Unsupervised Segmentation of Natural Images via
Lossy Data Compression

Allen Y. Yang
John Wright

S. Shankar Sastry
Yi Ma

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-195
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-195.html

December 28, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Unsupervised Segmentation of Natural Images
via Lossy Data Compression

Allen Y. Yang® John Wright! Shankar Sastty Yi Mat

* Cory Hall, EECS tCoordinated Science Lab, UIUC Microsoft Research Asia
University of California, Berkeley 1308 W. Main Steet 5/F, Beijing Sigma Center
Berkeley, CA 94720 Urbana, IL 61801 No.49, Zhichun Road, Hai Dian District
Email: {yang, sastry@eecs.berkeley.edu Emafinwright, yima} @uiuc.edu Beijing China 100080
Abstract

In this paper, we cast natural-image segmentation as a problem of clustering texure features as multivariate mixed data.
We model the distribution of the texture features using a mixture of Gaussian distributions. However, unlike most existing
clustering methods, we allow the mixture components to be degenerate or nearly-degenerate. We contend that this assumption
is particularly important for mid-level image segmentation, where degeneracy is typically introduced by using a common
feature representation for different textures. We show that such a mixture distribution can be effectively segmented by a
simple agglomerative clustering algorithm derived from a lossy data compression approach. Using simple fixed-size Gaussian
windows as texture features, the algorithm segments an image by minimizing the overall coding length of all the feature
vectors. In terms of a variety of performance indices, our algorithm compares favorably against other well-known image
segmentation methods on the Berkeley image database.

1 Introduction

Natural-image segmentation is one of the classical problems in computer vision. It is widely accepted that a good segmen-
tation should group image pixels into regions whose statistical characteristics (of the color or texture) are homogeneous or
stationary, and whose boundaries are simple and spatially acclithtéNpvertheless, from a statistical viewpoint, natural-
image segmentation is amherently ambiguouproblem for at least the following two technical reasons

1. The statistical characteristics of local featuregy(color, texture, edge, contour) of natural images usually do not
show the same level of homogeneity or saliency at the same spatial or quantization scale. This is not only the case
for different natural images, but also often the case for different regions within the same image. Thus, one should not
expect the segmentation result to be unig2ig,[and instead should prefer a hierarchy of segmentations at multiple
scales.

2. Even after accounting for variations due to scale, different regions or textures may still have different intrinsic complex-
ities, making it a difficult statistical problem to determine the correct number of segments and their model dimensions.
For instance, if we use Gaussian distributions to model the features of different textures, the Gaussian for a simple
texture obviously has a higher degree of degeneracy (or a lower dimension) than that for a complex texture.

In the literature, many statistical models and methods have been proposed to address some of these difficitles (see [
for a review). In this paper, we are interestediimsupervisedmage segmentation. Popular methods in this category include
feature-basedMean-Shift [.], graph-basedmethods P5, 5], region-basedsplit-and-merge technique&d, 31], and global
optimization approaches based on either energy functi®¥sof minimum description lengttMDL) [17]. Recent devel-
opments have mainly focused on the problem of how to integrate textural information at different scales. For example, one
can use more sophisticatezhjion-growingor split-and-mergeechniques 10, 27, 4, 8] to partition inhomogeneous regions;

*This work is partially supported by NSF CAREER 11S-0347456, ONR YIP N00014-05-1-0633, and ARO MURI W911NF-06-1-0076.
1t is arguably true that human perception of an image is itself ambiguous. However, we here are concerned about only the ambiguities in computing
image segmentation.

Figure 1: Mixture of regular (left) or degenerate (right) Gaussians.

or one can us&larkov random fieldséo model textures or other image cués$,[23,28]. For a more detailed survey of these
methods, the reader is referred 1&][7, 24].

Motivations and Contributions: Although the reported performance of image segmentation algorithms has improved sig-
nificantly over the years, it comes partly at the price of the use of ever more sophisticated feature selection processes, more
complex statistical models, and more difficult optimization techniques. In this paper, however, we aim to show that for texture
features as simple as fixed-size Gaussian windows (Figjneith the choice of a likely more relevant class of statistical
models (Figurel) and its associated agglomerative clustering algorithm (Algorithrone can achieve equally good, if not

better, segmentation results as many of the above sophisticated statistical models and optimization methods. Our approach
relies on the following two assumptions about natural images:

1. The distribution of texture features in a natural image is (approximately) a mixture of Gaussians thatlegeriezate
and of different dimensior(see Figurel right), one for each image segment.

2. At any given quantization scale, tlptimal segmentation is the one that gives the most compressed representation of
the image features, as measured by the number of binary bits needed to encode all the features.

In Section2, we will show that for features drawn from a mixture of (possibly degenerate) Gaussians, the segmentation that
minimizes the coding length is achieved by partitioning the features into their respective Gaussians (degenerate or not). Thus,
through compression, the features associated with each segment will be a Gaussian-like cluster.

Be aware that here we are not suggesting compressing the jmeage Instead, we compress texture features extracted
from the image. Our method bears resemblance to some global optimization approaches, such as using region merging tech-
nigues to minimize the MDL cost functiori f]. However, the new method significantly differs from the existing maximum-
likelihood (ML) or MDL-based image segmentation in two main aspects:

First, we allow the distributions to bdegenerateand introduce a new clustering algorithm capable of handling degen-
eracy. Extant image segmentation methods that segment features based on the clustereagnkeiddans) or density
modes €.g, Mean-Shift) typically work well at low-level segmentation using low-dimensional color features with blob-like
distributions (Figurel left) [25]. But at mid-level segmentation using texture features extracted at a larger spatial scale,
we normally choose a feature space whose dimension is high enough that the structures of all textures in the image can be
genuinely represented Such a representation unavoidably has redundancy for individual textures: The cluster of features
associated with one texture typically lies in a low-dimensional submanifold or subspace whose dimension reflects the com-
plexity of the texture (Figuré right). Properly harnessed, such low-dimensional structures can be much more informative
for distinguishing textures than the cluster means. In this paper, we will see that data compression provides a very effective
means of extracting such low-dimensional structures.

