
Design Methodology for Run-time Management of
Reconfigurable Digital Signal Processor Systems

Roy Allen Sutton

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-63

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-63.html

May 17, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Design Methodology for Run-time Management of Reconfigurable

Digital Signal Processor Systems

by

Roy Allen Sutton

B.S. (Prairie View A&M University of Texas) 1993

M.S. (University of California, Berkeley) 1998

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Jan M. Rabaey, Chair

Professor Kristofer S.J. Pister

Professor Paul K. Wright

Spring 2006

Design Methodology for Run-time Management of Reconfigurable

Digital Signal Processor Systems

Copyright 2006

by

Roy Allen Sutton

1

Abstract

Design Methodology for Run-time Management of Reconfigurable

Digital Signal Processor Systems

by

Roy Allen Sutton

Doctor of Philosophy in Engineering - Electrical Engineering and Computer

Sciences

University of California, Berkeley

Professor Jan M. Rabaey, Chair

In recent years, significant attention has been given to emerging reconfigurable

digital signal processing (DSP) systems. They can undergo in-system hardware

changes in order to adapt to post-design external variations in system constraints,

stimulus, algorithms, and optimization objectives. This adds degrees of freedom

and levels of complexity to the design process that are not well considered by

contemporary computer aided design (CAD) methods. This research presents

a methodology and CAD design environment, based in a quantitative approach,

that support the implementation of domain-specific DSP systems which cope with

post-design changes by leveraging reconfigurable hardware architectures.

2

Run-time methods and dynamic reconfiguration comes at the costs of over-

heads. The proposed methodology limits these overheads by imposing a frame-

work that creates multiple pre-characterized templated-mapping design implemen-

tations that are organized as candidates under the discrimination of one or more

system schedulers. At run-time, the managing scheduler selects implementations

according to its assigned optimization objective given the resource availability. To

deal with the tight constraints on cost-performance inherent within DSP systems,

the framework introduces mapping modes that further guide and/or limit run-

time scheduler choice in template selection (dynamic resource “type” allocation),

resource binding, and configuration. These modes allow for design-time trade-offs

between predictability and flexibility. A formal model that defines the components

and their interactions is presented to provide some rigor in the methodology ap-

plication.

A design environment and tools development framework is presented that ad-

heres to the methodology and formal model. It includes a simulator for use in

quantitative design exploration. The framework accounts for use-costs in compu-

tation, communication, and reconfiguration in terms of area, energy, as well as

time. Others metrics of interest (such as position, etc.) can be easily incorporated.

Detailed quantitative statistics for system behavior are accounted for and visually

presented. This aids the designer during iterative design refinement. Moreover,

3

performance metrics can be analyzed at run-time by system schedulers as a guide

for statistical-based adaptation.

The effectiveness of the proposed methodology is demonstrated across a data-

base of generated designs and for an actual multi-user DSP system design. The

results for each are presented in separate chapters. The appendix includes a tu-

torial that discusses the environment, framework, an existing CAD tools.

Professor Jan M. Rabaey
Dissertation Committee Chair

i

To my loving family,

the sacrifice of Joshua,

and the memory of

Donald Steven Smith...

ii

Contents

List of Figures v

List of Tables viii

Listings ix

1 Introduction 1

1.1 Digital Communications Revolution 3

1.2 Reconfigurables Need New Methodologies 4

1.3 Research Goals and Organization 10

2 Reconfigurable Digital Signal Processing Systems 12

2.1 System Examples and Features 13

2.2 Dynamic Change in Algorithms 15

2.2.1 Forms of Change . 16

2.3 Reconfigurable Architectures . 20

2.3.1 Cost Distribution . 23

2.4 Mapping and Design-flow . 25

2.5 Chapter Summary . 27

3 Templated-Mapping Design Methodology 29

3.1 Algorithm Mapping . 31

3.2 Mapping with Templates . 34

3.2.1 Templated-Mapping . 35

3.2.2 Candidates . 36

iii

3.2.3 Mapping Modes . 39

3.2.4 Mapping Paradigm . 43

3.3 Offline Template Construction . 46

3.3.1 Algorithm Analysis . 47

3.3.2 Implementation Alternatives 52

3.3.3 Run-Time Management Properties 55

3.3.4 Implementation Cost Estimations 58

3.4 Run-Time Template Use . 60

3.4.1 Template Selection . 60

3.4.2 Template Instantiation . 64

3.5 Method Formalization . 68

3.5.1 Component Model . 70

3.5.2 Execution Process Model 80

3.6 Chapter Summary . 89

4 Templated-Mapping Design Environment 91

4.1 Core Infrastructure . 93

4.1.1 Internal Data Model . 93

4.1.2 Event Recording Mechanisms 97

4.1.3 Report Generation Interfaces 100

4.1.4 Data Model Extension . 102

4.2 Simulator Framework . 103

4.2.1 Algorithm Modeling . 105

4.2.2 Architecture Modeling . 108

4.2.3 Candidate Implementation Modeling 109

4.2.4 Scheduler Modeling . 110

4.2.5 Static Design Analysis and Optimization 116

4.3 Simulation Execution Flow . 118

4.3.1 Simulation Condition Monitors 120

4.4 Environment Design-Flow . 121

4.4.1 Tool Scripting . 124

4.4.2 Graphical User Interfaces 126

4.5 Chapter Summary . 127

iv

5 Design-flow Evaluation 129

5.1 System Component Composition 130

5.2 Example System Simulation . 137

5.3 Chapter Summary . 142

6 A Design Exploration Example 146

6.1 System Description . 147

6.2 Templated-Mappings . 150

6.3 Design Exploration . 153

6.3.1 Active User Sensitivity . 154

6.3.2 Run-time Optimization Objectives 162

6.4 Chapter Summary . 164

7 Conclusions 167

7.1 Directions for Future Work . 169

Bibliography 173

A Terminology 183

B Design Environment Tutorial 185

B.1 Templated-Mapping . 187

B.2 Tool Types . 188

B.3 Data Formats . 189

B.4 File Structure . 191

B.5 Tools . 200

B.6 Reports . 209

B.7 Framework Expansion . 211

B.7.1 Stimulus Modeling . 214

B.7.2 Task Modeling . 215

B.7.3 Scheduler Modeling . 216

Index 221

v

List of Figures

1.1 Growing body of wireless communication standards 4

1.2 Reconfigurables enable flexible yet efficient design 7

2.1 Forms of dynamic change in algorithms 17

2.2 Reconfigurables emerge to balance efficiency and flexibility 20

2.3 Architecture template as a building block 22

3.1 System mapping time-line . 33

3.2 Templated-mapping introduction 35

3.3 Mapping algorithms to reconfigurable architectures 38

3.4 System mapping modes . 39

3.5 Mapping with sets of templated-mappings 45

3.6 ASIC cost variation for DCT algorithms 49

3.7 JPEG encoder algorithm example 51

3.8 Algorithm graph instantiation and node implementation alternatives 54

3.9 Properties for run-time management 56

3.10 Resource configuration topology schemes 66

3.11 System-level design modeling language primitives 81

3.12 System model: Component structure and relations 83

3.13 System model: Algorithm, architecture, and scheduler execution . 86

4.1 Skeleton of the design environment core libraries and data model . 94

4.2 State trace example: resource utilization and concurrency 98

4.3 Simulator framework key objects and select functions 104

4.4 One implemented algorithm modeling MoC 106

vi

4.5 Methodology: System architecture base model 108

4.6 Methodology: Candidate implementation conceptual model 109

4.7 An example scheduler: the stdbe and its life-cycle 112

4.8 Static design analysis dependency enforcement 118

4.9 Simulation base execution control flow 119

4.10 Condition monitors and scripting framework for design exploration 121

4.11 Methodology design-flow responsibility 123

4.12 Methodology design-flow sequence 125

5.1 Generated algorithm families examples 131

5.2 Modeling families of heterogeneous reconfigurable architectures . . 133

5.3 Generated candidate and system of candidates example 134

5.4 Run summary simulation example 139

5.5 Candidate selection performance metric 140

5.6 Candidate selection quality simulation example 141

5.7 Concurrency and utilization simulation example 143

5.8 Time-use distribution simulation example 144

6.1 MPEG-4 simple profile decoder block diagram 148

6.2 Multi-user decoder system resource 150

6.3 IDCT kernel templated-mapping 151

6.4 IDCT kernel decorated templated-mapping 152

6.5 Run-time scheduler execution time vs. concurrent active users . . 155

6.6 Select dynamic statistics vs. concurrent active users 157

6.7 Quality and overhead vs. concurrent active users 158

6.8 Timing performance vs. active users 160

6.9 Resource utilization vs. time . 161

6.10 Select dynamic statistics vs. scheduler task ordering function . . . 163

6.11 Mapping selection quality vs. scheduler optimization function . . 165

7.1 Domain-specific systems: Multi-level networks and bus interconnect 170

7.2 Dynamic algorithm schedule management 172

B.1 A templated-mapping example . 186

B.2 Design environment directory structure 192

vii

B.3 Design database directory structure 195

B.4 Simulation results directory structure 197

B.5 Design-flow graphical user interfaces 205

B.6 Graphical tools from other sources 208

B.7 Chart report examples . 212

B.8 Graph report examples . 213

viii

List of Tables

1.1 Basic comparison of some wireless communication standards . . . 6

2.1 System operation cost distribution for reconfigurables 24

3.1 Candidate mapping template selection properties 61

3.2 System model components . 69

3.3 System property functions . 79

4.1 Task life-cycle: flow of execution 107

4.2 System scheduler base responsibilities 111

5.1 Simulation example run key . 137

6.1 Static and dynamic MPEG-4 decoder profile 149

B.1 Design environment tool types . 189

B.2 Design environment file formats 190

B.3 Design environment command line tools 200

B.4 Implemented report flows . 210

ix

Listings

4.1 Simulation event log example . 101

B.1 A parsed simulation run metafile example 193

B.2 Simulator command line synopsis 202

B.3 Stimulus function modeling example 215

B.4 Task modeling example . 217

B.5 Scheduler example: Pre-static analysis initialization 218

B.6 Scheduler example: Post-static analysis initialization 219

B.7 Scheduler example: Done task processing code fragment 220

x

Acknowledgments

This research was funded by various sources over the years. A special thanks

goes to AT&T Bell Laboratories (then, now Lucent technologies) for their generous

Cooperative Research Fellowship Program (CRFP) which supported the first five

years of my study and to Sandia National Laboratories for their participation in

the CRFP and for sponsoring a stimulating internship full of relevant and practical

exposure.

I am particularly indebted to my advisor, Professor Jan M. Rabaey for his

consistent support and guidance. His unwavering high standard and example has

been admirable. I am truly appreciative to have had multiple opportunities to

participate in his research efforts. I would like also to thank my committee mem-

bers, Professor Kristofer S. J. Pister and Professor Paul K. Wright. Additionally,

I am appreciative of Professor K. Robert Brayton for taking time to chair my

qualifying examination. There have been many U.C. Berkeley EECS faculty that

have inspired, given time and encouraged my work. Among the many are Robert

W. Brodersen, Edward A. Lee, Andrew R. Neureuther, Paul R. Gray, Randy H.

Katz, and John Wawrzynek.

A special thanks goes to Sheila Humphreys, Professor Brodersen, and Professor

Andrew R. Neureuther for their life-course changing introduction to U.C. Berkeley

through the SUPERB program. A special acknowledgement goes to Anantha

xi

Chandrakasan and Kevin Kornegay for their fittingly superb mentorship. This

was one of the most exciting times of technical growth that I can remember. I

am amazed at what can be accomplished in such a short period of time when

experience, motivation, resource, dedication, encouragement, and access align.

I would like to express my gratitude to Tom Boot, Fred Burghardt, Susan

Mellers, Brian Richards, and Kevin Zimmerman for supporting the work environ-

ment, computers, laboratory equipment, and software infrastructure. Each always

gave beyond that which was required and established a stabilizing presence.

There have been so many fellow students who I have had the great fortune

to encounter during my participation over the years in the Infopad, Spartan,

VGI, Pleiades, and Pico Radio projects. It is clear that I would not be able to

acknowledge everyone. Please know that I am grateful you to you all. Yikes!, I

have been here too long.

I would like to thank Vason P. Srini, Adrian J. Isles, and Johnathan M. Rea-

son, for countless hours of stimulating conversation that was often challenging,

often inspiring, and at times a bit random. I can only imagine how different my

experience would have been in their absence.

And finally I would like to express my gratitude to my parents, immediate

family, and extended family for their incredible love throughout the years. This

accomplishment would not have been possible without them. Your continued

xii

sacrifice and belief made all the difference. And to Donald Steven Smith, please

forgive me for not finishing in time for you to share in this moment. For without

you it is quite clear that I would not have reached this milestone.

—Ilah Grande (near Angra do Reis), Brazil, June 17, 2005.

1

Chapter 1

Introduction

Engineers participate in the activities which make the resources of

nature available in a form beneficial to man and provide systems which

will perform optimally and economically. L. M. K. Boelter, 1957.

D
igital Signal Processing (DSP) enables the design of systems that con-

tinue to find favor in growing proportions across multiple market sectors.

From low-cost consumer electronics to high-end super-computing, interest expands

largely due to the increasing capacity, diminishing size, favorable economy, and the

reliability of very large scale integrated circuit (VLSI) technologies. Applications

from wireless communications, multimedia processing, personal digital assistants,

manufacturing and control systems, to radio astronomy, naming just a few, all

benefit from, and in-turn drive, the growth of the electronic design industry. To-

day’ embedded systems are complex and heterogeneous. In addition to DSP, they

2

often contain numerous other components of various types. For example, they

may additionally contain digital components such as micro processors, memory,

application-specific integrated circuits (ASIC), and field programmable gate ar-

rays (FPGA); as well as analog components, such as analog to digital (A/D) and

digital to analog (D/A) converters; and increasingly environmental transducer

such as sensors and actuators.

The algorithms in contemporary DSP systems are subjected to regular revision

as a result of continual optimization and innovation. Competition-driven pressure

to deploy on-schedule make it common for these complex systems to be released

with flaws, known and unknown, in order to avoid losing valuable market share.

The pace of change has been continually eroding product life cycles. In view of

piles of discarded obsolete electronic devices, one could argue that a new metric

has emerged that distinguishes a solution from another based on it’s ability to

remain relevant across the greatest window of change. Inasmuch, except for a

few high-volume or dedicated or safety-critical systems, ASIC-based solutions are

loosing favor to more flexible hardware ones that can be reconfigured in-system

to adapt to the changing requirements in order to extend product life[TB01].

For many years DSP has continually benefited from the ever shrinking VLSI

dimensions. Improving DSP architecture and algorithms enable new capabilities

that allow engineers and computer scientists to design new – faster, smaller, and

1.1. DIGITAL COMMUNICATIONS REVOLUTION 3

cheaper embedded systems. These new systems, due to their advantages, remain

in demand and the expanding markets continue to rewards these design efforts

with capital. This, in-turn, drives further research and development in the under-

lying technologies. Over the past decade or so wired and wireless communications

has become a key driving factor in the fervent increase in the rate of this expan-

sion.

1.1 Digital Communications Revolution

When electronic systems interconnect to one another the resulting capability

is greater than the sum of the parts. As a result, new classes of applications

and services emerge[KBP+04]. As these systems become increasingly integrated

into the fabric of our environment[KKP99][GHI+04], key successful components—

algorithms, protocols, and even entire sub-systems—become standards for future

system development[ZSGR01]. Unquestionably, there is continual pressure to in-

novate while simultaneously maintaining standard compatibility with existing and

legacy systems; in order to retain the advantage of connectivity and information

exchange. Standards are proliferating.

For some insight, see figure 1.1. It shows several competing and complemen-

tary wireless communication standards that have found broad acceptance in the

1.2. RECONFIGURABLES NEED NEW METHODOLOGIES 4

CDMA

DCS

GSM

PDC

TDMA

DECT

PHS

CDPD

HomeRF

802.11 a/b/g

802.15.4

Bluetooth (BT)CT2 Composite

Cellular
Telephone

Cordless
Telephone

Personal
Communication

Wireless
Data

Figure 1.1: Growing body of wireless communication standards

marketplace. Not only are standards proliferating, but are also new embedded

systems and devices that materially rely upon such wireless communication stan-

dards. Moreover, this is occurring at an increasingly dizzying pace. It appears

evident that future devices will increasingly communicate with one another and

will need built-in flexibility to adapt to new standards[LB04]. They will require

system-level strategies[LSR03] that enables families of continuously changing al-

gorithms to efficiently share flexible reconfigurable hardware resources[SS05].

1.2 Reconfigurables Need New Methodologies

In response to the need to balance efficiency and in-system flexibility, re-

configurable processor based designs[Sut98] are rapidly moving from niche in-

1.2. RECONFIGURABLES NEED NEW METHODOLOGIES 5

terest and are appearing in mainstream designs[Har04]. This is having a ma-

jor impact on traditional electronic design automation (EDA) tools and design

flows[RVN02] since there are fundamental differences in the approach of system

built on reconfigurables from those utilizing general-purpose and application spe-

cific processors[Gri04]. Most notably is the additional degrees of freedom accom-

panying resource configuration management.

For general-purpose[HR97] and application specific processors[Bro92][CPRB03],

there has been voluminous research in the areas of compilation and synthesis

which yield acceptable results[PKK97]. In both cases the functional operations

of processor resources are fixed at fabrication for some target application; either

broad general-purpose coverage or limited specific coverage. By contrast, recon-

figurable platforms retain post-fabrication programmable structures that must be

configured prior to use by a mapped algorithmic computation.

Consider, for example, the complimentary wireless communication standards

identified in table 1.1. Shown are one cellular telephone (GSM), one cordless

telephone (DECT), and two wireless data (802.11b and Bluetooth) standards.

Each operates within different network coverage range, 10x variations in data

rates, and differing algorithm computation requirements. A typical user is less

concerned about the underlying communication standard details as they are about

the ability to use an application within some minimum quality of service (QoS).

1.2. RECONFIGURABLES NEED NEW METHODOLOGIES 6

Table 1.1: Basic comparison of some wireless communication standards

Coverage Frequency Multiple Channel

Range Range (Mhz) Access Bit Rate

GSM 10Km Rx:1805-1880 TDMA/FDMA 270.833 kb/s

Tx:1710-1785

DECT 100m 1880-1900 TDMA/FDMA 1.152 Mb/s

802.11b 100m 2401-2462 CSMA/CA 11 Mb/s

Bluetooth 10m 2402-2480 Frequency 1 Mb/s

Hopping

Let us assume the application goal of the user is to place a voice telephony

call within an environment covered by multiple overlapping communication net-

works and that each network has sufficient unused capacity and signal reception

to meet minimum QoS expectations. Furthermore, the user wishes to first make

a connection from a Bluetooth headset to the device, which in-turn, will place

the call using either a cellular, cordless, or 802.11/voice-over-IP (VoIP) connec-

tion. With a multi-standard communication device, see figure 1.2(a), the user can

consider other factors to differentiate and select amongst the three connectivity

options. Each standard provides significantly different regions of coverage, net-

work use-cost, and device energy expenditure behavior. Under these conditions,

the system can allow the user to choose the method of connectivity based on

tertiary objectives (following connectivity and QoS).

Figure 1.2(b) shows a conceptual block-diagram of a reconfigurable radio

1.2. RECONFIGURABLES NEED NEW METHODOLOGIES 7

GSM

802.11b

...
BT

DECT

(a) Multi-standard device

DSP

A/D

Control / Protocol

MAC

FFTECC

FSM

Protocol

uP

Communication Algorithms

FPGA

RF & Baseband

Configurable Circuits

(b) Reconfigurable radio sub-system

Figure 1.2: Reconfigurables enable flexible yet efficient design

sub-system that might implement the multi-standard wireless communication

functionality proposed above. It shows radio frequency and analog baseband

processing implemented with configurable circuits, communication operations im-

plemented in an FPGA, lower-level protocol processing in a DSP, and higher-level

protocol processing in a general purpose microprocessor. This resulting radio

sub-system is configurable and able to implement multiple standards[CG00]... in

theory and even in prototype. The challenge comes from the real-world market

constraints of cost, reliability, size, energy-efficiency, etc. The design solutions

space is large, composed of multiple interdependent NP-complete sub-problems.

And, it is not entirely static since even the so-called “standards” occasionally

undergo revision.

The designer faces all of the well study issues of hardware/software co-design as

1.2. RECONFIGURABLES NEED NEW METHODOLOGIES 8

well as a host of new challenging design dimensions[FBK98][BH01] that are derived

from reconfigurable hardware, changing algorithms, and dynamic environments

[FBK98][NB02]. Consider the following list of a new design issues:

• When there are multiple hardware resources available that could implement

a required algorithm function, which one should be chosen? Each choice

affects future opportunity.

• When should resources be allocated and/or configured? Just before they

are required? Just in time? On demand? After an algorithm function has

completed, should its resources remain in reservation or be released for use

by other algorithm functions?

• Who and/or what should be responsible for resource configuration? A cen-

tral authority? A distributed scheme? The algorithm function itself?

• Who should be responsible for observing and managing the response to

changing algorithms, such as the switch to a new quality level, and changing

environments, such as limited resource and/or reduced connectivity condi-

tions?

• What can be done at design time to limit the overhead cost that accompanies

run-time management?

1.2. RECONFIGURABLES NEED NEW METHODOLOGIES 9

• For a given system resource — reconfigurable architecture, programmable

platform, etc. — what are the limits of system adaptability? Will the

system degrade gracefully or fail abruptly under changing conditions?

• What hardware architecture features are especially beneficial or detrimental

for a given system application domain?

• What is the best method to capture the dynamic nature of the algorithms,

stimulus, and heterogeneous reconfigurable architectures during the design

process?

• Can there be future-planning or only statistical observation of past perfor-

mance in the run-time management scheme?

• Given the complexity of the highly-concurrent, multi-application, multi-

resource, run-time dynamic systems, how are designs verified for correctness

or robustness? What statements about reliability can be made?

• What is a good strategy for accepting new algorithms into and destroying

old algorithms from an active system at run-time without affecting disjoint

and/or concurrent behavior?

Existing design environments[Wan01] do not go far enough to address these es-

sential questions. New methodologies, design environments, and tools are needed.

1.3. RESEARCH GOALS AND ORGANIZATION 10

1.3 Research Goals and Organization

The objective of this research is to explore the questions raised in the pre-

vious section with the intent to propose a new methodology, and base frame-

work that provides computer assisted system-level design for run-time managed

reconfigurable digital signal processors in a dynamic, multi-standard, multi-use

application space.

Up to this point, this chapter has introduced the area of focus and has moti-

vated the need for this research. In Chapter 2 a few additional system examples

are described along with the unifying features that make them relevant to this

research. One feature, dynamic change in system algorithms — a key force be-

hind the need for run-time methods — is classified into five forms, each with

unique opportunities. The assumed reconfigurables architecture building blocks

and the use-costs are detailed. Finally, typical design-flows are described. Chap-

ter 3 lays the foundation for the material contribution of this research; a proposed

methodology and design framework that supports system-level design of run-time

managed dynamically reconfigurable digital signal processing systems. Along with

the methodology and framework, a mathematical model is presented to formal-

ize the design semantics. Chapter 4 advances the methodology from theory to

practice by presenting the CAD design environment developed in compliance to

1.3. RESEARCH GOALS AND ORGANIZATION 11

the proposed methodology. Care was taken to implement a modular and exten-

sible design framework rather than a one-off proof-of-concept application (at a

significant cost of time). The details of the environment, its based framework,

software architecture, and extensibility are discussed. And, a simulator — a key

design environment tool that provides quantitative performance evaluation — is

detailed. Chapter 5 demonstrates the effectiveness of the methodology exercising

the design environment against a database of generated system examples. Addi-

tional design tools, developed to generate families of algorithms, architectures, and

mappings, are discussed. They are then used to automate the evaluation of the

design-flow over numerous structured scenarios. A set of 13 parallel-independent,

15 randomly-interconnected, and 17 serial-parallel connected algorithms are each

mapped to 36 generated architectures and simulated with various run-time opti-

mization objectives. In Chapter 6 a multi-user DSP system design is described,

explored, and refined to validate and clarify the effectiveness of the methods on

a real system design. Chapter 7 concludes this dissertation and highlights some

areas of future work. A design environment tutorial is presented in Appendix B

that covers some implementation details and additional tools developed during

this research effort.

12

Chapter 2

Reconfigurable Digital Signal

Processing Systems

That which is static and repetitive is boring. That which is dynamic

and random is confusing. In between lies art. John A. Locke.

M
ore and more digital signal processing (DSP) systems are making use of

reconfigurables [CEL+03] [KBP+04] [ZPG+00] to deal with design-time

constraints and post-design uncertainties. In this chapter we will start with a

discussion of a few system examples and their common features, including the

increasing prevalence of post-design dynamic change in system algorithm compu-

tation. We will then consider a classification of this computation change. Next,

we will have a look at some reconfigurable architectures. Finally, we will end

2.1. SYSTEM EXAMPLES AND FEATURES 13

this chapter with a discussion of typical design-flows that are used to map system

algorithms to these architectures.

2.1 System Examples and Features

In Chapter 1 we described a multi-standard communication device that is

able to work in different network environments without the need for dedicated

hardware in each; one flexible device is configured as needed. This is by no means

an isolated example. There are many system scenarios emerging that similarly

benefit from the use of run-time reconfiguration techniques[YJ05][GNVV04].

Consider a network of wireless sensor nodes[PKB99][ECKM04]. These millimeter-

sized devices are resource constrained and collaborate to yield aggregate system

functions. They may include both sensors, such as temperature, humidity, and

movement, and actuators, such as alarms, rheostats, and light controls. Their ap-

plications are varied, but a typical use is a smart building, that conserves energy,

for example. These battery-powered devices must perform under tight energy con-

straints to conserve energy and scavenging techniques have been proposed to re-

plenish energy stores from vibration, light, radio frequency, and other environmen-

tal sources. The computation performed might include node locationing[SRB01],

data compression, radio-link processing[ZSGR01], closed-loop control system, etc.

2.1. SYSTEM EXAMPLES AND FEATURES 14

A system includes thousands of identical nodes that self-organize. Clearly each

node will have responsibilities that vary with time.

As a third example, consider an autonomous reconnaissance vehicle that re-

ceives command by radio link. Sequences of directives are sent as part of an

overall mission objective that are carried out by the vehicle each in turn. A di-

rective might involve vehicle navigation and sampling of environmental elements.

Given the autonomous nature of the vehicle, it will need to continuously identify

and avoid obstructions. As a final brief example, consider an all-media gateway

that is part of a home environment. A broad-band network connection provides

an aggregation of various media data; high definition television, digital satellite

services, internet data, etc. The gateway provides a distribution and collection

point into and out of the home and it performs data transformations and routing

for all media encoding standards.

In each of these examples there are vastly different applications, data-rates,

and use budgets. There are, however, several commonalities. For starters, each

uses digital signal processing as a basis to carry-out their system functions. They

also use digital communications and are part of network of systems where informa-

tion is exchanged in digital form. The communication takes the form of streams

of encoded data with well-defined standards for the exchange. Each system is

expected to be responsive and efficient, producing results give stimuli within per-

2.2. DYNAMIC CHANGE IN ALGORITHMS 15

formance constraints in time and energy. Fortunately, the system computations

have both spatial and temporal concurrency that can be exploited during de-

sign to help meet the performance constraints and efficiency requirements. The

systems also are implemented with diverse components such as analog-to-digital

converter, application specific integrated circuits, and microprocessors, and use

multiple models of computation. And finally, the systems are increasingly being

confronted with computation that change over time. In the next section we will

spend some time discussing this last point as it is a major driver in the trend

towards reconfigurable systems solutions.

2.2 Dynamic Change in Algorithms

Given the nature of the data they process, DSP computations are inherently

multidimensional. Comparisons and transformations in time and space translate

into algorithms that are composed of concurrent loops that iterate over groups

of operations. This results in computational structures where a relatively large

number of operations are performed on each datum. These looping structures

are often called “kernels” of computation. As described in the previous section,

these computation kernels are beginning to change with increasing frequency. For

example, a new directive might restructure the efforts of the autonomous vehicle

2.2. DYNAMIC CHANGE IN ALGORITHMS 16

that results in an entirely different computational focus. Or the sensor network

node might transition from a locationing phase into a data forwarding phase. After

studying numerous systems that deal with changing computation, five forms have

been identified and are shown in figure 2.1(a)-(d).

2.2.1 Forms of Change

Shared Use(r): Due to design physical limitations and cost concerns, systems

implementations will often combine users and uses on a common set of resources

as shown in figure 2.1(a). In doing so, the computations must share resources in

time, one after another, and in space, several at a time. A multi-user application

is one that has more than one independent computation that are largely identical

in structure; each performing the same function for one of the users in the system.

A multi-use application has more than one independent computation that are not

necessarily similar in structure. In a multi-user scenario, opportunity exists to

simply timeshare the configured resources as needed by the data requirements of

each user. And as for the multi-use case, more effort is required to prepare the

resources prior to each new use.

Variable Quality: Often, multimedia systems transition into new environments

where the quality of service requirements varies. For example, when the band-

2.2. DYNAMIC CHANGE IN ALGORITHMS 17

...U1 U2 U3 Un

(a) Shared use, shared users

F

(b) Variable fidelity, quality of service

S1

S2

(c) Multiple standards

M3

M1

M2

(d) Triggered regions

...P1 P2 P3 P1...

(e) Sequenced regions

Figure 2.1: Forms of dynamic change in algorithms

2.2. DYNAMIC CHANGE IN ALGORITHMS 18

width of a network becomes restricted, the data-rates will too be limited. Under

such a scenario, opportunity exists to adapt the computation effort according to

the limited data rate. This adaptation may be beneficial to conserve computa-

tional resources for other users (or uses) and/or to conserve other use-constraints,

such as energy. Figure 2.1(b) depicts this form of computation change.

Multiple Standards: When information is exchanged between two or more

systems, each participant must agree upon a common representation in order

to encode and decode the information according to some well-defined standard.

Standards are commonly used for data and multi-media representation, policy for

collaboration, and digital communications. Standards continually improve as new

research produces improved efficiency and higher quality representations. The

appropriateness of a particular standard varies with application and environment.

For a given application, there usually are many standards that provide similar

function, such as a image encoding methods. Increasingly, a system needs to

be flexible in order to support such an array of complementary and competing

standards that are used in different scenarios. Figure 2.1(c), shows the concept

of multi-standard computation change. Standard s1 and s2 both operate on the

same data type (say for example audio data), but use different techniques and

may be used interchangeably as governed by the agreements assumed between

the collaborative systems.

2.2. DYNAMIC CHANGE IN ALGORITHMS 19

Triggered Regions: When the computation effort and system control-flow re-

mains within a kernel until the occurrence of some externally triggered event, as

depicted in figure 2.1(d), we call this form computation change triggered regions.

In some ways, it is similar to the operation of a finite state machine (FSM), except

for that in an FSM, the system enters into a state where it remains waiting for

the next transition. The triggered region form implies that a kernel continues to

utilize some computational behavior while the region is active. Upon some exter-

nal event, the active kernel becomes inactive and is replaced with a new region

of computation (a new kernel); where it remains until the next transition event

occurs.

Sequenced Regions: When the computation transitions through a predeter-

mined cycle of kernels in time as depicted in figure 2.1(e), we call this form of com-

putation change sequenced regions. Change of this form arises out of the data and

control dependencies in an algorithm structure. A system implementation can use

a pipelined approach (using resources for each kernel that operate concurrently)

when time performance is important, or can time-share fewer resources, when re-

source constraints dictate that area conservation is more important. Sequenced

regions are essentially a special case of triggered regions where the transitions

between kernels are known a priori.

2.3. RECONFIGURABLE ARCHITECTURES 20

Fl
ex

ib
ili

ty

Purpose

ASIC

Reconfigurables

Efficiency

General

Figure 2.2: Reconfigurables emerge to balance efficiency and flexibility

2.3 Reconfigurable Architectures

Application-specific integrated circuits (ASIC) provide efficient design solu-

tions since custom resources can be assigned as required by the algorithm to ex-

actly meet performance constraints. However, these solutions are inflexible since

they are essentially dedicated to specific applications. At the other extreme are

general purpose microprocessors. They can perform any computation over time,

but must expend both more time and more energy (for a given algorithm) in com-

parison to its custom counterpart. The trade-off[AZW+02] between efficiency and

flexibility for both the ASIC and microprocessor is shown in figure 2.2.

Interest in using reconfigurable platforms for DSP continues to grow due to

their ability to strike a balance[ASI+98] between system performance (efficiency)

2.3. RECONFIGURABLE ARCHITECTURES 21

and flexibility. Commonplace design constraints such as time-to-market pres-

sure, an expanding base of standards for multi-media and digital communica-

tions, increasingly adaptive and multi-use systems, shrinking system dimensions,

and limited-power source systems, to name a few, all seem to point towards the

use of programmable techniques on reconfigurable hardware.

