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ABSTRACT

Convex Approximation and Optimization with Applications in

Magnitude Filter Design and Radiation Pattern Synthesis

by

Peter William Kassakian

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Laurent El Ghaoui, Chair

Using convex optimization to help solve nonconvex problems in engineering is an area

of intense research activity. In this thesis we study a specific nonconvex optimization prob-

lem called magnitude least-squares that has applications primarily in magnitude filter de-

sign. Solving the problem is difficult because of the existence of many local minima.

We study it in depth, deriving methods for its approximate solution, proving equivalences

among differing formulations, relating it to other well-studied problems, and proving esti-

mates of the quality of the solutions obtained using the methods. We discover structure in

the problem that distinguishes it from some more general problems of the same algebraic

form. The structure is related to the fact that the variables in the problem are complex-

valued. We exploit this structure when proving bounds on the quality of solutions obtained

using semidefinite relaxation.

In addition to a detailed and generally abstract study of this specific optimization prob-

lem, we solve several practical problems in signal processing. Some of the application

examples serve to illustrate the applicability of the magnitude least-squares problem, and

include multidimensional magnitude filter design, magnitude filter design for nonlinearly

delayed tapped filters, and spatial filtering using arbitrarily positioned array elements. We

also present several application examples that illustrate the modeling capabilities of convex

optimization. We use least-squares techniques to reason about the capabilities of clustered
1



arrays of loudspeakers to accurately synthesize radiation patterns. We also provide an ele-

gant convex optimization-based procedure for designing linear-phase audio equalizers.
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Chapter 1

Introduction

1.1 Mathematical Modeling and Optimization

Consider how people use calculators. They typically have a collection of numbers that

represent quantities of some important items. They have in mind relations between these

quantities and a quantity they’re seeking. Before opening the drawer for the calculator, and

possibly without being conscious of it, a person will perform a miniature analysis of the

numerical task to determine if the calculator is capable of completing it. For example, if

the calculation requires raising a number to a fractional power, and the calculator does not

possess that button, then maybe there is no point in trying to use the calculator. Perhaps the

problem must first be algebraically rearranged, or maybe no amount of rearranging would

allow for its calculation on that calculator.

Often this analysis takes place long before we’re contemplating reaching for the calcu-

lator. We’ve been faced with a scenario in which we suspect that the conditions we observe

have implications that we should be able to infer. It could be as simple as observing the

items in a supermarket shopping cart and recognizing that it should be possible to estimate

the total cost based on the costs of the individual items. People generally know which life

scenarios are amenable to mathematical modeling suitable for calculation on a calculator.

They lean away from attempting to cast a scenario in mathematical terms if they think they

have a poor chance of calculating it. Every once in a while, a person will be motivated

enough to approximate the problem to increase the odds that he or she can obtain a helpful
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answer.

Everyone is unconsciously making mathematical modeling decisions based both on

the importance of the problem, and on the likelihood they can solve it. The same is true

in engineering, but the calculator is more elaborate. For an engineer, the motivation to

cast a scenario in mathematical terms is very strong, and the algebraic skill very high, but

nevertheless, he or she is involved in the same decision-making and modeling process as a

calculator owner.

In this thesis we will solve practical problems using mathematical optimization. But

we use the problems as means to learn about mathematical modeling decisions, and the

ramifications these decisions have on our ability to solve the problems. To facilitate this

goal, we will narrow the study to several interrelated problems, comparing different so-

lution ideas, and paying close attention to how the modeling and formulation affects the

solutions obtained.

In particular we wish to avoid modeling a problem in such a way that our calculator

cannot arrive at a solution in a timely manner. If we’re lucky, this won’t be an issue. But

most of the time, even armed with the ultimate calculator, we face many obstacles on the

road from real-life scenario to numerical solution. The first, sometimes overlooked obstacle

is identifying when and how the scenario is amenable to mathematical description. If we

are able to find a precise way to describe the scenario in mathematical terms, then we have

made a start. We have a description, but not necessarily a solution method.

Many methods exist for solving many classes of mathematical problem. Some work

well on some classes of problem, but are not applicable for others. Some work very well

on some problem instances, but are sensitive and may not work all the time. Some ideas

do not work well on any problem. This thesis is focused on employing numerical solution

methods that are very reliable and very straightforward. The methods mirror the reliability

we would expect from a calculator.

Although there are plenty of very reliable methods for other classes of problem, by and

large, such reliable methods apply to problems that are convex. Our aim will be to model

2



scenarios not just in mathematical terms, but in such a way that the resulting problem is

convex, and hence can be solved using our calculator of choice: convex optimization.

To achieve this aim, our modeling strategy must negotiate the conflicting requirements

that the model be both accurate, and convex. This is impossible in most cases. We must

make a compromise somewhere. To keep the study of these compromises organized and

well-defined, we will adopt the following philosophy. When faced with a real-life scenario,

we will first seek to model the situation in mathematical terms as accurately as we can.

Next, we will determine if the the resulting problem is convex. If so, we solve. If not,

we will search for a new modeling scheme, or a set of algebraic manipulations that result

in a convex problem. We will see a very interesting and nontrivial example of such a

manipulation in Chapter 4, involving spectral factorization. If we cannot discover a convex

formulation, we will choose an accurate mathematical description, and perform a very well-

defined approximation that will result in a convex problem. The answer obtained from the

approximate problem, of course will be approximate.

For comparison, let’s consider an alternative philosophy. Suppose we seek an accurate

model of the scenario, and attempt to solve numerically without worrying about convexity.

There are many examples of successful employment of this philosophy; in fact it may be

the dominant philosophy in engineering. But it has the primary drawback that we must

understand a great deal about the inner workings of the solution method before we can be

confident that the solution obtained is meaningful to us. Depending on the solution method,

we may obtain different answers. Not worrying about convexity leads to worry about the

numerical solution algorithm. In metaphorical terms, this philosophy leads to becoming

involved in the design of the calculator.

The most useful, widespread, well-understood, and successful engineering solutions

are the ones that possess convex formulations. These include linear regression, least-mean-

square (LMS) adaptive filtering, minimum variance distortionless response (MVDR) beam-

forming, and one-dimensional filter design to name a few in signal processing. When faced

with a new problem, it is of critical importance that, at the very least, we recognize whether
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the problem is equivalent in mathematical form to these well-studied problems.

It is the aim of this thesis not just to find answers to problems arising in signal pro-

cessing, but rather to frame the problems with respect to other well-studied problems. The

well-studied problems we will pay attention to are the convex problems. In doing so, we

will gain a better understanding of the problem – why it is easy or hard, ways to mea-

sure the quality of the solutions, and it’s similarity to other problems we’ve seen. We also

gain insight from a rich duality theory which plays a special role in the analysis of convex

problems.

1.2 Preview of Thesis

The application area of the problems we will study in the coming chapters is signal process-

ing, for use especially in audio, acoustics, and music. We will touch upon several different

applications, treating some lightly, the purpose of inclusion being to provide an example

or to aid in the explanation of a concept, and treating a few in great depth. As mentioned

previously, we will frame all our problems in relation to convex optimization. Several of

the problems we study are novel, the formulations and solutions of which form academic

and practical contributions in the engineering community. Arguably more valuable is the

analysis of the relations among the problems that we are able to form using the convex

optimization philosophy.

In the next chapter, we will introduce convex optimization in the context of two prac-

tical problems that arose as a part of an ongoing project at the Center for New Music

and Audio Technologies (CNMAT). The first problem concerns synthesizing radiation pat-

terns using a clustered array of loudspeakers. We can determine which patterns the array

is capable of synthesizing by casting the scenario abstractly and geometrically in infinite

dimensions. We will use least-squares to reason about radiation pattern synthesis. Further-

more, we can use the formulation to answer questions about electronically controlling and

rotating the patterns. The second problem we will look at is the design of a linear-phase

equalizer/limiter for use with the clustered loudspeaker array. We will see that our aware-
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ness of convex optimization allows us to quickly and easily design a relatively complicated

system of filters. This chapter can be understood as a warm-up for the heart of the thesis

which begins in Chapter 3.

Chapter 3 introduces a class of problem that we will focus on for the remainder of the

thesis, investigating formulations, approximation methods, solution methods, and applica-

tions. The problem is called the magnitude least-squares (MLS) problem. In this chapter

we will motivate its study by considering a diverse set of applications, all of which can be

formulated as magnitude least-squares problems. We will also consider the relation of the

MLS problem to several important recently developed approaches to one-dimensional filter

design, and recognize that the MLS problem can be regarded as a more general problem in

some aspects. We will review the methods for one-dimensional filter design, in Chapter 4,

and recognize that the MLS problem can be viewed as a form of approximate polynomial

factorization.

In Chapter 5 we will consider several potential ways to solve the magnitude least-

squares problem, including local methods that do not rely on convexity. As alluded to

earlier, these methods have the disadvantage that they do not provide us much insight into

the structure of the problem, and may result in suboptimal local solutions. We will continue

by considering ideas for convexly approximating the problem, using duality concepts.

Chapter 6 forms the core of the thesis. We will prove important facts pertaining to the

accuracy of solutions obtained using the convex approximations. We will begin the discus-

sion by reviewing a paper written by Yurii Nesterov [Nes97] in which he generalizes, in

several ways, a scheme originally discovered by Goemans and Williamson in [GW95]. Not

only does the scheme work very well in practice, but importantly, it carries with it a prov-

ably good estimate of the quality of the obtained solutions. We show how we can directly

apply Nesterov’s extension to the magnitude least-squares problem, and investigate other

similar ideas, one of which improves the quality estimate, inspired by the work of Shuzhong

Zhang and Yongwei Huang [ZH04]. The reason for the existence of the better quality es-

timate is the complex-valued structure of our problem. We will present novel insight into
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this phenomenon by proving quality bounds for a related complex-valued problem in a very

direct way. The bounds we derive here represent the most important and deepest contribu-

tion of the dissertation. It complements the work in [ZH04] where they derive a superior

bound through careful evaluation of integrals.

In the final chapters we will solve problems using the techniques, and discuss the prac-

tical performance of the methods in relation to the proved quality bounds. We will also

consider a set of problems that are closely related to the magnitude least-squares prob-

lem, along with the application that inspire their formulation, carefully identifying which

of these can be solved with fixed relative accuracy in the same way as described in Chap-

ter 6, and which cannot. Finally, in Chapter 9 we will summarize the contribution of this

dissertation to the engineering community, and provide suggestions for further research.

6



Chapter 2

Convex Optimization Problems in
Acoustics

2.1 Introduction

In this chapter we will introduce the philosophy of using modeling and optimization to

solve real-world problems by examining some problems in acoustics, signal processing,

and music. We will seek formulations that result in problems that are convex, and con-

sequently are straightforward to solve numerically. The two problems discussed in this

chapter arose as part of a “real-world” acoustics research project at the Center for New

Music and Audio Technologies (CNMAT).

We will first discuss an interesting problem of characterizing the set of radiation pat-

terns accurately synthesizable using a clustered array of loudspeakers. This analysis in-

volves constructing a set of problems problem that can be formulated very accurately using

a convex model. We will describe the real-world challenge in nonmathematical terms, pro-

vide the model, explain the solution, and present specific results. We will then consider

another practical problem that again, we can solve exactly using convex optimization: the

design of a linear-phase audio crossover/equalizer network for use with loudspeakers.

2.2 Characterization of Clustered Loudspeaker Arrays

Consider an array of closely spaced, independent loudspeakers. Such systems have been

designed and constructed at the Center for New Music and Audio Technologies, see Fig-
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ure 2.1. The primary aim in the development of these arrays was to create a sound synthesis

system capable of reproducing complicated radiation patterns, reminiscent of those natu-

rally generated by acoustic musical instruments. It has been speculated that the dynamic

and nontrivial radiation patterns produced by acoustic instruments give the listener expe-

riences that are fuller and more exciting than those generated by electronic instruments

amplified through mono or stereo speakers [OW01].

Figure 2.1: Dodecahedral Speaker Array.

The dodecahedral system pictured in Figure 2.1 was designed so that each loudspeaker

could be independently controlled, each with its own isolated enclosure of air within the

8



interior of the cabinet. The requirement that this chamber of air be one liter, as suggested

by the loudspeaker specifications, was the chief factor determining the dimensions of the

array. These dimensions, in turn, determine which radiation patterns we can accurately

synthesize.

After experimenting with straightforward methods of generating nontrivial patterns

with the array, such as running sets of speakers in opposite phase to create directional

cancellation effects, it became clear that we needed to know more about the theoretical

capabilities of the array. For example, to what extent could this array be used to synthesize

the radiation pattern of a piano? How much better is the synthesis if we allow ourselves

the use of high-order filters as opposed to sign (in phase/out of phase) filters? If we can

synthesize a radiation pattern that’s oriented in a particular direction, does that mean there’s

a way to electronically rotate the pattern smoothly?

We are able to answer some of these questions by formulating a series of least-squares

fitting problems. The solutions to these convex problems, along with the fitting error, give

us vital information about the sets of radiation patterns that are synthesizable and control-

lable using the array. The work is documented in detail in an Audio Engineering Society

(AES) paper entitled “Characterization of Spherical Loudspeaker Arrays” [KW04].

2.2.1 Radiation Patterns

To begin our discussion of the dodecahedral loudspeaker array, it’s useful to review some

simple ideas about radiation patterns. A sound source produces sound by creating a phys-

ical disturbance in the air. Sound waves radiate outward from the source decreasing in

intensity as they travel further from the source. Once far enough from the source, the am-

plitudes and phases of the waves relative to that of the sound source, as functions both

of frequency and of three-dimensional spatial angle settle into a fixed pattern, known as

the far-field radiation pattern. This is the acoustic entity we would like to synthesize and

control using the array.

Because loudspeaker arrays consist of a finite number of drivers in a fixed geometry,
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the far-field radiation patterns they can produce are limited to a subset of all the conceiv-

able patterns. For example, a two speaker system could never reproduce the complicated

radiation pattern generated by a violin. A single loudspeaker has a fixed radiation pattern

at every frequency; we have no means to control it. An arbitrary vibrating body could con-

ceivably possess an arbitrarily complicated radiation pattern at each frequency. We wish to

find which types of patterns can be well-approximated using arrays of loudspeakers.

It is convenient to parameterize the set of radiation patterns in terms of spherical har-

monics. The spherical harmonics are solutions to the Helmholtz equation, (see Chapter 10

of [Bla00] and also [Ber93]), and span the entire space of physically realizable far-field

patterns. Said another way, any physically realistic spatial response can be represented by

its spherical harmonic expansion as a function of frequency. The decomposition has intu-

itive appeal, indexing the spatial complexity or “spatial frequency” of radiation patterns.

Our characterization of the sets of patterns that can or cannot be generated with the array

will be with respect to these convenient functions. We will see that the spherical harmonics

possess other useful and meaningful properties as well.

2.2.2 Physical System

The loudspeaker array consists of independent loudspeakers arranged in a fixed geometry.

The important elements of the system are (i) the total pattern produced as a function of

frequency, (ii) the individual loudspeaker patterns as functions of frequency, and (iii) the

frequency responses of the linear filters applied to the loudspeaker signals. We will assign

variables to these quantities.

Assume that the array consists of N loudspeakers. The physical system is linear and

a frequency domain block diagram is shown in Figure 2.2. We can calculate the output of

the system as a linear combination of N individual loudspeaker patterns. An individual

loudspeaker pattern is the output function response of a single array element (evaluated at

10
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Figure 2.2: Linear System Model. The input is the Fourier transform of the input signal
evaluated at ω (a complex scalar), and the output is a pattern (a complex-valued function
of spherical angles (θ, φ)).

a frequency ω). We have a frequency domain linear system relation,

y(θ, φ; ω) = z(ω)
N
∑

n=1

xn(ω)hn(θ, φ; ω),

where each hn(θ, φ; ω) is an individual loudspeaker function, y(θ, φ; ω) is the resultant

output function, z(ω) is the Fourier transform of the monophonic input signal evaluated at

ω, and xn(ω) is the frequency response of the nth filter evaluated at ω.

In abstract terms, the patterns are complex functions defined on S2, the unit sphere.

Suppose f and g are two patterns. It isn’t difficult to show that the function

〈f, g〉 =

∫

S2

f(s)g(s)ds

defines an inner-product on the vector space of complex functions on S2. This integral in

spherical coordinates is

〈f, g〉 =

∫ 2π

0

∫ π

0

f(θ, φ)g(θ, φ) sin(θ)dθdφ

11



The integral squared error between pattern f and g then corresponds to

Error =

∫

S2

|f(s) − g(s)|2 ds (2.1)

= 〈f − g, f − g〉

= ‖f − g‖2

Given an arbitrary pattern g (at a fixed frequency), the gains that minimize the error

as defined in Equation (2.1) between a target pattern g and a pattern f realizable by the

array, can be calculated as the solution to a linear least squares problem. The system is

infinite in the sense that the output is a function, but the least-squares problem is finite and

only depends on a Gram matrix involving the desired output, and the individual loudspeaker

functions. The least-squares problem is one of the simplest and most widely applied convex

optimization problems. For a good derivation and explanation of least-squares problems

involving function spaces, see either [Che82] or [Lue69].

