
Unsupervised Segmentation of Natural Images via
Lossy Data Compression

Allen Y. Yang
John Wright
S. Shankar Sastry
Yi Ma

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-195

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-195.html

December 28, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Unsupervised Segmentation of Natural Images
via Lossy Data Compression∗

Allen Y. Yang?† John Wright†‡ Shankar Sastry? Yi Ma†‡

? Cory Hall, EECS †Coordinated Science Lab, UIUC ‡ Microsoft Research Asia
University of California, Berkeley 1308 W. Main Steet 5/F, Beijing Sigma Center

Berkeley, CA 94720 Urbana, IL 61801 No.49, Zhichun Road, Hai Dian District
Email: {yang, sastry}@eecs.berkeley.edu Email:{jnwright, yima}@uiuc.edu Beijing China 100080

Abstract

In this paper, we cast natural-image segmentation as a problem of clustering texure features as multivariate mixed data.
We model the distribution of the texture features using a mixture of Gaussian distributions. However, unlike most existing
clustering methods, we allow the mixture components to be degenerate or nearly-degenerate. We contend that this assumption
is particularly important for mid-level image segmentation, where degeneracy is typically introduced by using a common
feature representation for different textures. We show that such a mixture distribution can be effectively segmented by a
simple agglomerative clustering algorithm derived from a lossy data compression approach. Using simple fixed-size Gaussian
windows as texture features, the algorithm segments an image by minimizing the overall coding length of all the feature
vectors. In terms of a variety of performance indices, our algorithm compares favorably against other well-known image
segmentation methods on the Berkeley image database.

1 Introduction

Natural-image segmentation is one of the classical problems in computer vision. It is widely accepted that a good segmen-
tation should group image pixels into regions whose statistical characteristics (of the color or texture) are homogeneous or
stationary, and whose boundaries are simple and spatially accurate [10]. Nevertheless, from a statistical viewpoint, natural-
image segmentation is aninherently ambiguousproblem for at least the following two technical reasons1:

1. The statistical characteristics of local features (e.g., color, texture, edge, contour) of natural images usually do not
show the same level of homogeneity or saliency at the same spatial or quantization scale. This is not only the case
for different natural images, but also often the case for different regions within the same image. Thus, one should not
expect the segmentation result to be unique [28], and instead should prefer a hierarchy of segmentations at multiple
scales.

2. Even after accounting for variations due to scale, different regions or textures may still have different intrinsic complex-
ities, making it a difficult statistical problem to determine the correct number of segments and their model dimensions.
For instance, if we use Gaussian distributions to model the features of different textures, the Gaussian for a simple
texture obviously has a higher degree of degeneracy (or a lower dimension) than that for a complex texture.

In the literature, many statistical models and methods have been proposed to address some of these difficulties (see [34]
for a review). In this paper, we are interested inunsupervisedimage segmentation. Popular methods in this category include
feature-basedMean-Shift [1], graph-basedmethods [25, 5], region-basedsplit-and-merge techniques [23, 31], and global
optimization approaches based on either energy functions [33] or minimum description length(MDL) [12]. Recent devel-
opments have mainly focused on the problem of how to integrate textural information at different scales. For example, one
can use more sophisticatedregion-growingor split-and-mergetechniques [10,27,4,8] to partition inhomogeneous regions;

∗This work is partially supported by NSF CAREER IIS-0347456, ONR YIP N00014-05-1-0633, and ARO MURI W911NF-06-1-0076.
1It is arguably true that human perception of an image is itself ambiguous. However, we here are concerned about only the ambiguities in computing

image segmentation.

RDRD

Figure 1: Mixture of regular (left) or degenerate (right) Gaussians.

or one can useMarkov random fieldsto model textures or other image cues [16,23,28]. For a more detailed survey of these
methods, the reader is referred to [13,7,24].

Motivations and Contributions: Although the reported performance of image segmentation algorithms has improved sig-
nificantly over the years, it comes partly at the price of the use of ever more sophisticated feature selection processes, more
complex statistical models, and more difficult optimization techniques. In this paper, however, we aim to show that for texture
features as simple as fixed-size Gaussian windows (Figure3), with the choice of a likely more relevant class of statistical
models (Figure1) and its associated agglomerative clustering algorithm (Algorithm1), one can achieve equally good, if not
better, segmentation results as many of the above sophisticated statistical models and optimization methods. Our approach
relies on the following two assumptions about natural images:

1. The distribution of texture features in a natural image is (approximately) a mixture of Gaussians that can bedegenerate
and of different dimensions(see Figure1 right), one for each image segment.

2. At any given quantization scale, theoptimalsegmentation is the one that gives the most compressed representation of
the image features, as measured by the number of binary bits needed to encode all the features.

In Section2, we will show that for features drawn from a mixture of (possibly degenerate) Gaussians, the segmentation that
minimizes the coding length is achieved by partitioning the features into their respective Gaussians (degenerate or not). Thus,
through compression, the features associated with each segment will be a Gaussian-like cluster.

Be aware that here we are not suggesting compressing the imageper se. Instead, we compress texture features extracted
from the image. Our method bears resemblance to some global optimization approaches, such as using region merging tech-
niques to minimize the MDL cost function [12]. However, the new method significantly differs from the existing maximum-
likelihood (ML) or MDL-based image segmentation in two main aspects:

First, we allow the distributions to bedegenerate, and introduce a new clustering algorithm capable of handling degen-
eracy. Extant image segmentation methods that segment features based on the cluster centers (e.g., K-Means) or density
modes (e.g., Mean-Shift) typically work well at low-level segmentation using low-dimensional color features with blob-like
distributions (Figure1 left) [25]. But at mid-level segmentation using texture features extracted at a larger spatial scale,
we normally choose a feature space whose dimension is high enough that the structures of all textures in the image can be
genuinely represented.2 Such a representation unavoidably has redundancy for individual textures: The cluster of features
associated with one texture typically lies in a low-dimensional submanifold or subspace whose dimension reflects the com-
plexity of the texture (Figure1 right). Properly harnessed, such low-dimensional structures can be much more informative
for distinguishing textures than the cluster means. In this paper, we will see that data compression provides a very effective
means of extracting such low-dimensional structures.

