Kernel Optimization for Support Vector Machines:
Application to Speaker Verification

Andrew Oliver Hatch

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-187
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-187.html

December 18, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Kernel Optimization for Support Vector Machines: Application to Speaker
Verification

by

Andrew Oliver Hatch

B.E.E. (University of Dayton) 1998
M.S. (University of California, Berkeley) 2001

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in
Engineering-Electrical Engineering and Computer Sciences
in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Nelson Morgan, Chair
Professor Michael Jordan
Professor Alper Atamturk

Fall 2006

The dissertation of Andrew Oliver Hatch is approved.

Chair Date

Date

Date

University of California, Berkeley
Fall 2006

Kernel Optimization for Support Vector Machines: Application to Speaker

Verification

Copyright (©) 2006

by

Andrew Oliver Hatch

Abstract

Kernel Optimization for Support Vector Machines: Application to Speaker

Verification
by

Andrew Oliver Hatch

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Nelson Morgan, Chair

In this dissertation, we examine the problem of kernel optimization for binary classification
tasks where the training data are partitioned into multiple, disjoint classes. The dissertation
focuses specifically on the field of speaker verification, which can be framed as a one-versus-

all (OVA) decision task involving a target speaker and a set of impostor speakers.

The main result of this dissertation is a new framework for optimizing generalized linear
kernels of the form, k(xq,x2) = XITRXQ, where x; and xo are input feature vectors, and
R is a positive semidefinite parameter matrix. Our framework is based on using first and
second-order statistics from each class (i.e., speaker) in the data to construct an upper
bound on classification error in a linear classifier. Minimizing this bound leads directly to a
new, modified formulation of the 1-norm, soft-margin support vector machine (SVM). This
modified formulation is identical to the conventional SVM developed by Vapnik, except
that it implicitly prescribes a solution for the R parameter matrix in a generalized linear
kernel. We refer to this new, modified SVM formulation as the adaptive, multicluster SVM

(AMC-SVM). Unlike most other kernel learning techniques in the literature, the AMC-

SVM uses information about clusters that reside within the given target and impostor
data to obtain tighter bounds on classification error than those obtained in conventional
SVM-based approaches. This use of cluster information makes the AMC-SVM particularly
well-suited to tasks that involve binary classification of multiclass data—for example, the
speaker verification task—where each class (i.e., speaker) can be treated as a separate

cluster.

In OVA training settings, we show that the AMC-SVM can, under certain conditions,
be formulated to yield a single, fixed kernel function that applies universally to any choice
of target speaker. Since this kernel function is linear, we can implement it by applying a
single linear feature transformation to the input feature space. This feature transformation
performs what we refer to as within-class covariance normalization (WCCN) on the input
feature vectors. The dissertation describes a set of experiments where WCCN yields large
reductions in classification error over other normalization techniques on a state-of-the-art

SVM-based speaker verification system.

Professor Nelson Morgan
Dissertation Committee Chair

This dissertation s dedicated to my wife, Celeste, to my loyal friends, and to Gautam

and Sigi’s cat, Leo, who sat on my lap through much of its writing.

Contents

Contents

List of Figures

List of Tables

Acknowledgements

1 Introduction

2 Speaker Verification

2.1

2.2
2.3

2.4
2.5

2.6
2.7

Problem Definitiono
2.1.1 Prototypical System oo
Classification Paradigms for Speaker Verification
Maximum Likelihood Classification for Speaker Verification
2.3.1 GMDM-based Classification
2.3.2 HMM-based Classification,
233 N-gram Models
Speaker Verification with Support Vector Machines
Feature Sets for SVM-based Speaker Verification
2.5.1 Cepstral Features o oo o
2.5.2 MLLR Features
2.5.3 N-gram Features
Score Normalization

System Combination L0

ii

ii

vi

viii

ix

3 Support Vector Machines 20

3.1 Background 20
3.1.1 VC Dimension e 21

3.2 The Hard-Margin SVM 22
3.2.1 The Kernel Trick 25

3.2.2 Generalized Linear Kernels 26

3.3 The Soft-Margin SVM L 27
4 Related Work in the Field of Kernel Optimization 30
4.1 Multiple-Kernel Learning o oL 32
4.2 Hyperkernels 33
4.3 Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) 33
4.4 Adaptive Feature Scaling and Relevence Determination 35
4.5 The Minimax Probability Machine 37
4.6 Kernels and Feature Transformations for Speaker Verification 38
4.6.1 Generalized Linear Discriminant Sequence Kernels 39
4.6.2 N-gram Frequency Kernels 40
4.6.3 Nuisance Attribute Projection (NAP) 40
4.6.4 Rank-Normalization 41

5 Error Bounds for Separable Data: A New Derivation of the Hard-Margin

SVM 42

5.1 Problem Setting 43

5.1.1 Notation and Additional Definitions 45

5.2 Bounding Functions o 45

5.3 Class-Independent Bound 46

5.3.1 Comparison with Minimax Probability Machine 51

5.4 Class-Dependent Bounds 53

5.4.1 Hard-Margin SVM o 55

5.4.2 Bounding Functions for the Hard-Margin SVM o7
5.4.3 Bounding Functions for Classes that are not Symmetrically Dis-

tributed About their Means L L. 58

5.4.4 Relative Tightness of the Class-Dependent Bounds 60

iii

5.4.5 Clustering Data and Choosing What Constitutes a Class

6 Error Bounds for Non-Separable Data: A New Derivation of the Soft-

8

Margin SVM
6.1 Bounding Functions
6.1.1 Comparison with Bounding Functions for Hard-Margin SVM
6.1.2 Upper Bound on R(f)
6.2 The Soft-Margin SVM
6.2.1 Comparison with Conventional Soft-Margin SVM Formulation
6.3 Generalized Linear Kernels for Speaker Verification Tasks
6.4 Intuition Behind Within-Class Covariance Normalization
6.5 Relationship Between WCCN and Linear Discriminant Analysis (LDA)
6.6 Experiments on a Speaker Verification Task

6.7 Summary and Conclusions L oo oo

Tightening the Bounds: the Adaptive, Multicluster SVM

7.1 Bounding Functions

7.2 Optimization e
7.2.1 TIterated QP Formulation
7.2.2 SOCP Formulation oo
7.2.3 A Kernelized Version of the Adaptive, Multicluster SVM

7.3 Experiments on Artificial Data o0 oL
7.3.1 Experiment 1
7.3.2 Experiment 2
7.3.3 Experiment 3

74 Experiment 4

7.5 Conclusions e e

Within-Class Covariance Normalization for High-Dimensional Data

8.1 Within-Class Covariance Normalization
8.1.1 WCCN for High-Dimensional Data

8.2 Kernel PCA and the PCA-Complement

8.3 Experimental Procedure o oo oL

v

62
63
65
66
67
68
70
71
73
74
76

7
79
84
84
87
88
92
93
95
96
98
99

8.4 Experiments and Results. oo

8.4.1 MLLR-SVM System
84.2 Taskand Data
8.4.3 SVM Training o o
8.4.4 Results
8.5 Experiment 2: Comparison between WCCN and NAP
8.6 Conclusions L

9 Summary and Conclusions

Bibliography

A Derivation of Bounds

114

116

121

List of Figures

2.1

2.2

2.3

3.1

3.2

5.1

9.2

9.3

5.4 A relaxed set of class-dependent bounding functions for the impostor examples.

High-level diagram of a typical speaker verification system. Here, X; rep-
resents the set of training utterances that belong to target speaker i. The
functions f; and y; represent the corresponding speaker model and decision
function. L L

High-level diagram of a speaker verification system that performs score-level
system combination. Lo

High-level diagram of a speaker verification system that performs feature-
level system combination.o oL

Example an optimal margin classifier (i.e., a hard-margin margin SVM). The
decision boundary is represented by the set of points {x : f(x)=0}. ...

Example of a 1-norm soft-margin margin SVM. The decision boundary is
represented by the set of points {x : f(x) =0}

[ustration of 0 — 1 error functions. The figure on the left shows the decision
boundary for a set of target examples and for a set of impostor examples.
The corresponding score distributions and 0 — 1 error functions are shown on
the right side of the figure. oL

[llustration of the class-independent, one-sided, second-order bounding func-
tion for the impostor examples and for the target examples.

Comparison of the class-independent and class-dependent bounding functions
for the case where the target and impostor sets are composed of separate
classes (i.e., clusters). The figure on the left shows the decision boundary
for a set of target examples and for a set of impostor examples. The corre-
sponding score distributions, 0 — 1 error functions, and bounding functions
for the impostor examples are shown on the right side of the figure. For sim-
plicity, the score distribution of the target examples is shown as a uni-modal
distribution. oL

vi

24

28

44

47

o4

6.1

6.2

7.1

7.2
7.3
7.4
7.5

8.1

[lustration of the 0 — 1 error function, 1(y;f(x;) < 0), and the bounding
function, B(x; ; ©;), as a function of y; f(x;) for various values of y; f(X;). 65

[lustration of the within-class covariance normalization (WCCN) approach.
Here, we apply WCCN to a 2-dimensional feature space composed of 4 Gaus-
sian classes. These ellipses represent isoclines of constant Mahalanobis dis-
tance for each of the classes. WCCN boosts informative directions and at-
tenuates noisy directions by making the within-class distributions as sym-
metrical as possible. Lo oo 72

[lustration of the 0 — 1 error function, 1(y;f(x;) < 0), and the bounding
function, B(x;; ©;), as a function of y;f(x;) for various values of y;f(X;).
If nj > 0, then B(x;; ©;) forms an upper bound on 1(y;f(x;) < 0) for any

value of y; f(xj) and y; f(Xj). 81
Results for Experiment 1. L o o 94
Results for Experiment 2. Lo oo 96
Results for Experiment 3. 97
Results for Experiment 4. Lo o 98

Diagram of WCCN procedure for high-dimensional data. The “4” sign in
the above figure represents a concatenation operator. 107

vil

List of Tables

6.1

8.1

8.2

8.3

8.4

EERs and minimum DCFs for various generalized linear kernels. Here, “rel-

ative improvement” compares the performance of R = C;Vls with the baseline.

EERs and minimum DCFs for various feature transformations/normalizations
on the MLLR-SVM system. Here, “baseline” represents the raw MLLR-
SVM system without any feature normalization. The labels “WCCN” and
“CN” denote within-class covariance normalization and standard covariance
normalization, and “PCA” denotes a system that uses the PCA-complement
with B optimized on the cross-validation set. The “improvement” entries
represent the relative improvement of PCA4+WCCN+PCA over the given
Systemi.o e e e e

EERs and minimum DCF's obtained from applying WCCN to an MLLR-SVM
system. ... oL e e e

EERs and minimum DCF's obtained from applying NAP to an MLLR-SVM
System. . ..o e e

Relative improvements in EER and minimum DCF obtained from using
WCCN over NAP.

viii

75

110

112

112

Acknowledgements

This dissertation would not have been possible without the generous support of various
individuals and organizations. I would first of all like to thank my faculty advisor, Nel-
son Morgan, for his guidance and support throughout my graduate school career. Nelson
Morgan is the director of the International Computer Science Institute (ICSI) in Berkeley,
California. ICSI is affiliated with the University of California, Berkeley, which is where
I have conducted my Ph.D. research. I would also like to thank my group leaders, Bar-
bara Peskin and Naghmeh (Nikki) Mirghafori, for many interesting and helpful discussions
on research within the field of speaker verification. Since the fall of 2003, Barbara and
Nikki have both served as group leaders for ICSI’s speaker verification team. Both were
also instrumental in securing funding for my research. The funding itself was provided by
the National Science Foundation under grant No. 0329258. Special thanks are also due
to George Doddington, who advised me on a number of research trends within speaker
verification. I am especially grateful to my primary collaborator, Andreas Stolcke of SRI
International, for his intellectual and moral support, and for his constant interest and en-
thusiasm for my work. I would also like to thank Luciana Ferrer and Sachin Kajarekar of
SRI, who both provided critical support and infrastucture for ICSI’s speaker verification re-
search. Over the past few years, Sachin has collaborated with me on various projects within
the field of speaker verification. I would also like to thank Laurent El Ghaoui for his help in
proving Theorem 14, which states that the adaptive, multicluster SVM can be posed as a
second-order cone program (see Chapter 7). Special thanks are due to the members of my
dissertation committee: Michael Jordan, Alper Atamturk, and my advisor, Nelson Morgan,
for their support and assistance in completing this work. Finally, I would like to thank the
other current and former members of the ICSI speaker verification group with whom I have
had the pleasure of working: Lara Stoll, Howard Lei, Mary Knox, Kofi Boakye, and Dan
Gillick.

ix

Curriculum Vitae

Andrew Oliver Hatch

Education
1998 University of Dayton

B.S., Electrical Engineering
2001 University of California, Berkeley

M.S., Electrical Engineering and Computer Science
2006 University of California, Berkeley

Ph.D., Electrical Engineering and Computer Science
Personal
Born February 13, 1975, Dayton, Ohio

xi

Chapter 1

Introduction

One of the central problems in the study of support vector machines (SVMs) is kernel
selection—that is, the problem of choosing or optimizing a kernel function for a particular
task and dataset. In the following dissertation, we consider the problem of kernel optimiza-
tion for binary classification tasks where the training data are partitioned into multiple,
disjoint classes. We focus specifically on the field of speaker verification, which can be
framed as a one-versus-all (OVA) decision task involving a target class (i.e., speaker), and
an impostor class composed of a pooled set of impostor speakers. The dissertation shows
how information about individual classes (i.e., speakers) in the data can be used to construct
upper bounds on classification error. By minimizing these upper bounds, we obtain a new
framework for training affine classifiers. This framework also leads to various techniques for
training kernel functions for support vector machines. We describe a set of experiments in
which our approach yields substantial improvements in classification error when compared

with other, existing techniques for training kernel functions.

The main result of this dissertation is a general framework for performing binary classi-
fication in multiclass settings with affine decision functions. This framework leads directly
to a modified formulation of both the hard-margin and the 1-norm soft-margin support

vector machines (SVMs). These modified SVMs are identical to the conventional SVM

formulation in Vapnik [1995], except that they implicitly learn kernel functions of the form,
k(x1,%9) = xlTRXQ, where x; and x5 are input feature vectors, and R is a positive semidef-

inite matrix. We refer to kernel functions of this form as generalized linear kernels.

Under various conditions, our framework leads to generalized linear kernels of the form
R = C;Vl, where Cyy is the expected within-class covariance matriz over all classes (i.e.,
speakers) in the training data. This parameterization applies universally to any choice
of target class (i.e., speaker). Because the kernel function is linear, we can implement it
by applying a single linear feature transformation to the input feature space. This feature
transformation performs what we refer to as within-class covariance normalization (WCCN)
on the input feature vectors. In Chapters 6 and 8, we describe a set of experiments where
WCCN yields large reductions in classification error over other normalization techniques.

The WCCN approach forms one of the main components of our dissertation.

In Chapter 7, we derive a more general formulation of WCCN where the kernel function
is adapted to the given choice of target set and impostor set. We refer to this formulation as
the adaptive, multicluster SVM (AMC-SVM), since it assigns a separate weight parameter
to every class (i.e., cluster) in the training data. Unlike other kernel learning techniques in
the literature (e.g., multiple kernel learning (Lanckriet et al. [2004]; Bach et al. [2004]) and
hyperkernels (Ong et al. [2003]), the AMC-SVM uses information about clusters that reside
within the given target and impostor data to obtain tighter bounds on classification error
than those obtained in conventional SVM-based approaches. This use of cluster information
makes the adaptive, multicluster SVM particularly well-suited to tasks that involve binary
classification in multiclass settings—for example, the speaker verification task, where each

class (i.e., speaker) can be treated as a separate cluster.

The dissertation is organized as follows: We begin, in Chapter 2, by describing the
speaker verification task and by summarizing the current state-of-the-art in the field, par-
ticularly as it applies to support vector machines. This is followed by a brief overview of

support vector machines (SVMs) in Chapter 3. Chapter 4 provides a brief summary of

related work within the field of kernel optimization. Chapters 5 through 7 describe the the-
oretical framework behind WCCN and the adaptive multicluster SVM. These chapters also
describe a set of experiments where we compare these techniques with other state-of-the-art
techniques for training kernel functions. Finally, we describe a practical procedure for ap-
plying WCCN to high-dimensional datasets in Chapter 8. In this chapter, we also describe
the latest results obtained from using WCCN on an SVM-based speaker verification task.
The results show that WCCN yields significant improvements over other state-of-the-art

techniques for performing kernel optimization on speaker verification tasks.

Chapter 2

Speaker Verification

The following chapter gives a brief introduction to the field of speaker verification. This
includes a description of the various models and feature sets that are typically used to train
speaker verification systems. In the following section, we begin with a general overview of

the speaker verification problem.

2.1 Problem Definition

Unlike speaker identification, where the goal is to associate a given speech utterance
with a specific speaker, the goal in most NIST-defined speaker verification tasks—which
are the tasks that we will consider for this research—is to determine whether or not a
given speech utterance belongs to a given speaker. Thus, speaker verification is a binary
classification problem. We will focus on a set of NIST-defined tasks for performing text-
independent speaker verification, where the input speech is not constrained to any specific
set of words or phrases. In these tasks, the speaker verification system is presented with
a set of speech utterances or conwversation sides. These conversation sides constitute one
side of a two-way telephone conversation and are typically about 2.5 minutes in length.

The speaker verification system is presented with a limited number of conversation sides

(usually between 1 and 8) from the given target speaker, along with a test conversation
side, which we refer to as the test segment or test utterance. The system is then asked to
determine whether or not the test utterance belongs to the target speaker. Typically, the
speaker verification system is allowed to use any number of conversation sides taken from
so-called impostor speakers—that is, speakers who don’t appear in the test data or as target
speakers—to facilitate in making this decision. This pooled set of impostor conversation

sides is referred to as the background data or as the impostor data.

2.1.1 Prototypical System

Figure 2.1 shows a high-level diagram of a prototypical speaker verification system. The
system uses a set of target utterances and a set of impostor or background utterances to
train a one-versus-all (OVA) speaker model for speaker i. In the figure, we use the notation,
X; to represent the set of training utterances that belong to speaker i. These utterances
constitute the “positive examples” for the given speaker. Similarly, we refer to all utterances
in X; where j # 7 as the negative or impostor examples for speaker 7. The system in Figure
2.1 uses the target examples and the impostor examples for speaker ¢ to train a speaker
model, which we represent as the function f;. The speaker model performs a mapping from

an L-dimensional input space into the space of real numbers:
fi + RE SR

We refer to the scalar value f;(x) as the output score obtained for utterance x on speaker
model 7. This score is used to form the output hypothesis ;(x), which indicates whether or
not the system believes that x belongs to target speaker ¢. This hypothesis is determined

as follows:
. 1, if fi(x) >0,
7i(x) = (2.1)
-1, if fi(x) <O.
The term ¢;(x) represents the hypothesized binary label for x given target speaker 7. Here,

v iy .. w . 3
a value of 1 represents a “positive” decision, where x is deemed to belong to speaker %

speaker

utterances classification
model
target speaker X, — >
impostor speaker X, —> 70 Yi(x) 1
model
impostor speaker Xk — 1 training fl(X)

So Pi(x) «— -1

impostor speaker X —>

test utterance X

Figure 2.1. High-level diagram of a typical speaker verification system. Here, X; represents
the set of training utterances that belong to target speaker i. The functions f; and y;
represent the corresponding speaker model and decision function.

Conversely, a value of —1 represents a “negative” decision, where x is said to belong to the

impostor set. We use y;(x) to represent the ¢rue label of x given target speaker i:

1, if z belongs to speaker 1,
yi(x) =
—1, otherwise.

If ;(x) is equal to y;(x), then we say that x has been correctly classified for the given target

speaker 7. Otherwise, we say that x has been misclassified.

Signals and Feature Sets

Given the many sources of speaker-specific information within speech (e.g., prosody,
pitch, word usage, speaking rate, etc.), most state-of-the-art speaker verification systems
rely on multiple signals and feature representations to encode each conversation side or
utterance. For example, a speaker verification system might use a set of acoustic features—
that is, features based on short-time Fourier representations of the input acoustics (e.g.,

Mel-frequency cepstral coefficients (MFCCs) (Kajarekar et al. [2005b])—along with feature

speaker models

input test feature for target final
utterance vectors speaker i output
score

> Xl — > ﬁ](xl) — >
¥ _
§

\ feature _level
o . . score-leve
= extraction combination fl(X)

—> xK—— fl‘K(XK) —>

Figure 2.2. High-level diagram of a speaker verification system that performs score-level
system combination.

sets based on relative n-gram frequencies of words (Doddington [2001]) and of phonemes
(i.e., sub-word linguistic units) (Andrews et al. [2002]; Campbell et al. [2003]; Hatch et al.
[2005]), and a fourth set of features based on prosodic events (Kajarekar et al. [2003]),
to represent each conversation side. We will provide a more detailed description of these

signals and feature sets in Section 2.2.

In general, the goal in speaker verification is to capture as much speaker-specific in-
formation as possible within each conversation side by using a diverse range of signals and
feature sets. In many contemporary speaker verification systems, these feature sets are used
to train a set of individual speaker models, where one speaker model is trained for every
feature set. Each speaker model generates its own output scores, and these scores are later
combined to generate a final output score for a given utterance x. A system such as this
is shown in Figure 2.2. In the above figure, we use the notation, x7, to denote the feature
vector for utterance x drawn from signal (i.e., feature set) j. The system in Figure 2.2 trains
a set of functions of the form, fZJ : Rl — R, where fl] represents the speaker model cor-

responding to target speaker ¢ and feature set j. This speaker model maps feature vectors

from some L j-dimensional feature space (i.e., the feature space that corresponds to the jth
feature set) into a real-valued output score. The output scores for a particular test-target
pair—for example, the pair (x,7), where x represents a test utterance and i represents a
target speaker model—are then “combined” in some way to arrive at a final output score,
fi(x). We will briefly discuss techniques for combining scores in Section 2.7. Finally, we

use the decision rule in (2.1) to obtain the output hypothesis, §;(x).

The system shown in Figure 2.2 depicts what we refer to as score-level combination,
where the input signals and feature sets are combined at the level of output scores. Systems
such as this are quite common in the field of speaker verification and often perform quite
well on system evaluations. For example, the two top-performing systems in the 2005 NIST
Speaker Recognition Evaluation both used a score-level combination strategy (Mirghafori
et al. [2005]; Ferrer et al. [2005a]). Score-level combination provides a convenient means
of “combining” feature sets in a single system, because it treats all feature sets as though
they were independent of one-another, conditional on their output scores. The cost of this
conditional indepedence assumption is that the system in Figure 2.2 is incapable of modeling
interdependencies between signals that appear only at the feature level. Unless the signals
are truly independent conditional on their output scores, score-level combination can lead

to reductions in classification accuracy below what might otherwise be achievable.

In this dissertation, we investigate techniques for performing what we refer to as feature-
level combination, where various signals and feature sets are “combined” into a single feature
representation prior to training speaker models. A system that performs feature-level com-
bination is shown in Figure 2.3. In this system, the input feature sets are first fed into a
feature normalization module, which produces a single, combined feature set at its output.
This output feature set is then used to train a single speaker model. Here, the idea is to
design a feature normalization module that transforms and combines the input feature sets
in some optimal (or near optimal) way for the purpose of training speaker models. The
question of how to transform or combine feature sets is central to this dissertation and will

be discussed in much greater detail in subsequent chapters.

input test feature final speaker model

utterance vectors feature for target
vector speaker i

—> x! —>

)

Y

—> x2 —>

feature _ feature-level
extraction combination

‘ (E{III-I\
~N
II'(./!‘:)'

=

X —> fi(x)

4

e

F

|

—> xK—>

Figure 2.3. High-level diagram of a speaker verification system that performs feature-level
system combination.

2.2 Classification Paradigms for Speaker Verification

The previous section describes the speaker verification problem and provides a general
overview of a typical speaker verification system. In Section 2.3 and in Section 2.4, we dis-
cuss the two main classification paradigms used in contemporary speaker verification. These
include Maximum Likelihood (ML) classification, which involves modeling the conditional
probability density function (pdf) of the utterance space given either the target speaker or
the impostor speakers. Our discussion of ML classification will focus mainly on Gaussian
mixture models (GMMs), which are used to estimate pdfs. GMMs have traditionally been
among the most widely-used tools for modeling speaker characteristics, and one of the most
successful for performing speaker verification. We will also provide a brief overview of other
ML classification techniques that have played a significant role in speaker verification—for

example, hidden Markov models (HMMs) and n-gram models.