Current integrated circuit technology presents opportunities to conceive and

implement elaborate programmable hardware architectures[Har01]; and over the

past fifteen years, or so, there have been many[CH02]. Except for when there are

clear structural relationships between an algorithm and architecture, it is difficult

to know when one programmable architecture is better for a given application than

another. Architectures such as programmable DSP, very long instruction word

(VLIW)[MD04], multiple instruction multiple data (MIMD)[SSR98], single in-

struction multiple data (SIMD), field programmable gate arrays (FPGA)[CKR+03],

each have been demonstrated to perform well in specific applications. Recent re-

search indicates that heterogeneous architectures composed of reconfigurable mod-

ules are well suited at providing both efficiency and flexibility over a domain of

algorithms. An architectural template is advocated that can be used to compose

hardware architectures given the collection of algorithms in the domain[AZW+02].

Figure 2.3 shows the template1. It consists of heterogeneous programmable mod-

1The configuration cache memories and configuration controller have been added, proposed
by the results of this research, and will be discussed more in section 7.1.

2.3. RECONFIGURABLE ARCHITECTURES 22

...

Network
Control

Processor
Configuration

Processor

Configuration
Memory

Control
Memory

...

Communication

Figure 2.3: Architecture template as a building block

ules, a communication network, a control processor, and memories.

This architecture template is assumed as the basic model for reconfigurable

processor composition in this research. We feel that it is appropriate given that

the template is general and can be used to create many specific architectures.

We further assume that at least a portion of the hardware can be configured

dynamically while other portions of the hardware continue with computation.

From the perspective of this research, we are concerned with the run-time

reuse of these resources (modules, interconnect, memory) and operate under the

following assumptions. (1) A schedulable unit of behavior in an algorithm requires

some known collection of these system resources. (2) Some portion of these system

resources can be reconfigured dynamically at run-time. (3) All communications

between these units of behavior are assignable to interconnect structures such as

2.3. RECONFIGURABLE ARCHITECTURES 23

system networks and/or buses.

Based on changes in the environment or system-level objectives the assign-

ments of resources are redistributed to efficiently adapt to this change. In essence

the trade-off of flexibility and efficiency is done while the system is in operation.

To achieve this goal, a method needs to account for the core expenditure costs

and overhead costs of a current operating point and any new proposed operating

point in order to know which dynamic adaptation is appropriate.

2.3.1 Cost Distribution

Currently, reconfigurable architectures use one of three strategies to config-

ure the programmable hardware resources; either serial scan chains, random ad-

dressed, or concurrent scan chains. In each case, time and energy are required

to configure the resources. And area must be reserved in the architecture to

implement the configuration topology. These costs are overheads that must be

considered when adaptation is desired.

Table 2.1 shows a breakdown of the operational cost distribution for run-time

reconfigurable systems. In table 2.1(a) is shown the distribution categories. In

table 2.1(b) is shown the dimensions for each category element. Algorithms use

resources to carry out the computation and communication. The resources must

2.3. RECONFIGURABLE ARCHITECTURES 24

Table 2.1: System operation cost distribution for reconfigurables

computation communication scheduling

resource core core

execution expenditure expenditure overhead

resource

configuration overhead overhead overhead

(a) Cost components

time use energy use area use

(b) Cost component dimensions

be configured prior to execution for the desired computation. Schedulers are

required to control the execution and configuration according to some predefined

system policy. Each component minimally has the dimensions of time, energy, and

area. Therefore there are eighteen types of system use-costs that can be managed

at run-time for each system object. Only the execution of algorithm computation

and communication directly contribute to the core expenditures that go towards

system behavior. The other components are necessary overheads that must be

carefully tracked in order to keep overall system operation costs minimized.

Configuration delays impose a big performance penalty on run-time reconfig-

urable systems. In response, it has become common for reconfigurables to support

partial reconfiguration schemes that allow for a select subset of the architecture

to be reconfigured while the others continue in computation (largely) unaffected.

2.4. MAPPING AND DESIGN-FLOW 25

To further help mitigate the cost of configuration, some architectures support

difference-based configuration schemes, where only the configuration vector differ-

ences are used to change reconfigurable resource behavior. This can significantly

reduce the time and energy required to reconfigure when the differences are small.

However, it obviously comes at a cost of additional computation required to de-

rive the difference. To reduce the time and energy it takes to move configurations

across communication structures, from remote memories for example, configura-

tion caching[LCH00] has also been proposed. The cache can significantly reduce

the costs of configuration[DST99] when they exist locally within a cache memory.

It comes, however, at the cost of both management and memory area overhead.

A designer may need to consider a combination of module-based, difference-

based, and configuration caching to limit overheads when frequent reconfiguration

cannot be avoided. And, in any case, the run-time management decisions will need

to be aware of these outlined costs in order to optimize system performance.

2.4 Mapping and Design-flow

Given an algorithm and architecture, a mapping is required from the algo-

rithm components to some collection of the architecture resources. Often, the

algorithm coding, the architecture specification, and the mapping between them

2.4. MAPPING AND DESIGN-FLOW 26

are collectively optimized using structured exploration that considers incremental

changes[CPRB03]. With each change, the performance is evaluated to identify a

ranking and to determine if the change is beneficial. Mapping requires both an

allocation of resources types and an assignment to specific architecture resource

instances. The process is constrained by system performance requirements, avail-

able resource types, and available resource instances. Overlapping demand for

resources, stemming from behavioral concurrency within the algorithm, further

constrains the efforts.

Whenever performance (use-cost limitations) is a factor, a design flow always

begins with a characterization of the algorithm to identify the parts with the most

stringent requirements[Wan01]. This is defined by the amount of computation

that must be completed within some specified performance constraints associ-

ated with the computation. Typically, performance constraints will be associated

with collections of behavior and therefore the notion of a use-budget emerges.

The budget identifies aggregate expenditure for the collection. When this budget

is exceeded, new allocation and assignments must be considered to reduce the

aggregate expenditures. And when there are savings (the budget has excess), al-

locations and assignments can be reconsidered to relax the performance so that

other constrained mappings can benefit by making use of the excess. Once a map-

ping is chosen that meets all of the constraints, the configuration bit-streams can

2.5. CHAPTER SUMMARY 27

be generated for the architecture modules and interconnect.

This is the typical design-flow that yields optimized mappings of applications

for reconfigurable architectures. It works well to produce efficient designed-time

mappings. However, it is not well suited to deal with changing computation that

is increasingly found in DSP systems[SS05]. For this, new mapping schemes and

new design methodologies are required. Moreover, they need to support efficient

run-time mappings with limited overheads. This is the prime focus of this research

effort.

2.5 Chapter Summary

In this chapter we have taken a look at DSP system examples and the com-

mon features, that merit the use of run-time managed design methods. Next,

we propose a classification, along with the corresponding opportunities, for the

forms of computation change observed in systems. We then discuss reconfigurable

architectures from the perspective of a run-time manager. We note that dynamic

reconfigurables enable run-time trade-offs between flexibility and efficiency. We

then present a breakdown of the use-costs associated with these architectures.

Subsequently, the architecture template assumed throughout this research is de-

scribed. And finally we conclude by discussing the typical design-flows used to

2.5. CHAPTER SUMMARY 28

map algorithms to architectures and discuss why new methodologies are required.

29

Chapter 3

Templated-Mapping Design

Methodology

...templates exploit the expertise of two distinct groups. The expert

numerical analyst creates a template reflecting in-depth knowledge of

a specific numerical technique. The computational scientist then pro-

vides “value-added” capability to the general template description,

customizing it for specific contexts or applications needs. Jack Don-

garra,“Templates for the Solution of Linear Systems” 1995.

S
ystem designs that utilize digital processors all follow a similar overall flow

that includes specification, algorithm selection, algorithm coding, hardware

selection and/or design, coding-to-hardware mapping, and scheduling. Each of

these design stages are interdependent and are often iteratively optimized in-

concert as well as in part. During iterative design refinement, implementations are

30

analyzed against their specification according to key metrics to establish ranking.

During mapping, the codes of the algorithm are translated into forms that are

meaningful in context of the hardware architecture.

In this chapter we will introduce algorithm-to-architecture mapping and will

defined some terms that are subsequently used to delineate when mapping is

performed. We then discuss mapping with templates,1 a method proposed by

this research to limit the overhead associated with run-time mapping schemes.

Next we describe the concept of candidates, equivalent implementations for some

system behavior. We then define modes that are used to guide run-time decisions

based on designer expectations of system behavior. We will then discuss a new

mapping paradigm, proposed by this methodology, and define when, mappings

are constructed, and how they are later used. We will discuss how properties are

used to distinguish between alternative candidate implementations and enable

systems schedulers to make optimized decisions. Finally a formal set-based model

is defined along with the requirements for execution control.

1Referred to throughout this text as “templated-mapping”

3.1. ALGORITHM MAPPING 31

3.1 Algorithm Mapping

The goal of an algorithm coding is to unambiguously capture the intended

system behavior. Many algorithm coding languages [BL02] [PMC03] [GZD+00]

[EL03] and schemes have been proposed and developed, each having a partic-

ular area of strength[LZ05]. Most practical models for digital processor design

are based on communicating sequential processes [Hoa78] where the algorithm

is divided into units of sequential computation that operate concurrently and

communicate with one another. This representation lends itself to graph-based

analysis[Kri98] [HR97] with the computation represented as nodes and the com-

munication represented as edges. The target hardware architecture is the primary

factor that establishes which coding scheme and model of computation forms the

best fit. For example, languages that code algorithms as procedures of sequential

operations are a good fit for general purpose processor that executes in a simi-

lar load-execute-store sequential fashion. However, for architectures that support

multiple concurrent operations, languages and schemes that expose algorithm con-

currency are desired since there is a more natural fit with the multiple resources

of the architecture.

Although designers always have the choice to implement algorithms directly

using the native machine codes of the hardware architecture, this is a very time

3.1. ALGORITHM MAPPING 32

consuming and error prone method. And, due to time-to-market pressures and

rising algorithm complexity, this is feasible only under very limited circumstances.

Contemporary systems employ increasingly sophisticated algorithms and depend

heavily on high-level language constructs. These descriptions therefore must be

converted into a form suitable for execution on hardware. This conversion process

is at the heart of what mapping is all about.

Something as seemingly simple as the addition of two scalar operands takes

on many different forms based on a selected architecture and mapping style. For

example, the numbers must be converted into a representation that is appropriate

for the architecture. If the operands are larger than that supported by the archi-

tectures maximum word size then the addition must be distributed over multiple

operations. Storage must be reserved for the operands and result. The appropri-

ate hardware resource that can implement the addition must be assigned. And,

if this resource is a shared by other portions of the algorithm, then it must be

scheduled whenever there is concurrent demand.

The computational effort required to map dynamic algorithms to reconfig-

urable architectures is significant and finding optimal solutions are nontrivial.

Therefore designers resort to computer aided design, heuristics, and iterative

methods to explore the design space for acceptable solutions. The desired result of

this design effort is an implementation that provides correct function, meets all the

3.1. ALGORITHM MAPPING 33

Offline

0

Time
Design−time

Online

Run−time

Figure 3.1: System mapping time-line

required system constraints, and performs satisfactorily according to some metrics

of interest (which typically relate to the constraints). When there is a change in

the intended system behavior, more specifically, it’s algorithm, the entire process

must be repeated starting with refining the algorithm down to once again iterat-

ing over the design space. Therefore, for systems with changing algorithms, this

design process is highly undesirable.

Clearly a more flexible approach is required that will allow systems to adapt to

the emerging frequent changes that has been described in section 2.2. To discus

the desired changes in design-flow, and proposed the template-based mapping,

some distinction is required regarding definitions of time. From the perspective

of system design completion there are three distinct time phases. See figure 3.1.

So far in the previous paragraphs as we have talked exclusively about design-

time. When a design has been completed and placed in-service we call this time

“time zero.” Afterwards, we further make the distinction between offline and

online, where online is the time at which the system begins to perform its intended

function. We also called this time run-time interchangeably. The time between

3.2. MAPPING WITH TEMPLATES 34

post-design and run-time we call off-line. For example, a system that has been

placed in-service but is not performing computations on the system algorithm is

said to be operating off-line. This time can be used to perform system optimization

and analysis.

3.2 Mapping with Templates

To manage the post-design change observed in contemporary algorithms new

approaches are required[TB01]. Since it is prohibitive and inefficient to reserve

dedicated hardware to handle post-design changes in resource demands, new ap-

proaches must manage post-design resource remapping and reconfiguration. This

remapping can be done online, offline, or some combination of the two.

To limit interruptions in system operation, it would be preferred to perform

the remapping online. However, this come with significant overheads. The com-

putational cost of translating algorithmic coding descriptions into architecture

mappings is high. Moreover, contemporary design flows are exploratory/interac-

tive and therefore difficult to embedded within a system design. Additionally, for

resource limited devices, this design scheme would be impractical. Therefore it is

desired to move as much of the design process as possible into that region prior to

placing the system in service (time zero) with only minimal online computation

3.2. MAPPING WITH TEMPLATES 35

2 3

1 2 3

1 2 3

1

1+ + +

*

ALU

M MM

* *

(a) Resources

3

+

*

C

A B

2

1

1 2

(b) Bound

+

*

C

A B

(c) Template

Figure 3.2: Templated-mapping introduction

required for system adaptation. Towards that goal, a templated-mapping scheme

is proposed.

3.2.1 Templated-Mapping

In a templated-mapping, resource “types” allocations are identified but par-

ticular instances are not. In this manner a mapping is specified using its form,

or by “template.” It is a partial mapping in that resource instance binding is

postponed. By specifying a mapping in form, resource allocation, configuration,

and binding can be optimized in post-design time. Moreover, the template can

be reused to reassign resources under changing load conditions.

To illustrate the concept of templated-mapping see figure 3.2 which shows re-

3.2. MAPPING WITH TEMPLATES 36

sources and two ways of mapping the algorithm code fragment C+ = A ∗ B to

the resources. In 3.2(a) is the set of system resources. They consist of three ded-

icated adders, a single configurable arithmetic logic unit (ALU), three dedicated

multipliers, three memory blocks, and an interconnect network.

In figure 3.2(b) is a mapping that assigns each operand and operation to spe-

cific system resources. Each time this algorithm fragment is ready for execution,

these specified resources will be required. If, at that time, any of these specified

resources were unavailable, then this algorithm fragment would be blocked from

execution and would have to wait until they were available.

Alternatively, figure 3.2(c) shows a templated-mapping. The mapping is iden-

tical except for the fact that no resource instances are directly specified. The

advantage of a mapping template is that resource binding and configuration oc-

curs when needed and therefore if a particular resource instance is busy, at some

point in time, then an alternative resource instance can be considered. The disad-

vantage is the overhead required to perform the run-time template instantiation.

3.2.2 Candidates

Mapping templates allow run-time flexibility by postponing resource instance

allocation, configuration, and binding. When a mapping is required, a scheduler

3.2. MAPPING WITH TEMPLATES 37

can identify appropriate resources and perform these operations according to a

management policy. The flexibility offered by mapping templates is significantly

increased when multiple templates are available for a given portion of an algo-

rithm. The template shown in figure 3.2(c) and discussed in the previous section

gives a mapping form. Other forms are often possible given the system resource

set. Depending on how the computation is scheduled and the selected mapping-

architecture, it could take one cycle, in a full parallel direct-mapping implementa-

tion, or multiple cycles, using an iterative approach and fewer resources[ZPTB99].

If the ALU implements both multiplication and addition, then it alone, in con-

junction with the memory references, could implement the computation with an

appropriate control sequence.

We call the set of one of more templated-mapping implementation alterna-

tives “candidates.” By definition, each mapping templates has identical input-to-

output behavior. In other words they are behaviorally equivalent transformations

of the algorithm coding similar to that described in [RCHP91]. The term candi-

date has been chosen since any of the templates from the set may be considered at

run-time, and one is selected as needed. By combining candidates and mapping

templates, both resource instances and groups of resource types can be reassigned

as needed with limited run-time overhead. Resources can be reassigned as needed

given dynamic demands and mapping form alternatives can be considered under

3.2. MAPPING WITH TEMPLATES 38

t0
(tt0)

t3
(tt1)

t4
(tt2)

ri1ri0

ri2 ri3

(a) Fixed

tt2

tt1

tt0

t0
(tt0)

t3
(tt1)

t4
(tt2)

ri1ri0

ri2 ri3

MT

(b) Flexible

Figure 3.3: Mapping algorithms to reconfigurable architectures

dynamic system-level constraints and objectives.

Figure 3.3 illustrates the concept of multiple mapping templates. In 3.3(a) the

nodes of the algorithm are directly mapped to resources and therefore are fixed

and inflexible. By contrast, figure 3.3(b) represents the same algorithm compu-

tation with candidate mapping templates. This strategy allows for flexible post-

design reassignment of resources while keeping the overhead of remapping within

reasonable quantifiable limits. The strategy comes with two types of overhead.

Computational overhead, since the alternative partially-mapped implementations

require management and storage overhead, since the template form (implemen-

tation) must be available. It should be obvious that a tradeoff in flexibility and

overhead is present. By increasing the number of candidates mapping templates,

greater implementation alternatives are available for in-system consideration —

increased flexibility. However this comes with cost increases in both computational

management2 and templates storage.

2Having a greater number of mapping templates increases the computation required to search

3.2. MAPPING WITH TEMPLATES 39

Dynamic

Increased Flexibility

Increased Predictability

Offline Online OnlineOffline

Static (How)

(When)

(1) (2) (3) (4)

Figure 3.4: System mapping modes

3.2.3 Mapping Modes

Many system designs have absolute fixed limits on cost expenditures for certain

behavioral components. These costs limits can be in the use of time, energy,

and/or area. For example a deadline establishes a time expenditure limit for

some identified section of the algorithm. Limits often are further distinguished

using the terms “hard” and “soft.” A hard limit, such as a hard real-time deadline,

indicates that if the expenditure is exceeded, then the system has failed. Whereas,

soft limits are expenditure guidelines that indicate how a “good” system is to

perform under normal circumstances. Exceeding soft limits does not necessarily

indicate system failure, but it does indicate degraded performance. With the

increasing pervasiveness of fixed-budget reconfigurable systems, the specification

and control of cost expenditure limits in energy and area becomes increasingly

desirable (in addition to time).

and select amongst the candidates.

3.2. MAPPING WITH TEMPLATES 40

To address the increased uncertainty that arises from run-time dynamic map-

ping, a mapping mode scheme is proposed. The aim of the mode is to allow for

trade-offs in flexibility and predictability. Therefore, in circumstances where there

are no limits on cost expenditure, more flexibility can be allowed. And in circum-

stances where there are limits, more predictability can be controlled. Figure 3.4

shows the four types of mapping modes. A mode establishes both when a map-

ping is to occur and how the mapping-binding is retained afterwards. A mapping

can occur either online or offline and can be retained after its use — statically, or

disposed after its use — dynamically.

Modes provide for increased control over critical algorithm mappings with cost

budgets. There are two types of mappings that can be controlled with modes,

templated allocation selection and resource instance binding. These two types are

discussed in the following sections.

Template Selection

Each algorithm node and edge that is mapped to the architecture using a tem-

plate is assigned one of four template selection mapping modes. (1) Templated

selection mapping modes that are offline and static are pre-selected prior to run-

time and this selection is maintained throughout the life of node or edge. (2)

Those that are offline and dynamic are also pre-selected. However, after the first

3.2. MAPPING WITH TEMPLATES 41

invocation, the selection is released and therefore must be re-established prior to

subsequent use. (3) Templated selection mapping modes that are online and static

are selected just once, prior to the first invocation, and are subsequently kept for

future invocations. (4) And finally, those that are online and dynamic offer the

greatest flexibility (and greatest overhead) since with each invocation a selection

must be made from amongst the candidate mapping templates. In this manner

continual adaptation—to changes in system resource load—is possible with each

invocation.

Resource Binding, Reservation, and Configuration

Each mapping template has one or more references to system resources. Each

resource reference is assigned a mode that indicates when the resource is reserved

and how long the reservation remains valid. We call this mode the resource reser-

vation mode. As with template selection, there are four possible values to dif-

ferentiate between increased flexibility and increased predictability. (1) Resource

reservations that are assigned the mode offline–static provide the greatest pre-

dictability since their resources are guaranteed to be ready each time they are

required by the mapping template. The reservation is static, and therefore cannot

be used by other mappings. (2) The reservation mode online and static indicates

that the reservations occurs just prior to the first template use and are statically

3.2. MAPPING WITH TEMPLATES 42

retained thereafter. This scenario works well when there is a need to accommodate

dynamic algorithm change while simultaneously limiting cost expenditures. (3)

Those that are offline and dynamic provide for predictability in the initial reser-

vation, however subsequent to use, the reservation is freed and therefore may be

used by other mappings. This configuration is a good match for applications that

desire low overhead startup since initially resources are guaranteed to be available

during initialization and can be subsequently freed as the algorithm transitions

out of this system phase. (4) And finally, the greatest flexibility is offered by the

online and dynamic reservation of mapping template resources.

Mode Use Scenarios

For the case of a single algorithm element with multiple mapping templates,

each having a single resource reference, there are sixteen3 possible combined mode

configurations that results from the candidate selection mode together with the

resource reservation mode. Based on algorithm behavior, system stimulus (data

patterns), and resource characteristics — such as event duty cycle, frequency, cost

constraints, configuration time, concurrent demands, etc. — an appropriate mode

that balances the required predictability, for a single mapping, and flexibility for

system-level resource re-mapping, can be explored.

3Most realistic mappings will have significantly more since with each additional resource
reference the total possible modes increases by a factor of four.

3.2. MAPPING WITH TEMPLATES 43

For the case of a critical component that has a tight budget, high duty cycle,

and mappings to heavily loaded resources, more rigid mapping modes would be

prescribed. And those components with lower duties cycles and fewer constraints

are prescribed more adaptive and flexible modes.

3.2.4 Mapping Paradigm

For a given system, the algorithm describes the operations to perform on the

system data. This data is transformed by the system as governed by the algo-

rithmically codes behavior. An algorithm however, is merely a description — or

coding — of the desired data manipulation and control-flow behavior. The actual

computations are carried out by integrated circuit functions and interconnect.

The hardware circuits are designed with the application in mind such that appro-

priate functions and interconnect is available in the hardware architecture. These

components, various functions and interconnects, make up what is called the re-

sources of the architecture — named such since they are available for algorithm

computation. Mapping is the merging of algorithm coding to architecture re-

sources. As previously described, this mapping problem is usually non-trivial and

requires significant effort. Therefore, designers resort to CAD tools that transform

system models. Moreover, these CAD algorithms themselves require significant

computation.

3.2. MAPPING WITH TEMPLATES 44

A driving goal of this research is the need for dynamic resource management

that enables system adaptations and run-time re-optimization under changing

algorithm and system stimulus conditions. To feasibly support this, most of (or

as much as possible) the mapping design problem needs to be completed prior to

system deployment. In the previous sections, a templated mapping scheme has

been presented that establishes a framework toward this objective. In this and

the subsequent section we move toward formalization of this scheme.

Mapping Kernels and Communication

When behaviors are reused regularly throughout the algorithm, the behavior

can be identified and used as a building block for algorithm composition. In this

manner, these unique algorithm components can be mapped once and reused as

required. Mapping occurs for two types of algorithm constructs; algorithm nodes

and algorithm edges. Nodes ultimately are mapped to integrated circuit functions

that provide the required operations to implement the coded behavior represented

by the node. Edges are mapped to interconnect that provides communication

between functions. For an algorithm graph, each node and edge instance requires

a mapping.

With template-based mapping, each component of the algorithm graph is

mapped either directly or indirectly to a group of potential hardware implemen-

3.2. MAPPING WITH TEMPLATES 45

algorithm
member
instance

mapping
modes

smm

candidates

gmm

groups

templates

qty

unique
resource

amm

resource
instance

trm

(a) Levels

Candidates

Group

Template

Resource Resource

CGi

... MGj

... MTk

... ur*

... ri*

(b) Structural view with model identifiers

Figure 3.5: Mapping with sets of templated-mappings

3.3. OFFLINE TEMPLATE CONSTRUCTION 46

tations. Recurring algorithm behaviors are mapped to unique behavior represen-

tations, called computation kernels. The levels of indirection and the structure

of candidate mapping templates are shown in figure 3.5. Figure 3.5(a) shows the

levels between an algorithm instance and an architecture resource instance and

the relations in between. Figure 3.5(b) gives a view of the structural organization

of mapping templates. Essentially, templates are organized in a three-level tree

with level one being the tree roots, or the base reference for a candidate group.

At the second level is one or more mapping groups. And finally, one or more

mapping templates are tree-descendants of each group.

3.3 Offline Template Construction

Templated-mapping design requires a set of mapping templates, or candidates,

to be constructed for each schedulable algorithm component. During this design

phase, algorithm descriptions, mappings, and architectures are iteratively refined

together. The features of the system computation and data patterns are care-

fully analyzed to extract characterizations that can be used to improve upon the

performance of the design implementation. After the hardware architecture is se-

lected, template construction can proceed. For a given architecture and algorithm,

the set of mapping templates is fixed. And, although alternative algorithms (to-

3.3. OFFLINE TEMPLATE CONSTRUCTION 47

tally new/different system behavior) can be map to the architecture, this requires

additional analysis, new mapping templates, and a relevant scheduling scheme.

In short, template construction involves analysis of algorithm features, the

design and organization of multiple implementations, and the deferral of imple-

mentation resource type allocation and resource instance binding.

3.3.1 Algorithm Analysis

Often there are numerous algorithm codings to implement a desired DSP al-

gorithm behavior. The algorithms can have significant difference in cost perfor-

mance as shown in figure 3.6. Research CAD tools, one that performs behavioral

transformations [RCHP91] and another that implements a give system description

[Bro92], were used to synthesize ASICs for nine DCT algorithms under constant

throughput and constraints[PKK97]. Normalized design area and normalized de-

sign power is presented in the figure. The upper chart shows the designs resulting

for high-throughput constraint designs and the lower chart shows those resulting

from low-throughput constraints. As can be seen in the high-throughput cases,

different codings for the DCT algorithm can have a difference of over 24x in area

requirement between the best and worst case. Ignoring the direct mapped im-

plementation, the difference is still 7x. Similar observations can be made for

energy use-costs. A more pertinent observation from the perspective of dynamic

3.3. OFFLINE TEMPLATE CONSTRUCTION 48

reconfigurable computing is the difference between the high throughput and low

throughput scenarios. Although the normalized charts do not depict the absolute

magnitude differences, there clearly is a dramatic decrease in cost requirements

between the two. This gap represents an opportunity for run-time resource redis-

tribution under changing requirements if implemented on a reconfigurable archi-

tecture.

Algorithm analysis has been heavily studied over the past four decades; es-

pecially so for sequential [LA93][HR97] and parallel [Kri98] “programs”. The

general goal is to characterize algorithm coding behavior against a specific archi-

tecture. Recently, approaches that use sub-parts of the reconfigurable architecture

resource to monitor other parts where system behavior has been mapped have been

proposed[SC04]. In this manner direct measurement of algorithm performance is

possible.

For architectures designed for a target algorithm, optimization can be applied

to both the algorithm coding and architecture specification concurrently during

design exploration. Understanding the algorithm basic blocks, block invocations

frequencies, and block-to-block communication patterns is critical in crafting ef-

ficient architecture mappings. Moreover, understanding the architecture — such

as its instruction set, word width, and memory architecture — is important when

coding or refining the algorithm. To understand these behaviors, designers rely on

3.3. OFFLINE TEMPLATE CONSTRUCTION 49

Figure 3.6: ASIC cost variation for DCT algorithms

static and dynamic algorithm analysis techniques like those presented in [Wan01]

or [JHK+05], for example. In general, these processes are referred to as algorithm

profiling. Static techniques are typically used to characterize the basic blocks in

terms of their operations, control, and data sets, to access relative complexities

and computation effort distribution across basic blocks. Dynamic analysis tech-

niques provide for characterizations of block-to-block interactions, data dependent

control flow, invocation frequencies, etc. One of the more useful results from dy-

namic algorithm analysis is a view of the basic block duty cycles. When these

duty cycles are combined with basic block cost requirements (time, energy, etc.),

an architecture-independent estimate of algorithm performance can be obtained.

3.3. OFFLINE TEMPLATE CONSTRUCTION 50

This analysis can be used as a road-map during the refinement of the algorithm,

mappings, and architecture.

For a general purpose processor (GPP) or general purpose digital signal proces-

sor (GP-DSP), where and instruction set simulator (ISS) is likely to exists, cycle-

accurate results of algorithm performance can be obtained by direct measurement

of execution cycles from within the ISS, like in the example [CPC+99]. Using this

method, the algorithm is iteratively refined, compiled and analyzed, until accept-

able results are obtained. Often this “software” estimation technique is used as a

base metric to characterize algorithms even when the ultimate target is a custom

or mixed hw/sw architecture. This is the case for the design example presented

in Chapter 6.

As an example, consider the JPEG encoder algorithm depicted in figure 3.7.

The algorithm’s block diagram, static analysis chart, and dynamic analysis chart

is shown. The algorithm is a public domain implementation optimized for a GP-

DSP. The algorithm is divided into four blocks; image fragmentation, discrete

cosine transform, quantization, and entropy coding. The estimates are from a

DSP56600 instruction set simulator with an image composed of 180 blocks of 8x8

pixels [CPC+99].

The static analysis4 shows chart, figure 3.7(b), both the worst case instruc-

4This analysis is obtained from a cycle accurate instruction set simulator. The average case

3.3. OFFLINE TEMPLATE CONSTRUCTION 51

input
Image

Fragmentation
(IF)

Descrete
Cosine

Transform
(DCT)

Quantization
(Qnt)

Entropy
Coding

(EC)
output

(a) Root-level block diagram

(b) Static analysis (c) Dynamic analysis

Figure 3.7: JPEG encoder algorithm example

tion count and average case instruction count for each iteration of the algorithm

blocks. From this we see over a 50x difference in instruction counts across the

blocks. Notice that for the image fragmentation block that there is a 17x differ-

ence in worst case and average case counts. This illustrates that for certain data

dependent behavior there can be significant difference in computation costs based

on system stimulus and that performance estimation based solely on worst case

performance can lead to overly pessimistic results.

The dynamic analysis chart, figure 3.7(c), gives a clear picture of the domi-

is actual performance measured from real stimulus. The worst case, although also measured,
can be estimated by summing — over each instruction of the algorithm coding — the cycles
required to execute each instruction (CPI) on the target architecture.

3.3. OFFLINE TEMPLATE CONSTRUCTION 52

nant runtime behavior. Although the DCT has 5x less instructions than IF, it

contributes 3x more to the total accumulated system instruction count. There-

fore it should be considered a top priority for optimizations and algorithm coding,

mappings, and architecture constructs.

3.3.2 Implementation Alternatives

To achieve low overhead run-time algorithm mapping, the set of mapping

templates are constructed during design-time. For algorithm behaviors that have

loose constraints on cost-performance, such as background or auxiliary system

behaviors, opportunity exits in the offline region for construction. This set of

candidates subsequently can be flexibly interchanged during run-time optimiza-

tion. Traditional design flows optimize cost contributors on critical design paths.

For example, for a timing critical constraint, the computation and communication

path between the input and output — and the resources to which they are mapped

— are refined to minimize these critical cost components. For run-time reconfig-

urable systems these critical paths are no longer fixed and therefore fluctuate

with changes in the algorithm, stimulus, and architecture mappings. Therefore it

is advantageous to have numerous mapping implementations that span the area–

energy–delay designed space that can be selected appropriately at run-time to

cope with the temporal system changes.

3.3. OFFLINE TEMPLATE CONSTRUCTION 53

Each implementation alternative is constructed according to an appropriate

design methodology for the model of computation, algorithm coding, and target

architecture resource. They may be generated with computer assistance — such

as compiled or synthesized, or may be manually constructed. In either case, the

mapping is templated and not bound to the particular architecture resources.

Any unused instance of the resources type required by the template may be used.

What results is a deferred resource binding scheme.

As an example, consider figure 3.8. In 3.8(a) an instantiated graph from the

system algorithm is shown. It has a single input and two outputs with a compo-

sition that is divided into five parts — represented as graph nodes — each having

varying complexity. The most costly kernel has been identified and label DCT.

