(@S,D,Z,C).

dv4 bestPathHop(@S,D,Z,C) :- hop(@S,D,Z,C),bestHopCost(@S,D,C).
Query bestPathHop(@S,D,Z,C).

Figure 3.3: Distance-Vector Program.

Figure3.3shows a program that expresses the distance vector protocol for customized

best routes for any given path metric. Rules dv1 and dv2 are modified frombpdesnd
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bp2from our previous example to generate taptuple that maintains only the next hop
on the path, and not the entire path ved®atself!. Rules dv3 and dv4 are added to set up
routing state in the networkbestPathHop(@S,D,Z,G3 stored at nod&, whereZ is the
next hop on the best path to noDe

The distance vector protocol has the count-to-infinity probl@gh, where link failures
may result in long (sometimes infinite) protocol convergence times. By making a modi-
fication to rule dv2 and adding rule dv5, we can apply the well-kneplit-horizon with

poison revers¢92] fix to this problem:

#include(dvl,dv3,dv4)

dv2 hop(@S,D,Z,C) :- #link(@S,Z,C1), hop(@Z,D,W,C2),C=C1+C2, W!=S.
dv5 hop(@S,D,Z,infinity):- #link(@S,Z,C1), hop(@Z,D,S,C2).

Query bestPathHop(@S,D,Z,C).

Figure 3.4: Distance-Vector Program with count-to-infinity fix in NDlog.

#includeis a macro used to include earlier rules. Rule dv2 expresses that ifAode
learns about the path @ from nodeS, then nodeZ does not report this path back to to
S Rule dv5 expresses that if nodeeceives a path tuple with destinatibnfrom nodeS
then nodeZ will send a path with destinatioD and infinite cost to nod& This ensures

that nodeSwill not eventually use to get toD.

3.3.3 Policy-Based Routing

Our previous examples all illustrate a typical network-wide routing policy. In some cases
we may want to restrict the scope of routimg., by precluding paths that involve “unde-

sirable” nodes. An example would be finding a path among nodes in an overlay network on

The W field in dv2 represents the next-hop to ndddrom intermediate nod&, and can be
ignored by nodé&sin computing its next hop to node.
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PlanetLab that avoids nodes belonging to untruthful or flaky ISPs. Such policy constraints

can be simply expressed by adding an additional rule:

#include(bpl,bp2) pbrl permitPath(@S,D,Z,P,C) :- path(@S,D,Z,P,C),
excludeNode(@S,W), ihPath(P,W)=false.
Query permitPath(@S,D,P,C).

Figure 3.5: Policy-Based Routing Program.

In this program, we introduce an additional tabkeludeNodenvhereexcludeNode(@S,W)
is a tuple that represents the fact that n8dees not carry any traffic for nod. This table
is stored at each nodg

If rules bpl and bp2 are included as rules, we can generate bestPath tuples that meet the
above policy. Other policy based decisions include ignoring the paths reported by selected
nodes or insisting that some paths have to pass through (or avoid) one or multiple pre-

determined set of nodes.

3.3.4 Dynamic Source Routing

All of our previous examples use what is calleght recursion, since the recursive pred-
icates é.g., pathin the rules sp2, bp2 and dv2) appears to the right of the matdinikg
Given that predicates are executed in a left-to-right order, the program semantics do not
change if we flip the order gbath andlink in the body of these rules, but the execution
strategy does change. In fact, usief recursionas follows, we implement the Dynamic
Source Routing (dsr) protocth4l:

Rule bpl produces new one-hop paths from existing link tuples as before. Rule dsr2
matches the destination fields of newly computed path tuples with the source fields of link
tuples. This requires newly computed path tuples be shipped by their destination fields to

find matching links, hence ensuring that each source node will recursively follow the links
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#include(bpl,bp3,bp4)
dsr2 path(@S,D,Z,P,C) :- path(@S,Z,W,P1,C1), #link(@Z,D,C2),

C =f_compute(C1,C2), P =¢toncatPath(P1,D).
Query bestPath(@S,D,P,C).

Figure 3.6: Dynamic Source Routing Program.

along all reachable paths. Here, the functiamoncatPath(P,Dyeturns a new path vector
with nodeD appended t®. These rules can also be used in combination with bprl and bpr2
to generate the best paths. By adding two extra rules not shown here, we can also express

the logic for sending each path on the reverse path from the destination to the source node.

3.3.5 Link State

To further illustrate the flexibility of our approach, we consider a link-state protocol that
moves route information around the network very differently from the best-path variants.
The following Link-Stateprogram expresses the flooding of links to all nodes in the net-

work:

Is1 floodLink(@S,S,D,C,S) :- #link(@S,D,C).
Is2 floodLink(@M,S,D,C,N) :- #link(@N,M,C1), floodLink(@N,S,D,C,W), M I= W.
Query floodLink(@M,S,D,C,N)

Figure 3.7: Link-State Program.

floodLink(@M,S,D,C,N¥ a tuple storing information abo#tink(@S,D,C) This tuple
is flooded in the network starting from source n&ld®uring the flooding process, node
M is the current node it is flooded to, while nodds the node that forwarded this tuple to

nodeM.
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Rule Isl generates ffoodLinktuple for every link at each node. Rule Is2 states that
each nodeN that receives #oodLinktuple recursively forwards the tuple to all neighbors
M except the nodeV that it received the tuple fronNDlogis based on the relational model
that utilizes set computations, where duplicate tuples are not considered for computation
twice. This ensures that no simildoodLinktuple is forwarded twice.

Once all the links are available at each node, a local version &@ekePattprogram in

Figure3.2is then executed locally using tifleodLinktuples to generate all the best paths.

3.3.6 Multicast

The examples we have given so far support protocols for unicast routing. Here, we demon-
strate a more complex example, usiN®log to construct a multicast dissemination tree
from a designated root node to multiple destination nodes that “subscribe” to the multicast
group. The followingSource-Specific-Multicagirogram sets up such a forwarding tree

rooted at a source no@egor groupgid:

#include(bpl,bp2,bp3,bp4)

m1 joinMessage(@I,N,P,S,G) :- joinGroup(@N,S,G), bestPath(@N,S,P1,C),
| = f_head(P1), P =fail(P1).

m2 joinMessage(@1,J,P,@S,G) :- joinMessage(@J,K,P1,S,G) head(P1),
P =ftail(P1), fisEmpty(P1) = false.

m3 forwardState(@I1,@J,S,G) :- joinMessage(@I,J,P,S,G).

Query joinGroup(@N,a,gid)

Figure 3.8: Source-Specific-Multicast Program.

For simplicity of exposition, this program utilizes ttBest-Pathprogram (rules bpl,

bp2, bp3, bp4) to compute the all-pairs best paths. We will discuss program optimiza-
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tion techniques to reduce the communication overhead for small multicast groups in Sec-
tion 8.1.2
Each destination nodejoins the groupgid with sourcea by issuing the progranoin-

Group(@n,a,gid) This results in the generation of the following derived tuples:

¢ joinMessage(@nodelD, prevNodelD, pathVector, source, gid)This tuple stores
the multicasjoin message for grougid. It is sent by every destination node along
its best path to thg@sourceaddress of the group. At each intermediate node with
addressiodelD we keep track oprevNodelD which is the address of the node that
forwarded this tuple.pathVectoris the remaining path that this message needs to

traverse in order to reach the source node.

o forwardState(@nodelD, forwardNodelD, source, gid) This tuple represents source-
specific state of the multicast dissemination tree at each intermediate node with ad-
dressnodelD If a message fromourceof multicast groupid is received ahodelD

it is forwarded toforwardNodelD

Rules m1 and m2 create tf@nMessagéduple at each participating destination nddle
and forward this tuple along the best path to the source SBod@on receiving goinMes-
sagetuple, rule M3 allows each intermediate ndd® set up the forwarding state using
the forwardState(@1,J,S,Quple. The predicate functioihhead(P)returns the next node
in the path vectoP, andf_tail(P) returns the path vectd® with the first node removed.
fiisEmpty(P)eturns true ifP is empty.

Instead of asource-specifitree, with minor modifications, we can constraote-based
trees[13]. Here, each participating node send@ia message to a designatedre node
to build asharedtree rooted at the core. Messages are then unicast to the core, which

disseminates it using the shared tree.
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3.4 Security Issues

Security is a key concern with any extensible systans; 22]. In the network domain,
this concern is best illustrated by active networks which, at the extreme, allow routers to
download and execute arbitrary code.

Our approach essentially propos$¢log as a Domain Specific Language (DS1p4
for programming the control plane of a network. DSLs typically provide security benefits
by having restricted expressibilitNDlog is attractive in this respect, both because of its
strong theoretical foundations, and its practical aspeéBlog rules written in the core
The core Datalog language have polynomial time and space complexities in the size of the
input [6]. This property provides a natural bound on the resource consumptisBlof
programs.

However, many implementations NiDlog (including our own) augment the core lan-
guage with various functions. Example of such functions are boolean predicates, arith-
metic functions, and string or list manipulation loged;, f_init, f_concatPathf_inPath
f_isEmpty f_headandf_tail). With the addition of arbitrary functions, the time complexity
of aNDlog program is no longer polynomial.

Fortunately, several powerful static tests have been developed to check for the termi-
nation of an augmented Datalog program on a given if@dt In a nutshell, these tests
identify recursive definitions in the program rules, and check whether these definitions
terminate. Examples of recursive definitions that terminate are ones that evaluate mono-
tonically increasing/decreasing predicates whose values are upper/lower bounded.

The NDlog rules that pass these checks are general enough to express a large class of
routing protocols. Thus, our augmentl®dlog language offers a good balance between

expressiveness and safety. We note that all the examples presented in this chapter pass such

2Such a “core” language does not contain predicates constructed using function symbols.
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termination tests.

In addition, the execution of the program is “sandboxed” within the program engine.
These properties prevent the program from accessing arbitrary router state such as in-flight
messages, and the router’s operating system state. As a iBldg eliminates many of
the risks usually associated with extensible systems.

Of course, there are many other security issues beyond the safety WDilbg lan-
guage. Two examples are denial-of-service attacks and compromised routers. These prob-
lems are orthogonal to network extensibility, and we do not address them in this disserta-

tion. We revisit them as part of our future work in Sectth3

3.5 Route Maintenance

During program execution, changes in the network might result in some of the computed
routes becoming stale. These can be caused by link failures, or changes in the link metrics
when these metrics are used in route computation. Ideally, the program should rapidly
recompute a new route, especially in the case of link failures.

One solution is to simply recompute the programs from scratch, either periodically
or driven by the party that has issued the programs. However, recomputing the program
from scratch is expensive, and if done only periodically, the time to react to failures is a
half-period on average.

The approach we employ in this dissertation is to utilize long-runningoatinuous
gueries that incrementally recompute new results based on changes in the network. To
ensure incremental recomputations, all intermediate state of each program is retained in
the program processor until the program is no longer required. This intermediate state
includes any shipped tuples used in join computation, and any intermediate derived tuples.

As we discussed in Sectid®h 2, each declarative router is responsible for detecting
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changes to its local information or base tables and reporting these changes to its local

program processor. These base tuple updates result in the addition of tuples into base
tables, or the replacement of existing base tuples that have the same unique key as the
update tuples. The continuous queries then utilize these updates and the intermediate state

of rule executions to incrementally recompute some of their derived tuples.

sp(@a,d,[a,c,d],2) sp(@a,d,[a,c,d],2)
p(@a,d,b,[a,b,d],3) p(@a,d,b,[a,b,d],3)
p(@a.d,c,[a,c,d],2) p(@a,d,c,[a,c,d],infinity)

l(@c.,d,infinity)

I(@b,d,2) I(%b,d,Z)
p(@c,d,d,[c,d],infinity) p(@b,d.d,[b,d],2)

p(@b,d,d,[b,d],2)

I(@c,d,infinity)

Oth Iteration 1st Iteration

Figure 3.9: Derivation of alternative shortest path from node a to d when #link(@a,b,1) is
deleted.

To illustrate, consider th8hortest-Patlprogram that we introduce in Chapt2r Fig-
ure 3.9 shows a simple four node network where all four nodes are runnin§libetest-

Path program. I(@S,D,C) p(@S,D,Z,P,Cand sp(@S,D,P,Cpabbreviatedink(@S,D,C)
path(@S,D,Z,P,CandshortestPath(@S,D,P,C¢spectively.

Prior to the link failure, we assume that all shortest paths between all pairs have been
computed. The figure shows the changes to the intermediate program states that led to the
derivation of a new shortest path from naaléo d when noddl fails. For simplicity, we
show only the derived paths along the solid lines even though the network connectivity is
bidirectional (dashed lines). We denote an invalid path as one with infinite cost, although

in practice, they are deleted from thathtable. Wher(@c,d,1)is deleted, the following
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steps are taken to derigp(@a,d,[a,b,d],3)

1. When neighborc detects the failure of its link tal via a timeout, it generates an

updated base tuplé@c,dg) locally. This replaces the previous tup{éc,d,1)

2. All one-hop paths at node that traverse through are set to infinite costs. For

example, node generatep(@c,d,d,[c,d]e).

3. p(@c,d,d,[c,d]) is joined withl(@a,c,1)to producep(@a,d,c,[a,c,dke) which is

sent to node.

4. Upon receivingp(@a,d,c[a,c,dfe), nodea computes a new shortest
pathsp(@a,d,[a,b,d],3)

In this example, since we are computing the entire path vector, we can check for po-
tential cycles. The failure is propagated hop-by-hop. Hence, the time taken for any update
to converge is proportional to the network diameter, and bounded by the time it takes for a
program to be executed from scratch.

Updates to link costs are handled in a similar fashion, except that rather than setting the
costs to infinity, they are recomputed based on the new link costs. The updated paths may
trigger further computation. For example, when the cost of paths are changed, rules bprl
and bpr2 of théBest-Pathprogram will generate alternative best paths accordingly.

In Chapter5, we revisit in detail the processing of continuous queries using both hard-

state and soft-state incremental view maintenance technigdes

3.6 Summary

In this chapter, we motivated declarative routing, as a means to permit flexible routing over

the Internet. Through several examples, we demonstrate thidDitog language is natural
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for expressing a wide variety of network routing protocols. Interestingly, we show that two
important routing protocols (dynamic source routing and path vector protocols) differ only
in the order in which predicates are evaluated. In Chapiex measure the performance of
declarative routing protocols such as Best-Patiprogram and validate that the scalability
trends are similar to that of traditional approaches.

In the next two chapters, we describe hilog programs can be compiled into exe-

cution plans and executed using the P2 system to implement the routing protocols.
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P2 System Overview

Having presented a variety of declarative routing protocols usiB{pg, in the next two
chapters, we describe hdawbDlog programs can be compiled and executed to implement the
network protocols. This chapter primarily focus on providing an overview of the P2 sys-
tem, while the next chapter will focus specifically on the system component that processes
NDlog programs. In Sectiod.1, we present the architectural overview of the P2 declara-
tive networking system and its different components. We then describe in Séc3itre
runtime dataflow engine of P2 and compare P2 with alternative dataflow-based systems.
In Section4.4, we describe how network state is stored and managed as tables in the P2

system.

4.1 Architecture of P2

Figure4.1 shows the architecture of the P2 declarative networking system from the per-
spective of a single node. There are three main componentldheer, the dataflow
installer and thedataflow engineThe P2 system utilizes a dataflow framework at runtime

for maintaining network state. P2 dataflows are similar to database query plans, which con-
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Dataflow graph
& specification
Dataflow
Installer

Strands

Packets Packets

Dataflow Engine
P2 Node

Figure 4.1: Components of a single P2 node.

sists of graphs that connect various database “operators” with dataflow edges that represent
the passing of tuples among operators, possibly across a network.

To implement a network protocol, the planner takes as input the network specification
expressed asldDlog program, which is compiled into a dataflow graph. As an alternative
to NDlog, the P2 system also provides a Python-bd$&tiscripting language that allows
programmers to “hand-wire” dataflow graphs directly as input to the dataflow installer.
In order to disseminat&lDlog programs throughout a network, the P2 runtime system
provides simple mechanisms for each node to send Mplibg programs by flooding to its
neighbors. When a dataflow is installed, all the requiceal tablesand indices necessary

for the program are also created. Indices are created for every table’s primary key, and
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additional indices are constructed on any table columns that are involved in unification
(relational join). Once installed, dataflows are executed by the runtime engine until they
are canceled.

The execution of the dataflow graph results in the implementation of the network pro-
tocol itself. The dataflow graph is registered locally at each node’s dataflow engine via a
dataflow installer Each local dataflow participates in a globaistributeddataflow, with
messages flowing among dataflows executed at different nodes, resulting in updates to the
network state used by the network protocol. The distributed dataflow when executed per-
forms the operations of a network protocol. The local tables store the state of the network
protocols, and the flow of messages entering and leaving the dataflow constitute the net-

work messages generated by the executing protocol.

4.2 P2 Dataflow Engine

The dataflow engine of P2 was inspired by prior work in both databases and networking.
Software dataflow architectures like P2 occupy a constrained but surprisingly rich design
space that has been explored in a variety of conteRiataflow graphs have been used pre-
viously by parallel and distributed database query systems like GdB8ha/olcano[51]

and PIER[59] as their basic query executables.

The use of the dataflow framework has recently been explored in related work on ex-
tensible networks. For example, software router toolkits like SE®tt Click [65] and
XORP[56] in recent years have demonstrated that network message handling and protocol
implementation can be neatly factored into dataflow diagrams. We adopt the Click term

elemenfor a node in a P2 dataflow graph, but as in database query plans, each edge in the

There is also a rich hardware dataflow tradition in Computer Architecture [81g129), with its own
terminology and points of reference. For brevity, we do not consider those systems here, and when we refer
to dataflow architectures, we limit our discussion to software dataflow.
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Figure 4.2: P2 Dataflow example at a single node.

graph carries a stream of well structured tuples, rather than annotated IP packets. Note that
while all tuples flowing on a single edge share a structure (schema), tuples on one edge
may have very different structure than tuples on another — this is a significant distinction
with the uniform IP packets of Click.

Figure4.2 shows an example of a P2 dataflow being executed at a single node. At the
edges of the dataflow, we have a chain of network packet processing elements (encapsulated
in the figure adNetwork-InandNetwork-Ou} that are used to process incoming and outgo-
ing messages respectively. Figdt8shows an example implementation of the networking-
related elements. Both tidetwork-InandNetwork-Oufportion of the dataflow comprise a
longer sequence of network-related elements that implement functionality for sending and
receiving message®)DP-Txand UDP-RY, and may also perform reliable transmission
(Retryand AcK), and congestion controlCC-Txand CC-Rxelements). These elements

can be dynamically adapted (reordered, added or removed from the dataflow) based on the
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Figure 4.3: Example of expanded Network-In and Network-Out elements.

requirements of the declarative network (§&22).

Messages that arrive into the dataflow are buffered using queues, and demultiplexed
(using theDemuxelement) via the relation name of each tuple sttands and then dupli-
cated (using th®up element) into multiple strands that require input from the same rela-
tion. The strands are directly compiled from dNiDlog rules and implement the “logic” of
the network. Each strand consists of a chain of elements implementing relational database
operators like joins, selections, projections and aggregations. The use of joins is endemic
to P2 because of our choice BDlog: the unification (matching) of variables in the body
of a rule is implemented in a dataflow by an equality-based relational ¢gjuijoin). As
shown in Figured.2, these strands take as input tuples that arrive via the network (output
from theDup element), local table updates (directly from the local tables) or local periodi-
cally generated events. The execution of strands either results in local table updates, or the
sending of message tuples.

On the other side of the graph (shown as etwork-Outelements), message tuples
are merged by &ux element, queued and then sent based on their network destinations.
Remote tuples are sent via an output queue to the network stack to be packetized, mar-
shaled, and buffered by P2’s UDP transport, while tuples destined for local consumption

are “wrapped around” to thdetwork-Inelement and queued along with other input tuples
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arriving over the network.

In the P2 runtime, thdletwork-InandNetwork-Outlements can be shared by multiple
overlays that are running concurrently. The P2 system will compile them into a single
dataflow for execution, where tiéetwork-Inand Network-Outelements will be shared

among the different overlays.

4.3 Dataflow Framework Implementation

We based our design in large part on our side-by-side comparison between the PIER peer-
to-peer query engings9] and the Click route[65)]. Like PIER, P2 can manage structured
data tuples flowing through a broad range of query processing operators, which may accu-
mulate significant state and perform substantial asynchronous processing. Like Click, P2
stresses high-performance transfers of data units, as well as dataflow elements with both
“push” and “pull” modalities. P2 differs at its core from both PIER and Click, but subsumes
many of the architectural features of both.

As in Click, nodes in a P2 dataflow graph can be chosen from a set of C++ objects
calledelements In database systems these are often caillgelators since they derive
from logical operators in the relational algebra. Although they perform a similar function,
P2 elements are typically smaller and more numerous than database operators. Unlike
textbook database query plans, P2 graphs need not be trees; indeed we make heavy use
of cyclic dataflow for the recursive queries that occur frequently when querying graph
structures.

Elements have some number of input and oufparts An arc in the dataflow graph
is represented by a binding between an output port on one element and an input port on
another. Tuples arrive at the element on input ports, and elements emit tuples from their

output ports. An input port of one element must be connected to an output port of another.
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Handoff of a tuple between two P2 elements takes one of two fqrashor pull, deter-
mined when the elements are configured into a graph. In a push handoff, the source element
invokes a virtual method on the destination, passing the tuple on the call stack, while in a
pull handoff the destination calls the source requesting the tuple, which is returned as the
result of the call. We return to the choice of connection types at the end of this section.

While P2 resembles Click in its use of push and pull elements, the implementation
of dataflow elements in P2 differs from Click in significant ways, as a result of different
requirements.

First, the common case in a router is that a packet traverses a single path through the
dataflow graph. Consequently Click implements copy-on-write for packets that must be
modified (for example, to implement multicast). This has the additional benefit of very
lightweight hand-offs of packets between elements — throughput is of primary concern in
Click, and inter-element handoff is simply pointer passing through a virtual function call.

In contrast, the dataflow graphs that the P2 planner generatesNfRloyg specifica-
tions have many more branching points and tuples can traverse more than one path. For
example, a tuple might be stored in a table but also forwarded to another element as an
event notification.

Second, P2 passes tuples, not packets. Elements in P2 implement database relational
operators as well as standard packet routing functions, which means flows frequently block
and unblock. In Click, a flow event is typically initiated by a packet arriving over the
network, queues rarely block when full (instead, they implement an explicit drop policy
as in most other routers), and consequently Click’s design can process packets efficiently
using only event-driven scheduling of dataflow, together with “active elements,” invoked
periodically by the Click scheduler.

In contrast, not only do P2 dataflow graphs tend to branch more, but tuples are fre-

guently generated inside the dataflow graph in response to the arrival of other tuples — most
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commonly during equijoin operations, which are fundament&l@dog's rule constructs.

Furthermore, the consequences of dropping tuples due to queue overflow in P2 are
much more undesirable than the dropping of a packet in a router under high load. Many
gueue elements in P2 dataflow graphs therefore “block” when full or empty, and a low-
latency mechanism is required for restarting a particular dataflow when new tuples arrive
or space becomes available.

