
The Concept of Deadlock and Livelock in Hybrid
Control Systems

Alessandro Abate
Alessandro D'Innocenzo
Giordano Pola
Maria Domenica Di Benedetto
S. Shankar Sastry

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-181

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-181.html

December 17, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

The Concept of Deadlock and Livelock
in Hybrid Control Systems

Alessandro Abate1, Alessandro D’Innocenzo2, Giordano Pola2,3,
Maria Domenica Di Benedetto2, and Shankar Sastry1

1 Department of Electrical Engineering and Computer Sciences,
University of California, at Berkeley - USA
{aabate,sastry}@eecs.berkeley.edu

2 Department of Electrical Engineering and Computer Science,
Center of Excellence DEWS, University of L’Aquila - Italy

{adinnoce,pola,dibenede}@ing.univaq.it
3 Department of Electrical Engineering,

University of California, at Los Angeles - USA
pola@ee.ucla.edu

Abstract. This paper introduces a formal definition of the concepts of Deadlock
and Livelock for a general class of Hybrid Control Systems (HCS). Such a char-
acterization hinges on three important aspects: firstly, the concept of composition
of HCS; secondly, the general concept of specifications and their composition for
HCS; finally, the dynamical structure and behaviors for HCS. The first aspect is
introduced in a novel manner, including both aspects from the literature of dis-
crete transition systems, and accounting for concepts such as feedback intecon-
nections of dynamical systems; the second point accounts for general properties
that are of interest from a system theory and control perspective; the third part
encompasses and categorizes between the diverse and possibly pathological be-
haviors that are characteristic to HCS. We investigate the problems of Deadlock
and Livelock Verification.

1 Introduction

The concept of deadlock and its close relative, that of livelock, have been widely in-
vestigated in the literature of various branches of computer science [16]. Deadlock, in
particular, has often been regarded as a pathology and associated with the deficiency of
a liveness specification, that of forward progress [17][18]. Much interesting work has
been focused in verifying the presence of deadlock situations in programs, or ensuring
its absence upon their composition [3][5].

Hybrid Systems are rather general mathematical models that connect between dis-
crete, logical, synchronous systems and continuous, real-time, asynchronous ones [1][2].
It has often been observed that they present behaviors or are endowed with properties
that are “at the limit” between classical transition systems and dynamical models [2].

Motivated by a number of case studies, this work aims at “exporting” the notions of
deadlock and livelock to the Hybrid Control Systems (HCS) case. More precisely, the
objective has been that of first introducing a mathematically rigorous definition of the
phenomena and providing a clear characterization of them; secondly, the task has been
that of presenting some verification procedures for their existence; finally, the practical
topic of resolution of these behaviors has also been looked at.

In this paper, we shall focus on the definition and characterization of deadlock and
livelock. It is interesting to stress that this can be given only considering three im-
portant parts/components: first, that of composition of HCS, which we reformulate in-
spired by different approaches in the literature; second, that of specifications- and their
composition- which we reinterpret from a control-meaningful perspective; finally, a
purely dynamical level, which is characteristic of HCS, as opposed to transition sys-
tems for instance. It is possible to reinterpret known dynamical behaviors that are char-
acteristic to HCS within this new characterization. We stress that for all the levels the
introduced concepts nicely taylor back to similar ones that can be found in the literature
of, respectively, discrete and continuous systems.

We develop a simple motivational case study to describe how to categorize the no-
tion of deadlock within the theoretical framework we have developed. For simplicity,
we shall focus on an interconnection of three controlled dynamical systems, rather than
hybrid ones.

2 Deterministic Hybrid Control Systems: the Model

Let us start by introducing the concept of HCS, which is done in a rather detailed way
for the sake of clarity of the definitions that shall be given in the sequel of the manu-
script.

Definition 1 (Deterministic Hybrid Control System). A Deterministic Hybrid Con-
trol System is a tuple H = (X,U,Y, F,T), where:

– X is the hybrid state space, composed of
• Q ⊆ N, a finite set of discrete states, or modes;
• D = {Di}i∈Q, the set of domains associated with each mode; Di is a subset of
Rni , where ni may vary for different domains;

The space is specified as the disjoint union of the domains, i.e. X = ∪i∈Q{qi} × Di;
– U is the control space, U ⊆ RnU and bounded; the control is a function defined on

the set of nonnegative reals and with values in U, u : R+0 → U. We assume it is
cadlag, i.e. piecewise-continuous from the right and with left limit, lying in RnU ;

– Y is the observation space, Y ⊆ RnY . The outputs will be determined by a static
“observation” function h : X → Y;

– F = { fi}i∈Q : D × U → TD is the set of vector fields. Each fi is assumed to
be continuous w.r.t. time and Lipschitz continuous with respect to the dependent
variables; fi characterizes the ODE ẋ = fi(x, u)4, where u(t) ∈ U, for any t ∈ R+0
and with initial condition x0 ∈ Di;

– T is the set of transition relations, composed of
• E ⊆ Q × Q, a set of edges; each edge e ∈ E is an ordered pair of modes, the

first component of which is the source and is denoted by s(e), while the second
is the target and denoted by t(e);

4 For the sake of precision, we remark that the state and the input are different signals; one is
defined over the hybrid time set (Def. 2 below), the second over the real time, which is a subset
of the first. This is not disruptive and can be extended to time-dependent vector fields.

2

• G = {Ge}e∈E , a set of guards, where Ge : U → 2Ds(e) ; the guards are “do-
main characteristic”. We assume that ∀e′, e′′ ∈ E, e′ , e′′, s(e′) = s(e′′),∀u ∈
U,Ge′ (u) ∩ Ge′′ (u) = ∅, i.e. the guards do not intersect in a domain; they are
considered to be “forcing” the jumps;
• R = {Re}e∈E , where ∀e ∈ E,Re : Ds(e) → Dt(e), a set of reset functions.

