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Abstra
t
Kernel Optimization for Support Ve
tor Ma
hines: Appli
ation to SpeakerVeri�
ationbyAndrew Oliver Hat
hDo
tor of Philosophy in Engineering-Ele
tri
al Engineering and Computer S
ien
esUniversity of California, BerkeleyProfessor Nelson Morgan, ChairIn this dissertation, we examine the problem of kernel optimization for binary 
lassi�
ationtasks where the training data are partitioned into multiple, disjoint 
lasses. The dissertationfo
uses spe
i�
ally on the �eld of speaker veri�
ation, whi
h 
an be framed as a one-versus-all (OVA) de
ision task involving a target speaker and a set of impostor speakers.The main result of this dissertation is a new framework for optimizing generalized linearkernels of the form, k(x1;x2) = xT1Rx2, where x1 and x2 are input feature ve
tors, andR is a positive semide�nite parameter matrix. Our framework is based on using �rst andse
ond-order statisti
s from ea
h 
lass (i.e., speaker) in the data to 
onstru
t an upperbound on 
lassi�
ation error in a linear 
lassi�er. Minimizing this bound leads dire
tly to anew, modi�ed formulation of the 1-norm, soft-margin support ve
tor ma
hine (SVM). Thismodi�ed formulation is identi
al to the 
onventional SVM developed by Vapnik, ex
eptthat it impli
itly pres
ribes a solution for the R parameter matrix in a generalized linearkernel. We refer to this new, modi�ed SVM formulation as the adaptive, multi
luster SVM(AMC-SVM). Unlike most other kernel learning te
hniques in the literature, the AMC-1



SVM uses information about 
lusters that reside within the given target and impostordata to obtain tighter bounds on 
lassi�
ation error than those obtained in 
onventionalSVM-based approa
hes. This use of 
luster information makes the AMC-SVM parti
ularlywell-suited to tasks that involve binary 
lassi�
ation of multi
lass data|for example, thespeaker veri�
ation task|where ea
h 
lass (i.e., speaker) 
an be treated as a separate
luster.In OVA training settings, we show that the AMC-SVM 
an, under 
ertain 
onditions,be formulated to yield a single, �xed kernel fun
tion that applies universally to any 
hoi
eof target speaker. Sin
e this kernel fun
tion is linear, we 
an implement it by applying asingle linear feature transformation to the input feature spa
e. This feature transformationperforms what we refer to as within-
lass 
ovarian
e normalization (WCCN) on the inputfeature ve
tors. The dissertation des
ribes a set of experiments where WCCN yields largeredu
tions in 
lassi�
ation error over other normalization te
hniques on a state-of-the-artSVM-based speaker veri�
ation system.
Professor Nelson MorganDissertation Committee Chair
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Chapter 1
Introdu
tion

One of the 
entral problems in the study of support ve
tor ma
hines (SVMs) is kernelsele
tion|that is, the problem of 
hoosing or optimizing a kernel fun
tion for a parti
ulartask and dataset. In the following dissertation, we 
onsider the problem of kernel optimiza-tion for binary 
lassi�
ation tasks where the training data are partitioned into multiple,disjoint 
lasses. We fo
us spe
i�
ally on the �eld of speaker veri�
ation, whi
h 
an beframed as a one-versus-all (OVA) de
ision task involving a target 
lass (i.e., speaker), andan impostor 
lass 
omposed of a pooled set of impostor speakers. The dissertation showshow information about individual 
lasses (i.e., speakers) in the data 
an be used to 
onstru
tupper bounds on 
lassi�
ation error. By minimizing these upper bounds, we obtain a newframework for training aÆne 
lassi�ers. This framework also leads to various te
hniques fortraining kernel fun
tions for support ve
tor ma
hines. We des
ribe a set of experiments inwhi
h our approa
h yields substantial improvements in 
lassi�
ation error when 
omparedwith other, existing te
hniques for training kernel fun
tions.The main result of this dissertation is a general framework for performing binary 
lassi-�
ation in multi
lass settings with aÆne de
ision fun
tions. This framework leads dire
tlyto a modi�ed formulation of both the hard-margin and the 1-norm soft-margin supportve
tor ma
hines (SVMs). These modi�ed SVMs are identi
al to the 
onventional SVM1



formulation in Vapnik [1995℄, ex
ept that they impli
itly learn kernel fun
tions of the form,k(x1;x2) = xT1Rx2, where x1 and x2 are input feature ve
tors, and R is a positive semidef-inite matrix. We refer to kernel fun
tions of this form as generalized linear kernels.Under various 
onditions, our framework leads to generalized linear kernels of the formR = C�1W , where CW is the expe
ted within-
lass 
ovarian
e matrix over all 
lasses (i.e.,speakers) in the training data. This parameterization applies universally to any 
hoi
eof target 
lass (i.e., speaker). Be
ause the kernel fun
tion is linear, we 
an implement itby applying a single linear feature transformation to the input feature spa
e. This featuretransformation performs what we refer to as within-
lass 
ovarian
e normalization (WCCN)on the input feature ve
tors. In Chapters 6 and 8, we des
ribe a set of experiments whereWCCN yields large redu
tions in 
lassi�
ation error over other normalization te
hniques.The WCCN approa
h forms one of the main 
omponents of our dissertation.In Chapter 7, we derive a more general formulation of WCCN where the kernel fun
tionis adapted to the given 
hoi
e of target set and impostor set. We refer to this formulation asthe adaptive, multi
luster SVM (AMC-SVM), sin
e it assigns a separate weight parameterto every 
lass (i.e., 
luster) in the training data. Unlike other kernel learning te
hniques inthe literature (e.g., multiple kernel learning (Lan
kriet et al. [2004℄; Ba
h et al. [2004℄) andhyperkernels (Ong et al. [2003℄), the AMC-SVM uses information about 
lusters that residewithin the given target and impostor data to obtain tighter bounds on 
lassi�
ation errorthan those obtained in 
onventional SVM-based approa
hes. This use of 
luster informationmakes the adaptive, multi
luster SVM parti
ularly well-suited to tasks that involve binary
lassi�
ation in multi
lass settings|for example, the speaker veri�
ation task, where ea
h
lass (i.e., speaker) 
an be treated as a separate 
luster.The dissertation is organized as follows: We begin, in Chapter 2, by des
ribing thespeaker veri�
ation task and by summarizing the 
urrent state-of-the-art in the �eld, par-ti
ularly as it applies to support ve
tor ma
hines. This is followed by a brief overview ofsupport ve
tor ma
hines (SVMs) in Chapter 3. Chapter 4 provides a brief summary of2



related work within the �eld of kernel optimization. Chapters 5 through 7 des
ribe the the-oreti
al framework behind WCCN and the adaptive multi
luster SVM. These 
hapters alsodes
ribe a set of experiments where we 
ompare these te
hniques with other state-of-the-artte
hniques for training kernel fun
tions. Finally, we des
ribe a pra
ti
al pro
edure for ap-plying WCCN to high-dimensional datasets in Chapter 8. In this 
hapter, we also des
ribethe latest results obtained from using WCCN on an SVM-based speaker veri�
ation task.The results show that WCCN yields signi�
ant improvements over other state-of-the-artte
hniques for performing kernel optimization on speaker veri�
ation tasks.

3



Chapter 2
Speaker Veri�
ation

The following 
hapter gives a brief introdu
tion to the �eld of speaker veri�
ation. Thisin
ludes a des
ription of the various models and feature sets that are typi
ally used to trainspeaker veri�
ation systems. In the following se
tion, we begin with a general overview ofthe speaker veri�
ation problem.2.1 Problem De�nitionUnlike speaker identi�
ation, where the goal is to asso
iate a given spee
h utteran
ewith a spe
i�
 speaker, the goal in most NIST-de�ned speaker veri�
ation tasks|whi
hare the tasks that we will 
onsider for this resear
h|is to determine whether or not agiven spee
h utteran
e belongs to a given speaker. Thus, speaker veri�
ation is a binary
lassi�
ation problem. We will fo
us on a set of NIST-de�ned tasks for performing text-independent speaker veri�
ation, where the input spee
h is not 
onstrained to any spe
i�
set of words or phrases. In these tasks, the speaker veri�
ation system is presented witha set of spee
h utteran
es or 
onversation sides. These 
onversation sides 
onstitute oneside of a two-way telephone 
onversation and are typi
ally about 2.5 minutes in length.The speaker veri�
ation system is presented with a limited number of 
onversation sides4



(usually between 1 and 8) from the given target speaker, along with a test 
onversationside, whi
h we refer to as the test segment or test utteran
e. The system is then asked todetermine whether or not the test utteran
e belongs to the target speaker. Typi
ally, thespeaker veri�
ation system is allowed to use any number of 
onversation sides taken fromso-
alled impostor speakers|that is, speakers who don't appear in the test data or as targetspeakers|to fa
ilitate in making this de
ision. This pooled set of impostor 
onversationsides is referred to as the ba
kground data or as the impostor data.2.1.1 Prototypi
al SystemFigure 2.1 shows a high-level diagram of a prototypi
al speaker veri�
ation system. Thesystem uses a set of target utteran
es and a set of impostor or ba
kground utteran
es totrain a one-versus-all (OVA) speaker model for speaker i. In the �gure, we use the notation,Xi to represent the set of training utteran
es that belong to speaker i. These utteran
es
onstitute the \positive examples" for the given speaker. Similarly, we refer to all utteran
esin Xj where j 6= i as the negative or impostor examples for speaker i. The system in Figure2.1 uses the target examples and the impostor examples for speaker i to train a speakermodel, whi
h we represent as the fun
tion fi. The speaker model performs a mapping froman L-dimensional input spa
e into the spa
e of real numbers:fi : RL ! R:We refer to the s
alar value fi(x) as the output s
ore obtained for utteran
e x on speakermodel i. This s
ore is used to form the output hypothesis ŷi(x), whi
h indi
ates whether ornot the system believes that x belongs to target speaker i. This hypothesis is determinedas follows: ŷi(x) = 8><>: 1; if fi(x) � 0;�1; if fi(x) < 0: (2.1)The term ŷi(x) represents the hypothesized binary label for x given target speaker i. Here,a value of 1 represents a \positive" de
ision, where x is deemed to belong to speaker i.5



Figure 2.1. High-level diagram of a typi
al speaker veri�
ation system. Here, Xi representsthe set of training utteran
es that belong to target speaker i. The fun
tions fi and yirepresent the 
orresponding speaker model and de
ision fun
tion.Conversely, a value of �1 represents a \negative" de
ision, where x is said to belong to theimpostor set. We use yi(x) to represent the true label of x given target speaker i:yi(x) = 8><>: 1; if x belongs to speaker i;�1; otherwise:If ŷi(x) is equal to yi(x), then we say that x has been 
orre
tly 
lassi�ed for the given targetspeaker i. Otherwise, we say that x has been mis
lassi�ed.Signals and Feature SetsGiven the many sour
es of speaker-spe
i�
 information within spee
h (e.g., prosody,pit
h, word usage, speaking rate, et
.), most state-of-the-art speaker veri�
ation systemsrely on multiple signals and feature representations to en
ode ea
h 
onversation side orutteran
e. For example, a speaker veri�
ation system might use a set of a
ousti
 features|that is, features based on short-time Fourier representations of the input a
ousti
s (e.g.,Mel-frequen
y 
epstral 
oeÆ
ients (MFCCs) (Kajarekar et al. [2005b℄)|along with feature6



Figure 2.2. High-level diagram of a speaker veri�
ation system that performs s
ore-levelsystem 
ombination.sets based on relative n-gram frequen
ies of words (Doddington [2001℄) and of phonemes(i.e., sub-word linguisti
 units) (Andrews et al. [2002℄; Campbell et al. [2003℄; Hat
h et al.[2005℄), and a fourth set of features based on prosodi
 events (Kajarekar et al. [2003℄),to represent ea
h 
onversation side. We will provide a more detailed des
ription of thesesignals and feature sets in Se
tion 2.2.In general, the goal in speaker veri�
ation is to 
apture as mu
h speaker-spe
i�
 in-formation as possible within ea
h 
onversation side by using a diverse range of signals andfeature sets. In many 
ontemporary speaker veri�
ation systems, these feature sets are usedto train a set of individual speaker models, where one speaker model is trained for everyfeature set. Ea
h speaker model generates its own output s
ores, and these s
ores are later
ombined to generate a �nal output s
ore for a given utteran
e x. A system su
h as thisis shown in Figure 2.2. In the above �gure, we use the notation, xj, to denote the featureve
tor for utteran
e x drawn from signal (i.e., feature set) j. The system in Figure 2.2 trainsa set of fun
tions of the form, f ji : RLj ! R, where f ji represents the speaker model 
or-responding to target speaker i and feature set j. This speaker model maps feature ve
tors7



from some Lj-dimensional feature spa
e (i.e., the feature spa
e that 
orresponds to the jthfeature set) into a real-valued output s
ore. The output s
ores for a parti
ular test-targetpair|for example, the pair (x; i), where x represents a test utteran
e and i represents atarget speaker model|are then \
ombined" in some way to arrive at a �nal output s
ore,fi(x). We will brie
y dis
uss te
hniques for 
ombining s
ores in Se
tion 2.7. Finally, weuse the de
ision rule in (2.1) to obtain the output hypothesis, ŷi(x).The system shown in Figure 2.2 depi
ts what we refer to as s
ore-level 
ombination,where the input signals and feature sets are 
ombined at the level of output s
ores. Systemssu
h as this are quite 
ommon in the �eld of speaker veri�
ation and often perform quitewell on system evaluations. For example, the two top-performing systems in the 2005 NISTSpeaker Re
ognition Evaluation both used a s
ore-level 
ombination strategy (Mirghaforiet al. [2005℄; Ferrer et al. [2005a℄). S
ore-level 
ombination provides a 
onvenient meansof \
ombining" feature sets in a single system, be
ause it treats all feature sets as thoughthey were independent of one-another, 
onditional on their output s
ores. The 
ost of this
onditional indepeden
e assumption is that the system in Figure 2.2 is in
apable of modelinginterdependen
ies between signals that appear only at the feature level. Unless the signalsare truly independent 
onditional on their output s
ores, s
ore-level 
ombination 
an leadto redu
tions in 
lassi�
ation a

ura
y below what might otherwise be a
hievable.In this dissertation, we investigate te
hniques for performing what we refer to as feature-level 
ombination, where various signals and feature sets are \
ombined" into a single featurerepresentation prior to training speaker models. A system that performs feature-level 
om-bination is shown in Figure 2.3. In this system, the input feature sets are �rst fed into afeature normalization module, whi
h produ
es a single, 
ombined feature set at its output.This output feature set is then used to train a single speaker model. Here, the idea is todesign a feature normalization module that transforms and 
ombines the input feature setsin some optimal (or near optimal) way for the purpose of training speaker models. Thequestion of how to transform or 
ombine feature sets is 
entral to this dissertation and willbe dis
ussed in mu
h greater detail in subsequent 
hapters.8



Figure 2.3. High-level diagram of a speaker veri�
ation system that performs feature-levelsystem 
ombination.2.2 Classi�
ation Paradigms for Speaker Veri�
ationThe previous se
tion des
ribes the speaker veri�
ation problem and provides a generaloverview of a typi
al speaker veri�
ation system. In Se
tion 2.3 and in Se
tion 2.4, we dis-
uss the two main 
lassi�
ation paradigms used in 
ontemporary speaker veri�
ation. Thesein
lude Maximum Likelihood (ML) 
lassi�
ation, whi
h involves modeling the 
onditionalprobability density fun
tion (pdf) of the utteran
e spa
e given either the target speaker orthe impostor speakers. Our dis
ussion of ML 
lassi�
ation will fo
us mainly on Gaussianmixture models (GMMs), whi
h are used to estimate pdfs. GMMs have traditionally beenamong the most widely-used tools for modeling speaker 
hara
teristi
s, and one of the mostsu

essful for performing speaker veri�
ation. We will also provide a brief overview of otherML 
lassi�
ation te
hniques that have played a signi�
ant role in speaker veri�
ation|forexample, hidden Markov models (HMMs) and n-gram models.Se
tion 2.4 is devoted to the more re
ent paradigm of SVM-based speaker veri�
ation,where SVMs are used to train speaker models. In re
ent years, support ve
tor ma
hineshave be
ome one of the most important and widely-used 
lassi�
ation te
hniques within the9



�eld of speaker veri�
ation. Se
tion 2.4 provides a high-level overview of the various featuresets (a.k.a. \systems") that have been developed for SVM-based speaker veri�
ation. Adetailed des
ription of support ve
tor ma
hines is provided in Chapter 3.2.3 Maximum Likelihood Classi�
ation for Speaker Veri�
a-tionUntil re
ently, the �eld of speaker veri�
ation has been largely dominated by maximumlikelihood (ML) te
hniques for performing 
lassi�
ation. The primary feature of these te
h-niques is that they attempt to model the 
onditional probability density fun
tion (pdf) ofthe utteran
e spa
e for both the target speaker and the impostor speakers. In the MLframework, a given test example x is 
lassi�ed as belonging to the 
lass with the highest
onditional pdf for x. We represent the 
onditional pdf of x as fxjyi, where yi 2 f�1; 1gdenotes the parti
ular model. By 
onvention, a value of 1 for yi denotes the model fortarget speaker i, and a value of �1 denotes the model for the impostor set. Given fxjyi foryi 2 f�1; 1g, we 
an form the log-likelihood ratio for x given target speaker i as follows:LLR(x ; i) , log� fxjyi=1(x)fxjyi=�1(x)�:In ML 
lassi�
ation, the log-likelihood ratio for test utteran
e x given target speaker i istypi
ally used to de�ne the 
orresponding output s
ore, fi(x):fi(x) , LLR(x ; i):Given the above assignment for fi(x), we note that if fi(x) is greater than zero, then ML
lassi�
ation yields the output hypothesis, ŷi(x) = 1. Similarly, if fi(x) is less than zero,then we have the hypothesis, ŷi(x) = �1. Thus, we 
an use the de
ision rule in (2.1) toobtain the output hypothesis, ŷi(x).
10



2.3.1 GMM-based Classi�
ationThe most 
ommon form of ML estimation in speaker veri�
ation involves using Gaus-sian mixture models (GMMs) to estimate the pdfs of the utteran
e spa
e. The GMM-basedapproa
h for speaker veri�
ation is largely inherited from the �eld of automati
 spee
h re
og-nition, where GMMs are used to model pdfs for phonemes and for other spee
h units. Inmost GMM-based systems, the input 
onversation sides are divided into short-time \frames"of spee
h. These frames are typi
ally about 30ms in length and are sampled at 10ms in-tervals. A set of mel-frequen
y 
epstral 
oeÆ
ients (MFCCs) are extra
ted for ea
h spee
hframe (Davis and Mermelstein [1980℄). For example, the state-of-the-art GMM system do
-umented in Kajarekar et al. [2005b℄ extra
ts a total of 19 MFCCs for ea
h 30ms frame ofinput spee
h. The MFCCs are 
on
atenated with a set of so-
alled delta features, whi
hrepresent the �rst and se
ond di�eren
es between the MFCCs in the 
urrent frame andthose in the adja
ent frames. Further details on feature extra
tion for GMM-based speakerveri�
ation 
an be found in Reynolds et al. [2000℄; Kajarekar et al. [2005b℄.After performing feature extra
tion, the system in Kajarekar et al. [2005b℄ uses a GMMto model the un
onditional pdf of x, whi
h we represents as fx. The un
onditional pdf ofx is often referred to as the speaker-independent a
ousti
 model. Given the large numberof speakers in most speaker veri�
ation training sets, fx is typi
ally used as a universalestimate for the 
onditional pdf of the impostor set, fxjyi=�1. In other words, we use theapproximation, fxjyi=�1 � fx for all i. The 
onditional pdf of target speaker i is typi
allyestimated by adapting the speaker-independent a
ousti
 model (i.e., fx) to the training datafor that speaker. We refer to this pdf as a speaker-dependent a
ousti
 model for speakeri. Common te
hniques for performing adaptation in
lude maximum a posterior (MAP)adaptation (Gauvain and Lee [1994℄) and maximum-likelihood linear regression (MLLR)(Leggetter and Woodland [1995℄). After obtaining fxjyi for y 2 f�1; 1g, we 
an use theequations pres
ribed in the previous se
tion to 
ompute log-likelihood ratios and outputs
ores for target speaker i. 11



2.3.2 HMM-based Classi�
ationGMM-based systems are typi
ally among the top-performing systems on speaker veri-�
ation tasks. However, GMMs are often 
riti
ized for their inability to 
apture sequen
einformation in spee
h. For example, sin
e words usually span many frames, GMMs tend tobe poorly suited for modeling di�eren
es in word usage (idiole
t) between speakers. Indeed,the GMM-based approa
h is often referred to as a \bag of frames," be
ause GMMs are in-variant to the sequen
e in whi
h frames appear in a 
onversation side. One way to addressthis issue is to use hidden Markov models (HMMs) to model the pdfs and 
onditional pdfsof the utteran
e spa
e. Unlike GMMs, HMMs in
orporate sequen
e information into theirlikelihood estimates. HMMs are also, by far, the most widely-used tool for modeling spee
hwithin the �eld of automati
 spee
h re
ognition (Rabiner and Juang [1993℄).HMMs typi
ally work well on text-dependent speaker veri�
ation tasks, where the speak-ers are instru
ted to read a given word or phrase (Rosenberg et al. [1990, 1991℄). HMMshave also a
hieved some su

ess on text-independent tasks like the tasks that we 
onsider inthis dissertation. For example, Boakye and Peskin used word-
onstrained HMMs to build atext-independent speaker veri�
ation system in Boakye and Peskin [2004℄. This work playeda signi�
ant role in ICSI's submission for the NIST 2005 speaker re
ognition evaluation, inwhi
h ICSI a
hieved the se
ond-best results out of all parti
ipating sites on the so-
alled\
ommon 
ondition" (Mirghafori et al. [2005℄).2.3.3 N-gram ModelsAnother e�ort at moving beyond the standard GMM-based paradigm is to expli
itlymodel sequen
es of phones and/or words used by speakers. This line of resear
h was pio-neered by Doddington, who used 
ounts of word n-grams to model speaker-spe
i�
 patternsof word usage (Doddington [2001℄). In Doddington's paper, the 
ounts are obtained from theoutput of an automati
 spee
h re
ognition (ASR) system. As in the GMM-based approa
h,Doddington's approa
h involves 
omputing the log-likelihood ratio (LLR) for every pair of12



test utteran
e and target speaker. Doddington used the following equation to 
ompute theLLR for test 
onversation side x and target speaker model k:LLR(x ; k) = MXi=1 p(dijx) log p(dijspkk)p(dijbkg) (2.2)Here, p(dijx), p(dijspkk), and p(dijbkg) refer to the prior probability (or equivalently, therelative frequen
y) of word n-gram di within 
onversation side x, speaker model k, andwithin the ba
kground model, respe
tively. In prin
iple, this equation 
an be applied notonly to word n-grams, but to any n-gram unit|for example, n-grams based on spee
hphonemes. As in the GMM-based approa
h, the LLRs de�ned by the above equation areused as output s
ores in a speaker veri�
ation system.An approa
h similar to Doddington's has also been used to model patterns of phonemeusage in spee
h. This line of resear
h, whi
h is sometimes referred to as phoneti
 speakerre
ognition, was introdu
ed by Andrews et al., who used relative frequen
ies of phone n-grams derived from a spee
h re
ognizer to 
apture patterns in an individual's spee
h (An-drews et al. [2001, 2002℄). This work was subsequently extended in various papers, su
h asthe work of the \SuperSID" team at the JHU 2002 Summer Workshop (Jin et al. [2003℄;Navratil et al. [2003℄; Klusa
ek et al. [2003℄; Reynolds et al. [2003℄). In 2003, Campbell etal. used support ve
tor ma
hines (SVMs) to train phoneti
 speaker models (Campbell et al.[2003℄). Subsequent improvements to this paradigm are des
ribed by Hat
h et al. [2005℄.The n-gram models des
ribed here are typi
ally less e�e
tive than GMM-based systems onspeaker veri�
ation tasks. However, these models tend to yield signi�
ant improvements in
lassi�
ation error when 
ombined with GMM systems (Hat
h et al. [2005℄).2.4 Speaker Veri�
ation with Support Ve
tor Ma
hinesUntil fairly re
ently, the GMM-based approa
h des
ribed in Se
tion 2.3 was widely re-garded as the standard in state-of-the-art speaker re
ognition te
hnology. However, overthe past few years, the �eld of speaker re
ognition has essentially been transformed by sup-13



port ve
tor ma
hines (SVMs), whi
h now play an important role in most high-performan
espeaker re
ognition systems. Support ve
tor ma
hines are spe
i�
ally designed for binary
lassi�
ation tasks, and they tend to work parti
ularly well on tasks where the dimension-ality of the feature spa
e is large 
ompared with the total number of training examples.These properties make SVMs well-suited for speaker veri�
ation tasks, where the inputfeature spa
es are large (typi
ally between 10000 to 100000 features), and the number oftraining examples is 
omparatively small (typi
ally between one and eight target examplesand several thousand impostor examples).Most SVM-based speaker re
ognition systems train a separate SVM for every 
ombina-tion of target speaker and feature set. Typi
ally, ea
h SVM is trained in a one-versus-all(OVA) setting, where the 
onversation sides of the target speaker are used as the positiveexamples and the 
onversation sides of the impostor speakers are used as the negative ex-amples. The SVM-based s
oring fun
tion for a given target speaker i is used to de�ne the
orresponding speaker model, fi. In the following se
tions, we provide an overview of SVM-based speaker re
ognition and des
ribe some of the most widely-used feature sets withinthis �eld. A more in-depth introdu
tion to SVMs is provided in Chapter 3. We also providean overview in Chapter 4 of the various feature transformations and kernel fun
tions usedin SVM-based speaker veri�
ation.2.5 Feature Sets for SVM-based Speaker Veri�
ationThe following se
tion provides a brief des
ription of some of the most 
ommonly-usedfeature sets in SVM-based speaker veri�
ation.2.5.1 Cepstral FeaturesOne of the most widely-used feature sets in SVM-based speaker veri�
ation is the so-
alled 
epstral SVM system, whi
h was �rst introdu
ed by Campbell [2001℄. (Note that we14



use the terms, \system" and \feature set," inter
hangeably in this se
tion). Cepstral SVMsystems are essentially the SVM-based 
ounterparts of the Gaussian mixture model (GMM)systems des
ribed in Se
tion 2.3. A typi
al 
epstral SVM system extra
ts �13 
epstralfeatures per spee
h frame. An intermediate set of features is then formed by 
omputingvarious derivatives of the 
epstral features, whi
h are transformed into a polynomial ve
tor,typi
ally of degree 3 or less. The polynomial ve
tors are then averaged over an entire
onversation side to arrive at the �nal feature representation (Campbell [2001℄). Moststate-of-the-art implementations of the 
epstral SVM have in ex
ess of 10000 features perfeature ve
tor. In a 
omparison of SVM-based speaker veri�
ation systems (i.e., featuresets), the lowest error rates are typi
ally a
hieved by 
epstral SVM systems and by MLLR-SVM systems, whi
h we des
ribe next.2.5.2 MLLR FeaturesMLLR-SVM systems use feature ve
tors 
omposed of transform 
oeÆ
ients obtainedfrom a maximum-likelihood linear regression (MLLR) (Leggetter and Woodland [1995℄). TheMLLR approa
h involves training a linear transformation to map the means of a speaker-independent GMM into a new set of means for a given 
onversation side. This approa
h wasoriginally developed to transform speaker-independent a
ousti
 models (i.e., GMMs) intospeaker-dependent models for spee
h re
ognition tasks. However, Stol
ke et al. re
entlyshowed that MLLR 
an also be used to 
apture speaker-spe
i�
 information for performingspeaker veri�
ation. The MLLR-SVM systems des
ribed in Stol
ke et al. [2005, 2006℄ useMLLR transform 
oeÆ
ients to 
onstru
t feature ve
tors for performing speaker veri�
ationwith SVMs. A typi
al MLLR-SVM system may have in ex
ess of 12000 features per featureve
tor. The MLLR-SVM systems that have been reported so far in the literature have beenshown to yield superior results over most other feature sets. We note that MLLR-SVMsystems form the basis for many of the experiments that we report in Chapters 6 and 8.
15



2.5.3 N-gram FeaturesAnother 
ommon paradigm in SVM-based speaker veri�
ation is n-gram or 
ount-basedfeature extra
tion, where ea
h feature represents the relative frequen
y of some n-gram event(e.g., a word or a phoneme). Feature sets based on relative frequen
ies of n-grams werepreviously des
ribed in Se
tion 2.3.3 in the 
ontext of ML 
lassi�
ation. In re
ent years,these feature sets have also played a signi�
ant role in SVM-based speaker veri�
ation.For example, a number of papers have been written on the use of relative frequen
ies ofphone (i.e., phoneme) n-grams as features for SVM-based speaker veri�
ation (Campbellet al. [2003℄; Hat
h et al. [2005℄). Phone n-gram systems typi
ally use anywhere from2000 to 50000 n-gram based features per feature ve
tor. SVM-based phone n-gram systems
onsistently outperform their ML-based 
ounterparts. However, phone n-grams have, so far,failed to a
hieve the same level of 
lassi�
ation a

ura
y as other SVM-based systems|mostnotably, the 
epstral and MLLR-SVM systems des
ribed in the previous subse
tions. Phonen-gram systems have also failed to yield signi�
ant improvements when 
ombined at thes
ore-level with state-of-the-art speaker veri�
ation systems.Other types of n-gram systems in
lude the word n-gram system des
ribed in Kajarekaret al. [2005a℄. This system forms the SVM-based analog of the word n-gram system de-veloped by Doddington [2001℄. As with phone n-grams, word n-grams tend to give betterresults in SVM-based systems than in ML-based systems. The word n-gram system de-s
ribed in Kajarekar et al. [2005a℄ performs poorly when tested as a stand-alone system,but yields signi�
ant improvements when 
ombined at the s
ore-level with a state-of-the-artspeaker veri�
ation system.Other notable feature representations in
lude so-
alled SNERF n-grams, whi
h modeln-gram frequen
ies of prosodi
 events at the syllable level (Shriberg et al. [2004℄; Kajarekaret al. [2003℄). These feature sets typi
ally have over 30000 features per feature ve
tor, whereea
h feature represents the frequen
y of a parti
ular n-gram event. Although less e�e
tive inisolation than most \a
ousti
" feature sets (e.g., 
epstral SVM and MLLR-SVM systems),16



SNERF n-grams tend to yield signi�
ant improvements in overall a

ura
y when 
ombinedat the s
ore-level with other systems.2.6 S
ore NormalizationWe 
an use the te
hniques des
ribed in the pre
eding se
tions to train speaker modelsfor all target speakers in a given training set. In general, these speaker models will tend toprodu
e s
ores that dis
riminate between utteran
es that belong to the given target speakerand utteran
es that do not. However, be
ause the speaker models are trained independentlyof one-another, the resulting output s
ores may be biased. More importantly, the outputs
ores may have biases that di�er signi�
antly 
onditional on the speaker model for whi
hthey were 
omputed. For example, the s
ores for the positive and negative trials of speakermodel i (i.e., the trials where test utteran
es belong to speaker i and the trials where theydo not) may be 
entered around 0:5 and 0, respe
tively, while the s
ores for the positiveand negative trials of speaker model j are 
entered around 0 and �0:5. Similarly, an outputs
ore may be biased 
onditional on the test utteran
e for whi
h it was 
omputed. In either
ase, the resulting output s
ores will not be \aligned" properly|espe
ially if we plan to usea single, �xed s
ore threshold over all speaker models and test utteran
es. To 
orre
t forthis, most speaker veri�
ation systems apply various normalizations to the output s
ores.The two most 
ommon forms of s
ore normalization for speaker veri�
ation are zero-normalization (ZNORM) (Reynolds [1997℄) and test-normalization (TNORM) (Au
ken-thaler et al. [2000℄). The ZNORM approa
h involves 
omputing impostor s
ores|thatis, s
ores for impostor or negative trials where the given test utteran
e does not belong tospeaker i|on some set of ba
kground data for every speaker model. The output s
ores arethen shifted and s
aled in su
h a way that the impostor s
ores have a �xed sample meanand sample varian
e for every speaker model. The TNORM approa
h is similar to ZNORMex
ept that it normalizes the output s
ores a
ross test utteran
es instead of a
ross models.TNORM 
an be applied to a given test utteran
e x by �rst s
oring x with a set of \impostor17



models" (i.e., speaker models that do not \belong" to x). This gives us a set of impostors
ores for x. We then shift and s
ale all output s
ores obtained with x in su
h a way thatthe impostor s
ores for x have a �xed sample mean and sample varian
e. The TNORM andZNORM approa
hes tend to yield signi�
ant improvements in 
lassi�
ation performan
e onmost speaker veri�
ation tasks. Note that these te
hniques 
an also be 
ombined|that iswe 
an apply ZNORM after TNORM or vi
e-versa|to perform s
ore normalization.2.7 System CombinationIn Se
tion 2.1.1, we brie
y des
ribed the problem of 
ombining multiple feature sets andinformation sour
es in a single speaker veri�
ation system. This problem, whi
h we referto as system 
ombination, is typi
ally handled by 
ombining various individual systems andfeature sets at the s
ore-level. A diagram of this type of system 
ombination is providedin Figure 2.2. In many state-of-the-art speaker veri�
ation systems, the �nal output s
oresare 
omputed as a weighted sum of the s
ores of the individual systems:fi(x) =Xj �jf ji (x):Here, �j represents the weight of the jth subsystem|that is, the jth feature set. Variouste
hniques 
an be used to train these weights. For example, many top-performing systemsuse a single-layer per
eptron to train weights for the various subsystems (Kajarekar et al.[2005b℄; Mirghafori et al. [2005℄). Support ve
tor ma
hines (SVMs) have also re
ently beenused for this purpose (Gar
ia-Romero et al. [2003℄). Other notable te
hniques for performings
ore-level 
ombination for speaker veri�
ation are des
ribed in Ferrer et al. [2005b℄.The te
hniques de
sribed above provide a 
onvenient and relatively straightforwardmeans of 
ombining feature sets (i.e., subsystems) into a single system. However, as de-s
ribed in Se
tion 2.1.1, one potential problem with s
ore-level 
ombination is that thefeature sets are assumed to be independent of one-another 
onditional on the output s
ores.In other words, the feature sets are only allowed to \intera
t" with ea
h other at the s
ore18



level, whi
h means that most task-relevant interdependen
ies between the feature sets|if they exist in the �rst pla
e|will be lost. Viewed from the perspe
tive of informationtheory, s
ore-level 
ombination 
an have the e�e
t of redu
ing the 
hannel 
apa
ity of the
lassi�
ation system, whi
h essentially pla
es a lower bound on 
lassi�
ation error.One of our goals in this thesis proposal is to address this problem by performing what werefer to as early 
ombination or feature-level 
ombination|that is, training speaker modelson one single 
ombined set of features rather than 
ombining feature sets at the level ofoutput s
ores. The 
on
ept of feature-level 
ombination is illustrated in Figure 2.3. In the
ontext of SVM-based 
lassi�
ation, early 
ombination boils down to the question of howto sele
t or learn a single kernel that 
an handle features from multiple knowledge sour
es.This topi
 will be addressed in greater detail in subsequent 
hapters. First, we provide abrief introdu
tion to support ve
tor ma
hines in Chapter 3.
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Chapter 3
Support Ve
tor Ma
hines

The following 
hapter provides an overview of the learning system known as the supportve
tor ma
hine (SVM). We begin the 
hapter with some ba
kground on SVMs, in
ludinga brief introdu
tion to the related 
on
epts of stru
tural risk minimization, VC dimension,and optimal margin 
lassi�ers (Boser et al. [1992℄). This is followed in Se
tions 3.2 and3.3 with des
riptions of the so-
alled hard-margin and soft-margin SVMs. Throughout this
hapter, we refer to various 
on
epts from the �eld of 
onvex optimization. These 
on
eptsin
lude, for example, linear programs (LPs), quadrati
 programs (QPs), 
onvex duality, andthe notion of a 
onvex optimization problem. A thorough des
ription of these 
on
epts 
anbe found in the book by Boyd and Vandenberghe [2004℄.3.1 Ba
kgroundThe term support ve
tor ma
hine refers to a system for learning fun
tions of the form,f(x) = wT�(x)+b, where x represents an input ve
tor, w 2 RN and b 2 R represent trainedparameters, and � : X ! F represents a mapping from the input spa
e X to some featurespa
e F . Typi
al appli
ations of SVMs in
lude regression, where f(x) is trained to map x tosome set of desired output values, and binary 
lassi�
ation, where the set fx : f(x) = 0g is20



used to de�ne a separating hyperplane between two 
lasses in F . Support ve
tor ma
hinesare based on various 
on
epts of statisti
al learning theory that have been developed overthe 
ourse of several de
ades by Vladimir Vapnik and his asso
iates. These in
lude the
on
ept of stru
tural risk minimization, whi
h involves 
onstru
ting and minimizing upperbounds on the probability of mis
lassifying future data. We refer to the probability ofmis
lassi�
ation as the risk for a given dataset and 
lassi�er. Stru
tural risk minimizationdi�ers signi�
antly from the more 
onventional approa
h of empiri
al risk minimization,where 
lassi�ers are trained to minimize the empiri
al error in
urred on a training set. (Inpra
ti
e, empiri
al risk minimization is often performed using gradient des
ent along with astopping 
riterion, where training is halted on
e the 
lassi�
ation error stops de
reasing on a
ross-vaidation dataset). Vapnik and his asso
iates introdu
ed various upper bounds on riskthat depend on both the empiri
al risk|that is, the error in
urred on a given training set|and on various notions of the 
apa
ity of a learning system. Within the �eld of 
lassi�
ation,the term 
apa
ity essentially refers to 
omplexity of a given family of de
ision boundaries.In general, greater 
apa
ity 
orresponds with greater modeling power. Thus, in
reased
apa
ity 
an lead to redu
tions in the empiri
al risk. However, greater 
apa
ity 
an alsoin
rease the risk of over�tting. A sensible strategy for training 
lassi�ers therefore involvesminimizing the empiri
al risk while also limiting the 
apa
ity (or vi
e-versa). This strategyforms the basi
 intuition behind stru
tural risk minimization and behind the support ve
torma
hine.3.1.1 VC DimensionVapnik's upper bounds on risk lead to a parti
ular notion of model 
apa
ity 
alled theVapnik-Chervonenkis or \VC" dimension. The VC dimension of a family F of 
lassi�ers isde�ned as the maximum number N of non-
olinear examples whi
h, for any set of labelsin f�1; 1gN , 
an be perfe
tly separated by a fun
tion in F . For example, let us de�ne Fto be the set of all possible hyperplanes in R2 . Any set of three non-
olinear examples 
anbe separated by at least one fun
tion in F . However, the same is not true for any set of21



four examples. Thus, the VC dimension of F is three, in this 
ase. We 
an extrapolate thisexample to show that if F is 
omposed of all hyperplanes in Rn , then the VC dimension ofF is n+1. In general, we would like to minimize the VC dimension of F while at the sametime minimizing empiri
al risk. Vapnik and his 
olleagues use this strategy to motivate the
on
ept of optimal margin 
lassi�ers (Boser et al. [1992℄), whi
h leads dire
tly to the hard-margin SVM. Given a set of labeled data, S = f(x1; y1); : : : ; (xN ; yN )g, where S is linearlyseparable, the optimal margin 
lassi�er for S is the hyperplane that is maximally distantfrom the nearest positive and negative examples. An example of an optimal margin 
lassi�eris shown in Figure 3.1. The �gure shows two 
lasses|a green 
lass and a yellow 
lass|along with a hyperplane that is equidistant from the nearest green and yellow examples.The minimum distan
e from the hyperplane to the nearest example represents what werefer to as the geometri
al margin of the dataset (for simpli
ity, we will simply refer to thisquantity as the margin throughout the following se
tions).3.2 The Hard-Margin SVMIn this se
tion, we des
ribe a framework for obtaining the optimal margin 
lassi�er fora given dataset. This framework leads dire
tly to the the so-
alled hard-margin SVM|theoriginal SVM formulation derived by Vladimir Vapnik and his 
olleagues. We begin byde�ning the aÆne fun
tion f : f(x) , wTx+ b:We refer to f as the s
oring fun
tion of the SVM. Here, x represents an input feature ve
tor,w represents a weight ve
tor, and b represents a bias term. The parameters of the SVM aregiven by w and b. Given the s
oring fun
tion f , we use the set fx : f(x) = 0g to de�ne aseparating hyperplane for performing 
lassi�
ation. This is equivalent to using the de
isionrule in equation (2.1) to arrive at 
lassi�
ation hypotheses.Given f and given a set of labeled training data, S = f(x1; y1); : : : ; (xN ; yN )g, whereyi 2 f�1; 1g represents a binary 
lass label, we use the term �i(w; b) to represent the22



geometri
al margin of example xi given parameters (w; b). This is de�ned as follows:�i(w; b) , yi(wTxi + b)jjwjj :If example xi is 
orre
tly 
lassi�ed by the hyperplane fx : f(x) = 0g, then �i(w; b) simplyrepresents the minimum Eu
lidian distan
e from xi to the hyperplane. Given �i(w; b), wede�ne �(w; b) as the minimum geometri
al margin over all examples in S:�(w; b) , mini �i(w; b):The above quantity is 
ommonly referred to as the geometri
al margin of S (S
hoelkopf andSmola [2002℄).If the examples in S are linearly separable, then we 
an obtain the optimal margin
lassi�er for S by solving the following optimization problem:maxw;b �(wi; b);= maxw;b mini �i(w; b):We 
an 
hange the maximization over mini �i(w; b) into a minimization over maxi 1�i(w;b) toobtain the following equivalent problem:maxw;b mini �i(w; b);= minw;b maxi jjwjjyi(wTxi + b) :The above problem is homogeneous in w under the 
onstraints, 1 � yi(wTx + b) for alli. (These 
onstraints stipulate that S must be linearly separable, whi
h is one of ourassumptions). Thus, we 
an restate the optimization problem shown above in the followingequivalent form: minw;b wTw (3.1)subje
t to 1 � yi(wTxi + b); 8i:23



Figure 3.1. Example an optimal margin 
lassi�er (i.e., a hard-margin margin SVM ). Thede
ision boundary is represented by the set of points fx : f(x) = 0g.The above problem forms what we refer to as the primal problem of the hard-margin SVM.An example of a hard-margin SVM is shown in Figure 3.1. We note that the hard-marginSVM in (3.1) has the form of a spe
i�
 type of 
onvex optimization problem 
alled aquadrati
 program (QP). Sin
e the problem is 
onvex, we 
an obtain a global solution to (3.1)by using standard gradient des
ent te
hniques. We note however, that in pra
ti
e, the hard-margin SVM is typi
ally solved by using interior point methods for fun
tion optimization.Further information on these methods and on other topi
s in the �eld of 
onvex optimization
an be found in Boyd and Vandenberghe [2004℄.The primal problem in (3.1) 
an be 
onverted to an equivalent dual problem, whi
h hasthe following form: max0���T y=0 2�T1� �T�yXTX�y�: (3.2)Here, we use 1 to represent a 
olumn ve
tor of N ones. The terms, y, �y, and X, are
24



de�ned as follows: y , [y1; : : : ; yN ℄T ;[�y℄ij , ( yi; if i = j;0; if i 6= j;X , [x1; : : : ;xN ℄T :We also de�ne � , [�1; : : : ; �N ℄T . Here, �i represents a dual variable, whi
h we use toenfor
e the 
onstraints, 1 � yi(wTxi)+ b for all i. We note that the primal variable w doesnot expli
itly appear in the dual formulation. However, w 
an be obtained from � throughthe following equation: w = NXi=1 �iyixi:The above solution for w follows from the derivation of the dual problem in (3.2). Substi-tuting this expression into the equation for f(x) gives usf(x) = NXi=1 �iyixTi x+ b: (3.3)After solving for the optimal values of � and w, whi
h we represent as �� and w�, we 
anuse the 
onstraints of the primal problem in (3.1) to obtain the following solution for thebias term b: b� = �12 � � maxyi=�1w�T x+minyi=1w�T x�3.2.1 The Kernel Tri
kIn this se
tion, we examine the so-
alled \kernel tri
k" introdu
ed by Vapnik and his
olleagues. The kernel tri
k allows us to impli
itly map the x terms in an SVM from aso-
alled input spa
e, X , into a new, potentially high-dimensional feature spa
e, F . Thismapping is implemented through a positive semide�nite fun
tion 
alled a kernel. The keyobservation behind the kernel tri
k is that the x terms only appear in the form of innerprodu
ts in both the dual problem of (3.2) and in the s
oring fun
tion of (3.3). Thus, we25




an apply the feature mapping � : RL ! RM to the input feature ve
tors by repla
ingevery inner produ
t, xT1 x2, with the kernel fun
tion k:k(x1;x2) , �(x1)T�(x2):Here, L represents the dimensionality of the input spa
e X and M represents the dimen-sionality of the output feature spa
e F . Any fun
tion k that 
an be expressed in the aboveform for some feature mapping � 
an be used as a kernel. Equivalently, we say that k isa valid kernel if and only if k forms a positive semide�nite mapping on RL � RL . Thismeans that we 
an de�ne valid kernel fun
tions without knowing the exa
t form of their
orresponding feature mappings. We 
an also de�ne kernels that impli
itly map the inputspa
e into high-dimensional, and even in�nite-dimensional feature spa
es. One well-knownexample of this is the Gaussian kernel, whi
h is de�ned below:k(x1;x2) , exp�� jjx1 � x2jj2�2 �Here, � represents the so-
alled width parameter of k. The Gaussian kernel impli
itly mapsthe input feature ve
tors into an in�nite-dimensional feature spa
e F using a mapping whoseexa
t form is unknown (at least by me!).3.2.2 Generalized Linear KernelsSVMs always train linear or aÆne de
ision boundaries in the feature spa
e F (i.e., thespa
e to whi
h the input feature ve
tors are mapped by �). However, these same de
isionboundaries 
an often be highly non-linear when viewed in the original input spa
e X . Thus,one of the main motivations behind using kernels like the Gaussian kernel is that they yieldnon-linear de
ision boundaries in the input spa
e, X . This 
an be useful for datasets wherethe 
lasses are not linearly separable. However, non-linear de
ision boundaries typi
allyyield little or no bene�t over the standard linear or inner-produ
t kernel|that is a kernelof the form k(x1;x2) = xT1 x2|on tasks where the data are linearly separable (or at leastapproximately separable). We also note that the potential bene�ts of proje
ting data into26



a high-dimensional or in�nite-dimensional spa
e 
an be dubious when the input featureve
tors already have high dimensionality, relative to the number of training examples. Forexample, in speaker veri�
ation, the input feature ve
tors often have a dimensionality of20000 or more (this is true of the MLLR-SVM system des
ribed in Stol
ke et al. [2006℄;Hat
h et al. [2006℄; however, the total number of positive training examples is typi
allysmall (between one and eight), and the total number of negative training examples is alsorelatively small|typi
ally no more than 5000. Moreover, the distributions of these featureve
tors appear to have a high degree of linear separability. For feature sets su
h as this,we argue that it makes sense to 
onstrain f , and hen
e the de
ision boundary de�ned byfx : f(x) = 0g, to the set of all aÆne fun
tions in the original input spa
e, X . Based onthis argument, we will fo
us primarily on kernel fun
tions of the following general form:k(x1;x2) = xT1Rx2:Here, R represents a square, positive semide�nite parameter matrix. The above kernel 
animplement any linear feature mapping of the form�(x) = Ax;where A is a linear transformation matrix. Note that R = ATA in this 
ase. In thefollowing 
hapters, we will refer to fun
tions su
h as k as generalized linear kernels. Chapter4 provides some ba
kground on training kernel fun
tions and kernel parameters, in
ludingvarious te
hniques for training generalized linear kernels.3.3 The Soft-Margin SVMOne 
aveat of the hard-margin SVM is that it 
an only be applied to datasets thatare linearly separable in feature spa
e, F . In pra
ti
e, one might wish to have an SVMformulation that is guaranteed to yield a de
ision boundary for any 
hoi
e of dataset|evendatasets that are not linearly separable in the given feature spa
e. To a

omplish this,Vapnik and his 
olleagues devised what is 
ommonly referred to as the soft-margin SVM.27



Figure 3.2. Example of a 1-norm soft-margin margin SVM. The de
ision boundary isrepresented by the set of points fx : f(x) = 0g.Throughout this dissertation, we will fo
us spe
i�
ally on the 1-norm soft margin SVM,whi
h is perhaps the most well-known and widely-used among the various soft-margin SVMformulations. The primal problem of the 1-norm soft-margin SVM is given below. Forbrevity, we simply refer to this formulation as the \soft-margin SVM" throughout theremainder of this 
hapter: minw;b;� wTw+ CXi �i (3.4)subje
t to 1� �i � yi(wTxi + b); 8i;0 � �i 8i:An example of a 1-norm soft-margin SVM is shown in Figure 3.2. The soft-margin SVMde�nes a set of sla
k variables, whi
h are represented as � , [�1; : : : ; �N ℄ in the aboveproblem. These variables allow for violations of the margin by relaxing the linear 
onstraints:1 � yi(wTxi + b) for all i. However, every violation also in
urs a penalty (note the CPi �iterm in the obje
tive fun
tion). From the above optimization problem, we see that ea
hsla
k variable �i 
an be represented as�i = (1� yi(wTxi + b))+;� 1(yi(wTxi + b) < 0):28