Second, we considerlossy codingof the image features, up to an allowable distortion. Varying the distortion provides
a simple but effective means of considering textural information at differentquantizationscales.3 Compressing the image
features with different distortions, we naturally obtain a hierarchy of segmentations: the smaller the distortion, the more
refined the segmentation is (see Figure7). In a way, the distortion also plays an important role in image segmentation as a
measure of thesaliencyof the segments in an image: First, how small the distortion needs to be in order for certain regions
to be segmented from the background, and second, how much we can change the distortion without significantly altering the
segmentation (see Figure7 again). Thus, lossy compression offers a convenient framework for diagnosing the statistics of a
natural image at different quantization scales for various segmentation purposes.

2Here a genuine representation means that we can recover every texture with sufficient accuracy from the representation.
3In this paper, we do not consider varying spatial scale as we will always choose a fixed-size window as the feature vector. Nevertheless, as we will

demonstrate, good segmentation can still be obtained.

2

Organization: This paper is organized as follows: Section2 introduces a new clustering algorithm for minimizing the
coding length of data drawn from a mixture of (possibly degenerate) Gaussians. Section3 discusses how to apply it to image
segmentation. Section4 gives experimental results on the Berkeley segmentation database, and compares to other existing
algorithms.

2 Segmentation of Mixtures of Gaussians via Lossy Compression

Once we have assumed that image feature vectors are drawn from a mixture of (possibly degenerate) Gaussians, the problem
of image segmentation reduces to that of segmenting such mixed data into multiple Gaussian-like clusters. A popular statisti-
cal method for segmenting mixed data is theexpectation-maximization(EM) algorithm [3,18], which is essentially a greedy
descent algorithm to find the maximum-likelihood (ML) estimate of the mixture of Gaussian distributions [9,26,6].

However, notice that here we might be dealing with degenerate Gaussians with unknown dimensions, and furthermore,
we do not even know how many of them. Conventional EM-based clustering algorithms do not address these problems, and
must be modified to perform well in this domain [6]. In this paper, we introduce a simple clustering method, especially adept
at handling unknown number of (possibly degenerate) Gaussians. The new method follows the principle oflossy minimum
description length(LMDL) 4:

Principle 1 (Data Segmentation via Lossy Compression)We define the optimal segmentation to be the one that minimizes
the number of bits needed to code the segmented data, subject to a given distortion.

To apply this principle to our problem, we require an accurate measure of the coding length of data drawn from a mixture
of Gaussians. We begin by examining the coding length of data from a single Gaussian. Suppose we are given a random
vectorv ∈ RD with a multivariate Gaussian distributionN (µ,Σ), which we wish to encode such that the original vector can
be recovered up to a given distortionε2, i.e., E[‖v − v̂‖2] ≤ ε2. From information theory [2], the average number of bits
needed to codev is approximately given by therate-distortion functionof the Gaussian:

R(ε) =
1
2

log2 det(I +
D

ε2
Σ), (1)

whereI is an identity matrix, andΣ is the covariance.5

Now consider a set ofN i.i.d. samplesV = (v1, v2, . . . , vN) ∈ RD×N drawn from the Gaussian distribution. Let
µ

.= 1
N

∑N
i=1 vi, andV̄

.= V − µ · 11×N . As Σ̂ = 1
N V̄ V̄ T is an estimate ofΣ, an estimate of the rate-distortion function

R(ε) is

R(ε, V) .=
1
2

log2 det
(
I +

D

ε2N
V̄ V̄ T

)
. (2)

Encoding theN vectors inV therefore requiresN · R(V) bits. Since the codebook is adaptive to the dataV , we must
also represent it withD · R(V) bits, which can be viewed as the cost of coding theD principal axes of the data covariance
1
N V̄ V̄ T . As the data are in general not zero-mean, we need additionalD

2 log2(1 + µT µ
ε2) bits to encode the mean vectorµ.

This leads to the following estimate of the total number of bits needed to encode the data setV :

L(V)
.
=

N + D

2
log2 det

(
I +

D

ε2N
V̄ V̄ T)

+
D

2
log2(1 +

µT µ

ε2
). (3)

Furthermore, although the above formula is derived for a Gaussian source, the same formula gives anupper boundof the
coding length for any finite number of samples drawn from a subspace,i.e., a degenerate Gaussian. A detailed proof is
provided in the Appendix.

Now let us consider the given data setV as drawn from a mixture of Gaussians. In this case, (3) no longer gives an
accurate estimate of the minimum coding length forV . It may be more efficient to codeV as the union of multiple disjoint
subsets:V = W1 ∪W2 ∪ · · · ∪WK . If each subset is sufficiently Gaussian, the total number of bits needed to codeV is at
most:

Ls(W1, . . . , WK)
.
=

K∑
i=1

{L(Wi) + |Wi|
(
− log2(|Wi|/N)

)
}. (4)

4For a theoretical characterization and comparison of (lossy) ML estimate and (lossy) MDL estimate, one may refer to [14].
5Strictly speaking, the rate-distortion function for the Gaussian sourceN (µ, Σ) is R(ε) = 1

2
log2 det

(
D
ε2 Σ

)
when ε2

D
is smaller than the smallest

eigenvalue ofΣ. Thus the equality is good only when the distortionε is relatively small. However, whenε
2

D
is larger than some eigenvalues ofΣ, the

rate-distortion function becomes more complicated [2]. Nevertheless, the approximate formulaR(ε) = 1
2

log2 det(I + D
ε2 Σ) can be viewed as the rate

distortion of the “regularized” source that works for all range ofε.