Second, we considdossy codingof the image features, up to an allowable distortion. Varying the distortion provides
a simple but effective means of considering textural information at diffegeantizationscaless Compressing the image
features with different distortions, we naturally obtain a hierarchy of segmentations: the smaller the distortion, the more
refined the segmentation is (see Figdyeln a way, the distortion also plays an important role in image segmentation as a
measure of thealiencyof the segments in an image: First, how small the distortion needs to be in order for certain regions
to be segmented from the background, and second, how much we can change the distortion without significantly altering the
segmentation (see Figureagain). Thus, lossy compression offers a convenient framework for diagnosing the statistics of a
natural image at different quantization scales for various segmentation purposes.

2Here a genuine representation means that we can recover every texture with sufficient accuracy from the representation.
3In this paper, we do not consider varying spatial scale as we will always choose a fixed-size window as the feature vector. Nevertheless, as we will
demonstrate, good segmentation can still be obtained.

Organization: This paper is organized as follows: Secti@drintroduces a new clustering algorithm for minimizing the
coding length of data drawn from a mixture of (possibly degenerate) Gaussians. Satisonsses how to apply it to image
segmentation. Sectiohgives experimental results on the Berkeley segmentation database, and compares to other existing
algorithms.

2 Segmentation of Mixtures of Gaussians via Lossy Compression

Once we have assumed that image feature vectors are drawn from a mixture of (possibly degenerate) Gaussians, the problem
of image segmentation reduces to that of segmenting such mixed data into multiple Gaussian-like clusters. A popular statisti-
cal method for segmenting mixed data is éxpectation-maximizatiofiEM) algorithm [3, 18], which is essentially a greedy

descent algorithm to find the maximum-likelihood (ML) estimate of the mixture of Gaussian distribuitjaisd).

However, notice that here we might be dealing with degenerate Gaussians with unknown dimensions, and furthermore,
we do not even know how many of them. Conventional EM-based clustering algorithms do not address these problems, and
must be modified to perform well in this domai#] [In this paper, we introduce a simple clustering method, especially adept
at handling unknown number of (possibly degenerate) Gaussians. The new method follows the prinogsg wiinimum
description lengt{LMDL) #:

Principle 1 (Data Segmentation via Lossy CompressionyVe define the optimal segmentation to be the one that minimizes
the number of bits needed to code the segmented data, subject to a given distortion.

To apply this principle to our problem, we require an accurate measure of the coding length of data drawn from a mixture
of Gaussians. We begin by examining the coding length of data from a single Gaussian. Suppose we are given a random
vectorv € RP with a multivariate Gaussian distributiovi (1,), which we wish to encode such that the original vector can
be recovered up to a given distortie, i.e., E[||v — 9||?] < 2. From information theoryZ], the average number of bits
needed to code is approximately given by theate-distortion functiorof the Gaussian:

1 D

wherel is an identity matrix, and is the covariance.

Now consider a set oN i.i.d. samplesV = (vy,vs,...,vx) € RP*N drawn from the Gaussian distribution. Let
p= vazl vi,andV =V — - 11n. ASS = +VVT is an estimate oF, an estimate of the rate-distortion function
R(e)is

R(e,V) = Slog, det (I + 277 2
(Ea)_20g2 e(+€2N)

Encoding theNV vectors inV therefore requiredV - R(V) bits. Since the codebook is adaptive to the datave must

also represent it witth - R(V) bits, which can be viewed as the cost of coding therincipal axes of the data covariance

L VVT. As the data are in general not zero-mean, we need addit{phad, (1 + “Z“) bits to encode the mean vecior
This leads to the following estimate of the total number of bits needed to encode the data set

. N+D D
T2 e2N
Furthermore, although the above formula is derived for a Gaussian source, the same formula gp@sr dnoundof the
coding length for any finite number of samples drawn from a subspa&cea degenerate Gaussian. A detailed proof is
provided in the Appendix.

Now let us consider the given data détas drawn from a mixture of Gaussians. In this ca8gnp longer gives an
accurate estimate of the minimum coding length¥orlt may be more efficient to codé as the union of multiple disjoint
subsetsV = W, UW, U --- U Wk. If each subset is sufficiently Gaussian, the total number of bits needed td/cisdat
most:

L(V) log, det (I +

_ D T
VVT) + 5 logy (1 + “62“). 3)

L¥(Wh,...,Wk) = Z{L(Wi) + [Wi|(— log, (Wil /N)) }. 4)

4For a theoretical characterization and comparison of (lossy) ML estimate and (lossy) MDL estimate, one mayréfer to [
Sstrictly speaking, the rate-distortion function for the Gaussian safée, 3) is R(e) = % log, det (E%E) when & is smaller than the smallest
eigenvalue o®:. Thus the equality is good only when the distortiors relatively small. However, whelﬁDi is larger than some eigenvaluesf the

rate-distortion function becomes more complicatéld Nevertheless, the approximate formutds) = % log, det(I + 6%Z)) can be viewed as the rate
distortion of the “regularized” source that works for all range of

Here the second term counts the number of bits needed to code (losslessly) the membershil sathgles in thek’
groups,e.g, using the Huffman coding?]. Notice that the Huffman coding of the membership is optimal only when the
membership of the vectors in th€ segments is totally random. However, in image segmentation, the membership of pixels

is not random — adjacent pixels have higher probability of being in the same segment. In this case, Huffman coding only
gives a loose upper bound. Nevertheless, we will demonstrate that minimizing such a function leads to a very simple and
effective segmentation algorithm.