In general the set of initial conditions (often called Init in the literature) is a subset
of the hybrid state space X.

Remark 1 (Determinism of the Model). The assumptions of Lipschitz continuity of the
vector fields5, of non-intersection between guards6 and their “forcing” feature, on the
structure of the reset functions are sufficient for ensuring the determinism of the model
for all initial conditions in Init, both in the continuous dynamics and in the discrete
jumps. We allowed for resets onto a guard set, which translates into admitting multiple
events at the same time; this does not exclude determinism, as also stressed in [2]. ut

Remark 2 (Non-blocking Conditions). For i ∈ Q, let Gi(u) =
⋃

e:s(e)=i
Ge(u), and define

∂Di = cl(Di)\int(Di), where cl(Di) is the closure of Di, while int(Di) is the interior of
Di. If the following holds:

(∀i ∈ Q,∀u ∈ U), ∂Di ∩ Di ⊆ Gi(u) ∧ ∂Di\Di ⊆ cl(Gi(u)), (1)

then this says that any trajectory never escapes a domain without hitting a guard, which
is intended to be forcing the jump. The condition says that the boundary has to belong
to the guard set, if it is part of the domain, or else to the closure of the guard set; it can
be weakened, as long as we realize that the guard set is by definition a subset of the
domain. Notice that the resets are always within a domain. ut

Recall that we have introduced a dependence of the guards on the continuous control,
but the resets are uncontrolled (they would be controlled if we had defined them as Re :
Ge → Dt(e)); it is possible to extend this definition without affecting the determinism
of the system, and avoiding to hamper the non-blocking feature by assuming that, ∀e ∈
E,∀u ∈ U,Re : Ge → Dt(e).

To define the executions of H, we introduce the following classical notion [1]:

Definition 2 (Hybrid Time Set). A hybrid time set τ = {Ik}k≥0 is a finite or infinite
sequence of intervals Ik = [tk, t′k] ⊆ R such that

1. Ik is closed if τ is infinite; Ik might be right-open if it is the last interval of a finite
sequence τ;

2. tk ≤ t′k for k > 0 and t′k−1 = tk for k > 1.

5 In particular, we stress the assumption with respect to the control input, which in general is
allowed to be Lebesgue measurable, in particular piecewise-continuous, as in our case.

6 Notice that, if the guards are control-dependent, this condition can be quite restrictive, but nev-
ertheless necessary. In the uncontrolled case, it is instead quite natural to require this property.

3

The length t′k − tk of every interval Ik denotes the dwelling time in a discrete location of
the hybrid flow, while the extrema tk, t′k specify the switching instants. Let us stress that
the above set is ordered; hence, it makes sense to use notations such as tk ≤ t′k, as we
shall do throughout the paper. A hybrid trajectory, or hybrid flow, is a pair (x, τ), where
the first component is the hybrid state x = (q, v) ∈ X, that describes the evolution of the
continuous part v and the discrete part q by means of functions defined on the hybrid
time set τ and having value on X. Finally, an hybrid execution is a pair (τ, x) which can
be algorithmically described as follows:

Algorithm 1 (Hybrid Execution):

1. Pick (q(t0), v(t0)) ∈ Init, set k = 0, τ = ∅;
2. Evolve the continuous trajectory v(t) according to the vector field dependent on the

exogenous control u|[0,t) and with initial condition v(tk) until a guard is hit: namely

until time t′k ∈ [tk,∞) such that v(t′k) ∈ Ge

(
lim
t→t′−k

u(t)
)
, where s(e) = q(tk);

3. If t′k = ∞, add Ik = [tk,∞) to τ and exit the algorithm;
4. Else add Ik = [tk, t′k] to τ. Define q(tk+1) = d(e) and v(tk+1) = Re(v(t′k)). Increment k

and go to line 2.

Remark 3. Notice that, for generality sake (and in order to further taylor the model
into that of discrete transition systems), in Def. 1 we have assumed a dependency of
the guard on the control signal; the control is a piecewise right-continuous function:
in order to rule out problems related to its discontinuity points, we have introduced
a dependence on the limit from the left in the semantical definition of an event that
coming from the intersection of a spatial guard. This assumption will play a role in
ruling out “cycling conditions” on the composition of two HCS (see Remark 6). ut

Within the set of hybrid executions, we shall carefully study the following subset:

Definition 3 (Zeno Executions). Zeno executions are hybrid trajectories which are
characterized by an infinite number of jumps in a finite amount of elapsed time. The
hybrid time set of a Zeno trajectory has infinite cardinality and satisfies the following
property:

∞∑
k=0

(t′k − tk) < ∞

They can be of two kinds [15]: chattering and genuine. The first case happens when
∃k∗ : ∀k ≥ k∗, tk = t′k = tk∗ ; the second happens if ∀k ≥ 0,∃k∗ ≥ k : (t′k∗ − tk∗) > 0.

The output of the hybrid system is, for each execution, a function from the hybrid
time set to the output space: it is not necessarily a function of the real time.

Since our purpose is to set up a notion of input-output interconnection, in the spirit
of [5][6], we suppose that the interconnected output of hybrid systems considered is
a physical signal expressed by means of a function of the real time, rather than of
the hybrid time basis. This assumption is motivated by the aim of giving a notion of
interconnection that is asynchronous and disregards the dynamics at the level of the
internal states of the hybrid system.

4

Recalling the notion of τ = {Ik}k≥0, where Ik = [tk, t′k], consider another set {Jk}k≥0 ∈

R+o , where Jk = [tk, t′k). Similarly to [21], we introduce:

Definition 4 (Interconnectable Outputs). Given an HS and any output execution y ∈
Y, the interconnectable output associated with y is given by a right-continuous signal
ỹ, which is a function of the real time basis R+o , defined by the action on y of a function
l : τ→ R+o , such that, for any interval [a, b] ∈ τ, a ≤ b, consider the first k ≥ 0 such that
[a, b] = {[a, t′k], . . . , [tk+p, b]}, where p ≥ 0, then l

(
{[a, t′k], Ik+1, . . . , Ik+p−1, [tk+p, b]}

)
=

{[a, t′k), Jk+1, . . . , Jk+p−1, [tk+p, b)} ∈ R+o .