Evaluation of the entries of the Gram matrix requires integration however, and if the

individual loudspeaker patterns are derived from measured data, the integrals must be ap-

proximated. We will approximate the integrals by sums of squared error evaluated at points

uniformly randomly sampled on S2.

By sampling the frequency axis we can compute optimal responses {x1(ωi), ..., xN(ωi)}

at each fixed frequency ωi. This analysis seeks to determine the patterns that are approxi-

matable under the best possible conditions, i.e., when we are able to specify a linear filter

of arbitrarily large order for each loudspeaker signal, rendering the sets of responses at

different frequencies independently adjustable. We are seeking to characterize the phys-

ical capabilities of the array with respect to its ability to accurately synthesize radiation

patterns.

2.2.3 Continuous and Sampled Least-Squares

For notational simplicity, we will suppress dependence on ω, remembering that ω indexes

a family of least-squares problems. Given a desired pattern d, we have that the optimal

12



approximation in the span of {h1, ..., hN} can be written as

d? =
N
∑

n=1

x?
nhn,

where the following equations are satisfied:

N
∑

n=1

x?
n〈hi, hn〉 = 〈hi, d〉, i = 1, ..., N. (2.2)

Equations (2.2) are the normal equations. In matrix form, they are

Hx? = b (2.3)

where H ∈ CN×N and b ∈ CN are defined as

Hji = 〈hi, hj〉 i, j = 1, ..., N

bi = 〈hi, d〉 i = 1, ..., N

A spatially sampled version of the above problem is derived by first uniformly randomly

sampling M points from S2 and creating the vectors

[h1(θ1, φ1), ..., h1(θM , φM)]T

...

[hN(θ1, φ1), ..., hN(θM , φM)]T , and

[d(θ1, φ1), ..., d(θM , φM)]T .

As M increases, the sampled functions approximate more and more closely the continuous

functions

h1(θ, φ)

...

hN(θ, φ) and

d(θ, φ).

13



The finite vector inner product hH
i hj then becomes an approximation to M

4π
〈hi, hj〉. Define

the matrix A ∈ CM×N , and ds ∈ CMas follows

A =







h1(θ1, φ1) · · · hN(θ1, φ1)
...

...
...

h1(θM , φM) · · · hN(θM , φM)






,

ds =







d(θ1, φ1)
...

d(θM , φM)







Then the sampled version of Equation (2.3) is seen to be

AHAx? = AHds. (2.4)

Equation (2.4) can be constructed and solved easily, the dominating factor in the computa-

tion time being the lookup and/or calculation of the sampled functions A and ds.

To conclude this section on least-squares problems, we want to emphasize that the so-

lution to the normal equations is a linear function of the desired pattern d. This implies that

once we know the optimal solution vectors x?
1, ..., x

?
r for several desired responses d1, ..., dr,

we immediately know the solution for any linear combination
∑

λidi. It is
∑

λix
?
i .

This linearity is important because it allows us to draw conclusions about the entire

uncountable set of radiation patterns by solving problems involving only the countable set

of spherical harmonics. It also sometimes allows us to bound errors across sets of patterns

defined by continuous control signals, like rotation, by solving finite sets of optimization

problems. We will now look with more detail at the spherical harmonics.

2.2.4 Spherical Harmonics

The spherical harmonics provide a convenient and natural countable parameterization of

the the set of acoustic radiation patterns. By computing the best array-achievable approxi-

mations to each spherical harmonic, we can immediately determine the best approximation

to a linear combination of spherical harmonics via the same linear combination of solutions,

as mentioned in the previous section.
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The functions are parameterized by their degree l, and order m. Figure 2.3 shows the

complex functions plotted from degree 0 to degree 2. The magnitude is represented as

distance from the origin, and phase as a color gradient.

For example the “dipole” corresponds to l = 1, m = 0. Other rotated orientations of

this dipole function can be calculated by forming a weighted combination of patterns drawn

from the l = 1 grouping. In fact, synthesis of any function composed of l = 1 patterns,

oriented in any direction, is possible using only the l = 1 patterns. This is because the

linear subspaces spanned by harmonics with the same degree are invariant with respect to

rigid rotation through spatial angles θ and φ. See [SC94], and refer to [KFR03] for an

application of this principle in computer graphics. For example, given a pattern that is in

the subspace generated by the five degree 2 basis functions, any rotation of that pattern

also possesses a spherical harmonic expansion consisting only of degree 2 patterns. Since

we wish to control patterns in arbitrary rotational orientations, this decomposition into

rotationally invariant subspaces is especially useful.

Another important property of the spherical harmonics is their orthonormality. Specif-

ically, with respect to the inner product defined above, if f is a spherical harmonic,

〈f, f〉 = 1, (2.5)

and if f and g are distinct spherical harmonics,

〈f, g〉 = 0. (2.6)

2.2.5 Uniform Error

Given a particular target pattern, the error as a function of frequency can be determined

numerically by discretizing the frequency axis, and solving a set of problems of the form

described previously. We would also like to determine how the error generally varies as

a function of spherical harmonic degree. In this section we will discuss the computation

of uniform upper and lower bounds on the normalized error, given a subspace of desired

patterns.
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Figure 2.3: Spherical harmonics to degree 2
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The issue we are addressing is that while it is straightforward to calculate the best-fitting

error given a particular target pattern, we wish to say something more general about the

error associated with the entire space of patterns. Because of the simplicity of the abstract

space we have defined, we have enough information to generalize our understanding of

the error. For each harmonic degree, we will compute normalized errors for each of the

generating basis functions (i.e., for all the harmonic orders associated with the degree), and

will also compute upper and lower bounds on the error given any unity norm target pattern

in the generated subspace.

Let A be the data matrix, let B be an M×D matrix, the columns of which are responses

corresponding to spherical harmonics of a given degree. Let X? be an N × D matrix, the

columns of which are the optimal loudspeaker signal gains associated with the D target

signals. Let λ be a vector consisting of D complex control weights. Because of the linearity

of the normal equations, we have that for any λ,

min
x

‖Ax − Bλ‖ = ‖AX?λ − Bλ‖ (2.7)

Since the columns of B are spherical harmonics, they are orthonormal, and the linear com-

bination Bλ has norm

‖Bλ‖ = ‖λ‖. (2.8)

Given a subspace spanned by spherical harmonics, the largest approximation error associ-

ated with unity gain patterns in the subspace is given by

max
‖λ‖=1

‖AX?λ − Bλ‖

= max
‖λ‖=1

‖(AX? − B)λ‖

=σmax(AX? − B), (2.9)

where σmax(AX?−B) is the maximum singular value of the matrix AX?−B. Similarly, the

smallest approximation error associated with unity gain patterns in the subspace is given
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by

min
‖λ‖=1

‖AX?λ − Bλ‖

= min
‖λ‖=1

‖(AX? − B)λ‖

=σmin(AX? − B), (2.10)

where σmin(AX? − B) is the minimum singular value.

Geometrically, the set of individual loudspeaker functions generate a linear subspace

of achievable responses. Given a particular desired pattern, the best approximation is its

projection onto this subspace. Equations (2.9) and (2.10) are related to the angles between

subspaces generated by the columns of A and B. Intuitively, as the angles between the

subspaces increases, the normalized error increases accordingly. If one regarded the error

in the least-squares optimization problem as a distance between a point and a subspace, the

error we are considering is a generalization. It’s the cosine of the principle angle between

subspaces.

We will now show that the errors defined in (2.9) and (2.10) do correspond to a geo-

metric angle. Let QA = [QA1, QA2] and RA be the QR decomposition of matrix A. Then

Q is orthonormal with the columns of QA1 spanning the range of A and the columns of

QA2 spanning the nullspace A⊥ of A. See [GL96], page 228 for properties of the QR

decomposition and also see [TI97]. As treated on pages 239–240 of [GL96], the error as-

sociated with the general full rank least-squares problem min ‖Ax− b‖ in terms of the QR

decomposition of A is

error = ‖QA2b‖. (2.11)

Applying this to problems (2.9) and (2.10), yields

max
‖λ‖=1

‖AX?λ − Bλ‖

= max
‖λ‖=1

‖QA2Bλ‖

=σmax(QA2B)

def
= cos(θmax), (2.12)
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where the last equality follows essentially by the definition of the principle angles between

the subspaces spanned by QA2 and (orthonormal) matrix B, i.e., the nullspace of A and the

range of B. Similarly,

min
‖λ‖=1

‖AX?λ − Bλ‖

= cos(θmin), (2.13)

Given a subspace, in particular, a constant degree subspace, upper and lower bounds

on the associated least-squares error can be calculated by solving the singular value de-

composition problems described above. This is useful because, often it is the case that

control operations can be identified with particular subspaces of patterns. The most clear

example of this is rigid rotation which, due to the properties of the spherical harmonics,

is associated with fixed-degree subspaces. Other examples are control strategies involving

electronic fading among different sets of patterns. For more applications involving angles

between linear subspaces see pages 405-410 of [BV04].

2.2.6 Results

In what follows we will compute approximation errors associated with spherical arrays.

The characterization of the arrays in terms of these errors is dependent on the geometry

and the individual loudspeaker patterns. The characterizations could be used to assist in

the design of an array, or provide guidance when using an existing array. The analysis tells

us which patterns can be synthesized accurately and which cannot.

The data in the A matrices is generated by simulating a realistic measurement scenario.

Constructing synthetic A matrices allows for a controlled comparison among arrays having

differing geometric layout.

2.2.7 Uniform Error Example

It’s necessary to provide an example to illustrate the distinction between the uniform error

as discussed previously, and error associated with specific target patterns. The example is
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Figure 2.4: Error associated with the degree 3 subspace. Upper and lower bounds are
plotted (bold) along with errors for the seven degree 3 spherical harmonics.

for a dodecahedral array of diameter approximately 37 cm. The least-squares problem is

solved across frequency for each of the seven degree 3 spherical harmonic target patterns,

and the error is plotted along with the upper and lower bounds, calculated as described.

This example shows that the gap between the bounds can be large. By looking only at the

error associated with the spherical harmonic targets, it’s not obvious that the there is a wide

error spread across the subspace. The upper bound is nearly 1, indicating that there exists

a particular pattern, that is a unity-norm combination of the seven basis functions, that is

extremely difficult for the array to synthesize. Similarly, there is a pattern that is well-

synthesizable, at least at low frequencies. The error associated with spherical harmonic

basis patterns lies in between. We can determine the extreme patterns by looking at the

singular vectors in the singular value decomposition used to calculate the uniform errors.

Intuitively, the existence of extreme patterns is caused by the fact that the array has a
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particular fixed geometry and orientation. Certain pattern orientations are more or less

“aligned” with the geometry of the array. Of course, the situation is subtle, and involves

not only the geometry of the array, but the individual loudspeaker patterns as well. The

physical system is not perfectly spherically symmetric; it is dodecahedrally symmetric.

2.2.8 Uniform Error Characterizations

To compare arrays of differing geometries, plots of the error bounds as functions of both

frequency and spherical harmonic degree is natural. As the spherical harmonic degree

increases, the complexity of the patterns increases. We will compare the uniform error

bounds for four spherical arrays. The four arrays are i) a cubic array (6 elements), ii) a

dodecahedral array (12 elements), iii) an icosahedral array (20 elements), and iv) a sixty

element array (like the icosahedral array, but with 3 elements per triangular face). The com-

parisons are made holding the diameters of the arrays fixed. It should be noted that scaling

the dimensions of an array has a very predictable effect on the array’s frequency/harmonic

degree characteristic chart. It simply rescales the frequency axis. The configurations for

the four arrays are shown in Table 2.2.8.

Configuration Number Driver Diameter
of Drivers Spacing

Cubic 6 18 cm 26 cm
Dodecahedral 12 14 cm 26 cm
Icosahedral 20 9.3 cm 26 cm
Sixty-Sided 60 4.6 cm 26 cm

Table 2.1: Array configurations.

2.2.9 Discussion

Investigating the plots reveals that as the number of drivers in the array increases, more

complex patterns can be reproduced. This makes intuitive sense because an array with a

large number of drivers has more degrees of freedom for control. The charts allow us to

quickly assess the radiation pattern synthesis capabilities of a given array or proposed array
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Figure 2.5: Error bounds for cubic array.
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Figure 2.6: Error bounds for dodecahedral array.
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Figure 2.7: Error bounds for icosahedral array.
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Figure 2.8: Error bounds for sixty element array.
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design. They also guide us as to which patterns are electronically controllable, and which

are not.

2.2.10 Summary

The optimization problem employed to help generate the characterization charts is convex;

it’s a least-squares problem in infinite dimensions. Viewing the radiation patterns as el-

ements of an abstract vector space allowed us to draw specific conclusions very quickly

and elegantly about the behavior of these arrays. Since the goal of this work was to pro-

vide practical answers as part of a larger research project, the least-squares optimization

problem itself plays an understated role as a simple mathematical tool.

2.3 Design of Linear-Phase Equalizer

In the previous section, we used least-squares, arguably the simplest of all nontrivial op-

timization problems to answer questions about the radiation patterns produced by loud-

speaker arrays. In this section we will discuss an application of convex optimization where

the optimization problem itself takes a more central role. We will use it to design a set

of linear-phase filters that will be used to split a signal into minimally overlapping bands

suitable for signal equalization or frequency-domain limiting.

Limiting the power of a signal that’s driving a loudspeaker is critical to protect the

speaker from damage. The simplest type of limiting is performed by clipping the input

waveform to a maximum amplitude. When engaged, this form of limiting produces audi-

ble and generally unpleasant sounding artifacts. A method that results in less noticeable

artifacts is that of frequency domain limiting. In this case, we split the signal into multiple

bands, limiting the signal in each band independently. It works particularly well if we ex-

pect the signals to have peaks in the frequency domain, which is often the case with sound

signals. See Figure 2.9 for a diagram of this type of system.

We would like to design the filters so that with no limiting, i.e., when the signal is small

enough, the resulting system passes the signal with very little alteration. Additionally, we
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desire the filters to be linear-phase and such that they split the input signal into minimally

overlapping bands. A final aim is to make the design method flexible. We would like the

procedure to be general enough to allow for arbitrary specification of the number of bands,

the frequency cutoffs, and the orders of the filters. We will show that we are able to form a

convex model to achieve these goals.

2.3.1 Model

We want the filters to be such that the system is always strictly linear-phase, even if the

limiters are engaged. The most straightforward way of ensuring this is to require that the

filters, G1(z), G2(z), ..., Gn(z) all be symmetric. The frequency response of such a filter g

centered at the origin is

G(jω) =



































g0 + 2

(n−1)/2
∑

i=1

gi cos(iω) if n is odd

2

n/2
∑

i=1

gi cos
(

(i − 1
2
)ω
)

if n is even

Note that the frequency responses are real since they are symmetric (around 0). Ultimately

the filters we will implement will necessarily be causal. Delaying the designed symmetric

filters to be causal has a benign effect on their frequency responses; the delay generates a
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linear phase factor. Define the following parameters for the design:

m : the number of bands, i.e., the number of filters

ωc
0, ω

c
1, ..., ω

c
m : the cutoff frequencies

n1, n2, ..., nm : the filter orders

l : the number of frequency response discretization points

ω1, ω2, ..., ωl : samples in frequency

λ ∈ [0, 1] : a constant controlling trade-off between frequency selectivity of filters,

and reconstruction accuracy in the absence of limiting.

The way we will enforce a nearly distortionless response in the absence of limiting is by

discretizing the frequency axis into l samples, and forming a convex constraint on the

deviation between the total system response and the ideal distortionless response (unity):

δ ≥
l
∑

i=1

(

m
∑

k=1

Gk(jωi) − 1

)2

We will encourage frequency selectivity of the filters forming the following constraints,

G1

(

j
ωc

1 + ωc
0

2

)

= 1

G2

(

j
ωc

2 + ωc
1

2

)

= 1

...

Gm

(

j
ωc

m + ωc
m−1

2

)

= 1,

and by minimizing the out-of-band energy for each filter:

ek ≥
∑

ωi /∈[ωc

k−1
,ωc

k
]

(Gk(jωi))
2 ∀k = 1, 2, ...,m.
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The final convex optimization problem is formed as follows:

min λδ + (1 − λ)
m
∑

k=1

ek (2.14)

s.t. Gk

(

j
ωc

k + ωc
k−1

2

)

= 1 ∀ k = 1, 2, ...,m

ek ≥
∑

ωi /∈[ωc

k−1
,ωc

k
]

|Gk(jωi)|
2 ∀ k = 1, 2, ...,m

δ ≥
l
∑

i=1

(

m
∑

k=1

Gk(jωi) − 1

)2

.

The optimization problem above can be solved easily using off-the-shelf convex optimiza-

tion routines. We will now present some designs using our approach.

