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Abstract

Tracking and Texturing Liquid Surfaces

by

Adam Wade Bargteil

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor James F. O’Brien, Chair

This thesis addresses the problems of tracking and texturing liquid surfaces in
computer graphics fluid simulations. The proposed surface tracking method, known as
semi-Lagrangian contouring, takes the unusual approach of representing the liquid surface
explicitly with a closed, manifold triangle mesh. However, rather than attempting to track
the triangle mesh through time, a new triangle mesh is built at each timestep by contouring
the zero-set of an advected signed-distance function. Thus, while we represent the surface
explicitly, we update the surface through time using an implicit representation. One of the
primary advantages of this formulation is that it enables tracking of surface characteristics,
such as color or texture coordinates, at negligible additional cost. These advected surface
characteristics can then be used in a variety of ways to generate time-coherent textures on
the liquid surfaces. After considering a variety of simple texturing techniques, I propose an
example-based texture synthesis method designed specifically for liquid animations. This
example-based texture synthesis method first advects color values on the surface and then

uses an optimization process to force the surface texture to more closely match a user-



input example texture. This approach creates textures which resemble the example texture
even in the precense of complicated topological changes and significant surface stretch-
ing/compression. I include a variety of examples demonstrating that these methods can be
effectively used as part of a fluid simulation system to animate and texture complex and

interesting liquid behaviors.

Professor James F. O’Brien
Dissertation Committee Chair
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Chapter 1

Introduction

This thesis considers two fundamental problems in physically based computer an-
imation of liquids: tracking the liquid’s free surface and texturing this free surface. Surface
tracking is an essential component of any liquid simulator—the location of the free surface
must be known in order to apply boundary conditions. Thus, the surface tracking method
directly affects the simulation and inaccuracies in the surface location lead to inaccuracies
in the resulting simulation. While this point alone is a strong argument for the importance
of surface tracking in liquid simulations, in the context of computer graphics there is an
even more significant argument—the surface is what we actually see. Regardless of how we
render the results of our simulation, be it with a clear water shader or as textured matte
surfaces, we always display the surface. Thus, even if we have an ideal method for solving
the Navier-Stokes equations, a poor surface tracking method will cause our final results,
computer animations, to be unimpressive.

In addition to being a very important problem, surface tracking is also an extremely
difficult problem. Liquid surfaces are characterized by frequent and complicated topological

changes as well as significant stretching/compression of the surface. These characteristics



make many methods, which are quite adequate for tracking a variety of deforming surfaces,
untenable in the context of liquid surfaces. For example, methods which seek to maintain
an explicit surface representation incur significant complexity performing the mesh surgery
necessary to deal with the frequent topological changes of liquid surfaces. Additionally,
methods which sample the surface with points will have to address resampling the surface as
it stretches and compresses. While the field of computational fluid mechanics has developed
many methods and strong theoretical frameworks for numerically solving and analyzing the
equations of fluid motion, the problem of tracking the free surface has received surprisingly
little attention. Additionally, many surface tracking methods which are quite acceptable
for a variety of engineering applications produce visual artifacts, such as flickering, which
make them unusable in computer graphics, where the goal is often to fool the audience into
believing that what they see is real; visual artifacts, such as flickering or significant volume
loss, can destroy this illusion of realism.

This thesis proposes a solution to the surface tracking problem for use in computer
graphics. Our method explicitly represents the surface as a closed, manifold triangle mesh.
However, rather than attempting to advect this mesh forward with the flow, we update the
surface in time with an implicit representation: an advected signed-distance function, ),
whose zero set defines the surface. A new polygonal surface is generated by contouring or
extracting the zero set of 1. The value of ¥ at a point x, at current time ¢, is obtained
by first tracing backward through the flow field to find the previous location x’ at time
t — At, and then returning the signed distance of x’ from the previous surface. Using
adaptive octree data structures, we can efficiently and reliably construct the new surface and
corresponding signed-distance function. One of the primary advantages of this formulation

is that it enables tracking of surface characteristics, such as color or texture coordinates,



at negligible additional cost. These surface characteristics can then be used in a variety of
ways to texture the liquid surface, which is the other problem considered in this thesis.
Surface texturing is an essential computer graphics tool, which gives artists ad-
ditional control over their results by allowing them to stylize surfaces or add detail to
low-resolution simulations. For example, an artist could use texturing techniques to add
the appearance of foam to a wave, bubbles to beer, or fat globules to soup. Texturing
liquid surfaces is difficult for many of the same reasons as tracking liquid surfaces. Com-
plex and frequent topological changes lead to discontinuities in advected parameterizations,
surface distortions can lead to loss of detail or aliasing in noise-based procedural textures,
and surface re-sampling issues can lead to blurring or aliasing of textures. Unlike B-spline
patches, liquid surfaces lack any inherent parameterization and their complex motion makes
it extremely difficult to build a temporally coherent parameterization. After considering
a variety of simple texturing techniques, including advected colors, advected parameteri-
zations, and reaction-diffusion texture synthesis, I propose an example-based texture syn-
thesis method designed specifically for animations of liquids. This example-based synthesis
method begins by advecting color values between frames using the mapping provided by
the semi-Lagrangian contouring method used to track the surface. For every frame an opti-
mization procedure attempts to force these distorted color values to more closely match the
input example texture. This approach creates textures which resemble the example texture
even in the precense of complicated topological changes and significant surface stretch-
ing/compression. I include a variety examples demonstrating that these methods can be
effectively used as part of a fluid simulation system to animate and texture complex and

interesting fluid behaviors.



Chapter 2

Previous Work

Our work pulls together solutions to a number of well-studied problems to arrive at
methods for tracking and texturing liquid surfaces. In this section I will first discuss other
surface tracking methods and then discuss related work and the mathematical foundations
for several of the individual components of our surface tracking method. Next, I will
discuss previous fluid texturing approaches and conclude by discussing previous work which

developed the components of our example-based texture synthesis method.

2.1 Previous Surface Tracking Methods

Because surface tracking arises in a variety of contexts, the topic has received
a significant amount of attention. Even in the limited context of fluid animation, there
has been a great deal of excellent work on simulating fluids with free surfaces, including
Foster and Metaxas [1996], Foster and Fedkiw [2001], Enright et al. [2002b], Carlson et
al. [2002; 2004], Losasso et al. [2004], Goktekin et al. [2004], Hong and Kim [2005], Wang et
al. [2005], Guendelman et al. [2005], and Zhu and Bridson [2005]. The methods available for

tracking free surfaces of liquids can be roughly sorted into four categories: level-set methods,



particle-based methods, particle level-set methods, and semi-Lagrangian contouring.

2.1.1 Level-Set Methods

Many of the most successful solutions to the surface tracking problem are based
on level-set methods, which were originally introduced by Osher and Sethian [1988]. A
complete review of level-set methods is beyond the scope of this thesis, and I recommend
the excellent surveys by Sethian [1999] and Osher and Fedkiw [2003]. Level-set methods
represent a surface as the zero set of a scalar function which is updated over time by solv-
ing a partial differential equation, known as the level-set equation. This equation relates
change of the scalar function to an underlying velocity field. By using this implicit repre-
sentation, level-set methods avoid dealing with complex topological changes. However, the
scalar function is defined and maintained in the embedding three-dimensional space, rather
than just on the two-dimensional surface. In practice, scalar function values need only be
accurately maintained very near the surface, resulting in a cost that is roughly linear in the
complexity of the surface. One difficulty with level-set methods is that they generally re-
quire very high-order conservation-law solvers, though fast semi-Lagrangian methods have
been shown to work in some cases [Strain, 1999b; Enright et al., 2005]. The most signifi-
cant drawback to using level-set methods to track liquid surfaces is their tendency to lose
volume in underresolved, high-curvature regions. See Enright et al. [2002a] for an excellent
discussion of the reasons for this volume loss.

Berentzen and Christensen [2002] built a sculpting system using a level-set surface
representation which could be manipulated by a user with a variety of sculpting tools. Like
us, they used adaptive grid structures to store the scalar field. However, they used a

two-level structure rather than a full octree. They also used semi-Lagrangian methods to



update their level-set function. However, when evaluating the distance function after the
semi-Lagrangian path tracing, they interpolated distance values stored on a regular grid,
while our explicit surface representation allows us to compute exact distances near the
surface.

Sussman and Puckett [2000] coupled volume-of-fluid and level-set methods to
model droplet dynamics in ink-jet devices. Volume-of-fluid [Hirt and Nichols, 1981] tech-
niques represent the surface by storing, in each voxel, a volume fraction—the proportion
of the voxel filled with liquid. Any cell whose fraction is not one or zero contains surface.
Unfortunately, this representation does not admit accurate curvature estimates, which are
essential to surface tension computations. However, accurate curvature estimates are easily
computed from level-set representations. Thus, the authors combined volume-of-fluid and
level-set representations to model surface tension in ink droplets. Some volume-of-fluid
methods build an explicit surface representation from the volume fractions stored in each
voxel. The key difference between our method and volume-of-fluid methods is that we never
compute volume fractions. Instead, our explicit representation is generated by contouring

an advected signed-distance function.

2.1.2 Particle-Based Methods

A number of researchers [Terzopoulos et al., 1989; Desbrun and Gascuel, 1995;
Foster and Metaxas, 1996; Desbrun and Cani, 1996; Cani and Desbrun, 1997; Stora et al.,
1999; Miiller et al., 2003; Premoze et al., 2003; Miiller et al., 2004; Zhu and Bridson, 2005;
Pauly et al., 2005] have used particles to track surfaces. In many of these methods, the
simulation elements are particles, which are already being tracked throughout the volume

of the deforming liquid or solid. The surface can then be implicitly defined as the boundary



between where the particles are and where they aren’t. The particles can be visualized
directly, or can be used to define an implicit representation using metaballs [Blinn, 1982]
or moving least-squares methods [Kolluri, 2005]. The moving least-squares approach was
successfully used by Zhu and Bridson [2005] to construct liquid and sand surfaces from
marker particles placed throughout the fluid volume. Such approaches have the significant
advantage that the surfaces at each frame are independent and can be constructed in parallel
as a post-processing step. Premoze et al. [2003] took a different approach and used particle
positions and velocities to guide a level-set solution. Mueller et al. [2004] and Pauly et
al. [2005] used special particles, called surfels [Szeliski and Tonnesen, 1992, to represent
the surface. Surfels store a surface normal as well as position and there are generally
many more surfels than simulation particles. The principal drawback of these methods is
that generating high-quality time-coherent surfaces can be difficult: directly visualizing the
particles is insufficient for high-quality animations, methods which convert the particles to
some other representation on a per-frame basis often lack temporal coherence, and methods
which must run sequentially through the frames or run during the simulation are often quite

costly. Additional difficulties arise when trying to ensure a good sampling of the surface.

2.1.3 Particle Level-Set Methods

To address the volume loss of level-set methods, Enright and his colleagues [Enright
et al., 2002a; Enright et al., 2002b; Enright et al., 2005] built on the work of Foster and
Fedkiw [2001] to develop particle level-set methods. These methods track the characteristics
of the fluid flow with Lagrangian particles, which are then used to fix the level-set solution,
essentially increasing the effective resolution of the method. Recently, these methods have

been extended to work with octrees [Enright et al., 2005; Losasso et al., 2004], allowing for



very high-resolution surface tracking. These methods represent the current state of the art
on tracking liquid surfaces for animation, but do have some drawbacks. In particular, the
published particle correction rules choose a single particle to provide the signed-distance
value. Since there is no guarantee that the same particle will be chosen at subsequent
timesteps, the method is extremely susceptible to high-frequency temporally incoherent
perturbations of the surface. The artifacts are most noticeable when the surface thins
out below the grid resolution and particles happen to be near some of the sample points,
but not others. Also, the method has a large number of parameters and rules, such as
the number of particles per cell and the reseeding strategy, which need to be decided,
often in an application-specific way. Finally, the method tends to produce very smooth
surfaces with very little detail, which is desirable in some, but not all, applications. Despite
these drawbacks, the particle level-set methods have been very successful and represent a
significant step forward in the area of surface tracking for liquid simulations.

More recently Hieber and Koumoutsakos [2005] introduced a Lagrangian particle
level-set method which overcomes many of these drawbacks. Instead of using a hybrid repre-
sentation, they represent the level-set function solely with particles (though their resampling
strategy does use a Cartesian grid). Thus, there is no correction step and all queries of the
level-set function and its derivatives are handled with suitable mollification kernels, alle-
viating the flickering problems present in the work of Enright and his colleagues [Enright
et al., 2002a; Enright et al., 2002b; Enright et al., 2005]. Moreover, they present a gen-
eral resampling (reseeding) strategy which removes the guesswork from previous approaches
and, additionally, regularizes the level-set values stored at the particle locations, addressing
any distortions which may have developed as the particles were advected through the flow

field.



2.1.4 Semi-Lagrangian Contouring

Recently, Strain [1999b; 1999¢; 1999a; 2000; 2001] has written a series of articles
building a theoretical framework culminating in the formulation of surface tracking as a con-
touring problem. He demonstrated his semi-Lagrangian contouring method on a variety of
two-dimensional examples. Our method is based on the method presented by Strain [2001],
but with variations and extensions to deal with problems that arise in three-dimensional
computer animation. While our method bears a number of similarities to level-set methods
and takes advantage of many techniques developed for those methods, we are not directly
solving the level-set equation. By formulating surface tracking as a contouring problem, we
avoid many of the issues that complicate level-set methods. In particular, we do not have
the same volume loss issues which prompted the particle level-set methods: while we do not
explicitly conserve volume, our semi-Lagrangian path tracing tends to conserve volume in

the same way as the Lagrangian particles in the particle level-set method.

2.2 Implicit Representations

The octree structure we use to build and index the polygonal mesh is quite similar
to adaptively sampled distance fields [Frisken et al., 2000]. These structures adaptively
sample distance fields according to local detail and store samples in a spatial hierarchy. The
key difference between adaptively sampled distance fields and our surface representation is
that we store a polygon mesh in addition to distance samples. This polygon mesh is used
for exact evaluation of the distance function near the surface. Additionally, our splitting
criterion is different from that presented by Frisken et al. [2000].

An alternative structure for storing narrow-band level-set functions is the dynamic
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tubular grid of Nielsen and Museth [2006]. This structure can be combined with run-
length encoding schemes [Houston et al., 2006] providing extremely compact, high-resolution
representations of level-set functions. While the asymptotic times for their structure match
ours, they are able to exploit cache coherence to provide extremely fast run times for most
level-set operations. Integrating the methods presented here with this data structure is a

promising area for future work.

2.3 Contouring

Contouring the advected signed-distance function, 1, is a fundamental step in
our surface tracking method. The contouring problem has been well studied in computer
graphics and a number of approaches have been suggested. The oldest and most widely
used is marching cubes, which was first presented by Wyvill et al. [1986], and later named
and popularized by Lorensen and Cline [1987]. Marching cubes suffers from a tendency to
create ill-shaped triangles. This problem is fixed to some degree by dual contouring [Ju
et al., 2002], which also provides adaptive contouring and an elegant means of preserving
sharp boundaries. Dual contouring depends on normal estimates at edge crossings and is
very sensitive to inaccuracies in these normal estimates. Unfortunately, in our method we
do not have accurate normal information until after the contouring step, when normals can
be computed on the triangle mesh. More recently, Boissonnat and Oudot [2003] presented a
contouring technique which uses Delaunay triangulation methods to generate provably good
triangulations. However, this method appears to be prohibitively expensive for something
which must run at every timestep. Yet another alternative is marching triangles [Hilton
et al., 1996], which takes a surface-based rather than volume-based approach to contouring.

Marching triangles requires significantly less computation time, produces fewer triangles,
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and creates higher-quality triangles than marching cubes. Unfortunately, marching triangles
is not guaranteed to produce closed, manifold meshes in the presence of sharp or thin

features.

2.4 Semi-Lagrangian Methods

Semi-Lagrangian methods have been widely used in computer graphics since they
were introduced by Stam [1999] to solve the nonlinear advection term of the Navier-Stokes
equations. These methods provide the foundation for our surface tracking method. Con-
sequently, I briefly discuss the mathematical foundation of semi-Lagrangian methods. The
discussion follows that of Strain [1999b].

Consider the simplest linear hyperbolic PDE

ot +v(x,t) - Vo =0, (2.1)

where ¢ is a scalar field and v(x,t) is a velocity function. Equation (2.1) passively advects
¢ through the velocity field v. Semi-Lagrangian methods are based on the observation that

Equation (2.1) propagates ¢ values along characteristic curves @ = s(t) defined by
5(t) = v(s(t),t), 5(0) = o. (2:2)

Thus we can find ¢ values at any time ¢t by finding the characteristic curve passing through
(x,t), following it backward to some previous point (xg, ty) where the value of ¢ is known,
and setting ¢(x,t) = ¢(xo,to). This observation forms the basis of the backward character-
istic or CIR scheme developed by Courant, Isaacson and Rees [1952], which is the simplest
semi-Lagrangian scheme. Given ¢ at time t,, CIR approximates ¢(x,t,11) at any point

x at time t,y1 = ¢, + At by evaluating the previous speed wv(x,t,), approximating the
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backward characteristic through x by a straight line

s(t) max — (thy1 — t)v(x, ty), (2.3)

and interpolating ¢ at time ¢, to the point

s(ty) = x — (At)v(x, ty,). (2.4)

Then ¢(x,t,+1) is set equal to the interpolated value, ¢(s(ty,),tn).

For linear PDEs, such as Equation (2.1), the Lax-Richtmyer equivalence theo-
rem [LeVeque, 1990] guarantees that CIR will converge to the exact solution as At, Ax — 0
if it is stable and consistent.

The stability properties of the CIR scheme are excellent. Each new value ¢(x, t,+1)
is a single interpolated value of ¢ at time t,, so unconditional stability is guaranteed in
any norm where the interpolation does not increase norms. For example, CIR with linear
interpolation is unconditionally stable in the 2-norm. In general, semi-Lagrangian schemes
satisfy the CFL condition by shifting the stencil, rather than restricting the timestep. Thus
information propagates over long distances in one timestep.

Consistency (loosely speaking, the local accuracy of the method), however, is con-

ditional. The global error of CIR is

0 ((AA?2> +O(AY), (2.5)

due to the O((Ax)?) error in linear interpolation accumulated over O(1/(At)) timesteps,
plus the O(At) error due to freezing F' and approximating the characteristics by straight
lines. Thus CIR is consistent to O(At) if a condition At > O(Ax) is satisfied, contrary to
the usual hyperbolic condition At < C'Az. This condition is extremely convenient, because

At = O(Ax) balances time and space resolution in this first-order accurate scheme.
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For nonlinear PDEs, CIR still converges when the solution is smooth. But non-
smooth shock solutions of conservation laws move at the wrong speed because CIR is not
in conservative form. Since level-set solutions have no shocks, CIR is a natural scheme for

moving interfaces.

2.5 Texturing Fluids

Soon after the introduction of fluid simulation techniques to computer graphics,
researchers began experimenting with texturing these simulations. The simplest approach,
demonstrated by Witting [1999] advects texture coordinates through the flow field and
uses these texture coordinates to lookup color in a texture map. Unfortunately, over time,
the texture becomes progressively more distorted. To address this distortion, Stam [1999]
advects three separate layers of texture coordinates, each of which is periodically reset. The
final texture map is then a superposition of these three texture maps. Neyret [2003] built
on this approach and also advects several layers of textures. Additionally, he computes and
advects the local accumulated deformation for each texture layer. Using this deformation
measure, he combines the various texture layers to arrive at a final texture, which is well
adapted to the local deformation. When using procedural noise-based textures, he combines
the layers in frequency space to avoid ghosting effects and contrast fading.

While these techniques work relatively well for advecting textures through general
fluid simulations, they are not directly applicable in the case of free-surface liquid simulation.
In this case, we wish to texture the liquid surface rather than the fluid volume. To address
the particular context of liquids, Rasmussen et al. [2004] describes a method that advects
texture particles, initialized near the free surface, through the fluid flow field. During

rendering, when a ray intersects the surface the texture coordinates from the nearest 64
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particles are interpolated to provide a texture coordinate for the surface point being shaded.
They have used their technique in production at Industrial Light and Magic, including a
shot in Terminator 3. In a similar approach, Wiebe and Houston [2004] and Houston et
al. [2006] stored three-dimensional texture coordinates in a grid structure and advected
them like any other scalar field. To avoid artifacts resulting from volumetric advection
the authors used extrapolation techniques to force the gradient of the texture field to be
perpendicular to the free surface normal. This approach has also been successfully used in
production, in particular for texturing the tar monster in Scooby Doo 2. Unfortunately, both
these approaches suffer from problems with discontinuous and distorted parameterizations

and can only be used for very short sequences before the distortions become too great.

2.6 Example-Based Texture Synthesis

Example-based texture synthesis has been a popular research area in computer
graphics and vision. Heeger and Bergen [1995] analyzed input textures by computing filter
response histograms at different spatial scales and then synthesized new textures which
matched these histograms. De Bonet [1997] also used a multi-resolution filter-based ap-
proach, but linked the various spatial frequencies by conditioning finer scales on decisions
made at coarser scales. More recently, Efros and Leung [1999], developed a very simple and
elegant texture synthesis method, which “grows” textures, pixel by pixel, outward from an
initial seed. They model texture as a Markov Random Field, which implies that the color of
each individual pixel in the texture depends only on the colors of pixels in its spatial neigh-
borhood and is independent of the rest of the image. Wei and Levoy [2000] developed a very
similar technique, but used multiresolution synthesis and tree-structured vector quantiza-

tion to speed the generation of new textures. Efros and Freeman [2001] took a patch-based
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approach—instead of choosing each individual pixel, they choose entire patches of texture
at a time. The patches overlap slightly and a minimum error boundary cut is found in this
overlap region to stitch the various patches together.

Our texture synthesis method is based on the flexible optimization approach de-
veloped by Kwatra et al. [2005]. This approach divides the output texture into a number of
overlapping, square patches. Each of these patches is mapped to some region of the example
texture. Each pixel, p, in the output texture will be covered by a nonempty subset of these
patches. Each patch, P;, in this subset provides a mapping from p to some pixel, ¢;, in the
example texture. The color of p can then be computed as a weighted average of the colors

of the ¢;. The texture is optimized using an two-step expectation-maximization approach:

1. Holding the output texture constant, optimize the mapping.

2. Holding the mapping constant, optimize the output texture.

The mapping is optimized by finding, for each patch, P;, the region in the example texture
which most closely matches P;. The quality of a match is determined by comparing the
region of the output texture covered by P; to the region of the example texture. The output
texture is optimized by computing new pixel colors using the updated mapping. These steps

are then repeated until convergence.

2.7 Mesh Parameterization

In order to compare surface textures to the two-dimensional input example tex-
ture, a necessary step in our texture optimization, we must construct some parameterization
of the surface. Numerous methods for the automatic generation of parameterizations of ar-

bitrary surfaces exist. These methods can be roughly divided into two categories: methods
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that parameterize a set of (potentially overlapping) small patches and methods that at-
tempt to find a globally-optimal parameterization. Our work belongs to the first category.
The pioneering work of Bennis et al. [1991] introduced the idea of using piecewise param-
eterizations of surfaces for texture mapping. Later, Maillot et al. [1993] introduced the
concept of texture atlases, which allow the surface to be broken up into patches where
each patch has its own parameterization and texture. They also introduced a widely used
surface-flattening heuristic. The lapped textures technique of Praun et al. [2000] places
overlapping, irregularly shaped texture patches on the surface. This approach works quite
well for many textures and is very similar to our approach, the primary differences being
that we optimize the mapping of texture patches onto the surface and that our patches have
substantially more overlap. Concurrently, Wei and Levoy [2001] and Turk [2001] introduced
texture synthesis methods which create local parameterizations of the surface and then syn-
thesize textures directly on the surface. However, their greedy texture synthesis approach
differs from the optimization approach presented here. More recently, Sorkine et al. [2002]
introduced a greedy method for creating bounded-distortion local surface parameterizations
based on a simple distortion metric, which was introduced by Sander et al. [2001]. We make

use of this distortion metric when building our surface patches.
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Chapter 3

Semi-Lagrangian Contouring

The fundamental problem of tracking a surface as it is advected by some velocity
field arises frequently in applications such as surface reconstruction, image segmentation,
and fluid simulation. Unfortunately, the nalve approach of simply advecting the vertices
of a polygonal mesh, or other explicit representation of the surface, quickly encounters
problems such as tangling and self-intersection. Instead, a family of methods, known as
level-set methods, has been developed for surface tracking. These methods represent the
surface implicitly as the zero set of a scalar field defined over the problem domain. The
methods are widely used, and the texts by Sethian [1999] and Osher and Fedkiw [2003],
and Osher and Sethian’s [1988] seminal article provide an excellent introduction to the
topic. One of the key issues that distinguishes various level-set and similar approaches is
the representation of the scalar field, which must capture whatever surface properties are
important to a given application.

Our surface tracking method represents the surface explicitly with a closed, man-
ifold polygon mesh. However, rather than attempting to advect these polygons forward

with the flow, we update the surface in time with an implicit representation: an advected
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signed-distance function, 1, whose zero set defines the surface. A new polygonal surface
is generated by contouring or extracting the zero set of ¥. The value of ¢ at a point x,
at current time ¢, is obtained by first tracing backward through the flow field to find the
previous location @’ at time ¢ — At, and then returning the signed distance of x’ from
the previous surface. Using adaptive octree data structures, we can efficiently and reliably
construct the new surface and corresponding signed-distance function.

The theoretical framework for this method comes from a series of articles by
Strain [1999b; 1999¢; 1999a; 2000; 2001] that described and analyzed a method for contour
tracking in two dimensions. While the semi-Lagrangian procedure for backward advection
does not change significantly when going from two- to three-dimensional problems, signif-
icant surface tracking issues arise when moving to three dimensions. This thesis discusses
these issues, as well as the general method, and demonstrates how semi-Lagrangian surface
contouring can be useful for animating the complex and interesting behavior of fluids.

One of the primary advantages of this method is that it enables tracking surface
characteristics, such as color or texture coordinates on the actual surface. These properties
can be easily stored directly on the polygonal mesh and efficiently mapped onto the new sur-
face during semi-Lagrangian advection. The explicit surface representation also facilitates
other common operations, such as rendering, while reconstruction from a scalar function
allows operations that rely on an implicit representation. Finally, the method produces de-
tailed, well-defined surfaces that are suitable for realistic animation and that do not jitter

or exhibit other undesirable behaviors.
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Figure 3.1: An overview of our method. At each timestep we begin with an explicit surface
representation, from which we can build a signed-distance function (a) and a velocity field
given by the fluid simulator (b). We then define a field function, the zero set of which will
be our new surface. To get the value of the field function at the green point (c), we trace
backward through the flow field to find the yellow point (b), which is the image of the green
point at the previous timestep. We then evaluate the signed distance of the yellow point to
the previous surface (a) and copy this value to the green point (c¢). We can evaluate this
field function at every point in the domain and extract the zero set (c).

3.1 Method Overview

The surface tracking problem can be phrased as: given a surface representation
and a velocity field at time ¢, build a representation of the surface at time ¢t + At. We begin
with a triangle mesh and an octree annotated with signed-distance field samples. We could
try to advect the mesh points through the flow field, but would quickly encounter significant
topological difficulties. Instead, we avoid topological issues by updating the surface using an
implicit representation. The implicit representation is then used to construct a new mesh at
the current timestep. More specifically, we define a scalar-valued function which relates the
surface at the current timestep to the surface at the previous timestep. Next, we extract
the zero set of this function using a contouring algorithm. Finally, a new signed-distance

field is computed through a process known as redistancing (see Figure 3.1).
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3.2 Hybrid Representation

3.2.1 Explicit Representation

One of the key differences between our method and other surface tracking methods
is that we build an explicit representation of the surface at every timestep. This explicit
representation is a closed, manifold triangle mesh, which is stored as an array of vertices
and an array of triangles. The vertices are shared between triangles, allowing for easy
computation of smooth vertex normals and other common mesh operations. The distance
tree (see Section 3.3) provides a spatial index for the mesh. The explicit representation
provides our method with several advantages. First, it allows us to compute exact signed-
distance values near the mesh. Second, it allows us to store properties on mesh vertices,
rather than at points near the mesh. Finally, it allows us to take advantage of the many
tools and algorithms which have been developed in computer graphics for manipulating and

rendering triangle meshes.

3.2.2 Implicit Representation

To avoid the topological difficulties of directly updating an explicit surface repre-
sentation, we update the surface in time through an implicit representation (see Figure 3.2).
We define a scalar-valued field function, ¥(x), which relates the surface at the current
timestep to the surface at the previous timestep. The surface at the current timestep will

be the zero set of this function,

Sp ={x: ¢Y(x) = 0}. (3.1)

For a point « at the current timestep, the function, v, first uses backward path tracing, a

semi-Lagrangian integration technique, to find the point &’ at the previous timestep which
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Figure 3.2: An example of how our implicit representation accommodates merging surfaces.
The red grid points trace back through the velocity field to points inside the surface. The
green grid points trace back to points outside the surface. When the contouring algorithm
runs, it will look for zero crossings only between positive and negative (green and red)
grid points and create a surface that does not pass between two grid points of the same
color. Thus, without even explicitly determining that a topological change has occurred,
the method handles the change.
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flows to . It then returns the distance from z’ to the surface, S,_1, at the previous
timestep. If we denote the backward path tracing as b(x) : R?® — R3 and let ¢, (x) be the

signed distance from « to the surface Sy,

V() = dn-1(b(x)) = dpn-1(z’). (3.2)

Essentially, we are advecting the signed-distance function through the velocity
field given by the fluid simulator. In solving this advection term, our method differs from
the simple CIR scheme discussed earlier in two ways. First, instead of the simple linear
backward path tracing, we use a second-order Runge-Kutta scheme (also known as the

midpoint method with an Euler predictor)

At
Ln—-1/2 = m(tn—1/2> =Tn — 7v(mn?tn)r (3.3)
Tp—1 = w(tnfl) =Tn — (At)v(mn—l/%tn)a (34)

where v(z, t) is the velocity function. It is important to note that, while this method traces
back through the velocity field with second-order accuracy, the velocity field is frozen over
the course of the timestep, leading to first-order accuracy in time. The second difference is
that, when evaluating ¢ at points near the surface, we do not interpolate values stored on a
grid. Instead, we compute ezact distance values. These changes only improve the accuracy
(consistency) of our method and do not affect the unconditional stability.

To compute the exact distance from a point x’ to the surface, we compute the
distances d; to all the nearby triangles. The distance to the surface is then computed as
min; d;. Schneider and Eberly [2002] detailed a method for computing the distance from
a point to a triangle. This operation is relatively expensive, but many triangles can be
pruned, especially when x’ is very close to the surface, by using standard bounding-box

techniques and our octree data structure (see Section 3.3).
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Signing the distance values turns out to be somewhat difficult near sharp corners.
Let y and n(y) denote the closest point on the surface to ' and its normal, respectively.

When vy lies strictly inside a triangle then the sign can be easily computed as

s = sign((z’ —y) - n(y)), (3.5)

where n(y) is the normal of the triangle containing y. However, if the nearest point in the
mesh lies on more than one triangle (i.e., on an edge or vertex of the mesh), the triangles
do not always agree on the sign. These situations can be resolved by computing an angle-
weighted pseudonormal for each edge and vertex of the mesh and using these pseudonormals
to determine the sign when the nearest point is on an edge or vertex of the mesh. Baerentzen
and Aanaes [2005] provided a proof that this procedure results in accurate signing (in exact
arithmetic).

The ability to compute exact distances is one of the chief advantages of having an
explicit surface representation. Interpolation can produce substantial errors (see Figure 3.3)
which are compounded over time. In fact, this interpolation error is one of the most signifi-
cant drawbacks to semi-Lagrangian methods in general. When used for velocity advection,
interpolation produces such significant smoothing that researchers have proposed a number
of methods to add detail back to the flow [Fedkiw et al., 2001] or avoid semi-Lagrangian
advection altogether [Zhu and Bridson, 2005]. In this work, we are able to leverage the
advantages of semi-Lagrangian advection, without incurring the interpolation error that

would otherwise undesireably smooth surface detail.
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Figure 3.3: The figure shows a part of the
surface passing through a grid cell. The
cell’s vertices have been annotated with
signed-distance values. Linear interpolation
of these values incorrectly chooses the red
point as the zero crossing along the bot-
tom edge. The green point is the actual
zero crossing, which will be found with ex-
act evaluation.

3.3 The Distance Tree
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Figure 3.4: A two-dimensional distance
tree. Distance samples are stored at the oc-
tree vertices and triangle lists are stored in
cells which intersect the surface. This dis-
tance tree could be generated using our im-
plementation of Criterion (3.8), which con-

siders i only at cell centers.

Our implementation makes heavy use of a structure we call the distance tree. The

distance tree is a balanced octree subdivision of the spatial domain. The octree vertices

are annotated with signed-distance values and each cell of the octree contains a list of the

triangles with which it intersects. The distance tree serves three purposes:

1. Tt provides a fast spatial index for the mesh so that nearby triangles can be found

quickly.

2. It provides a fast, approximate signed-distance function, which is sufficient when

evaluating the signed distance far from the surface.
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3. It guides the contouring algorithm, quickly identifying cells which have vertices of

different sign and, thus, contain triangles.

3.3.1 Approximating the Signed-Distance Function

When computing the signed distance from a point x’ to a surface, S, we first find
the smallest octree cell, C, containing x’. If C is at the finest level of the octree, then
z’ may be near the surface and all the triangles in the up to 27 cells in the concentric
triple! of C are considered when computing the minimum distance to the surface. By
storing the nearest distance seen so far and using standard bounding-box techniques, many
of these triangles can be pruned before computing distances, especially when z’ is very
near the surface. If the computed distance is less than C’s edge length, then the distance
is guaranteed to be exact. Otherwise, the computed distance is a very good estimate but
may be slightly larger than the actual distance. Contrariwise, if C' is not at the finest level
of the octree or if there are no triangles in the concentric triple of C, then x’ is not near
the surface and we do not require an exact distance. An approximation with the correct
sign is sufficient. In this case, we use trilinear interpolation of the distance values stored at

the vertices of C.

3.3.2 General Splitting Criterion

We make use of two different methods for building distance trees in this work.
Most often, we wish to build a distance tree to resolve the zero set of our field function
1. However, it is sometimes useful to build a distance tree from an existing triangle mesh.

Our octrees are always built in a top-down manner where each cell is split based on some

f cell C = {x : || — c||oo < 1} has center ¢ and edge length 2r then its concentric triple T is given by
T={z:|z— ¢l < 3r}.
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variation of the following splitting criterion:

Split any cell whose edge length exceeds its minimum distance to the surface. (3.6)

Splitting ends when the tree reaches a predetermined maximum depth. Criterion (3.6)
results in a three-color octree, as described by Samet [1990], where each cell of the octree
has one of three types: interior, exterior, or boundary (see Figure 3.4).

In general, Criterion (3.6) builds octrees with several useful properties:

e Adjacent cells differ in size by no more than a factor of 2, producing a smooth mesh

and simplifying procedures such as neighbor finding and triangulation of the vertices.
e A cell’s size is proportional to its distance to the surface.

e If ¢ is the signed distance to the surface at vertices and we extend ¢ into each cell
by trilinear interpolation, then, because cells vary in size, ¢ will be discontinuous.
However, the jumps in ¢ decrease in size in cells near the surface because of the

triangle inequality. Thus the interpolated ¢ is nearly continuous near the surface.

e Cells coarsen very rapidly away from the surface: if there are N childless cells touching
the surface, then the entire tree contains only O(N log N) cells. Hence the surface is
resolved accurately at minimal cost.

3.3.3 Building a Distance Tree to Resolve ¢

When building a new octree at the beginning of each timestep, we are essentially

trying to resolve our approximation

VYnr1(x) = dn(x — (At)v(TH—1/2:10)) (3.7)
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to the signed-distance function ¢,41(x). The octree is built recursively from the root cell

Cy using the following splitting criterion:

Split every cell where |¢n41] is smaller than the edge length. (3.8)

Thus we apply Criterion (3.8) as if 1,11 were a distance function. Redistancing

every timestep keeps

"/}n-&-l = an + (At)v : V¢n + O(At) = (bn + O(At) (3'9)

within O(At) of the signed-distance function ¢,. Thus in the limit, At = O(Az) — 0,
Criterion (3.8) reduces to (3.6), yielding the properties noted above. In practice, we use the
value of ¢ at the cell’s center to determine whether we should split the cell. To deal with
the fact that 1,41 is not a distance function and that the value at the cell’s center may not
be the minimum over the cell, we multiply the edge length by some constant before doing
the comparison. We have found that 3 works well in practice—always dividing near the
surface, without spuriously dividing too many cells. Notice that we can vary this constant

to achieve high-resolution bands of varying width around the surface.

3.3.4 Building a Distance Tree from a Triangle Mesh

When building an octree from a triangle mesh (either in initialization, or after some
geometric operation has been applied to the triangle mesh) we use the following splitting

criterion:

Split every cell whose concentric triple intersects the sur face. (3.10)

This test is efficiently implemented using Green and Hatch’s [1995] cube/triangle intersec-

tion test. Notice that we need not check every cell in the concentric triple of C' individually,
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but can just increase the edge length passed to the intersection test, effectively increasing
the size of C'. In practice we have found it sufficient to increase the edge length by a factor

of 2, rather than 3, but such trees may not satisfy all the properties listed above.

3.4 Contouring

Once we have resolved v on our distance tree, we need to create an explicit repre-
sentation of our surface at the new timestep. Creating this explicit representation amounts
to extracting the zero set of ¥ and is an instance of the contouring problem, which has been
well studied in computer graphics. For its simplicity, robustness, and speed, we choose
to use a marching-cubes method in our implementation. Our implementation is based on
Bloomenthal’s [1994]. Our cubes are the leaf cells in the distance tree which have vertices of
differing sign. We divide each cube into six tetrahedra to simplify the implementation. Ad-
ditionally, when finding the zero crossing along any edge (which will eventually be a vertex
in the triangle mesh), we use a secant method to speed up convergence and evaluate our full
composite field function, including exact evaluation of the previous signed-distance func-
tion. Consequently, the vertices of our polygon mesh are guaranteed to lie on the implicit
surface (within an € tolerance). In fact, each vertex in our polygon mesh can be mapped
to some point on some triangle in the mesh at the previous timestep. We take advantage
of this fact when advecting surface properties. The marching-cubes algorithm works well
for our purposes because each triangle generated by marching cubes sits strictly inside a
single cell of the distance tree, making the distance tree an especially effective spatial index.
Furthermore, we use the distance tree we have already built to guide the marching cubes,
avoiding the need to build a second structure to determine the topology of the new mesh.

Near the surface, our distance tree is refined to the maximum level and looks like a uniform
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grid. Consequently, we need not worry about patching the marching-cubes solution.

Our choice of contouring algorithm does result in some limitations. In addition
to creating poorly shaped triangles, marching cubes is nonadaptive. That is, the sampling
is as dense in flat regions as in regions of high curvature. Unfortunately, the nonadaptive
nature of marching cubes limits the resolution we can achieve in high-curvature areas, but
is necessary to ensure compatibility. To address this lack of resolution in high-curvature
areas, Strain [2001] split line segments whose centers were far from the surface, yielding
arbitrarily high accuracy. Unfortunately, this splitting technique is not easily extended
to three dimensions as splitting a triangle either creates an incompatible triangulation or
produces even more poorly shaped triangles. It is also very difficult to guarantee that we
will still have a manifold when the inserted vertices are moved to the surface. Alternatively,
several adaptive contouring methods [Shu et al., 1995; Shekhar et al., 1996; Poston et al.,
1998] seek to use adaptive grids and regain compatibility through various crack-patching
techniques. Such methods could easily be used here and we plan to explore adaptive methods
in future work.

Although we did not find it necessary, after the contouring step the mesh can be
processed in any way that preserves the closed-manifold invariant. This optional processing
might include smoothing the surface, improving the shape of the triangles, or any other
operation that returns a closed manifold. A new distance tree can then be built from this
modified mesh using Criterion (3.10). A new distance must be built only if the mesh is
modified.

By taking advantage of the details of our method, we can very efficiently achieve
limited smoothing in two ways. First, we can define a second scalar function to be the

combination of path tracing backward in time followed by the evaluation of a high-order
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polynomial interpolant of the distances at the vertices of the octree. This function is quite
similar to the functions used in semi-Lagrangian level-set methods [Strain, 1999b; Enright
et al., 2005]. When marching cubes encounters an edge whose vertices have different signs,
we find a point which evaluates to zero for both scalar functions. We can then average these
two zero-crossing to compute the final mesh vertex. By constraining the mesh vertex to
be on the edge of the marching-cubes grid, we still guarantee a consistent, closed, manifold
triangulation. While this smoothing technique may be quite useful in some applications, we
did not use this method for any of the results in this thesis. Second, repeatedly using the
same grid for contouring can produce grid artifacts. For example, a sphere of fluid falling
under gravity will develop creases along the coordinate axes. Such artifacts are a form of
aliasing and can be reduced by jittering the grid each timestep. Most of the examples in
this thesis used grids which were slightly larger than the simulation domain. These grids
were then randomly perturbed so that grids at adjacent timesteps were slightly offset from
one another. This jittering limits the reusability of our octrees, but since we build new

octrees every timestep, this limitation is not significant.

3.5 Redistancing

After the triangle mesh at the current timestep has been extracted, we must assign
true distance values to the vertices of our octree. This problem, referred to as redistancing,
has been well studied by the level-set community and a number of methods have been
suggested. Strain [1999a] suggested redistancing by performing an exact evaluation at
every vertex of the octree. This method is relatively efficient since the tree coarsens rapidly
away from the surface and works well in two dimensions. However, in three dimensions,

we have found it to be prohibitively expensive and unnecessary. Instead, we perform exact
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evaluation at all vertices of the cells that contain triangles, but then run a fast marching
method [Sethian, 1996; Losasso et al., 2004] over the remaining vertices. In our method,
there may be some parts of the domain where the octree was refined but that did not result
in any triangles, such as when the surface becomes thinner than the resolution of the tree.
Consequently, our octree, unlike those used by Losasso et al. [2004], does not necessarily
coarsen away from the surface. To address this problem, we coarsen parts of the tree which
have been refined but did not generate surface. We do this coarsening in two steps. First,
we propagate the triangle lists up the tree so that the triangle list of a cell is the union
of the triangle lists of a cell’s descendants. Second, we remove all the children of any cell
whose concentric triple does not contain any triangles.

Our redistancing method comprises three steps:
e coarsen the octree;
e compute exact distances at vertices of cells which contain triangles;

e run a fast marching method over the remaining vertices.

3.6 Tracking Surface Properties

One of the primary advantages of our method is the ability to track surface proper-
ties, such as color, texture coordinates, or even simulation variables, accurately at negligible
additional cost. As pointed out earlier, every vertex in a polygon mesh corresponds to some
point on some triangle in the previous mesh. Thus, semi-Lagrangian advection provides a
mapping between surfaces at adjacent timesteps. If vertex v in the current mesh maps to
point p in the old mesh and some surface property was stored at p, this property can be

copied to w. In this way we can track surface properties on the actual surface as we build
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the surface, so we do not incur any significant additional cost. Previous methods, such as
the ones proposed by Rasmussen et al. [2004] and Wiebe and Houston [2004], have been
limited to tracking properties in the volume near the surface and interpolating them to the
surface. Such methods incur significant cost, introduce substantial smoothing, and blur
properties between nearby surfaces.

In many applications there is no value actually stored at p. Instead, the properties
are stored at the vertices of the triangle containing p. In these cases the problem is slightly
more involved. In many cases it is sufficient to use barycentric interpolation to compute
a value at p and copy this interpolated value to v. However, for some applications this
interpolation can produce unwanted smoothing. A simple alternative is to set the value at
v to the value stored at the vertex nearest p. Unfortunately, this approach may introduce
unwanted aliasing. Essentially, we are having trouble because we are resampling the surface
at every timestep. However, if we know something about the property we are tracking, we
may be able to “clean up” the blurred signal. For example, in some cases we wish to track
reference coordinates, which can later be used as texture coordinates, passed to procedural
shaders, or for other purposes. Since we know that the tracked value should always be a
point on the initial surface we can find the point on the initial mesh which is nearest to
the point the tracking method supplied. In this way, we can ensure that, at every timestep,
every vertex in the mesh maps back to some point on the initial surface. Once we have this
mapping we can copy any property stored on the initial surface, whether it be the reference
coordinates, texture coordinates, or color values. Texturing liquids will be discussed in more

detail in the next chapter.
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Chapter 4

Texturing Liquid Surfaces

Liquid simulation techniques have become a standard tool in production environ-
ments, producing extremely realistic liquid motion in a variety of films, commercials, and
video games. Surface texturing is an essential computer graphics tool, which gives artists
additional control over their results by allowing them to stylize surfaces or add detail to
low-resolution simulations. For example, an artist could use texturing techniques to add
the appearance of foam to a wave, bubbles to beer, or fat globules to soup. Unfortunately,
texturing liquid surfaces is difficult because the surfaces have no inherent parameterization.

Creating a temporally consistent parameterization is extremely difficult for two
primary reasons. First, liquid simulations are characterized by their complex and frequent
topological changes. These topological changes result in significant discontinuities in any
parameter tracked on the surface. Second, liquid surfaces tend to stretch and compress
dramatically over the course of a simulation. Similarly, an advected parameterization will
also stretch and compress. While it may be appropriate to squash and stretch some textures
with the motion of the liquid surface, many textures, such as fat globules on the surface

of soup, should maintain a particular scale even as the liquid surface deforms. For these
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reasons, advected texture coordinates are often unsuitable for texturing liquid surfaces.

To address these problems, we have designed a new example-based texture syn-
thesis method specifically for liquid animations. Rather than advecting texture coordinates
on the surface, we synthesize a new texture for every frame. We initialize the texture with
color values advected from the surface at the previous frame. We then run an optimization
procedure which attempts to match the surface texture to an input example texture and,
for temporal coherence, the advected colors.

By synthesizing a new texture for every frame, our method is able to overcome the
discontinuities and distortions of an advected parameterization. We avoid discontinuities in
the parameterization due to topological changes by building a new parameterization of the
surface for each frame. Discontinuities in advected colors are removed during the optimiza-
tion procedure. Similarly, we avoid stretched and compressed parameterizations; because
we optimize the surface texture for every frame, it maintains a consistent level of detail
throughout the animation. We ensure temporal coherence by initializing the optimization
with the advected colors and including a coherence term in the energy function used during
optimization. As a result, our method is able to produce textures with excellent temporal
coherence, while still matching the input example texture. Before discussing the details of
our example-based texture synthesis method, I will first discuss alternative approaches to

texturing animated liquid surfaces.

4.1 Advected Colors

Perhaps the simplest method for texturing liquids is to advect color values on the
surface. This is easily done using the mapping provided by the semi-Lagrangian contouring

surface tracking method. For each vertex, v, in our mesh, we find the corresponding point,
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p on the previous mesh, use barycentric interpolation to compute a color value at p, and
copy this value to v. If multiple colors were stored at the vertices of the triangle containing
p, these colors will be blurred together. In many cases this behaviour is acceptable, even
desirable, as it appears that the various colors are mixing as the fluid flows, much like
mixing paint. One drawback of this approach is that this blurring is tied to the timestep

and mesh resolution and is not a parameter which can be tuned by an artist.

4.2 Advected Parameterizations

Another simple approach to texturing liquid surfaces would be to advect some
parameterization (for example, texture or reference coordinates) and use standard texture
mapping or procedural shading techniques to generate a texture. This approach works
reasonably well and has been used successfully in production for very short sequences. In
longer sequences, the textures become too distorted. There are several sources of this dis-
tortion. First, topological changes lead to discontinuities in the advected parameterization
which manifest as seams in the texture. Second, liquid surfaces tend to stretch and com-
press, leading to loss of detail and aliasing when using noise-based procedural textures.
These problems can likely be addressed by adapting the work of Neyret [2003] or Cook and
DeRose [2005]. However, these techniques essentially push the problem onto the shader
writer who must now make certain that the shader behaves properly at a variety of fre-
quency bandwidths. Furthermore, these approaches do not offer solutions to discontinuities

arising from topological changes, or distortions to the texture due to a swirling surface.



36

4.3 Reaction-Diffusion Texture Synthesis for Liquids

Reaction-diffusion [Turk, 1991; Witkin and Kass, 1991] systems provide a more
sophisticated approach to generating textures. Motivated by the chemical reactions that
generate patterns on animals, reaction-diffusion is a process in which two or more chemicals,
or morphogens, diffuse at unequal rates over a surface and react with one another to form
stable patterns such as spots and stripes. An example of a reaction-diffusion system, which

generates surface spots, due to Meinhardt [1982; 1992b] is:

da 0.01a;a?

5= s(apy + — +p3) + D,V?a

b ) )

pri s(bpa + 0.01a;a”) + Dy Vb, (4.1)

where a and b are scalar fields stored on the surface which are updated in fictitious time
according to Equation (4.1), p1, p2, and ps are parameters of the system, D, and D control
the rates of diffusion for the different morphogens and s controls the reaction speed. When
generating the actual surface color, we compare the values of a and b. If a is larger we
choose one color, if b is larger we choose another color.

Reaction-diffusion texturing methods are attractive in general because they avoid
the often difficult task of assigning texture coordinates to a complex surface. In the context
of texturing liquid animations they are even more attractive because they obviate the need
to advect a parameterization. Instead, we simply advect simulation variables, morphogens,
which are used to initialize the simulation at the next frame. Thus, reaction-diffusion
texture synthesis is able to deal with topological changes and surface distortions. Unfortu-
nately, they only admit limited types of textures and suffer from the fact that very small
perturbations of the surface can substantially change the resulting texture. Consequently,

small surface motion can cause large changes in the texture.
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4.4 Example-Based Texture Synthesis for Liquids

Similar to reaction-diffusion texture synthesis, our example-based texture syn-
thesis method can handle the topological changes and surface distortions characteristic of
liquids. Our example-based texture synthesis method for liquid animations is built from
three relatively new computer graphics technologies: the ability to track surface properties
in liquid simulations (see Chapter 3), techniques to parameterize overlapping patches of
surface [Praun et al., 2000; Sorkine et al., 2002], and an optimization-based technique for
texture synthesis [Kwatra et al., 2005]. By combining these three methods we have devel-
oped a new algorithm that generates coherent, undistorted textures on liquid surfaces based

on example textures.

4.4.1 Surface Tracking

The motion in our examples is generated using a state-of-the-art physically based
liquid simulator. More specifically, we use the staggered-grid data structure of Foster and
Metaxas [1996], the semi-Lagrangian advection method introduced by Stam [1999], the
extrapolation boundary condition of Enright et al. [2002b], the viscoelasticity model of
Goktekin et al. [2004], and the surface tracking method described in Chapter 3.

A necessary feature of any liquid simulation system is the ability to track the
liquid’s free surface. While several surface tracking techniques exist, the semi-Lagrangian
contouring method presented in Chapter 3 also provides a mapping between liquid surfaces
at adjacent timesteps. This mapping can be used to accurately track arbitrary surface prop-
erties on the actual liquid surface at negligible additional cost. We use this feature to advect
colors and parametric directions (see Figure 4.1) on the surface through time. If a different

surface tracking method is preferred, the texture particle interpolation method developed
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Figure 4.1: These images show the parametric directions which are advected on the surface
and used to orient triangles in texture space. One of the parametric direction has been used
to color the surface (the x-component in the red channel, the y-component in the green
channel and the z-component in the blue channel).

by Rasmussen et al. [2004] or the grid-based approach of Wiebe and Houston [2004] and
Houston et al. [2006] could be used to advect colors, though these approachs would intro-
duce significant computational expense and may cause unwanted blurring between nearby

surfaces.

4.4.2 Surface Parameterization

To apply our optimization-based texture synthesis method (see Section 4.4.3),
we must construct some parameterization of the surface. In particular, we create local
parameterizations of a set of overlapping patches on the surface (see Figure 4.2). For each
patch, the parameterization allows us to map colors on the surface to two-dimensional
texture space and vice versa.

The surface meshes generated by the liquid simulation system, which uses a march-

ing cubes method, contain many poorly shaped triangles and large dihedral angles. Unfor-
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Figure 4.2: These images show the patches used in our optimization process. Each patch
will be assigned colors from one region of the input texture and overlapping patches will
have their colors blended together. It is interesting to note that we cannot always construct
perfect patches and this leads to small holes in some of the patches.
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Figure 4.3: This is the two-dimensional parameterization of a surface patch using the pop-
ular heuristic of Maillot et al. [1993].
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Figure 4.4: This is the two-dimensional parameterization of a surface patch when we do
not add triangles which fail the distortion test of Sorkine et al. [2002]. The triangles near
the boundary are decidedly less distorted than those in Figure 4.3.
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Figure 4.5: This is the two-dimensional parameterization of a surface patch after running the
optimization introduced by Praun et al [2000]. The optimization was initialized with a patch
constructed using the bounded-distortion approach of Sorkine et al. [2002] (see Figure 4.4).
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Figure 4.6: These images show the incremental construction of a texture patch. When
inserting the final vertex, more than one triangle is created and the actual vertex is inserted
at the average of the two predicted locations.
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tunately, these meshes do not admit even local parameterizations without significant dis-
tortions. Consequently, as a pre-processing step, we re-tile the surfaces using the method
presented by Turk [1992a]. This re-tiling step also allows us to control the resolution of
the texture on the surface [Wei and Levoy, 2000]. We then generate a set of points which
uniformly sample the surface using the repulsion method described by Turk [1992a]. For
each point, p;, we grow a surface patch by iteratively mapping neighboring vertices to the
plane (see Figure 4.6). The target size of the patches is a user-specified parameter, which
is chosen based on the scale of the features in the example texture we wish to preserve.
We grow our patches by first mapping the triangle, T', containing p; to a isomet-
ric triangle, T’, in two-dimensional texture space. We orient 7”7 based on the parametric
directions advected during surface tracking (Section 4.4.1) and require that p; maps to the
origin of texture space. Following Wei and Levoy [2001], to avoid aliasing or other artifacts
we uniformly scale 7" (and hence the entire patch) by a factor of 1/y/2 x A (where A is the
average triangle area) so that, in texture space, we have roughly the same number of pixels
and triangle vertices. After flattening the first triangle, we iteratively add vertices adjacent
to the patch. The addition of each vertex, v, will create at least one triangle in texture
space. If adding v creates exactly one triangle, then we position v so that the newly created
triangle is isometric to its corresponding triangle on the three-dimensional surface. If, how-
ever, more than one triangle is created, computing the position of v is more involved. For
each triangle created, we compute a candidate position for v based on isometric triangles
as in the previous case. The final location of v is then the average of all these candidate
locations. This is essentially the same heuristic proposed by Maillot et al. [1993] and used
by Praun et al. [2000] and Wei and Levoy [2001]. However, we do not add any vertex

which falls outside the user-specified target patch size, that causes any self-intersections of
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the patch in texture space, or that creates any overly distorted triangles. Rejecting overly
distorted triangles creates far more uniform patches as can be seen by comparing Figure 4.3
and Figure 4.4. In determining whether a triangle is overly-distorted, we use the distortion
metric used by Sorkine et al. [2002] and originally introduced by Sander et al. [2001]. In
describing our distortion metric we follow Sorkine et al. [2002].

Let T = Aqiqg2q3 be the triangle on the three-dimensional surface and 7" =
Api1p2ps be the triangle in two-dimensional texture space, where p; = (s;,t;). Let S :
R? — R3 be the (unique) affine mapping from the two-dimensional texture space to three-
dimensional surface, such that S(p;) = q;. Let (p1,p2,p3) = ((s2 — s1)(t3 — t1) — (53 —

s1)(t2 — t1))/2 be the area of Apipaps. Then, S is given by

S(p) = (p,p2,Ps3)q1 + (P, P3,P1)q2 + (P, P1,P2)4q3
<p1>p27p3>

and the partial derivatives of S are:

0S  qi(ta —t3) + qa2(tz — t1) + q3(t1 — t2)

g =92 =
0s 2<p17p27p3>

0S  qi(s3 — s2) +qa2(s1 — s3) + q3(s2 — 51)

S = —_— =
¢ 8t 2<p17p27p3>

The singular values of the 3 x 2 Jacobian matrix [S,5;] are:

Ymaz = \/; ((a+c) + v/ (a — c)? +462)

Vrmin = \/; ((a +c)—+/(a—c)?+ 4b2>
where a = S5 - S, b =S5 - Sy, ¢ =S¢ - Sy
The values Yimqee and ymin represent the largest and the smallest scaling caused by
the mapping S. Since both stretching and compression lead to geometric distortions, we

use the following expression as our distortion metric:

D(T,T") = max {Vmaz, 1/ Ymin} -
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Note that D(T,T’) > 1, and the equality holds if and only if 7" and 7" are isometric.

At this point we have constructed a parameterization of the surface. Unfortunately,
as can be seen in Figure 4.4, far from the center of the patch, this parameterization does
not closely match the vector field stored on the surface. During texture synthesis this
distortion can cause overlapping patches to find non-overlapping regions of the example
texture, degrading the results. Overlapping patches are more likely to find overlapping
regions of the example texture if they have consistent parameterizations. To this end, we
apply the patch optimization procedure described by Praun et al. [2000]. This optimization
involves solving a sparse linear system and seeks to align all of the triangles in the patch
with the advected parametric directions (see Figure 4.5).

Our discussion follows that of Praun et al. [2000]. Let (u, v) be the target paramet-
ric directions for a given triangle, Aq1g2q3 and (@ = (1,0),% = (0,1)) be the parametric
directions in texture space. We compute (u,v) for a given triangle by averaging the ad-
vected parametric directions stored at the triangle’s vertices, projecting these directions to
the plane of the triangle, and, finally, forcing them to be orthogonal. Now, (u,v) lie in the

plane of Aq1q2qs and we therefore can express them using barycentric coordinates:
u = auqi + Pfugz + Yugs

v = ayq1 + Bvqg2 + w4as,

where o + 3 + v = 0. Since the map S is linear (and invertible) over the face, the image
S~1(u) is therefore a linear function of the vertex parameterizations S~'(q1), S™1(g2),

S~1(g3). We can then define vectors
du = auS ™ (q1) + fuS ' (g2) +1uS ' (g3) — @

dy = oS (q1) + Bv S (a2) + 1w S ' (g3) — o
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Our optimization problem is then to minimize the least squares functional

D ldul® + [1do]*.
s

The minimum of this function is unique up to a translation, so we add the further
constraint that the initial point which seeded the patch remains at the origin. Solving this
optimization problem involves solving a sparse linear system Ax = b where A has four
rows for every triangle, one for each of the two coordinates of u and v and a final row for
the barycentric coordinates of our seed point. x is the vector of texture coordinates of the
vertices in the patch, and b is a vector of ones and zeros expressing the texture coordinate

directions.

4.4.3 Texture Synthesis

Due to discontinuities, surface stretching/compression, or blurring of the surface
signal, the distorted pattern of colors generated by the semi-Lagrangian mapping typically
will not be a good match to the original texture pattern. To force the surface colors to
more closely match the input example texture, we employ an optimization-based texture
synthesis method based on the one presented by Kwatra et al. [2005].

Throughout the optimization we store three types of color for each vertex of each
surface patch (see Figure 4.7): the current colors, the advected colors, and the best-match
colors. The current colors refer to the colors currently stored on the mesh—a blend of
all the best-match colors of all the patches overlapping a given vertex. The current colors
represent the current state of the optimization and change with each optimization step.
When optimization is complete the current colors will define the final texture on the surface.
The advected colors refer to the distorted colors generated through the semi-Lagrangian

mapping. The advected colors are used to initialize the current colors, but remain constant



"

Figure 4.7: This figure shows a planar view of one step of texture optimization for two
surface patches. The leftmost images are the distorted advected colors generated through
the semi-Lagrangian mapping. Second from the left are the current colors at the beginning
of the optimization step. Third from the left are the best-match colors, the region from
the example texture which most closely matches the advected and current colors. On the
right are the current colors at the end of the step. Since this step is late in the optimization
process the current colors at the end of the step are indistinguishable from the current colors
at the beginning of the step.

Figure 4.8: The parameter, w, allows us to trade off temporal coherence and matching the
input texture. This figure shows the last frame of an animation similar to those in Fig-
ure 5.11 for a variety of w values. For low values of w, the final texture more closely matches
the input texture. As w increases there is more temporal coherence between the frames,
but the optimization is less able to match the details of the example texture.
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during optimization. The best-match colors are the colors, chosen from the input example
texture, that most closely match the current and advected colors in a given patch.

Each iteration of the optimization process comprises four steps for each patch:
1. Map the current and advected colors from the surface to texture space.
2. Find the best-match to the current colors and advected colors in the example texture.
3. Map these best-match colors to the surface.

4. Update the current colors on the surface.

Step (1) uses the parameterization described in Section 4.4.2 to map the current and ad-
vected colors from the surface to texture space. Of course, since the advected colors do
not change during optimization, these can be mapped to texture space once and cached.
Step (2) finds the best match in the input example texture to both the advected and cur-
rent colors by finding the region in the input example texture which minimizes the energy
function
E(c,a,b) = g(i,§) (1 = w)(eij — bij) + w(ai; — biy)[|*,
i,J

where ¢ are the current colors for the patch (mapped to texture space), a are the advected
colors, b are the best-match colors (which is the variable we are minimizing over), i and j
vary over the two-dimensional texture region, g(-) is a Gaussian weighting function which
ensures that colors near the center of the patch have more weight, and w is a weighting
parameter that trades off temporal coherence and matching the example texture (see Fig-
ure 4.8). In our implementation, the best-match colors are found through a brute-force
search over all regions of the example texture. More sophisticated search techniques do ex-
ist [Wei and Levoy, 2000; Kwatra et al., 2005) and could provide significant speedups. Step

(3) maps these best-match colors from texture space to the surface mesh. Finally, step (4),
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removes the contribution of the previous best-match colors from the current colors stored at
the mesh vertices and blends in the new best-match colors. Following Kwatra et al. [2005],
we perform the optimization at several mesh resolutions and for several patch sizes at each
resolution, though for most of the examples in this thesis we found one resolution with
patch sizes of 33x33 pixels and 17x17 pixels to be sufficient. Several optimization steps for
one frame can be seen in Figure 4.9.

This optimization approach is particularly appealing in our context. In many
parts of the surface that have experienced minimal distortion, the advected colors may
quite closely match the example texture. Consequently, the optimization makes only minor
changes and converges quite quickly. Additionally, we achieve temporal coherence by initial-
izing the optimization with the advected colors and including a term in the energy function
which attempts to match these advected colors. This temporal coherence is demonstrated

in Figure 5.10.
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Figure 4.9: These images show the progress of the texture optimization. The image in the
upper left hand corner is the initialization for the optimization (i.e. the advected colors).
The next image is after the first optimization step, and so on. In the last image of the third
row, the optimizer begins working with smaller patches and the bottom right corner shows
the final output texture for this frame.
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Chapter 5

Results and Discussion

5.1 Surface Tracking

We have tested our semi-Lagrangian contouring surface tracking method coupled
with a fluid simulation on several examples such as the ones shown in Figures 5.1 and 5.2.
We have also tested it in the spiraling analytical test field proposed by LeVeque [1996] and

used by Enright et al. [2002a] to test their particle level-set method:
ve(z,y, 2) =(2sin(nt) sin? (rx) sin(27y) sin(272),
— sin(7t) sin(27x) sin? (7y) sin(272), (5.1)
— sin(7t) sin(27x) sin(27y) sin?(72))
Figure 5.3 shows two objects being advected in this divergence-free velocity field to a mid-
point after which the field reverses. The sphere of radius 0.15, centered at (0.35,0.35,0.35)
was restored to a nearly identical shape (see Figure 5.4), while the bunny exhibited a small

amount of smoothing. The surface of the bunny was textured by a spot-generating reaction-

diffusion system [Turk, 1991; Witkin and Kass, 1991] that ran on the surface as the object
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Figure 5.1: These images shows an invisible tank being filled as multicolored balls of fluid fall
into it. The resulting surface contains complex geometric details which retain the different
colors of the balls. The top image was rendered with a matte shader, while the bottom
image was rendered with a colored glass shader.
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Figure 5.2: Two balls of visco-elastic fluid are thrown at each other and merge.

Figure 5.3: This figure shows the behavior generated when two different surfaces are passed
through an analytical flow field that stretches and distorts them. The first three images show
the object flowing along the field, the last three show the behavior when the distorted object
then flows back along the reverse field. The bunny is textured using a reaction-diffusion
system that is running on the surface during the sequence.

[12.5%
1.25%
0.0%

-1.25%

Figure 5.4: This figure shows the error in the final frame of the sphere example in Figure 5.3.
The color maps to the error as a percentage of the sphere’s radius, with blue points slightly
inside and yellow points slightly outside. Over most of the surface the error is quite small,
though a small crease has formed where the sphere has undergone substantial distortion.
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Figure 5.5: In this figure we show the result generated when we continue to distort and
stretch an object past the point where it thins out and tears.

was being advected. At each timestep, the morphogens were advected along with the sur-
face and then allowed to react. In Figure 5.5 we show the result of running the sphere
through the flow field for several revolutions to highlight the behavior generated when the
surface thins below the resolution of the octree’s finest level.

All of our fluid examples used a standard regular-grid Eulerian fluid simulator.
More specifically, we use the staggered-grid data structure of Foster and Metaxas [1996], the
semi-Lagrangian advection method introduced by Stam [1999], the extrapolation boundary
condition of Enright et al. [2002b], and the viscoelasticity model of Goktekin et al. [2004].
The fluid simulator and the surface tracking module were only very loosely coupled: the
fluid simulator provided the surface tracker with a velocity function and, in turn, the surface
tracker provided the simulator with the signed-distance function. Because our fluid simula-
tor has a regular grid its resolution is notably coarser than the surface tracker, which uses
an octree. The idea of using different resolutions for the fluid and surface is not new; Foster
and Fedkiw [2001] used different timesteps for their fluid and surface calculations and Gok-
tekin et al. [2004] found that increasing the spatial resolution of the surface tracking grid
dramatically reduced volume loss. As noted by Losasso et al. [2004], using different spatial

resolutions can produce artifacts. For example, pieces of surface could appear connected
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when the simulator thinks they are disconnected and vice versa. Additionally, surface fea-
tures may be maintained when a more detailed fluid simulator would smooth them away.
In general, we found the increased surface resolution to be worth these artifacts. Ideally we
would use a multiresolution fluid simulation, like the octree method of Losasso et al. [2004].
We plan to incorporate a multiresolution fluid simulator as part of our future work.

For most of our examples the surface tracking module took roughly 1 min/timestep
at an effective resolution of 5123. The fluid simulation also required about 1 min/timestep.
Both the fluid simulator and the surface tracking module took 11 timesteps per frame.
Thus it took about 2 days to simulate 10 s of animation, with roughly half the time spent
solving for the velocity field and half the time updating the surface. It is important to
note that, given a perfect semi-Lagrangian path tracer, the surface tracking method could
take arbitrarily large timesteps. Decoupling the timesteps of the fluid simulator and surface
tracker, so that the surface tracker runs only once per frame, is an interesting area of future
work.

In Figure 5.6 we show the behavior when a thick viscoelastic fluid is allowed to
flow off a shelf into a basin. This surface is textured by advecting reference coordinates
along with the flow and applying a procedural checkerboard texture. Figure 5.7 shows
beginning and ending frames using both an off-the-shelf procedural shader, which includes
a displacement map, and a reaction-diffusion system. The motion of the spots on the surface
occurs both from the motion of the surface and from the reaction-diffusion system seeking
equilibrium on the moving surface. Thus, even after the fluid motion has mostly stopped
the surface spots continue to move over the surface.

Figure 5.8 show two streams of liquid that are being sprayed toward each other.

As the streams oscillate from side-to-side, they collide and produce a thin, web-like surface
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Figure 5.6: This sequence shows a thick viscoelastic fluid sliding off of a shelf. A checker-
board texture is mapped onto the surface. It is interesting to notice that the corners of the
checkerboard texture stay sharp, despite the significant deformation. However, it is also
evident that the surface deformation has caused the texture to distort significantly.

Figure 5.7: This figure shows the beginning and ending frames of an animation similar to
that shown in Figure 5.6. The left images were rendered with an off-the-shelf procedural
shader which includes a displacement map, while the images on the right were generated
with a reaction-diffusion texture.
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Figure 5.8: This sequence shows realistic (top) and matte (bottom) renderings of two liquid
sprays. As the sprays move from side to side, they periodically intersect and create a
web-like spiral pattern.

between them. The motion of the two streams causes this thin surface to form a spiral
shape as the streams separate. Similar effects can be seen in real-world footage.

All of our images were rendered with the open-source renderer Pixie [Arikan, 2005].
Since we generated a polygonal mesh for each frame, we could take advantage of standard

rendering techniques, allowing for very fast rendering times; most of our renderings took
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less than 3 min/frame. Many of our examples were rendered with a matte shader so that
the surface detail can be seen. A number of our examples were also rendered with a glass
shader (using water’s index of refraction) for comparison to previous methods and real
fluids, and to demonstrate how the method can be used to generate realistic results. Our
colored and textured examples illustrate how easily a variety of properties may be attached
to the surface. In practice, we believe that advected properties could be used effectively

with standard shading techniques to generate a wide range of interesting effects.

5.2 Surface Texturing

We have implemented the example-based texture synthesis method described in
this thesis and demonstrated it with a variety of fluid motions and example textures. The
fluid motions demonstrate significant squashing and stretching of the surface as well as a
variety of topological changes. Our method generates surface textures which match the
input example texture while remaining temporally coherent.

Figure 5.9 shows a comparison between three texturing approaches. Both the ad-
vected parameterization and advected colors approaches suffer from substantial distortion
of the texture over time. The advected parameterization additionally contains discontinu-
ities where topological changes have occurred. The advected colors handle these topolog-
ical changes but suffer from significant blurring of the surface texture. In contrast, our
optimization-based texture synthesis approach is able to closely match the example texture
while maintaining temporal coherence. Figure 5.10 shows an animation of a splash created
when a ball of fluid is thrown into a shallow pool of fluid. The resulting motion demon-
strates significant stretching of the surface, but the surface texture does not become overly

distorted and always provides a good match to the input example texture.
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&4, || B2

Figure 5.9: This figure shows three approaches to texturing liquid animations. The anima-
tion on the left was textured using an advected parameterization. This technique results
in significant distortions of the texture and discontinuities where the surface has undergone
topological changes. The middle column was textured with advected colors. Over time,
the colors distort and blur. The right column was textured with our optimization-based
technique. The texture avoids distortion while maintaining temporal coherence.




61

Figure 5.10: This splashing motion was textured using our example-based texture syn-
thesis technique for liquid animations. Despite topological changes and significant surface
distortions, the salient characteristics of the synthesized texture remain constant.
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Figure 5.11: This figure shows several textures applied to a simulation of a melting bunny.
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Figure 5.12: In this simulation, two balls of viscoelastic fluid are thrown at each other
and merge. The texturing method handles this topological change without introducing any
objectionable “pops.”
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Figure 5.13: This figure shows two textures applied to an animation of a tank filling with
viscous fluid.

Figure 5.11 shows an animation of a melting bunny with a checkerboard texture.
Though the resulting texture is not a perfect checkerboard, which is impossible because
the surface is not developable, locally the texture quite closely matches the checkerboard
example, and globally the texture does resemble a checkerboard.

Figure 5.2 shows an animation of two balls of fluid thrown at each other. Because
we explicitly include temporal coherence in the energy function there is no noticeable “pop”
when the two spheres merge, rather they gradually move toward a continuous texture which
matches the example. Figure 5.13 shows an additional example of viscous fluid filling a
tank with two different textures. Figure 5.14 shows some examples with multiple textures.
We took two approaches to handling multiple textures. The simpler approach initializes
different objects with different textures. Then, for each optimization step, all the textures
are searched when looking for the best match. Unfortunately, this approach fails when the
similarity metric (in our case, sum of squared differences) is unable to distinguish between
the various textures. In this case, we advect an additional scalar field on the surface which
determines, individually for each patch, which example texture is searched for the best

match.
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Figure 5.14: This figure shows some examples with multiple textures. In the examples
on the left, the objects were initialized with different textures. After initialization the
optimization searched both textures for the best match. In the examples on the right, an
additional scalar field was advected on the surface and used to determine which texture to
search for the best match.
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Unfortunately, our implementation is not particularly fast. Re-tiling a surface
mesh takes about one minute, generating and optimizing the surface patches takes between
fifteen and thirty minutes for a single frame, and the texture optimization takes between
one and fifteen minutes per frame, depending on the amount of distortion of the texture
and the number of vertices in the mesh. Fortunately, the re-tiling and patch generation can
be done in parallel, so they do not create a significant bottleneck in a traditional rendering
pipeline. Additionally, in this work we were more concerned with developing a method
which produces high quality results rather than one optimized for speed. We believe the
general method could be made much faster, perhaps using ideas developed by Magda and
Kriegman [2003].

Concurrently with our work, Kwatra et al. [2006a; 2006b] have developed a very
similar example-based texture synthesis method for fluids. However, they do not build and
optimize patches as a precomputation, but rather construct color neighborhoods on the
fly using the method presented by Turk [2001]. They also have a more developed texture
synthesis module which uses K-means trees to find the best match in the example texture

rather than our brute force approach.
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Chapter 6

Conclusions

Semi-Lagrangian contouring offers an elegant and effective means for surface track-
ing and has a number of advantages over competing methods. First, we have an explicit
representation. In addition to enabling exact evaluation, this explicit representation also
allows us to leverage 30 years of computer graphics technology which has been optimized
for polygonal meshes. Rendering, texture mapping, and a variety of other applications
are all very straightforward. Second, we have an implicit representation. This implicit
representation allows us to update the surface without explicitly addressing any of the dif-
ficult topological issues which plague other approaches. Third, semi-Lagrangian advection
gives us a mapping between surfaces at adjacent timesteps. This mapping allows us to
accurately track surface properties on the actual surface at negligible complexity and cost.
Fourth, our method does not have any ad hoc rules or parameters to tune. In fact, the only
parameters to our system are the upper and lower corners of the domain, the maximum
depth of the octree (a resolution parameter), and some resolution tolerances. Finally, and
most importantly, we are able to produce detailed, flicker-free animations of complex fluid

motions.
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Example-based texture synthesis methods are in many ways ideal for liquid sur-
faces because they are able to overcome the discontinuities and distortions of an advected
parameterization while maintaining excellent temporal coherence. Our method is able to
handle a wide variety of input example textures and should prove to be a useful tool for
artists, complementing existing texturing techniques such as procedural texturing [Ebert
et al., 2002], and advected texture maps. Of course, our example-based texturing method
is not limited to the domain of liquid animations—the method requires only the ability to
map colors from the surface at one frame to the surface at the next frame and could prove
quite useful for texturing a variety of deforming surfaces. Furthermore, our methods are not
limited to image textures, but could also be used for bump and displacement maps or any
other method of stylizing surfaces or adding surface detail, as long as an example texture

can be supplied.
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