Section 2.4 is devoted to the more recent paradigm of SVM-based speaker verification,
where SVMs are used to train speaker models. In recent years, support vector machines

have become one of the most important and widely-used classification techniques within the

field of speaker verification. Section 2.4 provides a high-level overview of the various feature
sets (a.k.a. “systems”) that have been developed for SVM-based speaker verification. A

detailed description of support vector machines is provided in Chapter 3.

2.3 Maximum Likelihood Classification for Speaker Verifica-

tion

Until recently, the field of speaker verification has been largely dominated by maximum
likelihood (ML) techniques for performing classification. The primary feature of these tech-
niques is that they attempt to model the conditional probability density function (pdf) of
the utterance space for both the target speaker and the impostor speakers. In the ML
framework, a given test example x is classified as belonging to the class with the highest
conditional pdf for x. We represent the conditional pdf of x as fy|,,, where y; € {-1,1}
denotes the particular model. By convention, a value of 1 for y; denotes the model for
target speaker i, and a value of —1 denotes the model for the impostor set. Given fy,, for

y; € {—1,1}, we can form the log-likelihood ratio for x given target speaker i as follows:

Fxlyi=1(x))

LLR(x ; i) = log (f —
X|Yi=—

In ML classification, the log-likelihood ratio for test utterance x given target speaker ¢ is

typically used to define the corresponding output score, f;(x):
fi(x) 2 LLR(x ; 9).

Given the above assignment for f;(x), we note that if f;(x) is greater than zero, then ML
classification yields the output hypothesis, g;(x) = 1. Similarly, if f;(x) is less than zero,
then we have the hypothesis, §;(x) = —1. Thus, we can use the decision rule in (2.1) to

obtain the output hypothesis, 7;(x).

10

2.3.1 GMDM-based Classification

The most common form of ML estimation in speaker verification involves using Gaus-
sian mixture models (GMMs) to estimate the pdfs of the utterance space. The GMM-based
approach for speaker verification is largely inherited from the field of automatic speech recog-
nition, where GMMs are used to model pdfs for phonemes and for other speech units. In
most GMM-based systems, the input conversation sides are divided into short-time “frames”
of speech. These frames are typically about 30ms in length and are sampled at 10ms in-
tervals. A set of mel-frequency cepstral coefficients (MFCCs) are extracted for each speech
frame (Davis and Mermelstein [1980]). For example, the state-of-the-art GMM system doc-
umented in Kajarekar et al. [2005b] extracts a total of 19 MFCCs for each 30ms frame of
input speech. The MFCCs are concatenated with a set of so-called delta features, which
represent the first and second differences between the MFCCs in the current frame and
those in the adjacent frames. Further details on feature extraction for GMM-based speaker

verification can be found in Reynolds et al. [2000]; Kajarekar et al. [2005b)].

After performing feature extraction, the system in Kajarekar et al. [2005b] uses a GMM
to model the unconditional pdf of x, which we represents as fx. The unconditional pdf of
x is often referred to as the speaker-independent acoustic model. Given the large number
of speakers in most speaker verification training sets, fx is typically used as a universal

estimate for the conditional pdf of the impostor set, fy,,—_1. In other words, we use the
approximation, fyj,,—_1 ~ fx for all <. The conditional pdf of target speaker 7 is typically
estimated by adapting the speaker-independent acoustic model (i.e., fx) to the training data
for that speaker. We refer to this pdf as a speaker-dependent acoustic model for speaker
i. Common techniques for performing adaptation include mazimum a posterior (MAP)
adaptation (Gauvain and Lee [1994]) and mazimum-likelihood linear regression (MLLR)
(Leggetter and Woodland [1995]). After obtaining fy,, for y € {—1,1}, we can use the

equations prescribed in the previous section to compute log-likelihood ratios and output

scores for target speaker s.

11

2.3.2 HMM-based Classification

GMM-based systems are typically among the top-performing systems on speaker veri-
fication tasks. However, GMMs are often criticized for their inability to capture sequence
information in speech. For example, since words usually span many frames, GMMs tend to
be poorly suited for modeling differences in word usage (idiolect) between speakers. Indeed,
the GMM-based approach is often referred to as a “bag of frames,” because GMMs are in-
variant to the sequence in which frames appear in a conversation side. One way to address
this issue is to use hidden Markov models (HMMs) to model the pdfs and conditional pdfs
of the utterance space. Unlike GMMs, HMMs incorporate sequence information into their
likelihood estimates. HMMs are also, by far, the most widely-used tool for modeling speech

within the field of automatic speech recognition (Rabiner and Juang [1993]).

HMMs typically work well on text-dependent speaker verification tasks, where the speak-
ers are instructed to read a given word or phrase (Rosenberg et al. [1990, 1991]). HMMs
have also achieved some success on text-independent tasks like the tasks that we consider in
this dissertation. For example, Boakye and Peskin used word-constrained HMMs to build a
text-independent speaker verification system in Boakye and Peskin [2004]. This work played
a significant role in ICSI’s submission for the NIST 2005 speaker recognition evaluation, in
which ICSI achieved the second-best results out of all participating sites on the so-called

“common condition” (Mirghafori et al. [2005]).

2.3.3 N-gram Models

Another effort at moving beyond the standard GMM-based paradigm is to explicitly
model sequences of phones and/or words used by speakers. This line of research was pio-
neered by Doddington, who used counts of word n-grams to model speaker-specific patterns
of word usage (Doddington [2001]). In Doddington’s paper, the counts are obtained from the
output of an automatic speech recognition (ASR) system. As in the GMM-based approach,

Doddington’s approach involves computing the log-likelihood ratio (LLR) for every pair of

12

test utterance and target speaker. Doddington used the following equation to compute the
LLR for test conversation side x and target speaker model k:

p(di|spki)
LLR(x; k) p(d;|x 2.2
Z) o " ilbkg) (22)

Here, p(d;|x), p(d;|spky), and p(d;|bkg) refer to the prior probability (or equivalently, the
relative frequency) of word n-gram d; within conversation side x, speaker model k, and
within the background model, respectively. In principle, this equation can be applied not
only to word n-grams, but to any n-gram unit—for example, n-grams based on speech
phonemes. As in the GMM-based approach, the LLRs defined by the above equation are

used as output scores in a speaker verification system.

An approach similar to Doddington’s has also been used to model patterns of phoneme
usage in speech. This line of research, which is sometimes referred to as phonetic speaker
recognition, was introduced by Andrews et al., who used relative frequencies of phone n-
grams derived from a speech recognizer to capture patterns in an individual’s speech (An-
drews et al. [2001, 2002]). This work was subsequently extended in various papers, such as
the work of the “SuperSID” team at the JHU 2002 Summer Workshop (Jin et al. [2003];
Navratil et al. [2003]; Klusacek et al. [2003]; Reynolds et al. [2003]). In 2003, Campbell et
al. used support vector machines (SVMs) to train phonetic speaker models (Campbell et al.
[2003]). Subsequent improvements to this paradigm are described by Hatch et al. [2005].
The n-gram models described here are typically less effective than GMM-based systems on
speaker verification tasks. However, these models tend to yield significant improvements in

classification error when combined with GMM systems (Hatch et al. [2005]).

2.4 Speaker Verification with Support Vector Machines

Until fairly recently, the GMM-based approach described in Section 2.3 was widely re-
garded as the standard in state-of-the-art speaker recognition technology. However, over

the past few years, the field of speaker recognition has essentially been transformed by sup-

13

port vector machines (SVMs), which now play an important role in most high-performance
speaker recognition systems. Support vector machines are specifically designed for binary
classification tasks, and they tend to work particularly well on tasks where the dimension-
ality of the feature space is large compared with the total number of training examples.
These properties make SVMs well-suited for speaker verification tasks, where the input
feature spaces are large (typically between 10000 to 100000 features), and the number of
training examples is comparatively small (typically between one and eight target examples

and several thousand impostor examples).

Most SVM-based speaker recognition systems train a separate SVM for every combina-
tion of target speaker and feature set. Typically, each SVM is trained in a one-versus-all
(OVA) setting, where the conversation sides of the target speaker are used as the positive
examples and the conversation sides of the impostor speakers are used as the negative ex-
amples. The SVM-based scoring function for a given target speaker i is used to define the
corresponding speaker model, f;. In the following sections, we provide an overview of SVM-
based speaker recognition and describe some of the most widely-used feature sets within
this field. A more in-depth introduction to SVMs is provided in Chapter 3. We also provide
an overview in Chapter 4 of the various feature transformations and kernel functions used

in SVM-based speaker verification.

2.5 Feature Sets for SVM-based Speaker Verification

The following section provides a brief description of some of the most commonly-used

feature sets in SVM-based speaker verification.

2.5.1 Cepstral Features

One of the most widely-used feature sets in SVM-based speaker verification is the so-

called cepstral SVM system, which was first introduced by Campbell [2001]. (Note that we

14

use the terms, “system” and “feature set,” interchangeably in this section). Cepstral SVM
systems are essentially the SVM-based counterparts of the Gaussian mixture model (GMM)
systems described in Section 2.3. A typical cepstral SVM system extracts ~13 cepstral
features per speech frame. An intermediate set of features is then formed by computing
various derivatives of the cepstral features, which are transformed into a polynomial vector,
typically of degree 3 or less. The polynomial vectors are then averaged over an entire
conversation side to arrive at the final feature representation (Campbell [2001]). Most
state-of-the-art implementations of the cepstral SVM have in excess of 10000 features per
feature vector. In a comparison of SVM-based speaker verification systems (i.e., feature
sets), the lowest error rates are typically achieved by cepstral SVM systems and by MLLR-

SVM systems, which we describe next.

2.5.2 MLLR Features

MLLR-SVM systems use feature vectors composed of transform coefficients obtained
from a mazimum-likelihood linear regression (MLLR) (Leggetter and Woodland [1995]). The
MLLR approach involves training a linear transformation to map the means of a speaker-
independent GMM into a new set of means for a given conversation side. This approach was
originally developed to transform speaker-independent acoustic models (i.e., GMMs) into
speaker-dependent models for speech recognition tasks. However, Stolcke et al. recently
showed that MLLR can also be used to capture speaker-specific information for performing
speaker verification. The MLLR-SVM systems described in Stolcke et al. [2005, 2006] use
MLLR transform coefficients to construct feature vectors for performing speaker verification
with SVMs. A typical MLLR-SVM system may have in excess of 12000 features per feature
vector. The MLLR-SVM systems that have been reported so far in the literature have been
shown to yield superior results over most other feature sets. We note that MLLR-SVM

systems form the basis for many of the experiments that we report in Chapters 6 and 8.

15

2.5.3 N-gram Features

Another common paradigm in SVM-based speaker verification is n-gram or count-based
feature extraction, where each feature represents the relative frequency of some n-gram event
(e.g., a word or a phoneme). Feature sets based on relative frequencies of n-grams were
previously described in Section 2.3.3 in the context of ML classification. In recent years,
these feature sets have also played a significant role in SVM-based speaker verification.
For example, a number of papers have been written on the use of relative frequencies of
phone (i.e., phoneme) n-grams as features for SVM-based speaker verification (Campbell
et al. [2003]; Hatch et al. [2005]). Phone n-gram systems typically use anywhere from
2000 to 50000 n-gram based features per feature vector. SVM-based phone n-gram systems
consistently outperform their ML-based counterparts. However, phone n-grams have, so far,
failed to achieve the same level of classification accuracy as other SVM-based systems—most
notably, the cepstral and MLLR-SVM systems described in the previous subsections. Phone
n-gram systems have also failed to yield significant improvements when combined at the

score-level with state-of-the-art speaker verification systems.

Other types of n-gram systems include the word n-gram system described in Kajarekar
et al. [2005a]. This system forms the SVM-based analog of the word n-gram system de-
veloped by Doddington [2001]. As with phone n-grams, word n-grams tend to give better
results in SVM-based systems than in ML-based systems. The word n-gram system de-
scribed in Kajarekar et al. [2005a] performs poorly when tested as a stand-alone system,
but yields significant improvements when combined at the score-level with a state-of-the-art

speaker verification system.

Other notable feature representations include so-called SNERF' n-grams, which model
n-gram frequencies of prosodic events at the syllable level (Shriberg et al. [2004]; Kajarekar
et al. [2003]). These feature sets typically have over 30000 features per feature vector, where
each feature represents the frequency of a particular n-gram event. Although less effective in

isolation than most “acoustic” feature sets (e.g., cepstral SVM and MLLR-SVM systems),

16

SNERF n-grams tend to yield significant improvements in overall accuracy when combined

at the score-level with other systems.

2.6 Score Normalization

We can use the techniques described in the preceding sections to train speaker models
for all target speakers in a given training set. In general, these speaker models will tend to
produce scores that discriminate between utterances that belong to the given target speaker
and utterances that do not. However, because the speaker models are trained independently
of one-another, the resulting output scores may be biased. More importantly, the output
scores may have biases that differ significantly conditional on the speaker model for which
they were computed. For example, the scores for the positive and negative trials of speaker
model 7 (i.e., the trials where test utterances belong to speaker i and the trials where they
do not) may be centered around 0.5 and 0, respectively, while the scores for the positive
and negative trials of speaker model j are centered around 0 and —0.5. Similarly, an output
score may be biased conditional on the test utterance for which it was computed. In either
case, the resulting output scores will not be “aligned” properly—especially if we plan to use
a single, fixed score threshold over all speaker models and test utterances. To correct for

this, most speaker verification systems apply various normalizations to the output scores.

The two most common forms of score normalization for speaker verification are zero-
normalization (ZNORM) (Reynolds [1997]) and test-normalization (TNORM) (Aucken-
thaler et al. [2000]). The ZNORM approach involves computing impostor scores—that
is, scores for impostor or negative trials where the given test utterance does not belong to
speaker +—on some set of background data for every speaker model. The output scores are
then shifted and scaled in such a way that the impostor scores have a fixed sample mean
and sample variance for every speaker model. The TNORM approach is similar to ZNORM
except that it normalizes the output scores across test utterances instead of across models.

TNORM can be applied to a given test utterance x by first scoring x with a set of “impostor

17

models” (i.e., speaker models that do not “belong” to x). This gives us a set of impostor
scores for x. We then shift and scale all output scores obtained with x in such a way that
the impostor scores for x have a fixed sample mean and sample variance. The TNORM and
ZNORM approaches tend to yield significant improvements in classification performance on
most speaker verification tasks. Note that these techniques can also be combined—that is

we can apply ZNORM after TNORM or vice-versa—to perform score normalization.

2.7 System Combination

In Section 2.1.1, we briefly described the problem of combining multiple feature sets and
information sources in a single speaker verification system. This problem, which we refer
to as system combination, is typically handled by combining various individual systems and
feature sets at the score-level. A diagram of this type of system combination is provided
in Figure 2.2. In many state-of-the-art speaker verification systems, the final output scores

are computed as a weighted sum of the scores of the individual systems:
fix) =0 £ (x).
J

Here, o; represents the weight of the jth subsystem—that is, the jth feature set. Various
techniques can be used to train these weights. For example, many top-performing systems
use a single-layer perceptron to train weights for the various subsystems (Kajarekar et al.
[2005b]; Mirghafori et al. [2005]). Support vector machines (SVMs) have also recently been
used for this purpose (Garcia-Romero et al. [2003]). Other notable techniques for performing

score-level combination for speaker verification are described in Ferrer et al. [2005b].

The techniques decsribed above provide a convenient and relatively straightforward
means of combining feature sets (i.e., subsystems) into a single system. However, as de-
scribed in Section 2.1.1, one potential problem with score-level combination is that the
feature sets are assumed to be independent of one-another conditional on the output scores.

In other words, the feature sets are only allowed to “interact” with each other at the score

18

level, which means that most task-relevant interdependencies between the feature sets—
if they exist in the first place—will be lost. Viewed from the perspective of information
theory, score-level combination can have the effect of reducing the channel capacity of the

classification system, which essentially places a lower bound on classification error.

One of our goals in this thesis proposal is to address this problem by performing what we
refer to as early combination or feature-level combination—that is, training speaker models
on one single combined set of features rather than combining feature sets at the level of
output scores. The concept of feature-level combination is illustrated in Figure 2.3. In the
context of SVM-based classification, early combination boils down to the question of how
to select or learn a single kernel that can handle features from multiple knowledge sources.
This topic will be addressed in greater detail in subsequent chapters. First, we provide a

brief introduction to support vector machines in Chapter 3.

19

Chapter 3

Support Vector Machines

The following chapter provides an overview of the learning system known as the support
vector machine (SVM). We begin the chapter with some background on SVMs, including
a brief introduction to the related concepts of structural risk minimization, VC dimension,
and optimal margin classifiers (Boser et al. [1992]). This is followed in Sections 3.2 and
3.3 with descriptions of the so-called hard-margin and soft-margin SVMs. Throughout this
chapter, we refer to various concepts from the field of convex optimization. These concepts
include, for example, linear programs (LPs), quadratic programs (QPs), convez duality, and
the notion of a convex optimization problem. A thorough description of these concepts can

be found in the book by Boyd and Vandenberghe [2004].

3.1 Background

The term support vector machine refers to a system for learning functions of the form,
f(x) = wl'®(x)+b, where x represents an input vector, w € RY and b € R represent trained
parameters, and ® : X — F represents a mapping from the input space X to some feature
space F. Typical applications of SVMs include regression, where f(x) is trained to map x to

some set of desired output values, and binary classification, where the set {x : f(x) =0} is

20

used to define a separating hyperplane between two classes in F. Support vector machines
are based on various concepts of statistical learning theory that have been developed over
the course of several decades by Vladimir Vapnik and his associates. These include the
concept of structural risk minimization, which involves constructing and minimizing upper
bounds on the probability of misclassifying future data. We refer to the probability of
misclassification as the risk for a given dataset and classifier. Structural risk minimization
differs significantly from the more conventional approach of empirical risk minimization,
where classifiers are trained to minimize the empirical error incurred on a training set. (In
practice, empirical risk minimization is often performed using gradient descent along with a
stopping criterion, where training is halted once the classification error stops decreasing on a
cross-vaidation dataset). Vapnik and his associates introduced various upper bounds on risk
that depend on both the empirical risk—that is, the error incurred on a given training set—
and on various notions of the capacity of a learning system. Within the field of classification,
the term capacity essentially refers to complexity of a given family of decision boundaries.
In general, greater capacity corresponds with greater modeling power. Thus, increased
capacity can lead to reductions in the empirical risk. However, greater capacity can also
increase the risk of overfitting. A sensible strategy for training classifiers therefore involves
minimizing the empirical risk while also limiting the capacity (or vice-versa). This strategy
forms the basic intuition behind structural risk minimization and behind the support vector

machine.

3.1.1 VC Dimension

Vapnik’s upper bounds on risk lead to a particular notion of model capacity called the
Vapnik-Chervonenkis or “VC” dimension. The VC dimension of a family F' of classifiers is
defined as the maximum number N of non-colinear examples which, for any set of labels
in {—1,1}", can be perfectly separated by a function in F. For example, let us define F
to be the set of all possible hyperplanes in R?. Any set of three non-colinear examples can

be separated by at least one function in F'. However, the same is not true for any set of

21

four examples. Thus, the VC dimension of F is three, in this case. We can extrapolate this
example to show that if F' is composed of all hyperplanes in R”, then the VC dimension of
Fis n+1. In general, we would like to minimize the VC dimension of F' while at the same
time minimizing empirical risk. Vapnik and his colleagues use this strategy to motivate the
concept of optimal margin classifiers (Boser et al. [1992]), which leads directly to the hard-
margin SVM. Given a set of labeled data, S = {(x1,v1),..., (Xn,yn)}, where S is linearly
separable, the optimal margin classifier for S is the hyperplane that is maximally distant
from the nearest positive and negative examples. An example of an optimal margin classifier
is shown in Figure 3.1. The figure shows two classes—a green class and a yellow class—
along with a hyperplane that is equidistant from the nearest green and yellow examples.
The minimum distance from the hyperplane to the nearest example represents what we
refer to as the geometrical margin of the dataset (for simplicity, we will simply refer to this

quantity as the margin throughout the following sections).

3.2 The Hard-Margin SVM

In this section, we describe a framework for obtaining the optimal margin classifier for
a given dataset. This framework leads directly to the the so-called hard-margin SVM—the
original SVM formulation derived by Vladimir Vapnik and his colleagues. We begin by
defining the affine function f:

f(x) 2 wlx+0.

We refer to f as the scoring function of the SVM. Here, x represents an input feature vector,
w represents a weight vector, and b represents a bias term. The parameters of the SVM are
given by w and b. Given the scoring function f, we use the set {x : f(x) =0} to define a
separating hyperplane for performing classification. This is equivalent to using the decision

rule in equation (2.1) to arrive at classification hypotheses.

Given f and given a set of labeled training data, S = {(x1,v1),..., (xn,yn)}, where

yi € {—1,1} represents a binary class label, we use the term p;(w,b) to represent the

22

geometrical margin of example x; given parameters (w,b). This is defined as follows:

T

If example x; is correctly classified by the hyperplane {x : f(x) = 0}, then p;(w,b) simply
represents the minimum Euclidian distance from x; to the hyperplane. Given p;(w,b), we

define p(w,b) as the minimum geometrical margin over all examples in S:
P(W, b) = m.in Pi (Wa b)
(3

The above quantity is commonly referred to as the geometrical margin of S (Schoelkopf and

Smola [2002]).

If the examples in S are linearly separable, then we can obtain the optimal margin

classifier for S by solving the following optimization problem:

max plw;,b),
w,b

= maxmin p;(w,b).
w,b i

We can change the maximization over min; p;(w, b) into a minimization over max; m to
(2)

obtain the following equivalent problem:

maxmin p;(w,b),
w,b ¢

= 1 a. — .
b i y(wTx +b)

The above problem is homogeneous in w under the constraints, 1 < y;(w!x + b) for all
i. (These constraints stipulate that S must be linearly separable, which is one of our
assumptions). Thus, we can restate the optimization problem shown above in the following

equivalent form:
min wlw (3.1)
w,b

subject to 1 < y;(wl'x; +b), Vi.

23

@) ™

Figure 3.1. Example an optimal margin classifier (i.e., a hard-margin margin SVM). The
decision boundary is represented by the set of points {x : f(x) = 0}.

The above problem forms what we refer to as the primal problem of the hard-margin SVM.
An example of a hard-margin SVM is shown in Figure 3.1. We note that the hard-margin
SVM in (3.1) has the form of a specific type of convex optimization problem called a
quadratic program (QP). Since the problem is convex, we can obtain a global solution to (3.1)
by using standard gradient descent techniques. We note however, that in practice, the hard-
margin SVM is typically solved by using interior point methods for function optimization.
Further information on these methods and on other topics in the field of convex optimization

can be found in Boyd and Vandenberghe [2004].

The primal problem in (3.1) can be converted to an equivalent dual problem, which has
the following form:

max 2071 — oA X XA a. (3.2)
«
aT;_q:[]

Here, we use 1 to represent a column vector of N ones. The terms, y, Ay, and X, are

24

defined as follows:

Y < [yla"'ayN]Ta
Yi, if @ = ja
[Aylij = {
0, if i# 7,
X 2 [xq,...,xy]L.
We also define o £ [ay,...,an]". Here, o; represents a dual variable, which we use to

enforce the constraints, 1 < y;(w!'x;) +b for all i. We note that the primal variable w does
not explicitly appear in the dual formulation. However, w can be obtained from « through

the following equation:
N
W = Z QY X5
i=1

The above solution for w follows from the derivation of the dual problem in (3.2). Substi-
tuting this expression into the equation for f(x) gives us
N
Fx) =) aix]x+b. (3.3)
i=1
After solving for the optimal values of a and w, which we represent as a* and w*, we can
use the constraints of the primal problem in (3.1) to obtain the following solution for the
bias term b:
1
b* = —=- (max w* x + minw*Tx>
yi=—1 yi=1

3.2.1 The Kernel Trick

In this section, we examine the so-called “kernel trick” introduced by Vapnik and his
colleagues. The kernel trick allows us to implicitly map the x terms in an SVM from a
so-called input space, X, into a new, potentially high-dimensional feature space, F. This
mapping is implemented through a positive semidefinite function called a kernel. The key
observation behind the kernel trick is that the x terms only appear in the form of inner

products in both the dual problem of (3.2) and in the scoring function of (3.3). Thus, we

25

can apply the feature mapping ® : RY — RM to the input feature vectors by replacing

every inner product, xlTxQ, with the kernel function k:
k(Xl,Xg) = (I)(Xl)T(I)(XQ).