Numerous algorithm coding optimizations and architectural transformations are

considered for the DCT, like that discussed in section 3.3.1. Due to system con-

straints and architecture resources, shown in figure 3.8(c), four implementations

are selected. (1) One that uses a “software” compiled implementation for a gen-

eral purpose DSP. (2) Another that uses an performance-optimized FPGA design

flow. (3) A third using the same FPGA flow to yield an area-optimized imple-

mentation. (4) And finally, a “silicon compiler” design flow is used to synthesize

an ASIC implementation. Each implementation is templated, by deferring the re-

source instance binding, and becomes a candidate mapping for the DCT algorithm

3.3. OFFLINE TEMPLATE CONSTRUCTION 54

in

DCT

[7:0]

+

out1 out2

(a) Graph instance

MT1 MT2 MT3 MT4

DCT

GDSP FPGA ASIC

c1

1

DSP

c1 c2

n m

CLB CLB

c1

1

ARAI

(b) Candidate mapping templates for DCT kernel

ARAI

FPGA

m
n

DSP

interconnect

(c) System hardware architecture

Figure 3.8: Algorithm graph instantiation and node implementation alternatives

3.3. OFFLINE TEMPLATE CONSTRUCTION 55

kernel. The Candidate mapping templates are show in figure 3.8(b)

3.3.3 Run-Time Management Properties

Dynamically adaptive systems require flexible run-time management strate-

gies. Mapping templates provide a flexible framework for organizing implementa-

tion alternatives that can be appropriately chosen at run-time. The management

of these alternatives adds to the existing responsibility of run-time scheduling.

One solution for scheduling would be to make arbitrary choices to resolve execu-

tion partial orderings5. This, for obvious reasons, is not desirable under almost all

circumstances. It is preferred that the scheduler make informed choices at each

step. This can only be achieved if the scheduler is able to discern relevant infor-

mation about the objects that are part of the scheduling action. This information

can be organized using system object attributes or property assertions.

Any run-time scheduling scheme that aims to make optimized scheduling

choices requires property assertion for each participating object. For example

to discern priority amongst algorithm behavioral nodes, a priority value can be

asserted for each. Similarly, if two new algorithm graphs instances dynamically

request admittance concurrently, then property about each could be asserted to

distinguish between them. Others system objects that benefit from property as-

5We in fact explore this strategy of random ordering in Chapter 5 and Chapter 6.

3.3. OFFLINE TEMPLATE CONSTRUCTION 56

in

DCT

[7:0]

+

Status

Priority

(CC) Cost
Constraint

CC Type

Missed CC

Candidate
Selection

Frequency

Duty

Aggregate
Costs

...

out1 out2

(a) Node: DCT kernel

MT1 MT2 MT3 MT4

DCT

Invocations

Instances

Preferred
Selection

...

GDSP FPGA ASIC

c1

n

DSP

Configware

Flow ID

...

c1 c2

Area

Delay

Energy

...

Bits

n

Area

Delay

Energy

...

Bits

m

CLB CLB

c1

n

ARAI

(b) Candidates for DCT

Figure 3.9: Properties for run-time management

3.3. OFFLINE TEMPLATE CONSTRUCTION 57

sertions are graphs edges, candidate mapping templates, computational resources,

interconnect resources, etc.

Figure 3.9 revisits the instance graph and candidates shown in figure 3.8 with

an example set of properties that could be used by a scheduler in a run-time

management scheme. Some common property assertions classes for system objects

are: (1) object state, (2) object parameters, (3) object use cost estimates, and (4)

object use measurements or metrics.

The properties attached to the graph node ‘DCT” in figure 3.9(a) represents

the list of properties most often used in this research. The properties fall into three

general categories: (1) those that establish relative importance, such as priority

and age; (2) those that specify use-constraints associated with the algorithm node,

such as cost-constraint and cost-constraints type; and (3) those that annotate sta-

tistical performance history, such as aggregate costs, missed cost-constraints, and

computation duty-cycle. The candidate mapping templates shown in figure 3.9(b)

has example properties that: establish a relative importance, such as number of

referring instances and preferred mapping template selection; annotate design in-

formation, such as vendor ID and configuration bit-stream memory location; and

mapping template cost-estimations, such as area, delay, and energy. For cost-

constrained systems, cost estimations are of particular significance since they are

used to guide run-time decision-making. Section 3.3.4 examines this subject a bit

3.3. OFFLINE TEMPLATE CONSTRUCTION 58

more.

3.3.4 Implementation Cost Estimations

Strategies for estimating implementation costs are a subject of ongoing re-

search. As the complexity of systems increase so does the importance of fast

and accurate cost estimation. The templated mapping framework presented in

this chapter makes no assumption about model accuracies. During the beginning

stages of design, “conceptual-level” modeling can be used. In this case, high-level

estimations of templates implementation costs can be obtained using techniques

such as those presented in [BRL97]. General trends of system behavior can be

observed and key cost components identified. As the system description is refined

toward actual implementation, models of increasing detail level are chosen for

particular algorithms, target architectures, and implementation mappings.

For heterogeneous systems, with mixed models of computation and model re-

finement levels, no single unified estimation strategy currently exists that works

equally well across the diverse computation domains. More accurate results are

obtained when domain-specific6 estimation strategies are employed. For exam-

ple, efficient estimation with reasonable accuracies (8%-20%) has been reported

6In this context, domain-specific refers to specific combinations of algorithms, models of
computation, architectures, and system descriptions.

3.3. OFFLINE TEMPLATE CONSTRUCTION 59

for ASIC adder implementations [OZD+03]. For more complex algorithm con-

structs with behavior described in System-C, [GLMS02] proposes a rapid esti-

mation scheme. For FPGA targets, [BFS04] proposes an efficient scheme for

rapid area estimation that does not require the timely traversal of vendor-specific

technology mapping tool-flow. And as a final example, consider the GPP or GP-

DSP. These architectures have large-grain complex structures with multi-stage

pipelines, multi-level caches, complex interrupt strategies, that makes accurate

estimation particularly challenging. However, [NR95] discusses these issues and

presents effective methods for efficient estimation. When multiple GPPs are re-

quired, estimation strategies such as [HAA+96] exists.

This is by no means meant to provide a comprehensive survey of the work

on cost estimation techniques. The goal here is to simply underscore the point

that diverse techniques exist and, more importantly, modern system design flows

need be a manifold for diverse schemes. Design implementation cost “estimation

abstracts” recorded as mapping template property assertions, allow diverse esti-

mations schemes to be unified in an internal representation which may in turn

provide context for run-time optimization strategies.

3.4. RUN-TIME TEMPLATE USE 60

3.4 Run-Time Template Use

Candidates provide multiple implementation alternatives. The alternatives

enable flexibility by allowing run-time selection of appropriate implementations.

This flexibility strategy creates an obligatory run-time selection requirement. It

becomes an additional responsibility of system scheduling. Here we discuss the

orthogonal issue of mapping templates selection and resource binding.

Algorithm components for computation and communication have one or more

architecture mapping implementation alternatives. At some point prior to execu-

tion a specific implementation must be selected, its resources allocated, configured,

and bound. Dependent on the design strategy, selection mode (section 3.2.3), and

scheduling scheme, this can occur at design time, offline, or some time online prior

to execution.

3.4.1 Template Selection

Each candidate uses some distribution of system resources and has associated

implementation costs in area, delay, and energy. Selections for cost-critical por-

tions of the algorithm are generally performed in advance — either at design-time

or offline — to facilitate predictable cost-performance. The run-time selection is

guided by system-level objective functions that aim to optimize some system cost

3.4. RUN-TIME TEMPLATE USE 61

Table 3.1: Candidate mapping template selection properties

area time energy

configuration time, tc configuration energy, ec

computation time, te computation energy, ee

total area, a total time, tt total energy, et

(a) Simple relation examples

Ordering Strictness

ascending descending absolute relative

(b) Selection search directives

distributions. These functions use system-level observations in their attempts to

avoid local performance minima. They monitor static and/or dynamic system

properties to maintain a view of current system behavior. The monitored system

properties typically fall into one of three categories: (1) simple property relations,

(2) composite property relations, and (3) arbitrary/independent relations.

Simple Relations

Simple relations are the easiest to describe and therefore are presented first.

With each selection, consideration is given to a single static or dynamic candidate

mapping template property and its impact on overall system cost performance.

Table 3.1(a) shows an example of some simple relations.

For each relation there is the notion of selection search ordering and strictness

3.4. RUN-TIME TEMPLATE USE 62

as summarized in table 3.1(b). Ordering indicates whether the simple property

is maximized or minimized — ascending order or descending order. Strictness

indicates what is to occur when the identified selection, for some reason, cannot

be instantiated. For absolute strictness, no other selection consideration is to be

made. Therefore the associated algorithm graph member, to which the mapping

template is paired, must strictly wait until the select mapping template imple-

mentation may be used. Relative strictness indicates that additional selections,

in decreasing optimization order, are to be considered, in succession, until one

that is capable of instantiation is identified.

Composite Relations

Composite relations are used when optimization objectives consists of several

system properties in combination. The objective functions consist of multiple

input terms from the system properties of interest. With function evaluation,

selection proceeds as with the simple relation case. Many such functions can be

constructed given a particular system scenario, and for the sake of discussion,

considered optimization objective function given by the polynomial equation 3.1.

obj = c1 × ak1 + c2 × tk2
c + c3 × tk3

e + c4 × ek4
c + c5 × ek5

e (3.1)

3.4. RUN-TIME TEMPLATE USE 63

Here in this example, the designer can choose appropriate coefficients c1, c2, c3, c4, c5

and power terms k1, k2, k3, k4, k5 to construct a suitable run-time optimization

function for dynamic template selection given system constraints and objectives,

where a, tc, te, ec, ee are defined in the table 3.1(a). In practice, a function such

as this would not be evaluated directly as shown. This would impose significant

overhead unless implemented in dedicated hardware. To reduce the implementa-

tion penalty, an encoding — exact or approximate — would be used; such as with

a look-up table based approach.

Arbitrary Selections

Arbitrary selections are, in essence, selections at random. Given the desire to

construct specific system performance, it would seem counterintuitive to consider

strategies based on arbitrary selection schemes. However, when such selection

is combined with weighted feedback, self-adjusting adaptive schemes are possi-

ble. Moreover, such selections have the minimum possible cost overheads. For

example, let for each selection an observation be made about the prior selections

performance — good or bad. Under some circumstances, this statistical good/bad

behavioral observation might allow the system to statistically refined its selection

criteria and converge to inherent optimization operating points. The system de-

signer can incorporate their knowledge of “normal” behavior by utilizing various

3.4. RUN-TIME TEMPLATE USE 64

weighted random distributions — such as uniform, triangular, geometric, exponen-

tial, etc. For highly dynamic and unpredictable systems, statistical approaches,

such as caching [LCH00], are often beneficial.

3.4.2 Template Instantiation

After a suitable templated-mapping has been selected, the template is instan-

tiated by (1) reserving the specified resources, (2) scheduling the configuration of

the implementation bit-streams, and (3) binding of the constructed implementa-

tion to the parent algorithm member (node or edge).

Reservation

Resource reservation is a rather straightforward operation. Since the archi-

tecture resources are fully known, an efficient low-overhead data structure can

be used to manage the status for each system resource. Minimally, storage for

(1 + n) bits are required for each resource instance. One bit to indicate resource

reservation status and n bits to identify the reserving algorithm member; where

2n ≥ (ne + nn) for ne, nn equal to the number of edge instances and number of

node instances in the algorithm, respectively.

3.4. RUN-TIME TEMPLATE USE 65

Configuration Scheduling

To simplify the task of configuration management and reduce the associated

overhead, it is best to use a single scheme across the resources managed by a

single configuration controller. For partitioned systems with multiple configura-

tion managers, different schemes can be used as appropriate in each particular

resource group. Each will be based on either a random or serial access scheme.

Which ever the case, the configuration bit-stream cwjk for a resource rijk specified

by the mapping template is, by definition, available at run-time. Depending on

the access scheme, this configuration will consist of one or more sequences in the

following generalized form.

Pre-amble Configuration data word(s) Post-amble

Prior to resource configuration, an ordering for each cwjk must be imposed.

This ordering will be directly derived from the configuration architecture of the

resources. For example, consider the three architecture topologies shown in fig-

ure 3.10. In the case of serial access, figure 3.10(a), the ordering is fixed and no

further consideration is required. In the random access case with a single config-

uration bus, figure 3.10(b), configuration ordering is not specified and therefore

is arbitrary. However, in the case of multiple/parallel access configuration archi-

tectures, figure 3.10(c), the configuration scheduling order is non-arbitrary when

3.4. RUN-TIME TEMPLATE USE 66

(a) Serial (b) Random (c) Concurrent

Figure 3.10: Resource configuration topology schemes

any of the configuration costs for a cwjk differ from another. The problem is

similar to a computation scheduling problems where there are concurrent tasks

and parallel resources with the goal of minimizing the configuration schedule cost-

performance. Based on system-level requirements, this configuration scheduling

subproblem would have as its objective to minimize either configuration energy

or configuration time.

Bit-stream Downloading

With an established configuration schedule, the work of downloading the con-

figuration bit-streams to the required resources can precede. It is well understood

that this configuration effort has significant costs and time and energy and in

many cases can be the limiting factor of performance for systems based on recon-

figurable architectures[DST99].

If the run-time configuration schedule is managed by a single processor, then

the work of resource configuration will be fully serialized. Moreover, when multi-

3.4. RUN-TIME TEMPLATE USE 67

ple algorithm members require configurations concurrently then further ordering

considerations are required. Either (1) the complete schedule can be computed for

some time-step follow by complete configuration or (2) scheduling can be inter-

mixed with configuration with some increased implementation complexity/over-

head. In this latter case, priority can be given to algorithm components of greater

importance. For example, if multiple tasks are concurrently ready for resource con-

figuration, each having varying priority, then a single-processor scheduler might

choose to configure and dispatch in succession each task in the order established

by the task priorities. In contrast, if this single-processor-scheduler schedules each

in succession and then subsequently dispatches each, then there will be greater

latency for the high priority tasks.

Dependant on the system characteristics, namely the frequency of resource

configuration and concurrent configuration demand, a multi-processor scheduling

and configuration approach could be advantageous. With such an approach, one

or more processors would handle configuration scheduling and one or more would

handle bit-stream downloading in a distributed manor. Clearly in this case, a

mixed approach would be appropriate where scheduling processors immediately

handoff the task of bit-stream loading to a configuration processors.

3.5. METHOD FORMALIZATION 68

Binding Mode

As discussed in section 3.2.3, mapping template selection and architecture

resource reservation both have corresponding modes which establish when (and

for how long) an allocation selection is to occur and when (and for how long) a

resource reservation is to be maintained. The multi-level mapping from algorithm

to resource instance identifies the binding. Irrespective of when a selection or

reservation is performed, those which are of the mode type dynamic (as opposed to

static) are released after use. Dynamic mapping templates selections are released

after use and dynamic resource reservations are freed after use.

In the following section a mathematical system model formulation is presented

for algorithms, architecture resources, and templated-mapping. This model pro-

vides a precise language for describing and designing systems using mapping tem-

plates.

3.5 Method Formalization

The behavior of a system establishes its meaning in the context of the system

environment. The crafting of this behavior is the overall goal of the design ex-

ploration process. The formal definitions of system behavior therefore establishes

its execution semantics. Many different language, models, and schemes have been

3.5. METHOD FORMALIZATION 69

Table 3.2: System model components

System Closed Sets UN, NS, ES, UG, UR, R, MM, RR, MT, MG, CG

Dynamic Operations I(S), I(g), D(S), D(g), T (S), T (g)

System Open Sets S, A

Set Relations nsm, asm, trm, amm, gmm, smm, stm

Property Functions setP, getP

proposed and used to define functional, denotational, and operational semantics.

But all have the common goal of unambiguously specifying meaning of system

run-time behavior. The properties of such a formalism are directly tided to the

ability to understand, execute, and analyze the system model[LZ05].

The execution semantics defined within this research consists of (1) a mathe-

matical set-based model of the system components and (2) a state diagram for-

malization of how these components interact to define system behavior. For an

example of a formal execution semantic definition see [DGM02]. The system com-

ponent model can be found in section 3.5.1. The component interactions and

scheduling are formalized in section 3.5.2. Together they form a road map for de-

sign using the proposed templated-mapping methodology and establishes a stan-

dard for cad-tool development. Chapter 4 documents a simulator implementation

that conforms to the specification defined here.

3.5. METHOD FORMALIZATION 70

3.5.1 Component Model

The system model consists of eleven closed (static) sets, six operations for

managing dynamic algorithms, one dynamic system scheduler set (an open set),

one dynamic system algorithm set, seven set mapping relations, and two generic

property management functions. These components are summarized in table 3.2

and a structural view is shown in figure 3.12. The model can be divided into eight

parts. (1) That which models algorithm and scheduler components, (2) that which

models resource components, (3) that which models dynamic graph constructs,

(4) that which models the system scheduler, (5) that which models the system

algorithm, (6) that which models the system resource, (7) that which models

mapping templates, and (8) that which models system property management.

The key model relations are shown in equations (3.2)-(3.42).

Algorithm and Scheduler Behavior Components

UN is the set of nun unique nodes uni.

UN =

nun⋃

i=1

uni (3.2)

NS =
nns⋃
i=1

NSi is the set of nns graph node sets. Where NSi is the set of ngni

graph nodes in NSi and nsm is a mapping for each node gnij onto a unique node

3.5. METHOD FORMALIZATION 71

in UN .

NSi =

ngni⋃

j=1

gnij (3.3)

NS =
nns⋃

i=1

ngni⋃

j=1

gnij (3.4)

nsm : NS → UN (3.5)

ES =
nns⋃
i=1

ESi is the set of edge sets, where ESi is the set of directed commu-

nications between the nodes of NSi. Edge geijk ∈ ESi ⇐⇒ a connection exists

from node gnij ∈ NSi to node gnik ∈ NSi for j �= k, (we call gnij the source node

and gnik the sink node).

ESi =

ngni⋃

j=1

ngni⋃

k=1

geijk (3.6)

ES =
nns⋃

i=1

ngni⋃

j=1

ngni⋃

k=1

geijk (3.7)

UG =
nug⋃
i=1

ugi is the set of nug unique algorithm graphs. Where the relation ugi

defines a directed acyclic graph where NSi ∈ NS is the node set and ESi ∈ ES

is the edge set.

ugi = (NSi, ESi) (3.8)

UG =

nug⋃

i=1

(NSi, ESi) (3.9)

3.5. METHOD FORMALIZATION 72

Resource Components

UR is the set of nur unique system resources urj.

UR =
nur⋃

j=1

urj (3.10)

Dynamic Graph Operations and Functions

The following operations and functions have been defined to manage open sets.

There is no ambiguity in the reuse of the operation and function identifiers since

the identifiers together with the arguments uniquely identifies each.

Sc = I(So) defines the operation called instantiate, that constructs a copy of

the set So. We write Sc = I(So) which means reserve the set identifier Sc and

copy each member element of So into Sc such that Sc = So by construction (we

call So the original and Sc the copy). Specifically, let So be a countable set with

n = |So| members and a one-to-one sequence < ei >n
i=1.

I(Sc) : reserve(Sc); Sc = I(So) ≡ Sc =

n⋃

i=1

ei (3.11)

gc = I(go) defines the operation called called instantiate, that constructs a

copy of the graph go. We write gc = I(go) which means reserve the graph relation

identifier gc and copy the set No and set Eo of go = (No, Eo) into gc with the

3.5. METHOD FORMALIZATION 73

relation order preserved such that gc and go are isomorphic by construction.

I(gc) : reserve(gc); gc = I(go) ≡ gc = (Nc = I(No), Ec = I(No)) (3.12)

D(Sc) defines the operation called destroy, that removes each element from

the set Sc, and releases the set identifier Sc.

D(Sc) : D(Sc) ≡ Sc = {∅}; release(Sc) (3.13)

D(gc) defines the operation called destroy, that removes each element from the

sets Nc and Ec where gc = (Nc, Ec), and releases the graph identifier gc.

D(gc) : D(gc) ≡ D(Nc); D(Ec); release(gc) (3.14)

T is the inverse mapping function for each set Sc instantiated with I(So). For

example, given Sc1 = I(So) and Sc2 = I(So), then T [Sc1] ≡ T [Sc2] ≡ So. Therefore

T [Sc = I(So)] provides indirect access to So and we may write Sc3 = I(T [Sc]) with

T [Sc3] = So.

T : Sc → So (3.15)

T is the inverse mapping function for each graph gc instantiated with I(go).

For example, given gc1 = I(go) and gc2 = I(go), then T [gc1] ≡ T [gc2] ≡ go.

T : gc → go (3.16)

3.5. METHOD FORMALIZATION 74

Partitioned System Scheduler

S is the open set of one or more graphs sgi that compose the scheduler S where

each sgi is an instance of some unique graph from UG. Specifically, sgi = I(ug�),

where ug� = (NS�, ES�) and ug� ∈ UG. Therefore it follows that SNi = I(NS�),

where NS� has ngn� nodes, and SEi = I(ES�), where ES� has up to n2
gn�

edges7.

We call this open set S the partitioned system Scheduler. |S| indicates the number

of scheduler graphs at a moment. We call the graph sg1 the root scheduler.

S =

(open)⋃

i=1

sgi (3.17)

sgi = (SNi, SEi) (3.18)

SNi =

ngn�⋃

j=1

snij (3.19)

SEi =

ngn�⋃

j=1

ngn�⋃

k=1

seijk seijk ∈ SEi ⇐⇒ ge�jk ∈ ES� (3.20)

Dynamic System Algorithm

A is the open set of graphs agi that compose the algorithm A where each agi

is an instance of some unique graph from UG. Specifically, agi = I(ug�), where

ug� = (NS�, ES�) and ug� ∈ UG. Therefore it follows that ANi = I(NS�), where

NS� has ngn� nodes, and AEi = I(ES�), where ES� has up to n2
gn�

edges. We

7This bounds the fully connected undirected graph, but is pessimistic in the case of a DAG.

3.5. METHOD FORMALIZATION 75

call this open set A the dynamic system algorithm. |A| indicates the number of

algorithm graphs at a moment and for A = {∅}, |A| ≡ 0. The mapping asm

assigns each algorithm graph instance agi ∈ A to a scheduler graph instance

sgj ∈ S. For sgj = asm(agi), we say scheduler partition instance sgj manages the

algorithm graph instance agi.

A =

(open)⋃

i=1

agi (3.21)

agi = (ANi, AEi) (3.22)

ANi =

ngn�⋃

j=1

anij (3.23)

AEi =

ngn�⋃

j=1

ngn�⋃

k=1

aeijk aeijk ∈ AEi ⇐⇒ ge�jk ∈ ES� (3.24)

asm : A → S (3.25)

Static System Resource

R =
nur⋃
j=1

RIj is the closed set of resources. Where RIj is the set of rqj instances

of the unique resource urj and rqj ∈ ℵ for ℵ the set of all natural numbers. We

call rijk the kth instance of unique resource urj and closed set R the static system

3.5. METHOD FORMALIZATION 76

resource.

RIj =

rqj⋃

k=1

rijk (3.26)

R =

nur⋃

j=1

rqj⋃

k=1

rijk (3.27)

Candidate Templated-Mappings and Modes

MM is a set of whose members are abbreviations for Offline-Static, Offline-

Dynamic, Online-Static, Online-Dynamic, respectively. They indicate when a

mapping is to occur—either online or offline—and how the mapping is to be

bound—either statically or dynamically. We call this the set of mapping modes.

MM = {OffS, OffD, OnS, OnD} (3.28)

RR =
nur⋃
j=1

RRj is the set of resource reference sets. Where RRj is the set of

all possible references rrjk for resource instance set RIj ∈ R. Therefore rrjk is a

reference of k instances of resource urj and 1 ≤ k ≤ rqj.

rrjk = (urj, k) (3.29)

RRj =

rqj⋃

k=1

rrjk (3.30)

RR =

nur⋃

j=1

rqj⋃

k=1

(urj, k) (3.31)

MT =
nmt⋃
i=1

MTi is the nmt member set where MTi is the nur member set.

The mapping trm assigns each mtij of MTi to one of (1) the empty set or (2) a

3.5. METHOD FORMALIZATION 77

member of RRj . For each mtij ∈ MTi ⇐⇒ trm[mtij] �= ∅. Therefore MTi ⊆ RR

is a mapping subset of resource references and we call MTi a mapping template.

Moreover, each MTi ∈ MT is unique or MTj �= MTk for j �= k. The mapping

amm assigns one member of MM for each mtij ∈ MTi. We call amm the resource

allocation mode mapping and trm the template reference mapping.

MTi =

nur⋃

j=1

mtij (3.32)

trm : MTi → {∅ ∪ RRj} (3.33)

amm : MTi → MM (3.34)

MT =

nmt⋃

i=1

nur⋃

j=1

mtij (3.35)

MG is the set of nmg disjoint subsets of MT . Specifically, MGi ⊆ MT and

MGj ∩ MGk ≡ ∅ for j �= k.

MG =

nmg⋃

i=1

MGi (3.36)

CG is the set of ncg disjoint subsets of MG. Specifically, CGi ⊆ MG and

CGj ∩ CGk ≡ ∅ for j �= k. The mapping gmm assigns one-to-one each member

of {UN ∪ ES} to a member CGi of CG. The mapping stm assigns a member

MTj , from the mapped CGi, for each member of {UN ∪ES}. The mapping smm

assigns each member of {UN ∪ ES} to a member of MM . We call smm the

selection mode mapping, gmm the algorithm graph member mapping, and stm

3.5. METHOD FORMALIZATION 78

the selected mapping-template mapping.

CG =

ncg⋃

i=1

CGi (3.37)

gmm : {UN ∪ ES} → CG (3.38)

stm : {UN ∪ ES} → MTj (3.39)

smm : {UN ∪ ES} → MM (3.40)

Given MT is the set of unique mapping templates, MG is the set of disjoint

subsets of MT , and CG is the set of disjoint subsets of MG, each member CGi

is a subset of subsets of mapping templates that are mapped to the algorithm

members by gmm, each assigned a mapping mode in MM by smm.

System Properties

The model presented in the preceding paragraphs defines a framework for

template-based mapping of dynamic algorithms on static resources. No assump-

tions are made about specific system properties that might be relevant to a par-

ticular run-time scheduling scheme beyond the constructs of the base framework.

Inasmuch, in practice, one will likely need to associate properties germane to the

run-time scheduling scheme of focus.

To facilitate the association of arbitrary system properties, two functions are

3.5. METHOD FORMALIZATION 79

Table 3.3: System property functions

Set Property setP (identifier, keyword) = value

Get Property value = getP (identifier, keyword)

defined that allow identifiers to be associated with keyword-value pairs. They

are shown in table 3.3. One function sets the association and the other gets the

current associated value for the specified identifier and keyword8.

Example: To set the physical location of each resource one could use the key-

word “position” and value relation “(x, y)” and iterate over the resource using the

resource identifier for each association:

[SetP (rijk, possition) = (xjk, yjk)]
nur

j=1

∣∣∣
rqj

k=1
(3.41)

Or, to assign a priority priij to each node anij in each of the current graphs

agi of algorithm A, using the keyword “priority,” one would write:

[SetP (anij, priority) = priij]
|A|
i=1

∣∣∣
ngni

j=1
(3.42)

8A pair of functions like those in table 3.3 are required for each unique type-tuple
(identifier, keyword, value) used in a specific model.

3.5. METHOD FORMALIZATION 80

3.5.2 Execution Process Model

In this section the description of how system components, specified in the

previous section, interact during execution to yield system behavior is presented.

First, a brief introduction to the assumed system-level design language primitive

constructs is presented. Then, a presentation of the component structure and

their relations is discussed. Finally, the run-time interaction between the system

components is specified under the heading scheduling.

Primitive Constructs

In order to remain focused on the contribution goals of this research the

methodology has been built on top of SystemC [GLMS02], a system-level de-

sign language. Many other choices exist such as SpecC [GZD+00], Verilog, and

VHDL, to name just a few. SystemC is an extension of C++, has an open soft-

ware architecture and free reference implementation, and significant research and

industry involvement. However, any of the aforementioned could have been cho-

sen as a foundation. As depicted in figure 3.11, a system that is composed of

three basic categories; algorithms, schedulers, and architectures. Each of these

are specified using the constructs of the design language. Rather than attempt to

cover these well studied and documented primitive constructs we simply refer to

the literature and assume the existence of a few basic capabilities as outlined in

3.5. METHOD FORMALIZATION 81

System-Level Design/Modeling Language

Algorithms Schedulers Architectures

Figure 3.11: System-level design modeling language primitives

the following paragraph.

We assume descriptive language for (1) hierarchical structure composition, (2)

behavioral concurrency specification for system components, (3) synchronization

and communication primitives, and (4) a model and mechanism for time control

and consumption. On top of the base primitive constructs we build our method-

ology and methodology-specific primitives. It is helpful but not essential when

more advanced constructs exist such as signals, timers, mutexes, queues, rich

data types, etc., since they can be built on top of the primitives as required.

Structure

A graphical display of the set model is shown in figure 3.12. It shows each of

the sets that make up the system model and their member elements9. The set

9Sets MG and CG have been omitted for clarity of the diagram. These sets are disjoint
subsets of the mapping template set MT

3.5. METHOD FORMALIZATION 82

mappings are shown with solid-curved lines that indicate how members of one set

are related to members of another. The undirected-dashed lines show structural

composition. For example, the resources R are composed of unique resources from

UR. The directed-dashed lines indicate how the dynamic operations are used to

expand and reduce members in the open sets A and S at run-time.

System run-time behavior adapts to external change requests that are directed

to the scheduler S. System execution is distributively managed by a member of

S. If a change request can be accommodated, based on current performance and

constraints, then the scheduler implements the required system changes. Algo-

rithms are composed of unique graphs UG that are built from node sets NS and

edge sets ES. Each graph node is one of a unique node UN . The unique nodes

and edges have one or more unique candidate implementations from the set of

mapping templates MT . Each mapping template specifies a set of resource ref-

erences RR that identifies the algorithm-to-architecture mapping requirements.

Each resource reference specifies the quantity of and resource identifier from the

system resource R. The system resource is a fixed collection of instances for each

of the available unique system resources UR. Each mapping templates selection

and resource allocation has a mapping mode MM that indicates when and for

how long the selection or allocation is to be implemented.

A system design specifies each of the components and the component relations.

3.5. METHOD FORMALIZATION 83

agi

AA

MTi

MT

RIj

R

ugi

UG

S

sg1sg2 sg3sg4 sgi

reset

NSi

NS

uni

UN

ESi

ES

MM

RRj

RR

urj

UR

OffS OffD

OnS OnD

request
change

smm

gmm, stm
smm

gmm, stm trm

amm

asm

nsm

I(�)

I(�) D(�)

Figure 3.12: System model: Component structure and relations

3.5. METHOD FORMALIZATION 84

The scheduler S acts as the authority to (1) resolve concurrent resource demands,

and (2) dynamically choose implementations from MT based on run-time context,

(3) expand, contract, or change the algorithm A and scheduler S at the request

of external events. These choices are governed by system objectives and policy to

carry out run-time optimization within limits of current constraints.

Given the need to maintain both local and global control over the resource pool,

the scheduler S is hierarchically organized. Descendant schedulers are delegated

responsibility from ancestors, but remained under the authority of the delegator.

A scheduler can create and destroy descendants, but the reverse is deemed illegal.

To provide the relevant internal context during runtime decision-making the

design methodology and scheduler make use of component property annotations

via setP and getP . These annotations are concise descriptions or abstracts that

provide distinctions during computer aided design and run-time management.

Scheduling

From the perspective of system executions specification we need only focus

on the ordering of node execution since we can make the assumption that the

passive communication execution is in-lined with the source (or sink) node. Figure

3.13(a) shows the system algorithm A containing a single graph agi that has

been instantiated from UG with three nodes (anij , anik, anim), two internal edges

3.5. METHOD FORMALIZATION 85

(aeijk, aeikm), and two external edges (ini, outi). Each node operates concurrently

with one another and transitions through the life-cycle shown in figure 3.13(b).