To find the optimal segmentation, one essentially needs to compute the coding length for all possible segmentations of the
dataV, which is a very expensive combinatorial optimization problem. To make the optimization tractable, we propose a
pairwise steepest descerbcedure to minimize the coding length: In the initialization step, each vegcisiassigned as its
own group. At each iteration a pair of groufsand.S; is merged such that the decrease in the coding length due to coding
S; andS; together is maximal. The algorithm terminates when the coding length can no longer be reduced by merging any
pair of groups.

Algorithm 1: (Pairwise Steepest Descent).

1: input: the datdl/ = (vy,va,...,vx) € RP*Y and a distortior?.
2: initialize S := {S; = {v;} |i=1,--- ,N}.
3: while |S| > 1 do
4: choose distinct group$; , S, € S such that
L5(S1USs) — L*(Sy, S2) is minimal.
5 if L5(Sy USy) — L*(S1,S2) > 0then break;
6: elseS := (S \ {Sl, SQ}) U {Sl U 52}
7: end
8. output: S

Notice that the greedy merging process in Algorithis similar in concept to classical agglomerative clustering methods,
especially Ward’'s method]), 11]. However, by using the coding length as a new distance measure between groups, Algo-
rithm 1 significantly improves these classical methods particularly when the distributions are degenerate or the data contain
outliers. Nevertheless, as a greedy descent scheme, the algorithm does not guarantee to always find the globally optimal
segmentation for any givefi/,2).° In our experience, the main factor affecting the global convergence of the algorithm
appears to be the density of the samples relative to the distaftion

Extensive simulations have verified that this algorithm is consistently effective in segmenting data that are drawn from a
mixture of Gaussian or degenerate subspace distributions. In addition, the algorithm tolerates significant amounts of outliers,
and requires no prior knowledge of the number of groups nor their dimensions. Eighosvs a few segmentation results of
this algorithm on synthesized data sets.

10

Figure 2: Simulation results (in color) of Algorithfon three different mixture distributions. Left: Three Gaussian distri-
butions inR2. Middle: Three affine subspaces of dimensi¢2s2, 1) in R3. Right: Three linear subspaces of dimensions
(2,1,1) in R? with 12% outliers; the algorithm groups all the outliers into one extra Gaussian cluster, in addition to the three
subspaces.

In the above experiment, the distortion parametewas selected to be close to the true noise variance to achieve best

61t may be possible to improve the convergence by using more complicated split-and-merge stratggies |

results. In practice, there is no universal rule for choosing a godar all practical data sets. To apply Algorithirto image
segmentation, we need to be able to adaptively chebser each image based on its unique texture distributions. We will
carefully examine this issue in the next section.

3 Image Segmentation via Lossy Compression

In this section, we describe how the lossy compression-based method in Seistipplied to segment natural images. We
first discuss what features we use to represent textures and why. We then describlweeval segmentatiois applied

to partition an image into many small homogeneous patches, knosuapaspixels The superpixels are used to initialize
the mid-level texture-based segmentatiarhich minimizes the total coding length of all the texture features by repeatedly
merging adjacent segments, subject to a distoetforFinally, we study several simple heuristics for choosing a gdddr

each image.

3.1 Constructing Feature Vectors

We choose to represent a 3-chanRéFB color image in terms of thé*a*b* color metric, which was specially designed
to best approximate perceptually uniform color spacéthile the dependence of the three coordinates on the traditional
RG B metric is nonlinear], the L*a*b* metric better facilitates representing texture via mixtures of Gaussians. Perceptual
uniformity renders the allowable distortiad meaningful in terms of human perception of color differences, tightening the
link between lossy coding and our intuitive notion of image segmentation.

In the literature, there have been two major types of features used to capture local textures. The first considers responses
of a 2D-filter bank as texture features5[37]. The second applies@ x w cut-off window around each pixel and stacks
the color values inside the window into a vect@?[21]. In this paper, we choose to use the second method, avoiding the
construction of a texture filter bank that arguably relies on the given image3eEachw x w window is weighted by a 2D
Gaussian kernel before stacking to reduce the boundary effect. Hdglustrates this process. In the experiment, we find a
7 x 7 window provides satisfactory results, although other sizes may also worK Wadhlly, to reduce the dimensionality,
we project the feature vectors into an 8-dimensional space by PCA. This operation preserves all linear structures of dimension
less than 8 in the feature space.

Stack

\f 7y
P

Figure 3: The construction of texture featuresuwAx w window of each of the threé*a*b* channels is convoluted with a
Gaussian and then all channels are stacked into a single wector

3.2 Initialization with Superpixels

Given the feature vectors extracted from an image, one “naive” approach would be to directly apply Aldoetiisegment
the pixels based on the grouping of the feature vectors. Figsinews one such result. Notice that the resulting segmentation
merges pixels near the strong edges into a single segment. This should be expected from the compression perspective, since
windows across the boundary of two segments have significantly different structures from the (homogeneous) textures within
those segments P]. However, such a segmentation does not agree well with human perception.

In order to group edge pixels appropriately, we preprocess an image with a low-level segmentation based on local cues such
as color and edges. That is, we oversegment the image into (usually several hundred) small, homogeneous regions, known as
superpixelswhich has been generally recommended for all region merging algorithms]irjuch low-level segmentation

“Equivalently, one can also use théw*v* metric.
8We did not test window sizes larger than 9 pixels, as the MATLAB implementation will run out of memory processing such texture vectors from a
typical 320 x 240 color image. The current version of MATLAB has a 2GB memory limit imposed by the software.