P2 therefore implements a simple signaling facility to allow elements to restart flows
they have previously blocked. An extra argument to each “push” or “pull” invocation be-
tween elements specifies a callback (in effect, a continuation) to be invoked at some later
stageif and only if the dataflow has been stalled as a result of the call.

For a “pull” transition, if the pull call returns no tuple then there is no data available.
When a tuple does become available, the callback previously passed with the pull is in-
voked. This call will typically happen as part of a push transition into the source element
(e.g., in the case of equijoins) or the passage of time (e.g., in a rate limiter), and the re-
cipient of the callback will generally schedule a deferred procedure call to retry the pull as
soon as possible.

“Push” transitions operate slightly differently, since the coupling of control flow and
dataflow means that the destination of a push has to accept the tuple — if it did not, any state
operations that occurred previously in the dataflow chain would have to be undone. As a
result, push calls are always assumed to succeed, and return a boolean indicating whether
it is acceptable to call pusigain If not, the callback will be invoked at some later stage
as with pull.

The use of callbacks in this way removes from the element implementation itself any
scheduling decisions, while imposing a minimum of policy. P2’s transitions are not as
efficient as Click’s but are still very fast — most take about 50 machine instructions on an

IA32 processor, or 75 if the callback is invoked.
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4.3.1 Dataflow elements

This section gives a brief overview of the suite of dataflow elements implemented in P2. To
start with, P2 provides the relational operators found in most database systems, as well as
query processors like PIER9]: selection, projection, streaming relational join operations
such as pipelined hash-joih$27], “group-by,” and various aggregation functions. Since
one of our motivations in designing P2 was to investigate the applicability of the dataflow
element model for distributed computing, we have tried to push as much functionality of
the system as possible into dataflow elements.

One example of this is in P2’s networking stack. Systems like REBRabstract details
of transport protocols, message formats, marshaling, etc., away from the dataflow frame-
work, and operators only deal with fully unmarshaled tuples. In contrast, P2 explicitly
uses the dataflow model to chain together separate elements responsible for socket han-
dling, packet scheduling, congestion control, reliable transmission, data serialization, and
dispatch (se€122).

A variety of elements form a bridge between the dataflow graph and persistent state in
the form of stored tables. P2 has elements that store incoming tuples in tables, lookup ele-
ments that can iteratively emit all tuples in a table matching a search filter, and aggregation
elements that maintain an up-to-date aggregate (such as max, min, count, etc.) on a table
and emit it whenever it changes. Tables are frequently shared between elements, though
some elements generate their own private tables. For example, the element responsible for
eliminating duplicate results in a dataflow uses a table to keep track of what it has seen
so far. Like Click, P2 includes a collection of general-purpose “glue” elements, such as a
gueue, a multiplexer, a round-robin scheduler (which, when pulled, pulls tuples from its
inputs in order), etc. Finally, for debugging purposes, print elements that can be inserted to
“watch” tuples based on table name (specified via a spewialch(tableNamé)tatement

within the NDlog program) entering and leaving the dataflow.
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It is quite simple to add new elements to the collection provided by P2, but at present
the planner is not yet designed to be easily extensible. To use a new element class, one
must either “hand-wire” dataflow diagrams as in Cl[@6] and PIER[59], or modify the

planner to translatBiDlog into dataflows that use the new element.

4.4 Network State Storage and Management

Network state is stored tables which contain tuples with expiry times and size constraints
that are declaratively specified at table creation time as described in CRaaplicate
entries (tuples) are allowed in tables, and the mechanisms for maintaining these duplicates
differ based on whether they are hard-state or soft-state tables as defined in Qhépter
hard-statetables, a derivation count is maintained for each unique tuple, and each tuple is
deleted when its count reaches zero stift-statetables, each unique tuple has an associ-
ated lifetime that is set based on the specified expiration of its table during creation time.
Duplicates result in extension of tuple lifetime, and each tuple is deleted upon expiration
based on its lifetime. We enforce the lifetimes of soft-state tuples by purging the soft-state
tables of any expired tuples whenever they are accessed. Tables are named using unique
IDs, and consequently can be shared between different queries and/or dataflow elements.

As basic data types, P2 uséslues, andTuples. A Valueis a reference-counted object
used to pass around any scalar item in the sysiahyetypes include strings, integers,
timestamps, and large unique identifiers. Madueclass, together with the rules for con-
verting between the various value types, constitute the concrete type system oT@@eA
is a vector ofValues and is the basic unit of data transfer in P2. Dataflow elements, de-
scribed below, pass tuples between them, and tables hold sets of tuples.

Queries over tables can be specified by filters, providing an expressivity roughly equiv-

alent to a traditional database query over a single table. In-memory indices (implemented
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using standard hash tables) can be attached to attributes of tables to enable quick equality
lookups. Note that the table implementation — including associated indices — is a node-local
construct.

The current in-memory implementation serves our requirements for implementing the
networks discussed in this dissertation, all of which tend to view their routing tables as
soft-state Our event-driven, run-to-completion model obviates the need for locking or
transaction support in our application, and relatively simple indices suffice to meet our
performance requirements. In the future, there is clearly scope for table implementations
that use stable storage for persistent data placement, or that wrap an existing relational

database implementation.

4.5 Summary

In this chapter, we presented an overview of the P2 declarative networking system, with

an emphasis on its architecture, various components (planner, dataflow installer, dataflow
engine), dataflow framework and network state management. In the next chapter, we will

describe thelannercomponent in greater detail, and describe hdidog programs can

be compiled into dataflow-based execution plans to implement the network protocols using

the P2 dataflow engine.
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Processing NDlog Programs

One of the main challenges of using a declarative language is to ensure that the declarative
specifications, when compiled and executed, result in correct and efficient implementa-
tions that are faithful to the program specifications. This is particularly challenging in a
distributed context, where asynchronous messaging and the unannounced failure of partic-
ipants make it hard to reason about the flow of data and events in the system as a whole. In
this chapter, we address this challenge by describing the steps required for the P2 planner
to automatically and correctly generate execution plans frorNleg rules.

The chapter is organized as follows. In Secttof, we describe the steps required to
generate execution plans for a centralized Datalog program in the P2 system using standard
recursive query processing techniques. We then extend the centralized techniques to exe-
cute distributedNDlog rules in Sectiorb.2 Based on the distributed execution plans, we
motivate, propose and prove correct in SectoBpipelined query evaluation techniques
that are necessary for efficiency in the distributed settings. In Sest#pmwe discuss how
we can ensure correct semantics of long-runmiidjog programs in dynamic networks
using incremental view maintenance techniques. In Seé&ignwe build upon all of the

above techniques for processing distribusedt-staterules, which can gracefully tolerate
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failures and lost messages.

5.1 Centralized Plan Generation

In this section, we describe the steps required to generate execution plans of a centralized
Datalog program in the P2 system. We utilize sieeni-ndve[11; 12; 15 fixpoint evalua-

tion mechanism, which is the standard method used to evaluate Datalog programs correctly
with no redundant computations. We provide a high-level overview of seiervalua-

tion (SN), and then use tt&ghortest-Patiprogram (Figure@.4in Chapter2) as an example

to demonstrate how SN is achieved in the P2 system.

5.1.1 Semi-naive Evaluation

The first step in SN is theemi-néve rewrite where each datalog rule is rewritten to gen-

erate a number afelta rulesto be evaluated. Consider the following rule:

p:—np, p27"'7pn7b17b27"-7bm- (51)

p1, ..., pn arederived predicateandbs, ..., by, arebase predicateDerived predicates refer

to intensional relations that are derived during rule execution. Base predicates refer to
extensional (stored) relations whose values are not changed during rule executi@&N The
rewrite generates delta rules one for each derived predicate, where kifedelta rule has

the formt:

Apnew: - pgldv ey pELd]_? Ap(|2|d7 Pk+15---5 Pn, b17 b27 ey bm. (52)

'These delta rules are logically equivalent to rules of the férp§®”:- py, pz, ..., k1,80, Prsa, --os
pn, b1, by, ...,bm, @and have the advantage of avoiding redundant inferences within each iteration.
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In each delta ruIeApﬁ'd is thedelta predicate and refers tqy tuples generated for the
first time in the previous iteratiorpfg'OI refers to allpx tuples generated before the previous
iteration. For example, the following rule r2-1 is the delta rule for the recursive rule r2 from

the Datalog program shown in Figu2el from Chapter2:

r2—1ApatH®(S D,Z,C) : —#link(S Z,C1), Apattf!d(z,D,z2,C2),C = C1+C2.
(5.3)

The only derived predicate in rule r2 ath and hence, one delta rule is generated.
All the delta rules generated from the rewrite are then executed in synchronous rounds
(or iterations) of computation, where input tuples computed in the previous iteration of a
recursive rule execution are used as input in the current iteration to compute new tuples.
Any new tuples that are generated for the first time in the current iteration are then used as
input to the next iteration. This is repeated until a fixpoint is achieved Qo new tuples
are produced).

Algorithm 5.1 summarizes the basic semiima evaluation used to execute these rules
in the P2 system. In this algorithm, P2 maintains a buffer for each delta rule, dendgd by
This buffer is used to storpy tuples generated in the previous iteratiempﬁ'd). Initially,
e, P29, Ap2ld and A pReWare empty. As a base case, we execute all the rules to generate
the initial py tuples, which are inserted into the corresponddpuffers. Each iteration of
the while loop consists of flushing all existirz(gp‘lg'd tuples fromBy and executing all the
delta rules to generatk p{®"tuples, which are used to updap%d, Bj andp; accordingly.
Note that only newp; tuples generated in the current iteration are insertedBptior use

in the next iteration. Fixpoint is reached when all buffers are empty.

63



Chapter 5. Processing NDlog Programs

Algorithm 5.1 Semi-néve Evaluation in P2

execute all rules
foreach derived predicate py
Bk — P«
end
while 3By.size> 0
VBy where By.size> 0, Apﬁ'd — By.flush()
execute all delta rules
foreach derived predicate p
p?Id - p?Id uAp‘-"d
Bj - Ap?ew_ p? d
pj < P9 UB;
A p?e"" —0
end
end

5.1.2 Dataflow Generation

Algorithm 5.1 requires executing the delta rules at every iteration. These delta rules are
each compiled into an execution plan, which is in the form of a P2 datafliamd using
the conventions of the P2 dataflow framework described in Chdpteaich dataflow strand
implements a delta rule via a chain of relational operators. In the rest of this chapter, we
refer to the dataflow strand for each delta rule agle strand

For each delta rule, each rule strand takes as inpdeita predicatgprepended with
A). This inputis then used as input to the strand which implements a sequence of elements
implementing relational equijoins. Since tables are implemented as main-memory data
structures with local indices over them, tuples from the stream are pushed into an equijoin
element, and all matches in the table are found via an index lookup.

After the translation of the equijoins in a rule, the planner creates elements for any
selection filters, which evaluate the selection predicate over each tuple, dropping those for

which the result is false. In some cases, we can optimize the dataflow to push a selection
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upstream of an equijoin, to limit the state and work in the equijoin, following traditional
database rules on the commutativity of join and selection.

Aggregate operations likenin or countare translated after equijoins and selections,
since they operate on fields in the rule head. Aggregate elements generally hold internal
state, and when a new tuple arrives, compute the aggregate incrementally. The final part
of translating each rule is the addition of a “projection” element that constructs a tuple

matching the head of the rule.

r2-1 ApatH€(S,D,Z,C) :- #link(S,Z,C1)Apatif'd(z,D,Z22,C2), C = C1 + C2.

__1

Project OUtpUt

Input
: ‘_' Apath™ ] paths

paths

3
A path®.Z=link.Z

Figure 5.1: Rule strand for delta rule r2-1 in P2.

Figure5.1 shows the dataflow realization for delta rule r2-1. We repeat the rule above
the dataflow for convenience. The example rule strand receivesyatt?'d tuples gen-
erated in the previous iteration to generate new pattsath'®") which are then “wrapped-
around” and inserted into thgathtable (with duplicate elimination) for further processing
in the next iteration. In effect, semi-iv@ evaluation achieves the computation of paths in
synchronous rounds of increasing hop counts, where paths that have been previously in the

previous round are used to generate new paths in the next iteration.
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5.2 Distributed Plan Generation

In this section, we demonstrate the steps required to generate the execution plans for dis-
tributedNDlog rules. In ChapteR, we introduced the concept of distributBidlog rules,

where the rule body predicates have different location specifiers. These distributed rules
cannot be executed at a single node, since the tuples that must be joined are situated at
different nodes in the network. Prior to the SN rewrite step, an additiocalization

rewrite step ensures that all body predicates for tuples to be joined are at the same node.
After applying the localization rewrite to all distributed rules, all localized rules will have
rule bodies that are locally computable and hence can be processed in a similar fashion as

centralized Datalog rules.

sp2 path(@S,D,Z,P,C) :- #link(@S,Z,C1), path(@Z,D,Z2,P2,C2), C=C1 + C2,
P = f_concatPath(S,P2).

project (#link.@S,path.D,path.Z,
f_concatPath(#link(@S,Z,C1), path.P2),
#link.C1+path.C2) as path(@S D,zZP C)

.
#link. @Z path.@Z

€S \

#link(@S,Z,C1) path(@Z,D,Z2,P2,C2)

Figure 5.2: Logical query plan for distributed rule sp2 shown above the figure.
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5.2.1 Localization Rewrite

To provide a high-level intuition for the localization rewrite, we consider the distributed
rule sp2 from theShortest-Patlprogram presented in Chapt2r This rule is distributed
because théink and path predicates in the rule body have different location specifiers,
but are joined by a commor” field. Figure5.2 shows the corresponding logical query
plan depicting the distributed join. The clouds represent an “exchange’-like opEsator

that forwards tuples from one network node to another; clouds are labeled with the link
attribute that determines the tuple’s recipient. The first clatlohK.@2) sends link tu-

ples to the neighbor nodes indicated by their destination address fields. The second cloud
(path.@$9 transmits nevpathtuples computed from the join for further processing, setting

the recipient according to the source address field.

Based on the above distributed join, rule sp2 can be rewritten into the following two
rules. Note that all predicates in the body of sp2a have the same location specifiers; the
same is true of sp2b. SintiekD is derived from the materialized tabidéink, we need to
also declaréinkD via thematerializestatement, and set its lifetime and size parameters to

be the same as that of tiénk table.

materialize(linkD, infinity,infinity,1,2).

sp2a linkD(S,@Z2,C) :- #link(@S,Z,C).

sp2b path(@S,D,Z,P,C) :- #link(@2Z,S,C3),linkD(S,@Z,C1),path(@Z,D,Z2,P2,C2)
C =C1 + C2, P =fconcatPath(S,P2).

Figure 5.3: Localized rules for distributed rule sp2.

The rewrite is achievable because thnk and path predicates, although at different
locations, share a common join address field. In Algorith) we summarize the general
rewrite technique for an input set of link-restricted rules R. In the pseudocode, for sim-

plicity, we assume that the location specifiers of all the body predicates are s@ted (
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followed by @D); this can be done as a preprocessing step. The algorithm as presented
here assumes that all links are bidirectional, and may &#ihla(@D,S)to a rewritten rule

to allow for backward propagation of messages. If links are not bidirectional, this means
that distributed rules whose rewritten rules require the backward propagation of messages
along#link(@D,S)cannot be localized; this can be syntactically checked at the time of

parsing. From this point on we assume bidirectional links in our discussion.

Algorithm 5.2 Rule Localization Rewrite for Link-Restricted Rules
proc RuleLocalization(R)
while S ruler € R: h(@L,...) : —#link(@S,D,...), p1(@S,..),...p;(@S,...),
Pi;1(@D,...),...pn(@D,..)

R.removér)

Radd(hD(S, @D, ..) : —#link(@8S,D,..),..,p;(@S,..).)

if @L=@D
then Radd(h(@D,..) :- hD(S,@D...), pi.1(@D.,..)..., py(@D...).)
elseRadd(h(@S,..) :- #link(@D,S), hD(,@D..), pi,1(@D.,..)..., p,(@D,..).)

Observation 5.1 Every link-restrictedNDlog program, when rewritten using Algorithin?2,

produces an equivalent program where the following holds:
1. The body of each rule can be evaluated at a single node.

2. The communication required to evaluate a rule is limited to sending derived tuples

over links that exists in a link relation.

The equivalence statement in the above observation can be easily shown, by examining
the simple factoring of each removed rule into two parts. The remainder of the observation

can be verified syntactically in the added rules in Algorithra
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sp2aAlinkD"e(S,@Z,C) :-A#link®'4(@S,Z,C).
sp2b-1Apatie(@sS,D,Z,P,C) :- #link(@Z,S,C3), linkD(S,@Z,C1),
Apatf'd(@z,D,z2,P2,C2), C=Cl1 + C2,
P =f _concatPatliS,P2).
sp2b-2Apati*@S,D,Z,P,C) :- #link(@Z,S,C3)\linkD°Y(S,@Z,C1),
path(@2,D,Z2,P2,C2), C=C1 + C2,
P = f_concatPatliS,P2).

C— Atink Sp2a@S | Project SEND to linkD.Z >
= —>{ Queue | AlinkD 1 Z
(0] [0}

—_
< 3 2
S RECV path » Insert A patl [GQueue | sp2b-1@Z Join Join Project SEND to path.S > (@)
% Edll, A path.Z=#link.Z 7| A path.Z=linkD.Z [ Apath 'Ix‘
L i (@)
> RECV unle Insert - A linkD sp2b-2@Z Join Join Project SEND to Ealh.S, S_
m AlinkD.Z=#link.Z AlinkD.Z=path.Z Apath
>

Figure 5.4: Delta rules and compiled rule strands for localized rules sp2a and sp2b.

5.2.2 Distributed Dataflow Generation

After rule localization, the SN rewrite described in Secttoh.1is used to generate delta
rules that are compiled into rule strands. In Fighr4 we provide an example of the delta
rules and compiled rule strands for the localized rules sp2a and sp2b shown inF=Ryure

In addition to creating the relational operations described in the previous section on
rule strand generation, the planner also constructs the other portions of the dataflow graph
in order to support distribution: the network processing elements which includes multiplex-
ing and demultiplexing tuples, marshaling, unmarshaling and congestion control. As with
Click, it also inserts explicit queue elements where there is a push/pull mismatch between
two elements that need to be connected.

For simplicity, we represent the network packet processing, demultiplexing and mul-

tiplexing elements described in Sectidr? asNetwork-Inand Network-Outblocks in the
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figure, and only show the elements for the rule strands. Unlike the centralized strand in
Figure5.1, there are now three rule strands. The extra two strands (sp2a@S and sp2b-
2@2Z) are used as follows. Rule strand sp2a@S sends all existing links to the destination
address field alnkD tuples. Rule strand sp2b-2@Z takes the tiekD tuples it received
via the network, stores them using tinsert elementEach newinkD tuple (with duplicate
elimination) is then used to perform a join operation with the lghtable to generate

new paths.

5.3 Relaxing Semi-naive Evaluation

In our distributed implementation, the execution of rule strands can depend on tuples arriv-
ing via the network, and can also result in new tuples being sent over the network. Tradi-
tional SN completely evaluates all rules on a given set of faets,completes théeration,
before considering any new facts. In a distributed execution environment where messages
can be delayed or lost, the completion of an iteration in the traditional sense can only be
detected by a consensus computation across multiple nodes, which is prohibitively expen-
sive. Further, the requirement that many nodes complete the iteration together (a “barrier
synchronization” in parallel computing terminology) limits parallelism significantly by re-
stricting the rate of progress to that of the slowest node.

We address this by making the notion of iteration local to a node. New facts might
be generated through local rule execution, or might be received from another node while a
local iteration is in progress. We propose and prove correct two variations of SN iteration to
handle this situationbuffered SNBSN) andpipelined semi-naivéPSN). Both approaches
extend SN to work in an asynchronous distributed setting, while generating the same results
as SN. We further prove that these techniques avoid duplicate inferences, which would

otherwise result in generating unnecessary network messages.
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5.3.1 Buffered Semi-naive Evaluation

Buffered SNBSN) is the standard SN algorithm described in Algoritrhwith the fol-
lowing modifications: a node can start a local SN iteration at any time its Bpdalffers are
non-empty. Tuples arriving over the network while an iteration is in progress are buffered
for processing in the next iteration.

By relaxing the need to run an iteration to global completion, BSN relaxes SN sub-
stantially, by allowing a tuple from a traditional SN iteration to be buffered arbitrarily, and
handled in some future iteration of our choice. Consequently, BSN may generate fewer
tuples per iteration, but all results will eventually be generated. We observe that since BSN
uses the basic SN algorithm, BSN generates the same results as SN.

The flexibility offered by BSN on when to process a tuple could also be valuable outside
the network settinge.g., a disk-based hash join could accumulate certain tuples across
iterations, spill them to disk in value-based partitions, and process them in value batches,
rather than in order of iteration number. Similar arguments for buffering apply to other
qguery processing tricks: achieving locality in B-tree lookups, improving run-lengths in

tournament sorts, etc.

5.3.2 Pipelined Semi-naive Evaluation

As an alternative to BSNpipelined SN(PSN) relaxes SN to the extreme of processing

each tuple as it is received. This provides opportunities for additional optimizations on a
per-tuple basis, at the potential cost of batch, set-oriented optimizations of local process-
ing. New tuples that are generated from the SN rules, as well as tuples received from
other nodes, are used immediately to compute tuples without waiting for the current (local)

iteration to complete.
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Algorithm 5.3 Pipelined SN (PSN) Evaluation.

execute all rules
foreachty € derived predicate py
tx. T «— current_time()
Bk < tk
end
while 3Qy.size> 0
t2% — Qu.dequeueTuple
foreach delta rule execution
AP —pypy, P18, i 1, -, P, b1, b2, .., b,
ol T > py Tt T > po T, 19 T > p 1 T,t%9 T > pyy 1 T,
014 T > pp. T,t0 T > by 7,194 T > by T, ..., t94 T > b, T

foreachtj”e"“'+1 e Aphewitt

. J
: +1
it g
then pj — pj Ut;
ghewi+l current_time()

j ;
Q .enqueueTupl(e?eW'“)

newi+1

Algorithm 5.3 shows the pseudocode for PSN. In PSN,kfalelta rule is of the form:

pTeWi+1 - =P, pkflvtl((jldJ? Pk+1, -+, Pn, bl’ bz’ T bm. (54)

Each tuple, denoted has a superscripbld/new i) wherei is its corresponding iteration
number in SN. Each processing step in PSN consists of dequeuing a&ﬂblﬁom Qk

and then using it as input into all corresponding rule strands. Each reel;lﬁwi@l tuple is
pipelined, stored in its respectiyg table (if a copy is not already there), and enqueued into

Qj for further processing. Note that in a distributed implementa@ncan be a queue on
another node, and the node that receives the new tuple can immediately process the tuple
after the enqueue inQ;. For example, the dataflow in Figuse4is based on a distributed
implementation of PSN, where incomipgth andlinkD tuples received via the network

are stored locally, and enqueued for processing in the corresponding rule strands.