As shown, each node is in one of eight states; status(an�) ∈ {dormant,

waiting, ready, blocked, configure, running, interrupted, done}. The

node status is governed by (1) the node input event condition and (2) the assigned

system scheduler. For the purpose of discussion we let node anik be assigned the

scheduler sgn, asm(anik) = sgn, and have the single input aeijk and single output

aeikm.

dormant — Definition: nodes that are inactive. Transition: after instantia-

tion, I(anik), each node enters into waiting.

waiting — Definition: nodes waiting on input event conditions. Transition:

upon the occurrence of input event aeijk, node anik transitions to ready where it

awaits service from assigned scheduler sgn. Transition: upon the occurrence of

D(anik), the node returns to dormant.

ready — Definition: in this state, the scheduler sgn searches the available im-

plementation alternatives based on (1) the choice of assigned templated-mappings

gmm(anik), (2) the available resource R, (3) the system optimization objectives,

and (4) the cost-constraints. Transition: if the scheduler identifies an accept-

able implementation from MTi, anik is advanced to configure. Transition: if no

3.5. METHOD FORMALIZATION 86

anik animanij

aeijk aeikm

agi
A

ini outi

(a) Algorithm node anik ∈ agi ∈ A

I(anik)

dormant waiting ready blocked

configure

running

reset

D(anik)

aeijk

aeikm

sgn(e7)

sgn(e4)

sgn(e3)

sgn(e2)

sgn(e1)

asm(anik) = sgn

done

interrupted

sgn(e6) sgn(e5)

(b) Algorithm node anik execution life-cycle

I(agi)

D(agi)

reset

sgn

anik(ready)

anik(done)

sgn(e[1:7])

UG A MT R

S

(c) Scheduler sgn ∈ S

Figure 3.13: System model: Algorithm, architecture, and scheduler execution

3.5. METHOD FORMALIZATION 87

selection can be made, then anik is advanced to blocked.

blocked — Definition: nodes with satisfied input condition for which there

are no “suitable” architecture resources for any of its templated-mappings. Tran-

sition: a node anik transitions back to ready at the sole discretion of the assigned

scheduler sgn. Typically a scheduler implementation will revisit blocked nodes

when there is a change in resource reservations and/or run-time optimization ob-

jectives.

configure — Definition: in this state, the scheduler reserves the resources

specified by the selected templated-mapping and downloads the configurations. A

scheduler will need to implement “configuration scheduling” to order the concur-

rent nodes that are ready for configuration. Transition: after the complete set of

resources specified by a template are configured, the node is advanced to running.

running — Definition: nodes that are performing computation and may gen-

erate output events such as aeikm, often called execution. Transition: a scheduler

may temporarily stop the execution of a node by saving its state and advancing

it into the interrupted state. Transition: when a node completes its execution

it notifies the scheduler which in-turn advances the node to done where it awaits

“post-execution” processing.

interrupted — Definition: a node with in-progress execution that has had

3.5. METHOD FORMALIZATION 88

its execution state saved and has been temporality halted. Transition: at the

discretion of the scheduler, the node’s state may be restored and returned to

running.

done — Definition: a node that has voluntarily completed execution and is

ready for “post-execution” processing. Each node in done is reviewed for “tem-

plate de-construction.” That is to say, its reserved resources may be releases and

its mapping template may be de-selected. These are both governed by the associ-

ated reservation and selection modes. As with ready and configure, a scheduler

will need to implement “done scheduling” to order the processing of concurrent

nodes that are ready for ‘post-execution” processing. Transition: afterwards, the

scheduler sgn advances the node to waiting where the behavior life-cycle repeats.

The design methodology makes no further assumptions about a particular

scheduler implementation other than to define its responsibilities and to specify

the framework for managing system components. Figure 3.13(c) shows a block-

diagram of a scheduler with its inputs and outputs from and to other system

components. The scheduler can be implemented in software — on a general

purpose processor — or in dedicated hardware. It can be designed as a single

monolithic process node, distributed across multiple coordinating nodes, or can

incorporate concurrent independent processes. In the latter case, and additional

mapping relation beyond asm(�) is required to specify which scheduler process

3.6. CHAPTER SUMMARY 89

manages node-ready events anik(ready) and node-done events anik(done).

3.6 Chapter Summary

A framework and methodology for post-design management of dynamic change

in digital signal processing system algorithms, architectures, and stimulus, is pro-

posed. The architecture resource is assumed to consists of a closed set (fixed) of

reconfigurable elements. The algorithm is composed of an open set (variable) of

pre-analyzed static behavioral graphs that can be dynamically instantiated and

destroyed in response to system behavior change requirements. The framework

uses a structured approach to organize pre-designed mapping implementation al-

ternatives for the behavioral graph elements that can be chosen and implemented

with minimal run-time overhead by a dynamic, distributed, and hierarchical sys-

tem scheduler. The re-targetable mapping alternatives are named templated-

mappings. The system scheduler is assigned the responsibility of candidate selec-

tion and run-time template instantiation.

A classification of mapping time is proposed to clarify the discussions in dy-

namically reconfigurables system design that includes design-time, run-time, of-

fline, and online. Mapping modes are defined that allow design trade-offs in

flexibility and predictability for each templated-mapping. The design exploration

3.6. CHAPTER SUMMARY 90

steps for offline template construction and the responsibility for run-time template

use are detailed. Finally, a formal system model is defined that enumerates the

components of the design methodology and provides an execution model of how

they concert to compose system behavior.

91

Chapter 4

Templated-Mapping Design

Environment

The path of precept is long, that of example short and effectual. Lucius

Annaeus Seneca (4 BC - 65 AD).

I
n this chapter we will describe the implementation of a design environment

that uses templated-mapping and implementation candidates. The design en-

vironment consists of a core infrastructure and collection of design tools that facil-

itates the composition, static analysis, and dynamic analysis of run-time reconfig-

urable systems using a templated-mapping design methodology. The infrastruc-

ture, built on top of SystemC1, establishes a common data-model, framework,

1SystemC was chosen simply to increase the rate of progress in the development of the
design environment. Numerous other starting points were possible—and considered. However,

92

and collection of libraries. The tools are built on top of this infrastructure and its

libraries. A description of this core infrastructure is presented in Section 4.1. An

essential tool for this research, the system simulator, has been structured with a

modular framework in order to encourage and facilitate its extension. This simu-

lator software architecture is described in Section 4.2 and its execution semantics

are described in Section 4.3. Some of the other design environment support tools

are introduced in a tutorial in Appendix B.

The overall design environment is structured to provide a platform for the

implementation and iterative refinement of system algorithms, architecture map-

pings, and schedulers. Some care has been taken to limit unnecessary constraints

imposed on the system component model composition and their interactions be-

yond that defined by the methodology proposed in Chapter 3. In Section 4.4, a

discussion of the existing design-flow that emerges out of the methodology, design

environment, and the current tools is presented. The chapter is concluded with a

summary.

the open-source status combined with compiled execution made this an acceptable choice.

4.1. CORE INFRASTRUCTURE 93

4.1 Core Infrastructure

A skeleton diagram of the design environment data model and development

libraries is shown in figure 4.1. To enhance the readability, focusing on the es-

sential elements relevant to this research, most of the detailed parameters, states,

and operations have been omitted from the diagram. This model is used through-

out the environment to capture the description of algorithms, architectures, and

“reconfigurable” templated-mappings.

4.1.1 Internal Data Model

Shown in figure 4.1, the model has objects to support simulation, event record-

ing, results reporting, static-design analysis, and model data input/output. Also

identified are objects for iterating over the model data-structures and specifying

algorithmic performance constraints. Finally, there are objects to facilitate the

recordation of static cost-performance, dynamic cost-performance, and run-time

state statistics. In the center of the figure, three groups of objects are identified:

(1) system algorithm, (2) candidate implementations, and (3) system architecture.

These are the core structures that implement the methodology proposed by this

research.

Starting with (1), a system algorithm, it is shown that an algorithm is com-

4.1. CORE INFRASTRUCTURE 94

Figure 4.1: Skeleton of the design environment core libraries and data model

4.1. CORE INFRASTRUCTURE 95

posed from one or more graph objects. Each graph has one or more members

where a member can be either a node or an edge and has a public status. Each

member has an implementation type reference that refers to a candidate imple-

mentation type and has a selection cache.

Next (2), each implementation type has one or more groups and each group

has one or more templated-mappings2. Each templated-mapping has a collection

of estimates for the cost associated with its use and has one or more resource type

references that specify the resource requirements of the mapping. A resource type

reference has a configuration cache associated with the state of the reference and

specifies some quantity of resource type instances in the system architecture. The

costs of interest to a particular system design varies dependant upon numerous

factors. Neither the design methodology nor the design environment limits the

dimensions of the cost components. As of this writing, the design environment

considers the consumption of time, energy, and area for reconfiguration and com-

putation. However, it could easily be extended to incorporate other use-costs of

interest.

As for (3), system architecture, the model specifies an architecture as having

one or more resource types that each have used-cost estimates and standby cost-

estimates. Each resource type has one or more resource instances and associated

2A templated-mapping specifies an implementation structure but does not identify specific
resource instances; hence the use of the adjective templated.

4.1. CORE INFRASTRUCTURE 96

status.

The implementation type reference and resource type reference both have an

associated reference mode, as shown below the objects in the figure. As introduced

in Section 3.2.3, the mode is used to define when the object is de-referenced, either

offline or online, and how it is to be managed afterwards, either with a static refer-

ence replacement or continuous dynamic de-referencing with each invocation. The

selection cache and configuration cache are used to manage the state associated

with implementation and resource-type references, respectively.

To facilitate the inter-operability of design environment tools with other tools,

open (or public) standard data formats have been selected for persistent store

where appropriate. The extensible markup language (XML) has been chosen as

the primaries data model file I/O format. It has been gaining in popularity in

recent years due to a number of factors: its extensibility, its textual encodings,

and its meta-format focus. It allows both the logical structure and field data

to be incorporated within a single text file and therefore can be used to store

a wide variety of data structures. Put another way, given a properly formatted

XML data file, a parser can determine both the data structure and data content

by reading the file contents. It integrates well within an Internet-based designed

environment and, with the help of style sheets, it can be transformed into human-

readable representations.

4.1. CORE INFRASTRUCTURE 97

It is worth mentioning here, that the graphs markup language (GML) and

vector-change dump (VCD) format have been incorporated to leverage existing

tools for (1) system graph construction and (2) the evaluation of dynamic system

state transition. For more on the data formats of the design environment see

Appendix B.3 and for a complete list of file formats see table B.2.

4.1.2 Event Recording Mechanisms

Timing in concurrent systems is of high importance. In systems that have a

single computation resource or a single thread of control, the issue of time often

converges to that of performing each operation as quickly and efficiently as possi-

ble, as ordered by the control and data dependencies of the algorithm. In systems

where there are multiple control treads and/or computational concurrency, rela-

tive timing of events becomes a primary focus of concern in the design process.

At each step in time, when there is concurrent behavior and control or data in-

terdependency, the choice of first progress can affect the correctness of overall

system behavior. Or, in a worst-case scenario, it can even lead to deadlock. To

help manage these issues and the complex solution space that results from the de-

sign of threaded and concurrent systems, event recording mechanisms and report

generation libraries have been structured into the core infrastructure.

4.1. CORE INFRASTRUCTURE 98

Figure 4.2: State trace example: resource utilization and concurrency

Dynamic State Recording

To effectively optimize system behavior, a designer needs accurate views of the

dynamic internal interactions of system components and/or their state over time.

Inasmuch, state recording mechanisms have been incorporated into the design

environment infrastructure. As an example, see the trace charts shown in figure

4.2.

The upper chart shows overall system resource utilization over time. This trace

is generated by a specifically registered state-recording function that computes and

records this value with each system event. This mechanism allows virtually any

systems statistic to be observed over the simulation run. The lower chart shows

a count of the current running system tasks over time. This value is directly

4.1. CORE INFRASTRUCTURE 99

maintained by the simulation kernel and therefore it only need be recorded at

each system event.

Simulation Output Logging

Reconfigurables DSP systems can at any time have multiple active threads

ready for computation. As discussed in Chapter 2, the applications of interests

are typically characterized with ample concurrent operations. Consider once again

the trace profile of running tasks shown in the lower chart of figure 4.2. We see that

there are, at times, three (3) concurrent tasks3 running on the architecture over

the window of interest. This system design methodology supports distributed

scheduler development and therefore if the system represented in this dynamic

trace had a separate scheduler for each thread, there could be more active com-

putation threads at any point in time4. Each thread operates independently and

is capable of modifying system state. Even in this very simplistic example, the

need should be clear that a system designer must have a precise time-stamped

view of every system event in order to understand the details of system behavior.

The design environment defines a set of routines to deal with this matter. Listing

4.1 shows an excerpt of one structured event log generated during the simulation

corresponding to the trace above. When using the environment library primitives

3A task is equivalent to a thread in the context of this design environment.
4If the scheduler were performing other background or system management functions.

4.1. CORE INFRASTRUCTURE 100

for system composition, this process of event logging is structured automatically.

4.1.3 Report Generation Interfaces

The structure, state, parameters, accumulated static/dynamic performance

cost metrics, and use-cost estimates — both defined by the base methodology

and extended by a particular system design — can be reported to system graphs,

human-readable text files, and raw data text files. A collection of routines has

been written to selectively search and/or iterate over a design database to compile

such system reports. This reporting mechanism utilizes a configuration parameter

structure to define custom views for each report assembly pass. It can be used to

generate comprehensive comparisons of multiple designs in an automated fashion.

This approach has been implemented in the design environment simulator. A

design solution space can therefore be explored in a systematic and structured

way. The resulting design database-of-reports can be further processed to synthe-

size higher views of the design space. The post-simulation report object of the

simulator framework, discussed in the next section, makes use of this recording

core infrastructure facility.

4.1. CORE INFRASTRUCTURE 101

Listing 4.1: Simulation event log example

210 SYSROOT: s imulat i on s t a r t

211 SYSROOT: running until a l l c l u s t e r s have completed 3 time (s)

212 8988290 ps : TASK: t [pas . ct0 . c i 0 . t0] ready , s i g n a l i n g t [r t o s . s chedu l e]

213 8988290 ps : SCHED−MQ: s i gna l ed

214 8988290 ps : select : c [∗ . message] s e l e c t e d for t [r t o s . s chedu l e]

215 8988290 ps : a l l o c : r t [sch] x1 a l l o c a t e d for tc [r t o s . s chedu l e . ∗ . message] ,

216 0/1 remain av a i l a b l e

217 8989570 ps : [DEBUG] : q s i z e = 0 , events = 0 , cur r ent task = t [pas . ct0 . c i 0 . t0]

218 9016770 ps : TASKSSUM: task s ta tu s summary (i =23, s=1, b=0, c=0, r=0, d=0)

219 9016770 ps : d e a l l o c : for tc [r t o s . s chedu l e . ∗ . message] : f r e e i n g (r t [sch] x1)

220 9016770 ps : d e s e l e c t : tc [r t o s . s chedu l e . ∗ . message] s e l e c t i o n r e l e a s e d

221 9016770 ps : t iming : t [r t o s . s chedu l e] done at 9016770 ps ,

222 s i gna l ed at 8988290 ps , s t a r t ed at 8988290 ps ,

223 r e sponse = 0 s , a c t i v e = 28480 ps , de lay = 28480 ps

224 [SECTION DELETED]

225

226 9068450 ps : SCHED−CL: new phase

227 9068450 ps : select : c [∗ . d i spatch] s e l e c t e d for t [r t o s . s chedu l e]

228 9068450 ps : a l l o c : r t [sch] x1 a l l o c a t e d for tc [r t o s . s chedu l e . ∗ . d i spatch] ,

229 0/1 remain av a i l a b l e

230 9069730 ps : SCHED−CL: l i s t (t [pas . ct0 . c i 0 . t0])

231 9069730 ps : SCHED−CL: t [pas . ct0 . c i 0 . t0] : c on f i gu r i ng (r t [r t3] x23 r t [r t4] x23)

232 9170930 ps : SCHED−CL: s i g n a l i n g t [pas . ct0 . c i 0 . t0]

233 9181330 ps : SCHED−CL: e x i s t i n g con f i gu r a t i on = 0 , new c on f i g u r a t i o n s = 1 ,

234 for 1 s e l e c t e d task (s)

235 9181330 ps : TASKSSUM: task s ta tu s summary (i =23, s=0, b=0, c=0, r=1, d=0)

236 9181330 ps : d e a l l o c : for tc [r t o s . s chedu l e . ∗ . d i spatch] : f r e e i n g (r t [sch] x1)

237 9181330 ps : d e s e l e c t : tc [r t o s . s chedu l e . ∗ . d i spatch] s e l e c t i o n r e l e a s e d

238 9181330 ps : t iming : t [r t o s . s chedu l e] done at 9181330 ps ,

239 s i gna l ed at 9068450 ps , s t a r t ed at 9068450 ps ,

240 r e sponse = 0 s , a c t i v e = 112880 ps , de lay = 112880 ps

241 9249686 ps : TASK: t [pas . ct0 . c i 0 . t0] done , s i g n a l i n g t [r t o s . s chedu l e]

242 9249686 ps : t iming : t [pas . ct0 . c i 0 . t0] done at 9249686 ps ,

243 s i gna l ed at 8988290 ps , s t a r t ed at 9069730 ps ,

244 r e sponse = 81440 ps , a c t i v e = 179956 ps , de lay = 261396 ps

245 9249686 ps : TASK: t [pas . ct0 . c i 0 . t2] ready , s i g n a l i n g t [r t o s . s chedu l e]

246 9249686 ps : TASK: t [pas . ct0 . c i 0 . t5] ready , s i g n a l i n g t [r t o s . s chedu l e]

247 9249686 ps : TASK: t [pas . ct0 . c i 0 . t8] ready , s i g n a l i n g t [r t o s . s chedu l e]

248 9249686 ps : SCHED−MQ: s i gna l ed

249 9249686 ps : select : c [∗ . message] s e l e c t e d for t [r t o s . s chedu l e]

250 9249686 ps : a l l o c : r t [sch] x1 a l l o c a t e d for tc [r t o s . s chedu l e . ∗ . message] ,

251 0/1 remain av a i l a b l e

252 9250966 ps : [DEBUG] : q s i z e = 3 , events = 1 , cur r ent task = t [pas . ct0 . c i 0 . t0]

253 9278166 ps : [DEBUG] : q s i z e = 2 , events = 1 , cur r ent task = t [pas . ct0 . c i 0 . t2]

254 9305366 ps : [DEBUG] : q s i z e = 1 , events = 1 , cur r ent task = t [pas . ct0 . c i 0 . t5]

255 9332566 ps : [DEBUG] : q s i z e = 0 , events = 1 , cur r ent task = t [pas . ct0 . c i 0 . t8]

256 9359766 ps : TASKSSUM: task s ta tu s summary (i =20, s=3, b=0, c=0, r=0, d=1)

257 9359766 ps : d e a l l o c : for tc [r t o s . s chedu l e . ∗ . message] : f r e e i n g (r t [sch] x1)

258 9359766 ps : d e s e l e c t : tc [r t o s . s chedu l e . ∗ . message] s e l e c t i o n r e l e a s e d

4.1. CORE INFRASTRUCTURE 102

4.1.4 Data Model Extension

The design environment internal data model can be extended in one or more

of the following three ways. (1) Additional system properties can be associated

with any model object of figure 4.1. By adding new properties an implementation

can incorporate additional design-time information that can later be used to guide

run-time optimization. As an example, a designer might annotate each resource

with its physical coordinate information, which could subsequently be considered

by run-time optimization functions. In like fashion, (2) a designer can incorporate

additional state variables for each model object. For example, consider that under

some circumstances it is beneficial to know accumulated resource use (in terms

of iterations or total run-time). In such a scenario, the designer can associate a

state variable for each resource object of interest and provide run-time behavior

to manage the additional variable state; in this example, its accumulated use.

Finally, (3) additional data structures can be constructed and associated with

any model object. Simulation kernel operations exist to register a new object

property associations by name and to return its current associations by name.

4.2. SIMULATOR FRAMEWORK 103

4.2 Simulator Framework

On top of the data structures and library functions, presented thus far in

this chapter, are built the design environment tools. This, and the following,

section describes a tool that has been developed to assist in the design of recon-

figurable DSP systems by performing event driven cycle-level simulation of the

same. A command line synopsis of the shell interface can be found in listing B.2.

One objective during simulator development was for it to have a modular frame-

work wherever possible so that algorithms, dynamic mappings, architectures, and

schedulers could be constructed with interchangeable model components. This

helps support/encourage design space exploration since it reduces the iteration

delay between alternative system evaluations. Moreover, successive runs can be

evaluated using design dithering where slight variation of one model component is

changed at time to evaluate system sensitivities and robustness. As an example,

a designer might opt to compare various combinations of run-time optimization

functions to see the impact of overall system performance.

Figure 4.3 shows some of the key objects of the simulator framework and cor-

responding select member functions. The framework roughly divides into four

parts: (1) simulation kernel, (2) simulation control, (3) systems modeling, and

(4) systems analysis. An algorithm model, architecture model, candidate imple-

4.2. SIMULATOR FRAMEWORK 104

Figure 4.3: Simulator framework key objects and select functions

4.2. SIMULATOR FRAMEWORK 105

mentation model, and scheduler model all have multiple views. For example, an

algorithm model has a graph view, a behavioral view, a constraints view, and an

interface view. The simulator framework has functions for reading the required

views for each system model component. The remainder of this section describes

each part of the simulator framework in more detail.

4.2.1 Algorithm Modeling

An algorithm is described using graphs, where nodes represent tasks5 and

edges represent communication between tasks. An exact model of computation

is not specified by the methodology. This is left to the discretion of the designer

as appropriate for particular system design. Once a model of computation is

chosen, it must remain constant within the context of the local graph (called a

cluster in the simulator). Additionally, the scheduler that manages the graph

computation must be aware of model assumptions. This does not prohibit other

algorithm models from coexisting within a single system design. However, each

models of computation does require a runtime scheduler and separate subgraph

that is aware of the representation. In summary, both the design methodology and

design environment supports multiple and mixed models of computation (MoC).

5it is assumed that a task has a single thread of control and therefore a task and a thread
are one in the same.

4.2. SIMULATOR FRAMEWORK 106

t1

t3

t2
t2

t21

t22

t23

(a) HCDFG

post pend

queue

n t∗

(b) Event Queue

post pend

semaphore

t∗

(c) Event Semaphore

Figure 4.4: One implemented algorithm modeling MoC

The designs completed during this research utilize, as shown in figure 4.4(a),

hierarchial control data flow graphs (HCDFG) with, as shown in figure 4.4(b),

event message queues and, as shown in figure 4.4(c), semaphores. These concepts

are well formed elsewhere and will not be discussed here. In appendix B, listing

B.4, an example task code fragment that makes use of this computation model is

shown which makes this description effectual.

The system scheduler, described a few sections below, is responsible for re-

4.2. SIMULATOR FRAMEWORK 107

Table 4.1: Task life-cycle: flow of execution

Phase Task Status

1 input events satisfied (per encoded input activation logic)

2 signal parent scheduler - ready for computation

3 wait for implimentation/configuration assignment from scheduler

4 perform data and control behavior (“the task”)

5 request simulation kernel to record performance estimations

6 signal parent scheduler - done with computation

7 wait for next input event condition

source management and ordering of execution. The simulation framework makes

use of an explicit request and granting scheme that is encoded into an algorithm to

coordinate between the algorithm and its parent scheduler. Table 4.1 summarizes

the flow of execution (life cycle) of a task from the perspective of the task.

An algorithm task informs its parent scheduler when it needs service and

subsequently waits for a response. When appropriate, the scheduler informs the

task to resume. At some point prior to completion, the task informs the simulation

kernel to account for the performance estimates based on the implementation and

resources assigned by the scheduler. After the task completes, it again informs

the assigned scheduler so that post-processing, if any, can be performed.

4.2. SIMULATOR FRAMEWORK 108

rt1

instances

use-costs

standby-costs

rt2

instances

use-costs

standby-costs

rt3

instances

use-costs

standby-costs

...

instances

use-costs

standby-costs

rt(n)

instances

use-costs

standby-costs

Figure 4.5: Methodology: System architecture base model

4.2.2 Architecture Modeling

From the perspective of run-time management strategies, the architecture can

be abstracted into resource types and associated resource instance counts. Both

computation and communication hardware architectures can fit within this ab-

straction6. A templated-mapping implementation specifies resource types which

allow for more flexible run-time resource assignments under varying conditions.

An example system architecture specification for resources types rt1 to rtn is

presented in figure 4.5. As shown, the methodology incorporates base properties

for resource use-cost and resource standby-costs. Additional properties may be

associated and considered by specific run-time schedulers as desired.

6This would not be the case for run-time schemes that employ sub-task re-optimization,
just-in-time compilation, or synthesis techniques; all of which would require awareness of spe-
cific algorithm operations, hardware resource operation capabilities, and hardware interconnect
structures.

4.2. SIMULATOR FRAMEWORK 109

Implementation
Type

Group 1 Group 2 Group n

Templated
Mapping 1

Templated
Mapping 2

Templated
Mapping (m)

Use-costs 1 Use-costs 2 Use-costs (m)

(a) Candidate Implementations

Templated
Mapping (m)

p q r

rt1 rt2 rt(n)

(b) Templated-Mapping

Figure 4.6: Methodology: Candidate implementation conceptual model

4.2.3 Candidate Implementation Modeling

For a given algorithm, each node and edge (computation and communica-

tion) is assigned to one, and only one, mapping template type during system

design exploration. This type is the base object of a structure that contains one

or more templated-mapping implementations which maps to the architecture re-

source. The entire structure is collectively called the candidate implementations.

The methodology is strict about the representation of the candidate structure as

represented by the data model of figure 4.1.

Conceptually, as shown in figure 4.6(a), the collection of templated-mappings

establishes the set of implementation alternatives. As shown in 4.6(b), each al-

ternative specifies the set of resource types and instances required for the map-

4.2. SIMULATOR FRAMEWORK 110

ping7. Each alternative has an equivalent black-box input-to-output behavior, but

different internal structure, resource requirements, and use-costs; the greater the

number of alternatives, the greater the run-time flexibility, due to the wider choice

of implementation options. However, this increasing flexibility is accompanied by

increasing overhead for runtime search and implementation storage.

The candidate implementations are read from a design database into the in-

ternal data model during simulation elaboration. This will be discussed in more

detail in the following section.

4.2.4 Scheduler Modeling

A system must have at least one registered scheduler. However, there is no

methodology or simulator framework-imposed upper limit on the number of sched-

ulers that may exist in a system design. For a given algorithm graph there must

exist at most one MoC and at least one parent scheduler. Hierarchical sub-graphs

may use some other MoC as long as the sub-graph component interface behaves

according to the communication model of the incorporated parent graph. When

a graph is instantiated, its member elements are assigned to a scheduler. More

specifically, each member receives two scheduler assignments: (1) a reference for

7Please refer to the Section 3.5 for a rigorous mathematical model.

4.2. SIMULATOR FRAMEWORK 111

Table 4.2: System scheduler base responsibilities

Responsibilities Description

1 Resolution of overlapping resource demands

2 Run-time implementation selection and reconfiguration

3 Post-execution member reference cache policy enforcement

which scheduler to signal when the member is ready for computation8 and (2) a

second reference on which to signal when the member has completed the compu-

tation9. These references may be assigned to the same scheduler. This relational

mapping is typically established at design time. However, it is conceivable that a

scheduling scheme, that supports run-time parent-schedule re-assignment, could

be devised.

The basic responsibility of a scheduler within the context of this methodology

is: (1) to make a run-time choices in the ordering of execution when there are con-

current demand on a limited resource; (2) to select, and configure if necessary, ap-

propriate implementations amongst the available candidate templated-mappings;

and (3) to decide what to do with the templates and resource allocations after

the execution has completed. Each choice is guided by run-time optimization

functions. Table 4.2 summarizes the responsibilities.

As an example application of scheduler modeling, consider the single-threaded

8See phase 2 of table 4.1
9See phase 6 of table 4.1

4.2. SIMULATOR FRAMEWORK 112

donemessage blocked ready dispatch

Figure 4.7: An example scheduler: the stdbe and its life-cycle

dynamic best effort (stdbe) list scheduler shown in figure 4.7. As the name sug-

gests, this scheduler consists of a single task (thread) and has five processing

sub-phases. (1) One phase processes signal messages from assigned graph mem-

bers; the message phase. (2) Another phase processes the members that have

completed execution; the done phase. (3) Another processes all members that

are blocked a waiting on resource availability; the blocked phase. (4) Another

processes those members that are ready for execution; the ready phase. And

finally, (5) one dispatches the computation; the dispatch phase. The scheduler

begins with the message processing phase whenever a managed graph member

signals for service. The done phase scheduling code can be found in listing B.7.

Optimization Objectives Functions

Of the three scheduling responsibilities listed in table 4.2, two are optimization

problems that can make use of run-time functions to guide each choice. At any

moment, a sample of the system state variables can be evaluated according to

some heuristic encoding in order to optimize the respond toward some performance

4.2. SIMULATOR FRAMEWORK 113

objective.

When there are multiple demands on a resource, a resolution of conflict need

be determined. Likewise, when a computation or communication has multiple

candidates available, then a selection needs to be made amongst them. These two

optimization problems are not independent. If performed separately, for example

the ordering of concurrent demands is committed in a first step without consider-

ation of the available implementation selection and how they relate to the overall

optimization objectives, localized minimize can be reached that miss the optimum

objective. Although the heuristic complexity will increase, in many instances, it

should consider the ordering and selection optimization together in order to cir-

cumvent localized minima. A combined optimization provides a broader view of

the solution space and increases the opportunity to reach global optimal points

at each heuristic evaluation. For the sake of discussion, these two optimizations

will be introduced separately below.

Overlapping Service Requests: A required scheduler responsibility, when-

ever there are multiple demands on system resources at overlapping moment in

time, is to enforce a resolution policy. At the most basic level, the scheduler it-

self is a resource and therefore10 whenever there is concurrent behavior ready for

execution, there is overlapping resource demand. There also may or may not be

10This assumes that the concurrent demanding members are assigned to a common scheduler.

4.2. SIMULATOR FRAMEWORK 114

overlapping demand for other non-scheduler system resources; which in-practice

is more relevant. In this situation the scheduler must establish an ordering based

on some optimization objective. There has been significant research in classic

scheduling on this subject and many schemes exist. The structured design of

the simulator framework, allows many ordering functions to be easily constructed

and considered. Currently both static-parameter ordering function and dynamic-

parameter ordering functions have been developed. For a sample, see the “Current

Member Resolution” object of figure 4.3.

Templated-mapping Selection: Before a computation or communication can

be dispatched an acceptable mapping must be selected and configured from amongst

the available candidates. The selection optimization evaluations of relative per-

formance are performed against the template-mapping properties defined by the

base-methodology and/or any additional arbitrary user-defined properties rele-

vant to a run-time optimization strategy. See the “Implementation Selection”

object of figure 4.3. The search has a three-part configuration that establishes

the objective function behavior: (1) the search objective function itself, (2) the

ordering directive of the search, and (3) the matter of whether the search should

accept sub-optimal selections or deliver only the optimum — its’ strictness.

The first step under any search configuration is to order-rank the selections

4.2. SIMULATOR FRAMEWORK 115

according to the objective function and the ordering directive. Next, if the search

specifies that only the optimal be returned, then it is returned and the sched-

uler can dispatch the execution once all resources are available, allocated, and

configured. If the optimization objective specifies that sub-optimal selection are

permissible, a heuristic can apply secondary objectives to select amongst the or-

derings; for example, return the first that would allow execution to proceed as

soon as possible in order to minimize response delays.

Post-Execution

To guide the decision process for post-execution reference de-construction, the

scheduler considers the run-time choices as defined by the reference modes of

both (1) the member template reference and (2) each resource type reference. In

essence, a graph member maps to a collection of specific resource instances by

way of a multi-level reference set. These references are stored in a multi-level

cache, as depicted in figure 4.1, that can be independently configured to, upon

subsequent de-referencing, bypass the run-time implementation search processing,

and/or bypass the run-time resource allocation processing, and/or bypass the run-

time resource configuration processing. This can have significant benefit in the

reduction of overhead under certain system conditions.

4.2. SIMULATOR FRAMEWORK 116

4.2.5 Static Design Analysis and Optimization

The evaluation of system run-time performance can be, and sometimes is,

called dynamic design analysis; called such since the evaluations are with regards

to how the system behaves over time while in operation. It should be little mys-

tery that this time-dependent, or run-time, behavior strongly correlates with the

systems static structural compositions. Understanding this static composition

is key to understanding and refining the dynamic run-time system performance.

This is the goal of static design analysis and optimization.

Given the importance of static design analysis11 in relation to design ex-

ploration and iterative refinement, the simulator incorporates a framework for

the structured management of this design activity. As with the other simulator

“frameworks,” a system designer may code additional routines of interest and in-

corporate them within the framework to support their design effort. To clarify

what is meant by static design analysis, consider the process, well documented in

the literature, of assigning priorities to system tasks using a deadline monotonic

scheme. This and several other analysis have been incorporated within the frame-

work.

In general, the objective is to either: (1) check that some condition does or does

not exist, property assertion; (2) analyze the system and report the observations;

11Within static design analysis we include static designed optimization.

4.2. SIMULATOR FRAMEWORK 117

get-analysis; or (3) optimize the system and update the relevant design elements,

set-optimization. A naming practice of assert name, get name, and set name, has

been established to clarify the analysis objective by its name. An example of

some implemented static design analysis routines are identified in figure 4.3. See

“Pre-Simulation Analysis” and “Post-Simulation Analysis.”