Figure 4: Two segmentation results of the left original using Algorithmith differente’s. Notice that the pixels near the
boundaries of segments are not grouped correctly.

can be effectively computed using K-Means or Normalized-Cuts (NCut$with a conservative homogeneity threshold.
In this paper, we use the publicly available superpixel cadg [

Since the superpixel segmentation respects strong edges in an image (seé Ridgadée), it does not suffer from the
misassignment of edge pixels seen in Figlirdll pixels in a given superpixel are assigned as one segment initially, forcing
the subsequent texture-based segmentation to group boundary pixels together with the interior pixels.

Another benefit from the superpixel preprocessing is a significant reduction in the computation required later to find the
optimal segmentation. Using superpixel segments as initial grouping, the algorithm only needs to search amongst several
hundred superpixels, instead of all image pixels.

3.3 Minimizing the Coding Length

Taking the superpixels as the initial segments, we then construct texture vectors for the pixels in each superpixel. To reduce
the data size, one may also sample only a portion of the pixels to represent the distribution of the texture for each super-
pixel. Particularly, texture vectors at the boundary of a superpixel may not correctly represent the (homogeneous) texture
information in the interior of the superpixel, but a combination of two textures across the superpixel and its neighboring one.
Therefore, one may only sample texture vectors from the interior of each supérpixeiever, our experiment shows that

the heuristic modification may not necessarily improve the overall performance of the algorithm, which will be demonstrated
in Sectiond. For clarity, we only demonstrate results using all pixels of an image in this section.

After the texture vectors are sampled from an image, one may directly apply Algdriitnoompress these texture features
and obtain a segmentation. Nevertheless, in order to enforce that the resulting segmentation consists of connected segments,
we impose an additional spatial constraint that two segmgnémd.S; can be merged together only if they are adjacent in
the 2D image. Thus, we need to construct and maintaggian adjacency grapfRAG) G in the clustering process, which
is popularly used in othemerge-and-splitype segmentation methods3. We represent the RAG using an adjacency list
GH{i} for each segmerf;. Index; is in the setG{:} if the segmensS; is a neighbor ofS;. At each iteration, the algorithm
searches for a pair of adjacent segmeftand.S; which lead to maximal decrease in the total coding length. Note, however,
that in some applications such as image compression, disconnected segments may be allowed or even desirable. In this case,
one can simply discard the adjacency constraint in the implementation.

Figure 5 shows an example of the combined segmentation process. In this example, we find that all feature vectors
approximately lie in a 6D subspace in an 8D feature space. Each segment can be well modeled as a 1D to 4D degenerate
Gaussian. Figuré plots the singluar values of two representative segments. This validates our original assumptions about
the distributions of the texture features.

%In case a superpixel only consists of boundary pixels, use these pixels anyway.

Figure 5: The segmentation pipeline. Left: Original. Middle: Superpixels obtained from low-level segmentation. Right:
Segments obtained by minimizing the coding length with 0.02.

20

h T
1 2 3 4 5 6 7 8

Figure 6: Singluar values of the feature vectors drawn respectively from two image segments irbFightre

3.4 Choosing the Distortion

As discussed in the introduction, the distortioh effectively sets the quantization scale at which we segment an image.
Figure 7 shows the segmentation of several images under different valuesAs the figure suggests, a singlevill not

give good performance across a widely varying data set such as the Berkeley image segmentation database. Differences in
the contrast of the foreground and background, lighting conditions, and image category cause the distribution of the texture
features to vary significantly from image to image. For example, segmenting animals from the background tends to require
a smalle due to their natural camouflage, whereas human portraits often allow a da@ghuman faces and clothes differ

more strongly from the (man-made) surroundings. In this way, the distartiam be linked to the concept of how “salient”

an object is in an image and how much “attention” is needed to segment the object.

There are several ways to adaptively choede achieve good segmentation for each image. For example, if a desired
number of segments is knowa priori, we can search a range ofvalues for the one that gives the desired number of
segments. When such information is not availadblpriori, which is the case for image segmentation, a formal way in
information theory to estimate the distortion parameter is to minimize the following cost function:

e = argmin{L*(V.e) + AND log, (<)}, ®)

where) is a balancing parameter provided by the user. Notice that the firstié(i ¢) decreases asincreases, and at
the same time the second tefsiD log, (¢) increases. Hence, the expression essentially seeks a balance point between the
coding length of the data and the complexity of the model measurédbyog, (¢).

In our experiment, we found thas) can accurately recover the true value:dbr the simulated mixture Gaussian models
by simply settingh = 1. However, in terms of image segmentation on real natural images, the estigiatieadds to
oversegment the images. Our explanation of this performance deterioration between synthesized data and real images is that
the distribution of (finite) texture vectors in a real image simply does not satisfy an exact mixture Gaussian model. Therefore,
it is not surprising for the theoretical Criteriof)(to use more Gaussian models to approximate this distribution than what
human perception may segment the image.

In this work, we choose to heuristically select the scale by stipulating that feature distributions in adjacent regions must be
sufficiently dissimilar. One simple measure of dissimilarity, which we adopt in this paper, is the distance between the means

Figure 7: Segmentation results under differentLeft column: e = 0.001. Middle column: e = 0.02. Right column:
¢ = 0.05. Notice that the algorithm merges all pixels into one group in the last two tests of the Leopard image.

of the adjacentsegments (as Gaussian clusters). We gradually increasdil the minimal distance between the means
is larger than a preselected thresheldgiving the most refined segmentation which satisfies the constraint. We note that
increasing typically causes the number of segments to decrease to achieve a new shortest coding length. We may therefore
use the segmentation computed with a smalkerinitialize the merging process with a largeallowing us to search for the
optimale efficiently.