2.3.2 Ten-Band Equalizer

The first example is a linearly-spaced, ten-band filterbank that could be used for graphic

equalization, limiting, or signal monitoring. We split the frequency spectrum into 10 lin-

early spaced bands, and set the number of taps for each filter to be 256. We will adjust λ so

that the total frequency response deviates from unity by no more than 1dB. Thus we will

solve the problem multiple times, converging on an appropriate λ efficiently by bisection.

The plots show significant frequency selectivity of the filters, and a total response that is

nearly flat (and linear-phase). In our setup, we are minimizing the out-of-band energy of

the filters, but we could just as well minimize the out-of-band peak power; it too would

also result in a convex problem. In this application however, minimizing the energy may

be more appropriate.

We see that allocating 256 taps per filter results in a system that achieves good frequency

selectivity, and a total response that deviates from unity by no more than 1dB. In the next

section, we will design a filter network for use with a particular loudspeaker system. In that

system, the frequency cutoffs are determined by the characteristics of the loudspeakers.
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Figure 2.10: Frequency responses and filters for the ten-band equalizer.
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Figure 2.11: Total response of the ten-band equalizer. The response is nearly flat.
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2.3.3 Three-Band Equalizer

The previous example served to illustrate the type of designs we’re seeking. In this section,

we solve an important practical problem related to loudspeaker protection. The loudspeak-

ers we wish to protect are tweeters that are part of a large spherical array. Being tweeters,

there is a frequency ωhigh above which the speakers are very efficient and are able to handle

a lot of power. If the tweeters were part of a conventional three-way loudspeaker system,

we would want to design a cross-over network with cross-over at ωhigh with the intention

of directing lower frequencies to another loudspeaker. Since our speakers are part of a

large array, we have a different intention. We want to extend the frequency range of the

all-tweeter system by allowing the individual speakers to work together (in phase) at lower,

midrange frequencies.

We wish to design a set of filters that split a loudspeaker audio signal into three bands.

The lowest frequency channel will be diverted away from the loudspeaker and sent to a

subwoofer. The remaining two channels will feed the tweeters, but will be subjected to

different limiting thresholds. The tweeters can handle large signals in the highest band,

but we must carefully limit the midrange signal. In this section we are not concerned with

the design of the limiting function or threshold, but are focusing on the three-band filter

network.

The cutoff frequencies are derived from inspecting plots of measured frequency re-

sponses of the tweeters. They are

ωc
0 = 0 Hz

ωc
1 = 400 Hz

ωc
2 = 2000 Hz

ωc
3 = 22050 Hz

We specify the filter lengths to be 300 taps. The figures show the frequency responses

and filters for the three-band design. We see again that we can achieve good frequency

separation, and a nearly flat response. The fact that we have a flexible way to quickly
30



design filters allows us to audition several different designs for differing parameters. If, for

example, we desire even more frequency selectivity, or a flatter response, we can increase

the order of the filters accordingly. Conversely, we can see what the optimal performance is

for fixed filter orders. We have not just designed a set of filters; we have designed a design

procedure.
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Figure 2.12: Frequency responses and filters for the three-band equalizer for use with
an array of tweeters.

2.4 Conclusion

In this chapter, we solved two practical problems using convex optimization as a primary

tool. The chapter serves to show that very practical problems can admit convex formula-

tions, which allows us to solve them with ease. In the next chapter, we will introduce a

nonconvex problem that we will focus on for the remainder of the dissertation.
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Chapter 3

Introduction to Magnitude
Least-Squares

3.1 Introduction

This chapter begins our discussion of the magnitude least-squares (MLS) problem. The

problem is motivated by problems in magnitude filter design, but possesses application in

other areas as well. It is a nonconvex problem that we will convexly approximate using

semidefinite duality. We will begin this study by stating the abstract problem, and then de-

scribing the application areas for such a problem. The purpose of the chapter is to motivate

our interest in the problem in terms of its applicability in engineering problems. It should

be noted, however, that the problem is interesting in the abstract. The solution method we

will employ will carry with it a provably good solution accuracy estimate, improving our

perception of the method as being better than a simple heuristic.

3.2 Problem Statement

The magnitude least-squares problem is formulated as follows. Given a nonnegative real

vector b, and a complex-valued matrix A ∈ Cm×n, we wish to find a vector x ∈ Cn that

solves

min
x

‖ |Ax| − b ‖2
2 ≡

m
∑

i=1

(|Aix| − bi)
2, (MLS)
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where each Ai is a row of the matrix A. The problem can be understood to be a nonconvex,

nonlinear, nondifferentiable variation of the standard linear least-squares problem,

min
x

‖Ax − b ‖2
2 ≡

m
∑

i=1

(Aix − bi)
2. (LS)

We interpret the goal to be one of fitting. In the applications we consider, the optimal fit

is used to meet design ideals, to estimate parameters from noisy measurements, or more

abstractly, to approximate functions. In all cases, it is the magnitude of the image of the

complex matrix A that is the important quantity. In the next sections, we will identify the

applications that benefit from a solution to this problem.

3.3 Applications for MLS

In what follows, we will not discuss the problem modeling and formulation steps required

to cast the application problems in terms of the magnitude least-squares problem. Rather,

we wish to use this chapter as a motivation and a preview for a more in-depth study of the

problem. The following problems can be solved using our method for solving the MLS

problem.

3.3.1 One-Dimensional Magnitude Filter Design

Though the design of linear filters for use in signal processing often involves fitting both

magnitude and phase responses to design ideals, there are many cases where it is the magni-

tude response of the filter that is much more important. This is the case, for example, when

we wish to attenuate the magnitude spectra of a signal over a frequency range as sharply as

possible. We would prefer to trade phase distortion for better magnitude characteristics.

The design of a one-dimensional filter with desirable magnitude is a very well-studied

problem in signal processing. Elegant methods exist for solving many variants of the prob-

lem. The existence of so many methods is due to the great applicability of the problem,

motivating many people to study it. But the success of the methods is due in part to the

existence of a mathematical theorem that is specific to one-dimensional polynomials: the
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spectral factorization theorem. Though not explicitly employed in every method, its exis-

tence makes the problem precisely expressible as a convex optimization problem, and thus

the one-dimensional magnitude fitting problem is solved with ease.

Even though the problem is easy, and can be solved without the approximation tech-

nique we will soon discuss, it represents the simplest in the class of problems our method

can handle. It is the core problem. Our goal is to study a method that can solve a wider

class of problem. One simple one-dimensional variant that does not benefit from the spec-

tral factorization theorem is the design of an FIR filter with nonuniformly spaced filter taps.

To solve this problem, we will cast it as a magnitude least-squares problem, and solve using

convex approximation.

3.3.2 Multidimensional Magnitude Filter Design

Multidimensional magnitude filter design also cannot be expressed perfectly in convex

terms. Like one-dimensional filter design, this problem has been studied at length over

the last four decades. But many of the methods that work for one-dimensional filter design,

particularly the ones that directly rely on spectral factorization, break down when applied

to multidimensional filter design. Our magnitude least-squares formulation is applicable

to these problems, in any finite number of dimensions. Additionally, it is applicable in the

design of multidimensional nonuniformly spaced tap filters.

3.3.3 Static Magnitude Beamforming with Arbitrary Element Layout

Related to multidimensional magnitude filter design is magnitude beamforming. In beam-

forming, we have an device consisting of an array of elements. The elements could be

sensors, for example, an antenna or microphone array, or they could be sources, like a clus-

tered array of loudspeakers. Arrays have response characteristics that, in their most general

form, are functions of frequency and three other dimensions. The system can be interpreted

as a four-dimensional (spatial) filter. We can apply our method in a straightforward way to

these problems, and the formulation can handle the even more important issue of arbitrary
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element layout. The calculation of optimal static spatial filters can aid in the design of the

layout of the array elements. An array can be used to enhance reception of signals coming

from known directions and in known frequency bands. If it is an array of sources, then

MLS can be used to optimally synthesize magnitude radiation patterns.

3.3.4 Approximate Factorization of Polynomials

An indirect consequence of the success of this method is that we can view it as a form

of approximate spectral factorization. This is because the method surmounts the factor-

ization obstacle present in higher dimensions. Ironically, of all the one-dimensional filter

design methods, our method is most closely related to the ones that do rely on spectral

factorization. The reason is clear if one considers that these are the methods that cast the

one-dimensional filter design problem explicitly in convex terms.

We can use approximate spectral factorization, or more generally, approximate polyno-

mial factorization as a direct substitute for the spectral factorization theorem in situations

where a one-dimensional method breaks down in many dimensions. It results only in an

approximate answer, of course, but often the solution obtained is of high quality. We can

use this technique to design multidimensional filters in the minimax sense, and compare

the solutions to others, obtained using more conventional means.

3.4 Discussion

The problem we will study for the remainder of the thesis is of interest to us for two general

reasons. The first is that the problem is not convex but can be approximated and solved us-

ing convex optimization. The fact that we can prove a lower bound on the solution accuracy

obtained using the scheme distinguishes the method from most other heuristic methods for

solving nonconvex problems. The second reason we choose to study the problem is that it

possesses several important practical applications, some of which we’ve mentioned above.

Our hope is that understanding as much as possible about this one problem with respect to

its applicability, solution accuracy, and relation to other problems will provide information
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about convex approximation that will be meaningful in other areas not directly related to

the magnitude least-squares problem.
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Chapter 4

One Dimensional Magnitude Filter
Design

4.1 Introduction

If we are interested in designing a one-dimensional FIR filter with prescribed magnitude

response, we can do it using one of many different classical design techniques. They all

work quite well. Such methods include window design, Parks-McClellan (see [OSB98]

chapter 7), and methods based on spectral factorization (see [WBV97] [DLS02] [Alk03]

[AV02]). We will focus on the design methods that are based on spectral factorization.

These methods are of interest to us for two reasons, the first being that they elegantly

solve a special case of the magnitude least-squares (MLS) problem. The second is that the

methods based on spectral factorization serve as fascinating examples of nonconvex prob-

lems that are reformulated in a very nontrivial way so as to be solved as convex optimiza-

tion problems. They dramatically emphasize the point that the existence of a nonconvex

formulation of a problem does not imply that the problem cannot be solved exactly using

convex optimization. Hence it is often useful to rethink one’s formulations and spend effort

investigating whether a seemingly nonconvex problem could be reformulated in a convex

way.
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4.1.1 Frequency Response of an FIR Filter

The frequency response of an FIR filter h can be calculated as

H(ejω) =
m−1
∑

i=0

hie
−jωi. (4.1)

It is almost always the case that the understood purpose of the filter is to change the fre-

quency spectrum of the input signal, and design criteria are usually specified in terms of

the frequency response of the filter. Sometimes the phase response is equally as important

as the magnitude response. For example, a good audio equalizer might be designed such

that the filters have linear phase so that time-domain peaks and other perceptible features of

the time-domain signal are more likely to be preserved. In many cases however, the phase

response of the filter is less important than the magnitude response. Dropping conditions

on phase will always yield a more desirable magnitude response.

We see from (4.1) that the (complex) frequency response of the filter is a linear function

of the coefficients hi, i = 1, 2, ...,m − 1. Because of this, we can easily solve a variety

of design problems where the complex frequency response H(ejω) enters into the problem

convexly (it is either convexly constrained, or a convex function of it is a term in the objec-

tive function). The simplest of these problems would be where we specify a complex target

response b, and try to find the filter h that minimizes the integral squared error between the

filter’s frequency response and the target response. This is formulated as follows.

Sample the frequency space at n >> 0 points. Call those frequencies ωi, i = 1, 2, ..., n.

Form a matrix A with each entry Aik being the frequency response due to filter tap k eval-

uated at frequency ωi, so that Aik = e−jωik. Assuming we desire a filter with real-valued

taps, we can solve the problem as a linearly constrained complex least-squares problem:

min
h

‖Ah − b‖2 (4.2)

s.t. Im{hi} = 0, i = 1, 2, ...,m.

In this formulation, we have sampled frequency space, effectively approximating the inte-

gral by a sum. In practice, this is not a serious matter because problem (4.2) can be solved
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very efficiently for extremely large values of n (it even has a closed-form, algebraic solu-

tion). In fact, if integrals between the desired frequency response and the columns of A

are easily calculated, then the continuous problem can be solved exactly, also as a finite

linearly constrained least-squares problem.

Problem (4.2) is not as useful in practice as it may seem at first glance. The real

and imaginary parts of the frequency response are far less meaningful than magnitude and

phase, but the magnitude and phase are not linear functions of the decision variables. The

operators Re{·} and Im{·} are linear whereas magnitude and phase are not.

Let’s consider an example where we design a filter using (4.2). We will attempt to

design a 10-tap FIR filter that best matches in the squared error sense, a high-pass, linear

phase target response. Though it is usual to inspect the frequency response of a filter

by creating magnitude and phase plots, we will instead create a three-dimensional plot to

emphasize the fact that the least-squares fit occurs in the complex domain. The axes of the

plot are normalized frequency (radians/π), real part of the response, and imaginary part of

the response. On such a plot, an ideal high-pass filter with linear phase generates a line

with zero magnitude at low frequencies, and a helix of magnitude 1 at high frequencies. A

plot such as this allows us to visualize geometrically the way the designed filter matches

the ideal response. The least-squares fit in the complex domain can be understood to be

the sum of the squared pointwise distances from the ideal helical-like curve to the achieved

10-tap filter response. Figure 4.1.1 shows these two curves with (blue) lines representing

error.

Hence problem (4.2) finds a solution that weights (essentially) equally the filter’s de-

viation from the ideal response both in magnitude and phase. In the next example we will

see how we can find a filter that is the solution to an optimization problem that disregards

error in phase, in favor of a better fit in magnitude.
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Figure 4.1: Least-squares fit in complex domain.

4.1.2 Magnitude Fitting via Spectral Factorization

The problem we’re interested in this section is more natural and arguably more useful

than problem (4.2). We will first consider the basic problem, and later consider several

useful extensions where we drop the least-squares fit in favor of piecewise spectral mask

constraints as discussed in [WBV97]. The crucial, and fascinating, ingredient that allows

us to solve these problems is the use of a one-dimensional spectral factorization theorem.

Problem (4.2) is convex, and therefore straightforward to solve, yielding solutions

that are guaranteed to be globally optimal. But consider the one-dimensional magnitude

(squared) least-squares filter design problem:

41



min
h∈Rm

n
∑

i=1

(

∣

∣H(ejωi)
∣

∣

2
− b2

i

)2

≡ min
h∈Rm

n
∑

i=1





∣

∣

∣

∣

∣

m−1
∑

k=0

hke
−jωik

∣

∣

∣

∣

∣

2

− b2
i





2

(4.3)

where b is assumed to consist of a vector of nonnegative real numbers. This error function

represents deviation between the squared magnitude of an FIR filter and that of a nonneg-

ative real target. The problem is not convex as stated in (4.3), but we will see that using

spectral factorization, we can cast the problem as a convex optimization problem.

The reason that the above problem is not convex revolves around the fact that the de-

cision variables h enter into the objective function as squared variables. We can see their

relation to the filter’s autocorrelation sequence by expanding (4.3):
∣

∣

∣

∣

∣

m−1
∑

k=0

hke
−jωik

∣

∣

∣

∣

∣

2

=
m−1
∑

k=0

hke
−jωik

m−1
∑

l=0

hle
jωil

=
m−1
∑

k=0

m−1
∑

l=0

hke
−jωikhle

jωil

=
m−1
∑

k=0

m−1
∑

l=0

hkhle
−jωi(k−l)

=
m−1
∑

t=−m+1

m−1
∑

l=0

hlhl+te
−jωit, (4.4)

where we define hl+t = 0 if l + t /∈ {1, 2, ...,m − 1}

The sums

rt ≡
m−1
∑

l=0

hlhl+t (4.5)

hl+t = 0 if l + t /∈ {1, 2, ...,m − 1}

are the autocorrelation coefficients of the filter h. We can express the objective function
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(4.3) in terms of the autocorrelation coefficients and form a new optimization problem:

min
r

n
∑

i=1

(

m−1
∑

t=−m+1

rte
−jωit − b2

i

)2

(4.6)

s.t. r is the autocorrelation sequence of h.

The objective function is now a convex function of variables r, but what about the constraint

that r be the autocorrelation sequence of a length m FIR filter? Initially this looks as though

it would not be a convex constraint because of the quadratic relation between r and h, but

it turns out that, because of the spectral factorization theorem, it is convex.

The spectral factorization theorem (see [WBV97]), states that there exists an r ∈ R2m−1

such that it is the autocorrelation sequence of h ∈ Rm if and only if the Fourier transform

R(ejω) of r is nonnegative for all ω ∈ [0, π] (note that R(ejω) is always real because r

is always symmetric). And if this is the case, there exist several efficient methods for

calculating a filter h that does indeed possess the autocorrelation sequence r.

The constraint that R(ejω) ≥ 0 is readily seen to be convex by observing that R(ejω) is

a linear function of r. It consists of an infinite number of pointwise constraints, however.

From a practical point of view, we could finely sample [0, π] and reduce the semi-infinite

constraint to a large finite set of linear nonnegativity constraints. It turns out, however, that

the semi-infinite constraint can be represented exactly using a finite set of linear matrix

inequalities. The reason for this originates in the theory of positive polynomials studied by

Leopold Fejér, David Hilbert and many others. We will employ a theorem of this sort taken

from [HN02] (their Theorem 2.1).

