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Abstract

Tracking and Texturing Liquid Surfaces

by

Adam Wade Bargteil

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor James F. O’Brien, Chair

This thesis addresses the problems of tracking and texturing liquid surfaces in

computer graphics fluid simulations. The proposed surface tracking method, known as

semi-Lagrangian contouring, takes the unusual approach of representing the liquid surface

explicitly with a closed, manifold triangle mesh. However, rather than attempting to track

the triangle mesh through time, a new triangle mesh is built at each timestep by contouring

the zero-set of an advected signed-distance function. Thus, while we represent the surface

explicitly, we update the surface through time using an implicit representation. One of the

primary advantages of this formulation is that it enables tracking of surface characteristics,

such as color or texture coordinates, at negligible additional cost. These advected surface

characteristics can then be used in a variety of ways to generate time-coherent textures on

the liquid surfaces. After considering a variety of simple texturing techniques, I propose an

example-based texture synthesis method designed specifically for liquid animations. This

example-based texture synthesis method first advects color values on the surface and then

uses an optimization process to force the surface texture to more closely match a user-
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input example texture. This approach creates textures which resemble the example texture

even in the precense of complicated topological changes and significant surface stretch-

ing/compression. I include a variety of examples demonstrating that these methods can be

effectively used as part of a fluid simulation system to animate and texture complex and

interesting liquid behaviors.

Professor James F. O’Brien
Dissertation Committee Chair
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Chapter 1

Introduction

This thesis considers two fundamental problems in physically based computer an-

imation of liquids: tracking the liquid’s free surface and texturing this free surface. Surface

tracking is an essential component of any liquid simulator—the location of the free surface

must be known in order to apply boundary conditions. Thus, the surface tracking method

directly affects the simulation and inaccuracies in the surface location lead to inaccuracies

in the resulting simulation. While this point alone is a strong argument for the importance

of surface tracking in liquid simulations, in the context of computer graphics there is an

even more significant argument—the surface is what we actually see. Regardless of how we

render the results of our simulation, be it with a clear water shader or as textured matte

surfaces, we always display the surface. Thus, even if we have an ideal method for solving

the Navier-Stokes equations, a poor surface tracking method will cause our final results,

computer animations, to be unimpressive.

In addition to being a very important problem, surface tracking is also an extremely

difficult problem. Liquid surfaces are characterized by frequent and complicated topological

changes as well as significant stretching/compression of the surface. These characteristics
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make many methods, which are quite adequate for tracking a variety of deforming surfaces,

untenable in the context of liquid surfaces. For example, methods which seek to maintain

an explicit surface representation incur significant complexity performing the mesh surgery

necessary to deal with the frequent topological changes of liquid surfaces. Additionally,

methods which sample the surface with points will have to address resampling the surface as

it stretches and compresses. While the field of computational fluid mechanics has developed

many methods and strong theoretical frameworks for numerically solving and analyzing the

equations of fluid motion, the problem of tracking the free surface has received surprisingly

little attention. Additionally, many surface tracking methods which are quite acceptable

for a variety of engineering applications produce visual artifacts, such as flickering, which

make them unusable in computer graphics, where the goal is often to fool the audience into

believing that what they see is real; visual artifacts, such as flickering or significant volume

loss, can destroy this illusion of realism.

This thesis proposes a solution to the surface tracking problem for use in computer

graphics. Our method explicitly represents the surface as a closed, manifold triangle mesh.

However, rather than attempting to advect this mesh forward with the flow, we update the

surface in time with an implicit representation: an advected signed-distance function, ψ,

whose zero set defines the surface. A new polygonal surface is generated by contouring or

extracting the zero set of ψ. The value of ψ at a point x, at current time t, is obtained

by first tracing backward through the flow field to find the previous location x′ at time

t − ∆t, and then returning the signed distance of x′ from the previous surface. Using

adaptive octree data structures, we can efficiently and reliably construct the new surface and

corresponding signed-distance function. One of the primary advantages of this formulation

is that it enables tracking of surface characteristics, such as color or texture coordinates,
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at negligible additional cost. These surface characteristics can then be used in a variety of

ways to texture the liquid surface, which is the other problem considered in this thesis.

Surface texturing is an essential computer graphics tool, which gives artists ad-

ditional control over their results by allowing them to stylize surfaces or add detail to

low-resolution simulations. For example, an artist could use texturing techniques to add

the appearance of foam to a wave, bubbles to beer, or fat globules to soup. Texturing

liquid surfaces is difficult for many of the same reasons as tracking liquid surfaces. Com-

plex and frequent topological changes lead to discontinuities in advected parameterizations,

surface distortions can lead to loss of detail or aliasing in noise-based procedural textures,

and surface re-sampling issues can lead to blurring or aliasing of textures. Unlike B-spline

patches, liquid surfaces lack any inherent parameterization and their complex motion makes

it extremely difficult to build a temporally coherent parameterization. After considering

a variety of simple texturing techniques, including advected colors, advected parameteri-

zations, and reaction-diffusion texture synthesis, I propose an example-based texture syn-

thesis method designed specifically for animations of liquids. This example-based synthesis

method begins by advecting color values between frames using the mapping provided by

the semi-Lagrangian contouring method used to track the surface. For every frame an opti-

mization procedure attempts to force these distorted color values to more closely match the

input example texture. This approach creates textures which resemble the example texture

even in the precense of complicated topological changes and significant surface stretch-

ing/compression. I include a variety examples demonstrating that these methods can be

effectively used as part of a fluid simulation system to animate and texture complex and

interesting fluid behaviors.
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Chapter 2

Previous Work

Our work pulls together solutions to a number of well-studied problems to arrive at

methods for tracking and texturing liquid surfaces. In this section I will first discuss other

surface tracking methods and then discuss related work and the mathematical foundations

for several of the individual components of our surface tracking method. Next, I will

discuss previous fluid texturing approaches and conclude by discussing previous work which

developed the components of our example-based texture synthesis method.

2.1 Previous Surface Tracking Methods

Because surface tracking arises in a variety of contexts, the topic has received

a significant amount of attention. Even in the limited context of fluid animation, there

has been a great deal of excellent work on simulating fluids with free surfaces, including

Foster and Metaxas [1996], Foster and Fedkiw [2001], Enright et al. [2002b], Carlson et

al. [2002; 2004], Losasso et al. [2004], Goktekin et al. [2004], Hong and Kim [2005], Wang et

al. [2005], Guendelman et al. [2005], and Zhu and Bridson [2005]. The methods available for

tracking free surfaces of liquids can be roughly sorted into four categories: level-set methods,
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particle-based methods, particle level-set methods, and semi-Lagrangian contouring.

2.1.1 Level-Set Methods

Many of the most successful solutions to the surface tracking problem are based

on level-set methods, which were originally introduced by Osher and Sethian [1988]. A

complete review of level-set methods is beyond the scope of this thesis, and I recommend

the excellent surveys by Sethian [1999] and Osher and Fedkiw [2003]. Level-set methods

represent a surface as the zero set of a scalar function which is updated over time by solv-

ing a partial differential equation, known as the level-set equation. This equation relates

change of the scalar function to an underlying velocity field. By using this implicit repre-

sentation, level-set methods avoid dealing with complex topological changes. However, the

scalar function is defined and maintained in the embedding three-dimensional space, rather

than just on the two-dimensional surface. In practice, scalar function values need only be

accurately maintained very near the surface, resulting in a cost that is roughly linear in the

complexity of the surface. One difficulty with level-set methods is that they generally re-

quire very high-order conservation-law solvers, though fast semi-Lagrangian methods have

been shown to work in some cases [Strain, 1999b; Enright et al., 2005]. The most signifi-

cant drawback to using level-set methods to track liquid surfaces is their tendency to lose

volume in underresolved, high-curvature regions. See Enright et al. [2002a] for an excellent

discussion of the reasons for this volume loss.

Bærentzen and Christensen [2002] built a sculpting system using a level-set surface

representation which could be manipulated by a user with a variety of sculpting tools. Like

us, they used adaptive grid structures to store the scalar field. However, they used a

two-level structure rather than a full octree. They also used semi-Lagrangian methods to
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update their level-set function. However, when evaluating the distance function after the

semi-Lagrangian path tracing, they interpolated distance values stored on a regular grid,

while our explicit surface representation allows us to compute exact distances near the

surface.

Sussman and Puckett [2000] coupled volume-of-fluid and level-set methods to

model droplet dynamics in ink-jet devices. Volume-of-fluid [Hirt and Nichols, 1981] tech-

niques represent the surface by storing, in each voxel, a volume fraction—the proportion

of the voxel filled with liquid. Any cell whose fraction is not one or zero contains surface.

Unfortunately, this representation does not admit accurate curvature estimates, which are

essential to surface tension computations. However, accurate curvature estimates are easily

computed from level-set representations. Thus, the authors combined volume-of-fluid and

level-set representations to model surface tension in ink droplets. Some volume-of-fluid

methods build an explicit surface representation from the volume fractions stored in each

voxel. The key difference between our method and volume-of-fluid methods is that we never

compute volume fractions. Instead, our explicit representation is generated by contouring

an advected signed-distance function.