Notice that the obtained “physical” signal ỹ(t) is cadlag. When dealing with HCS in-
terconnections, we shall refer to the output spaces and implicitly assume to be working
with these physical signals.

The model is a melange between the classic hybrid automaton [1] and the HIOA in
[5][6]. In particular, we remark that we intend the state space to be an internal state,
while the output and the control ones to be interface/external states: the model then
is similar in structure to the hybrid automaton at an internal level, while it relates to
the HIOA at a higher, external level. We avoid, motivated by a control interpretation
of the model, to introduce the notion of action (either internal, or external): an action
is simply the dynamic outcome of a state jump, or it can be possibly influenced by
the exogenous control we have introduced above. We also do not distinguish a-priori
between internal and external variables; in fact, we have implicitly assumed that there
is a relationship between the state and the output spaces by the introduction of the
observation function h; being this a function, determinism is retained. If the system is
fully-observable, for instance, we take the continuous output space Y to concide with the
largest of the domains Di, once we have embedded all of them in Rmaxi{ni}; h performs
this embedding. In this case it is unnecessary to define the state space as the disjoint
union of the single domains, as they all coincide.

3 Hybrid Systems Composition

Abstractly, the concept of systems composition may be introduced in many ways, de-
pending on the characteristics and properties of the systems that are considered (discrete
or continuous, causal or non-causal, to name a few), the structure of the operation (par-
allel [9] or product [11], for instance), and the particular properties that we may want
to check for (synchronicity or sequentiality, for example). In this work we consider an
operation that may be interpreted as a form of parallel composition. A similar concept
has been introduced, among the many places, in [3][4][9][10]. Notice that the intro-
duction of a model structure with internal and external components, similar to that in
[5][6], allows to conceive the system at the level of its hidden/internal variables (the
hybrid state space with its vector fields and transition relations, as in Sec. 2) as a black
box and only focus on the external components (the interface variables in Sec. 2) when
performing the interconnection; this is the advantage of the interpretation as an I/O
system. Unlike previous work, which simply performed parallel compositions or crude
variables “sharing”, inspireded here by a more control theoretical perspective we al-
low the connections between inputs and outputs of the systems to depend on general

5

functions endowed with some properties: we naturally introduce an output feedback
framework. We are in particular interested in a definition which may further taylor into
known operations in the purely discrete case (transition systems) or dynamical instance
(feedback interconnection). We suppose that:

Assumption 1. The input spaces Ui, i = 1, 2 are rectangular sets, i.e. Ui = [u1, ū1] ×
[u2, ū2] × ... × [um, ūm], where m = dim(span(Ui)), u j, ū j ∈ R and u j ≤ ū j. ut

The need to introduce this absence of mutual dependence between input components
comes from the need to perform projections on their spaces, as it will become clear in
the sequel. Before introducing the notion of composition of two hybrid systems H1 and
H2, we raise the following condition:

Assumption 2 (Compatibility Conditions). Upon composing two HCS H1 and H2,
we assume that the two systems have no shared input or output variables. We say that
H1 and H2 are compatible.

The first assumption is raised for consistency with the definition below; the second
assumption is to avoid the imposition of conditions on the dynamics of the two systems
once they get interconnected. In the literature this structural requirement is a subset of
the known compatibility conditions, [4][6]. We nevertheless recall that, as discussed
at the end of Sec. 2, in general we allow for the (partial) coincidence of internal and
external variables of two systems, unlike [5][6].

Given a set W, subset of a subspace W ⊆ Rn with dim(W) = m, let MW be an
invertible matrix such that for any w ∈W, MWw = [w̄T , 0T]T . Assume W is rectangular;
then W is also rectangular, that is of the form W = a1span{w1} × a2span{w2} × ... ×
anspan{wn}, where ai ∈ {0, 1} and wi are the canonical base vectors of Rn. A (parallel)
composition procedure between two systems is introduced as follows:

Definition 5 (HCS Composition). Given two compatible HCS H1 = (X1,U1,Y1, F1,T1)
and H2 = (X2,U2,Y2, F2,T2), a composition procedure ||Σ is specified by Σ = {W1 ×

W2, g1×g2}, i.e. a set of rectangular subspaces Wi ⊆ span(Ui) and the maps gi : Y3−i →

π|Wi (Ui), i = 1, 2. The operation ||Σ yields HΣ = H1||ΣH2 = (XΣ ,UΣ ,YΣ , FΣ ,TΣ),
which is a new HCS made up of the following:

– XΣ = X1×X2, InitΣ = Init1× Init2 are the hybrid state space and initial conditions;
– UΣ = π|(W⊥

1 ×W
⊥
2)(U1 × U2) is the input space;

– YΣ = Y1 × Y2 is the output space;
– FΣ = { f Σ(1,2)}(1,2)∈(Q1×Q2) is the vector field; for any (x1, x2) ∈ XΣ and (u1, u2) ∈ UΣ ,

f Σ(1,2)((x1, x2), (u1, u2)) = f1(x1,M−1
W1

[uT
1 , g1(h2(x2))T]T× f2(x2,M−1

W2
[uT

2 , g2(h1(x1))T]T ;
– TΣ is the set of transition relations, composed of
• EΣ = E1 × E2, is the set of edges;
• GΣ = {GΣe }e∈EΣ , is the set of guards, where for any (u1, u2) ∈ UΣ and any

(e1, e2) ∈ EΣ the guard set GΣ(e1,e2) is implicitly defined by (x1, x2) ∈ GΣ(e1,e2),
where (x1, x2) ∈ (G1)e1 (M−1

W1
[uT

1 , g1(h1(x2))T]T)×(G2)e2 (M−1
W2

[uT
2 , g2(h2(x1))T]T);

• RΣ = {Re}e∈E , is the reset function, where ∀e = (e1, e2) ∈ EΣ ,RΣe = (R1)e1 ×

(R2)e2 .