Analysis Order Dependency

In a modular and orthogonal manor, a design can be statically analyzed and

optimized by the set of developed routines in a specified order. The sequence of

analysis steps can quickly grow and become a challenge to manage. Moreover,

there are often dependencies in the order of analysis application. To assist in

this organizational effort, the simulation framework incorporates an analysis reg-

istration capability that allows each of routine to publish its name, its type, and

its analysis dependency. Subsequently, during static design analysis, checks can

be made to ensure that the analysis is conducted within the required context.

For example, all dependent analysis and optimizations can be evoked as required

and ordering errors introduced by the designer can be checked and enforced. See

listing B.5 for a code example of the analysis request interface.

For clarification, consider figure 4.8(a) that shows an example dependency tree

4.3. SIMULATION EXECUTION FLOW 118

a5 a4

a3 a2

a1

(a) Dependency

a5a4a3

(b) Queue 1

a3

(c) Queue 2

a2a5a1

(d) Queue 3

Figure 4.8: Static design analysis dependency enforcement

for a set of five static design analysis routines12. In this example, the requests

in both queues of figures 4.8(b) and 4.8(c), with the analysis being performed

in the order indicated by the arrow, would yield equivalent results. The request

indicated in the queue of figure 4.8(d) would yield an analysis dependency error.

4.3 Simulation Execution Flow

The simulator has been implemented within a framework perspective in order

to facilitate lowered overhead interchange of system models. This does, however,

come at the cost of some simulation overhead. The division of orthogonal simula-

12Analysis 3 depends on both analysis 4 and 5.

4.3. SIMULATION EXECUTION FLOW 119

Figure 4.9: Simulation base execution control flow

tion function into separate objects modules according to a standardized framework

is not only good for software development; it also enables the reuse of these objects

at higher levels of abstractions. In this section the basic simulation execution flow

is presented. Subsequently, the simulation condition monitor is introduced. The

condition monitor is used to create scripted simulation execution-flows.

The basic flow of execution involves a linear flow starting with simulation

initialization, to pre-simulation static designed analysis, then the simulation itself,

next a post-simulation static design analysis, and finally the reports generation.

This base-case execution flow is shown in figure 4.9.

A simulation begins with initialization. System algorithm, system architec-

ture, candidate implementations, and system schedulers are read from permanent

store into internal data structures. Each object model sequences through the

necessary steps to initialize — in preparation for simulation. For example, views

for algorithm behavior, algorithm graph structure, and constraints are read into

the internal data model. Subsequently, the queue of pre-simulation static design

4.3. SIMULATION EXECUTION FLOW 120

analysis functions are executed one-by-one. Next, the simulation execution runs

to termination. Termination is defined by: (1) sufficient simulation cycles, (2)

sufficient simulation time, (3) algorithm completion, or (4) until signal by the

simulation monitor. After simulation, the queue of post-simulation static design

analysis functions are executed one-by-one. And finally, the report generation

facility is run and the simulation exits.

The next section introduces the simulation condition monitor and how it is

used to create scripted simulation execution flows that can be used to automate

fine-grained design exploration and optimization.

4.3.1 Simulation Condition Monitors

A condition monitor framework enables the observation of the overall simu-

lation environment and facilitates the structured management in the simulation

execution control flow. The basic intent of this capability is to allow structured

early termination under specific known conditions such as run-away execution,

non-convergent behavior, or deadlocked simulation, for example. More impor-

tantly however it is useful to created higher-levels scripted “wrappers” in the

simulation execution flow.

When condition monitors are combined with simulation execution, static de-

4.4. ENVIRONMENT DESIGN-FLOW 121

Figure 4.10: Condition monitors and scripting framework for design exploration

sign analysis, and the reporting framework, new design exploration capabilities

emerge. This concept is depicted in figure 4.10.

4.4 Environment Design-Flow

The simulator developed in conjunction with this research is one part of an

overall design process proposed for reconfigurable DSP. It supports the design

effort by providing quantitative evaluation of the performance of a given system

design. At this point it is useful to have a look at the broader perspective within

which the design environment, and design environment tools, fit. Two diagrams

4.4. ENVIRONMENT DESIGN-FLOW 122

are discussed below which identify the activities that must be completed during

the design process. One figure shows a responsibility assignment for the activities

and the other shows the design-flow and their dependencies.

As depicted in figure 4.11, there will typically be at least two classes of design-

ers involved; system designers and domain specialist. A system designer manages

the highest-level overall design issues as they relate to system-level behavioral

objectives. This responsibility will often be supported by CAD tools, such as a

system-level simulator. A domain specialist applies specific and detailed domain

knowledge to yield design components that offer relevant system building blocks.

A domain specialist will be assisted by CAD tools such as compilers and synthesiz-

ers. The figure shows one breakdown of design-activity responsibility assignment.

It is by no means definitive. Rather it should be viewed as a road-map to identify

the general relationships between designers, system simulators, compilers, and

synthesizers in the proposed methodology. One observation is that even in the

presence of high automation — such as compilation, synthesis, and system-level

simulation — the design process requires significant designer intervention.

Figure 4.12 repeats the system design activities in a form that identifies the

dependent ordering that exists between them. This figure also exposes the iter-

ative nature of the design refinement process. Starting at the top of the figure,

at the solid circle, there are both concurrent activities and synchronized design

4.4. ENVIRONMENT DESIGN-FLOW 123

Figure 4.11: Methodology design-flow responsibility

4.4. ENVIRONMENT DESIGN-FLOW 124

phases that are required to create the system. After a design pass, it is analyzed

to determine its ranked performance. If the ranking result is satisfactory, the

design process is complete. Otherwise, subsequent iterative passes, and design

refinements, are repeated.

Given the immense size of the solution space, a designer need devise a strategic

“divide and cover” approach to systematically evaluate and rank designs within

the solution space13. First, a coarse-grained division of design alternatives are

ranked to identify the subsequent region, or regions, of interest. Next, these sub-

regions are subdivided, in like manor, and the process continues until the ranking

results converge.

4.4.1 Tool Scripting

Design exploration involves both course-grain and fine-grained system design

refinement. The notion of fine-grained refinement has been discussed in section

4.3; using scripted simulator control flow. For coarse-grain refinement, design en-

vironment tools scripting can be useful. In addition to the system simulator, there

were four other design environment tools developed. These tools are summarized

in table B.3. By adhering to the design environment framework and addition-

ally exposing the tool run-time configuration options at the shell command line

13One approach to design exploration.

4.4. ENVIRONMENT DESIGN-FLOW 125

Figure 4.12: Methodology design-flow sequence

4.4. ENVIRONMENT DESIGN-FLOW 126

level14, tool scripting can significantly accelerate the course-grain design refine-

ment process.

4.4.2 Graphical User Interfaces

Design environment design tools with shell command line interfaces were found

to be most useful for encapsulating sub-parts of the overall design flow. This

expedited the design exploration by allowing incremental evaluations via scripts

in an automated and structured approach as has been discussed earlier in this

chapter. However, the resultant datasets were very difficult to manage without

the aid of graphical user interfaces (GUI). It may be of some interest to note

that although there were four separate GUI tools developed, none were “shell tool

front ends.” For example, none simply provide a convenient way of managing the

command line options (one-to-one) of some equivalent shell tool. Rather, they

were most useful in design-flow scripting, encapsulating complex sequences with

a parameterized execution.

So as to not get diverted from the central focus of this research effort, GUIs

were developed on an as-needed basis. The minimum set included a GUI for (1)

design database management, (2) system components generation, (3) simulation

control flow automation, and (4) evaluation results navigation. Two additional

14As and example, see the command line synopsis of listing B.2

4.5. CHAPTER SUMMARY 127

GUI’s15 greatly increased the design flow efficiency: (5) a graphical system com-

ponent editor and (6) a simulation timing analyzer.

In summary, the GUIs were found to increase the design efficiency (1) by

improving design database navigation; entry and review, (2) by the encapsulation

of complex parameterized design-flows, (3) by the organization of searchable and

reviewable exploration histories, and (4) for complex data-structure visualization.

4.5 Chapter Summary

A design environment, motivated by the templated-mapping methodology ad-

vocated by this research, has been developed. The details of this environment are

presented within this chapter. First, the core infrastructure, including the founda-

tion internal data model and other environment-wide primitives, are introduced.

Subsequently, a description of a key design environment tool, the system-level sim-

ulator, is presented. The simulator takes a quantitative approach to evaluate and

rank system performance. It has been implemented using a framework that facili-

tates fine-grained design exploration using scripted simulation execution. Finally,

a design environment design-flow is proposed that emerges from the overall de-

sign methodology. Both a design activity responsibility breakdown and base-case

15The graphical system component editor and a simulation timing analyzer were obtained
from

4.5. CHAPTER SUMMARY 128

design-flow is discussed. Some issues surrounding course-grain design exploration

through tool-scripting and design-flow support with graphical user interfaces are

briefly introduced.

129

Chapter 5

Design-flow Evaluation

The grand aim of all science is to cover the greatest number of empirical

facts by logical deduction from the smallest number of hypotheses or

axioms. Albert Einstein US (German-born) physicist (1879 - 1955).

I
n this chapter we demonstrate the design environment and methodology design-

flow by composing systems and running simulations with various run-time op-

timization objectives. Here, rather than focusing on a single design example, we

have chosen to generate design families. A basic scheduler is implemented and

described along with a set of objective functions for task ordering and template

selection. Next we describe a performance metric defined to rank the quality of

run-time selections. Finally we present one example from the generated design

database and a few simulation report results.

5.1. SYSTEM COMPONENT COMPOSITION 130

5.1 System Component Composition

A system is composed of one or more algorithms, architectures, candidates,

schedulers, and objective functions. In the next several paragraphs we briefly

discuss the strategy used to generate system design cases that are subsequently

analyzed with simulation.

Algorithms: Algorithms are generated with one or more independent graphs.

Each graph has one or more instance copies and are assigned activation times.

The graph nodes have varying operation counts and are assigned hard and soft

deadlines. Three forms of node connectivity are explored: (1) parallel unconnected

algorithms, shown in figure 5.1(a), (2) random connected algorithms, shown in

5.1(b), and (3) series-parallel connected algorithms, shown in 5.1(c). Parameters

are used to specify the series length, parallel width, fan-in, fan-out, etc. The

parameters for each connectivity form are dithered from a median value, one at a

time, to create the families of algorithms. Thirteen parallel, fifteen random, and

seventeen series-parallel algorithms are generated in total.

Architectures and Candidates: Architectures are composed of globally in-

terconnected reconfigurable units blocks. Each reconfigurable unit block (RUB)

is independently configurable with data inputs, data outputs, an execution clock,

5.1. SYSTEM COMPONENT COMPOSITION 131

generated from (Pabbbb1)
hyper period = 420000 ns

c0 (ct0:i0)

start = 225444 ns
period = 420000 ns

c1 (ct0:i1)

start = 1.46604e+06 ns
period = 420000 ns

t0
(tt1)

dl0 (soft)
44914.7 ns

t1
(tt6)

dl1 (soft)
45453.5 ns

t2
(tt7)

dl2 (soft)
75509.2 ns

t3
(tt0)

dl3 (soft)
42564.4 ns

t4
(tt7)

dl4 (hard)
86227.2 ns

t5
(tt8)

dl5 (hard)
36373 ns

t6
(tt6)

dl6 (soft)
77083.7 ns

t7
(tt9)

dl7 (soft)
64143.6 ns

t8
(tt0)

dl8 (soft)
55755.7 ns

t9
(tt0)

dl9 (hard)
36631.3 ns

t10
(tt5)

dl10 (soft)
27640.8 ns

t11
(tt1)

dl11 (soft)
65515.1 ns

t12
(tt1)

dl12 (hard)
89812 ns

t13
(tt7)

dl13 (hard)
91356 ns

t14
(tt3)

dl14 (soft)
53853.2 ns

t15
(tt6)

dl15 (hard)
92101 ns

t16
(tt9)

dl16 (soft)
29532.8 ns

t17
(tt5)

dl17 (soft)
52529.1 ns

t18
(tt3)

dl18 (soft)
27098.7 ns

t19
(tt2)

dl19 (soft)
28153.4 ns

t0
(tt1)

dl0 (soft)
44914.7 ns

t1
(tt6)

dl1 (soft)
45453.5 ns

t2
(tt7)

dl2 (soft)
75509.2 ns

t3
(tt0)

dl3 (soft)
42564.4 ns

t4
(tt7)

dl4 (hard)
86227.2 ns

t5
(tt8)

dl5 (hard)
36373 ns

t6
(tt6)

dl6 (soft)
77083.7 ns

t7
(tt9)

dl7 (soft)
64143.6 ns

t8
(tt0)

dl8 (soft)
55755.7 ns

t9
(tt0)

dl9 (hard)
36631.3 ns

t10
(tt5)

dl10 (soft)
27640.8 ns

t11
(tt1)

dl11 (soft)
65515.1 ns

t12
(tt1)

dl12 (hard)
89812 ns

t13
(tt7)

dl13 (hard)
91356 ns

t14
(tt3)

dl14 (soft)
53853.2 ns

t15
(tt6)

dl15 (hard)
92101 ns

t16
(tt9)

dl16 (soft)
29532.8 ns

t17
(tt5)

dl17 (soft)
52529.1 ns

t18
(tt3)

dl18 (soft)
27098.7 ns

t19
(tt2)

dl19 (soft)
28153.4 ns

(a) parallel unconnected algorithm

generated from (rand)
hyper period = 4.32e+06 ns

c0 (ct0:i0)

start = 1.26222e+06 ns
period = 2.16e+06 ns

c1 (ct1:i0)

start = 1.93869e+06 ns
period = 2.16e+06 ns

c2 (ct2:i0)

start = 250203 ns
period = 4.32e+06 ns

c3 (ct3:i0)

start = 842131 ns
period = 4.32e+06 ns

t0
(tt6)

t1
(tt0)

t2
(tt8)

t3
(tt5)

t4
(tt8)

t8
(tt4)

t9
(tt3)

t5
(tt8)

t6
(tt0)

t7
(tt7)

t10
(tt4)

t11
(tt9)

t12
(tt3)

t13
(tt3)

t14
(tt4)

t15
(tt4)

t16
(tt9)

dl0 (hard)
152572 ns

dl1 (soft)
130591 ns

dl2 (soft)
117598 ns

dl3 (soft)
146775 ns

dl4 (soft)
135730 ns

dl5 (hard)
297357 ns

dl6 (soft)
95136.6 ns

t0
(tt0)

t1
(tt9)

t3
(tt6)

t4
(tt2)

t5
(tt3)

t2
(tt4)

t6
(tt3)

dl0 (soft)
95635.5 ns

t7
(tt9)

t8
(tt4)

t9
(tt0)

t10
(tt1)

t11
(tt5)

t12
(tt1)

t18
(tt1)

t19
(tt2)

t20
(tt7)

t13
(tt0)

t14
(tt8)

t15
(tt4)

t16
(tt3)

dl1 (soft)
162752 ns

dl2 (soft)
228313 ns

dl3 (soft)
170902 ns

dl4 (soft)
230981 ns

t17
(tt0)

dl5 (soft)
157642 ns

dl6 (soft)
258287 ns

dl7 (soft)
201527 ns

dl8 (soft)
343230 ns

dl9 (hard)
419043 ns

dl10 (soft)
181909 ns

t0
(tt3)

t1
(tt1)

t5
(tt6)

t6
(tt7)

t9
(tt9)

t2
(tt2)

t3
(tt3)

t4
(tt7)

t7
(tt9)

t10
(tt8)

t13
(tt6)

t12
(tt3)

t14
(tt1)

t26
(tt4)

t11
(tt0)

t8
(tt9)

t21
(tt9)

t15
(tt0)

t16
(tt6)

t25
(tt1)

t22
(tt0)

t23
(tt2)

t24
(tt5)

dl0 (soft)
192339 ns

t17
(tt0)

t18
(tt3)

t19
(tt6)

t20
(tt1)

t30
(tt4)

t31
(tt8)

t27
(tt7)

t28
(tt5)

t29
(tt8)

dl1 (soft)
299088 ns

dl2 (soft)
403578 ns

dl3 (soft)
501935 ns

dl4 (soft)
452836 ns

dl5 (soft)
176027 ns

t32
(tt9)

t33
(tt1)

t34
(tt9)

dl6 (soft)
401110 ns

dl7 (soft)
248159 ns

dl8 (soft)
227200 ns

dl9 (hard)
595329 ns

t35
(tt9)

t36
(tt6)

t37
(tt8)

dl10 (soft)
392223 ns

dl11 (soft)
257033 ns

dl12 (soft)
463490 ns

t0
(tt8)

t1
(tt1)

t2
(tt2)

t27
(tt4)

t15
(tt7)

t20
(tt5)

t21
(tt2)

t3
(tt0)

t4
(tt1)

t5
(tt4)

t6
(tt7)

t7
(tt9)

t8
(tt1)

t9
(tt4)

t14
(tt7)

dl0 (soft)
182587 ns

t18
(tt9)

t19
(tt3)

t10
(tt9)

t11
(tt1)

t12
(tt0)

t13
(tt6)

t16
(tt3)

t17
(tt2)

dl1 (hard)
160532 ns

dl2 (hard)
144418 ns

dl3 (soft)
154793 ns

dl4 (soft)
174425 ns

dl5 (soft)
297660 ns

t22
(tt3)

t23
(tt8)

t24
(tt8)

t25
(tt6)

t28
(tt1)

t29
(tt2)

t30
(tt4)

t26
(tt7)

dl6 (hard)
369524 ns

dl7 (soft)
142744 ns

dl8 (soft)
380838 ns

dl9 (soft)
372498 ns

t31
(tt4)

t32
(tt0)

t33
(tt7)

t34
(tt2)

dl10 (soft)
221816 ns

dl11 (soft)
383197 ns

dl12 (soft)
205810 ns

dl13 (soft)
332857 ns

dl14 (soft)
165025 ns

(b) random connected algorithm

generated from (mufg8u)
hyper period = 5.46e+06 ns

c0 (ct0:i0)

start = 999606 ns
period = 5.46e+06 ns

c1 (ct0:i1)

start = 932459 ns
period = 5.46e+06 ns

c2 (ct0:i2)

start = 1.75071e+06 ns
period = 5.46e+06 ns

c3 (ct0:i3)

start = 188875 ns
period = 5.46e+06 ns

c4 (ct0:i4)

start = 226318 ns
period = 5.46e+06 ns

c5 (ct0:i5)

start = 1.78596e+06 ns
period = 5.46e+06 ns

c6 (ct0:i6)

start = 1.89716e+06 ns
period = 5.46e+06 ns

c7 (ct0:i7)

start = 162231 ns
period = 5.46e+06 ns

t0
(tt2)

t2
(tt2)

t3
(tt1)

t6
(tt3)

t10
(tt1)

t14
(tt2)

t1
(tt2)

dl0 (hard)
518454 ns

t4
(tt2)

t5
(tt2)

t7
(tt3)

t17
(tt1)

t8
(tt3)

t9
(tt3)

t12
(tt2)

t13
(tt2)

t11
(tt3)

t15
(tt4)

t16
(tt2)

t0
(tt2)

t2
(tt2)

t3
(tt1)

t6
(tt3)

t10
(tt1)

t14
(tt2)

t1
(tt2)

dl0 (hard)
518454 ns

t4
(tt2)

t5
(tt2)

t7
(tt3)

t17
(tt1)

t8
(tt3)

t9
(tt3)

t12
(tt2)

t13
(tt2)

t11
(tt3)

t15
(tt4)

t16
(tt2)

t0
(tt2)

t2
(tt2)

t3
(tt1)

t6
(tt3)

t10
(tt1)

t14
(tt2)

t1
(tt2)

dl0 (hard)
518454 ns

t4
(tt2)

t5
(tt2)

t7
(tt3)

t17
(tt1)

t8
(tt3)

t9
(tt3)

t12
(tt2)

t13
(tt2)

t11
(tt3)

t15
(tt4)

t16
(tt2)

t0
(tt2)

t2
(tt2)

t3
(tt1)

t6
(tt3)

t10
(tt1)

t14
(tt2)

t1
(tt2)

dl0 (hard)
518454 ns

t4
(tt2)

t5
(tt2)

t7
(tt3)

t17
(tt1)

t8
(tt3)

t9
(tt3)

t12
(tt2)

t13
(tt2)

t11
(tt3)

t15
(tt4)

t16
(tt2)

t0
(tt2)

t2
(tt2)

t3
(tt1)

t6
(tt3)

t10
(tt1)

t14
(tt2)

t1
(tt2)

dl0 (hard)
518454 ns

t4
(tt2)

t5
(tt2)

t7
(tt3)

t17
(tt1)

t8
(tt3)

t9
(tt3)

t12
(tt2)

t13
(tt2)

t11
(tt3)

t15
(tt4)

t16
(tt2)

t0
(tt2)

t2
(tt2)

t3
(tt1)

t6
(tt3)

t10
(tt1)

t14
(tt2)

t1
(tt2)

dl0 (hard)
518454 ns

t4
(tt2)

t5
(tt2)

t7
(tt3)

t17
(tt1)

t8
(tt3)

t9
(tt3)

t12
(tt2)

t13
(tt2)

t11
(tt3)

t15
(tt4)

t16
(tt2)

t0
(tt2)

t2
(tt2)

t3
(tt1)

t6
(tt3)

t10
(tt1)

t14
(tt2)

t1
(tt2)

dl0 (hard)
518454 ns

t4
(tt2)

t5
(tt2)

t7
(tt3)

t17
(tt1)

t8
(tt3)

t9
(tt3)

t12
(tt2)

t13
(tt2)

t11
(tt3)

t15
(tt4)

t16
(tt2)

t0
(tt2)

t2
(tt2)

t3
(tt1)

t6
(tt3)

t10
(tt1)

t14
(tt2)

t1
(tt2)

dl0 (hard)
518454 ns

t4
(tt2)

t5
(tt2)

t7
(tt3)

t17
(tt1)

t8
(tt3)

t9
(tt3)

t12
(tt2)

t13
(tt2)

t11
(tt3)

t15
(tt4)

t16
(tt2)

(c) series-parallel connected algorithm

Figure 5.1: Generated algorithm families examples

5.1. SYSTEM COMPONENT COMPOSITION 132

a configuration clock, and configuration word inputs. The model is shown in

figure 5.2(a). Each RUB has logic, control, configuration memory, and local in-

terconnect. The RUB’s are tiled, as shown in 5.2(b) and 5.2(c), to compose 36

architectures that each have a fixed area equivalent to 10 million minimum-sized

gates. The total area is divided between RUB’s and global interconnect with

varying RUB granularities. Three independent variables are used; (1) the number

of RUB types, (2) the number of instances of each RUB type, and (3) a flex-

ibility index for the resultant structure. From these variables architectures are

composed of six dependent parameters; (1) global interconnect and configuration-

word routing overhead; (2) total RUB gates, (3) RUB control gates, (4) RUB local

interconnect, (5) RUB logic gates, and (6) RUB configuration words.

For each algorithm node type1 and mappable architecture resource, configu-

rations are generated using a four-parameter model; (1) required RUB types, (2)

required RUB instances, (3) candidate speed up, and (4) candidate activity factor.

An example candidate is shown in 5.3(a).

Each architecture parameter and candidate parameter uses a weighted lin-

ear approximation (within a specified range given by a minimum and maximum

value) of a weighted polynomial composed of the independent variables terms

with constant coefficients and constant powers. In all, there are 1,620 designs (45

1This also applies for each algorithm edge type.

5.1. SYSTEM COMPONENT COMPOSITION 133

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

clk1

n

n

out

in

words

clk2

(a) Basic reconfigurable unit model

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

(b) Controlled variation of granularity

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

logic

(l
oc

al
)

in
te

rc
on

ne
ct

control

configuration

...

n

n

m

(c) Heterogeneity

Figure 5.2: Modeling families of heterogeneous reconfigurable architectures

5.1. SYSTEM COMPONENT COMPOSITION 134

generated from T(rand), M(dea01), and P(StdCell1Sp)

dea01
gate topology

reconfig
critical gates

8
cycles/word

1
gates/word

1
word activity

0.5

compute
critical gates

8
cycles/op

1

StdCell1Sp

min gate
10 ps
125 fj

125 (area)

tt0

compute
operations

8641
g0

c0 c1

reconfig
88320 ps

69 pj

compute
149312 ps

22535165865 fj

area
50370000

23

speed-up
4.63

activity
0.05

rt2

inst
139

area
2190000

config
words

48

reconfig
101200 ps
79063 fj

compute
68636 ps

151954163703 fj

area
161287500

23 23

speed-up
10.07

activity
0.11

rt3

inst
185

area
2511875

config
words

32

rt4

inst
340

area
4500625

config
words

23

(a)

ge
ne

ra
te

d
fr

om
 T

(r
an

d)
, M

(d
ea

01
),

 a
nd

 P
(S

td
C

el
l1

Sp
)

tt0

co
m

pu
te

op
er

at
io

ns
86

41
g0

c0
c1

re
co

nf
ig

88
32

0
ps

69
 p

j

co
m

pu
te

14
93

12
 p

s
22

53
51

65
86

5
fj

ar
ea

50
37

00
00

23 rt
2

re
co

nf
ig

10
12

00
 p

s
79

06
3

fj

co
m

pu
te

68
63

6
ps

15
19

54
16

37
03

 f
j

ar
ea

16
12

87
50

0

23
23

rt
3

rt
4

tt1

co
m

pu
te

op
er

at
io

ns
17

44
1

g0

c0
c1

c2

re
co

nf
ig

24
57

60
 p

s
19

2
pj

co
m

pu
te

12
84

81
 p

s
14

30
23

17
17

07
0

fj

ar
ea

46
11

34
12

5

28
25

25

rt
0

rt
1

rt
2

re
co

nf
ig

19
4

ns
15

15
63

 f
j

co
m

pu
te

26
98

05
 p

s
98

81
67

86
08

67
 f

j

ar
ea

28
76

19
12

5

19
25

31

rt
1

rt
3

rt
4

re
co

nf
ig

99
04

0
ps

77
37

5
fj

co
m

pu
te

22
82

18
 p

s
63

50
83

22
14

59
 f

j

ar
ea

16
72

53
75

0

20
26

rt
3

rt
4

tt2

co
m

pu
te

op
er

at
io

ns
11

86
0

g0

c0
c1

re
co

nf
ig

72
96

0
ps

57
 p

j

co
m

pu
te

18
58

18
 p

s
25

20
25

08
64

38
 f

j

ar
ea

85
30

28
75

19 rt
1

re
co

nf
ig

48
 n

s
37

50
0

fj

co
m

pu
te

20
00

90
 p

s
35

76
19

67
01

62
 f

j

ar
ea

26
26

28
12

5

25 rt
0

tt3

co
m

pu
te

op
er

at
io

ns
17

30
g0

c0
c1

c2
c3

c4

re
co

nf
ig

80
64

0
ps

63
 p

j

co
m

pu
te

97
89

 p
s

36
52

92
00

44
0

fj

ar
ea

94
28

21
25

21 rt
1

re
co

nf
ig

53
76

0
ps

42
 p

j

co
m

pu
te

23
29

2
ps

23
42

08
99

25
9

fj

ar
ea

52
74

93
75

21 rt
3

re
co

nf
ig

16
0

ns
12

5
pj

co
m

pu
te

21
77

1
ps

53
83

33
31

54
8

fj

ar
ea

17
79

24
75

0

29
19

rt
1

rt
3

re
co

nf
ig

23
28

80
 p

s
18

19
38

 f
j

co
m

pu
te

12
19

8
ps

55
06

67
22

52
8

fj

ar
ea

24
85

48
12

5

30
28

25

rt
2

rt
3

rt
4

re
co

nf
ig

99
84

0
ps

78
 p

j

co
m

pu
te

10
61

9
ps

61
84

83
26

42
0

fj

ar
ea

11
67

30
25

0

26 rt
1

tt4

co
m

pu
te

op
er

at
io

ns
17

47
6

g0

c0
c1

re
co

nf
ig

18
81

60
 p

s
14

7
pj

co
m

pu
te

11
25

57
 p

s
26

82
63

74
32

54
 f

j

ar
ea

15
79

01
75

0

22
27

rt
1

rt
2

re
co

nf
ig

19
88

00
 p

s
15

53
13

 f
j

co
m

pu
te

21
01

85
 p

s
55

44
50

83
70

10
 f

j

ar
ea

20
84

04
37

5

24
28

19

rt
2

rt
3

rt
4

tt5

co
m

pu
te

op
er

at
io

ns
10

22
9

g0

c0
c1

c2
c3

c4

re
co

nf
ig

14
36

80
 p

s
11

22
50

 f
j

co
m

pu
te

87
56

5
ps

53
08

96
91

14
09

 f
j

ar
ea

37
59

28
87

5

21
26

20

rt
0

rt
3

rt
4

re
co

nf
ig

18
08

80
 p

s
14

13
13

 f
j

co
m

pu
te

67
56

9
ps

25
28

14
13

55
03

 f
j

ar
ea

24
45

68
62

5

22
24

19

rt
1

rt
3

rt
4

re
co

nf
ig

40
48

0
ps

31
62

5
fj

co
m

pu
te

83
12

1
ps

13
55

63
74

24
40

 f
j

ar
ea

99
01

37
50

22 rt
4

re
co

nf
ig

12
67

20
 p

s
99

 p
j

co
m

pu
te

55
86

1
ps

11
20

56
42

48
17

8
fj

ar
ea

32
98

84
50

0

22
22

rt
0

rt
1

re
co

nf
ig

14
92

00
 p

s
11

65
63

 f
j

co
m

pu
te

92
84

0
ps

25
78

83
14

06
93

 f
j

ar
ea

24
72

70
37

5

24
31

rt
1

rt
4

tt6

co
m

pu
te

op
er

at
io

ns
12

25
4

g0

c0
c1

c2
c3

re
co

nf
ig

42
24

0
ps

33
 p

j

co
m

pu
te

16
39

89
 p

s
60

05
23

81
45

80
 f

j

ar
ea

23
11

12
75

0

22 rt
0

re
co

nf
ig

24
06

40
 p

s
18

8
pj

co
m

pu
te

76
96

0
ps

27
35

32
25

98
33

 f
j

ar
ea

22
39

14
75

0

29
21

19

rt
1

rt
2

rt
3

re
co

nf
ig

48
64

0
ps

38
 p

j

co
m

pu
te

78
70

9
ps

20
01

14
22

08
99

 f
j

ar
ea

47
72

56
25

19 rt
3

re
co

nf
ig

21
50

40
 p

s
16

8
pj

co
m

pu
te

79
08

9
ps

11
51

69
31

55
33

5
fj

ar
ea

40
82

12
87

5

28
28

21

rt
0

rt
2

rt
3

tt7

co
m

pu
te

op
er

at
io

ns
32

80
g0

c0
c1

c2

re
co

nf
ig

10
88

00
 p

s
85

 p
j

co
m

pu
te

32
55

7
ps

10
24

96
67

91
66

 f
j

ar
ea

33
09

06
37

5

26
23

rt
0

rt
3

re
co

nf
ig

46
08

0
ps

36
 p

j

co
m

pu
te

33
99

6
ps

19
74

96
32

54
56

 f
j

ar
ea

25
21

23
00

0

24 rt
0

re
co

nf
ig

24
76

80
 p

s
19

35
00

 f
j

co
m

pu
te

20
78

5
ps

32
18

32
24

84
90

 f
j

ar
ea

51
46

93
62

5

29
30

30

rt
0

rt
1

rt
3

tt8

co
m

pu
te

op
er

at
io

ns
13

92
7

g0

c0
c1

c2
c3

c4

re
co

nf
ig

10
75

20
 p

s
84

 p
j

co
m

pu
te

20
65

30
 p

s
25

17
90

15
02

79
 f

j

ar
ea

12
57

09
50

0

28 rt
1

re
co

nf
ig

84
48

0
ps

66
 p

j

co
m

pu
te

91
85

0
ps

75
98

90
18

54
9

fj

ar
ea

98
77

17
50

22 rt
1

re
co

nf
ig

90
48

0
ps

70
68

8
fj

co
m

pu
te

16
75

55
 p

s
13

75
65

38
65

95
3

fj

ar
ea

37
81

51
50

0

27
21

rt
0

rt
4

re
co

nf
ig

13
69

60
 p

s
10

7
pj

co
m

pu
te

80
28

1
ps

18
23

56
57

31
59

 f
j

ar
ea

15
09

87
00

0

23
19

rt
1

rt
3

re
co

nf
ig

21
50

40
 p

s
16

8
pj

co
m

pu
te

20
64

41
 p

s
52

86
41

44
69

37
 f

j

ar
ea

45
17

50
87

5

26
23

30

rt
0

rt
1

rt
3

tt9

co
m

pu
te

op
er

at
io

ns
12

81
g0

c0
c1

c2

re
co

nf
ig

66
56

0
ps

52
 p

j

co
m

pu
te

15
93

0
ps

24
60

37
17

29
2

fj

ar
ea

65
30

87
50

26 rt
3

re
co

nf
ig

71
68

0
ps

56
 p

j

co
m

pu
te

15
09

8
ps

13
29

41
77

54
9

fj

ar
ea

70
33

25
00

28 rt
3

re
co

nf
ig

46
 n

s
35

93
8

fj

co
m

pu
te

76
05

 p
s

16
49

80
71

63
2

fj

ar
ea

11
25

15
62

5

25 rt
4

(b)

Figure 5.3: Generated candidate and system of candidates example

5.1. SYSTEM COMPONENT COMPOSITION 135

algorithms and 36 architectures) that can be used to evaluate different scheduling

and run-time optimization strategies.