3

Here the second term counts the number of bits needed to code (losslessly) the membership of theN samples in theK
groups,e.g., using the Huffman coding [2]. Notice that the Huffman coding of the membership is optimal only when the
membership of the vectors in theK segments is totally random. However, in image segmentation, the membership of pixels
is not random – adjacent pixels have higher probability of being in the same segment. In this case, Huffman coding only
gives a loose upper bound. Nevertheless, we will demonstrate that minimizing such a function leads to a very simple and
effective segmentation algorithm.

To find the optimal segmentation, one essentially needs to compute the coding length for all possible segmentations of the
dataV , which is a very expensive combinatorial optimization problem. To make the optimization tractable, we propose a
pairwise steepest descentprocedure to minimize the coding length: In the initialization step, each vectorvi is assigned as its
own group. At each iteration a pair of groupsSi andSj is merged such that the decrease in the coding length due to coding
Si andSj together is maximal. The algorithm terminates when the coding length can no longer be reduced by merging any
pair of groups.

Algorithm 1: (Pairwise Steepest Descent).
1: input: the dataV = (v1, v2, . . . , vN) ∈ RD×N and a distortionε2.
2: initialize S := {Si = {vi} | i = 1, · · · , N}.
3: while |S| > 1 do
4: choose distinct groupsS1, S2 ∈ S such that

Ls(S1 ∪ S2)− Ls(S1, S2) is minimal.
5: if Ls(S1 ∪ S2)− Ls(S1, S2) ≥ 0 then break;
6: elseS :=

(
S \ {S1, S2}

)
∪ {S1 ∪ S2}.

7: end
8: output: S

Notice that the greedy merging process in Algorithm1 is similar in concept to classical agglomerative clustering methods,
especially Ward’s method [30,11]. However, by using the coding length as a new distance measure between groups, Algo-
rithm 1 significantly improves these classical methods particularly when the distributions are degenerate or the data contain
outliers. Nevertheless, as a greedy descent scheme, the algorithm does not guarantee to always find the globally optimal
segmentation for any given(V, ε2).6 In our experience, the main factor affecting the global convergence of the algorithm
appears to be the density of the samples relative to the distortionε2.

Extensive simulations have verified that this algorithm is consistently effective in segmenting data that are drawn from a
mixture of Gaussian or degenerate subspace distributions. In addition, the algorithm tolerates significant amounts of outliers,
and requires no prior knowledge of the number of groups nor their dimensions. Figure2 shows a few segmentation results of
this algorithm on synthesized data sets.

Figure 2: Simulation results (in color) of Algorithm1 on three different mixture distributions. Left: Three Gaussian distri-
butions inR2. Middle: Three affine subspaces of dimensions(2, 2, 1) in R3. Right: Three linear subspaces of dimensions
(2, 1, 1) in R3 with 12% outliers; the algorithm groups all the outliers into one extra Gaussian cluster, in addition to the three
subspaces.

In the above experiment, the distortion parameterε2 was selected to be close to the true noise variance to achieve best

6It may be possible to improve the convergence by using more complicated split-and-merge strategies [29].

4

results. In practice, there is no universal rule for choosing a goodε2 for all practical data sets. To apply Algorithm1 to image
segmentation, we need to be able to adaptively chooseε2 for each image based on its unique texture distributions. We will
carefully examine this issue in the next section.

3 Image Segmentation via Lossy Compression

In this section, we describe how the lossy compression-based method in Section2 is applied to segment natural images. We
first discuss what features we use to represent textures and why. We then describe how alow-level segmentationis applied
to partition an image into many small homogeneous patches, known assuperpixels. The superpixels are used to initialize
themid-level texture-based segmentation, which minimizes the total coding length of all the texture features by repeatedly
merging adjacent segments, subject to a distortionε2. Finally, we study several simple heuristics for choosing a goodε2 for
each image.

3.1 Constructing Feature Vectors

We choose to represent a 3-channelRGB color image in terms of theL∗a∗b∗ color metric, which was specially designed
to best approximate perceptually uniform color spaces.7 While the dependence of the three coordinates on the traditional
RGB metric is nonlinear [1], theL∗a∗b∗ metric better facilitates representing texture via mixtures of Gaussians. Perceptual
uniformity renders the allowable distortionε2 meaningful in terms of human perception of color differences, tightening the
link between lossy coding and our intuitive notion of image segmentation.

In the literature, there have been two major types of features used to capture local textures. The first considers responses
of a 2D-filter bank as texture features [15, 32]. The second applies aw × w cut-off window around each pixel and stacks
the color values inside the window into a vector [22,21]. In this paper, we choose to use the second method, avoiding the
construction of a texture filter bank that arguably relies on the given image set [32]. Eachw×w window is weighted by a 2D
Gaussian kernel before stacking to reduce the boundary effect. Figure3 illustrates this process. In the experiment, we find a
7× 7 window provides satisfactory results, although other sizes may also work well.8 Finally, to reduce the dimensionality,
we project the feature vectors into an 8-dimensional space by PCA. This operation preserves all linear structures of dimension
less than 8 in the feature space.

Figure 3: The construction of texture features: Aw × w window of each of the threeL∗a∗b∗ channels is convoluted with a
Gaussian and then all channels are stacked into a single vectorv.

3.2 Initialization with Superpixels

Given the feature vectors extracted from an image, one “naive” approach would be to directly apply Algorithm1, and segment
the pixels based on the grouping of the feature vectors. Figure4 shows one such result. Notice that the resulting segmentation
merges pixels near the strong edges into a single segment. This should be expected from the compression perspective, since
windows across the boundary of two segments have significantly different structures from the (homogeneous) textures within
those segments [12]. However, such a segmentation does not agree well with human perception.

In order to group edge pixels appropriately, we preprocess an image with a low-level segmentation based on local cues such
as color and edges. That is, we oversegment the image into (usually several hundred) small, homogeneous regions, known as
superpixels, which has been generally recommended for all region merging algorithms in [12]. Such low-level segmentation

7Equivalently, one can also use theL∗u∗v∗ metric.
8We did not test window sizes larger than 9 pixels, as the MATLAB implementation will run out of memory processing such texture vectors from a

typical320× 240 color image. The current version of MATLAB has a 2GB memory limit imposed by the software.

5

Figure 4: Two segmentation results of the left original using Algorithm1 with differentε’s. Notice that the pixels near the
boundaries of segments are not grouped correctly.

can be effectively computed using K-Means or Normalized-Cuts (NCuts) [25] with a conservative homogeneity threshold.
In this paper, we use the publicly available superpixel code [20].

Since the superpixel segmentation respects strong edges in an image (see Figure5 middle), it does not suffer from the
misassignment of edge pixels seen in Figure4. All pixels in a given superpixel are assigned as one segment initially, forcing
the subsequent texture-based segmentation to group boundary pixels together with the interior pixels.

Another benefit from the superpixel preprocessing is a significant reduction in the computation required later to find the
optimal segmentation. Using superpixel segments as initial grouping, the algorithm only needs to search amongst several
hundred superpixels, instead of all image pixels.

3.3 Minimizing the Coding Length

Taking the superpixels as the initial segments, we then construct texture vectors for the pixels in each superpixel. To reduce
the data size, one may also sample only a portion of the pixels to represent the distribution of the texture for each super-
pixel. Particularly, texture vectors at the boundary of a superpixel may not correctly represent the (homogeneous) texture
information in the interior of the superpixel, but a combination of two textures across the superpixel and its neighboring one.
Therefore, one may only sample texture vectors from the interior of each superpixel.9 However, our experiment shows that
the heuristic modification may not necessarily improve the overall performance of the algorithm, which will be demonstrated
in Section4. For clarity, we only demonstrate results using all pixels of an image in this section.

After the texture vectors are sampled from an image, one may directly apply Algorithm1 to compress these texture features
and obtain a segmentation. Nevertheless, in order to enforce that the resulting segmentation consists of connected segments,
we impose an additional spatial constraint that two segmentsSi andSj can be merged together only if they are adjacent in
the 2D image. Thus, we need to construct and maintain aregion adjacency graph(RAG) G in the clustering process, which
is popularly used in othermerge-and-splittype segmentation methods [13]. We represent the RAG using an adjacency list
G{i} for each segmentSi. Indexj is in the setG{i} if the segmentSj is a neighbor ofSi. At each iteration, the algorithm
searches for a pair of adjacent segmentsSi andSj which lead to maximal decrease in the total coding length. Note, however,
that in some applications such as image compression, disconnected segments may be allowed or even desirable. In this case,
one can simply discard the adjacency constraint in the implementation.

Figure 5 shows an example of the combined segmentation process. In this example, we find that all feature vectors
approximately lie in a 6D subspace in an 8D feature space. Each segment can be well modeled as a 1D to 4D degenerate
Gaussian. Figure6 plots the singluar values of two representative segments. This validates our original assumptions about
the distributions of the texture features.

9In case a superpixel only consists of boundary pixels, use these pixels anyway.

6

Figure 5: The segmentation pipeline. Left: Original. Middle: Superpixels obtained from low-level segmentation. Right:
Segments obtained by minimizing the coding length withε = 0.02.

Figure 6: Singluar values of the feature vectors drawn respectively from two image segments in Figure5 right.

3.4 Choosing the Distortion

As discussed in the introduction, the distortionε2 effectively sets the quantization scale at which we segment an image.
Figure7 shows the segmentation of several images under different values ofε. As the figure suggests, a singleε will not
give good performance across a widely varying data set such as the Berkeley image segmentation database. Differences in
the contrast of the foreground and background, lighting conditions, and image category cause the distribution of the texture
features to vary significantly from image to image. For example, segmenting animals from the background tends to require
a smallε due to their natural camouflage, whereas human portraits often allow a largerε, as human faces and clothes differ
more strongly from the (man-made) surroundings. In this way, the distortionε can be linked to the concept of how “salient”
an object is in an image and how much “attention” is needed to segment the object.

There are several ways to adaptively chooseε to achieve good segmentation for each image. For example, if a desired
number of segments is knowna priori, we can search a range ofε values for the one that gives the desired number of
segments. When such information is not availablea priori, which is the case for image segmentation, a formal way in
information theory to estimate the distortion parameter is to minimize the following cost function:

ε∗
.= arg min

ε∈E
{Ls(V, ε) + λND log2(ε)}, (5)

whereλ is a balancing parameter provided by the user. Notice that the first termLs(V, ε) decreases asε increases, and at
the same time the second termND log2(ε) increases. Hence, the expression essentially seeks a balance point between the
coding length of the data and the complexity of the model measured byND log2(ε).

In our experiment, we found that (5) can accurately recover the true value ofε for the simulated mixture Gaussian models
by simply settingλ = 1. However, in terms of image segmentation on real natural images, the estimatedε∗ tends to
oversegment the images. Our explanation of this performance deterioration between synthesized data and real images is that
the distribution of (finite) texture vectors in a real image simply does not satisfy an exact mixture Gaussian model. Therefore,
it is not surprising for the theoretical Criterion (5) to use more Gaussian models to approximate this distribution than what
human perception may segment the image.

In this work, we choose to heuristically select the scale by stipulating that feature distributions in adjacent regions must be
sufficiently dissimilar. One simple measure of dissimilarity, which we adopt in this paper, is the distance between the means

7

Figure 7: Segmentation results under differentε. Left column: ε = 0.001. Middle column: ε = 0.02. Right column:
ε = 0.05. Notice that the algorithm merges all pixels into one group in the last two tests of the Leopard image.

of the adjacentsegments (as Gaussian clusters). We gradually increaseε until the minimal distance between the means
is larger than a preselected thresholdγ, giving the most refined segmentation which satisfies the constraint. We note that
increasingε typically causes the number of segments to decrease to achieve a new shortest coding length. We may therefore
use the segmentation computed with a smallerε to initialize the merging process with a largerε, allowing us to search for the
optimalε efficiently.