72



Chapter 5. Processing NDlog Programs

To fully pipeline evaluation, we have also removed the distinctions bet\p?.l%and Pj
in the rules. Instead, a timestamp (or monotonically increasing sequence number) is added
to each tuple upon its arrival (or when inserted into its table), and the join operator matches
each tuple only with tuples that have the same or older timestamp. In AlgobiBrmnwe
denote the timestamp of each tuple a6 Beld (assigned via a system calirrenttime())
and add additional selection predicates (highlighted in bold) t&!theelta rule:
p?ewi” L —P1, s P18 Prsa, o, Py br, B2, ., b,
o1 T > py Tt T > po. T, .. t% T > py 1. T,t%4 T > py1 T,
oIl T > p T,t900 T > by T.,t94 T > b, T,..., 19 T > by, T.

Each selection predicaté'®'.T > p,.T ensures that the timestampt8f' is greater
than or equal to the timestamp of a tupte px. By relaxing SN, we allow for the processing
of tuples immediately upon arrival, which is natural for network message handling. The
timestamp represents an alternative “book-keeping” strategy to the rewriting used in SN to
ensure no repeated inferences. Note that the timestamp only needs to be assigned locally,
since all the rules are localized.

While PSN enables fully pipelined evaluation, it is worth noting that PSN can allow
just as much buffering as BSN with the additional flexibility of full pipelining. Consider a

rule with n derived predicates and base predicates:

p:—0p, p27~~~>pn,b1,b2,~-~;bm- (55)

In AppendixA.1, we prove that PSN generates the same results as SN, and does not repeat
any inferences. LefEPs(p) andFPp(p) denote the result set fqr for using SN and PSN
respectively. We show that:

TheoremA.1: FPs(p) = FPp(p)
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TheoremA.2: There are no repeated inferences in computing .

In order to compute rules with aggregation (such as sp3), we utilize incremental fix-
point evaluation techniqud97] that are amenable to pipelined query processing. These
techniques can computeonotonic aggregatesuch asgmin, maxandcountincrementally
based on the current aggregate and each new input tuple. Ediskows the rule strand
for rule sp3 from theshortest-Patlprogram, which computes the shortest c&tfor any
pair of source and destination paths. For each new ipatittuple, theAggregateslement

incrementally recomputespCostuples which are inserted into tispCostable.

sp3 spCost(@S,D,minC>) :- path(@S,D,Z,P,C). |

- sp3@S S
RECVpalyy Ingert (= [Queus =224 Uy 28,05, —p. Prolect
nse groupby<S,D>, o
> min<C> |AspCost_ | .

ul-yIoMmjeN

Figure 5.5: Rule strand for sp3 that computes an aggregate spCost over the path table.

5.4 Processing in a Dynamic Network

In practice, the state of the network is constantly changing during the executi¢Dlof
programs. In contrast to transactional databases, changes to network state are not isolated
from NDlog programs while they are running. Instead, as in network prototildog

rules are expected to perform dynamic recomputations to reflect the most current state of
the network. To better understand the semantics in a dynamic network, we consider the

following two degrees of dynamism:

e Continuous Update Model: In this model, we assume that updates occur very fre-

guently — at a period that is shorter than the expected time for a typical program to
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reach a fixpoint. Hence, the query results never fully reflect the state of the network.

e Bursty Update Model: In this more constrained (but still fairly realistic) model,
updates are allowed to happen during query processing. However, we make the as-
sumption that after a burst of updates, the network eventupligscegdoes not
change) for a time long enough to allow all the rule computations in the system to

reach a fixpoint.

In our discussion, we focus on the bursty model, since it is amenable to analysis; our
results on that model provide some intuition as to the behavior in the continuous update
model. Our goal in the bursty model is to achieve a variant of the typical distributed systems
notion ofeventual consistenggustomized to the particulars BDIlog: we wish to ensure
that the eventual state of the quiescent system corresponds to what would be achieved by
rerunning the rules from scratch in that state. We briefly sketch the ideas here, and follow
up with details in the remainder of the section.

To ensure well-defined semantics, we use techniques from materialized view mainte-

nance[54], and consider three types of changes:

e Insertion: The insertion of a new tuple at any stage of processing can be naturally

handled by (pipelined) semi-ihee evaluation.

e Deletion: The deletion of a base tuple leads to the deletion of any tuples that were
derived from that base tupledscaded deletiofs Deletions are carried out incre-
mentally via (pipelined) semi-iige evaluation by incrementally deriving all tuples

that are to be deleted.

e Update: An update is treated as a deletion followed by an insertion. An update to
a base tuple may itself result in derivation of more updates that are propagated via

(pipelined) semi-nixe evaluation.
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We further allow implicit updates by primary key, where a newly generated tuple re-
places an existing tuple with the same primary key (but differs on other fields). The use of
pipelined SN evaluation in the discussion can be replaced with buffered SN without chang-
ing our analysis. Since some tuples in hard-state tables may have multiple derivations, we
make use of theount algorithm[54] for keeping track of the number of derivations for
each tuple, and only delete a tuple when the count is 0. We proceed to discuss these issues

in detail.

5.4.1 Dataflow Generation for Incremental View Maintenance

Algorithm 5.4 Rule strands generation for incremental insertion of hard-state SN delta rules.

foreach k" delta rule Ap: —p1, P2, .... APk, ..., Pn, b1, b2, ..., bm
RShs < addElementNU LL, Insert-Listener (A py))
foreach derived predicate pj where | # K
RShs — addElementRShs, Join(pj))
end
foreach base predicate b;
RShs < addElementRSns, Join(bj))
end
RSns < addElementRSns, project(Ap))
RSns < addElementRSns, Network-Out)
RSlins < addElementNULL, Network-In(Ap))
RSlins < addElementRSlins, INsert(Ap))
end

Algorithms5.4and5.5shows the pseudocode for generating the rule strands for a typ-
ical delta rule of the formAp: —p1, p2,---, APk, ---, Pn, b1, 02, ..., bm, With n derived predi-
cates andn base predicates. The first algorithm generates rule strangdsd®8 RS} for
incremental insertions, and the second algorithm generates rule straggd @aRERS ¢
for for incremental deletions. In both algorithm, the functi®R®&— addElementRS elemenj

adds an element to the input rule strand RS, and then returns RS itself. For correctness, each
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strand has to execute completely before another strand is executed.

In Algorithm 5.4, each R$s strand takes as input amsert-Listener{\ py) element that
register callbacks for new insertions in thyetable. Upon insertion of a new tupigeinto the
px table, thelnsert-Listenerelement outputs the new tuple, which is then used to perform
a series of joins with the other input tables in its rule strand to derivemayples. Each
newly derivedp tuple is then passed toRroject(/\ p), and then sent out via tHéetwork-
Out elements Each RS strand takes as input nemtuples that arrives via the network,

and inserts these tuples into its logaable using thénsert(A\ p) element.

Algorithm 5.5 Rule strands generation for incremental deletion of hard-state SN delta rules.

foreach K" delta rule Ap: —p1, P2, .... NPk, ..., Pn, b1, b2, ..., bm
RSjel — addElementNU LL, Delete-Listener (/\ Py del))
foreach derived predicate pj where | # K
RSel — addElementRSel, Join(pj))
end
foreach base predicate b;
RSyel < addElementRSyel, Join(bj))
end
RSjel < addElementRSe|, Project(A pgel)
RSjel — addElementR e, Network Out)
RSlgel < addElementNU LL, Network-In (A pgel))
RSlyel < addElementRSlye|, Deletd Ap))
end

The RSel and RS} strands in Algorithnb.5are generated in a similar fashion for in-
cremental deletions. The R&strand take as input tuples fronDelete-Listener py gei)
element that outputgye| tuples that have been deleted from fhedable. The RS{e strand
receives these tuples, and then delete those with the same values from tipgdddalising
theDelete(\ p) element.

To provide a concrete example, Figuses shows an example of compiled dataflow

2Note that outboung tuples generated by RSthat are destined for local consumption are “wrapped
around” to theNetwork-Inelement as input to R$} of the same dataflow locally, as described in Secfi@n
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Project \ SEND to linkD.Z .
A linkD ‘ e

Insert A#link sp2ains@S
ﬂ Listener
- | Delete A #linkgel | Sp22:a@S | Project SEND o linkDge.Z
Listener AlinkD
RECV path | - meert 142 path | sp2b-1,,.@Z Join Join Project SEND to pain'$
Listener A path.Z=#iink.Z ™ A path.Z=linkD.Z [*] Apath
3

v

ul-3Jom)eN
INO-HIOM)ON

Delete | A pathgy| SP2b-14@Z Join Join Project | [ SEND to path uSy
Listener A\ pathge.Z=#link.Z A path.Z=linkD.Z Apathge

RECV linkD nsert insert |AlINKD_ [ sp2b-2;,:@Z Join Join Project SEND to path.S
> Listener AlinkD.Z=#link.Z [” AlinkD.Z=path.Z T"] Apath e
v
D

Delete | AlinkDgy | SP2b-24e@Z Join Join Project SEND to pathyy: Sy
Delete Listener AlinkDgg.Z=#link.Z [ | AlinkD.Z=path.Z [”| Apathe

Figure 5.6: Rule strands for the SN delta rules sp2a, sp2b-1 and sp2b-2 with incremental
maintenance.

with rule strands for the delta rules sp2a, sp2b-1 and sp2b-2 that we presented earlier in
Section5.2 For each delta rule, applying Algorithnds4 and5.5result in several strands

for incremental insertions and deletions. These are denoted by strand labels with subscripts
insanddel respectively in Figur®.6. For example, strands sp#S and sp2g @S are
generated from the delta rule sp2a, and used to implement the incremental recomputation
of linkD table based on modifications to thknk table. Similarly, strands sp2hnd@S

and sp2b-d.@S are generated from delta rule sp2b-1, and strands sp&DSand sp2b-
24ei@S are generated from delta rule sp2b-2.

In handling rules with aggregates, we apply techniques for incremental computation of
aggregatefd7] in the presence of updates. The arrival of new tuples may invalidate exist-
ing aggregates, and incremental recomputations can be cheaper than computing the entire
aggregate from scratch. For example, the re-evaluation cost for min and max aggregates

are shown to b®(log n) time andO(n) spaceg97]. This is implemented using thggre-

78



Chapter 5. Processing NDlog Programs

gateelement shown previously in FiguBe5. The Aggregateelement will recompute and
output anyspCosttuples whose aggregate value has been updated as a result of updates to

the underlyingpathtable.

5.4.2 Centralized Execution Semantics

Before considering the distributed execution semantidddliog programs, we first pro-

vide an intuitive example for the centralized case. Figuishows aderivation treefor
path(@e,d,a,[e,a,b,d],Hased on th&hortest-Patlprogram. The leaves in the tree are the
#link base tuples. The root and the intermediate nodes are tuples recursively derived from
the children inputs by applying either rules spl and sp2. When updates occur to the base
tuples, changes are propagated up the tree to the root. The left diagram shows updating the
tree due to a change in base tuglmk(@a,b,5) and the right diagram shows the deletion

of #link(@b,e,1)

3
p(e.d.ale.ab,dl7 --ptesehaiesasdl3)

XN . 7 A

#link(e,a,1) p(a,d,b,[a,b,dm #link(e,a,1) -ptendssstasbafay---

/AN /

#Iink(a,bﬁ) p(b,d,d,[b,d],1) #link(a,b,5) --p{b:e-e-{bd}43--
#link(b,d,1) -#Hirkets ey -

Figure 5.7: Derivation tree for derived path tuple from a to e.

For example, when the cost #fink(@a,b,5)is updated from 5 to 1, there is a dele-
tion of #link(@a,b,5)followed by an insertion oflink(@a,b,1) This in turn results in the
deletion ofpath(@a,d,b,[a,b,d],6and path(@e,d,a,[e,a,b,d],7)ollowed by the deriva-
tion of path(@a,d,b,[a,b,d],2)and path(@e,d,a,[e,a,b,d],3) Similarly, the deletion of
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#link(@b,d,1)leads to the deletion gbath(@b,d,d,[b,d],1) path(@a,d,b,[a,b,d],2)and
thenpath(@e,d,a,[e,a,b,d],3)

Let FP, be the set of tuples derived using PSN under the bursty model By be
the set of tuples that would be computed by PSN if starting from the quiesced state. In
AppendixA.2, we prove the following theorem:
TheoremA.3: FP, = FFP, in a centralized setting.

The proof requires that all changes (inserts, deletes, updates) are applied in the same
order in which they arrive. This is guaranteed by the FIFO queue of PSN and the use of

timestamps.

5.4.3 Distributed Execution Semantics

In order for incremental evaluation to work in a distributed environment, it is essential that
along any link in the network, there is a FIFO ordering of messages. That is, along any link
literal #link(s,d) facts derived at node s should arrive at node d in the same order in which
they are derived (and vice versa). This guarantees that updates can be applied in order.
Using the same definition &P, andF F P, as before, assuming the link FIFO ordering, in
AppendixA.2, we prove the following theorem:

Theorem A.4: FP, = FFP,in adistributed setting with FIFO links.

5.5 Processing Soft-state Rules

Up to this point in the chapter, we have focused on the processihgrdfstate rules In
this section, we build upon the earlier techniques to prosefisstates rulesRecall from
Section2.5that a rule is considered soft-state if it contains at least one soft-state predicate

in the rule head or body.
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Soft-state relations are storedsoft-state tablesvithin the P2 System as described in
Section4.4. Unlike hard-state tables, these tables store tuples only for their specified life-
times and expire them in a manner consistent with traditional soft-state semantics. Time-
outs can be managed lazily in soft-state tables by purging any expired soft-state tuples
whenever table are accessed. Unlike hard-state tables, these soft-state tables do not require
maintaining a derivation count for each unique tuple. Instead, soft-state tuples that are
inserted into their respective tables will extend the lifetime of identical tuples.

Prior to applying SN rewrite, the processing of soft-state rules require thelsaate
ization rewritestep described in Sectidn2 After localization, the SN rewrite is applied

to all soft-state rules. Consider a soft-state rule of the form:

p: _517927"'3’“7 h17h27"'7hn7b17b27"'b0 (56)

wheres;, S, ...,Sn are m soft-state derived predicatés, ho, ..., h, are hard-state derived
predicates, antb;,b,,...,b, are base predicates. The SN rewrite generatesn delta
rules, one for each soft-state and hard-state derived predicate, wh&legbt-state delta

rule takes as inpuf\s; tuples:

ApP:—S1,%, .., NS, ..y Sm, N1, Do, .. i, b, bos L bg. (5.7)

In addition, thejt" hard-state delta ruléakes as inputhhj tuples:

AP —=81,...,8; -, Sm, N1, o, ..., A, i, by, Do, Do (5.8)

Following the generation of delta rules, the same Algorith#his used to generate
the strands for incremental insertions in a similar fashion as hard-state rules. However,
instead of using Algorithn®.5 for generating strands for incremental deletions, Algo-

rithm 5.6is used to generate strands iiocremental refreshed he difference is due to soft-
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state rules being incrementally maintained ustagcaded refreshaastead ofcascaded
deletions(See Sectio2.5). In Algorithm 5.4, the strand Rg; takes as input &efresh-
Listener(A p ref) €lement that outputs soft-stapg tuples that have been refreshed. These
Pk tuples are then used to deripeuples, which are then inserted by the R$1nto local p
tables. Ifp is a soft-state relation, these new insertions will lead to further refreshes being

generated, hence achieving cascaded refreshes.

Algorithm 5.6 Rule Strands generation for incremental refresh of soft-state delta rules.

foreach delta rule Ap: —p1, P2,..., NPk, ---, Pn, b1, 02, ..., bm
RSet < addElementNULL, Refresh-Listener (A Py ret))
foreach derived predicate pj where | # K
RSet <+ addElementRSet, Join(pj))
end
foreach base predicate bj
RSef < addElementRSe+,Join(bj))
end
RSet < addElementRSet, Project(Ap)
if (p.loc= pk.loc)
then RS,s < addElementRSys, Insert(Ap))
else
RSet < addElementRSet, Network Out)
RSlies < addElementNULL, Network-In(Ap))
RSlies < addElementRSLe+, Insert(Ap))
nd

For completeness, FiguBe8shows an example dataflow for a soft-state version of rule
sp2, assuming thatlink and path have been declared as soft-state relations. In contrast
to Figure5.6, Refresh-Listeneelements are used instead D¢lete-Listeneelements to

generate soft-state refreshes.
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nsert |_A#ink | sp2ains@S | Project | SEND to linkD.Z =
Liste i
-ﬂ istener AlinkD | —
> " =
[ Refresh A #linkeer | sp2aref@S | Project SEND to linkDyrZ .
Listener AlinkD -
nsert|Q path | sp2b-1ins@Z Join Join Project |_SENDtopathS o
Listener A path.Z=#iink.Z ™ A path.Z=linkD.Z [*] Apath >
Z @
P
= 5
5 S
= )
7~ Refresh | A\ pathy | SP2b-1,6@Z Join Join Project || sEnD to path:S o @)
5 Listener A\ pathge.Z=#link.Z A path.Z=linkD.Z Apathe c
-
REQVin®y [ | o insert |AlINKD_ [ sp2b-2;,:@Z Join Join Project SEND to path.S
Listener AlinkD.Z=#link.Z AlinkD.Z=path.Z Apath
.
Refresh | AlinkDys | SP2b-2r(@Z Join Join Project || SEND to path Sy
Delete Listener AlinkDge.Z=#link.Z 7| AlinkD.Z=path.Z "] A pathye

Figure 5.8: Rule strands for distributed soft-state management of delta rules sp2a, sp2b-1 and
sb2b-2.

5.5.1 Event Soft-state Rules

Having presented the general steps required to process soft-state rules, in this section, we
focus on a special-case soft-state rule:dtent soft-state rulpresented in Sectia®\5. As

a quick recap, an event soft-state rule is of the form:

p:—e p1,P2,..., Pn, b1, 02, ..., bOm. (5.9)

The rule body consists of one event predicgtehe other predicatgsps, p2, ..., Pn can
either soft or hard-state predicates, &, ..., by, are base predicates as before.

The dataflow generation for event soft-state rules is simplified due to the fact that events
are not materialized. As we discussed in Secdn2 NDIlogs event model does not
permit two events to coincide in time. Hence a rule with more than one event table would

never produce any output. The only delta rule that generates any output tuplesvetihe
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delta rulethat takes as input neaievent tuples of the form:

Ap: _Ae7 P1, P2, ..., pn,b17b27bm- (510)

Since the delta predicate (prepended withis essentially a stream of update events, all
other delta rules do not generate any output and we can exclude them from dataflow gener-

ation.

Algorithm 5.7 Rule Strands generation for event delta rules.

foreach delta rule Ap: —Ae, p1,p2,..., Pn, b1,02,bm
/* Strand Generation */
RS« addElementNULL, Network-In(/\€))
foreach derived predicate pj
RS— addElementRSns, Join(pj))
end
foreach base predicate bj
RS+ addElementRS Join(bj))
end
RS« addElementRS project(Ap))
RS« addElementRS Network-Out)
if lifetimg(p) >0
RSl <+ addElementNU LL, Network-In(Ap))
RSl <+ addElementRSL, Insert(Ap))
nd

nd

Algorithm 5.7 shows the pseudocode for compiling an event delta rule into its rule
strands. The first strarf@Stakes each event tupkethat arrives over the network as input
into the strand. After performing joins with all the derived predica@sp, ..., pn) and
base predicatedq, by,...by), the computed tuples are projected and sent over the net-
work. If p is a materialized table (lifetimg 0), the second strand RS1 receiyetiples
via the network, and then inserted them into the Iqrtble using thénsert(A p) element.

As a concrete example, Figused shows the execution plan for rules ppl and pp2 from
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ppl ping(@S,D,E) :- periodic(@S,E,5), #link(@S,D).
pp2 pingMsg(S,@D,E) :- ping(@S,D,E), #link(@S,D).

Periodic 5 | A periodi Queve | pr1@S Join Project | | SEND to ping.s
> seconds A\ periodic.S=#link.S Aping 1 Z
@ : o
2 . s
s ’ #link S
= o T
L O
-] . : - . c
RECV ping ppP2@S Join Project \ SEND to pingMsg.D -
| RECVping o e b >
Aping.S=#link.S *Aplnngg | -

Figure 5.9: Rule strands for event soft-state rules ppl and pp2.

12 bestLookupDist(@NI,K,R,E,miaD>) :- nodeID(@NI,N),
lookup(@NI,K,R,E), finger(@Nl,1,B,BlI),
D=K-B-1,Bin(N,K).

z &
2 =4
é l2@Ni - - Aggregate 5 o
O | _RECV, Jookupy Join Join L3 groupby<NLK,R E>, Project \ SEND to o =
% Alookup.NI=node.NI lookup.NI=node.NI min<D> bestLookupDist bestLookupDistD ™ | X~
f : : b
S c

~

Figure 5.10: Rule strand for rule 12, an event soft-state rule with aggregation.

the Ping-Pongprogram from Chapte? The first strand ppl@S takes as inpuRexiodic
element that generatespeariodic(@S,E,5juple every 5 seconds at node S with random
event identifielE. This tuple is then used to join with #link tuples to generapéng event
tuple that is then used in strand pp2@S to gengriaigMsgevent tuples.

The output of event soft-state rules can also be an aggregate computation, which is
done on goer-eventbasis. Examples of such aggregate computations are shown in rules

I2 and 13 from the declarative Chord specifications in AppeBdix These rules computes
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aggregateninvalues stored ibestLookupDisandlookuptuples respectively, one for each
input event.

Figure5.10shows the strand I2@NI generated for rule 12. This strand takes as input
newlookupevent tuples, which are then executed within the strand by joining withdate
andfingertables to generate a set of matching output tuples. These output tuples are then
used by the\ggregateslement to computelaestLookupDistuple that stores the computed
minvalue. Note that in this case, we have additional runtime checks in place in the dataflow
execution to ensure that ealdokuptuple is executed in its entirety within the strand to

generate théestLookupDistuple before the strand processes the t@&uptuple.

5.5.2 Distributed Soft State Semantics

Having described the processing of soft-state rules, we examine the distributed execution
semantics of soft-state rules in dynamic networks. We consider the three types of soft-
state rules defined in Secti@mb. pure soft-state ruleslerived soft-state rulemndarchival
soft-state rules

In AppendixA.3, we prove that the eventual consistency semantics described in Sec-
tion 5.4 can be achieved for pure soft-state rules and derived soft-state rules. Consider a
pure soft-state rule of the form: —s1,S,...Sn, h1,ho,...h, where there aren soft-state
predicates and hard-state predicates. The rule derives a soft-state predidaterder for
each derived tuple to have a stable derivation at the eventual state, we require the condi-
tion that the lifetime ofs exceeds the lifetime of all input soft-state relati®ssy, ..., Sm.
This ensures that all derivestuples will not time out in between the refreshes of the soft-
state inputs. This condition can be done via syntactic checks to ensure the lifetime of the
derived soft-state head exceeds the lifetime of all the soft-state body predicates.