Scheduler: A single-threaded dynamic best effort list scheduler has been com-

posed using five phases. One phase processes new messages from assigned tasks2

(message). Another phase processes the tasks that have completed execution

(done). A separate phase is used to process tasks that are blocked awaiting

resources (block). Another phase processes those that have become ready for ex-

ecution (ready). And finally, a separate phase is used to configure resources and

dispatch execution (dispatch).

The ready phase performs task ordering, required when there is more than

one task ready, and candidate selection, according to the run-time optimization

objectives. If the candidate selection exists and is a valid (cached selection),

then the search is truncated. The dispatch phase need only configure resources

when the configuration cache is invalid. Otherwise, it simply dispatches execution.

After execution, the resource reservation and candidate selection mode policy is

enforced by the done phase. When a policy calls for dynamic modes, the caches

are marked indicating that they may be overwritten. They remain valid, however,

until they are in-fact overwritten.

2Tasks are assigned to a particular scheduler when they are created. They can subsequently
be reassigned to another scheduler, however, the current implementation limits such activity to
tasks that are in the waiting state.

5.1. SYSTEM COMPONENT COMPOSITION 136

Task Ordering Objective Functions: Task ordering functions have been

written to order tasks based on various static and dynamic parameters; such

as the task priority in task slack time. Each function takes as arguments two

tasks and returns a flag indicating if they are properly ordered according to the

objectives of the ordering function. The framework facilitates this with the use of

registered predicate functions.

Candidate Selection Optimization Functions: Schedulers select a template

from amongst the candidates at run-time based on system-level optimization ob-

jectives. When the selection is required, optimizations functions are used to eval-

uate and rank the candidates. Function have been developed for each of the

individual use-cost parameters defined by the methodology. For example by area,

configuration energy, or computation time. A parameterizable polynomial rela-

tion, of the form in equation 3.1 has also been developed.

Static Design Analysis Routines: A collection of static design analysis rou-

tines have been written to use during system evaluations. Some are shown in figure

4.3. Routines to perform bounds checking, such as worst-case and best-case dead-

line performance, has been developed. Also a collection of routines for assigning

priorities, using for example, a deadline monotonic method, is developed.

5.2. EXAMPLE SYSTEM SIMULATION 137

Table 5.1: Simulation example run key

run Description

cnfT minimize configuration time

cmpT minimize computation time

totT minimize total time

cnfE minimize configuration energy

cmpE minimize computation energy

totE minimize total energy

area maximize area use

rand make random selections

5.2 Example System Simulation

In this section we discuss the results for multiple simulation runs of the random

algorithm shown in 5.1(b) on an architecture with five RUB types. The candi-

date configurations for each unique algorithm behavior are shown in figure 5.3(b).

Each system tasks is assigned a priority based on its deadline and a priority-based

task ordering scheduling scheme is used wherever task ordering is required. Sim-

ulations are run with differing selection optimization objective functions. Table

5.1 describes each run objective.

Four reports are presented that compare the results. The report in figure

5.4 shows a simulation runs summary. Figure 5.6 shows the performance of the

run-time candidate selections. Figure 5.7 shows the run-time concurrency and

achieved resource utilization. And finally, figure 5.8 shows a breakdown of how

5.2. EXAMPLE SYSTEM SIMULATION 138

time is consumed during each simulation.

As shown in figure 5.4, it appears prudent to use optimization objectives that

focus on minimizing total use-costs rather than use-cost components. For example,

objectives that minimize both total energy and total time performed better than

those that focus on either the configuration or computation components alone.

Total costs oriented objectives also minimized the system delays and response

times for this particular design example.

A Quality Measure: Before discussing the selection quality report, a brief

introduction to the quality metric slider is in order. As shown in figure 5.5, a

selection performance has an upper and lower bound. Worse-case selections are

assigned the quality index of zero. Best-case selections are assigned the quality in-

dex of one hundred. With this normalized index measure the average performance

can be viewed as the fraction of the time that best-case selections are obtained.

As shown in figure 5.6, objective functions that minimize total time (totT) and

total energy (totE) also outperform in terms of selection quality to overhead ratio;

refer to the first column of charts for “Time:” performance results. Moreover,

although there is slightly more overhead required to make total-cost selections,

the quality-to-overhead ratios are also improved. The time overhead and energy

overheads are high in this design example. The scheduler is assigned to a general-

5.2. EXAMPLE SYSTEM SIMULATION 139

Figure 5.4: Run summary simulation example

5.2. EXAMPLE SYSTEM SIMULATION 140

0 %

run−time average
performance

best case
performance

worst case
performance

qu
al

ity
 in

de
x

100 %

Figure 5.5: Candidate selection performance metric

purpose microprocessor that has high per-operation used-cost. This contribution

could be substantially reduced if more specialized hardware were used to carry

out the scheduling responsibility.

Based on the simulation report in figure 5.7, we see that each optimization

objective achieves equivalent results in terms of concurrency. In each simulation,

a maximum of nine concurrent tasks are running and, on average, approximately

1.5 are active over the entire simulation. This result is due to the average resource

utilization which remains below 40% in all cases. In no case are there ever blocked

tasks that must wait for resource availability. As expected, when the optimization

objective is to minimize computation time, greater resource utilization results

since one of the assumptive rules of the system generators is that faster mappings

5.2. EXAMPLE SYSTEM SIMULATION 141

Figure 5.6: Candidate selection quality simulation example

5.3. CHAPTER SUMMARY 142

require more resources. And, in the case of maximizing area use, we see that the

performance is very similar to minimizing computation energy.

In the final report example, see figure 5.8, is shown a distribution for aggre-

gate system time for each simulation case. Time is broken down into schedulers

(RTOS), resource configuration, and execution (computation). Similar reports

are available for each system use-costs. Since this one details time, let us focus on

the time-based optimization objectives for the moment. We see that the run-time

optimization functions do as expected. In the first case, the scheduler chooses

candidates that minimize configuration time which is reflected in the report. A

similar observation holds for the second case, which aims to minimize compu-

tation time. In the third, we see that when the scheduler uses an optimization

objective that minimizes total time: (1) greater overheads result; (2) computation

time is less than the first case and slightly greater than the second case; (3) the

configuration-time is less than the second case and on-par with the first; and (4)

the overall time is reduced.

5.3 Chapter Summary

In this chapter we demonstrate the function of the templated-mapping based

design methodology, and the implemented design environment, on generated de-

5.3. CHAPTER SUMMARY 143

Figure 5.7: Concurrency and utilization simulation example

5.3. CHAPTER SUMMARY 144

Figure 5.8: Time-use distribution simulation example

5.3. CHAPTER SUMMARY 145

sign examples. We describe the strategy that is used to compose thirteen parallel,

fifteen random, and seventeen series-parallel algorithms. Next we described an ar-

chitecture model that is used to compose thirty-six heterogeneous (multi-grained)

architectures that are subsequently used to generate candidates for each algorithm.

In all 1,620 designs are evaluated.

A system scheduler has been developed and is described along with several

task-ordering and candidate selection objective functions. A brief description of

some static design analysis routines is presented. Finally, an example simulation

run with varied run-time optimization objectives is presented along with some

resulting reports. A discussion of theses reports and an introduction to a selection

quality measure is presented.

146

Chapter 6

A Design Exploration Example

The best thing to give to your enemy is forgiveness; to an opponent,

tolerance; to a friend, your heart; to your child, a good example; to a

father, deference; to your mother, conduct that will make her proud of

you; to yourself, respect; to all men, charity. Francis Maitland Balfour.

T
his chapter presents a demonstration of the design methodology toward

run-time management in a multi-user MPEG decoder system design. This

adds to the overall concreteness of the methodology evaluation presented in the

prior chapter. Moreover, it is shown that the constructs of the proposed method-

ology and the analysis possible within the environment, not only enable structured

run-time management of reconfigurables, but also facilitates design exploration,

refinement, and optimization.

We begin with a description of the decoder algorithm used by each user and its

6.1. SYSTEM DESCRIPTION 147

block-level static and dynamic characteristics. A limited resource heterogeneous

architecture, comprised of application specific integrated circuit (ASIC) blocks,

two general purpose processors (GPP), a field programmable gate array (FPGA),

and a local interconnect switch, is assumed. A reference design mapping to an

FPGA is used as a basis and its use-costs are scaled for the GPP and ASIC.

We present an example templated-mapping for the dominant algorithm ker-

nel and show a simulation, obtained directly from the design environment, of the

resultant analysis annotated with its’ static and dynamic properties. In the re-

maining portion of this chapter we explore the performance of the design under

various run-time scenarios. The chapter concludes with a few highlighted design

features and a summary.

6.1 System Description

The system consists of a multi-user simple profile MPEG-4 decoder. A block

diagram is presented in figure 6.1. It consists of the following root-level block

types: input interface, input vector parser, copy controller, motion compensation,

IDCT-based texture processing, texture update, share memory, and FIFOs. A

description of these blocks is available elsewhere [Xil05]. Here we focus on how

each are mapped to a shared reconfigurable resource set and the costs incurred

6.1. SYSTEM DESCRIPTION 148

O

Motion
Compensation

(mc)

Texture
Update

(tu)

Copy
Controller

(cc)

I

Texture IDCT
(idct)

Parser / VLD
(vld)

Input
Interface

(ii)

FIFO
(fifo0)

FIFO
(fifo1)

Shared
Memory

(sm)

FIFO
(fifo2)

FIFO
(fifo3)

Register
Fie
(rf)

Figure 6.1: MPEG-4 simple profile decoder block diagram

to use a given mapping in terms of resource requirements and the performance

metrics of interests (time, energy, and area).

We perform dynamic code profiling of the decoder implementation mapped to

a GPP to reveal how the computational complexity is distributed amongst the

algorithm blocks. Consider, for example, the blocked labeled texture/IDCT (in-

verse discrete cosine transform). As shown in table 6.1(b), the IDCT accounts for

over 30% of the computation time during image decompression 1. For a descrip-

tion of algorithm analysis techniques used here, please refer to section 3.3.1. The

implementation of this kernel block on a Xilinx Virtex-II Pro FGPA requires 6

brams, 25 multipliers, and 1710 slices; as summarized in table 6.1(a).

1Since the profiling is performed on a single threaded general purpose processor, without
co-processor accelerators, we can assume the operation count directly correlates with the com-
putation time distribution.

6.1. SYSTEM DESCRIPTION 149

Table 6.1: Static and dynamic MPEG-4 decoder profile

block bram slices mult

ii 1 20 0

vld 0 1700 2

cc 0 340 1

mc 0 340 1

idct 6 1710 25

tu 0 150 2

fifo(0-3) 4 80 0

sm 4 80 0

(a) Xilinx FPGA resource requirements

block GPP time

ii 1 %

vld 27 %

cc 1 %

mc 27 %

idct 31 %

tu 11 %

fifo(0-3) 1 %

sm 1 %

(b) Dynamic Profile

By design, given the heterogeneity of the system resource, we can implement

the IDCT by mapping to other resource structures. This is essential to the

methodology since it is the availability of multiple mappings that give rises to

run-time flexibility and dynamic reconfiguration. For demonstration, we choose

two additional mappings for each algorithm block; one to an ASIC and another

to the GPP. We then normalize the use-cost performance of the FPGA reference

design and scale for the ASIC and GPP.

6.2. TEMPLATED-MAPPINGS 150

ASIC

FPGA

fifofifo

ii vld cc mc idct tu

rfsmfifofifo

interconnect (n x n)

GPP
(scheduler) GPP

MEMMEM

Figure 6.2: Multi-user decoder system resource

6.2 Templated-Mappings

To clarify how templated-mapping are used in real systems, figure 6.3 shows

the IDCT algorithm kernel mapping with its candidate implementations. As

indicated there are three versions available to the system scheduler for run-time

use, each with a corresponding list of resources required by the template. By

construction, each version has the same input-to-output functional behavior2, but

performs differently in time, energy, and area. Attributes relevant to the runtime

strategy are added as shown in figure 6.4 (use cost, current state, use constraints,

etc.).

The templates are constructed for each algorithm block and are available for

instantiation as required for each systems user. To construct the template costs,

2Care must be given to validate the behavioral equivalency across the candidates.

6.2. TEMPLATED-MAPPINGS 151

decoder0.idct

idct

g0

asic fpga gpp

1

asic_idct

6 1710 25

fpga_bram fpga_slice fpga_mult

1

gpp

Figure 6.3: IDCT kernel templated-mapping

the following rules were used:

• Base time percentage distribution using GPP-implementation dynamic pro-

filing, normalized to minimum algorithm component, are used as reported

in table 6.1(b).

• GPP context switch incurs 10% overhead when used by both the scheduler

and the mapping templates.

• FPGA area, configuration time, and configuration energy are estimated us-

ing a weighted polynomial function of implementation required resources as

reported in table 6.1(a).

6.2. TEMPLATED-MAPPINGS 152

T
as

k
[d

ec
od

er
0.

id
ct

]
at

 5
 m

s,
 la

ye
rs

(s
tr

uc
t,

pa
ra

m
s,

 c
os

t,
st

at
e,

 m
et

ri
c)

de
co

de
r0

.id
ct

pr
io

ri
ty

 =
 1

1

de
ad

lin
e

20
 n

s
H

ar
d

se
lT

im
e

O
nL

in
e

se
lT

yp
e

D
yn

am
ic

st
at

us
id

le

se
le

ct
ed

fa
ls

e

se
lG

ro
up

no
ne

se
lC

on
fi

g
no

ne

re
co

nf
ig

9
ite

r
36

76
4

ps
36

76
4

fj

co
m

pu
te

10
0

ite
r

38
91

2
ps

52
07

16
 f

j

ar
ea

16
43

56

re
sp

on
se

(5
50

 p
s,

 1
00

08
16

 p
s)

19
53

9
ps

 a
vg

ac
tiv

e
75

67
6

ps
1.

51
35

2e
-0

5%
 s

t

de
la

y
20

29
54

4
ps

0.
00

04
05

90
9%

 s
t

0
m

is
D

L
S

10
0

m
is

D
L

H

id
ct

re
fs 8

m
od

e

of
f

on

st
a 0 0

dy
n 0 8

re
co

nf
ig

92
 it

er
32

18
76

 p
s

32
18

76
 f

j

co
m

pu
te

80
0

ite
r

33
81

44
 p

s
28

69
46

2
fj

ar
ea

87
14

30

re
sp

on
se

(2
50

 p
s,

 1
98

71
43

 p
s)

17
28

2
ps

 a
vg

ac
tiv

e
66

00
20

 p
s

0.
00

01
32

00
4%

 s
t

de
la

y
14

48
53

65
 p

s
0.

00
28

97
07

%
 s

t

0
m

is
D

L
S

80
0

m
is

D
L

H

g0

as
ic

fp
ga

gp
p

al
lo

cT
im

e
O

nL
in

e

al
lo

cT
yp

e
D

yn
am

ic

re
co

nf
ig

44
8

ps
44

8
fj

co
m

pu
te

78
 p

s
60

9
fj

ar
ea

19
6

co
nf

ig
fa

ls
e

re
co

nf
ig

3
ite

r
13

44
 p

s
13

44
 f

j

co
m

pu
te

14
 it

er
10

92
 p

s
85

26
 f

j

ar
ea

27
44

re
sp

on
se

(2
53

2
ps

, 2
64

51
 p

s)
11

57
5

ps
 a

vg

ac
tiv

e
24

36
 p

s
4.

87
2e

-0
7%

 s
t

de
la

y
16

44
82

 p
s

3.
28

96
4e

-0
5%

 s
t

0
m

is
D

L
S

14
 m

is
D

L
H

1

al
lo

c
fa

ls
e

as
ic

_i
dc

t

st
an

dB
y

0
j/s

al
lo

c
0

/ 1
re

fs 8

m
od

e

of
f

on

st
a 0 0

dy
n 0 8

st
an

dB
Y

0
ite

r
0

s
0

j

ut
il

0
s

0%
 s

t

al
lo

cT
im

e
O

nL
in

e

al
lo

cT
yp

e
D

yn
am

ic

re
co

nf
ig

70
64

 p
s

70
64

 f
j

co
m

pu
te

31
0

ps
60

95
 f

j

ar
ea

19
66

co
nf

ig
fa

ls
e

re
co

nf
ig

5
ite

r
35

32
0

ps
35

32
0

fj

co
m

pu
te

82
 it

er
25

42
0

ps
49

97
90

 f
j

ar
ea

16
12

12

re
sp

on
se

(5
50

 p
s,

 1
00

08
16

 p
s)

21
60

9
ps

 a
vg

ac
tiv

e
60

74
0

ps
1.

21
48

e-
05

%
 s

t

de
la

y
18

32
66

5
ps

0.
00

03
66

53
3%

 s
t

0
m

is
D

L
S

82
 m

is
D

L
H

6
17

10
25

al
lo

c
fa

ls
e

fp
ga

_b
ra

m

st
an

dB
y

0
j/s

al
lo

c
0

/ 3
5

re
fs

21
6

m
od

e

of
f

on

st
a 0 0

dy
n 0 21
6

st
an

dB
Y

0
ite

r
0

s
0

j

ut
il

0
s

0%
 s

t

al
lo

c
fa

ls
e

fp
ga

_s
lic

e

st
an

dB
y

0
j/s

al
lo

c
0

/ 9
00

0
re

fs
37

28
0

m
od

e

of
f

on

st
a 0 0

dy
n 0

37
28

0

st
an

dB
Y

0
ite

r
0

s
0

j

ut
il

0
s

0%
 s

t

al
lo

c
fa

ls
e

fp
ga

_m
ul

t

st
an

dB
y

0
j/s

al
lo

c
0

/ 7
0

re
fs

24
8

m
od

e

of
f

on

st
a 0 0

dy
n 0 24
8

st
an

dB
Y

0
ite

r
0

s
0

j

ut
il

0
s

0%
 s

t

al
lo

cT
im

e
O

nL
in

e

al
lo

cT
yp

e
D

yn
am

ic

re
co

nf
ig

10
0

ps
10

0
fj

co
m

pu
te

31
00

 p
s

31
00

 f
j

ar
ea

10
0

co
nf

ig
fa

ls
e

re
co

nf
ig

1
ite

r
10

0
ps

10
0

fj

co
m

pu
te

4
ite

r
12

40
0

ps
12

40
0

fj

ar
ea

40
0

re
sp

on
se

(1
18

8
ps

, 8
24

5
ps

)
49

74
 p

s
av

g

ac
tiv

e
12

50
0

ps
2.

5e
-0

6%
 s

t

de
la

y
32

39
7

ps
6.

47
94

e-
06

%
 s

t

0
m

is
D

L
S

4
m

is
D

L
H

1

al
lo

c
fa

ls
e

gp
p

st
an

dB
y

0
j/s

al
lo

c
0

/ 1
re

fs 88

m
od

e

of
f

on

st
a 0 0

dy
n 0 88

st
an

dB
Y

0
ite

r
0

s
0

j

ut
il

0
s

0%
 s

t

Figure 6.4: IDCT kernel decorated templated-mapping

6.3. DESIGN EXPLORATION 153

• FPGA computation time is proportional to operation counts, ignoring pos-

sible performance improvements from behavioral transformations.

• FPGA computational energy is estimated using a weighted polynomial func-

tion of area and operation counts.

• ASIC & GPP implementation performance is scaled up and down by one

order of magnitude respectively.

• ASIC configuration performance is based on weighted polynomial function

of GPP context switch FPGA resources requirements.

The parameterizable scheduler described in section 5.1 is used to coordinate

system execution. In the following section we explore the performance of this

multi-user system of homogenous algorithms under various conditions.

6.3 Design Exploration

Here we present just a few of the results obtained from the system simulation

broken down into two categories: (1) system sensitivity to users loading, in section

6.3.1, and (2) system behavior under various scheduling policies, section 6.3.2.

6.3. DESIGN EXPLORATION 154

6.3.1 Active User Sensitivity

For each simulation in this section, the scheduler is configured for the follow-

ing concurrency ordering objectives: (1) ready-tasks based on their priority, (2)

configurable-tasks based on their priority, and (3) done-tasks in first-in-first-out

order. The schedulers run-time optimization objective is to minimize the total

execution time (allowing progress with sub-optimal selections when the resources

for the optimal cannot be reserved) while meeting the deadline constraints. Each

user has an equivalent input workload and the simulation is configured to run

until all have completed3.

Figure 6.5 shows the normalized run-time scheduler execution time verses con-

current active users. By concurrent, it is meant that each user workload is co-

incident creating an effective instantaneous workload delta proportional to the

number of active users. Since the aggregate workload increases with each user,

one would expect a continual increase in scheduler execution with each additional

user. It is interesting to note, however, the leveling in scheduler activity that

occurs at 3 and the drop at 4 active users. Upon inspection of the behavior, it

is observed that there is a transition in scheduler behavior between 3 and 4 ac-

tive users where there is resource saturation. Here, the resource utilization spikes

3The simulation terminates at a maximum simulation time even when all users have not
completed execution.

6.3. DESIGN EXPLORATION 155

Figure 6.5: Run-time scheduler execution time vs. concurrent active users

6.3. DESIGN EXPLORATION 156

to its maximum see figure 6.6(a). With the 4th active user, no excess resources

are available for scheduler run-time optimization. The subsequent linear rise in

scheduler time is due primarily to the list processing of active tasks; little compu-

tation is spent on runtime selection optimization. There are two district regions

of operation. One where there is a trade-off in excess system resource that are

considered during run-time optimization; O(n2). At some point, a maximum is

reached and the relative balance between excess resources and run-time selection

optimization. After this point, the scheduler run-time optimizations are continu-

ally diminished due to the reduced search space. The second represents a region

of resource saturation, where the scheduler simply attempts to satisfy deadline

requirements with any available resource, which reduces to a linear function of

the number of users; O(n).

Figure 6.6 shows peak and mean normalized results for resource utilization,

running tasks, and blocked tasks. This data further confirms the above findings.

For example see the resource saturation point obvious from figures 6.6(a) and

6.6(b).

Figure 6.7 examines the quality of run-time selections in terms of delay, figure

6.7(a), and area, figure 6.7(c). A value of one indicates the highest quality or the

minimization of the corresponding use-cost metric. Here it can be observed that

as the number of concurrent active users approaches the limits of the available re-

6.3. DESIGN EXPLORATION 157

Figure 6.6: Select dynamic statistics vs. concurrent active users

6.3. DESIGN EXPLORATION 158

Figure 6.7: Quality and overhead vs. concurrent active users

6.3. DESIGN EXPLORATION 159

sources, the scheduler is constrained and increasingly must choose sub-optimal im-

plementations. As for the delay selection quality, a minimum can be seen around

3 concurrent users and subsequently it gradually increases with additional users.

This may seem counter-intuitive. However, upon examination, this behavior can

be attributed to the following: With 4 users and greater, the system gradually

degrades missing more and more deadlines, as shown in 6.8(b). With increasing

missed deadlines more and more work is dropped and unprocessed. This creates

increasing opportunity for the scheduler to resume run-time optimization (albeit

the missed hard deadlines and dropped work clearly indicates system failure).

In the case of area as shown in figure 6.7(c), the selection quality continually

decreases as more and more resources are shared in attempt to keep up with the

increased concurrency.

User Staggering

To increase the number of users that can share one system, we assign staggered

time slots for each user. This additional structural knowledge can be exploited by

the scheduler to more than double the number of system users from fewer than 3

to more than 6. Figures 6.8(c) and 6.8(d) shows the new performance with this

additional system-level use constraint. As shown, all deadlines are met for up to

7 active users (as opposed to 2 without the system use constraint).

6.3. DESIGN EXPLORATION 160

Figure 6.8: Timing performance vs. active users

6.3. DESIGN EXPLORATION 161

Figure 6.9: Resource utilization vs. time

6.3. DESIGN EXPLORATION 162

As a demonstration of the scheduler’s ability to exploit the additional struc-

ture, see figure 6.9. In figures 6.9(a) and 6.9(b) are shown the run-time resource

utilization profile over time for 3 and 4 concurrent users. In figure 6.9(c) and

6.9(d) one can observe that scheduler is able to complete significantly greater

work per unit time before running into the limitation of fixed resource pool4.

6.3.2 Run-time Optimization Objectives

In this section we examine the methodology’s capability to support run-time

changes in scheduler ordering and optimization objectives to cope with changing

system environments. Three concurrent users push the limits of system stability,

as has been seen in the presented charts. Therefore it is selected for the following

experiments.

Figure 6.10 shows variation in scheduler task ordering functions for the task

concurrency in “ready to run tasks”. As shown, random ordering (rand) has the

lowest run-time overhead, achieves the greatest resource utilization, and great-

est number of running tasks5. However, for a design such as this, with its’ in-

herent structure, it also creates the greatest problem for the number of blocked

4Although not observed by this example, the scheduler itself could also become a bottleneck
and not be able to dispatch addition income workload in a timely fashion. In such a case one
would want to explore distributed scheduling schemes.

5Random selections have the lowest overhead since no run-time comparison need be perform,
only one random choice.

6.3. DESIGN EXPLORATION 163

Figure 6.10: Select dynamic statistics vs. scheduler task ordering function

6.4. CHAPTER SUMMARY 164

tasks. This should be of little surprise since the algorithm structural knowledge

is ignored. Given that each user is instantiated from the same algorithm tem-

plate, there is little differentiation between the abilities of the other task ordering

schemes (pri, fifo, lilo, and slack). The small differences observed can be attributed

to the observation that each scheduling choice come with future opportunity cost.

In other words, the current choice has an impact on future choices. This would

likely be different for heterogeneous user algorithms.

Finally, figure 6.11 presents the mapping selection quality (in terms of delay

performance) against variations in run-time optimization objectives. As expected

high delay selection quality is archived when either of total time, total energy,

or area is used as a run-time optimization objective. With these objectives, the

scheduler is biased towards the ASIC implementation since it has the best time,

energy, and area performance.

6.4 Chapter Summary

In this chapter the design methodology proposed within this thesis is demon-

strated on a practical system design; a multi-user MPEG decoder. The per-user

algorithm is introduced along with its static and dynamic characterization. An

architecture resource set is specified and templated-mappings are constructed for

6.4. CHAPTER SUMMARY 165

Figure 6.11: Mapping selection quality vs. scheduler optimization function

6.4. CHAPTER SUMMARY 166

each algorithm block. A reference FPGA mapping is used to construct the tem-

plate costs estimates and is scaled for estimate performance on a general purpose

processor and application specific integrated circuit. Each algorithm block has

three templated-mappings that can be dynamically considered by the run-time

scheduler.

The simulation environment is used to explore system behavior under varying

workload and a system refinement that more than double the possible workload

is proposed and validated. It is shown that the methodology is able to, not only

dynamically manage the reconfigure resources according to run-time optimization

objectives, but also supports run-time re-optimization of such objectives under

varying environmental conditions.

167

Chapter 7

Conclusions

The best ideas are common property. Seneca, Epistles.

T
his research addresses the problem of how to design systems that deal

with changing algorithm computation at run-time on dynamically recon-

figurable hardware, trading the architectural flexibility for efficiency. It is observed

that for the applications of interest, the algorithm change can be classified into

different forms. However, in each case, the change involves a refocus of the domi-

nant computation effort into new computation kernel regions. A-priori knowledge

of the form specific to a system is useful in minimizing its latencies and over-

heads incurred during reconfiguration in preparation for the change. To limit

the resulting run-time remapping overheads, an approach is used that encour-

ages a designer to implement multiple mapping versions off-line at design-time,

168

each with annotated cost-performance estimates, that are later appropriately re-

viewed and chosen on-line during run-time scheduling. To increase flexibility, the

mappings specify resource type allocations but do not assign specific resource

bindings. The step is deferred for the run-time. The design-time allocations are

called templated-mappings (or mapping templates) and the collection of multiple

alternative versions are called candidates.

With the organization of candidate templated-mappings, an appropriate algo-

rithm mapping can be chosen, with limited overhead, at run-time when system re-

sources need to be shared or when there is change in the algorithm or environment.

To guide the way kernels are mapped to and from the reconfigurable hardware,

modes are established to assign use policies, which are enforced by schedulers, for

the selection of templated-mappings and for the reservation of mapping-specified

resources. A set-based formal model is developed that includes a definition for

system run-times with multi-threaded and concurrent execution control. A design

environment has been developed that implements the methodology and all of its

features; including dealing with threaded and concurrent execution. It is applied

to a collection of generated system designs to demonstrate the effectiveness of the

approach. The methodology and design environment is also demonstrated on a

practical system design problem.

7.1. DIRECTIONS FOR FUTURE WORK 169

7.1 Directions for Future Work

The methodology is an enabling contribution. Until this point, there lacked

the tools to perform system-level design evaluation for dynamically reconfigurable

platforms. With this approach, and design environment, further research is possi-

ble in the analysis of architecture appropriateness and system-level management

strategies. Some of the interesting areas are outline below.

Scheduling Overhead Reductions: Future research in threaded-scheduer1

and hardware-oriented scheduling would undoubtedly greatly reduce the overhead

and response time for run-time execution. Greater effort to exploit the forms of

change in the higher control structure of the algorithms with off-line schedules

should be explored.

Variable Voltage Architectures: This framework defined by this method-

ology, and implemented in the design environment, readily supports alternative

use-cost models. With minor effort, models that use voltage as a parameter could

be incorporated. With this modification, run-time strategies for the control of

variable voltage architectures could be explored. This would add yet another

dimension where run-time trade-offs could be made. For example, to conserve

1This should not be confused with threaded execution.

7.1. DIRECTIONS FOR FUTURE WORK 170

(a) 2-level: Net/bus-connected (b) 2-level: Net/net-connected

Figure 7.1: Domain-specific systems: Multi-level networks and bus interconnect

energy under reduced loading condition.

System-level Dynamic Management: One of the most interesting areas for

future research is in the exploration of distributed and hierarchical scheduling

strategies. The approach defined by this research assigns a scheduler to each

behavior independently when it is created. With this, many possible scheduling

strategies can be explored. As one proposal, consider the two reconfigurables

systems shown in figure 7.1(a) and 7.1(b). They are composed from multiple

domain-specific sub-systems that are interconnected by either a bus or a network.

Assume each sub-system has been designed from the architecture template pre-

sented in figure 2.3 for a specific group of algorithms; for example a video domain

7.1. DIRECTIONS FOR FUTURE WORK 171

or an audio domain.

From our perspective, each sub-domain can be developed with local schedulers.

And as shown in figure 7.2, a system-level scheduler can be developed to deal

with system-level algorithm change. The result is a globally dynamic and locally

pseudo-static configuration management approach. The system-level scheduler

would have the vantage to determine whether to accept new algorithms and could

assign them based on the opportunities present as defined by the domains and

their run-time utilizations.

7.1. DIRECTIONS FOR FUTURE WORK 172

Assignment

tt2

tt1

Properties

System Root Scheduler
New Algorithm Request

Select

Properties

Properties

Schedulers

Resources

MappingsAlgorithm

(n)

(n+
1)

(n)

(n+
1)

System

Utilitzation

Partition

Utilitzation

Properties

D
one

R
eady

Stop

Start

A
llocate

C
onfigure

Partition (n)

Partition (n+
1)

tt0

1 1

idle

idle

*

*

0

*

rtos.schedule

schedule

*

message done blocked ready dispatch

1

sch

1 1 1 1

sch

ri1ri0

ri2 ri3

1

dispatchready

MT

blockeddonemessage

*

schedule

rtos.schedule

t0
(tt0)

t3
(tt1)

t4
(tt2)

t0
(tt0)

t3
(tt1)

t4
(tt2)

rtos.schedule

schedule

*

message done blocked ready dispatch

1

sch

1 1 1 1

1 1

Figure 7.2: Dynamic algorithm schedule management

173

Bibliography

[ASI+98] Arthur Abnous, Katsunori Senoy, Yuji Ichikawaz, Marlene Wan, and

Jan Rabaey. Evaluation of a low-power reconfigurable dsp architec-

ture. In 12th International Parallel Processing Symposium / 9th Sym-

posium on Parallel and Distributed Processing, Orlando, Florida, USA,

March/April 1998. IEEE Computer Society.

[AZW+02] Arthur Abnous, Hui Zhang, Marlene Wan, George Varghese, Vandana

Prabhu, and Jan Rabaey. The pleiades architecture. In A. Gatherer

and A. Auslander, editors, The Application of Programmable DSPs in

Mobile Communications, pages 327–360. Wiley, 2002.