The theorem implies that a trigonometric polynomial r with real coefficients is nonneg-

ative on [0, π] if and only if there exists a positive semidefinite Hermitian matrix Y such

that

rk =
∑

i−j=k

Yij , k = 0, 1, ..., n (4.7)

where Yij = 0 for i, j outside their definition range.

These are linear constraints on the diagonal sums of a positive semidefinite matrix Y . Our
43



final, exact convex formulation of (4.3) is the following:

min
r

n
∑

i=1

(

m−1
∑

t=−m+1

rte
−jωit − b2

i

)2

(4.8)

s.t. ri = r−i, i = 1, 2, ...,m − 1










Y11 Y12 · · · Y1m

Y21 Y22 · · · Y2m
...

... . . . ...
Ym1 Ym2 · · · Ymm











� 0

r0 = Y11 + Y22 + . . . + Ymm

r1 = Y12 + Y23 + . . . + Y(m−1)m

...

rm−1 = Y1m

We recover the filter coefficients h using spectral factorization.

4.1.3 High-Pass Filter Example

We can find a high-pass filter using (4.8) that outperforms (in terms of magnitude fit) the

filter found by solving (4.2). Inspecting the situation in three dimensions like Figure 4.1.1,

we see that the target function for the magnitude least-squares problem (4.8) is not a one-

dimensional path like it is for the complex least-squares problem, but rather a cylinder

representing points of equal magnitude (a target magnitude of 1 for high frequencies). The

magnitude least-squares fit is shown in Figure 4.1.3.

Figure 4.1.3 shows the magnitude responses of filters found by complex least-squares

and by magnitude least-squares. Of course we see that the response of the filter found

by magnitude least-squares has a more desirable magnitude fit. The response of the filter

found by complex least-squares has phase response that is closer to its linear phase target.
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Figure 4.2: Magnitude least-squares fit in complex domain.

4.2 Discussion

The fact that we can reformulate convexly and solve problem (4.3) using semidefinite pro-

gramming and the spectral factorization theorem may not seem too impressive considering

the many other methods for one-dimensional filter design. But it is very interesting from a

theoretical point of view. Since we are able to obtain an exact solution by solving a con-

vex optimization problem, it means that we have exploited structure in the geometry of the

original nonconvex problem.

The way we arrived at the convex formulation was to cast the objective function in terms

of squared variables (the autocorrelation coefficients) instead of the filter coefficients. This

technique can be generalized, and along with corresponding positivity results like the one
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Figure 4.3: Magnitude least-squares fit versus complex least-squares fit

encountered in our spectral factorization theorem, is a topic of intense theoretical research.

See for example [Par01] [PPP02] [Las01] [GW95]. The solution of nonconvex and/or

difficult problems through clever convexification is a very exciting area in both mathematics

and engineering. In the chapters that follow, we will look at the solution of the magnitude

least-squares problem in many dimensions, as an extension of the technique described in

this chapter.
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Chapter 5

MLS Problem and Proposed Solution
Methods

5.1 Introduction

In this chapter, we will look at the magnitude least-squares problem in the abstract, and

consider several different ways of solving it. The exploration of the different methods

for solving a problem is one of the most interesting and exciting parts of engineering and

mathematics. If the problem were convex, then our success in solving it exactly and ef-

ficiently would be nearly guaranteed. We would, in that case, compare methods based

on convenience either in formulation, ease of implementation, or computational resource

requirements. Because the problem is not convex, we will discuss methods that are not

guaranteed to find globally optimal solutions. We will argue that the methods we propose

are very good ones, however. The solutions we obtain achieve objectives that are provably

close to the globally minimal values. These methods are based on semidefinite relaxations.

We will discuss two variations on the magnitude least-squares problem, and derive

methods for solving them. For each variation, we discuss a local method, and a semidefinite

relaxation method. This gives us four distinct approaches to solving the general problem

(actually two methods for each of two separate, but very similar problems). The best,

most accurate method of solving the problem is to solve using the semidefinite relaxation

with the intention of using the obtained point as a starting point for the local method. This

approach guarantees us a locally optimal point that is provably close to the globally optimal
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point in objective value. We will introduce and formulate the four methods, leaving the

quality estimate proofs to Chapter 6.

This chapter provides a lot of information about the MLS problem, viewing it from

several different angles. For example, when deriving a gradient based method, we are

forced to inspect the differentiability of the objective function. Another method we will

discuss will find local minima using a variable exchange method. This again gives us

insight into the underlying geometry of the problem. The semidefinite relaxation methods

are based on duality and provide yet another (more abstract) geometric viewpoint.

5.2 A Reformulation

Here we will review the magnitude least-squares problem and reformulate it in a way that

will be more convenient when discussing methods to find solutions. Recall that the MLS

problem is

min
x∈Cn

‖ |Ax| − b ‖2
2 ≡

m
∑

i=1

(|Aix| − bi)
2, (MLS)

where A is a complex matrix in general, and b ∈ Rm is a positive real vector. It’s useful

to prove a fact that will allow us to reformulate this problem in a way that doesn’t involve

the absolute value function. We will use the formulation to derive the variable exchange

method, and use it again later in forming a convex dual relaxation.

Theorem T1: The magnitude least-squares problem (MLS) is equivalent to the following:

min
x,z

m
∑

i=1

|Aix − bizi|
2 (Theorem T1)

s.t. |zi| = 1.

The theorem makes intuitive sense, for the introduced unity-modulus variables zi are re-

lated to the fact that in the magnitude least-squares problem, the phases in the complex

vector Ax are irrelevant. The variables zi could be thought to represent those phases. To

prove Theorem T1, we will first prove two lemmas.
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Lemma L1: Given y ∈ C, we can express its modulus as:

|y| = max
|z|=1

Re{yz̄} (Lemma L1)

Proof of Lemma L1: If |y| = 0, then any |z| = 1 maximizes (Lemma L1), and the

statement is true. On the other hand, by the Cauchy-Schwartz inequality, we have that for

any y, z ∈ C,

|yz̄| ≤ |y||z|,

so that

max
|z|=1

|yz̄| ≤ |y||z?| = |y|, (5.1)

since z?, the maximizer of (5.1) is such that |z?| = 1. Since |y| 6= 0 we see that z? = y/|y|

maximizes (5.1), achieving the upper bound of |y|. Because Re{yz̄} ≤
√

Re{yz̄}2 + Im{yz̄}2 =

|yz̄|, we have that

max
|z|=1

Re{yz̄} ≤ max
|z|=1

|yz̄|.

But Re{yz̄?} = Re{|y|} = |y| ≥ max|z|=1 |yz̄| by (5.1), so

max
|z|=1

Re{yz̄} ≥ max
|z|=1

|yz̄|.

Hence,

max
|z|=1

Re{yz̄} = max
|z|=1

|yz̄| = |y|.

This proves Lemma L1. �

Lemma L2: Given y ∈ C and a ∈ R, a ≥ 0, the following holds:

(|y| − a)2 = min
|z|=1

|y − az|2 (Lemma L2)

Proof of Lemma L2: Let y and a ≥ 0 be fixed variables in C and R respectively. We
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have

(|y| − a)2 = y2 − 2a|y| + a2

= y2 − 2a

(

max
|z|=1

Re{yz̄}

)

+ a2 (by Lemma L1)

= y2 − (max
|z|=1

2aRe{yz̄}) + a2 (since a ≥ 0)

= y2 + min
|z|=1

(−2aRe{yz̄}) + a2

= min
|z|=1

(

y2 − 2aRe{yz̄} + a2
)

= min
|z|=1

|y − az|2,

proving Lemma L2. �

Proof of Theorem T1: Using Lemma L2, we can rewrite each term of the sum in (MLS)

as

(|Aix| − bi)
2 = min

|zi|=1
|Aix − bizi|

2.

Substituting, we have that (MLS) can be written as

min
x

m
∑

i=1

min
zi

|Aix − bizi|
2 (5.2)

s.t. |zi| = 1.

Since each zi enters into the sum in one and only one term, we can defining a vector z ∈ Cm

with components zi, and write (5.2) as

min
x,z

m
∑

i=1

|Aix − bizi|
2 (MLS.Z)

s.t. |zi| = 1,

which proves Theorem T1. �

5.3 Local Methods

5.3.1 Variable Exchange Method

The formulation (MLS.Z) now can form the basis for an iterative variable exchange method

for finding a local minimizer. For fixed z, the minimizing x can be found easily as the
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solution to a linear least-squares problem. In turn, for fixed x, the optimal z is obvious:

zi equals a complex number with modulus 1, with phase equal to that of Aix. If we start

with a feasible x and z, then holding one set of variables fixed and solving for the other can

only improve the objective function. We know the objective function can never be negative,

so by alternating the procedure, we will eventually find at least a local minimizer for the

magnitude least-squares problem. The procedure is as follows:

Step 1: Choose solution tolerance ε > 0.

Step 2: Choose initial x either randomly, or by any other procedure.

Step 3: For all i, set zi as the unity modulus complex number with phase equal to that of

Aix.

Step 4: Hold z fixed, and find a new x as the solution to the unconstrained linear least-

squares problem.

Step 5: Repeat steps 3 and 4 until the decrease in objective function has diminished to

within ε.

In the next section we discuss a gradient-based local method for solving a very slightly

modified version of the magnitude least-squares problem. The modification makes the ob-

jective function everywhere differentiable. Like the variable exchange method, the gradient-

based method is only capable of finding local solutions.

5.3.2 Gauss-Newton Method

Here we introduce a method that is particularly well-suited to our nonlinear least-squares

problem, called the Gauss-Newton method (see [BV04] p. 520). The Gauss-Newton method

uses the gradient of the objective function to progressively take downhill steps, eventually

discovering a locally minimum point. What distinguishes the Gauss-Newton method from

other local methods like the Newton method or the steepest descent method is the exact

choice of downhill direction (called the search direction), and the manner in which this is

calculated.
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In our problem, the search direction can be calculated very efficiently as the solution

to a linear least-squares problem. This is the motivation behind using Gauss-Newton (as

opposed to the Newton or steepest descent methods).

The objective function in the magnitude least-squares problem (MLS) is not every-

where differentiable, which has the potential to cause problems in our gradient method.

For this reason, we will attempt to solve what is actually a different (but very closely re-

lated) problem. Instead of solving (MLS), we will find a local minimizer of

min
x∈Cn

m
∑

i=1

(|Aix|
2 − b2

i )
2 ≡

m
∑

i=1

(|aH
i x|2 − b2

i )
2, (MSLS)

where for notational clarity, we’ve introduced the variables ai ≡ AH
i , which are the Her-

mitian transposes of the rows of the matrix A. We can call this variant of the magnitude

least-squares problem the magnitude-squared least-squares problem.

The objective function is real, but it is a function of complex variables. To avoid any

confusion arising as a result of conflicting definitions of what’s meant by “complex gra-

dient”, we will rewrite (MSLS) in terms of the real and imaginary parts of the complex

variables. From there we can find the necessary gradients and derive the Gauss-Newton

method.

Let the real and imaginary parts of variables ai and x be notated by aiR, aiI , xR, and

xI . Then it isn’t hard to show that

|aH
i x|2 =

[

xR

xI

]T [
aiR −aiI

aiI aiR

] [

aT
iR aT

iI

−aT
iI aT

iR

] [

xR

xI

]

,

so that (MSLS) is equivalent to the following which only involves real variables:

min
xR,xI∈Rn

m
∑

i=1

(

[

xR

xI

]T [
aiR −aiI

aiI aiR

] [

aT
iR aT

iI

−aT
iI aT

iR

] [

xR

xI

]

− b2
i

)2

.

Again, for notational convenience and clarity, let

Ai ≡

[

aiR −aiI

aiI aiR

]

, and let

u ≡

[

xR

xI

]

.
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The problem is then

min
u∈R2n

m
∑

i=1

(uTAiA
T
i u − b2

i )
2. (5.3)

Let f(u) =
∑

fi(u)2 denote the objective function in (5.3). The gradient of f(u) is

∇f(u) = 2
m
∑

i=1

fi(u)∇fi(u)

= 4
m
∑

i=1

(uTAiA
T
i u − b2

i )AiA
T
i u.

The Hessian of f(u) is

∇2f(u) = 2
m
∑

i=1

∇fi(u)∇fi(u)T + fi(u)∇2fi(u)

= 4
m
∑

i=1

2AiA
T
i uuTAiA

T
i + (uTAiA

T
i u − b2

i )AiA
T
i . (5.4)

The Newton search direction is the direction along which lies the minimizer of the second-

order approximation of the objective function (see [BV04]). This direction is given by

∆unt = −∇2f(u)−1∇f(u)

The Gauss-Newton method keeps only the first term of (5.4) an approximation to the Hes-

sian in the calculation of a downward search direction. The Gauss-Newton search direction

then is

∆ugn =

(

8
m
∑

i=1

AiA
T
i uuTAiA

T
i

)−1(

4
m
∑

i=1

(uTAiA
T
i u − b2

i )AiA
T
i u

)

=
1

2

(

m
∑

i=1

AiA
T
i uuTAiA

T
i

)−1( m
∑

i=1

(uTAiA
T
i u − b2

i )AiA
T
i u

)

Upon further inspection, we can see that ∆ugn is actually the solution to the linear least-

squares problem

∆ugn = argmin
y

1

2

m
∑

i=1

(

uTAiAiyi − (uTAiA
T
i u − b2

i )
)2

.
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The Gauss-Newton direction can therefore be calculated much more efficiently than the

Newton direction for this problem. We can solve the problem by taking steps in the di-

rection ∆ugn, of a size determined by using a backtracking line search. The backtracking

line search is a simple, efficient procedure that ensures that we always will progress down-

hill, avoiding steps that are too large. Eventually the progress downhill slows to within a

prescribed tolerance and we have obtained a locally minimum solution.

5.4 Semidefinite Relaxations

In the preceding section, we derived local methods for both the magnitude least-squares

problem (MLS), and the very similar magnitude-squared least-squares problem (MSLS).

Now we will derive (convex) semidefinite programs that are relaxations of these two prob-

lems. The solutions obtained by these methods can be used as starting points for the local

methods. In Chapter 7 we will look closely at how much improvement we can gain using

these combinations of methods.

5.4.1 Relaxation for MLS

We will start with the magnitude least-squares problem (MLS) and derive a semidefinite

relaxation using duality. After calculating the dual, we will interpret it in terms of the

original nonconvex primal problem. This will allow us to see in a more direct way that

indeed it is a relaxation, the solutions of which, therefore, must underestimate the global

minimum of (MLS).

As proved above, (MLS) is equivalent to (MLS.Z). Defining a diagonal matrix B with

diagonal entries bi, (MLS.Z) can be written in matrix notation as

min
x

min
z

‖Ax − Bz‖2 s.t. |zi| = 1, i = 1, 2, ...,m

= min
z

(

min
x

‖Ax − Bz‖2
)

s.t. |zi| = 1, i = 1, 2, ...,m

= min
z

‖A(A†Bz) − Bz‖2 s.t. |zi| = 1, i = 1, 2, ...,m,

where A† is the pseudo-inverse of A, which equals (AHA)−1AH if A has full rank. Define
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W ∈ Cm×m as

W ≡ (AA†B − B)H(AA†B − B),

we see that W � 0 and that (MLS) is equivalent to the problem

min
z

zHWz (MLS.A)

s.t. |zi| = 1, i = 1, 2, ...,m

Problem (MLS.A) can be expressed as a quadratic objective function with quadratic equal-

ity constraints:

min
z

zHWz

s.t. |zi|
2 = 1, i = 1, 2, ...,m,

Introducing a vector of real Lagrange multipliers, we can derive the dual. Define the nota-

tion D(x) to be the diagonal matrix with entries xi, the elements of x.

L(z, ξ) ≡ zHWz +
m
∑

i=1

ξi(1 − |zi|
2)

= zHWz − zHD(ξ)z + 1T
mξ

= zH(W − D(ξ))z + 1T
mξ.

Now, minimizing over z we can calculate the dual function:

g(ξ) ≡ min
z

L(z, ξ)

=

{

−∞ if W − D(ξ) � 0

1T
mξ if W − D(ξ) � 0.

Maximizing the dual function yields the Lagrangian dual of (MLS.A):

max
ξ

1T
mξ (MLS.D)

s.t. W − D(ξ) � 0

We can now find a dual problem associated with this convex optimization problem, to

arrive at a formulation that can easily be seen to be a relaxation of (MLS.A). The most
55



efficient way to compute this is to appeal to the concepts of conic duality, by introducing

a positive semidefinite matrix of multipliers Z � 0. Define the notation d(X) to be the

vector consisting of the diagonal elements of X .

L(ξ, Z) ≡ 1T
mξ + Tr (Z(W − D(ξ)))

= (1m − d(Z))T ξ + Tr (ZW ) .