However, eventual consistency is not achievable for archival soft-state rules of the form

h:—s1,,...5n, h1,hy,...h,, where there aren soft-state predicates hard-state predi-

86



Chapter 5. Processing NDlog Programs

cates and a hard-state rule head. This is because the derived hatutsfdes are stored

even after the soft-state inputs have expired. In order to guarantee eventual consistency
semantics, archival soft-state rules should be treated as separate from the rebiibthe
program and use strictly for archival purposes only. Derivations from these rules should not
be used as input to any other rules. This additional constraint on the use of archival soft-
state rules can also be enforced via syntactic checks. Interestingly, if cascaded deletions are
allowed for soft-state rules, eventual consistency can be achieved for these archival rules,
at the expense of losing the “history” (archived data). We leave the exploration of cascaded

deletions in soft-state rules as future work.

5.6 Summary

In this chapter, we described hdMDlog programs can be processed by generating dis-
tributed dataflows. We first demonstrated how traditional serivienavaluation for cen-
tralized Datalog programs can be realized in our system, and further extend the techniques
to handle distributed and soft-statilog rules. We further showed how we can ensure
correct semantics of long-runningDlog programs in dynamic networks for both hard-
state and soft-state rules. In the next chapter, we present the d#agfto express more

complex overlay networks.
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Declarative Overlays

In Chapter3, we demonstrated the flexibility and compactnesbiBfog for specifying a
variety of routing protocols. In practice, most distributed systems are much more com-
plex than simple routing protocols; in addition to routing, they typically also perform
application-level message forwarding and handle the formation and maintenance of a net-
work as well.

All large-scale distributed systems inherently use one or more application-level overlay
networks as part of their operation. In some cases, the overlay is prominent: for exam-
ple, file-sharing networks maintain neighbor tables to route queries. In other systems, the
overlay or overlays may not be as explicit: for example, Microsoft Exchange email servers
within an enterprise maintain an overlay network among themselves using a link-state al-
gorithm over TCP for routing mail and status messages.

In this chapter omleclarative overlayswe demonstrate the useDlogto implement
practical application-level overlay networks. In declarative overlays, applications submit
to P2 a concisé&\Dlog program which describes an overlay network, and the P2 system
executes the program to maintain routing tables, perform neighbor discovery and provide

forwarding for the overlay.
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The rest of the chapter is organized as follows. In Sedidnwe present the execu-
tion model of declarative overlays. We then present two exaiNplg programs: the
Narada30] mesh for end-system multicast in Sect@&g, and the Chord114] distributed
hash table in Sectio®.3respectively.

6.1 Execution Model
A typical overlay network consists of three functionalities:

¢ Routing involves the computation and maintenance of routing tables at each node
based on input neighbor tables. This functionality is typically known asdmérol

planeof a network.

e Forwarding involves the delivery of overlay messages along the computed routes
based on the destination addresses of the messages. This functionality is typically

known as thdorwardingplane of a network.

e Overlay formation and maintenance involves the process of joining an overlay
network and maintaining the neighbor set at each node. The selected neighbors are

used as input to the control plane for route computations.

In declarative routing presented in ChapeNDIlog programs are used solely for pro-
gramming the control plane. Hence, all our routing examples consiSDdg rules that
compute routes based on input links. On the other hand, in declarative ovéxRig
programs implement the additional functionalitiesfofwarding and overlay formation
and maintenanceAs we see from our examples later in this chapter, these programs are
more complex due to the handling of message delivery, acknowledgments, failure detec-

tion and timeouts required by the additional functionalities. Not surprisingly, the programs
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presented in this section utilize soft-state data and soft-state rules introduced in Ghapter
extensively. Despite the increased complexity, we demonstrate th&t@log programs

are significantly more compact compared to equivalent C++ implementations.

P2 System
NDIOg PI‘Og rams b Overlay topology tables
I
Control and
forwarding Plane Packets  Pacfets Application level

I Internet
Default Internet
Routing > @

Declarative Overlay Node

Figure 6.1: A Declarative Overlay Node.

Figure 6.1 illustrates the execution model of declarative overlays. The P2 system re-
sides at the application level, and all messages are routed via the default Internet routing.
In addition, by using the default Internet for routing between overlay nodes at the applica-
tion level, we assume that there is full connectivity in the underlying network. Every node
participating in the overlay network can send a message to another node via the underlying

network, and there is an entry in the #link table for every source and destination pair of
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nodes. As a syntactic simplification, we do not use link-restricted rules in our examples
below. In practice, this simplification could be supported byN&log precompiler, which
allows a programmer to declare that a fully-connected topology exists, and have the parser

turn off checks for link-restriction.

6.2 Narada Mesh

To provide a simple but concrete example of a declarative overlay, we first present a pop-
ular overlay network for End System Multicast (ESM) called Nari&fh A typical ESM
overlay consists of two layers: the first layer constructs and maintains a mesh connect-
ing all members in the group, while the second layer constructs delivery trees on top of
the mesh using typical multicast algorithms such as the distance vector multicast protocol
(DVMRP) [36] (see Section8.3.2and3.3.6for examples on DVMRP). In this section, we
focus on the first layer: constructing a Narada-like mesh here as an example of the use of
NDlog.

Briefly, the mesh maintenance algorithm works as follows. Each node maintains a set
of neighbors, and the set of all members in the group. Every member epidemically propa-
gates keep-alive messages for itself, associated with a monotonically increasing sequence
number. Atthe same time, neighbors exchange information about membership liveness and
sequence numbers, ensuring that every member will eventually learn of all the other group
members’ liveness. If a member fails to hear from a direct neighbor for a period, it declares
its neighbor dead, updating its own membership state and propagating this information to
the rest of the population.

In addition, each node periodically probes a random group member to measuring the
round-trip latency. Based on the measured round-trip latencies to all group members, each

node selects a subset of the members to be its neighbors so that its predefined utility func-
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tion is maximized. In the rest of this section, we show how the mesh maintenance portion
of Narada can be expressedNiblog. We begin with the following table definitions and

initialization rules:

materialize(sequence, infinity, 1, keys(2)).

materialize(neighbor, infinity, infinity, keys(2)).

materialize(member, 120, infinity, keys(2)).

el neighbor(@X,Y) :- periodic(@X,E,0,1), env(@X,H,Y), H = "neighbor”.

e2 member(@X,A,S,T,L) :- periodic(@X,E,0,1), Txbw(), S=0,L=1, A=X.

e3 member(@X,Y,S,T,L) :- periodic(@X,E,0,1), neighbor(@X,Y), T_rafw(),
S=0,L=1.

e4 sequence(@X,Sequence) :- periodic(@X,E,0,1), Sequence = 0.

Figure 6.2: Narada materialized tables and initialization rules

The materialized tableseighborandmemberare soft-state relations with lifetime of
120 seconds, and have unbounded size. SEtpienceéable is a hard-state table with un-
bounded size. Though not explicitly specified in tinaterializestatements, theeigh-
bor contains tuples of the formeighbor(MyAddr, NeighborAdd@nd themembertable
contains tuples of the form member(MyAddr, MemberAddr, MemberS, Memberinsertion-
Time, MemberLive).MemberLives a boolean indicating whether the local node believes
a member is alive or has failed.

rule el initializes the neighbor table at each node based on itsdogahble which
contains its initial set of neighbors that have been preloaded into the table when the node is
started. Rules2-4are used to initialize thmmembetable andsequencéables respectively.

As described in ChapteZ, periodic(@X,E,T,K)s a built-in event predicate that is used
to generate a stream periodic tuples at nodeX with random event identifieE every T

seconds for up t& tuples. Hence, the initialization rules el agftlare only invoked once.
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Rule e2-3 initialize themembetrtable at each node to itself and its initial set of neighbors.
The sequence(@X,Setp a hard-state relation of size 1, which stores a single tuple that

keeps track of the current sequence nun@egused in the gossip protocol.

6.2.1 Membership List Maintenance

rl refreshEvent(@X) :- periodic(@X,E,5).

r2 refreshSeq@X(X,NewS) :- refreshEvent@X(X), sequence@X(X,S), NewS =S 1.

r3 sequence@X(X,NewsS) :- refreshSeq@X(X,NewS).

r4 refreshMsg(@Y,X,NewS,Addr,AS,ALive) :- refreshSeq(@X,NewS),
member(@X,Addr,AS,Time,ALive),
neighbor(@X,Y).

r5 membersCount(@X,Addr,AS,ALive,coutit>) :-
refreshMsg(@X,Y,YS,Addr,AS,ALive),
member(@X,Addr,MyS,MyTime,MyLive), X != Addr.

ré member(@X,Addr,AS,T,ALive) :- membersCount(@X,Addr,AS,ALive,C),
C=0, T=1fnow().

r7 member(@X,Addr,AS,T,ALive) :- membersCount(@X,Addr,AS,ALive,C),
member(@X,Addr,MyS,MyT,MyLive),
T =f_now(), C> 0, MyS < AS.

r8 neighbor(@X,Y) :- refresh(@X,Y,YS,A,AS,L).

Figure 6.3: Narada Membership List Maintenance

We assume that at the start, each node begins with an initial neighbor set. Narada then
periodically gossips with neighbors to refresh membership information. In F&8réhe

rules r1-r9 specify the rules for the periodic maintenance of the membership lists.

93



Chapter 6. Declarative Overlays

Rule rl generatesr@questEventuple every 3 seconds at nodeThe request interval
is set by the programmer and is used to determine the rate at which nodes in the Narada
exchange membership lists.

Before a Narada node can refresh its neighbors’ membership lists, it must update its
own sequence number, stored in #eguenceéable. Upon generatingrafreshEventrule
r2 creates a new refresh sequence numissvSfor X by incrementing the currently stored
sequence numb&lewSin thesequencéable. Rule r3 updates the stored sequence number.
Becausesequencés a materialized table, whenever a nsgguenceuple is produced, as
is done with rule r3, it is implicitly inserted into the associated table. Since the primary key
is the sequence number itself, this ne@quenceéuple replaces the existing tuple based on
our update semantics defined in Chaj&er

In rule r4, therefreshSeq(@X,New8)at is generated is then used to generaedrash
message tuple that is sent to eachX& neighbors. Eaclefreshmessage tuple contains
information about a membership entry as well as the current sequence nNevosr

Upon receiving theefreshmessage, rule r5 checks to see if the mendtar reported
in the refreshmessage exists in the membership list. If such a member does not exist, the
new member is inserted into the membership table (rule r6). If the member already exists,
it is inserted into the membership table only if the sequence number reftleshmessage
is larger than that of the existing sequence number in the membership list (rule r7). The
functionf_now()is used to timestamp eachembertuple stored.

To join the mesh, a new node need only know one member of the mesh, placing that
member into itseighbortable. Rule r8 ensures that whenever a node receiveBesh
message from its neighbor, it adds the sender to its neighbor set. This ensures that neighbor

relationships are mutual.
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6.2.2 Neighbor Selection

There are two aspects of neighbor selection in Narada: first, evicting neighbors that are
no longer responding to heartbeats, and second, to select neighbors that meet certain user-
defined criteria.

Figure 6.3 shows the rules |11-14 that can be used to check neighbor liveness. Every
second, ruldl initiates a neighbor check by which rule 12 decladesada neighboring
member that has failed to refresh for longer than 20 seconds. Dead neighbors are deleted
from theneighbortable by rule 13 and rule |14 sets a dead neighbor's member entry to be

“dead” and further propagated to the rest of the mesh during refreshes.

I1 neighborProbe(@X) :- periodic(@X,E,1).

12 deadNeighbor(@X,Y) :- neighborProbe(@X), T adw(),
neighbor(@X,Y), member(@X,Y,YS,YT,L), T - Y 20.

I3 delete neighbor(@X,Y) :- deadNeighbor(@X,Y).

4 member(@X,Neighbor,DeadSequence,T,Live) :- deadNeighbor(@X,Neighbor),
member(@X,Neighbor,S,T1,L), Live =0,
DeadSequence =S + 1, T anbw().

Figure 6.4: Rules for neighbor liveness checks.

Figure6.5shows the rules0-n3 for probing neighbors for latency measurements. Ev-
ery 2 seconds, rule n0 picks a member at random with which to measure round-trip latency.
Specifically, it associates a random number with each known member, and then chooses
the member associated with the maximum random number. Recalidheggateijfields¢,
denotes an aggregation functionaxin this example. When a tuple appears in data stream
pingEventrule nl pings the randomly chosen member stored in the event, rule n2 echoes
that ping, and rul@3 computes the round-trip latency of the exchange.

Nodes use such latency measurements — along with the paths computed by a routing
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n0 pingEvent(@X,Y,E,maxR>) :- periodic(@X,E,2), member(@X,Y,U,V,Z),
R =f_rand().

nl ping(@Y,X,E,T) :- pingEvent(@X,Y,E,MR), T =how().

n2 pong(@X,Y,E,T) :- ping(@Y,X,E,T).

n3 latency(@X,Y,T) :- pong@X(X,Y,E,T1), T =how() - T1.

n4 ugain(@X,Z,surtUGain>) :- latency(@X,Z,T), bestPathHop(@Z,Y,W,C),
bestPathHop(@X,Y,Z,UCurr), UNew =T + C,
UNew < UCurr, UGain = (UCurr - UNew) / UCurr.

n5 neighbor(@X,2) :- ugain(@X,Z,UGain), UGainaddThresh.

Figure 6.5: Rules for neighbor selection based on latency.

protocol operating on top of the mesh — to compute a utility function. A node may choose
a new member to add to its current neighbor set, if adding the new member increases
its utility gain above araddition threshold Similarly, if the cost of maintaining a current
neighbor is greater thanramoval thresholdthe node may break its link with that neighbor.

In the rules n4 and5 shown in Figures.5, we show how neighbor addition would work
in anNDlogimplementation of Narada. We assume that each node maintains a routing table
over the mesh which contains for each member the next hop to that member and the cost
of the resulting path; e.ghestPathHop(@S,D,Z,Ghdicates that nod& must route via
next-hop nodé& to get to destinatio® with a path latency o€. This bestPathHogable
can be computed by running thiéstance-vectoprotocol described in Sectidh3, taking
as input theneighbortable as the input topology.

Rule n4 measures the utility gain that could be obtained if nbdere to becom&’s
immediate neighbor, as per the Narada definit@@l. For an individual destinatio¥, this
is computed by taking the latency @fs path toY and adding the latency betwenand

Z to it. If this new path latency (assumibecomes the next hop froX) is lower than
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the current latency oX’s route toY, then the relative decrease in latency contributes to the
utility gain by adding neighboZ. If this utility gain is above a thresholaddThreshthen

rule n5 adds this new neighbor

6.3 Chord Distributed Hash Table

In this section, we prese2-Chord which is a full-fledged implementation of the Chord
distributed hash tablel 14 implemented in 4&8Dlog rules. The entire P2-Chord specifi-

cation is shown uninterrupted by discussion in Apperiglix

- K___1:3 M finger(@IP13,0,14,IP14)

P 2 finger(@IP;3,1,16,IP;6)
node(@IPs,58) 60 finger(@IPy3,3,28,IP2)
succ(@IPsg,60,IPgo) B i

succ(@IPsg,3,IP3) finger(@1IP,3,4,37,1P3)

bestSucc(@IPss, 60, IPso)\ 58 \
pred(@IPsg,40,IP40) -7 4 1 3§\\
/ l

/ ( ‘14’

\
| / *\;\16,‘
40 /

]

I (oA
node(@IP37,37)\ 33 | - \20,‘
Succ(@IP3,,40,IPu) | 37 ‘ \ 24
SUCC(@IP37,58 Ipss) )
bestSucc(@IPs7,40, 1|>4.,)\\_4
pred(@IPs;,28,IP5g) 28

Figure 6.6: A Chord ring with the network state for node 58 and 37, the finger entries for node
13, and stored objects 0, 24, 33, 42 and 56. The dotted lines denote the fingers for node 13.

Chord is essentially a mechanism for maintaining a ring-based network and routing
efficiently on it. Figure6.6 shows an example of a Chord ring. Each node in the Chord
ring has a unique 160-bit node identifier. For simplicity in the figure, we show them as

integers ranging from 0 to 60. Each Chord node is responsible for storing objects within
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a range of key-space. This is done by assigning each object witK keythe first node

whose identifier is equal to or follows in the identifier space. This node is called the
successoof the keyK. Note that data items and nodes are mapped into the same identifier
space. Therefore each node also has a successor: the node with the next-higher identifier.
For example, the objects with key 42 and 56 are served by node 58.

In Chord, each node maintains the IP addresses of multiple successors to form a ring
of nodes that is resilient to failure. Once a node has joined the Chord ring, it maintains
network state fo6successors in the ring (tiseicctable) with the closest identifier distance
to the node, and a single predecessor fitezl table of size 1) that stores the address of
the node whose identifier just precedes the node. bEstSucctores the address of the
successor whose identifier is the closest among all the successors to the current node. For
example, ifS= 2, the successors of node 58 in Fig6té are 60 and 3, its best successor
is 60 and its predecessor is 40.

In order to perform scalable lookups, each Chord node also hdidgextable, point-
ing at peers whose identifier distances exponentially increase by powers of two from itself.
The entries in théinger table are used for efficiently routing lookup requests for specific
keys. There are typically 160 finger entries at each Chord node with idehjfignere the
ith entry stores the node that is responsible for the KeyR. In our example Chord ring,

node 13 has finger entries to nodes 14, 16, 28 and 37, as denoted by the dotted lines.

6.3.1 Chord Network State

Figure 6.7 shows the materialized tables that are used to store the network state of P2-
Chord. For convenience, we also show the corresponding schemas of the tables with their
abbreviations are shown in Tal8el

Each node stores a singendmarktuple denoting the address of the node that it uses

to join the Chord network. It also storesiadelDtuple that contains its node identifier. In
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materialize(nodelD, infinity, 1, keys(1)).
materialize(landmark, infinity, 1, keys(1)).
materialize(finger, 180, 160, keys(2)).
materialize(uniqueFinger, 180, 160, keys(2)).
materialize(bestSucc, 180, 1, keys(1)).
materialize(succ, 30, 16, keys(2)).
materialize(pred, infinity, 1, keys(1)).
materialize(join, 10, 5, keys(1)).
materialize(pendingPing, 10, infinity, keys(3)).
materialize(fFix, 180, 160, keys(2)).

materialize(nextFingerFix, 180, 1, keys(1)).

Figure 6.7: Materialized tables for P2-Chord.

addition, each node stores the network state for Chord isube pred bestSucandfinger
tables. To illustrate, Figuré.6 shows the network state stored at n&@ghat consists of

the following tuples:

o A node(@IRg,58) tuple, where 155 denotes the IP address of node 58, and 58 is the

actual identifier itself

e succ(@IRg,60,IR;0) and succ(@1Ey,3,IP3) tuples storing the immediate identifier

and IP addresses of the two successors of node 58.

e bestSucc(@I18,60,IR;0) and pred(@1Bg,40,1Py0) tuples storing the identifier and IP

addresses of the best successor and predecessor of node 58.

The figure also shows similar network state for node 37, and the four finger entries for

node 13: finger(@18,0,14,1R4), finger(@I1R3,1,16,IR¢), finger(@IR3,3,28,1Rg) and
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Predicate Schema

nodelD(@NI,N) nodelD(@NodelP,NodelD)
landmark(@NI,N) landmark(@NodelP,NodelD)
finger(@NI1,1,BI,B) finger(@NodelP,EntryNumber,BestFingerIP,

BestFingerlD)
unigueFinger(@NI,1,BIl,B) uniqueFinger(@NodelP,FingerIP)

bestSucc(@NI,N) bestSuccessor(@NodelP,NodelD)

succ(@NI,N) successor(@NodelP,NodelD)

pred(@NI,N) predecessor(@NodelP,NodelD)

join(@NI,E) join(@NodelP,EventID)

pendingPing(@NI,P1LE,T) pendingPing(@nodelP,PingNodelD,EventID, Ping-
Time)

lookup(@NI,K,R,E) lookup(@currentNodelP,Key,RequestingNode,
EventID)

lookupResults(@NI,K,R,RI,E) lookupResults(@RequestingNodelP,Key,ResultKey,
ResultNodelP,EventID)

Table 6.1: Predicates and corresponding schemas of materialized tables and lookup events used
in P2-Chord

finger(@IR3,4,37,IR7). Since there can be multiple finger entries pointing to the same
node, thauniqueFingertable is used to keep track of only the unique nodes that are pointed
by the finger entries.

In addition, there are other materialized tables sucljoms pendingPing fFix and
nextFingerFixthat are used to store intermediate state in our P2-Chord implementation. In
the rest of the section, we demonstrate how different aspects of Chord can be specified in
NDlog: joining the Chord networking maintenancgfinger maintenance and routingnd

failure detection

6.3.2 Joining the Chord Network

When a node is started, rules i1-i4 from Fig&.8 can immediately deduce facts that set

the initial state of the node. Rule i1 sets fred to point to NIL indicating that there are
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i1 pred(@NI,P,PI) :- periodic(@NI,E,0,1), P = “NIL", Pl = "NIL".

i2 nextFingerFix(@NI, 0) :- periodic(@NI,E,0,1).

i3 node(@NI,N) :- periodic(@NI,E,0,1), env(@NI,H,N), H = "node”.

i4 landmark(@NI,LI) :- periodic(@NI,E,0,1), env(@NI,H,LI), H = "landmark”.

Figure 6.8: Rules for initializing a Chord node.

no predecessors. Rule i2 initializes thextFingerFixto beO for use in finger maintenance,
as described in Sectidh3.4 Rule i3 initializes dandmark(@NI,LItuple in thelandmark
table of each nodBll storing the address of the landmark nadeThis address is input to
the P2 system via a preloaded loealvtable. The landmarkl is set to NIL if the node
itself is the landmark. Each node also storemde(@NI,NYuple that contains the random

node identifieN that is also preloaded from the loaaivtable.

j1 joinEvent(@NI,E) :- periodic(@NI,E,1,2).

j2 join(@NI,E) :- joinEvent(@NI,E).

j3 joinReq@LI(LI,N,NILE) :- joinEvent(@NI,E), nodeID(@NI,N),
landmark(@NI,LI), LI I=“NIL".

j4 succ(@NI,N,NI) :- landmark(@NI,LI), joinEvent(@NI,E),
nodelD(@NI,N), LI = “NIL".

j5 lookup@LI(LI,N,NI,E) :- joinReq@LI(LI,N,NI,E).

J6 succ(@NI,S,SI) :- join(@NI,E), lookupResults(@NI,K,S,SI,E).

Figure 6.9: Rules for joining the Chord ring.

Figure 6.9 shows the rules for joining the Chord ring. To enter the ring, a néde
generates goinEventtuple locally (rule j1) whose arrival triggers rules j2-j6. Rule j2
creates goin tuple upon the arrival of thminEventtuple. In rule 3, if the landmark node

is known (i.e., not NIL), goinReqtuple is sent to the landmark node; otherwise rule j4 sets
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the node to point to itself as a successor, forming an overlay by itself and awaiting others
to join in. When the landmark receives@nReqtuple, rule j5 initiates a lookup from
the landmark node for the successor of the joining node’s idenkifi@nd set the return
address of the lookup to . If the lookup is successful,laokupResultsvent is received
at nodeNl. Rule j6 then defines the joining node’s successacétable) to be the result of

the lookup.

