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Abstract

E-commerce server reliability is critical, as downtimes
cost an average of $10,000 per minute [40]. Commercial
web server development today is done with fairly generic
programming languages, like Java, Perl, and C#. The
generality of these languages, while permitting a wide
range of target applications, makes it difficult to guaran-
tee reliability: dynamic type errors, race conditions, and
resource leaks contribute to instability. Though the lan-
guages may detect such errors at runtime, the resulting
downtimes in production code are costly.

We present Katana, a specialized framework for cre-
ating reliable web servers. Generality is exchanged for
specific capabilities tailored to server operation. In par-
ticular, servers written with Katana benefit from these
properties: truly statically type-checked code; special-
ized language features for common server tasks, such
as data transformation and formatted output; native,
statically-checked database interaction; automatic mem-
ory management and concurrency control; and built-in
state-sharing mechanisms. By eliminating much of the
complexity inherent in general-purpose frameworks and
unnecessary for web server operation, while retaining a
suitable range of expressiveness, Katana servers are not
subject to several entire classes of bugs that plague exist-
ing web servers, and are thus more reliable.

Preliminary results indicate that Katana is comparable
to existing server frameworks in terms of ease of use and
performance, suggesting that it is a viable architecture
for real-world web servers.

1 Introduction

Over the past ten years, Internet servers have grown
tremendously in importance. Web servers have become
the public face of the Internet: as of January 2006,
seventy-five million of them crowd the network [33].
Web mail has also become important, with enormous

services like Hotmail, Gmail, and Yahoo! Mail hosting
hundreds of millions of users and contributing to the 31
billion emails sent daily [41]. E-commerce continues to
grow by billions of dollars annually [11]. The overriding
theme in this story is that dynamic web sites have be-
come the rule rather than the exception. To meet the de-
mand, web servers have become increasingly powerful.
Most servers are now merely containers for programs
written in general-purpose languages like Perl, Python,
Java (via J2EE [21]), and C# (via .NET [10]). Although
these languages are very expressive, they provide insuf-
ficient reliability guarantees. For instance, the lack of
static typing in Perl and Python can lead to runtime er-
rors that escape QA testing and only manifest themselves
during production. Java and C# are statically typed, but
they still have many potential runtime errors, as well as
race conditions, deadlocks, and resource leaks.

These programming frameworks do provide a basic
level of safety in that when programs fail unexpectedly,
they terminate rather than misbehave. However unex-
pected termination, while safe, is still unreliable: a server
that has gone down cannot complete a sale. This lack of
reliability can be deadly; according to the Gartner Group,
e-commerce downtimes cost an average of $10,000 per
minute [40], in addition to intangibles such as a loss of
reputation and increased customer irritation.

Why are such frameworks unreliable, even given this
large cost? The problem lies in the generality of the
framework design. A general programming framework,
such as .NET, is by nature very powerful. This power
renders such frameworks attractive to server designers,
since high performance servers are generally compli-
cated beasts. E-commerce servers, for instance, need to
handle a variety of tasks, from processing a very large
volume of user requests, to executing server-side logic in
the business of displaying pages and constructing orders,
to accessing a back-end database for product informa-
tion.

However, there is a critical flaw with using general-



purpose frameworks: their power, which allows servers
to handle each of these critical tasks, is manifested in
a set of generic features that, if the framework is truly
general, must be suitable for not just for web servers but
for all kinds of other applications as well. This generality
results in a framework that is suboptimal for the specific
domain of reliable web server development. The results,
naturally, are less reliable web servers.

Katana: a solution specialized for reliability. We
introduce Katana, a new approach to server development
that directly attacks this problem of unreliability via spe-
cialization. Katana is a server framework, like J2EE or
.NET, but one designed specifically for web server reli-
ability. It is based on the philosophy that, in the context
of web servers, the flexibility offered by general-purpose
languages like C and Java is rarely useful and often quite
dangerous. Katana eliminates features like unrestricted
threaded programming, reflection, dynamic typing, and
garbage collection and replaces them with ones that are
safer, faster, easier to use, and better suited to server de-
velopment.

This concept of specialization is the heart of the
Katana philosophy. Web servers tend to have particu-
lar and consistent execution behavior: they field many
requests (usually independently from one another), com-
municate with a persistent state mechanism such as a
database or session store, manipulate and transform data,
and generate formatted output such as HTML. Because
we know that web servers follow this restricted set of ac-
tions, we can exchange the generality of existing frame-
works for the specialization of a framework finely tuned
for servers, focusing especially on reliability. Some rep-
resentative aspects of the Katana framework are:

• A statically type-safe language

• A restricted yet suitably expressive language feature
set

• Statically checked database interaction

• Automatic region-based memory management

• Built-in concurrency with controlled state sharing

Each of these aspects, discussed in detail in this paper,
is tailored towards server reliability. In this way, Katana
drastically reduces the number of avenues by which bugs
can be introduced into web servers.

Practical concerns: ease of use and performance.
Two concerns of any server framework designed for reli-
ability are whether it is expressive and easy enough to use
to allow for the creation of real web servers, and whether
such servers are fast enough to be practical in a produc-

tion environment.1 While these two goals are not the
main focus of this paper, we realize that they must be
met to some extent if any system purporting reliability is
to be taken seriously in the real world.

Preliminary evidence suggests that Katana does in-
deed meet these two goals. The philosophy of specializa-
tion that is the basis for Katana’s claims to reliability is
crucial here as well. The design of the Katana language,
K, reflects not only the overarching aim of reliability, but
also a focus on ease of use. Common server logic idioms,
such as structural pattern matching, data structure itera-
tion and transformation, regular expressions, structured
output (like HTML) and so on, are built directly into the
language. Preliminary experiments with two medium-
sized test cases indicate that programmer ease of use
with Katana, measured in lines of code and development
time, compare favorably against existing solutions such
as J2EE and even Perl. Further details are presented in
Section 5.2.

As with ease of use, specialization aids crucially in
the area of performance. In Katana, common-case web
server execution behavior is used to motivate special-
ized performance-oriented features in the same way it
is used to increase reliability. For instance, a coopera-
tive threading model and region-based memory manage-
ment exploit the relatively short processing time of most
web requests to reduce overhead. The domain-specific
languageK makes program semantics more evident to
the compiler by focusing expressiveness on the partic-
ular domain of web servers. Thus, it enables several
language-based optimizations unavailable to more gen-
eral purpose languages. Preliminary benchmarks show
that Katana performs extremely favorably against the
J2EE dynamic server framework, and comparably to
even an optimized static web server. More details can
be found in Section 5.3.

Katana as a long-term platform. One final concern
is the tendency of any platform to exhibit “feature bloat”
as it matures and evolves to better fit its target domain.
For a specialized framework such as Katana, such bloat,
if improperly implemented, can be devastating, adding
the complexity and unreliability that the framework was
expressly created to avoid.

To combat this problem, care was taken in the design
of Katana to ensure that any modifications to the frame-
work could be made in a “native” fashion, retaining the
domain-specificity that is crucial to its success. Thus, the
Katana compiler forK is completely extensible; any new
language features can be integrated directly into the lan-
guage rather than being hacked in on top of it. Further-

1Of course, these concerns also plague existing, general-purpose
frameworks: time and skill are often required to make a program per-
form well when it uses garbage collection, interpretation, or just-in-
time compilation, as many of these frameworks do.



more, the Katana runtime is also extensible: new thread-
ing and memory management modules can be swapped
in. In this way, if a given class of servers would perform
faster or more reliability with a particular runtime envi-
ronment, it is not necessary to “generalize” the Katana
runtime to provide that environment; instead it can be
plugged in independently without having to alter the de-
fault runtime at all.

Paper contributions. The primary contribution of
this paper is the Katana framework for web server cre-
ation specialized for reliability. The static and runtime
portions of the framework are described in Sections 3
and 4, respectively. Additionally, we present a full im-
plementation of the Katana system and preliminarily as-
sess its real-world viability by examining its ease of use
and performance in Section 5. Finally, we discuss related
work and conclude. To begin, however, we describe a
simple example server.

2 Example Server

The best way to illustrate how Katana works is by ex-
ample. Figure 1 shows the architecture of a simple web
server that returns a list of employees from a database.
Katana code is written in the languageK, described in
Section 3, and is structured into modules. Modules are
compiled to C and linked with the runtime and libraries.
In this example there are two modules. The first module
dispatches requests and fetches results from the database.
The second module handles formatting of output data.
Either of these modules may make use of Katana library
functions.

The example contains three functions inK that are
written by the user (they are shown at the left of the fig-
ure). The first one decides, based on the URL, how the
request should be processed. It uses pattern matching
with regular expressions to parse the URL, although the
Katana support libraries also include more sophisticated
URL parsing capabilities. To fetch a list of employees,
the second function begins a transaction and performs
a database query. It returns the list of records resulting
from the query (list types are delimited by square brack-
ets in our syntax). The third function formats the em-
ployee list in HTML.

Regular expressions, statically checked database ac-
cess, and automatic string manipulation and interpola-
tion are all features of Katana. Efficient automatic mem-
ory management and threading are built into the Katana
runtime. All together, this simple example requires only
a few dozen lines of code together with some support-
ing libraries provided by Katana. This modest invest-
ment yields a statically type-safe application server free
of most common runtime errors that scales to thousands
of connections per second (ignoring database overhead).

3 Katana’s Static Framework

Both the Katana static language framework and its run-
time are specialized for reliability. In this section we de-
scribe the features of the static framework. The heart
of this framework isK, the domain-specific language in
which Katana servers are written. We start by describing
the basic features ofK, and then delve further into some
of its significant specializations.

3.1 The Basics ofK

In repsonding to requests, web servers commonly per-
form several tasks:

1. Data transformation and aggregation work

2. Control tasks, like dispatching on a URL or other
input

3. Access to persistent data like session state or a
database

4. Generation of formatted output (usually HTML)

The languageK is specialized to make the completion
of these tasks easy and safe. Critically, ensuring that
tasks are easy to complete is as valuable as making sure
that individual operations are reliable: even a perfectly
safe language can lead to algorithmic bugs induced by
unnecessary complexity unless it provides the program-
mer with a set of expressive tools.

K enables the former two tasks via an expressive type
system and structural pattern matching.

In addition to the standard base types and references,
K supports a variety of aggregate types for easy data ma-
nipulation. Figure 2 shows some examples. There are
no pointers inK, only (non-null) references, eliminating
a large class of safety errors. Our usability studies (see
Section 5.2) indicate that these are more than adequate
for the server domain.

Server logic is often data-driven: it must be trans-
formed, analyzed, or acted upon. Thus,K supports struc-
tural pattern-matching, which makes it easy to decom-
pose data structures into their components. See Figure 3
for examples. We have found pattern matching, which
we have extended with regular expression support, to be
an enormously useful and concise tool in programming
servers.

K is strongly typed at compile time, negating the need
for dynamic safety checks2. Static typing ensures at
compile-time that parametric types like lists are used
properly, in contrast with languages in which proper us-
age of generic container types is only assured at runtime.

2In fact, the type system is structured to allow for full type infer-
ence, although we did not implement an inferencer.



interface

Out.buffer doGetRequest(string url) {
  match url with
  | "/index.html" -> showIndex()
  | "/employees.cgi?mgr=" (.* as mgr) ->
      showEmployees(getEmployees(mgr))
  end
}

Request Handling

[Employee] getEmployees(string mgr) {
  transaction {
    [ Employee e. r.employed = true
                  and r.manager = mgr
                | limit 10 ]
  }
}

Database Access

showEmployees([Employee] employees) {
  [[ <h1>Search results:</h1> ]]
  [[ <table> ]]
  foreach e in employees do
    [[ <tr> ]] showEmployee(e) [[ </tr> ]]
  end
  [[ </table> ]]
}

Presentation

Employee
server
logic

Employee
server

presentation

Katana
compiler

Employee
server

logic.c presentation.c

Runtime
● Threading
● Memory mgmt
● DB access

Libraries
● HTTP parsing
● URL parsing
● Session mgmt

libruntime.a libkatana.a

gcc
interface

Figure 1: An example Katana server, including the complete server infrastructure. This server either displays a
welcome page or returns the list of employees under a particular manager. The employee list is read from a database.

type SessionId = int;
type Story = { Author a, string text };
type User =

| RegisteredUser(string, string) // username, password
| Guest

end;
type AssocList[t] = [ (string, t) ]; // list of pairs

Figure 2: Sample types in theK type system, including
base types, records, unions, tuples, lists, and parametric
types.

Katana compilers are portable to any platform with a
C compiler. Programs inK themselves are platform in-
dependent.

Memory management inK is automatic, stamping out
a major class of errors. A danger of automatic memory
management is that it can bloat the heap or cause pro-
grams to pause at arbitrary times; in Section 4.2, we ar-
gue that Katana’s memory management scheme, special-
ized to the server domain, suffers from neither of these
problems.

The third web server task, shared state, is often the
source of many concurrency and memory bugs, as dan-
gling pointers, race conditions, and deadlocks can occur
when trying to access concurrently available data. Rather
than allowing the server programmer to manage shared
and persistent state in an arbitrary fashion,K exposes
the two most common state-storing mechanisms, session
stores and databases, in a structured, type-safe way.K
also has a specialized solution for the fourth task, gen-
erating output. Details of these language extensions are
below.

bool isLoggedIn(User u) {
match u with
| RegisteredUser(uname, pass) -> getPassword(uname) = pass
| Guest -> false
end

}

Cart actUpon(Cart cart, Item item, string action) {
match action with
| "purchase" -> cart := addItem(cart, item)
| "remove" -> cart := deleteItem(cart, item)
| _ -> () // anything else
end;
cart

}

(string,string) getCookiePair(string cookie) {
match cookie with
| /(.* as name) "=" (.* as val)/ -> (name, val)
| _ -> ("","")
end

}

Figure 3: Pattern matching with unions, strings, and reg-
ular expressions.

3.1.1 The Module System

A Katana server is constructed from modules. Each mod-
ule communicates with other modules using a common
interface system that supports abstract types for modu-
larity. The module system is also a convenient way to
interface with C code—any module can be written in C
as long as it has a Katana interface file. Interestingly,
since Katana compiles to C, it is usually just as efficient
to write code inK instead of C, and much easier.

Katana also provides a number of useful libraries via
the module system, some written inK and some in C,
including HTTP header parsing (with cookie support),
input and output buffers, and URL parsing and manipu-
lation.



type Cart = [ (Item,int) ]; // list of item, quantity pairs
store[Cart] carts; // defines the Cart store

Cart getCart(string sessionid) {
match Session.get[Cart](carts, sessionid) with
| Some(cart) -> cart // user already has a cart
| None -> [] // empty cart
end

}

Figure 4: Session code to manage shopping carts in Java
Pet Store, a sample e-commerce application.

type Comment = { User creator, bool is_public,
Ref[Article] article, string body };

[Comment] fetchCommentsByUser(User u) {
transaction {

[ Comment c . c.creator = u and c.is_public = true
| limit 12, orderby c.date ]

}
}

[User] fetchArticleAuthors([Comment] clist) {
[User] res = []; // empty list
transaction {

foreach c in clist do
if (c.is_public) then

// automatically fetch article from the database
// and prepend it to the list
res := (@ c.article).author :: res

else
()

end
};
res

}

Figure 5: Sample database interaction in NewsDog, an
online news community. In the first function,creator
is automatically fetched, whilearticle is kept in a
lazy reference; a list ofComments is returned. In the
second, aRef is dereferenced.

3.2 Session Support

Inter-request session state is very common among dy-
namic content servers, whether to keep login information
or to store items in a shopping cart. AK language feature
allows the programmer to store arbitrary session data in a
type-safe and thread-safe way. Figure 4 has an example.
Naturally, multiple session stores can be created.

All concurrency and memory management issues re-
garding session support are handled automatically by the
Katana runtime, as detailed in Section 4.

3.3 Database Support

The de facto method of data storage and retrieval in
modern Internet servers is the relational database. Un-
fortunately, there are several problems with traditional
server/database interaction via SQL.

Hierarchical data that is conceptually grouped together
(for instance, the fields of a data structure) must be mar-
shalled to and from the database for each transaction, of-
ten via hand-written custom marshallers or a tedious pro-
cess of reconciling the database schema with the object
layout to the application server.

Furthermore, it is difficult to generate queries that in-
teract with the database in a provably safe way. SQL
statements are essentially untyped; the validity of a state-
ment with respect to its parameters and the tables it af-
fects can often only be determined at runtime. Also,
query construction is usually done by concatenating
strings (and dealing with the associated quoting and se-
curity issues involved with inserting external data into a
SQL command); even with the bind capabilities available
in newer databases, which allow programmers to abstract
the parameters away from the actual string representation
of a query, the correctness of a query is still difficult to
determine.

Additionally, there is rarely a consistent way to han-
dle references to other records in memory (“swizzling”
[32]). Null pointer dereferences and more devious errors
are common when there is no consistent semantics for
storing and restoring references.

Katana explicitly addresses these problems at the lan-
guage level. We have integrated a database interface into
K that provides:

• A direct relation between user data structures and
tables in the database

• Automatic, safe, and efficient marshalling of data
structures to and from the database

• Statically type-checked query construction

• A clear, flexible semantics for handling references

The programmer specifies which, if any, of his named
types are to be stored in the database with thedbtype
declaration. Eachdbtype corresponds to a table in the
database, and each field a column; in all other respects it
is identical to a normal type.dbtype s can contain other
dbtype s, in which case the contained objects will be
fetched eagerly from the database when the parent object
is. dbtype s can also contain a lazier reference,Ref ,
to otherdbtype s; dereferencing aRef automatically
fetches its associated object from the database. These
semantics eliminate dangling pointer problems and allow
the programmer to control the kind of swizzling—eager
or lazy—on a per-reference basis. See Figure 5 for an
example.

All database interactions in Katana occur inside a
transaction scope. The boolean expression in the
query, analogous to thewhere clause in SQL, can be ar-
bitrarily complex and is type-checked with respect to the
database schema at compile time. The query is then com-
piled down to an abstract syntax tree (AST) from which a
SQL query is generated.3 Thus, the query system verifies

3Katana also exposes this underlying AST to the server writer for
the (compile-time type-checked) programmatic construction of queries
at runtime. However, queries that can be entirely constructed at com-
pile time are.



presentArticlePage(ArticlePage apg) {
pageTop(apg.username)
presentArticle(apg.article, apg.id)

string s = if apg.numComments = 1 then "" else "s"
[[ <hr noshade><div align="center">

$apg.numComments Comment$s</div> ]]

foreach c in apg.comments do
[[ <p> ]] presentComment(c) [[ </p> ]]

end

pageBottom()
}

Figure 6: Presentation code for displaying a NewsDog
article.

at compile time via type-checking that query statements
are valid, while simultaneously circumventing quoting
and safety issues.

Currently, the runtime portion of the DBI communi-
cates with MySQL, although there is no reason why other
databases cannot be transparently supported as well.

We feel that the benefits gained by specializing
database access at the language level—static checking,
safe pointer management, and independence from any
particular database or strain of SQL—outweigh the mod-
erate increase in expressiveness that comes with ad-hoc
user-constructed queries. We have evaluated the database
support in the context of two case studies (see Section 5)
and have found it expressive enough to handle those
tasks.

3.4 Presentation Mode

Web servers generally need to send data back to a re-
questing client, and this data tends to be formatted in a
language such as HTML. Much as existing frameworks
have custom solutions for this problem, such as JSP and
ASP, K has apresentation modethat makes generating
formatted output easy. The fundamental data type in this
mode is the string: strings are generated, concatenated,
and interpolated.

Using traditional languages to generate lots of string
content is usually quite painful; instead,K’s presenta-
tion mode makes strings the default data type. Expres-
sions evaluate to strings, and functions simply are a se-
quence of string expressions. Also, as iteration over data
types is very common in creating output, natural itera-
tion mechanisms are provided. The combination of these
features allows for very concise string manipulation. The
division of formatting components into functions rather
than files makes reusing code and constructing complete
pages from components natural.

Furthermore, as in JSP/ASP and Perl, code can be in-
terspersed with strings, and string constants support vari-
able interpolation. Of course, unlike in Perl, all func-
tions are statically type-checked, so no dynamic errors

can arise.
Figure 6 shows sample presentation code.
SinceK is designed so that strings are immutable, an

opportunity for optimization arises. Repeated concatena-
tion of strings as the output is aggregated does not occur;
instead, the output is accumulated in a list of string ref-
erences, and relayed back to the client in optimally-sized
chunks. No copies are ever made.

3.5 New Languages and Features

The initial Katana implementation relies on these fea-
tures ofK, which we believe are useful for application
and content servers. However, Katana also makes it easy
to add new language extensions and even new languages
in order to increase expressiveness as necessary. Natu-
rally, any modifications toK must take care to not violate
its safety properties.

The entire compilation infrastructure that translatesK
to C is extensible. We supply libraries for parsing, type
checking, and code generation of the base features de-
tailed above. A language designer need only describe
those additional features that are unique to his extension
or new language. Parsing is done with Elkhound [29], a
GLR parser generator that supports user-controlled res-
olution of parsing ambiguities. Type checking and code
generation can be extended by a mechanism similar to
object-oriented inheritance.

Providing incremental extensibility at every level
makes it easy to apply a variety of modifications. For
example, adding syntactic sugar toK requires only an in-
cremental change to the parser; exploiting an optimiza-
tion opportunity can be done at the code generation level
without any other work. Of course, larger-scale design
changes are also possible.

An additional benefit of incremental extensibility is
that, if a new language is required, it tends to share a
common syntax and semantics withK and only differs
in ways that make it more naturally suited to its chosen
domain. Code in different languages can interact seam-
lessly as long as they expose Katana interface files and
share the common binary interface used by theK com-
piler.

We relate our experience adding several new features
to K via these extensibility mechanisms in Sections 5.2.3
and 5.2.4.

4 Katana’s Runtime Framework

Katana servers use a runtime that has been specialized
for web server behavior. This section describes the most
important features of the runtime.



4.1 Concurrency

In designing Katana, we needed to decide between
a threaded programming model and an event-driven
model. Although the event-driven model historically has
performed better [45], it is more difficult for program-
mers to understand since control-flow is divided across
a set of disparate event handlers. Threads are easier to
understand, but many threads packages perform poorly.

We believe that an intuitive programming model is
crucial to achieving Katana’s goal of reliability. A good
model makes writing code easier and simplier, and thus
is less likely to introduce bugs. Since threads mimic
a system with no concurrency, it is easier to make
them transparent to programmers. Recent work such as
Capriccio [44] has revived the idea that threads are as
fast and as scalable a model as events [25]. Therefore,
we designed a cooperative threading library for Katana.
This library adheres to them:n model, in which a set of
user threads is multiplexed over a set of kernel threads.
We expect users to run one kernel thread per CPU.

A standard criticism of threads is that they introduce
a new class of errors that are caused by improper syn-
chronization. In fact, though, a cooperative threading
model provides exactly the same atomicity guarantee as
an event-driven one: that all accesses to shared state
between yield points will be atomic. Additionally, no
model can avoid synchronization when a programmer
chooses to use multiple processors.

In light of these facts, Katana supports a number of
mechanisms for shared state, but they are carefully con-
trolled. All synchronization is done automatically for
the user so that deadlocks and race conditions never oc-
cur.4 To ensure correctness without compromising per-
formance or expressiveness, we believe that shared state
should be domain-specific. As an example, we describe
our implementation of session state.

Session state must be shared across connections, but
generally it is accessed by only one user at a time. Since
there is no actual sharing, there is no need for the session
state to be updated. Instead, in Katana, many versions of
a user’s session state are kept at the server. When a user
changes the state, a new version is created. A cookie
in the user’s browser keeps track of the current version.
Because versions are created but never mutated, synchro-
nization problems like race conditions disappear. In this
way, the Katana session state design preserves safety and
performance, at a small cost in expressiveness.

For other domains, more complex techniques are nec-
essary. The standard database programming model en-
sures correctness using transactions, two-phase locking,
and deadlock detection. Katana’s use of domain-specific

4The runtime adheres to a locking policy that ensures mutual exclu-
sion and never takes more than one lock at a time.

shared state management allows it to provide database-
like semantics where necessary while also supporting a
lighter-weight mechanism, like session cookies, when
they are a better fit.

4.2 Memory Management

The memory access patterns of a web server are consis-
tent, and thus ripe for specialization. Most data is used by
only one request handler, and requests tend to be short-
lived. Katana uses region-based memory management
for this purpose. Each thread is allocated a region, from
which memory is doled out incrementally. An allocation
costs only as much as a pointer increment. Pointers are
never allowed to escape from a region. After a connec-
tion ends, all the data allocated by the thread is freed.
The memory inefficiency due to the lack of an explicit
free is mitigated by the short lifetimes of threads in a
web server.

Region-based memory management is convenient be-
cause it is efficient and completely safe—threads never
dereference a freed pointer. Only by specializing for
servers, with particular support for session data, can re-
gions be used with so few restrictions. Most region-
based systems must deal with inter-region pointers or
huge long-lived regions that waste memory. Region-
based memory management also has clear advantages
over garbage collection, since it never pauses for collec-
tion and does not permit memory leaks. These advan-
tages again bolster the reliability of Katana servers, by
eliminating another avenue for bugs and complexity.

4.3 New Runtimes

A benefit of making memory management and concur-
rency transparent to the programmer is that different run-
time mechanisms can be plugged in without any changes
to the rest of the system or to any of the server’s source
code. In fact, the Katana runtime API is designed so that
runtimes can be linked in even after compilation. The
modularity of the runtime system allows Katana to be
further tailored to specific server designs or even to dif-
ferent classes of servers. For instance, if a particular
application server requires a specific threading model,
it can be supported without modifying the rest of the
Katana framework. For instance, if Katana were to be
re-specialized to POP servers, the runtime might be writ-
ten to allocate one region per POP command. We have
used this feature to debug Katana during development.5

5In our Katana development environment, we have runtimes that
are single-threaded,pthread ed, and threaded using our cooperative
threads, and of those ones that usemalloc and ones that use our
region-based allocator.



5 Evaluation

In this section we revisit the arguments made about the
reliability of Katana servers, and then assess its real-
world feasibility in terms of ease of use and performance.

5.1 Reliability

In this paper, we have described the various aspects of
the Katana framework and how they have been designed
for reliability. We recapitulate those arguments in this
subsection.

Reliability is an important metric in the server domain,
where five-nines uptime is the industry gold standard.
Katana reduces runtime errors and increases stability be-
cause its components are designed for web server relia-
bility.

Existing frameworks, like J2EE, guarantee safety in
part through dynamic checks. While these checks en-
sure that unspecified behavior does not occur, they may
still raise errors and cause the system or transaction to
fail. Often such failures are costly and unacceptable, as
runtime errors can require tedious testing to flush out, or
worse yet result in an unreliable production system that
may only fail when subject to real-world loads.

A key feature of the Katana architecture is strong static
typing. All type errors are caught at compile-time, ensur-
ing that the only unsafe actions are algorithmic in nature.

Katana also ensures reliability by restricting and spe-
cializing certain language features to eliminate whole
classes of errors. For instance, the lack of uncon-
trolled pointers disallows the possibility of memory cor-
ruption. A statically checked, native database interface
ensures that common DBI bugs due to erroneous SQL
strings cannot occur. Domain-specific management of
shared state eliminates race conditions without the need
for expensive static analysis or dynamic checks. An-
other example is resource management: under certain
workloads, the Java implementation of Pet Store fails
to release database connections and eventually must be
restarted [6, 4]—a class of errors that is impossible in
Katana, due to automatic resource management.

The results of these efforts are presented in Figure 7.
One final argument for the reliability of Katana servers

involves complexity. The languageK has been special-
ized not only for reliability, but also for ease of use (see
Section 5.2). Common server operations are built di-
rectly into the language as features. The complexity
of a roll-your-own concurrency model and shared state
mechanism has also been eliminated. The end result is
that web servers are easier to write with simpler code.
The transparency of this resulting code hopefully makes
servers easier to debug and maintain, and thus more reli-
able.

5.2 Ease of Use and Productivity

As we mentioned in the introduction, a framework like
Katana, no matter how reliable, must also be a practical
solution if it is to be used in the real world. Early experi-
ments suggest that Katana is both easy to use and fast. In
this subsection, we describe ease of use.

We ported one Internet server to the framework and
enlisted a developer with no Katana experience to port
another. We measure productivity in terms of develop-
ment time, lines of code, and required programmer skill.

5.2.1 NewsDog

NewsDog [34] is a dynamic web site in which users au-
thenticate themselves and submit news articles and com-
ments. The original NewsDog implementation is written
in Perl and runs on Apache, with MySQL as the backend
database.

We implemented in Katana a subset of NewsDog, cor-
responding to roughly 800 lines of Perl in the original
implementation. The Katana version took about 6 hours
to write and consisted of 573 lines of code. (The above
figures include roughly 300 lines of embedded HTML.)

Perl’s extreme conciseness lends credence to the ar-
gument that the Katana DSLs are appropriately expres-
sive. We were able to use the existing NewsDog database
schema without modification for the Katana version.K’s
presentation mode made it trivial to port the embedded
HTML from Perl. The type system proved adept at catch-
ing bugs.

5.2.2 Java Pet Store

As a further test of Katana, we enlisted a developer to
re-implement Java Pet Store [39], a sample e-commerce
application intended to illustrate the functionality of the
J2EE platform. The Pet Store server allows clients to
sign in and out, browse a catalog of available pets, search
for specific pets, add the pets to a shopping cart and
purchase them, and keep information in personal ac-
counts. It maintains state through cookies, sessions, and
a database back end. Java Pet Store also includes clients
for administrators and suppliers that we did not request
the developer to re-implement. He also did not imple-
ment the localizations to Japanese and Chinese included
with Java Pet Store.

The Katana implementation of the Pet Store is in four
modules, respectively containing data type declarations,
database access code, application logic, and presentation
code. The files have a total of 978 lines of source, and
an additional 1506 lines of HTML. In contrast, the the
relevant parts of the Java Pet Store implementation are
spread across at least 100 source files containing more
than 5000 semicolons, along with 30 .jsp files containing



Error\ Architecture Katana Perl/Apache J2EE, .NET C
null pointer errors no no yes yes
database query type errors no yes yes yes
dangling pointers no no no yes
race conditions no yes yes yes
resource leaks no yes yes yes
runtime type errors no yes yes yes
invalid memory accesses no no no yes

Figure 7: An examination of the types of safety errors that may occur in a web application created in each of several
architectures.

a comparable number of lines of HTML. The domain-
specific languageK clearly contribute to the reduced
code footprint; a single declaration of a database type
in K roughly corresponds to three source files for a single
entity Enterprise Java Bean (EJB) in J2EE.

The Pet Store was implemented by a developer who
had no prior experience with the Katana DSLs. The
application took approximately 40 hours to develop, in-
cluding the time to learn the languages but excluding the
time to actually design the HTML layout of the pages,
which were taken directly from Java Pet Store. The
strong static checking and domain-specific constructs of
Katana greatly decreased coding time and caught many
bugs that would have been painful to debug at runtime.
Especially useful was structural pattern matching: over
half of the developer’s functions employed it. Addition-
ally, the built-in runtime debug support (including a data
pretty-printer) made isolating the remaining bugs easier.
The automatic session management and cookie support
(for logging in and the shopping cart), and database sup-
port (for user and product information and orders) made
maintaining state easy. Certain language features such as
global variables, type inference, and semi-automatic gen-
eration of interface declarations would have decreased
development time even more; there are no fundamen-
tal obstacles to adding these features and they are future
work.

This Pet Store implementation is the one we bench-
mark, without modification, in Section 5.3. Based on
its results relative to other implementations of Pet Store,
we feel that high performance servers can be written in
Katana with little knowledge or time spent in optimiza-
tion.

5.2.3 Presentation Mode

One of Katana’s strengths is the extensibility of its archi-
tecture. To increase productivity in a particular server do-
main, new features can be added. In this subsection and
the next, we describe our experience while adding the
presentation mode and database support toK using the

addto expr [[
-> l:LSQUARE i:IDENTIFIER COLON t:typ DOT e:expr

m:opt_qmods RSQUARE
{ QueryExpr(fst i, t, e, m, l) }

-> l:TRANSACTION LCURLY es:expr_seq RCURLY
{ TransactionExpr(es, l) }

]]

Figure 8: Adding a database support: part of the gram-
mar definition file that defines transactions and queries as
expressions. Note that the standardexpr nonterminal is
augmented rather than replaced.

extensible compiler. These analyses are meant to gauge
the viability of Katana as a productive framework even
as domain requirements change.

The presentation mode is unusual in several ways. For
instance, there are no expression separators, functions
are defined with no return type, and top-level expressions
must evaluate only to strings or to nothing. Furthermore,
typed string interpolation is supported.

While we naturally had to make modifications to the
language parser, we were able to transform the resulting
presentation syntax tree to a standard Katana AST with-
out much work. Using the standard AST, we could in-
voke the existing type-checker and code generator with-
out modification. The incremental changes we made
took two people a day and required only 350 lines of ad-
ditional code. We feel that the resulting language modi-
fication is well-suited to its domain.

This result leads us to believe that creating new lan-
guage extensions for other unique server tasks is not just
a theoretical possibility, but a genuine, practical option
when developing servers with Katana. By its very na-
ture, a well-designed extension or new language should
increase productivity in its domain, and we hope that a
repository of such additions will be created and shared.

5.2.4 Database Support

While we realized that database support is essential to
any server architecture, we chose to implement it as a



language extension to assess the expressiveness of the
system. Implementing database support inK required
changes to every level of the system: the parser had to be
modified to handledbtype s, transaction scopes and the
query syntax; the type-checker had to verify that transac-
tions were used properly and that queries typed correctly;
the code generator had to construct SQL statements and
manage some runtime state; and the runtime itself had to
provide the actual low-level database interface, as well
as caching.

One pleasant surprise was that we were able to imple-
mentRef s and the programmatic query AST interface
entirely natively via the parametric polymorphism and
union types provided by the Katana type system.

The ability to incrementally change each phase of the
system made most modifications easy. We show a sam-
ple addition to the parser in Figure 8. Development of the
entire database language and runtime was done in stages
by two programmers over two days.

Based on this result, we feel that the extensibility of
the Katana framework allows it to remain expressive
even as it is applied to new server domains or tasks.

5.3 Performance

While server performance is not the focus of this paper,
we did examine Katana in relation to existing popular
server frameworks to determine whether it can perform
competitively. These experiments are by no means com-
prehensive, but we feel they serve as a proof of con-
cept of Katana’s viability. Our goal was to test Katana
against traditional web servers and against frameworks
like J2EE. For standard web servers, we used a purely
static test. We tested the Java PetStore to compare
against a web framework.

5.3.1 Benchmark Configuration

All measurements were taken on a 2-way SMP Pentium
Xeon 2.4 GHz server with 1 GB of RAM running Linux
2.6.13. Four similarly configured machines were used to
generate load. All machines were connected via Gigabit
Ethernet.

Traditional servers often impose an additional over-
head for serving dynamic data. To eliminate this variable
from the experiment, we used a static test. Static pages
are served in Katana as if they were dynamic (by gener-
ating them from aK program), so the static results rep-
resent the maximum overhead for Katana (and the mini-
mum for a traditional server).

The static test was performed against Knot [44], a
small and very fast static server. Since Katana is not
targeted at serving large files, our test page was a sin-
gle byte with HTTP headers. We measured the number
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Figure 9: This graph shows the server’s ability to deal
with load when non-persistent connections are used.

of replies per second that the servers could muster for a
given request rate. No persistent connections were used,
since they are typically only useful for images and other
media.

For the dynamic test, we measured the Katana port
of Java Pet Store using the methodology provided in a
Middleware Research performance study [8] that com-
pares J2EE and .NET implementations of Java Pet Store.
The benchmark simulates a 50/50 mix of users who just
browse the site and users who actually purchase items.
Each user waits between 2.5 and 7.5 seconds between
actions. The number of users is ramped up gradually in
increments of 500.

The Middleware tests used an 8-way SMP Pentium
Xeon 900Mhz application server with 4 GB of RAM, an
identical database server, and 100 clients connected via
Gigabit Ethernet. The virtual machines, web server layer,
and application server were all heavily tuned; exhaustive
details can be found in the research report.

We were unable to reproduce Middleware’s results for
J2EE and .NET ourselves, as acquiring the appropriate
software was prohibitively expensive (and for legal rea-
sons they were unable to reveal which app server they
used), and we lacked the expertise to match the enormous
amount of performance tuning that their servers under-
went. We feel that by matching their workload exactly a
reasonable comparison can be made.

5.3.2 Analysis

Figure 9 shows the results of the static benchmark. We
were unable to reliably load the servers beyonf 20,000
requests per second. However, this load is sufficient to
demonstrate that Katana performs adequately: the num-
ber of sites receiving more than 20,000 requests per sec-
ond (1.2 million per minute) is small. At high load,
Katana’s performance lags slightly behind that of Knot,



Virtual Users 6000 8000 10000 12000 14000
Server RT WPS RT WPS RT WPS RT WPS RT WPS
Katana 1.1 ms 1199.8 1.6 ms 1599.0 25 ms 1981.7 35 ms 2374.2 47.7 ms 2763.1
.NET-C# 5 ms 1196.8 88 ms 1568.3 1476 ms 1531.9 – – – –
J2EE 24 ms 1192.2 330 ms 1498.0 1414 ms 1584.3 – – – –

Figure 10: Response time and web pages per second in the dynamic benchmark.

but only by a few percent. Knot was designed to be ex-
tremely efficient; it performs no dynamic memory allo-
cation and it has an extremely specialized HTTP header
parser. The fact that Katana competes with Knot us-
ing high-level languages and an automatically generated
header parser is a testament to the specialization ap-
proach.

In the dynamic test, we compared the Katana port
of Java Pet Store described in Section 5.2.2 against the
J2EE and .NET results provided by the Middleware
Company. The results are shown in Figure 10. Katana
Pet Store scales far better than the other two implementa-
tions; neither of them is able to service more than 10000
clients with an average response time of less than 1.5 s,
while Katana scales up to 14000 clients with an aver-
age response time of 47.7 ms. We feel that these results
demonstrate the advantages of specializing an applica-
tion framework to a domain like web servers.

6 Related Work

Sun’s J2EE [21] and Microsoft’s .NET [10] are two
popular architectures for creating dynamic web servers.
They provide specialized tools for a variety of com-
mon tasks, such as database access and output gener-
ation. However, much of the server operation is still
coded in general purpose languages like Java and C#, and
run on general-purpose virtual machines. The problems
that arise from this approach—large, complex codebases,
suboptimal performance, and too much freedom in dan-
gerous areas like concurrency—are the ones that Katana
was designed to fix.

The LINQ language from Microsoft [27], standing
for Language Integrated Queries, is an attempt to solve
many of the problems of “impedance mismatch” be-
tween general-purpose languages and databases. It offers
native, type-safe support for SQL and XML queries, as
well as several related language features. LINQ is part of
the .NET framework. It is still under development.

The Links language [26] is an attempt by the func-
tional language community to solve the same problem. It
also encompasses native, type-safe support for database
and XML queries, as well as transformation of XML
data. It may include continuations as a basis for long-
lived web interactions. Also, the designers envision do-

ing client-side and server-side programming together in
Links. However, the language is still very much in de-
velopment.

More mainstream languages like Perl, Python, and
Ruby support web programming through libraries. These
languages are dynamically typed, which makes them sus-
ceptible to runtime type errors. However, it also gives
them the flexibility to support many constructs through
libraries rather than language extensions. Some of these
frameworks do provide “templating languages,” similar
to the Katana presentation mode. Despite their flexibil-
ity, these languages lack static type safety, which also
forces them to be interpreted rather than compiled.

Katana’s concurrency model draws from the Capriccio
thread library [44], which uses cooperative user-space
threading to achieve scalability and high performance.
Capriccio provides a solid basis for future work in server
design, and we are interested in exploring how seman-
tic information derived from DSL compilers could be
used by a library like it. The SEDA framework [45] also
addresses the problem of highly concurrent servers, al-
though it focuses on the problem of graceful degredation
under high load. Although Katana performs well, we are
interested in decreasing the response time variance under
load using mechanisms like SEDA.

The design of the Katana DSLK is similar to that of
many existing languages. The type system and module
system draw heavily from OCaml [30, 36], a language
that embodies the fact that advanced features do not need
to hinder performance. Regular expressions and string
interpolation support were inspired by Perl [38], and the
presentation language’s integration of code and output is
akin to that of ASP [1]/JSP [23]. The use of domain-
specific languages for systems programming draws from
nesC [17] and Click [31], both of which control how C or
C++ modules are wired together in a system. nesC also
does some additional static checking for properties like
atomicity to avoid data races.

In many ways, our specialization approach is similar
to that of SPIN [3], which allows applications to aug-
ment or replace modules in the operating system, mostly
for performance. Like Katana, SPIN takes advantage of
modularity and type safety. Other projects, including U–
Net [42], application-controlled physical memory [20],
and the Exokernel [12] also allow application extensions
to the OS, although their interfaces and implementation



choices differ. Unfortunately, writing operating system
extensions is difficult. We believe that Katana naturally
complements these approaches. A specialized Katana
runtime could take advantage of OS extensibility with-
out any work from the application programmer. For ex-
ample, the runtime could perform many of the optimiza-
tions used by the Cheetah web server in Exokernel.

Our extensible compiler draws mostly from Poly-
glot [35], an extensible Java compiler written in Java.
Polyglot uses a number of object-oriented mechanisms
to allow code and data to be extended simultaneously.
Our compiler differs from theirs because it is written in
OCaml and uses data constructors and open recursive
types to allow code and data extension. The design is
similar to Garrigue’s work on polymorphic variants in
OCaml [15], although we found polymorphic variants
themselves to be cumbersome. Our compiler uses the
Elkhound GLR parser generator [29] for extensible pars-
ing. In this way, it is similar to the Microsoft C# Re-
search Compiler [19], which uses a GLR parser. How-
ever, the C# Research Compiler uses generated visitor
classes for extensibility. We expect that this technique
would be difficult to use in an incremental development
process.

Katana’s statically-typed database interface is simi-
lar to ObjectStore [24], which integrates database access
into C++ code in a type-safe way, and provides a more
robust client architecture for caching and complex types.
However, it does not have a type-safe programmatic
query construction interface, and does not allow the user
to control the behavior of pointer swizzling. There have
been a number of object-oriented database interfaces that
lack type-safe language integration; see [5] for a good
summary. Tools such as Microsoft’s Fugue [28] and
Christensen et al.’s Java analysis [7] attempt to stati-
cally verify SQL queries by conservatively analyzing the
strings from which they are built. While safe, such tech-
niques can be imprecise and unwieldy compared to na-
tive language support.

Memory management in Katana is done using re-
gions. The Apache web server uses its own region sys-
tem [14]. A number of languages include support for safe
regions [9, 13, 16, 18, 22, 43]. Berger et al. [2] demon-
strate that most custom memory allocation schemes are
not beneficial, except for regions. They present a tech-
nique to reduce the memory consumption of region-
based systems. Memory consumption is not problematic
in Katana, because each regions are attached to threads,
which last only short periods of time. Most regions in
Katana are only several 4K pages in size.

7 Conclusion

Katana is a server architecture designed for reliability.
By virtue of a fully specialized framework, from the
language to database interaction to the runtime environ-
ment, it eliminates entire classes of bugs common to ex-
isting server architectures. Furthermore, early observa-
tions indicate that it is easy to use and fast enough for a
production environment.

Based on these results, we see Katana as a promis-
ing framework for creating high-performance, expres-
sive, and most importantly reliable web servers.
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