2.1.2 Particle-Based Methods

A number of researchers [Terzopoulos et al., 1989; Desbrun and Gascuel, 1995;

Foster and Metaxas, 1996; Desbrun and Cani, 1996; Cani and Desbrun, 1997; Stora et al.,

1999; Müller et al., 2003; Premože et al., 2003; Müller et al., 2004; Zhu and Bridson, 2005;

Pauly et al., 2005] have used particles to track surfaces. In many of these methods, the

simulation elements are particles, which are already being tracked throughout the volume

of the deforming liquid or solid. The surface can then be implicitly defined as the boundary
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between where the particles are and where they aren’t. The particles can be visualized

directly, or can be used to define an implicit representation using metaballs [Blinn, 1982]

or moving least-squares methods [Kolluri, 2005]. The moving least-squares approach was

successfully used by Zhu and Bridson [2005] to construct liquid and sand surfaces from

marker particles placed throughout the fluid volume. Such approaches have the significant

advantage that the surfaces at each frame are independent and can be constructed in parallel

as a post-processing step. Premože et al. [2003] took a different approach and used particle

positions and velocities to guide a level-set solution. Mueller et al. [2004] and Pauly et

al. [2005] used special particles, called surfels [Szeliski and Tonnesen, 1992], to represent

the surface. Surfels store a surface normal as well as position and there are generally

many more surfels than simulation particles. The principal drawback of these methods is

that generating high-quality time-coherent surfaces can be difficult: directly visualizing the

particles is insufficient for high-quality animations, methods which convert the particles to

some other representation on a per-frame basis often lack temporal coherence, and methods

which must run sequentially through the frames or run during the simulation are often quite

costly. Additional difficulties arise when trying to ensure a good sampling of the surface.

2.1.3 Particle Level-Set Methods

To address the volume loss of level-set methods, Enright and his colleagues [Enright

et al., 2002a; Enright et al., 2002b; Enright et al., 2005] built on the work of Foster and

Fedkiw [2001] to develop particle level-set methods. These methods track the characteristics

of the fluid flow with Lagrangian particles, which are then used to fix the level-set solution,

essentially increasing the effective resolution of the method. Recently, these methods have

been extended to work with octrees [Enright et al., 2005; Losasso et al., 2004], allowing for
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very high-resolution surface tracking. These methods represent the current state of the art

on tracking liquid surfaces for animation, but do have some drawbacks. In particular, the

published particle correction rules choose a single particle to provide the signed-distance

value. Since there is no guarantee that the same particle will be chosen at subsequent

timesteps, the method is extremely susceptible to high-frequency temporally incoherent

perturbations of the surface. The artifacts are most noticeable when the surface thins

out below the grid resolution and particles happen to be near some of the sample points,

but not others. Also, the method has a large number of parameters and rules, such as

the number of particles per cell and the reseeding strategy, which need to be decided,

often in an application-specific way. Finally, the method tends to produce very smooth

surfaces with very little detail, which is desirable in some, but not all, applications. Despite

these drawbacks, the particle level-set methods have been very successful and represent a

significant step forward in the area of surface tracking for liquid simulations.

More recently Hieber and Koumoutsakos [2005] introduced a Lagrangian particle

level-set method which overcomes many of these drawbacks. Instead of using a hybrid repre-

sentation, they represent the level-set function solely with particles (though their resampling

strategy does use a Cartesian grid). Thus, there is no correction step and all queries of the

level-set function and its derivatives are handled with suitable mollification kernels, alle-

viating the flickering problems present in the work of Enright and his colleagues [Enright

et al., 2002a; Enright et al., 2002b; Enright et al., 2005]. Moreover, they present a gen-

eral resampling (reseeding) strategy which removes the guesswork from previous approaches

and, additionally, regularizes the level-set values stored at the particle locations, addressing

any distortions which may have developed as the particles were advected through the flow

field.
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2.1.4 Semi-Lagrangian Contouring

Recently, Strain [1999b; 1999c; 1999a; 2000; 2001] has written a series of articles

building a theoretical framework culminating in the formulation of surface tracking as a con-

touring problem. He demonstrated his semi-Lagrangian contouring method on a variety of

two-dimensional examples. Our method is based on the method presented by Strain [2001],

but with variations and extensions to deal with problems that arise in three-dimensional

computer animation. While our method bears a number of similarities to level-set methods

and takes advantage of many techniques developed for those methods, we are not directly

solving the level-set equation. By formulating surface tracking as a contouring problem, we

avoid many of the issues that complicate level-set methods. In particular, we do not have

the same volume loss issues which prompted the particle level-set methods: while we do not

explicitly conserve volume, our semi-Lagrangian path tracing tends to conserve volume in

the same way as the Lagrangian particles in the particle level-set method.

2.2 Implicit Representations

The octree structure we use to build and index the polygonal mesh is quite similar

to adaptively sampled distance fields [Frisken et al., 2000]. These structures adaptively

sample distance fields according to local detail and store samples in a spatial hierarchy. The

key difference between adaptively sampled distance fields and our surface representation is

that we store a polygon mesh in addition to distance samples. This polygon mesh is used

for exact evaluation of the distance function near the surface. Additionally, our splitting

criterion is different from that presented by Frisken et al. [2000].

An alternative structure for storing narrow-band level-set functions is the dynamic
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tubular grid of Nielsen and Museth [2006]. This structure can be combined with run-

length encoding schemes [Houston et al., 2006] providing extremely compact, high-resolution

representations of level-set functions. While the asymptotic times for their structure match

ours, they are able to exploit cache coherence to provide extremely fast run times for most

level-set operations. Integrating the methods presented here with this data structure is a

promising area for future work.

2.3 Contouring

Contouring the advected signed-distance function, ψ, is a fundamental step in

our surface tracking method. The contouring problem has been well studied in computer

graphics and a number of approaches have been suggested. The oldest and most widely

used is marching cubes, which was first presented by Wyvill et al. [1986], and later named

and popularized by Lorensen and Cline [1987]. Marching cubes suffers from a tendency to

create ill-shaped triangles. This problem is fixed to some degree by dual contouring [Ju

et al., 2002], which also provides adaptive contouring and an elegant means of preserving

sharp boundaries. Dual contouring depends on normal estimates at edge crossings and is

very sensitive to inaccuracies in these normal estimates. Unfortunately, in our method we

do not have accurate normal information until after the contouring step, when normals can

be computed on the triangle mesh. More recently, Boissonnat and Oudot [2003] presented a

contouring technique which uses Delaunay triangulation methods to generate provably good

triangulations. However, this method appears to be prohibitively expensive for something

which must run at every timestep. Yet another alternative is marching triangles [Hilton

et al., 1996], which takes a surface-based rather than volume-based approach to contouring.

Marching triangles requires significantly less computation time, produces fewer triangles,
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and creates higher-quality triangles than marching cubes. Unfortunately, marching triangles

is not guaranteed to produce closed, manifold meshes in the presence of sharp or thin

features.

2.4 Semi-Lagrangian Methods

Semi-Lagrangian methods have been widely used in computer graphics since they

were introduced by Stam [1999] to solve the nonlinear advection term of the Navier-Stokes

equations. These methods provide the foundation for our surface tracking method. Con-

sequently, I briefly discuss the mathematical foundation of semi-Lagrangian methods. The

discussion follows that of Strain [1999b].

Consider the simplest linear hyperbolic PDE

φt + v(x, t) ·∇φ = 0, (2.1)

where φ is a scalar field and v(x, t) is a velocity function. Equation (2.1) passively advects

φ through the velocity field v. Semi-Lagrangian methods are based on the observation that

Equation (2.1) propagates φ values along characteristic curves x = s(t) defined by

ṡ(t) = v(s(t), t), s(0) = x0. (2.2)

Thus we can find φ values at any time t by finding the characteristic curve passing through

(x, t), following it backward to some previous point (x0, t0) where the value of φ is known,

and setting φ(x, t) = φ(x0, t0). This observation forms the basis of the backward character-

istic or CIR scheme developed by Courant, Isaacson and Rees [1952], which is the simplest

semi-Lagrangian scheme. Given φ at time tn, CIR approximates φ(x, tn+1) at any point

x at time tn+1 = tn + ∆t by evaluating the previous speed v(x, tn), approximating the
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backward characteristic through x by a straight line

s(t) ≈ x− (tn+1 − t)v(x, tn), (2.3)

and interpolating φ at time tn to the point

s(tn) ≈ x− (∆t)v(x, tn). (2.4)

Then φ(x, tn+1) is set equal to the interpolated value, φ(s(tn), tn).

For linear PDEs, such as Equation (2.1), the Lax-Richtmyer equivalence theo-

rem [LeVeque, 1990] guarantees that CIR will converge to the exact solution as ∆t, ∆x → 0

if it is stable and consistent.

The stability properties of the CIR scheme are excellent. Each new value φ(x, tn+1)

is a single interpolated value of φ at time tn, so unconditional stability is guaranteed in

any norm where the interpolation does not increase norms. For example, CIR with linear

interpolation is unconditionally stable in the 2-norm. In general, semi-Lagrangian schemes

satisfy the CFL condition by shifting the stencil, rather than restricting the timestep. Thus

information propagates over long distances in one timestep.

Consistency (loosely speaking, the local accuracy of the method), however, is con-

ditional. The global error of CIR is

O

(
(∆x)2

∆t

)
+ O(∆t), (2.5)

due to the O((∆x)2) error in linear interpolation accumulated over O(1/(∆t)) timesteps,

plus the O(∆t) error due to freezing F and approximating the characteristics by straight

lines. Thus CIR is consistent to O(∆t) if a condition ∆t ≥ O(∆x) is satisfied, contrary to

the usual hyperbolic condition ∆t ≤ C∆x. This condition is extremely convenient, because

∆t = O(∆x) balances time and space resolution in this first-order accurate scheme.
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For nonlinear PDEs, CIR still converges when the solution is smooth. But non-

smooth shock solutions of conservation laws move at the wrong speed because CIR is not

in conservative form. Since level-set solutions have no shocks, CIR is a natural scheme for

moving interfaces.

2.5 Texturing Fluids

Soon after the introduction of fluid simulation techniques to computer graphics,

researchers began experimenting with texturing these simulations. The simplest approach,

demonstrated by Witting [1999] advects texture coordinates through the flow field and

uses these texture coordinates to lookup color in a texture map. Unfortunately, over time,

the texture becomes progressively more distorted. To address this distortion, Stam [1999]

advects three separate layers of texture coordinates, each of which is periodically reset. The

final texture map is then a superposition of these three texture maps. Neyret [2003] built

on this approach and also advects several layers of textures. Additionally, he computes and

advects the local accumulated deformation for each texture layer. Using this deformation

measure, he combines the various texture layers to arrive at a final texture, which is well

adapted to the local deformation. When using procedural noise-based textures, he combines

the layers in frequency space to avoid ghosting effects and contrast fading.

While these techniques work relatively well for advecting textures through general

fluid simulations, they are not directly applicable in the case of free-surface liquid simulation.

In this case, we wish to texture the liquid surface rather than the fluid volume. To address

the particular context of liquids, Rasmussen et al. [2004] describes a method that advects

texture particles, initialized near the free surface, through the fluid flow field. During

rendering, when a ray intersects the surface the texture coordinates from the nearest 64
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particles are interpolated to provide a texture coordinate for the surface point being shaded.

They have used their technique in production at Industrial Light and Magic, including a

shot in Terminator 3. In a similar approach, Wiebe and Houston [2004] and Houston et

al. [2006] stored three-dimensional texture coordinates in a grid structure and advected

them like any other scalar field. To avoid artifacts resulting from volumetric advection

the authors used extrapolation techniques to force the gradient of the texture field to be

perpendicular to the free surface normal. This approach has also been successfully used in

production, in particular for texturing the tar monster in Scooby Doo 2. Unfortunately, both

these approaches suffer from problems with discontinuous and distorted parameterizations

and can only be used for very short sequences before the distortions become too great.

2.6 Example-Based Texture Synthesis

Example-based texture synthesis has been a popular research area in computer

graphics and vision. Heeger and Bergen [1995] analyzed input textures by computing filter

response histograms at different spatial scales and then synthesized new textures which

matched these histograms. De Bonet [1997] also used a multi-resolution filter-based ap-

proach, but linked the various spatial frequencies by conditioning finer scales on decisions

made at coarser scales. More recently, Efros and Leung [1999], developed a very simple and

elegant texture synthesis method, which “grows” textures, pixel by pixel, outward from an

initial seed. They model texture as a Markov Random Field, which implies that the color of

each individual pixel in the texture depends only on the colors of pixels in its spatial neigh-

borhood and is independent of the rest of the image. Wei and Levoy [2000] developed a very

similar technique, but used multiresolution synthesis and tree-structured vector quantiza-

tion to speed the generation of new textures. Efros and Freeman [2001] took a patch-based
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approach—instead of choosing each individual pixel, they choose entire patches of texture

at a time. The patches overlap slightly and a minimum error boundary cut is found in this

overlap region to stitch the various patches together.

Our texture synthesis method is based on the flexible optimization approach de-

veloped by Kwatra et al. [2005]. This approach divides the output texture into a number of

overlapping, square patches. Each of these patches is mapped to some region of the example

texture. Each pixel, p, in the output texture will be covered by a nonempty subset of these

patches. Each patch, Pi, in this subset provides a mapping from p to some pixel, qi, in the

example texture. The color of p can then be computed as a weighted average of the colors

of the qi. The texture is optimized using an two-step expectation-maximization approach:

1. Holding the output texture constant, optimize the mapping.

2. Holding the mapping constant, optimize the output texture.

The mapping is optimized by finding, for each patch, Pi, the region in the example texture

which most closely matches Pi. The quality of a match is determined by comparing the

region of the output texture covered by Pi to the region of the example texture. The output

texture is optimized by computing new pixel colors using the updated mapping. These steps

are then repeated until convergence.

2.7 Mesh Parameterization

In order to compare surface textures to the two-dimensional input example tex-

ture, a necessary step in our texture optimization, we must construct some parameterization

of the surface. Numerous methods for the automatic generation of parameterizations of ar-

bitrary surfaces exist. These methods can be roughly divided into two categories: methods
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that parameterize a set of (potentially overlapping) small patches and methods that at-

tempt to find a globally-optimal parameterization. Our work belongs to the first category.

The pioneering work of Bennis et al. [1991] introduced the idea of using piecewise param-

eterizations of surfaces for texture mapping. Later, Maillot et al. [1993] introduced the

concept of texture atlases, which allow the surface to be broken up into patches where

each patch has its own parameterization and texture. They also introduced a widely used

surface-flattening heuristic. The lapped textures technique of Praun et al. [2000] places

overlapping, irregularly shaped texture patches on the surface. This approach works quite

well for many textures and is very similar to our approach, the primary differences being

that we optimize the mapping of texture patches onto the surface and that our patches have

substantially more overlap. Concurrently, Wei and Levoy [2001] and Turk [2001] introduced

texture synthesis methods which create local parameterizations of the surface and then syn-

thesize textures directly on the surface. However, their greedy texture synthesis approach

differs from the optimization approach presented here. More recently, Sorkine et al. [2002]

introduced a greedy method for creating bounded-distortion local surface parameterizations

based on a simple distortion metric, which was introduced by Sander et al. [2001]. We make

use of this distortion metric when building our surface patches.
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Chapter 3

Semi-Lagrangian Contouring

The fundamental problem of tracking a surface as it is advected by some velocity

field arises frequently in applications such as surface reconstruction, image segmentation,

and fluid simulation. Unfortunately, the näıve approach of simply advecting the vertices

of a polygonal mesh, or other explicit representation of the surface, quickly encounters

problems such as tangling and self-intersection. Instead, a family of methods, known as

level-set methods, has been developed for surface tracking. These methods represent the

surface implicitly as the zero set of a scalar field defined over the problem domain. The

methods are widely used, and the texts by Sethian [1999] and Osher and Fedkiw [2003],

and Osher and Sethian’s [1988] seminal article provide an excellent introduction to the

topic. One of the key issues that distinguishes various level-set and similar approaches is

the representation of the scalar field, which must capture whatever surface properties are

important to a given application.

Our surface tracking method represents the surface explicitly with a closed, man-

ifold polygon mesh. However, rather than attempting to advect these polygons forward

with the flow, we update the surface in time with an implicit representation: an advected
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signed-distance function, ψ, whose zero set defines the surface. A new polygonal surface

is generated by contouring or extracting the zero set of ψ. The value of ψ at a point x,

at current time t, is obtained by first tracing backward through the flow field to find the

previous location x′ at time t − ∆t, and then returning the signed distance of x′ from

the previous surface. Using adaptive octree data structures, we can efficiently and reliably

construct the new surface and corresponding signed-distance function.

The theoretical framework for this method comes from a series of articles by

Strain [1999b; 1999c; 1999a; 2000; 2001] that described and analyzed a method for contour

tracking in two dimensions. While the semi-Lagrangian procedure for backward advection

does not change significantly when going from two- to three-dimensional problems, signif-

icant surface tracking issues arise when moving to three dimensions. This thesis discusses

these issues, as well as the general method, and demonstrates how semi-Lagrangian surface

contouring can be useful for animating the complex and interesting behavior of fluids.

One of the primary advantages of this method is that it enables tracking surface

characteristics, such as color or texture coordinates on the actual surface. These properties

can be easily stored directly on the polygonal mesh and efficiently mapped onto the new sur-

face during semi-Lagrangian advection. The explicit surface representation also facilitates

other common operations, such as rendering, while reconstruction from a scalar function

allows operations that rely on an implicit representation. Finally, the method produces de-

tailed, well-defined surfaces that are suitable for realistic animation and that do not jitter

or exhibit other undesirable behaviors.
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Figure 3.1: An overview of our method. At each timestep we begin with an explicit surface
representation, from which we can build a signed-distance function (a) and a velocity field
given by the fluid simulator (b). We then define a field function, the zero set of which will
be our new surface. To get the value of the field function at the green point (c), we trace
backward through the flow field to find the yellow point (b), which is the image of the green
point at the previous timestep. We then evaluate the signed distance of the yellow point to
the previous surface (a) and copy this value to the green point (c). We can evaluate this
field function at every point in the domain and extract the zero set (c).

3.1 Method Overview

The surface tracking problem can be phrased as: given a surface representation

and a velocity field at time t, build a representation of the surface at time t+∆t. We begin

with a triangle mesh and an octree annotated with signed-distance field samples. We could

try to advect the mesh points through the flow field, but would quickly encounter significant

topological difficulties. Instead, we avoid topological issues by updating the surface using an

implicit representation. The implicit representation is then used to construct a new mesh at

the current timestep. More specifically, we define a scalar-valued function which relates the

surface at the current timestep to the surface at the previous timestep. Next, we extract

the zero set of this function using a contouring algorithm. Finally, a new signed-distance

field is computed through a process known as redistancing (see Figure 3.1).
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3.2 Hybrid Representation

3.2.1 Explicit Representation

One of the key differences between our method and other surface tracking methods

is that we build an explicit representation of the surface at every timestep. This explicit

representation is a closed, manifold triangle mesh, which is stored as an array of vertices

and an array of triangles. The vertices are shared between triangles, allowing for easy

computation of smooth vertex normals and other common mesh operations. The distance

tree (see Section 3.3) provides a spatial index for the mesh. The explicit representation

provides our method with several advantages. First, it allows us to compute exact signed-

distance values near the mesh. Second, it allows us to store properties on mesh vertices,

rather than at points near the mesh. Finally, it allows us to take advantage of the many

tools and algorithms which have been developed in computer graphics for manipulating and

rendering triangle meshes.

3.2.2 Implicit Representation

To avoid the topological difficulties of directly updating an explicit surface repre-

sentation, we update the surface in time through an implicit representation (see Figure 3.2).

We define a scalar-valued field function, ψ(x), which relates the surface at the current

timestep to the surface at the previous timestep. The surface at the current timestep will

be the zero set of this function,

Sn = {x : ψ(x) = 0}. (3.1)

For a point x at the current timestep, the function, ψ, first uses backward path tracing, a

semi-Lagrangian integration technique, to find the point x′ at the previous timestep which
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Figure 3.2: An example of how our implicit representation accommodates merging surfaces.
The red grid points trace back through the velocity field to points inside the surface. The
green grid points trace back to points outside the surface. When the contouring algorithm
runs, it will look for zero crossings only between positive and negative (green and red)
grid points and create a surface that does not pass between two grid points of the same
color. Thus, without even explicitly determining that a topological change has occurred,
the method handles the change.
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flows to x. It then returns the distance from x′ to the surface, Sn−1, at the previous

timestep. If we denote the backward path tracing as b(x) : R3 → R3 and let φn(x) be the

signed distance from x to the surface Sn,

ψn(x) = φn−1(b(x)) = φn−1(x′). (3.2)

Essentially, we are advecting the signed-distance function through the velocity

field given by the fluid simulator. In solving this advection term, our method differs from

the simple CIR scheme discussed earlier in two ways. First, instead of the simple linear

backward path tracing, we use a second-order Runge-Kutta scheme (also known as the

midpoint method with an Euler predictor)

xn−1/2 = x(tn−1/2) = xn−
∆t

2
v(xn, tn), (3.3)

xn−1 = x(tn−1) = xn− (∆t)v(xn−1/2, tn), (3.4)

where v(x, t) is the velocity function. It is important to note that, while this method traces

back through the velocity field with second-order accuracy, the velocity field is frozen over

the course of the timestep, leading to first-order accuracy in time. The second difference is

that, when evaluating φ at points near the surface, we do not interpolate values stored on a

grid. Instead, we compute exact distance values. These changes only improve the accuracy

(consistency) of our method and do not affect the unconditional stability.

To compute the exact distance from a point x′ to the surface, we compute the

distances di to all the nearby triangles. The distance to the surface is then computed as

mini di. Schneider and Eberly [2002] detailed a method for computing the distance from

a point to a triangle. This operation is relatively expensive, but many triangles can be

pruned, especially when x′ is very close to the surface, by using standard bounding-box

techniques and our octree data structure (see Section 3.3).
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Signing the distance values turns out to be somewhat difficult near sharp corners.

Let y and n(y) denote the closest point on the surface to x′ and its normal, respectively.

When y lies strictly inside a triangle then the sign can be easily computed as

s = sign((x′ − y) · n(y)), (3.5)

where n(y) is the normal of the triangle containing y. However, if the nearest point in the

mesh lies on more than one triangle (i.e., on an edge or vertex of the mesh), the triangles

do not always agree on the sign. These situations can be resolved by computing an angle-

weighted pseudonormal for each edge and vertex of the mesh and using these pseudonormals

to determine the sign when the nearest point is on an edge or vertex of the mesh. Bærentzen

and Aanæs [2005] provided a proof that this procedure results in accurate signing (in exact

arithmetic).

The ability to compute exact distances is one of the chief advantages of having an

explicit surface representation. Interpolation can produce substantial errors (see Figure 3.3)

which are compounded over time. In fact, this interpolation error is one of the most signifi-

cant drawbacks to semi-Lagrangian methods in general. When used for velocity advection,

interpolation produces such significant smoothing that researchers have proposed a number

of methods to add detail back to the flow [Fedkiw et al., 2001] or avoid semi-Lagrangian

advection altogether [Zhu and Bridson, 2005]. In this work, we are able to leverage the

advantages of semi-Lagrangian advection, without incurring the interpolation error that

would otherwise undesireably smooth surface detail.
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Figure 3.3: The figure shows a part of the
surface passing through a grid cell. The
cell’s vertices have been annotated with
signed-distance values. Linear interpolation
of these values incorrectly chooses the red
point as the zero crossing along the bot-
tom edge. The green point is the actual
zero crossing, which will be found with ex-
act evaluation.

Figure 3.4: A two-dimensional distance
tree. Distance samples are stored at the oc-
tree vertices and triangle lists are stored in
cells which intersect the surface. This dis-
tance tree could be generated using our im-
plementation of Criterion (3.8), which con-
siders ψ only at cell centers.

3.3 The Distance Tree

Our implementation makes heavy use of a structure we call the distance tree. The

distance tree is a balanced octree subdivision of the spatial domain. The octree vertices

are annotated with signed-distance values and each cell of the octree contains a list of the

triangles with which it intersects. The distance tree serves three purposes:

1. It provides a fast spatial index for the mesh so that nearby triangles can be found

quickly.

2. It provides a fast, approximate signed-distance function, which is sufficient when

evaluating the signed distance far from the surface.



25

3. It guides the contouring algorithm, quickly identifying cells which have vertices of

different sign and, thus, contain triangles.

3.3.1 Approximating the Signed-Distance Function

When computing the signed distance from a point x′ to a surface, S, we first find

the smallest octree cell, C, containing x′. If C is at the finest level of the octree, then

x′ may be near the surface and all the triangles in the up to 27 cells in the concentric

triple1 of C are considered when computing the minimum distance to the surface. By

storing the nearest distance seen so far and using standard bounding-box techniques, many

of these triangles can be pruned before computing distances, especially when x′ is very

near the surface. If the computed distance is less than C’s edge length, then the distance

is guaranteed to be exact. Otherwise, the computed distance is a very good estimate but

may be slightly larger than the actual distance. Contrariwise, if C is not at the finest level

of the octree or if there are no triangles in the concentric triple of C, then x′ is not near

the surface and we do not require an exact distance. An approximation with the correct

sign is sufficient. In this case, we use trilinear interpolation of the distance values stored at

the vertices of C.

3.3.2 General Splitting Criterion

We make use of two different methods for building distance trees in this work.

Most often, we wish to build a distance tree to resolve the zero set of our field function

ψ. However, it is sometimes useful to build a distance tree from an existing triangle mesh.

Our octrees are always built in a top-down manner where each cell is split based on some
1If cell C = {x : ‖x − c‖∞ ≤ r} has center c and edge length 2r then its concentric triple T is given by

T = {x : ‖x − c‖∞ ≤ 3r}.
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variation of the following splitting criterion:

Split any cell whose edge length exceeds its minimum distance to the surface. (3.6)

Splitting ends when the tree reaches a predetermined maximum depth. Criterion (3.6)

results in a three-color octree, as described by Samet [1990], where each cell of the octree

has one of three types: interior, exterior, or boundary (see Figure 3.4).

In general, Criterion (3.6) builds octrees with several useful properties:

• Adjacent cells differ in size by no more than a factor of 2, producing a smooth mesh

and simplifying procedures such as neighbor finding and triangulation of the vertices.

• A cell’s size is proportional to its distance to the surface.

• If φ is the signed distance to the surface at vertices and we extend φ into each cell

by trilinear interpolation, then, because cells vary in size, φ will be discontinuous.

However, the jumps in φ decrease in size in cells near the surface because of the

triangle inequality. Thus the interpolated φ is nearly continuous near the surface.

• Cells coarsen very rapidly away from the surface: if there are N childless cells touching

the surface, then the entire tree contains only O(N log N) cells. Hence the surface is

resolved accurately at minimal cost.

3.3.3 Building a Distance Tree to Resolve ψ

When building a new octree at the beginning of each timestep, we are essentially

trying to resolve our approximation

ψn+1(x) = φn(x− (∆t)v(xn−1/2, tn)) (3.7)
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to the signed-distance function φn+1(x). The octree is built recursively from the root cell

C0 using the following splitting criterion:

Split every cell where |ψn+1| is smaller than the edge length. (3.8)

Thus we apply Criterion (3.8) as if ψn+1 were a distance function. Redistancing

every timestep keeps

ψn+1 = φn + (∆t)v ·∇φn + O(∆t) = φn + O(∆t) (3.9)

within O(∆t) of the signed-distance function φn. Thus in the limit, ∆t = O(∆x) → 0,

Criterion (3.8) reduces to (3.6), yielding the properties noted above. In practice, we use the

value of φ at the cell’s center to determine whether we should split the cell. To deal with

the fact that ψn+1 is not a distance function and that the value at the cell’s center may not

be the minimum over the cell, we multiply the edge length by some constant before doing

the comparison. We have found that 3 works well in practice—always dividing near the

surface, without spuriously dividing too many cells. Notice that we can vary this constant

to achieve high-resolution bands of varying width around the surface.

3.3.4 Building a Distance Tree from a Triangle Mesh

When building an octree from a triangle mesh (either in initialization, or after some

geometric operation has been applied to the triangle mesh) we use the following splitting

criterion:

Split every cell whose concentric triple intersects the surface. (3.10)

This test is efficiently implemented using Green and Hatch’s [1995] cube/triangle intersec-

tion test. Notice that we need not check every cell in the concentric triple of C individually,
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but can just increase the edge length passed to the intersection test, effectively increasing

the size of C. In practice we have found it sufficient to increase the edge length by a factor

of 2, rather than 3, but such trees may not satisfy all the properties listed above.

3.4 Contouring

Once we have resolved ψ on our distance tree, we need to create an explicit repre-

sentation of our surface at the new timestep. Creating this explicit representation amounts

to extracting the zero set of ψ and is an instance of the contouring problem, which has been

well studied in computer graphics. For its simplicity, robustness, and speed, we choose

to use a marching-cubes method in our implementation. Our implementation is based on

Bloomenthal’s [1994]. Our cubes are the leaf cells in the distance tree which have vertices of

differing sign. We divide each cube into six tetrahedra to simplify the implementation. Ad-

ditionally, when finding the zero crossing along any edge (which will eventually be a vertex

in the triangle mesh), we use a secant method to speed up convergence and evaluate our full

composite field function, including exact evaluation of the previous signed-distance func-

tion. Consequently, the vertices of our polygon mesh are guaranteed to lie on the implicit

surface (within an ε tolerance). In fact, each vertex in our polygon mesh can be mapped

to some point on some triangle in the mesh at the previous timestep. We take advantage

of this fact when advecting surface properties. The marching-cubes algorithm works well

for our purposes because each triangle generated by marching cubes sits strictly inside a

single cell of the distance tree, making the distance tree an especially effective spatial index.

Furthermore, we use the distance tree we have already built to guide the marching cubes,

avoiding the need to build a second structure to determine the topology of the new mesh.

Near the surface, our distance tree is refined to the maximum level and looks like a uniform
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grid. Consequently, we need not worry about patching the marching-cubes solution.

Our choice of contouring algorithm does result in some limitations. In addition

to creating poorly shaped triangles, marching cubes is nonadaptive. That is, the sampling

is as dense in flat regions as in regions of high curvature. Unfortunately, the nonadaptive

nature of marching cubes limits the resolution we can achieve in high-curvature areas, but

is necessary to ensure compatibility. To address this lack of resolution in high-curvature

areas, Strain [2001] split line segments whose centers were far from the surface, yielding

arbitrarily high accuracy. Unfortunately, this splitting technique is not easily extended

to three dimensions as splitting a triangle either creates an incompatible triangulation or

produces even more poorly shaped triangles. It is also very difficult to guarantee that we

will still have a manifold when the inserted vertices are moved to the surface. Alternatively,

several adaptive contouring methods [Shu et al., 1995; Shekhar et al., 1996; Poston et al.,

1998] seek to use adaptive grids and regain compatibility through various crack-patching

techniques. Such methods could easily be used here and we plan to explore adaptive methods

in future work.

Although we did not find it necessary, after the contouring step the mesh can be

processed in any way that preserves the closed-manifold invariant. This optional processing

might include smoothing the surface, improving the shape of the triangles, or any other

operation that returns a closed manifold. A new distance tree can then be built from this

modified mesh using Criterion (3.10). A new distance must be built only if the mesh is

modified.

By taking advantage of the details of our method, we can very efficiently achieve

limited smoothing in two ways. First, we can define a second scalar function to be the

combination of path tracing backward in time followed by the evaluation of a high-order
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polynomial interpolant of the distances at the vertices of the octree. This function is quite

similar to the functions used in semi-Lagrangian level-set methods [Strain, 1999b; Enright

et al., 2005]. When marching cubes encounters an edge whose vertices have different signs,

we find a point which evaluates to zero for both scalar functions. We can then average these

two zero-crossing to compute the final mesh vertex. By constraining the mesh vertex to

be on the edge of the marching-cubes grid, we still guarantee a consistent, closed, manifold

triangulation. While this smoothing technique may be quite useful in some applications, we

did not use this method for any of the results in this thesis. Second, repeatedly using the

same grid for contouring can produce grid artifacts. For example, a sphere of fluid falling

under gravity will develop creases along the coordinate axes. Such artifacts are a form of

aliasing and can be reduced by jittering the grid each timestep. Most of the examples in

this thesis used grids which were slightly larger than the simulation domain. These grids

were then randomly perturbed so that grids at adjacent timesteps were slightly offset from

one another. This jittering limits the reusability of our octrees, but since we build new

octrees every timestep, this limitation is not significant.

3.5 Redistancing

After the triangle mesh at the current timestep has been extracted, we must assign

true distance values to the vertices of our octree. This problem, referred to as redistancing,

has been well studied by the level-set community and a number of methods have been

suggested. Strain [1999a] suggested redistancing by performing an exact evaluation at

every vertex of the octree. This method is relatively efficient since the tree coarsens rapidly

away from the surface and works well in two dimensions. However, in three dimensions,

we have found it to be prohibitively expensive and unnecessary. Instead, we perform exact
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evaluation at all vertices of the cells that contain triangles, but then run a fast marching

method [Sethian, 1996; Losasso et al., 2004] over the remaining vertices. In our method,

there may be some parts of the domain where the octree was refined but that did not result

in any triangles, such as when the surface becomes thinner than the resolution of the tree.

Consequently, our octree, unlike those used by Losasso et al. [2004], does not necessarily

coarsen away from the surface. To address this problem, we coarsen parts of the tree which

have been refined but did not generate surface. We do this coarsening in two steps. First,

we propagate the triangle lists up the tree so that the triangle list of a cell is the union

of the triangle lists of a cell’s descendants. Second, we remove all the children of any cell

whose concentric triple does not contain any triangles.

Our redistancing method comprises three steps:

• coarsen the octree;

• compute exact distances at vertices of cells which contain triangles;

• run a fast marching method over the remaining vertices.

3.6 Tracking Surface Properties

One of the primary advantages of our method is the ability to track surface proper-

ties, such as color, texture coordinates, or even simulation variables, accurately at negligible

additional cost. As pointed out earlier, every vertex in a polygon mesh corresponds to some

point on some triangle in the previous mesh. Thus, semi-Lagrangian advection provides a

mapping between surfaces at adjacent timesteps. If vertex v in the current mesh maps to

point p in the old mesh and some surface property was stored at p, this property can be

copied to v. In this way we can track surface properties on the actual surface as we build
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the surface, so we do not incur any significant additional cost. Previous methods, such as

the ones proposed by Rasmussen et al. [2004] and Wiebe and Houston [2004], have been

limited to tracking properties in the volume near the surface and interpolating them to the

surface. Such methods incur significant cost, introduce substantial smoothing, and blur

properties between nearby surfaces.

In many applications there is no value actually stored at p. Instead, the properties

are stored at the vertices of the triangle containing p. In these cases the problem is slightly

more involved. In many cases it is sufficient to use barycentric interpolation to compute

a value at p and copy this interpolated value to v. However, for some applications this

interpolation can produce unwanted smoothing. A simple alternative is to set the value at

v to the value stored at the vertex nearest p. Unfortunately, this approach may introduce

unwanted aliasing. Essentially, we are having trouble because we are resampling the surface

at every timestep. However, if we know something about the property we are tracking, we

may be able to “clean up” the blurred signal. For example, in some cases we wish to track

reference coordinates, which can later be used as texture coordinates, passed to procedural

shaders, or for other purposes. Since we know that the tracked value should always be a

point on the initial surface we can find the point on the initial mesh which is nearest to

the point the tracking method supplied. In this way, we can ensure that, at every timestep,

every vertex in the mesh maps back to some point on the initial surface. Once we have this

mapping we can copy any property stored on the initial surface, whether it be the reference

coordinates, texture coordinates, or color values. Texturing liquids will be discussed in more

detail in the next chapter.
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Chapter 4

Texturing Liquid Surfaces

Liquid simulation techniques have become a standard tool in production environ-

ments, producing extremely realistic liquid motion in a variety of films, commercials, and

video games. Surface texturing is an essential computer graphics tool, which gives artists

additional control over their results by allowing them to stylize surfaces or add detail to

low-resolution simulations. For example, an artist could use texturing techniques to add

the appearance of foam to a wave, bubbles to beer, or fat globules to soup. Unfortunately,

texturing liquid surfaces is difficult because the surfaces have no inherent parameterization.

Creating a temporally consistent parameterization is extremely difficult for two

primary reasons. First, liquid simulations are characterized by their complex and frequent

topological changes. These topological changes result in significant discontinuities in any

parameter tracked on the surface. Second, liquid surfaces tend to stretch and compress

dramatically over the course of a simulation. Similarly, an advected parameterization will

also stretch and compress. While it may be appropriate to squash and stretch some textures

with the motion of the liquid surface, many textures, such as fat globules on the surface

of soup, should maintain a particular scale even as the liquid surface deforms. For these
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reasons, advected texture coordinates are often unsuitable for texturing liquid surfaces.

To address these problems, we have designed a new example-based texture syn-

thesis method specifically for liquid animations. Rather than advecting texture coordinates

on the surface, we synthesize a new texture for every frame. We initialize the texture with

color values advected from the surface at the previous frame. We then run an optimization

procedure which attempts to match the surface texture to an input example texture and,

for temporal coherence, the advected colors.

By synthesizing a new texture for every frame, our method is able to overcome the

discontinuities and distortions of an advected parameterization. We avoid discontinuities in

the parameterization due to topological changes by building a new parameterization of the

surface for each frame. Discontinuities in advected colors are removed during the optimiza-

tion procedure. Similarly, we avoid stretched and compressed parameterizations; because

we optimize the surface texture for every frame, it maintains a consistent level of detail

throughout the animation. We ensure temporal coherence by initializing the optimization

with the advected colors and including a coherence term in the energy function used during

optimization. As a result, our method is able to produce textures with excellent temporal

coherence, while still matching the input example texture. Before discussing the details of

our example-based texture synthesis method, I will first discuss alternative approaches to

texturing animated liquid surfaces.

4.1 Advected Colors

Perhaps the simplest method for texturing liquids is to advect color values on the

surface. This is easily done using the mapping provided by the semi-Lagrangian contouring

surface tracking method. For each vertex, v, in our mesh, we find the corresponding point,
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p on the previous mesh, use barycentric interpolation to compute a color value at p, and

copy this value to v. If multiple colors were stored at the vertices of the triangle containing

p, these colors will be blurred together. In many cases this behaviour is acceptable, even

desirable, as it appears that the various colors are mixing as the fluid flows, much like

mixing paint. One drawback of this approach is that this blurring is tied to the timestep

and mesh resolution and is not a parameter which can be tuned by an artist.

4.2 Advected Parameterizations

Another simple approach to texturing liquid surfaces would be to advect some

parameterization (for example, texture or reference coordinates) and use standard texture

mapping or procedural shading techniques to generate a texture. This approach works

reasonably well and has been used successfully in production for very short sequences. In

longer sequences, the textures become too distorted. There are several sources of this dis-

tortion. First, topological changes lead to discontinuities in the advected parameterization

which manifest as seams in the texture. Second, liquid surfaces tend to stretch and com-

press, leading to loss of detail and aliasing when using noise-based procedural textures.

These problems can likely be addressed by adapting the work of Neyret [2003] or Cook and

DeRose [2005]. However, these techniques essentially push the problem onto the shader

writer who must now make certain that the shader behaves properly at a variety of fre-

quency bandwidths. Furthermore, these approaches do not offer solutions to discontinuities

arising from topological changes, or distortions to the texture due to a swirling surface.
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4.3 Reaction-Diffusion Texture Synthesis for Liquids

Reaction-diffusion [Turk, 1991; Witkin and Kass, 1991] systems provide a more

sophisticated approach to generating textures. Motivated by the chemical reactions that

generate patterns on animals, reaction-diffusion is a process in which two or more chemicals,

or morphogens, diffuse at unequal rates over a surface and react with one another to form

stable patterns such as spots and stripes. An example of a reaction-diffusion system, which

generates surface spots, due to Meinhardt [1982; 1992b] is:

∂a

∂t
= s(ap1 +

0.01aia2

b
+ p3) + Da∇2a

∂b

∂t
= s(bp2 + 0.01aia

2) + Db∇2b, (4.1)

where a and b are scalar fields stored on the surface which are updated in fictitious time

according to Equation (4.1), p1, p2, and p3 are parameters of the system, Da and Db control

the rates of diffusion for the different morphogens and s controls the reaction speed. When

generating the actual surface color, we compare the values of a and b. If a is larger we

choose one color, if b is larger we choose another color.

Reaction-diffusion texturing methods are attractive in general because they avoid

the often difficult task of assigning texture coordinates to a complex surface. In the context

of texturing liquid animations they are even more attractive because they obviate the need

to advect a parameterization. Instead, we simply advect simulation variables, morphogens,

which are used to initialize the simulation at the next frame. Thus, reaction-diffusion

texture synthesis is able to deal with topological changes and surface distortions. Unfortu-

nately, they only admit limited types of textures and suffer from the fact that very small

perturbations of the surface can substantially change the resulting texture. Consequently,

small surface motion can cause large changes in the texture.
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4.4 Example-Based Texture Synthesis for Liquids

Similar to reaction-diffusion texture synthesis, our example-based texture syn-

thesis method can handle the topological changes and surface distortions characteristic of

liquids. Our example-based texture synthesis method for liquid animations is built from

three relatively new computer graphics technologies: the ability to track surface properties

in liquid simulations (see Chapter 3), techniques to parameterize overlapping patches of

surface [Praun et al., 2000; Sorkine et al., 2002], and an optimization-based technique for

texture synthesis [Kwatra et al., 2005]. By combining these three methods we have devel-

oped a new algorithm that generates coherent, undistorted textures on liquid surfaces based

on example textures.

4.4.1 Surface Tracking

The motion in our examples is generated using a state-of-the-art physically based

liquid simulator. More specifically, we use the staggered-grid data structure of Foster and

Metaxas [1996], the semi-Lagrangian advection method introduced by Stam [1999], the

extrapolation boundary condition of Enright et al. [2002b], the viscoelasticity model of

Goktekin et al. [2004], and the surface tracking method described in Chapter 3.

A necessary feature of any liquid simulation system is the ability to track the

liquid’s free surface. While several surface tracking techniques exist, the semi-Lagrangian

contouring method presented in Chapter 3 also provides a mapping between liquid surfaces

at adjacent timesteps. This mapping can be used to accurately track arbitrary surface prop-

erties on the actual liquid surface at negligible additional cost. We use this feature to advect

colors and parametric directions (see Figure 4.1) on the surface through time. If a different

surface tracking method is preferred, the texture particle interpolation method developed



38

Figure 4.1: These images show the parametric directions which are advected on the surface
and used to orient triangles in texture space. One of the parametric direction has been used
to color the surface (the x-component in the red channel, the y-component in the green
channel and the z-component in the blue channel).

by Rasmussen et al. [2004] or the grid-based approach of Wiebe and Houston [2004] and

Houston et al. [2006] could be used to advect colors, though these approachs would intro-

duce significant computational expense and may cause unwanted blurring between nearby

surfaces.

4.4.2 Surface Parameterization

To apply our optimization-based texture synthesis method (see Section 4.4.3),

we must construct some parameterization of the surface. In particular, we create local

parameterizations of a set of overlapping patches on the surface (see Figure 4.2). For each

patch, the parameterization allows us to map colors on the surface to two-dimensional

texture space and vice versa.

The surface meshes generated by the liquid simulation system, which uses a march-

ing cubes method, contain many poorly shaped triangles and large dihedral angles. Unfor-
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Figure 4.2: These images show the patches used in our optimization process. Each patch
will be assigned colors from one region of the input texture and overlapping patches will
have their colors blended together. It is interesting to note that we cannot always construct
perfect patches and this leads to small holes in some of the patches.
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Figure 4.3: This is the two-dimensional parameterization of a surface patch using the pop-
ular heuristic of Maillot et al. [1993].
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Figure 4.4: This is the two-dimensional parameterization of a surface patch when we do
not add triangles which fail the distortion test of Sorkine et al. [2002]. The triangles near
the boundary are decidedly less distorted than those in Figure 4.3.
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Figure 4.5: This is the two-dimensional parameterization of a surface patch after running the
optimization introduced by Praun et al [2000]. The optimization was initialized with a patch
constructed using the bounded-distortion approach of Sorkine et al. [2002] (see Figure 4.4).
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Figure 4.6: These images show the incremental construction of a texture patch. When
inserting the final vertex, more than one triangle is created and the actual vertex is inserted
at the average of the two predicted locations.
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tunately, these meshes do not admit even local parameterizations without significant dis-

tortions. Consequently, as a pre-processing step, we re-tile the surfaces using the method

presented by Turk [1992a]. This re-tiling step also allows us to control the resolution of

the texture on the surface [Wei and Levoy, 2000]. We then generate a set of points which

uniformly sample the surface using the repulsion method described by Turk [1992a]. For

each point, pi, we grow a surface patch by iteratively mapping neighboring vertices to the

plane (see Figure 4.6). The target size of the patches is a user-specified parameter, which

is chosen based on the scale of the features in the example texture we wish to preserve.

We grow our patches by first mapping the triangle, T , containing pi to a isomet-

ric triangle, T ′, in two-dimensional texture space. We orient T ′ based on the parametric

directions advected during surface tracking (Section 4.4.1) and require that pi maps to the

origin of texture space. Following Wei and Levoy [2001], to avoid aliasing or other artifacts

we uniformly scale T ′ (and hence the entire patch) by a factor of 1/
√

2×A (where A is the

average triangle area) so that, in texture space, we have roughly the same number of pixels

and triangle vertices. After flattening the first triangle, we iteratively add vertices adjacent

to the patch. The addition of each vertex, v, will create at least one triangle in texture

space. If adding v creates exactly one triangle, then we position v so that the newly created

triangle is isometric to its corresponding triangle on the three-dimensional surface. If, how-

ever, more than one triangle is created, computing the position of v is more involved. For

each triangle created, we compute a candidate position for v based on isometric triangles

as in the previous case. The final location of v is then the average of all these candidate

locations. This is essentially the same heuristic proposed by Maillot et al. [1993] and used

by Praun et al. [2000] and Wei and Levoy [2001]. However, we do not add any vertex

which falls outside the user-specified target patch size, that causes any self-intersections of
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the patch in texture space, or that creates any overly distorted triangles. Rejecting overly

distorted triangles creates far more uniform patches as can be seen by comparing Figure 4.3

and Figure 4.4. In determining whether a triangle is overly-distorted, we use the distortion

metric used by Sorkine et al. [2002] and originally introduced by Sander et al. [2001]. In

describing our distortion metric we follow Sorkine et al. [2002].

Let T = )q1q2q3 be the triangle on the three-dimensional surface and T ′ =

)p1p2p3 be the triangle in two-dimensional texture space, where pi = (si, ti). Let S :

R2 → R3 be the (unique) affine mapping from the two-dimensional texture space to three-

dimensional surface, such that S(pi) = qi. Let 〈p1,p2,p3〉 = ((s2 − s1)(t3 − t1) − (s3 −

s1)(t2 − t1))/2 be the area of )p1p2p3. Then, S is given by

S(p) =
〈p,p2,p3〉q1 + 〈p,p3,p1〉q2 + 〈p,p1,p2〉q3

〈p1,p2,p3〉

and the partial derivatives of S are:

Ss =
∂S

∂s
=

q1(t2 − t3) + q2(t3 − t1) + q3(t1 − t2)
2〈p1,p2,p3〉

St =
∂S

∂t
=

q1(s3 − s2) + q2(s1 − s3) + q3(s2 − s1)
2〈p1,p2,p3〉

.

The singular values of the 3× 2 Jacobian matrix [SsSt] are:

γmax =
√

1
2

(
(a + c) +

√
(a− c)2 + 4b2

)

γmin =
√

1
2

(
(a + c)−

√
(a− c)2 + 4b2

)

where a = Ss · Ss, b = Ss · St, c = St · St.

The values γmax and γmin represent the largest and the smallest scaling caused by

the mapping S. Since both stretching and compression lead to geometric distortions, we

use the following expression as our distortion metric:

D(T, T ′) = max {γmax, 1/γmin} .
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Note that D(T, T ′) ≥ 1, and the equality holds if and only if T and T ′ are isometric.

At this point we have constructed a parameterization of the surface. Unfortunately,

as can be seen in Figure 4.4, far from the center of the patch, this parameterization does

not closely match the vector field stored on the surface. During texture synthesis this

distortion can cause overlapping patches to find non-overlapping regions of the example

texture, degrading the results. Overlapping patches are more likely to find overlapping

regions of the example texture if they have consistent parameterizations. To this end, we

apply the patch optimization procedure described by Praun et al. [2000]. This optimization

involves solving a sparse linear system and seeks to align all of the triangles in the patch

with the advected parametric directions (see Figure 4.5).

Our discussion follows that of Praun et al. [2000]. Let (u,v) be the target paramet-

ric directions for a given triangle, )q1q2q3 and (û = (1, 0), v̂ = (0, 1)) be the parametric

directions in texture space. We compute (u,v) for a given triangle by averaging the ad-

vected parametric directions stored at the triangle’s vertices, projecting these directions to

the plane of the triangle, and, finally, forcing them to be orthogonal. Now, (u,v) lie in the

plane of )q1q2q3 and we therefore can express them using barycentric coordinates:

u = αuq1 + βuq2 + γuq3

v = αvq1 + βvq2 + γvq3,

where α + β + γ = 0. Since the map S is linear (and invertible) over the face, the image

S−1(u) is therefore a linear function of the vertex parameterizations S−1(q1), S−1(q2),

S−1(q3). We can then define vectors

du = αuS−1(q1) + βuS−1(q2) + γuS−1(q3)− û

dv = αvS−1(q1) + βvS−1(q2) + γvS−1(q3)− v̂.
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Our optimization problem is then to minimize the least squares functional

∑

f

‖du‖2 + ‖dv‖2.

The minimum of this function is unique up to a translation, so we add the further

constraint that the initial point which seeded the patch remains at the origin. Solving this

optimization problem involves solving a sparse linear system Ax = b where A has four

rows for every triangle, one for each of the two coordinates of u and v and a final row for

the barycentric coordinates of our seed point. x is the vector of texture coordinates of the

vertices in the patch, and b is a vector of ones and zeros expressing the texture coordinate

directions.

4.4.3 Texture Synthesis

Due to discontinuities, surface stretching/compression, or blurring of the surface

signal, the distorted pattern of colors generated by the semi-Lagrangian mapping typically

will not be a good match to the original texture pattern. To force the surface colors to

more closely match the input example texture, we employ an optimization-based texture

synthesis method based on the one presented by Kwatra et al. [2005].

Throughout the optimization we store three types of color for each vertex of each

surface patch (see Figure 4.7): the current colors, the advected colors, and the best-match

colors. The current colors refer to the colors currently stored on the mesh—a blend of

all the best-match colors of all the patches overlapping a given vertex. The current colors

represent the current state of the optimization and change with each optimization step.

When optimization is complete the current colors will define the final texture on the surface.

The advected colors refer to the distorted colors generated through the semi-Lagrangian

mapping. The advected colors are used to initialize the current colors, but remain constant
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Figure 4.7: This figure shows a planar view of one step of texture optimization for two
surface patches. The leftmost images are the distorted advected colors generated through
the semi-Lagrangian mapping. Second from the left are the current colors at the beginning
of the optimization step. Third from the left are the best-match colors, the region from
the example texture which most closely matches the advected and current colors. On the
right are the current colors at the end of the step. Since this step is late in the optimization
process the current colors at the end of the step are indistinguishable from the current colors
at the beginning of the step.

w = 0.0 w = 0.2 w = 0.4

w = 0.6 w = 0.8 w = 1.0

Figure 4.8: The parameter, w, allows us to trade off temporal coherence and matching the
input texture. This figure shows the last frame of an animation similar to those in Fig-
ure 5.11 for a variety of w values. For low values of w, the final texture more closely matches
the input texture. As w increases there is more temporal coherence between the frames,
but the optimization is less able to match the details of the example texture.
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during optimization. The best-match colors are the colors, chosen from the input example

texture, that most closely match the current and advected colors in a given patch.

Each iteration of the optimization process comprises four steps for each patch:

1. Map the current and advected colors from the surface to texture space.

2. Find the best-match to the current colors and advected colors in the example texture.

3. Map these best-match colors to the surface.

4. Update the current colors on the surface.

Step (1) uses the parameterization described in Section 4.4.2 to map the current and ad-

vected colors from the surface to texture space. Of course, since the advected colors do

not change during optimization, these can be mapped to texture space once and cached.

Step (2) finds the best match in the input example texture to both the advected and cur-

rent colors by finding the region in the input example texture which minimizes the energy

function

E(c,a, b) =
∑

i,j

g(i, j) ‖(1− w)(cij − bij) + w(aij − bij)‖2 ,

where c are the current colors for the patch (mapped to texture space), a are the advected

colors, b are the best-match colors (which is the variable we are minimizing over), i and j

vary over the two-dimensional texture region, g(·) is a Gaussian weighting function which

ensures that colors near the center of the patch have more weight, and w is a weighting

parameter that trades off temporal coherence and matching the example texture (see Fig-

ure 4.8). In our implementation, the best-match colors are found through a brute-force

search over all regions of the example texture. More sophisticated search techniques do ex-

ist [Wei and Levoy, 2000; Kwatra et al., 2005] and could provide significant speedups. Step

(3) maps these best-match colors from texture space to the surface mesh. Finally, step (4),
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removes the contribution of the previous best-match colors from the current colors stored at

the mesh vertices and blends in the new best-match colors. Following Kwatra et al. [2005],

we perform the optimization at several mesh resolutions and for several patch sizes at each

resolution, though for most of the examples in this thesis we found one resolution with

patch sizes of 33x33 pixels and 17x17 pixels to be sufficient. Several optimization steps for

one frame can be seen in Figure 4.9.

This optimization approach is particularly appealing in our context. In many

parts of the surface that have experienced minimal distortion, the advected colors may

quite closely match the example texture. Consequently, the optimization makes only minor

changes and converges quite quickly. Additionally, we achieve temporal coherence by initial-

izing the optimization with the advected colors and including a term in the energy function

which attempts to match these advected colors. This temporal coherence is demonstrated

in Figure 5.10.
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Figure 4.9: These images show the progress of the texture optimization. The image in the
upper left hand corner is the initialization for the optimization (i.e. the advected colors).
The next image is after the first optimization step, and so on. In the last image of the third
row, the optimizer begins working with smaller patches and the bottom right corner shows
the final output texture for this frame.
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Chapter 5

Results and Discussion

5.1 Surface Tracking

We have tested our semi-Lagrangian contouring surface tracking method coupled

with a fluid simulation on several examples such as the ones shown in Figures 5.1 and 5.2.

We have also tested it in the spiraling analytical test field proposed by LeVeque [1996] and

used by Enright et al. [2002a] to test their particle level-set method:

vt(x, y, z) =(2 sin(πt) sin2(πx) sin(2πy) sin(2πz),

− sin(πt) sin(2πx) sin2(πy) sin(2πz), (5.1)

− sin(πt) sin(2πx) sin(2πy) sin2(πz))

Figure 5.3 shows two objects being advected in this divergence-free velocity field to a mid-

point after which the field reverses. The sphere of radius 0.15, centered at (0.35, 0.35, 0.35)

was restored to a nearly identical shape (see Figure 5.4), while the bunny exhibited a small

amount of smoothing. The surface of the bunny was textured by a spot-generating reaction-

diffusion system [Turk, 1991; Witkin and Kass, 1991] that ran on the surface as the object
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Figure 5.1: These images shows an invisible tank being filled as multicolored balls of fluid fall
into it. The resulting surface contains complex geometric details which retain the different
colors of the balls. The top image was rendered with a matte shader, while the bottom
image was rendered with a colored glass shader.
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Figure 5.2: Two balls of visco-elastic fluid are thrown at each other and merge.

Figure 5.3: This figure shows the behavior generated when two different surfaces are passed
through an analytical flow field that stretches and distorts them. The first three images show
the object flowing along the field, the last three show the behavior when the distorted object
then flows back along the reverse field. The bunny is textured using a reaction-diffusion
system that is running on the surface during the sequence.

2.5%

-2.5%

0.0%

1.25%

-1.25%

Figure 5.4: This figure shows the error in the final frame of the sphere example in Figure 5.3.
The color maps to the error as a percentage of the sphere’s radius, with blue points slightly
inside and yellow points slightly outside. Over most of the surface the error is quite small,
though a small crease has formed where the sphere has undergone substantial distortion.
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Figure 5.5: In this figure we show the result generated when we continue to distort and
stretch an object past the point where it thins out and tears.

was being advected. At each timestep, the morphogens were advected along with the sur-

face and then allowed to react. In Figure 5.5 we show the result of running the sphere

through the flow field for several revolutions to highlight the behavior generated when the

surface thins below the resolution of the octree’s finest level.

All of our fluid examples used a standard regular-grid Eulerian fluid simulator.

More specifically, we use the staggered-grid data structure of Foster and Metaxas [1996], the

semi-Lagrangian advection method introduced by Stam [1999], the extrapolation boundary

condition of Enright et al. [2002b], and the viscoelasticity model of Goktekin et al. [2004].

The fluid simulator and the surface tracking module were only very loosely coupled: the

fluid simulator provided the surface tracker with a velocity function and, in turn, the surface

tracker provided the simulator with the signed-distance function. Because our fluid simula-

tor has a regular grid its resolution is notably coarser than the surface tracker, which uses

an octree. The idea of using different resolutions for the fluid and surface is not new; Foster

and Fedkiw [2001] used different timesteps for their fluid and surface calculations and Gok-

tekin et al. [2004] found that increasing the spatial resolution of the surface tracking grid

dramatically reduced volume loss. As noted by Losasso et al. [2004], using different spatial

resolutions can produce artifacts. For example, pieces of surface could appear connected
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when the simulator thinks they are disconnected and vice versa. Additionally, surface fea-

tures may be maintained when a more detailed fluid simulator would smooth them away.

In general, we found the increased surface resolution to be worth these artifacts. Ideally we

would use a multiresolution fluid simulation, like the octree method of Losasso et al. [2004].

We plan to incorporate a multiresolution fluid simulator as part of our future work.

For most of our examples the surface tracking module took roughly 1 min/timestep

at an effective resolution of 5123. The fluid simulation also required about 1 min/timestep.

Both the fluid simulator and the surface tracking module took 11 timesteps per frame.

Thus it took about 2 days to simulate 10 s of animation, with roughly half the time spent

solving for the velocity field and half the time updating the surface. It is important to

note that, given a perfect semi-Lagrangian path tracer, the surface tracking method could

take arbitrarily large timesteps. Decoupling the timesteps of the fluid simulator and surface

tracker, so that the surface tracker runs only once per frame, is an interesting area of future

work.

In Figure 5.6 we show the behavior when a thick viscoelastic fluid is allowed to

flow off a shelf into a basin. This surface is textured by advecting reference coordinates

along with the flow and applying a procedural checkerboard texture. Figure 5.7 shows

beginning and ending frames using both an off-the-shelf procedural shader, which includes

a displacement map, and a reaction-diffusion system. The motion of the spots on the surface

occurs both from the motion of the surface and from the reaction-diffusion system seeking

equilibrium on the moving surface. Thus, even after the fluid motion has mostly stopped

the surface spots continue to move over the surface.

Figure 5.8 show two streams of liquid that are being sprayed toward each other.

As the streams oscillate from side-to-side, they collide and produce a thin, web-like surface
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Figure 5.6: This sequence shows a thick viscoelastic fluid sliding off of a shelf. A checker-
board texture is mapped onto the surface. It is interesting to notice that the corners of the
checkerboard texture stay sharp, despite the significant deformation. However, it is also
evident that the surface deformation has caused the texture to distort significantly.

Figure 5.7: This figure shows the beginning and ending frames of an animation similar to
that shown in Figure 5.6. The left images were rendered with an off-the-shelf procedural
shader which includes a displacement map, while the images on the right were generated
with a reaction-diffusion texture.
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Figure 5.8: This sequence shows realistic (top) and matte (bottom) renderings of two liquid
sprays. As the sprays move from side to side, they periodically intersect and create a
web-like spiral pattern.

between them. The motion of the two streams causes this thin surface to form a spiral

shape as the streams separate. Similar effects can be seen in real-world footage.

All of our images were rendered with the open-source renderer Pixie [Arikan, 2005].

Since we generated a polygonal mesh for each frame, we could take advantage of standard

rendering techniques, allowing for very fast rendering times; most of our renderings took
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less than 3 min/frame. Many of our examples were rendered with a matte shader so that

the surface detail can be seen. A number of our examples were also rendered with a glass

shader (using water’s index of refraction) for comparison to previous methods and real

fluids, and to demonstrate how the method can be used to generate realistic results. Our

colored and textured examples illustrate how easily a variety of properties may be attached

to the surface. In practice, we believe that advected properties could be used effectively

with standard shading techniques to generate a wide range of interesting effects.

5.2 Surface Texturing

We have implemented the example-based texture synthesis method described in

this thesis and demonstrated it with a variety of fluid motions and example textures. The

fluid motions demonstrate significant squashing and stretching of the surface as well as a

variety of topological changes. Our method generates surface textures which match the

input example texture while remaining temporally coherent.

Figure 5.9 shows a comparison between three texturing approaches. Both the ad-

vected parameterization and advected colors approaches suffer from substantial distortion

of the texture over time. The advected parameterization additionally contains discontinu-

ities where topological changes have occurred. The advected colors handle these topolog-

ical changes but suffer from significant blurring of the surface texture. In contrast, our

optimization-based texture synthesis approach is able to closely match the example texture

while maintaining temporal coherence. Figure 5.10 shows an animation of a splash created

when a ball of fluid is thrown into a shallow pool of fluid. The resulting motion demon-

strates significant stretching of the surface, but the surface texture does not become overly

distorted and always provides a good match to the input example texture.
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Figure 5.9: This figure shows three approaches to texturing liquid animations. The anima-
tion on the left was textured using an advected parameterization. This technique results
in significant distortions of the texture and discontinuities where the surface has undergone
topological changes. The middle column was textured with advected colors. Over time,
the colors distort and blur. The right column was textured with our optimization-based
technique. The texture avoids distortion while maintaining temporal coherence.
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Figure 5.10: This splashing motion was textured using our example-based texture syn-
thesis technique for liquid animations. Despite topological changes and significant surface
distortions, the salient characteristics of the synthesized texture remain constant.
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Figure 5.11: This figure shows several textures applied to a simulation of a melting bunny.
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Figure 5.12: In this simulation, two balls of viscoelastic fluid are thrown at each other
and merge. The texturing method handles this topological change without introducing any
objectionable “pops.”
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Figure 5.13: This figure shows two textures applied to an animation of a tank filling with
viscous fluid.

Figure 5.11 shows an animation of a melting bunny with a checkerboard texture.

Though the resulting texture is not a perfect checkerboard, which is impossible because

the surface is not developable, locally the texture quite closely matches the checkerboard

example, and globally the texture does resemble a checkerboard.

Figure 5.2 shows an animation of two balls of fluid thrown at each other. Because

we explicitly include temporal coherence in the energy function there is no noticeable “pop”

when the two spheres merge, rather they gradually move toward a continuous texture which

matches the example. Figure 5.13 shows an additional example of viscous fluid filling a

tank with two different textures. Figure 5.14 shows some examples with multiple textures.

We took two approaches to handling multiple textures. The simpler approach initializes

different objects with different textures. Then, for each optimization step, all the textures

are searched when looking for the best match. Unfortunately, this approach fails when the

similarity metric (in our case, sum of squared differences) is unable to distinguish between

the various textures. In this case, we advect an additional scalar field on the surface which

determines, individually for each patch, which example texture is searched for the best

match.
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Figure 5.14: This figure shows some examples with multiple textures. In the examples
on the left, the objects were initialized with different textures. After initialization the
optimization searched both textures for the best match. In the examples on the right, an
additional scalar field was advected on the surface and used to determine which texture to
search for the best match.
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Unfortunately, our implementation is not particularly fast. Re-tiling a surface

mesh takes about one minute, generating and optimizing the surface patches takes between

fifteen and thirty minutes for a single frame, and the texture optimization takes between

one and fifteen minutes per frame, depending on the amount of distortion of the texture

and the number of vertices in the mesh. Fortunately, the re-tiling and patch generation can

be done in parallel, so they do not create a significant bottleneck in a traditional rendering

pipeline. Additionally, in this work we were more concerned with developing a method

which produces high quality results rather than one optimized for speed. We believe the

general method could be made much faster, perhaps using ideas developed by Magda and

Kriegman [2003].

Concurrently with our work, Kwatra et al. [2006a; 2006b] have developed a very

similar example-based texture synthesis method for fluids. However, they do not build and

optimize patches as a precomputation, but rather construct color neighborhoods on the

fly using the method presented by Turk [2001]. They also have a more developed texture

synthesis module which uses K-means trees to find the best match in the example texture

rather than our brute force approach.
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Chapter 6

Conclusions

Semi-Lagrangian contouring offers an elegant and effective means for surface track-

ing and has a number of advantages over competing methods. First, we have an explicit

representation. In addition to enabling exact evaluation, this explicit representation also

allows us to leverage 30 years of computer graphics technology which has been optimized

for polygonal meshes. Rendering, texture mapping, and a variety of other applications

are all very straightforward. Second, we have an implicit representation. This implicit

representation allows us to update the surface without explicitly addressing any of the dif-

ficult topological issues which plague other approaches. Third, semi-Lagrangian advection

gives us a mapping between surfaces at adjacent timesteps. This mapping allows us to

accurately track surface properties on the actual surface at negligible complexity and cost.

Fourth, our method does not have any ad hoc rules or parameters to tune. In fact, the only

parameters to our system are the upper and lower corners of the domain, the maximum

depth of the octree (a resolution parameter), and some resolution tolerances. Finally, and

most importantly, we are able to produce detailed, flicker-free animations of complex fluid

motions.
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Example-based texture synthesis methods are in many ways ideal for liquid sur-

faces because they are able to overcome the discontinuities and distortions of an advected

parameterization while maintaining excellent temporal coherence. Our method is able to

handle a wide variety of input example textures and should prove to be a useful tool for

artists, complementing existing texturing techniques such as procedural texturing [Ebert

et al., 2002], and advected texture maps. Of course, our example-based texturing method

is not limited to the domain of liquid animations—the method requires only the ability to

map colors from the surface at one frame to the surface at the next frame and could prove

quite useful for texturing a variety of deforming surfaces. Furthermore, our methods are not

limited to image textures, but could also be used for bump and displacement maps or any

other method of stylizing surfaces or adding surface detail, as long as an example texture

can be supplied.



69

Bibliography

[Arikan, 2005] Arikan, O., 2005. Pixie: Photorealistic renderer.

[Bærentzen and Aanæs, 2005] Bærentzen, J. A., and Aanæs, H. 2005. Signed dis-

tance computation using the angle weighted pseudonormal. IEEE Transactions

on Visualization and Computer Graphics 11, 3, 243–253.

[Bærentzen and Christensen, 2002] Bærentzen, J. A., and Christensen, N. J.

2002. Interactive modelling of shapes using the level-set method. International

Journal of Shape Modelling 8, 2, 79–97.
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