It may seem that we have merely replaced one free parametesith another,y. This replacement has two strong
advantages, however. Experimentally we find that even with a single fixed vatuthefalgorithm can effectively adapt to
all image categories in the Berkeley database, and achieve segmentation results that are consistent with human perception.
Furthermore, the appropriatecan be estimated empirically from human segmentations, whereasnot. This heuristic
thresholding method is similar in spirit to several robust techniques in computer vision for estimating mixture mgdels,
the Hough transform and RANSAC.

The complete segmentation process is specified as AlgofitHmterms of speed, on a typical 3GHz Intel PC, the MAT-
LAB implementation of the CTM algorithm on320 x 240 color image takes about two minutes to preprocess superpixels,
and less than one minute to minimize the coding length of the features.

Algorithm 2: (CTM: Compression-based Texture Merging).

input: Imagel € RT*Wx3in L*q*b* metric, reduced dimensioP, window sizew, distortion ranget, and minimum
mean distances.

1: Partition! into superpixelsSs, . .., Sk. For pixelp; € S}, initialize its labell; = j.

2: Construct RAGG{1},...,G{K} for the K segmentssy, ..., Sk.

3: Samplew x w Gaussian windows, and stack the resulting values into a feature wec&dRSWQ.

4. Replacey; with their first D principal components.

s: for all € € £ in ascending ordesto

6. forall initial segmentsS;,i=1,..., K do

7: ComputeL*(S;,).

8: forall j € G{i} do

9: UijiLs(Si,S)-FLS(Sj,E)—LS(SZ'US]',E)
10: end for

11: end for

12: while U;; = max{U} > 0do

13: MergeS; andS;. Update arrays, G, L, andU.
14 Segment numbek — K — 1.

15. end while

16: if v < min; jeq{l|means;) — mear(s;)||} then
17: break.

18: endif

19: end for

output: Final pixel labeldy, ..., lgxw.

4 Experiments

In this section, we demonstrate the segmentation results of Algo#tf€T M) on natural images in the Berkeley segmenta-
tion databasel[/], which also contains benchmark segmentation results obtained from human subjects. Two implementations
of CTM are provided. The first one use all image pixels to construct texture vectors, which is denoted as Tiwther
one only samples from the interior of the superpixels but not at the boundaries, which is denoted as CTM

We compare CTM against two unsupervised algorithms that have been made available publicly: Mear-8hdt [
NCuts [25]. The comparison is based on four quantitative performance measures:

1. The Probabilistic Rand Index (PRI}4] counts the fraction of pairs of pixels whose labellings are consistent between
the computed segmentation and the ground truth, averaging across multiple ground truth segmentations to account for
scale variation in human perception.

2. The Variation of Information (Vol) metricl[9] defines the distance between two segmentations as the average con-
ditional entropy of one segmentation given the other, and thus roughly measures the amount of randomness in one
segmentation which cannot be explained by the other.

3. The Global Consistency Error (GCE))] measures the extent to which one segmentation can be viewed as a refinement
of the other. Segmentations which are related in this manner are considered to be consistent, since they could represent
the same natural image segmented at different scales.

4. The Boundary Displacement Error (BDEj][measures the average displacement error of boundary pixels between
two segmented images. Particularly, it defines the error of one boundary pixel as the distance between the pixel and
the closest pixel in the other boundary image.

Since all three methods are unsupervised, we use both the training and testing images for the evaluation. Due to memory
issues with the NCuts implementation in MATLAB, all images are normalized to have the longest side equal to 320 pixels.
We ran Mean-Shift with parameter settings;, h,.) chosen at regular intervals @f, 16] x [3, 23], and found that on the
Berkeley databaséh, h,.) = (13, 19) gives a good overall tradeoff between the above quantitative measures. We therefore
use this parameter choice for our comparison. For NCuts, we choose the number of sdgmerii8 to agree with the
average number of segments from the human subjects.

To select a proper range for theparameter, which is the minimal distance threshold between mean vectors of two
adjacent final segments, we collect the segmentation results given by the human subjects in the databa$esheiyare
the distribution of the mean difference between two adjacent segments from the human segmentation results. Based on
the distribution,92% of adjacent segment pairs have the mean distance largeftb@&m the scale of normalized texture
vectors. Accordingly, we choose to seledhat yields the best segmentation result from a rdagd, 0.03]. Table1 shows
the average performance of the three methods, as well as that of the human subjects, over the entire database. Three different
~ values are being testeick., v = 0.01, 0.02, and 0.03.

600 T T
500
400+
300
200
100

AT A
0 1 I Z s
0 0.2 04 06 08 1

Figure 8: The distribution of the distance between the means of two adjacent segments based on the human segmentation
result in the Berkeley database.

Table 1: Average performance on the Berkeley Database (bold indicates best among the algorithms). PRI ranges between
[0, 1], higher is better. Vol ranges betweffnoo), lower is better. GCE ranges betwel@nl], lower is better. BDE ranges
between|0, co) in the unit of pixel, lower is better. CTM represents Algorithn2 without sampling boundary pixels, and

CTM, represents the algorithm with boundary pixels.