6

Remark 4 (On the Composition). The interconnecting functions g1, g2 turn a transfor-
mation of part of the original output spaces into part of the original input spaces. Notice
that we have not assumed that the input and output spaces have the same dimension: the
dimensionality is handled directly by the interconnecting functions; in particular, the in-
terconnection maps the output signal to a subset of the input space. More precisely, the
functions gi are defined on a subset of the vector spaces, dom(gi) ⊆ Y3−i; its dimen-
sion tells the number of signals employed in the interconnection, while the dimension
of the codomain dim(Wi) defines the number of signals actually connected. The way
they get connected to the input signals is further specified by the subspaces Wi in an
intuitive way. More general compositions, that allow the output signals to be “shuffled”
(rather than just ordinately clustered), can be directly defined by appropriately redefin-
ing matrices MWi . The new input set is the projection of the cartesian product of the two
original input sets onto the space of the “unused signals”, i.e. of those inputs that have
accepted no feedback. Clearly, in the full-feedback case, the codomains of the gi shall
be the whole input spaces Ui, thus yielding a fully dynamic (uncontrolled) composition.
Finally, let us stress that it is possible to express g = g1 × g2, i.e. as a cartesian product
between functions.

Remark 5 (On the Events of the composed system). The events of the composed system
are specified “asynchronously”; in other words, even though the dynamics of the two
models reciprocally affect each other, the events happen within the single system, pos-
sibly at the same time. ut

Remark 6 (Asynchronicity of the Composition, Absence of Cyclic Constraints). Both
H1 and H2 are asynchronous by definition and their composition Hc is asynchronous
as well: it can indeed be viewed from the outside as an interconnection of two dynamical
systems. The reader should realize that this does not exclude the presence of pathologi-
cal events (Zeno or blocking, for instance), which arises at an internal level. For now, we
do not impose any a-priori condition to exclude this, unlike previous literature, where
the focus was on ensuring infinite forward progress of time under systems’ composition
[3][4][5][6]. As discussed, the discrete events affecting the variables of each system are
allowed to happen without any imposed syncronization, even if we have allowed the
internal (state) and external (outputs) variables to possibly partially overlap; this is due
to the semantics of the events, which depend on the limit value of the control, rather
than its value at a certain time. In the literature [5][6], this “cyclic constraints” have
been artificially avoided by splitting up internal and external variables, which we do
not want to assume here; another method to prevent these conditions has been that of
imposing some ordering, or sequentiality, between the signals in the loop. This would
prevent the introduction of the concept of dynamic feedback, and hence we avoid rais-
ing such assumption. ut

The following can be derived from Remark 1 and the way the composition in Def.
5 is performed. The easy proof is omitted for space limitations.

Proposition 1 (Determinism of the Composition). Given a pair of deterministic HCS
H1 and H2 and a composition Σ = {W1 × W2, g1 × g2}, if the maps gi are almost-
everywhere continuous, then the hybrid system HΣ = H1||ΣH2 is deterministic.

7

Remark 7 (Commutativity and Associativity of the Composition). The composition is
trivially commutative by the way it was defined. The associative property is verified
in the following sense: given three HCS H1, H2, H3, if it is legitimate to compose
them as (H1||Σ1H2)||Σ2H3, then it holds that (H1||Σ1H2)||Σ2H3 = H1||Σ1 (H2||Σ2H3). We
have not specified the details of the composition procedures, but just assumed that there
exist interconnecting maps that respect the domain dimensionality and bounds so that
the composition of the three systems can be performed in one way. Showing that it is
possible, and indeed equivalent, to perform the composition in the other order is only a
matter of calculations. We remark that this property ensures the generality of Def. 5 in
that it can be repeated more than once without worrying about the order; this will also
be exploited when reasoning about composing specifications in the ensuing sections.
Another issue that precedes the above property is the seek of conditions that ensure
that the composition between a number of HCS is structurally allowed. A necessary
condition for this fact to hold for a composition between a set Hi, i ∈ I through Σ =
{Σ j,k, j, k ∈ I}, is that the codomains7 of all the interconnecting maps to any particular
input space do not intersect : ∀i ∈ I,∀ j, k : {Σ j,i, Σk,i} ∈ Σ,W j ∩Wk = ∅. ut

We conclude the Section by remarking that more general compositions can be described
with slight changes to the setup given in this Section. We mention the possibility to de-
fine feedbacks with “self-loops” within a single HCS. Futhermore, it is also interesting
to look at time-varying interconnections, which introduce a “switching” composition
level that may introduce interesting, but possibly pathologic, phenomena, such as Zeno
[13].

4 Composing Hybrid Systems Specifications

In this section we consider rather general specifications defined on trajectories on the
observation space (or, possibly, in the fully-observable case, on the state space); they
may be defined, for instance, via temporal logic formulas for real-time systems. Fur-
thermore, we shall also introduce an explicit dependence on the control signals: this
would allow to express specifications that are general enough to cover the most impor-
tant problems in control theory. Let M ⊆ Y and recall that U is the set of control inputs
for H. We set up the following problems as paradigms for our study:

1. reachability: ϕR(U,M) B ∃u∗ : R+0 → U,∃t∗ < ∞ : y(t∗) ∈M;
2. attractivity: ϕA(U,M) B ∀u : R+0 → U,∃t∗ < ∞ : y(t∗) ∈M;
3. invariance: ϕI(U,M) B ∀u : R+0 → U,∀t ≥ 0, y(t) ∈M;
4. viability: ϕV (U,M) B ∃u∗ : R+0 → U : ∀t ≥ 0, y(t) ∈M.

The known liveness property, which is quite important and object of much investigation
in the literature on transition systems, can be reinterpreted within the first two of the
above properties; in particular, the requirement of forward progress has been object of
investigation [3][4][16][17] for its obvious practical implications. The last two prop-
erties can be thought of as safety specifications. The first and fourth instances can be

7 This is stronger than a similar requirement on the ranges of these functions.

8

intended as control synthesis problems, while the second and third as verification prob-
lems. Another relevant specification we shall be referring to is that of time progression,
which entails the study of phenomena like blocking or Zeno: this can be conceived as a
liveness property at large.

Notice that the above definitions have been given in generality with respect to the
signal y(t) ∈ Y , output of the control-dependent dynamics of H, and which is defined on
the hybrid time set (t ∈ τ, according to Def. 2). Because of the hypothesis for the deter-
minism for the model (see Remark 1), given an initial condition and a time-dependent
control profile, the generated hybrid trajectory is unique. We write x0 |=H ϕ(U,M) (and
say that x0 satisfies ϕ(U,M) for H) if that specification (which also depends on the set
M and is further quantified over the controls in U) is satisfied by executions with ini-
tial condition x0 ∈ X. We are then interested in the set of initial conditions that satisfy
a given specification: more formally, we introduce the following subset of the initial
conditions: XH = {x0 ∈ Init : x0 |=H ϕ(U,M)}.

We write H |= ϕ(U,M) (and say that H satisfies ϕ(U,M)) if XH = Init. Let us
now consider two hybrid systems H1 and H2, corresponding specifications ϕ1(U1,M1),
ϕ2(U2,M2) and a composition procedure Σ. We are interested in composing the two
specifications ϕ1, ϕ2. Similar to [12], we define

Definition 6 (Composition of Specifications). Given the two HCS H1,H2 with speci-
fications ϕ1(U1,M1), ϕ2(U2,M2) and a composition procedure Σ, the composed specifi-
cation ϕΣ(UΣ ,M1×M2) = ϕ1(U1,M1)||Σϕ2(U2,M2) for the HCS HΣ is the conjunction
ϕ1(U1,M1) ∧ ϕ2(U2,M2), modulo proper substitutions of variables, according to the
composition maps g1, g2 that characterize Σ 8.

4.1 Specification Retention on the HCS Composition

The composed system HΣ can be investigated from the perspective of the existence of
initial conditions that yield to the verification of the composed specification:

XHΣ = {(x0
1, x

0
2) ∈ Init1 × Init2 : (x0

1, x
0
2) |=HΣ ϕΣ}. (2)

Rather than verifying a certain specification in generality on the HCS composition as
in Eqn. (2), we may be interested in checking whether some verified properties on the
original systems are retained through a certain composition; this is motivated by the
introduction of a definition of the concepts of deadlock and livelock, which, as it shall
be motivated in the sequel, is associated with pathological behaviors at the level of the
composition. More precisely, we look at the following set:

X̄HΣ = {(x0
1, x

0
2) ∈ XH1 × XH2 : (x0

1, x
0
2) |=HΣ ϕΣ}.

It should be clear that the following containment relationships hold: X̄HΣ ⊆ XHΣ ⊆

Init1 × Init2. Note that XHΣ is the subset of initial conditions Init1 × Init2 of HΣ that
satisfy the composed specification. We are interested in X̄HΣ , that is the subset of the

8 In [12], a space embedding is also necessary in the case of composition of specifications de-
fined on heterogeneous spaces; Def. 1 and Def. 5 render this unnecessary.

9

initial conditions XH1 × XH2 that separately satisfy the single specifications ϕ1, ϕ2 for
H1,H2, and also satisfy the composed specification ϕΣ for HΣ . We are finally able to
define an even more interesting set:

X̃HΣ = (XH1 × XH2)\X̄HΣ .

This is the set of initial conditions that, taken separately i.e. within the original system,
would satisfy the corresponding properties for that single system, but which do not
satisfy the composed property. Notice that, if the specifications ϕ1, ϕ2 are expressed
with the universal quantifier on the control variable (namely ∀ui ∈ Ui, i = 1, 2), then
X̄HΣ = XH1 × XH2 , and thus X̃HΣ = ∅: in fact, the interconnection restricts the set
of available input signals for the composed system; then, if a property holds for all the
control input signals, it also holds for a subset of them. This motivates to restrict the
attention to the case where either ϕ1 or ϕ2 handle the variable ui with an existential
quantifier (i.e. ∃ui ∈ Ui, i = 1, 2). In other words, we shall focus on control synthesis
problems.

The elements of X̃HΣ are initial states of HΣ that are associated with “pathological”
behaviors coming out of the interconnection, when looked from the perspective of the
verification of the composed specification: this can be due to different reasons for the
same initial condition in X̃HΣ , i.e. to different control profiles that generate different
“bad” trajectories. Within the set X̃HΣ we shall be looking for deadlock and livelock
executions: to this aim, we categorize these initial conditions into three possibly over-
lapping subsets:

X̃HΣ = X̃d
HΣ ∪ X̃l

HΣ ∪ X̃e
HΣ . (3)

In the passing, we remark that the above three sets are non overlapping if the composi-
tion is fully dynamic, namely if UΣ = ∅. The categorization in Eqn. (3) hinges on the
dynamical properties of the generated executions, as described in the next Section.

5 Formal Definition of Deadlock and Livelock for HCS

Let us start by introducing the following concept:

Definition 7 (Hybrid Invariant Set). For a HCS H and a hybrid trajectory (x, τ) orig-
inating from a particular control profile, a hybrid set I ⊆ X is defined to be invariant if
the following holds: if x(t∗) ∈ I for t∗ ∈ τ, then x(t) ∈ I,∀t ≥ t∗.

From a dynamical standpoint, the concepts of deadlock, or livelock, are intrinsically
related to the idea of a trajectory being “constrained” or “stalled” somewhere in the
state space. This locking condition is then further specified with regards to the presence
or absence of indefinite motion within the region. We then distinguish the pathological
trajectories associated with Eqn. (3) as follows:

Definition 8 (Deadlock and Livelock for HCS). The items in X̃HΣ belong to either of
the following:

– X̃e
HΣ , the set of initial conditions that correspond to trajectories that do not en-

counter an invariant set in XΣ;

10

– X̃d
HΣ ∪ X̃l

HΣ , the complement of the above set in X̃HΣ , the set of initial conditions
associated with trajectories that enter an invariant set I.

The second set is further composed of:

– X̃d
HΣ , the set of initial conditions associated with deadlock executions: these are

defined by absence of motion in finite time (“stalling” situation);
– X̃l

HΣ , the set of initial conditions associated with a livelock situation: these are
characterized by endless motion, either in their continuous or discrete component.

Notice that the definition above hinges on a purely dynamical level; this represents
the last point, after that of composition and that of specification, which is regarded as
necessary to introduce the notions of deadlock and livelock in the framework of HCS.
Let us study how special types of dynamics are categorized within the above definition:

– Deadlock Situations:
• blocking conditions: states for which no “next” state is defined.
• stable equilibria in finite time: equilibria in the continuous dynamics that are

reached by a reset operation.
• chattering Zeno: the discrete component infinitely jumps instantaneously be-

tween different domains, while the continuous component is still (Def. 3).
• genuine Zeno: the hybrid trajectory performs an infinite number of transitions

in a finite amount of time (see Def. 3).
– Livelock Situations:
• stable equilibria in infinite time: equilibria for the continuous dynamics.
• limit cycles, both in the continuous and the discrete dynamics.

It is easy to add to the above that the set X̃e
HΣ is associated with diverging trajecto-

ries: such trajectories are characterized by finite or infinite escape time, either in the
continuous, or the discrete component.

Remark 8 (On Zeno Phenomena). Zeno behaviors are peculiar phenomena that occurr
to HCS models and which truly highlight their structural characteristics. Even in this
particular instance, it is interesting to stress that their characterization is “in between”
that of deadlock and livelock. They are in fact similar to a blocking condition, in that
they are not defined for all the (hybrid) time set, while adhering to the second group
as they are endowed with an “infinite motion”. We categorized them within the dead-
lock situations also because of the practical outcome involving their presence, that of
“stalling” a program that simulates them. ut

6 Deadlock Verification

From the above discussion, it comes at no surprise that the next obligatory step after that
of defining and characterizing the notion of deadlock and livelock for HCS is that of
looking at ways to detect it; furthermore, it would be desirable to derive some conditions
to prevent it a-priori, or synthesize actions in order to resolve it. It has been motivated
that the new notions depend on a dynamical level, on the notion of composition, and on
the specifications that are attached to the problem: we shall then look at all these levels

11

and leverage on each of them for the following tasks. Recall that we discussed about
the last point at the beginning of Sec. 4.

Detecting particular behaviors through the use of sufficient conditions for their ex-
istence is in general hard (see for instance [15] for the Zeno cases). Secondly, model
checking for certain properties requires a simulation-based approach and is in general
doomed to be undecidable. It appears to be easier to come up with conditions ensuring
the absence of these pathological conditions.

To begin with, according to Def. 7, let us focus our attention on the presence of
invariant sets on the composed HCS: this is a computationally heavy task. We can resort
to the back-propagation of equilibria or ω−limit sets. In the hybrid case the search is
indeed not easy [19]. The reason for this can be traced back to the variety of possible
behaviors, especially switching ones; this difficulty is in fact related to the hardness in
finding conditions for stability in HCS [20].

Regarding the “other side” of the set of pathological trajectories, divergent trajec-
tories can be ruled out by proper Lipschitz conditions (for the finite-time, continuous-
space case), reset assumptions (no resets on guards, for the finite-time, discrete-space
case) and domain boundedness conditions (for infinite-time case).

The next step involves looking into the specific types of locking behaviors. For
simplicity, let us raise the following

Assumption 3. Let the assumptions invoked in Proposition 1 be in order. ut

Deadlock Avoidance.

Proposition 2. Under condition in Eqn. (1) in Remark 2 on H1,H2 and considered the
composition procedure Σ, HCS HΣ does not generate blocking executions.

Let E = {x∗ = (q∗, v∗)} be the set of equilibria points on XΣ , the state space of
HΣ ; if the composition is purely dynamical, i.e. an autonomous system, the definition
is known; if, instead, HΣ is controlled, then the points in E are defined to be such for
all the possible applicable controls in UΣ .

Proposition 3. Given HΣ , if range(RΣe) ∩ E = ∅ for all e ∈ EΣ , then HΣ does not
generate deadlock executions coming from finite-time stable executions.

Definition 9 (Cycle). Given a system H, a collection of edges c = {ek}k=0···s, ek ∈ E is
a cycle of length |c| = s + 1 if d(ek) = s(ek+1),∀k < s and s(e1) = d(es).

Proposition 4. Given HΣ , let C be the set of all cycles on TΣ . If there exists c ∈ C such
that range(RΣek

) ∩ GΣe(k+1)mod(|c|)
= ∅ for all k = 0 · · · |c| − 1, then HΣ does not generate

deadlock executions coming from chattering Zeno, as intended in Def. 3.