It may seem that we have merely replaced one free parameter,ε, with another,γ. This replacement has two strong
advantages, however. Experimentally we find that even with a single fixed value ofγ the algorithm can effectively adapt to
all image categories in the Berkeley database, and achieve segmentation results that are consistent with human perception.
Furthermore, the appropriateγ can be estimated empirically from human segmentations, whereasε cannot. This heuristic
thresholding method is similar in spirit to several robust techniques in computer vision for estimating mixture models,e.g.,
the Hough transform and RANSAC.

The complete segmentation process is specified as Algorithm2. In terms of speed, on a typical 3GHz Intel PC, the MAT-
LAB implementation of the CTM algorithm on a320× 240 color image takes about two minutes to preprocess superpixels,
and less than one minute to minimize the coding length of the features.

8

Algorithm 2: (CTM: Compression-based Texture Merging).
input: ImageI ∈ RH×W×3 in L∗a∗b∗ metric, reduced dimensionD, window sizew, distortion rangeE , and minimum
mean distanceγ.

1: PartitionI into superpixelsS1, . . . , SK . For pixelpi ∈ Sj , initialize its labelli = j.
2: Construct RAGG{1}, . . . , G{K} for theK segmentsS1, . . . , SK .
3: Samplew × w Gaussian windows, and stack the resulting values into a feature vectorvi ∈ R3w2

.
4: Replacevi with their firstD principal components.
5: for all ε ∈ E in ascending orderdo
6: for all initial segmentsSi, i = 1, . . . ,K do
7: ComputeLs(Si, ε).
8: for all j ∈ G{i} do
9: Uij

.= Ls(Si, ε) + Ls(Sj , ε)− Ls(Si ∪ Sj , ε)
10: end for
11: end for
12: while Uij

.= max{U} > 0 do
13: MergeSi andSj . Update arraysl, G, L, andU .
14: Segment numberK ← K − 1.
15: end while
16: if γ ≤ mini,j∈G(i){‖mean(Si)−mean(Sj)‖} then
17: break.
18: end if
19: end for
output: Final pixel labelsl1, . . . , lH×W .

4 Experiments

In this section, we demonstrate the segmentation results of Algorithm2 (CTM) on natural images in the Berkeley segmenta-
tion database [17], which also contains benchmark segmentation results obtained from human subjects. Two implementations
of CTM are provided. The first one use all image pixels to construct texture vectors, which is denoted as CTM+. The other
one only samples from the interior of the superpixels but not at the boundaries, which is denoted as CTM−.

We compare CTM against two unsupervised algorithms that have been made available publicly: Mean-Shift [1] and
NCuts [25]. The comparison is based on four quantitative performance measures:

1. The Probabilistic Rand Index (PRI) [24] counts the fraction of pairs of pixels whose labellings are consistent between
the computed segmentation and the ground truth, averaging across multiple ground truth segmentations to account for
scale variation in human perception.

2. The Variation of Information (VoI) metric [19] defines the distance between two segmentations as the average con-
ditional entropy of one segmentation given the other, and thus roughly measures the amount of randomness in one
segmentation which cannot be explained by the other.

3. The Global Consistency Error (GCE) [17] measures the extent to which one segmentation can be viewed as a refinement
of the other. Segmentations which are related in this manner are considered to be consistent, since they could represent
the same natural image segmented at different scales.

4. The Boundary Displacement Error (BDE) [7] measures the average displacement error of boundary pixels between
two segmented images. Particularly, it defines the error of one boundary pixel as the distance between the pixel and
the closest pixel in the other boundary image.

Since all three methods are unsupervised, we use both the training and testing images for the evaluation. Due to memory
issues with the NCuts implementation in MATLAB, all images are normalized to have the longest side equal to 320 pixels.
We ran Mean-Shift with parameter settings(hs, hr) chosen at regular intervals of[7, 16] × [3, 23], and found that on the
Berkeley database,(hs, hr) = (13, 19) gives a good overall tradeoff between the above quantitative measures. We therefore
use this parameter choice for our comparison. For NCuts, we choose the number of segmentsK = 20 to agree with the
average number of segments from the human subjects.

9

To select a proper range for theγ parameter, which is the minimal distance threshold between mean vectors of two
adjacent final segments, we collect the segmentation results given by the human subjects in the database. Figure8 shows
the distribution of the mean difference between two adjacent segments from the human segmentation results. Based on
the distribution,92% of adjacent segment pairs have the mean distance larger than0.03 in the scale of normalized texture
vectors. Accordingly, we choose to selectγ that yields the best segmentation result from a range[0.01, 0.03]. Table1 shows
the average performance of the three methods, as well as that of the human subjects, over the entire database. Three different
γ values are being tested,i.e., γ = 0.01, 0.02, and 0.03.

Figure 8: The distribution of the distance between the means of two adjacent segments based on the human segmentation
result in the Berkeley database.

Table 1: Average performance on the Berkeley Database (bold indicates best among the algorithms). PRI ranges between
[0, 1], higher is better. VoI ranges between[0,∞), lower is better. GCE ranges between[0, 1], lower is better. BDE ranges
between[0,∞) in the unit of pixel, lower is better. CTM− represents Algorithm2 without sampling boundary pixels, and
CTM+ represents the algorithm with boundary pixels.

PRI VoI GCE BDE
Humans 0.8754 1.1040 0.0797 4.994
CTM−,γ=0.01 0.7719 2.7113 0.1577 8.5027
CTM+,γ=0.01 0.7632 2.3076 0.1823 9.4529
CTM−,γ=0.02 0.7770 2.1939 0.1893 8.7085
CTM+,γ=0.02 0.7548 1.9835 0.1906 10.3205
CTM−,γ=0.03 0.7663 2.0150 0.1921 9.4193
CTM+,γ=0.03 0.7370 1.9043 0.1824 11.5289
Mean-Shift 0.7550 2.477 0.2598 9.7001
NCuts 0.7229 2.9329 0.2182 9.6038

We have also visually compared the segmentation results from both CTM− and CTM+ with theseγ values. For both
CTM− and CTM+, smallerγ’s tend to generate more segments and oversegment the images, and largerγ’s tend to generate
less segments and hence undersegment the images. A visual comparison of the segmentation results from CTM−,γ=0.02 and
CTM+,γ=0.02 is provided in Figures9 – 14. Six different image categories are chosen to partition the Berkeley database into
more relevant image groups for rendering, namely,Landscape(Figure9), Ocean(Figure10), Urban (Figure11), Animals
(Figure12), People(Figure13), andObjects(Figure14).

Quantitatively, Table1 shows that both CTM− and CTM+ outperform Mean-Shift and NCuts in most indices. It is perhaps
not surprising that both CTM− and CTM+ significantly outperform the other two algorithms in terms of VoI, since we are
optimizing an information-theoretic criterion. The results show that minimizing the coding length gives a segmentation
which is closer to human segmentation in terms of conditional entropy, suggesting that perhaps human perception also
approximately minimizes some measure of the compactness of representation.

To compare the difference of the CTM− and CTM+ algorithms, we turn to the visual results in Figures9 – 14. Under the
sameγ threshold, CTM− in general partitions an image into more detailed regions than CTM+. In the animal category, this
capability is important to segment certain animals with camouflage from their background (e.g., the first example in Figure
12). On the other hand, CTM− also becomes more sensitive to the (gradual) changes of the color in images of sky and water
(see the landscape and ocean categories for example). This observation is true for all otherγ values.

10

Finally, we compare the four segmentation indices with differentγ values in Table1. The definition of the GCE and
BDE indices leads to more significant penalies toward undersegmentation than oversegmentation. Particularly, GCE does
not penalize oversegmentation at all,i.e., the highest score is achived by assigning each pixel as an individual segment. As
a result, CTM−,γ=0.01 has returned the best GCE and BDE values among all the results in Table1, but the segmentation in
fact heavily oversegments the images, and its VoI value is one of the worst results in the table.

On the other hand, PRI and VoI seem to be more accurate in quantitatively measuring the goodness of an image segmen-
tation comparing to human perception, where PRI leans toward oversegmentation and VoI toward undersegmentation.

To summarize in this comparison, we notice that on one hand, if we tune the algorithms to give the visually best match
to human segmentation, none of the algorithms is a clear winner in terms of all four indices; on the other hand, none of
the indices seems to be a better indicator of human segmentation than others, which suggests that human segmentation
uses much more comprehensive cues. Nevertheless, the extensive visual demonstration and quantitative comparison does
serve to validate our hypotheses that the distribution of texture features of natural images can be approximated by a mixture
of (possibly degenerate) Gaussians. Also there is still much room to improve upon our method, for instance, using more
sophisticated texture features or better heuristics for choosing the distortion. But regardless, the compression-based clustering
algorithm should remain a powerful tool for exploiting redundancy and degeneracy for texture segmentation.

5 Conclusion and Discussion

In this paper, we have proposed that texture features of a natural image should be modeled as a mixture of almost degenerate
distributions. We have introduced a new lossy compression based clustering algorithm, which is particularly effective for seg-
menting degenerate Gaussian distributions. We have shown that the algorithm is able to successfully segment natural images
by harnessing the natural low-dimensional structures that are present in raw texture features such as Gaussian windows.

In addition, the lossy compression approach allows us to introduce the distortion as a useful parameter so that we can
obtain a hierarchy of segmentations of an image at multiple quantization scales. We have proposed a simple heuristic to
adaptively determine the distortion for each image if one wants to match the segmentation with that of humans.

The method may provide more relevant image segmentation for applications in lossy image compression. From a computer
vision standpoint, the potential for tuning the distortion may also provide a means of addressing other problems such as image
saliency detection and image categorization and retrieval. These are some of the challenging problems left open for future
investigation.

Acknowledgment

The authors want to thank Parvez Ahammad for his valuable suggestion and literature references. We would also like to
acknowledge that the pairwise steepest descent optimization (Algorithm1) was first suggested by Professor Harm Derksen
in the University of Michigan.

Appendix

We provide an alternative justification for the coding length function (3). In Section2 of the paper, we know that given a set
of N i.i.d. samplesV = (v1, v2, . . . , vN) ∈ RD×N drawn from a multivariate Gaussian distribution, an estimate of the total
number of bits needed to encode the data setV , subject to the distortionε2, is given by:

L(V) .=
N + D

2
log2 det

(
I +

D

ε2N
V̄ V̄ T

)
+

D

2
log2(1 +

µT µ

ε2
), (6)

whereµ
.= 1

N

∑N
i=1 vi is the mean and̄V

.= V − µ · 11×N . In the paper, this estimate is obtained from the rate-distortion
function of the Gaussian source. In this section, we show that the same formula gives anupper boundof the coding length
of V by viewingV as a finite number of samples drawn from a subspace, without explicitly assuming the Gaussian model.

A Zero-Mean Case

For simplicity, we first study the case in which the dataV is zero mean,i.e., µ = 0, and we leave the non-zero mean case to
the next subsection.

11

Consider the singular value decomposition (SVD) of the data matrixV = UΣWT , whereU ∈ RD×D, Σ ∈ RD×N , and
W ∈ RN×N . Let B = (bij) = ΣWT . If the data vectors inV lie on a subspace of dimensiond < D, the firstd columns
of U = (uij) will form a basis for this subspace. In general, theD columns ofU form a basis for the data space, and the
column vectors ofB give the coordinates of the vectors with respect to this basis.

For coding purpose, we store the approximated matricesU + δU andB + δB. The matrixV can be recovered as

V + δV
.= (U + δU)(B + δB) = UB + δUB + UδB + δUδB. (7)

Whenε is small relative to the dataV , δV ≈ δUB + UδB as entries ofδUδB are negligible. The squared error introduced
to the entries ofV are∑

i,j

δv2
ij = tr

(
δV δV T

)
≈ tr

(
UδBδBT UT + δUBBT δUT + δUBδBT UT + UδBBT δUT

)
.

We may further assume that the coding errorsδU andδB are zero-mean independent random variables. Using the fact that
tr (AB) = tr (BA), the expected squared error becomes

E(tr
(
δV δV T)

)
= E

(
tr (δBδBT)

)
+ E

(
tr (Σ2δUT δU)

)
.

Now, let us encode each entrybij with a precisionε′ = ε√
D

anduij with a precisionε′′j = ε
√

N√
λjD

, whereλj is thejth

eigenvalue ofV V T .10 This is equivalent to assume that the errorδbij is uniformly distributed in the interval
[
− ε√

D
, ε√

D

]
andδuij is uniformly distributed in the interval

[
− ε

√
N√

λjD
, ε

√
N√

λjD

]
. Under such a coding precision, it is easy to verify that

E
(
tr (δV δV T)

)
≤ 2ε2N

3
< ε2N. (8)

Then the mean squared error per vector inV is

1
N

E
(
tr (δV δV T)

)
< ε2. (9)

The number of bits to store the coordinatesbij with precisionε′ = ε√
D

is

D∑
i=1

N∑
j=1

1
2

log2

(
1 +

(bij

ε′
)2

)
=

1
2

D∑
i=1

N∑
j=1

log2

(
1 +

b2
ijD

ε2

)

≤ N

2

D∑
i=1

log2

(
1 +

D
∑N

j=1 b2
ij

Nε2

)
=

N

2

D∑
i=1

log2

(
1 +

Dλi

Nε2

)
.

In the above inequality, we have applied the following inequality:

log(1 + a1) + log(1 + a2) + · · ·+ log(1 + an)
n

≤ log
(
1 +

a1 + a2 + · · ·+ an

n

)
(10)

for nonnegative real numbersa1, a2, . . . , an ≥ 0.
Similarly, the number of bits to store the entries of the singular vectorsuij with precisionε′′ = ε

√
N√

λiD
is

D∑
i=1

D∑
j=1

1
2

log2

(
1 +

(uij

ε′′
)2

)
=

1
2

D∑
i=1

D∑
j=1

log2

(
1 +

u2
ijD

2λj

Nε2

)

≤ D

2

D∑
j=1

log2

(
1 +

D2λj

∑D
i=1 u2

ij

Nε2

)
=

D

2

D∑
j=1

log2

(
1 +

Dλj

Nε2

)
.

Thus, forU andB together, we need a total of

L(V) =
N + D

2

D∑
i=1

log2

(
1 +

Dλi

Nε2

)
=

N + D

2
log2 det

(
I +

D

Nε2
V V T

)
. (11)

We thus have proved the statement given in the beginning of this section:L(V) = (N + D)R(ε, V) gives an upper bound
on the number of bits needed to encodeV .

10Notice thatε′′j normally does not increase with the number of vectorsN , becauseλj increases proportionally withN .

12

B Non-Zero Mean Case

In the above analysis, we have assumed that the given vectorsV = (v1, v2, . . . , vN) are zero-mean. In general, these vectors
may have a non-zero mean. In other words, the points represented by these vectors may lie in an affine subspace, instead of
a linear subspace that passes through the origin.

In caseV is not zero mean, letµ
.= 1

N

∑N
i=1 vi ∈ RD and define the matrix

V̄
.= V − µ · 11×N = (v1 − µ, v2 − µ, . . . , vN − µ) ∈ RD×N . (12)

The coding length for the zero-mean partV̄ obviously follows (11) given in the previous section.
Next, letV̄ = UΣWT .= UB be the singular value decomposition ofV̄ , and letδU, δB, δµ be the error in codingU,B, µ,

respectively. Then the error induced on the matrixV is

δV = δµ · 11×N + UδB + δUB. (13)

Assuming thatδU, δB, δµ are zero-mean independent random variables, the expected total squared error is

E
(
tr (δV δV T)

)
= NE(δµT δµ) + E

(
tr (δBδBT)

)
+ E

(
tr (ΣδUT δU)

)
. (14)

We encode entries ofB andU with the same precision as before. We encode each entryµi of the mean vectorµ with the
precisionε′ = ε√

D
and assume that the errorδµi is a uniform distribution in the interval

[
− ε√

D
, ε√

D

]
. Then we have

NE(δµT δµ) = Nε2

3 . Using equation (8) for the zero-mean case, the total squared error satisfies

E
(
tr (δV δV T)

)
≤ Nε2

3
+

2Nε2

3
= Nε2. (15)

Then the mean squared error per vector inV is still bounded byε2:

1
N

E
(
tr (δV δV T)

)
≤ ε2. (16)

Now in addition to theL(V̄) bits needed to encodeU andB, the number of bits needed to encode the mean vectorµ with
precisionε′ = ε√

D
is

D∑
i=1

1
2

log2

(
1 +

(µi

ε′
)2

)
=

1
2

D∑
i=1

log2

(
1 +

Dµ2
i

ε2

)
≤ D

2
log2

(
1 +

µT µ

ε2

)
, (17)

where the last inequality is from the inequality (10).
Thus, the total number of bits needed to storeV is

L(V) =
N + D

2
log2 det

(
I +

D

Nε2
V̄ V̄ T

)
+

D

2
log2

(
1 +

µT µ

ε2

)
. (18)

Notice that ifV is actually zero-mean, we haveµ = 0, V̄ = V , and the above expression forL(V) is exactly the same as
before.

References
[1] D. Comanicu and P. Meer. Mean shift: A robust approach toward feature space analysis.IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24:603–619, May 2002.1, 5, 9
[2] T. Cover and J. Thomas.Elements of Information Theory. Wiley Series in Telecommunications, 1991.3, 4
[3] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm.Journal of the Royal

Statistical Society, 39(B):1–38, 1977.3
[4] Y. Deng, B. Manjunath, and H. Shin. Color image segmentation. InProceedings of International Conference on Computer Vision

and Pattern Recognition, 1999. 1
[5] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmentation.International Journal on Computer Vision, Septem-

ber 2004. 1

13

[6] M. Figueiredo and A. Jain. Unsupervised learning of finite mixture models.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(3):1–16, 2002.3

[7] J. Freixenet, X. Munoz, D. Raba, J. Marti, and X. Cuff. Yet another survey on image segmentation. InProceedings of European
Conference on Computer Vision, 2002. 2, 9

[8] T. Gevers and A. Smeulders. Combining region splitting and edge detection through guided Delaunay image subdivision. InPro-
ceedings of International Conference on Computer Vision and Pattern Recognition, 1997. 1

[9] Z. Ghahramani and G. E. Hinton. The EM algorithm for mixtures of factor analyzers.Technical Report CRG-TR-96-1, Department
of Computer Science, University of Toronto, 1996. 3

[10] R. Haralick and L. Shapiro. Image segmentation techniques.Computer Vision, Graphics, and Image Processing, 29(1):100–132,
1985. 1

[11] S. Kamvar, D. Klein, and C. Manning. Interpreting and extending classical agglomerative clustering methods using a model-based
approach. Technical Report 2002-11, Stanford University Department of Computer Science, 2002.4

[12] T. Kanungo, B. Dom, W. Niblack, and D. Steele. A fast algorithm for MDL-based multi-band image segmentation. InProceedings
of International Conference on Computer Vision and Pattern Recognition, 1994. 1, 2, 5

[13] L. Lucchese and S. Mitra. Color image segmentation: a state-of-the-art survey. InProceedings of the Indian National Science
Academy, 2001. 2, 6

[14] M. Madiman, M. Harrison, and I. Kontoyiannis. Minimum description length vs. maximum likelihood in lossy data compression. In
Proceedings of the 2004 IEEE International Symposium on Information Theory, 2004. 3

[15] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image segmentation.International Journal on Computer
Vision, 43(1):7–27, 2001.5

[16] B. Manjunath and R. Chellappa. Unsupervised texture segmentation using Markov random field models.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13(5):478–482, 1991.2

[17] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistics. InProceedings of IEEE International Conference on Computer Vision,
pages 416–423, 2001.9

[18] G. McLachlan and T. Krishnan.The EM algorithm and extensions. John Wiley & Sons, 1997.3
[19] M. Meila. Comparing clusterings: an axiomatic view. InProc. International Conference on Machine Learning, pages 577–584, 2005.

9
[20] G. Mori. Guiding model search using segmentation. InProceedings of IEEE International Conference on Computer Vision, 2005. 6
[21] A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope.International Journal on

Computer Vision, 2001. 5
[22] B. Olshausen and D. Field. Natural image statistics and efficient coding.Network: Computation in Neural Systems, 7:333–339, 1996.

5
[23] D. Panjwani and G. Healey. Markov random field models for unsupervised segmentation of textured color images.IEEE Transactions

on Pattern Analysis and Machine Intelligence, 17(10):939–954, 1995.1, 2
[24] C. Pantofaru and M. Hebert. A comparison of image segmentation algorithms. Technical Report CMU-RI-TR-05-40, CMU, 2005.

2, 9
[25] J. Shi and J. Malik. Normalized Cuts and Image Segmentation. InProceedings of International Conference on Computer Vision and

Pattern Recognition, pages 731–737, 1997.1, 2, 6, 9
[26] M. Tipping and C. Bishop. Probabilistic principal component analysis.Journal of Royal Statistical Society: Series B, 61(3):611–622,

1999. 3
[27] A. Tremeau and N. Borel. A region growing and merging algorithm to color segmentation.Pattern Recognition, 30(7):1191–1204,

1997. 1
[28] Z. Tu and S. C. Zhu. Image segmentation by data-driven markov chain monte carlo.IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24(5):657–673, 2002.1, 2
[29] N. Ueda, R. Nakan, and Z. Ghahramani. SMEM algorithm for mixture models.Neural Computation, 12:2109–2128, 2000.4
[30] J. Ward. Hierarchical grouping to optimize and objective function.Journal of the American Statistical Association, 58:236–244,

1963. 4
[31] S. Yu. Segmentation induced by scale invariance. InProceedings of International Conference on Computer Vision and Pattern

Recognition, 2005. 1
[32] S. Zhu, C. Guo, Y. Wu, and Y. Wang. What are textons. InProceedings of European Conference on Computer Vision, 2002. 5
[33] S. Zhu and A. Yuille. Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9):884–900, 1996.1
[34] S. C. Zhu. Statistical modeling and conceptualization of visual patterns.IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25(6):691–712, 2003.1

14

Figure 9: Representative segmentation results in the Category Landscape. Left: Original. Middle: CTM− with γ = 0.02 and
the boundary pixels excluded. Right: CTM+ with γ = 0.02 and the boundary pixels included.

15

Figure 10: Representative segmentation results in the Category Ocean. Left: Original. Middle: CTM− with γ = 0.02 and
the boundary pixels excluded. Right: CTM+ with γ = 0.02 and the boundary pixels included.

16

Figure 11: Representative segmentation results in the Category Urban. Left: Original. Middle: CTM− with γ = 0.02 and
the boundary pixels excluded. Right: CTM+ with γ = 0.02 and the boundary pixels included.

17

Figure 12: Representative segmentation results in the Category Animals. Left: Original. Middle: CTM− with γ = 0.02 and
the boundary pixels excluded. Right: CTM+ with γ = 0.02 and the boundary pixels included.

18

Figure 13: Representative segmentation results in the Category People. Left: Original. Middle: CTM− with γ = 0.02 and
the boundary pixels excluded. Right: CTM+ with γ = 0.02 and the boundary pixels included.

19

Figure 14: Representative segmentation results in the Category Objects. Left: Original. Middle: CTM− with γ = 0.02 and
the boundary pixels excluded. Right: CTM+ with γ = 0.02 and the boundary pixels included.

20