6.3.3 Chord Ring Maintenance

sbl succ(@NI,P,PI) :- periodic(@NI,E,10), nodelD(@NI,N),

bestSucc(@NI,S,SI), pred(@SI,P,PI),

Pl 1= “NIL", P in (N,S).
sb2 succ(@NI,S1,SI1) :- periodic(@NI,E,10), succ(@NI,S,SI), succ(@SI1,S1,SI1).
sb3 pred@SI(SI,N,NlI) :- periodic(@NI,E,10), nodelD(@NI,N),

succ(@NI,S,Sl), pred(@SI,P,PI),

node(@SI,N1), (Pl =“NIL") (N in (P,N1))).

Figure 6.10: Rules for ring stabilization.

After joining the Chord network, each node performs the ring maintenance protocol in
order to maintain a set of successors and a single predecessor. Candidate successors (and
the single predecessor) are found duringstabilizationphase of the Chord overlay main-
tenance. The rules specifying the stabilization phase in Figui@ Stabilization is done
periodically at time intervals of 15 seconds by the rules sb2andsb3 Rule sbl ensures
that a node’s best successor’s predecessor is also stored in its successor table. In rule sb2,
each successor periodically asks all of its successors to send it their own successors. In rule

sb3, a node periodically notifies its successors about itself, allowing its successors to point
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their respective predecessors to the notifying node if it is closer in key-space compared to

their current predecessors.

nl newSuccEvent(@NI) :- succ(@NI,S,SI).

n2 newSuccEvent(@NI) :- deleteSucc(@NI,S,Sl).

n3 bestSuccDist(@NI,miD>) :- newSuccEvent(@NI),nodelD(@NI,N),
succ(@NI,S,S1),D=S-N-1.

n4 bestSucc(@NI,S,SI) :- succ(@NI,S,SI), bestSuccDist(@NI,D), nodelD(@NI,N),
D=S-N-1.

n5 finger(@NI,0,S,SI) :- bestSucc(@NI,S,SI).

Figure 6.11: Rules for computing best successor and first finger entry.

Based on the set of candidate successors obtained from stabilization, additional rules
are required in order to select the best successor, and also evict successors that are no longer
required. In Figures.11, rule nl generatesrmewSuccEverdvent tuple upon the insertion
(refresh) of a new (existing) successor. Rule n2 generatesv&uccEverior deletions of
an existing successor. TimewSuccEvergvent tuple triggers rules n3 amd, which are
used to define as “best” the successor among those stored sn¢hstored table whose
identifier distance from the current node’s identifier is the lowest. Rule n5 further ensures
that the first finger entry (used for routing lookups) is always the same as the best successor.

As new successors are discovered, successor selection only keeps those successors clos-
est to a node in the table, evicting at each discovery the single remaining node (rules s1-s4
in Figure6.12.

6.3.4 Finger Maintenance and Routing

The finger table is used in Chord to route lookup requests. Figule shows the three

rules that are used to implement lookups in Chord. Haokup(@NI,K,R,Eevent tuple
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s1 succCount(@NI,couqat >) :- newSuccEvent(@NI), succ(@NI,S,SlI).

s2 evictSucc(@NI) :- succCount(@NI,C), 4.

s3 maxSuccDist(@NIl,maxD>) :- succ(@NI,S,SI),
nodelD(@NI,N), evictSucc(@NI),
D=S-N-1.

s4 delete succ(@NI,S,SI) :- nodelD(@NI,N), succ(@NI,S,SI),
maxSuccDist(@NI,D), D=S-N- 1.

Figure 6.12: Rules for successor selection.

11 lookupResults(@R,K,S,SI,E) :- nodeID(@NI,N), lookup(@NI,K,R,E),
bestSucc(@NI,S,SlI), Kin (N,S].

12 bestLookupDist(@NI,K,R,E,mikiD>) :- nodeID(@NI,N),
lookup(@NI,K,R,E), finger(@Nl,1,B,Bl),
D=K-B-1,Bin(N,K).

I3 lookup(mink @BI>,K,R,E) :- nodeID(@NI,N),
bestLookupDist(@NI,K,R,E,D), finger(@Nl,I,B,Bl),
D=K-B-1,Bin(N,K).

Figure 6.13: Rules for recursive lookups in Chord

denotes a lookup request at nddlefor key K, originates from nod®& with event identifier
E.

From our earlier introduction to the Chord protocol, we note that all lookup requests
for key K seek the node whose identifier is the immediate successor on the kndrote
I1 is the base case, returning a successful lookup result if the received lookup seeks a key
K found between the receiving node’s identifier and that of its best successor (we come

back to the best successor below). Ralés used in non-base cases, to find the minimum
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distance (in key identifier space modul®9 from the local node’s fingers € for every

finger nodeBl whose identifieB lies between the local node’s identifisrandK. Rule

I3 then selects one of the finger entries with the minimum distance t&kay the target
nodeBI to receive the lookup request. Since there can be multiple such finger entries,
the minjBl¢, aggregate ensures that only one of the finger entries receives the forwarded

lookup.

f1 fFix(@NI,E,I) :- periodic(@NI,E,10), nextFingerFix(@NlI,I).
f2 fFixEvent(@NI,E,) :- fFix(@NI,E,I).
f3 lookup(@NI,K,NILE) :- fFixEvent(@NI,E,I), nodeID(@NI,N), K = Oxk < I + N.
f4 eagerFinger(@NI,1,B,Bl) :- fFix(@NI,E,I), lookupResults(@NI,K,B,BI,E).
f5 finger(@Nl,1,B,BI) :- eagerFinger(@NI,1,B,Bl).
f6 eagerFinger(@NI,1,B,Bl) :- nodelD(@NI,N),
eagerFinger(@NI,11,B,BI), I =11 + 1,
K = 0x1l << |+ N, K in (N,B), BI != NI.
f7 delete fFix(@NI,E,I1) :- eagerFinger(@NlI,1,B,BI), fFix(@NI,E,I11),
| >0,11=1-1.
f8 nextFingerFix(@NI,0) :- eagerFinger(@NI,1,B,Bl), ((I = 159) (BI = NI)).
f9 nextFingerFix(@NI,I) :- nodelD(@NI,N),
eagerFinger(@NI,11,B,BI), I =11 + 1,
K =0x1ll << I +N, Kin (B,N), NI '=BI.
10 uniqueFinger(@NI,BI) :- finger(@Nl,1,B,BI).

Figure 6.14: Rules for generating finger entries.

Figure6.14shows the rules for generating the entries infthgertable. There are two
additional materialized tablg&ix and nextFingerFixthat store intermediate state for the

finger fixing protocol. ThenextFingerFixtable stores one tupleextFingerFix(@NI,that
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stores the next finger entiyto be picked for fixing at nodHll.

Every 10 seconds, rule f1 selects thienger to fix, and then generatesrax(@NI,E,I)
tuple that denotes that thdinger is selected for fixing with event identifier This results
in the generating of &rixEvent(@NI,E,Ievent tuple in ruldé2 which will generate éookup
request for keyk = 2! + N with the corresponding event identifier When the lookup
succeeds, rule f4 receivesl@kupResultevent tuple, which it then uses to update all
the corresponding finger entrief5{6). Rules f7-f9 then deletes tHEix tuple, and then
increments the field of nextFingerFixby 1 for fixing the next finger entry in the next

period. Rule f10 sets theniqueFingerbased on nevingerentries.

6.3.5 Failure Detection

ppl pendingPing(@NI,SI,E1,T) :- periodic(@NI,E,5), succ(@NI,S,SI),
E1l =frand(), SI'=NI, T = fnow().
pp2 pendingPing(@NI,P1,E1,T) :- periodic(@NI,E,5), pred(@NI,P,PI),
E1 = frand(), PI'!=“NIL", T = f_now().
pp3 pendingPing(@NI,FI,E1,T) :- periodic(@NI,E,5), uniqueFinger(@NI,FI),
El:=f_rand(), T:=tnow().
pp4 pingResp(@RI,NI,E) :- pingReq(@NI,RI,E).
pp5 pingReq(@PI,NI,E) :- periodic(@NI,E1,3),
pendingPing(@NI,PI,E,T).
pp6 delete pendingPing(@NI,SI,E,T) :- pingResp(@NI,SI,E), pendingPing(@NI,SI,E,T).

Figure 6.15: Rules for sending keep-alives.

Figure6.15shows the rules that a node utilizes for sending keep-alive messages to its
neighbors. The rules are similar to that of fPieg-Pongprogram presented in Chapt@r

At regular intervals of 5 seconds, each node generatependingPingtuple for each
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fd1 nodeFailure(@NI,P1,E1,D) :- periodic(@NI,E,1), pendingPing(@NI,PI,LE1,T),
Tl1=fnow(),D=T-T1, D>7.

fd2 delete pendingPing(@NI,PI,E,T) :- nodeFailure(@NI,PI,E,D),
pendingPing(@NI,PI,E,T).

fd3 deleteSucc(@NI,S,SI) :- succ(@NI,S,Sl), nodeFailure(@NI,SI,E,D).

fd4 delete succ(@NI,S,SI) :- deleteSucc(@NI,S,SI).

fd5 pred(@NI,”"NIL","NIL") :- pred(@NI,P,Pl), nodeFailure(@NI,PI,E,D).

fd6 delete finger(@NI,1,B,Bl) :- finger(@Nl,1,B,BI), nodeFailure(@NI,BI,E,D).

fd7 delete uniqueFinger(@NI,FI) :- uniqueFinger(@NI,Fl), nodeFailure(@NI,FI,E,D).

Figure 6.16: Rules for failure detection of successors, predecessors and fingers.

one of its neighbors (rules ppfpp2andppl). This results ipingRegmessages that are
periodically (every 3 seconds as indicated in rule pp3) sent to the respective neighbors for
the lifetime of eaclpendingPinguple. Thesg@endingPingsre deleted upon receiving the
correspondingingRespnessages.

Figure6.16shows the rules for detecting failure of successors, predecessors and fingers.
Here, rule fd1 generatemdeFailureevents when there are outstandpendingPinguples
that are unanswered after a period of time. The choices of 7 seconds in rule fd1 and 3
seconds in rule pp5 determine the frequency in wipiclyRegmessages are sent, and the
number unanswered replies that are required before we conclude a node is “dead”. In
our example, a node is considered “dead” if there are two successive unangngiedq
messages. TheodeFailureevent then results in deletion péndingPingsuccandfinger
entries, and resetting the singleed entry (rules fd3-fd7). AdeleteSucevent is generated

to allow the recomputation of the best successor in rules n2-n5.

107



Chapter 6. Declarative Overlays

6.3.6 Summary of Chord

In this section, we have presented tiBlog rules that are necessary for implementing the
Chord distributed hash table. In doing so, we have also demonstrated the compactness of
NDlog: Chord is specified in only 48 rules, which is two orders of magnitude less code
compared to an equivalent C++ implementati88]. In addition, in order to deal with
issues related to message delivery, acknowledgments, failure detection and timeouts, we
have made extensive use of soft-state tables and soft-state rules that were presented in
Chapter2

As a summary, in addition to thmaterializestatements and initialization rules i1-i4,
we review ouNDlog rules based on the three functionalities of a typical overlay network

that we presented earlier:

e Overlay formation and maintenance: rules j1-j6 are used by a node joining the
Chord network via a landmark. Once a node has joined the ring, rules sh1-sb3 are
used to execute the ring stabilization to learn about new successors and refine the
predecessor. Based on the successors learned, rules n1-n5 are used for selecting
the best successor, and rules s1-s4 are used for evicting unnecessary successors. To
ensure that all overlay neighbors are alive, rules ppl-pp3dinréd7for periodically
pinging all successors, predecessors and finger entries, and deleting them if they do

not respond to heartbeats.

e Routing: Given the basic ring network, rules f1-f9 for generating finger table entries

that ensures scalable lookups.

e Forwarding: With the finger table in place, rules I1-13 are used for routing lookup

requests via the finger table.

We note thabverlay formationconstitutes the majority of P2-Chord rules, and clearly
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illustrates the additional challenges in specifying declarative overlays compared to the rela-

tively simplerNDlog programs for implementing routing protocols presented in Ch&pter

6.4 Summary

In this chapter, we demonstrated the useN@flog for expressing two complex overlay
networks, namely the Narada mesh formation and a full-fledged implementation of the
Chord distributed hash table in 16 and 48 rules respectively.

We note that our Chord implementation is roughly two orders of magnitude less code
than the original C++ implementation. This is a quantitative difference that is sufficiently
large that it becomes qualitative: in our opinion (and experience), declarative programs that
are a few dozen lines of code are markedly easier to understand, debug and extend than
multi-thousand-line imperative programs. In the next chapter, we present experimental

results that validate the correctness of hildlog programs for Narada and Chord.
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Evaluation

In this chapter, we evaluate the performance of P2's implementatibibtifg. Our exper-
iments take as inpitiDlog programs, and compile them into P2 dataflows as described in
Chapters. These dataflows are then executed using the P2 system. As our experimental
testbed, we make use of Emuladf)], a cluster-based testbed that supports realistic emula-
tion of latency and bandwidth constraints seen on the Internet, while providing repeatable
experiments in a controlled environment.

The goal of our evaluation is twofold. First, we aim to validate that our declarative
specifications result in the expected network properties in terms of topology and messaging.
Second, we examine our raw performance with an eye toward feasibility: we do not expect
our per-node performance to be as good as a highly-tuned hand-coded implementation, but
we would like it to be acceptable and exhibit scalability trends that one would expect.

The chapter is organized as follows. In Sectibh we present our evaluation of the
path vector protocol. In Sectioh2, we present evaluations of tidarada mesland the

Chord distributed hash table
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7.1 Declarative Routing Evaluation

In our first experiment, we evaluate the performance of declarative routing protocols written
in NDlog using the P2 system. The main metrics that we use in our evaluation are:
Convergence time: Given a quiesced network, the time taken for the network protocol

to generate all its eventual network state. This is equivalent to achiéxpgnt during

NDlog program execution, where there are no new derivations from all rules that are being
executed.

Communication overhead: The number of bytes transferred for each network protocol in
order to achieve convergence in a quiesced network. We consider both aggregate commu-
nication overhead (MB), as well as per-node bandwidth (KBps).

As input to the Emulab testbed, we use transit-stub topologies generated using GT-
ITM [53], a package that is widely used to model Internet topologies. Our topology has
four transit nodes, eight nodes per stub and three stubs per transit node. Latency between
transit nodes is 50 ms, latency between transit nodes and their stub nodes is 10 ms, and
latency between any two nodes in the same stub is 2 ms. The link capacity is set to 10
Mbps. Given the small size of our network, we limited our topology to four transit domains.

We construct an overlay network over the base GT-ITM topology where each overlay
node is assigned to one of the stub nodes. Each overlay node runs the P2 system on one
Emulab machine, and picks four randomly selected overlay neighbors which are stored as

facts in each locatlink table.

7.1.1 Scalability of Path-Vector Protocol

In our first experiment, we measure the performance of our system when all nodes are run-
ning theShortest-Pattprogram of ChapteR, which implements the path-vector protocol

used to compute the shortest latency paths between all pairs of nodes. In our implementa-
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Figure 7.1: Network diameter (ms) vs Number of nodes.

tion, we use theggregate selectiongptimization to avoid sending redundant path tuples
(Section8.1.1), where the most recently computed shortest paths are batched and sent to
neighboring nodes every 500 ms. The duration of 500 ms is chosen as it is an upper bound
on the latency between any two nodes. This ensures that computed paths at each iteration
have sufficient time to be propagated and accumulated at every node for periodic aggregate
selections to be most effective.

Figure 7.1 shows the diameter of the network (computed from the maximum of all
shortest-path latencies) used in our experiments as the number of nodes increases from 25
to 200. Figures/.2 and7.3 show the convergence latency and per-node communication
overhead for th&hortest-Patlprogram as the number of nodes increases. We make two

observations.

e The convergence latency for tB&ortest-Patiprogram is proportional to the network
diameter. This is expected because in a static network, the convergence time of the

path vector protocol depends on the time taken to computietigestshortest paths,
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Figure 7.2: Convergence latency (s) vs Number of nodes.

which in our case is bounded by the time taken for the computed shortest paths to
propagate in the network €., 500msx Dnop, WhereDpqp is the network diameter in

terms of hop count).

e The per-node communication overhead increases linearly with the number of nodes.

This is because each node needs to compute the shortest path to every other node in

the network.

We note that both these observations are consistent with the scalability properties of
the traditional distance vector and path vector protocols, suggesting that our approach does

not introduce any fundamental overheads when used to implement traditional routing pro-

tocols.
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Figure 7.3: Per-node Communication Overhead (KB).

7.1.2 Incremental Evaluation in Dynamic Networks

In our next experiment, we examine the overhead of incrementally maintahidigg
program results in a dynamic network. We run the s&@hertest-Patlprogram on 100
Emulab nodes over a period of time, and subject the network to bursty updates as described
in Section5.4. Each update burst involves randomly selecting 10% of all links, and then
updating the cost metric by up to 10%.

We use the shortest-path random metric since executinyEheg program using this
metric is most demanding in terms of bandwidth usage and convergence time. This is
because as we noted in Sect.], aggregate selections are most useful for queries whose
input tuples tend to arrive over the network out of order in terms of the monotonic aggregate
— e.g., computing “shortest” paths for metrics that are not correlated with the network
delays that dictate the arrival of the tuples during execution.

Figure7.4 plots the per-node communication overhead, when applying a batch of up-

dates every 10 seconds. Two points are worth noting. First, the time it takes the program
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Figure 7.4: Per-node Bandwidth (KBps) for periodic link updates on latency metric (10s update
interval).

to converge after a burst of updates is well within the convergence time of running the
program from scratch. This is reflected in the communication overhead, which increases
sharply after a burst of updates is applied, but then disappears long before the next burst
of updates (Figur@.4). Second, each burst peaks at 19 KBps, which is only 32% of the
peak bandwidth and 28% of the aggregate bandwidth of the original computation. Our re-
sults clearly demonstrate the usefulness of performing incremental evaluation in response
to changes in the network, as opposed to recomputing the queries from scratch

We repeat our experiment using a more demanding update workload (Figynehere
we interleave update intervals that are 2 seconds and 8 seconds, the former interval being
less than the from-scratch convergence time.6fseconds. We observe that despite the
fact that bursts are sometimes occurring faster than queries can run, bandwidth usage is
similar to the less demanding update workload, peaking at 24 KBps and converging within

the from-scratch convergence time.
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Figure 7.5: Per-node Bandwidth (KBps) for periodic link updates (interleaving 2s and 8s update
interval).

7.2 Declarative Overlays Evaluation

In this section, we present performance results of the Narada mesh and the Chord DHT. Our
experiments are carried out on 100 machines on the Emulab tdgtledn both overlay
networks, the latency between any two overlay nodes is set to 100 ms, and link capacity is

set to 10 MBps.

7.2.1 Narada Mesh Formation

We evaluate the Narada specifications on mesh formation shown in AppBridixOur

experiment consists of 100 Narada nodes, one on each Emulab node. All nodes join the
network over a span of 10 seconds. Each Narada node has an initial set of neighbors, and
at regular intervals of 5 seconds, propagate its entire membership list to its neighbors. We

measure the per-node bandwidth (KBps) of periodically sending the membership list in
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the steady state, and also the convergence time (seconds) taken for all Narada nodes have

achieved full membership knowledge of the entire network.

CDF (Membership Fraction)

Time (s)

Figure 7.6: CDF of average Narada membership at each node as fraction of total network size
over time (s).

Figure 7.6 shows the CDF of membership at each node as a fraction of the entire
network size over time (seconds) for a network size of 100 for two experimental runs
(NS=2, NS=34 where we vary the number of neighbors that each node has (2 and 4 neigh-
bors). Each data poir{,y) shows the average fractignof the network that each node
knows at timex. Upon convergence, all nodes learn about every other node in the network
(e, y=1).

Our results show that our Narada implementation converges on the sparser network
(NS= 2) within 60 seconds, while requiring less than 40 seconds to converge on the denser
network NS= 4). The convergence time includes the initial 10 seconds as nodes join
the Narada network. Our results clearly demonstrate the tradeoffs between bandwidth and

convergence in propagating the membership list. The faster convergence of the denser
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network comes at the expense of bandwidth utilizatiorK@p9 as compared to KB ps

for the sparser network.

7.2.2 P2-Chord

In this section, we focus on measuring the full Chord DHT specification in Appeh@ix

Chord is a good stress test of our architecture, being relatively complex compared to other
overlay examples like gossip and end-system multicast. Chord also has the advantage of
being well-studied. Our P2-Chord deployment on the Emulab tegéf#aonsists of 100
machines executing up to 500 P2-Chord instances (5 P2 processes running on each Emulab
machine). We utilize the same network topology as the Narada experiment. Since we are
running up to 5 P2 processes per Emulab node, we selected Emulab machines with newer

hardware (64-bit Xeon 3000 series with 2 GB memory) to run our experiments.
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Figure 7.7: Hop-count distribution for lookups.
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Figure 7.8: CDF for lookup latency.

7.2.2.1 Static Network Validation

In our first round of experiment, we validate the high-level characteristics of the Chord
overlay. We generate a uniform workload of DHT “lookup” requests to a static set of nodes
in the overlay, with no nodes joining or leaving. This is somewhat unrealistic but it allows
us to ensure we are achieving the static properties of Chord. In each experiment, we start
a landmark node, and have all other nodes join the landmark node at regular intervals.
Once all the nodes have joined the Chord overlay, we issue lookups every 15 seconds
simultaneously (with the same lookup ki€y from 10 nodes.

Figure7.7shows the hop-count distribution for our workload. Except for a few outliers,
99% of all lookups complete within 10 hops. The average hop count of lookups3re 3
4.0 and 45 for node sizes of 100, 300 and 500 respectively, approximating the theoretical

average of ® x logz(N), whereN is the number of nodes.
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Figure7.8shows the CDF of lookup latencies for different network sizes. As expected,
the average latency increases in proportion to the average lookup hop count for each net-
work size. On a 500 node static network, 99% of all lookups complete in less than 3
seconds. The average (median) latencies @& Seconds (02 seconds), .92 seconds
(0.82 seconds) and Q9 seconds (@8 seconds) for node sizes of 100, 300 and 500 respec-
tively. Our average and median latency numbers are within the same order of magnitude as
the published numbefd14 of the MIT Chord deployment.

In addition to achieving expected latency numbers, our lookups are also “correct”.
All lookup requests return successfully with the lookup requests. In addition, all lookups
achieve 100% consistency, where all lookup requests for the same key issued from different

nodes return identical results.
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Figure 7.9: Per-node Bandwidth (KBps) over time (s).

Figure7.9 shows the per-node bandwidth (KBps) consumption over time (in seconds)
for a static P2-Chord network where fingers are fixed every 10 seconds, and ring stabiliza-

tion (exchange of successors and predecessors among neighbors) happen every 10 seconds.
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Each node periodically send ping messages to neighbors every 3 seconds. After an initial
linear increase in bandwidth as nodes join the Chord ring, the bandwidth utilization stabi-
lizes at 034 KBps, well within the published bandwidth consumption of 1 KIBp33 of

other high consistency and low latency DHTSs.