Here, (x)+ , x � 1(x � 0), and 1(yi(wTxi + b) < 0) represents the 0 � 1 error fun
tion onexample xi. The above relationship shows that �i forms an upper bound on the event thatexample xi is mis
lassi�ed. We refer to this upper bound as the hinge-loss of example xi.As shown in (3.4) the soft-margin SVM attempts to maximize the margin of the de
isionboundary by minimizing wTw, while also minimizing the total hinge-loss, Pi �i. Thetradeo� between maximizing the margin and minimizing hinge-loss is 
ontrolled by the Chyperparameter, whi
h is 
onstrained to be positive. In pra
ti
e, C is often tuned on a
ross-validation set. However, various te
hniques for analyti
ally tuning C have also beenproposed (Cristianini and Shawe-Taylor [2000℄). In Chapters 6 and 7, we derive a new,modi�ed formulation of the 1-norm soft-margin SVM where C is exa
tly spe
i�ed.The optimization problem in (3.4) has the following dual form:max0���C�T y=0 2�T1� �T�yXTX�y�: (3.5)We note that the above problem has the same form as the hard-margin dual in (3.2), ex
eptthat the �i terms are bounded above by C. The 
orresponding w ve
tor also has the sameform as in the hard-margin SVM. Given w, we 
an 
ompute the optimal (b; �) by solvingthe following linear program (LP):min�;b Xi �isubje
t to 1� �i � yi(wTxi + b) 8i;0 � �i 8i:The soft-margin SVM will play a pivotal role in the following 
hapters.
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Chapter 4
Related Work in the Field ofKernel Optimization

Our goal, in this dissertation, is to examine the problem of kernel optimization forSVM-based speaker re
ognition, and more generally, for the problem of performing binary
lassi�
ation in multi
lass settings. In this 
hapter, we provide a brief summary of someof the more notable te
hniques for performing kernel optimization from the literature. The
hapter 
overs a diverse set of te
hniques, in
luding te
hniques that are not typi
ally asso-
iated with \kernel optimization." For example, we have in
luded a des
ription of prin
ipal
omponent analysis and linear dis
riminant analysis|te
hniques that are typi
ally asso-
iated with topi
s su
h as feature sele
tion, dimensionality redu
tion, and linear analysis.More generally, these te
hniques 
an be viewed as examples of linear feature transforma-tions. Hen
e, when applied to feature ve
tors in an SVM, these te
hniques represent instan-tiations of a generalized linear kernel|that is, a kernel of the form, k(x1;x2) = xTRx2,where R is a positive semide�nite parameter matrix. The generalized linear kernel will playa pivotal role throughout this dissertation. We also des
ribe a number of kernel te
hniquesand feature transformations that have been developed spe
i�
ally for speaker veri�
ation.For example, we provide a summary of the nuisan
e attribute proje
tion (NAP) te
hnique30



des
ribed in Solomono� et al. [2004, 2005℄, and the n-gram frequen
y kernel of Campbellet al. [2003℄. Among non-linear feature transformations, we 
over the rank-normalizationapproa
h des
ribed in Stol
ke et al. [2005℄. In Chapters 6 and 8, we 
ompare many ofthese te
hniques with a new kernel approa
h that we refer to as within-
lass 
ovarian
enormalization (WCCN). This approa
h is derived in Chapters 5 and 6.In this 
hapter, and throughout the dissertation, we pay parti
ular attention to kernelte
hniques and feature transformations that attempt to model information about 
lusters or
lasses that reside within the data. Te
hniques su
h as this in
lude linear dis
riminant anal-ysis (LDA) and the nuisan
e attribute proje
tion (NAP) te
hnique des
ribed in Solomono�et al. [2004, 2005℄. We refer to these as supervised te
hniques, be
ause they require thatea
h training example xi be asso
iated with a user-de�ned label, yi. Here, yi 2 f1; : : : ; Jg
an represent any of J 
lasses. Given this label information, a supervised kernel te
hnique
an train kernel fun
tions that dis
riminate between the various 
lasses. In the 
ase of LDA,NAP, and also the WCCN approa
h that we derive in Chapters 5 and 6, these approa
hesoften boil down to a single linear feature transformation that 
an be applied uniformly tothe input feature spa
e. In Chapter 7, we show how our WCCN approa
h 
an be adaptedto the parti
ular way in whi
h the 
lasses are partitioned|that is, the assignment of ea
h
lass to either the target set or the impostor set. We refer to this adaptive form of WCCNas the adaptive, multi
luster SVM (AMC-SVM).We also provide a brief des
ription of the so-
alledminimax probability ma
hine (MPM),a kernelizable learning system developed in Lan
kriet et al. [2002℄. The design of the MPMdi�ers signi�
antly from a 
onventional SVM. However, the MPM is of spe
i�
 interest to us,be
ause it in
orporates information about the �rst and se
ond-order statisti
s of both thetarget and the impostor 
lasses into the training pro
edure. This use of per-
lass statisti
smakes the MPM remarkably 
omparable to some of the kernel-based te
hniques that wedevelop in Chapters 5 through 8. These te
hniques use information about 
lusters in thedata to tighten the bounds on 
lassi�
ation error in an SVM.31



4.1 Multiple-Kernel LearningOne of the most well-known kernel learning te
hniques of the past few years is themultiple-kernel learning paradigm of Lan
kriet et al. [2004℄; Ba
h et al. [2004℄. Multiple-kernel learning involves training kernel fun
tions as weighted sums of other kernels:k(x1;x2) =Xi �iki(x1;x2):Here, ki represents a pre-de�ned kernel fun
tion, and �i represents the 
orresponding weightparameter for ki. In Lan
kriet et al. [2004℄; Ba
h et al. [2004℄, the authors show how tolearn k by minimizing the SVM dual problem in (3.5) with respe
t to �i for all i. Thisproblem 
an be posed as a semide�nite program (SDP), whi
h redu
es to a se
ond-order
one program (SOCP) when the �i parameters are 
onstrained to be nonnegative (Lan
krietet al. [2004℄; Ba
h et al. [2004℄). The latter 
ase was re
ently reformulated in Sonnenburget al. [2005℄ as a semiin�nite linear program (LP). Further information about LPs, SOCPs,SDPs, and other 
onvex optimization problems 
an be found in Boyd and Vandenberghe[2004℄.In its most re
ent instantiations, the multiple kernel learning framework tends to betoo slow to learn weights for more than a relatively modest number of kernels and trainingexamples (see Ba
h et al. [2004℄; Sonnenburg et al. [2005℄ for the latest performan
e results).Multiple kernel learning also provides no guidan
e on the question of how to 
hoose a set ofbasis kernels|that is, the ki fun
tions. We also note that the implementations des
ribed inLan
kriet et al. [2004℄; Ba
h et al. [2004℄; Sonnenburg et al. [2005℄ are designed for generalbinary 
lassi�
ation settings. These implementations make no attempt to use informationabout 
lusters that reside within the positive and negative 
lasses to obtain tighter boundson 
lassi�
ation error. In Chapters 5 through 8, we show how these issues are at leastpartially addressed by two new kernel te
hniques: within-
lass 
ovarian
e normalization(WCCN) and the adaptive, multi
luster SVM (AMC-SVM).
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4.2 HyperkernelsAnother well-known kernel optimization te
hnique is the hyperkernels approa
h de-s
ribed in Ong et al. [2003℄, where the usual notion of a kernel is expanded to in
lude a\kernel on kernels" (i.e., a hyperkernel). Hyperkernels impli
itly perform kernel optimiza-tion from within a parameterized family of kernels (for instan
e, a family of Gaussian kernelsof varying width parameter, �). However, as with multiple kernel learning, the hyperkernelsapproa
h does not address the issue of how to 
hoose a family of kernels or how to exploitinformation about sub
lusters in the data to obtain tighter error bounds.4.3 Prin
ipal Component Analysis (PCA) and Linear Dis-
riminant Analysis (LDA)In this se
tion, we dis
uss two 
lassi
al te
hniques for performing linear feature sele
-tion and dimensionality redu
tion on an input feature spa
e: prin
ipal 
omponent analysis(PCA) and linear dis
riminant analysis (LDA). PCA and LDA are both implemented byperforming linear feature transformations on the input feature spa
e. Hen
e, when appliedto feature ve
tors in an SVM, these te
hniques represent instantiations of a generalizedlinear kernel|that is, a kernel of the form, k(x1;x2) = xTRx2, where R is a positivesemide�nite parameter matrix.Prin
ipal 
omponent analysis (PCA) is a linear te
hnique for redu
ing the dimensional-ity of an input feature spa
e while retaining the maximum amount of signal energy. Givenan input spa
e of dimensionality N , the goal in PCA is to obtain an orthonormal linearfeature transformation, f(x) = �Tx, where � is de�ned as an N � P matrix with P < N ,su
h that � 
aptures the \dire
tions" of maximum energy in the original feature spa
e. We
33



obtain � by solving the following optimization problem:max� tra
e(�TC�)subje
t to �T � = I:Here, �i represents the ith 
olumn ve
tor of matrix �, andC represents the overall 
ovarian
ematrix of the input feature spa
e. The above problem is solved by �� = VP , where VP rep-resents the 
olumn matrix 
ontaining the top P eigenve
tors of C|that is the eigenve
torswith the P -largest 
orresponding eigenvalues. In pra
ti
e, C 
an be estimated empiri
allyas follows: Ĉ = 1N NXn=1(xn � �x)(xn � �x)T :Here, Ĉ represents the empiri
al 
ovarian
e matrix 
omputed from a set of N input trainingexamples. We use xn to represent the nth training example and �x to represent the overallmean of the data. The PCA approa
h is independent of any asso
iated set of 
lass labels,fy1; : : : ; yNg, for the training data. Thus, we 
an view PCA as an unsupervised approa
hfor performing dimensionality redu
tion.Unlike PCA, where the goal is to �nd orthogonal dire
tions in feature spa
e that retainmaximum signal energy, the goal in linear dis
riminant analysis (LDA) is to �nd orthogonaldire
tions that are \optimal," in some sense, for dis
riminating between 
lasses. Here, the\optimality" of a given dire
tion is measured as the ratio of between-
lass varian
e towithin-
lass varian
e. We 
an 
ompute this ratio as follows:J(w) = wTCBwwTCWw :The quantity J(w) represents the ratio of between-
lass varian
e to within-
lass varian
efor a given dire
tion, w, in feature spa
e. This quantity is traditionally referred to as theRayleigh 
oeÆ
ient for dire
tionw. Given a feature spa
e 
omposed of J 
lasses, we use CBand CW to represent the between-
lass 
ovarian
e matrix and the within-
lass 
ovarian
e
34



matrix over all 
lasses. These are de�ned as follows:CW , JXi=1 p(i)Ci;CB , JXi=1 p(i)(�xi � �x)(�xi � �x)T :Here, Ci and p(i) represent the 
ovarian
e matrix and the prior probability of the ith 
lass.The terms �xi and �x represent the mean of 
lass i and the overall mean of the data.The goal in LDA 
an be stated as follows: we would like to �nd the orthonormal linearfeature transformation, f(x) = �Tx, where � is de�ned as an N�P matrix with P < N , su
hthat the Rayleigh 
oeÆ
ient of ea
h dire
tion in the resulting feature spa
e is maximized.It 
an be shown that this problem is equivalent to maximizing the ratio of determinants of�TCB� to �TCW �: max� j�TCB�jj�TCW �j :Here, the optimal � has a 
losed-form solution given by �� = VP , where VP represents the
olumn matrix 
ontaining the top P eigenve
tors of CBC�1W |that is the eigenve
tors withthe P -largest 
orresponding eigenvalues. A detailed dis
ussion of LDA, in
luding a set ofproofs for the main results, 
an be found in Fukunaga [1990℄.4.4 Adaptive Feature S
aling and Releven
e DeterminationOther notable te
hniques for kernel optimization in
lude the te
hniques des
ribed inWeston et al. [2000℄ and Chapelle et al. [2002℄. In these papers, the authors use a set ofgeneralization bounds as obje
tive fun
tions for optimizing various kernel parameters. Forexample, in Chapelle et al. [2002℄, the authors use the radius-margin bound des
ribed inVapnik [1995℄, along with other bounds, as obje
tive fun
tions for simultaneously optimizingthe width parameter of a Gaussian kernel and the SVM hyperparameter C. The authors alsouse a similar approa
h to train per-feature s
aling fa
tors for a standard, linear SVM. For an35



L-dimensional feature spa
e, this boils down to the problem of training � = [�1; : : : ; �L℄T ,where �i � 0 for all i 2 f1; : : : ; Lg in the following kernel fun
tion:k(x1;x2) = xT1 ��x2:Here, �� represents an L�L diagonal matrix, where ��ii = �i. The above kernel representsa spe
ial 
ase of a generalized linear kernel, where the R parameter matrix is 
onstrainedto be diagonal. The problem of training � is often referred to as adaptive feature s
aling,releven
e determination, or soft feature sele
tion. In Chapelle et al. [2002℄, the authorsiterate between maximizing the SVM dual problem with respe
t to � for some �xed valueof � (i.e., the standard SVM problem) and minimizing the given generalization bound|forexample, the radius-margin bound of Vapnik [1995℄|with respe
t to � for �xed �. Thelatter minimization is a
hieved by performing gradient des
ent with respe
t to � on thegeneralization bound. In Grandvalet and Canu [2003℄, the authors propose a modi�edapproa
h, where the optimization over � is in
orporated into the SVM dual problem. Theresult is an optimization pro
edure that only uses a single obje
tive fun
tion. As in Chapelleet al. [2002℄, this approa
h again leads to a slightly 
ompli
ated, iterative pro
edure forobtaining the optimized values of �. The authors of Grandvalet and Canu [2003℄ note thattheir approa
h is related to some su

essful soft feature-sele
tion te
hniques, su
h as lassoand bridge (Hastie et al. [2001℄) and Automati
 Releven
e Determination (ARD) (Neal[1996℄). Other approa
hes for performing adaptive feature s
aling are des
ribed in Bradleyand Mangasarian [1998℄; Jebara and Jaakkola [2000℄.The adaptive s
aling approa
hes des
ribed in Chapelle et al. [2002℄; Grandvalet andCanu [2003℄ provide a means of training a 
onstrained form of a generalized linear kernel(i.e., the R parameter matrix is 
onstrained to be diagonal). These approa
hes are te
hni-
ally supervised in the sense that they depend on the partitioning of the data into targetand impostor sets. However, as was the 
ase with multiple kernel learning and hyperkernelsthese approa
hes may be somewhat limited by the fa
t that they do not take informationabout 
lusters that reside within the data into a

ount when optimizing k. We also note36



that these approa
hes are generally not 
onvex, and that their minimization relies on gra-dient des
ent pro
edures that 
an be 
ompli
ated and ineÆ
ient. In Chapters 5 through 8,we derive a framework for training un
onstrained generalized linear kernels through 
onvexoptimization. These te
hniques are supervised in that they use 
luster information to obtainbounds on 
lassi�
ation error.4.5 The Minimax Probability Ma
hineIn this se
tion, we brie
y des
ribe the so-
alled minimax probability ma
hine (MPM),a kernelizable system for training aÆne de
ision boundaries for binary 
lassi�
ation tasks(Lan
kriet et al. [2002℄). The de
ision boundary in an MPM is de�ned by fx : f(x) = 0g,where f has the same general form as in an SVM:f(x) = wTx+ b:As we will show, the MPM training formulation is di�erent than that of an SVM; thus, theMPM does not dire
tly �t into the SVM theme of this 
hapter. Nevertheless, the MPM is ofspe
i�
 interest to us, be
ause it in
orporates information about the �rst and se
ond-orderstatisti
s of both the target and the impostor 
lasses into the training pro
edure. This useof per-
lass statisti
s makes the MPM remarkably 
omparable to some of the kernel-basedte
hniques that we develop in Chapters 5 through 8. These te
hniques use informationabout 
lusters in the data to tighten the bounds on 
lassi�
ation error in an SVM.Let (�xT ;CT ) represent the mean and 
ovarian
e matrix of a target 
lass, T , and let(�xI ;CI) represent the mean and 
ovarian
e matrix of an impostor 
lass, I. We would liketo train a de
ision boundary de�ned by fx : f(x) = 0g to separate these two 
lasses.Given (�xT ;CT ) and (�xI ;CI), the MPM trains the aÆne de
ision boundary that minimizesthe maximum probability of mis
lassi�
ation over all distributions of xT and xI , where
37



xT � (�xT ;CT ) and xI � (�xI ;CI). This 
an be expressed as follows:min�;w 6=0;b � (4.1)subje
t to supxT �(�xT ;CT ) p(wTxT + b � 0) � �;supxI�(�xI ;CI) p(wTxI + b � 0) � �:Here, � represents the maximum rate of false-positives or false-negatives over all possibledistributions of xT and xI that have the given means and 
ovarian
e matri
es. A formalproof of this bound 
an be found in Marshall and Olkin [1960℄. In Lan
kriet et al. [2002℄,the authors show that the optimization over w 
an be restated as follows:minw pwTCTw+pwTCIw (4.2)subje
t to wT (�xT � �xI) = 1:The optimization problem for the MPM is 
onvex and 
an be 
omputed by solving a se
ond-order 
one program (SOCP). Further details on the MPM 
an be found in Lan
kriet et al.[2002℄.4.6 Kernels and Feature Transformations for Speaker Veri�-
ationIn this se
tion, we dis
uss some of the more 
ommon kernels and feature transformationsused in SVM-based speaker veri�
ation. Be
ause the feature sets in SVM-based speakerveri�
ation tend to have high dimensionality|the feature sets des
ribed in Se
tion 2.4
an have anywhere from 10000 to 100000 (or even more) dimensions|and be
ause thesefeature sets often allow for a high-degree of linear separability between speakers, mostSVM-based speaker veri�
ation systems use generalized linear kernels|that is, kernels ofthe form, k(x1;x2) = xT1Rx2, where R is a positive semide�nite parameter matrix. Wenote that the total number of distin
t parameters in a generalized linear is on the order of38



N2=2, where N is the dimensionality of the input feature spa
e. Thus, generalized linearkernels tend to o�er a high degree of modeling power when used in high-dimensional inputspa
es. Unfortunately, this modeling power (or 
apa
ity as it was 
alled in Chapter 2) alsoin
reases the risk of over�tting. In Chapters 5 through 8, we show how this risk 
an bemanaged by optimizing a set of bounds on 
lassi�
ation error with respe
t to R. Thisleads to a framework where R is modeled as the inverse of a positively-weighted sum of L
ovarian
e matri
es, where L is the total number of 
lasses or \
lusters" in the data. Bymodeling R in this way, we e�e
tively redu
e the number of parameters of R from N2=2down to L. In this se
tion, we des
ribe various types of generalized linear kernels thathave been su

essfully applied to speaker veri�
ation. We also des
ribe the non-linear rank-normalization te
hnique developed in Stol
ke et al. [2005℄ for normalizing feature ve
torsprior to training SVM-based speaker models.4.6.1 Generalized Linear Dis
riminant Sequen
e KernelsOne well-known kernel for performing SVM-based speaker veri�
ation is the so-
alledgeneralized linear dis
riminant sequen
e kernel (GLDS) kernel of Campbell [2001, 2002℄.The GLDS kernel essentially 
orresponds with the parameterization, R = C�1, where Cis the overall 
ovarian
e matrix of the data. This 
hoi
e of R is not dire
tly tied to anyparti
ular bound on 
lassi�
ation error. However, the authors show that this parameteri-zation performs a type of dis
riminative training on the kernel fun
tion, k(x1;x2), where\positive" kernel entries (i.e., the values of k(x1;x2) where x1 and x2 belong to the same
lass) are dis
riminated from the so-
alled \negative" entries, where x1 and x2 belong todi�erent 
lasses. The parameterization R = C�1 performs what we refer to as linear 
o-varian
e normalization. Another 
ommon 
hoi
e for R is R = diag(C)�1, where diag(C)represents the diagonal 
omponent of C. This parameterization performs what we refer toas per-feature varian
e normalization. In Chapter 6, we 
ompare these parameterizationswith our own parameterizations for R on various speaker veri�
ation tasks.39



4.6.2 N-gram Frequen
y KernelsAnother widely-used kernel fun
tion in speaker veri�
ation is derived in Campbell et al.[2003℄. The kernel fun
tion in Campbell et al. [2003℄ is never a
tually given a name; hen
e,we will refer to it as the n-gram frequen
y kernel, sin
e this name 
aptures the main ideabehind its intended appli
ation. Unlike the GLDS kernel, the n-gram frequen
y kernelis spe
i�
ally designed for feature ve
tors whose entries represent relative frequen
ies ofn-grams. The form of the n-gram frequen
y kernel is given below:k(A;B) = MXi=1 p(dij
onvSideA)pp(dijbkg) p(dij
onvSideB)pp(dijbkg) (4.3)Here, p(dij
onvSideA) and p(dijbkg) refer to the probability (i.e., relative frequen
y) of n-gram di within 
onversation side A and within the ba
kground model, respe
tively. Theabove expression represents a kernelized version of the log-likelihood ratio of A given B, orvi
e-versa. We 
an also express the n-gram frequen
y kernel in the form of a generalizedlinear kernel, where the feature ve
tor for 
onversation side A is de�ned as follows:xA , [p(d1j
onvSideA); : : : ; p(dN j
onvSideA)℄T :Under this interpretation, the R parameter matrix is diagonal, and [R℄ii = 1pp(dijbkg) .Thus, the n-gram frequen
y kernel performs a type of per-feature s
aling on the inputfeature spa
e. Further details on this kernel 
an be found in Campbell et al. [2003℄. Wenote that within the �eld of speaker veri�
ation, n-gram frequen
y kernels are typi
allyapplied to spee
h units su
h as phonemes and words obtained from an automati
 spee
hre
ognition system.4.6.3 Nuisan
e Attribute Proje
tion (NAP)Another widely-used kernel te
hnique in the �eld of speaker veri�
ation is the so-
allednuisan
e attribute proje
tion (NAP) approa
h des
ribed in Solomono� et al. [2004, 2005℄.In its most 
ommonly-used form, NAP is simply a variation of LDA where the between-
lass 
ovarian
e matrix is estimated as the identity matrix, I. Under this assumption, the40



P -dimensional LDA transformation matrix � is equal to � = VP , where the 
olumns ofVP represent the top P eigenve
tors of C�1W . (Equivalently, VP represents the bottomP eigenve
tors of CW .) The NAP approa
h represents one of the most widely-used te
h-niques within the �eld of speaker veri�
ation for training generalized linear kernels. A morethorough des
ription of NAP 
an be found in Solomono� et al. [2004, 2005℄.4.6.4 Rank-NormalizationAmong non-linear feature transformations for SVM-based speaker veri�
ation, one ofthe most well-known and widely-used is the rank-normalization te
hnique of Stol
ke et al.[2005℄. Rank-normalization uses the following feature transformation:�(xn) = 1N Nargmini=1 jxn � xn;ij:Here, xn is the nth feature in feature ve
tor x, and xn = fxn;1; : : : ; xn;Ng is a sortedlist of all instan
es of xn in the training data (i.e., xn;1 � xn;2 � � � � � xn;N). Ranknormalization applies a non-linear mapping to the features in the training data so that theresulting features are uniformly distributed over the interval, [0; 1℄. In many 
ases, thisnormalization te
hnique has been shown to yield signi�
ant improvements over per-featurevarian
e normalization and over 
ovarian
e normalization in SVM-based speaker re
ognitionsystems (Stol
ke et al. [2005℄).
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Chapter 5
Error Bounds for Separable Data:A New Derivation of theHard-Margin SVM

In this 
hapter, we develop a new theoreti
al framework for training what we refer toas generalized linear kernels|that is, kernels of the form k(x1;x2) = xT1Rx2, where x1and x2 are ve
tors in the input spa
e, and R is a positive semide�nite matrix. The theoryin this 
hapter fo
uses spe
i�
ally on binary 
lassi�
ation tasks, where the positive andnegative examples are linearly separable within the input feature spa
e, X . We begin by
onstru
ting a so-
alled 
lass-independent upper bound on 
lassi�
ation error, where all
lasses in a given set (i.e., either the target set or the impostor set) are assigned the samebounding fun
tion on the event of a mis
lassi�
ation. Minimizing this upper bound leadsto a learning system whose form is similar to the Minimax Probability Ma
hine (MPM)(Lan
kriet et al. [2002℄) summarized in Se
tion 4.5. The 
lass-independent bound 
an alsobe extrapolated to obtain a 
lass-dependent upper bound on 
lassi�
ation error, wherethe bounding fun
tions are assigned on a per-
lass basis. We will show that minimizing the
lass-dependent upper bound leads to a new, modi�ed formulation of the hard-margin SVM.42