[BFS04] Carlo Brandolese, William Fornaciari, and Fabio Salice. An area esti-

mation methodology for fpga based designs at systemc-level. In DAC

’04: Proceedings of the 41st annual conference on Design automation,

pages 129–132, New York, NY, USA, 2004. ACM Press.

[BH01] Peter Bellows and Brad Hutchings. Designing run-time reconfigurable

systems with jhdl. J. VLSI Signal Process. Syst., 28(1-2):29–45, 2001.

[BL02] Dag Bjorklund and Johan Lilius. A language for multiple models of

computation. In CODES ’02: Proceedings of the tenth international

symposium on Hardware/software codesign, pages 25–30, New York,

NY, USA, 2002. ACM Press.

[BRL97] Ole Bentz, Jan M. Rabaey, and David Lidsky. A dynamic design

estimation and exploration environment. In DAC ’97: Proceedings

BIBLIOGRAPHY 174

of the 34th annual conference on Design automation, pages 190–195,

New York, NY, USA, 1997. ACM Press.

[Bro92] R. W. Brodersen. Anatomy of a silicon compiler. Kluwer Academic

Publishers, 1992.

[Byb] Tony Bybell. Gtkwave, a free electronic waveform

viewer. Information Available on the World Wide Web at:

http://www.cs.manchester.ac.uk/apt/projects/tools/gtkwave.

[Cas91] Andrea Casotto. OCTTOOLS-5.1 user guide and reference. Elec-

tronics Research Laboratory, University of California, Berkeley, 94720,

1991. editor.

[CEL+03] Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, Kent Moat, Jim

Norris, Michael Schuette, and Ali Saidi. The reconfigurable streaming

vector processor (rsvptm). In MICRO 36: Proceedings of the 36th

Annual IEEE/ACM International Symposium on Microarchitecture,

page 141, Washington, DC, USA, 2003. IEEE Computer Society.

[CG00] S Cacopardi F Frescura M Vagheggini C Gnudi, P Antognoni. A

software radio development system for wireless multimedia systems.

ICSPAT, 2000.

[CH02] Katherine Compton and Scott Hauck. Reconfigurable computing: A

survey of systems and software. ACM Comput. Surv., 34(2):171–210,

2002.

[CKR+03] Chen Chang, Kimmo Kuusilinna, Brian Richards, Allen Chen, Nathan

Chan, and Robert W. Brodersen. Rapid design and analysis of com-

munication systems using the bee hardware emulation environment.

In Proceedings of the IEEE Rapid System Prototyping Workshop, June

2003.

[CPC+99] Lukai Cai, Junyu Peng, Chun Chang, Andreas Gerstlauer, Hongx-

ing Li, Anand Selka, Chuck Siska, Lingling Sun, Shuqing Zhao, and

Daniel D. Gajski. Design of a jpeg encoding system. Technical Report

ICS-TR-99-54, UC Irvine, November 1999.

BIBLIOGRAPHY 175

[CPRB03] Anantha Chandrakasan, Miodrag Potkonjak, Jan Rabaey, and Robert

Brodersen. Hyper-lp: A system for power minimization using archi-

tectural transformations. In A. Kuehlman Ed, editor, The Best of

ICCAD, 20 Years of Excellence in Computer-Aided Design, pages 107–

116. Kluwer Academic Publishers, 2003.

[cyg] Cygwin: A linux-like environment for windows. Information Available

on the World Wide Web at: http://cygwin.com/.

[DGM02] Rainer Dömer, Andreas Gerstlauer, and Wolfgang Mueller. The formal

execution semantics of specc. In Proceedings of the 15th international

symposium on System Synthesis (ISSS ’02), pages 150–155, Kyoto,

Japan, October 2-4 2002.

[DRW98] Robert P. Dick, David L. Rhodes, and Wayne Wolf. Tgff: Task graphs

for free. In Proc. Int. Workshop Hardware/Software Codesign, pages

97–101, March 1998.

[DST99] Deepali Deshpande, Arun K. Somani, and Akhilish Tyagi. Configu-

ration caching vs data caching for striped fpgas. In FPGA ’99: Pro-

ceedings of the 1999 ACM/SIGDA seventh international symposium

on Field programmable gate arrays, pages 206–214, New York, NY,

USA, 1999. ACM Press.

[ECKM04] Virantha Ekanayake, IV Clinton Kelly, and Rajit Manohar. An ultra

low-power processor for sensor networks. In ASPLOS-XI: Proceedings

of the 11th international conference on Architectural support for pro-

gramming languages and operating systems, pages 27–36, New York,

NY, USA, 2004. ACM Press.

[EL03] Stephen A. Edwards and Edward A. Lee. The semantics and execution

of a synchronous block-diagram language. Sci. Comput. Program.,

48(1):21–42, 2003.

[FBK98] Josef Fleischmann, Klaus Buchenrieder, and Rainer Kress. A hard-

ware/software prototyping environment for dynamically reconfig-

urable embedded systems. In CODES/CASHE ’98: Proceedings of

BIBLIOGRAPHY 176

the 6th international workshop on Hardware/software codesign, pages

105–109, Washington, DC, USA, 1998. IEEE Computer Society.

[GHI+04] Manfred Glesner, Thomas Hollstein, Leandro Soares Indrusiak, Peter

Zipf, Thilo Pionteck, Mihail Petrov, Heiko Zimmer, and Tudor Mur-

gan. Reconfigurable platforms for ubiquitous computing. In CF’04:

Proceedings of the first conference on computing frontiers on Comput-

ing frontiers, pages 377–389, New York, NY, USA, 2004. ACM Press.

[GLMS02] Thorsten Grtker, Stan Liao, Grant Martin, and Stuart Swan. System

design with SystemC. Kluwer Academic Publishers, Boston, hardcover

edition, 2002.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualiza-

tion system and its applications to software engineering. Software –

Practice and Experience, 30(11):1203–1233, 2000.

[gnu] Gnuplot. Information Available on the World Wide Web at:

http://www.gnuplot.info/.

[GNVV04] Zhi Guo, Walid Najjar, Frank Vahid, and Kees Vissers. A quantitative

analysis of the speedup factors of fpgas over processors. In FPGA ’04:

Proceedings of the 2004 ACM/SIGDA 12th international symposium

on Field programmable gate arrays, pages 162–170, New York, NY,

USA, 2004. ACM Press.

[Gri04] Matthias Gries. Methods for evaluating and covering the design space

during early design development. Integration, the VLSI Journal, El-

sevier, 38(2):131–183, December 2004.

[GZD+00] Daniel D. Gajski, Jianwen Zhu, Rainer Dmer, Andreas Gerstlauer, and

Shuqing Zhao. SPEC C: Specification language and design methodol-

ogy. Kluwer academic publishers, Boston, MA, March 2000. ISBN

0-7923-7822-9.

[HAA+96] Mary W. Hall, Jennifer M. Anderson, Saman P. Amarasinghe,

Brian R. Murphy, Shih-Wei Liao, Edouard Bugnion, and Monica S.

BIBLIOGRAPHY 177

Lam. Maximizing multiprocessor performance with the suif compiler.

Computer, 29(12):84–89, 1996.

[Har01] R. Hartenstein. A decade of reconfigurable computing: A visionary

retrospective. In DATE ’01: Proceedings of the conference on Design,

automation and test in Europe, pages 642–649, Piscataway, NJ, USA,

2001. IEEE Press.

[Har04] Reiner Hartenstein. The digital divide of computing. In CF’04: Pro-

ceedings of the first conference on computing frontiers on Computing

frontiers, pages 357–362, New York, NY, USA, 2004. ACM Press.

[Him95] Michael Himsolt. Gml: A portable graph file format. Informa-

tion Available on the World Wide Web at: http://infosun.fmi.uni-

passau.de/Graphlet/GML/, 1995.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communica-

tions of the ACM, 21(8):666–677, 1978.

[HR97] M. J. Harrold and G. Rothermel. Aristotle: A system for research on

and development of program analysis based tools. Technical Report

OSU-CISRC-3/97-TR17, The Ohio State University, March 1997.

[JHK+05] Alex K. Jones, Raymond Hoare, Dara Kusic, Joshua Fazekas, and John

Foster. An fpga-based vliw processor with custom hardware execution.

In FPGA ’05: Proceedings of the 2005 ACM/SIGDA 13th interna-

tional symposium on Field-programmable gate arrays, pages 107–117,

New York, NY, USA, 2005. ACM Press.

[KBP+04] Sami Khawam, Sajid Baloch, Arjun Pai, Imran Ahmed, Nizamettin

Aydin, Tughrul Arslan, and Fred Westall. Efficient implementations of

mobile video computations on domain-specific reconfigurable arrays.

In DATE ’04: Proceedings of the conference on Design, automation

and test in Europe, page 21230, Washington, DC, USA, 2004. IEEE

Computer Society.

BIBLIOGRAPHY 178

[KKP99] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile networking

for smart dust. In ACM/IEEE Intl. Conf. on Mobile Computing and

Networking, pages 17–19, Seattle, WA, August 1999.

[Kri98] Jens Krinke. Static slicing of threaded programs. In Proc. ACM SIG-

PLAN/SIGFSOFT Workshop on Program Analysis for Software Tools

and Engineering (PASTE’98), pages 35–42, Montreal, Canada, June

1998. ACM SIGPLAN Notices 33(7).

[LA93] Panos E. Livadas and Scott D. Alden. A toolset for program under-

standing. In Bruno Fadini and Vaclav Rajlich, editors, Proceedings of

the IEEE Second Workshop on Program Comprehension, pages 110–

118, 1993.

[LB04] John Lach and Kia Bazargan. Editorial: Special issue on dynamically

adaptable embedded systems. Trans. on Embedded Computing Sys.,

3(2):233–236, 2004.

[LCH00] Zhiyuan Li, Katherine Compton, and Scott Hauck. Configuration

caching management techniques for reconfigurable computing. In

Field-Programmable Custom Computing Machines, 2000 IEEE Sym-

posium on, pages 22–36, Napa, California, April 2000.

[LSR03] Suet-Fei Li, Roy Sutton, and Jan Rabaey. Low power operating system

for heterogeneous wireless communication system. In Luca Benini,

editor, Compilers and Operating Systems for Low Power, pages 1–16.

Kluwer Academic Publishing, Norwell, MA, 2003.

[LZ05] Edward A. Lee and Haiyang Zheng. Operational semantics of hy-

brid systems. In Manfred Morari and Lothar Thiele, editors, Hybrid

Systems: Computation and Control: 8th International Workshop, vol-

ume 3414 / 2005, pages 25–53, Zurich, Switzerland, March 9-11 2005.

Springer-Verlag GmbH.

[MD04] Binu Mathew and Al Davis. A loop accelerator for low power em-

bedded vliw processors. In CODES+ISSS ’04: Proceedings of the

2nd IEEE/ACM/IFIP international conference on Hardware/software

BIBLIOGRAPHY 179

codesign and system synthesis, pages 6–11, New York, NY, USA, 2004.

ACM Press.

[NB02] Juanjo Noguera and Rosa M. Badia. Dynamic run-time hw/sw

scheduling techniques for reconfigurable architectures. In CODES ’02:

Proceedings of the tenth international symposium on Hardware/soft-

ware codesign, pages 205–210, New York, NY, USA, 2002. ACM Press.

[NR95] Kelvin D. Nilsen and Bernt Rygg. Worst-case execution time analysis

on modern processors. In LCTES ’95: Proceedings of the ACM SIG-

PLAN 1995 workshop on Languages, compilers, & tools for real-time

systems, pages 20–30, New York, NY, USA, 1995. ACM Press.

[Ous90] John Ousterhout. Tcl: An embeddable command language. In Pro-

ceedings of the 1990 Winter USENIX Conference, pages 133–146,

1990.

[Ous91] John Ousterhout. An x11 toolkit based on the tcl language. In Proceed-

ings of the 1991 Winter USENIX Conference, pages 105–115, 1991.

[OZD+03] Vojin G. Oklobdzija, Bart R. Zeydel, Hoang Dao, Sanu Mathew, and

Ram Krishnamurthy. Energy-delay estimation technique for high-

performance microprocessor vlsi adders. In ARITH ’03: Proceedings of

the 16th IEEE Symposium on Computer Arithmetic (ARITH-16’03),

page 272, Washington, DC, USA, 2003. IEEE Computer Society.

[PKB99] K. S. J. Pister, J. M. Kahn, and B. E. Boser. Smart dust: Wire-

less networks of millimeter-scale sensor nodes. Electronics Research

Laboratory Research Summary, 1999.

[PKK97] Miodrag Potkonjak, Kyosun Kim, and Ramesh Karri. Methodology for

behavioral synthesis-based algorithm-level design space exploration:

Dct case study. In DAC ’97: Proceedings of the 34th annual conference

on Design automation, pages 252–257, New York, NY, USA, 1997.

ACM Press.

[PMC03] Antti Pelkonen, Kostas Masselos, and Miroslav Cupk. System-level

modeling of dynamically reconfigurable hardware with systemc. In

BIBLIOGRAPHY 180

IPDPS ’03: Proceedings of the 17th International Symposium on Par-

allel and Distributed Processing, page 174.2, Washington, DC, USA,

2003. IEEE Computer Society.

[RCHP91] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. Fast prototyping of

datapath-intensive architectures. IEEE Design and Test of Computers,

8(2):40–51, June 1991.

[Rec04] W3C Recommendation. Extensible markup language. Information

Available on the World Wide Web at: http://www.w3.org/XML/,

February 2004.

[RVN02] Tero Rissa, Milan Vasilko, and Jarkko Niittylahti. System-level mod-

elling and implementation technique for run-time reconfigurable sys-

tems. In 10th Annual IEEE Symposium on Field-Programmable Cus-

tom Computing Machines, pages 295–296, Napa, California, Septem-

ber 2002. IEEE Computer Society.

[SC04] Lesley Shannon and Paul Chow. Using reconfigurability to achieve

real-time profiling for hardware/software codesign. In FPGA ’04: Pro-

ceedings of the 2004 ACM/SIGDA 12th international symposium on

Field programmable gate arrays, pages 190–199, New York, NY, USA,

2004. ACM Press.

[Sie] Jeremy Siek. Boost graph library. Information Available on the World

Wide Web at: http://www.boost.org.

[SL99] Jeremy G. Siek and Andrew Lumsdaine. The matrix template library:

Generic components for high-performance scientific computing. Com-

puting in Science and Engineering, 1(6):70–78, November/December

1999.

[SRB01] Chris Savarese, Jan M. Rabaey, and Jan Beutel. Locationing in dis-

tributed ad-hoc wireless sensor networks. In International Conference

on Acoustics, Speech,and Signal Processing (ICASSP), Salt Lake City,

Utah, May 2001.

BIBLIOGRAPHY 181

[SS05] Alireza Shoa and Shahram Shirani. Run-time reconfigurable systems

for digital signal processing applications: A survey. J. VLSI Signal

Process. Syst., 39(3):213–235, 2005.

[SSR98] Roy A. Sutton, Vason P. Srini, and Jan M. Rabaey. A multiproces-

sor dsp system using paddi-2. In 35th annual conference on Design

automation, volume 00, pages 62–65, June 1998.

[Sut98] Roy A. Sutton. An infopad basestation interface using ansi/ieee 488.1-

1987. Master’s thesis, University of California, Berkeley, 1998.

[sys] The open systemc initiative. Information Available on the World Wide

Web at: http://www.systemc.org/.

[TB01] Russell Tessier and Wayne Burleson. Reconfigurable computing for

digital signal processing: A survey. J. VLSI Signal Process. Syst.,

28(1-2):7–27, 2001.

[Wan01] Marlene Wan. Design methodology for low power heterogeneous recon-

figurable digital signal processors. PhD thesis, University of California,

Berkeley, 2001.

[xer] The apache software foundation xml project. Information Available

on the World Wide Web at: http://xml.apache.org/.

[Xil05] Xilinx. MPEG4 Simple Profile Decoder and Encoder Purchase Instruc-

tions, February 2005. Version 1.0.

[YJ05] Kaushik Ravindran Nadathur Satish Kurt Keutzer Yujia Jin,

Will Plishker. Soft multiprocessor systems for network applications.

Talk or presentation, February 2005.

[yWo] yWorks. A free java graph editor yed. Information Available on the

World Wide Web at: http://www.yworks.com.

[ZPG+00] Hui Zhang, Vandana Prabhu, Varghese George, Marlene Wan, Martin

Benes, Arthur Abnous, and Jan M. Rabaey. A 1-v heterogeneous

reconfigurable dsp ic for wireless baseband digital signal processing.

BIBLIOGRAPHY 182

IEEE Journal on Solid State Circuits, 35(11):1697–1704, November

2000.

[ZPTB99] Ning Zhang, Ada Poon, David Tse, and Robert Brodersen. Trade-

offs of performance and single chip implementation of indoor wire-

less multi-access receivers. Available on the World Wide Web at

http://bwrc.eecs.berkeley.edu/Publications/1999/

tradeoffs performance singlechip implement/index.htm, 1999.

[ZSGR01] Lizhi Charlie Zhong, Rahul Shah, Chunlong Guo, and Jan Rabaey. An

ultra-low power and distributed access protocol for broadband wireless

sensor networks. In IEEE Broadband Wireless Summit, Las Vegas,

N.V., May 2001.

183

Appendix A

Terminology

Algorithm Mapping: the act of assigning a subset of a coded algorithm to

physical hardware resources that will carry out the computation.

Candidate (mapping): one or more unique algorithm mappings that are log-

ically equivalent. That is to say, for some given set of inputs, each candidate

implements the same input-to-output behavior.

Dynamic Algorithm: not to be confused with self-modifying code, this term is

used to reference a growing group of DSP algorithms that operate within changing

environments. Changes such as competing and complimentary algorithm “stan-

dards,” triggered and sequential shifts in system-level algorithm kernel activity,

algorithmic computation effort sensitive to resource availability (or some other

use objective), and replicated behavior — instantiated on demand — coexisting

to share a given finite system resource.

Kernel: an identified region of an algorithm that has relatively higher compu-

tation requirements. Usually kernels are associated with iterative loops over rel-

atively small code regions and loosely translates to high repetition of structured

behavior.

184

Off-Line: relates to occurrences in system-time prior to the activation of a run-

time system-level management kernel responsible for the governance of input-to-

output behavior.

On-Line: relates to occurrences in system-time after the activation of a run-time

system-level management kernel responsible for the governance of input-to-output

behavior.

Reconfigurable Architecture: refers loosely to hardware architectures that

have functional units where one ore more may be “tailored” and/or the physical

interconnection between the aforementioned functional units can changed in a

run-time environment to suit dynamic algorithm behavior.

Task: a name given to a group of algorithm codes that perform some desired

sequence of operations.

Templated-Mapping: refers to a partial algorithm mapping that completely

specifies the behavioral form of the mappings — in terms of identified hardware

functional units and their required interconnection (the resources) — but defers

specific resource binding to a future point in time.

185

Appendix B

Design Environment Tutorial

This document describes the usage and input syntax of the Unix Vax-

11 assembler As. As is designed for assembling code produced by

the “C” compiler; certain concessions have been made to handle code

written directly by people, but in general little sympathy has been

extended. Berkeley Vax/Unix Assembler Reference Manual (1983).

T
his chapter presents an introduction to the structure, use, and expansion

of the design environment. With the exception of a brief introduction to

mapping templates, it does not cover the inner workings of the framework. Please

refer to chapters 3 and 4 for that discussion.

186

tt0

compute
operations

12770
g0

c0 c1 c2

reconfig
88320 ps

69 pj

compute
137706 ps

248374731609 fj

area
128202000

23

speed-up
7.42

activity
0.15

rt2

inst
250

area
5574000

config
words

48

reconfig
101200 ps
79063 fj

compute
107242 ps

527923176623 fj

area
241845000

23 23

speed-up
9.53

activity
0.17

rt3

inst
250

area
4848125

config
words

32

rt4

inst
250

area
5666875

config
words

23

reconfig
245760 ps

192 pj

compute
103337 ps

1056827933472 fj

area
426494625

28 25 25

speed-up
9.89

activity
0.19

rt0

inst
250

area
6018000

config
words

24

rt1

inst
250

area
4745625

config
words

48

rt2

inst
250

area
5574000

config
words

48

(a) Template example with some system property annotations

task
inst

task
type

group candidate ref
res

types
res
inst

(b) Computation mapping-level key

Figure B.1: A templated-mapping example

B.1. TEMPLATED-MAPPING 187

B.1 Templated-Mapping

The notion of a mapping template is a key feature that distinguishes this

research from other work. A template is the building block of a structure of can-

didates that contains one or more logically equivalent partial mappings of some

algorithm onto a target architecture. Figure B.1(a) shows an example of a tem-

plate, tt0, with three candidates c0, c1, and c2, with varying resource requirements.

Templates are mappings to resource types rather than specific resource instances.

For example, instantiation of candidate c0 requires 23 instances of resource rt2.

Templates are members of groups and a candidate-structure has one or more such

groups. In practice, templates within a grouping share some classification of sim-

ilarity. This example has one group named g0. The blue boxes in the diagram

are not part of the structure. They represent a set of system properties that are

relevant to a particular runtime management model.

Task instances, the components of the system algorithms, are mapped to task

types. There is a one-to-one bilateral mapping between task-types and candidates.

See figure B.1(b) for a key to the mapping relationships.

Candidates facilitate the development of efficient schemes for runtime man-

agement of resources in dynamic reconfigurable systems. The design approach

begins offline with, the decomposition of an algorithm into types. The algorithm

B.2. TOOL TYPES 188

behavior is then recomposed of instance references of the appropriate task types.

We call them task types and task instances. Additionally offline, the candidates

of templated-mappings are constructed for each task type. Later, online, an ap-

propriate templated-mapping is selected from amongst the candidates, guided by

some runtime optimization objectives. And finally the runtime scheme instanti-

ates a candidate by reserving the required resource types and resource instances.

Templates can be used to dynamically manage resources, trading performance

for flexibility in response to changes in the system algorithms and stimulus.

B.2 Tool Types

The design environment has been coded within a Unix-based operating system

[cyg] and should build under most modern versions with minimal modification. It

consists of a collection of tools in the categories as identified in table B.1(a) coded

in one or more of the languages as identified in table B.1(b). The tools operate

within database structures that is stored in a file system based hierarchy1. The

detail of these structures are presented in section B.4.

1At the beginning of this research, a file system based database scheme seemed adequate,
however, in hindsight, it clearly would have been advantageous to use a dedicated database
management system such as that presented in [Cas91].

B.3. DATA FORMATS 189

Table B.1: Design environment tool types

Category

Design tools

Analysis Tools

Graphical user interfaces

Visualization Rendering

Data format converters

Miscellaneous utilities

(a)

Language Programs Lines

C/C++ programs 8 29,891

JAVA programs 1 -na-

Tcl/Tk programs 5 7,639

GNUPlot scripts 12 747

Bash scripts 5 223

Makefiles 11 1,624

(b)

B.3 Data Formats

The internal representations for the design tools were structured using the

graph library presented in [SL99] and available at [Sie]. This library is a generic

template-based C++ graph component library. It support the association of arbi-

trary parameters to the coded graph structure. This works well in the development

of runtime management schemes that deal with various system properties.

At the heart of the design flow is a refinement process whereby appropriate

tools are applied to transform system representations into new forms that have

properties more like the target implementation. These tools communicate one

with another via the file formats identified in table B.2. Most notably are pub-

lic data formats .gml and .xml. The former is used to exchange graph-based

representations [Him95]. The latter is a popular public markup language for the

B.3. DATA FORMATS 190

Table B.2: Design environment file formats

Extension Owner Format Description

.csv public comma-separated values

.dat private simulation estimates raw data

.dot public graph rendering description language

.gml public graph modeling language

.gp public plot tool scripting language

.gpi private plot instance include file

.html public hypertext markup language

.idx private plot multi-simulation index file

.include private plot simulation name-mapping file

.mfropt private batch-run multi-simulation meta-file parameters

.osgenopt private scheduler cost generation parameters

.ps public postscript level-2 conforming

.ps2 public postscript with PDF annotations

.rcgenopt private architecture and candidates generation parameters

.tech private base technology data file

.tgffopt public computation task set generation parameters

.txt public Unix formatted plaint text file

.vcd public Vector change dump file

.xml public Extensible Markup Language

interchange of structured data [Rec04][xer]. It is a highly flexible scheme that

could replaced each of the other formats. However, this would have limited inter-

operability with other useful freely-available and open-source tools.

B.4. FILE STRUCTURE 191

B.4 File Structure

In the next several paragraphs, the components of the design environment

directory structure, the design database directory structure, and simulation data-

base directory structure are presented. These components are identified by num-

ber in figures B.2, B.3, and B.4. Corresponding numbers preceding each paragraph

where they are described.

1: The design environment root directory. A shell environment variable

$MANIFOLD should point to this location. This established the base reference

for relative addressing of other locations within the directory structure.

2, 3, 5, 6, and 7: The content of these directory sub-trees are as the names

suggest within the context of UNIX-based development project. They contain the

source code and executables for the tool components of the design environment.

4: An arbitrary name given to a sub-directory that has been established to

contain the environment evaluation databases.

8: Arbitrary names given to a design database (db1, db2, ... for example). Each

database contains a one or more groups of components that can be assembled into

systems that are evaluated via simulation.

9, 13, and 14: A location for the collection of elements common across data-

bases. For example, in 13 reside the Document Type Definition (DTD) files that

B.4. FILE STRUCTURE 192

manifold

1

bin

2

contrib

3

eval

4

include

5

lib

6

src

7

db1

8

db2

8

...

8

dbn

8

lib

9

...

...

...

...

...

...

...

...

...

...

...

...

Common

10

Parallel

11

...

11

Serial

11

Makefile

12

dtd

13

templates

14

Makefile

15

config

16

design

17

report

18

scripts

19

simulation

20

...

...

...

...

...

...

generate

21

run

22

meta-file
name

23
...

meta-file
name

23

mapp

24

rtos

25

task

26

tech

27

Figure B.2: Design environment directory structure

B.4. FILE STRUCTURE 193

defined the structure of the eXtensible Markup Language (XML) data file for-

mats used in the environment. In 14 reside a tree of templates structures used

throughout the design database sub-trees described in 8.

10: A tree containing components that are common across groups of a design

database. For example descriptions of, architectures, schedulers, or technology

can be placed here and subsequently referenced by other pier groups. A special

Makefile exist within this directory to manage the unique purpose of this database

group.

11: Arbitrary names given to design database groups.

12: A database-level Makefile that allows design database groups to be di-

rected collectively from one location. Here, the simulation control (generation,

compilation, simulation, report, etc.) of an all groups can be managed.

15: A group-level Makefile. This file encapsulates the design environment

tool invocation automation flow. It contains directives for representation trans-

formation, simulation, and evaluation. The function of this file is spread across

numerous other Makefiles that reside in the script sub-directory labeled 19. A

simulation run configuration file, or the so-called meta-file discussed below, is

parsed to specify a simulation. See listing B.1 for an example.

Listing B.1: A parsed simulation run metafile example

1 ###

2 # SIMULATION RUN META−FILE : (PARSED FROM CONFIG FILE) #

B.4. FILE STRUCTURE 194

3 ###

4 CONFIG FILE : c f =[con f i g /run/1 t a s k s s e l e c t a r c h . mfropt]

5

6 TASKS: [par s e r pas rnd]

7 ARCHITECTURES: [a123c4x+01]

8 TECHNOLOGIES: [StdCel l1Sp]

9 SCHEDULERS: [stdbegp1]

10 READY ORDER: [p r i+]

11 DONE ORDER: [p r i+]

12 CONFIG ORDER: [p r i+]

13 CONFIG SEARCH: [tt ime++]

14 ACTIVATIONS : [per]

15 DURATIONS: [don]

16

17 TGGEN OPTS: [−P]

18 RCGEN OPTS: [−P]

19 OSGEN OPTS: [−P]

20 CSV2HTML OPTS: [−−HRCount 2 −−mergeDupRows −−mergeDupDRColumns]

21 HTML2PS OPTS: [−f ${mani fo ld}/ l i b /html2ps / Letter −D −L]

22 OSSIM OPTS : [−−clusDoneCnt 3 −−hypIterCnt 10]

23 OSSIM OPTS : [−−abortAtMaxSimTime −−maxSimTimeMul 10]

24 OSSIM OPTS : [−−cycleCnt 10000000]

25 SIM OUT DIR : [. / s imulat i on /]

26

27 REPORT OUT DIR : [. / r epor t /]

28

29 s imulate : d i r e c t i v e con f i gu r a t i on opt i ons

30 run sim = yes , mi s s ing on ly = yes

31 pos t p r o c e s s = yes , compress out = yes

16: Within this tree reside the parameter files for case-study system generation

and simulation automation described next.

21 and 24-27: this directory tree contains configuration files that are used by

a collection of tools that generate system design components from parameterized

descriptions.

22: This directory contains simulation run meta-files that automate the process

of design exploration. It uses a simple scheme for enumerating system component

B.4. FILE STRUCTURE 195

design

17

rtos

28

rtos_config

29

rtos_resource

30

stats

31

task

32

task_config

33

task_resource

34

meta-file
name

23
...

meta-file
name

23

rtos_type

35

task_type

36

Figure B.3: Design database directory structure

and specifying designed tool options. Using this simple language, automatic eval-

uation can be performed across structured combinations of the design components

with controlled variation of design tool options.

18 and 23: The reports located at this location are of simulation results

compared across the runs specified in a meta-file. Several tools work together to

extract, aggregate, and render viewable forms of numerous reports. With minimal

effort, new reports can easily be incorporated to the automated flow. Reports are

organized by meta-file name in 23.

17: Each database group has a design directory sub-tree, see figure B.3, that

organizes the component objects that can be composed into a system for evalua-

B.4. FILE STRUCTURE 196

tion; namely schedulers, algorithm “tasks”, candidate architecture mappings, and

architecture resources. These objects are reside here.

28 and 32: The structure of schedulers (RTOS) and system algorithms (tasks)

reside here. This includes, among others, a graph-base description, an executable

specification with a model of the algorithm, stimulus, and performance con-

straints. The framework can incorporate high-level estimates or cycle accurate

implementations. Multiple levels of abstraction may be used concurrently to de-

scribe different system components as desired.

29 and 33: In this research, the notion of candidates and templated archi-

tecture mappings is proposed. The candidates reside here. This includes the

template structure itself and any properties relevant for a run-time management

scheme.

30 and 34: The descriptions of architecture resources are stored here. This

includes resource types, instances, and any properties relevant for a run-time

management scheme. (for example, properties might include standby energy, a

specification of instance coordinates, etc.).

31, 35, and 36: To assist in the interpretation of results during evaluation of

parameterized component generation, several tools have been developed to gener-

ate comparative summaries across the components specified in a simulation run

B.4. FILE STRUCTURE 197

simulation

20

bin

37

output

38

meta-file
name

23
...

meta-file
name

23

simulation run
name

39
...

simulation run
name

39

dat

40

datPost

41

dot

42

dotTask

43

dotTaskType

44

simout.txt

45

simout.vcd

46

simsum.txt

47

Figure B.4: Simulation results directory structure

meta-file. The compiled statistical summaries are organized within this sub-tree.

20: Tasks, architectures, candidates, schedulers, scheduler objectives, simula-

tion options, and a based technology file are presented in concert to the design

environment simulator forming a simulation run. The results of simulation are

stored within the tree shown in figure B.4.

37: Due to limitations of the high-level modeling language [GLMS02][sys]

upon which the simulator is built2, a separate executable binary is created for

2Some initial effort was expended to work around the lack of dynamic process creation in
System C 2.0 with some success. Since it is an open source C++ library, extension is possible.

B.4. FILE STRUCTURE 198

each algorithm task set. These binaries are placed here. As it turns out, this

scheme has the unintended benefit of supporting more general C++-based system

models that are refinable and executable.

38 and 39: The outputs of each simulation run, as specified by a meta-file,

are stored, grouped by meta-file name, under 38 and 23. The specific compo-

nents that are to participate in the simulation run, as described above in 20, are

aggregated to create the simulation run names at location 39.

40-44: Within the simulator, there are routines to query, extract, and record-

to-file internal data representations of interest. A framework exist that facilitates

the construction of queries. In 40-44, a set of standard queries are performed and

recorded as discussed next.

40 and 41: Simulation internal data representations are recorded here and

subsequently processed into charts. Post-simulation analysis routines can be regis-

tered with the simulator and invoked after simulation. These routines use location

41 to record results.

42, 43, and 44: Simulation internal graph representations can be queried

as described two paragraphs above. These results are subsequently transformed

into more print-friendly versions. In 42, general system graphs are written. The

However, the path to separate binaries presented significantly less resistance without any loss
toward the goals of this research.