7.2.2.2 Churn Performance

In our second round of experiments, we focus on the performance of our Chord imple-
mentation under varying degrees of membership churn. Again, our goal is to validate that
our compact specification of Chord faithfully captures its salient properties following the
methodology iN103. We bring up a 100 node Chord network, and once the network is
stable, induce churn on the network for 20 minutes as follows. Periodically, we select a
node at random to fail. Upon each node failure, a new node immediately joins the Chord
network with a different node identifier. We vary the interval between every node fail-
ure/restart event to achieve different average node session times (8, 16, 47 and 90 minutes).
In the steady state under constant churn, we issued lookups for the same key simulta-
neously from 10 different nodes every 15 seconds. Following the methodolddph
we define aconsistentookup when a majority of the lookups-6) see a consistent result
that points to the same node that owns the key. For each group of 10 lookups, we compute
the maximum fraction of lookups that share a consistent result. P2-Chord’s churn param-
eters are set as follows: (1) the fix finger and ring-stabilization periods are both set to 10
seconds as before; (2) Each node periodically send ping messages to neighbor nodes every
3 seconds, and remove entries from the local neighbor tables if they do not respond to two
successive pings.
Figure7.10shows the CDF (log-scale for Y-axis) for thensistent fractiomf lookups,
which is defined as the fraction of lookups with consistent result for each group of simulta-

neous lookups. To interpret the graph, each data-grigj shows the fractioy of lookups
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with lookup consistency less than Our results show that P2 Chord does well under low
churn (session times of 90 minutes and 47 minutes), generating 99% and 96% consistent
lookups. Under high churn (session times of 16 minutes and 8 minutes), P2 Chord performs

well, producing 95% and 79% consistent lookups.
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Figure 7.10: CDF for lookup consistency fraction under churn.

Figure 7.11 shows the CDF of the lookup latencies for diferent churn rates. At low
churnrates, the lookup latencies are similar to those measured under a stable Chord network
with no churn. At high churn rates, the average lookup latency increased f8dns€conds
to 1.01 seconds and 32 seconds respectively.

While P2-Chord performs acceptably, it clearly does not attain the published figures
for the MIT implementation (at least % consistency for a session time of 47 minutes).
Ultimately, an evaluation of a system like P2 rests on an assessment of the ideal tradeoff
between code size and performance. It may be the case that churn performance can be at
the expense of additional rules that implements lookup retries on a per-hop basis, and better

failure detection techniques with adaptive timers.
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Figure 7.11: CDF for lookup latency under churn.

7.3 Summary

In this chapter, we evaluated a variety of declarative networking protocols on the Emulab
testbed. We demonstrated that MIDlog programs are faithful to their specifications, and

(2) the P2 system correctly executed the declarative specifications to achieve the correct
network implementation. We based our correctness criteria of a declarative network on
its ability to achieve expected network properties in terms of topology and messaging, and
also to incur maintenance overhead and forwarding performance that were within published

results of other equivalent implementations.
In summary, we made the following observations from our evaluation results:

e Our Shortest-Path NDlogrogram exhibited scalability trends similar to that of tra-
ditional distance vector and path vector protocols. We observed that the convergence
time of this program was proportional to the network diameter, and generated com-

munication overhead that was linear to the number of nodes. This validated our
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routing protocol and demonstrated that there were no fundamental overheads in our

approach relative to traditional approaches.

o We further demonstrated the usefulness of performing incremental evaluation of the
Shortest-Path NDlogrogram in a dynamic network, where the shortest paths was
computed at a bandwidth cost that was a fraction of recomputing the programs from
scratch. As in network protocols, such incremental evaluation is required both for
timely updates and for avoiding the overhead of recomputing all routing tables when-

ever there are changes to the underlying network.

e TheNDlogdeclarative overlay programs for the Narada mesh and Chord achieve the
expected high-level properties of their respective overlay networks for both static and
dynamic networks. For example, in a static network of up to 500 nodes, the measured
hop-count of lookup requests in the Chord network conformed to the theoretical av-
erage of 6 x logzN hops, and the latency numbers were within the same order of
magnitude as published Chord numbers. The steady state maintenance overhead was
also within the published bandwidth consumption of other high consistency and low
latency DHTSs. In a dynamic network, our Chord implementation was able to achieve
good lookup performance under low churn and respectable performance under high

churn.

In the next chapter, we describe a number of optimizations that are useful in the declar-
ative networking setting, and present evaluation results to validate the effectiveness of these

optimizations.
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Optimization of NDlog Programs

One of the promises of a declarative approach to networking is that it can enable auto-
matic optimizations of protocols, much as relational databases can automatically optimize
gueries. These not only reduces the burden on programmers, it also enables what Codd
calleddata independend@3]: the ability for the implementation of a program to adapt to
different underlying execution substrates.

Our main goals in this chapter are to demonstrate that our declarative approach is
amenable to automatic query optimizations, and to illustrate the close connection between
network optimizations and query optimizations. In doing so, we open up what appears to
be a rich new set of research opportunities.

The chapter is organized as follows. In Sect®d, we explore the application of
traditional Datalog optimizations in the declarative networking context. We then propose
new techniques for multi-query optimizations and cost-based optimizations in Se&:ons
and8.3respectively. To validate our proposed optimizations, in Se@&idnwve present our
measurements of the performance of the P2 system executing optimized declarative routing

gueries on the Emulab testbed.
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8.1 Traditional Datalog Optimizations

We first explore the applicability of three traditional Datalog optimization technicagps:
gregate selectionsnagic set@ndpredicate reorderingWe focus primarily on optimizing
declarative routing queries which are generally variants of transitive closure queries. There
have been substantial previous work on optimizing such queries in centralized settings. In
Section10.3 we discuss how these optimization techniques can be extended to support

more complex declarative overlay networks.

8.1.1 Aggregate Selections

A naive execution of th&Shortest-patlprogram computes all possible paths, even those
paths that do not contribute to the eventual shortest paths. This inefficiency can be avoided
with an optimization technique known aggregate selectior[418, 47].

Aggregate selections are useful when the running state of a monotonic aggregate func-
tion can be used to prune program evaluation. For example, by applying aggregate selec-
tions to theShortest-patiprogram, each node only needs to propagate the current shortest
paths for each destination to neighbors. This propagation can be done whenever a shorter
path is derived.

A potential problem with this approach is that the propagation of new shortest paths
may be unnecessarily aggressive, resulting in wasted communication. As an enhancement,
we propose a modified scheme, calptiodic aggregate selectionghere a node buffers
up new paths received from neighbors, recomputes any new shortest paths incrementally,
and then propagates the new shortest paths periodically. The periodic technique has the
potential for reducing network bandwidth consumption, at the expense of increasing con-
vergence time. It is useful for queries whose input tuples tend to arrive over the network in

an order that is not positively correlated with the monotonic aggregatg —computing
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“shortest” paths for metrics that are not correlated with the network delays that dictate the
arrival of the tuples during execution.

In addition, aggregate selections are necessary for the termination of some queries. For
example, with aggregate selections, even if paths with cycles are permitteéshdhtest-

Pathprogram will terminate, avoiding cyclic paths of increasing lengths.

8.1.2 Magic Sets and Predicate Reordering

The Shortest-Pattprogram in our example computa#i-pairs shortest paths. This leads
to unnecessary overhead when querying for paths between a limited set of sources and/or
destinations. This problem can be alleviated by applying two optimization techniques:

magic-sets rewritingndpredicate reordering

Magic-Sets Rewriting: To limit computation to the relevant portion of the network, we
use a query rewrite technique calledgic sets rewriting16; 18]. The Magic Sets method
is closely related to methods such as Alexanld€d and QSQ[71], all of which are
designed to avoid computing facts that do not contribute to the final answer to a recur-
sive query. The proposed processing techniques in Chages based on bottom-up (or
forward-chaining) evaluatiof96] where the bodies of the rules are evaluated to derive
the heads. This has the advantage of permitting set-oriented optimizations while avoiding
infinite recursive loops, but may result in computing redundant facts not required by the
program. For example, even when t8hortest-Patlprogram (Figure2.4 in Chapter2)
specifieshortestPath(@a,b,Z,P,@p the “goal” of the query, figely applying bottom-up
evaluation results in the computationailf paths betweeall pairs of nodes.

The magic sets rewrite avoids these redundant computations and yet retains the two
advantages of bottom-up evaluation. The key ideas behind the rewrite include (1) the in-

troduction of “magic predicates” to represent variable bindings in queries that a top-down
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search would ask, and (2) the use of “supplementary predicates” to represent how answers
are passed from left-to-right in a rule. The rewritten program is still evaluated in a bottom-
up fashion, but the additional predicates generated during the rewrite ensure that there are
no redundant computations.

We illustrate the use of magic sets in an example: by modifying rule spl from the
Shortest-Pattprogram, the following program in Figu@1 computes only those paths

leading to destinations in threagicDsttable.

#include(sp2,sp3,sp4)

spl-d path(@S,D,D,P,C) :- magicDst(@D),#link(@S,D,C), Pimit{S,D).
m1 magicDst(@a).

Query shortestPath(@S,a,P,C).

Figure 8.1: Shortest-Path program with magic sets

Rule spl-d initializes 1-hop paths for destinations whosgicDst(@D)s present in
themagicDsttable. Rule m1 adds magicDst(@afact in themagicDsttable. Intuitively,
the set oimagicDst(@DYacts is used as a “magic predicate” or “filter” in the rules defining
paths. This ensures that rule sp2 propagates paths to selected destinations based on the
magicDsttable (in this case, paths to only node The shortest paths are then computed

as before using rules sp3 and sp4.

Predicate Reordering: The use of magic sets in the previous program is not useful for
pruning paths from sources. This is because paths are derivedBatmm-Up” (BU)
fashion starting from destination nodes, where the derived paths are shipped “backwards”
along neighbor links from destinations to sources. Interestingly, switching the search strat-
egy can be done simply bgorderingthe pathand #link predicates. Recall from Chapger

that predicates in a rule are evaluated in a default left-to-right order. This has the effect of

turning sp2 from aight-recursiveto aleft-recursiverule: the recursive predicate is now
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to the left of the non-recursive predicate in the rule body. Together with the use of magic
sets, theMlagic-Shortest-Patiprogram in FigureB.2 allows filtering onboth sources and

destinationsas we proceed to describe.

spl-sd pathDst(S,@D,D,P,C) :- magicSrc(@S), #link(@S,D,C),
P = f.init(S,D).
sp2-sd pathDst(S,@D,Z,P,C) :- pathDst(S,@2,Z1,P1,C1),#link(@Z,D,C2),
C =C1 + C2, P =1fconcatPath(P1,D).
sp3-sd spCost(@D,S,mirC>) :- magicDst(@D),pathDst(S,@D,Z,P,C).
sp4-sd shortestPath(S,@D,P,C) :- spCost(S,@D,C),pathDst(S,@D,Z,P,C).

Figure 8.2: Magic-Shortest-Path Program.

The left-recursiveShortest-Pathprogram computes 1-hop paths starting from each
magicSrcusing rule spl-sd. Rulep2-sdthen recursively computes new paths by follow-
ing all reachable links, and stores these pathsadlsDsttuples at each destination. Rules
sp3-sd and sp4-sd then filter relevant paths basenagicDst and compute the shortest
paths, which can then be propagated along the shortest paths back to the source node. In
fact, executing the program in tHiSop-Down” (TD) fashion resembles a network protocol
calleddynamic source routinfDSR)[64] which we presented in Secti@3.4as a declar-
ative routing example program. DSR is proposed for ad-hoc wireless environments, where
the high rate of change in the network makes such targeted path discovery more efficient
compared to computing all-pairs shortest paths.

Interestingly, the use of magic sets and predicate reordering reveals close connections
between query optimizations and network optimizations. By specifying routing protocols
in NDlog at a high level, we demonstrate that the two well-known protocols — one for wired
networks and one for wireless — differ only in applying a standard query optimization: the

order of two predicates in a single rule body. In addition, the use of magic sets allows us to
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do a more targeted path discovery suited in the wireless setting. Ultimately, we hope that
such connections between query optimizations and network optimizations will provide a

better understanding of the design space of routing protocols.

8.2 Multi-Query Optimizations

In a distributed setting, it is likely that many related queries will be concurrently executed
independently by different nodes. A key requirement for scalability is the ability to share
common query computationa.§., pairwise shortest paths) among a potentially large num-

ber of queries. We outline two basic strategies for multi-query sharing in this environment:

guery-result cachingndopportunistic message sharing

Query-Result Caching. Consider theMagic-Shortest-Patiprogram where noda com-
putesshortestPath(@a,d,[a,b,d],&p noded. This cached value can be reused by all
gueries for destinatiod that pass through, e.g., the path frome to d. Currently, our
implementation generates the cache internally, building a cache of all the query results (in
this caseshortestPathuples) as they are sent back on the reverse path to the source node.
Since the subpaths of shortest paths are optimal, these can also be cached as an enhance-

ment.

Opportunistic Message Sharing.In the previous example, we considered how different
nodes (src/dst) could share their work in running sa@eneprogram logic with different
constants. Sharing acradéferentqueries is a more difficult problem, since it is non-trivial

to detect query containment in gendizé]. However, we observe that in many cases, there
can be correlation in the message patterns even for different queries. One example arises
when different queries request “shortest” paths based on different metrics, such as latency,
reliability and bandwidthpathtuples being propagated for these separate queries may be

identical modulo the metric attribute being optimized.
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A strategy that we have implementedigportunistic message sharinghere multiple
outgoing tuples that share common attribute values are essentially joined into one tuple if
they are outbound to the same destination; they are re-partitioned at the receiving end. This
achieves the effects of jointly rewriting the queries in a fashion, but on an opportunistic
basis: derivations are done in this combined fashion only in cases that are spatiotempo-
rally convenient during processing. In order to improve the odds of achieving this sharing,
outbound tuples may be buffered for a time and combined in batch before being sent.

As an alternative to this opportunistic sharing at the network level, one can achieve ex-
plicit sharing at a logical levek.g., using correlated aggregate selections for pruning dif-
ferent paths based on a combination of metrics. For example, consider running two queries:
one that computes shortest latency paths, and another that computes max-bandwidth paths.
We can rewrite these as a sindilog program by checking two aggregate selections,

i.e., only prune paths that satisbothaggregate selections.

8.3 Hybrid Rewrites

Currently, rules are expressed using a left-recursive (BU) or right-recursive (TD) syntax
(Section8.1.2. Our main goal during query executionnstwork efficiencyi.e., reducing

the burden on the underlying network), which, typically, also implies faster query con-
vergence. It is not difficult to see that neither BU nor TD execution is universally superior
under different network/query settings. Even in the simple case of a shortest-path discovery
gueryshortestPath(@S,@D,P,Ggtween two given nodd& S, @D) minimizing message
overhead implies that our query processor should prefer a strategy that restricts execution to
“sparser” regions of the networle.§)., doing a TD exploration from a sparsely-connected

source@9.

We argue thatost-basedjuery optimization techniques are needed to guarantee effec-
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tive query execution plans. While such techniques have long been studied in the context of
relational database systems, optimizing distributed recursive queries for network efficiency
raises several novel challenges. In the remainder of this section, we briefly discuss some of

our preliminary ideas in this area and their ties with work in network protocols.

The Neighborhood Function Statistic.As with traditional query optimization, cost-based
techniques must rely on appropristatisticsfor the underlying execution environment that
can drive the optimizer's choices. One such key statistic for network efficiency ls-the
cal neighborhood density J. Formally,N(X,r) is the number of distinct network nodes
within r hops of nodeX. The neighborhood function is a natural generalization of the
size of the transitive closuré.€., reachability set) of a node, that can be estimated locally
(e.g., through other recursive queries running in the background/periodicaNyX,r)

can also be efficientlgpproximatedhrough approximate-counting techniques using small
(log-size) messagdd0g. To see the relevance of() for our query-optimization prob-
lem, consider our examplkhortestPath(@s,@d,P,Query, and lediist(s,d) denote the
distance of, d in the network. A TD search would explore the network starting from node
s, and (modulo network batching) result in a totalNfs,dist(s,d)) messages (since it
reaches all nodes within a radiusdifst(s,d) from s). Note that each node only forwards
the query message once, even though it may receive it along multiple paths. Similarly, the
cost for a BU query execution N(d,dist(s,d)). However, neither of these strategies is
necessarily optimal in terms of message cost. The optimal strategy is actustlyrid
schemehat “splits” the search radius distfl) betweens andd to minimize the overall
messages; that is, it first findsandry such that:

(rs,rg) = arg ~ min  { N(s,;rs)+N(d,rq) },
rs+rg=dist(s,d)

and then runs concurrent TD and BU searches from nedesld (with radii rs andrg,
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respectively). At the end of this process, both the TD and the BU search have intersected
in at least one network node, which can easily assemble the sha@spéth. While

the above optimization problem is trivially solvable @(dist(s,d)) time, generalizing

this hybrid-rewrite scheme to the case of multiple sources and destinations raises difficult
algorithmic challenges. And, of course, adapting such cost-based optimization algorithms
to work in the distributed, dynamic setting poses system challenges. Finally, note that
neighborhood-function information can also provide a valuable indicator for the utility of

a node as a result cache (Sect®8 during query processing.

Adaptive Network Routing Protocols. As further illustrations on the close connection
between networking routing and query optimizations, we note that the networking literature
has considered adaptive routing protocols that strongly resemble our use of hybrid rewrites;
hence, we believe this is an important area for future investigation and generalization. One
interesting example is the class Bdne-Routing ProtocolZRP)[55]. A ZRP algorithm

works by each node precomputik¢hop-radiusshortest paths to neighboring nodes (in its
“zone”) using a BU strategy. Then, a shortest-path route from a source to destination is
computed in a TD fashion, using essentially Magic-Shortest-Patiprogram described
above, utilizing any precomputed shortest paths along the way. Each node sets its zone
radiusk adaptively based on the density and rate of change of links in its neighborhood; in
fact, recent work101] on adjusting the zone radius for ZRP-like routing uses exactly the

neighborhood-function statistic.

8.4 Evaluation of Optimizations

In this section, we examine the effectiveness of the optimizations that are proposed in this
chapter. We base our workload primarily on declarative routing protocols, and measure

four variants of the sam8hortest-Patlprogram, differing in the link metric each seeks
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to minimize. Our experimental setup is similar to Sectibf, where we executed the
Shortest-Pattprogram on an overlay network in which each node has four neighbors. In
addition, for each neighbor link, we generate additional metrics that include reliability, and
a randomly generated value. Note that our reliability metric for each link is synthetically
generated to be correlated with latency.

On all our graphs, we label these queries by their link metdop-Count Latency
Reliability andRandomrespectively. Recall from Sectiahl.2thatRandonserves as our
stress case: we expect it to have the worst performance among the different metrics. This is
due to aggregate selections being less effective when the aggregate metric is uncorrelated

with the network latency.

8.4.1 Aggregate Selections
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Figure 8.3: Per-node Bandwidth (KBps) with Aggregate Selections.

We first investigate the effectiveness of aggregate selections for different queries. Fig-

ure8.3shows the per-node bandwidth usage against time fdBtioetest-Patiprogram on
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% Results
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Figure 8.4: Results over time (seconds) with Aggregate Selections.

all four metrics. Figure3.4 shows the percentage of eventual best paths completed against
time. Our results show thadop-Counthas the fastest convergence time & 8econds,
followed by LatencyandReliability in 3.5 seconds and.8 seconds respectiveliRandom

has the worst convergence time obSeconds.

During program execution, the communication overhead incurred by all four queries
shows a similar trend (Figur&.3). Initially, the communication overhead increases as
more and more paths (of increasing length) are derived. After it peaks at arokBp53
per-node, the communication overhead decreases, as fewer and fewer optimal paths are left
to be derived. In terms of aggregate communication overn@addomincurs the most
overhead (12 MB), while Hop-Count LatencyandReliability use 91 MB, 120 MB and
12.8 MB, respectively. The relatively poor performanceRdndomis due to the lack
of correlation between the metric and network latency, leading to a greater tendency for
out-of-order arrival of path tuples that results in less effective use of aggregate selection,

translating to more messaging overhead and delays.
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Figure 8.5: Per-node Bandwidth (KBps) with periodic aggregate selections.

The results in Figure8.5and8.6illustrate the effectiveness of thperiodic aggregate
selectionsapproach, as described in Sectii.l, where the wait period is set to 500 ms.
In particular, this approach reduces the bandwidth usagtopfCount Latency Reliabil-
ity and Randomby 19%, 15%, 23% and 34%, respectiveRandomshows the greatest
reduction in communication overhead, demonstrating the effectiveness of this technique
for improving the performance of queries on metrics that are uncorrelated with network

delay.

8.4.2 Magic Sets and Predicate Reordering

Next, we study the effectiveness of combining the use of magic sets and predicate re-
ordering for lowering communication overhead when the requested shortest paths are con-
strained by randomly chosen sources and destinations. Our workload consists of queries
that request source-to-destination paths based okldpeCountmetric. For each query,

we execute thdlagic-Shortest-Patprogram (Sectio8.1.2.
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Figure 8.6: Results over Time (seconds) with periodic aggregate selections.

Figure8.7 shows the aggregate communication overhead as the number of queries in-
creases. Th&lo-MSline represents our baseline, and shows the communication overhead
in the absence of rewrites (this essentially reduces to computing all-pairs least-hop-count).
TheMSline shows the communication overhead when running the program optimized with
magic sets, but without any sharing across queries. When there are few queries, the com-
munication overhead d¥1Sis significantly lower than that dlO-MS As the number of
gueries increases, the communication overhedd®mhcreases linearly, exceedibhp-MS
after 170 queries.

In addition, FigureB.7 also illustrates the effectiveness of caching (Sec8d). The
MSCline shows the aggregate communication overhead for magic sets with caching. For
fewer than 170 queries, there is some overhead associated with caching. This is due to
false positive cache hits, where a cache result does not contribute to computing the even-
tual shortest path. However, as the number of queries increases, the overall cache hit rate

improves, resulting in a dramatic reduction of bandwidth. When limiting the choice of
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Figure 8.7: Aggregate communication overhead (MB) with and without magic sets and caching.

destination nodes to 309MSC-30% and 10% MSC-10%, the communication overhead
levels of at 18 MB, and 1 MB, respectively. The smaller the set of requested destinations,
the higher the cache hit rate, and the greater the opportunity for sharing across different

gueries. e

8.4.3 Opportunistic Message Sharing

We study the impact of performing opportunistic message sharing across concurrent queries
that have some correlation in the messages being sent. RBgiishows per-node band-
width usage for running the queries on different metrics concurrently. To facilitate sharing,
we delay each outbound tuple by 500 ms in anticipation of possible sharing opportunities.
The Latency Reliability and Randomlines show the bandwidth usage of each query in-
dividually. TheNo-Shardine shows the total aggregate bandwidth of these three queries
without sharing. The&hareline shows the aggregate bandwidth usage with sharing. Our

results clearly demonstrate the potential effectiveness of message sharing, which reduces
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Figure 8.8: Per-node Bandwidth (KBps) for message sharing (300 ms delay).

the peak of the per-node communication overhead from 46 KBps to 31 KBps, and the total
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communication overhead by 39%.

8.4.4 Summary of Optimizations

We summarize our evaluation as follows:

1. The aggregate selections optimization indeed reduces communication overhead. Us-

ing periodic aggregate selectiomsduces this overhead further.

2. The use of magic sets and predicate reordering reduces communication overhead

when only a limited number of paths are queried.

3. Multi-query sharing techniques such as reusing previously computed results and op-

portunistic result caching demonstrate the potential to reduce communication over-

head when there are several concurrent queries.
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8.5 Summary

In this chapter, we applied a variety of query optimizations to declarative networks. We
explored the use of traditional query optimizations and proposed new optimizations moti-
vated by the distributed setting. We demonstrated that declarative networks are amenable to
automatic optimizations, and showed that many of these optimizations can improve the per-
formance of declarative networks substantially. In addition, we validated the effectiveness
of several of our optimization techniques on the Emulab testbed.

Interestingly, we revealed surprising relationships between network optimizations and
guery optimizationse.g., a wired protocol can be translated to a wireless protocol by ap-
plying the standard database optimizations of magic sets rewrite and predicate reordering.
This suggests that these protocols are more similar than the are often made out to be. By
drawing the connections between network optimizations and query optimizations, we set
the groundwork for a series of more focused investigations in the future. We revisit these

issues as future work in Sectidi®©.3
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Related Work

In this chapter, we summarize related work in both the database and networking domain,
focusing on deductive databases for processing recursive queries, distributed query proces-
sors, extensible networks and network specification languages. In addition, there is also a
wide variety of related work in dataflow architectures such as ¢b&k which we have

reviewed and compared with our system in Chagter

9.1 Deductive Databases

A deductive databasgystem is a database system which can make deductiensr{fer
additional rules or facts) based on rules and facts stored in the database. Datalog is a query
and rule language for deductive databases that syntactically is a subset of B@log

Unlike Prolog, Datalog utilizes a bottom-up (or forward-chaining) evaluation strategy that
guarantees termination, and also permits set operations. This comes at the potential expense
of redundant computations which can be avoided with query optimizations such as the
magic sets rewrit€18; 16] described in Chaptes.

One of the key features of Datalog is its support for recursive quétiés A pri-
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mary use of deductive database systems is hence for supporting queries over graphs that
themselves exhibit recursive properties. The database literature has a rich tradition of re-
search on recursive query languages and processing. This work has influenced commercial
database systems to a certain extent. However, recursion is still considered an esoteric fea-
ture by most practitioners, and research in the area has had limited practical impact. Even
within the database research community, there is longstanding controversy over the prac-
tical relevance of recursive queries, going back at least to the Laguna Beach Rdport

and continuing into relatively recent textbodks 7.

In addition to our work, there has been recent renewed enthusiasm for applications
of recursive queries. There are other contemporary examples from outside the traditional
database research literature, including software andl{28, trust management7] and
diagnosis of distributed systert§] and network security analysi¢28. Our concept of
link-restrictedrules is similar in spirit tad3log [63], a query language based on Datalog
proposed for dynamic site discovery along web topologies.

In terms of distributed systems, the closest analog is the recent work by Abitetooul
al. [5]. They adapt the QS{¥1] technique to a distributed domain in order to diagnose
distributed systems. An important limitation of their approach is that they do not consider
partitioning of relations across sites as we do; they assume each relation is stored in its
entirety in one network location. Further, they assume full connectivity and do not consider
updates concurrent with query processing.

Much research in the parallel execution of recursive quéfidshas focused on high
throughput within a cluster. In contrast, our strategies and optimizations are geared towards
bandwidth efficiency and fast convergence in a distributed setting. Instead of hash-based
partitioning schemes that assume full connectivity among nodes, we are required to perform
guery execution only along physical network links, and to deal with network changes dur-

ing query execution. There is also previous empirical work on the performance of parallel
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pipelined execution of recursive querigs 1. Our results extend that work by providing

new, provably correct pipelining variants of semivreevaluation.

9.2 Internet-Scale Query Processing

There has been substantial work in the area of distribl8ed116 and parallel database
systemdg39]. While parallelism per se is not an explicit motivation of our work, algo-
rithms for parallel query processing form one natural starting point for systems that pro-
cess queries on multiple machines. For example,localization rewritedescribed in
Chapter5.2 builds upon previous work on data repartitioning during joins in systems like
Gammd38] and Volcand51]. Of greater relevance to our work on declarative networking
is research omnternet-scalequery processing, where the focus is on building distributed
querying facilities over data on the Internet. Examples of these systems includd6&tER

59, 78; 81], Iris Net[49], Astrolabe[104] etc.

Of these Internet-scale query processing systems, the architecture of P2 has been most
inspired by the PIER system. In Chapt&rwe describe the similar ties in terms of the
dataflow framework of PIER and P2. While the focus of PIER has been on supporting
SQL-like queries, PIER also supports recursive dataflows that have been used for building
distributed crawlers for the well82] and overlay networkE77].

One major distinction with PIER is the fact that PIER couples its design tightly with
the use of a distributed hash talpi®3 114 107. 130, 102 as its basic common substrate,
which is then employed to instantiate query-specific overlay networks such as aggregation
trees. In contrast, P2 simply uses whatever underlying network is present, and each node
can be configured with a relatively small set of “base facts” (such as addresses of a few
nearby neighbors). Knowledge of the rest of the network is then built up in the declarative

domain. It is possible to construct a DHT using P2 — indeed, one of our examples in
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this dissertation is a version of Chord — but P2 in no way requires a DHT to be present,
nor relies on the assumptions a DHT typically exploits (such as full-mesh connectivity

between nodes, and lack of explicit control over node and data placement). Interestedly,
the generality of P2 means that it is possible to reimplement PIER entirely by expressing

relational queries over a declarative version of Chord specified using the P2 system.

0.3 Extensible Networks

There have been many recent proposals for increasing the flexibility of routing in the con-
text of the Internet. Proposed solutions include enabling end-hosts to choose paths at the
AS level[129 69], separating routing from the forwarding infrastruct{&; 44], central-

izing some of the routing decisiofé4], and building extensible routers such as XOBP,

56]. Our proposal is mostly complementary to these efforts. The increased flexibility pro-
vided by a declarative interface can enhance the usability and programmability of these
systems. Our proposal is also orthogonal to the separation of the control plane and the data
plane. As discussed in Chapt&rour system can be deployed fully centralized, distributed

or partially centralized for supporting Internet-scale routing.

Several type-safe languages have been proposed to improve the security and robustness
of active networks. Three examples are PLF98], PLAN-P[12( and SafetyNef109.
Compared to these languages, Datalog is particularly attractive because of its strong theo-
retical foundations, the fact that it is a side-effect-free language sandboxed within a query
engine, and its elegance in expressing routing protocols in a compact way. Unlike previous
proposals, as a declarative query language, Datalog is also amenable to automatic query

optimization techniques from the database literature.
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9.4 Network Specification Languages

In recent years, there have been efforts at high-level specifications of network pr¢§&ols

42]. These specifications aim at verifying correctness properties of Internet-routing proto-
cols. They are less general than our work on declarative networking. One can conceivably
implement some of these specifications using the P2 system, as a way of bridging specifi-
cations and implementation.

In the past, distributed systems have typically been characterized in one of two ways.
The protocol-centricapproach favored by Macedda05 traces its roots to event lan-
guaged45; 121] that specify overlay execution via automata for event and message han-
dling. This style emphasizes the dynamics of the overlay and its maintenance, but makes it
difficult to determine the overlay’s coarse structure and invariant properties. The alternative
is astructure-centri@pproach, whose roots can be traced to the specification of parallel in-
terconnection network¥2]. This style, which has influenced the literature on distributed
hash tables (DHTSs), specifies overlays by focusing on a network graph structure (hyper-
cube, torus, de Bruijn graph, small-world graph, etc.), whose invariant properties must be
maintained via asynchronous messaging. Unfortunately, graph-theoretic descriptions tend
to be expressed at a high level in natural language, and often gloss over details of the actual
runtime messaging. As a result, implementing structure-centric overlays often requires a
fair bit of engineerind103 34], and different implementations of the same overlay can
vary significantly in their actual execution.

P2 spans the two approaches above, and expands upon them in a way that is particu-
larly attractive for overlay specification and runtime. The interface of P2 is closer in spirit
to the structure-centric approach, in that it encourages the specification of overlays as log-
ical structures with invariants. However, it also automatically compiles this specification

to a dataflow program for managing asynchronous messages, which looks closer to the
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protocol-centric approach. We believe P2 improves upon previous overlay specification

work in either camp, by providing a machine-interpretable description language based on
relations among node states in the network, and by using a dataflow runtime model instead
of automaton-based protocols.

The combination of a declarative language and a dataflow runtime forms a powerful and
surprisingly natural environment for overlay specification and runtime. The obvious alter-
native to our approach is the automaton approach used in traditional protocol specifications
and implementations, and in the Macedon overlay toolkit. Relative to automata, logical

specifications and dataflow graphs have a number of software engineering advantages:

e Scoping: In principle, automata must handle any possible event (message) in each
state. While automata can in principle be nested or encapsulated as a matter of design
discipline, the potentially arbitrary interplay between states and events leads to rela-
tively few design constraints, making automata difficult both to specify correctly, and
to understand once specified. By contrast, in a dataflow diagram compiled from an
NDlogprogram, the inputs to an element are by definition coming from other specific
elements whose behavior is well specified. This constrains what needs to be handled

in each element implementation, aiding in both specification and comprehension.

e Typing: Similarly, the events or messages handled in automata are of any type pos-
sible in the system. In dataflow diagrams, all tuples that pass along an edge share
the same schema, hence a dataflow element implementation need only worry about a

stream of similar, well-formed tuples.

e Encapsulation and ReuseBecause automata interrelate possible events and states,
they are difficult to reuse in other contexts that may involve different sets of events,
or additional states with different interactions. By contrast, subsets of ruiBSlimg

programs can be easily extracted and reused in other programs. Moreover, even the
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compiled dataflow diagrams often have discrete subgraphs that are clearly reusable:
a dataflow subgraph typically has a few well-specified inputs (incoming edges) and
outputs (outgoing edges), and in many cases has easily interpretable behavior. This
admits the possibility of allowing incoming programs to opportunistically “jump
on” to existing dataflows, in the spirit of adaptive stream query engines like Tele-
graphCQ27].
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Conclusion

In this chapter, we conclude the dissertation by (1) summarizing our contributions, (2)
surveying some recent use cases of the P2 system, and (3) proposing several directions for

future work.

10.1 Summary of Contributions

Our work on declarative networking has two high-level goals. First, through the use of a
declarative language, we aim to greatly simplify the process of specifying, implementing,
deploying and evolving a network design. Second, we aim to address the challenge of de-
signing flexible, secure and efficient network architectures that can achieve a better balance
between flexibility and security compared to existing solutions. We summarize our key

contributions as follows:

o We formally define théNetwork Datalog KDlog) language for declarative network-
ing. TheNDlog language has its roots in logic programming and recursive query

languaged9§]. It is based on the observation that recursive queries are a natural

148



Chapter 10. Conclusion

way to express network protocols that themselves exhibit recursive propéties.
log builds upon Datalog, a traditional recursive query language, to edatéduted
andsoft-statecomputations withrestricted communicatiobased on the underlying

physical connectivity, all of which are essential in the network setting.

We show that th&lDlog language is a compact and natural way of expressing a vari-
ety of routing protocol$79; 80] and overlay networkE76], often resulting in orders

of magnitude savings in code sizeblDlog programs are compiled into dataflow
execution plans which are then executed using a distributed query engine in the P2
system to implement the network protocols. In addition to being concise, we further
show thatNDlog programs are amenable to query optimizations and static analysis,

making it an attractive language for building safe, extensible network architectures.

e Second, to validate the design NDlog, we present our implementation of P2,

which is a full-fledged declarative networking system with a dataflow engine inspired
by the Click modular routef65]. The P2 system takes as ingdblog programs,
compiles them into distributed execution plans that are then executed by a distributed
dataflow engine to implement the network protocols. We experimentally evaluate the
P2 system on hundreds of distributed machines running a wide variety of different
protocols, including traditional routing protocols as well as complex overlays such as
distributed hash tables. Our experiments validate that our declarative specifications
result in the expected network properties in terms of topology and performance. In
addition, our Emulab experiments demonstrate that query optimizations are effective

in improving the performance of declarative networks.

e Based on our experiences in implementing declarative networks, we make fundamen-
tal contributions that further advance the state of the art in recursive query processing.

We explore a wide-variety of database research issues that are important for the prac-
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tical realization of declarative networks. These include reasoning about correctness
of query results based on the well-known distributed systems notion of “eventual
consistency”, pipelined execution of distributed recursive queries to deal with asyn-
chrony in networks, incremental view materialization over dynamic and soft-state
data, and query optimizations. Interestingly, we show thatibég specifications

for two well-known protocols — one for wired networks and one for wireless — differ
only in applying a standard query optimization: the order of two predicates in a single
rule body. We believe that the connections we have drawn between automatic query
optimizations and network protocol design can both provide a better understanding
of the design space of routing protocols, and also open up significant new avenues of

research in both query optimization and protocol design.

10.2 Broad Use of Declarative Networking

One of the metrics of long-term success for this work will be the adoption of declara-
tive networking ideas, both within academia and industry. Our short-term goal is to pro-
mote declarative networking as a tool for rapid prototyping and experimentation with new
network designs. In addition, a variety of practical Internet-scale data intensive applica-
tions can be built to leverage declarative networks. These applications include network
monitoring[59], information retrieva[78; 73], distributed web and network crawlidg0;
82] and distributed replication protocd9; ?]. In the long term, one ambitious goal is
that declarative networks can serve as a core for future Internet designs, and help fuel the
next generation of “clean-slate” Internet architectures.

The P2 implementation currently runs over Linux and Mac OS X and consists of around
50,000 lines of C++ and python, plus 3rd-party support libraries. The system has been

available for download at http://p2.cs.berkeley.edu since February 2006. The implementa-

150



Chapter 10. Conclusion

tion includes a runtime system that allows for incremental rule planning and query dissem-
ination. In addition to running on local clusters and Emulab, we have also deployed the P2
system on Planetlal®4].

In making the P2 system publicly available, one of our objectives is to explore more
use cases of the system that will enable us to better understand the strengths and limitations
of NDlog. This will also enable us to identify common constructs that can be factored out
of particular network specifications and shared. Following our code release, the P2 system
has been used in research projects at various instituteoms Cambridge University, Har-
vard University, Intel Research at Berkeley, KAIST, Max Planck Institute, Rice University,
University of California-Berkeley and University of Texas-Austin). We survey some recent

uses of the system:

e Singh et al[112] demonstrated that the P2 system not only can implement declara-
tive networks, but also conveniently provide powerful distribuitetduggingdacilities
for these networks. Using runtime system invariants that are expressed as additional
NDlog rules, they demonstrate logging, monitoring, causality and debugging facili-
ties that they built on top of the P2 system. They used the P2 system to implement a
range of on-line distributed diagnosis tools that range from simple, local state asser-

tions to sophisticated global property detectors on consistent snapshots.

e Condie et al[122 proposed a highly decomposable and componentized transport
layer for the networking stack of the P2 system. This reconfigurable networking
stack is implemented at the dataflow level of the P2 system, and can be utilized by

declarative networks to adapt at run-time to application-specific requirements.

¢ As a class project, students from Harvard University implemented the Paxos consen-

sus protoco[20] in 42 NDlog rules using the P2 system.
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e There are several ongoing projects that are either using the P2 system or applying
declarative networking concepts in their own systems. These projects range from im-
plementing the Pastrd07] DHT with induced churri123, prototyping replication
algorithms €.g., PRACTI[19]), programming sensor networka9] and implement-

ing parallel dataflow processing in clust¢gs].

In order to achieve our long-term goal of having an impact on future Internet design, an
important future step is to encourage the adoption of declarative networking by ISPs. This
will involve integrating distributed query processors like P2 with commercial routers, and
ensuring that declarative networks can interoperate with existing intra-domain and inter-
domain routing protocols. Once deployed in routers, these query processors can concur-

rently be used for extensible routing and network monitoring.

10.3 Research Directions

Broadly, we believe that our work can impact the networking and database communities
in the following ways. For the networking community, our work has the potential to dra-
matically alter the way networking protocols are designed, implemented and verified. For
the database community, this dissertation can be a first step towards not only rekindling
interest in recursive query research, but also generating new insights into wide area data
management, communication, and synergies available by intertwining the two within a
single declarative framework. In general, we are optimistic that this research can lead to
significant results in this domain, in terms both of theoretical work and systems challenges.
In this section, we highlight some future directions beyond what has been presented in

this thesis.
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10.3.1 Static and Runtime Analysis of Networks

An important potential of declarative networking that we have not fully exploretiesk-
ability: the promise of static program checks for desirable network protocol properties
(e.g., convergence and stability) to ensure program safety in extensible networks.

Static checks are unlikely to solve all problems. However in cases where static checking
is not able to provide a sound and complete analysis, there is hope that runtime[@i&tks
could beautomatically synthesizdaly a compiler, and added to the program as additional
datalog rules to ensure desirable properties. Together with these runtime checks, declar-
ative networking can potentially serve as an integrated system for network specification,
implementation and verification.

In the short term, one immediate challenge is to study the applicability of static anal-
ysis techniques from the Datalog literatliéF] on query safety, and extend these analysis
techniques to handle soft-state data and rules, distributed computations and link-restricted
communication. In addition, there are open questions as to whether these techniques can
be easily integrated with recent attempts at building verifiable network specificéfigins
42]. An interesting first step will be to build a compiler that translates these verifiable net-
work specifications tdNDlog programs for execution using P2. A longer term challenge
involves incorporating verification techniques from the formal methods commLiritty

70] and software model checking approach&H into analyzing declarative networks.

10.3.2 Processing NDlog Programs with Negation

In this dissertation, we do not consider negated predicates iNiHeg language. The
main reason lies in the difficulties in ensuring correct semantics if negeijris incor-
porated into our model and implementation. Here, we provide high-level intuitions on the

difficulties of handling negation iNlDlog and possible approaches.
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In the context of traditional deductive databases, there are several proposals on defining
the “right” meaning to rules with negated predicates. The straightforward case involves
Datalog programs witktratified negationThese programs do not have cyclical (recursive)
dependencies involving negated predicates. The standard technique for processing these
rules involve the use ditratification where the program is broken up into differetrtata
or layers based on the dependency graph of the predicates across all the rules. The program
is then executed one stratum at a time.

Unfortunately, stratified negation is overly restrictive, and in practice, many Datalog
programs contain cyclical dependencies involving negated predicates. Over the years, there
have been several different proposals on coming up with the appropriate model for these
programs. These models incluteal stratification well-founded negatigrstable-model
negationandmodularly stratified negatio(See[61] for a good overview on the different
models). Despite active research by the deductive database community in the past, picking
the appropriate model remains an open challenge.

In the distributed setting, even for programs with stratified negations, there are chal-
lenges involved in efficiently implementing stratified negation. A prohibitively expensive
solution involves achieving consensus among multiple nodes executing the same stratum
before moving to a new stratum. The practical alternative involves incorporating pipelined
execution, where results are “eagerly” computed across stratum, and incrementally updated
to deal with cases when there is a “late” counterexample to a negated subgoal. The use of
pipelined execution oNDlog programs with negation raises additional challenges due to
the presence of dynamic data, and can be a rich area of future exploration. It is also inter-
esting to come up with compelling examples of declarative networks where negation would

be useful.
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10.3.3 Declarative Language and System for Secure Networking

Beyond static and runtime analysisDlog programs, there still remains the possibility

of other security challenges, including malicious routers and denial of service attacks. In
response to these attacks, independent of our work, the security community has proposed
several mechanisms, and these have been formalized in several declarative logic-based se-
curity languages such as Bind@7], SD3[62], D1LP [74] and SecPAL[86] for access
control[3] and trust managemef23].

Interestingly, Binder andNDlog extend traditional Datalog in similar ways: by sup-
porting the notion of location (arontexj to identify nodes (ocomponentisin distributed
systems. This suggests the possibility of unifying these languages to create an integrated
system, exploiting good language features, execution and optimizations. From a practical
standpoint, this integration has several benefits, including ease of management, one fewer
language to learn, one fewer set of optimizations, finer-grain control over the interaction
between security and network protocol, and the possibility of doing analysis and optimiza-
tions across levels. This integrated system could have broad applicability, ranging from
building secured network26], secure distributed information sharit@gl, to enforcing
access control policies on extensible testbeds such as (BN

This further suggests that we may be able to dispense with much of the special ma-
chinery proposed for access control, and instead process security policies using distributed
database engines. This allows us to leverage well-studied query processing and optimiza-
tion techniques. Interestingly, it has been shown previd4glthat Binder is similar to data
integration languages such as Tsimif#i§] proposed by the database community, further
indicating that ideas and methods from the database community are directly applicable to

secure networking.
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10.3.4 Database Techniques for Network Optimizations

In Chapter8, we identified a few well-known query optimization techniques and showed
how they can be used to generate efficient protocols. While the application of query opti-
mizations automatically achieves some well-known optimizations for routing protocols, it
will be interesting to see how they can help inform new routing protocol designs, especially
when applied to more complex networks.

One promising direction stems from our surprising observation in Ch8gptethe syn-
ergies between query optimization and network routing: a wired protocol can be translated
to a wireless protocol by applying the standard database optimizations of magic sets rewrite
and predicate reordering. This suggests that these protocols are more similar than they are
often perceived to be. It suggests that protocol selection can be achieved by cost estimation
a la traditional database query optimization rather than rules of thumb about “what kind of
network” is in place. In fact, many future architectures for the Internet envision a very het-
erogeneous network that combines wired infrastructure with wireless “clouds” at the edges
in a more seamless way than we have today. In those situations, it would be nice for the
infrastructure to choose efficient protocols based on cost estimation. It also suggests that
sites could make the decision about whether to apply this optimization locally (or within a
neighborhood), allowing for the hybridization of the protocol within the network.

Building upon our techniques for cost-based optimizations proposed in S&§ah
would be interesting to study the possibility of using a number of other potential optimiza-
tion strategies: random walks driven by statistics on graph expansion; cost{id€kd
decisions on the application of magic sets; adapth@ query processing technigues to
react to network dynamism; and multi-query optimizations motivated by more complex
overlay networks. The ultimate goal is to fully understand the synergies between query
optimization and network routing, with the hope of informing new protocol designs that

can improve upon the performance of existing networks.
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In Section8.2, we highlighted some techniques for sharing across multiple declara-
tive routing programs. In future, these sharing techniques can be extended for more com-
plex overlay networks. Sharing of declarative overlays is intriguing not only in terms of
code reuse, but also for the possibility that multiple overlays can execute simultaneously,
sharing state, communication, and computation by sharing dataflow subgraphs. Sharing
between multiple declarative overlays can allow a single application to achieve different
performance goals for different tasks, by efficiently deploying multiple overlay variants si-
multaneously. For example, a peer-to-peer file sharing network that combines search with
parallel download might choose to construct two different overlays for these very different
tasks. These overlays might fruitfully share rules for liveness checking, latency and band-
width estimation, etc. Runtime sharing across overlays can also allow separately deployed
systems to co-exist efficiently within a shared network infrastructure; this might become
important if overlays emerge as a prevalent usage model for the Internet. Meeapa
proach for sharing is to do so explicitly at thhDlog level, by sharing standard libraries
of rule specifications or caching previously computed results. However, we hope to apply
multiquery optimization techniques from the database literature to identify further sharing

opportunities automatically within a sophisticated query optimizer.

10.3.5 Application-Aware Extensible Networks

Traditional distributed databases, or even recent proposals on Internet-scale distributed
guery engines, have all made tlireed-protocolassumption. While the set of nodes partic-
ipating in these systems may change over time, the protocols used to organize nodes and
route data remain unchanged. This has constrained the way data is placed and queried.
One example of this constraint is in P2P search, where the available indexing and search
techniques are limited by the underlying network topol&gs].

One promising use of declarative networks is in buildapgplication-aware extensible
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networksthat can be declaratively specified, and then reconfigured at runtime based on
application requirements and network conditions. In parallel, several optimization strate-
gies in distributed systems have been recently studied as cost-aware resource management
frameworks[100; 88] by both the networking and database communities. It will be inter-
esting and useful to explore incorporating some of these optimizations into a cost-based
optimizer for declarative networks. These application-aware extensible networks will have
wide applicability, in the domain of data intensive wide-area applications including P2P
search, network monitoring, data integration and content-based routing systems.

Related to this effort is the language challenge of developing usetulork abstrac-
tions (or building blocks) that make it easier for network designers to specify networks.
For example, it has been shown that one can abstractly reason about distributed hash ta-
bles in terms of their componeni§6]: geometry, route selection and neighbor selection
policies. It is an interesting challenge to exteddBlog to support such abstractions in an
encapsulated way. The cost-based optimizer can then individually and jointly optimize

each component based on application requirements.

10.4 Closing

In the coming years, we are entering a period of significant flux in network services, proto-
cols and architecture. Extensible networks will be required so that a multiplicity of unfore-
seeable new applications and services can be handled easily in a unified manner.

This dissertation presents a declarative language and system that can greatly simplify
the process of specifying, implementing, deploying and evolving a network. We demon-
strate thatNDlog programs are a natural and compact way of expressing a variety of well-
known network protocols. We further show tidDlog programs can be compiled into

distributed dataflows and executed using the P2 system to correctly implement the network
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protocols. Our experience with the P2 system suggests that implementing this new tech-

nology is a manageable and viable undertaking for any extensible network architecture.
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Appendix A

Proofs

A.1 Proofs for Pipelined Semi-naive

Symbol

Representation

t

A tuple generated at any iteration.

tl

A tuple generated at th& iteration.

Pk

The table corresponding to th& re-
cursive predicate in the rule body.

by

A table for thek!™ base predicate if
the rule body.

-

FPs(p)

Result set fop using SN evaluation.

FPe(p)

Result set fop using PSN evaluation.

FPs(p)

Result set forp using SN evaluation
at theith iteration or less.

FR:(p)

Result set fop using PSN evaluation
for all p tuples that are marked wit
iteration number or less.

=

In our proofs, we use the notation in Tal#lel. Consider a rule with n recursive predi-

Table A.1: Proof Notation

catesps, p2,..., pn and m base predicatés, by, ..., by
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p:—p1,P2,..., Pn, b1, 02, ..., O

For the purposes of the proof of Theordi, we assume that there is a unique deriva-

tion for each tuplé.

Claim A.1 vt' € FPL(p),3tj € FPL1(pj) st t: —t1,tp, ..., tn, by, by, ... bm At & FPS ().
Same for FP.

Theorem A.1 FPs(p) = FRo(p)

Proof: (By induction). The base casFePg(p) = FP,Q(p) is trivial since this is the initial
set of inputpg tuples. Assume inductivelf# P, (p) = FPS %(p) is true, we show that

FPL(p) = FP5(p) using the following two lemmas below.

Lemma A.1 FPL(p) C FPL(p)

Proof: Consider tuplé' FPiS( p) derived using SN evaluatidn —ts,to, ...,ty, b1, 0o, ..., by,
By ClaimA.1,t; € FPL1(pj) At ¢ FPL1(p). One of the input;’s (t) must be inAp2!d
in the SN algorithmt, * € FPS = t, ' € FP, %, By the PSN algorithrt;* must have

been enqueued, hence generatin§ot' € FPL,

Lemma A.2 FPL(p) C FP(p)

Proof: Consider a tuplé € FP(p) derived using modified PSN evaluation-ty, ta, ..., tn,
by, by, ..., bm. From claimA.1, t € FP5Y(py) At ¢ FPL1(p). By the PSN algorithm, one
of tj's (t) is At2' 1. This means tha} ! € FP; % (p) =t € Ap?!?in theit" iteration
of the SN algorithm. This will result in the rule being used to generatehei'” iteration.
Hencet' € FPL
If there are multiple derivations for the same tuple, we can apply the same proof above

for TheoremA.1 using the following modified PSN: if there are two derivatieghandt!
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(j > i) for the same tuple, the modified PSN algorithm guaranteeg'timtenerated by
enqueuing' even ift! was previously generated. Note that the modified PSN algorithm

leads to repeated inferences, but generates the same results as PSN.

Theorem A.2 There are no repeated inferences in computing Ffy.

Proof: For linear rules, the theorem is trivially true since we only add a new derived tuple
into the PSN queue if it does not exist previously. This guarantees that each invocation of
the rule is unique

For non-linear rules, we continue from Theor&m'’s proof. Letts(t) be the sequence
number or timestamp of derived tugleFollowing the proof for Lemma.1, only thek
rule, wherets(t] 1) = maxts(t; 1), ts(ty 1), ..., ts(ti 1)) will be used to generatd at the

inductive step, ensuring no repeated inferences.

A.2 Proofs for Bursty Updates

Let E be the set of all extensional tuples that appear during the execution of a program. Let
D be the set of all tuples that can be derived frarfwe assumé& C D for simplicity). A
tuplet € D derived by the rulé:-ts,to, ..., t, has a correspondirigee fragmentwith parent
t and childrertj. Thederivation treefor D is built by assembling the tree fragments for alll
possible derivations of tuples . We distinguish the multiple tree fragments for multiple
derivations ot, but to simplify notation, we usits, ... to name tree nodes. Leaves of this
tree are elements &.

A series of insertions and deletions to the extensional relations is modeled as a sequence
of valuest(0),t(1),...,t(j) for eacht € E, where 1 means present and 0 means absent.
Similarly, for all tree nodes, we remember the sequence of values (presence or absence)

assigned to by the PSN algorithm after each child change. We wi(ite) to represent the

178



Chapter A. Proofs

value oft once the network has quiesced.

Lett be a tree node whose children &rdo, ..., t,.

Claim A.2 Along any tree edge t— t, value changes are applied in the order in whigk t

change. This property is guaranteed by PSN's FIFO queue.

Lemma A.3 t() is derived usingit(),ta(), . .. th(0).

Proof: (By induction)t(0) is computed from the initial values of its children. Assume
inductively thatt(j — 1) is derived based on thg — 1)!" change in its children. If chilék
changest(j) is rederived, and based on Clai2, reflects the latest value tf. Hence,
t(c0) is derived from the last value of all its children.

Let FP, be the set of tuples derived using PSN under the bursty model: By be

the set of tuples that would be computed by PSN if starting from the quiesced state.

Theorem A.3 FP, = FFP, in a centralized setting.

Proof: We writet(w) for the values derived by PSN when its starting stasgds forec E.
If vt € D’s derivation treet(w) =t(c) thenFP, = FFP,. We prove this by induction on
the height of tuples in the derivation tree. We defihyeto be all nodes oD’s derivation
tree at height, with Do = E.

In the base caséit € Do, t(«) = t(w) by definition of the base tuple values. In the
inductive step, we assume thag < i, vt € Dj, t() = t(w). Considert € D;. Based on
LemmaA.3, t(«) will be derived from the (o) values of its children, which by induction

are equal tdy(w). Hencet(o) =t(w).

Claim A.3 As long as all network links obey FIFO for transmitted messages, Glaiis

true for any children of t that are generated using link-restricted Datalog rules.

Theorem A.4 FP, = FFP, in a distributed setting.
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Proof: With ClaimA.3, the proof is similar to that of Theorem3.

A.3 Proofs for Soft-State Rules

Let H be the set of hard-state tuples, aBdbe the set of soft-state tuples. A series of
insertions and refreshes to the relations is modeled as a sequeri®g «fl), ..., t(j) for
eacht € (HUS), where 1 means present and 0 means absent. Wet(ijeo represent
the value ot when the network has quiesced.

We define theventual steady statd the network after it has quiesced, which includes
all hard state tupleth € H s.t. th(o) = 1, and all soft-state tuplds € Ss.t. ts(c) = 1.
Since soft-state tuples have finite lifetimes, in the eventual steady state, all soft-state tuples
that satisfyts(c) = 1 are periodically refreshed and recomputed at time intervals less than
their lifetime. Letl (ts) , p(ts) andr(ts) be the lifetime, derivation time and refresh interval
of a soft-state tuples € S. We observe that(o) = 1 is true iffl (ts) > p(ts) +r(ts) is true.

In the rest of the section, we consider the three types of soft-state rules defined in

Section2.5: pure soft-state ruleglerived soft-state rulesndarchival soft-state rules

A.3.1 Pure Soft-State Rule

A pure soft-state rule is of the forms: —s;, S, ...Sm, h1, ho, ...hy where there arm soft-state
predicates and hard-state predicates. The rule derives a soft-state predichtdts € s
be a soft-state tuple derived frore: —ts,tsp, ..., tsy, thy,thy, ... thy, whereVi (ts € 5)
andVj (th; € hj). For eventual consistency, we want to show tiséb) is derived using
ts1(0),tSp(00), ..., tsh(), thy(co),thy(e0), ... thy(c).

The inductive proof is similar to that of Theorefn3, where we model refreshes instead

of deletions of tuples. In addition, we consider the following two cases:
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1. Case 1:l(ts) > max(l(tsy),l (tsp),...,I (tsm)). In the first case, the derived soft-state
tuplets has a lifetime that exceeds all of its soft-state ingsistsy, ...,tsy. Given
thatts has a finite lifetime, in the eventual steady state of the network, essh
ts(eo) = 1 is periodically refreshed. At each refresh of one of the inputsis re-
computed based on the most recent valudsofsy, ...tsy, thy,thy, ...th, of the qui-
esced network. Hences(w) is derived usings; (), ... ,tsy(e), thy(), ... thy(e).

In addition, for a given inputs, if ts(c) = 1, thenl(ts) > p(ts) +r(ts) is true.
Hence, from the case 1 conditidiits) > max( (tsy),l(rsp),...,r(tsm)). For a given
tsthat is present at the eventual steady sta{eq) = 1 is true until the next refresh

of one of the inputs.

2. Case 2:I(ts) < max(l(ts1),l(tsp),...,I(tsm)). Similarly, in the eventual steady state
of the network, at each refresh tf, ts will be derived based on the most recent
values ofts,tsp, ...tsy, thy,thy,...th, of the quiesced network. However, from the
case 2 condition, it is possible tHéts) < max( (tsy),r(ts),...,r(tsm)). This means
thatts may expire before the next refresh of any infsit Hencets() will oscillate

between 0 and 1 in the eventual steady state of the network.

In conclusion, we can achieve eventual consistency for pure soft-state rules. However,
in case 2, the eventual state of the network may not be stable and some soft-state derivations
will oscillate being derived and timing out. To avoid such oscillations, we can disallow
rules that satisfy the second condition. This can be enforced via syntactic checks to ensure
the lifetime of the derived soft-state head exceeds the lifetime of all the soft-state body

predicates.
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A.3.2 Derived Soft-State Rule

We next consider a derived soft-state rule of the farm-hy, hy, ...h,, which takes as input
n hard-state predicates, and derive a soft-state predic&@ese that the rule body consist
only of hard-state predicates, the proof is similar to that of Theoke3n However, given
the lack of refreshes in the inputs and the fact that all dertged s tuples have finite

lifetimes,ts(e) = 0 in the eventual steady state.

A.3.3 Archival Soft-state Rules

Last, we consider archival soft-state rule of the fdim—s;,sp,...Sm, h1,ho,...h,, where
there arem soft-state predicates andhard-state predicates. The rule derives a hard-
state predicatd. Consider a hard-state tuplk € H derived usingh : —ts;,tsp,...tsy,
thy,thy, ...th,. Unlike soft-state tuplesh needs to be explicitly deleted. Given that there are
no cascaded deletions in soft-state rutess not deleted even when onetasf,tsp, ...,tsm

has expired. Henceéh() is not derived usings; (), ..., tSy(), thy (), ... thy(w).
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Examples of Declarative Overlays

B.1 Narada

We provide an executabldDlog implementation of Narada’s mesh maintenance algo-

rithms that includes (1) membership list maintenance, and (2) liveness checks on neighbors.

[* Materialized table declarations */
materialize(sequence, infinity, 1, keys(2)).
materialize(env, infinity, infinity, keys(2,3)).
materialize(neighbor, infinity, infinity, keys(2)).

materialize(member, 120, infinity, keys(2)).

[* Initial facts */

el neighbor(@X,Y) :- periodic(@X,E,0,1), env(@X,H,Y), H = "neighbor”.

e2 member(@X,A,S,T,L) :- periodic(@X,E,0,1), Tbw(), S=0,L=1, A=X.

e3 member(@X,Y,S,T,L) :- periodic(@X,E,0,1), neighbor(@X,Y), T_raiw(),
S=0,L=1.
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e4d sequence(@X,Sequence) :- periodic(@X,E,0,1), Sequence = 0.

[* Membership list maintenance */

rl refreshEvent(@X) :- periodic(@X,E,5).

r2 refreshSeq@X(X,NewS) :- refreshEvent@X(X), sequence@X(X,S), NewS =S + 1.

r3 sequence@X(X,NewsS) :- refreshSeq@X(X,NewsS).

r4 refreshMsg(@Y,X,NewS,Addr,AS,ALive) :- refreshSeq(@X,NewS),
member(@X,Addr,AS,Time,ALive),
neighbor(@X,Y).

r5 membersCount(@X,Addr,AS,ALive,coutit >) :- refreshMsg(@X,Y,YS,Addr,AS,ALive),
member(@X,Addr,MyS,MyTime,MyLive),
X 1= Addr.

ré member(@X,Addr,AS,T,ALive) :- membersCount(@X,Addr,AS,ALive,C),
C=0,T=fnow().

r7 member(@X,Addr,AS,T,ALive) :- membersCount(@X,Addr,AS,ALive,C),
member(@X,Addr,MyS,MyT,MyLive),
T =f_now(), C> 0, MyS < AS.

r8 neighbor(@X,Y) :- refresh(@X,Y,YS,A,AS,L).

[* Liveness checks on neighbors */

I1 neighborProbe(@X) :- periodic(@X,E,1).

I2 deadNeighbor(@X,Y) :- neighborProbe(@X), T adw(),
neighbor(@X,Y), member(@X,Y,YS,YT,L), T - YB 20.

I3 delete neighbor(@X,Y) :- deadNeighbor(@X,Y).

4 member(@X,Neighbor,DeadSequence,T,Live) :- deadNeighbor(@X,Neighbor),
member(@X,Neighbor,S,T1,L), Live =0,

184



Chapter B. Examples of Declarative Overlays

DeadSequence =S + 1, T =nbw().

B.2 P2-Chord

Here we provide the fulNDlog specification for Chord. This specification deals with
lookups, ring maintenance with a fixed number of successors, finger-table maintenance

and opportunistic finger table population, joins, stabilization, and node failure detection.

[* Materialized table declarations */
materialize(nodelD, infinity, 1, keys(1)).
materialize(landmark, infinity, 1, keys(1)).
materialize(finger, 180, 160, keys(2)).
materialize(uniqueFinger, 180, 160, keys(2)).
materialize(bestSucc, 180, 1, keys(1)).
materialize(succ, 30, 16, keys(2)).
materialize(pred, infinity, 1, keys(1)).
materialize(join, 10, 5, keys(1)).
materialize(pendingPing, 10, infinity, keys(3)).
materialize(fFix, 180, 160, keys(2)).
materialize(nextFingerFix, 180, 1, keys(1)).

/* Initial bootstrapping facts */

i1 pred(@NI,P,PI) :- periodic(@NI,E,0,1), P = “NIL”, Pl = "NIL".

i2 nextFingerFix(@Nl, 0) :- periodic(@NI,E,0,1).

i3 node(@NI,N) :- periodic(@NI,E,0,1), env(@NI,H,N), H = "node”.
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i4 landmark(@NI,LI) :- periodic(@NI,E,0,1), env(@NI,H,LI), H = "landmark”.

/* Lookups */

11 lookupResults(@R,K,S,SI,E) :- nodelD(@NI,N), lookup(@NI,K,R,E),
bestSucc(@NI,S,SI), Kin (N,S].

12 bestLookupDist(@NI,K,R,E,mikiD>) :- nodeID(@NI,N),
lookup(@NI,K,R,E), finger(@NI,1,B,BI),
D=K-B-1,Bin(NK).

I3 lookup(mink @BI>,K,R,E) :- nodeID(@NI,N),
bestLookupDist(@NI,K,R,E,D), finger(@NI,I1,B,Bl),
D=K-B-1,Bin(N,K).

[* Best successor and first finger selection */

nl newSuccEvent(@NI) :- succ(@NI,S,SI).

n2 newSuccEvent(@NI) :- deleteSucc(@NI,S,SI).

n3 bestSuccDist(@NI,miD>) :- newSuccEvent(@NI),nodelD(@NI,N), succ(@NI,S,SI),
D=S-N-1.

n4 bestSucc(@NI,S,SlI) :- succ(@NI,S,SI), bestSuccDist(@NI,D), nodelD(@NI,N),
D=S-N-1.

n5 finger(@NI,0,S,SI) :- bestSucc(@NI,S,SI).

[* Successor eviction */
s1 succCount(@NI,couqat >) :- newSuccEvent(@NI), succ(@NI,S,SI).
s2 evictSucc(@NI) :- succCount(@NI,C),xX4.
s3 maxSuccDist(@NI,maxD>) :- succ(@NI,S,SI),
nodelD(@NI,N), evictSucc(@NI),
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D=S-N-1
s4 delete succ(@NI,S,SlI) :- nodelD(@NI,N), succ(@NI,S,Sl),
maxSuccDist(@NI,D), D=S-N - 1.

[* Finger fixing */
f1 fFix(@NI,E,I) :- periodic(@NI,E,10), nextFingerFix(@NlI,I).
f2 fFixEvent(@NI,E,) :- fFix(@NI,E,).
f3 lookup(@NI,K,NILE) :- fFixEvent(@NI,E,I), nodeID(@NI,N), K = Oxk < | + N.
f4 eagerFinger(@NI,1,B,Bl) :- fFix(@NI,E,I), lookupResults(@NI,K,B,BI,E).
f5 finger(@Nl,1,B,BI) :- eagerFinger(@NI,1,B,Bl).
f6 eagerFinger(@NI,1,B,Bl) :- nodelD(@NI,N),
eagerFinger(@NI,11,B,BI), I =11 + 1,
K =0x1l << |+ N, K in (N,B), Bl != NI.
f7 delete fFix(@NI,E,I1) :- eagerFinger(@NlI,1,B,Bl), fFix(@NI,E,I1),
I >0,11=1-1.
f8 nextFingerFix(@NI,0) :- eagerFinger(@NI,1,B,Bl), ((I = 159) (BI = NI)).
f9 nextFingerFix(@NI,1) :- nodelD(@NI,N),
eagerFinger(@NI,11,B,BI), I =11 + 1,
K =0xll << I +N, Kin (B,N), NI '=BI.
10 uniqueFinger(@NI,Bl) :- finger(@NI,1,B,Bl).

[* Join network */

j1 joinEvent(@NI,E) :- periodic(@NI,E,1,2).

j2 join(@NI,E) :- joinEvent(@NI,E).

j3 joinReq@LI(LI,N,NILE) :- joinEvent(@NI,E), nodeID(@NI,N),
landmark(@NI,LI), LI '=“NIL".
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j4 succ(@NI,N,NI) :- landmark(@NI,LI), joinEvent(@NI,E), nodeID(@NI,N), LI = “NIL".
j5 lookup@LI(LI,N,NI,E) :- joinReq@LI(LI,N,NI,E).
j6 succ(@NlI,S,SlI) :- join(@NI,E), lookupResults(@NI,K,S,SI,E).

[* Stabilization */
sbl succ(@NI,P,PI) :- periodic(@NI,E,10), nodeID(@NI,N),
bestSucc(@NI,S,Sl), pred(@SI,P,P1),
Pl 1= “NIL", Pin (N,S).
sb2 succ(@NI,S1,SI1) :- periodic(@NI,E,10), succ(@NI,S,Sl), succ(@SI1,S1,SI1).
sb3 pred@SI(SI,N,NI) :- periodic(@NI,E,10), nodelD(@NI,N),
succ(@NI,S,Sl), pred(@SI,P,PI),
node(@SI,N1), (P! =“NIL") (N in (P,N1))).

[* Ping-Pong messages to neighbors */

ppl pendingPing(@NI,SI1,EL1,T) :- periodic(@NI,E,5), succ(@NI,S,SI),
E1l =1frand(), SI'!'= NI, T = fnow().

pp2 pendingPing(@NI,PI,E1,T) :- periodic(@NI,E,5), pred(@NI,P,P1),
El=frand(), PI'!'=“NIL", T = f_now().

pp3 pendingPing(@NI,FI,E1,T) :- periodic(@NI,E,5), uniqueFinger(@NI,FI),
El:=f rand(), T:=tnow().

pp4 pingResp(@RI,NI,E) :- pingReq(@NI,RI,E).

pp5 pingReq(@PI,NI,E) :- periodic(@NI,E1,3),
pendingPing(@NI,PLE,T).

pp6 delete pendingPing(@NI,SI,E,T) :- pingResp(@NI,SI,E), pendingPing(@NI,SI,E,T).
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[* Failure Detection */

fd1 nodeFailure(@NI,P1,E1,D) :- periodic(@NI,E,1), pendingPing(@NI,PI,LE1,T),
Tl1=fnow(),D=T-T1,D>7.

fd2 delete pendingPing(@NI,P1,E,T) :- nodeFailure(@NI,P1,E,D), pendingPing(@NI,PI,.E, T).

fd3 deleteSucc(@NI,S,SI) :- succ(@NI,S,Sl), nodeFailure(@NI,SI,E,D).

fd4 delete succ(@NI,S,SI) :- deleteSucc(@NI,S,SI).

fd5 pred(@NI,"NIL","NIL") :- pred(@NI,P,PI), nodeFailure(@NI,PI1,E,D).

fd6 delete finger(@NI,1,B,BI) :- finger(@NI,1,B,Bl), nodeFailure(@NI,BI,E,D).

fd7 delete uniqueFinger(@NI,Fl) :- uniqgueFinger(@NI,FI), nodeFailure(@NI,FI,E,D).
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