Let us now investigate conditions to prevent genuine Zeno. We shall follow an ap-
proach already presented in [5][6], and in part inspired by older work [3][4]. In As-
sumption 2, conditions for the compatibility between HCS for their composition have
been introduced. More interestingly, we may look for conditions that ensure that the
composed system, when control-dependent, accepts any possible input trajectory, given
the compatibility of the two original systems: the notion of strong compatibility has
been introduced in [5][6] to formalize this concept. The following holds:

12

Proposition 5. The composition HΣ of two compatible HCS H1 and H2 is strongly
compatible. A particular instance is the case of a purely dynamical connection HΣ .

The above claim, which is not proven here because of space constraints, is related
to the “Lipschitz HIOA” case in [5]. In that work, the notion of strategy is further in-
troduced, that is of deterministic refinement of a HCS, which in our case coincides
with the system HΣ itself (see Assumption 3). We are in particular interested in seek-
ing progressive strategies, that is of a system HΣ for which time progresses to infinity
(no more complicated liveness specifications are needed). In our case, progressiveness
is postulated by definition of the HCS models H1,H2, in fact they are assumed to be
blocking-free; hence, to get a progressive strategy it is further important to make sure
that the absence of Zeno is preserved by composition.

Proposition 6. Reinstate the non-blocking conditions in Remark 2 (Eqn. (1)), which
ensure that the composition HΣ is non-blocking. Then, according to Thm. 7.4 in [5],
HΣ is a progressive strategy.

Now, defining “receptive” a HCS with progressive strategy, combining the hypothe-
ses of Propositions 5 and 6, the following holds: “strong compatibility”, to have a re-
ceptive HCS as a composition, with a progressive stategy.

Corollary 1. Under condition in Eqn. (1) in Remark 2 for two compatible HCS H1,H2,
we conclude that HΣ is receptive, and hence free of genuine-Zeno, as in Def. 3.

A more structural approach to the issue is the following: the Lipschitz property of
the vector fields of HΣ entails a bound on the “speed” of the trajectories dwelling in XΣ ;
this can be exploited postulating that the codomain of the reset maps is bounded away
from the guard set, i.e. assuming that it will take at least a minimum, non-zero amount
of time for the trajectories to get to the boundary. This, according to Def. 3, shall rule
out genuine Zeno:

Proposition 7. Given HΣ , if dist(cod(RΣ),GΣ) > δ > 0 then HΣ does not generate
deadlock trajectories coming from genuine Zeno, as intended in Def. 3.

Livelock Avoidance.

Proposition 8. Given HΣ , consider the set E of HΣ: if this set is unreachable from
XH1 ×XH2 , then HΣ will have no Livelock behavior coming from infinite-time stability.

The approach can be extended in spirit to include detection of limit cycles.

7 Example: Three cars crossing an intersection

Consider the interconnection of three models Hi, i ∈ {0, 1, 2}, each of which describes
the dynamics of a car along a road with a stop sign. The dynamical model describes
the dynamics associated with the car’s position, and is hence one dimensional. The
intersection is assumed to be positioned at the origin. The ith car is assumed to be

13

controlled through its velocity: we distinguish five operation regions in its domain. In
the first (leftmost), the vehicle speeds toward the intersection, until it reaches the second
region, where it is assumed to decelerate until hitting the intersection; there, it may
move on, and thereafter accelerate until gettin out of a buffer zone, where the control
is assumed to steer the car away from the intersection. Quantitatively, the model is the
following:

ẋi =

ui + δ , if xi < −c
−

ui
c xi + δ , if − c ≤ xi < 0

ui
d xi , if 0 ≤ xi < d
ui + δ , if xi ≥ d

Here we assume that c, d > 0, that the initial conditions xo
i ∈ Initi = (−∞,−c], and

that δ > ui (so that the car decelerates, yet arrives at the intersection in finite time).
The continuous control ui belongs to a set Ui = [0,N],N < ∞; assume the control
is cadlag. The control is space is then Ui. The output is the state – we are in the case
of full observability. Notice that the structure of the vector fields, with their simple
dependence on the control signals, which are piecewise-continuous from the right, as
well as the absence of guards, defines the state trajectory, and hence the output, on the
real time. It is hence not necessary to introduce the maps l, which turn output signals to
interconnectable ones.

We specify for each system a reachability (and liveness) property, which denotes
the possibility of the car to reach a certain point “way ahead of the stop sign”:

ϕR(Ui,K) := ∃u∗i : [0,∞)→ Ui,∃ 0 ≤ t∗ < ∞ : xi(t∗) = K > d.

It should be clear that for all the three systems, taken by themselves, for each initial
condition there exists a control (discrete and continuous) such that the system satisfies
the liveness specification. More precisely,

∀ui ∈ (0,N],∀xo
i ∈ Initi, xo

i |=Hi ϕR, hence Hi |= ϕR.

Hence, we can say that XHi = Initi. Notice that the left closure of the sets Ui make
a similar “attractivity” specification not be verified.

We interconnect the three systems in order to model the intersection of a three-way
stop (see Figure 1). Furthermore, as customary for the majority of real world traffic
codes, we impose a “yield to the right” rule. Introduce the indicator function

1[−c,0](x) =
{

1, if x ∈ [−c, 0];
0, else.

The interconnection between H(i+1)mod3 and Hi is specified by Σi,(i+1)mod3 = {R, gi,(i+1)mod3} =

{R×∅, gi,(i+1)mod3×g̃}, i ∈ {0, 1, 2}, where g̃ = g(i+1)mod3,i is undefined because W(i+1)mod3,i
is the empty set. The following function defines the structure of the interconnected in-
puts:

ui = gi,(i+1)mod3(y(i+1)mod3) = 1[−c,0]C (x(i+1)mod3),

where we have denoted with [−c, 0]C the complement of [−c, 0]. It is easy to realize
that, given the structure of the Σi,(i+1)mod3, i ∈ {0, 1, 2}, the interconnection is associative;

14

hence, we naturally compose the three models with no particular order. The pairwise
composed system is controlled in that UΣi,(i+1)mod3 = U(i+1)mod3.

Define finally HΣ = H1||Σ2,1 H2||Σ3,(2,1) H3||Σ1,(3,(2,1)) H1; the output of the composition is
purely dynamical (see Figure 2).

The reader should easily convince himself that, for a particular set of the model para-
meters, there exist a combination of initial conditions for the three systems which yield
to a condition that has the three cars stopped at the intersection, each of them “waiting”
for the next on its right to proceed. This is intuitively a deadlock situation. Such a situ-
ation is obtained, for example, when the initial condition x0

i ∈ [−c, 0], i ∈ {0, 1, 2}. If we
in fact look at the system in its entirety, we understand that from a dynamical standpoint
the obtained deadlock condition corresponds to finite-time equilibrium.

x1 = - c

x1 = 0

x1 = d

x1

x2 = - c

x2 = 0

x2 = d

x2

x3 = - c

x3 = 0

x3 = d

x3

yield rule

yield rule yield rule
compositions

buffer

intersection

Fig. 1. Composition of the three dynamical control systems according to specific rules.

8 Conclusions and Future Work

It is interesting to notice that the ideas introduced in the paper taylor to know one from
the literature on distrete transition systems, HIOA, or dynamical systems.

Deadlock and Livelock resolution is another topic that does not find space in the
present paper; this take-away point is to add noise to the dynamics of the model in
order to probabilisitically reduce the likelihood of deadlock executions.

The authors are working on many enticing extensions of the presented results. The
concept of composition is prone to be generalized, and the issue of “deep composition”,
i.e. of a composition procedure preserving certain properties, clearly connects with the
above effort when the absence of deadlock or livelock is the specification to be exported.

15

x1 = - c

x1 = 0

x1 = d

x2

x3

x1

Fig. 2. Three cars crossing an intersection.

References

1. John Lygeros: Lecture Notes on Hybrid Systems. ENSIETA, 2-6/2/2004.
2. John Lygeros, Karl Henrik Johansson, Slobodan N. Simic, Jun Zhang, Shankar Sastry : Dy-

namical Properties of Hybrid Automata. IEEE Transactions On Automatic Control, VOL.
48, NO. 1, January 2003.

3. Rajeev Alur, Thomas Henzinger: Reactive Modules. Proceedings of the 11th IEEE Sympo-
sium on Logics in Computer Science (LICS), pages 207-218, 1996.

4. Rajeev Alur, Thomas Henzinger: Modularity for Timed and Hybrid Systems. Proceedings of
the 8th International Conference on Concurrency Theory (CONCUR 97), LNCS 1243, pp.
74-88, 1997.

5. Nancy Lynch, Roberto Segala, Frits Vaandrager: Hybrid I/O Automata. Information and
Computation, 185(1):105-157, 2003.

6. Nancy Lynch, Roberto Segala, Frits Vaandrager: Hybrid I/O Automata Revisited. in Pro-
ceedings of the 4th Hybrid Systems Computation and Control (HSCC) 2001, Rome, Italy,
LNCS2034, pages 403-417, March 2001.

7. Mikhail Bernardsky, Raman Sharykin, Rajeev Alur: Structured Modeling of Concurrent
SHS. Joint Conference on Formal Modeling and Analysis of Timed Systems and Formal
Techniques in Real-Time and Fault Tolerant Systems, 2004.

8. Stefan Strubbe: Compositional Modelling of Stochastic Hybrid Systems. PhD Thesis, Uni-
versity of Twente, 2005.

9. Sebastien Bornot, Joseph Sifakis: On the Composition of Hybrid Systems. Hybrid systems:
Computation and Control, Berkeley, April 1998, invited talk, LNCS 1386, pp. 69-83.

10. Joseph Sifakis: The Compositional Specification of Timed Systems. CAV 1999 Trento, July
1999.

11. Paulo Tabuada, George Pappas, Pedro Lima: Compositional Abstractions of Hybrid Control
Systems. Discrete Events Dynamic Systems: Theory and Applications, 14, 203-238, 2004.

12. Martin Abadi, Leslie Lamport: Composing Specifications. REX Workshop on Stepwise
Refinement of Distributed Systems, Mook, NL, May 1989.

13. Michael Heymann, Feng Lin, George Meyer, Stefan Resmerita: Analysis of Zeno Behaviors
in Hybrid Systems. in Procedings of the 41st Decision and Control Conference, Las Vegas,
NV, Dec. 2001.

16

14. Holger Hermanns: Interactive Markov Chains, and the Quest for Quantified Quality. Lecture
Notes in Computer Science 2428, 2002.

15. Aaron Ames, Alessandro Abate and Shankar Sastry: Sufficient Conditions for the Existence
of Zeno Behavior in Hybrid Systems. Proceedings of the 44th IEEE Conference on Decision
and Control, Seville, SP, Dec. 2005.

16. Ekkart Kindler: Safety and Liveness Properties: A Survey. Bulletin of the European Associ-
ation for Theoretical Computer Science, vol. 53, pp. 268–272, 1994.

17. Martin Abadi et al.: Preseving Liveness: Comments on “Safety and Liveness from a Method-
ological Point of View”, 1991.

18. Bowen Alpern and Fred Schneider: Defining Liveness. Information Processing Letters, vol.
21, pp. 181-185, 1985.

19. Alessandro Abate and Ashish Tiwari: Box Invariance of Hybrid and Switched systems. Pro-
ceedings of the 2nd IFAC Conference on Analysis and Design of Hybrid Systems, Alghero,
IT. June 2006.

20. Michael Branicky: Stability of switched and hybrid systems. Proceedings of the 33rd Con-
ference on Decision and Control. Dec. 1994.

21. Elena De Santis, Maria Domenica Di Benedetto, Giordano Pola: Detectability based state
space reductions for hybrid systems. 17th International symposium on Mathematical Theory
of Network and Systems, Kyoto, Japan, July 2006.

17