B.4. FILE STRUCTURE 199

graphs for algorithm task instances and task types are recorded to 43 and 44,

respectively.

45: The step-by-step cycle-based detailed operations of each simulation is

recorded to text file. Macros are provided to encourage consistent record for-

matting across different simulator functionality. This facilitates the development

of Pre- and Post-simulation optimization/analysis functions and system manage-

ment routines with consistent time-annotated record of events.

46: System state variables may be registered so that they will be recorded to

a vector change dump file (VCD). With this interface, the states of all registered

variables are recorded whenever there is a state change in any system variable.

This public format is efficient in that only differential changes are recorded and

it therefore yields a compact time-annotated history of system state transition.

Moreover, numerous freely distributed tools are available to analyze these files

structures.

47: In addition to composing the chart data in 41, the registered post-

simulation analysis routines may also write text base summaries to file like the

one identified here.

B.5. TOOLS 200

Table B.3: Design environment command line tools

Name Description

tggen Algorithm task graph generation.

rcgen Architecture and candidates generation.

osgen Scheduler costs estimates generation.

vgagen Heterogeneous multi-grain architecture family generation.

ossim System simulator (see synopsis in Listing B.2).

B.5 Tools

The design environment text-base tools, mostly written in C++, are sum-

marized in table B.3. Each is self documenting (via: tool name --help) with

a parameterized command line interfaces. Each are discussed in the following

paragraphs.

osgen: This tool has been developed to facilitate the process of generating

high-level cost estimates for systems schedulers within the proposed framework.

A parameter file is used to: (1) Characterize the architectural resources available

to schedulers. (2) Describe how schedulers make use of these resources. And, (3)

provide technology independent cost estimates for the relationship between the

two. This tool refines the scheduler model into representations that are meaningful

for the simulator.

tggen: This tool has its roots in another program [DRW98] whose purpose

B.5. TOOLS 201

is similar. The task graph generation functionality of this program has been

extended to support cluster — both types and instances — and has been heavily

modified to (1) automatically generate C++ executable models that fit within

the design environment framework, and to (2) produce additional intermediate

formats for visualization post processing using the techniques presented in [GN00].

For an example of the C++ code generated by tggen to model stimulus and task

behavior see the listings B.3 and B.4. As with the other generation tools, task

sets are described using parameter text files3.

rcgen: Parameterized architectural model are processed by this tool. These

parameter files are divided into three sections. In the first are parameters that

model architecture gate topology for both configuration and computation struc-

tures. In the second section are parameters that control stochastic generation

of resources — types, instances, area, and other properties of interest to a run-

time scheme. The last section has parameters that drive stochastic generation of

candidate templates for each task type in the system.

vgagen: This tool was written to generate structured sets of architecture pa-

rameter files that may be subsequently refined by rcgen. It attempts to model

the complex relationships within an architecture and between one and its use.

Specifically, it focuses on (1) the relationships that exist between gate topology

3The parameter naming scheme found here differs substantially from that of the others gen-
eration tools since the naming originated with the work of others.

B.5. TOOLS 202

and its impact on resource structures, and (2) the relationship that exist between

these resources, and their use by algorithms. In essence, this tool generates a set

of architectures, using a first-order model of the relationships (1) and (2) assuming

some fixed overall gate count for each architecture in the set.

ossim: This, the system simulator is, by far, the most complex piece of code

developed for this designed environment. It has a highly flexible interface, see

listing B.2. As described in the listing synopsis, it is a simulator for high-level per-

formance estimation of dynamic reconfigurable digital signal processing systems.

Command line arguments exist to specify the system algorithms, architecture,

base-technology, schedulers, scheduler objectives, input stimulus, and simulation

control options.

Listing B.2: Simulator command line synopsis

1

2 USAGE:

3

4 . / oss im −s <name s t r i ng> −m <name s t r i ng> −p <name s t r i ng > [−d

5 <d i r e c t o r y name s t r i ng >] [−x <d i r e c t o r y name s t r i ng >] [−o <d i r e c t o r y

6 name s t r i ng >] [−−schTPFready <pr ed i ca t e f unc t i on name>] [−−schTPFconfig

7 <pr ed i ca t e f unc t i on name>] [−−schTPFdone <pr ed i ca t e f unc t i on name>]

8 [−−schCPFsearch <ob j e c t i v e f unc t i on name>] [−a <one o f (per | rwd)>] [− r

9 <one o f (cyc | hyp | don)>] [−c < i n t e g e r count (>0)>] [−−clusDoneCnt

10 < i n t e g e r count (>0)>] [−−hypIterCnt < i n t e g e r count (>0)>]

11 [−−maxSimTimeMul < i n t e g e r mu l t i p l i e r (>=1)>] [−−abortAtMaxSimTime]

12 [−−hypPerExt] [− l < i n t e g e r in (0−100)>] [−−] [−v] [−h]

13

14

15 Where :

16

17 −s <name s t r i ng >, −−schName <name s t r i ng>

18 (r equ i r ed) (value r equ i r ed) s chedu l e r name

19

20 −m <name s t r i ng >, −−mappName <name s t r i ng>

21 (r equ i r ed) (value r equ i r ed) a r c h i t e c t u r e name

B.5. TOOLS 203

22

23 −p <name s t r i ng >, −−techName <name s t r i ng>

24 (r equ i r ed) (value r equ i r ed) technology name

25

26 −d <d i r e c t o r y name s t r i ng >, −−des i gnDi r <d i r e c t o r y name s t r i ng>

27 (value r equ i r ed) des i gn d i r e c to r y

28

29 −x <d i r e c t o r y name s t r i ng >, −−dtdDir <d i r e c t o r y name s t r i ng>

30 (value r equ i r ed) XML DTD di r e c t o r y

31

32 −o <d i r e c t o r y name s t r i ng >, −−simOutDir <d i r e c t o r y name s t r i ng>

33 (value r equ i r ed) s imulat i on output d i r e c to r y

34

35 −−stimBaseDir <d i r e c t o r y name s t r i ng>

36 (value r equ i r ed) s imulat i on s t imulus input base d i r e c to r y

37

38 −−schTPFready <pr ed i ca t e f unc t i on name>

39 (value r equ i r ed) s chedu l e r task order ing p r ed i ca t e f unc t i on f o r ready

40 tasks

41

42 −−schTPFconfig <pr ed i ca t e f unc t i on name>

43 (value r equ i r ed) s chedu l e r task order ing p r ed i ca t e f unc t i on f o r

44 con f i gu r a t i on tasks

45

46 −−schTPFdone <pr ed i ca t e f unc t i on name>

47 (value r equ i r ed) s chedu l e r task order ing p r ed i ca t e f unc t i on f o r done

48 tasks

49

50 −−schCPFsearch <ob j e c t i v e f unc t i on name>

51 (value r equ i r ed) s chedu l e r candidate con f i gu r a t i on sear ch ob j e c t i v e

52 f unc t i on

53

54 −a <one o f (per | rwd)> , −−cluActMethod <one o f (per | rwd)>

55 (value r equ i r ed) c l u s t e r input s t imulous a c t i v a t i o n model

56

57 −r <one o f (cyc | hyp | don)> , −−simDurMethod <one o f (cyc | hyp | don)>

58 (value r equ i r ed) s imulat i on durat ion / terminat i on scheme

59

60 −c < i n t e g e r count (>0)> , −−cycleCnt < i n t e g e r count (>0)>

61 (value r equ i r ed) cyc l e count f o r (cyc)−based scheme

62

63 −−clusDoneCnt < i n t e g e r count (>0)>

64 (value r equ i r ed) c l u s t e r complet ion count f o r (don)−based scheme

65

66 −−hypIterCnt < i n t e g e r count (>0)>

67 (value r equ i r ed) hyper per i od i t e r a t i o n s f o r (hyp)−based scheme

68

69 −−maxSimTimeMul < i n t e g e r mu l t i p l i e r (>=1)>

70 (value r equ i r ed) maximum s imulat i on time mu l t i p l i e r f o r abort monitor

71

72 −−abortAtMaxSimTime

B.5. TOOLS 204

73 abort monitor te rminates s imulat i on i f time l im i t i s reached

74

75 −−hypPerExt

76 extend hyper per i od by delay o f l a t e s t c l u s t e r s t a r t

77

78 − l < i n t e g e r in (0−100)> , −−ve rbo s i ty < i n t e g e r in (0−100)>

79 (value r equ i r ed) output ve r bo s i ty l e v e l

80

81 −−, −− i g n o r e r e s t

82 Ignor es the r e s t o f the l abe l ed arguments f o l l ow i ng t h i s f l a g .

83

84 −v , −−ve r s i on

85 Disp lays ve r s i on in f ormat i on and e x i t s .

86

87 −h , −−help

88 Disp lays usage in format i on and ex i t s .

89

90

91 SYNOPSIS: A candidate−c e n t r i c s imulator f o r high− l e v e l performance

92 es t imat i on o f dynamic r e c on f i g u r ab l e DSP systems . Command l i n e arguments

93 e x i s t to s p e c i f y the system algor i thms , a r ch i t e c tu r e , base−technology ,

94 s chedu l e r s , s chedu l e r ob j e c t i v e s , and s imulat i on con t r o l opt i ons .

Although the core design tools are command-line based, a collection of Tck-

/Tk [Ous90]/[Ous91] graphical user interface front ends have been developed to

manage the design flow and large data sets that result from case-study design

generation and simulation4. Snapshots of these graphical front ends are shown in

figure B.5(a)-(d) and are discussed in the next several paragraphs. For each in-

terface, irrelevant operations, within various contexts of the flow, remain ghosted

until they become relevant.

mdm: The (manifold) design manager, shown in figure B.5(a), is a graphical

interface that provides the main starting point to select the a working group of

4For example, for a system of st scheduler types, si scheduler instances, tt task types, and
ti task instances, fn = 4 × (st + si + tt + ti + 1) + 42 files are produced during each simulation
run in the base-case setup for analysis and report generation.

B.5. TOOLS 205

(a) Design manager (b) Component generation

(c) Simulation batch run (d) Multi-run evaluation

Figure B.5: Design-flow graphical user interfaces

B.5. TOOLS 206

a design database (see 17 above). It maintains a description of each group and

provides shortcuts to launch other tools.

mdm comp: The component designer, shown in figure B.5(b), is a graphical

interface that orchestrates system object generation. Algorithm task sets, sched-

ulers, and architectures, may be generated from parameterized descriptions. This

facilitates empirical study of basic relationships in dynamic reconfigurables. This

tool manages the creation of component parameter files and their compilation into

other representations. Architecture generation for both the task sets and sched-

ulers use a common technology file where based costs in time, energy, and area

are established.

mdm batch: Each simulation can be run directly from an interactive shell.

However, a quick look at the simulator command line synopsis in listing B.2 and

it is obvious that this strategy would be tedious and error prone. Inasmuch, a

simulation run meta-file scheme has been established, as described prior in section

B.4 (see listing B.1), that allows multiple runs to be submitted in batch. This

user interface, shown in figure B.5(c), manages the creation of these meta-files.

It also may be used to generate the components, compile the executable models,

and perform each simulation run specified within a selected meta-file. Subse-

quent to simulation, various text-base and chart-based reports may be generated

from respectively named menus. The design database and simulation results are

B.5. TOOLS 207

presented using a hierarchal tree representation with expandable and collapsible

nodes. Objects within each tree have multiple representations. The setup menu

provides control over the component views presented in these trees.

mdm eval: To help expose relationships across simulation sets, the evaluation

graphical interface, shown in figure B.5(d), has been developed. It drives the tools

that aggregates and process data across multiple stimulation runs for comparison

purpose. A setup menu allows selection of component views as described in the

preceding paragraph. The component, batch run, and evaluation graphical inter-

face each use output logs that detail each step of the exploration process. These

logs are often invaluable records of an exploration path and may be saved to text

files for future reference.

One of the big challenges in the development of any simulation-based designed

environments is the “capture” of meaningful system descriptions and the exposure

and evaluation of the complex, often latent, relationships hiding in the resulting

data. Both of these problems are outside of the scope of this research but essential

to its practical success. Two open-source graphical tools were selected to provide

this functionality. A synopsis of these tools follows.

Yed: Is a free Java graph editor application from [yWo], shown in figure B.6(a),

that provides sophisticated and well behaved layout and/of visualization function-

ality for graph-based data structures. It can read and write graph representations

B.5. TOOLS 208

(a) yEd: Component designer

(b) GTKWave: Vector change dump analysis

Figure B.6: Graphical tools from other sources

B.6. REPORTS 209

in various formats including the public .gml format used in this environment.

GTKWave: Is a mature feature rich waveform viewer written by [Byb] that

is open source and supports numerous data formats including the popular vector

change dump format (VCD). It is shown in figure B.6(b), and is very useful during

the analysis of system timing behavior.

B.6 Reports

To provide feedback during design exploration, notable effort went toward the

development of mechanisms for report generation in the design flow. Inasmuch,

the tools of the environment, most importantly, the simulator, have been devel-

oped in a manor that facilitates the extraction of structures, static state, and

dynamic state from internal representations of system objects.

The design environment currently has reports implemented within the five

categories presented in table B.45. Reports are generated on a per-simulation and

multi-simulation bases. Additional reports flows may be implemented as discussed

in the next few paragraphs.

“Well behaved” routines within the framework make use of standard mecha-

5Graph reports for system component types and instances are produced during each simula-
tion. Therefore this report category count varies with each system.

B.6. REPORTS 210

Table B.4: Implemented report flows

Report Simulation

Category Single-run Batch-run

Text 2 27

Chart 11 8

Graph 7+ —

nisms for text-based output logging. These mechanisms establish the structure

that is later relied upon during the creation of text-based reports. Routines reg-

ister unique names and use these names to submit text message logging requests.

The names, along with other relevant information — such as current simulation

time — are recorded using a standard format to a simulation log files, see (45)(47)

of figure B.4.

The simulator has a reporting framework that includes data structures for

use in specifying (1) the desired set of system objects, search schemes, and (2)

the report-dependent properties that configure how these objects are presented,

style schemes. Functions are developed that assist in the population of these

data structures. Sets of objects can be specified by ID, name, range, type, for

example to complete (1). And groups of standard report properties are specified

and assigned names to complete (2). Of course, both can be completed directly

should more fine-level control be desired, at the cost of increased coding effort.

With this framework, data extraction is expressed as {searchscheme, stylescheme}

B.7. FRAMEWORK EXPANSION 211

and one could, for example, request a view of the internal data representations

for “the scheduler tasks objects using the fully decorated report view style” to be

gathered and written to a file. This step produces an intermediate file, currently

either .dat or .dot, that is subsequently processed for visualization. Makefiles

and scripts are used to sequence this post-processing.

The environment makes use of a freely available graphing tool [gnu] to render

charts. This tool is highly configurable and has a rich scripting language that

allows data to be rendered in many forms and styles. It is a good fit for the chart

based visualization of static data sets produced by the design flow. Examples

of these charts are presented in figures B.7(a)-(f). Graph reporting proceeds in

similar fashion, except that the sets of specified system objects are written in

a format that maintains the graphical relationships between the objects. The

environment makes use of [GN00] to render graphs. Examples of these graphs are

presented in figures B.8(a)-(e).

B.7 Framework Expansion

Expansion of the framework typically falls in one or more of the following four

categories. (1) Customized stimulus models. (2) Customized task sets. (3) Cus-

tomize system management schemes — schedulers and the like. (4) Attachment

B.7. FRAMEWORK EXPANSION 212

(a) Candidate costs estimates (b) Task instance performance

(c) Utilization traces (d) Aggregate cost breakdown

(e) Timing metric summaries (f) Performance quality measures

Figure B.7: Chart report examples

B.7. FRAMEWORK EXPANSION 213

t0
(tt2)

t1
(tt1)

t2
(tt2)

t6
(tt2)

t3
(tt0)

t4
(tt2)

dl0 (soft)
15894.8 ns

t5
(tt2)

t7
(tt0)

dl1 (hard)
28581.5 ns

dl2 (soft)
14982.3 ns

t0
(tt2)

t1
(tt1)

t2
(tt2)

t6
(tt2)

t3
(tt0)

t4
(tt2)

dl0 (soft)
15894.8 ns

t5
(tt2)

t7
(tt0)

dl1 (hard)
28581.5 ns

dl2 (soft)
14982.3 ns

t0
(tt0)

t1
(tt2)

t2
(tt2)

t3
(tt1)

t5
(tt1)

t6
(tt0)

t4
(tt0)

t7
(tt1)

t8
(tt2)

dl0 (hard)
37501.8 ns

(a) Algorithm task graph

rt7

rt6

rt5

rt4

rt3

rt2

rt1

rt0

(b)

idle

idle

*

*

0

*

rtos.schedule

schedule

*

message done blocked ready dispatch

1

sch

1 1 1 1

(c) System management scheduler

ct0.ci0.t0

tt2

g0

c0c1 c2c3

21

rt4rt6

4 22

rt3rt7

4

rt1

45

rt2

ct0.ci0.t1

tt0

g0

c0 c1c2 c3

3

rt5

4 5

rt0

1 23 442

ct0.ci0.t2 ct0.ci0.t3 ct0.ci0.t4ct0.ci0.t5 ct1.ci0.t0

tt1

g0

c0c1c2 c3

2 555 4

ct1.ci0.t1 ct1.ci0.t2 ct1.ci0.t3 ct1.ci0.t4ct1.ci0.t5

(d) Candidate-centric view of task instance to resource type mapping

task1.ct0.ci0.t0

priority = 14

deadline
4191010 ps

Hard

selTime
OnLine

selType
Dynamic

status
idle

selected
false

selGroup
none

selConfig
none

reconfig
1 iter

61760 ps
7720 pj

compute
5 iter

173675 ps
1573630140 fj

area
1050000

response
(275977 ps, 601920 ps)

341395 ps avg

active
235435 ps

0.0150693% st

delay
1942411 ps

0.124326% st

0 misDLS

0 misDLH

tt2

refs
5

mode

off

on

sta

0

0

dyn

0

5

reconfig
5 iter

308800 ps
38600 pj

compute
25 iter

868375 ps
7868150700 fj

area
5250000

response
(195510 ps, 834240 ps)

313392 ps avg

active
1177175 ps

0.0753465% st

delay
9011967 ps

0.576822% st

0 misDLS

0 misDLH

g0

c0 c1 c2

allocTime
OnLine

allocType
Dynamic

reconfig
48800 ps
6100 pj

compute
79369 ps

214874371 fj

area
139125

config
false

reconfig
0 iter
0 s
0 j

compute
0 iter
0 s
0 j

area
0

response
(0 s, 0 s)
0 s avg

active
0 s

0% st

delay
0 s

0% st

0 misDLS

0 misDLH

21

alloc
false

rt4

standBy
0 j/s

alloc
5 / 5

refs
35

mode

off

on

sta

0

0

dyn

0

35

standBY
0 iter
0 s
0 j

util
0 s

0% st

alloc
false

rt6

standBy
0 j/s

alloc
0 / 5

refs
29

mode

off

on

sta

0

0

dyn

0

29

standBY
0 iter
0 s
0 j

util
0 s

0% st

allocTime
OnLine

allocType
Dynamic

reconfig
132 ns

16500 pj

compute
33964 ps

579308338 fj

area
402250

config
false

reconfig
0 iter
0 s
0 j

compute
0 iter
0 s
0 j

area
0

response
(0 s, 0 s)
0 s avg

active
0 s

0% st

delay
0 s

0% st

0 misDLS

0 misDLH

42 2

alloc
false

rt3

standBy
0 j/s

alloc
2 / 7

refs
87

mode

off

on

sta

0

0

dyn

0

87

standBY
0 iter
0 s
0 j

util
0 s

0% st

alloc
false

alloc
false

rt7

standBy
0 j/s

alloc
0 / 10

refs
30

mode

off

on

sta

0

0

dyn

0

30

standBY
0 iter
0 s
0 j

util
0 s

0% st

allocTime
OnLine

allocType
Dynamic

reconfig
61760 ps
7720 pj

compute
34735 ps

314726028 fj

area
210000

config
false

reconfig
1 iter

61760 ps
7720 pj

compute
5 iter

173675 ps
1573630140 fj

area
1050000

response
(275977 ps, 601920 ps)

341395 ps avg

active
235435 ps

0.0150693% st

delay
1942411 ps

0.124326% st

0 misDLS

0 misDLH

4

alloc
false

rt1

standBy
0 j/s

alloc
12 / 15

refs
32

mode

off

on

sta

0

0

dyn

0

32

standBY
0 iter
0 s
0 j

util
0 s

0% st

(e) A task instance and its template, decorated with properties for runtime management.

Figure B.8: Graph report examples

B.7. FRAMEWORK EXPANSION 214

of additional properties to system objects.

Properties may be attached to tasks, candidates, resources, etc. to provide

increased awareness/scope for new management schemes. These properties may

then be evaluated and manipulated as desired within the framework. For example,

the registered routines for pre-simulation and post-simulation analysis, in addition

to the management initialization and runtime code, are within the scope of these

system object properties.

The current management scheme implements object properties that fall into

one of the following categories: parameters, state, costs, and metrics (where the

latter two are specific forms of the former two, respectively).

B.7.1 Stimulus Modeling

Stimulus is implemented as a separate task or collection of tasks. Each cluster6

within a system of tasks has its own stimulus. According to some desired data

pattern behavior, the stimulus “activates” one more tasks within its cluster using

the mechanisms of the implemented model of computation. There is no other

constraint on how stimulus models are constructed. Data can be read from a file

or generated using some algorithm. An example stimulus task is shown in listing

6A cluster contains one or more graphs and essentially adds a level of hierarchy and/or
abstraction to algorithm composition.

B.7. FRAMEWORK EXPANSION 215

Listing B.3: Stimulus function modeling example

1 // ///

2 // c l u s t e r s t imulous

3 // ///

4 void s im sys : : t p a s c t 0 c i 0 s t a r t () {
5 TMCLUSTER INIT(”pas . c t0 . c i0 ” , 0 , true , 30000 , 8988 . 29 , SC NS) ;

6 wait (8987 . 29 , SC NS) ;

7

8 do {
9 TMCLUSTERSTART;

10 TMCLUSTERSTARTTRACE(1 , SC NS) ;

11

12 no t i f y (e p a s c t 0 c i 0 s t a r t) ;

13

14 i f (TM PERIODIC SIM)

15 wait (29999 , SC NS) ;

16 else

17 wait (e pasct0c i 0done) ;

18

19 } while (true) ;

20 }

B.3.

Macros are provided so that stimulus behavior can be reported back to the

framework. This allows the stimulus behavior to be recorded to the simulation

time-line. Additionally, it becomes a property that can be observed during system-

level dynamic management.

B.7.2 Task Modeling

Tasks can be constructed with significant latitude. Many models of com-

putation can be implemented and multiple models can be intermixed within a

B.7. FRAMEWORK EXPANSION 216

design. There are essentially two constraints. (1) They must adhere to the con-

structs of the underlying high-level modeling language. (2) They must conform to

the framework imposed by the design environment. Given the current high-level

language[GLMS02] upon which the framework is implemented, the full expres-

siveness of C++ is available for task modeling.

An example task skeleton is shown in listing B.4. It uses a buffered-input

concurrent sequential process model of computation. In the listing, the upper

task models the behavior and the lower task models the input queue.

To conform to the constructs of the design environment framework, tasks

must (1) indicate that they are ready for computation, (2) indicate that the

computation cost estimation is to be performed, and (3) indicate that the task

has completed. These actions are synchronized with primitives: TM TASK READY,

TM SIMULATE COMPUTATION, and TM DONE. The runtime system uses these events

to dynamically management resources and to evoke the appropriate estimators

for selected candidate.

B.7.3 Scheduler Modeling

The design environment framework is used to assign tasks to registered sched-

ulers. This mapping is referenced when a task requests service as described in

B.7. FRAMEWORK EXPANSION 217

Listing B.4: Task modeling example

22 // ///

23 // task [pas . ct0 . c i 0 . t0] s t r u c tu r e

24 // ///

25 void s im sys : : t pa s c t0 c i 0 t 0S () {
26 TMCREATETASK (”pas . c t0 . c i0 . t0 ” , ” t t 0 ” , ”pas . c t0 . c i0 ”) ;

27 TMPENDIEVENT;

28

29 while (true) {
30 TMTASKREADY;

31

32 // ////////////////////////////

33 // perform computation here //

34 // ////////////////////////////

35

36 TMSIMULATECOMPUTATION;

37

38 no t i f y (e p a s c t 0 c i 0 t 0 t 2) ;

39 no t i f y (e p a s c t 0 c i 0 t 0 t 5) ;

40 no t i f y (e p a s c t 0 c i 0 t 0 t 8) ;

41

42 TMTASKDONE;

43 TMPENDIEVENT;

44 }
45 }
46

47 // ///

48 // task [pas . ct0 . c i 0 . t0] input event queue

49 // ///

50 void s im sys : : t pa s c t0 c i 0 t 0E () {
51 TMGETTASK ID (”pas . c t0 . c i0 . t0 ”) ;

52 wait (e p a s c t 0 c i 0 s t a r t) ;

53

54 while (true) {
55 TMPOSTIEVENT;

56

57 wait (e p a s c t 0 c i 0 s t a r t) ;

58 }
59 }

B.7. FRAMEWORK EXPANSION 218

Listing B.5: Scheduler example: Pre-static analysis initialization

1 // //

2 // schedu l e r r ou t i n e c a l l e d p r i o r to pre−s imulat i on s t a t i c a n a l y s i s

3 // //

4 void s im sys : : s tdbegp1 ini tPreSA (const char ∗ funName)

5 {
6 SMSIM MSGLOG(2 , << funName << ” : queing s t a t i c ana l y s i s ” << endl ;)

7

8 rtosSimParam . sAnalysisQ . push (”Of fL ineSe lec t ion ”) ;

9 rtosSimParam . sAnalysisQ . push (”Of fL ineAl locat ion ”) ;

10 rtosSimParam . sAnalysisQ . push (”RefResUpperBounds ”) ;

11 rtosSimParam . sAnalysisQ . push (”RefResLowerBounds ”) ;

12 rtosSimParam . sAnalysisQ . push (”HyperPeriod”) ;

13

14 rtosSimParam . sAnalysisQ . push (”SetSchAttr Pri DLMon”) ;

15 rtosSimParam . sAnalysisQ . push (”SetSchAttr Pri Compress”) ;

16

17 rtosSimParam . sAnalysisQ . push (”BestWorstCaseDL”) ;

18

19 return ;

20 }

the previous section. In this manor many scheduling schemes can be explored.

One could, for example, devise a scheme that uses a “ higher-level” scheduler that

re-maps tasks across scheduler boundaries according to some global management

objective.

The behavior of each scheduler must be coded to implement the detail of a

system management scheme. Schedulers must implement at least three tasks.

(1) A task called prior to system pre-simulation static analysis, see listing B.5.

(2) A task called after pre-simulation static analysis, see a listing B.6. And,

(3) at least one task called when tasks needs service. The framework uses two

index mappings that separate the “task ready” and “task done” services. These

B.7. FRAMEWORK EXPANSION 219

Listing B.6: Scheduler example: Post-static analysis initialization

22 // //

23 // schedu l e r r ou t i n e c a l l e d a f t e r pre−s imulat i on s t a t i c a n a l y s i s

24 // //

25 void s im sys : : s tdbegp1 ini tPostSA (const char ∗ funName)

26 {
27 SMSIM MSGLOG(9 , << funName << ” : rev i ewing task a t t r i b u t e s ” << endl ;)

28

29 BEGIN FE TASK(r tosTasks , task , t id , fa l se)

30 SMSIMMSGLOG(9 , << funName << ” : task = [” << task . name

31 << ”] schAttr . p r i = [” << task . schAttr . p r i o r i t y

32 << ”] schAttr .DL = [” << task . schAttr . dead l ine

33 << ”] ” << endl ;)

34 END FETASK

35

36 return ;

37 }

mappings can point to a single scheduler task object if desired. An example code

fragment is shown in listing B.7.

Listing B.5 shows how registered analysis routines are called within the frame-

work. This mechanism can be used to analyze and manipulate system properties

prior to simulation.

B.7. FRAMEWORK EXPANSION 220

Listing B.7: Scheduler example: Done task processing code fragment

39 // //

40 // s i n g l e thread dynamic bes t e f f o r t scheduer r ou t i n e s (FRAGMENT)

41 // //

42 void s im sys : : s tdbegp1 schedu l e ()

43 {
44 // done task l i s t p r o c e s s i ng

45 i f (int l i s t s i z e = d SL . s i z e ()) {
46 ostName = ” SCHED−DL” ;

47

48 // s e l e c t cos t model f o r t h i s r ou t i n e

49 SMTASKNEWCANDIDATE(ostName , SCHE TID , 0 , 1) ;

50

51 SM SIM LOG TASK LIST(ostName , d SL , s l i) ;

52 int a l l o c f r e e d = 0 , s e l e c t f r e e d = 0 , s e l e c t k e p t = 0 ;

53

54 for (s l i = d SL . begin () ; s l i != d SL . end () ;) {
55

56 a l l o c f r e e d += r to sDea l l o ca t e (∗ s l i) ;

57 i f (r t o sCon f i gDes e l e c t (∗ s l i)) s e l e c t f r e e d ++;

58 else s e l e c t k e p t++;

59

60 SMSTATUSADVANCE(d SL , s l i , i SL , i) ;

61

62 s l i = d SL . begin () ;

63

64 // execute cos t model advancing time , energy , and area

65 SMTASKLOOP ITER(SCHE TID) ;

66 }
67

68 SM SIM LOG(ostName)

69 << ” a l l o c a t i on s f r e ed = ” << a l l o c f r e e d

70 << ” , s e l e c t i o n s f r e ed = ” << s e l e c t f r e e d

71 << ” , s e l e c t i o n s kept = ” << s e l e c t k ep t

72 << ” , f o r ” << l i s t s i z e << ” done task (s)” << endl ;

73 }
74

75 // log que s ta tu s & update t r a c e f i l e

76 SMSIMLOGTASKSTATUSSUMMARY;

77 SM TRACE FILE ENTRIES(SMTFWM) ;

78

79 return ;

80 }

221

Index

adaptation, 18

adaptive schemes, 63

algorithm analysis, 47

algorithm estimates, 49

algorithm profiling, 49

analysis dependency, 117

arbitrary selections, 63

architecture resource, 43

architecture template, 22

binding, 35

binding mode, 68

candidate, 37, 46

coding languages, 31

composite relations, 62

concurrency, 97

configuration caching, 25

configuration management, 65

control treads, 97

cost dimensions, 23

cost distribution, 23

cost estimation, 58

deferred binding, 53

difference-based, 25

dynamic adaptation, 23

dynamic algorithms mapping, 32

estimation abstracts, 59

exploration, 48

hard deadline, 39

management properties, 55

mapping, 25, 32

mapping mode, 40

mapping time, 33

INDEX 222

metrics, 57

mode use, 42

multi-use, 16

multi-user, 16

objective function, 60

offline, 33

online, 33

opportunity, 48

overheads, 24

partially-mapped, 38

pipelined, 19

post-design, 34

QoS, 16

reconfigurable processor, 22

refinement, 50

resource reservation, 41, 64

run-time, 33

run-time selection, 60

scheduling, 60, 84

search ordering, 62

selection quality, 138

sequenced regions, 19

simple relations, 61

soft deadline, 39

standards, 5, 18

statistical approaches, 64

strictness, 62

system model, 81

system properties, 78

system-level, 61

template instantiation, 64

template selection, 40

templated-mapping, 35, 44

trade-off, 20

triggered regions, 19

223

Colophon

This dissertation has been compiled by the open source typesetting tool La-

Tex2e under the Open Source unix-like environment cygwin running within a

commercial operating system. The following macro packages were used to assist

in the typesetting: graphicx, relsize, dropping, caption, subfig, epsfig, amssymb,

amsmath, and letterpaper. The figures were drawn with one of Xfig, ipe, or UMLet ;

all Open Source tools. The screen dumps of the CAD tools were produced with

xwd, for tools running under the unix environment, and Gadwin PrintScreen, for

tools running in the commercial operating system host environment. The graphs

are direct output from the CAD tools developed during this dissertation research.

These tools made extensive use of AT&T’s Open Source visualization graphic li-

brary Graphviz. The charts are all generated by routines that utilize GNUPlot, an

Open Source plotting system. The following two free Java-based applications were

used: Freemind, a “mindmapping” application, to organize the content structure

and JabRef to maintain the bibliography database. The text of this dissertation

was dictated using speech recognition technology developed by dragon systems.

Typography, when done properly, is a thoughtful blend of art and science and

I hope that you enjoyed a balance of both. However, if you did not enjoy the

science contemplated within, at the least, I hope you enjoyed the art.

���

Except for the commercial speech recognition system, and the commercial oper-

ating system it required, this entire research effort has been completed using freely

available Open Source software.

Openness levels the playing field.

�

