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ABSTRACT 

High-Speed Modulation of Optical Injection-Locked Semiconductor Lasers 
 

by 
 

Erwin K. Lau 
 
 

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences 
 

University of California, Berkeley 
 

Professor Ming C. Wu, Chair 
 
 
 
 
 
 

Semiconductor lasers are an integral part of high-speed telecommunications. The 

push for higher modulation frequencies, thereby allowing greater data rates, has 

motivated the scientific community for several decades. However, the maximum speed of 

directly-modulated semiconductor lasers has plateaued as the field reaches a mature state. 

Recently, optical injection locking has been proven to enhance the bandwidth and 

resonance frequency of directly-modulated semiconductor lasers. The injection locking 

technique allows the lasers to exceed their fundamental modulation speed limit, allowing 

for greater communication speeds. However, although the resonance frequency has been 

predictably linked to the injection locking parameters, the bandwidth enhancement has 

not been reliably correlated to the resonance frequency, unlike typical directly-modulated 

lasers. 

In this dissertation, we first develop theoretical insight into the nature of resonance 

frequency and bandwidth enhancement, attempting to correlate the two. We describe the 
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fundamental limit of resonance frequency enhancement and generalize these results to 

oscillators of all kinds. Using these theoretical trends, we optimized the injection locking 

performance of 1550 nm distributed feedback lasers. We report a high-speed resonance 

frequency of 72 GHz and a 3-dB modulation bandwidth of 44 GHz. These are the highest 

reported resonance frequency and 3-dB bandwidth of any directly-modulated 

semiconductor laser, respectively. 

Direct measurement of laser frequency response is often limited by the bandwidth of 

photodetectors and network analyzers. In order to measure frequencies above our 

detection equipment limit (50 GHz), we develop a new optical heterodyne technique that 

can detect arbitrarily-high modulation frequencies. This technique, in contrast to previous 

heterodyne methods, does not require stable frequency solid-state lasers and can be used 

to test telecom-wavelength lasers. 

Finally, we discuss a new modulation technique, where the master is modulated 

rather than the slave. This technique has many applications, such as residual amplitude 

modulation reduction, frequency modulation regeneration, and frequency discrimination. 

We demonstrate the latter experimentally, achieving 0.88 mW/GHz frequency-to-

amplitude conversion. Additionally, we develop the basis for the theory that governs 

these techniques and find the theory in good agreement with our experiments. 

 

 

 

      ____________________________________ 
      Professor Ming C. Wu, Chair 
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Chapter 1 Introduction 

Directly-modulated (DM) semiconductor lasers are compact, low-cost transmitters 

for both digital and analog photonic communication systems. However, their use in high 

performance analog photonic systems is limited by several performance issues, listed in 

Table 1.1. As shown in this table, optical injection locking (OIL) systems can improve a 

host of fundamental limitations of directly-modulated lasers and links: single mode 

performance and side-mode suppression [1], enhanced bandwidth and relaxation 

oscillation frequency [2-4], suppressed nonlinear distortion [5, 6], reduced relative 

intensity noise [6-10], reduced chirp [11-13], increased link gain [14], and near-single-

sideband modulation [15]. In addition to improving the performance of optical 

communication links, injection-locked laser systems have many other unique properties. 

These properties make OIL attractive for applications such as optical frequency reference 

generation [16], phased-array radars [17], phase modulation [18], and optical signal 

processing [19], amongst others. 
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Fundamental limits Benefit from OIL 
Mode partition noise (Fabry-Perot 
laser) 

Single-mode with side-mode suppression 
[1] 

Relaxation oscillation frequency Enhanced relaxation oscillation 
frequency [2-4] 

Non-linear electron-photon coupling Reduced nonlinearities [5, 6] 

Amplified spontaneous emission noise Reduced RIN [6-10] 

La
se

r 

Wavelength chirp (non-zero α 
parameter) Reduced chirp [11-13] 

Differential quantum efficiency < 1 Increased link gain [14] 

Li
nk

 

Double-sideband modulation Near-single-sideband modulation [15] 

Table 1.1 Limitations of directly-modulated lasers and improvements by optical 
injection locking. 

Figure 1.1(a) shows an experimental schematic of an injection-locked laser system. 

The light of a master laser is injected into a slave laser. The light from the slave is the 

useful output of the system. An isolator is placed between master and slave to eliminate 

light coupling back to the master. There are two possible configurations of injection 

locking, depending on the choice of outputs of the slave. In transmission-style injection 

locking (Figure 1.1(a)), the injected master light enters one slave laser facet and the 

output is taken from the other facet. This necessitates two coupling systems on the slave 

laser alone. To simplify the system, a reflection-style setup is used (Figure 1.1(b)). The 

output is taken at the same facet as the input of the injected light. An optical circulator is 

used to ensure only the output beam goes to the photodetector. The reflection-style 

system output is susceptible to non-injected master light coupling to the output when the 

incident master light reflects off the slave laser facet. This is important only in the strong 

injection regime and not an issue for transmission-style implementations. It can be 

minimized by applying anti-reflection coating to the slave facet. The coupling can be 
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done via free-space optics, with lenses, as shown between the master and slave laser in 

Figure 1.1(a), or via fiber, as shown between the slave and photodetector. Additionally, in 

a fiber system, a polarization controller is necessary to ensure the master and slave 

polarizations are matched. Figure 1.1(b) also shows that direct modulation is typically 

applied to the slave laser.  

Slave 
Laser

Isolator
Master 
Laser

Photo-
detector

 
(a) 

Signal 
Generator

Polarization 
controller

fm

Circulator
Slave 
Laser

Master 
Laser

Photo-
detector

 
(b) 

Figure 1.1 Schematic of optical injection-locked laser system: (a) transmission-
style (b) reflection-style. 

When injection-locked, the slave’s lasing wavelength is locked to the master’s. 

Figure 1.2(a) shows the spectrum of a free-running single-mode (SM) laser. Light from 

the master is then injected into the slave, not necessarily at the same wavelength. Figure 
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1.2(b) shows both original slave mode and injected master light, before locking. Finally, 

when the dynamics of the laser settle, the slave wavelength is pulled towards the master 

wavelength, until it equals that of the master, locking both its frequency and phase. Now, 

if the master laser frequency is changed, the slave will track this frequency until the 

difference between master and free-running frequencies (detuning frequency, Δfinj) 

becomes too large. At this point, the slave unlocks from the master and lases at its natural 

wavelength. The span of frequencies that result in a locked state is the locking range. The 

locking range typically becomes larger as the ratio of master and slave optical powers 

defined as the injection ratio, R, increases. The relative phase between the slave and 

master (φ) is fixed, though its value depends on the detuning frequency and the injection 

ratio (see Section 2.3.1). 
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Figure 1.2 Conceptual diagram of injection locking: (a) free-running laser (b) 
slave with injected light, before locking (c) locked slave laser. 

A few theoretical models have been developed that explain the basic physical 

mechanism of injection locking. A graphical phasor model will be described in Section 

2.8. A gain competition model is shown in Figure 1.3. The bottom diagram shows the 

locking range in gray. Outside the locking range, the laser power is dominated by 
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amplified spontaneous emission (ASE) in the slave cavity. As in a free-running laser, the 

ASE of the cavity mode captures the gain and dominates the slave laser power. With 

external injection, the injected light competes with the spontaneous emission of the slave 

laser to determine the dominant lasing mode. Within the locking range, the external 

injection dominates over the spontaneous emission of the slave’s natural lasing mode. 

The injection mode then captures the gain of the laser and the amplified spontaneous 

emission from the other modes is suppressed.  
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Figure 1.3 Physical gain competition model of injection locking. (a) Illustration 
of gain model. (b) Detuning dependence on optical intensity, showing 
competition of ASE and amplified injected intensity, after Henry [2]. 
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1.2 History 

Perhaps the first observation of injection locking emerged as a thought experiment of 

the scientist Christiaan Huygens (1629-1695) [20]. Huygens, inventor of the pendulum 

clock, observed that the pendulums on two clocks mounted on the same wall would 

eventually lock frequencies, and swing with opposing phase (Figure 1.4). He reasoned 

that the pendulums must somehow affect each other. He eventually concluded that they 

were coupled by emitting vibrations passed through the wall that supported them. One 

pendulum sent vibrations that traveled through the wall and “injected” small 

perturbations to the other pendulum, eventually “locking” the frequency and phase of the 

two pendulums together. 
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(a) 

 
(b) 

Figure 1.4 Huygens thought experiment showing injection locking of wall-
coupled pendulum clocks. (a) Pendulums are out of phase and frequency, but 
coupled by wall vibrations. (b) Over time, pendulums eventually lock in 
frequency with opposite phase. 

Huygens’s thought experiment introduced the concept of injection locking to the 

world, and involved mechanical systems. However, the first published work on injection 

locking was on electrical systems, by R. Adler [21] in 1946. Adler injection-locked an 

electrical oscillator with an external frequency source. The “free-running” oscillator 

(without injection of an external source) will oscillate at its natural frequency, ω0. Adler 

showed that when an external signal at frequency ωinj is injected into the oscillator, the 
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circuit will now oscillate at the injected frequency, provided ωinj is sufficiently close to 

the natural oscillator frequency, ω0.  

Finally, twenty years later, injection locking was applied to light, when a source for 

coherent light was invented in the form of the laser. In 1965, Pantell expanded Adler’s 

injection locking theory to include lasers [22]. A year later, Stover and Steier 

demonstrated the first injection-locked laser using two red HeNe lasers [23]. Here, the 

laser cavity acts as the oscillator and ω0 is the free-running laser frequency. 

Injection locking work slowed for the next decade. Lasers were themselves incipient 

and new applications and materials were just being developed. The 1970’s saw optical 

injection locking applied to different laser systems, such as CO2 lasers in Buczek et al.’s 

work in 1972 [24]. The 70’s also saw the development of low-loss optical fiber and the 

maturation of semiconductor lasers, as well as optical communications schemes such as 

direct and coherent detection. Injection locking again came into the spotlight in 1980 

when the first demonstration of injection locking in semiconductor lasers was reported by 

Kobayashi and Kimura using GaAs lasers [25]. Since injection locking can pull two 

lasers to the same wavelength, they made attractive local oscillators in coherent detection 

systems [26], then one of the leading methods of long-distance optical communications 

(before the popularization of optical amplifiers in the early 90’s). 

The 80’s saw rapid development of new phenomenon and applications for OIL 

systems. In 1982, Kobayashi and Kimura demonstrated optical phase modulation by 

direct modulation of the slave laser current [18]. When injection-locked to a stable master 

laser, the frequency of the slave is fixed. Changing the slave bias current will cause its 

locked conditions to change, thus causing the phase difference (φ) between master and 
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slave to shift. This phase shifting by current modulation provided an attractive and simple 

method for achieving phase-shift key (PSK) modulation for coherent detection systems. 

In the same year, Kobayashi and Kimura demonstrated the effects of injecting modulated 

light into the slave. The master was frequency modulated and injected at weak injection 

ratios, much lower than the DC power of the slave. The FM was preserved on the slave 

output while observing up to 30 dB power gain due to the much higher slave output 

power [27]. Later, Kasapi et al. would use this to develop a sub-shot-noise FM 

spectroscopy technique [28]. In 1989, Esman et al. used a similar method of phase 

modulation, but applied to injection locking of electrical oscillators [29]. They directly-

modulated a laser to create sidebands and detected the heterodyne beat with a microwave 

oscillator circuit. The heterodyne beat locked the oscillator and the microwave phase was 

controlled by changing the laser diode bias. Similar work was done in a pure electrical 

domain, but with the wide-spread popularization of optical fiber, this technique allowed 

for an easy distribution method for frequency references in phased array radar [17]. 

Coherent optical communications would eventually be eclipsed by the advent of the 

EDFA in the late 80’s, making extremely long-haul direct-detection fiber links possible. 

In the simultaneously developing field of direct detection, OIL made its impact as well. 

Several groups [12, 13, 30] in the mid-80’s demonstrated record bit rate-distance (B-L) 

products, pushing the limits of long-haul optical communications. In 1984, Lin and 

Mengel found that OIL reduces the frequency chirp in direct amplitude-modulated lasers 

by holding the slave frequency constant to the master frequency [11]. Olsson et al. 

demonstrated this reduced chirp by reporting a then-record 165 Gbit/s-km B-L product 

[13]. This reduced chirp lessens the linewidth broadening thus reducing the effects of 
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pulse broadening due to fiber dispersion. This allows for longer maximum transmission 

lengths and a higher B-L product. 

Other applications for OIL emerged in the 80’s as well. In 1982, Goldberg et al. 

developed a method of optical microwave signal generation [31]. The master laser was 

modulated at a single frequency, fM. The slave was then locked to the weak FM sideband 

rather than the carrier. When the master and slave light were optically combined and 

detected, the heterodyned frequencies produced a microwave beat note, stronger than 

direct detection of the modulated master alone. Goldberg also developed variant methods 

that locked two slaves to different modulation sidebands (3rd order), resulting in 

frequency multiplication of six to give 35-GHz signals [16]. Applications include 

distribution of microwave references, frequency multiplexing, and locking of microwave 

oscillators (see Section 1.2.4).  

The seminal theoretical works on injection locking were done mostly in the 1980’s, 

as applications were simultaneously developed. In 1982, Lang [32] published the first 

definitive theoretical analysis of OIL lasers, including the three OIL laser master rate 

equations (see Section 2.1). He was the first to note the effect on the refractive index of 

the slave laser. This resulted in the discovery of an asymmetric locking range and the 

unstable locking regime (see Figure 2.1 and (2.20)). Henry [2] also published rate 

equations based on Lang’s work, formalizing Lang’s theory with Henry’s linewidth 

enhancement factor, α. As shown in Section 2.6.1, Henry also derived an approximate 

formula for the resonance frequency of OIL lasers. He first discovered this important 

phenomenon but perhaps did not appreciate its significance until Simpson [4] and Meng 

[33] in the mid- to late-90’s showed the enhancement of resonance frequency and 
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modulation bandwidth. In 1985, Mogensen et al. published several works, developing a 

set of master rate equations with a Langevin noise treatment [34-36]. They developed the 

theory of maximum phase tuning of φ to less than ±π [36]. Also, they used the Langevin 

formulation to derive the FM noise for OIL lasers, finding that the FM noise of the slave 

evolves to look like that of the master as the injection ratio increases, thus the slave laser 

linewidth can be suppressed to that of the master [35].  

As we have seen, optical injection locking bestows many attractive improvements to 

the free-running slave laser. However, the 90’s then brought about the discovery of three 

of the most significant benefits of OIL systems: noise suppression, reduced nonlinear 

distortions, and bandwidth enhancement; the latter effect will be discussed in greater 

detail in this thesis.  

1.2.2 Resonance Frequency Enhancement 

Typically, the bandwidth of a laser is proportional to the resonance frequency, or 

relaxation oscillation of a laser. It has been shown that the resonance frequency of the 

laser can be enhanced several factors by OIL [37-41]. Figure 1.5 shows experimental 

evidence of this effect. However, as can be observed in this figure, the 3-dB bandwidth is 

no longer directly proportional to the resonance frequency and cannot be fully explained 

by laser parasitics. 
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Figure 1.5 Frequency response showing resonance frequency enhancement via 
OIL [33]. The resonance frequency is improved with increasing injection ratio. 

1.2.3 Reduction of Non-Linear Distortions 

Analog links desire highly linear signals. OIL has been shown to improve the 

linearity [42-44]. Non-linearities are enhanced when the signal is close to the relaxation 

oscillation of the directly-modulated laser. OIL reduces this non-linearity mainly by 

shifting the resonance frequency away from the bandwidth of the signal. This is shown in 

Figure 1.6 [42]. The two tones were set at 2 and 2.1 GHz. The free-running and injection-

locked relaxation oscillation frequencies were 4.1 and 13.6 GHz, respectively. The 3rd-

order intermodulation distortion (IMD3) term was lowered by 15 dB, hence the spur-free 

dynamic range (SFDR) was improved by 5 dB·MHz2/3.  
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Figure 1.6 SFDR of a directly-modulated DFB laser [42]. Dash/diamonds show 
the free-running IMP3 power. Solid line/circles show the injection-locked IMP3 
power. SFDR improvement was shown to be 5 dB·MHz2/3. 

1.2.4 RIN Reduction 

An additional figure-of-merit in improving linearity in links is to reduce the noise 

floor. In Figure 1.6, the SFDR is calculated as the dB between fundamental and IMD3 

tones, along the noise floor level: the lower the noise floor, the higher the SFDR. Once 

again, injection locking offers a reduction in the relative intensity noise from the free-

running level [6, 8-10, 35, 45, 46]. It is known that the RIN spectrum peak coincides with 

that of the laser’s relaxation oscillation. It is no different when injection-locked; the RIN 

peak is simultaneously enhanced with the resonance. This is shown in Figure 1.7. The 

RIN around the free-running resonance (~6 GHz) is effectively reduced since the peak 

has been shifted to much higher frequencies. The simultaneous reduction of RIN and 
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non-linear distortion is practically implemented in the first application described in the 

next section. 

 

Figure 1.7 Experimental (left) and theoretical (right) RIN spectra for free-running 
and various injection levels and detuning frequencies [45]. The RIN peak at free-
running was pushed to higher frequencies, thereby reducing the RIN near the 
free-running relaxation oscillation. 

1.3 Applications 

Once the groundwork of physical understanding and phenomenon was developed, 

greater emphasis was devoted to developing applications for injection locking. A 

sampling of some modern OIL applications is listed here. 

1.3.1 Link Gain Improvement by Gain-Lever OIL 

In analog links, there is a desire for higher link gain, since sensitivity and signal-to-

noise ratio is proportional to the detected signal. The concept of gain-lever lasers (Figure 

1.8(a)) has been shown to increase the DC gain, at the expense of linearity [47, 48]. In a 

two-section laser, each section is biased at different levels, where the net bias results in a 

lasing condition. The lower-biased section (IDC,1), however, is biased at a lower point on 

the gain curve and sees a higher differential gain and, therefore, higher modulation 
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strength. Unfortunately, the higher gain slope coincides with increased non-linearity. 

Gain-levering is then coupled with injection locking to achieve higher differential gain 

but increased linearity via OIL [49]. Figure 1.8(b) demonstrates the increased gain (12 

dB) with the hybrid system. Additionally, the IMD3 term is reduced by 5 dB, the 

resonance frequency was increased by three times, and the RIN was reduced by 7 dB, 

resulting in a SFDR improvement of 12 dB·Hz2/3, shown in Figure 1.9. 
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Figure 1.8 (a) Concept of gain-levering [47, 48]. (a) Frequency response: dots: 
free-running laser, uniform bias; dashes: free-running gain-lever laser, showing 
increased DC gain; solid: injection-locked gain-lever laser, showing both 
increased DC gain and increased relaxation oscillation [49]. 
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Figure 1.9 Diagram explaining sources of SFDR improvement. The IMD3 term 
was reduced by 15 dB and the RIN reduced by 7 dB, totaling to a SFDR 
improvement of 12 dB·Hz2/3. 

1.3.2 Optical Injection Phase-Locked Loop 

In coherent communication, the transmitted signal beats with a DC optical signal, 

called a local oscillator, at the receiver end. This allows for increased link gain and 

different formats of modulation, such as the inherently linear phase modulation technique 

[50]. However, the local oscillator (LO) must be phase-locked to the signal tone in order 

for these benefits to be realized. Typically, an optical phase-locked loop (OPLL) is 

implemented [51] (right half of Figure 1.10(a)). However, the laser linewidth noise is too 

fast for the typical OPLL to reduce. One can also use the injection-locked laser as a 

frequency locking mechanism, if one locks the LO to the incoming signal [25]. However, 

the low-frequency phase noise of the OPLL is much more superior. By combining the 
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techniques, as shown in Figure 1.10(a), one can reap the benefits of both OPLL and OIL, 

the hybrid implementation being called optical injection phase-locked loop (OIPLL) [52]. 
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Figure 1.10 (a) Schematic of optical injection-locked phase-locked loop (OIPLL) 
[52]. (b) Phase noise spectra for free-running, optical phase locked loop (OPLL), 
optical injection-locked, and OIPLL systems. The OIL system excels in reducing 
linewidth of the laser, the OPLL excels in reducing the low-frequency phase 
noise. The OIPLL system combines the advantages of both. 
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1.3.3 Injection Locking of Mode-locked Lasers 

A mode-locked laser (MLL) can efficiently create many equally-spaced laser lines 

that are mutually phase coherent. However, in passively mode-locked lasers, the phase 

noise between modes can be great, due to the passive nature of the mode-locking. As in 

the previous section, injection locking can be used to create phase locking between an LO 

and the detectable signal for heterodyne detection. However, if additional sidebands at 

the width of the mode spacing of the MLL are implied upon the master signal, the modes 

of the MLL can be synchronized as well, similar to an actively mode-locked laser, 

reducing the phase noise [53]. Both modulated CW lasers [54] and MLLs [55] have been 

used as the master laser to synchronize the modes of the slave MLL. One can also use a 

mode-locked frequency comb to efficiently channelize a wideband RF signal, as shown 

in Figure 1.11 [56]. The carrier of the wideband RF signal injection locks the frequency 

comb to the RF signal. Once synchronized, the summation of the signal can be sent to a 

dispersive medium that will divide the signal into its corresponding channels. Each mode 

of the frequency comb serves as a carrier signal for its overlapping channel, thus 

providing the detectors a narrow-band signal to detect. 
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Figure 1.11 Signal channelization schematic. The wideband RF signal is sent to a 
free-space dispersive grating, which send each channel to its respective detectors. 
The system ensures synchronization with the desired channel spacing by locking 
the RF signal’s carrier with a known, stable source. 

1.3.4 All-Optical Signal Processing 

In long-haul digital communications, dispersion and loss from long distances of the 

optical fiber cause the pulse train to become smeared, leading to increased bit error rate. 

Typically, repeaters are used at regular intervals to regenerate and reshape the optical 

pulse. This requires detection of the signal, conversion to the electrical domain, then 

regeneration of the pulse into an optical signal. The conversion to the intermediate 

electrical signal step is undesired, due to its increased complexity and speed limitations. 

An all-optical solution has been implemented using OIL [57]. In Figure 1.12(a), we see 

the concept. The master laser is modulated with the digital signal. Over long lengths of 

fiber, the signal may become degraded. It is then weakly injection-locked into a side-

mode of the slave. The high level’s (“1”) power is sufficient to lock the slave to the 

master frequency (fm), and the output frequency is then that of the master. However, the 

low level’s (“0”) power results in an unlocked state, and the free-running frequency (fs) of 
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the slave is the output. A band-pass filter (BPF) is used to preserve only the master 

frequency. Hence, only the master light during the high levels is transmitted (Figure 

1.12(b)).  
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(b) 

Figure 1.12 Pulse-reshaping by OIL [57]. (a) shows the concept. (b) shows 
experimental results. Top graph is the input pulses with noticeable smoothness. 
Bottom graph is the output pulse, having a more square-like function. 
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1.3.5 Other Applications 

The applications listed here are only a selected group of the many systems in which 

injection locking has been used. Other applications include millimeter-wave generation 

up to frequencies of 64 GHz [58], utilizing the technique pioneered by Goldberg, et al. 

[16]. Recently, un-cooled VCSELs were injection-locked, as inexpensive upstream 

transmitters for wavelength-division multiplexing passive optical networks (WDM-PON) 

[59]. Near single-sideband modulation has been developed, using the theory developed in 

Section 2.7 to reduce the effects of fiber chromatic dispersion [15]. Using optical 

injection locking, discrete values of locked frequencies have been found to lase at the 

same intensity [60], contrary to typical laser physics that fault heating and linewidth 

enhancement for changes in intensity. This may be useful for heterodyne detection 

schemes or frequency modulation schemes. The enhanced bandwidth and reduced chirp 

has recently found its way into radio-over-fiber (RoF) [61, 62] and cable-access TV 

(CATV) [63] applications. Injection locking has also been used distribute carrier signals 

in phased-array antennas [64]. 

1.4 Organization of Dissertation 

This thesis describes the theory and experimental evidence of high-speed modulation 

in optical injection-locked lasers. In Chapter 2, we lay down the foundations of the theory 

of injection-locked lasers. There, we expound on the established theory by developing 

physical approximations to the complex rate equations. Chapter 3 provides additional 

theory that describes the fundamental limit of resonance frequency enhancement. In 

Chapter 4, we then take a break from theory to describe an experimental heterodyne 

detection technique for measuring extremely high frequency responses. This technique is 
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then used in Chapter 5, where we describe the experimental validation of the theory 

developed in the previous chapters and describe two records for highest resonance 

frequency and bandwidth for semiconductor lasers. Chapter 6 describes a relatively new 

technique of modulation on the master laser. Finally, we summarize our work in Chapter 

7 and describe new applications that have emerged out of our work. 
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Chapter 2 Rate Equation Theory 

2.1 Motivation 

In order to push the limit of injection-locked laser systems, it is important to 

understand the theory that governs its dynamics. The basic theory has been developed in 

the past by several groups and can describe a wide array of benefits from the injection-

locked laser, including RIN reduction [6, 8-10, 35, 45, 46], suppression of non-linear 

effects [42-44], and resonance frequency enhancement [37-41]. Only recently has the 

development of ultra-strong injection locking come about. We focus on the effects of 

ultra-strong injection and its implications to the theory. 

2.2 Rate Equations 

The most common model for injection-locked lasers uses a set of three differential 

equations, as published by several authors [2, 3, 32, 36]. The differential equation 

governing a free-running (non-injection-locked) laser, neglecting spontaneous emission, 

is: 
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  ( ) ( ) ( )tEjNg
dt

tdE α+Δ= 1
2
1  (2.1) 

where E(t) is the complex field, g is the linear gain coefficient, ΔN is the carrier number 

above threshold, and α is the linewidth enhancement factor [65]. Here, ( ) thNtNN −≡Δ , 

where N is the carrier number and Nth is the threshold carrier number. The differential 

equation governing the complex field of an injection-locked laser is similar to that of a 

free-running laser, with the addition of terms describing injection: 

  ( ) ( ) ( ) ( )tEjAtEjNg
dt

tdE
injinj ωκα Δ−++Δ= 1

2
1  (2.2) 

where E(t) is the slave laser’s complex field, κ is the coupling rate, Ainj is the magnitude 

of the injected master field (just inside the facet, see Section 3.2 for further details), and 

Δωinj is the detuning frequency between master and slave, defined as 

slavemasterinj ωωω −≡Δ , where ωmaster and ωslave are the master and slave lasing 

frequencies, respectively. This model ignores spontaneous emission, assuming it is 

negligible when sufficiently above threshold. It also ignores Langevin noise terms [35], 

since noise is not of primary interest here. This equation can be split into the field 

magnitude and phase by assuming that ( ) ( ) ( )tjtAtE φexp= , where A(t) and φ(t) are the 

slave laser’s field magnitude and phase, respectively. This split equation, along with the 

carrier rate equation, constitute the three differential equations of injection-locked lasers: 

  ( ) ( )[ ] ( ) ( )tAtANtNg
dt

tdA
injth φκ cos

2
1

+−=  (2.3) 

  ( ) ( )[ ] ( ) ( ) inj
inj

th t
tA

A
NtNg

dt
td ωφκαφ

Δ−−−= sin
2

 (2.4) 

  ( ) ( ) ( )[ ]{ } ( )2tANtNgtNJ
dt

tdN
thpN −+−−= γγ  (2.5) 
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where N(t) is the slave laser’s and carrier number. A(t) is normalized as A2(t) = S(t), 

where S(t) is the photon number. φ(t) is the phase difference between master and slave: 

( ) ( ) ( )ttt masterslave φφφ −≡ . J, γN, and γP are the current (in electrons/sec.), carrier 

recombination rate, and photon decay rate, respectively.  

2.3 Rate Equation Solutions 

2.3.1 Steady State Solutions 

It is possible to solve the steady-state solutions to the rate equations (2.3)-(2.5) using 

time-dependent differential equation solutions such as finite-difference methods. It is 

desirable, however, to come upon a quick solution without having to solve three coupled, 

non-linear differential equations. Murakami provides three equations that solve the 

differential equations in steady-state, one each for the field magnitude, phase, and carrier 

number [3], defined here as A0, φ0, and N0, respectively. Here, we solve them similarly, 

but with different results. Solving for the free-running field magnitude, Afr, in (2.5), we 

can set the above-threshold carrier number, ΔN0 ≡ N0 - Nth = 0, obtaining: 

  
P

thN
fr

NJ
A

γ
γ−

=2 . (2.6) 

Using this and solving for the steady-state values of the injection-locked laser, we 

obtain: 
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  0
0

0 cos2 φκ
A
A

g
N inj−=Δ . (2.9) 

One would choose an injection ratio and detuning frequency, and use the coupled non-

linear equations to solve for A0, φ0, and N0. However, they tend to be unwieldy due to the 

coupled nature of their solutions. For example, the field magnitude equation depends on 

having solved the carrier number, which depends on having solved the phase and 

magnitude, which then in turn depends on having solved the field magnitude. 

Another technique is to assume one of these values and solve the other two based on 

this. A logical choice would be the phase, because we know the bounds of the phase 

across the locking range are approximately cot-1α to -π/2 (given by Mogensen [36] and 

described in Section 2.4), from the negative to positive frequency detuning edges, 

respectively (see Figure 2.1 for illustration). We must assume an injection ratio and use 

the steady-state equations to solve for A0, ΔN0, and Δωinj. Knowing φ0 and substituting 

(2.9) into (2.7) yields: 
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P

A
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whose roots, A0, can be easily solved by a root-solving program. Then, (2.9) solves for 

ΔN0 and we rearrange (2.8) to solve for Δωinj: 

  ( )αφακω 1
0

0

2 tansin1 −++−=Δ
A
Ainj

inj . (2.11) 

2.3.2 Dynamic Solutions 

Equations (2.3)-(2.5) can be linearized by applying a small-signal time-harmonic 

perturbation around its steady-state solutions: 
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  ( ) ( )stXXtX exp0 Δ+=  (2.12) 

where X are the state variables A, φ, N, and J. X0 represents the steady-state values A0, φ0, 

N0 and J0. ΔX represents the small-signal magnitudes ΔA, Δφ, ΔN, and ΔJ. s represents 

the complex time-harmonic angular frequency. The linearized equations can be placed in 

matrix form: 
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where the matrix terms are: 
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where 0/ AAz injκ≡ . Each of the matrix terms, XYm , describe the magnitude in which X 

changes as Y is perturbed. Hence, ANm  tells us how much the field changes as a result of 

a change in the carrier number. Inverting the matrix, the magnitude of the frequency 

response is then 

  
CBsAss

ZsM
I
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+++
−

=
Δ
Δ

= 23)(  (2.15) 
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where 
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Therefore, the frequency response can be easily determined by (2.15) and its 

auxiliary equations, (2.16) and (2.14). Table 2.1 lists the typical parameter values used in 

the simulations in this paper, unless otherwise noted. 

Symbol Value Units 
λ 1550 nm 
g 5667 1/s 

Nth 2.214×108 # 
α 3 - 
J 3.5×Jth 1/s 

Jth 2.1×1017 1/s 
γN 1 1/ns 
γP 333 1/ns 
L 500 cm 
r 0.3 - 
κ 183* 1/ns 

Table 2.1 Injection-locked laser parameters. (*) derived via (3.10). 

2.4 Locking Map and Stability 

Here, we formally describe the stability conditions that delineate the locking range. 

The first constraint is found in (2.8). A real solution for the phase can only be found if the 

absolute value of the arcsine term is not greater than unity. Therefore: 
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  απφαπ 11 tan
2

tan
2

−− −≤≤−− . (2.17) 

The second constraint is found in (2.9). The carrier number must not go above 

threshold, or there would be an unstable gain. Therefore: 

  φπ
≤−

2
. (2.18) 

Putting (2.17) and (2.18) together, we obtain the phase constraint: 

  αφπ 1cot
2

−≤≤−  (2.19) 

which, when used in (2.11), yields Mogensen’s locking range [36]: 

  
00

21
A
A

A
A inj

inj
inj κωακ ≤Δ≤+− . (2.20) 

The third constraint can be found through the dynamic equation solutions for the 

frequency response, namely in the determinant of (2.15): 

  ( ) CBsAsssD +++= 23 . (2.21) 

When the real parts of the roots of the determinant (i.e. poles of the frequency response) 

become positive, the solution becomes unstable, which equates to a stability check on the 

region of convergence (R.O.C.). This can be solved by determining the roots 

computationally. This typically shrinks the locking range on the positive side, and 

determines the boundary between stable locking and chaos [66].  

Finally, we must take into account the fact that at high injection ratios, the steady-

state field magnitude can deviate significantly from the free-running value. 

Experimentally, we can only determine the injection ratio w.r.t. the free-running slave 

field, Afr. Here, we formally define the internal power injection ratio as the ratio of master 
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laser power that has entered into the slave cavity over the power of the free-running 

slave, inside the cavity: 

  
2

int ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

fr

inj

A
A

R . (2.22) 

The external power injection ratio, namely the injection power before entering the slave 

cavity over the free-running output power of the slave, is a more empirical value, but we 

use the internal ratio here to decouple the theory from laser length or mirror reflectivity. 

The difference between the two will be described in Section 3.2. However, the slave 

steady-state power, for high injection ratios and negative frequency detuning, can be 

significantly higher than the free-running value. This translates to a reduced detuning 

range on the negative detuning frequency side. An illustration of all of these boundaries 

can be seen in Figure 2.1. 
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Figure 2.1 Locking range showing the dependence of φ across the locking range. 
n.s. corresponds to the unstable locking regime. 

It is most intuitive to choose an injection ratio and detuning frequency and then solve 

for the other steady-state values, since this is what we do in experiments. However, it is 

computationally easiest to choose an injection ratio and phase to solve the other steady-

state values. Using the steady-state equations (2.9)-(2.11), we can plot the state variables 

w.r.t. injection ratio and phase, as shown in Figure 2.2. The phase ranges from -π/2 to 

α1cot− , which corresponds to the theory. From these graphs, we can see that there are a 

range of phases at certain injection ratios that correspond to an unstable locking condition 

determined through the R.O.C. Since the carrier density is the constraint that governs the 

stable locking region boundary on the negative phase side, through the third constraint 

described above, we know that the left-hand edge of the carrier density graph must be 

equal to 1. In Figure 2.3, we plot the same data, except plotted w.r.t. the traditional 
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locking map variables: injection ratio and detuning frequency. From (a), we see that the 

positive frequency detuning edge is described by the smallest phase. (b) shows that the 

resonance frequency increases with detuning and injection ratio. (c) shows that, at the 

positive edge of the locking range, the field starts at its free-running value and then 

increases with decreasing detuning and higher injection ratios. (d) shows that the carrier 

density is at threshold on the positive edge of the detuning range. It gradually decreases 

as the detuning frequency decreases and/or injection ratio increases. The trends shown in 

Figure 2.3 are useful when determining the optimized bias point for modulation. 
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Figure 2.2 Phase and injection ratio versus: (a) detuning frequency, (b) resonance 
frequency, (c) normalized field, and (d) normalized carrier density. The range of 
phases correspond to -π/2 to cot-1α. 



 

36 

(a) (b)

-40 -30 -20 -10 0 10
-100

-50

0

50

100

Injection Ratio [dB]

D
et

un
in

g 
Fr

eq
ue

nc
y 

[G
H

z]

Phase, φ0/π

 

 

-0.4

-0.2

0

-40 -30 -20 -10 0 10
-100

-50

0

50

100

Injection Ratio [dB]

D
et

un
in

g 
Fr

eq
ue

nc
y 

[G
H

z]

Resonance Freq., fRO [GHz]

 

 

0

20

40

60

80

 

(c) (d)

-40 -30 -20 -10 0 10-100

-50

0

50

100

Injection Ratio [dB]

D
et

un
in

g 
Fr

eq
ue

nc
y 

[G
H

z]

Carrier Density, N0/Nth

 

 

0.8

0.85

0.9

0.95

1

-40 -30 -20 -10 0 10-100

-50

0

50

100

Injection Ratio [dB]

D
et

un
in

g 
Fr

eq
ue

nc
y 

[G
H

z]

Normalized Field, A0/Afr

 

 

1

1.5

2

2.5

3

3.5

 

Figure 2.3 Locking map versus (a) phase (b) resonance frequency (c) normalized 
field, and (d) normalized carrier density. 

2.5 Modulation Regimes 

From Figure 2.3, we know that the resonance frequency increases with injection ratio 

and detuning frequency. However, the resonance frequency is not sufficient information 

to optimize an injection-locked laser’s frequency response, as we saw in Figure 1.5. For 

example, the 3-dB bandwidth is not necessarily related to the resonance frequency.  
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2.5.1 Injection Ratio Effects on Frequency Response 

We can use (2.15) to plot the frequency response for different values of injection 

ratio and/or detuning frequency. First, we increase the injection ratio, keeping the 

detuning close to the positive detuning edge. We do so because, by Figure 2.3(b), we see 

that the largest resonance frequency for a given injection ratio occurs on the positive 

edge. As we will see, the resonance peak can be arbitrarily close to the locking edge, and 

thus the damping can be made arbitrarily small. So, we choose detuning values such that 

the heights of the resonance peaks are roughly equal, and adjust the detuning accordingly 

to obtain this (Figure 2.4). 
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Figure 2.4 Effects of increasing injection ratio on the frequency response. (a) 
Locking map showing the bias points used in (b). (b) Frequency responses of the 
different injection ratio bias points, clearly showing that resonance frequency 
increases with increasing injection ratio. (c) Pole/zero diagram of the bias points. 
(d) Blow-up of the poles from (c). 

Figure 2.4 shows the general trend that increasing the injection ratio increases the 

resonance frequency, but there are a few notes of interest. First, we must remember that 

the resonance frequency changes dramatically across the locking range, from the free-

running value at the negative side, all the way to the maximum value on the positive side. 

Hence, the points chosen here are somewhat arbitrary, but they roughly approximate the 

maximum resonance frequency for a given injection ratio. Intuitively, it would be far 

more general to fix the injection ratio and sweep across the detuning range, which we will 

do in the next section. Secondly, it is evident that the 3-dB bandwidth is not proportional 

to the resonance frequency. As the maximum resonance frequency is increased, a dip 

occurs between DC and the resonance frequency. The dip falls below the 3-dB value 

before the resonance frequency is reached, thereby drastically reducing the usable 

broadband frequency range. This dip is not found in the two-pole system of a free-

running laser. Figure 2.4(d) shows the cause of the dip. The dip is caused by the third 
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pole, located on the negative part of the real axis. It causes a 20 dB/decade roll-off for 

modulation frequencies larger than the pole’s frequency. As the injection ratio is 

increased, the pole migrates toward the origin, pushing the start of the roll-off to lower 

frequencies. For low injection ratios, the third pole roll-off is roughly canceled by the 

zero, shown in Figure 2.4(c). For medium injection ratios, such as Rint = 0 dB (red curve), 

the zero has moved to much higher frequencies, exposing the third pole roll-off. 

However, the resonance frequency is low enough that, when the modulation frequency is 

increased, the resonance frequency is reached before the third pole roll-off has any 

significant effect in dipping the frequency response. Hence, it is important to note that the 

resonance frequency does not determine the 3-dB bandwidth. The idea of 3-dB 

bandwidth is explored in the next section as well as Section 2.6. 

2.5.2 Detuning Frequency Effects on Frequency Response 

It is more interesting to explore how the frequency response evolves by fixing the 

injection ratio and changing the detuning frequency. In Figure 2.5, we again show the 

classic locking range map. We choose a constant value of injection ratio, then vary the 

frequency detuning. Three representative plots and their corresponding pole/zero 

diagrams are shown in Figure 2.6(a), (b), and (c). The response is normalized to the DC 

response of the free-running laser. From these modulation response plots, we observe 

three regimes of modulation with distinctly different characteristics.  

At negative detuning values (Figure 2.6(c)), the modulation response has a high gain, 

but relatively low bandwidth. We see no evidence of a resonance peak, since it is highly 

damped. Since non-linearities are generally proportional to high resonance peaks, this 
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regime should yield quite linear responses as well. This regime can be used for low 

bandwidth applications that need low link loss and/or high linearity.  

At positive detuning values (Figure 2.6(a)), we see a sharp and high frequency 

resonance peak. As stated in the previous section, this regime suffers from a dip between 

DC and resonance. Therefore, the bandwidth is narrow and centered on the high-gain 

resonance peak. This regime can be used for narrow-band applications that need high 

gain at extremely high frequencies, or for ultra-high-frequency opto-electronic 

oscillators, as described in Chapter 7. Additionally, the high resonance is characterized 

by a near-single-sideband modulation signature, which will be explored in greater detail 

in Chapter 4. This can be useful for mitigating fiber chromatic dispersion effects [15]. 

The third regime lies in between these two (Figure 2.6(b)), characterized by a large 

broadband response. The detuning is well away from the positive frequency edge, so the 

resonance is well-damped. The response, therefore, has a large 3-dB ripple bandwidth as 

well, with good linearity. The applications for this regime are high bandwidth 

telecommunications, radar, or any application that requires large amounts of data transfer. 
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Figure 2.5 Locking map showing the bias points for the three regimes of 
modulation, for Rint = 2 dB, in Figure 2.6. 
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(c) 

Figure 2.6 Frequency response and corresponding pole/zero diagrams for the 
three regimes of modulation: (a) high resonance frequency regime, (b) broadband 
regime, and (c) high gain regime. 
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It is obvious that the three regimes are not discrete; the three points in Figure 2.6 

simply represent the optimized values for each regime. Rather, there is a continuum of 

frequency response curves across the detuning range. We show this in Figure 2.7. Again, 

we choose the same injection ratio as before, but instead we plot several frequency 

response curves along the entire range. The waterfall plot in Figure 2.7(a) shows the 

evolution of the frequency response. Each slice represents a frequency response curve for 

different detuning values. The three regimes we just introduced still appear, shown in the 

solid colored slices. For example, the red represents the high gain regime, the green 

represents the broadband regime, and the blue represents the high resonance regime. 

Additionally, the plot shows how the resonance frequency increases and damping 

decreases as we detune to higher frequencies. Again, the dip between DC and resonance 

occurs for higher detuning frequencies. From Figure 2.7(b), we see that the third pole 

also migrates to lower frequencies and the zero to higher frequencies as the detuning 

increases. Again, this exposes the third pole roll-off and moves it to lower frequencies. 

Finally, Figure 2.7(a) clearly shows the method for optimizing the 3-dB bandwidth. 

The resonance frequency must be increased until the point where the dip’s nadir just 

touches the 3-dB mark. The resonance then brings the response up again, until it rolls off 

beyond the resonance frequency. 
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(c) 

Figure 2.7 Theoretical waterfall plots showing frequency response versus 
detuning, for Rint = 2 dB. (a) Different frequency responses along the dotted line 
in Figure 2.5. The responses of the three bias points in Figure 2.5 are shown in 
their respective colors. (b) Pole/zero diagram corresponding to the same bias 
points. The bold, black points show the 2 poles of the free-running case. (c) 
Frequency responses of the three representative regimes, overlaid for 
comparison, plus the free-running response (black). 

2.6 Analytic Approximations for Laser Figures-of-Merit 

As we observed in Section 2.5, the three different modulation regimes have distinctly 

different characteristics. Depending on our application, we may prefer to bias the OIL 

system in one of the three regimes. This leads us to define different figure-of-merits for 

the different regimes. For example, in the high resonance frequency regime (blue curves 

in Figure 2.7), the obvious figure-of-merit is the resonance frequency. Additionally, we 

may wish to know the height of the peak, which is governed by the damping coefficient. 

In the broadband regime (green curves in Figure 2.7), the figure-of-merit is 3-dB 

frequency, or f3dB, defined as the lowest frequency at which the modulation response 
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drops more than 3-dB below the DC response. Finally, in the high-gain regime (red 

curves in Figure 2.7), the figure-of-merit would be low-frequency (LF) gain, defined as 

the ratio of the DC responses of the injection-locked case versus the free-running case. 

For example, the LF gain for the red curve in Figure 2.7 would be approximately 5 dB 

above the free-running DC response. In this section, we attempt to quantify these figures-

of-merit by deriving approximate analytical formulae. 

2.6.1 Resonance Frequency 

The concept of enhancement of resonance frequency by injection locking has been 

known for a decade [2, 4, 67]. In Section 2.5, we observed that the two major parameters 

that affect the resonance frequency are injection ratio and frequency detuning. The 

determinant of the frequency response can be used to determine the resonance frequency: 

  ( ) CBsAsssD +++= 23  (2.23) 

The roots of this equation will be a pair of complex conjugate roots and a real, negative 

root. As with a free-running laser, the imaginary part of the complex conjugate pair 

should give us the resonance frequency. We can approximate this value.  

For modulation frequencies in the GHz range and above, the last term, C, can be 

neglected: 

  BsAssC ,, 23<<  (2.24) 

Solving for a pure driving frequency: 

  ( ) ( )AjBjjD ωωωω +−≈ 2 . (2.25) 

The determinant is proportional to that of a classic damped oscillator and takes the form: 
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  ( ) ( ) ( )( )γωωγωωωγωωωωω 2
1

2
122 +−++=+−≈ RRR jjjjjjjjD  (2.26) 

where the resonance frequency, ωR, is: 

  BR ≈2ω  (2.27) 

and whose damping, γ, is 

  A≈γ . (2.28) 

The first three terms of B, shown in (2.16), contain only diagonal terms in the matrix of 

(2.13). Physically, these terms correspond to the effect a state variable has upon itself, 

and are typically weak. Therefore, under typical conditions, we can consider the last two 

non-diagonal terms in B to dominate, yielding: 

  AANAANR mmmm φφω −−≈2 . (2.29) 

The first term is the resonance attributed to the photons and carriers: 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ+=− 2

02
00

2
0 11

frP

N
R

P
PNAAN A

N
NgAgmm

γ
γ

ω
γ

γ . (2.30) 

where ( ) 2/12
0 frPR Agγω =  is the relaxation oscillation of the free-running laser, using the 

equality in (2.7). The last term in (2.30) is much smaller than unity and therefore 

2
0RNAAN mm ω≈− . Using (2.14) and (2.30) to expand (2.29), we get: 

  22
0

2
RRR ωωω Δ+≈  (2.31) 

where we have defined the resonance frequency enhancement term as the second term in 

(2.29): 

  0
0

sinφκω
A
Ainj

injR =Δ . (2.32) 
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which describes the resonance attributed to the photon field and its phase. The steady-

state condition of (2.4) is: 

  ( ) 0sin
2 0

0
0 =+Δ+−− φκω

α
A
A

NNg inj
injth  (2.33) 

Using (2.32) and (2.33), we obtain a more physical formula: 

  ( ) injthR NNg ωαω Δ+−−=Δ 02
. (2.34) 

As described by Murakami [3], the resonance frequency enhancement is equal to the 

difference between the master laser frequency and that of the slave laser’s natural cavity 

mode frequency. This cavity mode is shifted by α via the first term in (2.34). This will be 

described further in Section 2.7. Equation (2.31) is similar to Henry’s formulation [2], 

although the derivation is different, and improves upon Murakami’s approximate 

formula, which does not include the absolute value sign, and does not approximate well 

for negative detuning frequencies where the resonance frequency is small. 

2.6.2 Damping 

Here, we describe an approximate term for the damping coefficient. This is useful for 

describing the height of the resonance peak. We can expand the damping term, using 

(2.14), (2.16), and (2.28): 

  0
2
0 cos2 φγγ zgAN ++≈  (2.35) 

Using the steady-state solution for (2.3), we can replace the 2nd term on the right-hand 

side (r.h.s.) to a more physical term: 

  ( )thNNg −−≈ 00γγ  (2.36)  
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where 2
00 gAN += γγ  is the free-running damping term. Therefore, the injection-locked 

laser’s damping is the free-running damping, enhanced by the reduction of gain below 

threshold. A basic physical explanation is that the damping is enhanced by a reduction in 

gain. The injection-locked laser resonance is primarily due to energy oscillating between 

the slave field and the slave phase interfering with the injected master light. The reduced 

gain allows a portion of this oscillating energy to be lost to the carriers. We can make an 

analogy to a RLC circuit oscillator, where the field, phase, and carriers are the energy in 

the capacitor, inductor, and heat. The capacitor and inductor energies oscillate between 

each other, while increasing the resistance causes more energy to be leaked into heat, thus 

damping the oscillations. 

Equation (2.36) is accurate if C is negligible. However, when modulated with 

frequencies near the resonance, the approximate determinant in (2.26) becomes small and 

C becomes important: 

  ( ) ( )( ) CjsjsssD RR ++−++= γωγω 2
1

2
1  (2.37) 

In this case, near resonance, we can assume that the damping at resonance is: 
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This can be viewed as a modified damping term, where 

  
2

22

R
M
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C

C

ω
γγ
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. (2.39) 
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When the laser is near the positive detuning frequency edge ( 2/πφ −= ), the 

frequency response exhibits a pronounced resonance. Solving for C at this edge, we 

obtain: 

  ( ) ( )2
0

22
02/ gAzAgzC NP ++=−= γγαπφ  (2.40) 

From (2.32) and the definition of z, we can approximate Rz ωΔ≈ , so that 

  ( ) ( )th
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Δ

−≈−= 0

2
02/

ω
γαπφγ . (2.41) 

The carrier number must be sufficiently below threshold for the damping term to be 

positive and the solution to remain in the R.O.C. Another interesting note is that the 

damping can shift arbitrarily close to zero (as also seen in the pole/zero diagram trend for 

increasing detuning frequency, Figure 2.7(b)). This would predict that we can make the 

resonance peak arbitrarily high. However, this is not found in experiments; the lasers 

become unlocked before the modulation power becomes larger than the free-running 

slave laser line. This is possibly due to spontaneous emission from the slave, which 

begins to dominate the dynamics when the master detuning approaches the edge of stable 

locking. Further analysis of where the theory breaks down is needed, possibly by 

including a spontaneous emission term. 

2.6.3 Low-Frequency Gain 

The low-frequency modulation response can oftentimes be higher than the free-

running response. As shown in Figure 2.7, this typically occurs near the negative 

detuning frequency edge of the locking range, where the resonance frequency is very 

low. Intuitively, when the laser is near the negative detuning edge, the extremely-low 
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resonance frequency contributes to increasing the DC gain. We can derive an analytical 

formula for this. 

At zero frequency, (2.15) reduces to: 

  ( )
C

mmmm
jH NAAN φφφφω

+−
== 0 . (2.42) 

Expanding this into laser parameters yields: 
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We know to look for the peak DC response near the negative detuning frequency edge. 

However, when the system is locked exactly at the negative detuning frequency edge, 

αφ 1
0 cot −= , which would make the numerator term, 0sincos 00 =− φαφ , leading to poor 

DC response. From this, we deduce that the peak is near, but not at, the negative detuning 

edge. 

When we deal with RF response, we must multiply the response, H(0), with the 

fundamental, A0, at that particular bias point. This favors the negative detuning side since 

the field increases above free-running as the system approaches this edge (Figure 2.3(c)). 

Additionally, we can claim that 

  2
0gAN <<γ  (2.44) 

since the carrier recombination rate is much slower than the stimulated emission rate in a 

lasing laser. This inequality is further amplified near the negative detuning edge, since 

the field is again higher than free-running at this edge. This reduces the response to: 
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One can solve this function by noting that z depends on Rint and A0, the latter which 

depends on φ0. This function is complicated to maximize, however some general trends 

can be noted. In general, this function is maximized when Rint is larger, since the response 

is proportional to A0 (which is large for negative detuning and larger injection ratios). The 

function also grows with increasing α and decreasing γP.  

2.6.4 Frequency Response: The Real Pole 

The value of the third, real pole factors greatly in the size of the dip between DC and 

resonance. The smaller the pole, the earlier the dip appears in the frequency response, 

leading to poor 3-dB bandwidth. Here, we attempt to extract some trends for mitigating 

this effect. In other words, we wish for the largest frequency for the third pole.  

The full determinant, when expanded, takes on a value of: 
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where P is defined as the value of the third, real pole. Comparing it to the determinant 

equation in (2.23), we see that the final term in both equations can be equated, giving us: 

  
12

2

4

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=
γωRCP . (2.47) 

It is clear that the higher the resonance frequency, the smaller the pole (and therefore, 

larger dip), which corresponds to the trend seen in the pole/zero diagram shown in Figure 

2.7(b) and Figure 2.4(d). Thus, we wish to maximize the value of C, shown here: 

  ( )( )[ ]000
2
0 sincoscos2 φαφφγ −−+≈ zzgzAC P  (2.48) 
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where we have made the same approximation as in (2.44). Hence, we see that increasing 

the injection ratio (through z) and increasing the slave field, A0, will maximize the value 

of C. The latter amounts to either detuning the laser to the negative frequency side or 

increasing the bias current to obtain a higher free-running slave power. Increasing the 

photon decay rate also serves to increase C. This can be accomplished by engineering a 

lower mirror reflectivity. 

2.6.5 Frequency Response: The Zero 

The zero of the frequency response solution in (2.15) is: 

  ( ) ANNAAN mmmmmZ /φφφφ −= . (2.49) 

After expanding this with (2.14) and reducing, the zero’s value is simply: 

  ( )00 cossin φφα −= zZ  (2.50) 

Hence, across the detuning range, from negative to positive edges, the zero takes on a 

value of Z = 0 to Z = -zα. In terms of optimizing the bandwidth of the frequency 

response, the zero should be minimized, so that once the modulation frequency exceeds 

the zero’s value, the numerator will scale roughly with the modulation frequency. This 

corresponds to bias points close to the negative detuning edge. Unfortunately, the zero 

scales with injection ratio, which is necessary for increasing bandwidth. Fortunately, a 

large zero frequency doesn’t hurt the modulation bandwidth, since the numerator looks 

like a constant for modulation frequencies much smaller than the zero frequency. A small 

zero value would only serve to mitigate the effects of the dip caused by the third (real) 

pole. The approximate optimal point would be when the zero value equals the third pole 

value, thereby canceling the effect of both. This would leave an approximately two-pole 
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system, which we know from classic laser physics does not dip before hitting the 

resonance frequency. However, this point would correspond to a very low resonance 

frequency, and would gain scant benefits from the enhanced resonance. Otherwise, 

reducing the α parameter may serve to reduce the zero. Still, the effect of lowering the 3rd 

pole is more dominant than reducing the value of the zero. 

2.6.6 Optimizing Bandwidth 

The broadband regime is a delicate balance between the DC to resonance dip, the 

damping factor, and the resonance frequency. In general, these values are complex 

analytical functions. Although it is difficult to derive an intuitive analytical formula to 

assist in optimization of the injection-locked system for maximum broadband 

performance, we can make some general observations and trends. As stated in Section 

2.6.4, the bias current, injection ratio, and photon decay rate should be increased. 

We can estimate the maximum bandwidth point (across the detuning range) by 

following a few approximations. The dip, caused by the 3rd pole, should not go 3 dB 

below DC before the modulation frequency reaches the full-width half-maximum 

(FWHM) of the resonance frequency. The intersection of these two points, shown as 

circled in Figure 2.8, represents this condition. The resonance frequency is then the 

approximate maximum bandwidth point. 
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Figure 2.8 Graphic of method for maximizing bandwidth. The green line 
corresponds to the response of the 3rd pole. The red line corresponds to the 
response of the resonance frequency. The 3-dB point of both lines must meet to 
maximize the total bandwidth, shown in blue. 

Taking into consideration the zero and the 3rd pole, we attempt to find its 3-dB point: 
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which yields: 
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The FWHM of the resonance peak is simply 
2
γω −R . Setting these two points equal 

yields: 
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One can numerically solve for the φ0 that will satisfy this equation. This yields the 

approximate bandwidth as simply ωR. 

2.7 Cavity Mode 

The physical origin for the resonance enhancement has been a subject of much 

debate. We attempt to explain the origin here. In Figure 2.9(a), we see an illustration of 

the optical spectrum of a single-mode free-running slave laser, lasing at ωfr. When we 

add injection from the master laser at a positive detuning value, the effects are shown in 

Figure 2.9(b). The majority of the slave’s optical power is pulled to the locked mode, ωinj. 

However, the slave’s cavity mode, defined by the laser length and cavity roundtrip time 

(a function of laser length and effective index), does not vanish. In fact, the cavity mode 

continues to exist, but is red-shifted via the α parameter [65]. The carrier density, as 

shown in Section 2.4, can deviate from threshold (free-running value). Hence, the index 

changes via the linewidth enhancement parameter and therefore, the cavity resonance 

frequency changes. The value of the shift, Δωshift, is equal to the first term in (2.34): 

  ( )thshift NNg −=Δ 02
αω  (2.54) 

and is always negative, since the carrier number must always be below threshold. Finally, 

the total difference between the cavity mode (ωcav) and the locked mode (ωinj) 

frequencies is called the resonance enhancement frequency, ΔωR: 

  shiftinjRcavinj ωωωωω Δ−Δ=Δ=−  (2.55) 
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and is equivalent to (2.32) and (2.34).  

This cavity mode will resonantly amplify any modulation sideband at or near its 

frequency. When we modulate the locked mode near the value of ΔωR, an optical 

modulation sideband appears near the cavity mode. This sideband will be resonantly 

amplified, shown in the dark blue curves in Figure 2.9(c). 
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Figure 2.9 Cavity mode model of injection locking. (a) shows the laser line of the 
free-running slave laser. (b) When the slave is injection-locked by a positive 
detuning frequency, the cavity mode shifts to the red side while the locked 
optical mode shifts to the blue side. The difference between the locked and cavity 
modes is the resonance frequency enhancement factor, ΔωR. (c) When 
modulation is swept from DC to high frequencies the cavity mode will resonantly 
enhance any modulation sideband (dark blue) that appears near it. 

We show experimental evidence of this theory in Figure 2.10(a). The light green 

curve is the optical spectrum of a free-running single-mode distributed feedback (DFB) 

laser. In Figure 2.10(b), we show its corresponding frequency response also in light 

green. The spectrum is single-mode and the resonance frequency is about 6 GHz. The 

blue curves represent a locked case, where the master is positively detuned to +34 GHz 

and the system is in the strong optical injection case. When locked to the master laser, the 

majority of the slave’s power is locked to the master laser line, as seen by the “locked 

mode” in Figure 2.10(a). However, the slave’s natural cavity resonance still persists, as 

revealed by the small amplified spontaneous emission peak at the frequency 23 GHz 

lower than the free-running value. In Figure 2.10(a), we see that the locked and cavity 

modes are 57 GHz apart. When the locked slave laser mode is modulated at or around 57 

GHz, this will create a resonantly-enhanced sideband. In Figure 2.10(b), this causes the 

frequency response (also in blue) to show a 57 GHz resonance peak. 

Note that despite the high resonance frequency, the DC to resonance response has a 

large dip, as predicted by theory. Thus, the 3-dB bandwidth is not proportional to the 

resonance frequency. To date, there has been no coherent study linking OIL 3-dB 

bandwidth to resonance frequency. One of the goals of this dissertation is to establish this 

link in order to optimize both bandwidth and resonance frequency. The optimized data 
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will be presented in Chapter 5. Additionally, the modulation response above 50 GHz was 

obtained using the optical heterodyne detection system described in Chapter 4. 
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(b) 

Figure 2.10 Experimental representation of origin of resonance frequency 
enhancement. (a) Optical spectrum showing shifting of cavity mode (fcav - ffr = -
23 GHz) and positively-detuned locked mode (Δfinj = +34 GHz). Injection-locked 
case is in blue, free-running in light green. (b) Modulation frequency response 
showing resonance peak enhanced to 57 GHz. 



 

63 

Locking 
Range

(1) (2) (3) (4)

Frequency Detuning Δf [GHz]

R
el

at
iv

e 
O

pt
ic

al
Fr

eq
ue

nc
y

[G
H

z]
Master

Unlocked 
slave

-50 -25 0 25 50

60

40

20

0

-20

-40

-60

 
(a) 

 



 

64 

-50 -25 0 25 50
Optical Spectrum Freq. [GHz]

O
pt

ic
al

 P
ow

er
 [a

.u
.]

(1)

(2)

(3)

(4)

US

US

ML

ML

LS

LS

ML: Master laser
US: Unlocked slave laser
LS: Locked slave laser

-5 0 5 10
-60

-40

-20

0

20

40

60

Injection Ratio [dB]

Fr
eq

ue
nc

y 
D

et
un

in
g 

[G
H

z]

(c)

(b)

 

Figure 2.11 Optical spectra evolution across the locking range, with fixed 
injection ratio. (a) shows a surface plot of the optical spectrum of master and 
slave over a continuous range of detuning frequencies. Darker signifies higher 
power. (b) the experimental locking map, where the red vertical line signifies the 
range of bias points that correspond to the spectra in (a). (c) sample optical 
spectra at the four labeled points in (a). (1) shows the master on the red side of 
the unlocked slave. (2) and (3) show the slave locked to the master, since the 
master is within the locking range. (4) shows the master on the blue side of the 
unlocked slave. 

Figure 2.11 shows mode evolution across the locking range of an injection-locked 

DFB laser, and further evidence of the cavity mode dynamics. Figure 2.11(a) shows the 

experimentally-measured optical spectrum over the full locking range. The diagonal line 

marks the frequency position of the master as it is scanned through the detuning 

frequencies. The broken horizontal line shows the frequency of the slave. The gray region 
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signifies the locking range: -37 GHz to +2 GHz. Within the locking range, the slave 

becomes the same frequency as the master. Note that at the negative frequency edge of 

the locking range, the laser becomes unlocked discretely, as evidenced by the separate 

master and slave modes to the red side and a single locked mode on the blue side. On the 

positive frequency edge, however, the laser becomes unlocked in a gradual manner, 

where the slave mode gradually builds up from noise (around +2 GHz) to a point where it 

has recovered all of its free-running power (around +30 GHz). Experimentally, we can 

arbitrarily consider the positive edge of the locking range the point at which the cavity 

mode has 30 dBc of side-mode suppression ratio (SMSR) from the locked mode. Figure 

2.11(b) shows the experimental locking map, where the vertical red line marks the range 

of detuning frequencies that were used in Figure 2.11(a). Figure 2.11(c) shows sample 

spectra at different points inside (2&3) and outside (1&4) the locking range. 

2.8 Phasor Model 

The model presented in Figure 1.3 argues that the injected light dominates over the 

slave spontaneous emission generation, thus winning the competition of gain and 

determining the slave’s lasing wavelength. This model breaks down when we consider 

detuning the master laser away from the slave’s natural cavity resonance, as described in 

the previous section. For instance, we would expect frequency-filtering effects due to the 

cavity of a DFB laser to reduce the lasing magnitude when we detune away from the free-

running frequency. However, this is not the case. We can gain better insight to injection 

locking physics by using a phasor model, expanded upon the one developed by Henry 

[2].  



 

66 

We define the difference between injected and cavity mode frequencies as Δω : 

  ( ) injthcavinj NNg ωαωωω Δ+−−=−≡Δ 02
 (2.56) 

and is simply a signed version of ΔωR. Substituting (2.56) into the complex field rate 

equation, (2.2), yields: 

  ( ) ( ) ( )tEjAtNEg
dt

tdE
inj ωκ Δ−+Δ=

2
1 . (2.57) 

This equation can be illustrated graphically in Figure 2.12. Figure 2.12 shows the phasor 

of the slave laser field, in the frequency frame-of-reference of the master laser. In other 

words, if the slave was locked to the master, they would share the same frequency and the 

phasor in Figure 2.12 would not rotate over time. Figure 2.12(a) shows the slave when 

lasing at its natural cavity mode frequency. Since its frequency differs from the master’s 

by Δω, the phasor rotates by ΔωΔt during each time interval, Δt. Figure 2.12(b) shows the 

slave when locked. In a time interval, Δt, the sum of three vectors balance to return the 

phasor to its original position, thus preserving the steady-state requirement. In (2.57), this 

would be equivalent to setting the derivative to zero. Vector 1, which is equivalent to the 

( )tEj ωΔ−  term of (2.57), rotates the phasor by the frequency difference of master 

(locked) and slave cavity mode, Δω. Vector 2, equivalent to the injAκ+ term of (2.57), 

adds the contribution of the injected light. This differs in phase to the slave phasor by φ0. 

Since the injected light increases the slave field, the slave’s gain must reduce in order to 

maintain a steady-state amplitude. This gain reduction is achieved by reducing the carrier 

number to below threshold. Its effects are shown by vector 3 (the ( )tNEgΔ2
1  term of 

(2.57)), where the slave’s amplitude is reduced by the negative overall gain. Here, ΔN is 
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the carrier number difference from threshold ( thNNN −≡Δ 0 ). The three vectors sum to 

keep the phasor in steady-state. Vector 1 iterates the fact that even during stable locking 

conditions, the slave still lases at its natural cavity mode. To wit, it is almost the same 

vector as the free-running case in Figure 2.12(a), with the additional frequency shift due 

to the carrier change (Equation (2.34)). However, in the locked case, the constant 

addition of injected light “kicks” the slave phase to match that of the master, thus locking 

its wavelength. This kicking effect by the injected light is similar to the Doppler effect for 

sound waves. A relative velocity change between sound wave and observer causes a 

frequency shift in the perceived sound. This explains why the longitudinal cavity 

resonance properties do not affect the locked mode, despite being detuned from the free-

running value. The slave still lases at the cavity mode but the injected light coherently 

sums with this light to shift the perceived output frequency. Hence, the laser can be a 

Fabry-Perot, DFB, DBR, or VCSEL, and the frequency-filtering effects of the laser 

structure will not affect the injection locking dynamics. 
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Figure 2.12 Phasor model of injection locking shows how steady-state is reached. 
(a) shows the evolution of the slave laser if lasing at its cavity mode. Since it is 
not locked, it rotates at a frequency of ΔωR. When locked to the master laser (b), 
the phasor is static by the addition of three vectors: 1) Phasor rotates by 
difference between master and slave frequencies. 2) Injected master light adds a 
real component. 3) Amplitude decreases due to reduced gain. 
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Chapter 3 Injection Ratio and Quality Factor 

3.1 Motivation 

Optical injection locking of semiconductor lasers can exhibit numerous 

enhancements over their free-running counterparts. Enhancement of modulation 

bandwidth [67-69] and suppression of non-linear distortion [5] and relative intensity 

noise [8, 9] have been reported. These effects exhibit themselves under the strong-

injection regime. The strengths of these effects are predominantly functions of the ratio 

between the injected power from the master laser and the free-running power of the slave 

laser. Hence, the injection ratio, R, is an important parameter when implementing 

injection-locked laser systems.  

In this chapter, we introduce a more physical and robust definition of injection ratio 

that is based on experimentally measurable values. We then derive a simple expression 

for the maximum resonance frequency enhancement (ΔωR,max) and utilize it as a figure-

of-merit to compare injection-locked systems with a wide range of cavity lengths of slave 

lasers, from vertical cavity surface-emitting lasers (VCSELs) to edge-emitting lasers 
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(EELs) (Figure 3.1). We show that ΔωR,max is inversely proportional to the quality factor 

(Q) of the lossless laser cavity and develop a time-bandwidth product that sets the 

fundamental tradeoff between cavity Q and resonance frequency enhancement. Finally, 

we show that the upper-locking range limit is synonymous to that developed for injection 

locking of electronic oscillators. 

(a)

(b)

(c)
 

Figure 3.1 Injection locking of various laser structures: (a) VCSEL (b) Fabry-
Perot (c) DFB. 

3.2 Definition of Injection Ratio 

3.2.1 Conventional Injection Ratio Definition 

One of the most important parameters in injection locking is the injection ratio, R, 

typically defined as: 

  
0
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=  (3.1) 

where A0 is the internal slave field magnitude, Pinj is the internal injected power and P0 is 

the internal slave free-running power. Note that Ainj and A0 are the injected and free-
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running fields inside the cavity. This ratio is typically hard to calculate due to the losses 

of coupling from the lens to the facet and the facet mirror reflectivity. It is not empirically 

determined. Additionally, the lumped element model approximates the internal field as a 

single number. This is typically the average field over the laser cavity, as shown in Figure 

3.2(a). However, for distributed feedback (DFB) lasers and other engineered-reflectivity 

lasers, the average field is not directly correlated to the output of the laser, making this 

injection ratio even harder to determine. The output of a laser is proportional to the field 

strength at the interface of the facet. DFBs can exhibit their peak field strength in the 

middle of the cavity, rather than typically at the two facets as in symmetric edge-emitters. 

Note that for this section we have chosen to ignore the change of the internal slave from 

its free-running value, when locked. The implications of the theory in this chapter deals 

with the positive detuning frequency side, where the free-running (Afr) and internal 

locked-slave-field (A0) values are approximately equal. 
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Figure 3.2 (a) Lumped-element model. (b) Distributed model showing the 
forward, reverse and injected power intensity along the cavity length.  

3.2.2 External Injection Ratio 

We can bypass these problems by defining an injection ratio based on externally-

measurable parameters. The measurable power of the slave laser is the output from the 

injected facet. A wide-area detector can be used to collect all the light from this facet. 

Optical coupling from lenses to a fiber system can be calibrated. The measurable power 

of the master laser is the power incident to the slave laser facet. An external injection 

ratio can be defined using these two values: 

  
out

extinj
ext P

P
R ,= . (3.2) 
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where the powers on the right-hand-side are defined in Figure 3.2. Figure 3.2(b) shows 

the distributed power along the length of the laser. Forward- and reverse-propagating 

waves are shown as Pf(z) and Pr(z), respectively. z = 0+ is the point just inside the left-

hand laser facet and is not directly measurable. z = 0- is the point just outside the left-

hand laser facet, and is a measurable value. Here, we define ( )−=≡ 0zPP rout  as the free-

running output power of the slave laser from the left facet. ( )−=≡ 0, zPP injextinj  is the 

incident injected power from the master laser, just outside the cavity. We model the 

injected light as entering the facet, a fraction of which is lost due to mirror reflectivity, 

then combining with and propagating co-directionally with the forward-propagating wave 

of the slave. This external injection ratio is empirically measurable, but we must first 

relate the external injection ratio to the definitions in the conventional injection locking 

theory. 

Note that any coupling loss due to the optical head or lens coupling mode mismatch 

can be calibrated out using a wide-area detector. For example, let us say we have a 

single-mode optical fiber with a microscope objective output. After aligning this output 

to the laser facet, we can then measure the power collected from the free-running laser. 

We can then remove the coupling apparatus and collect the free-running output with a 

wide-area detector, to ensure capture of all the light. Calculating the ratio of these two 

powers gives the coupling loss from the laser to the fiber. We can then apply time 

reversal to assume that the same coupling loss will be incurred when coupling from the 

fiber to the laser. Of course, mirror reflectivity must be factored in before knowing the 

actual amount of injected light that makes it into the laser, at point z = 0+. This will be 

discussed in the next section. 
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3.2.3 Internal Injection Ratio 

Conventional lumped-element theory uses an average value for the power of the 

slave and assumes the injected power distributes itself evenly along the cavity, as shown 

in (3.1). The problems with this definition are that it is difficult to relate these values to 

the external injection ratio, and they do not represent accurate values to apply to the 

theory. As we see in Figure 3.2(b), the powers are not equal along the laser cavity. 

Choosing an average value would not be accurate, especially for a laser with low-

reflectivity mirrors or distributed mirrors such as DFBs. For example, a DFB with a peak 

power intensity in the middle of the cavity would have relatively low powers at the facets 

and low output powers, despite having a large photon density. 

Since we are attempting to describe a lumped-element model using a real device, we 

must choose two numbers to describe the injection ratio. Examining the model in Figure 

3.2(b), we find we have many choices as to where we wish the lumped-element value to 

represent. Using Figure 3.2(b), we assume that the injected light transmitted through the 

facet travels in parallel with the forward-propagating wave of the internal slave field. 

Hence, it experiences a nearly-identical gain as the internal slave field and grows via 

stimulated emission. Therefore, the ratio of powers between the injected field and the 

forward-propagating slave field at z=0+ will remain relatively constant along all points of 

the laser cavity. Once the two fields hit the right facet, they both experience similar 

mirror losses before reflecting in the reverse direction. Again, they maintain the same 

ratio of powers until they return to the left facet. Since the ratio is equivalent at any point 

along the cavity, we can choose to define the internal injection ratio at any point and 

propagation direction as the ratio of the injected field over the slave field at that point: 
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where Pinj(z) and Pf(z) are the injected power and slave power in the forward direction. 

Given this freedom, we choose to define the internal injection ratio at z=0+ in the 

forward-propagating direction: 
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( )+

+

=
=

=
0
0

zP
zP

R
f

inj
int . (3.4) 

Equation (3.4) will be the working definition of internal injection ratio in this 

dissertation. This is a more accurate and physical definition than the simplistic definition 

in (3.1). In summary, defining the injection ratio as the average powers inside the cavity 

leads to inaccuracies. Defining the ratio at the facets leads to a more physical and 

accurate definition.  

The accuracy of both was verified by comparing the lumped element simulations to 

that of a distributed model simulation. The same laser parameters were used for each. The 

injection ratio was first calculated by dividing the injected power by the average steady-

state power of the free-running laser. This equates to the definition in (3.1). Then, we 

defined the injection ratio using (3.4). The latter definition was found to match the 

lumped element model, while the former did not, thus confirming the improved accuracy 

of the new definition. 

3.2.4 Relating Internal to External Injection Ratios 

The definition of internal injection ratio in (3.4) is a convenient value because we 

can directly relate it to the external powers through the mirror reflectivity, r, of the left 

facet: 
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  ( ) ( )+==− 01 , zPPr injextinj , (3.5) 

  ( ) ( ) outr PzPr ==− +01 , (3.6) 
  ( ) ( )++ === 00 zPzrP fr . (3.7) 

Finally, combining (3.5)-(3.7) with (3.4), we can relate the internal injection ratio with 

the external injection ratio: 

  ( )
r
r

R
R

ext

int
21−

= . (3.8) 

Note that this relates the internal injection ratio commonly used in theoretical papers with 

the external injection ratio, which is easily determinable by empirical methods. We may 

substitute Rint as defined in (3.4) for any theory that uses an injection ratio, R, as defined 

in (3.1): 

  int

2

0

R
A
Ainj ⇒⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
. (3.9) 

Then we use (3.8) to relate the internal injection ratio to an experimentally-determinable 

ratio, Rext. Note also that (3.8) works only for reflection-type injection locking 

experiments. Equation (3.8) is plotted versus mirror power reflectivities in Figure 3.3. 

Figure 3.3 shows that for extremely-high mirror reflectivities (on the order typically used 

for VCSELs), much of the incident injected light does not transmit into the cavity. 
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Figure 3.3 Ratio of internal and external injection ratios for different mirror 
reflectivities. 

3.3 Maximum Resonance Frequency Enhancement 

The coupling coefficient, κ, for injection-locked lasers has been shown to be 

important for determining the efficiency of the injection process. It is typically defined as 

[32]: 

  
L

vg

rt 2
1
==

τ
κ  (3.10) 

where τrt is the cavity roundtrip time, vg is the cavity group velocity, and L is the cavity 

length. Physically, it means that the injected light must distribute itself across the entire 

laser cavity. Therefore, longer cavities seem to have poorer injection efficiencies; the 

longer cavity dilutes the injection’s effects. Table 3.1 illustrates this difference between 

VCSELs and edge-emitting lasers (EELs). A VCSEL with L = 2 μm versus an EEL with 

L = 500 μm would benefit from a κ that is 250 times larger than its EEL counterpart.  
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EEL

VCSEL  

Cavity length, L m
m

L
L

EEL

VCSEL

μ
μ

500
2

=  

Coupling rate, κ 250
2

500
==

m
m

EEL

VCSEL

μ
μ

κ
κ

Table 3.1 Comparison of coupling rates of VCSELs and EELs. 

The resonance frequency enhancement, found in (2.32), can be rewritten using (3.4): 

  0sinφκω intR R=Δ . (3.11) 

The resonance frequency enhancement reaches its maximum when sinφ0 = -1, or φ0 = -

π/2, which occurs at the positive edge (upper bound) of the stable locking range [36]:  

  intint RR κωακ <Δ<+− 21 . (3.12) 

Using (3.10), (3.11) and the upper bound of (3.12), we obtain the maximum 

resonance frequency enhancement for a given injection ratio: 

  ,max 2
g

R int int

v
R R

L
ω κΔ = = . (3.13) 

This equation is only dependent on the cavity round-trip time and the injection ratio. 

The equation uses Mogensen’s locking range, not the one implied by the dynamic R.O.C. 

stability criteria. However, the unstable regime shrinks with lower slave current biases. 

Additionally, the unstable regimes collapses as we increase the injection ratio into the 

strong injection regime. Equation (3.13) suggests that a high resonance frequency 

enhancement would favor short-cavity lasers. In other words, our VCSEL example above 

would have a 250 times larger resonance frequency enhancement than the EEL. 
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However, one must remember that short-cavity-lasers require high-reflectivity mirrors, 

which reduce the internal injection ratio as shown in Figure 3.3. To find the trade-off 

between cavity length and mirror reflectivity, we use (3.8) to relate (3.13) to the external 

injection ratio: 

  ,max
1

2
g

R ext

v r R
L r

ω −
Δ = ⋅ . (3.14) 

Figure 3.4 shows a comparison of ΔωR,max between a typical EEL and VCSEL versus 

the external injection ratio. Using Rext allows for a fair comparison between the two types 

of lasers, since the injection source should be the same and their free-running output 

powers should be roughly equivalent. As postulated, the VCSELs high coupling 

coefficient, κ, is compensated by the decreased efficiency of injection transmission from 

outside to inside the cavity. This results in an almost equivalent maximum resonance 

frequency enhancement for VCSELs and EELs. 

Equation (3.14) states that to obtain the maximum resonance frequency 

enhancement, aside from increasing the external injection ratio, one must choose a short 

cavity laser and a laser with low mirror reflectivity. However, the trade-off is that 

lowering these two values leads to decreased photon lifetimes and higher threshold 

powers. In order to optimize the resonance, we can engineer the two facets’ reflectivity 

via anti- or high-reflection coatings. In reflection-style injection locking of edge-emitting 

lasers, we can compensate the lowering of the input facet reflectivity by raising the 

reflectivity of the output facet. 
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Figure 3.4 Maximum resonance frequency enhancement versus external injection 
ratio for a typical EEL and VCSEL.  

In order to study the effects of both cavity length and mirror reflectivity on the 

maximum resonance frequency enhancement, we functionalize mirror reflectivity with 

respect to cavity length. Since we cannot choose any arbitrarily low cavity length and 

mirror reflectivity, a fair comparison can be made by choosing the mirror reflectivity for 

a given cavity length that will minimize the current needed to achieve a 1 mW output 

power. Given P0 = 1 mW, we solve 

  ( )th
mi

m JJhP −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ν
αα

α
0  (3.15) 

for J. Here, hν is the photon energy, Jth is the threshold current, αi is the distributed 

intrinsic material loss, and αm is the distributed mirror loss. We see that the output power 
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is a function of the mirror loss. The threshold current also depends on αm, since the 

threshold gain is: 

  ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+=

tr

th
GimGth N

N
gvvg ln0αα  (3.16) 

where g0 is the logarithmic differential gain coefficient. The threshold current is 

proportional to the threshold carrier number: 

  thNth NJ γ= . (3.17) 

Then, solving for current in (3.15) as a function of αm, using (3.16) and (3.17), we get: 
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To find the value of αm that minimizes J, we take the derivative w.r.t. αm, and set to 0: 
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One can solve this numerically, but it is sufficient to note that it is a monotonic function 

of the r.h.s. Typically, the only variable parameter is the desired optimized output power. 

Higher output powers require larger αm’s to minimize the bias current. Therefore, the 

laser parameters and the desired minimized output power determine the optimum αm for 

this system. Once αm is determined, we have a relationship between r and L: 

  ⎟
⎠
⎞

⎜
⎝
⎛=

rLm
1ln1α . (3.20) 

Solving for r and substituting into (3.14) yields an equation for the resonance frequency 

enhancement w.r.t. only L: 
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We scan the cavity length, L, from 1 μm to 1000 μm, for a representative value of mirror 

loss ( 1cm 30 −=mα ) and injection ratio (Rext = 0 dB). Figure 3.5 shows a plot of the 

maximum resonance frequency enhancement in (3.21). Additionally, we plot the 

corresponding reflectivity for the given mirror loss, shown in green. As Figure 3.5 shows, 

the optimal mirror reflectivity goes up when the cavity length goes down. Furthermore, 

the maximum resonance frequency enhancement varies by only 30% as the length 

changes by 3 orders of magnitude, for any typical laser lengths. This shows that the 

maximum resonance frequency enhancement of an optimized laser does not vary by 

much for VCSELs or edge-emitting lasers of typical lengths. For lengths greater than 1 

mm, however, the optimum reflectivity becomes quite small (< 10%) and it seems that 

the maximum resonance frequency enhancement becomes larger. It would be interesting 

to explore the resonance enhancement for external-cavity or fiber lasers. Changing the 

injection ratio simply scales the resonance enhancement. However, optimizing for higher 

output powers requires larger mirror losses. The effect of this is shown in Figure 3.6. 

Higher mirror losses actually increase the maximum resonance frequency enhancement. 

This phenomenon is formally quantified in the next section. 
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Figure 3.5 Right axis: mirror reflectivity for a laser whose optimum αm = 30 cm-1 
(corresponding to a minimized current for Po = 2mW, for typical laser 
parameters). Left axis: maximum resonance frequency enhancement at Rext = 0dB 
for this mirror loss. 
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Figure 3.6 Graph of maximum resonance frequency enhancement for different 
optimized αm. 
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3.4 Fundamental Limit of the Maximum Resonance Frequency 
Enhancement Factor Based on Coupling Quality Factor 

The previous section attempted to provide design rules for laser resonance frequency 

optimization w.r.t. power and current. Here, we develop a fundamental theory that 

governs the figure-of-merit that is generalized for all resonator structures.  

Note that the quality factor of a loss-free Fabry-Perot cavity (coupling Q) with mirror 

reflectivities of r and a cavity length of L is [70]: 

  
r

r
v

LQ
g −
⋅=≡
1

0

2/1

0 ω
ω
ω  (3.22) 

where ω0 is the laser frequency and ω1/2 is the full-width-at-half-maximum (FWHM) 

width of the cavity resonance. ,maxRωΔ , can then be simplified to: 

  ext
0

max, 2
R

QR
ω

ω =Δ . (3.23) 

This equation removes the dependency of the resonance frequency enhancement 

from r and L, and relates it to a single cavity parameter: Q. It also states, perhaps counter-

intuitively, that to obtain a high resonance frequency, we should design a laser cavity 

with a low Q. Interestingly, a typical EEL with L = 500 μm and r = 0.3 has the same Q (= 

6.7·103) as a typical VCSEL with L = 2 μm and r = 0.995. This could explain the 

similarities between the maximum resonance frequencies of the two laser geometries. 

Equation (3.23) states that both lasers would have the same maximum resonance 

frequency enhancement. As we intuited previously, the VCSEL’s high coupling 

coefficient, κ, is compensated by the decreased ratio of injected light that is successfully 

transmitted into the cavity. 
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In order to validate our theory, we fit our theory to a survey of experimental data 

throughout the literature [39, 67, 71-74], shown in Figure 3.7. It should be noted that 

ΔωR,max is calculated from the free-running resonance frequency, ωR0, and the enhanced 

resonance frequency, ωR. The two can be related through (2.31): 

  22
0

2
RRR ωωω Δ+=  (3.24) 

We assume that the resonance frequencies found in the literature had been optimized 

to the maximum value they could obtain for their given injection ratio. The data in Figure 

3.7 includes eight different lasers. For each laser, the ΔωR,max-vs-Rext curve fits well with a 

straight line with a slope of ½ in logarithmic scale, agreeing well with the prediction by 

(3.23). The offset among the curves indicate these lasers have different Q values. Laser 

DFB1 and DFB2 were from the authors’ own distributed feedback (DFB) lasers (κgratingL 

= 4). The Q values extracted from Figure 3.7 are 8.5·103 and 14.1·103 for DFB1 and 

DFB2, respectively. From Yariv [70], DFBs with a κgratingL = 4 and no cleaved facets will 

have a Q of 8.3·103, well within the variability of random phases in cleaved facets. To 

perform a more comprehensive study, an anti-reflection coating should be used to remove 

random phase conditions at the facets. The extracted Q’s for other lasers in Figure 3.7 

also show reasonable agreement with the values estimated from the device parameters 

reported in the literature. 
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Figure 3.7 Comparison of theory with experimental data for maximum resonance 
frequency enhancement. 

3.5 Time-Bandwidth Product 

The photon lifetime due to the mirror coupling loss is defined as τc. We can relate it 

to the FWHM linewidth of mirror loss, 2/1ω  [75]: 

  
cτ

ω 1
2/1 = . (3.25) 

 Using (3.22), (3.23) and (3.25), we obtain: 

  ,max ext
1
2c R Rτ ω⋅Δ = . (3.26) 
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Equation (3.26) can be viewed as a time-bandwidth product, which increases with 

higher injection ratio. This sets a fundamental engineering trade-off between high 

resonance frequency and low threshold currents. 

3.6 Analogy to Electrical Oscillators 

We can also use (3.23) to delineate the upper edge of the locking range. 

Interestingly, Adler [21] and similarly Slater [76] cite an identical boundary on the 

locking range of injection-locked electronic oscillators: 

  
0

0

2 P
P

Q
iωω =Δ  (3.27) 

where Δω is the detuning frequency and Q is again the coupling Q. The similarity 

between electronic and optical oscillator theory suggests that the theory is universal to all 

types of oscillators, including different optical cavity designs, and that coupling Q is the 

main factor affecting the resonance frequency for a given injection ratio. It would be 

useful to further explore the resonance frequency enhancement via different cavity 

designs, such as fiber ring lasers or micro-cavities. 

3.7 Summary 

In summary, we have derived a universal formula for the maximum resonance 

frequency enhancement of an injection-locked semiconductor laser in terms of the quality 

factor (Q) and the external injection ratio of the slave laser. The enhancement increases 

with the square root of the external injection ratio but decreases with Q. With this model, 

we find that typical lasers of different lengths have comparable performance for the same 

external injection ratio, provided they have similar Q. The theory agrees well with the 
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experimental data reported in the literature, including those from the authors’ laboratory. 

Finally, we show that the time-bandwidth product of injection-locked lasers is equal to 

one-half of the square root of the external injection ratio. The results presented here 

clearly identify the design trade-off between the threshold of the laser and the maximum 

resonance frequency enhancement, and can serve as a guideline to optimize the 

performance of injection-locked lasers. 
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Chapter 4 Heterodyne Detection 

4.1 Motivation 

The development of high speed electro-optic devices has seen a recent increase in 

speed. Electo-optic modulators (EOM) have been reported with speeds >75 GHz for 

LiNbO3 EOMs [77], >50 GHz for GaAs EOMs [78], and 150 GHz for polymer EOMs 

[79]. 100 GHz polymer EOMs are currently available commercially (Lumera 

Corporation). Electro-absorption modulators (EAM) have reached measured bandwidths 

of 50 GHz and model-extrapolated bandwidths of 90 GHz [80, 81]. Directly-modulated 

semiconductor lasers have achieved bandwidths of 43 GHz [82]. As the bandwidth of 

these devices becomes increasingly higher, the need for simple and inexpensive testing 

methods becomes greater. 

A basic system for measuring the frequency response of an electro-optic device 

consists of 1) a modulation source 2) a photodetector (PD) and 3) an electrical spectrum 

analyzer (ESA). The maximum measurable frequency response may be bottlenecked by 
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any or all of these components. Specifically, direct measurement of electro-optic devices 

are usually limited by the maximum bandwidth of the photodetector, typically 50 to 60 

GHz. Additionally, high-speed photodetectors and network analyzers (> 65 GHz) can be 

prohibitively expensive. 

Several techniques for measuring the frequency response of transmission-style 

modulators (EOMs and EAMs) have been reported [83-86]. Heterodyne detection mixes 

the modulation sidebands of an optical modulator with a local oscillator (LO) laser. If the 

LO frequency is tuned close to the sideband, the beat tone amplitude will be proportional 

to the field strength of the LO and the modulation, and can be detected with a low-

frequency PD and ESA. However, heterodyne systems are typically complex and costly 

due to the phase drift between the signal and LO lasers, necessitating a phase-locking 

feedback mechanism and a high-frequency electrical oscillator and mixer [87]. 

In this chapter, we demonstrate a heterodyne detection system that removes the need 

for phase-locking or feedback by relying on the slowly-varying nature of the frequency 

and phase drift. 
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Figure 4.1 Basic heterodyne detection principle. (a) Schematic of heterodyne 
detection system. (b) Optical spectrum, showing the LO line at fLO (red), DUT 
line at fs (tall, blue), and its modulation sidebands at fs ± fm (2 short, blue). (c) 
Electrical spectrum, showing the beating between DUT and LO fundamental 
lines (Δf); the direct detection term (fm) was created by the beating between the 
DUT and its sidebands; and the down-converted heterodyne term (fm - Δf), 
created by the beating between the LO and the modulation sideband closest to it. 

4.2 Theory 

A basic optical heterodyne signal can be created using a simple setup, as shown in 

Figure 4.1(a). The device-under-test (DUT) can either be a laser or a modulator with a 

laser input. This setup assumes that the LO and DUT are phase-locked and this sub-

system is removed for clarity. The LO and DUT outputs are combined using a 3-dB 
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coupler and then sent to a PD/ESA or an optical spectrum analyzer (OSA). To ensure the 

polarizations are matched, a polarization controller (PC) is used. In Figure 4.1(a) and (b), 

we show the LO laser line in red. The optical power and frequency are PLO and fLO, 

respectively. The DUT laser line is shown in dark blue with an optical power and 

frequency of PDUT and fDUT. The summation of the two laser lines, PLO and PDUT, as 

received in the photodetector is: 

  ( )θω Δ+Δ++= tPPPPP DUTLODUTLOtot cos2 , (4.1) 

where PLO and PDUT are the optical powers of the LO and DUT, respectively, and Δω and 

Δθ are the angular frequency and phase difference between the LO and DUT optical laser 

lines. Here, Δf = fLO – fDUT, where Δω = 2πΔf.  

On an ESA, a beat tone at Δf and proportional to DUTLO PP  will be observed, as 

shown in Figure 4.1(c). By knowing the power of the local oscillator, the magnitude of 

the DUT can be determined. In the example in Figure 4.1, the LO was placed 

approximately +10 GHz above the DUT fundamental. The modulation was set to 12 

GHz, creating sidebands with power PM. In the same manner as (4.1), a beat tone at fm 

and proportional to MDUT PP  will be observed. We can extract the strength of the 

modulation by knowing the DUT fundamental line’s power and then solving for PM. For 

the sake of argument, if our detection system bandwidth was capped at 11 GHz, the direct 

detection term could not be measured. However, the difference between LO and the blue-

side modulation sideband is 12 - 10 = 2 GHz, well within the bandwidth of the detection 

system. Hence, a beat tone at ffm Δ−  and proportional to MLO PP  will be observed. 

We can then extract the modulation power simply by knowing the LO power. 
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If, however, the frequencies and phases of the two lasers are not locked together at a 

fixed difference, as is typically the case without a phase-locking mechanism, there will be 

a time dependence associated with Δω and Δθ : 

  ( ) ( )[ ]tttPPPPP DUTLODUTLOtot θω Δ+Δ++= cos2 , (4.2) 

making the measurement of the magnitude of the beat tone difficult. The frequency and 

phase fluctuations have many sources, including noise from current sources, spontaneous 

emission, etc. The large-signal frequency fluctuations are typically caused by mechanical 

vibrations of the lasers’ frequency-selection method or temperature variations in the laser 

medium’s refractive index. Both of these fluctuation sources are slowly varying, with a 

bandwidth typically not exceeding MHz. 

4.3 Method 

 If we assume that the large-signal frequency drift is sufficiently small and low-

frequency, which is typically the case, one can capture its value on an ESA. Here, we 

assume that the frequency will not vary more than the resolution bandwidth during the 

time frame of the sampling. The method to measure the power of the DUT is described 

here: 

1. Tune the LO frequency close to the DUT frequency, until the beat frequency is 

within the bandwidth of the PD and ESA. 

2. Center the ESA frequency to that of the approximate frequency difference, Δf. On 

repeated frequency sweeps, the ESA will show a peak that jumps in frequency 

(akin to frequency jitter on a ms time scale). 
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3. Zoom the span until it is larger than the range of frequency peaks and set the 

resolution bandwidth just large enough for the peaks to be approximately the 

same magnitude. The magnitude of the beat term will be equal to the height of 

these peaks. 

To measure the modulation frequency response of a DUT, the process is the same, 

except replace the DUT fundamental line with one of the modulation sidebands (we 

choose blue side for this example). We place the LO at a frequency Δf away from the 

DUT fundamental line, such that fLO is close to the modulation sideband fDUT + fm. We 

then modulate the DUT at a frequency fm and then measure the beat frequency at 

ffm Δ−  (as shown in Figure 4.1(b) and (c)). For each value of fm, we can keep the LO 

frequency fixed, but the center frequency of the ESA must be changed to ffm Δ− .  

Hence, by tuning the LO close to one of the modulation sidebands, the beat 

frequency can be down-converted to a frequency that is within the bandwidth of the PD 

and ESA. The magnitude of the modulation can be determined by simply knowing the 

magnitude of the LO. The system removes the necessity for any complicated phase-

locking or feedback. 

The trade-off of this system is that the faster the fluctuations in frequency of Δω, the 

larger the resolution bandwidth or the shorter the sampling time must be to ensure the 

beat note does not drift out of the sampling window during the sampling time. The 

system allows unlimited detectable modulation frequency, within the tuning range of the 

LO. From (4.1), we can also see that we can get heterodyne gain if the LO power is at 
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least 2  times larger than the DUT fundamental. Finally, the LO or DUT need not be 

ultra-stable. 

Figure 4.2 shows a calibrated comparison between the direct detection of a directly-

modulated DFB laser and the heterodyne technique described here. The DFB laser was a 

1550 nm capped-mesa buried heterostructure (CMBH) laser biased at 3.5 times threshold 

[88]. The LO was an external-cavity tunable laser (SDL 8610). We used an Agilent 

83650B 10 MHz to 50 GHz swept signal generator, an Agilent 8565E 30 Hz to 50 GHz 

spectrum analyzer, and an Agilent 83440D DC to 34 GHz PD for our experiments. Here, 

we placed the LO 10 GHz away from the DUT fundamental. Modulation from 10 to 20 

GHz was applied. Hence, the heterodyne term swept from ~0 to 10 GHz; a lower-

frequency signal than the modulation, and proof of the concept. Since this was a 

comparison, the modulation frequencies were kept intentionally small so we could 

measure the direct-detection term simultaneously. Here, we see a heterodyne gain of 

approximately 8 dB around 10 to 14 GHz. Above 14 GHz, the gain is gradually lost until 

the magnitudes are almost identical at 20 GHz. This discrepancy could possibly be due to 

asymmetric phases of the modulation sidebands, which can cause a change in the direct 

detection term, as described in Section 4.4. Note that the heterodyne detection is immune 

to these effects. Otherwise, the shape of the resonance peak as well as the roll-off is well 

preserved in the heterodyne detection scheme, validating our system.  
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Figure 4.2 Heterodyne and direct detection comparison. 

In Figure 4.3, we show a frequency response that goes beyond the limitations of our 

direct detection equipment. The full response was constructed from two separate 

responses. The first part (left part in Figure 4.3(b)), from 0-50 GHz, was acquired using 

direct detection, calibrating the photodetector, microwave cables, synthesizer, and ESA. 

The second part (right part in Figure 4.3(b)), from 50-75 GHz, was acquired using the 

heterodyne detection technique. The LO is tuned to 50 GHz below the frequency of the 

master laser (Figure 4.3(a)). The red side is chosen so that the modulation sideband that is 

cavity mode-enhanced will be selected. We then use a 50-75 GHz mm-wave source 

module to modulate the laser and use the heterodyne detection system to measure the 

frequency response. Since Δω ≈ 50 GHz, the down-converted modulation frequency 

would be around 0-25 GHz, well within the bandwidth of both the PD and ESA. Since 
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the responses at 50 GHz are redundant, we can use it as a calibration point when joining 

the two parts together. 
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Figure 4.3 Heterodyne detection of frequency response from 0-75 GHz. (a) 
Optical spectrum of the injection-locked laser, showing the position of the local 
oscillator. (b) Frequency response, consisting of the two concatenated parts. 
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4.4 Modulation Sideband Separation 

Modulation usually creates two optical sidebands, one on each side of the 

fundamental line. If these two sidebands are not symmetric in amplitude (see Figure 

4.4(a)), direct detection will not resolve this asymmetry. By using a heterodyne detection 

system, we can separate the sidebands and determine the asymmetry. If the LO was 

placed on the high frequency side (right-hand side in Figure 4.4(a)), the beat frequency 

between the LO and upper sideband, fLO-(f0+fm), would be much lower frequency than 

that between the LO and lower sideband, fLO-(f0-fm). Hence, we would be able to plot the 

magnitude of the upper sideband. Similarly, we can do the same for the lower sideband. 

This is shown in Figure 4.4(b) for an injection-locked laser at different injection ratios 

and detuning frequencies. One can see that the modulation strength of the lower sideband 

contributes much more than the lower sideband. This corroborates with the cavity mode 

model that was explained in Section 2.7. For small injection ratios, the sidebands are 

quite symmetric. For larger injection ratios, the asymmetry increases, looking 

increasingly like single-sideband modulation [15]. For the last case, where PML = 15 dB, 

and is the largest injection ratio case, the sideband asymmetry is at its largest: 14.6 dB at 

18 GHz. The asymmetry is quite broadband as well, giving >10 dB asymmetry for a 

bandwidth of 10 GHz.  
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(b) 

Figure 4.4 Measurement that separates and shows the asymmetry of modulation 
sidebands. (a) Frequency domain representation of the separation. (b) Frequency 
response of an injection-locked laser at different injection ratios and detuning 
frequencies.  
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4.4.2 Quantifying the Sideband Asymmetries 

When the modulation sidebands of a modulated signal are asymmetric and their 

phases are not complex conjugates, direct detection can not resolve these asymmetries. If 

we describe the fundamental laser line field with a complex phasor as: 

  [ ]0000 exp~ φω +∝ tjPE , (4.3) 

where P0, ω0, and φ0 are the optical power, frequency and phase of the fundamental 

mode, then the upper (Ẽ+) and lower (Ẽ-) sidebands can be described generally as: 

  ( )[ ]±±± +±∝ φωω tjPE m0exp~ . (4.4) 

The power is then proportional to: 

  
2

0
~~~
−+ ++∝ EEEP . (4.5) 

The power at the beat frequency, ωm, is then equal to: 

  ( ) ( )−+−+−+ Δ+Δ++= φφω cos22 0 PPPPPP m  (4.6) 

where the phase difference, ±± −≡Δ φφφ 0 , is the difference in phases between the 

fundamental and each sideband. We can measure P(ωm) by direct detection and find the 

magnitudes of P+ and P- by heterodyne detection. Hence, by (4.6), the sum of the phase 

differences can be determined. This may have potential application in characterizing 

optoelectronic devices for determining effects of chromatic dispersion. 
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Chapter 5 High-Frequency Injection-Locked 
 Lasers 

5.1 Motivation 

High-speed modulation of semiconductor lasers has been a topic of avid research for 

the past two decades. The drive to develop increased bandwidth lasers for direct 

modulation has been fueled by commercial telecommunications applications, as well as 

high-end radar and sensing systems. Table 5.1 shows the current state-of-the-art for direct 

modulation of semiconductor lasers. Shown in the top table are the record 3-dB 

bandwidths for 1550 nm InP lasers. Matsui uses a conventional laser design [89] while 

Bach utilizes a more exotic 3-section laser structure that contains two resonance 

frequencies [90]. In other wavelength materials, most notably GaAs, the speed is 

typically faster than in InP. In the middle table, the fastest lasers were reported by 

Weisser [91] and Zhang [82], at 40 and 43 GHz respectively, as shown in the middle 

table.  
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 Over the years, speed improvements have slowed as we approach the fundamental 

limits of laser modulation. The technique of optical injection locking allows us to exceed 

these fundamental limits. As previously stated, injection locking can increase the laser 

resonance frequency. Chrostowski et al., also at UC Berkeley, showed a 50 GHz 

enhanced resonance frequency, but at the expense of bandwidth [38]. We reiterate that it 

is difficult to balance the increased resonance and increased dip between DC and 

resonance, in order to optimize the 3-dB bandwidth. The record for bandwidth was held 

by Lee [40] at 28 GHz. Note that there is a large discrepancy between record bandwidth 

and resonance frequency, unlike free-running lasers. To date, there have been no 

comprehensive studies linking the resonance frequency and bandwidth of injection-

locked lasers. In this chapter, we experimentally demonstrate many of the theoretical 

trends developed in the previous chapters. We use the insight gained from these 

calculations to demonstrate record-breaking results in both bandwidth and resonance 

frequency. 
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Record bandwidths, 1550nm 
Author(s) λ [nm] f3dB Year Laser  Affiliation 

Morton, et 
al. [92] 

1550 25 GHz 1992 strained MQW Bell Labs 

Goutain, et 
al. [93] 

1550 30 GHz 1997 MQW-DFB, modulating 
saturable absorber 

Thomson-
CSF/LCR 

Matsui, et 
al. [89] 

1550 30 GHz 1997 strained MQW FTRA/Oki Elec. 
Co. 

Kjebon, et 
al. [94] 

1550 31 GHz 1997 2- section DBR, detuned 
loading 

KTH, Electrum 

Bach, et al. 
[90] 

1550 37 GHz 2003 coupled-cavity injection 
grating lasers (double 
resonance) 

U. 
Wurzburg/TUD 

 
Record bandwidths, other λ’s 
Author(s) λ [nm] f3dB Year Laser  Affiliation 

Chen, et al. [95] 1300 20 GHz 1995 MQW DFB Ortel Corp. 

Weisser, et al. 
[91] 

1100 40 GHz 1996 MQW F-P Fraunhofer Inst. 

Lear, et al. [96] 850 20 GHz 1997 VCSEL Sandia 

Zhang, et al. 
[82] 

980 43 GHz 1997 tunnel-injection 
lasers 

U. Mich., Ann 
Arbor 

 
Record bandwidth & resonance frequency, injection-locked lasers 
Author(s) λ [nm] Notes Year Laser  Affiliation 

Chrostowski, et al. 
[38] 

1550 fR = 50 GHz 2005 VCSEL, intrinsic 
resonance only 

UC 
Berkeley 

Lee, et al. [40] 1550 f3dB = 28 
GHz 

2000 DBR slave laser MIT 

Table 5.1 Survey of state-of-the-art records in high-speed laser modulation. 
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5.2 Laser Structure 

The slave laser (SL) used for the experiments was a 1550 nm capped-mesa buried 

heterostructure (CMBH) DFB manufactured by Multiplex, Inc. [37]. The laser, shown in 

Figure 5.1, was a two-section DFB where each section was designed to lase 

independently. The DFB gratings ensured that if only one section was biased, the laser 

had a sufficiently-defined cavity to allow lasing. Since we performed reflection-style 

injection locking experiments, we only used one facet and, therefore, one of the bias 

sections. The length of the biased section was 500 μm, the width was 1 μm, and the laser 

had a threshold of 8 mA. The SL is biased at 29 mA (3.5×Ith) at 16˚C; its optical power is 

PSL = +4 dBm. The grating κL was designed to be approximately 3-4. The free-running 

slave at 29 mA bias had a frequency response as shown in Figure 5.2. It had a resonance 

frequency of about 6 GHz and a 3-dB bandwidth of 8 GHz. 
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Figure 5.1 Laser structure of the 1550 nm CMBH DFB laser [37]. (a) Isometric 
view of the laser chip, showing top contacts, ridge waveguide, and output facet. 
(b) Blow-up of laser facet, showing epitaxial growth layers and CMBH structure. 
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Figure 5.2 Frequency response of the free-running slave laser at 29 mA. 

The gold contact pad on the laser chip was 60×60 μm2, while the metallization from 

contact pad to waveguide was 20×100 μm2. The SiO2 oxide layer was 4000 Å thick and 

the semi-insulating (S.I.) Fe-InP layer beneath it was 3 μm thick. To calculate the RC 

roll-off from the laser parasitics, we used relative permittivity values of εR = 3.72 and 

3.172 for the oxide and S.I. InP layers, respectively. The resistivity was assumed to be 50 

Ω. We can assume the forward-biased active region contributed little to the effective 

capacitance of the laser. Therefore, the primary capacitance occurs between the gold 

contact pad and lead. The capacitances of the oxide and S.I. InP are assumed to be in 

series. This results in an R-C roll-off frequency of 21 GHz. 



 

107 

3 μmCSI-InP

R
Cox 4000 Å

 

Figure 5.3 Small-signal circuit model of the laser, showing relevant components. 
The RC in the active region (shown, but unlabeled) was neglected. 

5.3 Experimental Setup 

The experimental setup is shown in Figure 5.4. The injection-locked laser system is 

shown in the dotted dark blue box. The slave laser was heat sunk to a brass post using 

silver epoxy. The post was mounted in a large brass heat sink, which was thermally 

coupled to a thermo-electric cooler (TEC). The temperature was controlled at 289 K. 

Modulation was delivered to the slave laser via a 50-GHz signal generator (HP 83650B). 

Modulation from 50-75 GHz was supplied via a V-band frequency multiplier (HP 

83557A). The output light of the slave laser was coupled to an optical fiber via a micro-

positioned optical head (AR-coated objective lens). The same optical head was used to 

inject light into the output facet (reflection-style). An E-Tek circulator was used to ensure 

isolation between slave output and master input. The master laser (SDL 8610) had a 

typical output power of 2 dBm, and was amplified by an Erbium-doped fiber amplifier 



 

108 

(EDFA) made by Calmar Optcom, resulting in a master laser power up to PML = +25 

dBm. The polarization is matched to the slave laser via a polarization controller (PC). 

The slave output is split via a 3-dB coupler and sent to an Ando AQ6317B optical 

spectrum analyzer (OSA) and an HP 83440D DC-34 GHz photodetector followed by an 

HP 8565E 50-GHz electrical spectrum analyzer (ESA). In order to measure frequencies 

above 50 GHz (the limit of our direct detection setup), we used a heterodyne detection 

scheme, described in Chapter 4. This is shown in the dotted dark red box. The LO was an 

Agilent 81680A tunable laser source biased at 3 dBm. When using direct detection, the 

local oscillator is simply turned off. The Bias-T was a 50-GHz Agilent model, the cables 

were typically K-cables, and the microwave probe was a K-connector signal/ground (SG) 

probe from GGB. All fibers were standard single-mode fiber.  

The coupling loss from the optical head to the slave laser facet was measured to be 

2.75 dB. Therefore the actual master laser power arriving at the facet of the slave laser 

was about 3-dB (including insertion losses from other components) lower than the output 

of the EDFA. 

All measurement data was collected via computer. A key component in our 

experimental process was automation of the data collection by using GPIB-controlled test 

and measurement equipment and by iterative loop programs written in LabView. This 

allowed us to collect comprehensive data across a huge span of bias points. Typically, an 

injection level was set and then the master was tuned to a specific frequency. At each bias 

point, optical spectrum and electrical frequency response data were taken. 
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Figure 5.4 Experimental setup with optional heterodyne detection. 

5.4 Resonance Frequency Evolution 

Figure 5.5 experimentally shows the resonance frequency dependence on detuning 

frequency, across the full stable locking range. The power of the master was set to PML = 

15 dBm, hence the injection ratio was Rext = 8 dB. The detuning frequency was varied 

from -59.8 to +16.1 GHz, the latter value resulting in a maximum resonance frequency of 

34 GHz. We see excellent agreement with the waterfall plot shown in Figure 2.7(a). The 

trend for increasing the resonance frequency is apparent when increasing the frequency 

detuning. In Figure 5.5(b)-(d), we show selected frequency responses that represent the 

detuning frequencies that give the (b) highest resonance frequency, (c) largest 3-dB 

bandwidth (27.5 GHz), and (d) highest low-frequency gain, for this injection ratio. 
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(d) 

Figure 5.5 Experimental frequency response versus detuning, for Rext = 8 dB. (a) 
Waterfall plot showing all frequency responses across the locking range, plus the 
resonance frequency evolution. Selected frequency response curves showing (b) 
maximum resonance frequency (c) largest broadband response (d) highest LF 
gain. 
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We can also look at frequency response evolution with respect to injection ratio. 

Figure 5.6(a) and (b) show the optical spectra evolution and frequency response slices, 

respectively. The detuning frequency is fixed at +15 GHz. The optical spectra are shown 

as optical frequency with respect to the free-running slave. There is no modulation 

applied when collecting the optical spectrum data. The locked mode (shown at +15 GHz 

for all injection ratios) grows in power by a few dB as the injection ratio increases. The 

slave cavity mode (shown as the falling horizontal line, starting at -5 GHz on the left 

hand side) pulls away from the locked mode as the injection ratio increases and finally 

vanishes with sufficient injection power. This corresponds to a shift in the cavity index 

due to a drop in the carrier number, as predicted in Section 2.7. The other prominent 

horizontal lines correspond to four-wave mixing terms, two above the locked mode and 

two below the cavity mode.  
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(b) 

Figure 5.6 Frequency response vs. injection ratio, Δfinj is fixed at +15 GHz. (a) 
Optical spectra with optical frequency relative to free-running frequency. Locked 
mode shown as highest power horizontal line (+15 GHz). Cavity mode is shown 
as 2nd highest horizontal line (starting at -5 GHz on l.h.s.). Four-wave mixing 
terms are shown above and below locked and cavity mode, respectively. (b) 
Waterfall plot of frequency responses. Resonance frequency is shown to increase 
with increasing injection ratio. 
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Similarly, we can show the optical spectrum and corresponding frequency response 

curves as we fix the injection ratio and sweep the detuning frequency (Figure 5.7). In 

Figure 5.7(a), the locking boundaries are marked with vertical dotted lines. The lower 

frequency edge is simple to distinguish, however the upper edge is continuous. Therefore, 

the locking edge is arbitrarily chosen to be at the point the cavity mode has a SMSR of 40 

dB, ensuring single-mode performance at DC. Locked, cavity and four-wave mixing 

modes are labeled. As with the case of Figure 5.6, when the detuning frequency is 

increased, the cavity mode pulls away from the locked mode, resulting in an increased 

resonance frequency, shown in Figure 5.7(b). This clearly demonstrates the theory 

developed in Section 2.7. 
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(b) 

Figure 5.7 Frequency response vs. detuning frequency. Rext is fixed at +8 dB. (a) 
Optical spectra with optical frequency relative to free-running frequency. 
Locked, cavity, and four-wave mixing (4WM) modes are labeled. The locking 
boundary is marked at Δfinj = -37 and 0 GHz. (b) Waterfall plot of frequency 
responses. Resonance frequency is shown to increase and damping is shown to 
decrease with increasing frequency response. 
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Finally, we can create a complete locking map by changing the injection ratio and 

sweeping the detuning frequency across the locking range (Figure 5.8). Again, we 

automate the process of collecting frequency response curves by using LabView. From 

the highest value of injection ratio (least quantization error), we can estimate the 

linewidth enhancement factor from (2.20), obtaining a value of α ≈ 2.98. This clearly 

shows the trend for increasing resonance frequency by increasing injection ratio and/or 

detuning frequency, and experimentally demonstrates the theoretical trends shown in 

Figure 2.3(b). 
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Figure 5.8 Experimental mapping of resonance frequency versus locking range. 
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5.5 Experimental Results 

5.5.1 Optimized Resonance Frequency 

Using the trends of the resonance frequency described in the theory and shown in the 

experiments above, we optimized the system for achieving the highest resonance 

frequency possible. The master laser power after EDFA amplification was 23 dBm, while 

the slave, biased at 3.5 times threshold, lased at 4 dBm, resulting in an injection ratio of 

+16 dB. The master was detuned to +64 GHz from the free-running slave. The LO is 

tuned to 50 GHz below the frequency of the master laser. Since our direct detection 

system measures up to 50 GHz, we measure the frequency response of the injection-

locked laser up to 50 GHz. We then use the 50-75 GHz mm-wave source module to 

modulate the laser and use the heterodyne detection system to measure the frequency 

response. Since the separation between LO and locked mode was -50 GHz, the down-

converted modulation frequency would be around 0-25 GHz, well within the bandwidth 

of both the PD and ESA. The LO was placed on the negative side to select the 

modulation sideband that was cavity-mode-enhanced. We ensured that the PD calibration 

for the down-converted data corresponded to the detected frequency, not the actual 

modulation frequency. The listed bias conditions resulted in an enhanced resonance 

frequency (fR) of 72 GHz, as shown in Figure 5.9. To the best of our knowledge, this is 

the highest resonance frequency measured by electrical frequency response of any 

semiconductor laser. Also shown is a detuning condition (Δfinj) of +53 GHz, resulting in a 

resonance frequency of 59 GHz. This demonstrates the simple tunability of the system. 

Photodetector and bias-T frequency-dependent loss was accounted for, but cable loss and 

modulation efficiency above 50 GHz were not calibrated. Microwave probe loss was not 
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calibrated out, as the signal and ground contacts were designed to have a height 

difference of 125 μm. 

This resonance-enhanced modulation is different from biasing the system in the 

period-one oscillation regime, as described in [97], since the un-modulated optical 

beating is not detectable within the noise floor of the ESA (~-65 dBm). Only when 

modulation is applied on or near the resonance frequency is there a detectable 

enhancement. Additionally, by tuning the master laser parameters, we can tune the 

magnitude and frequency of the resonance for greater peak response or variable 

frequency. 
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Figure 5.9 Experimental frequency response curve showing resonance 
frequencies of 59 GHz and 72 GHz. Rext = +16 dB. 
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5.5.2 Optimized Broadband Performance 

By optimizing for broadband performance, we obtain the results shown in Figure 

5.10. For an 18-dB power ratio, we show a record 44 GHz broadband response. 

Optimization of bandwidth was achieved by two specific improvements: 1) systematic 

mapping of frequency response via automated data acquisition; 2) optical amplification 

of the master laser via EDFA into the extremely-strong injection regime (> 10 dB). Note 

that these results have only been calibrated for photodetector, cable loss, and source 

power. Again, the microwave probe response was not calibrated. Having this knowledge 

would improve our results. To our best knowledge, this is the broadest frequency 

response of any semiconductor laser at any wavelength. 
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Figure 5.10 Experimental frequency response curve showing a broadband, 3-dB 
response of 44 GHz. Rext = +18 dB, Δfinj = -60.5 GHz. 

5.6 Discussion 

5.6.1 Facets of Two-Section DFB Lasers 

The internal “facet”, defined by the end of the bias section and adjacent to the 

isolation etch region in Figure 5.1(a), was not ideal. In essence, it can be modeled as an 

AR-coated facet, since the light entering into the isolation etch region and beyond will 

experience extreme loss, due to these sections being unbiased, and not be reflected back 

in to the relevant lasing section. The loss at this facet did not increase the coupling of 

injected light, as a similar reduction in mirror reflectivity would have done for the output 

facet, and most likely increased the threshold carrier number and current. According to 
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the conclusions from Chapter 4, this is exactly the opposite condition from the optimal 

case. The laser used was not designed with these high-speed applications in mind. 

Although our results are extremely fast, we foresee increased performance as we begin to 

implement the design rules developed in this dissertation and design optimal devices for 

reaching even higher resonance frequencies and bandwidths.  

5.6.2 > 100 GHz Resonance Frequencies 

The record resonance frequency of 72 GHz was chosen because our microwave 

generation capabilities were limited to < 75 GHz. To prove the capability of obtaining 

higher resonance frequencies, we look to the optical spectrum. Figure 5.11 shows the 

optical spectrum of a bias point at which the cavity mode is 100 GHz away from the 

locked mode. From the theory developed in Section 2.6.1, we expect to be able to 

measure a frequency response with a 100-GHz resonance. The limit to the resonance 

frequency enhancement is governed only by the amount of power one can inject via the 

master laser. We plan to be able to measure resonance frequencies over 100 GHz, and 

explore the practical limits of this phenomenon. 

5.6.3 Future Plans 

Since we used the heterodyne detection technique, our ability to measure resonance 

frequencies higher than 75 GHz was limited only by a lack of a W-band source. Our 

future plans involve upgrading the maximum electrical speed of our system to observe > 

50 GHz broadband response and > 100 GHz resonance frequencies. This includes 

obtaining higher frequency sources and detectors. Since the maximum resonance 

frequency is proportional to the square root of the injection ratio, we can also benefit 
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from increasing the master laser power. This would require higher power sources or 

higher saturation power EDFAs. We also plan to extend our work to injection locking of 

VCSELs through collaboration with our colleagues at UC Berkeley. 
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Figure 5.11 Optical spectrum of an injection-locked laser biased such that the 
cavity mode is 100 GHz away from the locked mode. This shows potential for 
>100 GHz resonance frequency lasers. PML = 16 dBm, PSL = 1.4 dBm, Δfinj = +94 
GHz. 
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Chapter 6 Modulation of the Master Laser 

6.1 Motivation 

Most of the previous studies on optical injection locking have focused on the 

modulation of the slave laser, or direct modulation. Modulation of master lasers has many 

potential applications in FM spectroscopy and FM discrimination. Intuitively, the slave 

laser frequency would follow that of the master laser, while its intensity is weakly 

dependent on the master laser power. Potentially, this can be used to produce frequency 

modulation (FM) and/or suppress residual amplitude modulation (RAM). Alternatively, it 

can be used to lock the local oscillator in coherent analog optical links.  

In this chapter, we present a systematic study, both experimentally and theoretically, 

of the effects of master laser modulation on the slave laser. We find that FM can be 

preserved, up to the resonance peak, and even for relatively weak injection ratios. 

Additionally, AM is suppressed, inverse-proportionally to the injection ratio. We also 

discovered that pure master FM converts not only to slave FM, but also significantly 

creates slave AM. This novel conversion technique has a wide range of potential 



 

124 

applications such as an FM discriminator for detection of PSK or FSK modulation 

schemes. The bandwidth of all these effects is extended by the resonance frequency 

enhancement in the strong-injection regime. In the same way as relative intensity noise 

(RIN), the resonance frequency and damping are correlated to the direct modulation 

response. Hence, the trends developed in the previous chapters directly relate to the 

modulation schemes listed in this one. 

6.2 Experiment 

In injection-locked laser systems, a master laser injects light into a slave laser, thus 

modifying the slave’s characteristics. Typically, we modulate the system by applying a 

modulating current (direct modulation, or DM) on the slave, shown in Figure 6.1(a). 

Alternatively, as shown in Figure 6.1(b), we can modulate the injected light from the 

master laser, either AM or FM.  
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Figure 6.1 (a) Schematic of typical injection locking system with direct 
modulation on the slave current, resulting in AM+FM output. (b) Schematic of 
injection locking system with master laser modulation. If external modulation is 
applied, AM or FM (PM) can be applied separately. Choosing either modulation 
will result in both AM and FM on the slave output. 
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Figure 6.2 Schematic of experimental setup for measuring FM-to-AM conversion 
and direct modulation. One of two modes can be switched from the output of the 
network analyzer: A. will create frequency modulation on the master while B. 
will directly modulate the slave. VOA = variable optical attenuator, Pol. = 
polarization controller, PM = phase modulator. 
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RAM suppression (AM to AM) and FM efficiency (FM to FM) have already been 

demonstrated in FM spectroscopy systems [28]. In this section, we experimentally 

demonstrate FM-to-AM conversion (FM to AM). We define FM-to-AM conversion as 

the conversion of injected FM into slave AM. The experimental setup is shown in Figure 

6.2. The master laser is a frequency-tunable diode laser and the slave laser is a 1550 nm 

distributed feedback (DFB) laser. The master was typically tuned to 0 GHz detuning 

frequency. We follow the master laser with a variable attenuator (VOA), polarization 

controller (Pol.) and phase modulator (PM). The master light is injected into the slave via 

a circulator. The slave output is taken from the same side as injection. We obtain 

frequency response data via a network analyzer. We modulate the system at two different 

points: A. we modulate the master laser using a LiNbO3 PM, which produces FM 

injection light without AM; B. we directly modulate the slave laser. The same RF power 

is used on both modulation points. Figure 6.3 shows the experimental results. The 

network analyzer’s photodetector only senses slave AM and therefore the slave FM is 

decorrelated from these results. AM on Slave (unlocked) shows the direct modulation 

frequency response of the laser without injection. AM on Slave (locked) shows the 

characteristic enhanced resonance frequency due to injection locking. FM on master 

(unlocked) shows the effect of the master FM on the slave AM in the unlocked state (not 

injection-locked). Since the FM is not correlated to the AM in this case, the frequency 

response is essentially the noise floor of the network analyzer system. FM on Master 

(locked) shows FM-to-AM conversion for the injection-locked system. The FM-to-AM 

conversion is proportional to the modulation frequency, and therefore there is less 

crosstalk for lower modulation frequencies and more for higher frequencies. Below 
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resonance, the AM due to FM-to-AM conversion is much smaller than the AM due to 

direct modulation. At resonance, the FM-to-AM conversion magnitude is about 10 dB 

below the direct modulation, and is a significant effect. Above resonance, the crosstalk 

effect is almost equal to the direct modulation. 
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Figure 6.3 Slave AM due to different modulation sources. FM-to-AM conversion 
and direct modulation are shown. 

Figure 6.4 shows the FM-to-AM conversion for various injection ratios. We can 

compare this to our theoretical results, found in Figure 6.8. The general response line 

features match up quite well, although the injection ratios are different, due to the fact 

that the real laser is a DFB rather than a Fabry-Perot, which is used in the theory. As is 
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the case with direct modulation, the resonance frequency for FM-to-AM conversion is 

enhanced for larger injection ratios. 
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Figure 6.4 Experimental FM-to-AM conversion for different injection ratios. 

6.3 Theory 

In order to analyze the effects of master laser modulation, we perform a small-signal 

linearization of the laser rate equations with injection [98]: 
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where E(t) is the slave’s complex field, τp is its photon lifetime, ω0 is the free-running 

frequency, ωc is the cold-cavity frequency, Γ is the confinement factor, g(t) is the non-

linear gain, α is the linewidth enhancement parameter, κ is the coupling rate coefficient, 
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Fsp is the spontaneous emission term, N(t) is the slave’s carrier density, ηi is the current 

injection efficiency, q is the electric charge per electron, V is the volume of the active 

region, I(t) is the current, and τc(t) is the carrier-dependent carrier lifetime. Here, we use 

equations that contain more higher-order effects than (2.3)-(2.5), namely the logarithmic 

gain model with gain compression, carrier-dependent carrier lifetime, and current 

leakage, ηi. The non-linear gain model, carrier lifetime and γ are defined as: 
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where Ntr is the transparency carrier density, Ns is a logarithmic gain fitting parameter, ε 

is the gain compression term, ε0 is the permittivity of free-space, n is the effective index 

of the slave mode, and hν is the photon energy. A, B, and C are the defect, spontaneous, 

and Auger recombination coefficients, respectively.  

Typically, we would add DC plus perturbation terms to the time-dependent 

functions, then linearize the equations such that they fit into the matrix format shown in 

(2.13). However, the analysis in [98] contains only one driving term: current modulation 

on the slave, which we define here: 

  ( ) ( )DMMRF tIItI δω ++= sin0  (6.6) 

where I0 is the bias current, IRF is the small-signal current strength, ωM is the modulation 

frequency, and δDM is the direct modulation (DM) phase. To include the master 
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modulation terms, we modify the injection term, Ei (typically taken as a constant) to 

include AM and FM driving terms:  

  ( ) ( ) )(tit
ii etAtE θ−Ω−=  (6.7) 

where Ai(t), Ω, and θ(t), are the amplitude modulation (AM), detuning frequency, and 

phase modulation (PM) (which translates to FM through a time derivative) of the master 

laser field, respectively: 

  ( ) ( ))sin(1 AMMii tMAtA δω ++=  (6.8)  
  ( ) )sin( PMM tt δωβθ +=  (6.9) 

where Ai is the DC injection magnitude, M is the master laser amplitude modulation 

index, δAM is the AM phase, β is the master laser phase modulation index, and δPM is the 

PM phase offset. We then neglect the spontaneous emission and separate the slave 

amplitude and phase into two separate rate equations: 
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The steady-state solutions are found similarly to those in Chapter 2, where we define A0, 

Φ0, and N0 as the steady-state values. To achieve a steady-state phase without injection, 

the frequency difference, ω0 - ωc, is equal to: 

  00 2
Gc αωω Γ

=−  (6.13) 

where G0 is the steady-state gain: 
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We then perform small-signal linearization upon (6.10)-(6.12). Our solution is 

similar to that found in [98], however it contains two additional driving terms: the master 

AM and the master PM. The final form of the matrix equations are: 
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where the general complex s can be replaced with jωM. Here, there are three separate 

driving terms: ΔAi, Δθ, and ΔI. where MAA ii =Δ  and βθ =Δ . The matrix elements are 

similar to those in Chapter 2, except for the higher-order terms: 
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The third driving term in (6.15), ΔI, should be recognized as the direct modulation 

term, and can be commonly found in literature [98, 99]. The first and second driving 

terms are AM (ΔAi) and PM (Δθ) that has been implied upon the injected master light. By 

choosing one of the three terms and setting the other two to zero, we can calculate that 

driving term’s effect on the modulation of the slave field amplitude (ΔA), phase (ΔΦ), 

and carrier density (ΔN). We define four of the more interesting terms in the next section. 

6.4 Analysis 

If we choose one output term and one driving term, we can take their ratio, and from 

(6.15), determine its frequency response. There are 3 output and 3 driving terms, giving 

us 9 different ratios. The typical ratios found in literature are ΔA/ΔI (DM to AM), or 

commonly called modulation response, and ΔΦ/ΔI (DM to FM), which can be used to 

determine the direct modulation frequency response and frequency chirp. The parameters 

used in this chapter are listed in Table 6.1. 
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Symbol Name Value Units 
λ wavelength 1550 nm 
Γ confinement factor 0.06 - 
ε gain compression factor 1.5×10-17 cm3 

nG group index 3.7 - 
nEff effective index 3.3 - 
ηi current injection efficiency 1 - 
g0 logarithmic gain coefficient 1500 1/s 
Ntr carrier transparency density 1.5×1018 cm-3 
Ns gain curve fitting parameter 0.6×1018 cm-3 
L length 500 μm 
w width 2.5 μm 

tQW quantum well thickness 80 Å 
NQW quantum well number 8 # 
α linewidth enhancement parameter 4 - 
I0 bias current 30 mA 
αi intrinsic material loss 18 cm-1 
A defect recombination 0 1/s 
B spontaneous recombination 1×10-10 cm3/s 
C Auger recombination 80×10-30 cm6/s 
r mirror reflectivity 0.286 - 

Table 6.1 Laser parameters used in this chapter. 

6.4.1 Direct Modulation 

Figure 6.5 shows the frequency response from direct modulation (ΔA/ΔI) for a 

typical edge-emitting laser, whose parameters we will use throughout this paper. The 

family of curves corresponds to varying injection ratios (Rint). As observed in the 

literature [33, 99], the resonance peak is enhanced for higher injection ratios. 
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(b) 

Figure 6.5 Direct modulation for various injection ratios: (a) schematic (b) 
frequency response. Driving source: current modulation on slave. Measured 
output: optical AM on slave. 

6.4.2 RAM Suppression 

If we explore the ratio, ΔAi/ΔA (AM to AM), we can observe how the master AM 

affects the slave AM. This ratio is proportional to residual amplitude modulation (RAM) 

suppression, which is defined as the degree of suppression of optical AM as it is 

transferred from master to slave. If we are interested in only the FM component of a 

signal that contains both AM and FM, RAM suppression may be useful in removing the 
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unwanted AM. For example, this technique has been used in FM spectroscopy [28]. 

Figure 6.6 shows the frequency response of RAM suppression for our sample laser. For 

smaller injection ratios, the suppression is greater, attesting to the fact that the master 

only injects small amounts of light into the slave’s photon reservoir. At a nominal 

injection ratio of -50 dB, a RAM suppression of >130 dB can be achieved. At resonance, 

the suppression actually goes negative for higher injection ratios, which corresponds to 

an AM enhancement. 
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(b) 

Figure 6.6 RAM suppression for various injection ratios: (a) schematic (b) 
frequency response. Driving source: optical AM on master. Measured output: 
optical AM on slave. 

6.4.3 FM-to-AM Conversion 

We can also determine the effect of master FM on both the AM and FM of the slave, 

through the ratios ΔAi/Δθ (FM to AM) and ΔΦ/Δθ (FM to FM), respectively. The first is 

proportional to FM-to-AM conversion; it shows a coupling between the master FM and 

the slave AM. This can be used as a FM discriminator or, in other applications, it may 

lead to unwanted AM, as in FM spectroscopy [28]. Figure 6.7 shows the frequency 
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response of the slave amplitude per Hertz of master frequency excursion. Figure 6.8 

shows the frequency response of the slave amplitude per radian of phase modulation 

excursion, and is related to Figure 6.7 by the modulation frequency. This corresponds to a 

0.88 mW/GHz frequency-to-amplitude modulation conversion efficiency. Our theory 

(Figure 6.4) predicts our experimental evidence of FM-to-AM conversion quite well. 
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(b) 

Figure 6.7 FM-to-AM conversion for various injection ratios: (a) schematic (b) 
frequency response. Driving source: optical FM on master. Measured output: 
optical AM on slave. 
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Figure 6.8 Theoretical FM-to-AM conversion for various injection ratios. 

6.4.4 FM Efficiency 

The second term, called FM efficiency, shows how well the master FM is mapped 

onto the slave FM. This may be useful for preserving an FM signal from one laser to 

another, for example as a regeneration technique for frequency-shift keying (FSK). 

Figure 6.9 shows the frequency response for FM efficiency. Note that for low 

frequencies, the FM efficiency is 0 dB, which means that the slave laser is exactly 

tracking the detuned frequency of the master. At resonance, the slave actually overshoots 

the master’s frequency for certain injection ratios. At higher frequencies, the slave’s 

dynamics are too slow to track the master’s frequency fully, hence the FM efficiency 

rolls off. An interesting phenomenon is that at resonance, the laser will actually enhance 

the FM signal that it sees from the input. Since the injected power can be smaller than the 
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slave laser’s output power, there will be a net DC gain. If the modulation format is 

chosen to be a FM style such as FSK, this type of master modulation can see gain in a 

narrow-band range. 
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(b) 

Figure 6.9 FM Efficiency for various injection ratios: (a) schematic (b) frequency 
response. Driving source: optical FM on master. Measured output: optical FM on 
slave. 
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6.5 Discussion 

We investigated the effects of applying modulation to the master laser in injection-

locked systems, both experimentally and theoretically. We experimentally verified a 

novel phenomenon, FM-to-AM conversion, where the FM on the master laser is 

converted into AM on the slave laser. We show this to have a significant effect on the 

slave AM for high modulation frequencies, on the order of magnitude to direct 

modulation gain. Experimental evidence also shows that the FM-to-AM conversion is 

negligible for frequencies below resonance. We modified the existing small-signal 

analysis theory for injection-locked lasers to include driving terms for the master AM and 

FM. Using this model, we show the frequency response for RAM suppression, FM 

efficiency, and FM-to-AM conversion. RAM suppression is shown to be inversely 

proportional to the injection ratio. FM efficiency is shown to have a 1 Hz-to-1 Hz 

frequency excursion from master to slave, for frequencies up to the resonance point. It is 

possible to achieve net gain as well in a narrow bandwidth. Further work will be 

conducted in this direction. FM-to-AM conversion is verified theoretically and shown to 

fit quite well with our experimental data. The bandwidth of all these effects is shown to 

increase, along with the enhancement of the resonance frequency, for higher injection 

ratios. 
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Chapter 7 Conclusion 

7.1 Future Applications 

The goal of the work in this thesis was to develop insight into the characteristics of 

high-speed modulation in optical injection-locked lasers. We have also experimentally 

probed the fundamental limits of resonance frequency and bandwidth. With the ability to 

create ultra-high resonance frequencies with large gain, we can develop applications 

based on this high-power, high-frequency source. 

7.1.1 Opto-Electronic Oscillator 

Microwave oscillators that synthesize high-purity, single-frequency signals are 

useful for many applications. Typically, these electronically-created signals are limited in 

phase noise by the quality factor of the oscillator. A device, called an optoelectronic 

oscillator (OEO), has been developed that leverages the long, low-loss nature of optical 

fiber to effectively increase the loop delay and hence increase the Q of the oscillator 

[100]. The device is shown in Figure 7.1. The pump laser is sent through the electro-optic 
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modulator (EOM), which then passes along a long loop of fiber. The light is converted to 

microwave, amplified, filtered, and then returned to the EOM as its microwave input. The 

amplifier gain is increased until the system achieves greater than unity gain. Without the 

filter, the numerous Fabry-Perot modes of the loop will have a free-spectral range equal 

to that of the OEO loop’s time delay. The filter removes all but one mode, at the center 

frequency of the desired oscillator signal. The longer the optical fiber, the smaller the 

linewidth of the microwave signal will be. The phase noise of this system is far superior 

than that of a pure microwave oscillator [101]. However, its performance is limited by the 

noise added by the ~60 dB gain necessary from the RF amplifiers to achieve unity gain. 

 

Figure 7.1 Schematic of optoelectronic oscillator. The noise is dominated by the 
RF amplifier. 

We propose a new system, called the optical injection-locked optoelectronic 

oscillator (OIL-OEO) [102, 103]. The system is similar to the OEO, except the pump 

laser and EOM are replaced by an OIL system that is biased in the high resonance, low 

damping regime. The schematic is shown in Figure 7.2(a). A sample open-loop frequency 
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response is shown in Figure 7.2(b). The resonance frequency of 48 GHz is coupled with a 

-23 dBm response, for an input of -10 dBm, giving a mere 13-dB link loss. This gives an 

extremely high gain for a narrow-band frequency range, centered at the resonance 

frequency. By optimizing these preliminary results, we hope to achieve unity loop gain, 

thus relieving the need for RF amplifiers and potentially having extremely low phase-

noise performance. Additionally, this system is widely tunable, the OIL system having 

tunability already shown from <10 to >72 GHz. This is an exciting potential application 

for our future works. 
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(b) 

Figure 7.2 (a) Schematic of OIL-OEO. The system will have enough narrow-
band gain to remove the need for RF amplifiers. Note also the high potential 
frequency of oscillation. (b) Experimental frequency response showing ultra-high 
resonance and gain at 48 GHz. 
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7.2 Summary 

In the realm of bandwidth improvement for ever-faster and more demanding 

communications systems, injection locking has proven to add great value to the directly 

modulated laser. The bandwidth increases by direct modulation have gradually slowed as 

the laser community reaches the fundamental limits set by laser physics [104]. Injection 

locking allows us to exceed those fundamental limits, and is a technique applicable to any 

laser, regardless of design. This ensures universal applicability and performance 

improvements for any laser system. Improvements to bandwidth and resonance frequency 

so far have no inherent fundamental limits. Improvements are linked to injection ratio and 

therefore limited only to the injected power. We foresee continued improvements to both 

bandwidth and resonance frequency as higher power sources are implemented, or by 

engineering and optimizing the slave laser for superior injection locking performance. 

Injection locking inherently complicates the basic laser system. System integration 

becomes an issue when mass production and cost are important. Since the birth of 

integrated circuits, there has existed a universal trend to single-chip integration; this is no 

different for semiconductor lasers and photonic systems. We can achieve this integration 

by building the master and slave lasers monolithically on a single chip [105, 106]. Analog 

performance benefits were observed, despite the lack of optical isolation which caused 

mutual locking. As new technologies of chip-level optical isolation become more 

prevalent [107, 108], monolithic integration of injection-locked lasers should become an 

increasingly attractive method of meeting record-breaking system specifications. 

We have provided a brief overview of optical injection locking history, from its 

inception to current record-breaking performance. We also provide several intuitive 
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physical models and describe the most prevalent theoretical model of injection locking. 

This model contains the most important physical effects, including resonance frequency 

enhancement, noise reduction, and non-linearity suppression. We use this theory as a 

basis for understanding the relatively new regime of strong injection locking. We develop 

simple physical approximations to some of the important figure-of-merits, such as 

resonance frequency enhancement and damping. Utilizing our understanding of the 

strong injection regime, we are able to achieve a bandwidth improvement to 44 GHz, 

currently the highest bandwidth semiconductor laser. Additionally, we report a record 72-

GHz resonance frequency, also the highest of any semiconductor laser. In order to 

measure these high modulation frequencies, we developed a novel heterodyne detection 

technique that is simple, cost-effective, and usable by a wide array of optical modulation 

devices. Finally, we complete our summary of optical injection locking by looking at a 

potential application, the OIL opto-electronic oscillator, that may be developed with our 

new understanding of injection locking physics. Injection locking shows great promise 

for improving the performance of analog and digital communication systems. As laser 

technology grows, we will continue to see further improvements, as the practical limits 

governing injection locking performance have yet to be discovered.  



 

147 

Appendix 1 MATLAB Code 

A1.1 Locking Range Mapping: LockingRange.m 

%LOCKINGRANGE Solves for steady-state and dynamic OIL values. 
%   This program chooses a value of R, then scans phi across the range  
%   from -pi/2 to acot(alpha), then solves dwInj, A0, N0 exactly. It  
%   then proceeds to solve for many other values, such as poles/zeros,  
%   frequency response, etc. 
 
clear all; 
%############################################################ 
% LASER PARAMETERS 
paramfile = 'LaserParam'; 
eval(paramfile); 
%############################################################ 
% DATA-SAVING STUFF 
T       = datevec(now); 
dirname = [mfilename '_' num2str(T(1),'%02.0f') '.' 
num2str(T(2),'%02.0f') ... 
        '.' num2str(T(3),'%02.0f') '.' num2str(T(4:5),'%02.0f')]; 
mkdir(dirname); 
filename= mfilename; 
copyfile([filename '.m'], dirname); 
copyfile([paramfile '.m'], dirname); 
 
%% INITIALIZE SCANNING VECTORS FOR phi and rInj 
rInjM   = logspace(-2,.5,101); 
phi0M   = pi/2*sin(linspace(-pi/2*(.9999),acot(alpha)*(.99),101)); 
 
%% FIND FREE-RUNNING VALUES 
Afr     = sqrt((J-gammaN*Nth)/gammaP); 
Ainj    = Afr; 
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%% INITIALIZE CONTAINER MATRICES 
lambda  = zeros(3,length(rInjM),length(phi0M)); 
m11M    = zeros(length(rInjM),length(phi0M)); m12M = m11M; m13M = m11M; 
m21M    = m11M; m22M = m11M; m23M = m11M; 
m31M    = m11M; m32M = m11M; m33M = m11M; 
zM      = m11M; A0M = m11M; N0M = m11M; dwInjM = m11M; 
AM      = m11M; BM = m11M; CM = m11M; DM = m11M; ZM = m11M;  
 
f       = linspace(1e7,1e11,10e2+1); % [1/s]   freq. vector for 
Analytical P/Z response 
 
%% MAIN LOOP 
for X = 1:length(rInjM), 
    tic; 
    for Y = 1:length(phi0M), 
        phi0 = phi0M(Y); 
        rInj = rInjM(X); 
        kInj = (1/tIN*(1-r0^2)/r0)*rInj; 
         
        a = 1; 
        b = -(2*kInj/gammaP*Ainj*cos(phi0) + 
g*gammaN/(2*kInj*gammaP*Ainj*cos(phi0))); 
        c = -Ainj^2; 
         
        ruts = roots([1 -(2*kInj/gammaP*Ainj*cos(phi0) + 
g*gammaN/(2*kInj*gammaP*Ainj*cos(phi0))) -Ainj^2]); 
        I = find(ruts>=Afr); 
        A0 = ruts(I); 
        dN0 = -2*kInj/g*Ainj/A0*cos(phi0); 
        dwInj = -kInj*sqrt(1+alpha^2)*Ainj/A0*sin(phi0+atan(alpha)); 
        
        wR     = sqrt(g*gammaP*A0.^2); 
        gammaR = gammaN + g*A0.^2; 
 
         
        %############################################################ 
        % SOLVE THE MATRIX ELEMENTS 
        z = kInj*Ainj/A0; 
        m11 = z*cos(phi0); 
        m12 = z*A0*sin(phi0); 
        m13 = -1/2*g*A0; 
        m21 = -z/A0*sin(phi0); 
        m22 = z*cos(phi0); 
        m23 = -alpha/2*g; 
        m31 = 2*A0*(gammaP-2*z*cos(phi0)); 
        m32 = 0; 
        m33 = gammaN+g*A0^2; 
 
        % H(s) = DM * (ZM + s) / (s^3 + AM*s^2 + BM*s + CM) 
        syms s; 
        MM  = [m11+s m12 m13; m21 m22+s m23; m31 0 m33+s]; 
        MMDMsol   = inv(MM)*[0; 0; 1]; 
        [MMsolNum, MMsolDen] = numden(MMDMsol(1)); 
        PolyNum(:,X,Y) = sym2poly(MMsolNum); 
        PolyDen(:,X,Y) = sym2poly(MMsolDen); 



 

149 

        DMpoles(:,X,Y) = roots(PolyDen(:,X,Y)); 
        DMzeros(:,X,Y) = roots(PolyNum(:,X,Y)); 
        Fresp(:,X,Y) = 
abs(polyval(PolyNum(:,X,Y),j*2*pi*f)./polyval(PolyDen(:,X,Y),j*2*pi*f))
; 
        RFGain(:,X,Y) = (2*gammaP*hv*A0*Fresp(:,X,Y)/q).^2*Rout/Rin; 
 
        %% SOLVE THE DETERMINANT EQUATION: C(1)s^3 + C(2)s^2 + C(3)s + 
C(4) = 0 
        AM(X,Y) = m11+m22+m33; 
        BM(X,Y) = m11*m22+m11*m33+m22*m33-m12*m21-m13*m31; 
        CM(X,Y) = m11*m22*m33+m12*m23*m31-m12*m21*m33-m13*m31*m22; 
        DM(X,Y) = -m13; 
        ZM(X,Y) = (m13*m22-m12*m23)/m13; 
        C(1) = 1; 
        C(2) = AM(X,Y); 
        C(3) = BM(X,Y); 
        C(4) = CM(X,Y); 
        lambda(:,X,Y) = roots(C); 
        stable(X,Y) = all(real(lambda(:,X,Y))<0); 
        
        %% SOLVE FOR ANALYTIC VALUES 
        wRes(X,Y) = sqrt(wR^2 + (kInj*Ainj/A0*sin(phi0))^2); 
        gamma(X,Y)= gammaR - g*dN0; 
        %% SAVE STEADY-STATE VALUES 
        A0M(X,Y) = A0; 
        N0M(X,Y) = dN0 + Nth; 
        dwInjM(X,Y) = dwInj; 
        zM(X,Y) = z; 
        m11M(X,Y) = m11; 
        m12M(X,Y) = m12; 
        m13M(X,Y) = m13; 
        m21M(X,Y) = m21; 
        m22M(X,Y) = m22; 
        m23M(X,Y) = m23; 
        m31M(X,Y) = m31; 
        m32M(X,Y) = m32; 
        m33M(X,Y) = m33; 
     end; 
     %############################################################ 
     % DISPLAY TEXT INDICATOR THAT THIS ITERATION IS FINISHED 
     CPUTime(X) = toc; 
     disp(['rInj: ' num2str(rInjM(X)) ' ' ... 
         '. Elapsed Time: ' num2str(toc) ' s.']); 
end; 
disp(['FINISHED. Total Elapsed Time: ' num2str(sum(sum(CPUTime,2))) ' 
s.']); 
 
%% FINDS SYMMETRIC BOUNDS OF LOCKING RANGE 
kInjM    = 1/tIN*(1-r0^2)/r0*rInjM; 
lowbounds = -kInjM*Ainj./A0M(:,end)'*sqrt(1+alpha^2); % phi = 
acot(alpha) 
asymbounds = kInjM; % phi = -pi/2 
%% FIND DYNAMICALLY STABLE BOUNDARY 
stablebounds = zeros(size(rInjM)); 
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for X = 1:length(rInjM),  
    temp = find(stable(X,:)); 
    stablebounds(X) = dwInjM(X,temp(1)); 
end; 
%% FIND APPROX. ANALYTIC SOLUTION FOR DYNAMICALLY STABLE BOUNDARY 
wRfr = sqrt(g*gammaP*Afr.^2); 
wRO = sqrt(wRfr^2 + (kInjM*Ainj/Afr).^2); 
phi0stable = -acos(alpha*g*gammaP*Afr^2/2./kInjM./wRO); 
dwstable = -kInjM*sqrt(1+alpha^2).*sin(phi0stable+atan(alpha)); 
stableI = []; 
for X = 1:length(rInjM)*length(phi0M), if stable(X)==1, stableI = 
[stableI X];end;end; 
rInjM2 = repmat(rInjM',1,length(phi0M)); 
phi0M2 = repmat(phi0M,length(rInjM),1); 
 
%############################################################ 
% PLOT RESULTS 
LaserPlot; 
 
%############################################################ 
% SAVE DATA 
% clear Fresp RFGain; 
save([dirname '/' filename '.mat']); 

A1.2 Plotting Scripts: LaserPlot.m 

%LASERPLOT Plots many useful values. 
%   This script plots many useful values. See each section for the  
%   different values. 
% 
%   Used by LOCKINGRANGE. 
 
%############################################################ 
% PLOT LOCKING MAP 
try [Uncomment this array to run TRY conditional] 
catch 
figure 
pH=plot(20*log10(rInjM),[kInjM;-kInjM*sqrt(1+alpha^2)]/2/pi/GHz,'k:'); 
patch(20*log10([rInjM fliplr(rInjM)]'),[stablebounds 
fliplr(lowbounds)]'/2/pi/GHz,zeros(length(stablebounds)*2,1),[.8 .8 
.8]); 
patch(20*log10([rInjM fliplr(rInjM)]'),[stablebounds 
fliplr(asymbounds)]'/2/pi/GHz,zeros(length(stablebounds)*2,1),[1 1 1]); 
xlabel('Injection Ratio [dB]');ylabel('Detuning Frequency [GHz]'); 
slidestyle(gcf,'linewidth',2); box on; 
set(gca,'xlim',20*log10(rInjM([1 end])),'ylim',[-100 100]); 
set(pH,'linewidth',1); 
end 
 
%############################################################ 
% FIND POLES OF FREE-RUNNING CASE 
m33     = gammaN + g*Afr^2; 
m13     = -1/2*g*Afr; 
m31     = 2*gammaP*Afr; 
FrespFR = abs(-m13./polyval([1 m33 -m13*m31],j*2*pi*f)); 
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RFGainFR = (2*gammaP*hv*Afr*FrespFR/q).^2*Rout/Rin; 
FRpoles = (-m33+[1 -1]*sqrt(m33^2+4*m13*m31))/2; 
 
%############################################################ 
% PLOT POLES/ZEROS 
try [Uncomment this array to run TRY conditional] 
catch 
figure; 
jetM=gray(length(phi0M)+5); 
lH=plot(real(FRpoles/2/pi/GHz),imag(FRpoles/2/pi/GHz),'xk'); 
set(lH,'markersize',12); 
hold on; 
for X=1:length(phi0M), 
    
lpH(X)=plot(real(DMpoles(:,end,X))/2/pi/GHz,imag(DMpoles(:,end,X))/2/pi
/GHz,'xb'); 
    
lzH(X)=plot(real(DMzeros(:,end,X))/2/pi/GHz,imag(DMzeros(:,end,X))/2/pi
/GHz,'ob'); 
    set(lpH(X),'color',jetM(X,:),'markersize',12); 
    set(lzH(X),'color',jetM(X,:),'markersize',10); 
end; 
hold off; 
slidestyle(gcf); 
xlabel('Real Axis [GHz]');ylabel('Imag. Axis [GHz]'); 
end 
%############################################################ 
% PLOT RF MODULATION GAIN vs. DETUNING, 2-D CURVE FAMILY 
try %[Uncomment this array to run TRY conditional] 
catch 
figure; 
hold on; 
fI = find(and(f>=0,f<=100e9)); 
for X=find(stable(end,:)), 
    lH(X) = 
plot(f(fI)/GHz,10*log10(abs(Fresp(fI,end,X)/FrespFR(fI(1))))); 
    set(lH(X),'color',[0 0 (X/length(phi0M))]); 
end; 
frH = plot(f(fI)/GHz,10*log10(FrespFR(fI)/FrespFR(fI(1)))); 
set(frH,'color',[1 0 0]); 
xlabel('Frequency [GHz]');ylabel('RF Gain [dB]') 
% plot(wRO/2/pi/GHz, 
slidestyle(gcf,'linewidth',2.5); 
hold off; 
end 
%############################################################ 
% PLOT PEAK RESPONSE VS. DETUNING 
try %[Uncomment this array to run TRY conditional] 
catch 
figure; 
wRO = sqrt(wRfr^2 + (kInjM*Ainj./A0M.*sin(phi0M)).^2); 
gammaR = -g*(N0M-Nth) - alpha*g*gammaP*A0M.^2./wRO; 
PeakFresp = alpha*g*A0M/2./gammaR./wRO; 
pkFresp = squeeze(max(Fresp(:,:),[],1)); 
lfFrespFR = 1/2/Afr/gammaP; 
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semilogx(-((dwInjM(stableI)-
(333165558689))/2/pi),20*log10(pkFresp(stableI)/lfFrespFR));%J=1.3*Jth,
R=2 
xlabel('Detuned Frequency from Locking Range Stability Edge [Hz]'); 
ylabel('RF Gain above Free-Running [dB]'); 
slidestyle(gcf,'linewidth',2.5,'fontsize',12); 
end 
%############################################################ 
% PLOT 3-D SURF OF FREQ. vs. DETUNING 
try %[Uncomment this array to run TRY conditional] 
catch 
figure; 
surf(dwInjM/2/pi/GHz,f/GHz,10*log10(squeeze(Fresp(:,end,:)))); shading 
interp; view(2); 
xlabel('Frequency [GHz]');ylabel('\Delta{f} [GHz]');zlabel('Opt. Spect. 
[dB]'); 
end 
 
%############################################################ 
% PLOT VARIABLES ACROSS THE LOCKING MAP (RInj and phase) 
try [Uncomment this array to run TRY conditional] 
catch 
%% CREATES STATE VALUE MATRICES WITH STABLE REGIONS 
wROM = squeeze(max(abs(imag(lambda(:,:,:))),[],1)); 
NsM = NaN*ones(length(rInjM),length(phi0M)); AsM = NsM; dwInjsM = NsM; 
wROsM = NsM; maskM = NsM; 
NsM(stableI) = N0M(stableI); 
AsM(stableI) = A0M(stableI); 
dwInjsM(stableI) = dwInjM(stableI); 
wROsM(stableI) = wROM(stableI); 
maskM(stableI) = 1; 
 
[rInjsM phi0sM] = meshgrid(20*log10(rInjM),phi0M); 
Xnum = size(phi0sM,1); 
Ynum = size(phi0sM,2); 
lengthM = Xnum*Ynum; 
 
phi0sMT = phi0sM/pi; 
AsMT = AsM'/Ainj; 
NsMT = NsM'/Nth; 
dwInjsMT = dwInjsM'/2/pi/GHz; 
wROsMT = wROsM'/2/pi/GHz; 
 
FaceM = zeros((Ynum-1)*(Xnum),4); 
for X=1:Xnum-1, 
    for Y=0:Ynum-2, 
        FaceM(X+Y*(Xnum-1),:) = [X+Y*Xnum X+1+Y*Xnum X+1+(Y+1)*Xnum 
X+(Y+1)*Xnum]; 
    end; 
end; 
 
for Y=1:Ynum, tmp = find(stable(Y,:)); X(Y)=tmp(1); end 
 
for Y=1:Ynum-1, 
    if X(Y)<=X(Y+1), 
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        FaceM((Ynum-1)*(Xnum-1)+Y,:) = [X(Y)+(Y-1)*Xnum X(Y+1)+(Y-
1)*Xnum X(Y+1)+Y*Xnum X(Y)+(Y-1)*Xnum]; 
    else 
        FaceM((Ynum-1)*(Xnum-1)+Y,:) = [X(Y)+(Y-1)*Xnum X(Y+1)+Y*Xnum 
X(Y)+Y*Xnum X(Y)+(Y-1)*Xnum]; 
    end; 
end 
 
VertM = [phi0sMT(1:lengthM)' rInjsM(1:lengthM)']; 
 
%% PLOT CARRIER DENSITY 
ColorM = NsMT(1:lengthM)'; 
figure; 
patch('Vertices',VertM,'Faces',FaceM, ... 
    'FaceVertexCData',ColorM,'FaceColor','Interp','LineStyle','none'); 
shading interp;view(2);colorbar 
xlabel('Phase, \phi_0/\pi');ylabel('Injection Ratio 
[dB]');zlabel('N_0/N_{th}');title('Carrier Density, N_0/N_{th}'); 
slidestyle(gcf,'linewidth',2); box on; 
set(gca,'xlim',[-.5 acot(alpha)/pi*.99],'xtick',[-.5 -.25 0 
acot(alpha)/pi],'xticklabel',{'-0.5','-
0.25','0',num2str(acot(alpha)/pi,'%1.2f')}) 
set(gca,'ylim',20*log10(rInjM([1 end]))); 
temp = get(findobj(gcf,'tag','Colorbar'),'ylim'); 
set(findobj(gcf,'tag','Colorbar'),'ylim',[temp(1) 1]) 
 
%% PLOT FREQ. DETUN.  
ColorM = dwInjsMT(1:lengthM)'; 
figure; 
patch('Vertices',VertM,'Faces',FaceM, ... 
    'FaceVertexCData',ColorM,'FaceColor','Interp','LineStyle','none'); 
shading interp;view(2);colorbar 
xlabel('Phase, \phi_0/\pi');ylabel('Injection Ratio 
[dB]');zlabel('\Delta{f}');title('Detuning Freq., \Delta{f} [GHz]'); 
slidestyle(gcf,'linewidth',2); box on; 
set(gca,'xlim',[-.5 acot(alpha)/pi*.99],'xtick',[-.5 -.25 0 
acot(alpha)/pi],'xticklabel',{'-0.5','-
0.25','0',num2str(acot(alpha)/pi,'%1.2f')}) 
set(gca,'ylim',20*log10(rInjM([1 end]))); 
 
%% PLOT RO FREQ 
ColorM = wROsMT(1:lengthM)'; 
figure; 
patch('Vertices',VertM,'Faces',FaceM, ... 
    'FaceVertexCData',ColorM,'FaceColor','Interp','LineStyle','none'); 
shading interp;view(2);colorbar 
xlabel('Phase, \phi_0/\pi');ylabel('Injection Ratio 
[dB]');zlabel('f_{RO} [GHz]');title('Resonance Freq., f_{RO} [GHz]'); 
slidestyle(gcf,'linewidth',2); box on; 
set(gca,'xlim',[-.5 acot(alpha)/pi*.99],'xtick',[-.5 -.25 0 
acot(alpha)/pi],'xticklabel',{'-0.5','-
0.25','0',num2str(acot(alpha)/pi,'%1.2f')}) 
set(gca,'ylim',20*log10(rInjM([1 end]))); 
temp = get(findobj(gcf,'tag','Colorbar'),'ylim'); 
set(findobj(gcf,'tag','Colorbar'),'ylim',[0 temp(2)]); 
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%% PLOT FIELD AMPLITUDE 
ColorM = AsMT(1:lengthM)'; 
figure; 
patch('Vertices',VertM,'Faces',FaceM, ... 
    'FaceVertexCData',ColorM,'FaceColor','Interp','LineStyle','none'); 
shading interp;view(2);colorbar 
xlabel('Phase, \phi_0/\pi');ylabel('Injection Ratio 
[dB]');zlabel('A_0/A_{fr}');title('Normalized Field, A_0/A_{fr}'); 
slidestyle(gcf,'linewidth',2); box on; 
set(gca,'xlim',[-.5 acot(alpha)/pi*.99],'xtick',[-.5 -.25 0 
acot(alpha)/pi],'xticklabel',{'-0.5','-
0.25','0',num2str(acot(alpha)/pi,'%1.2f')}) 
set(gca,'ylim',20*log10(rInjM([1 end]))); 
temp = get(findobj(gcf,'tag','Colorbar'),'ylim'); 
set(findobj(gcf,'tag','Colorbar'),'ylim',[1 temp(2)]) 
 
%############################################################ 
%% PLOT VARIABLES VERSUS LOCKING MAP (RInj and Fdet) 
VertM = [rInjsM(1:lengthM)' dwInjsMT(1:lengthM)']; 
 
% PLOT RO FREQUENCY VS. LOCKING MAP 
ColorM = wROsMT(1:lengthM)'; 
figure; 
pH=plot(20*log10(rInjM),[kInjM;lowbounds;stablebounds]/2/pi/GHz,'k'); 
patch('Vertices',VertM,'Faces',FaceM, ... 
    'FaceVertexCData',ColorM,'FaceColor','Interp','LineStyle','none'); 
view(2);colorbar 
xlabel('Injection Ratio [dB]');ylabel('Detuning Frequency 
[GHz]');title('Resonance Freq., f_{RO} [GHz]'); 
slidestyle(gcf,'linewidth',2); box on; 
set(pH,'linewidth',1.5); 
set(gca,'xlim',20*log10(rInjM([1 end])),'ylim',[-100 100]); 
temp = get(findobj(gcf,'tag','Colorbar'),'ylim'); 
set(findobj(gcf,'tag','Colorbar'),'ylim',[0 temp(2)]); 
 
% PLOT NORMALIZED FIELD VS. LOCKING MAP 
ColorM = AsMT(1:lengthM)'; 
figure; 
pH=plot(20*log10(rInjM),[kInjM;lowbounds;stablebounds]/2/pi/GHz,'k'); 
patch('Vertices',VertM,'Faces',FaceM, ... 
    'FaceVertexCData',ColorM,'FaceColor','Interp','LineStyle','none'); 
shading interp;view(2);colorbar 
xlabel('Injection Ratio [dB]');ylabel('Detuning Frequency 
[GHz]');title('Normalized Field, A_0/A_{fr}'); 
slidestyle(gcf,'linewidth',2); box on; 
set(pH,'linewidth',1.5); 
set(gca,'xlim',20*log10(rInjM([1 end])),'ylim',[-100 100]); 
temp = get(findobj(gcf,'tag','Colorbar'),'ylim'); 
set(findobj(gcf,'tag','Colorbar'),'ylim',[1 temp(2)]); 
 
% PLOT NORMALIZED CARRIER VS. LOCKING MAP 
ColorM = NsMT(1:lengthM)'; 
figure; 
pH=plot(20*log10(rInjM),[kInjM;lowbounds;stablebounds]/2/pi/GHz,'k'); 
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patch('Vertices',VertM,'Faces',FaceM, ... 
    'FaceVertexCData',ColorM,'FaceColor','Interp','LineStyle','none'); 
shading interp;view(2);colorbar 
xlabel('Injection Ratio [dB]');ylabel('Detuning Frequency 
[GHz]');title('Carrier Density, N_0/N_{th}'); 
slidestyle(gcf,'linewidth',2); box on; 
set(pH,'linewidth',1.5); 
set(gca,'xlim',20*log10(rInjM([1 end])),'ylim',[-100 100]); 
temp = get(findobj(gcf,'tag','Colorbar'),'ylim'); 
set(findobj(gcf,'tag','Colorbar'),'ylim',[temp(1) 1]) 
 
% PLOT PHASE VS. LOCKING MAP 
ColorM = phi0sMT(1:lengthM)'; 
figure; 
pH=plot(20*log10(rInjM),[kInjM;lowbounds;stablebounds]/2/pi/GHz,'k'); 
patch('Vertices',VertM,'Faces',FaceM, ... 
    'FaceVertexCData',ColorM,'FaceColor','Interp','LineStyle','none'); 
shading interp;view(2);colorbar 
xlabel('Injection Ratio [dB]');ylabel('Detuning Frequency 
[GHz]');title('Phase, \phi_0/\pi'); 
slidestyle(gcf,'linewidth',2); box on; 
set(pH,'linewidth',1.5); 
set(gca,'xlim',20*log10(rInjM([1 end])),'ylim',[-100 100]); 
temp = get(findobj(gcf,'tag','Colorbar'),'ylim'); 
set(findobj(gcf,'tag','Colorbar'),'ylim',[-0.5 temp(2)]); 
end 

A1.3 Laser Parameters: LaserParam.m 

%LASERPARAM Loads modelocked laser parameters. 
%   Loads physical parameters, laser geometry, and biasing. 
% 
%   Used by LOCKINGRANGE. 
  
%############################################################ 
% CONSTANTS 
q       = 1.6022e-19;   % [C]       Coulomb/charge 
h       = 6.626076e-34; % [J*s]     Planck's constant 
c       = 2.9979e10;    % [cm/s]    Speed of light 
mu0     = pi*4e-9;      % [A/cm]    Magnetic permeability 
e0      = 1/c^2/mu0;    % [V/cm]    Electric permittivity 
eta0    = sqrt(mu0/e0); % [Ohm]     Impedence of free space 
%############################################################ 
% UNITS 
ns      = 1e-9;         % [s]       # of seconds in a nanosecond 
(abbrev.) 
ps      = 1e-12;        % [s]       # of seconds in a picosecond 
(abbrev.) 
pJ      = 1e-12;        % [s]       # of Joules in a picoJoule 
(abbrev.) 
kHz     = 1e3;          % [Hz]      kiloHertz/Hertz 
MHz     = 1e6;          % [Hz]      MegaHertz/Hertz 
GHz     = 1e9;          % [Hz]      GigaHertz/Hertz 
um      = 1e-4;         % [cm]      # of microns in a centimeter 
nm      = 1e-7;         % [cm]      # of nanometers in a centimeter 
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Ang     = 1e-8;         % [cm]      # of Angstroms in a centimeter 
mA      = 1e-3;         % [A]       # of milliAmps in an Amp 
kA      = 1e3;          % [A]       # of kiloAmps in an Amp 
mW      = 1e-3;         % [A]       # of milliWatts in a Watt  
%############################################################ 
% THEORETICAL QUANTITIES 
  
lambda  = 1550*nm;      % [cm]      Lasing wavelength 
hv      = h*c/lambda;   % [J]       Energy/photon 
g       = 2.5e-16*8.5e9/1.5e-10*0.4; 
Nth     = 2.214e8; 
gammaP  = 1/3e-12; 
gammaN  = 1e9; 
tIN     = 7e-12; 
r0      = 0.548; 
alpha   = 3; 
V       = 120e-18; 
Ith     = 33.5e-3; 
Jth     = Ith/q; 
J       = 5*Jth; 
Einj    = 0; 
dwinj   = 0; 
  
Rin     = 4; 
Rout    = 50; 

A1.4 Differential Equation Solution: LaserODE.m 

%LASERODE Solves the OIL differential equations. 
%   This script is similar to LOCKINGRANGE, but solves the OIL  
%   differential equations to reach the steady-state. This is useful  
%   when trying to solve the frequency response, by adding time- 
%   dependent inputs. It can be used to solve IMD3, etc. 
 
clear all; 
%############################################################ 
% LASER PARAMETERS 
paramfile = 'LaserParam'; 
eval(paramfile); 
odefile   = 'RateEq'; 
%############################################################ 
% DATA-SAVING STUFF 
T       = datevec(now); 
dirname = [mfilename '_' num2str(T(1),'%02.0f') '.' 
num2str(T(2),'%02.0f') ... 
        '.' num2str(T(3),'%02.0f') '.' num2str(T(4:5),'%02.0f')]; 
mkdir(dirname); 
filename= mfilename; 
copyfile([filename '.m'], dirname); 
copyfile([paramfile '.m'], dirname); 
copyfile([odefile '.m'], dirname); 
%############################################################ 
% COMPUTATION PARAMETERS 
% 
%   |   init     |  trans       |     steady state     | 
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% -tInit         0             tSS                    tWin 
tInit   = 50*ns;        % [s]       Time window to reach initial DC 
freerunning steadystate 
tWin    = 100*ns;       % [s]       Time window of each simulation 
tSS     = 50*ns;        % [s]       How far into the time window needed 
to 
                        %           reach a steady-state modulation 
tDISP   = 40*ns;        % [s]       Length of time window to graph 
%############################################################ 
% CONSTRUCT TIME AND FREQUENCY VECTORS 
dt      = 1/(200*GHz);         % [s]        spacing between time pts. 
tPTS    = round(tWin/dt);       %           # of pts. in time vector 
t       = linspace(0,tWin-dt,tPTS);% [s]    time vector 
fPTS    = length(find(t>=tSS)); %           # of pts. for FFT 
df      = 1/fPTS/dt;            % [1/s]     discretized frequency 
spacing 
fmax    = 1/dt/2;               % [1/s]     max. freq. 
fFFT    = round([-fmax:df:fmax-df]);% [1/s] freq. vector for FFT 
f       = linspace(0,1e11,1e3+1); % [1/s]   freq. vector for Analytical 
P/Z response 
%############################################################ 
% SCANNING PARAMETERS 
v1Name  = 'fDet'; 
v1S     = 'f_{det}'; 
v1M     = [-70:5:15]*GHz; rInj = 1e-0; 
v1Scale = GHz; 
v1UnitS = 'GHz'; 
v1Format= '%-2.3f'; 
v1LogLin= 'lin'; 
%############################################################ 
% FREE-RUNNING STEADY-STATE 
%############################################################ 
% SOLVE ODE FOR STEADY STATE DC VALUES, FREE-RUNNING 
Aifr    = sqrt((J-gammaN*Nth)/gammaP);  % initial guess 
tspan   = [-tInit 0]; 
AphiN0  = [Aifr; 0; Nth]; 
odeparam = odeset('RelTol',1e-8); 
ParamList = {g Nth 0 0 alpha 0 J 0 0 gammaN gammaP}; 
[ti, AphiNi] = ode23(odefile,tspan,AphiN0,odeparam,ParamList); 
A_Tr    = AphiNi(:,1); 
phi_Tr  = zeros(size(A_Tr)); 
N_Tr    = AphiNi(:,3); 
%############################################################ 
% DETERMINE STEADY-STATE VALUES 
Afr     = mean(A_Tr(find(ti>-10*ns))); 
phifr   = 0; 
Nfr     = mean(N_Tr(find(ti>-10*ns))); 
%############################################################ 
% FIND POLES OF FREE-RUNNING CASE 
m33     = gammaN + g*Afr^2; 
m13     = -1/2*g*Afr; 
m31     = 2*gammaP*Afr; 
FRpoles = (-m33+[1 -1]*sqrt(m33^2+4*m13*m31))/2; 
%############################################################ 
% INJECTED STEADY-STATE 
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%############################################################ 
EM = zeros(length(v1M),tPTS); NM=EM;  
FMs= zeros(length(v1M),fPTS);FMe=FMs; 
Ldim1   = length(v1M); 
figure; 
for X = 1:Ldim1 
    tic; 
    eval([v1Name ' = ' num2str(v1M(X)) ';']); 
    % INJECTION PARAMETERS 
    dwInj = 2*pi*fDet; 
    AInj = Afr;  % they set AInj to be same as As of free-running 
laser. 
    %############################################################ 
    %% FINDS SYMMETRIC BOUNDS OF LOCKING RANGE 
    kInj = 1/tIN*(1-r0^2)*rInj/r0; 
    bounds = kInj*sqrt(1+alpha^2)/2/pi; 
    asymbounds = kInj/2/pi; 
    %############################################################ 
    %% FIND INITIAL GUESS STEADY-STATE VALUES WITH INJECTION 
    phiis = asin(-dwInj/kInj/sqrt(1+alpha^2)) - atan(alpha); 
    Nis   = Nth - 2*kInj.*cos(phiis)/g; 
    dNis  = Nis - Nth; 
    Ais   = sqrt((AInj^2 - gammaN/gammaP/dNis)/(1 + g*dNis/gammaP)); 
    %############################################################ 
    % SOLVE ODE FOR STEADY STATE DC VALUES, W/ INJECTION TERMS 
    tspan   = [0; tWin]; 
    AphiN0  = [Ais phiis Nis]; 
    odeparam = odeset('RelTol',1e-8); 
    ParamList = {g Nth kInj AInj alpha dwInj J 0 0 gammaN gammaP}; 
    [tODE, AphiN] = ode23(odefile,tspan,AphiN0,odeparam,ParamList); 
    AphiN(find(~isfinite(AphiN))) = eps; 
    %############################################################ 
    % THESE ARE THE 3 STATE VARIABLES 
    A_ODE   = AphiN(:,1); 
    phi_ODE = AphiN(:,2); 
    N_ODE   = AphiN(:,3); 
    %############################################################ 
    % DETERMINE MOD. DEPTH FROM FREQUENCY SPECTRUM 
    A       = spline(tODE,A_ODE,t);     % 
    phi     = spline(tODE,phi_ODE,t);   % 
    N       = spline(tODE,N_ODE,t);     % 
    phiss     = phi-dwInj*t; 
    %############################################################ 
    % DETERMINE S.S. VALUES WITH THE INJECTION 
    A0      = mean(A(find(t>=tSS))); 
    phi0    = mean(phi(find(t>=tSS))); 
    N0      = mean(N(find(t>=tSS))); 
    %############################################################ 
    % DETERMINE OPTICAL SPECTRUM THROUGH FOURIER TRANSFORM 
    E       = A.*exp(j*phi); 
    F       = fftshift(fft(E(find(t>=tSS)))); % [?] Freq-Domain of 
optical spectrum 
    %############################################################ 
    % SAVE VALUES INTO MATRICES 
    A0M(X) = A0; phi0M(X) = phi0; N0M(X) = N0; 
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    EM(X,:) = E; 
    NM(X,:) = N; 
    FMs(X,:)= abs(fftshift(fft(E(1:fPTS)))); 
    FMe(X,:)= abs(fftshift(fft(E([end-fPTS+1:end])))); 
    FM(X,:) = abs(fftshift(fft(E))); 
    plot(fFFT/GHz,10*log10(abs(FMe(X,:)))); xlabel('Frequency [GHz]'); 
ylabel('Opt. Spec. [dB]'); 
    title([v1Name '=' num2str(v1M(X)/v1Scale,v1Format) ' ' v1UnitS]); 
    drawnow; 
    %############################################################ 
    % FIND THE POLES 
    z = kInj*AInj/A0; 
    m11 = z*cos(phi0); 
    m12 = z*A0*sin(phi0); 
    m13 = -1/2*g*A0; 
    m21 = -z/A0*sin(phi0); 
    m22 = z*cos(phi0); 
    m23 = -alpha/2*g; 
    m31 = 2*A0*(gammaP-2*z*cos(phi0)); 
    m32 = 0; 
    m33 = gammaN+g*A0^2; 
  
    syms s; 
    MM  = [m11+s m12 m13; m21 m22+s m23; m31 0 m33+s]; 
    A = m11+m22+m33; 
    B = m11*m22+m11*m33+m22*m33-m12*m21-m13*m31; 
    C = m11*m22*m33+m12*m23*m31-m12*m21*m33-m13*m31*m22; 
    M = -m13; 
    Z = (m13*m22-m12*m23)/m13; 
    MMDMsol   = inv(MM)*[0; 0; 1]; 
    [MMsolNum, MMsolDen] = numden(MMDMsol(1)); 
    PolyNum(X,:) = sym2poly(MMsolNum); 
    PolyDen(X,:) = sym2poly(MMsolDen); 
    DMpoles(:,X) = roots(PolyDen(X,:)); 
    DMzeros(:,X) = roots(PolyNum(X,:)); 
    if size(DMzeros,1) == 1, DMzeros=repmat(DMzeros,2,1);end; 
    Fresp(X,:) = 
abs(polyval(PolyNum(X,:),j*2*pi*f)./polyval(PolyDen(X,:),j*2*pi*f)); 
    RFGain(X,:) = (2*gammaP*hv*A0*Fresp(X,:)/q).^2*Rout/Rin; 
    RFPeak = (2*gammaP*hv*/q/g/A0^2)^2*Rout/Rin; 
    %############################################################ 
    % DISPLAY TEXT INDICATOR THAT THIS ITERATION IS FINISHED 
    CPUTime(X) = toc; 
    disp([v1Name ': ' num2str(v1M(X)/v1Scale,v1Format) ' ' v1UnitS ... 
            '. Elapsed Time: ' num2str(toc) ' s.']); 
end; 
disp(['FINISHED.  Total Elapsed Time: ' num2str(sum(sum(CPUTime,2))) ' 
s.']); 
%############################################################ 
% Set the entire vector of values to the names instead of 'v1M' and 
'v2M' 
eval([v1Name '= v1M;']); 
%############################################################ 
% SAVE DATA 
clear A phi N phiss Fresp AphiN AphiNi *ODE ti *_Tr *pd phase; 
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save([dirname '/' filename '.mat']);  
  
%############################################################ 
% PLOT POLES/ZEROS 
  
try [Uncomment this array to run TRY conditional] 
catch 
figure; 
jetM=jet(length(v1M)); 
lH=plot(real(FRpoles/2/pi/GHz),imag(FRpoles/2/pi/GHz),'xk'); 
set(lH,'markersize',12); 
hold on; 
for X=1:length(v1M), 
    
lpH(X)=plot(real(DMpoles(:,X))/2/pi/GHz,imag(DMpoles(:,X))/2/pi/GHz,'xb
'); 
    
lzH(X)=plot(real(DMzeros(:,X))/2/pi/GHz,imag(DMzeros(:,X))/2/pi/GHz,'ob
'); 
    set(lpH(X),'color',jetM(X,:),'markersize',12); 
    set(lzH(X),'color',jetM(X,:),'markersize',10); 
end; 
hold off; 
slidestyle(gcf); 
xlabel('Real Axis [GHz]');ylabel('Imag. Axis [GHz]'); 
print(['-f' num2str(gcf)], '-djpeg', [dirname '/' filename '_PZ.jpg']); 
hgsave([dirname '/' filename '_PZ.fig']); 
end 
  
%############################################################ 
% PLOT FREQ. RESP vs. DETUNING CONTOUR 
  
try %[Uncomment this array to run TRY conditional] 
catch 
figure; 
fI = find(and(f>=0,f<=100e9)); 
surf(f(fI)/GHz,fDet/GHz,10*log10(abs(Fresp(:,fI)))); shading interp; 
xlabel('Frequency [GHz]');ylabel('\Delta{f} [GHz]');zlabel('Freq. Resp. 
[dB]'); 
print(['-f' num2str(gcf)], '-djpeg', [dirname '/' filename 
'_FResp.jpg']); 
hgsave([dirname '/' filename '_FResp3D.fig']); 
end 
  
%############################################################ 
% PLOT GAIN vs. DETUNING, 2-D CURVE FAMILY 
  
try [Uncomment this array to run TRY conditional] 
catch 
figure; 
hold on; 
fI = find(and(f>=0,f<=100e9)); 
for X=1:length(v1M), 
%     lH(X) = 
plot(f(fI)/GHz,20*log10(abs(Fresp(X,fI)/max(Fresp(1,:))))); 
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    lH(X) = plot(f(fI)/GHz,10*log10(RFGain(X,fI))); 
    set(lH(X),'color',[0 0 (X/length(v1M))]); 
end; 
xlabel('Frequency [GHz]');ylabel('RF Gain [dB]') 
slidestyle(gcf,'linewidth',3); 
print(['-f' num2str(gcf)], '-djpeg', [dirname '/' filename 
'_FResp.jpg']); 
hgsave([dirname '/' filename '_FResp.fig']); 
end 
  
%############################################################ 
% PLOT 3-D SURF OF FREQ. vs. DETUNING 
  
try %[Uncomment this array to run TRY conditional] 
catch 
figure; 
surf(f/GHz,fDet/GHz,10*log10(FMs)); shading interp; view(2); 
xlabel('Frequency [GHz]');ylabel('\Delta{f} [GHz]');zlabel('Opt. Spect. 
[dB]'); 
end 
  
%############################################################ 
% PLOT 3-D SURF OF SHIFTED (for Detuning) FREQ. vs. DETUNING 
fPTS    = tPTS;                 %           # of pts. for FFT 
df      = 1/fPTS/dt;            % [1/s]     discretized frequency 
spacing 
fmax    = 1/dt/2;               % [1/s]     max. freq. 
ffull   = round([-fmax:df:fmax-df]);% [1/s] freq. vector 

A1.5 Injection-Locked Laser Rate Equation: RateEq.m 

%RATEEQ Rate equation function for OIL. 
%   This function describes the differential equations for OIL. 
% 
%   Used by LASERODE. 
 
function dAdphidN = rateeqmurakami(t,AphiN,flag,ParamList) 
  
[g Nth kInj AInj alpha dwInj J dJ fM gammaN gammaP] = 
deal(ParamList{:}); 
  
A       = AphiN(1); 
phi     = AphiN(2); 
N       = AphiN(3); 
  
dA      = 1/2*g*(N-Nth)*A + kInj*AInj*cos(phi); 
dphi    = alpha/2*g*(N-Nth) - kInj*AInj/A*sin(phi) - dwInj; 
dN      = J + dJ*sin(fM*2*pi*t) - gammaN*N - (gammaP + g*(N-Nth))*A^2; 
  
dAdphidN = [dA; dphi; dN]; 
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