This modi�ed formulation pres
ribes a generalized linear kernel where R is the inverse of aweighted sum of 
lass 
ovarian
e matri
es.The material in this 
hapter is organized as follows: Se
tion 5.1 provides a des
rip-tion of our problem setting. Based on this setting, we 
onstru
t a set of so-
alled 
lass-independent upper bounds on 
lassi�
ation error in Se
tion 5.2 and in Se
tion 5.3. These
lass-independent bounds are then extrapolated in Se
tion 5.4 to obtain a 
orresponding
lass-dependent bound. In Se
tion 5.4, we also show how the 
lass-dependent bound leadsto a new formulation of the hard-margin SVM and to an analyti
al form for theR parametermatrix in a generalized linear kernel.5.1 Problem SettingIn our problem setting, we are given a multi
lass dataset 
omposed ofM disjoint 
lasses,where the 
lasses are partitioned a priori into two disjoint sets: a target set, T , and animpostor set, I. We de�ne yi 2 f�1; 1g to be the so-
alled set label for 
lass i. Classes thatbelong to the target set are assigned a label of 1 and 
lasses that belong to the impostorset are assigned a label of �1. Thus, the target and impostor sets are de�ned as follows:T = fi 2 1; : : : ;M j yi = 1g;I = fi 2 1; : : : ;M j yi = �1g:Given T and I, we would like to train a linear 
lassi�er that minimizes some measure ofbinary 
lassi�
ation error on these two sets. To do this, we begin by de�ning the fun
tion,f , to be an aÆne s
oring fun
tion, whi
h we will use to de�ne a de
ision boundary betweenT and I: f(x) , vTx+ b:Here, x 2 RN represents an input feature ve
tor, v 2 RN represents a weight ve
tor, andb 2 R represents a bias term. Note that both v and b represent trainable parameters.Given f , all test examples where f(x) � 0 are 
lassi�ed as belonging to T , and all test43



Figure 5.1. Illustration of 0 � 1 error fun
tions. The �gure on the left shows the de
isionboundary for a set of target examples and for a set of impostor examples. The 
orrespondings
ore distributions and 0� 1 error fun
tions are shown on the right side of the �gure.examples where f(x) < 0 are 
lassi�ed as belonging to I. We 
an evaluate the 
lassi�
ationperforman
e of f by de�ning the risk metri
, R(f), asR(f) , Ej2I 1(f(xj) � 0) + Ej2T 1(f(xj) < 0);= p(f(xj) � 0 j j 2 I) + p(f(xj) < 0 j j 2 T ):In the above de�nition, 1(f(x) � 0) represents the so-
alled 0 � 1 error fun
tion for theimpostor examples and 1(f(x) < 0) represents the 0 � 1 error fun
tion for the targetexamples. We use the shorthand, E j2I 1(f(xj) � 0), to denote the 
onditional expe
tation,E (f(xj) � 0 jj 2 I). These error fun
tions are illustrated in Figure 5.1, along with the s
oredistributions for a parti
ular target set and impostor set. Taking 
onditional expe
tationsover these error fun
tions gives us the expe
ted rate of false positives, p(f(xj) � 0 j j 2 I)and the expe
ted rate of false negatives, p(f(xj) < 0 j j 2 T ). Our goal is to minimize someupper bound on R(f) with respe
t to f|that is, with respe
t to v and b.
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5.1.1 Notation and Additional De�nitionsWe use the following notation: Let xi be a random draw from 
lass i, and let �xi be themean of xi: �xi , E xi:Here, the expe
tation, E xi, is taken over all ve
tors in 
lass i. We de�ne Ci to be thewithin-
lass 
ovarian
e matrix for 
lass i:Cj , E (xj � �xj)(xj � �xj)T 8j:We also de�ne CT to be the expe
ted within-
lass 
ovarian
e matrix over all 
lasses in thetarget set and CI to be the expe
ted within-
lass 
ovarian
e matrix over all 
lasses in theimpostor set: CT , Ej2T Cj;CI , Ej2I Cj:The overall 
ovarian
e matrix and the expe
ted within-
lass 
ovarian
e matrix overall all
lasses are represented by the symbols, C and CW :C , Ej2fT ;Ig (xj � �x)(xj � �x)T ;CW , Ej2fT ;Ig Cj:To simplify our notation in the following se
tions, we de�ne p̂j to be the probability of 
lassj 
onditioned on the given set (i.e., either the target set, T , or the impostor set, I):p̂j ,8><>: p(j)Pk2T p(k) if j 2 T ;p(j)Pk2I p(k) if j 2 I:5.2 Bounding Fun
tionsIn this se
tion, we 
onstru
t a set of upper bounds on the risk fun
tion, R(f) for the
ase where the target 
lass means are linearly separable from the impostor 
lass means45



(i.e., f�xjgj2T is linearly separable from f�xjgj2I). We will use these bounds to deriveoptimized solutions for R in the generalized linear kernel, k(x1;x2) = xT1Rx2. To simplifythese bounds, we assume throughout the following se
tions that ea
h 
lass is symmetri
allydistributed about its mean. This is formally de�ned as follows:De�nition 1. A random variable x 2 RL is \symmetri
ally distributed about its mean" ifthe following 
ondition holds.p(x� �x = �) = p(x� �x = ��) 8(x;�) 2 RL � RL :Be
ause f(x) is an aÆne fun
tion of x, one 
an easily show that if x is symmetri
allydistributed about its mean, then f(x) is also symmetri
ally distributed about its mean. Wewill use this fa
t throughout the following 
hapter to 
onstru
t upper bounds on 
lassi�
a-tion error for binary de
ision tasks.5.3 Class-Independent BoundWe use the setting of Se
tion 5.1 to 
onstru
t three upper bounds on R(f) for the 
asewhere the target 
lass means are linearly separable from the impostor 
lass means. The�rst of these bounds is \
lass-independent," in the sense that the bounding fun
tion fora given example, xj , is the same for all j in set T and also for all j in I. To derive theupper bound on R(f), we begin by de�ning an upper bound on the zero-one loss fun
tion,1(f(xj) > 0), for impostor examples.Theorem 1. Given the s
oring fun
tion f(x) = vTx+ b, if f(�xI) < 0, then the followinginequality holds for all j in I.1(f(xj) > 0) � �f(xj)� f(�xI)f(�xI) �2 � 1�f(xj) > f(�xI)� 8j 2 I: (5.1)Proof. De�ne RHS , �f(xj)�f(�xI )f(�xI) �2 � 1�f(xj) > f(�xI)� for some j in I. We see thatRHS � 0 for all j. We also see that if f(�xI) < 0, then RHS = 1 when f(xj) = 0, andRHS � 1 when f(xj) � 0. Thus, we arrive at the inequality in (5.1).46



Figure 5.2. Illustration of the 
lass-independent, one-sided, se
ond-order bounding fun
tionfor the impostor examples and for the target examples.This bound is illustrated in Figure 5.2. The above inequality de�nes a one-sided, se
ond-order upper bound on the 0 � 1 error fun
tion for impostor examples. To simplify theoptimization of this bound in the following se
tions, the se
ond-order bounding fun
tion fora given 
lass is 
entered at the mean of the 
lass. However, we only use the right-hand sideof ea
h se
ond-order bounding fun
tion; the left-hand side is set to zero (note that the leftand right sides are reversed for the 
orresponding bound on target examples).We 
an now use the inequality in (5.1) to obtain the following bound on the risk fun
tion,R(f):Theorem 2. Given the s
oring fun
tion f(x) = vTx + b, if f(�xI) < 0 and f(�xT ) > 0,and if xT and xI are symmetri
ally distributed about their means, then the following boundholds. R(f) � 12 �� vTCT v(vT �xT + b)2 + vTCIv(vT �xI + b)2�: (5.2)Proof. The above bound follows from 
omputing the expe
tation of bound (5.1) over allimpostor 
lasses. This gives us an upper bound on the rate of false positives, p(f(xj) �47



0 j j 2 I). By symmetry, we 
an 
ompute a similar upper bound on p(f(xj) � 0 j j 2 T ),the rate of false negatives. Adding the two bounds gives us the upper bound on R(f) in(5.2).The upper bound in (5.2) 
an also be derived from the Chebyshev inequality, whi
h isgiven as follows: p(jf(x)� E f(x)j � t) � Var(f(x))t2 :For the 
ase where f(x) is symmetri
ally distributed about its mean, we 
an 
onvert theabove inequality into the following equivalent, one-sided form:p(f(x)� E f(x) � t) � 12 � Var(f(x))t2 :Now, if we substitute t = � E f(x) into the above inequality and 
onstrain x to the set ofall impostor examples, we arrive at the following expression:p(f(xj) � 0 j j 2 I) � 12 � Varj2I(f(xj))(E j2I f(xj))2 ;= 12 � vTCIv(vT �xI + b)2 :By symmetry, we 
an obtain a similar bound on p(f(xj) < 0 j j 2 T ). Adding these boundsgives us the upper bound on R(f) in (5.2).We 
an now use the upper bound in (5.2) as an obje
tive fun
tion for training an\optimized" linear 
lassi�er. Our goal is to minimize the bound in (5.2) with respe
t to(v; b). This gives us the following optimization problem:minv;b 12 �� vTCT v(vT �xT + b)2 + vTCIv(vT �xI + b)2� (5.3)subje
t to 0 < vT �xT + b;0 > vT �xI + b:Here, we have added linear 
onstraints on vT �xT +b and on vT �xI+b to enfor
e the assump-tion in (5.2) that f(xI < 0) and that f(xT � 0). The obje
tive fun
tion in (5.3) is 
omposedof terms of the form, vTCT v(vT �xT +b)2 . These terms are quadrati
 in v in both the numerator and48



in the denominator. Thus, we say that the obje
tive fun
tion in (5.3) is based on termsthat have a quadrati
-over-quadrati
 fun
tional form. Note that this form is not 
onvex(Boyd and Vandenberghe [2004℄). However, we 
an further bound (5.2) to obtain termsthat have a quadrati
-over-linear form, whi
h is 
onvex (Boyd and Vandenberghe [2004℄).The quadrati
-over-linear form 
an be bounded even further to obtain a quadrati
 program(QP). The 
orresponding optimization problems for these bounds on R(f) are given below,along with the original optimization problem of (5.3).Theorem 3. Given the s
oring fun
tion f(x) = vTx + b, if xT and xI are symmetri
allydistributed about their means, then the following bounds hold.R(f) � minv;b 12 � � vTCT v(vT �xT + b)2 + vTCIv(vT �xI + b)2� (5.4)subje
t to 0 < vT �xT + b;0 > vT �xI + b:= minv;b 12 � � vTCT v(vT �xT + b)2 + vTCIv(vT �xI + b)2� (5.5)subje
t to 1 � vT �xT + b;�1 � vT �xI + b:� minv;b 12 � � vTCT vvT �xT + b � vTCIvvT �xI + b� (5.6)subje
t to 1 � vT �xT + b;�1 � vT �xI + b:� minv;b 12 � vT (CT +CI)v (5.7)subje
t to 1 � vT �xT + b;�1 � vT �xI + b:Proof. The problem in (5.4) is homogeneous in (v; b). Thus, we 
an modify the linear49




onstraints in (5.4) to obtain (5.5). Given these 
onstraints, we 
an upper bound (5.5) byrepla
ing (vT �xT + b)2 with (vT �xT + b) and (vT �xI + b)2 with �(vT �xI + b). This gives us(5.6). We 
an further upper bound (5.6) by setting the denominators equal to 1 and -1,respe
tively, as in (5.7).In the above set of bounds, the optimization problem in (5.4) represents the originalproblem in (see (5.3)). We upper bound the optimization problem in (5.4) by the problemin (5.6), where the obje
tive fun
tion is 
omposed of terms of the form, vTCT vvT �xT +b . Theseterms have a quadrati
-over-linear form, whi
h is 
onvex (Boyd and Vandenberghe [2004℄).Moreover, the overall obje
tive fun
tion is a positively-weighted sum of 
onvex terms (notethat the term, � vTCIvvT �xI+b , is 
onvex under the 
onstraint, �1 � vT �xI + b). The overallobje
tive fun
tion is therefore also 
onvex, as are the 
onstraints. We refer to the fun
tionalform of the obje
tive fun
tion as a sum of quadrati
-over-linear form. Sin
e (5.6) has both
onvex 
onstraints and a 
onvex obje
tive fun
tion, the overall optimization problem is also
onvex. We will show in Chapter 7 that this sum of quadrati
-over-linear form 
an be 
astas a se
ond-order 
one program (SOCP).The sum of quadrati
-over-linear form in (5.6) is further bounded by the QP in (5.7).We note that if (CT +CI) is full-rank, then the QP in (5.7) 
an be 
onverted into a morefamiliar form by de�ning the ve
tor w and the matrix U as follows:v ,Uw;UUT , (CT +CI)�1:Substituting Uw in for v in (5.7) gives usminw;b 12 �wTw (5.8)subje
t to 1 < wTUT �xT + b;�1 > wTUT �xI + b:The above optimization problem has the same general form as the hard-margin SVM in(3.1), ex
ept that the feature ve
tors �xT and �xI have been repla
ed with UT �xT and UT�xI .50



Thus, the formulation in (5.8) impli
itly de�nes the following kernel fun
tion k and 
orre-sponding feature transformation �:k(x1;x2) = xT1 (CT +CI)�1x2;�(x) = UTx:From these equations, we see that k is a generalized linear kernel of the form, k(x1;x2) =xT1Rx2, where R is de�ned as R = (CT +CI)�1:Thus, we have derived a hard-margin SVM along with a generalized linear kernel k and a
orresponding feature transformation � that are \optimal" in the sense that they minimizethe upper bound on 
lassi�
ation error in (5.7). In this 
ase, the upper bound is simplybased on a pair of one-sided se
ond-order 
onvex bounding fun
tions|one to bound falsepositives and another to bound false negatives. In the following se
tions, we will use a similarapproa
h to derive the optimal generalized linear kernel k and feature transformation � formore 
ompli
ated bounding fun
tions. We note that be
ause (5.7) only has two inputfeature ve
tors (i.e., xT and xI), the optimal v in (5.7) 
an be 
omputed analyti
ally asv� / (CT +CI)�1(xT � xI): (5.9)To see this, we begin with the following 
onstraints from the SVM dual formulation of (3.2):Xj2fI;T g�jyj = 0;0 � �j 8j:From these 
onstraints, we obtain, w / UT (xT � xI). Substituting w = U�1v into thisequation gives us the solution for v� in (5.9).5.3.1 Comparison with Minimax Probability Ma
hineIn Chapter 4, we des
ribed the Minimax Probability Ma
hine (MPM) developed byLan
kriet et al. [2002℄. Given (�xT ;CT ) and (�xI ;CI), the MPM trains the aÆne de
ision51



boundary that minimizes the maximum probability of mis
lassi�
ation over all distributionsof xT and xI , where xT � (�xT ;CT ) and xI � (�xI ;CI). This 
an be expressed as follows:min�;v 6=0;b � (5.10)subje
t to supxT �(�xT ;CT ) p(vTxT + b � 0) � �;supxI�(�xI ;CI) p(vTxI + b � 0) � �:Here, � represents the maximum rate of false-positives or false-negatives over all possibledistributions of xT and xI that have the given means and 
ovarian
e matri
es. In Lan
krietet al. [2002℄, the authors show that the optimization over v 
an be restated as follows:minv pvTCT v +pvTCIv (5.11)subje
t to vT (�xT � �xI) = 1:The optimization problem for the MPM is 
onvex and 
an be 
omputed by solving a se
ond-order 
one program (SOCP). We 
an 
ompare (5.11) with the hard-margin SVM from thepre
eding se
tion. Note that the following optimization problem is equivalent to the problemin (5.7) for optimizing over v: minv pvTCT v + vTCIv (5.12)subje
t to vT (�xT � �xI) = 1:Here, we see that the obje
tive fun
tions for the two approa
hes are a
tually very similar.The MPM in (5.11) minimizes a sum of square-roots, while the SVM approa
h in (5.12)minimizes a square-root of sums. The MPM has a potential advantage over the SVMapproa
h in that it a
hieves the tightest possible bounds on the maximum probabilityof error for the given means and 
ovarian
es matri
es. However, as we will show in thefollowing se
tions, the bounding fun
tions that were used to 
onstru
t the SVM 
an also beused to 
onstru
t 
lass-dependent bounds, whi
h are often tighter than the 
lass-independentbounds in (5.4), (5.6), and (5.7). So far, there are no te
hniques in the literature for applyingthe MPM 
on
ept to 
lass-dependent bounds.52



5.4 Class-Dependent BoundsThe MPM approa
h and the SVM approa
h of the previous se
tion are both based onwhat we refer to as 
lass-independent error bounds. One major 
aveat of both of theseapproa
hes is that they only use the means and the 
ovarian
e matri
es of the targetand impostor 
lasses to train a de
ision boundary. In this se
tion, we argue that tighterbounds on 
lassi�
ation error 
an be a
hieved by 
onstru
ting so-
alled 
lass-dependenterror bounds, where every 
lass gets its own bounding fun
tion. These bounds use themeans and 
ovarian
e matri
es of all 
lasses within the target and impostor sets to traina de
ision boundary. We begin with a modi�ed version of the inequality in (5.1). Thisinequality forms an upper bound on the zero-one loss fun
tion, 1(f(xj) > 0), for impostor
lass j.Theorem 4. Given the s
oring fun
tion f(x) = vTx+ b, if f(�xj) < 0 for all j in I, thenthe following inequality holds.1(f(xj) > 0) � �f(xj)� f(�xj)f(�xj) �2 � 1�f(xj) > f(�xj)� 8j 2 I: (5.13)Proof. The proof follows the same steps as the proof of Theorem 1, ex
ept that we repla
e�xI with �xj .This bound is illustrated in Figure 5.3 for the 
ase where the impostor set is dividedinto multiple impostor 
lasses. Unlike the 
lass-independent bound of (5.1), where a singlefun
tion is used to bound the entire impostor set, the bound in (5.13) assigns a separateone-sided, se
ond-order 
onvex bound to every impostor 
lass. The se
ond-order boundingfun
tion for a given 
lass is 
entered at the mean of the 
lass. However, we only use theright-hand side of ea
h se
ond-order bounding fun
tion; the left-hand side is set to zero (notethat the left and right sides are reversed for the 
orresponding bound on target examples).We use the expe
ted value of the 
lass-dependent bounds in (5.13) over all impostor53



Figure 5.3. Comparison of the 
lass-independent and 
lass-dependent bounding fun
tionsfor the 
ase where the target and impostor sets are 
omposed of separate 
lasses (i.e.,
lusters). The �gure on the left shows the de
ision boundary for a set of target examplesand for a set of impostor examples. The 
orresponding s
ore distributions, 0 � 1 errorfun
tions, and bounding fun
tions for the impostor examples are shown on the right sideof the �gure. For simpli
ity, the s
ore distribution of the target examples is shown as auni-modal distribution.
lasses, along with a 
orresponding bound for false-positives, to obtain an upper bound onR(f). This bound is given below:Theorem 5. Given the s
oring fun
tion f(x) = vTx + b, if f(�xj) < 0 for all j 2 I, andf(�xj) > 0 for all j 2 T , and if xj is symmetri
ally distributed about its mean for all j, thenthe following bound holds. R(f) � 12 � Xj2fT ;Ig p̂j vTCjv(vT �xj + b)2 : (5.14)Proof. The above bound follows from 
omputing the expe
tation of bound (5.13) over allimpostor 
lasses. This gives us an upper bound on the rate of false positives, p(f(xj) �0 j j 2 I). We 
an 
ompute a similar upper bound on p(f(xj) � 0 j j 2 T ), the rate of falsenegatives. Adding the two bounds gives us the upper bound on R(f) in (5.14).The obje
tive fun
tion for the above bound is a positively-weighted sum of quadrati
-54



over-quadrati
 terms. This is the same general fun
tional form as in the 
lass-independentbound on R(f) in (5.2). Thus, (5.14) also leads to a similar set of optimization problemsas those in Se
tion 5.3. These optimization problems are given below:Theorem 6. Given the s
oring fun
tion f(x) = vTx + b, if xT and xI are symmetri
allydistributed about their means, then the following bounds hold.R(f) � minv;b 12 � Xj2fT ;Ig p̂j vTCjv(vT �xj + b)2 (5.15)subje
t to 0 < yj(vT �xj + b) 8j:� minv;b 12 � Xj2fT ;Ig p̂j vTCjvvT �xj + b (5.16)subje
t to 1 � yj(vT �xj + b) 8j:� minv;b 12 � vT � Xj2fT ;Ig p̂jCj�v (5.17)subje
t to 1 � yj(vT �xj + b) 8j:Proof. The proof follows the same steps as the proof for Theorem (3).As in Se
tion 5.3, minimizing the upper bound onR(f) leads to three di�erent optimiza-tion problems: a sum of quadrati
-over-quadrati
 form (5.15), a sum of quadrati
-over-linearform (5.16), and a QP (5.17). The sum of quadrati
-over-linear form is 
onvex and will bedis
ussed in greater detail in Chapter 7.5.4.1 Hard-Margin SVMWe will fo
us our attention on the QP in (5.17). If (Pj2fT ;Ig p̂jCj) is full-rank, thenthe QP in (5.17) 
an be 
onverted into the standard form for a hard-margin SVM. To show55



this, we �rst de�ne the ve
tor w and the matrix U as follows:v ,Uw;UUT , � Xj2fT ;Ig p̂jCj��1:Substituting Uw in for v in (5.7) gives usminw;b 12 �wTw (5.18)subje
t to 1 � yj(wTUT �xj + b) 8j:The above optimization problem has the same form as a hard-margin SVM (see Chapter 3),ex
ept that the feature ve
tor �xj has been repla
ed with UT �xj for all j. However, unlikethe hard-margin SVM in (5.8) and the MPM in (5.11), both of whi
h have only two linear
onstraints|one for �xT and one for �xI|the SVM in (5.18) has M linear 
onstraints: onefor every 
lass in the data. Thus, the SVM in (5.18) has the same general form as the
onventional hard-margin SVM in (3.1), ex
ept that it impli
itly spe
i�es a kernel fun
tionk and feature transformation, �. The kernel fun
tion k and the 
orresponding featuretransformation � for this SVM are de�ned as follows:k(x1;x2) = xT1 � Xj2fT ;Ig p̂jCj��1x2; (5.19)�(x) = UTx: (5.20)The term U represents the Cholesky fa
torization of �Pj2fT ;Ig p̂jCj��1:UUT , � Xj2fT ;Ig p̂jCj��1:From these equations, we see that k is a generalized linear kernel of the form, k(x1;x2) =xT1Rx2, where R is de�ned as R = � Xj2fT ;Ig p̂jCj��1:
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5.4.2 Bounding Fun
tions for the Hard-Margin SVMAs an alternative to the derivation shown above, the hard-margin SVM of (5.17) 
an beobtained dire
tly from a spe
i�
 set of 
lass-dependent bounding fun
tions. These boundingfun
tions are given below.Theorem 7 (Bounding fun
tions for the hard-margin SVM). Given a s
oring fun
-tion f , if yjf(�xj) > 0 for all j 2 f1; : : : ;Mg, then the following inequality holds.1(yjf(xj) < 0) � maxk2f1;:::;Mg�f(xj)� f(�xj)f(�xk) �2 � 1�yjf(xj) < yjf(�xj)� 8j 2 f1; : : : ;Mg:(5.21)Proof. The above bound follows from the same steps used in (4).Minimizing the expe
ted value of the above bounding fun
tions over all j leads tothe optimization problem in (5.17) for the hard-margin SVM. The bounding fun
tions in(5.21) are illustrated in Figure 5.4. Unlike the original se
ond-order bounding fun
tionsin (5.13), the se
ond-order fun
tions in (5.21) are 
onstrained to be of uniform width forevery 
lass. Figure 5.4 shows that the fun
tions are simply shifted versions of one-another.Thus, the bounds on error-rate are quite loose for 
lasses whose mean s
ores are far fromzero. The upside of this looseness is that the resulting solution for the optimized linear
lassi�er f is relatively simple: the optimized linear 
lassi�er is a hard-margin SVM withan optimized linear kernel k and 
orresponding feature transformation �, as given in (5.19)and (5.20). Given this solution, we 
an train an optimized linear 
lassi�er by �rst applyingthe linear feature transformation � to every feature ve
tor and then training a hard-marginSVM. In Chapter 7, we will show how to tighten the bounding fun
tions in (5.21) whilestill maintaining the 
onvexity of the overall optimization problem. This leads to a new,modi�ed support ve
tor ma
hine that we refer to as the adaptive, multi
luster SVM.
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Figure 5.4. A relaxed set of 
lass-dependent bounding fun
tions for the impostor examples.5.4.3 Bounding Fun
tions for Classes that are not Symmetri
ally Dis-tributed About their MeansThe upper bounds in (5.7) and in (5.17) are somewhat limited by the fa
t that they onlyapply to 
lasses that are symmetri
ally distributed about their means. For non-symmetri
al
lasses, we 
an use the following 
lass-dependent bounding fun
tions to derive an upperbound on R(f):Theorem 8 (Class-dependent bounding fun
tions for asymmetri
al 
lasses).Given the s
oring fun
tion f(x) = vTx+ b, if yjf(�xj) > 0 for all j 2 f1; : : : ;Mg, then thefollowing inequality holds.1(yjf(xj) < 0) � maxk2f1;:::;Mg�f(xj)� f(�xj)f(�xk) �2 8j 2 f1; : : : ;Mg: (5.22)Proof. The above bound has the same form as the bound in (7), ex
ept that we haveremoved the indi
ator fun
tion, 1�yjf(xj) < yjf(�xj)�. Removing the indi
ator fun
tionhas the e�e
t of loosening the bound. Thus, the bound in (5.22) is valid.The above inequality is the same as the inequality in (5.21), ex
ept that we have removedthe indi
ator fun
tion, 1�yjf(xj) < yjf(�xj)�. The result is a two-sided, se
ond-orderbounding fun
tion. We 
an obtain the 
orresponding upper bound on R(f) by 
omputing58



the expe
ted value of (5.22) over all target and impostor examples. Minimizing this boundsgives us the following optimization problem:Theorem 9 (Class-dependent upper bound on R(f) for asymmetri
al 
lasses).Given the s
oring fun
tion f(x) = vTx+ b, if yjf(�xj) > 0 for all j 2 f1; : : : ;Mg, then thefollowing inequality holds.R(f) � minv;b vT � Xj2fT ;Ig p̂jCj�v (5.23)subje
t to 1 � yj(vT �xj + b) 8j:Proof. The above bound follows from 
omputing the expe
tation of bound (5.22) over allimpostor 
lasses. This gives us an upper bound on the rate of false positives, p(f(xj) �0 j j 2 I). By symmetry, we 
an 
ompute a similar upper bound on p(f(xj) � 0 j j 2 T ),the rate of false negatives. Adding the two bounds gives us the upper bound on R(f) in(5.23).Here, we see that (5.23) has the same form as the 
lass-dependent upper bound in (5.17),ex
ept that the bound has been multiplied by a fa
tor of 2. A similar bound 
an be obtainedfor the 
lass-independent 
ase. The upper bound in (5.23) represents the worst-
ase 
lass-dependent upper bound on R(f) for any dataset. Although this bound is looser than thebound in (5.17) for the symmetri
al 
ase, the two bounds only di�er by a 
onstant fa
tor;thus, both bounds yield the same solution for the SVM parameters, (v; b). The remainder ofthe dissertation will deal ex
lusively with upper bounds for 
lasses that are symmetri
allydistributed about their means. We note, however, that ea
h of these upper bounds 
anbe reformulated for the general 
ase where the 
lass distributions are not assumed to besymmetri
al.
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5.4.4 Relative Tightness of the Class-Dependent BoundsWe note that the 
lass-dependent bounds of (5.13) and Figure 5.3 do not ne
essarily leadto a tighter expe
ted bound over all 
lasses than the 
lass-independent bound of (5.1)|thatis, they do not ne
essarily lead to tighter bounds on R(f). For example, if the within-
lassvarian
e of the s
oring fun
tion f(xj) is relatively large for every 
lass, then the 
lass-dependent bounds will tend to be looser than the 
lass-indepedent bound in expe
tationover all 
lasses. On the other hand, if the within-
lass varian
e of f(xj) is small for every
lass, then the 
lass-dependent bounds may a
hieve tighter bounds on R(f) than the 
lass-independent bound. As eviden
e of this, we 
an 
onsider the 
ase where the expe
tedwithin-
lass varian
e of f(x) is zero over all 
lasses, but the overall varian
e of f(x) is �for some � > 0. In this 
ase, the 
lass-independent upper bound on R(f) in (5.7) will bestri
tly positive, while the 
lass-dependent bound in (5.17) will be zero.5.4.5 Clustering Data and Choosing What Constitutes a ClassIn general, the relative \tightness" of the 
lass-dependent bounds is dependent on howthe 
lasses are de�ned: 
lasses that are distin
t and easily separable from one-another withinthe data will tend to yield better bounds on R(f), relative to the 
lass-independent bound,than 
lasses that are indistin
t and spread out. Thus, we would obviously prefer that our
lasses 
orrespond with real 
lusters in the data, where the within-
lass varian
e of f(xj)over all j is relatively small for any 
hoi
e of v|that is, for any \dire
tion" within ourfeature spa
e.In this thesis, we assume that the 
lasses represent prede�ned 
lusters within the targetand impostor sets. For example, we will later report results on speaker veri�
ation exper-iments where the 
lasses represent individual speakers. The 
lass-dependent bounds aredire
tly appli
able to datasets su
h as this, where the 
lasses represent real 
lusters withinthe data that are de�ned a priori. In prin
iple, we 
an also apply the 
lass-dependent boundsto binary 
lassi�
ation tasks where the impostor and target sets are not partitioned, a pri-60



ori, into individual 
lasses. Tasks su
h as this, are, of 
ourse, very 
ommon in real worlds
enarios. In order to apply 
lass-dependent bounds to these general tasks, we must �rst use
lustering te
hniques to de�ne our own set of 
lusters (i.e., 
lasses). We will not address theproblem of how to perform 
lustering for 
lass-dependent bounds in any signi�
ant depthin this thesis. However, we believe that this problem presents an interesting and importantopportunity for future work.
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Chapter 6
Error Bounds for Non-SeparableData: A New Derivation of theSoft-Margin SVM

In the pre
eding 
hapter, we 
onstru
ted a set of upper bounds on 
lassi�
ation errorfor the 
ase where the means of the target and impostor 
lasses are linearly separable. Byminimizing these upper bounds, we were able to derive a formulation of the hard-marginSVM. This formulation also provides a solution for an optimized linear kernel fun
tion kand a 
orresponding feature transformation, �. In this 
hapter, we extend this approa
h tothe 
ase where the target and impostor means are not linearly separable. We des
ribe anapproa
h similar to that of Chapter 5 that leads dire
tly to a new, modi�ed formulation ofthe soft-margin SVM. This modi�ed formulation di�ers from the 
onventional derivation ofthe soft-margin SVM in Vapnik [1995℄, in the following ways:1. The new, modi�ed formulation follows dire
tly from minimizing a parti
ular upperbound on 
lassi�
ation error. On the other hand, Vapnik's formulation is based onappending sla
k variables to the hard margin SVM.62



2. The C hyperparameter is exa
tly spe
i�ed in the modi�ed SVM formulation of this
hapter but is undetermined in Vapnik [1995℄. We note, however, that a number ofte
hniques have been proposed for optimizing C analyti
ally (Cristianini and Shawe-Taylor [2000℄).3. Our new, modi�ed formulation of the soft-margin SVM provides a solution for anoptimized linear kernel k and 
orresponding feature transformation �.This 
hapter is organized as follows: We begin by de�ning a set of bounding fun
tionson the event of a mis
lassi�
ation in Se
tion 6.1. These bounding fun
tions are minimizedin Se
tion 6.2 to yield a new formulation of the soft-margin SVM. In Se
tion 6.3, we showhow to apply our soft-margin SVM framework to a typi
al speaker veri�
ation task. Thisse
tion leads to the idea of performing within-
lass 
ovarian
e normalization (WCCN) oninput feature ve
tors before training SVMs. We dis
uss the intuition behind WCCN inSe
tion 6.4. Finally, in Se
tions 6.6 and 6.7, we des
ribe a set of experiments where we
ompare WCCN to other feature normalizations on a real speaker veri�
ation task.6.1 Bounding Fun
tionsIn this se
tion, we 
onstru
t an upper bound on R(f) that leads to a modi�ed formof the 
onventional, 1-norm soft-margin SVM. The upper bound on R(f) is based on oneor more bounding fun
tions on the event of a mis
lassi�
ation (i.e., on the 0 � 1 errorfun
tion). As in Chapter 5, bounding fun
tions 
an be 
onstru
ted for both the 
lass-independent 
ase, where the target and impostor sets are treated as single 
lasses, as wellas for the 
lass-dependent 
ase, where every 
lass in the target and impostor sets gets itsown bounding fun
tion. Sin
e the 
lass-indepedent bounding fun
tion is a spe
ial 
ase ofthe 
lass-dependent bounding fun
tions, we will assume throughout this 
hapter that thebounding fun
tions are 
lass-dependent. The bounding fun
tions are de�ned in Theorem10. We note that Theorem 10 uses the shorthand (�)+ to represent the hinge-loss fun
tion.63



This is de�ned as (a)+ , 1(a � 0) � a:The theorem is given below:Theorem 10. Given the s
oring fun
tion f(x) = vTx + b, if yjf(�xj) > 0 for all 
lassesj 2 f1; : : : ;Mg, then the following inequality holds.1(yjf(xj) < 0) � B(xj ; �j): (6.1)Here, �j represents a set of parameters for 
lass j, and B(xj ; �j) represents a one-sided,se
ond-order bounding fun
tion. These are de�ned as follows:�j , fv; b; yj ; �xjg;B(xj ; �j) , �yjf(xj)� yjf(�xj)�2 1�yjf(xj) < yjf(�xj)�+ 2 � �1� yjf(�xj)�+: (6.2)Proof. We 
an see by inspe
tion that as yjf(xj) de
reases, B(xj ; �j) in
reases or staysthe same. Thus, we have only to show that B(xj ; �j) � 1 for all yjf(�xj) 2 (0;1) whenyjf(xj) = 0. We divide the problem into two 
ases: one where yjf(�xj) � 1, and anotherwhere 0 � yjf(�xj) � 1. In ea
h 
ase, we will assume that yjf(xj) = 0.Case 1: 1 � yjf(�xj)In this 
ase, the term 2 � �1 � yjf(�xj)�+ is zero, and the quadrati
 term �yjf(xj) �yjf(�xj)�21�yjf(xj) < yjf(�xj)� in
reases as yjf(�xj) in
reases. Thus, the bounding fun
tionB(xj ; �j) is minimized by setting yjf(�xj) = 1.Case 2: 0 � yjf(�xj) � 1For this 
ase, we 
ompute the �rst and se
ond derivatives of B(xj ; �j) with respe
t toyjf(�xj). This gives us �B(xj ; �j)��yjf(�xj)� = 2yjf(�xj)� 2;�2B(xj ; �j)��yjf(�xj)�2 = 2:64



Figure 6.1. Illustration of the 0 � 1 error fun
tion, 1(yjf(xj) < 0), and the boundingfun
tion, B(xj ; �j), as a fun
tion of yjf(xj) for various values of yjf(�xj).Setting �B(xj ; �j)��yjf(�xj )� equal to zero gives us yjf(�xj) = 1. We know that B(xj ; �j) is 
onvexbe
ause �2B(xj ; �j)��yjf(�xj )�2 is stri
tly positive. Thus, yjf(�xj) = 1 is the global minimum for this
ase.The above 
ases show that B(xj ; �j) is minimized at yjf(�xj) = 1. We also knowthat B(xj ; �j) = 1 at yjf(�xj) = 1. Thus, B(xj ; �j) � 1 for all yjf(�xj) 2 (0;1) whenyjf(xj) = 0.The fun
tion, B(xj ; �j), represents a one-sided, se
ond-order bounding fun
tion on the0�1 error fun
tion, 1(yjf(xj) < 0). The latter fun
tion equals one when xj is mis
lassi�edand zero otherwise. An illustration of this bound is provided in Figure 6.1.6.1.1 Comparison with Bounding Fun
tions for Hard-Margin SVMWe note that the form of B(xj ; �j) in (6.1) is similar to that of the bounding fun
tionsfor the hard-margin SVM in (5.21). In both (5.21) and (6.1), the bounding fun
tions forthe di�erent 
lasses have uniform width and are simply shifted versions of one-another. The65



bounding fun
tions in (5.21) have a width equal to mink2f1;:::;Mg ykf(�xk), whi
h representsthe maximum possible width for whi
h the bounding fun
tions satisfy the upper bound on1(yjf(xj) < 0) in (5.21) for all 
lasses. We note, however, that this width assignment onlyyields valid upper bounds on 1(yjf(xj) < 0) if mink2f1;:::;Mg ykf(�xk) is nonnegative. Inother words, the formulation in (5.21) only works in the 
ase where the target and impostormeans are linearly separable from one-another given the s
oring fun
tion, f .The upper bound in (6.1) is based on the 
lass-dependent bounding fun
tion, B(xj ; �j),whi
h has a uniformwidth of one for all j. This means that for any 
lass j where yjf(�xj) < 1,the fun
tion, B(xj ; �j), will be too wide to upper bound the indi
ator fun
tion in (6.1) inthe usual way. To 
ompensate for this, we use the term �1�yjf(�xj)�+ to loosen B(xj ; �j)for any 
lass j where yjf(�xj) < 1. The �1�yjf(�xj)�+ term represents a hinge-loss fun
tionon 1 � yjf(�xj). In (6.2), this hinge-loss fun
tion is s
aled by a 
onstant fa
tor of 2. One
an show that this is the minimum 
onstant s
aling fa
tor for whi
h B(xj ; �j) satis�es theupper bound in (6.1) for any 
hoi
e of �xj .6.1.2 Upper Bound on R(f)In this se
tion, we use the inequality in (6.1) to derive an upper bound on R(f). Aswas the 
ase in Chapter 5, we assume throughout the following se
tions that ea
h 
lass issymmetri
ally distributed about its mean. Under this assumption, we 
an obtain the upperbound on R(f) given below in Theorem 11. Before giving the theroem, let us de�ne theve
tor � , [�1; : : : ; �M ℄T , where M is the number of 
lasses. We will also use the notation,0 � �, as shorthand to denote a per-element ve
tor inequality:0 � � () 0 � �j 8j:The theorem is given below:Theorem 11. If, for all j 2 f1; : : : ;Mg, xj is symmetri
ally distributed about its mean,66



then the following bound holds.R(f) � 12 � vT (Xj p̂jCj)v + 2 �Xj p̂j�j (6.3)subje
t to 1� �j � yj(vT �xj + b) 8j;0 � �:Proof. A formal proof of Theorem 11 is provided in Appendix A.The bound in (6.3) follows from taking the expe
tation of both sides of the inequalityin (6.1).6.2 The Soft-Margin SVMIf (Pj p̂jCj) is full-rank, then we 
an 
onvert the bound in (6.3) to a more familiarform by performing a substitution of variables. As in Chapter 5, we de�ne the ve
tor wand the matrix U as follows: v ,Uw;UUT , (Xj p̂jCj)�1:Substituting Uw in for v in (6.3) gives us the following bound.R(f) � 12 �wTw + 2 �Xj p̂j�j (6.4)subje
t to 1� �j � yj(wTUT�xj + b) 8j;0 � �:We 
an now use the upper bound in (6.4) as an obje
tive fun
tion for training a linear
lassi�er. Our goal is to minimize the bound in (6.4) with respe
t to (w; b; �). This gives
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us the following optimization problem:minw;b;� wTw+ 4 �Xj p̂j�j (6.5)subje
t to 1� �j � yj(wTUT �xj + b) 8j;0 � �:Note that the obje
tive fun
tion in (6.5) 
orresponds with the upper bound in (6.4) s
aledby a fa
tor of 2. The optimization problem in (6.5) de�nes a new, modi�ed formulation ofthe soft-margin SVM. This modi�ed SVM has the same general form as the 
onventional1-norm soft-margin SVM in Cristianini and Shawe-Taylor [2000℄; Vapnik [1995℄, ex
eptthat ea
h feature ve
tor, �xj , is repla
ed withUT �xj . We will dis
uss the di�eren
es betweenthe formulation in (6.5) and the 
onventional soft-margin SVM formulation in greater detailin the following se
tion. The new SVM formulation impli
itly de�nes a feature mapping �and a kernel fun
tion k of the form, �(x) = UTx;k(x1;x2) = xT1Rx2;Here, the matri
es, R and U, are de�ned as follows:R , (Xj p̂jCj)�1; (6.6)UUT , R:6.2.1 Comparison with Conventional Soft-Margin SVM FormulationIf we 
ompare the new, modi�ed soft-margin SVM in (6.5) with the 
onventional for-mulation in (3.4), we see that the two formulations are essentially identi
al. However, thereare a few important di�eren
es: For example, the new formulation in (6.5) assigns a �xedvalue of 4 to the SVM hyperparameter, C. This value represents the smallest value of C forwhi
h the optimization problem in (6.5) forms an upper bound on the risk fun
tion, R(f).In the 
onventional soft-margin SVM, the C hyperparameter and the hinge-loss term are68



simply appended to the hard-margin SVM without o�ering any proper justi�
ation for theirin
lusion. Our formulation, on the other hand, follows dire
tly from minimizing the upperbounds on R(f) in (6.3) and (6.4).As with the hard-margin SVM in Chapter 5, another key di�eren
e between the 
on-ventional soft-margin SVM in (3.4) and the new, modi�ed formulation in (6.5) is that thenew formulation impli
itly spe
i�es a generalized linear kernel k and a 
orresponding linearfeature transformation, � (note that this result only holds if (Pj p̂jCj) is full-rank). Thekernel k and the 
orresponding feature transformation � are sele
ted to minimize the upperbounds on R(f) in (6.3) and (6.4). Thus, we say that k and � are optimal for the givenupper bounds on 
lassi�
ation error. One important impli
ation of this is that the modi�edSVM in (6.5) is invariant to any full-rank linear distortion of the feature spa
e. This meansthat if we repla
e ea
h input feature ve
tor �xj in the training and test sets with A�xj, whereA is some full-rank linear transformation, then the output s
ores obtained from f will beun
hanged. The new formulation in (6.5) also di�ers from the 
onventional soft-marginSVM formulation in that it in
orporates the prior probabilities of ea
h 
lass 
onditional onthe given set (i.e., either the target set or the impostor set).We note that a 
onventional 1-norm soft-margin SVM with a simple inner-produ
tkernel|that is, a kernel of the form, k(x1;x2) = xT1 x2|
an be viewed as a spe
ial 
ase ofthe optimization problem in (6.5) where the following 
onditions hold:1. Pj p̂jCj is assumed to be proportional to the identity matrix, I, for all i.2. The �j terms are weighted by p̂j for all j3. Every input training example is treated as the mean of some 
lass. Thus, we repla
eea
h xj term in the original SVM formulation with �xj .4. The C hyperparameter is set equal to 4.
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6.3 Generalized Linear Kernels for Speaker Veri�
ationTasksIn the previous se
tions, we derived a new, modi�ed formulation of the soft-margin SVM.This SVM spe
i�es an analyti
al form for R in the generalized linear kernel, k(x1;x2) =xT1Rx2. In this se
tion, we o�er a pra
ti
al argument for how to estimate R on a typi
alspeaker veri�
ation task, where the number of training examples available for the targetspeaker is very small. Under various assumptions, we show that the formulation in (6.6)leads to the notion of performing within-
lass 
ovarian
e normalization (WCCN) on theinput feature spa
e.In most speaker veri�
ation tasks, the amount of training data provided for the giventarget speaker is small|typi
ally no more than 8 
onversation sides of around 2.5 minutesea
h. Given this limited amount of training data, the task of 
oming up with a robustestimate of the 
ovarian
e matri
es for the target set (i.e., speaker) 
an be very diÆ
ult,espe
ially when the dimensionality of the feature spa
e is very high. One way of gettingaround this, in the absense of any other information, is to assume that the expe
ted within-
lass 
ovarian
e matrix over all 
lasses in the target set T is equal to the expe
ted within-
lass 
ovarian
e matrix over all 
lasses:Xj2T p̂jCj = CW : (6.7)The above assumption will hold|at least approximately|for datasets where the 
lass dis-tributions are sele
ted in su
h a way that their 
ovarian
e matri
es are relatively homo-geneous. We 
an make a pra
ti
al argument that the assumption in 6.7 tends to hold for
lasses that represent instan
es of a parti
ular type. For example, in a speaker veri�
ationtask, we 
an de�ne ea
h 
lass to represent an individual speaker. We 
an then use CW toprovide an estimate of Ci for any individual speaker i.Under the assumption in (6.7), the overall R matrix in (6.6) is approximately equal to70



the inverse of the expe
ted within-
lass 
ovarian
e matrix, CW :R � C�1W :This approximation be
omes more exa
t as the total number of 
lasses, M , grows large.One attra
tive property of the above assignment for R is that it applies to any 
hoi
e oftarget set, assuming that Pj2T p̂jCj = CW . Thus, we arrive at a single linear featuremapping that 
an be applied uniformly to all input feature ve
tors, regardless of the 
hoi
eof target set. We 
an express this feature mapping as follows:�(x) = C� 12W x:Here, C 12W represents the Cholesky fa
torization of CW . Thus, CW = C 12 TW C 12W . The above
hoi
e of � performs what we refer to as within-
lass 
ovarian
e normalization (WCCN)on the input feature spa
e. This means that � normalizes the feature spa
e to have anexpe
ted within-
lass 
ovarian
e matrix CW equal to the identity matrix, I.6.4 Intuition Behind Within-Class Covarian
e Normaliza-tionThe pre
eding se
tion shows how the formulation in (6.6) leads to the notion of per-forming within-
lass 
ovarian
e normalization (WCCN) on the input feature spa
e. In thisse
tion, we des
ribe the intuition behind this approa
h. Given an input feature spa
e, X ,
omposed of a set of J 
lasses, our goal is to �nd the linear feature mapping �(x) = Axthat will optimally transform X for the purposes of dis
riminating between 
lasses. Morespe
i�
ally, we would like to �nd the optimal linear feature mapping for training SVMsin a one-versus-all setting, where one 
lass is 
hosen as the target 
lass and the remainingJ � 1 
lasses are pooled to form the impostor set. If we ignore rotations of the featurespa
e, then the problem of 
oming up with an optimal linear transformation is equivalentto �nding the optimal s
aling fa
tor for every dire
tion in feature spa
e. We 
an argue71



Figure 6.2. Illustration of the within-
lass 
ovarian
e normalization (WCCN) approa
h.Here, we apply WCCN to a 2-dimensional feature spa
e 
omposed of 4 Gaussian 
lasses.These ellipses represent iso
lines of 
onstant Mahalanobis distan
e for ea
h of the 
lasses.WCCN boosts informative dire
tions and attenuates noisy dire
tions by making the within-
lass distributions as symmetri
al as possible.that dire
tions in feature spa
e where the between-
lass varian
e is large 
ompared to theexpe
ted within-
lass varian
e should be given greater weight than dire
tions where thisis not the 
ase. Alternatively, we 
an say that dire
tions with a large Rayleigh 
oeÆ
ientJ(w) should be given more weight than dire
tions where J(w) is small. In WCCN, ea
hdire
tion in feature spa
e is s
aled by 1�W (w) , where �W (w)2 represents the expe
ted within
lass varian
e over all 
lasses along dire
tion w. After weighting the feature spa
e in thisway, ea
h dire
tion will have a between-
lass varian
e equal to the Rayleigh 
oeÆ
ient ofthat dire
tion. Thus, the Rayleigh 
oeÆ
ient forms a measure of how informative or noisya given dire
tion is. An illustration of how WCCN works is provided in Figure 6.2.
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6.5 Relationship Between WCCN and Linear Dis
riminantAnalysis (LDA)We note that the WCCN approa
h des
ribed in Se
tion 6.3 is, in many respe
ts, verysimilar to linear dis
riminant analysis (LDA). In LDA, the input feature spa
e is proje
tedonto the eigenve
tors of the matrix CBC�1W . Sin
e the eigenve
tors of CBC�1W are orthonor-mal, this operation results in a rotation of the input feature spa
e. The resulting featurerepresentation 
an be trun
ated|that is, we 
an drop the features that 
orrespond withthe P -lowest Rayleigh 
oeÆ
ients. Beside redu
ing the dimensionality of the feature spa
e,this trun
ation 
an have the e�e
t of �ltering out dire
tions in feature spa
e that are noisy.Thus, if P is properly tuned, then LDA will often lead to improved a

ura
y when used asa pre-pro
essing step in a 
lassi�
ation system.The idea behind WCCN is not to �lter out dire
tions in feature spa
e that are noisy,but simply to deemphasize them based on their Rayleigh 
oeÆ
ients. In this way, WCCNattempts to extra
t as mu
h information as possible from the input feature spa
e X byoptimally weighting every dire
tion. (Note that WCCN is only \optimal" in the sense thatit minimizes a parti
ular upper bound on 
lassi�
ation error). If CW is full-rank, thenthese weights are never equal to zero; thus, WCCN is lossless, in that it retains all of theoriginal dire
tions in the input feature spa
e, X . Unlike LDA, WCCN is also invariant toany full-rank linear distortion of X . In other words, we 
an transform X with �(x) = Ax,and the resulting feature spa
e after performing WCCN will look the same for any 
hoi
eof A where A is full-rank and N � N . The same is not true of LDA, however, sin
eLDA simply performs a rotation in feature spa
e followed by a trun
ation. In Chapter8, we provide a set of results where we 
ompare the WCCN approa
h with a version ofLDA 
alled nuisan
e attribute proje
tion (NAP) (Solomono� et al. [2004, 2005℄). The NAPapproa
h was previously des
ribed in Chapter 4.
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6.6 Experiments on a Speaker Veri�
ation TaskThe following se
tion des
ribes a set of experiments where we 
ompare the perfor-man
e of various linear feature transformations on an SVM-based speaker veri�
ation sys-tem. These feature transformations in
lude the WCCN approa
h des
ribed in Se
tions 6.3through 6.1, where the R = C�1W . We also experiment with the parameterization, R = C�1,where C is the overall 
ovarian
e matrix over all of the data. This parameterization 
orre-sponds with the 
lass-independent 
ase of WCCN where the target and impostor sets aretreated as individual 
lasses, and where CI and C are assumed to be equal. We note thatthis parameterization is identi
al to the GLDS kernel des
ribed in Campbell [2001℄.Experiments were performed on two NIST-de�ned speaker veri�
ation tasks where thegoal is to 
orre
tly de
ide whether or not a given pair of 
onversation sides belong to thesame speaker. In these tasks, one of the 
onversation sides in ea
h pair is used to de�ne thetarget 
lass (i.e., speaker), while the other is used as a test example. We train an SVM-baseds
oring fun
tion for every target speaker using a �xed pool of held-out impostor examplestaken from several hundred impostor speakers. Note that the 
lasses in these experimentsrepresent speakers.We used a version of the state-of-the-art MLLR-SVM system des
ribed in Stol
ke et al.[2005℄ to extra
t one 12480-dimensional feature ve
tor from every 
onversation side. Thesefeatures 
an be divided into eight disjoint groups of 1560 features ea
h, where ea
h group isasso
iated with a parti
ular set of spee
h phonemes. We used held-out data from the NISTSRE-2003 dataset to 
ompute the empiri
al expe
ted within-
lass 
ovarian
e matrix ĈWand the empiri
al overall 
ovarian
e matrix, Ĉ. Note that both ĈW and Ĉ were estimatedin a blo
k-diagonal fashion, where the 
ovarian
e between any two features i and j, where iand j belong to di�erent phoneme groups, was set to zero. The resulting 
ovarian
e matri
es
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SRE-03 subset SRE-04kernel EER% DCF EER% DCFR = diag(Ĉs)�1(baseline) 4.36 0.0166 9.84 0.0347R = diag(ĈW;s)�1 4.21 0.0151 9.56 0.0338R = Ĉ�1s 4.15 0.0141 9.56 0.0348R = Ĉ�1W;s 3.80 0.0128 9.28 0.0322relativeimprovement 12:8% 22:9% 5:7% 7:2%Table 6.1. EERs and minimum DCFs for various generalized linear kernels. Here, \relativeimprovement" 
ompares the performan
e of R = Ĉ�1W;s with the baseline.were then smoothed using the models,ĈW;s = �W � ĈW + (1� �W ) � diag(ĈW ); �W 2 [0; 1℄;Ĉs = � � Ĉ+ (1� �) � diag(Ĉ); � 2 [0; 1℄;where diag(A) is the diagonal 
omponent of the square matrix A. The parameters �W and� were independently tuned to a value of 0.30 by performing 
ross-validation on held-outdata from the SRE-2003 dataset.Testing was performed on a subset of the SRE-2003 task and dataset and on the entireSRE-2004 task and dataset for the 1-
onversation training 
ondition. Results are shown inTable 6.1 for two standard error metri
s: equal-error rate (EER) and minimum de
ision
ost-fun
tion (DCF)|a standard metri
 used by NIST to measure 
lassi�
ation error whenthe relative rate of false positives is high (NIST [2005℄). Note that both error metri
s are
omputed on the pooled set of SVM output s
ores obtained from the various target 
lasses.Here, the R = diag(Ĉs)�1 and R = diag(ĈW;s)�1 parameterizations 
orrespond with per-feature varian
e normalization and with per-feature within-
lass varian
e normalization.The R = Ĉs parameterization 
orresponds with the GLDS kernel (Campbell [2001℄) andR = ĈW;s 
orresponds with WCCN. As shown in Table 6.1, the R = Ĉ�1W;s 
ase shows asubstantial improvement over the R = Ĉ�1s 
ase and over the baseline, where ea
h feature isnormalized to have unit varian
e (i.e., R = diag(Ĉ)�1). The improvement on SRE-2004 issigni�
antly smaller than that obtained on SRE-2003. However, this is to be expe
ted, sin
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both ĈW and Ĉ were estimated only on SRE-2003 data, whi
h represents a di�erent setof 
hannel and re
ording 
onditions than SRE-2004 (Stol
ke et al. [2005℄) for more detailsabout the system, datasets, and tasks). Further information on these experiments 
an befound in Hat
h and Stol
ke [2006℄.6.7 Summary and Con
lusionsThe pre
eding 
hapter des
ribes an approa
h for training generalized linear kernels ofthe form, k(x1;x2) = xT1Rx2, for OVA 
lassi�
ation tasks. We develop a set of error boundswhi
h, under various 
onditions, are minimized by 
hoosing R = C�1W . This parameteriza-tion performs what we refer to as within-
lass 
ovarian
e normalization (WCCN) on theinput feature spa
e. In experiments performed on an MLLR-SVM speaker veri�
ation sys-tem, WCCN a
hieves substantial redu
tions in 
lassi�
ation error over other linear featuretransformations, in
luding the GLDS kernel of Campbell [2001℄ and per-feature varian
enormalization.
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Chapter 7
Tightening the Bounds: theAdaptive, Multi
luster SVM

In Chapters 5 and 6, we introdu
ed a new modi�ed formulation of the hard-margin andsoft-margin SVMs. These formulations follow from the 
lass-dependent bounding fun
tionsin (5.21) and (6.2), whi
h provide an upper bound on the event of a mis
lassi�
ation.The modi�ed SVMs in Chapters 5 and 6 spe
ify a kernel fun
tion k and a 
orrespondinglinear feature transformation � that minimize the upper bounds on R(f) in (5.18) and(6.4). The upshot of these formulations is that we 
an implement an \optimized" linear
lassi�er (optimized in the sense that it minimizes these parti
ular upper bounds on R(f))by performing the following two steps:1. Use � to transform the input feature spa
e.2. Train a linear SVM in the usual way. Here the term, \linear SVM," refers to an SVMthat uses the inner-produ
t kernel, k(x1;x2) = xT1 x2.In Se
tion 6.3, we gave a pra
ti
al argument for how, under 
ertain assumptions, the opti-mized feature transformation � leads to the notion of within-
lass 
ovarian
e normalization(WCCN). WCCN has the attra
tive property of being indepedent of the given partitioning77



of 
lasses|that is, WCCN is independent of the assignment of ea
h 
lass to either theimpostor set or to the target set. This means that after performing WCCN on the inputfeature spa
e, the standard linear SVM is approximately optimal for minimizing the upperbounds in (5.18) and (6.4) on any partitioning of 
lasses.The WCCN approa
h provides a 
onvenient means of obtaining linear 
lassi�ers thatapproximately minimize a parti
ular upper bound on R(f). However, WCCN has thedrawba
k of being derived from error-bounds that are unne
essarily loose. We note thatthe upper bounds on R(f) in (5.18) and (6.4) are based on a set of one-sided, se
ond-order,
lass-dependent bounding fun
tions in (5.21) and (6.2) that all have uniform width (seeFigure 5.4). These bounding fun
tions are spe
i�
ally designed to yield obje
tive fun
tionsthat are easy to solve. However, we 
an obtain tighter bounds on error by using boundingfun
tions of variable width, where ea
h bounding fun
tion interse
ts the \edge" of the0 � 1 loss fun
tion (i.e., the point on the 0 � 1 loss fun
tion where f(x) = 0). We havealready introdu
ed a tighter set of bounding fun
tions in (5.15) and (5.16) for the 
asewhere the target and impostor means are linearly separable. These bounding fun
tions arede�ned to be as wide as possible while still providing an upper bound on the event of amis
lassi�
ation. In this 
hapter, we 
onstru
t a similar set of bounding fun
tions for the
ase of non-separable data. By minimizing the 
orresponding upper bound on R(f), weultimately arrive at a new formulation of the 1-norm soft-margin SVM that impli
itly learnsR in the generalized linear kernel, k(x1;x2) = xT1Rx2. Unlike the SVM formulation inChapter 6, this formulation optimizes the relative weight applied to ea
h 
lass-
onditional
ovarian
e matrix in the parameter matrix, R. The resulting parameter matrix has theform, R = (Pj �j p̂jCj)�1, where �j represents the relative weight applied to 
lass j. Werefer to this new formulation as the adaptive, multi
luster SVM (AMC-SVM), be
ause itallows us to adapt the relative weight applied to ea
h 
lass when 
omputing R.This 
hapter is organized as follows: Se
tion 7.1 des
ribes a set of bounding fun
tionsthat form the basis of the AMC-SVM. Se
tion 7.2 des
ribes two methods for optimizing thesebounds. These in
lude an iterated quadrati
 program (QP), in whi
h we iterate between78



optimizing two di�erent subsets of parameters. We also des
ribe an equivalent formulation,where the AMC-SVM is framed as a se
ond-order 
one program (SOCP). In Se
tion 7.3,we des
ribe a set of experiments where we test the AMC-SVM against a 
onventional SVMthat uses WCCN. These experiments are performed on various types of arti�
ial Gaussiandata. Finally, a set of 
on
lusions is provided in Se
tion 7.5.7.1 Bounding Fun
tionsIn this se
tion, we 
onstru
t an upper bound on R(f). Minimizing this upper boundleads to a modi�ed form of the 
onventional, 1-norm soft-margin SVM in (3.4). As in Chap-ter 6, the upper bound on R(f) follows from a set of 
lass-dependent bounding fun
tions onthe event of a mis
lassi�
ation (i.e., on the 0� 1 error fun
tion). To simplify our notationin the following se
tion, we begin by de�ning Dj to be the 
ovarian
e matrix of 
lass jweighted by the 
onditional probability of j within the 
orresponding set (i.e., either thetarget set or the impostor set). Thus, we have:Cj , E (xj � �xj)(xj � �xj)T 8j;Dj , p̂jCj 8j;where p̂j is de�ned as p̂j ,8><>: p(j)Pk2T p(k) ; if j 2 T ;p(j)Pk2I p(k) ; if j 2 I:We also de�ne �X to be a matrix of the 
lass means, and �y to be a diagonal matrix of the
orresponding labels: �X , [�x1; : : : ; �xM ℄;[�y℄ij , ( yi; if i = j;0; if i 6= j:A set of 
lass-dependent bounding fun
tions is de�ned below:79



Theorem 12. Given the s
oring fun
tion f(x) = vTx + b, if yjf(�xj) > 0 for all j 2f1; : : : ;Mg, then the following inequality holds.1(yjf(xj) < 0) � B(xj ; �j) : 0 < �j � 1; (7.1)Here, �j represents a set of parameters for 
lass j, and B(xj ; �j) represents a one-sided,se
ond-order bounding fun
tion. These are de�ned as follows:�j , fv; b; �j ; yj; �xjg;B(xj ; �j) ,  (yjf(�xj)� yjf(xj))+maxn 1�j ; yjf(�xj)o !2 + 2 � (1� �jyjf(�xj))+: (7.2)Proof. The proof follows essentially the same steps as the proof of Theorem 10. We 
an seeby inspe
tion that as yjf(xj) de
reases, B(xj ; �j) in
reases or stays the same. Thus, wehave only to show that B(xj ; �j) � 1 for all yjf(�xj) 2 (0;1) when yjf(xj) = 0. We dividethe problem into two 
ases: one where yjf(�xj) � 1�j , and another where 0 � yjf(�xj) � 1�j .In ea
h 
ase, we assume that yjf(xj) = 0.Case 1: 1�j � yjf(�xj)In this 
ase, the term 2 � �1 � �jyjf(�xj)�+ is zero, and the quadrati
 term (yjf(�xj)�yjf(xj))+max� 1�j ;yjf(�xj )� !2 is equal to one.Case 2: 0 � yjf(�xj) � 1�jFor this 
ase, we 
ompute the �rst and se
ond derivatives of B(xj ; �j) with respe
t toyjf(�xj). This gives us �B(xj ; �j)��yjf(�xj)� = 2�2jyjf(�xj)� 2�j ;�2B(xj ; �j)��yjf(�xj)�2 = 2�2j :Setting �B(xj ; �j)��yjf(�xj )� equal to zero gives us yjf(�xj) = 1�j . We know that B(xj ; �j) is 
onvex,be
ause �2B(xj ; �j)��yjf(�xj)�2 is stri
tly positive. Thus, yjf(�xj) = 1�j is the global minimum for this
ase. 80



Figure 7.1. Illustration of the 0 � 1 error fun
tion, 1(yjf(xj) < 0), and the boundingfun
tion, B(xj ; �j), as a fun
tion of yjf(xj) for various values of yjf(�xj). If �j > 0, thenB(xj ; �j) forms an upper bound on 1(yjf(xj) < 0) for any value of yjf(xj) and yjf(�xj).The above 
ases show that B(xj ; �j) is minimized at yjf(�xj) = 1�j . We also knowthat B(xj ; �j) = 1 at yjf(�xj) = 1�j . Thus, B(xj ; �j) � 1 for all yjf(�xj) 2 (0;1) whenyjf(xj) = 0.As in Chapter 6, B(xj ; �j) represents a one-sided, se
ond-order bounding fun
tionon the 0 � 1 loss fun
tion, 1(yjf(xj) < 0). The form of the bounding fun
tion in (7.2)is similar to that de�ned in (6.2), ex
ept that we s
ale B(xj ; �j) to have a width of(maxf 1�j ; yjf(�xj)g), where �j 2 (0; 1℄ is a new model parameter. The bounding fun
tion,B(xj ; �j), is assigned a width of yjf(�xj) for any 
lass j where yjf(�xj) > 1�j . This representsthe maximum possible width for whi
h we satisfy the bound, 1(yjf(xj) < 0) � B(xj ; �j).For the 
ase where yjf(�xj) < 1�j , the bounding fun
tion is assigned a �xed width of 1�j . Wealso use the hinge-loss term (i.e., 2 � (1 � �jyjf(�xj))+) to ensure that B(xj ; �j) remainsgreater than the 0 � 1 error fun
tion when yjf(�xj) < 1�j . An illustration of B(xj ; �j) isprovided in Figure 7.1. Note that the bound in (7.1) is only valid if �j is �nite and greaterthan zero. 81



We 
an now use the inequality in (7.1) to derive an upper bound on R(f). As usual,we assume throughout the following se
tions that ea
h 
lass is symmetri
ally distributedabout its mean. This implies that for all j, the distribution of f(xj) is symmetri
al as well,sin
e f is an aÆne fun
tion. Under this assumption, we 
an obtain the bound in Theorem13 on the risk fun
tion, R(f). For this bound, we de�ne � and � as � , [�1; : : : ; �M ℄T , and� , [�1; : : : ; �M ℄T , where M is the number of 
lasses.Theorem 13. If, for all j 2 f1; : : : ;Mg, xj is symmetri
ally distributed about its mean,then the following bound holds.R(f) � 12 � vT (Xj �jDj)v + 2 �Xj p̂j�j (7.3)subje
t to 1�j � �j � yj(vT �xj + b) 8j;0 � � � 1;0 � �:Proof. A formal proof of Theorem 13 is provided in Hat
h [2006℄ and in Appendix A.The above bound follows from taking the expe
tation of both sides of the inequality in(7.1).We 
an 
onvert the bound in (7.3) to a more familiar form by substituting v = U�w,where U�UT� = (Pj �jDj)�1. (For simpli
ity, we will assume throughout this dissertationthat (Pj �jDj) is full-rank and therefore non-singular). This gives us the following bound:R(f) � 12 �wTw+ 2 �Xj p̂j�j (7.4)subje
t to 1�j � �j � yj(wTUT��xj + b) 8j;0 � � � 1;0 � �:Here, we see that for �xed �, minimizing the bound in (7.4) leads to an optimizationproblem with the same general form as the 1-norm soft-margin SVM in (3.4), ex
ept that the82




onstraint, 1��j � yj(wTUT��xj+b) 8j has been repla
ed with 1�j��j � yj(wTUT��xj+b) 8j.We refer to this formulation, and to aÆne de
ision fun
tions that we obtain by minimizingit, as the adaptive, multi
luster SVM (AMC-SVM). The AMC-SVM impli
itly de�nes afeature mapping � and a kernel fun
tion k of the form,�(x) = UT�x;k(x1;x2) = xT1Rx2;where the matri
es, R and U�, are de�ned as follows:R , (Xj �jDj)�1; (7.5)U�UT� , R:In the above equations, the �j parameters 
ontrol the relative weight applied to the 
ovari-an
e matri
es in 
omputing the feature mapping � and the kernel fun
tion k.From the bound in (7.3), we note that a 1-norm soft-margin SVM with a simple inner-produ
t kernel (i.e., a kernel of the form, k(x1;x2) = xT1 x2) 
an be viewed as a spe
ial 
aseof the AMC-SVM where the following 
onditions hold:1. �j is �xed at 1 for all j.2. Cj is assumed to be proportional to the identity matrix, I, for all j.3. The �j terms are weighted by p̂j for all j.4. Every input training example is treated as the mean of some 
lass. That is, we repla
eea
h xj term in the original SVM formulation with �xj .Similarly, the WCCN approa
h of Chapter 6 forms a spe
ial 
ase of the AMC-SVM where�j = 1 for all j. Hen
e, we 
an view the AMC-SVM as an adaptive form of WCCN wherethe weights assigned to the 
lass 
ovarian
e matri
es (i.e., the Cj terms) are adapted to thegiven dataset. 83



7.2 OptimizationIn this se
tion, we examine the problem of minimizing the upper bound on R(f) in (7.3)with respe
t to (v; b; �; �). We use the notation (v�; b�; ��; ��) to represent the optimizersof (7.3). From (7.3), we see by inspe
tion that ��j has the following solution for all j:��j = 1yj(v�T �xj + b) + ��j : (7.6)Given the above solution for ��j , we 
an state the problem of minimizing (7.3) with respe
tto (v; b; �) as follows: minv;b;� Xj vTDjvyj(vT �xj + b) + �j + 4 �Xj p̂j�j (7.7)subje
t to 1� �j � yj(vT �xj + b) 8j;0 � �:The vTDjvyj(vT �xj+b)+�j terms in the above optimization problem have a quadrati
-over-linearform, whi
h is 
onvex. Thus, the overall obje
tive fun
tion of (7.7) is 
onvex, sin
e it is
omposed of a positively-weighted sum of 
onvex terms. The 
onstraints in (7.7) are linearand therefore also 
onvex; thus, it follows that the overall optimization problem of (7.7) hasa 
onvex form.We pres
ribe two approa
hes for solving (7.7). The �rst of these is an iterated quadrati
program (QP) approa
h, where we optimize (7.7) by iteratively solving a QP over (v; b; �)and then minimizing with respe
t to �. We also show how the problem in (7.7) 
an beframed as a se
ond-order 
one program (SOCP). This solution was re
ently proposed byLaurent El Ghaoui.7.2.1 Iterated QP FormulationOne approa
h to optimizing (7.7) (or equivalently, to minimizing the bound in (7.3)) isto use what we refer to as an iterated QP approa
h, where we �rst optimize over (v; b; �)given some initial � and then over � given (v; b; �). These two steps 
an be iterated until84



the obje
tive fun
tion 
onverges to the global minimum. Although potentially ineÆ
ient,this iterative approa
h has the advantage that it doesn't require any spe
ialized optimiza-tion software ex
ept for a standard SVM trainer (we note, however, that the iterated QPapproa
h also requires software for performing eigende
ompositions on potentially largematri
es).The �rst step in the iterated QP is to optimize over (v; b; �) given some initial value of� (say �j = 1 for all j). We 
an express this optimization as a quadrati
 program (QP):minv;b;� vT (Xj �jDj)v + C �Xj p̂j�j (7.8)subje
t to 1�j � �j � yj(vT �xj + b) 8j;0 � �:= max0��j�C�p̂j 8j�T y=0 2Xj �j�j � �T�y �XT (Xj �jDj)�1 �X�y�: (7.9)Here, the optimization problem in (7.9) represents the dual problem of (7.8). We will omita formal proof of this sin
e the derivation of (7.9) follows essentially the same steps used inVapnik [1995℄; Cristianini and Shawe-Taylor [2000℄ to derive the dual of the 1-norm soft-margin SVM. Note that we have repla
ed the fa
tor \2" in equation (7.3) with the generalhyperparameter C in (7.8) and in (7.9). The optimal value of v for the above optimizationproblems has the form, v� = (Xj �jDj)�1 �X�y��;where �� is the maximizer of (7.9). This solution for the optimal v follows from thestandard solution in (3.3) for the weight ve
tor of an SVM. Given v and �, we 
an 
omputethe optimal (b; �) by solving the following linear program (LP):minb;� Xj p̂j�jsubje
t to 1�j � �j � yj(vT �xj + b) 8j;0 � �j 8j:85



Next, we optimize over � given (v; b; �):min0���1 vT (Xj �jDj)v + C �Xj p̂j�jsubje
t to 1�j � �j � yj(vT �xj + b) 8j:The solution for the optimal � in the above optimization problem is given in (7.6). Byputting all of these steps together, we arrive at the following iterative pro
edure for mini-mizing the bound in (7.3) with respe
t to (v; b; �; �):1. set �j := 1 8j.2. set R := (Pj �jDj)�1.3. solve for �: max0��j�C�p̂j 8j�T y=0 2Xj �j�j � �T�y �XTR�X�y�: (7.10)4. set v := R�X�y�.5. solve for � and b: minb;� Xj p̂j�jsubje
t to 1�j � �j � yj(vT �xj + b) 8j;0 � �j 8j:6. set �: �j := 1yj(vT �xj + b) + �j 8j:7. return to step 2.The iterated QP pro
edure shown above in
ludes a QP in step 3 and an LP in step 5. Bothof these problems 
an be solved by using standard optimization tools for SVMs. The abovepro
edure also requires 
omputing the inverse of a potentially large matrix in step 2. Sin
ematrix inversions 
an be time-
onsuming, this step forms one of the main 
omputational86



bottlene
ks in implementing the iterated QP pro
edure. As the name implies, the iteratedQP also requires that ea
h step be repeated multiple times until the variables 
onverge tothe global minimum. Thus, the iterated QP may be somewhat ineÆ
ient, parti
ularly in
ases where many iterations are required. In the following se
tion, we des
ribe an equiva-lent formulation of the AMC-SVM where all variables are optimized simultaneously. Thisformulation has the advantage of being potentially more eÆ
ient than the iterated QP;however, it requires an SOCP solver, whi
h may not be readily available to all users.7.2.2 SOCP FormulationThe optimization problem in (7.7) 
an also be framed as a se
ond-order 
one program(SOCP). To show this, we begin with the following lemma, whi
h was re
ently proposed byLaurent El Ghaoui:Lemma 1. The following inequalities are equivalent for any real s
alars x > 0 and y > 0and for any ve
tor z 2 RN , where N is a positive integer:xy � zT z() 12(x+ y) � kz; 12(x� y)k2: (7.11)Proof. Squaring both sides of the inequality in (7.11) gives us12(x+ y) � kz; 12(x� y)k2 () �x+ y2 �2 � kz; x� y2 k22() 14(x2 + 2xy + y2) � zT z+ 14(x2 � 2xy + y2);() xy � zT z:
We 
an use Lemma 1 to obtain the following equivalent SOCP formulation for the boundin (7.7): 87



Theorem 14 (SOCP Formulation). The bound on R(f) in (7.7) 
an be minimized withrespe
t to v, b, and � by solving the following SOCP:minv;b;�;t Xj (tj + Cp̂j�j) (7.12)subje
t to 12(tj + yj(vT �xj + b) + �j) � kD 12Tj v; 12(tj � yj(vT �xj + b)� �j)k2 8j;1� �j � yj(vT �xj + b) 8j;0 � �:Here, we de�ne D 12j to be the Cholesky fa
torization of Dj:D 12j D 12 Tj ,Dj:Proof. The problem in (7.7) 
an be restated asminv;b;�;t Xj (tj +Cp̂j�j) (7.13)subje
t to tj � vTDjvyj(vT �xj + b) + �j 8j;1� �j � yj(vT �xj + b) 8j;0 � �:We 
an now apply Lemma 1 to the linear 
onstraint on tj . This gives us the SOCP in(7.12).Note that in Theorem 14, the term t is de�ned as t , [t1; : : : ; tM ℄T , where M is thenumber of 
lasses.7.2.3 A Kernelized Version of the Adaptive, Multi
luster SVMIn this se
tion, we address the problem of how to empiri
ally estimate 
lass 
ovarian
ematri
es, and more spe
i�
ally, how to estimate R ,Pj �jDj given a �nite set of trainingdata. The theory in this se
tion also leads to a \kernelized" version of the AMC-SVM,88



whi
h allows us to apply the iterated QP and SOCP formulations of the previous se
tionsto arbitrary kernels and feature mappings. For instan
e, the theory developed in this se
tion
an be used to implement an AMC-SVM with a Gaussian or RBF kernel. We begin, in thefollowing se
tion, by deriving an iterated QP formulation of the AMC-SVM where the 
lass
ovarian
e matri
es are estimated empiri
ally. This is followed by a similar derivation forthe SOCP formulation.Iterated QP FormulationWe begin by de�ning Xi to be a matrix 
ontaining the training ve
tors for 
lass i:Xi , [xi1 ; : : : ;xiNi ℄:Here, xij represents the jth training ve
tor of 
lass i, and Ni represents the total numberof training ve
tors in the 
lass. Next, we de�ne X̂i to be a weighted and 
entered versionof Xi: X̂i ,r p̂iNi�Xi � 1NiXi1Ni1TNi�:We use the notation 1Ni to denote a 
olumn ve
tor of Ni ones. Given the above de�nitionfor X̂i, we de�ne X̂ to be a matrix 
ontaining X̂i for all i and �� to be a diagonal matrix
ontaining the square-roots of the elements of �:X̂ , [X̂1; : : : ; X̂M ℄;�� = diag([p�11TN1 ; : : : ;p�M1TNM ℄T ):Given these de�nitions, we 
an approximate R ,Pj �jDj as R̂, whi
h is de�ned below:R̂ , X̂�2�X̂T ; (7.14)Here, R̂ represents the empiri
al estimate of R. Substituting R̂ for R in (7.10) gives us thefollowing expression for the QP in Se
tion 7.2.1:max0��j�C�p̂j 8j�T y=0 2Xj �j�j � �T�y �XT (X̂�2�X̂T )�1 �X�y�: (7.15)89



We 
an now use the kernel PCA te
hnique des
ribed in S
hoelkopf and Smola [2002℄ toobtain a \kernelized" version of the above expression. By the singular value de
omposition,we have X̂�2�X̂T = U�2UT ;��X̂T X̂�� = V�2VT ;where U and V are the eigenve
tor matri
es for X̂�2�X̂T and ��X̂T X̂��, respe
tively, and�2 is the 
orresponding diagonal matrix of eigenvalues. If V�2VT is full-rank, then we 
anexpress U as follows: U = X̂��V��1: (7.16)The above equation 
an be used to obtain an expression for the pseudoinverse of R̂, whi
hwe represent as R̂+ .̂R+ = U��2UT ;= X̂��V��1��2��1VT��X̂T ;= X̂��(��X̂T X̂��)�2��X̂T ;= X̂����1� (X̂T X̂)�1��1� ��1� (X̂T X̂)�1��1� ��X̂T ;= X̂(X̂T X̂)�1��2� (X̂T X̂)�1X̂T :Substituting R̂+ for R�1 in (7.10) gives us the following QP:max0���C�p̂j 8j�T y=0 2Xj �j�j � �T�y �XT X̂(X̂T X̂�2�X̂T X̂)�1X̂T �X�y�: (7.17)As in the 
onventional SVM, the feature ve
tors in (7.17) only appear in the form of innerprodu
ts. Thus, we 
an apply the kernel tri
k to (7.17), where we repla
e ea
h inner produ
txT1 x2 with a kernel fun
tion, k(x1;x2). In general, we 
an implement the AMC-SVM for anyarbitrary feature mapping � by plugging in the 
orresponding kernel fun
tion, k. Furtherdetails on the kernel tri
k 
an be found in Chapter 3.If we now 
ompare the expression in (7.17) with the expression in (7.15), we see thatthe two expressions are the same ex
ept that ea
h instan
e of �X and X̂ in (7.15) is repla
ed90



with X̂T �X and X̂T X̂ in (7.17). Thus, we 
an view X̂T �X in (7.17) as a 
olumn matrix ofinput feature ve
tors. Under this interpretation, we 
an use (7.14) to 
ome up with the
orresponding equation for R̂. This gives usR̂ , X̂T X̂�2�X̂T X̂:We 
an now substitute R̂ for R and X̂T �X for �X in (7.10) to arrive at the expressionin (7.17). Here, we note that be
ause X̂T �X is an N � J matrix, where N is the totalnumber of training examples and J is the total number of 
lasses, the new \feature ve
tors"in the 
olumns of X̂T �X will be N -dimensional. Thus, if the original feature spa
e has adimensionality of L, where L > N , then we 
an use the empiri
al approa
h des
ribed in thisse
tion to e�e
tively redu
e the dimensionality of the input feature ve
tors from L down toN .SOCP FormulationThe pre
eding se
tion des
ribes what we refer to as the \empiri
al formulation" of theiterated QP, where the 
ovarian
e matri
es are estimated from the training data. We 
an usea similar set of arguments as those given in Se
tion 7.2.1 to obtain an empiri
al formulationfor the SOCP in 7.2.2. As with the empiri
al formulation of the iterated QP, the empiri
alSOCP formulation is \kernelized" in the sense that the feature ve
tors only appear in theform of inner produ
ts. To derive this formulation, we begin by estimating the 
ovarian
ematrix Cj as follows: Ĉj = 1̂pj X̂jX̂Tj :Here, Ĉj represents the empiri
al estimate of Cj, based on the training data. The matrixX̂j is de�ned in the previous se
tion. Given Ĉj, the 
orresponding empiri
al estimate forD 12j is D̂ 12j = X̂j:
91



Substituting D̂ 12j for D 12j in (7.12) yields the following empiri
al SOCP formulation:minv;b;�;t Xj (tj + Cp̂j�j) (7.18)subje
t to 12(tj + yj(vT �xj + b) + �j) � kX̂Tj v; 12(tj � yj(vT �xj + b)� �j)k2 8j;1� �j � yj(vT �xj + b) 8j;0 � �:By using kernel PCA as in the previous se
tion, we 
an obtain the following kernelizedformulation of the SOCP:minv;b;�;t Xj (tj + Cp̂j�j) (7.19)subje
t to 12(tj + yj(vT X̂Tj �xj + b) + �j)� kX̂Tj X̂jv; 12(tj � yj(vT X̂Tj �xj + b)� �j)k2 8j;1� �j � yj(vT X̂Tj �xj + b) 8j;0 � �:Again, as in the 
onventional SVM, the feature ve
tors in (7.19) only appear in the form ofinner produ
ts. Thus, we 
an apply the kernel tri
k to (7.19), where we repla
e ea
h innerprodu
t xT1 x2 with a kernel fun
tion, k(x1;x2).7.3 Experiments on Arti�
ial DataThe following se
tion des
ribes a set of experiments where we test the adaptive,multi
luster framework introdu
ed in Se
tions 7.1 and 7.2 on various types of arti-�
ial data. In ea
h experiment, we �rst de�ne one or more distributions on themeans and on the 
ovarian
e matri
es for a set Gaussian 
lasses that reside in an N-dimensional feature spa
e. We then draw from these distributions to obtain the set,Si = f(�xi;1;Ci;1; yi;1); : : : ; (�xi;M ;Ci;M ; yi;M )g, where (�xi;j;Ci;j; yi;j) represents the mean,92




ovarian
e matrix, and 
orresponding label for the jth 
lass in set Si. For these exper-iments, we used a one-versus-all setting where ea
h 
lass is assigned a label of -1 ex
eptfor one randomly 
hosen \target 
lass," whi
h gets a label of 1. The experiments wereperformed using the iterated QP formulation.Given the set Si, the means and 
ovarian
e matri
es for the Gaussian 
lasses de�nedby Si are used to train an AMC-SVM, whi
h we then test on 10,000 random draws takenfrom the same Gaussian 
lasses. For simpli
ity, we used the exa
t means and 
ovarian
ematri
es de�ned in Si to train ea
h AMC-SVM. The only ex
eption to this is Experiment3, where the 
ovarian
e matrix of the target 
lass is assumed to be unknown. We used thefollowing weighted metri
 to 
ompute 
lassi�
ation error:error = 12 �# of false neg:# true trials + # of false pos:# impostor trials� :Here, error represents the average of the empiri
al rates of false positives and false negatives.Final results for ea
h experiment were obtained by 
omputing the average of error over�3000 draws of Si for various values of the SVM hyperparameter, C.7.3.1 Experiment 1For our �rst experiment, we tested the AMC-SVM in a one-versus-all setting with 10Gaussian 
lasses in a 10-dimensional feature spa
e. In this experiment, the 
lass means and
lass 
ovarian
e matri
es are both de�ned to be iid, respe
tively. The exa
t distributionsof the means and 
ovarian
e matri
es are given below:�xi � N (0; �)10 8i 2 f1; : : : ; 10g;Ci = Vi diag(�i) V Ti 8i 2 f1; : : : ; 10g;�i � Unif(0; 1)10 8i 2 f1; : : : ; 10g;� = 1:5:Here, the 
olumns of Vi 2 R10�10 represent a set of orthonormal eigenve
tors for the 
o-varian
e matrix, Ci. The Vi matri
es are drawn independently from a uniform distribution93



Figure 7.2. Results for Experiment 1.over all possible sets of orthonormal eigenve
tors in R10 . Sin
e the Vi matri
es serve aseigenve
tors for the 
lass 
ovarian
e matri
es, the Gaussian 
lasses in this experiment are
ompletely independent of one another in their spatial orientation (i.e., the dire
tions oftheir major and minor axes in R10 ).Figure 7.2 shows 
lassi�
ation results obtained from using the AMC-SVM for variousvalues of the hyperparameter C. The �gure also shows two sets of results obtained froma 
onventional 1-norm, soft margin SVM. These in
lude a set of baseline results where weperform per-feature varian
e normalization on the input features (i.e., R = diag(C)�1),and another set of results where we perform WCCN (i.e., R = C�1W ). Note that both the
onventional SVM and the AMC-SVM were trained only on the 
lass means.In Figure 7.2, we see that WCCN yields dramati
 improvements over the baseline, wherethe features are s
aled to have unit varian
e. The �gure also shows that the AMC-SVMyields modest improvements over WCCN when C is small. However, these improvementsbe
ome fairly negligible when C is large.
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7.3.2 Experiment 2We performed a se
ond experiment where the Gaussian 
lasses form two major 
lustersof 5 
lasses ea
h. In this experiment, the 
lass means within ea
h 
luster are 
orrelatedwith one-another, as are the 
lass 
ovarian
e matri
es. We use the notation, �xi;j and Ci;j,to represent the mean and 
ovarian
e matrix for the jth 
lass of 
luster i. The exa
tdistributions for the 
lass means and 
lass 
ovarian
e matri
es are de�ned below:�xi;j = 10 � �yi;0 + �yi;j 8(i; j) 2 f1; 2g � f1; : : : ; 5g;�yi;j � N (0; 1)10 8(i; j) 2 f1; 2g � f0; : : : ; 5g;Ci;j = (1� �) � �i;0 + � � �i;j 8(i; j) 2 f1; 2g � f1; : : : ; 5g;�i;j = Vi;j diag(�i;j) V Ti;j 8(i; j) 2 f1; 2g � f0; : : : ; 5g;�i;j � Unif(0; 1)5 8(i; j) 2 f1; 2g � f0; : : : ; 5g;� = 0:1:Here, �yi;0 and �i;0 represent the \primary" mean and 
ovarian
e matrix for the 
lasses in
luster i. These are 
ombined in a weighted sum with �yi;j and �i;j for all j 2 1; : : : ; 5. Notethat in this experiment, the 
lass means within a given 
luster are heavily 
orrelated withone-another, as are the 
lass 
ovarian
e matri
es. The matrix Vi;j is distributed in the sameway as in Experiment 1.Figure 7.3 shows 
lassi�
ation results for various values of C (see Hat
h [2006℄ for a 
hartof the 
orresponding numeri
al results). In this experiment, WCCN and the AMC-SVMboth yield large improvements over the baseline results, where we use a 
onventional SVMafter performing per-feature varian
e normalization. As in Experiment 1, the AMC-SVMsigni�
antly outperforms WCCN when the C hyperparameter is small. However, the twosystems perform about the same when C is large. For the purpose of training an AMC-SVM, we note from (7.3) that s
aling down C is equivalent to s
aling up our estimates ofthe 
lass-
onditional 
ovarian
e matri
es|that is, the estimates that we use in training.In other words, redu
ing C in
reases the amount of se
ond-order regularization that we95



Figure 7.3. Results for Experiment 2.perform in training. Based on this, and based on the results in Figure 7.2, we might assumethat the relative bene�ts of the AMC-SVM over WCCN are potentially quite signi�
ant for
ases where a large amount of regularization is required|for example, the 
ase where weonly have noisy estimates of the 
lass 
ovarian
e matri
es.7.3.3 Experiment 3In many real-world tasks, the amount of training data available for the target 
lass isvery limited, whereas the amount of available impostor data is very large. For these tasks,
oming up with an empiri
al estimate of the target 
lass 
ovarian
e matrix 
an be diÆ
ult,if not impossible. Thus, it may be ne
essary to estimate the 
ovarian
e matrix of thetarget 
lass from the impostor 
lasses|parti
ularly from impostor 
lasses that are highly
onfusable with the target 
lass. To simulate this s
enario, we repeated Experiment 2 forthe 
ase where the 
ovarian
e matrix of target 
lass i is estimated as a weighted average ofthe 
ovarian
e matri
es of the impostor 
lasses:Ci = 1Pj2I �j p̂j Xj2I �j p̂jCj:The averaging s
heme given above is based on the de�nition of R in equation (7.5). We96



Figure 7.4. Results for Experiment 3.use � as the main parameter in de�ning an estimate of Ci based on a weighted average of
ovarian
e matri
es. Insofar as �j represents a measure of \
onfusability" between 
lass jand the target 
lass, this estimate of Ci assumes that 
lasses that are highly 
onfusable withone-another will tend to have similar 
ovarian
e matri
es. Note that while this assumptionmay be reasonable for the parti
ular 
lass means and 
lass 
ovarian
e matri
es that we havede�ned for Experiment 2, we 
annot expe
t this assumption to hold for general datasets.Results for Experiment 3 are shown in Figure 7.4 along with the 
orresponding baselineresults (a 
hart of the 
orresponding numeri
al results 
an be found in Hat
h [2006℄). Inthis experiment, the relative improvement obtained from the AMC-SVM over WCCN ismu
h more signi�
ant through the entire range of C values than the improvement obtainedin Experiments 1 and in Experiment 2. Thus, we might 
on
lude that the potential bene�tsof the AMC-SVM approa
h are parti
ularly signi�
ant in 
ases where information aboutthe target 
lass 
ovarian
e matrix 
an be gleaned from impostor 
lasses that lie 
lose to thede
ision boundary.
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Figure 7.5. Results for Experiment 4.7.4 Experiment 4In our 4th and �nal experiment, we used an arti�
ial Gaussian dataset similar to that ofExperiments 2 and 3, ex
ept that the dimensionality of the input feature spa
e is in
reasedfrom 10 to 100. We also 
hanged the distribution of the data so that the 
lasses reside in 5
lusters of 2 
lasses ea
h. The exa
t distributions for the 
lass means and 
lass 
ovarian
ematri
es are de�ned below:�xi;j = 10 � �yi;0 + �yi;j 8(i; j) 2 f1; : : : ; 5g � f1; : : : ; 2g;�yi;j � N (0; 1)100 8(i; j) 2 f1; : : : ; 5g � f0; : : : ; 2g;Ci;j = (1� �) � �i;0 + � � �i;j 8(i; j) 2 f1; : : : ; 5g � f1; : : : ; 2g;�i;j = Vi;j diag(�i;j) V Ti;j 8(i; j) 2 f1; : : : ; 5g � f0; : : : ; 2g;�i;j � Unif(0; 1)5 8(i; j) 2 f1; : : : ; 5g � f0; : : : ; 2g;� = 0:1:Results for the AMC-SVM are shown in Figure 7.5, along with a set of results obtainedfrom using WCCN and another set of results for the baseline system. Here, we see thatthe AMC-SVM approa
h yields large improvements over WCCN for most values of the C98



hyperparameter. (However, the WCCN approa
h in Figure 7.5 outperforms the AMC-SVMwhen C is approximately between 3 and 4. The minimum 
lassi�
ation error a
hieved bythe two te
hniques is approximately the same.) Based on these results, we might 
on
ludethat the AMC-SVM is more robust to sub-optimal values of C than WCCN. Comparingthese results with those of Experiment 2, where the input feature spa
e has a dimensionalityof 10, we note that the potential bene�ts of the AMC-SVM over WCCN appear to growlarger as the dimensionality of the input spa
e in
reases. These results give us reason tobelieve that the AMC-SVM may yield signi�
ant improvements over WCCN on real-worldtasks where the dimensionality of the input spa
e is large relative to the number of trainingexamples, and where the optimal value of C is unknown.7.5 Con
lusionsIn this 
hapter, we extend the WCCN approa
h of Chapter 6 to obtain the so-
alledadaptive, multi
luster SVM (AMC-SVM). The AMC-SVM implements an adaptive formof WCCN, where the weights of the 
lass 
ovarian
e matri
es are adapted to the givendataset. This formulation is based on a tighter set of upper bounds on 
lassi�
ation errorthan those used to derive WCCN in Chapters 5 and 6. The AMC-SVM is 
onvex and 
an beinstantiated as either an iterated QP or as an SOCP. We also show how either instantiation
an be \kernelized" in the same way as a 
onventional SVM. In experiments performedon arti�
ial Gaussian data, the AMC-SVM yields modest, but signi�
ant improvementsover WCCN when the dimensionality of the input feature spa
e is small 
ompared to thenumber of 
lasses. These improvements be
ome more substantial as the dimensionality ofthe feature spa
e is in
reased.
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Chapter 8
Within-Class Covarian
eNormalization forHigh-Dimensional Data

In this 
hapter, we expand on the within-
lass 
ovarian
e normalization (WCCN) te
h-nique that was introdu
ed in Chapter 6. WCCN uses information about 
lass labels fromthe training data to identify orthonormal dire
tions in feature spa
e that maximize task-relevant information. In this respe
t, WCCN is similar to other linear transformations su
has NAP (Solomono� et al. [2004, 2005℄) or linear dis
riminant analysis (LDA). However,unlike these te
hniques, WCCN optimally weights ea
h dire
tion in feature spa
e to mini-mize a parti
ular upper bound on the risk fun
tion, R(f) (Hat
h and Stol
ke [2006℄; Hat
h[2006℄). In prin
iple, WCCN 
an harness whatever task-relevant information is 
ontainedin ea
h of the \dire
tions" of the underlying feature spa
e|even dire
tions that are largelydominated by noise.In the following 
hapter, we des
ribe a pra
ti
al pro
edure for applying WCCN to anSVM-based speaker re
ognition system where the input feature ve
tors reside in a high-100



dimensional spa
e. Our approa
h involves using prin
ipal 
omponent analysis (PCA) tosplit the original feature spa
e into two subspa
es: a low-dimensional, high-energy \PCAspa
e" and a high-dimensional, low-energy \PCA-
omplement spa
e." After performingWCCN in the PCA spa
e, we 
on
atenate the resulting feature ve
tors with a weightedversion of their 
orresponding 
omponents from the PCA-
omplement spa
e. Our algorithmprovides a pra
ti
al approa
h for applying WCCN to large feature sets, where invertingor simply estimating CW is impra
ti
al for 
omputational reasons. In experiments onSRI International's latest MLLR-SVM speaker veri�
ation system (i.e., feature set), our
ombined WCCN approa
h a
hieves relative improvements of up to 22% in equal-errorrate (EER) and 28% in minimum DCF below SRI's previous baseline. We also a
hievesubstantial improvements over an MLLR-SVM system that performs WCCN in the PCAspa
e but dis
ards the PCA-
omplement.The 
hapter is organized as follows: In Se
tion 8.1, we summarize the WCCN approa
hand dis
uss pra
ti
al 
onsiderations for how to apply WCCN to large feature sets. In Se
tion8.2, we des
ribe the approa
h used in Kajarekar [2005℄ for breaking feature ve
tors downinto PCA and PCA-
omplement 
omponents. This is followed by Se
tion 8.3, where wedes
ribe the experimental pro
edure that we use to perform feature normalization and totrain SVM-based speaker models. Finally, in Se
tions 8.4 and 8.6, we des
ribe a set ofexperiments, provide results, and end with a set of 
on
lusions.8.1 Within-Class Covarian
e NormalizationIn Chapter 6, we derived WCCN by �rst 
onstru
ting a set of upper bounds on the ratesof false positives and false negatives in a linear 
lassi�er (i.e., a binary 
lassi�er that usesa linear or aÆne de
ision boundary). Under various 
onditions, the problem of minimizingthese upper bounds with respe
t to the parameters of the linear 
lassi�er leads to a modi�edformulation of the hard-margin support ve
tor ma
hine (SVM) (Vapnik [1995℄; Cristianiniand Shawe-Taylor [2000℄). Given a generalized linear kernel of the form, k(x1;x2) = xT1Rx2,101



where R is a positive semide�nite parameter matrix, this modi�ed SVM formulation im-pli
itly pres
ribes the parameterization, R = C�1W , where CW is the expe
ted within-
lass
ovarian
e matrix over all 
lasses. We 
an represent CW mathemati
ally asCW , MXi=1 p(i) �Ci;Ci , E (xi � �xi)(xi � �xi)T 8i:Here, xi represents a random draw from 
lass i, M represents the total number of 
lasses,and �xi represents the expe
ted value of xi. We use Ci and p(i) to represent the 
ovarian
ematrix and the prior probability of 
lass i. (Note that in this 
hapter, the term, \
lass"is synonymous with \speaker.") Given CW , where CW is full-rank, we 
an implement ageneralized linear kernel with R = C�1W by using the following feature transformation, �:�(x) , ATx: (8.1)Here, A is de�ned as the Cholesky fa
torization of C�1W :AAT , C�1W :We refer to the transformation performed by � as within-
lass 
ovarian
e normalization(WCCN).In pra
ti
e, empiri
al estimates of CW are typi
ally quite noisy; thus, a 
ertain amountof smoothing is usually required to make the WCCN approa
h work. In this 
hapter, weuse the following smoothing model:ĈW;s , (1� �) � ĈW + � � I; � 2 [0; 1℄: (8.2)Here, ĈW;s represents a smoothed version of the empiri
al expe
ted within-
lass 
ovarian
ematrix, ĈW , and I represents an N �N identity matrix where N is the dimensionality ofthe feature spa
e. The � parameter represents a tunable smoothing weight whose value isbetween 0 and 1. It is straightforward to show that in the above model, the eigenve
tors102



of ĈW;s are 
onstant with respe
t to �. Thus, we 
an 
ompute the WCCN feature trans-formation, �, in (8.1) for any value of � without having to re
ompute the eigenve
tors ofĈW;s.8.1.1 WCCN for High-Dimensional DataIn this 
hapter, we examine the problem of how to apply WCCN to high-dimensionaldata sets, where inverting or simply estimating ĈW is impra
ti
al for 
omputational reasons.For high-dimensional data, we 
an use kernel prin
ipal 
omponent analysis (KPCA) to �rstredu
e the dimensionality of the feature spa
e to a more manageable size before performingWCCN. One potential problem with this approa
h, however, is that by �ltering out variousorthogonal ve
tors or \dire
tions" in feature spa
e (i.e., by performing feature redu
tion),we lose a signi�
ant amount of the information 
ontained in the original feature set. Toavoid this problem, we use the PCA de
omposition des
ribed in Kajarekar [2005℄, wherethe feature spa
e is divided into two subspa
es: a spa
e that 
ontains the top N featuresobtained from performing PCA, and a PCA-
omplement spa
e, whi
h in
ludes all of theinformation 
ontained in the original features but not in the PCA spa
e. In this 
hapter,we set N equal to the total number of feature ve
tors in the training data. Thus, thePCA de
omposition retains all of the energy (i.e., varian
e) of the original training data.Conversely, the PCA-
omplement spa
e retains none of the energy of the training data.For new feature ve
tors (i.e., test data), the PCA spa
e will tend to have high energy andlow dimensionality, while the PCA-
omplement spa
e will tend to have low energy andhigh-dimensionality. Sin
e most of the signal energy is 
on�ned to the PCA spa
e, ourstrategy is to perform WCCN on the PCA-spa
e, whi
h has redu
ed dimensionality, andthen 
on
atenate the resulting feature set with the PCA-
omplement spa
e. This pro
edureis des
ribed in the following se
tions.
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8.2 Kernel PCA and the PCA-ComplementThis se
tion provides an overview of kernel PCA and also des
ribes the PCA-
omplement approa
h used in Kajarekar [2005℄. We begin by de�ning X to be a 
olumnmatrix 
ontaining s
aled, mean-
entered versions of the feature ve
tors in the training set:X ,r 1N � [(x1 � �x); : : : ; (xN � �x)℄:Here xi represents the ith training ve
tor, and �x represents the average over all N trainingve
tors. Given the above de�nition, we 
an represent Ĉ (i.e., the empiri
al 
ovarian
ematrix of the data) as follows: Ĉ = XXT ;,U�2UT : (8.3)In the se
ond line of the above equation, we de�ne U�2UT to be the eigende
ompositionof Ĉ. We 
an represent the 
orresponding eigende
omposition for XTX as follows:XTX , V�2VT : (8.4)Here, we de�ne V to be a 
olumn matrix 
ontaining the eigenve
tors of XTX and �2 tobe a diagonal matrix 
ontaining the 
orresponding eigenvalues. If XTX is full-rank, thenwe 
an 
ombine (8.3) with (8.4) to arrive at the following expression for U, the eigenve
tormatrix of Ĉ: U = XV��1: (8.5)The 
olumns of U represent the set of all eigenve
tors of Ĉ whose 
orresponding eigenvalueis non-zero. Thus, we 
an perform PCA by proje
ting the input feature ve
tors onto the
olumn ve
tors of U. This leads to the following feature transformation, �PCA:�PCA(x) ,UTx;= ��1VTXTx: (8.6)104