Here, L represents the dimensionality of the input space X and M represents the dimen-
sionality of the output feature space F. Any function k£ that can be expressed in the above
form for some feature mapping ® can be used as a kernel. Equivalently, we say that k is
a valid kernel if and only if k forms a positive semidefinite mapping on R* x R, This
means that we can define valid kernel functions without knowing the exact form of their
corresponding feature mappings. We can also define kernels that implicitly map the input
space into high-dimensional, and even infinite-dimensional feature spaces. One well-known

example of this is the Gaussian kernel, which is defined below:

2

X1 — X
E(xi, %) 2 exp(— %)
Here, o represents the so-called width parameter of k. The Gaussian kernel implicitly maps

the input feature vectors into an infinite-dimensional feature space F using a mapping whose

exact form is unknown (at least by me!).

3.2.2 Generalized Linear Kernels

SVMs always train linear or affine decision boundaries in the feature space F (i.e., the
space to which the input feature vectors are mapped by ®). However, these same decision
boundaries can often be highly non-linear when viewed in the original input space X. Thus,
one of the main motivations behind using kernels like the Gaussian kernel is that they yield
non-linear decision boundaries in the input space, X. This can be useful for datasets where
the classes are not linearly separable. However, non-linear decision boundaries typically
yield little or no benefit over the standard linear or inner-product kernel—that is a kernel
of the form k(x1,x3) = xI xo—on tasks where the data are linearly separable (or at least

approximately separable). We also note that the potential benefits of projecting data into

26

a high-dimensional or infinite-dimensional space can be dubious when the input feature
vectors already have high dimensionality, relative to the number of training examples. For
example, in speaker verification, the input feature vectors often have a dimensionality of
20000 or more (this is true of the MLLR-SVM system described in Stolcke et al. [2006];
Hatch et al. [2006]; however, the total number of positive training examples is typically
small (between one and eight), and the total number of negative training examples is also
relatively small—typically no more than 5000. Moreover, the distributions of these feature
vectors appear to have a high degree of linear separability. For feature sets such as this,
we argue that it makes sense to constrain f, and hence the decision boundary defined by
{x : f(x) =0}, to the set of all affine functions in the original input space, X'. Based on

this argument, we will focus primarily on kernel functions of the following general form:
k(x1,%9) = x] RX.

Here, R represents a square, positive semidefinite parameter matrix. The above kernel can

implement any linear feature mapping of the form

where A is a linear transformation matrix. Note that R = ATA in this case. In the
following chapters, we will refer to functions such as k as generalized linear kernels. Chapter
4 provides some background on training kernel functions and kernel parameters, including

various techniques for training generalized linear kernels.

3.3 The Soft-Margin SVM

One caveat of the hard-margin SVM is that it can only be applied to datasets that
are linearly separable in feature space, F. In practice, one might wish to have an SVM
formulation that is guaranteed to yield a decision boundary for any choice of dataset—even
datasets that are not linearly separable in the given feature space. To accomplish this,

Vapnik and his colleagues devised what is commonly referred to as the soft-margin SVM.

27

£Ax)=0 —=® hinge-loss

Figure 3.2. Example of a I-norm soft-margin margin SVM. The decision boundary is
represented by the set of points {x : f(x) =0}.

Throughout this dissertation, we will focus specifically on the I-norm soft margin SVM,
which is perhaps the most well-known and widely-used among the various soft-margin SVM
formulations. The primal problem of the l1-norm soft-margin SVM is given below. For
brevity, we simply refer to this formulation as the “soft-margin SVM” throughout the

remainder of this chapter:

. T
min w w+ C i 3.4
min > (3.4

1 - 61 < y’i(WTx’i + b)a VZ7
subject to
0<¢ Vi
An example of a 1-norm soft-margin SVM is shown in Figure 3.2. The soft-margin SVM
defines a set of slack wvariables, which are represented as ¢ 2 [¢],...,&x] in the above
problem. These variables allow for violations of the margin by relaxing the linear constraints:
1 <y;(wl'x; +b) for all i. However, every violation also incurs a penalty (note the C'Y";&;

term in the objective function). From the above optimization problem, we see that each

slack variable &; can be represented as

&= (1 —yi(whx +b))s,

> 1(ys(w'x; +b) <0).

28

Here, ()4 = z-1(z > 0), and 1(y;(wl'x; + b) < 0) represents the 0 — 1 error function on
example x;. The above relationship shows that &; forms an upper bound on the event that
example x; is misclassified. We refer to this upper bound as the hinge-loss of example x;.
As shown in (3.4) the soft-margin SVM attempts to maximize the margin of the decision
boundary by minimizing w’w, while also minimizing the total hinge-loss, > &. The
tradeoff between maximizing the margin and minimizing hinge-loss is controlled by the C'
hyperparameter, which is constrained to be positive. In practice, C is often tuned on a
cross-validation set. However, various techniques for analytically tuning C' have also been
proposed (Cristianini and Shawe-Taylor [2000]). In Chapters 6 and 7, we derive a new,

modified formulation of the 1-norm soft-margin SVM where C' is exactly specified.

The optimization problem in (3.4) has the following dual form:

max 2071 -l A,XTXAya. (3.5)
0=a=C
aly=0

We note that the above problem has the same form as the hard-margin dual in (3.2), except
that the «; terms are bounded above by C. The corresponding w vector also has the same
form as in the hard-margin SVM. Given w, we can compute the optimal (b,£) by solving

the following linear program (LP):

A

) 1-¢ < yi(wai +b) Vi,
subject to
0<¢ V.

The soft-margin SVM will play a pivotal role in the following chapters.

29

Chapter 4

Related Work in the Field of

Kernel Optimization

Our goal, in this dissertation, is to examine the problem of kernel optimization for
SVM-based speaker recognition, and more generally, for the problem of performing binary
classification in multiclass settings. In this chapter, we provide a brief summary of some
of the more notable techniques for performing kernel optimization from the literature. The
chapter covers a diverse set of techniques, including techniques that are not typically asso-
ciated with “kernel optimization.” For example, we have included a description of principal
component analysis and linear discriminant analysis—techniques that are typically asso-
ciated with topics such as feature selection, dimensionality reduction, and linear analysis.
More generally, these techniques can be viewed as examples of linear feature transforma-
tions. Hence, when applied to feature vectors in an SVM, these techniques represent instan-
tiations of a generalized linear kernel—that is, a kernel of the form, k(x1,x2) = x' Rxo,
where R is a positive semidefinite parameter matrix. The generalized linear kernel will play
a pivotal role throughout this dissertation. We also describe a number of kernel techniques
and feature transformations that have been developed specifically for speaker verification.

For example, we provide a summary of the nuisance attribute projection (NAP) technique

30

described in Solomonoff et al. [2004, 2005], and the n-gram frequency kernel of Campbell
et al. [2003]. Among non-linear feature transformations, we cover the rank-normalization
approach described in Stolcke et al. [2005]. In Chapters 6 and 8, we compare many of
these techniques with a new kernel approach that we refer to as within-class covariance

normalization (WCCN). This approach is derived in Chapters 5 and 6.

In this chapter, and throughout the dissertation, we pay particular attention to kernel
techniques and feature transformations that attempt to model information about clusters or
classes that reside within the data. Techniques such as this include linear discriminant anal-
ysis (LDA) and the nuisance attribute projection (NAP) technique described in Solomonoff
et al. 2004, 2005]. We refer to these as supervised techniques, because they require that
each training example x; be associated with a user-defined label, y;. Here, y; € {1,...,J}
can represent any of J classes. Given this label information, a supervised kernel technique
can train kernel functions that discriminate between the various classes. In the case of LDA,
NAP, and also the WCCN approach that we derive in Chapters 5 and 6, these approaches
often boil down to a single linear feature transformation that can be applied uniformly to
the input feature space. In Chapter 7, we show how our WCCN approach can be adapted
to the particular way in which the classes are partitioned—that is, the assignment of each
class to either the target set or the impostor set. We refer to this adaptive form of WCCN
as the adaptive, multicluster SVM (AMC-SVM).

We also provide a brief description of the so-called minimax probability machine (MPM),
a kernelizable learning system developed in Lanckriet et al. [2002]. The design of the MPM
differs significantly from a conventional SVM. However, the MPM is of specific interest to us,
because it incorporates information about the first and second-order statistics of both the
target and the impostor classes into the training procedure. This use of per-class statistics
makes the MPM remarkably comparable to some of the kernel-based techniques that we
develop in Chapters 5 through 8. These techniques use information about clusters in the

data to tighten the bounds on classification error in an SVM.

31

4.1 Multiple-Kernel Learning

One of the most well-known kernel learning techniques of the past few years is the
multiple-kernel learning paradigm of Lanckriet et al. [2004]; Bach et al. [2004]. Multiple-

kernel learning involves training kernel functions as weighted sums of other kernels:

k(x1,%9) = > oiki(x1,%2).
5

Here, k; represents a pre-defined kernel function, and o; represents the corresponding weight
parameter for k;. In Lanckriet et al. [2004]; Bach et al. [2004], the authors show how to
learn £ by minimizing the SVM dual problem in (3.5) with respect to o; for all 4. This
problem can be posed as a semidefinite program (SDP), which reduces to a second-order
cone program (SOCP) when the o; parameters are constrained to be nonnegative (Lanckriet
et al. [2004]; Bach et al. [2004]). The latter case was recently reformulated in Sonnenburg
et al. [2005] as a semiinfinite linear program (LP). Further information about LPs, SOCPs,
SDPs, and other convex optimization problems can be found in Boyd and Vandenberghe

[2004].

In its most recent instantiations, the multiple kernel learning framework tends to be
too slow to learn weights for more than a relatively modest number of kernels and training
examples (see Bach et al. [2004]; Sonnenburg et al. [2005] for the latest performance results).
Multiple kernel learning also provides no guidance on the question of how to choose a set of
basis kernels—that is, the k; functions. We also note that the implementations described in
Lanckriet et al. [2004]; Bach et al. [2004]; Sonnenburg et al. [2005] are designed for general
binary classification settings. These implementations make no attempt to use information
about clusters that reside within the positive and negative classes to obtain tighter bounds
on classification error. In Chapters 5 through 8, we show how these issues are at least
partially addressed by two new kernel techniques: within-class covariance normalization

(WCCN) and the adaptive, multicluster SVM (AMC-SVM).

32

4.2 Hyperkernels

Another well-known kernel optimization technique is the hyperkernels approach de-
scribed in Ong et al. [2003], where the usual notion of a kernel is expanded to include a
“kernel on kernels” (i.e., a hyperkernel). Hyperkernels implicitly perform kernel optimiza-
tion from within a parameterized family of kernels (for instance, a family of Gaussian kernels
of varying width parameter, o). However, as with multiple kernel learning, the hyperkernels
approach does not address the issue of how to choose a family of kernels or how to exploit

information about subclusters in the data to obtain tighter error bounds.

4.3 Principal Component Analysis (PCA) and Linear Dis-

criminant Analysis (LDA)

In this section, we discuss two classical techniques for performing linear feature selec-
tion and dimensionality reduction on an input feature space: principal component analysis
(PCA) and linear discriminant analysis (LDA). PCA and LDA are both implemented by
performing linear feature transformations on the input feature space. Hence, when applied
to feature vectors in an SVM, these techniques represent instantiations of a generalized
linear kernel—that is, a kernel of the form, k(xi,x2) = x! Rxy, where R is a positive

semidefinite parameter matrix.

Principal component analysis (PCA) is a linear technique for reducing the dimensional-
ity of an input feature space while retaining the maximum amount of signal energy. Given
an input space of dimensionality N, the goal in PCA is to obtain an orthonormal linear
feature transformation, f(x) = #7x, where 6 is defined as an N x P matrix with P < N,

such that 6 captures the “directions” of maximum energy in the original feature space. We

33

obtain @ by solving the following optimization problem:

max trace(f” CO)

subject to 070 =1.

Here, 6; represents the :th column vector of matrix 8, and C represents the overall covariance
matrix of the input feature space. The above problem is solved by 8* = Vp, where Vp rep-
resents the column matrix containing the top P eigenvectors of C—that is the eigenvectors
with the P-largest corresponding eigenvalues. In practice, C can be estimated empirically

as follows:
S
C== Zl(xn - %)(x, —x)7.
n=

Here, C represents the empirical covariance matrix computed from a set of N input training
examples. We use x,, to represent the nth training example and X to represent the overall
mean of the data. The PCA approach is independent of any associated set of class labels,
{y1,...,yn}, for the training data. Thus, we can view PCA as an unsupervised approach

for performing dimensionality reduction.

Unlike PCA, where the goal is to find orthogonal directions in feature space that retain
maximum signal energy, the goal in linear discriminant analysis (LDA) is to find orthogonal
directions that are “optimal,” in some sense, for discriminating between classes. Here, the
“optimality” of a given direction is measured as the ratio of between-class variance to

within-class variance. We can compute this ratio as follows:

w!'Cpw
TW) = ST w

The quantity J(w) represents the ratio of between-class variance to within-class variance
for a given direction, w, in feature space. This quantity is traditionally referred to as the
Rayleigh coefficient for direction w. Given a feature space composed of J classes, we use Cp

and Cy to represent the between-class covariance matriz and the within-class covariance

34

matriz over all classes. These are defined as follows:

J
Cw £ pi)Ci,
=1

Here, C; and p(i) represent the covariance matrix and the prior probability of the ith class.

The terms X; and X represent the mean of class ¢ and the overall mean of the data.

The goal in LDA can be stated as follows: we would like to find the orthonormal linear
feature transformation, f(x) = 67x, where 6 is defined as an N x P matrix with P < N, such
that the Rayleigh coefficient of each direction in the resulting feature space is maximized.
It can be shown that this problem is equivalent to maximizing the ratio of determinants of

HTCBH to GTCWG:

. 107C 0]
e eTewel

Here, the optimal 0 has a closed-form solution given by 8* = Vp, where V p represents the
column matrix containing the top P eigenvectors of C BC;Vl—that is the eigenvectors with
the P-largest corresponding eigenvalues. A detailed discussion of LDA, including a set of

proofs for the main results, can be found in Fukunaga [1990].

4.4 Adaptive Feature Scaling and Relevence Determination

Other notable techniques for kernel optimization include the techniques described in
Weston et al. [2000] and Chapelle et al. [2002]. In these papers, the authors use a set of
generalization bounds as objective functions for optimizing various kernel parameters. For
example, in Chapelle et al. [2002], the authors use the radius-margin bound described in
Vapnik [1995], along with other bounds, as objective functions for simultaneously optimizing
the width parameter of a Gaussian kernel and the SVM hyperparameter C. The authors also

use a similar approach to train per-feature scaling factors for a standard, linear SVM. For an

35

L-dimensional feature space, this boils down to the problem of training o = [0y, ...,0r]",

where o; > 0 for all ¢ € {1,..., L} in the following kernel function:
E(x1,%2) = X1 Agxa.

Here, A, represents an L x L diagonal matrix, where A,,, = 0;. The above kernel represents
a special case of a generalized linear kernel, where the R parameter matrix is constrained
to be diagonal. The problem of training o is often referred to as adaptive feature scaling,
relevence determination, or soft feature selection. In Chapelle et al. [2002], the authors
iterate between maximizing the SVM dual problem with respect to « for some fixed value
of o (i.e., the standard SVM problem) and minimizing the given generalization bound—for
example, the radius-margin bound of Vapnik [1995]—with respect to o for fixed . The
latter minimization is achieved by performing gradient descent with respect to o on the
generalization bound. In Grandvalet and Canu [2003], the authors propose a modified
approach, where the optimization over o is incorporated into the SVM dual problem. The
result is an optimization procedure that only uses a single objective function. As in Chapelle
et al. [2002], this approach again leads to a slightly complicated, iterative procedure for
obtaining the optimized values of 0. The authors of Grandvalet and Canu [2003] note that
their approach is related to some successful soft feature-selection techniques, such as lasso
and bridge (Hastie et al. [2001]) and Automatic Relevence Determination (ARD) (Neal
[1996]). Other approaches for performing adaptive feature scaling are described in Bradley
and Mangasarian [1998]; Jebara and Jaakkola [2000].

The adaptive scaling approaches described in Chapelle et al. [2002]; Grandvalet and
Canu [2003] provide a means of training a constrained form of a generalized linear kernel
(i.e., the R parameter matrix is constrained to be diagonal). These approaches are techni-
cally supervised in the sense that they depend on the partitioning of the data into target
and impostor sets. However, as was the case with multiple kernel learning and hyperkernels
these approaches may be somewhat limited by the fact that they do not take information

about clusters that reside within the data into account when optimizing k. We also note

36

that these approaches are generally not convex, and that their minimization relies on gra-
dient descent procedures that can be complicated and inefficient. In Chapters 5 through 8,
we derive a framework for training unconstrained generalized linear kernels through convex
optimization. These techniques are supervised in that they use cluster information to obtain

bounds on classification error.

4.5 The Minimax Probability Machine

In this section, we briefly describe the so-called minimaz probability machine (MPM),
a kernelizable system for training affine decision boundaries for binary classification tasks
(Lanckriet et al. [2002]). The decision boundary in an MPM is defined by {x : f(x) = 0},

where f has the same general form as in an SVM:
f(x) =wix+0.

As we will show, the MPM training formulation is different than that of an SVM; thus, the
MPM does not directly fit into the SVM theme of this chapter. Nevertheless, the MPM is of
specific interest to us, because it incorporates information about the first and second-order
statistics of both the target and the impostor classes into the training procedure. This use
of per-class statistics makes the MPM remarkably comparable to some of the kernel-based
techniques that we develop in Chapters 5 through 8. These techniques use information

about clusters in the data to tighten the bounds on classification error in an SVM.

Let (X7, C7) represent the mean and covariance matrix of a target class, T, and let
(X7, C7) represent the mean and covariance matrix of an impostor class, Z. We would like
to train a decision boundary defined by {x : f(x) = 0} to separate these two classes.
Given (X7, C7) and (X7, Cz), the MPM trains the affine decision boundary that minimizes

the maximum probability of misclassification over all distributions of x5 and xz, where

37

x7 ~ (X7, C7) and x7 ~ (X7, Cz). This can be expressed as follows:
min « (4.1)
a,w#0,b

subject to sup p(wlxr+b<0)<a,
x7~(X7,C7)

sup p(wlixr+b>0)<a.

xz~(%z,Cz)
Here, « represents the maximum rate of false-positives or false-negatives over all possible
distributions of x7 and x7 that have the given means and covariance matrices. A formal
proof of this bound can be found in Marshall and Olkin [1960]. In Lanckriet et al. [2002],

the authors show that the optimization over w can be restated as follows:

min VwICrw + /wlCrw (4.2)

subject to w! (X1 — %7) = 1.

The optimization problem for the MPM is convex and can be computed by solving a second-
order cone program (SOCP). Further details on the MPM can be found in Lanckriet et al.

2002].

4.6 Kernels and Feature Transformations for Speaker Verifi-

cation

In this section, we discuss some of the more common kernels and feature transformations
used in SVM-based speaker verification. Because the feature sets in SVM-based speaker
verification tend to have high dimensionality—the feature sets described in Section 2.4
can have anywhere from 10000 to 100000 (or even more) dimensions—and because these
feature sets often allow for a high-degree of linear separability between speakers, most
SVM-based speaker verification systems use generalized linear kernels—that is, kernels of
the form, k(x1,x2) = x! Rxy, where R is a positive semidefinite parameter matrix. We

note that the total number of distinct parameters in a generalized linear is on the order of

38

N?/2, where N is the dimensionality of the input feature space. Thus, generalized linear
kernels tend to offer a high degree of modeling power when used in high-dimensional input
spaces. Unfortunately, this modeling power (or capacity as it was called in Chapter 2) also
increases the risk of overfitting. In Chapters 5 through 8, we show how this risk can be
managed by optimizing a set of bounds on classification error with respect to R. This
leads to a framework where R is modeled as the inverse of a positively-weighted sum of L
covariance matrices, where L is the total number of classes or “clusters” in the data. By
modeling R in this way, we effectively reduce the number of parameters of R from N2/2
down to L. In this section, we describe various types of generalized linear kernels that
have been successfully applied to speaker verification. We also describe the non-linear rank-
normalization technique developed in Stolcke et al. [2005] for normalizing feature vectors

prior to training SVM-based speaker models.

4.6.1 Generalized Linear Discriminant Sequence Kernels

One well-known kernel for performing SVM-based speaker verification is the so-called
generalized linear discriminant sequence kernel (GLDS) kernel of Campbell [2001, 2002].
The GLDS kernel essentially corresponds with the parameterization, R = C~!, where C
is the overall covariance matrix of the data. This choice of R is not directly tied to any
particular bound on classification error. However, the authors show that this parameteri-
zation performs a type of discriminative training on the kernel function, k(x;,x2), where
“positive” kernel entries (i.e., the values of k(x1,x2) where x; and x, belong to the same
class) are discriminated from the so-called “negative” entries, where x; and xy belong to
different classes. The parameterization R = C~! performs what we refer to as linear co-
variance normalization. Another common choice for R is R = diag(C)~!, where diag(C)
represents the diagonal component of C. This parameterization performs what we refer to
as per-feature variance normalization. In Chapter 6, we compare these parameterizations

with our own parameterizations for R on various speaker verification tasks.

39

4.6.2 N-gram Frequency Kernels

Another widely-used kernel function in speaker verification is derived in Campbell et al.
[2003]. The kernel function in Campbell et al. [2003] is never actually given a name; hence,
we will refer to it as the n-gram frequency kernel, since this name captures the main idea
behind its intended application. Unlike the GLDS kernel, the n-gram frequency kernel
is specifically designed for feature vectors whose entries represent relative frequencies of

n-grams. The form of the n-gram frequency kernel is given below:

k(A,B) = ﬁ/[: p(di|convSid€A) p(di|convSideB)
i—1 p(di|bkg) p(d;|bkg)

Here, p(d;|convSides) and p(d;|bkg) refer to the probability (i.e., relative frequency) of n-

(4.3)

gram d; within conversation side A and within the background model, respectively. The
above expression represents a kernelized version of the log-likelihood ratio of A given B, or
vice-versa. We can also express the n-gram frequency kernel in the form of a generalized

linear kernel, where the feature vector for conversation side A is defined as follows:

x4 2 [p(di|convSidey), . . . ,p(dN|convSideA)]T.

Under this interpretation, the R parameter matrix is diagonal, and [R]; = ———.
v/ p(dilbkg)

Thus, the n-gram frequency kernel performs a type of per-feature scaling on the input
feature space. Further details on this kernel can be found in Campbell et al. [2003]. We
note that within the field of speaker verification, n-gram frequency kernels are typically
applied to speech units such as phonemes and words obtained from an automatic speech

recognition system.

4.6.3 Nuisance Attribute Projection (NAP)

Another widely-used kernel technique in the field of speaker verification is the so-called
nuisance attribute projection (NAP) approach described in Solomonoff et al. 2004, 2005].
In its most commonly-used form, NAP is simply a variation of LDA where the between-

class covariance matrix is estimated as the identity matrix, I. Under this assumption, the

40

P-dimensional LDA transformation matrix 6 is equal to # = Vp, where the columns of
Vp represent the top P eigenvectors of C;Vl. (Equivalently, Vp represents the bottom
P eigenvectors of Cyy.) The NAP approach represents one of the most widely-used tech-
niques within the field of speaker verification for training generalized linear kernels. A more

thorough description of NAP can be found in Solomonoff et al. [2004, 2005].

4.6.4 Rank-Normalization

Among non-linear feature transformations for SVM-based speaker verification, one of
the most well-known and widely-used is the rank-normalization technique of Stolcke et al.

[2005]. Rank-normalization uses the following feature transformation:
N .
O(zy,) = N ar;;:riun |Tn — §nil-

Here, z, is the nth feature in feature vector x, and §, = {zp1,...,2, N} is a sorted
list of all instances of x, in the training data (i.e., Tpi < Tpo < oor < xn,N). Rank
normalization applies a non-linear mapping to the features in the training data so that the
resulting features are uniformly distributed over the interval, [0,1]. In many cases, this
normalization technique has been shown to yield significant improvements over per-feature
variance normalization and over covariance normalization in SVM-based speaker recognition

systems (Stolcke et al. [2005]).

41

Chapter 5

Error Bounds for Separable Data:
A New Derivation of the

Hard-Margin SVM

In this chapter, we develop a new theoretical framework for training what we refer to
as generalized linear kernels—that is, kernels of the form k(xi,x2) = x] Rxp, where x;
and x5 are vectors in the input space, and R is a positive semidefinite matrix. The theory
in this chapter focuses specifically on binary classification tasks, where the positive and
negative examples are linearly separable within the input feature space, X. We begin by
constructing a so-called class-independent upper bound on classification error, where all
classes in a given set (i.e., either the target set or the impostor set) are assigned the same
bounding function on the event of a misclassification. Minimizing this upper bound leads
to a learning system whose form is similar to the Minimax Probability Machine (MPM)
(Lanckriet et al. [2002]) summarized in Section 4.5. The class-independent bound can also
be extrapolated to obtain a class-dependent upper bound on classification error, where
the bounding functions are assigned on a per-class basis. We will show that minimizing the

class-dependent upper bound leads to a new, modified formulation of the hard-margin SVM.

42

This modified formulation prescribes a generalized linear kernel where R is the inverse of a

weighted sum of class covariance matrices.

The material in this chapter is organized as follows: Section 5.1 provides a descrip-
tion of our problem setting. Based on this setting, we construct a set of so-called class-
independent upper bounds on classification error in Section 5.2 and in Section 5.3. These
class-independent bounds are then extrapolated in Section 5.4 to obtain a corresponding
class-dependent bound. In Section 5.4, we also show how the class-dependent bound leads
to a new formulation of the hard-margin SVM and to an analytical form for the R parameter

matrix in a generalized linear kernel.

5.1 Problem Setting

In our problem setting, we are given a multiclass dataset composed of M disjoint classes,
where the classes are partitioned a priori into two disjoint sets: a target set, 7, and an
impostor set, T. We define y; € {—1,1} to be the so-called set label for class i. Classes that
belong to the target set are assigned a label of 1 and classes that belong to the impostor

set are assigned a label of —1. Thus, the target and impostor sets are defined as follows:

T:{iEl,...,M|yi:1},

I={i€l,...., M|y =—-1}.

Given 7 and Z, we would like to train a linear classifier that minimizes some measure of
binary classification error on these two sets. To do this, we begin by defining the function,
f, to be an affine scoring function, which we will use to define a decision boundary between
T and Z:

fx) 2vix+o.

Here, x € RV represents an input feature vector, v € R" represents a weight vector, and
b € R represents a bias term. Note that both v and b represent trainable parameters.

Given f, all test examples where f(x) > 0 are classified as belonging to 7, and all test

43

— 0-1 error function for impostor examples

1.5} // \“\.‘
/ \
1]
- . / \
05! _~~ impostor ™. |/ target
i examples \’\gl(amples i
0= : —

0

fx)

— 0-1 error function for target examples

1.5/ //' \\
1 /"' \\
m— /
- .y / \
| /’ 0 \\ / \
05 - impostor ™. |/ target N
i examples xamples
0”' - |

0

fx)

Figure 5.1. Illustration of 0 — 1 error functions. The figure on the left shows the decision
boundary for a set of target examples and for a set of impostor examples. The corresponding
score distributions and 0 — 1 error functions are shown on the right side of the figure.

examples where f(x) < 0 are classified as belonging to Z. We can evaluate the classification
performance of f by defining the risk metric, R(f), as
R(f)2 E 1)>0)+ E 1) < 0),
(2 E1((x) 20+ B 1(f(x;) <0)

=p(f(x;) 20]j € I) +p(f(x;) <0[j €T).

In the above definition, 1(f(x) > 0) represents the so-called 0 — 1 error function for the
impostor examples and 1(f(x) < 0) represents the 0 — 1 error function for the target
examples. We use the shorthand, E;jcz 1(f(x;) > 0), to denote the conditional expectation,
E(f(xj) > 0|j € I). These error functions are illustrated in Figure 5.1, along with the score
distributions for a particular target set and impostor set. Taking conditional expectations
over these error functions gives us the expected rate of false positives, p(f(x;) > 0]j € I)
and the expected rate of false negatives, p(f(x;) < 0|7 € 7). Our goal is to minimize some

upper bound on R(f) with respect to f—that is, with respect to v and b.

44

5.1.1 Notation and Additional Definitions

We use the following notation: Let x; be a random draw from class ¢, and let X; be the
mean of x;:

- A
X = E x;.

Here, the expectation, E x;, is taken over all vectors in class i. We define C; to be the

within-class covariance matrix for class #:
A _ _\T .
C; =E(x; —%;)(x; —%;)° V.

We also define C7 to be the expected within-class covariance matrix over all classes in the
target set and Cz to be the expected within-class covariance matrix over all classes in the

impostor set:

Cr2 E C;
TjeT 7

Cr£ E C;j.
JET

The overall covariance matrix and the expected within-class covariance matriz overall all

classes are represented by the symbols, C and Cyy:

C£ je{]P%I} (xj — %)(x; —%)7,

Cw2 E C..
Vet !

To simplify our notation in the following sections, we define p; to be the probability of class

j conditioned on the given set (i.e., either the target set, 7, or the impostor set, Z):

P ifjeT,

o) Seerr®

Pj .
%() if j €T

2kez Pk

5.2 Bounding Functions

In this section, we construct a set of upper bounds on the risk function, R(f) for the

case where the target class means are linearly separable from the impostor class means

45

(i.e., {Xj}je7 is linearly separable from {X;}jcr). We will use these bounds to derive
optimized solutions for R in the generalized linear kernel, k(x,x3) = xlTRXQ. To simplify
these bounds, we assume throughout the following sections that each class is symmetrically

distributed about its mean. This is formally defined as follows:

Definition 1. A random variable x € R is “symmetrically distributed about its mean” if

the following condition holds.

px—X=A)=px—-x=-A) V(x,A)ecRxRL.

Because f(x) is an affine function of x, one can easily show that if x is symmetrically
distributed about its mean, then f(x) is also symmetrically distributed about its mean. We
will use this fact throughout the following chapter to construct upper bounds on classifica-

tion error for binary decision tasks.

5.3 Class-Independent Bound

We use the setting of Section 5.1 to construct three upper bounds on R(f) for the case
where the target class means are linearly separable from the impostor class means. The
first of these bounds is “class-independent,” in the sense that the bounding function for
a given example, x;, is the same for all j in set 7 and also for all j in Z. To derive the
upper bound on R(f), we begin by defining an upper bound on the zero-one loss function,

1(f(x;) > 0), for impostor examples.

Theorem 1. Given the scoring function f(x) = vIx+b, if f(Xz) <0, then the following
inequality holds for all j in T.

f(xj) — f(®

(%2)\?
1) > 0) < (FE0IED) (1) >) vie (5.1)

f(®z)
RHS > 0 for all j. We also see that if f(Xz) < 0, then RHS = 1 when f(x;) = 0, and

NN
Proof. Define RHS 2 (M) - 1(f(xj) > f(%g)) for some j in Z. We see that

RHS > 1 when f(xj) > 0. Thus, we arrive at the inequality in (5.1). O

46

—0-1 error function

1.1 -==*bound /.' /‘\\

one-side, second- 7/ \
order upper-bound 1} e -
on false positives: . iy A
05 // impostor |/ target A
L a1
fx) °

—0-1 error function

-==*bound i 2)
15 y \

one-side, second- ¢ \
order upper-bound 1 “ / \
on false negatives: O \‘// '\\
0.5 " impostor ™| /A target A\
i examples ~~_examples
e | T

fx)y °
Figure 5.2. Illustration of the class-independent, one-sided, second-order bounding function
for the impostor examples and for the target examples.

This bound is illustrated in Figure 5.2. The above inequality defines a one-sided, second-
order upper bound on the 0 — 1 error function for impostor examples. To simplify the
optimization of this bound in the following sections, the second-order bounding function for
a given class is centered at the mean of the class. However, we only use the right-hand side
of each second-order bounding function; the left-hand side is set to zero (note that the left

and right sides are reversed for the corresponding bound on target examples).

We can now use the inequality in (5.1) to obtain the following bound on the risk function,

R(f):

Theorem 2. Given the scoring function f(x) = vIx +b, if f(Xz) < 0 and f(X7) > 0,
and if x7 and x7 are symmetrically distributed about their means, then the following bound

holds.

R(f) <

%(vICrv vI'Crv) (5.2)

(vIzxr+b)?2 (vIxz + b)?

Proof. The above bound follows from computing the expectation of bound (5.1) over all

impostor classes. This gives us an upper bound on the rate of false positives, p(f(x;) >

47

0|j € Z). By symmetry, we can compute a similar upper bound on p(f(x;) <0]j € T),
the rate of false negatives. Adding the two bounds gives us the upper bound on R(f) in

(5.2). O

The upper bound in (5.2) can also be derived from the Chebyshev inequality, which is

given as follows:

Var(/ (x))

Pf) ~ES()| 2 8) < =

For the case where f(x) is symmetrically distributed about its mean, we can convert the

above inequality into the following equivalent, one-sided form:

1 Var(f(x
p(F) ~Efx) 2 1) < 5 - G
Now, if we substitute ¢ = —E f(x) into the above inequality and constrain x to the set of

all impostor examples, we arrive at the following expression:

_ 1 Varer(f(x;))
PIG) 2015 €T) < 5 (el

2
1 vIiCrv
2 (VT)_(I + b)2 '

By symmetry, we can obtain a similar bound on p(f(x;) < 0]j € 7). Adding these bounds

gives us the upper bound on R(f) in (5.2).

We can now use the upper bound in (5.2) as an objective function for training an
“optimized” linear classifier. Our goal is to minimize the bound in (5.2) with respect to

(v,b). This gives us the following optimization problem:

. 1 vTCTv vICrv
min —- — — (5.3)
v,b 2 \(vI'zr+b)? (vIxz+b)?
0< VT)_CT + 0,
subject to

0> VT)_CI—i- b.

Here, we have added linear constraints on v %7 +b and on vI' X7 + b to enforce the assump-
tion in (5.2) that f(xz < 0) and that f(x7 > 0). The objective function in (5.3) is composed

of terms of the form, (V‘{F—T)_S%)Z. These terms are quadratic in v in both the numerator and

48

in the denominator. Thus, we say that the objective function in (5.3) is based on terms
that have a quadratic-over-quadratic functional form. Note that this form is not convex
(Boyd and Vandenberghe [2004]). However, we can further bound (5.2) to obtain terms
that have a quadratic-over-linear form, which is convex (Boyd and Vandenberghe [2004]).
The quadratic-over-linear form can be bounded even further to obtain a quadratic program
(QP). The corresponding optimization problems for these bounds on R(f) are given below,

along with the original optimization problem of (5.3).

Theorem 3. Given the scoring function f(x) = vIx + b, if x7 and x7 are symmetrically

distributed about their means, then the following bounds hold.

1 vICrv vICrv
R(f) < i — - 5.4
(f) < e 2 ((VT)_CT—l— b)? * (vI'xz + b)2 (54)
0< VT)_CT + 0,
subject to
0> vI%s +0b.
1 vICrv vICrv
= i —- 5.5
o 2 ((stcT +b)?2 * (vI'=z 4 b)? (5:5)
1 <vlgyr 40,
subject to
—1>vlxs + 0.
1 vIiCrv vICrv
< i - - 5.6
< w5 (IR e >0
1 <vlgr 4+,
subject to
-1>vlxs +0.
. I 7
< min —-v (Cr+Cq)v (5.7)
v,b 2
1 <vI'gr+0b,
subject to
-1>vlxs +0.

Proof. The problem in (5.4) is homogeneous in (v,b). Thus, we can modify the linear

49

constraints in (5.4) to obtain (5.5). Given these constraints, we can upper bound (5.5) by
replacing (vI'%7 + b)? with (vI'%7 +b) and (vI'%7 + b)? with —(v''%z +b). This gives us
(5.6). We can further upper bound (5.6) by setting the denominators equal to 1 and -1,

respectively, as in (5.7). O

In the above set of bounds, the optimization problem in (5.4) represents the original

problem in (see (5.3)). We upper bound the optimization problem in (5.4) by the problem

in (5.6), where the objective function is composed of terms of the form, “,’;STTJ:’I). These

terms have a quadratic-over-linear form, which is convex (Boyd and Vandenberghe [2004]).

Moreover, the overall objective function is a positively-weighted sum of convex terms (note

that the term, —:;)_?Ia_vb, is convex under the constraint, —1 > v'%z + b). The overall
objective function is therefore also convex, as are the constraints. We refer to the functional
form of the objective function as a sum of quadratic-over-linear form. Since (5.6) has both
convex constraints and a convex objective function, the overall optimization problem is also

convex. We will show in Chapter 7 that this sum of quadratic-over-linear form can be cast

as a second-order cone program (SOCP).

The sum of quadratic-over-linear form in (5.6) is further bounded by the QP in (5.7).
We note that if (Cy + Cz) is full-rank, then the QP in (5.7) can be converted into a more
familiar form by defining the vector w and the matrix U as follows:

v £ Uw,

UU’ &2 (Cr+Cp)h

Substituting Uw in for v in (5.7) gives us

. T
Z. 5.8
o >
1< WTUT)_CT + 0,
subject to

—1>wlUTz; +b.
The above optimization problem has the same general form as the hard-margin SVM in

(3.1), except that the feature vectors X7 and X7 have been replaced with U?x7 and U’ %7.

50

Thus, the formulation in (5.8) implicitly defines the following kernel function k& and corre-

sponding feature transformation @:

k(xl,XQ) = X{(CT + CI)71X2,

d(x) =UTx.

From these equations, we see that k is a generalized linear kernel of the form, k(x;,x2) =
xI'Rxo, where R is defined as

R=(Cr+Cp)~ L

Thus, we have derived a hard-margin SVM along with a generalized linear kernel k and a
corresponding feature transformation ® that are “optimal” in the sense that they minimize
the upper bound on classification error in (5.7). In this case, the upper bound is simply
based on a pair of one-sided second-order convex bounding functions—one to bound false
positives and another to bound false negatives. In the following sections, we will use a similar
approach to derive the optimal generalized linear kernel k£ and feature transformation @ for
more complicated bounding functions. We note that because (5.7) only has two input

feature vectors (i.e., x7 and x7), the optimal v in (5.7) can be computed analytically as
v* o (C7 + Cr) Hx1 — x7). (5.9)

To see this, we begin with the following constraints from the SVM dual formulation of (3.2):

Z Y = 0,

JE{Z,T}

0< a V]

From these constraints, we obtain, w oc UT (x7 — x7). Substituting w = U~lv into this

equation gives us the solution for v* in (5.9).

5.3.1 Comparison with Minimax Probability Machine

In Chapter 4, we described the Minimax Probability Machine (MPM) developed by

Lanckriet et al. [2002]. Given (X7,C7) and (Xz,Cz), the MPM trains the affine decision

o1

boundary that minimizes the maximum probability of misclassification over all distributions

of x7 and x7, where x5 ~ (X7, C7) and x7 ~ (X7, Cz). This can be expressed as follows:

min « (5.10)
a,v#0,b

subject to sup p(vIxr+b<0)<a,
x7~(X7,C7)

sup p(vixr+b>0)<a.

xz~(Xz,Cz)
Here, « represents the maximum rate of false-positives or false-negatives over all possible
distributions of x7 and x7 that have the given means and covariance matrices. In Lanckriet

et al. [2002], the authors show that the optimization over v can be restated as follows:

min VVICrv + /vICgv (5.11)
v
subject to vi(zr —%7) = 1.
The optimization problem for the MPM is convex and can be computed by solving a second-
order cone program (SOCP). We can compare (5.11) with the hard-margin SVM from the

preceding section. Note that the following optimization problem is equivalent to the problem

in (5.7) for optimizing over v:

min VVICrv +vTCrv (5.12)
v
subject to vi(xr —%7) = 1.

Here, we see that the objective functions for the two approaches are actually very similar.
The MPM in (5.11) minimizes a sum of square-roots, while the SVM approach in (5.12)
minimizes a square-root of sums. The MPM has a potential advantage over the SVM
approach in that it achieves the tightest possible bounds on the maximum probability
of error for the given means and covariances matrices. However, as we will show in the
following sections, the bounding functions that were used to construct the SVM can also be
used to construct class-dependent bounds, which are often tighter than the class-independent
bounds in (5.4), (5.6), and (5.7). So far, there are no techniques in the literature for applying

the MPM concept to class-dependent bounds.

52

5.4 Class-Dependent Bounds

The MPM approach and the SVM approach of the previous section are both based on
what we refer to as class-independent error bounds. One major caveat of both of these
approaches is that they only use the means and the covariance matrices of the target
and impostor classes to train a decision boundary. In this section, we argue that tighter
bounds on classification error can be achieved by constructing so-called class-dependent
error bounds, where every class gets its own bounding function. These bounds use the
means and covariance matrices of all classes within the target and impostor sets to train
a decision boundary. We begin with a modified version of the inequality in (5.1). This
inequality forms an upper bound on the zero-one loss function, 1(f(x;) > 0), for impostor

class j.

Theorem 4. Given the scoring function f(x) = vIx +b, if f(X;) <0 for all j in I, then

the following inequality holds.

f(x;) = f

®)\’
1s5) > 0) < (PALEN) a0 >) vz ey

Proof. The proof follows the same steps as the proof of Theorem 1, except that we replace

X7 with X;. |

This bound is illustrated in Figure 5.3 for the case where the impostor set is divided
into multiple impostor classes. Unlike the class-independent bound of (5.1), where a single
function is used to bound the entire impostor set, the bound in (5.13) assigns a separate
one-sided, second-order convex bound to every impostor class. The second-order bounding
function for a given class is centered at the mean of the class. However, we only use the
right-hand side of each second-order bounding function; the left-hand side is set to zero (note

that the left and right sides are reversed for the corresponding bound on target examples).

We use the expected value of the class-dependent bounds in (5.13) over all impostor

93

—0-1 error function

70 -==cluster-independent bound //\
d Vs s

fx)=0 o
P, /
1 / [\ 1
// \ // \\ / \\ # y
i \ / \ / \ y
05 impostor ex\:\ampl/és)~ target \\
\ / w examples
N e i I
0
fx)
2 7 &
—0-1 error function £ g

/
--=cluster-dependent bounds Iy
1.5r vy
/

[\
fA A ST \
05 impostor examples .-~ / / target
\ / w Vi examples \
fx) 0

Figure 5.3. Comparison of the class-independent and class-dependent bounding functions
for the case where the target and impostor sets are composed of separate classes (i.e.,
clusters). The figure on the left shows the decision boundary for a set of target examples
and for a set of impostor examples. The corresponding score distributions, 0 — 1 error
functions, and bounding functions for the impostor examples are shown on the right side
of the figure. For simplicity, the score distribution of the target examples is shown as a
uni-modal distribution.

classes, along with a corresponding bound for false-positives, to obtain an upper bound on

R(f). This bound is given below:

Theorem 5. Given the scoring function f(x) = vix +b, if f(X;) <0 for all j € I, and
f(Xj) >0 forall j € T, and if x; is symmetrically distributed about its mean for all j, then

the following bound holds.

- vIciv
O T A (5.14)

R(f) < v O
T (vIx; +0)

N | =

Proof. The above bound follows from computing the expectation of bound (5.13) over all
impostor classes. This gives us an upper bound on the rate of false positives, p(f(x;) >
0]j € Z). We can compute a similar upper bound on p(f(x;) <0]j € T), the rate of false

negatives. Adding the two bounds gives us the upper bound on R(f) in (5.14). O

The objective function for the above bound is a positively-weighted sum of quadratic-

54

over-quadratic terms. This is the same general functional form as in the class-independent
bound on R(f) in (5.2). Thus, (5.14) also leads to a similar set of optimization problems

as those in Section 5.3. These optimization problems are given below:

Theorem 6. Given the scoring function f(x) = vIx+b, if x7 and x7 are symmetrically

distributed about their means, then the following bounds hold.

1 vI'C,v
R(f) < min - Y P (5.15)
v,b 2 T (vIx; +b)
subject to 0<yj(vT)_cj+b) V7.
1 vIC,v
< i —. pi—— 1
S omin 5 D by gy (516)
JE{T 1}

subject to 1< yj(vT)_cj +b) Vi

min
v,b

IN

V(YD piCy)v (5.17)

JE{T I}

N —

subject to 1 <yj(vIx;+b) Vi
Proof. The proof follows the same steps as the proof for Theorem (3). O

As in Section 5.3, minimizing the upper bound on R(f) leads to three different optimiza-
tion problems: a sum of quadratic-over-quadratic form (5.15), a sum of quadratic-over-linear
form (5.16), and a QP (5.17). The sum of quadratic-over-linear form is convex and will be

discussed in greater detail in Chapter 7.

5.4.1 Hard-Margin SVM

We will focus our attention on the QP in (5.17). If (32;c(7 7y §;C;) is full-rank, then

the QP in (5.17) can be converted into the standard form for a hard-margin SVM. To show

95

this, we first define the vector w and the matrix U as follows:

A
v = Uw,

ot s (Y p0)
JE{T,1}

-1

Substituting Uw in for v in (5.7) gives us

1
i — - 1
min 5 W W (5.18)

subject to 1 <yj(wlUTx; +b) Vj.

The above optimization problem has the same form as a hard-margin SVM (see Chapter 3),
except that the feature vector X; has been replaced with UTij for all 5. However, unlike
the hard-margin SVM in (5.8) and the MPM in (5.11), both of which have only two linear
constraints—one for X7 and one for xz7—the SVM in (5.18) has M linear constraints: one
for every class in the data. Thus, the SVM in (5.18) has the same general form as the
conventional hard-margin SVM in (3.1), except that it implicitly specifies a kernel function
k and feature transformation, ®. The kernel function k& and the corresponding feature
transformation @ for this SVM are defined as follows:

k(x1,%x2) = x{(Z pjcj) 71x2, (5.19)

Je{T .1}

d(x) =UTx. (5.20)

The term U represents the Cholesky factorization of (Z JedT T} Dj Cj>
-1
vut 2 (Y p0)
JE{T I}

From these equations, we see that k is a generalized linear kernel of the form, k(x;,x2) =

xT'Rxy, where R is defined as

JE{T I}

o6

5.4.2 Bounding Functions for the Hard-Margin SVM

As an alternative to the derivation shown above, the hard-margin SVM of (5.17) can be
obtained directly from a specific set of class-dependent bounding functions. These bounding

functions are given below.

Theorem 7 (Bounding functions for the hard-margin SVM). Given a scoring func-
tion f, if y;f(X;) >0 for all j € {1,..., M}, then the following inequality holds.

f(x)) = F(%))

2
f()_(k) > . l(yjf(Xj) < yjf()_c])) Vj € {1, - ,M}.

(5.21)

Lol () <0) < max (

Proof. The above bound follows from the same steps used in (4). O

Minimizing the expected value of the above bounding functions over all j leads to
the optimization problem in (5.17) for the hard-margin SVM. The bounding functions in
(5.21) are illustrated in Figure 5.4. Unlike the original second-order bounding functions
in (5.13), the second-order functions in (5.21) are constrained to be of uniform width for
every class. Figure 5.4 shows that the functions are simply shifted versions of one-another.
Thus, the bounds on error-rate are quite loose for classes whose mean scores are far from
zero. The upside of this looseness is that the resulting solution for the optimized linear
classifier f is relatively simple: the optimized linear classifier is a hard-margin SVM with
an optimized linear kernel k£ and corresponding feature transformation @, as given in (5.19)
and (5.20). Given this solution, we can train an optimized linear classifier by first applying
the linear feature transformation @ to every feature vector and then training a hard-margin
SVM. In Chapter 7, we will show how to tighten the bounding functions in (5.21) while
still maintaining the convexity of the overall optimization problem. This leads to a new,

modified support vector machine that we refer to as the adaptive, multicluster SVM.

o7

2

o cIuster-depend’ent bounds ., V%
15 l' ll ': /
I" l'l " / \
{ ¥ / /
1 £ \ /’;l ,'/; '.\ ,l J/
\\ // ’;l' \\‘ / il' \ 'I/ / / \\‘
\ L\ O\ /| AEeet
05 impostor examples |\ / |/ ‘@@t
\ \ \ / |/ examples \
X / B A
0 DESS e X Lo \«/ |

Figure 5.4. A relaxed set of class-dependent bounding functions for the impostor examples.

5.4.3 Bounding Functions for Classes that are not Symmetrically Dis-
tributed About their Means

The upper bounds in (5.7) and in (5.17) are somewhat limited by the fact that they only
apply to classes that are symmetrically distributed about their means. For non-symmetrical
classes, we can use the following class-dependent bounding functions to derive an upper

bound on R(f):

Theorem 8 (Class-dependent bounding functions for asymmetrical classes).
Given the scoring function f(x) = vIx+b, if yjf(X;) >0 for all j € {1,..., M}, then the
following inequality holds.

1(y; f(x;) <0) < max <M> Vie{l,...,M}. (5.22)

= kefl,...,M} f(xk)

Proof. The above bound has the same form as the bound in (7), except that we have
removed the indicator function, 1(y;f(x;) < y;f(X;)). Removing the indicator function

has the effect of loosening the bound. Thus, the bound in (5.22) is valid. O

The above inequality is the same as the inequality in (5.21), except that we have removed
the indicator function, 1(y;f(x;) < y;f(X;)). The result is a two-sided, second-order

bounding function. We can obtain the corresponding upper bound on R(f) by computing

o8

the expected value of (5.22) over all target and impostor examples. Minimizing this bounds

gives us the following optimization problem:

Theorem 9 (Class-dependent upper bound on R(f) for asymmetrical classes).
Given the scoring function f(x) = vIx+b, if yjf(X;) >0 for all j € {1,..., M}, then the
following inequality holds.
R(f) < min - vI() piCy)v (5.23)
v JE(T.T}

subject to 1<y;(vI=; +b) Vi

Proof. The above bound follows from computing the expectation of bound (5.22) over all
impostor classes. This gives us an upper bound on the rate of false positives, p(f(x;) >
0|j € Z). By symmetry, we can compute a similar upper bound on p(f(x;) <0|j € T),
the rate of false negatives. Adding the two bounds gives us the upper bound on R(f) in

(5.23). O

Here, we see that (5.23) has the same form as the class-dependent upper bound in (5.17),
except that the bound has been multiplied by a factor of 2. A similar bound can be obtained
for the class-independent case. The upper bound in (5.23) represents the worst-case class-
dependent upper bound on R(f) for any dataset. Although this bound is looser than the
bound in (5.17) for the symmetrical case, the two bounds only differ by a constant factor;
thus, both bounds yield the same solution for the SVM parameters, (v, b). The remainder of
the dissertation will deal exclusively with upper bounds for classes that are symmetrically
distributed about their means. We note, however, that each of these upper bounds can
be reformulated for the general case where the class distributions are not assumed to be

symmetrical.

99

5.4.4 Relative Tightness of the Class-Dependent Bounds

We note that the class-dependent bounds of (5.13) and Figure 5.3 do not necessarily lead
to a tighter ezpected bound over all classes than the class-independent bound of (5.1)—that
is, they do not necessarily lead to tighter bounds on R(f). For example, if the within-class
variance of the scoring function f(x;) is relatively large for every class, then the class-
dependent bounds will tend to be looser than the class-indepedent bound in expectation
over all classes. On the other hand, if the within-class variance of f(x;) is small for every
class, then the class-dependent bounds may achieve tighter bounds on R(f) than the class-
independent bound. As evidence of this, we can consider the case where the expected
within-class variance of f(x) is zero over all classes, but the overall variance of f(x) is o
for some o > 0. In this case, the class-independent upper bound on R(f) in (5.7) will be

strictly positive, while the class-dependent bound in (5.17) will be zero.

5.4.5 Clustering Data and Choosing What Constitutes a Class

In general, the relative “tightness” of the class-dependent bounds is dependent on how
the classes are defined: classes that are distinct and easily separable from one-another within
the data will tend to yield better bounds on R(f), relative to the class-independent bound,
than classes that are indistinct and spread out. Thus, we would obviously prefer that our
classes correspond with real clusters in the data, where the within-class variance of f(x;)
over all j is relatively small for any choice of v—that is, for any “direction” within our

feature space.

In this thesis, we assume that the classes represent predefined clusters within the target
and impostor sets. For example, we will later report results on speaker verification exper-
iments where the classes represent individual speakers. The class-dependent bounds are
directly applicable to datasets such as this, where the classes represent real clusters within
the data that are defined a priori. In principle, we can also apply the class-dependent bounds

to binary classification tasks where the impostor and target sets are not partitioned, a pri-

60

ori, into individual classes. Tasks such as this, are, of course, very common in real world
scenarios. In order to apply class-dependent bounds to these general tasks, we must first use
clustering techniques to define our own set of clusters (i.e., classes). We will not address the
problem of how to perform clustering for class-dependent bounds in any significant depth
in this thesis. However, we believe that this problem presents an interesting and important

opportunity for future work.

61

Chapter 6

Error Bounds for Non-Separable
Data: A New Derivation of the

Soft-Margin SVM

In the preceding chapter, we constructed a set of upper bounds on classification error
for the case where the means of the target and impostor classes are linearly separable. By
minimizing these upper bounds, we were able to derive a formulation of the hard-margin
SVM. This formulation also provides a solution for an optimized linear kernel function k
and a corresponding feature transformation, ®. In this chapter, we extend this approach to
the case where the target and impostor means are not linearly separable. We describe an
approach similar to that of Chapter 5 that leads directly to a new, modified formulation of
the soft-margin SVM. This modified formulation differs from the conventional derivation of

the soft-margin SVM in Vapnik [1995], in the following ways:

1. The new, modified formulation follows directly from minimizing a particular upper
bound on classification error. On the other hand, Vapnik’s formulation is based on

appending slack variables to the hard margin SVM.

62

2. The C hyperparameter is exactly specified in the modified SVM formulation of this
chapter but is undetermined in Vapnik [1995]. We note, however, that a number of
techniques have been proposed for optimizing C' analytically (Cristianini and Shawe-

Taylor [2000]).

3. Our new, modified formulation of the soft-margin SVM provides a solution for an

optimized linear kernel k£ and corresponding feature transformation ®.

This chapter is organized as follows: We begin by defining a set of bounding functions
on the event of a misclassification in Section 6.1. These bounding functions are minimized
in Section 6.2 to yield a new formulation of the soft-margin SVM. In Section 6.3, we show
how to apply our soft-margin SVM framework to a typical speaker verification task. This
section leads to the idea of performing within-class covariance normalization (WCCN) on
input feature vectors before training SVMs. We discuss the intuition behind WCCN in
Section 6.4. Finally, in Sections 6.6 and 6.7, we describe a set of experiments where we

compare WCCN to other feature normalizations on a real speaker verification task.

6.1 Bounding Functions

In this section, we construct an upper bound on R(f) that leads to a modified form
of the conventional, 1-norm soft-margin SVM. The upper bound on R(f) is based on one
or more bounding functions on the event of a misclassification (i.e., on the 0 — 1 error
function). As in Chapter 5, bounding functions can be constructed for both the class-
independent case, where the target and impostor sets are treated as single classes, as well
as for the class-dependent case, where every class in the target and impostor sets gets its
own bounding function. Since the class-indepedent bounding function is a special case of
the class-dependent bounding functions, we will assume throughout this chapter that the
bounding functions are class-dependent. The bounding functions are defined in Theorem

10. We note that Theorem 10 uses the shorthand (-); to represent the hinge-loss function.

63

This is defined as

The theorem is given below:

Theorem 10. Given the scoring function f(x) = vIx +b, if y;f(X;) > 0 for all classes

j€{l,..., M}, then the following inequality holds.
1(y;f(x;) <0) < B(x;; 0;). (6.1)

Here, ©; represents a set of parameters for class j, and B(x;; ©;) represents a one-sided,

second-order bounding function. These are defined as follows:

6] £ {V, ba yja)_cj}a

B(xj; 0;) 2 (y;f(x)) — wif (%)) 1(yif (x5) <y f (%)) +2- (L -y (%)), (62)

Proof. We can see by inspection that as y;f(x;) decreases, B(x; ; ©;) increases or stays
the same. Thus, we have only to show that B(x;; ©;) > 1 for all y;f(X;) € (0,00) when
y;jf(x;) = 0. We divide the problem into two cases: one where y;f(X;) > 1, and another

where 0 < y; f(X;) < 1. In each case, we will assume that y; f(x;) = 0.

Case 1: 1 <y, f(X;)

In this case, the term 2 - (1 — y;f(X;)), is zero, and the quadratic term (y;f(x;) —

+
yjf(ij))2 1 (yjf(Xj) < yjf(ij)) increases as y; f (X;) increases. Thus, the bounding function
B(x; ; ©;) is minimized by setting y; f(X;) = 1.

Case 2: 0 <y, f(%x;) <1

For this case, we compute the first and second derivatives of B(x; ; ©;) with respect to

yjf(X;). This gives us

0B(%;3) _ o 5.y —
oifxy) ~ I
0°B(x;; ©;) _
O(y;f (%))”

64

LY .
\‘\ Y — 0-1 error function
L) LY . .
\‘\ N T bounding functions
A Y
s A
Vh Y
L] Y
N LY
Ny LY
\ ~ \
K §*~~__ hY vif(®;) =3
1 B ittt
LY A Y
\\ \\
A Y A Y
A A
A Y A Y
\\ . .
\\\ ‘\U]'f(xj) = %
\\\ \\\
yjf(}_()=1 \\\ ‘\\
S N
0] S | Il]
0 0.5 1 1.5
yif(x;)

Figure 6.1. Illustration of the 0 — 1 error function, 1(y;f(x;) < 0), and the bounding
function, B(x; ; ©;), as a function of y; f(x;) for various values of y; f(X;).

Setting % equal to zero gives us y;f(X;) = 1. We know that B(x;; ©;) is convex

9%°B (xj,@z)
3?/](i)

because is strictly positive. Thus, y;f(X;) = 1 is the global minimum for this

case.

The above cases show that B(x;; ©;) is minimized at y;f(X;) = 1. We also know
that B(x;; ©;) =1 at y;f(X;) = 1. Thus, B(x;; ©;) > 1 for all y;f(X;) € (0,00) when

y;f(x;) = 0. O

The function, B(x;; ©;), represents a one-sided, second-order bounding function on the
0— 1 error function, 1(y;f(x;) < 0). The latter function equals one when x; is misclassified

and zero otherwise. An illustration of this bound is provided in Figure 6.1.

6.1.1 Comparison with Bounding Functions for Hard-Margin SVM

We note that the form of B(x;; ©;) in (6.1) is similar to that of the bounding functions
for the hard-margin SVM in (5.21). In both (5.21) and (6.1), the bounding functions for

the different classes have uniform width and are simply shifted versions of one-another. The

65

bounding functions in (5.21) have a width equal to mingey, . ary Yxf(Xk), which represents
the maximum possible width for which the bounding functions satisfy the upper bound on
1(y;f(x;) <0) in (5.21) for all classes. We note, however, that this width assignment only
yields valid upper bounds on 1(y;f(x;) < 0) if mingegy ary yrf(Xg) is nonnegative. In
other words, the formulation in (5.21) only works in the case where the target and impostor

means are linearly separable from one-another given the scoring function, f.

The upper bound in (6.1) is based on the class-dependent bounding function, B(x;; ©;),
which has a uniform width of one for all j. This means that for any class j where y; f(X;) < 1,
the function, B(x;; ©;), will be too wide to upper bound the indicator function in (6.1) in
the usual way. To compensate for this, we use the term (1 — yjf()T:j))Jr to loosen B(x;; ©;)
for any class j where y; f(%;) < 1. The (1 —yjf()_cj))+ term represents a hinge-loss function
on 1 —y;f(X;). In (6.2), this hinge-loss function is scaled by a constant factor of 2. One
can show that this is the minimum constant scaling factor for which B(x;; ©;) satisfies the

upper bound in (6.1) for any choice of X;.

6.1.2 Upper Bound on R(f)

In this section, we use the inequality in (6.1) to derive an upper bound on R(f). As
was the case in Chapter 5, we assume throughout the following sections that each class is
symmetrically distributed about its mean. Under this assumption, we can obtain the upper
bound on R(f) given below in Theorem 11. Before giving the theroem, let us define the
vector £ £ [£1,...,6y]T, where M is the number of classes. We will also use the notation,

0 < &, as shorthand to denote a per-element vector inequality:
0= 0<¢ Vi
The theorem is given below:

Theorem 11. If, for all j € {1,..., M}, x; is symmetrically distributed about its mean,

66

then the following bound holds.

1 . .
R() < 5 vIQ_BiCHV+2: 3 by (6.3)
J J
. 1-& <y(vix;+b) Vj,
subject to
0=<E¢.
Proof. A formal proof of Theorem 11 is provided in Appendix A. O

The bound in (6.3) follows from taking the expectation of both sides of the inequality
in (6.1).

6.2 The Soft-Margin SVM

If (32;9;C;) is full-rank, then we can convert the bound in (6.3) to a more familiar
form by performing a substitution of variables. As in Chapter 5, we define the vector w
and the matrix U as follows:

v £ Uw,

uu’ £ (Y 9y
j

Substituting Uw in for v in (6.3) gives us the following bound.

1 & <y(w'UT%; +b) v,
subject to
0=xE.

We can now use the upper bound in (6.4) as an objective function for training a linear

classifier. Our goal is to minimize the bound in (6.4) with respect to (w,b,£). This gives

67

us the following optimization problem:

. T N
min - wow 4 % pi&; (6.5)
, 1-¢& <y(wlUTx; +b) Vj,
subject to

0=<¢&.
Note that the objective function in (6.5) corresponds with the upper bound in (6.4) scaled
by a factor of 2. The optimization problem in (6.5) defines a new, modified formulation of
the soft-margin SVM. This modified SVM has the same general form as the conventional
l-norm soft-margin SVM in Cristianini and Shawe-Taylor [2000]; Vapnik [1995], except
that each feature vector, X;, is replaced with UTch. We will discuss the differences between
the formulation in (6.5) and the conventional soft-margin SVM formulation in greater detail
in the following section. The new SVM formulation implicitly defines a feature mapping ®

and a kernel function & of the form,

k(x1,%5) = x] Rxy,
Here, the matrices, R and U, are defined as follows:
R2 (Y 5C) (6.6)
J

UU!" 2 R.

6.2.1 Comparison with Conventional Soft-Margin SVM Formulation

If we compare the new, modified soft-margin SVM in (6.5) with the conventional for-
mulation in (3.4), we see that the two formulations are essentially identical. However, there
are a few important differences: For example, the new formulation in (6.5) assigns a fixed
value of 4 to the SVM hyperparameter, C. This value represents the smallest value of C' for
which the optimization problem in (6.5) forms an upper bound on the risk function, R(f).

In the conventional soft-margin SVM, the C hyperparameter and the hinge-loss term are

68

simply appended to the hard-margin SVM without offering any proper justification for their
inclusion. Our formulation, on the other hand, follows directly from minimizing the upper

bounds on R(f) in (6.3) and (6.4).

As with the hard-margin SVM in Chapter 5, another key difference between the con-
ventional soft-margin SVM in (3.4) and the new, modified formulation in (6.5) is that the
new formulation implicitly specifies a generalized linear kernel k and a corresponding linear
feature transformation, ¢ (note that this result only holds if (3_,;C;) is full-rank). The
kernel k and the corresponding feature transformation ® are selected to minimize the upper
bounds on R(f) in (6.3) and (6.4). Thus, we say that £ and ® are optimal for the given
upper bounds on classification error. One important implication of this is that the modified
SVM in (6.5) is invariant to any full-rank linear distortion of the feature space. This means
that if we replace each input feature vector X; in the training and test sets with AX;, where
A is some full-rank linear transformation, then the output scores obtained from f will be
unchanged. The new formulation in (6.5) also differs from the conventional soft-margin
SVM formulation in that it incorporates the prior probabilities of each class conditional on
the given set (i.e., either the target set or the impostor set).

We note that a conventional 1-norm soft-margin SVM with a simple inner-product
kernel—that is, a kernel of the form, k(x;,x3) = xlTxQ—can be viewed as a special case of

the optimization problem in (6.5) where the following conditions hold:

1. Ej pjC; is assumed to be proportional to the identity matrix, I, for all s.
2. The ¢; terms are weighted by p; for all j

3. Every input training example is treated as the mean of some class. Thus, we replace

each x; term in the original SVM formulation with X;.

4. The C hyperparameter is set equal to 4.

69

6.3 Generalized Linear Kernels for Speaker Verification

Tasks

In the previous sections, we derived a new, modified formulation of the soft-margin SVM.
This SVM specifies an analytical form for R in the generalized linear kernel, k(x,x3) =
xTRx,. In this section, we offer a practical argument for how to estimate R on a typical
speaker verification task, where the number of training examples available for the target
speaker is very small. Under various assumptions, we show that the formulation in (6.6)
leads to the notion of performing within-class covariance normalization (WCCN) on the

input feature space.

In most speaker verification tasks, the amount of training data provided for the given
target speaker is small—typically no more than 8 conversation sides of around 2.5 minutes
each. Given this limited amount of training data, the task of coming up with a robust
estimate of the covariance matrices for the target set (i.e., speaker) can be very difficult,
especially when the dimensionality of the feature space is very high. One way of getting
around this, in the absense of any other information, is to assume that the expected within-
class covariance matrix over all classes in the target set T is equal to the expected within-
class covariance matrix over all classes:

> $;Cj =Cw. (6.7)
JET
The above assumption will hold—at least approximately—for datasets where the class dis-
tributions are selected in such a way that their covariance matrices are relatively homo-
geneous. We can make a practical argument that the assumption in 6.7 tends to hold for
classes that represent instances of a particular type. For example, in a speaker verification
task, we can define each class to represent an individual speaker. We can then use Cy to

provide an estimate of C; for any individual speaker 1.

Under the assumption in (6.7), the overall R matrix in (6.6) is approximately equal to

70

the inverse of the expected within-class covariance matriz, Cyy:
~ (-1
R=~Cy .

This approximation becomes more exact as the total number of classes, M, grows large.
One attractive property of the above assignment for R is that it applies to any choice of
target set, assuming that EjeT pjC; = Cy. Thus, we arrive at a single linear feature
mapping that can be applied uniformly to all input feature vectors, regardless of the choice

of target set. We can express this feature mapping as follows:

_1
¢(x) = C x.

1 1T 1
Here, Cyj, represents the Cholesky factorization of Cy,. Thus, Cy = Cyj, Cyjj,. The above

choice of ® performs what we refer to as within-class covariance normalization (WCCN)
on the input feature space. This means that ® normalizes the feature space to have an

expected within-class covariance matrix Cyy equal to the identity matrix, I.

6.4 Intuition Behind Within-Class Covariance Normaliza-

tion

The preceding section shows how the formulation in (6.6) leads to the notion of per-
forming within-class covariance normalization (WCCN) on the input feature space. In this
section, we describe the intuition behind this approach. Given an input feature space, &,
composed of a set of J classes, our goal is to find the linear feature mapping ®(x) = Az
that will optimally transform X for the purposes of discriminating between classes. More
specifically, we would like to find the optimal linear feature mapping for training SVMs
in a one-versus-all setting, where one class is chosen as the target class and the remaining
J — 1 classes are pooled to form the impostor set. If we ignore rotations of the feature
space, then the problem of coming up with an optimal linear transformation is equivalent

to finding the optimal scaling factor for every direction in feature space. We can argue

71

feature space with
4 classes before
WCCN...

...and after WCCN.
Informative directions are
boosted, and noisy
directions are attenuated.

Figure 6.2. Tllustration of the within-class covariance normalization (WCCN) approach.
Here, we apply WCCN to a 2-dimensional feature space composed of 4 Gaussian classes.
These ellipses represent isoclines of constant Mahalanobis distance for each of the classes.
WCCN boosts informative directions and attenuates noisy directions by making the within-
class distributions as symmetrical as possible.

that directions in feature space where the between-class variance is large compared to the
expected within-class variance should be given greater weight than directions where this
is not the case. Alternatively, we can say that directions with a large Rayleigh coefficient
J(w) should be given more weight than directions where J(w) is small. In WCCN, each
direction in feature space is scaled by #(w), where oy (w)? represents the expected within
class variance over all classes along direction w. After weighting the feature space in this
way, each direction will have a between-class variance equal to the Rayleigh coefficient of
that direction. Thus, the Rayleigh coefficient forms a measure of how informative or noisy

a given direction is. An illustration of how WCCN works is provided in Figure 6.2.

72

6.5 Relationship Between WCCN and Linear Discriminant

Analysis (LDA)

We note that the WCCN approach described in Section 6.3 is, in many respects, very
similar to linear discriminant analysis (LDA). In LDA, the input feature space is projected
onto the eigenvectors of the matrix Cp C;Vl. Since the eigenvectors of Cp C;Vl are orthonor-
mal, this operation results in a rotation of the input feature space. The resulting feature
representation can be truncated—that is, we can drop the features that correspond with
the P-lowest Rayleigh coefficients. Beside reducing the dimensionality of the feature space,
this truncation can have the effect of filtering out directions in feature space that are noisy.
Thus, if P is properly tuned, then LDA will often lead to improved accuracy when used as

a pre-processing step in a classification system.

The idea behind WCCN is not to filter out directions in feature space that are noisy,
but simply to deemphasize them based on their Rayleigh coefficients. In this way, WCCN
attempts to extract as much information as possible from the input feature space X by
optimally weighting every direction. (Note that WCCN is only “optimal” in the sense that
it minimizes a particular upper bound on classification error). If Cy is full-rank, then
these weights are never equal to zero; thus, WCCN is lossless, in that it retains all of the
original directions in the input feature space, X'. Unlike LDA, WCCN is also invariant to
any full-rank linear distortion of X. In other words, we can transform X with ®(x) = Ax,
and the resulting feature space after performing WCCN will look the same for any choice
of A where A is full-rank and N x N. The same is not true of LDA, however, since
LDA simply performs a rotation in feature space followed by a truncation. In Chapter
8, we provide a set of results where we compare the WCCN approach with a version of
LDA called nuisance attribute projection (NAP) (Solomonoff et al. [2004, 2005]). The NAP

approach was previously described in Chapter 4.

73

6.6 Experiments on a Speaker Verification Task

The following section describes a set of experiments where we compare the perfor-
mance of various linear feature transformations on an SVM-based speaker verification sys-
tem. These feature transformations include the WCCN approach described in Sections 6.3
through 6.1, where the R = C;Vl. We also experiment with the parameterization, R = C™1,
where C is the overall covariance matrix over all of the data. This parameterization corre-
sponds with the class-independent case of WCCN where the target and impostor sets are
treated as individual classes, and where C7z and C are assumed to be equal. We note that

this parameterization is identical to the GLDS kernel described in Campbell [2001].

Experiments were performed on two NIST-defined speaker verification tasks where the
goal is to correctly decide whether or not a given pair of conversation sides belong to the
same speaker. In these tasks, one of the conversation sides in each pair is used to define the
target class (i.e., speaker), while the other is used as a test example. We train an SVM-based
scoring function for every target speaker using a fixed pool of held-out impostor examples
taken from several hundred impostor speakers. Note that the classes in these experiments

represent speakers.

We used a version of the state-of-the-art MLLR-SVM system described in Stolcke et al.
[2005] to extract one 12480-dimensional feature vector from every conversation side. These
features can be divided into eight disjoint groups of 1560 features each, where each group is
associated with a particular set of speech phonemes. We used held-out data from the NIST
SRE-2003 dataset to compute the empirical expected within-class covariance matrix Cw
and the empirical overall covariance matrix, C. Note that both Cyy and € were estimated
in a block-diagonal fashion, where the covariance between any two features ¢ and j, where 1

and j belong to different phoneme groups, was set to zero. The resulting covariance matrices

74

SRE-03 subset SRE-04
kernel | EER% | DCF [EER% | DCF
R = diag(C,) !
(baseline) || 4.36 | 0.0166 9.84 | 0.0347
R = diag(Cw,)~' || 421 |0.0151 | 9.56 | 0.0338
R=C,'| 415 |0.0141 | 956 |[0.0348
R=Cy, | 380 | 00128 | 9.28 |0.0322

relative
improvement || 12.8% | 22.9% || 5.7% | 7.2%

Table 6.1. EERs and minimum DCF's for various generalized linear kernels. Here, “relative
improvement” compares the performance of R = C;Vls with the baseline.

were then smoothed using the models,

PN

Cw,s = py - CW (1— pW) ’ diag(CW)u Pw € [0,1],

(1 - P) : diag(é)v pe [07 1]7

where diag(A) is the diagonal component of the square matrix A. The parameters p,, and
p were independently tuned to a value of 0.30 by performing cross-validation on held-out

data from the SRE-2003 dataset.

Testing was performed on a subset of the SRE-2003 task and dataset and on the entire
SRE-2004 task and dataset for the 1-conversation training condition. Results are shown in
Table 6.1 for two standard error metrics: equal-error rate (EER) and minimum decision
cost-function (DCF)—a standard metric used by NIST to measure classification error when
the relative rate of false positives is high (NIST [2005]). Note that both error metrics are
computed on the pooled set of SVM output scores obtained from the various target classes.
Here, the R = diag(cs)_1 and R = dz'czg(c1/1/75)_1 parameterizations correspond with per-
feature variance normalization and with per-feature within-class variance normalization.
The R = C, parameterization corresponds with the GLDS kernel (Campbell [2001]) and
R = CW,S corresponds with WCCN. As shown in Table 6.1, the R = C;Vls case shows a
substantial improvement over the R = Cs_l case and over the baseline, where each feature is
normalized to have unit variance (i.e., R = diag(C)™!). The improvement on SRE-2004 is

significantly smaller than that obtained on SRE-2003. However, this is to be expected, since

75

both €y and € were estimated only on SRE-2003 data, which represents a different set
of channel and recording conditions than SRE-2004 (Stolcke et al. [2005]) for more details
about the system, datasets, and tasks). Further information on these experiments can be

found in Hatch and Stolcke [2006].

6.7 Summary and Conclusions

The preceding chapter describes an approach for training generalized linear kernels of
the form, k(x1,x2) = x] Rxg, for OVA classification tasks. We develop a set of error bounds
which, under various conditions, are minimized by choosing R = C;Vl. This parameteriza-
tion performs what we refer to as within-class covariance normalization (WCCN) on the
input feature space. In experiments performed on an MLLR-SVM speaker verification sys-
tem, WCCN achieves substantial reductions in classification error over other linear feature
transformations, including the GLDS kernel of Campbell [2001] and per-feature variance

normalization.

76

Chapter 7

Tightening the Bounds: the
Adaptive, Multicluster SVM

In Chapters 5 and 6, we introduced a new modified formulation of the hard-margin and
soft-margin SVMs. These formulations follow from the class-dependent bounding functions
in (5.21) and (6.2), which provide an upper bound on the event of a misclassification.
The modified SVMs in Chapters 5 and 6 specify a kernel function k£ and a corresponding
linear feature transformation ® that minimize the upper bounds on R(f) in (5.18) and
(6.4). The upshot of these formulations is that we can implement an “optimized” linear
classifier (optimized in the sense that it minimizes these particular upper bounds on R(f))

by performing the following two steps:

1. Use @ to transform the input feature space.

2. Train a linear SVM in the usual way. Here the term, “linear SVM,” refers to an SVM

that uses the inner-product kernel, k(x,x3) = xlTXQ.

In Section 6.3, we gave a practical argument for how, under certain assumptions, the opti-
mized feature transformation ® leads to the notion of within-class covariance normalization

(WCCN). WCCN has the attractive property of being indepedent of the given partitioning

77

of classes—that is, WCCN is independent of the assignment of each class to either the
impostor set or to the target set. This means that after performing WCCN on the input
feature space, the standard linear SVM is approximately optimal for minimizing the upper

bounds in (5.18) and (6.4) on any partitioning of classes.

The WCCN approach provides a convenient means of obtaining linear classifiers that
approximately minimize a particular upper bound on R(f). However, WCCN has the
drawback of being derived from error-bounds that are unnecessarily loose. We note that
the upper bounds on R(f) in (5.18) and (6.4) are based on a set of one-sided, second-order,
class-dependent bounding functions in (5.21) and (6.2) that all have uniform width (see
Figure 5.4). These bounding functions are specifically designed to yield objective functions
that are easy to solve. However, we can obtain tighter bounds on error by using bounding
functions of variable width, where each bounding function intersects the “edge” of the
0 — 1 loss function (i.e., the point on the 0 — 1 loss function where f(x) = 0). We have
already introduced a tighter set of bounding functions in (5.15) and (5.16) for the case
where the target and impostor means are linearly separable. These bounding functions are
defined to be as wide as possible while still providing an upper bound on the event of a
misclassification. In this chapter, we construct a similar set of bounding functions for the
case of non-separable data. By minimizing the corresponding upper bound on R(f), we
ultimately arrive at a new formulation of the 1-norm soft-margin SVM that implicitly learns
R in the generalized linear kernel, k(x1,x2) = XTRXQ. Unlike the SVM formulation in
Chapter 6, this formulation optimizes the relative weight applied to each class-conditional
covariance matrix in the parameter matrix, R. The resulting parameter matrix has the
form, R = (EJ 1;p;C;) ™", where pu; represents the relative weight applied to class j. We
refer to this new formulation as the adaptive, multicluster SVM (AMC-SVM), because it

allows us to adapt the relative weight applied to each class when computing R.

This chapter is organized as follows: Section 7.1 describes a set of bounding functions
that form the basis of the AMC-SVM. Section 7.2 describes two methods for optimizing these

bounds. These include an iterated quadratic program (QP), in which we iterate between

78

optimizing two different subsets of parameters. We also describe an equivalent formulation,
where the AMC-SVM is framed as a second-order cone program (SOCP). In Section 7.3,
we describe a set of experiments where we test the AMC-SVM against a conventional SVM
that uses WCCN. These experiments are performed on various types of artificial Gaussian

data. Finally, a set of conclusions is provided in Section 7.5.

7.1 Bounding Functions

In this section, we construct an upper bound on R(f). Minimizing this upper bound
leads to a modified form of the conventional, 1-norm soft-margin SVM in (3.4). As in Chap-
ter 6, the upper bound on R(f) follows from a set of class-dependent bounding functions on
the event of a misclassification (i.e., on the 0 — 1 error function). To simplify our notation
in the following section, we begin by defining D; to be the covariance matrix of class j
weighted by the conditional probability of j within the corresponding set (i.e., either the

target set or the impostor set). Thus, we have:

Cj LR (Xj —)_(j)(Xj —)_(j)T V7,

D; £p;C; Vj,
where p; is defined as

UL if jeT,

ﬁj L ZkeTp(k)7
7;;%(16)’ if jeT.

We also define X to be a matrix of the class means, and A, to be a diagonal matrix of the

corresponding labels:

X 2 [%y,..., %],
Yi, if 'L:.ja
[Ay]ij £ {
0, if i#j.

A set of class-dependent bounding functions is defined below:

79

Theorem 12. Given the scoring function f(x) = vix +b, if yjf(X;) > 0 for all j €

{1,..., M}, then the following inequality holds.
L(yjf(x;) <0) < B(x;5;0;) = 0<p; <1, (7.1)

Here, ©; represents a set of parameters for class j, and B(x;; ©;) represents a one-sided,

second-order bounding function. These are defined as follows:

ej £ {v7baujayjuij}a

B 2
Blx;: 0,) 2 <(yjf(xj) —yjf(Xj))+> 2 (1= 55 (%)) 4 (7.2)
maX{ﬁj,yjf(ij)}

Proof. The proof follows essentially the same steps as the proof of Theorem 10. We can see
by inspection that as y;f(x;) decreases, B(x;; ©;) increases or stays the same. Thus, we
have only to show that B(x;; ©;) > 1 for all y; f(X;) € (0,00) when y; f(x;) = 0. We divide
the problem into two cases: one where y; f(X;) > u%" and another where 0 < y; f(X;) < L

M
In each case, we assume that y; f(x;) = 0.
Case 1: i <y, f(xj)
In this case, the term 2 - (1 — ,ujyjf()T:j))+ is zero, and the quadratic term

2
((yjf(ij)—yjf(xg‘))+> is equal to one.

1 -
max E Yj f(x])

Case 2: 0 <y, f(x;) < i

For this case, we compute the first and second derivatives of B(x; ; ©;) with respect to

y;f(X;). This gives us

9B(%; ; ©;) 2
e = 205y f (%) — 20,
(y;f (%)) e ’
— W2 “Hy
Ay f(Z5))
Setting 9B(x;39;) equal to zero gives us y; f(X;) = --. We know that B(x;; ©;) is convex,
e Hi
2 .. .
because L2191 g strictly positive. Thus, y;f(X;) = ui is the global minimum for this
3(yjf(>_€j) ’
case.

80

\‘ \\\ — 0-1 error function
L)
\\ \‘\ ----- bounding functions
\\ »
A
ASEE N
AV
N
LS
AN \“w =
3, Seal y; f(X5) 51
1 ' TTTTTmmmmmmmmmmmmsmmmmmmmemmmmemee-
NS
A%
ALY
N
“ N
N
kY -
~ Ny
~ . —
N ~Yif(x;) = 2u;
~ e
— ~
R A |
0 - -
1 1 3
2p; Hj 2p;
yjf(xj)

Figure 7.1. Illustration of the 0 — 1 error function, 1(y;f(x;) < 0), and the bounding
function, B(x; ; ©;), as a function of y; f(x;) for various values of y; f(X;). If ;> 0, then
B(x;; ©;) forms an upper bound on 1(y; f(x;) < 0) for any value of y; f(x;) and y; f(X;).

The above cases show that B(x;; ©;) is minimized at y;f(X;) = i We also know

that B(x;; ©;) =1 at y;f(X;) = i Thus, B(x;; ©;) > 1 for all y;f(X;) € (0,00) when

y;f(x;) = 0. O

As in Chapter 6, B(x;; ©;) represents a one-sided, second-order bounding function
on the 0 — 1 loss function, 1(y;f(x;) < 0). The form of the bounding function in (7.2)
is similar to that defined in (6.2), except that we scale B(x;; ©;) to have a width of
(max{uij,yjf(ij)}), where p; € (0,1] is a new model parameter. The bounding function,
B(x; ©;), is assigned a width of y; f (X;) for any class j where y; f(X;) > i This represents
the maximum possible width for which we satisfy the bound, 1(y; f(x;) < 0) < B(x;; 0;).
For the case where y; f(X;) < u%" the bounding function is assigned a fixed width of i We
also use the hinge-loss term (i.e., 2- (1 — p;y;f(X;))+) to ensure that B(x; ; ©;) remains
greater than the 0 — 1 error function when y; f(X;) < i An illustration of B(x;; ©;) is
provided in Figure 7.1. Note that the bound in (7.1) is only valid if ;1; is finite and greater

than zero.

81

We can now use the inequality in (7.1) to derive an upper bound on R(f). As usual,
we assume throughout the following sections that each class is symmetrically distributed
about its mean. This implies that for all j, the distribution of f(x;) is symmetrical as well,
since f is an affine function. Under this assumption, we can obtain the bound in Theorem
13 on the risk function, R(f). For this bound, we define p and & as p 2 [p1, ..., par]”, and

E210&,...,6u]", where M is the number of classes.

Theorem 13. If, for all j € {1,..., M}, x; is symmetrically distributed about its mean,

then the following bound holds.

ZMJ vV +2- ijﬁj (7.3)

— & <yi(vIx;+b) vy,

[\Dl'—‘

subject to 0<p=1,

0=x¢.
Proof. A formal proof of Theorem 13 is provided in Hatch [2006] and in Appendix A. O
The above bound follows from taking the expectation of both sides of the inequality in
(7.1).

We can convert the bound in (7.3) to a more familiar form by substituting v = U,w,
where U, UT (32, 1iDj)~ L. (For simplicity, we will assume throughout this dissertation

that (3, p;D;) is full-rank and therefore non-singular). This gives us the following bound:

R(f) <

N —

w23 pig; (7.4)
J

=& <y (WIUER; +b) V),
subject to 0<p=1,

0<¢.

Here, we see that for fixed p, minimizing the bound in (7.4) leads to an optimization

problem with the same general form as the 1-norm soft-margin SVM in (3.4), except that the

82

constraint, 1 -¢; < yj(wTUZiijb) V4 has been replaced with uij—fj < yj(wTUZ;ij—i-b) Vj.
We refer to this formulation, and to affine decision functions that we obtain by minimizing
it, as the adaptive, multicluster SVM (AMC-SVM). The AMC-SVM implicitly defines a

feature mapping ® and a kernel function & of the form,
d(x) = ng,
k(x1,%s) = x] Rxy,
where the matrices, R and U, are defined as follows:
R 2 (Y D)) (7.5)
J
U, U/ £R.

In the above equations, the u; parameters control the relative weight applied to the covari-

ance matrices in computing the feature mapping ® and the kernel function k.

From the bound in (7.3), we note that a 1-norm soft-margin SVM with a simple inner-

product kernel (i.e., a kernel of the form, k(x1,x2) = x7 X2) can be viewed as a special case

of the AMC-SVM where the following conditions hold:

1. p; is fixed at 1 for all j.
2. C; is assumed to be proportional to the identity matrix, I, for all j.
3. The &; terms are weighted by p; for all j.

4. Every input training example is treated as the mean of some class. That is, we replace

each x; term in the original SVM formulation with X;.

Similarly, the WCCN approach of Chapter 6 forms a special case of the AMC-SVM where
p; =1 for all j. Hence, we can view the AMC-SVM as an adaptive form of WCCN where
the weights assigned to the class covariance matrices (i.e., the C; terms) are adapted to the

given dataset.

83

7.2 Optimization

In this section, we examine the problem of minimizing the upper bound on R(f) in (7.3)
with respect to (v,b,&, ;). We use the notation (v*,b*,&*, u*) to represent the optimizers
of (7.3). From (7.3), we see by inspection that u} has the following solution for all j:

1
i = - - (7.6)
T y(vTR 4+ D) +&

Given the above solution for u;‘-, we can state the problem of minimizing (7.3) with respect

to (v,b,&) as follows:

Y et o
min . & .
v,b,€ I yi(vIx; +b)+ ¢ F Pisi
_ 1-¢& <vy(vIx;+b) Vi
subject to
0=¢.
vTDjv 1
The TR B TE terms in the above optimization problem have a quadratic-over-linear

form, which is convex. Thus, the overall objective function of (7.7) is convex, since it is
composed of a positively-weighted sum of convex terms. The constraints in (7.7) are linear
and therefore also convex; thus, it follows that the overall optimization problem of (7.7) has

a convex form.

We prescribe two approaches for solving (7.7). The first of these is an iterated quadratic
program (QP) approach, where we optimize (7.7) by iteratively solving a QP over (v,b,§)
and then minimizing with respect to p. We also show how the problem in (7.7) can be
framed as a second-order cone program (SOCP). This solution was recently proposed by

Laurent El Ghaoui.

7.2.1 Iterated QP Formulation

One approach to optimizing (7.7) (or equivalently, to minimizing the bound in (7.3)) is
to use what we refer to as an iterated QP approach, where we first optimize over (v,b,¢)

given some initial x4 and then over p given (v,b,£). These two steps can be iterated until

84

the objective function converges to the global minimum. Although potentially inefficient,
this iterative approach has the advantage that it doesn’t require any specialized optimiza-
tion software except for a standard SVM trainer (we note, however, that the iterated QP
approach also requires software for performing eigendecompositions on potentially large

matrices).

The first step in the iterated QP is to optimize over (v, b,{) given some initial value of

p (say pj =1 for all j). We can express this optimization as a quadratic program (QP):

{,n,}fg VIO T wDiv+C- Y pig; (7.8)
» ‘] ']
1 T = .
- —& <yi(vix;+b) Vi,
subject to M 7 j(VI % +)
0<¢.
(07 = _
= 2y L —a'AX" D;) XA e 7.9
oga]-rg%g]— vj Z 14 @ Ay (Z piD;) y& (7.9)
aTy=0 J J

Here, the optimization problem in (7.9) represents the dual problem of (7.8). We will omit
a formal proof of this since the derivation of (7.9) follows essentially the same steps used in
Vapnik [1995]; Cristianini and Shawe-Taylor [2000] to derive the dual of the 1-norm soft-
margin SVM. Note that we have replaced the factor “2” in equation (7.3) with the general
hyperparameter C in (7.8) and in (7.9). The optimal value of v for the above optimization

problems has the form,
vt = (Z 1;D;) XA,
J
where o* is the maximizer of (7.9). This solution for the optimal v follows from the

standard solution in (3.3) for the weight vector of an SVM. Given v and p, we can compute

the optimal (b,) by solving the following linear program (LP):
min Zj:pjij

subject to i —4s yj(VTij) Vi,

0<¢ Vi

85

Next, we optimize over p given (v, b, §):
. T ~
D. C. ¢
i v (Ej D)V + Ej Di€j

subject to i — & <yi(vI®j+b) Vi

The solution for the optimal g in the above optimization problem is given in (7.6). By
putting all of these steps together, we arrive at the following iterative procedure for mini-

mizing the bound in (7.3) with respect to (v, b, u, £):

L. set pj:=1 Vj.

[\

.set R := (Z] /vLij)il.

3. solve for a:

(o7 — —

2y L oTAXTRXA, . 7.10

0<a;<Cp; Vj Zuj * ve (7.10)
OéTyZO J

4. set v := R)_(Aya.
5. solve for £ and b:
min Zj:pjfj

1 T2 -
=& Syi(vixi+0b) V),
subject to Hi ! i !)
0<¢& Vi

6. set p:
1

yi(vI%j +b) +¢;

My 1= vj.

7. return to step 2.
The iterated QP procedure shown above includes a QP in step 3 and an LP in step 5. Both
of these problems can be solved by using standard optimization tools for SVMs. The above

procedure also requires computing the inverse of a potentially large matrix in step 2. Since

matrix inversions can be time-consuming, this step forms one of the main computational

86

bottlenecks in implementing the iterated QP procedure. As the name implies, the iterated
QP also requires that each step be repeated multiple times until the variables converge to
the global minimum. Thus, the iterated QP may be somewhat inefficient, particularly in
cases where many iterations are required. In the following section, we describe an equiva-
lent formulation of the AMC-SVM where all variables are optimized simultaneously. This
formulation has the advantage of being potentially more efficient than the iterated QP;

however, it requires an SOCP solver, which may not be readily available to all users.

7.2.2 SOCP Formulation

The optimization problem in (7.7) can also be framed as a second-order cone program
(SOCP). To show this, we begin with the following lemma, which was recently proposed by

Laurent E1 Ghaoui:

Lemma 1. The following inequalities are equivalent for any real scalars x > 0 and y > 0

and for any vector z € R, where N is a positive integer:

Ty > z'z

= sty 2l Loyl (r.11)

Proof. Squaring both sides of the inequality in (7.11) gives us

1 1 T+ y\2 T —y
s@+y) 2z S -yl = (52) 2l =B

1 1
= Z(xz + 2zy —I—y2) >zlz + 1(1‘2 — 22y +y2),

= Ty > z' z.

O

We can use Lemma 1 to obtain the following equivalent SOCP formulation for the bound

in (7.7):

87

Theorem 14 (SOCP Formulation). The bound on R(f) in (7.7) can be minimized with

respect to v, b, and & by solving the following SOCP:

] . N £ 12
M o) o

. 1 _ o _ .
subject to S (tj + yi(v % +b) + &) > D7 v; 5t = yi (v % +b) = &)l Vi,
1—¢& <y(v%;+b) V5,

0<¢.

1
Here, we define Dj2 to be the Cholesky factorization of Dj:

T

1 1
ip? AT,
D!D! 2D
Proof. The problem in (7.7) can be restated as

min) (t+Cps) (7.13)

biect t t> vDjv
subject to P> —
Ty (VIR 4 b) +

Vi,
1—¢& <y(vi;+b) Vi,
0=<¢.
We can now apply Lemma 1 to the linear constraint on ¢;. This gives us the SOCP in

(7.12). O

Note that in Theorem 14, the term ¢ is defined as t = [t1,...,t)]7, where M is the

number of classes.

7.2.3 A Kernelized Version of the Adaptive, Multicluster SVM

In this section, we address the problem of how to empirically estimate class covariance
matrices, and more specifically, how to estimate R 2 Y jiDj given a finite set of training

data. The theory in this section also leads to a “kernelized” version of the AMC-SVM,

88

which allows us to apply the iterated QP and SOCP formulations of the previous sections
to arbitrary kernels and feature mappings. For instance, the theory developed in this section
can be used to implement an AMC-SVM with a Gaussian or RBF kernel. We begin, in the
following section, by deriving an iterated QP formulation of the AMC-SVM where the class
covariance matrices are estimated empirically. This is followed by a similar derivation for

the SOCP formulation.

Iterated QP Formulation

We begin by defining X; to be a matrix containing the training vectors for class i:
Xi = [Xil, PN ,XiNi].

Here, x;; represents the jth training vector of class 7, and N; represents the total number
of training vectors in the class. Next, we define X to be a weighted and centered version

of Xz

~ i 1
X, 2 ,/in(xi - EXﬂMﬂi).

We use the notation 1y, to denote a column vector of IV; ones. Given the above definition
for Xi, we define X to be a matrix containing X; for all i and A, to be a diagonal matrix

containing the square-roots of the elements of yu:
X £ [Xla"'7XM]7
Ay = diag([y/iilh,, .- Vi,
Given these definitions, we can approximate R £ Ej ;D as fl, which is defined below:
R £ XAZXT, (7.14)

Here, R represents the empirical estimate of R. Substituting R for R in (7.10) gives us the

following expression for the QP in Section 7.2.1:

0<a; <C-p; Vi
aly=0

max 2 Z % - aTAyXT(XAZXT)AXAya. (7.15)
; J
j

89

We can now use the kernel PCA technique described in Schoelkopf and Smola [2002] to
obtain a “kernelized” version of the above expression. By the singular value decomposition,

we have
XAZXT = Uxn?u’,
AXTXA, = VvErvT,
where U and V are the eigenvector matrices for XA%XT and ANXTXAH, respectively, and
»? is the corresponding diagonal matrix of eigenvalues. If VE2V7 is full-rank, then we can

express U as follows:

U=XA, V! (7.16)

The above equation can be used to obtain an expression for the pseudoinverse of fl, which

we represent as Rt.
Rt =uUx2U”,

= XA, Ve iy 2nivTp X7

XA (A XTXA,) 20, XT,

I
Pt

A AN (XTX) A IA N XTX) A A X

I
Pt

(XTK) A2 (XTK) KT

Substituting R for R~ in (7.10) gives us the following QP:

0<a=Cp; Vj
aTy=0

max 2 Z %4 aTAyXTX(XTXAZXTX)71XT)_(Aya. (7.17)
~ Juj
J
As in the conventional SVM, the feature vectors in (7.17) only appear in the form of inner
products. Thus, we can apply the kernel trick to (7.17), where we replace each inner product
x1'xo with a kernel function, k(x1,x2). In general, we can implement the AMC-SVM for any

arbitrary feature mapping ® by plugging in the corresponding kernel function, k. Further

details on the kernel trick can be found in Chapter 3.

If we now compare the expression in (7.17) with the expression in (7.15), we see that

the two expressions are the same except that each instance of X and X in (7.15) is replaced

90

with X”X and X”X in (7.17). Thus, we can view X’ X in (7.17) as a column matrix of
input feature vectors. Under this interpretation, we can use (7.14) to come up with the

corresponding equation for R. This gives us

We can now substitute R for R and X”X for X in (7.10) to arrive at the expression
in (7.17). Here, we note that because X”X is an N x J matrix, where N is the total
number of training examples and J is the total number of classes, the new “feature vectors”
in the columns of X7X will be N-dimensional. Thus, if the original feature space has a
dimensionality of L, where L > NN, then we can use the empirical approach described in this

section to effectively reduce the dimensionality of the input feature vectors from L down to

N.

SOCP Formulation

The preceding section describes what we refer to as the “empirical formulation” of the
iterated QP, where the covariance matrices are estimated from the training data. We can use
a similar set of arguments as those given in Section 7.2.1 to obtain an empirical formulation
for the SOCP in 7.2.2. As with the empirical formulation of the iterated QP, the empirical
SOCP formulation is “kernelized” in the sense that the feature vectors only appear in the
form of inner products. To derive this formulation, we begin by estimating the covariance
matrix C; as follows:

& = ~X,XT.
bj
Here, Cj represents the empirical estimate of C;, based on the training data. The matrix

Xj is defined in the previous section. Given Cj, the corresponding empirical estimate for

1
5 .
Dj is

N

D: - X,

<

91

L1 1
Substituting D? for D7 in (7.12) yields the following empirical SOCP formulation:

i (t 1
min EJ; i +Chigy) (7.18)

. 1 1 _ .
subject to 2(tj + y](v Xj+0b)+&) > ||X v; E(tj — yj(vTXj +0) =&l V9,
1—¢& <y(v & +b) V),

0<¢.

By using kernel PCA as in the previous section, we can obtain the following kernelized

formulation of the SOCP:

i g 1
min, ;(tﬂrc‘pyfﬂ) (7.19)

) 1 ST —
subject to E(t‘j + yj(VTX?Xj +0) +&5)

1-— gj S yj(VTX?}_Cj + b) V],

0<¢.

Again, as in the conventional SVM, the feature vectors in (7.19) only appear in the form of
inner products. Thus, we can apply the kernel trick to (7.19), where we replace each inner

product x?x, with a kernel function, k(x;,xs).

7.3 Experiments on Artificial Data

The following section describes a set of experiments where we test the adaptive,
multicluster framework introduced in Sections 7.1 and 7.2 on various types of arti-
ficial data. In each experiment, we first define one or more distributions on the
means and on the covariance matrices for a set Gaussian classes that reside in an N-
dimensional feature space. We then draw from these distributions to obtain the set,

Si = {(%i1,Ci1,¥i1), -5 (Xim, Cionr, yi,m) }, where (X5, C, 5, v4,5) represents the mean,

92

covariance matrix, and corresponding label for the jth class in set S;. For these exper-
iments, we used a one-versus-all setting where each class is assigned a label of -1 except
for one randomly chosen “target class,” which gets a label of 1. The experiments were

performed using the iterated QP formulation.

Given the set S;, the means and covariance matrices for the Gaussian classes defined
by S; are used to train an AMC-SVM, which we then test on 10,000 random draws taken
from the same Gaussian classes. For simplicity, we used the ezact means and covariance
matrices defined in S; to train each AMC-SVM. The only exception to this is Experiment
3, where the covariance matrix of the target class is assumed to be unknown. We used the

following weighted metric to compute classification error:

1 (# of false neg. # of false pos.)

2 # true trials # impostor trials

error =

Here, error represents the average of the empirical rates of false positives and false negatives.
Final results for each experiment were obtained by computing the average of error over

~3000 draws of S; for various values of the SVM hyperparameter, C.

7.3.1 Experiment 1

For our first experiment, we tested the AMC-SVM in a one-versus-all setting with 10
Gaussian classes in a 10-dimensional feature space. In this experiment, the class means and
class covariance matrices are both defined to be iid, respectively. The exact distributions
of the means and covariance matrices are given below:

% ~N(0,0)1° Vie{1,...,10},
C; = Vi diag(\;) Vi Vi€ {1,...,10},
A ~ Unif(0,1)!° Vvie{1,...,10},
o =1.5.

Here, the columns of V; € R'%*!0 represent a set of orthonormal eigenvectors for the co-

variance matrix, C;. The V; matrices are drawn independently from a uniform distribution

93

0.03 —#— per-feature variante nprmaligation + SVM |
—&TWCCNH SV
‘\ =01 AMC-SVM
0.025
Q
A
AY
\\ \

S oo2FN N
= A\
] —
c \\ \\'-—w/“"/‘
S N
T 0015 <N
= N \
g i ————-
s
© 001

0.005

0
2 4 6 8 10 121416
C

Figure 7.2. Results for Experiment 1.

over all possible sets of orthonormal eigenvectors in R!°. Since the V; matrices serve as
eigenvectors for the class covariance matrices, the Gaussian classes in this experiment are
completely independent of one another in their spatial orientation (i.e., the directions of

their major and minor axes in R!?).

Figure 7.2 shows classification results obtained from using the AMC-SVM for various
values of the hyperparameter C. The figure also shows two sets of results obtained from
a conventional 1-norm, soft margin SVM. These include a set of baseline results where we
perform per-feature variance normalization on the input features (i.e., R = diag(C) '),
and another set of results where we perform WCCN (i.e., R = Cy;/). Note that both the

conventional SVM and the AMC-SVM were trained only on the class means.

In Figure 7.2, we see that WCCN yields dramatic improvements over the baseline, where
the features are scaled to have unit variance. The figure also shows that the AMC-SVM
yields modest improvements over WCCN when C' is small. However, these improvements

become fairly negligible when C' is large.

94

7.3.2 Experiment 2

We performed a second experiment where the Gaussian classes form two major clusters
of 5 classes each. In this experiment, the class means within each cluster are correlated
with one-another, as are the class covariance matrices. We use the notation, X; ; and C; j,
to represent the mean and covariance matrix for the jth class of cluster . The exact

distributions for the class means and class covariance matrices are defined below:

Xij=10-¥i0+¥i; V(,7) €{1,2} x{1,...,5},
¥ij ~N(0, 1) v(i,5) € {1,2} x {0,...,5},
Cij=0-0a) Zio+a-;; V(j) e€{l,2} x{1,...,5},
Sig = Vi diag(Ni) Vi V(. 4) € {1,2} x {0,...,5},
Aiyj ~ Unif(0,1)® V(i,5) € {1,2} x {0,...,5},

a=0.1.

Here, ¥;0 and ¥; o represent the “primary” mean and covariance matrix for the classes in
cluster ¢. These are combined in a weighted sum with §; ; and ¥; j for all j € 1,...,5. Note
that in this experiment, the class means within a given cluster are heavily correlated with
one-another, as are the class covariance matrices. The matrix V; ; is distributed in the same

way as in Experiment 1.

Figure 7.3 shows classification results for various values of C' (see Hatch [2006] for a chart
of the corresponding numerical results). In this experiment, WCCN and the AMC-SVM
both yield large improvements over the baseline results, where we use a conventional SVM
after performing per-feature variance normalization. As in Experiment 1, the AMC-SVM
significantly outperforms WCCN when the C' hyperparameter is small. However, the two
systems perform about the same when C' is large. For the purpose of training an AMC-
SVM, we note from (7.3) that scaling down C is equivalent to scaling up our estimates of
the class-conditional covariance matrices—that is, the estimates that we use in training.

In other words, reducing C increases the amount of second-order regularization that we

95

—* per-feature variange nprmalization + SVM
—&—TWCCN} SV
o1 \ -0 AMC-SVM
0.081- \\ E
§ ~ |
=
5}
S
2 0.08)
©
L2
=
‘@
©
- 004 B
0.02[oot B
0
2 4 6 8 10 121416

C

Figure 7.3. Results for Experiment 2.

perform in training. Based on this, and based on the results in Figure 7.2, we might assume
that the relative benefits of the AMC-SVM over WCCN are potentially quite significant for
cases where a large amount of regularization is required—for example, the case where we

only have noisy estimates of the class covariance matrices.

7.3.3 Experiment 3

In many real-world tasks, the amount of training data available for the target class is
very limited, whereas the amount of available impostor data is very large. For these tasks,
coming up with an empirical estimate of the target class covariance matrix can be difficult,
if not impossible. Thus, it may be necessary to estimate the covariance matrix of the
target class from the impostor classes—particularly from impostor classes that are highly
confusable with the target class. To simulate this scenario, we repeated Experiment 2 for
the case where the covariance matrix of target class ¢ is estimated as a weighted average of

the covariance matrices of the impostor classes:

1
Ci = =/ ,u]'ﬁjCj.
2. jez Hibj JEZI

The averaging scheme given above is based on the definition of R in equation (7.5). We

96

4
—* per-feature variange nprmalization + SVM
—&—TWCCN} SV
01 \\ =01 AMC-SVM
0.08F S Lo 1
~ —
=
5}
s
-2 0.0
©
L2
=
(7]
@ N
1] \
S 0041 B
N\
\
\\ \
. \&\\
0.02[B S = -, 4
0
2 4 6 8 10 121416
Cc

Figure 7.4. Results for Experiment 3.

use p as the main parameter in defining an estimate of C; based on a weighted average of
covariance matrices. Insofar as p; represents a measure of “confusability” between class j
and the target class, this estimate of C; assumes that classes that are highly confusable with
one-another will tend to have similar covariance matrices. Note that while this assumption
may be reasonable for the particular class means and class covariance matrices that we have

defined for Experiment 2, we cannot expect this assumption to hold for general datasets.

Results for Experiment 3 are shown in Figure 7.4 along with the corresponding baseline
results (a chart of the corresponding numerical results can be found in Hatch [2006]). In
this experiment, the relative improvement obtained from the AMC-SVM over WCCN is
much more significant through the entire range of C' values than the improvement obtained
in Experiments 1 and in Experiment 2. Thus, we might conclude that the potential benefits
of the AMC-SVM approach are particularly significant in cases where information about
the target class covariance matrix can be gleaned from impostor classes that lie close to the

decision boundary.

97

0.08 T
—*— per-feature variance normalization|+ SVM
—&— WCCN + SVM T

007 =0:- AMC-SV
0.06 -
™ /
0.05 .
\ \\ /
)
\\ \
Y

classification error
o
o
s

0.01 b po—
Beo 000 gT0Re
0
2 4 6 8 10 12 14 16
C

Figure 7.5. Results for Experiment 4.

7.4 Experiment 4

In our 4th and final experiment, we used an artificial Gaussian dataset similar to that of
Experiments 2 and 3, except that the dimensionality of the input feature space is increased
from 10 to 100. We also changed the distribution of the data so that the classes reside in 5
clusters of 2 classes each. The exact distributions for the class means and class covariance

matrices are defined below:

Xij=10-¥i0+¥i; V(,j) e{l,...,5} x{1,...,2},
¥ij ~ N0, V(i 5) € {1,...,5} x {0,...,2},
Cij=(0—-a)-Tig+a-; VY07 e{l,....,5} x{1,...,2},
S = Vi diag(hij) Vi V(i 5) € {1,...,5} x {0,...,2},
Aij ~ Unif(0,1)° V(i,j) € {1,...,5} x {0,...,2},

a=0.1.

Results for the AMC-SVM are shown in Figure 7.5, along with a set of results obtained
from using WCCN and another set of results for the baseline system. Here, we see that

the AMC-SVM approach yields large improvements over WCCN for most values of the C

98

hyperparameter. (However, the WCCN approach in Figure 7.5 outperforms the AMC-SVM
when C' is approximately between 3 and 4. The minimum classification error achieved by
the two techniques is approximately the same.) Based on these results, we might conclude
that the AMC-SVM is more robust to sub-optimal values of C' than WCCN. Comparing
these results with those of Experiment 2, where the input feature space has a dimensionality
of 10, we note that the potential benefits of the AMC-SVM over WCCN appear to grow
larger as the dimensionality of the input space increases. These results give us reason to
believe that the AMC-SVM may yield significant improvements over WCCN on real-world
tasks where the dimensionality of the input space is large relative to the number of training

examples, and where the optimal value of C' is unknown.

7.5 Conclusions

In this chapter, we extend the WCCN approach of Chapter 6 to obtain the so-called
adaptive, multicluster SVM (AMC-SVM). The AMC-SVM implements an adaptive form
of WCCN, where the weights of the class covariance matrices are adapted to the given
dataset. This formulation is based on a tighter set of upper bounds on classification error
than those used to derive WCCN in Chapters 5 and 6. The AMC-SVM is convex and can be
instantiated as either an iterated QP or as an SOCP. We also show how either instantiation
can be “kernelized” in the same way as a conventional SVM. In experiments performed
on artificial Gaussian data, the AMC-SVM yields modest, but significant improvements
over WCCN when the dimensionality of the input feature space is small compared to the
number of classes. These improvements become more substantial as the dimensionality of

the feature space is increased.

99

Chapter 8

Within-Class Covariance
Normalization for

High-Dimensional Data

In this chapter, we expand on the within-class covariance normalization (WCCN) tech-
nique that was introduced in Chapter 6. WCCN uses information about class labels from
the training data to identify orthonormal directions in feature space that maximize task-
relevant information. In this respect, WCCN is similar to other linear transformations such
as NAP (Solomonoff et al. [2004, 2005]) or linear discriminant analysis (LDA). However,
unlike these techniques, WCCN optimally weights each direction in feature space to mini-
mize a particular upper bound on the risk function, R(f) (Hatch and Stolcke [2006]; Hatch
[2006]). In principle, WCCN can harness whatever task-relevant information is contained
in each of the “directions” of the underlying feature space—even directions that are largely

dominated by noise.

In the following chapter, we describe a practical procedure for applying WCCN to an

SVM-based speaker recognition system where the input feature vectors reside in a high-

100

dimensional space. Our approach involves using principal component analysis (PCA) to
split the original feature space into two subspaces: a low-dimensional, high-energy “PCA
space” and a high-dimensional, low-energy “PCA-complement space.” After performing
WCCN in the PCA space, we concatenate the resulting feature vectors with a weighted
version of their corresponding components from the PCA-complement space. Our algorithm
provides a practical approach for applying WCCN to large feature sets, where inverting
or simply estimating Cyy is impractical for computational reasons. In experiments on
SRI International’s latest MLLR-SVM speaker verification system (i.e., feature set), our
combined WCCN approach achieves relative improvements of up to 22% in equal-error
rate (EER) and 28% in minimum DCF below SRI’s previous baseline. We also achieve
substantial improvements over an MLLR-SVM system that performs WCCN in the PCA

space but discards the PCA-complement.

The chapter is organized as follows: In Section 8.1, we summarize the WCCN approach
and discuss practical considerations for how to apply WCCN to large feature sets. In Section
8.2, we describe the approach used in Kajarekar [2005] for breaking feature vectors down
into PCA and PCA-complement components. This is followed by Section 8.3, where we
describe the experimental procedure that we use to perform feature normalization and to
train SVM-based speaker models. Finally, in Sections 8.4 and 8.6, we describe a set of

experiments, provide results, and end with a set of conclusions.

8.1 Within-Class Covariance Normalization

In Chapter 6, we derived WCCN by first constructing a set of upper bounds on the rates
of false positives and false negatives in a linear classifier (i.e., a binary classifier that uses
a linear or affine decision boundary). Under various conditions, the problem of minimizing
these upper bounds with respect to the parameters of the linear classifier leads to a modified
formulation of the hard-margin support vector machine (SVM) (Vapnik [1995]; Cristianini

and Shawe- Taylor [2000]). Given a generalized linear kernel of the form, k(x1,x2) = x7 RXa,

101

where R is a positive semidefinite parameter matrix, this modified SVM formulation im-
plicitly prescribes the parameterization, R = C;Vl, where Cyy is the expected within-class

covariance matrix over all classes. We can represent Cyy mathematically as
M
Cw £ p(i)- Ci,
i=1
Ci £E (x; —%)(x; — %)’ Vi.

Here, x; represents a random draw from class 7, M represents the total number of classes,
and X; represents the expected value of x;. We use C; and p(i) to represent the covariance
matrix and the prior probability of class i. (Note that in this chapter, the term, “class”
is synonymous with “speaker.”) Given Cy, where Cyy is full-rank, we can implement a

generalized linear kernel with R = C;Vl by using the following feature transformation, ®:
d(x) 2 ATx. (8.1)
Here, A is defined as the Cholesky factorization of C;Vl:
AAT 2

We refer to the transformation performed by @ as within-class covariance normalization

(WCCN).

In practice, empirical estimates of Cyy are typically quite noisy; thus, a certain amount
of smoothing is usually required to make the WCCN approach work. In this chapter, we

use the following smoothing model:
Cws2(1-a)-Cw+a-I, aclol] (8.2)

Here, éW,s represents a smoothed version of the empirical expected within-class covariance
maftrix, CW, and I represents an N x N identity matrix where N is the dimensionality of
the feature space. The « parameter represents a tunable smoothing weight whose value is

between 0 and 1. It is straightforward to show that in the above model, the eigenvectors

102

of Cw,s are constant with respect to a. Thus, we can compute the WCCN feature trans-
formation, @, in (8.1) for any value of a without having to recompute the eigenvectors of
Cws.

)

8.1.1 WCCN for High-Dimensional Data

In this chapter, we examine the problem of how to apply WCCN to high-dimensional
data sets, where inverting or simply estimating Cw is impractical for computational reasons.
For high-dimensional data, we can use kernel principal component analysis (KPCA) to first
reduce the dimensionality of the feature space to a more manageable size before performing
WCCN. One potential problem with this approach, however, is that by filtering out various
orthogonal vectors or “directions” in feature space (i.e., by performing feature reduction),
we lose a significant amount of the information contained in the original feature set. To
avoid this problem, we use the PCA decomposition described in Kajarekar [2005], where
the feature space is divided into two subspaces: a space that contains the top N features
obtained from performing PCA, and a PCA-complement space, which includes all of the
information contained in the original features but not in the PCA space. In this chapter,
we set N equal to the total number of feature vectors in the training data. Thus, the
PCA decomposition retains all of the energy (i.e., variance) of the original training data.
Conversely, the PCA-complement space retains none of the energy of the training data.
For new feature vectors (i.e., test data), the PCA space will tend to have high energy and
low dimensionality, while the PCA-complement space will tend to have low energy and
high-dimensionality. Since most of the signal energy is confined to the PCA space, our
strategy is to perform WCCN on the PCA-space, which has reduced dimensionality, and
then concatenate the resulting feature set with the PCA-complement space. This procedure

is described in the following sections.

103

8.2 Kernel PCA and the PCA-Complement

This section provides an overview of kernel PCA and also describes the PCA-
complement approach used in Kajarekar [2005]. We begin by defining X to be a column

matrix containing scaled, mean-centered versions of the feature vectors in the training set:

Xé\/%-[(xl—i),...,(x]v—i)].

Here x; represents the i¢th training vector, and X represents the average over all N training
vectors. Given the above definition, we can represent C (i.e., the empirical covariance

matrix of the data) as follows:

2 ux?ut, (8.3)

In the second line of the above equation, we define UX2U? to be the eigendecomposition

of C. We can represent the corresponding eigendecomposition for X”'X as follows:
XT'x 2 veivr, (8.4)

Here, we define V to be a column matrix containing the eigenvectors of X7X and ¥? to
be a diagonal matrix containing the corresponding eigenvalues. If X”7'X is full-rank, then
we can combine (8.3) with (8.4) to arrive at the following expression for U, the eigenvector
matrix of C:

U=XVxzh (8.5)

The columns of U represent the set of all eigenvectors of C whose corresponding eigenvalue
is non-zero. Thus, we can perform PCA by projecting the input feature vectors onto the

column vectors of U. This leads to the following feature transformation, ®pc4:

Dpoa(x) £ UTX,

=n vIxTx. (8.6)

104

This transformation reduces the dimensionality of the underlying feature space down to IV
features, where N is the size of the training set. Since the input feature vectors appear
in the form of inner products, which can be replaced with kernel functions, this feature

transformation is referred to as kernel PCA (Shawe-Taylor and Cristianini [2004]).

We use @57 to represent the feature transformation for the PCA-complement space,
which is defined as follows:

dpai(x) £ (I-UU)x. (8.7)

The PCA-complement space represents the portion of the original feature space that is
orthogonal to the training set. Thus, ®pz7(x) = 0 (i.e., a null vector) for all x in the

training set.

8.3 Experimental Procedure

The experiments in this chapter compare two different feature normalizations: WCCN
and standard covariance normalization (CN), where R = C;l. (Here, C, represents
a smoothed version of C, the empirical covariance matrix of the training data.) Since
®5o4(x) = 0 for all x in the training set, we have no way of coming up with a meaning-
ful estimate of the covariance matrix for the PCA-complement (any empirical covariance
estimate will simply be 0). Thus, WCCN and standard CN are only applied to the PCA
feature set. The normalized PCA features are then concatenated with a weighted version

of the PCA-complement to form the final feature representation.

Our experimental procedure is summarized below:

1. Perform per-feature within-class variance normalization on all of the input features
(i.e., scale all features to have an average within-class variance of one on the training
data). The resulting features provide us with a first-cut approximation of what we
would obtain by performing full WCCN on the original feature set. This is simply a

preprocessing step for performing KPCA, which is not invariant to scaling operations

105

on the input features. Note that the smoothing model of (8.2) is also not invariant to

scaling operations.

. Compute ®pca(x) for every feature vector x in the training and test sets. This gives

us the PCA feature set.

. Compute ®5-4(x) for every feature vector x in the training and test sets. This gives

us the PCA-complement feature set.

. Perform either within-class covariance normalization (WCCN) or standard covariance
normalization (CN) on the PCA feature set. Both normalizations can be represented
in the form of a matrix multiplication. We use the smoothing model shown in equation
(8.2) for both WCCN and standard CN. The smoothing parameter « is tuned on a

set of held-out cross-validation data.

. Concatenate a scaled version of the normalized PCA feature set with a scaled version

of the PCA-complement feature set to arrive at our final feature representation, ®:

a2 | T Aterea(x) . Belo1]. (8.8)

B poalx)
Here, A" represents the transformation matrix derived in step 4 to perform either
WCCN or standard CN on the PCA feature set. Thus, AT®pc4(x) represents the
normalized PCA component of feature vector x. We use the parameter 5 to control

the relative weight applied to the two feature sets (i.e., the PCA set and the PCA-

complement set). This parameter is tuned on a held-out cross-validation set.

. Use the final feature representation to train and test SVM-based speaker models.

A diagram of this procedure is shown in Figure 8.1. Given a standard linear kernel,

k(x1,%2) = x1 xg, it’s fairly straightforward to show that when 8 = 0.5 and A =1 (i.e.,

A is the idenitity matrix), then the following equality holds for any pair of input feature

vectors, x; and Xs:

k(xl,x2) :47{}((1)()(1),@()(2)) (89)

106

original feature vector

CITTT I T T I T T I T T I T
Y

\P(F)CLA\/
PCA-space PCA-space

component Hlf\ \HHIHH'HIH\HH component
(Iow—d|men5|onal, (high-dimensional,
high energy) low energy)
1B
PCA-space B
component after 11
WCCN

final, combined

LTI T I I I T I I I]
feature vector

Figure 8.1. Diagram of WCCN procedure for high-dimensional data. The “4” sign in the
above figure represents a concatenation operator.

The equality in (8.9) follows directly from the definitions for ®, ®pca, and @57 in equa-
tions (8.8), (8.6), and (8.7). Equation (8.9) shows that when f = 0.5 and A = I, then
applying the feature transformation, ®, to the input feature vectors does not affect the
kernel function k& beyond a scaling factor. Thus, by concatenating the PCA set with the
PCA-complement set, we preserve all of the information contained in the original feature

set, at least for the purpose of computing linear kernels.

8.4 Experiments and Results

In this section, we describe the tasks, datasets, and features used in our experiments.

The results of these experiments are discussed in Section 8.4.4.

8.4.1 MLLR-SVM System

We used an MLLR-SVM system similar to the one described in Stolcke et al. [2006]

to compute feature vectors for our experiments. The MLLR-SVM system uses speaker

107

adaptation transforms from SRI’'s DECIPHER speech recognition system as features for
speaker verification. A total of 8 affine transforms are used to map the Gaussian mean
vectors from speaker-independent to speaker-dependent speech models. The transforms are
estimated using maximum-likelihood linear regression (MLLR), and can be viewed as a
text-independent encapsulation of the speaker’s acoustic properties. For every conversation
side, we compute a total of 24960 transform coefficients, which are used as features. Note
that this system uses twice as many features as the original MLLR-SVM system described
in Stolcke et al. [2005]; Hatch and Stolcke [2006]. The input feature vectors are identical
to those used in Stolcke et al. [2006]. However, besides applying the feature transformation
® to the input feature vectors, our system differs from the MLLR-SVM system used in
Stolcke et al. [2006] in the following ways: 1) our system does not apply rank normalization
(Stolcke et al. [2005]) to the input feature vectors and 2) our system does not apply TNORM
(Auckenthaler et al. [2000]) to the output SVM scores. We have yet to experiment with

applying these normalizations to a system that uses WCCN.

8.4.2 Task and Data

Experiments were performed on the 1-conversation training condition of two NIST-
defined tasks: SRE-2004 and a subset of SRE-2003. Note that these tasks and datasets are
the same as those described in previous reports (Stolcke et al. [2006]; Hatch and Stolcke
[2006]). The SRE-2003 subset was divided into two splits of disjoint speaker sets, both
comprised of ~3600 conversation sides and ~300 speakers. Each split comprises ~580
speaker models and ~9800 speaker trials. These splits were alternately used for training
(i.e., computing covariance estimates and feature transformations) and for testing. We used
SRE-2004 to tune « and S for testing on SRE-2003, and vice-versa. To simplify the tuning
process, « was optimized for the case where § = 0. The resulting « parameter was then
held fixed while tuning 3. Further details on the tasks and datasets can be found in Stolcke

et al. [2006].

108

8.4.3 SVM Training

We used SVMU 9™ (Joachims [1999]) to train SVM-based speaker models for each task.
Each speaker model was trained with a linear kernel using the default value of the SVM
hyperparameter C. A held-out dataset composed of 425 conversation sides taken from the
Switchboard-2 corpus and 1128 conversation sides taken from the Fisher corpus was used

as negative examples for the SVM training.

8.4.4 Results

Table 8.1 shows results on the MLLR-SVM system for various feature representations.
Here, the labels “WCCN” and “CN” denote within-class covariance normalization and
standard covariance normalization, where « is tuned on the cross-validation set. The
parameter is optimized on the cross-validation set for systems that are labeled “PCA.” For
systems that are not labeled “PCA,” B is set equal to zero (i.e., the PCA-complement is
omitted from the final feature representation). The “baseline” label represents the MLLR-

SVM system without any feature normalization.

As shown in Table 8.1, the WCCN approach provides improvements that are quite
substantial, at least in most cases, over standard CN (see the “improvement over
PCA+CN+PCA” results). It’s worth noting that the improvements obtained over the
baseline are significantly larger on SRE-2003 than on SRE-2004. However, this is to be
expected, since the feature transformations and normalizations used in these experiments
were trained only on held-out SRE-2003 data, which represents a different set of channel

and recording conditions than SRE-2004.

We note that the “PCA,” “PCA+CN,” and “PCA+WCCN?” results are all obtained
from PCA feature sets whose dimensionality is reduced to ~3600 (i.e., the number of training

examples in each split of the SRE-2003 subset). In spite of this reduced dimensionality, the

109

SRE-03 subset SRE-04
® || EER% | DCF | EER% [DCF
baseline 2.91 0.117 5.97 0.282
PCA 3.89 0.158 7.35 0.318
PCA+CN 2.92 0.123 6.43 0.289
PCA+WCCN 2.30 0.108 5.52 0.260
PCA+PCA 2.91 0.117 5.97 0.282
PCA+CN+PCA 2.33 0.092 5.87 0.266
PCA+WCCN
+PCA || 2.08 | 0.091 | 5.27 | 0.247
improvement over
baseline || 28.5% | 22.2% || 11.7% | 12.4%
improvement over
PCA+WCCN || 9.6% | 15.7% || 4.5% 5.0%

improvement over

PCA+CN+PCA || 10.7% | 1.1% || 10.2% | 7.1%

Table 8.1. EERs and minimum DCF's for various feature transformations/normalizations on
the MLLR-SVM system. Here, “baseline” represents the raw MLLR-SVM system without
any feature normalization. The labels “WCCN” and “CN” denote within-class covariance
normalization and standard covariance normalization, and “PCA” denotes a system that
uses the PCA-complement with 8 optimized on the cross-validation set. The “improvement”
entries represent the relative improvement of PCA+WCCN+PCA over the given system.

“PCA+WCCN?” system significantly outperforms the “baseline” system, where each feature

vector is composed of 24960 features.

Table 8.1 also shows that adding the PCA-complement to the PCA feature set leads
to significant relative reductions in error rate (see the “improvement over PCA+WCCN”
results). To the best of our knowledge, the results for the “PCA+WCCN+PCA” system
are the best recorded so far in the literature for an MLLR-SVM system. Even without using
rank normalization or TNORM—two techniques used in Stolcke et al. [2006] which should
presumably lead to reductions in error rate (we have not yet integrated these normalizations
into our system)—our system outperforms the MLLR-SVM system in Stolcke et al. [2006]
by at least 15% on the SRE-2003 subset and by a smaller, but still significant margin on
SRE-2004. These experiments point to the utility of using WCCN in conjunction with the

PCA-complement when training SVM-based speaker models.

110

8.5 Experiment 2: Comparison between WCCN and NAP

In this section, we report some recent results from experiments that directly compare
WCCN with the NAP approach described in Solomonoff et al. [2004, 2005] and in Section
4.6.3. These experiments were performed by Sachin Kajarekar and Andreas Stolcke of
SRI International and are reported in Kajarekar and Stolcke [2007]. The experiments
compare the performance of the WCCN approach described in Chapter 6 versus NAP
on SRI International’s most recent MLLR-SVM system. Each experiment involves two
trainingsets: one to estimate covariance matrices and another to serve as background data
when training SVM-based speaker models. The speaker models are trained and tested on the
1-conversation-side condition of both the SRE2005 and SRE2006 speaker verification tasks.
The « and § parameters for WCCN and the N parameter for NAP (i.e., the dimensionality
of the output feature space after performing NAP) are optimized on SRE2005 and then
tested on both SRE2005 and on SRE2006. Thus, the results for SRE2005 technically involve
some amount of “cheating,” since the testset is used to tune parameters. The experiments
in Hatch and Stolcke [2006] and in Chapter 6 differ from those described in Section 8.4.4 in

the following ways:

1. The training set that is used to compute covariance matrices is also used to perform

rank-normalization on the input feature vectors.

2. The experiments use different training sets than those used in Section 8.4.4.

A set of results for WCCN and for NAP are provided in Table 8.2 and Table 8.3.

The best results for each testset are listed in bold type. The figures in parenthesis
represent cheating results for SRE2006, where the «, 8, and N parameters are tuned on
the testset. The parameters for the non-parenthesized results are tuned on SRE2005. The
following table lists the relative improvement obtained by using WCCN over NAP. Table
8.4 shows that WCCN achieves modest but significant improvements on all test conditions

except for one: the results degrade fairly significantly for the case where the covariance

111

Intersession | SREO05 (English) SRE06 (English)
BKG data || variability (DEV set) (EVAL set)
estimated on | %EER | min DCF | %EER [min DCF

baseline 5.872 0.190 4.639 0.224

Fisher SRE03 5.066 0.154 4.314 0.198
SRE04 5.056 0.147 4.477 0.216

baseline 6.189 0.200 4.315 0.197

SRE04 SRE03 5.219 0.162 3.776 0.173
SRE04 5.103 0.157 3.603 0.166
(3.452) | (0.162)

Table 8.2. EERs and minimum DCFs obtained from applying WCCN to an MLLR-SVM
system.
Intersession | SRE05 (English) SRE06 (English)
BKG data || variability (DEV set) (EVAL set)
estimated on | NEER | min DCF | %EER | min DCF

baseline 5.872 0.190 4.639 0.224

Fisher SRE03 5.653 0.166 4.423 0.206
SRE04 5.470 0.158 3.999 0.196

baseline 6.189 0.200 4.315 0.197

SRE04 SRE03 5.744 0.172 3.831 0.180
SRE04 5.664 0.163 3.614 0.170
(3.567) | (0.167)

Table 8.3. EERs and minimum DCFs obtained from applying NAP to an MLLR-SVM
system.

matrices and rank-normalization are estimated on SRE2004, the background data is drawn
from the Fisher dataset, and testing is performed on SRE2006. The latter degradation is
somewhat surprising, especially given that the same combination of trainingsets yields an

improvement for WCCN on SRE2005.

8.6 Conclusions

In this chapter, we have described a practical procedure for applying within-class co-
variance normalization (WCCN) to an MLLR-SVM speaker verification system where the
feature vectors reside in a high-dimensional space. When applied to a state-of-the-art

MLLR-SVM speaker verification system, this approach achieves improvements of up to

112

Intersession | SREO05 (English) SRE06 (English)
BKG data || variability (DEV set) (EVAL set)
estimated on | EER | min DCF EER | min DCF
baseline — — — —
Fisher SRE03 10.38% 7.23% 2.46% 3.88%
SRE04 7.57% 6.96% | -11.95% | -10.20%
baseline — — — —
SRE04 SRE03 9.14% 5.81% 1.44% 3.89%
SRE04 9.90% 3.68% 0.30% 2.35%
(3.22%) | (2.99%)

Table 8.4. Relative improvements in EER and minimum DCF obtained from using WCCN
over NAP.

22% in EER and 28% in minimum decision cost function (DCF) over our previous base-
line. We also achieve substantial improvements over an MLLR-SVM system that performs
WCCN on the PCA set but discards the PCA-complement. These results point to the util-

ity of using WCCN in conjunction with the PCA-complement when training SVM-based
speaker models.

This chapter also provides results for experiments that compare WCCN against the
nuisance attribute projection (NAP) approach described in Solomonoff et al. [2004, 2005]

and in Section 4.6.3. In these experiments, WCCN typically outperforms NAP by a modest

but significant margin when applied to an MLLR-SVM speaker verification system.

113

Chapter 9

Summary and Conclusions

In this dissertation, we examine the problem of kernel optimization for binary classi-
fication tasks where the training data are partitioned into multiple, disjoint classes. The
dissertation focuses specifically on the field of speaker verification, which can be framed
as a one-versus-all (OVA) decision task involving a target speaker and a set of impostor

speakers.

The main result of this dissertation is a new framework for optimizing generalized linear
kernels of the form, k(xq,x2) = XlTRXQ, where x; and xo are input feature vectors, and
R is a positive semidefinite parameter matrix. Our framework is based on using first and
second-order statistics from each class (i.e., speaker) in the data to construct an upper
bound on classification error in a linear classifier. Minimizing this bound leads directly to
a new, modified formulation of the 1-norm, soft-margin support vector machine (SVM).
We refer to this new, modified SVM formulation as the adaptive, multicluster SVM (AMC-
SVM). The AMC-SVM differs from the conventional soft-margin SVM in Vapnik [1995] in

the following ways:

1. The AMC-SVM implicitly prescribes a solution for the R parameter matrix in a

generalized linear kernel.

114

2. The AMC-SVM follows directly from minimizing a particular upper bound on classi-
fication error. On the other hand, Vapnik’s soft-margin SVM formulation is based on

appending slack variables to the hard-margin SVM.

3. The C hyperparameter is exactly specified in the AMC-SVM but is undetermined in

the conventional soft-margin SVM.

Unlike most other kernel learning techniques in the literature, the AMC-SVM uses informa-
tion about clusters that reside within the given target and impostor data to obtain tighter
bounds on classification error than those obtained in conventional SVM-based approaches.
This use of cluster information makes the AMC-SVM particularly well-suited to tasks that
involve binary classification of multiclass data—for example, the speaker verification task—

where each class (i.e., speaker) can be treated as a separate cluster.

In OVA training settings, we show that the AMC-SVM can, under certain conditions,
be formulated to yield a single, fixed kernel function that applies universally to any choice
of target speaker. Since this kernel function is linear, we can implement it by applying a
single linear feature transformation to the input feature space. This feature transformation
performs what we refer to as within-class covariance normalization (WCCN) on the input
feature vectors. The dissertation describes a set of experiments where WCCN yields large
reductions in classification error over other normalization techniques on a state-of-the-art

SVM-based speaker verification system.

115

Bibliography

Andrews, W. D.; M. A. Kohler, and J. P. Campbell, Phonetic Speaker Recognition, in
proceedings of Eurospeech, pp. 149-153, 2001.

Andrews, W. D., M. A. Kohler, J. P. Campbell, J. J. Godfrey, and J. Hernandez-Cordero,
Gender-dependent phonetic refraction for speaker recognition, in proceedings of the In-
ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, pp.
149-153, 2002.

Auckenthaler, R., M. Carey, and H. Lloyd-Thomas, Score normalization for text-
independent speaker verification systems, in Digital Signal Processing, vol. 10, San Juan,
Puerto Rico, 2000.

Bach, F. R., G. R. G. Lanckriet, and M. I. Jordan, Multiple kernel learning, conic dual-
ity, and the SMO algorithm, in proceedings of the International Conference on Machine
Learning (ICML), 2004.

Boakye, K., and B. Peskin, Text-Constrained Speaker Recognition on a Text-Independent
Task, in proceedings of the IEEE Odyssey 2004 Speaker and Language Recognition Work-
shop, Toledo, Spain, 2004.

Boser, B. E., I. M. Guyon, and V. N. Vapnik, A Training Algorithm for Optimal Margin
Classifiers, in proceeding of the Fifth Annual ACM Workshop on COLT, pp. 144-152,
ACM Press, Pittsburgh, PA, 1992.

Boyd, S., and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-
bridge, 2004.

Bradley, P. S., and O. L. Mangasarian, Feature Selection via Concave Minimization and
Support Vector Machines, in proceedings of the International Conference on Machine
Learning (ICML), vol. 15, Morgan Kaufmann, San Francisco, CA, 1998.

Campbell, W. M., A Sequence Kernel and its Application to Speaker Recognition, in Ad-
vances in Neural Information Processing Systems (NIPS) 14, 2001.

Campbell, W. M., Generalized Linear Discriminant Sequence Kernels for Speaker Recog-
nition, in proceedings of the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2002.

116

Campbell, W. M., J. P. Campbell, D. A. Reynolds, D. A. Jones, and T. R. Leek, Phonetic
speaker recognition with support vector machines, in Advances in Neural Information
Processing Systems (NIPS) 16, 2003.

Chapelle, O., V. Vapnik, O. Bousquet, and S. Mukherjee, Choosing multiple parameters
for support vector machines, in Machine Learning 46, 2002.

Cristianini, N., and J. Shawe-Taylor, Support Vector Machines and Other Kernel-Based
Learning Methods, Cambridge University Press, Cambridge, 2000.

Davis, S., and P. Mermelstein, Comparison of Parametric Representations for Monosyllabic
Word Recognition in Continuously Spoken Sentences, IEEE Transactions on Acoustics,
Speech, and Signal Processing, 28, 357-366, 1980.

Doddington, G., Speaker recognition based on idiolectal differences between speakers, in
proceedings of Furospeech, pp. 2521-2524, 2001.

Ferrer, L., E. Shriberg, S. S. Kajarekar, A. Stolcke, K. Sonmez, A. Venkataraman, and
H. Bratt, The Contribution of Cepstral and Stylistic Features to SRI’s 2005 NIST Speaker
Recognition Evaluation System, in proceedings of the International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), Toulouse, France, 2005a.

Ferrer, L., K. Sonmez, and S. Kajarekar, Class-dependent Score Combination for Speaker
Recognition, in proceedings of the Furospeech, Lisbon, 2005b.

Fukunaga, K., Introduction to Statistical Pattern Recognition, Academic Press, New York,
1990.

Garcia-Romero, D., J. Fierrez-Aguilar, J. Ortega-Garcia, and J. Gonzalez-Rodriguez, Sup-
port Vector Machine Fusion of Idiolectal and Acoustic Speaker Information in Span-
ish Conversational Speech, in proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Hong Kong, 2003.

Gauvain, J. L., and C. H. Lee, Maximum A Posteriori Estimation for Multivariate Gaus-
sian Mixture Observations of Markov Chains, IEEE Transactions on Speech and Audio
Processing, 2, 291-298, 1994.

Grandvalet, Y., and S. Canu, Adaptive scaling for feature selection in SVMs, in Advances
in Neural Information Processing Systems (NIPS), 2003.

Hastie, T., R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Springer, 2001.

Hatch, A., Adaptive linear kernels for binary classification of multicluster data, in Technical
Report, 2006.

Hatch, A., and A. Stolcke, Generalized linear kernels for one-versus-all classification: appli-
cation to speaker recognition, in proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Toulouse, France, 2006.

117

Hatch, A., B. Peskin, and A. Stolcke, Improved Phonetic Speaker Recognition Using Lattice
Decoding, in proceedings of the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2005.

Hatch, A., S. Kajarekar, and A. Stolcke, Within-Class Covaraince Normalization for SVM-
based Speaker Verification, in proceedings of the International Conference on Spoken
Language Processing (ICSLP), Pittsburgh, PA, 2006.

Jebara, T., and T. Jaakkola, Feature Selection and Dualities in Maximum Entropy Dis-
crimination, in Uncertainty in Artificial Intelligence, 2000.

Jin, Q., J. Navratil, D. Reynolds, J. Campbell, W. Andrews, and J. Abramson, Combining
cross-stream and time dimensions in phonetic speaker recognition, in proceedings of the
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2003.

Joachims, T., Making large-scale SVM learning practical, in Advances in kernel methods —
support vector learning, edited by B. Schoelkopf, C. Burges, and A. Smola, MIT-press,
1999.

Kajarekar, S., Four weightings and a fusion: a cepstral-svm system for speake r recognition,
in proceedings of the IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), San Juan, Puerto Rico, 2005.

Kajarekar, S., and A. Stolcke, NAP and WCCN: Comparison of Approaches Using MLLR-
SVM Speaker Verification System, in to appear in proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, Hawaii, 2007.

Kajarekar, S., L. Ferrer, A. Venkataraman, K. Sonmez, E. Shriberg, A. Stolcke, and R. R.
Gadde, Speaker recognition using prosodic and lexical features, in proceedings of the IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 19-24, 2003.

Kajarekar, S., L. Ferrer, E. Shriberg, K. Sonmez, A. Stolcke, and A. Venkataraman, SRI’s
NIST 2005 Speaker Recognition Evaluation System, in presentation at the NIST Speaker
Recognition Evaluation Workshop, Montreal, 2005a.

Kajarekar, S., L. Ferrer, E. Shriberg, K. Sonmez, A. Stolcke, A. Venkataraman, and
J. Zheng, SRI’s 2004 NIST Speaker Recognition Evaluation System, in proceedings of the
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2005b.

Klusacek, D., J. Navratil, D. A. Reynolds, and J. P. Campbell, Conditional pronuncia-
tion modeling in speaker detection, in proceedings of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. IV, pp. 804-807, 2003.

Lanckriet, G. R. G., L. E. Ghaoui, C. Bhattacharyya, and M. I. Jordan, A Robust Minimax
Approach to Classification, Journal of Machine Learning Research (JMLR), 3, 555-582,
2002.

Lanckriet, G. R. G., N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan, Learning
the kernel matrix with semidefinite programming, Journal of Machine Learning Research
(JMLR), 5, 27-72, 2004.

118

Leggetter, C., and P. Woodland, Maximum Likelihood Linear Regression for Speaker Adap-
tation of HMMs, Computer Speech and Language, 9, 171-186, 1995.

Marshall, A. W., and I. Olkin, Multivariate Chebyshev Inequalities, Annals of Mathematical
Statistics, 31, 1001-1014, 1960.

Mirghafori, N., A. O. Hatch, S. Stafford, K. Boakye, D. Gillick, and B. Peskin, ICSI’s 2005
Speaker Recognition System, in proceedings of the IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), 2005.

Navratil, J., Q. Jin, W. Andrews, and J. Campbell, Phonetic speaker recognition using
maximum likelihood binary decision tree models, in proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), 2003.

Neal, R. M., Bayesian Learning for Neural Networks, in Lecture Notes in Statistics, Springer,
1996.

NIST, The NIST Year 2005 Speaker Recognition Evaluation Plan, NIST, 2005.

Ong, C. S., A. Smola, and R. Williamson, Hyperkernels, in Advances in Neural Information
Processing Systems (NIPS), 2003.

Rabiner, L., and B. H. Juang, Fundamentals of Speech Recognition, Prentice Hall, 1993.

Reynolds, D., Comparison of Background Normalization Methods for Text-Independent
Speaker Verification, in proceedings of Eurospeech, pp. 963-966, Rhodes, Greece, 1997.

Reynolds, D., T. Quatieri, and R. Dunn, Speaker Verification Using Adapted Mixture
Models, in Digital Signal Processing, vol. 10, pp. 181-202, 2000.

Reynolds, D., et al., The SuperSID project: exploting high-level information for high-
accuracy speaker recognition, in proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2003.

Rosenberg, A. E., C. H. Lee, and F. K. Soong, Sub-Word Unit Talker Verification Using
Hidden Markov Models, in proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 269-272, 1990.

Rosenberg, A. E.;, C. H. Lee, and S. Gokeen, Connected Word Talker Recognition Using
Whole Word Hidden Markov Models, in proceedings of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pp. 381-384, 1991.

Schoelkopf, B., and A. Smola, Learning with Kernels, MIT Press, Cambridge, Mas-
sachusetts, 2002.

Shawe-Taylor, J., and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge
University Press, Cambridge, 2004.

Shriberg, E., L. Ferrer, A. Venkataraman, and S. Kajarekar, SVM Modeling of “SNERF-
grams” for Speaker Recognition, in proceedings of the International Conference on Spoken
Language Processing (ICSLP), 2004.

119

Solomonoff, A., C. Quillen, and W. Campbell, Channel Compensation For SVM Speaker
Recognition, in proceedings of Odyssey: The Speaker and Language Recognition Work-
shop, Toledo, Spain, 2004.

Solomonoff, A., W. Campbell, and I. Boardman, Advances In Channel Compensation For
SVM Speaker Recognition, in proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Philadelphia, PA, 2005.

Sonnenburg, S., G. Raetsch, and C. Schaefer, A general and efficient multiple kernel learning
algorithm, in Advances in Neural Information Processing Systems (NIPS), 2005.

Stolcke, A., L. Ferrer, S. Kajarekar, E. Shriberg, and A. Venkataraman, MLLR transforms
as features in speaker recognition, in proceedings of Interspeech, 2005.

Stolcke, A., L. Ferrer, and S. Kajarekar, Improvements in MLLR-Transform-based Speaker
Recognition, in proceedings of the IEEE Odyssey 2006 Speaker and Language Recognition
Workshop, San Juan, Puerto Rico, 2006.

Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

Weston, J., S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik, Feature Selec-
tion for SVMs, in Advances in Neural Information Processing Systems (NIPS), vol. 13,
MIT Press, 2000.

120

Appendix A

Derivation of Bounds

The following derivation proves the upper bounds on R(f) in (6.3) and in (7.3). These
upper bounds appear in Theorem 11 and in Theorem 13, respectively.

Proof. We begin with the inequality given in (7.1):
1(yjf(xj) < 0) < B(Xj ; 8]) : 0< i < 1. (Al)

Here, ©; represents a set of parameters for class j, and B(x;; ©;) represents a bounding
function. These are defined as follows:

9] £ {vabaujayjaij}a

2
f(x;) — f(Xy)

B(x;; ;) & e (L5 /() < yif (%)) + 2+ (L= 195 (%))
maX{u—j,yjf(Xj)}

In the above equation, we use the shorthand, (a), to represent 1(a > 0)-a. An illustration
of the bound in (A.1) is provided in Figure 7.1. Note that the bound is only valid if p > 0.
For the following derivation, we will constrain p as 0 < p < 1. Taking the expectation of
both sides of the inequality in (A.1) over all j gives us the following bound on R(f). Note
that in the following derivation, we assume that x; is symmetrically distributed about its
mean (i.e., p(x; —X; = 0) = p(x; — X; = —0) for all (j,0) € {1,...,J} x R, where L is

121

the dimensionality of the feature space, and J is the total number of classes

R(f) < IJEB(Xj;@j) o 0<p; <1 V)
2
B JIC e Ac) _
—I§ max{]‘%j,yjf(;cj)}]}J'le(yyf(J) <yyf())+2]E(l Nyyyf())+
(A.2)

subject to 0<p; <1 Vi

(%/))?
-1 ij { y;(,)}) #2300 i)
i (max 0 Yi

subject to 0<p; <1 Vi

:l'Zﬁj E (v by — %)) +2- ZPJ — niy;f (X)) +
25 max { Ly /(%) })?

J
subject to 0<p; <1 Vi

1 viD,v
5 ! +2- ZPJ — 15y5f (%5))+ (A.3)

25 (max { L,y f(x)))2
subject to 0<p; <1 Vi

The equation in (A.2) uses the fact that the following equality holds when x; is symmetri-
cally distributed about its mean:

2
TED =T) 4,7 0) < i 33| =
max{u%_,yjf()_cj)} B

E
j

f(x;5) = f(x)) _
E ‘B 1y f(x5) < yif(Xj))-
; max{i,y]f(i])} ; y] J y] J

Since x; is symmetrically distributed about X; and since f is an affine function, we know
that f(x;) is symmetrically distributed about f(%X;). Thus, E; 1(y;f(x;) < y;f(%;)) = 3,
which explains the origin of the “%” term in the preceding derivation. We now relax the

122

bound on R(f) in the following way:

viD,v R .
EJ: (max{%,y;f(ij)})Z 2 ;Pj(l — Y5 f (%5))+ (A4)

subject to 0<p; <1 Vi

R(f) <

N | =

1 ~
= §'VT(ZN?DJ)V+2'ZPM€;' (A5)
J j
(L (VTR 4 b))
subject to & (Nj yﬂ(‘f Xj+b)t Vj
0<p; <1 Vj.
1 A
<o VI WD)V 2D b "
J J

u%. — & <y(vI'x; +b) VY,
subject to 0<¢& Vi,
0<p; <1 Vi

I\
DN =

VIO D)V +2->pig; (A7)
j j

u%, — & <yi(vIx; +b) VY,
subject to 0<¢& Vi,

O<p; <1 Vi
1 .
<3 vIQ Djv+2-) B (A.8)
J J
£ (vl :
subject to (1) < % ng (vix;+0b) Vi,
=57 .

Note that the bound in (A.4) is the same as the bound in (A.3). In (A.5), we relax the

bound on R(f) by setting the denominator equal to % We further relax the bound by

changing the equality constaint on &; in (A.5) to an inézquality constraint in (A.6). Since
pj is constrained to lie in the range (0, 1], we can upper bound (A.6) by changing u} to
u?_l. This gives us the bounds in (A.7) and (A.8). The bound in (A.8) is the same as in
Theorem 11 and the bound in (A.7) is the same as in Theorem 13. O

123