PRI | Vol | GCE | BDE
Humans 0.8754| 1.1040| 0.0797| 4.994
CTM_ 01 | 0.7719] 2.7113] 0.1577| 8.5027
CTM, .01 | 0.7632| 2.3076| 0.1823| 9.4529
CTM_ —o.02 | 0.7770| 2.1939] 0.1893| 8.7085
CTM, 002 | 0.7548| 1.9835| 0.1906 | 10.3205
CTM_ —o.03 | 0.7663| 2.0150| 0.1921| 9.4193
CTM, 003 | 0.7370| 1.9043| 0.1824 | 11.5289
Mean-Shift | 0.7550| 2.477 | 0.2598| 9.7001
NCuts 0.7229] 2.9329| 0.2182| 9.6038

We have also visually compared the segmentation results from both_CarMd CTM, with thesey values. For both
CTM_ and CTM,, smallery’s tend to generate more segments and oversegment the images, and'tatgjed to generate
less segments and hence undersegment the images. A visual comparison of the segmentation results_from ¢ Tdvd
CTM, ,—o.02 Is provided in Figure§ — 14. Six different image categories are chosen to partition the Berkeley database into
more relevant image groups for rendering, nameandscapgFigure9), Ocean(Figure 10), Urban (Figure 11), Animals
(Figure12), People(Figure13), andObjects(Figure14).

Quantitatively, Tabld shows that both CTM and CTM, outperform Mean-Shift and NCuts in most indices. It is perhaps
not surprising that both CTM and CTM, significantly outperform the other two algorithms in terms of Vol, since we are
optimizing an information-theoretic criterion. The results show that minimizing the coding length gives a segmentation
which is closer to human segmentation in terms of conditional entropy, suggesting that perhaps human perception also
approximately minimizes some measure of the compactness of representation.

To compare the difference of the CTMand CTM, algorithms, we turn to the visual results in FiguBes14. Under the
samey threshold, CTM. in general partitions an image into more detailed regions than CTIMthe animal category, this
capability is important to segment certain animals with camouflage from their backgregndhe first example in Figure
12). On the other hand, CTMalso becomes more sensitive to the (gradual) changes of the color in images of sky and water
(see the landscape and ocean categories for example). This observation is true for alvathes.

10

Finally, we compare the four segmentation indices with differentlues in Tablel. The definition of the GCE and
BDE indices leads to more significant penalies toward undersegmentation than oversegmentation. Particularly, GCE does
not penalize oversegmentation at ak,, the highest score is achived by assigning each pixel as an individual segment. As
aresult, CTM. ,—o.01 has returned the best GCE and BDE values among all the results inTTdhlethe segmentation in
fact heavily oversegments the images, and its Vol value is one of the worst results in the table.

On the other hand, PRI and Vol seem to be more accurate in quantitatively measuring the goodness of an image segmen-
tation comparing to human perception, where PRI leans toward oversegmentation and Vol toward undersegmentation.

To summarize in this comparison, we notice that on one hand, if we tune the algorithms to give the visually best match
to human segmentation, none of the algorithms is a clear winner in terms of all four indices; on the other hand, none of
the indices seems to be a better indicator of human segmentation than others, which suggests that human segmentation
uses much more comprehensive cues. Nevertheless, the extensive visual demonstration and quantitative comparison does
serve to validate our hypotheses that the distribution of texture features of natural images can be approximated by a mixture
of (possibly degenerate) Gaussians. Also there is still much room to improve upon our method, for instance, using more
sophisticated texture features or better heuristics for choosing the distortion. But regardless, the compression-based clustering
algorithm should remain a powerful tool for exploiting redundancy and degeneracy for texture segmentation.

5 Conclusion and Discussion

In this paper, we have proposed that texture features of a natural image should be modeled as a mixture of almost degenerate
distributions. We have introduced a new lossy compression based clustering algorithm, which is particularly effective for seg-
menting degenerate Gaussian distributions. We have shown that the algorithm is able to successfully segment natural images
by harnessing the natural low-dimensional structures that are present in raw texture features such as Gaussian windows.

In addition, the lossy compression approach allows us to introduce the distortion as a useful parameter so that we can
obtain a hierarchy of segmentations of an image at multiple quantization scales. We have proposed a simple heuristic to
adaptively determine the distortion for each image if one wants to match the segmentation with that of humans.

The method may provide more relevantimage segmentation for applications in lossy image compression. From a computer
vision standpoint, the potential for tuning the distortion may also provide a means of addressing other problems such as image
saliency detection and image categorization and retrieval. These are some of the challenging problems left open for future
investigation.

Acknowledgment

The authors want to thank Parvez Ahammad for his valuable suggestion and literature references. We would also like to
acknowledge that the pairwise steepest descent optimization (Algotithvas first suggested by Professor Harm Derksen
in the University of Michigan.

Appendix

We provide an alternative justification for the coding length functi®)n I Section2 of the paper, we know that given a set
of N i.i.d. sampled’ = (vq,vs,...,vx) € RPXN drawn from a multivariate Gaussian distribution, an estimate of the total
number of bits needed to encode the datd/setubject to the distortios?, is given by:

T

D __ D
logy det (I + 5=VVT) + 5 log, (1 + 22, (6)

. N4D
o e2N g2

L(V)

wherep = % Zf}:l v; isthe mean and = V — p - 11 . In the paper, this estimate is obtained from the rate-distortion
function of the Gaussian source. In this section, we show that the same formula givegearboundf the coding length
of V by viewing V" as a finite number of samples drawn from a subspace, without explicitly assuming the Gaussian model.

A Zero-Mean Case

For simplicity, we first study the case in which the d&tés zero meani.e., © = 0, and we leave the non-zero mean case to
the next subsection.

11

Consider the singular value decomposition (SVD) of the data matrix UXW 7T, whereU € RP*P ¥, € RP*N and
W e RVXN_ Let B = (b;;) = SWT. If the data vectors iV lie on a subspace of dimensian< D, the firstd columns
of U = (u,;) will form a basis for this subspace. In general, fiecolumns ofU form a basis for the data space, and the
column vectors ofB give the coordinates of the vectors with respect to this basis.

For coding purpose, we store the approximated matficeséU andB + 6 B. The matrixV’ can be recovered as

V 40V = (U +U)B+0B)=UB+6UB + U8B + §USB. @)

Whene is small relative to the datll, 6V ~ 6U B + UJB as entries 0dU o B are negligible. The squared error introduced
to the entries ol are

Z vy, =tr (0V6V") = tr (USBSBTU" + sUBB"6U™ + 6UBSB"U" + USBB”6U™).

We may further assume that the coding erd@ysandé B are zero-mean independent random variables. Using the fact that
tr (AB) = tr (BA), the expected squared error becomes

E(tr (6V6VT)) = E(tr(6BOB™)) + E(tr (326U 6U)).

Now, let us encode each enthy; with a precision:’ = \F andu;; with a preC|S|ons \FD where); is thejth

eigenvalue of VT .1% This is equivalent to assume that the eby; is uniformly distributed in the mterva{l \F f]

anddw;; is uniformly distributed in the mterve{l — /N /N] Under such a coding precision, it is easy to verify that

VA D V/AD
262N
E(tr (5VoVT)) < T < &N, ©)
Then the mean squared error per vectov'iis
1
N]E(tr(éVéVT)) <e’)
The number of bits to store the coordinabeswith precisions’ = ED is
D N N 2
1 bl] 2\ 1 bng
;;§1og2 (1+ (?)) =3 ;;logg (1+ -2)

DY by N D)
Zlog? (1 TN) - 5;1% (NeQ)'
In the above inequality, we have applled the following inequality:
log(1+ay) +log(l+as)+ - +log(l+ay)

< log (14 Bttt an (10)
n n
for nonnegative real numbeds, as, . .., a, > 0.
Similarly, the number of bits to store the entries of the singular veeigraith precisions” = \EKA/; is
D D
1 u” D Aj
>3 glom (14 (5)°) = Zzlog2(1+ =)
i=1]:1 i=1 j=1
D2\ Y ud\ D& D),
Zlng (1 + N2) =3 ;logQ (1 + 7]\752)'
Thus, forU and B together, we need a total of
D
N+D D), N+ D
L(V) = =52 log, (Nég) = =~ logydet (I + N—VVT) (11)
i=1

We thus have proved the statement given in the beginning of this sedt{®n = (N + D)R(e, V) gives an upper bound
on the number of bits needed to encdde

10Notice thate;.’ normally does not increase with the number of veci¥rsecause\; increases proportionally withy.

12

B Non-Zero Mean Case

In the above analysis, we have assumed that the given vactergv,, vs, ..., vy) are zero-mean. In general, these vectors
may have a non-zero mean. In other words, the points represented by these vectors may lie in an affine subspace, instead of
a linear subspace that passes through the origin.

In caseV’ is not zero mean, lgt = + 3"V v, € RP and define the matrix
V=V —pu lixny= (1 — v —p,..., o8 —p) € RPXN, (12)

The coding length for the zero-mean parobviously follows (L1) given in the previous section.
Next, letV = USWT = U B be the singular value decompositioniof and letyU, 6 B, 5. be the error in coding/, B, 1,
respectively. Then the error induced on the makfiis

OV =6p-lixny +UOB +UB. (13)
Assuming thabU, § B, 6, are zero-mean independent random variables, the expected total squared error is
E(tr(0VoVT)) = NE(u"sp) +E(tr (5BSBT)) +E(tr (26U 6U)). (14)

We encode entries aB® andU with the same precision as before. We encode each ’anlmythe mean vectop with the

S
precisione’ = f and assume that the errdr; is a uniform distribution in the mterva{l \F f} Then we have
NE(uTop) =
T Ne? 2Ng? 9
E(tr(6VevT)) < — + 5 = Ne“. (15)
Then the mean squared error per vectoY'iis still bounded by:?:
i1E(tr (6VeVT)) < &% (16)

Now in addltlon to thel,(V) bits needed to encodé and B, the number of bits needed to encode the mean vectdith
precisions’ = —= is

D D
1 (Liy2 1 Dui\ _ D 1
Z — < = =z 7
Z2log2(5’)) 2;10@(g2)_ 210g2(1+ e?)’ (7
where the last inequality is from the inequalitydy.
Thus, the total number of bits needed to stores
N+ D D
L) = + log, det (I + —VVT) S log, (1+ M) (18)

Notice that ifV is actually zero-mean, we haye= 0, VV = V, and the above expression fb(V) is exactly the same as
before.

References

[1] D. Comanicu and P. Meer. Mean shift: A robust approach toward feature space arBlg&slransactions on Pattern Analysis and
Machine Intelligencg24:603-619, May 20021, 5, 9

[2] T.Cover and J. Thoma&lements of Information ThearWiley Series in Telecommunications, 1993, 4

[3] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithoarnal of the Royal
Statistical Society39(B):1-38, 1977.3

[4] Y. Deng, B. Manjunath, and H. Shin. Color image segmentatiorPréteedings of International Conference on Computer Vision
and Pattern Recognitiqri999. 1

[5] P.Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmeritagamational Journal on Computer VisipBeptem-
ber 2004. 1

13

[6] M. Figueiredo and A. Jain. Unsupervised learning of finite mixture mod&EE Transactions on Pattern Analysis and Machine
Intelligence 24(3):1-16, 2002.3
[7] J. Freixenet, X. Munoz, D. Raba, J. Marti, and X. Cuff. Yet another survey on image segmentati®mcéedings of European
Conference on Computer Visio2002. 2, 9
[8] T. Gevers and A. Smeulders. Combining region splitting and edge detection through guided Delaunay image subdiysien. In
ceedings of International Conference on Computer Vision and Pattern Recoga@én. 1
[9] Z. Ghahramani and G. E. Hinton. The EM algorithm for mixtures of factor analyZexhnical Report CRG-TR-96-1, Department
of Computer Science, University of Toroni®96. 3
[10] R. Haralick and L. Shapiro. Image segmentation technig@snputer Vision, Graphics, and Image Processiag(1):100-132,
1985. 1
[11] S. Kamvar, D. Klein, and C. Manning. Interpreting and extending classical agglomerative clustering methods using a model-based
approach. Technical Report 2002-11, Stanford University Department of Computer Science42002.
[12] T. Kanungo, B. Dom, W. Niblack, and D. Steele. A fast algorithm for MDL-based multi-band image segmentafyoceedings
of International Conference on Computer Vision and Pattern Recogniti@@d. 1, 2, 5
[13] L. Lucchese and S. Mitra. Color image segmentation: a state-of-the-art survé3todaedings of the Indian National Science
Academy?2001. 2, 6
[14] M. Madiman, M. Harrison, and I. Kontoyiannis. Minimum description length vs. maximum likelihood in lossy data compression. In
Proceedings of the 2004 IEEE International Symposium on Information Th2@oy. 3
[15] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image segmeinétiorational Journal on Computer
Vision 43(1):7-27, 2001.5
[16] B. Manjunath and R. Chellappa. Unsupervised texture segmentation using Markov random field niieE&sIransactions on
Pattern Analysis and Machine Intelligende8(5):478—-482, 19912
[17] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistid3roceedings of IEEE International Conference on Computer Vision
pages 416-423, 20019
[18] G. McLachlan and T. KrishnarThe EM algorithm and extensiandohn Wiley & Sons, 19973
[19] M. Meila. Comparing clusterings: an axiomatic view.Rroc. International Conference on Machine Learnipgges 577-584, 2005.
9
[20] G. Mori. Guiding model search using segmentationPtaceedings of IEEE International Conference on Computer Vj€1605. 6
[21] A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial enuétopational Journal on
Computer Vision2001. 5
[22] B. Olshausen and D. Field. Natural image statistics and efficient coNigtgvork: Computation in Neural Systenis333—-339, 1996.
5
[23] D. Panjwani and G. Healey. Markov random field models for unsupervised segmentation of textured colorlBigdsansactions
on Pattern Analysis and Machine Intelligend&(10):939-954, 19951, 2
[24] C. Pantofaru and M. Hebert. A comparison of image segmentation algorithms. Technical Report CMU-RI-TR-05-40, CMU, 2005.
2,9
[25] J. Shiand J. Malik. Normalized Cuts and Image SegmentatioRrdoeedings of International Conference on Computer Vision and
Pattern Recognitionpages 731-737, 19971, 2, 6, 9
[26] M. Tipping and C. Bishop. Probabilistic principal component analykisrnal of Royal Statistical Society: Seriesf(3):611-622,
1999. 3
[27] A. Tremeau and N. Borel. A region growing and merging algorithm to color segmentd&dtern Recognition30(7):1191-1204,
1997. 1
[28] Z. Tu and S. C. Zhu. Image segmentation by data-driven markov chain monte tHaHE. Transactions on Pattern Analysis and
Machine Intelligencg24(5):657-673, 20021, 2
[29] N. Ueda, R. Nakan, and Z. Ghahramani. SMEM algorithm for mixture modi&dsral Computation12:2109-2128, 20004
[30] J. Ward. Hierarchical grouping to optimize and objective functidaurnal of the American Statistical Associatj@8:236—244,
1963. 4
[31] S. Yu. Segmentation induced by scale invariance.Pioceedings of International Conference on Computer Vision and Pattern
Recognition2005. 1
[32] S. Zhu, C. Guo, Y. Wu, and Y. Wang. What are textonsPfaceedings of European Conference on Computer Vigio62. 5
[33] S. Zhu and A. Yuille. Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelliged&¢9):884-900, 19961
[34] S. C. Zhu. Statistical modeling and conceptualization of visual patteHBEE Transactions on Pattern Analysis and Machine
Intelligence 25(6):691-712, 20031

14

Figure 9: Representative segmentation results in the Category Landscape. Left: Original. Middle@fiM = 0.02 and
the boundary pixels excluded. Right: CT,Mvith v = 0.02 and the boundary pixels included.

15

Figure 10: Representative segmentation results in the Category Ocean. Left: Original. Middle: Wity = 0.02 and
the boundary pixels excluded. Right: CTMvith v = 0.02 and the boundary pixels included.

16

di.
L “

Figure 11: Representative segmentation results in the Category Urban. Left: Original. Middle: ®@iftvly = 0.02 and
the boundary pixels excluded. Right: CTMvith v = 0.02 and the boundary pixels included.

17

Figure 12: Representative segmentation results in the Category Animals. Left: Original. Middle: @ifiviy = 0.02 and
the boundary pixels excluded. Right: CTMvith v = 0.02 and the boundary pixels included.

18

N

Figure 13: Representative segmentation results in the Gategory People. Left: Original. Middle:\@ifivy = 0.02 and
the boundary pixels excluded. Right: CTMvith v = 0.02 and the boundary pixels included.

1

Figure 14: Representative segmentation results in the Category Objects. Left: Original. Middle: @ity = 0.02 and
the boundary pixels excluded. Right: CTMvith v = 0.02 and the boundary pixels included.

20