This transformation redu
es the dimensionality of the underlying feature spa
e down to Nfeatures, where N is the size of the training set. Sin
e the input feature ve
tors appearin the form of inner produ
ts, whi
h 
an be repla
ed with kernel fun
tions, this featuretransformation is referred to as kernel PCA (Shawe-Taylor and Cristianini [2004℄).We use �PCA to represent the feature transformation for the PCA-
omplement spa
e,whi
h is de�ned as follows: �PCA(x) , (I�UUT )x: (8.7)The PCA-
omplement spa
e represents the portion of the original feature spa
e that isorthogonal to the training set. Thus, �PCA(x) = 0 (i.e., a null ve
tor) for all x in thetraining set.8.3 Experimental Pro
edureThe experiments in this 
hapter 
ompare two di�erent feature normalizations: WCCNand standard 
ovarian
e normalization (CN), where R = Ĉ�1s . (Here, Ĉs representsa smoothed version of Ĉ, the empiri
al 
ovarian
e matrix of the training data.) Sin
e�PCA(x) = 0 for all x in the training set, we have no way of 
oming up with a meaning-ful estimate of the 
ovarian
e matrix for the PCA-
omplement (any empiri
al 
ovarian
eestimate will simply be 0). Thus, WCCN and standard CN are only applied to the PCAfeature set. The normalized PCA features are then 
on
atenated with a weighted versionof the PCA-
omplement to form the �nal feature representation.Our experimental pro
edure is summarized below:1. Perform per-feature within-
lass varian
e normalization on all of the input features(i.e., s
ale all features to have an average within-
lass varian
e of one on the trainingdata). The resulting features provide us with a �rst-
ut approximation of what wewould obtain by performing full WCCN on the original feature set. This is simply aprepro
essing step for performing KPCA, whi
h is not invariant to s
aling operations105



on the input features. Note that the smoothing model of (8.2) is also not invariant tos
aling operations.2. Compute �PCA(x) for every feature ve
tor x in the training and test sets. This givesus the PCA feature set.3. Compute �PCA(x) for every feature ve
tor x in the training and test sets. This givesus the PCA-
omplement feature set.4. Perform either within-
lass 
ovarian
e normalization (WCCN) or standard 
ovarian
enormalization (CN) on the PCA feature set. Both normalizations 
an be representedin the form of a matrix multipli
ation. We use the smoothing model shown in equation(8.2) for both WCCN and standard CN. The smoothing parameter � is tuned on aset of held-out 
ross-validation data.5. Con
atenate a s
aled version of the normalized PCA feature set with a s
aled versionof the PCA-
omplement feature set to arrive at our �nal feature representation, �:�(x) , 264 (1� �) �AT�PCA(x)� � �PCA(x) 375 ; � 2 [0; 1℄: (8.8)Here, AT represents the transformation matrix derived in step 4 to perform eitherWCCN or standard CN on the PCA feature set. Thus, AT�PCA(x) represents thenormalized PCA 
omponent of feature ve
tor x. We use the parameter � to 
ontrolthe relative weight applied to the two feature sets (i.e., the PCA set and the PCA-
omplement set). This parameter is tuned on a held-out 
ross-validation set.6. Use the �nal feature representation to train and test SVM-based speaker models.A diagram of this pro
edure is shown in Figure 8.1. Given a standard linear kernel,k(x1;x2) = xT1 x2, it's fairly straightforward to show that when � = 0:5 and A = I (i.e.,A is the idenitity matrix), then the following equality holds for any pair of input featureve
tors, x1 and x2: k(x1;x2) = 4 � k(�(x1);�(x2)): (8.9)106



Figure 8.1. Diagram of WCCN pro
edure for high-dimensional data. The \+" sign in theabove �gure represents a 
on
atenation operator.The equality in (8.9) follows dire
tly from the de�nitions for �, �PCA, and �PCA in equa-tions (8.8), (8.6), and (8.7). Equation (8.9) shows that when � = 0:5 and A = I, thenapplying the feature transformation, �, to the input feature ve
tors does not a�e
t thekernel fun
tion k beyond a s
aling fa
tor. Thus, by 
on
atenating the PCA set with thePCA-
omplement set, we preserve all of the information 
ontained in the original featureset, at least for the purpose of 
omputing linear kernels.8.4 Experiments and ResultsIn this se
tion, we des
ribe the tasks, datasets, and features used in our experiments.The results of these experiments are dis
ussed in Se
tion 8.4.4.8.4.1 MLLR-SVM SystemWe used an MLLR-SVM system similar to the one des
ribed in Stol
ke et al. [2006℄to 
ompute feature ve
tors for our experiments. The MLLR-SVM system uses speaker107



adaptation transforms from SRI's DECIPHER spee
h re
ognition system as features forspeaker veri�
ation. A total of 8 aÆne transforms are used to map the Gaussian meanve
tors from speaker-independent to speaker-dependent spee
h models. The transforms areestimated using maximum-likelihood linear regression (MLLR), and 
an be viewed as atext-independent en
apsulation of the speaker's a
ousti
 properties. For every 
onversationside, we 
ompute a total of 24960 transform 
oeÆ
ients, whi
h are used as features. Notethat this system uses twi
e as many features as the original MLLR-SVM system des
ribedin Stol
ke et al. [2005℄; Hat
h and Stol
ke [2006℄. The input feature ve
tors are identi
alto those used in Stol
ke et al. [2006℄. However, besides applying the feature transformation� to the input feature ve
tors, our system di�ers from the MLLR-SVM system used inStol
ke et al. [2006℄ in the following ways: 1) our system does not apply rank normalization(Stol
ke et al. [2005℄) to the input feature ve
tors and 2) our system does not apply TNORM(Au
kenthaler et al. [2000℄) to the output SVM s
ores. We have yet to experiment withapplying these normalizations to a system that uses WCCN.8.4.2 Task and DataExperiments were performed on the 1-
onversation training 
ondition of two NIST-de�ned tasks: SRE-2004 and a subset of SRE-2003. Note that these tasks and datasets arethe same as those des
ribed in previous reports (Stol
ke et al. [2006℄; Hat
h and Stol
ke[2006℄). The SRE-2003 subset was divided into two splits of disjoint speaker sets, both
omprised of �3600 
onversation sides and �300 speakers. Ea
h split 
omprises �580speaker models and �9800 speaker trials. These splits were alternately used for training(i.e., 
omputing 
ovarian
e estimates and feature transformations) and for testing. We usedSRE-2004 to tune � and � for testing on SRE-2003, and vi
e-versa. To simplify the tuningpro
ess, � was optimized for the 
ase where � = 0. The resulting � parameter was thenheld �xed while tuning �. Further details on the tasks and datasets 
an be found in Stol
keet al. [2006℄. 108



8.4.3 SVM TrainingWe used SVMlight (Joa
hims [1999℄) to train SVM-based speaker models for ea
h task.Ea
h speaker model was trained with a linear kernel using the default value of the SVMhyperparameter C. A held-out dataset 
omposed of 425 
onversation sides taken from theSwit
hboard-2 
orpus and 1128 
onversation sides taken from the Fisher 
orpus was usedas negative examples for the SVM training.8.4.4 ResultsTable 8.1 shows results on the MLLR-SVM system for various feature representations.Here, the labels \WCCN" and \CN" denote within-
lass 
ovarian
e normalization andstandard 
ovarian
e normalization, where � is tuned on the 
ross-validation set. The �parameter is optimized on the 
ross-validation set for systems that are labeled \PCA." Forsystems that are not labeled \PCA," � is set equal to zero (i.e., the PCA-
omplement isomitted from the �nal feature representation). The \baseline" label represents the MLLR-SVM system without any feature normalization.As shown in Table 8.1, the WCCN approa
h provides improvements that are quitesubstantial, at least in most 
ases, over standard CN (see the \improvement overPCA+CN+PCA" results). It's worth noting that the improvements obtained over thebaseline are signi�
antly larger on SRE-2003 than on SRE-2004. However, this is to beexpe
ted, sin
e the feature transformations and normalizations used in these experimentswere trained only on held-out SRE-2003 data, whi
h represents a di�erent set of 
hanneland re
ording 
onditions than SRE-2004.We note that the \PCA," \PCA+CN," and \PCA+WCCN" results are all obtainedfrom PCA feature sets whose dimensionality is redu
ed to�3600 (i.e., the number of trainingexamples in ea
h split of the SRE-2003 subset). In spite of this redu
ed dimensionality, the
109



SRE-03 subset SRE-04� EER% DCF EER% DCFbaseline 2.91 0.117 5.97 0.282PCA 3.89 0.158 7.35 0.318PCA+CN 2.92 0.123 6.43 0.289PCA+WCCN 2.30 0.108 5.52 0.260PCA+PCA 2.91 0.117 5.97 0.282PCA+CN+PCA 2.33 0.092 5.87 0.266PCA+WCCN+PCA 2.08 0.091 5.27 0.247improvement overbaseline 28:5% 22:2% 11:7% 12:4%improvement overPCA+WCCN 9:6% 15:7% 4:5% 5:0%improvement overPCA+CN+PCA 10:7% 1:1% 10:2% 7:1%Table 8.1. EERs and minimum DCFs for various feature transformations/normalizations onthe MLLR-SVM system. Here, \baseline" represents the raw MLLR-SVM system withoutany feature normalization. The labels \WCCN" and \CN" denote within-
lass 
ovarian
enormalization and standard 
ovarian
e normalization, and \PCA" denotes a system thatuses the PCA-
omplement with � optimized on the 
ross-validation set. The \improvement"entries represent the relative improvement of PCA+WCCN+PCA over the given system.\PCA+WCCN" system signi�
antly outperforms the \baseline" system, where ea
h featureve
tor is 
omposed of 24960 features.Table 8.1 also shows that adding the PCA-
omplement to the PCA feature set leadsto signi�
ant relative redu
tions in error rate (see the \improvement over PCA+WCCN"results). To the best of our knowledge, the results for the \PCA+WCCN+PCA" systemare the best re
orded so far in the literature for an MLLR-SVM system. Even without usingrank normalization or TNORM|two te
hniques used in Stol
ke et al. [2006℄ whi
h shouldpresumably lead to redu
tions in error rate (we have not yet integrated these normalizationsinto our system)|our system outperforms the MLLR-SVM system in Stol
ke et al. [2006℄by at least 15% on the SRE-2003 subset and by a smaller, but still signi�
ant margin onSRE-2004. These experiments point to the utility of using WCCN in 
onjun
tion with thePCA-
omplement when training SVM-based speaker models.110



8.5 Experiment 2: Comparison between WCCN and NAPIn this se
tion, we report some re
ent results from experiments that dire
tly 
ompareWCCN with the NAP approa
h des
ribed in Solomono� et al. [2004, 2005℄ and in Se
tion4.6.3. These experiments were performed by Sa
hin Kajarekar and Andreas Stol
ke ofSRI International and are reported in Kajarekar and Stol
ke [2007℄. The experiments
ompare the performan
e of the WCCN approa
h des
ribed in Chapter 6 versus NAPon SRI International's most re
ent MLLR-SVM system. Ea
h experiment involves twotrainingsets: one to estimate 
ovarian
e matri
es and another to serve as ba
kground datawhen training SVM-based speaker models. The speaker models are trained and tested on the1-
onversation-side 
ondition of both the SRE2005 and SRE2006 speaker veri�
ation tasks.The � and � parameters for WCCN and the N parameter for NAP (i.e., the dimensionalityof the output feature spa
e after performing NAP) are optimized on SRE2005 and thentested on both SRE2005 and on SRE2006. Thus, the results for SRE2005 te
hni
ally involvesome amount of \
heating," sin
e the testset is used to tune parameters. The experimentsin Hat
h and Stol
ke [2006℄ and in Chapter 6 di�er from those des
ribed in Se
tion 8.4.4 inthe following ways:1. The training set that is used to 
ompute 
ovarian
e matri
es is also used to performrank-normalization on the input feature ve
tors.2. The experiments use di�erent training sets than those used in Se
tion 8.4.4.A set of results for WCCN and for NAP are provided in Table 8.2 and Table 8.3.The best results for ea
h testset are listed in bold type. The �gures in parenthesisrepresent 
heating results for SRE2006, where the �, �, and N parameters are tuned onthe testset. The parameters for the non-parenthesized results are tuned on SRE2005. Thefollowing table lists the relative improvement obtained by using WCCN over NAP. Table8.4 shows that WCCN a
hieves modest but signi�
ant improvements on all test 
onditionsex
ept for one: the results degrade fairly signi�
antly for the 
ase where the 
ovarian
e111



Intersession SRE05 (English) SRE06 (English)BKG data variability (DEV set) (EVAL set)estimated on %EER min DCF %EER min DCFbaseline 5.872 0.190 4.639 0.224Fisher SRE03 5.066 0.154 4.314 0.198SRE04 5:056 0:147 4.477 0.216baseline 6.189 0.200 4.315 0.197SRE04 SRE03 5.219 0.162 3.776 0.173SRE04 5.103 0.157 3:603 0:166(3:452) (0:162)Table 8.2. EERs and minimum DCFs obtained from applying WCCN to an MLLR-SVMsystem. Intersession SRE05 (English) SRE06 (English)BKG data variability (DEV set) (EVAL set)estimated on %EER min DCF %EER min DCFbaseline 5.872 0.190 4.639 0.224Fisher SRE03 5.653 0.166 4.423 0.206SRE04 5:470 0:158 3.999 0.196baseline 6.189 0.200 4.315 0.197SRE04 SRE03 5.744 0.172 3.831 0.180SRE04 5.664 0.163 3:614 0:170(3:567) (0:167)Table 8.3. EERs and minimum DCFs obtained from applying NAP to an MLLR-SVMsystem.matri
es and rank-normalization are estimated on SRE2004, the ba
kground data is drawnfrom the Fisher dataset, and testing is performed on SRE2006. The latter degradation issomewhat surprising, espe
ially given that the same 
ombination of trainingsets yields animprovement for WCCN on SRE2005.8.6 Con
lusionsIn this 
hapter, we have des
ribed a pra
ti
al pro
edure for applying within-
lass 
o-varian
e normalization (WCCN) to an MLLR-SVM speaker veri�
ation system where thefeature ve
tors reside in a high-dimensional spa
e. When applied to a state-of-the-artMLLR-SVM speaker veri�
ation system, this approa
h a
hieves improvements of up to112



Intersession SRE05 (English) SRE06 (English)BKG data variability (DEV set) (EVAL set)estimated on EER min DCF EER min DCFbaseline | | | |Fisher SRE03 10.38% 7.23% 2.46% 3.88%SRE04 7:57% 6:96% -11.95% -10.20%baseline | | | |SRE04 SRE03 9.14% 5.81% 1.44% 3.89%SRE04 9.90% 3.68% 0:30% 2:35%(3:22%) (2:99%)Table 8.4. Relative improvements in EER and minimum DCF obtained from using WCCNover NAP.22% in EER and 28% in minimum de
ision 
ost fun
tion (DCF) over our previous base-line. We also a
hieve substantial improvements over an MLLR-SVM system that performsWCCN on the PCA set but dis
ards the PCA-
omplement. These results point to the util-ity of using WCCN in 
onjun
tion with the PCA-
omplement when training SVM-basedspeaker models.This 
hapter also provides results for experiments that 
ompare WCCN against thenuisan
e attribute proje
tion (NAP) approa
h des
ribed in Solomono� et al. [2004, 2005℄and in Se
tion 4.6.3. In these experiments, WCCN typi
ally outperforms NAP by a modestbut signi�
ant margin when applied to an MLLR-SVM speaker veri�
ation system.
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Chapter 9
Summary and Con
lusions

In this dissertation, we examine the problem of kernel optimization for binary 
lassi-�
ation tasks where the training data are partitioned into multiple, disjoint 
lasses. Thedissertation fo
uses spe
i�
ally on the �eld of speaker veri�
ation, whi
h 
an be framedas a one-versus-all (OVA) de
ision task involving a target speaker and a set of impostorspeakers.The main result of this dissertation is a new framework for optimizing generalized linearkernels of the form, k(x1;x2) = xT1Rx2, where x1 and x2 are input feature ve
tors, andR is a positive semide�nite parameter matrix. Our framework is based on using �rst andse
ond-order statisti
s from ea
h 
lass (i.e., speaker) in the data to 
onstru
t an upperbound on 
lassi�
ation error in a linear 
lassi�er. Minimizing this bound leads dire
tly toa new, modi�ed formulation of the 1-norm, soft-margin support ve
tor ma
hine (SVM).We refer to this new, modi�ed SVM formulation as the adaptive, multi
luster SVM (AMC-SVM). The AMC-SVM di�ers from the 
onventional soft-margin SVM in Vapnik [1995℄ inthe following ways:1. The AMC-SVM impli
itly pres
ribes a solution for the R parameter matrix in ageneralized linear kernel. 114



2. The AMC-SVM follows dire
tly from minimizing a parti
ular upper bound on 
lassi-�
ation error. On the other hand, Vapnik's soft-margin SVM formulation is based onappending sla
k variables to the hard-margin SVM.3. The C hyperparameter is exa
tly spe
i�ed in the AMC-SVM but is undetermined inthe 
onventional soft-margin SVM.Unlike most other kernel learning te
hniques in the literature, the AMC-SVM uses informa-tion about 
lusters that reside within the given target and impostor data to obtain tighterbounds on 
lassi�
ation error than those obtained in 
onventional SVM-based approa
hes.This use of 
luster information makes the AMC-SVM parti
ularly well-suited to tasks thatinvolve binary 
lassi�
ation of multi
lass data|for example, the speaker veri�
ation task|where ea
h 
lass (i.e., speaker) 
an be treated as a separate 
luster.In OVA training settings, we show that the AMC-SVM 
an, under 
ertain 
onditions,be formulated to yield a single, �xed kernel fun
tion that applies universally to any 
hoi
eof target speaker. Sin
e this kernel fun
tion is linear, we 
an implement it by applying asingle linear feature transformation to the input feature spa
e. This feature transformationperforms what we refer to as within-
lass 
ovarian
e normalization (WCCN) on the inputfeature ve
tors. The dissertation des
ribes a set of experiments where WCCN yields largeredu
tions in 
lassi�
ation error over other normalization te
hniques on a state-of-the-artSVM-based speaker veri�
ation system.
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Appendix ADerivation of BoundsThe following derivation proves the upper bounds on R(f) in (6.3) and in (7.3). Theseupper bounds appear in Theorem 11 and in Theorem 13, respe
tively.Proof. We begin with the inequality given in (7.1):1(yjf(xj) < 0) � B(xj ; �j) : 0 < �j � 1: (A.1)Here, �j represents a set of parameters for 
lass j, and B(xj ; �j) represents a boundingfun
tion. These are de�ned as follows:�j , fv; b; �j ; yj; �xjg;B(xj ; �j) ,0� f(xj)� f(�xj)maxn 1�j ; yjf(�xj)o1A2 � 1(yjf(xj) � yjf(�xj)) + 2 � (1� �jyjf(�xj))+:In the above equation, we use the shorthand, (a)+, to represent 1(a > 0) �a. An illustrationof the bound in (A.1) is provided in Figure 7.1. Note that the bound is only valid if � � 0.For the following derivation, we will 
onstrain � as 0 � � � 1. Taking the expe
tation ofboth sides of the inequality in (A.1) over all j gives us the following bound on R(f). Notethat in the following derivation, we assume that xj is symmetri
ally distributed about itsmean (i:e:; p(xj � �xj = Æ) = p(xj � �xj = �Æ) for all (j; Æ) 2 f1; : : : ; Jg � RL , where L is
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the dimensionality of the feature spa
e, and J is the total number of 
lasses.R(f) � Ej B(xj ; �j) : 0 < �j � 1 8j= Ej 0� f(xj)� f(�xj)maxn 1�j ; yjf(�xj)o1A2 � Ej 1(yjf(xj) � yjf(�xj)) + 2 � Ej (1� �jyjf(�xj))+(A.2)subje
t to 0 < �j � 1 8j:= 12 �Xj p̂j E (f(xj)� f(�xj))2(maxn 1�j ; yjf(�xj)o)2 + 2 �Xj p̂j(1� �jyjf(�xj))+subje
t to 0 < �j � 1 8j:= 12 �Xj p̂j E (vT (xj � �xj))2(maxn 1�j ; yjf(�xj)o)2 + 2 �Xj p̂j(1� �jyjf(�xj))+subje
t to 0 < �j � 1 8j:= 12 �Xj vTDjv(maxn 1�j ; yjf(�xj)o)2 + 2 �Xj p̂j(1� �jyjf(�xj))+ (A.3)subje
t to 0 < �j � 1 8j:The equation in (A.2) uses the fa
t that the following equality holds when xj is symmetri-
ally distributed about its mean:Ej 240� f(xj)� f(�xj)maxn 1�j ; yjf(�xj)o1A2 1(yjf(xj) � yjf(�xj))35 =Ej 0� f(xj)� f(�xj)maxn 1�j ; yjf(�xj)o1A2 � Ej 1(yjf(xj) � yjf(�xj)):Sin
e xj is symmetri
ally distributed about �xj and sin
e f is an aÆne fun
tion, we knowthat f(xj) is symmetri
ally distributed about f(�xj). Thus, E j 1(yjf(xj) � yjf(�xj)) = 12 ,whi
h explains the origin of the \12" term in the pre
eding derivation. We now relax the
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bound on R(f) in the following way:R(f) � 12 �Xj vTDjv(maxn 1�j ; yjf(�xj)o)2 + 2 �Xj p̂j(1� �jyjf(�xj))+ (A.4)subje
t to 0 < �j � 1 8j:� 12 � vT (Xj �2jDj)v + 2 �Xj p̂j�j�j (A.5)subje
t to �j = ( 1�j � yj(vT �xj + b))+ 8j;0 < �j � 1 8j:� 12 � vT (Xj �2jDj)v + 2 �Xj p̂j�j�j (A.6)subje
t to 1�j � �j � yj(vT �xj + b) 8j;0 � �j 8j;0 < �j � 1 8j:� 12 � vT (Xj �jDj)v + 2 �Xj p̂j�j (A.7)subje
t to 1�j � �j � yj(vT �xj + b) 8j;0 � �j 8j;0 < �j � 1 8j:� 12 � vT (Xj Dj)v + 2 �Xj p̂j�j (A.8)subje
t to 1� �j � yj(vT �xj + b) 8j;0 � �j 8j:Note that the bound in (A.4) is the same as the bound in (A.3). In (A.5), we relax thebound on R(f) by setting the denominator equal to 1�2j . We further relax the bound by
hanging the equality 
onstaint on �j in (A.5) to an inequality 
onstraint in (A.6). Sin
e�j is 
onstrained to lie in the range (0; 1℄, we 
an upper bound (A.6) by 
hanging �nj to�n�1j . This gives us the bounds in (A.7) and (A.8). The bound in (A.8) is the same as inTheorem 11 and the bound in (A.7) is the same as in Theorem 13.
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