Maximizing over ξ yields the dual function,

g(Z) =

{

∞ if 1m − d(Z) 6= ~0

Tr (ZW ) if 1m − d(Z) = ~0.

So the dual of (MLS.D) is

min
Z

Tr (ZW ) (MLS.P)

s.t. Zii = 1, i = 1, 2, ...,m,

Z � 0.

By expressing (MLS.A) in a similar form, we can see that (MLS.P) can be derived directly

from (MLS.A) by relaxing a rank constraint. Equation (MLS.A) can be expressed as

min
z

Tr
(

zzHW
)

s.t. |zi| = 1, i = 1, 2, ...,m.

By using the fact that a positive semidefinite matrix can be factored as Z = zzH if and only

if it is rank one, we have

min
Z

Tr (ZW ) (5.5)

s.t. Zii = 1, i = 1, 2, ...,m,

Z � 0

rank(Z) = 1.

Thus, we see that (MLS.P) can be derived directly by relaxing the rank constraint.
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To summarize, we have derived a primal-dual pair, (MLS.P) and (MLS.D), associated

with our main problem (MLS.A). Since (MLS.P) is strictly feasible, (take Z = I , the

identity), the Slater condition is satisfied for this pair, and strong duality holds, i.e., the

solutions to these dual optimization problems are equal. Furthermore, we know that this

solution underestimates the solution to (MLS.A) since (MLS.P) is a relaxation.

5.4.2 Solving MLS via the Relaxation

The relaxation (MLS.P) can be efficiently solved using semidefinite programming solvers

such as SeDuMi [Stu99]. The variables in (MLS.P) do not obviously correspond to the

variables in the original nonconvex problem (MLS.A) (equivalent to (MLS)), however.

How does solving this relaxation help us to solve (MLS.A) then?

First, the optimal objective of (MLS.P) must always be less than or equal to the objec-

tive of (MLS.A). If we had obtained a feasible solution to (MLS.A) (found for example

using the a local method like the variable exchange method described above), then we could

compare it’s obtained objective to that of the lower bound. If the differential were small, we

would know that even if we hadn’t discovered the exact global minimizer, we were close.

We can, however, use the solution of (MLS.P) to help us find such a solution.

The optimal variables in (MLS.P) form a semidefinite matrix Z?. If Z? has rank one,

then it is feasible (and optimal) also for the rank-constrained problem (5.5), and we need

only factor it to find the optimal for (MLS.A). That is usually too much to hope for. More

often, the answer Z? will not be rank one. In this case, as we will discuss at length in the

next chapter, we will be able to find good feasible solutions to (MLS.A) by considering Z?

to be a covariance matrix of a normal probability distribution. We can randomly sample

from the distribution, obtaining vectors which we can scale in a straightforward way to

satisfy the equality constraints in (MLS.A). We will be able to prove that solutions obtained

in this way are guaranteed to possess objectives that are close in value to the global optimal.
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5.4.3 Relaxation for MSLS

Just as the semidefinite relaxation for (MLS) can be interpreted as the problem that results

from discarding the rank constraint in the problem (5.5), we can form a rank-constrained

semidefinite programming problem equivalent to (MSLS). We can rewrite (MSLS) as

min
X�0

m
∑

i=1

(

Tr
(

aia
H
i X
)

− b2
i

)2
. (5.6)

s.t. Rank (X) = 1

A semidefinite relaxation of (5.6) then can easily be seen to be

min
X�0

m
∑

i=1

(

Tr
(

aia
H
i X
)

− b2
i

)2
. (MSLS.P)

Like we did with (MLS) we can derive this result using duality. To do so, it’s convenient

to define a operator that converts a matrix of size n × n to a column vector of size n2 × 1.

Call this operator
−→
[·] . We can express (5.6) as

min
X

m
∑

i=1

(

Tr
(

aia
H
i X
)

− b2
i

)2
. (MSLS.A)

s.t. X = xxH

We can derive the dual by introducing the complex matrix Y of Lagrange multipliers and

forming the Lagrangian,

L(x,X, Y ) ≡
m
∑

i=1

(

Tr
(

aia
H
i X
)

− b2
i

)2
+ Tr

(

Y xxH
)

− Tr (Y X) . (5.7)

Define A and c as follows:

A ≡













−−−−→[

a1a
H
1

]

H

−−−−→[

a2a
H
2

]

H

...
−−−−→[

amaH
m

]

H













, c ≡

−−−−−−−−−−→[

m
∑

i=1

2b2
i aia

H
i

]

Then (5.7), the Lagrangian can be expressed in matrix/vector notation as

L(x,X, Y ) =
−→
[X]HAHA

−→
[X] − (c +

−→
[Y ])H

−→
[X] + xHY x +

m
∑

i=1

b4
i
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Minimizing over x and X yields the dual function,

g(Y ) ≡ min
x,X

L(x,X, Y )

=











−∞ if Y � 0

−
−→
[Y ]H(4AHA)−1

−→
[Y ] + cH(2AHA)−1

−→
[Y ]

−cH(4AHA)−1c +
∑m

i=1 b4
i if Y � 0

The dual problem is therefore

max
Y

−
−→
[Y ]H(4AHA)−1

−→
[Y ] + cH(2AHA)−1

−→
[Y ] − cH(4AHA)−1c +

m
∑

i=1

b4
i (MSLS.D)

s.t. Y � 0

The dual of the dual problem is derived by introducing a positive semidefinite matrix Z

corresponding to the constraint in (MSLS.D):

L(Y, Z) = −
−→
[Y ]H(4AHA)−1

−→
[Y ] + cH(2AHA)−1

−→
[Y ] +

−→
[Z]H

−→
[Y ] − cH(4AHA)−1c +

m
∑

i=1

b4
i

Maximizing this quadratic function with respect to Y will reveal the dual function of the

dual problem:

g(Z) =















∞ ifZ � 0
1
4

(

cH(2AHA)−1 +
−→
[Z]H

)

(4AHA)
(

(2AA)−1c +
−→
[Z]
)

−cH(4AHA)−1c +
∑m

i=1 b4
i ifZ � 0

Finally we can reduce and obtain the dual of the dual problem:

min
Z

−→
[Z]HAHA

−→
[Z] +

−→
[Z]Hc +

m
∑

i=1

b4
i

s.t. Z � 0

≡ min
Z

m
∑

i=1

(

Tr
(

aia
H
i Z
))2

+
m
∑

i=1

Tr
(

2b2
i aia

H
i Z
)

+
m
∑

i=1

b4
i

s.t. Z � 0

= min
Z

m
∑

i=1

(

Tr
(

aia
H
i Z
)

− b2
i

)2
(MSLS.P)

s.t. Z � 0

This is exactly the relaxation we discovered by ignoring the rank constraint in (5.6).
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5.4.4 Solving MSLS via the Relaxation

In exactly the same way as we can use the relaxation (MLS.P) to help us find solutions

for (MLS), we can use (MSLS.P) to help us find solutions for (MSLS). Again, since we

know that (MSLS.P) is a relaxation, a solution to it provides us with a lower bound on the

globally optimal objective for (MSLS). This has the potential to let us know whether a

solution obtained with a local method, such as Gauss-Newton, has objective approaching

that of the global minimum. We can also use an optimal solution Z? to (MSLS.P) to help

us discover a good solution to (MSLS) or a good starting point for a local method.

This would entail considering the positive semidefinite matrix Z? to be a covariance

matrix for a normally distributed random vector. Randomly sampling the distribution pro-

vides us with candidate solution vectors for (MSLS). In contrast to (MLS.P), the relaxation

(MSLS.P) does not possess equality constraints, so any vector is feasible for (MSLS), sim-

plifying the process of obtaining a primal feasible point. We will prove that sampling from

this distribution is markedly better than sampling from some other distribution.

5.5 Summary

In this chapter we have defined four methods for solving two similar problems related to

magnitude fitting. The two problems are the magnitude least-squares problem (MLS) and

the magnitude-squared least-squares problem (MSLS). For each problem we have derived

both a local method and a semidefinite relaxation method. In the next chapter we will

analyze the semidefinite relaxation methods in more detail, explaining how to use the re-

laxations to obtain good solutions to the original nonconvex problems (MLS) and (MSLS).

We will justify the random sampling approaches touched on in this chapter by proving

guarantees that the solutions obtained in this way will be of high quality. In combination

with the local methods, we are armed with a methodology that performs well in practice

and also possesses theoretical structure and meaning.
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Chapter 6

Obtaining Primal Solutions from
Relaxations and Quality Estimates

6.1 Introduction

In the last chapter, we derived methods for solving the magnitude least-squares (MLS)

and magnitude-squared least-squares problems (MSLS). In this chapter we will investigate

more completely how to use the semidefinite relaxation solutions to help solve these non-

convex problems. The technique will involve considering the positive semidefinite solution

matrices to be covariance matrices of random variables, and sampling from those distri-

butions to find primal feasible points. We will justify the idea by proving facts about the

relative quality of the solutions obtained.

The important and now famous paper by Goemans and Williamson [GW95] detailed

this approach and used it to approximately solve an NP-complete problem MAX CUT with

fixed relative accuracy. The MAX CUT problem is a nonconvex maximization problem

that has many applications in operations research and engineering. It can be comprehended

abstractly as a graph partitioning problem. They prove that by using the method we will

discuss, which relies on semidefinite relaxation, one can be guaranteed of obtaining a solu-

tion with objective

νgw ≥ .87856µ∗
gw ≥ 0.

where νgw is the solution obtained using this method, and ν∗ is the global maximum, which
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for that problem, is always nonnegative. This guarantee has theoretical appeal. The method

is even more exciting because of observations that the solutions obtained in this way are

often far closer to the true optimal than what is guaranteed.

Subsequent to Goemans and Williamson’s work, researchers discovered many exten-

sions to the idea, and applied the principles to other similar problems. Indeed, that is what

we will do in this chapter for the magnitude least-squares and magnitude-squared least-

squares problems. An important extension to the work was derived by Yurii Nesterov in

[Nes98], where he applied the same idea in an elegant way to general quadratic problems

with constraints on squared variables. We will start with a review of his proof and will be

able to apply the result directly to the magnitude least-squares problem. We will later show

that an even better bound exists, due in part to the structure of the complex variables in

our problem. This will rely on recent work published by Shuzhong Zhang and Yongwei

Huang in [ZH04]. Finally we will derive a novel bound for the magnitude-squared least-

squares problem that, similar to Zhang and Huang’s work, uses the complex structure of

the problem to improve the bound calculated for the real version of the problem.

6.2 Nesterov’s Proof

The clarity and elegance of the proof published in [Nes98] and [Nes97] is worth repeating

here. It will serve to convey the key ideas of these kinds of proofs, and help to clarify and

condense the other results in this the chapter.

The problems Nesterov is concerned with are the following:

f ∗(A) ≡ max
x

xT Ax

s.t. xi = ±1, i = 1, 2, ..., n,

(6.0A)

and

f∗(A) ≡ min
x

xT Ax

s.t. xi = ±1, i = 1, 2, ..., n,

(6.1A)

where A is an arbitrary symmetric (n × n)-matrix.
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Note the similarity of (6.1A) to our magnitude least-squares equivalent problem (MLS.A).

The differences between the two problems are first that the variables in (MLS.A) are

complex, whereas in Nesterov’s problem they are real, and second that the matrix W in

(MLS.A) is positive semidefinite, whereas A above is arbitrary (but symmetric). We will

show that these differences allow us to prove a slightly stronger result for (MLS.A).

Just as we derived the semidefinite relaxation for (MLS.A) in the last chapter, we can

see that semidefinite relaxations for (6.0A) is

s∗(A) ≡ max
x

Tr (AX)

s.t. X � 0

d(X) = 1

(6.2P)

= min
ξ

1
T ξ

s.t. D(ξ) � A

(6.2D)

and the relaxation for (6.1A) is

s∗(A) ≡ min
x

Tr (AX)

s.t. X � 0

d(X) = 1

(6.3P)

= max
ξ

1
T ξ

s.t. D(ξ) � A

(6.3D)

where the function D(·) maps a vector to a diagonal matrix with diagonal entries equal

to the entries in the vector, and the boldfaced notation 1 represents a vector of all ones of

appropriate dimension (it’s in Rn). Now we will recount Nesterov’s proof as laid out in

[Nes97].

We first note that because (6.2P) and (6.3P) are relaxations of (6.0A) and (6.1A), we

have the following relationship among the optimal values:

s∗(A) ≤ f∗(A) ≤ f ∗(A) ≤ s∗(A)

63



As explained by Nesterov, the goal is to make that relation more precise. He starts by

imposing the assumption that A is positive semidefinite. Assume that x∗ is a solution to

(6.0A). Denote I∗ = {i : x∗
I = 1}. Let V =

[

v1 v2 ... vn

]

be an (n × n)-matrix. For

a ∈ Rn, denote σ(a) ∈ Rn as the vector with components sgn(ai), and define sgn(0) = 0.

Lemma L3: If A � 0,

f ∗(A) = max
u,v

(σ(V T u))T Aσ(V T u)

s.t. ‖vi‖ = 1 i = 1, 2, ..., n

‖u‖ = 1.

(Lemma L3)

Proof: Denote the right hand side of the above equation by f . Taking x = σ(V T u) we

have xi = ±1, so that f ≤ f ∗(A). On the other hand, fix an arbitrary u ∈ Rn. For i ∈ I∗,

choose vi = u and for i /∈ I∗, choose vi = −u. Then σ(V T u) = x∗ so that f ≥ f ∗(A),

proving the lemma. �

Let Eu(f(u)) denote the average value of f(u) on the n-dimensional unit sphere.

Lemma L4:

f ∗(A) = max
V

Eu((σ(V T u))T Aσ(V T u))

s.t. ‖vi‖ = 1 i = 1, 2, ..., n

(Lemma L4)

Proof: The average value on the sphere cannot exceed the maximum value, which is given

by the right hand side of (Lemma L3). So we have

f ∗(A) ≥ max
V

Eu((σ(V T u))T Aσ(V T u))

s.t. ‖vi‖ = 1 i = 1, 2, ..., n

.

On the other hand, expanding the right hand side of (Lemma L4), we have

Eu

(

(σ(V T u))T Aσ(V T u)
)

=
n
∑

i=1

n
∑

i=1

aijEu

(

sgn(vT
i u)sgn(vT

j u)
)

Let y ∈ Rn, ‖y‖ = 1. If we choose vi = y for i ∈ I∗, and vi = −y for i /∈ I∗, then

Eu

(

sgn(vT
i u)sgn(vT

j u)
)

=

{

1, (i, j ∈ I∗) or (i, j /∈ I∗)

−1, otherwise

≡ x∗
i · x

∗
j .
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Thus,

f ∗(A) ≤ max
V

Eu

(

(σ(V T u))T Aσ(V T u)
)

.

s.t. ‖vi‖ = 1 i = 1, 2, ..., n

proving the lemma �

Note here that the truth (and the proof) of Lemma L4 does not depend on the expectation

Eu(·) being defined as a the average value over a sphere. The probability density function

of u can be arbitrary. We will see that a spherically symmetric density function is what

is required for the next result to be meaningful. Density functions that are spherically

symmetric include the uniform density function defined on a sphere (the one suggested by

Nesterov), but also include a normal distribution with identity covariance matrix, defined

over all of Rn.

Nesterov uses the notation [·] to apply functions of single variables to the entries of

matrices. For example, arcsin[X] is the matrix whose entries are arcsin(xij), and [X]k is

the matrix whose entries are xk
ij .

Theorem T2:

f ∗(A) = max
X

2

π
Tr (A · arcsin[X])

s.t. X � 0

d(X) = 1

(Theorem T2)

Proof: First, we will establish that the feasible sets of (Theorem T2) and (Lemma L4)

are in one-to-one correspondence. If X is feasible for (Theorem T2), then we have that

X � 0, d(X) = 1. For any such X , we can choose V = X1/2 and it will be feasible for

(Lemma L4), i.e., each column vi will be such that ‖vi‖ = 1. Likewise, given a V feasible

for (Lemma L4), the matrix X = V T V is positive semidefinite, with diagonal entries equal

to 1. Thus, Theorem T2 is true if the objective functions are equal, that is, if

Eu

(

(σ(V T u))T Aσ(V T u)
)

=
2

π
Tr (A · arcsin[X]) (6.4)
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Thinking geometrically, we can see that

Eu

(

sgn(vT
i u) · sgn(vT

j u)
)

= 1 − 2Pr
(

sgn(vT
i u) 6= sgn(vT

j u)
)

The probability that these dot products have opposite sign is easily computed because the

probability density function is spherically symmetric. Nesterov refers to Lemma 1.2 in

[GW95]:

Eu

(

sgn(vT
i u) · sgn(vT

j u)
)

= 1 −
2

π
arccos(vT

i vj) =
2

π
arcsin(vT

i vj)

The result follows because the expectation operator is linear. �

We are now in a position to prove the quality bound:

Theorem T3:

f ∗(A) ≥
2

π
max

X
Tr (A · X) ≡

2

π
s∗(A)

s.t. X � 0

d(X) = 1

(Theorem T3)

Proof: It isn’t hard to show that arcsin[X] ≥ X , for any X with entries xij such that

|xij| ≤ 1, (as is the case for a feasible X in (Theorem T3)). Since A � 0, the result follows

immediately from Theorem T2. �

Thus, given the nonconvex quadratic problem (6.0A), we have a way of solving it

that guarantees us a solution that is greater than a fraction (2/π) of the global maximum.

The way we generate this solution is suggested by the proof: we solve the semidefinite

relaxation obtaining a positive semidefinite X∗, randomly sample u multiple times from

a spherically symmetric probability distribution, calculate x = σ(X1/2u), and choose the

candidate x that achieves the largest objective. We have proved that the mean value of

the objective will be greater than 2/π times that of the global maximum, so the approach

of choosing the winner is also guaranteed to be bounded below (and will most likely be

even closer to the true maximum value). Note that the procedure for getting the random

candidate x is equivalent to sampling from a normal distribution with covariance matrix X ,

and then rounding (applying the function σ(·)).
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We will continue and complete the review of Nesterov’s ideas by attending to the def-

initeness of the A matrix. This is particularly important for us because the magnitude

least-squares problem is a minimization problem with a positive semidefinite A matrix.

The proof above applies to the maximization case.

Theorem T4: For an indefinite A, the following relations hold:

s∗(A) ≤ f∗(A) ≤ s1−α(A) ≤ sα(A) ≤ f ∗(A) ≤ s∗(A) (Theorem T4)

where α =
2

π
and sβ ≡ βs∗(A) + (1 − β)s∗(A) for β ∈ [0, 1]

Proof: Because the feasible vectors in (6.0A) and (6.1A) have entries with absolute value

1, the following holds for any ξ ∈ Rn:

f ∗(A + D(ξ)) = f ∗(A) + 1
T ξ

f∗(A + D(ξ)) = f∗(A) + 1
T ξ

s∗(A + D(ξ)) = s∗(A) + 1
T ξ

s∗(A + D(ξ)) = s∗(A) + 1
T ξ

Denote ξ∗ to be the solution to relaxation (6.2D) and ξ∗ the solution to (6.3D). Because ξ∗

and ξ∗ are feasible, we have

D(ξ∗) − A � 0

1
T ξ∗ = s∗(A)

A − D(ξ∗) � 0

1
T ξ∗ = s∗(A).
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Using these facts and (Theorem T3), we have

s∗(A) − f∗(A) = 1
T ξ∗ − f∗(A)

= 1
T ξ∗ + f∗(−A)

= f ∗(D(ξ∗) − A)

≥
2

π
s∗(D(ξ∗) − A)

=
2

π
(1T ξ∗ − s∗(A))

=
2

π
(s∗(A) − s∗(A)).

Similarly, we have that

f ∗(A) − s∗(A) ≥
2

π
(s∗(A) − s∗(A)).

Combining the two results proves the theorem. �

This completes our review of the Nesterov’s paper [Nes97]. We now will state one last

result from [Nes98] that will be important when we consider applying the result above to

the complex magnitude least-squares problem. Using very straightforward logic, we can

extend the ideas presented above to derive quality bounds for the following more general

problems:

m∗(A) ≡ max
x

xT Ax

s.t. B[x]2 ≤ c

(6.5)

m∗(A) ≡ min
x

xT Ax

s.t. B[x]2 ≤ c

, (6.6)

where B is an arbitrary matrix and c is a vector, defining linear constraints on the squared

variables [x]2. Note that we recover problems (6.0A) and (6.1A) when B = I , the identity,

and c = 1, a vector of all ones. The two problems (6.5) and (6.6) admit the semidefinite
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relaxation primal and dual pairs,

s∗(A) ≡ max
X

Tr (AX)

s.t. X � 0

Bd(X) ≤ c

= min
ξ

cT ξ

s.t. d(BT ξ) − A � 0

ξ ≥ 0

s∗(A) ≡ min
X

Tr (AX)

s.t. X � 0

Bd(X) ≤ c

= max
ξ

cT ξ

s.t. d(BT ξ) + A � 0

ξ ≥ 0

We have the same quality guarantee for these more general problems as we did for (6.0A)

and (6.1A). We refer the reader to [Nes98] for proofs of these relations (they follow easily

using the same logic as above). The result is precisely that stated in (Theorem T4), namely

that

s∗(A) ≤ m∗(A) ≤ s1−α(A) ≤ sα(A) ≤ m∗(A) ≤ s∗(A),

where α =
2

π
and sβ ≡ βs∗(A) + (1 − β)s∗(A) for β ∈ [0, 1].

We also have a straightforward way of obtaining solutions that satisfy this bound.

6.3 Application of Nesterov’s Bound to MLS

The magnitude least-squares problem is equivalent to a complex-valued version of (6.1A),

as we showed in the last chapter:

min
z

zHWz (MLS.A)

s.t. |zi| = 1, i = 1, 2, ...,m

In order to apply Nesterov’s bound to this problem, we must express it as a function of real

variables. See Appendix A where we show that there is such a formulation. We also prove

in Appendix A that the semidefinite relaxations associated with each are also equivalent to

each other (a nontrivial fact).
69



The equivalent real-valued formulation of (MLS.A) is

min
zR, zI

[

zR

zI

]T [
WR −WI

WI WR

] [

zR

zI

]

s.t. (zR)2
i + (zI)

2
i = 1, i = 1, 2, ...,m

(MLS.AReal)

where zR and zI are real-valued decision variables that correspond to the real and imaginary

parts of z and likewise WR and WI are the real and imaginary parts of W in (MLS.A). We

see that this problem can immediately be expressed in the same form as (6.6):

min
zR, zI

[

zR

zI

]T [
WR −WI

WI WR

] [

zR

zI

]

s.t.
[

I I
−I −I

] [

[zR]2

[zI ]
2

]

≤

[

1

−1

]

(6.7)

Thus the bound applies. Nesterov’s scheme for solving the problem involves the following

steps. First, we solve the semidefinite relaxation of (6.7):

min
Z1, Z2, Z3

Tr

([

Z1 Z2

ZT
2 Z3

] [

WR −WI

WI WR

])

s.t. (Z1)ii + (Z3)ii = 1, i = 1, 2, ...,m
[

Z1 Z2

ZT
2 Z3

]

� 0

. (MLS.PReal)

After obtaining a solution

Y ∗ ≡

[

Z∗
1 Z∗

2

ZT∗
2 Z∗

3

]

� 0,

we factor it uniquely as follows:

Y ∗ =

[

Z∗
1 Z∗

2

ZT∗
2 Z∗

3

]

=

[
√

[D(Z∗
1 )] 0

0
√

[D(Z∗
3 )]

] [

X1 X2

XT
2 X3

] [
√

[D(Z∗
1 )] 0

0
√

[D(Z∗
3 )]

]

,

where the operator D(·) applied to a matrix is defined to be the diagonal matrix with entries

taken from the diagonal of the argument, i.e., if M is a matrix with diagonal entries mii,

then

D(M) ≡











m11 0 · · · 0
0 m22 · · · 0
...

... . . . ...
0 0 · · · mnn











.
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Note that this factorization implies that d(X1) = d(X3) = 1. The next step is to sample K

times from a normal probability distribution

uk ∼ N

(

0,

[

X1 X2

XT
2 X3

])

, k = 1, 2, ..., K.

With each sample, we form a candidate solution vector using the sign-rounding idea present

in the proofs above, and the reapplication of the squareroot factor:

[

(zR)k

(zI)k

]

=

[
√

[D(Z∗
1 )] 0

0
√

[D(Z∗
3 )]

]

sgn([uk]), k = 1, 2, ..., K

The candidate solution vectors (zR)k and (zI)k, if chosen in this way, are feasible for

(MLS.AReal). We can evaluate the objective function (MLS.AReal) for each sample. As-

suming we have chosen K large enough we are guaranteed to discover a feasible solution

with objective satisfying the bounds. The final solution vector can then be easily converted

back into complex terms.

We can interpret the sign-rounding step as choosing one of the four quadrants of the

complex plane to locate each complex decision variable. The diagonal entries of Z1 and Z3

determine phase-offset angles within the quadrant for the variables. This procedure works

well in practice, and possesses the quality bound proved above. In the next section we will

introduce a slightly improved (but very similar) method of rounding that carries with it a

corresponding improvement in quality estimate.

6.4 Zhang/Huang Rouding

We were able to apply Nesterov’s result to the magnitude least-squares problem, after refor-

mulating it as a real quadratic minimization problem with constraints on squared variables.

In the paper [ZH04], Shuzhong Zhang and Yongwei Huang prove a result that improves

Nesterov’s bound for complex problems like our formulation (MLS.A). In Nesterov’s proof

above, it is easy to calculate the expectation (6.4). In the case where the variables in the

problem are complex, calculating the corresponding expectation is much more difficult.

Nevertheless, the authors in [ZH04] are able to do just that through very clever and careful
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evaluation of complicated integrals. They are concerned with the problem

g∗(A) ≡ max
z

zHAz

s.t. |zi| = 1, i = 1, 2, ...,m

(Z)

where A is positive semidefinite. Our magnitude least-squares equivalent problem (MLS.A)

is a minimization problem. Zhang and Huang are able to prove that using a different round-

ing scheme the following bound holds:

g∗(A) ≥
π

4
max

X
Tr (A · X) ≡

π

4
r∗(A)

s.t. X � 0

d(X) = 1

,

where all the variables in the problem are complex-valued. In Appendix A we prove that

this relaxation involving complex variables, derived from the complex-valued formulation

(Z) is actually equivalent to the real-valued relaxation derived from the real-valued equiva-

lent problem. The ingredient that makes Zhang and Huang’s bound better than Nesterov’s

bound is their superior method of rounding the random samples.

The maximization and minimization versions of (Z), though not touched on in [ZH04],

are related in the same way as for Nesterov’s problems. We have

Theorem T5: For an indefinite A, the following relations hold:

r∗(A) ≤ g∗(A) ≤ r1−α(A) ≤ rα(A) ≤ g∗(A) ≤ r∗(A) (Theorem T5)

where α =
π

4
and rβ ≡ βr∗(A) + (1 − β)r∗(A) for β ∈ [0, 1]

Proof: The result follows by exactly the same logic as Theorem T3. �

The rounding scheme that makes this possible is simple. Instead of converting the

problem to one with real-valued variables, with the intention of rounding the randomly

generated samples to ±1 as is generally applicable for the wider class of problems dis-

cussed by Nesterov, we keep the variables complex and project them to the nearest point

on the complex unit circle. In Nesterov’s proof, the operator σ(x) was synonymous with

sgn([x]). The Zhang/Huang rounding could be considered an extended definition, so that
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σ(z) ≡ z/|z|. It should be noted that both methods of rounding perform well in practice.

The two rounding schemes do differ and we are able to prove the slightly stronger result,

which is of theoretical interest.

6.5 A Quality Proof for MSLS

In this section we present quality bounds for the magnitude-squared least-squares prob-

lem (MSLS). This problem is a variant of the magnitude least-squares problem and was

discussed in the last chapter. Recall that it is

µ = min
x∈Cn

m
∑

i=1

(|aH
i x|2 − b2

i )
2 (MSLS)

and admits the semidefinite relaxation,

ν∗ = min
X

m
∑

i=1

(

Tr
(

aia
H
i X
)

− b2
i

)2

s.t. X � 0

(MSLS.P)

In analyzing the magnitude least-squares equivalent problem (MLS.A) in the last sec-

tion, we discovered that the bound for the complex-valued version of Nesterov’s problem

admitted a better bound, as proved by Zhang and Huang. The reason this is true is that

the complex-valued problem (MLS.AReal) possesses more structure. Please refer to Ap-

pendix A for a discussion of the structure associated with complex variables and how that

structure carries through in formulating relaxations. In the present section we will present

novel results related to (MSLS), and show that in this problem too, the complex structure

allows us to prove a tighter bound. We will use many of the same concepts used by Nes-

terov in his proof. The analysis by Zhang and Huang of the complex version of (6.0A)

required careful evaluation of a complicated complex-valued integral. For the magnitude-

squared least-squares problem discussed here, we will be able to reason about the structure

and associated bounds directly by expanding the problem into real and imaginary parts.

More elegantly, we can arrive at the same result by keeping the variables complex.

The derivation discussed in this section, along with the proofs discussed in Appendix A
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provide us insight into why the complex versions of these problems have provably tighter

semidefinite relaxations.

How does the optimal objective ν∗ of (MSLS.P) compare to the true optimal µ that

solves (MSLS)? We know that the ν∗ ≤ µ because (MSLS.P) is a relaxation of (MSLS)

which is exactly equivalent to the rank-constrained problem

µ = min
X�0

m
∑

i=1

((Tr
(

aia
H
i X
)

)2 − b2
i )

2.

s.t. Rank (X) = 1.

Now we will derive another semidefinite programming problem that will provide for us

an upper bound on µ. The solution of (MSLS.P) provides us with an optimal complex

semidefinite matrix X∗. We could obtain a primal feasible solution to (MSLS) by sampling

from a complex normal distribution with zero mean and covariance matrix X∗. Given an

arbitrary positive semidefinite matrix X , let’s look at the expected value

γ(X) = E
m
∑

i=1

(uHaia
H
i u − b2

i )
2. (6.8)

u ∼ N (0, X)

where u is a complex random variable sampled from a normal distribution with zero mean

and covariance matrix X . Expand (6.8) as

γ(X) =
m
∑

i=1

E(uHaia
H
i u − b2

i )
2.

=
m
∑

i=1

E((uHaia
H
i u)2 − 2b2

i u
Haia

H
i u + b4

i ) (6.9)

Let yi = aH
i u. Since u consists of jointly Gaussian random variables, yi is also Gaussian

(and scalar). We know that Eyi = 0 and that

E|yi|
2 = EuHaia

H
i u

= ETr
(

aia
H
i uuH

)

= Tr
(

aia
H
i EuuH

)

= Tr
(

aia
H
i X
)
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We can express (6.9) in terms of yi:

γ(X) =
m
∑

i=1

E(|yi|
4 − 2b2

i |yi|
2 + b4

i )

=
m
∑

i=1

E|yi|
4 − 2b2

i E|yi|
2 + b4

i

=
m
∑

i=1

E|yi|
4 − 2b2

i E|yi|
2 + b4

i

The expectation E|yi|
2 is just the variance σ2

y = Tr
(

aia
H
i X
)

of yi. The expectation E|yi|
4

is the fourth moment of the complex-valued, normally distributed random variable yi and

is only a function of the mean and variance. It is E|yi|
4 = 2σ4

y = 2(Tr
(

aia
H
i X
)

)2 (see

[Ree62]). Note that for a real-valued normally distributed random variable r, the fourth

central moment is, in fact, different. It is Er4 = 3σ4
r . We will see that this is the key

fact that makes the complex valued problem possess a superior quality bound. After we

have completed the derivation, we will also derive the result without invoking the theorem

in [Ree62], but derive it by expanding into real and imaginary parts and investigating the

structures of the matrices. We have that

γ(X) =
m
∑

i=1

2(Tr
(

aia
H
i X
)

)2 − 2b2
i Tr
(

aia
H
i X
)

+ b4
i

The optimal value ν∗ of the convex semidefinite programming problem

ν∗ = min
X�0

m
∑

i=1

2(Tr
(

aia
H
i X
)

)2 − 2b2
i Tr
(

aia
H
i X
)

+ b4
i , (UPPER)

must be an upper bound for µ since sampling u from the optimal X∗ of (UPPER), sub-

stituting and evaluating the primal objective function must at some point minorize γ(X ∗)

which equals ν∗.

From this we have two semidefinite programming problems one representing a lower

bound on the objective of the magnitude-squared least-squares problem, and one represent-

ing an upper bound. By looking at the duals of these two problems, we can see that their

optimal objectives are functions of one another. In fact, it holds that

ν∗ −
m
∑

i=1

b4
i =

1

2

(

ν∗ −
m
∑

i=1

b4
i

)

. (6.10)
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The above is a simple consequence of the differing quadratic coefficients in the very similar

semidefinite programs. This motivates us to disregard the inconsequential constant term
∑

b4
i in the original primal problem (MSLS). All of the arguments still hold. Define the

following:

µ̃ = min
x∈Cn

m
∑

i=1

(|aH
i x|2 − b2

i )
2 − b4

i , (6.11)

ν̃∗ = min
X�0

m
∑

i=1

(Tr
(

aia
H
i X
)

)2 − 2b2
i Tr
(

aia
H
i X
)

(6.12)

ν̃∗ = min
X�0

m
∑

i=1

2(Tr
(

aia
H
i X
)

)2 − 2b2
i Tr
(

aia
H
i X
)

(6.13)

The values ν̃∗, and ν̃∗ must both be nonpositive because X = 0 is feasible for (6.12) and

(6.13). By the same expectation based arguments presented above, we can establish the

following (all equivalent) bounds on these nonpositive values:

ν̃∗ ≤ µ̃ ≤
1

2
ν̃∗ (BOUND1)

2ν̃∗ ≤ µ̃ ≤ ν̃∗. (BOUND2)

Reformulating the bounds in the same style as Goemans and Williamson, we have proved

that we have a method of obtaining a solution with objective equal to νmsls ≡ (1/2)ν̃∗ such

that

νmsls ≤ αµ̄ ≤ 0 (BOUND3)

where α =
1

2
.

We see that the bound (α = 0.5) is not as tight as it is for Goemans and Williamson’s

MAX CUT problem (α = 0.878), nor is it as good as the bounds obtained for Nesterov’s

problem (α = 0.637) or for the complex-valued problem studied by Zhang and Huang (α =

0.785), which is inherited by the magnitude least-squares equivalent problem (MLS.A).

Nevertheless it is an achievement to be able to prove the bound above, as it places this
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method in a small class of methods that possess such guarantees, improving our perception

of it as being something different than a simple heuristic.

We also see from the above analysis that the complex problem (MSLS) possesses a

bound that is better than its real counterpart. This is a consequence of the differing fourth

moments associated with complex and real normal distributions. The result parallels the

improvement seen in the complex counterpart of Nesterov’s problem as studied by Zhang

and Huang. We will investigate the details of this next.

6.6 MSLS Quality Bound Derived by Complex to Real
Conversion

We can derive the result in the previous section by expanding the problem in real and

imaginary parts. This allows us to see just how the structure associated with the complex

variables is responsible for the improved bound. We will begin by expanding (MSLS) in

real and imaginary parts.

µ = min
x∈Cn

m
∑

i=1

(|aix|
2 − b2

i )
2 (MSLS)

= min
xR,xI∈Rn

m
∑

i=1

([

xR

xI

] [

(ai)R −(ai)I

(ai)I (ai)R

] [

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

] [

xR

xI

]

− b2
i

)2

(MSLS.Real)

A semidefinite relaxation for (MSLS.Real) is the following:

νr∗ = min
X1,X2,X3

m
∑

i=1

(

Tr2

([

(ai)R −(ai)I

(ai)I (ai)R

] [

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

] [

X1 X2

XT
2 X3

])

− b2
i

)2

.

s.t.
[

X1 X2

XT
2 X3

]

� 0

(MSLS.PReal)

Because of the block structure of the coefficient matrices
[

(ai)R −(ai)I

(ai)I (ai)R

] [

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

]

,

we can, using the same ideas proved in Appendix A, reformulate the relaxation so that the

decision variables possess the same block structure. Said a different way, without loss of
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generality, we can assume that
[

X1 X2

XT
2 X3

]

is such that

2XR ≡ X1 = X3 = XT
1 = XT

3 and

2XI ≡ X2 = −XT
2

Thus, (MSLS.PReal) can be rewritten as

νr∗ = min
XR,XI

m
∑

i=1

(

Tr2

([

(ai)R −(ai)I

(ai)I (ai)R

] [

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

] [

1
2
XR

1
2
XI

−1
2
XI

1
2
XR

])

− b2
i

)2

.

s.t.
[

XR XI

−XI XR

]

� 0

In line with the logic in the previous section we will sample a random vector
[

uT
R uT

I

]T

from real-valued normal distribution, and calculate the expectation of the objective function

evaluated at
[

uT
R uT

I

]T . We will calculate

γ(XR, XI) = E
m
∑

i=1

([

uR

uI

] [

(ai)R −(ai)I

(ai)I (ai)R

] [

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

] [

uR

uI

]

− b2
i

)2

(6.14)

[

uR

uI

]

∼ N

([

0
0

]

,
1

2

[

XR XI

−XI XR

])

Define the (2 × 1)-vectors yi as

yi ≡

[

(yi)R

(yi)I

]

≡

[

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

] [

uR

uI

]

The random vectors yi are distributed normally with zero mean and covariance matrix

E

[

(yi)
2
R (yi)R(yi)I

(yi)R(yi)I (yi)
2
I

]

= E

[

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

] [

uR

uI

] [

uR

uI

]T [
(ai)R −(ai)I

(ai)I (ai)R

]

=

[

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

]

E

(

[

uR

uI

] [

uR

uI

]T
)

[

(ai)R −(ai)I

(ai)I (ai)R

]

≡
1

2

[

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

] [

XR XI

−XI XR

] [

(ai)R −(ai)I

(ai)I (ai)R

]

(6.15)

Because of the symmetries of the matrices, we can reduce (6.15) to

Eyiy
T
i =

[

E((yi)
2
R) E((yi)R(yi)I)

E((yi)R(yi)I) E((yi)
2
I)

]

=
1

2









[

(ai)R

(ai)I

]T [
XR XI

−XI XR

] [

(ai)R

(ai)I

]

0

0

[

(ai)R

(ai)I

]T [
XR XI

−XI XR

] [

(ai)R

(ai)I

]









.
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From this, we can compute several important expectations that enter into the evaluation of

(6.14). The first is that

E
(

(yi)
2
R + (yi)

2
I

)

=

[

(ai)R

(ai)I

]T [
XR XI

−XI XR

] [

(ai)R

(ai)I

]

.

The evaluation of the second expectation will require an identity proved in [Pap91], namely

that for a bivariate normally distributed random vector
[

z1 z2

]T with covariance matrix
[

E(z2
1) E(z1z2)

E(z1z2) E(z2
2)

]

, we can express the fourth central moments as

E(z4
1) = 3E2(z2

1) (6.16)

E(z4
2) = 3E2(z2

2)

E(z2
1z

2
2) = 2E(z2

1)E(z2
2) + 4E2(z1z2)

Applying this to yi, we have that

E
(

((yi)
2
R + (yi)

2
I)

2
)

= 2

(

[

(ai)R

(ai)I

]T [
XR XI

−XI XR

] [

(ai)R

(ai)I

]

)2

.

We see here that if the components of yi were the real and imaginary parts of a complex

number, we have essentially derived Reed’s lemma about the fourth moment of a complex

normal distribution. We have shown that for our special case,

E|yi|
4 = 2E2(|yi|

2),

which differs from the real identity (6.16) proved in Papoulis [Pap91]. Finally we have the

framework to evaluate the expected objective function (6.14).

γ(XR, XI) =
m
∑

i=1

2Tr2

([

(ai)R −(ai)I

(ai)I (ai)R

] [

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

] [

XR XI

−XI XR

])

− 2b2
i Tr

([

(ai)R −(ai)I

(ai)I (ai)R

] [

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

] [

XR XI

−XI XR

])

+ b4
i
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As in our (more elegant) complex derivation of the quality estimate, the solution to the

problem

ν∗
r ≡ min

XR,XI

m
∑

i=1

2Tr2

([

(ai)R −(ai)I

(ai)I (ai)R

] [

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

] [

XR XI

−XI XR

])

− 2b2
i Tr

([

(ai)R −(ai)I

(ai)I (ai)R

] [

(ai)
T
R (ai)

T
I

−(ai)
T
I (ai)

T
R

] [

XR XI

−XI XR

])

+ b4
i

s.t.
[

XR XI

−XI XR

]

� 0

represents an upper bound for (MSLS.Real), and is related to µ and νr∗ in exactly the same

way as in (6.10), namely that

ν∗
r −

m
∑

i=1

b4
i =

1

2

(

νr∗ −
m
∑

i=1

b4
i

)

. (6.17)

This yields the same quality estimate as derived previously.

6.7 Discussion

We have shown that in the magnitude-squared least-squares problem, we can prove a qual-

ity bound in the same spirit as Nesterov’s proof for quadratic problems with constraints on

squared variables. The complex structure of our problem allows us to prove a tighter bound

than what is provable for a real-valued problem of the same form. This phenomenon was

also seen in Zhang and Huang’s analysis of the complex version of Nesterov’s problem.

Zhang and Huang’s proof required the evaluation of complicated integrals, obscuring intu-

ition about the reasons for the superior bound. Our analysis of the more simple (because the

problem doesn’t have constraints) magnitude-squared least-squares problem reveals that it

is the differing fourth central moments between real-valued and complex-valued normal

distributions that could be interpreted to be the reason.

The bounds proved in this chapter not only are of theoretical interest, but their existence

suggests that perhaps the methods will work well in practice. In the final chapters of this

dissertation, we will compare solution methods, and look at practical applications of the

magnitude least-squares and magnitude-squared least-squares problems.
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Chapter 7

Comparisons of Methods for MLS and
MSLS

7.1 Introduction

In this short chapter, we will solve randomly generated instances of both the magnitude

least-squares (MLS) problem and the magnitude-squared least-squares (MSLS) problem.

In the previous chapters we have examined the problems in great detail, proving much

about the expected performance of, in particular, the semidefinite programming methods.

The information presented in this chapter is condensed and important. It shows that

our proved quality estimates appear to be valid, and it gives us an intuitive feel for how the

methods perform in practice. We will see specifically that the best method for the solution

of these problems is to use the semidefinite relaxation to find a starting point for a local

method. The charts presented also show that a locally found solution with a random starting

point is usually suboptimal, as is a semidefinite relaxation solution without additional local

minimization.

7.2 Presentation and Analysis of the Data

The charts shown in Figures 7.1 and 7.2 show the results of solving 100 randomly generated

problem instances using the methods under discussion. For each problem class (either MLS

or MSLS), we calculate five values: the upper and lower bounds present in the quality

proofs presented in Chapter 6, the objective achieved by a solution found with the local
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method using a random starting point, the objective achieved by a solution found using the

semidefinite relaxation and rounding scheme derived from the quality proofs, and finally

the objective achieved by a solution found using both methods in conjunction, i.e., using

the semidefinite programming solution as a starting point for the local method.

For visual clarity, we have sorted the random trials in decreasing order of the objective

attained by the semidefinite relaxation method. This allows us to see clearly the relation-

ships among the values.

We see that the upper and lower bounds do indeed hold. This is reassuring considering

that we rigorously proved this fact. We see though that the upper bound in both cases

(MLS and MSLS) is not particularly tight. The solutions found by all three methods (local,

SDP, and both in conjunction) are much closer to the lower bound than to the upper. This

doesn’t necessarily suggest that the bound isn’t tight in general. There could exist certain

outlying problem instances whose solutions attain the upper bound. Discovering such an

example would be interesting and worth exploration. If such an example were found, it

would necessarily prove that the bounds we’ve calculated are actually the best possible. On

the other hand, it is not hard to construct a problem instance that achieves the lower bound.

We have inspected many such charts for different problem dimensions. The charts pre-

sented are representative of the typical behaviors. As the number of variables approaches

the dimension of b in the problems, the objectives become very small representing an error-

free magnitude least-square fit. When this happens, the underlying geometry becomes

simpler resulting in fewer local minima. All the methods (but not the upper bound nec-

essarily) tend to find the correct solution. A similar phenomenon occurs if the number of

variables is very very small compared to the dimension of b.

For the majority of cases, there exist local minima as is evident by inspecting the fig-

ures. The solution obtained by using both methods in conjunction is always guaranteed to

be superior to the SDP solution, but we see that almost without fail, it finds a better solution

that the one obtained using a randomly generated starting point. In the MLS case, more

often than not the local solution is significantly worse than the solution obtained using the
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semidefinite relaxation alone. The opposite is true in the MSLS case. But in both cases,

the best approach is clearly to use both the SDP and the local method in conjunction.

7.3 Summary

We have inspected the behavior of the methods discussed with respect to randomly gener-

ated problem instances. This approach gives us an intuitive feel for the performance of the

methods. It is clearly the case that (a) the bounds we proved in Chapter 6 are valid, and (b)

the best optimization strategy with respect to finding the best solution for these problems

is to use the semidefinite relaxation as a means to find a starting point for a local method.

The randomly generated problem instances may or may not be representative of prob-

lem instances that we encounter in practical engineering problems. Problems derived from

applications are notorious for possessing structure that’s absent from random problem in-

stances. Nevertheless, the data collected from such experiments is of value and does give

us a richer understanding of the problem.
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Figure 7.1: Achieved objectives using the methods for randomly generated MLS problem
instances (A ∈ C50×10)
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Figure 7.2: Achieved objectives using the methods for randomly generated M2LS problem
instances (A ∈ C50×10)
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Chapter 8

Application Examples and Problem
Variations

8.1 Introduction

In this final technical chapter, we will solve several engineering problems using the the

methods described. In the course of doing this we will also discuss slight variations on

the magnitude least-squares problem that we can solve using the same or similar meth-

ods. These variations include solving a magnitude least-squares problem subject to linear

constraints on the variables (including a very useful constraint that the variables be real-

valued), and solving the problem with a constraint on total or average power.

8.2 Multidimensional Filter Design

The first example represents the initial and primary motivation for studying this problem:

the design of multidimensional filters. As mentioned previously, the design of multidimen-

sional filters is significantly more difficult than that of one-dimensional filters.

Figure 8.1 shows the magnitude of a complex two-dimensional filter of size 15 × 15,

designed to have a magnitude response that resembles a pyramid. The target response was

sampled on 31×31 equally spaced grid, making the dimensions of the A matrix 961×225.

We can see that the achieved pattern matches the target closely. The design procedure for

this example was as simple as could be, armed with the magnitude least-squares machinery,

and would have been difficult using classical methods.
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Figure 8.1: Magnitude frequency response of 15 × 15 two–dimensional filter.

8.3 Real-Valued Multidimensional Filter Design

The filter designed in Section 8.2 had complex-valued taps. Sometimes complex variables

are natural, as is the case with the design of spatial filters, but more often we desire the filter

taps to have real coefficients. We can solve this problem as well the more general version:

magnitude least-squares subject to linear constraints on the variables:

min
x∈Cn

m
∑

i=1

(|Aix| − bi)
2

s.t. Dx = f

(8.1)

The critical element that allows us to solve this variation is the fact that the solution to a

linear least-squares problem subject to linear constraints is linear in b. The problem

p? = min
x

‖Ax − b‖

s.t. Dx = f

(8.2)
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has solution x? satisfying
[

AHA DH

D 0

] [

x?

ν?

]

=

[

2AHb
f

]

.

This result can be derived easily using optimality conditions. See [BV04]. We can use

the same algebraic tricks we employed when reformulating the standard magnitude least-

squares problem, that allowed us to cast the problem as a quadratic subject to constraints

on squared variables. We first introduce a vector c of decision variables each constrained

to have modulus 1:

p? = min
x

‖Ax − Bc‖

s.t. Dx = f

|ci|
2 = 1 ∀i

(8.3)

Because of the above result, we have an analytic solution for x? that is linear in c. The

variable x? satisfies

x? =
[

I 0
]

[

2AHA DH

D 0

]−1 [
2AHB 0

0 f

] [

c
1

]

, (8.4)

assuming
[

2AHA DH

D 0

]

has full rank. (8.5)

Substituting into the objective function, we have the formulation

p? = min
c

[

c
1

]H

W

[

c
1

]

s.t. |ci|
2 = 1 ∀i

, (8.6)

where W ≡

[

2BT A 0
0 fH

] [

2AHA DH

D 0

]−1 [
AHA 0

0 0

] [

2AHA DH

D 0

]−1 [
2AHB 0

0 f

]

−

[

2BT A 0
0 0

] [

2AHA DH

D 0

]−1 [
2AHB 0

0 f

]

+

[

BT B 0
0 0

]

The most important problems of this type are where we constrain the variable x to be real-

valued. The formulation of a problem of this type simply requires us to first cast (8.2) in

terms of the real and imaginary parts of x. We have shown in Appendix A how to do this

in general. We will now design a nonuniformly-spaced-tap FIR filter with real coefficients.
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Figure 8.2: A logarithmically-spaced FIR filter

The methods for designing one-dimensional filters with magnitude specifications that

rely on spectral factorization cannot be applied to the case of nonuniformly-spaced filters.

This is what motivates us to formulate the problems as magnitude least-squares problems.

Figure 8.2 and Figure 8.4 show logarithmically spaced FIR filters that has been de-

signed using our technique to have a high-pass characteristic and a low-pass characteristic.

Figure 8.3 and Figure 8.5 show the resultant frequency responses. It is interesting to inspect

the solution – as the spacing among the taps increases, so does the magnitude of the taps.

It seems that the summed energy per unit length of the filter remains nearly constant.

8.4 Approximate Polynomial Factorization

The magnitude least-squares formulation can be used to solve a variety of polynomial fac-

torization problems. One very common use of this is spectral factorization in signal pro-

cessing. In that case, the spectral factorization theorem, discussed in Chapter 4, helps us
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Figure 8.3: The high-pass response of a logarithmically-spaced FIR filter
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Figure 8.4: A logarithmically-spaced FIR filter
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Figure 8.5: The low-pass response of a logarithmically-spaced FIR filter

determine when a factorization exists and helps us calculate the spectral factor. For poly-

nomials of dimension greater than one, however, there is no such theorem. We can use the

magnitude least-squares formulation to find a polynomial whose square closely matches

(in the least-squares sense) that of a higher degree polynomial. This can be interpreted as a

form of approximate polynomial factorization.

This topic is related to a field of study called sums of squares programming. The field

has attracted the attention of many theoreticians and engineers because of the deep mathe-

matical ideas it involves, and the numerous practical applications associated with it [Par01]

[PPP02] [Las01]. The main idea is that the coefficients of a general polynomial, be it multi-

dimensional, multivariate, or both, can be constrained to make the polynomial everywhere

nonnegative by using semidefinite programming. A nonnegative polynomial, in turn, can

be factored into a sum of (smaller) squared polynomials. Many engineering problems, par-

ticularly in the area of control systems and signal processing, are naturally formulated in

these terms. Filter design is one such problem.
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The factorization problem we are solving, in contrast to the sum of squares factoriza-

tion, is more difficult. Given a higher-order polynomial p, we seek to find a single squared

polynomial term q2 that approximates |p| in the least-squares sense. The sum of squares

problem can be understood to be the discovery of a sum of squared terms
∑

q2
i that approx-

imate |p|.

8.4.1 Perfect Factorization

If the polynomial p does possess a perfect, single term factorization, then we can use MLS

to find the factors. Take for example the trigonometric polynomial

p(ejω1 , ejω2) = 2.87 + 0.84 cos(ω1) + 1.06 cos(ω2) + 2.6 cos(ω1 − ω2)

− 0.26 cos(2ω1 − ω2) + 0.2 cos(2ω2 − ω1) − 0.02 cos(2(ω1 − ω2)).
(8.7)

It isn’t obvious whether if this polynomial is expressible as the squared magnitude of

another polynomial. We can find out by hypothesizing that there exists a polynomial

q(ejω1 , ejω2) such that |q(ejω1 , ejω2)|2 = p(ejω1 , ejω2) for all ω1 and ω2. Clearly this cannot

ever be the case if the polynomial p is anywhere negative or anywhere nonreal. These are

not sufficient conditions however. A graph of the polynomial p is shown in Figure 8.4.1.

We hypothesize that there is a polynomial q of the form

q(ejω1 , ejω2) = x1 + x2e
jω1 + x3e

jω2 + x4e
2jω1 + x5e

j(ω1+ω2) + x6e
2jω2 (8.8)

that is a factor of the polynomial p. We can set up a magnitude least-squares problem

to help us answer the question. We form a matrix A where each column corresponds

to a coefficient of q evaluated on a densely sampled grid of points in the domain of the

polynomial ((ω1, ω2) ∈ [−π, π] × [−π, π]). The target vector b for the problem consists of

(the squareroots of) samples of the polynomial p.

If we solve this problem for the above polynomial, we indeed discover that p is fac-

torable as

p(ejω1 , ejω2) = |0 + 1.0ejω1 + 1.3ejω2 − 0.1e2jω1 + 0.4ej(ω1+ω2) + 0.1e2jω2 |2
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Figure 8.6: The polynomial p of Equation (8.7)

The answer is not unique. For example, if q is a solution, then so is −q. Most of the time

the magnitude least-squares procedure will find the correct answer, but as is the case in

most MLS problems, there can be several locally optimal points. Sometimes, if we are

unlucky, we will discover a suboptimal solution.

8.4.2 Approximate Factorization

Even more useful and interesting than the problem of finding exact polynomial factoriza-

tions when they exist is the idea of finding approximate factorizations when they don’t

exist. The magnitude least-squares algorithm does just that. If the target polynomial is

not factorable exactly, the magnitude least-squares algorithm will return a polynomial of

specified dimension and degree that approximates the target. This result fits nicely with the

work [PPP02] on sums of squares programming because that framework provides for us a

way to constrain polynomials to be positive and real, which are necessary conditions for a

target vector in a magnitude least-squares problem.

Another similar situation where the magnitude least-squares problem is useful is when

we have inexact measurements of a polynomial, or repeated noisy measurements. The

magnitude least-squares problem formulation lets us simultaneously estimate and factor
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Figure 8.7: Polynomial p to factor
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the polynomial.

Figure 8.7 shows the magnitude of a complex polynomial p that does not possess a

single polynomial factorization. We can use our procedure to find polynomials q whose

squares approximate p for increasing degrees. Figures 8.8–8.12 show the increasingly good

approximations as we increase the dimension and orders of the polynomial q.
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8.5 Radiation Pattern Synthesis

This example will demonstrate another variation of the magnitude least-squares problem

that was motivated by the loudspeaker work at the Center for New Music and Audio Tech-

nologies (CNMAT). The loudspeaker system depicted in Figure 2.2 in Chapter 2 is used

primarily for amplifying electronic instruments. Because the system possesses many loud-

speakers (twelve), we can control the radiation patterns that the array produces.

A particularly pleasing (in the author’s opinion) effect that can be created with the

system is that of acoustic nulling. If we design the radiation patterns across frequency such

that the listener is situated in an acoustic null, then he or she will predominantly hear the

sound reflecting off the walls and other structures in the room. This can have an enveloping

quality, and the effect could conceivably be used compositionally by the performer.

To achieve this effect, it is not enough to generate a null in exactly one direction. Ideally,

we would like there to be a solid angle over which the radiated magnitude is zero or very

close to zero. This would allow the listener to move around, and has the potential to include

a larger audience. For this example, we will show one way of attacking the problem using

an average power constrained version of MLS.

We are given a layout of array elements with ideal uniform individual radiation patterns,

and wish to find complex coefficients that when applied to the signals at the elements, yield

a desirable radiation pattern at a given frequency. Our criteria for a desirable pattern are that

the total power of the pattern be equal to a constant, that the response be close to zero over a

specified solid angle, and that at other angles, the magnitude response be constant. This is a

different problem than the classical beamforming problem of nulling in different directions

subject to unity responses in other particular directions. Our problem simultaneously holds

the total power of the response to be a constant, while balancing the desire for a zero

response in the solid angle with the desire for a uniform response in other directions. In

the musical application above, this would be to ensure that the overall loudness of the array

remains constant, and is spread evenly in directions other than the nulling angles.
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In abstract terms, the problem can be formulated as

min
x

m
∑

i=1

(|Aix| − bi)
2

s.t. xHDHDx = p.

(8.9)

where A and D have rows corresponding to responses in different directions and b is the

desired response. For this application, A and D are equal, and the desired response b is zero

for directions in the nulling angle, and equal to a constant for other directions. The constant

is chosen to make the overall desired pattern have total power equal to unity. Note that the

problem differs from the regular MLS problem because we will strictly enforce that the

resultant response have unity power p = 1. We will forumulate this problem so that we can

solve it as a semidefinite relaxation of similar form as the magnitude least-squares problem.

The solution we find will possess the same quality estimates as Nesterov’s problem, i.e.,

the reformulation will take the form of a quadratic objective and constraints on squared

variables.

The trick is to transform coordinate systems. Let UΛUH = DHD be the eigenvalue

decomposition of DHD. Then we can define a new set of variables in a rotated coordinate

system, x̃ = UHx. This means x = Ux̃. We can now introduce the unity-modulus variables

c (as discussed in Chapter 5), and express the problem in terms of x̃:

min
x̃,c

‖AUx̃ − Bc‖

s.t.
n
∑

i=1

λix̃
H
i x̃i = 1

|ci|
2 = 1 ∀i.

(8.10)

This finally can be written in the desired form, from which we can easily solve using the

semidefinite relaxation and rounding method. We recover the variable x as x = Ux̃.

min
x̃,c

[

x̃
c

]H [
UHAHAU −UHAHB
−BT AU BT B

] [

x̃
c

]

s.t.
n
∑

i=1

λi|x̃i|
2 = 1

|ci|
2 = 1 ∀i.

(8.11)
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Figures 8.6–8.18 show the results of applying the technique. We performed the optimiza-

tion for multiple solid angle widths, and at two different frequencies having wavelengths

equal to the diameter of the array, and half that length (the radius). The array is two-

dimensional and consists of six elements arranged hexagonally.

8.6 Discussion

In this chapter, we presented several application examples for the magnitude least-squares

problem. The primary application for the problem is filter design, but we see that there

are purely mathematical reasons to study the problem. The approximate factorization of

polynomials is one such mathematical application. The ideas can be used in conjunction

with sums-of-squares programming, which is a research topic that is currently being studied

intensely by many researchers.

The generality of the method needs to be emphasized. The filter design problems to

which the magnitude least-squares formulation applies can take many different forms. The

filter responses need only be linear in the design coefficients. There are, however, many

very useful filter design problems that cannot be solved using MLS. One very common,

and very useful problem is that of designing a filter subject to upper and lower bounds on

magnitude. This problem cannot be cast as an MLS problem. To solve those problems, we

can sometimes consider the generalized autocorrelation coefficients to be variables, and use

approximate spectral factorization to find the filters. This has the potential to help a great

deal in finding a suitable starting point for a local method. We do not possess any theoretical

bounds on the quality of solutions obtained using this procedure, which distinguishes from

the examples presented in this chapter.
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Figure 8.13: Polar responses with solid angle of 30◦ and wavelength equal to the diameter
of the array (left) and radius of the array (right)

Figure 8.14: Polar responses with solid angle of 60◦ and wavelength equal to the diameter
of the array (left) and radius of the array (right)
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Figure 8.15: Polar responses with solid angle of 90◦ and wavelength equal to the diameter
of the array (left) and radius of the array (right)

Figure 8.16: Polar responses with solid angle of 120◦ and wavelength equal to the diameter
of the array (left) and radius of the array (right)
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Figure 8.17: Polar responses with solid angle of 150◦ and wavelength equal to the diameter
of the array (left) and radius of the array (right)

Figure 8.18: Polar responses with solid angle of 180◦ and wavelength equal to the diameter
of the array (left) and radius of the array (right)
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Chapter 9

Conclusion

This thesis has contributed to the engineering community in three ways. First, we have pro-

vided methods for solving several concrete, practical problems arising primarily in signal

processing. Second, we have developed and intensely studied a specific optimization tool –

the magnitude least-squares relaxation. The development of the tool has focused not only

on its applicability to specific problems in engineering, but its performance as a general

method for solving an abstract class of optimization problem. Third, we have discovered

insight into complex-valued semidefinite relaxations in general. For the magnitude-squared

least-squares problem, we have exploited structure associated with complex numbers to

derive improved solution quality bounds. In this final chapter, we will review these three

contributions and provide suggestions for further research.

9.1 Contributions

9.1.1 Solution of Practical Problems

In Chapter 2 we used convex optimization to help us elegantly answer questions about

the performance capabilities of a clustered loudspeaker array. We also developed a novel

linear-phase audio equalizer design method that is flexible and reliable. Both of these

applications are important to an ongoing loudspeaker array project at the Center for New

Music and Audio Technologies, sponsored by Meyer Sound Laboratories. In this thesis,

these designs represent examples of the straightforward and powerful technique of convex
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optimization.

In later chapters, we solved practical filter design problems using semidefinite relax-

ation and the magnitude least-squares (MLS) formulations. The problems we solved as

examples in the thesis include multidimensional magnitude filter design, FIR filter design

for nonlinearly delayed tapped filters, and spatial filtering using arbitrarily positioned array

elements. All of the problems could be solved using essentially the same computational

tool, developed in the heart of the thesis.

9.1.2 Development of the Optimization Tool

In Chapters 3–8 we developed and studied a method to solve a class of optimization prob-

lem called magnitude least-squares. The study of this problem originally was motivated by

a desire to generalize methods of one-dimensional magnitude filter design that are based

on convex optimization such as those in [WBV97], [Alk03], and [DLS02]. The magnitude

least-squares problem finds application in the strightforward design examples discussed in

Chapter 8, but can be applied in many other situations as well, like the design of banks of

rational filters.

We have studied the problem in the abstract, paying close attention to the expected

quality of solutions obtained using semidefinite relaxation. The depth and completeness

of study adds to the literature on semidefinite relaxations and optimization in general. We

proved that the magnitude least-squares problem falls within a broader class of problems

treated by Nesterov [Nes97] and others [GW95][ZH04]. By carefully proving relations

among the differing formulations and problem classes, we were able to discover structure

in our problem that could be exploited in proving quality estimates. We also derived lo-

cal methods (a Gauss-Newton method and a variable exchange method) for the problems

which, when used in conjunction with semidefinite relaxation, yield very high-quality so-

lutions to the problem.
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9.1.3 Contribution to the Understanding of Complex Structure in SDP
Relaxations

Perhaps the most exciting contribution of the thesis is our contribution to understanding

complex structure in semidefinite relaxations. Inspired by the work of Zhang and Huang

in [ZH04], where they prove that a complex-valued version of Nesterov’s problem [Nes97]

possesses superior quality bounds, we sought to show something similar for a simpler prob-

lem. We were successful in showing that the complex structure of the magnitude-squared

least-squares problem allows us to improve on quality bound for the real-valued magnitude-

squared least-squares problem. The key fact that caused the improvement is the differing

fourth moments between real-valued and complex-valued normal distributions. We proved

this both in the complex domain, and by converting to real formulations and investigating

the block structure of the matrices. It seems clear that even more understanding of these

problems could come by studying other types of structure, and how that structure manifests

itself in the quality estimate.

9.2 Further Research

There are several directions for extended research on the topics presented in this disser-

tation. On practical side, the careful and novel application of optimization to practical

problems in engineering always constitutes useful research. Particularly important and rel-

evant to this thesis are discoveries of new formulations that cleverly convert nonconvex

problems into ones that are convex. On the theoretical side, we believe there is a great deal

to be learned from the study of structure in optimization problems, particularly in its rela-

tion to approximate solution methods and the quality of the approximations. For example,

we speculate that there are other types of matrix block structures, similar to that associ-

ated with complex structure, that should result in improved semidefinite relaxation quality

bounds.

In addition to these ideas, we feel that much benefit could come from the study of other

specific difficult problems. The most value type of study would include solving the problem
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with a comprehensive set of methods, including even more methods than we studied for the

magnitude least-squares problem. Other methods could include neural networks, simulated

annealing, genetic programming methods, and other novel ideas. There is a mathematical

richness and elegance to convex optimization that is extremely seductive. There are many

other optimization methods and the successful practicioner will attempt to understand as

many of them as possible.
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Appendix A

Real and Complex Relaxations

A.1 Introduction

In what follows, we will show that the semidefinite relaxation obtained for the complex

magnitude least-squares problem (MLS) is equivalent to the relaxation obtained if we were

to formulate the problem in real terms (using real and imaginary parts of the variables).

This result is plausible, but not obvious (to the author). The fact that the scalars in the

problem are complex imposes a certain structure on its corresponding real formulation.

Bounds on the quality of the complex relaxation have been established by Shuzhong Zhang

and Yongwei Huang of the Chinese University of Hong Kong [ZH04], and interestingly,

are better than similar bounds associated with the same problem restricted to real-valued

scalars [Nes97]. Therefore it is the complex structure of the problem that results in tighter

semidefinite approximations.

A.2 Complex to Real Conversions and
Semidefinite Relaxations

A.2.1 Primal Problem and its Complex Relaxation

The problem we are interested in is the nonconvex complex-valued optimization problem

min
z

zHWz (CP)

s.t. |zi| = 1, i = 1, 2, ...,m,
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where W is hermitian symmetric, ensuring that the objective function is real. As discussed

previously, the magnitude least-squares problem (MLS) can be expressed as (CP), (though

problem (CP) is more general). We can construct an equivalent optimization problem that

is a complex semidefinite program with a rank constraint:

min
Z

Tr (ZW ) (A.1)

s.t. Zii = 1, i = 1, 2, ...,m

Z � 0

Rank (Z) = 1.

Neglecting the rank constraint yields the “complex semidefinite relaxation” for this prob-

lem. It is

min
Z

Tr (ZW ) (CSDP)

s.t. Zii = 1, i = 1, 2, ...,m

Z � 0

We will consider two different approaches to generating real-valued relaxations for (CP),

attempting to understand the algebraic and geometric relations between them. The first

formulation is derived by converting (CP) to a real-valued nonconvex problem, and finding

a real-valued semidefinite relaxation. The second is derived by converting the complex

relaxation (CSDP) to an equivalent real-valued problem. In each, we will witness structure

that is consequence of the problem originating in the complex domain. We will find that

the two relaxations are indeed equivalent in terms of solutions obtained, but their feasible

sets differ geometrically.
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A.2.2 Complex to Real Conversion of the Primal Problem

Suppose we first convert (CP) to an equivalent optimization problem over the reals. Ex-

panding in real and imaginary parts, we have

min
zR, zI

(zR − jzI)
T (WR + jWI)(zR + jzI)

s.t. (zi)
2
R + (zi)

2
I = 1, i = 1, 2, ...,m.

Since W is conjugate symmetric, we know that WR is symmetric, WI is skew symmetric,

and that the objective function is real for any z. Collecting nonzero terms,

min
zR, zI

zT
RWRzR − zT

RWIzI + zT
I WRzI + zT

I WIzR (A.2)

s.t. (zi)
2
R + (zi)

2
I = 1, i = 1, 2, ...,m.

We can now express the objective function in matrix notation as

min
zR, zI

[

zR

zI

]T [
WR −WI

WI WR

] [

zR

zI

]

(RP1)

s.t. (zR)2
i + (zI)

2
i = 1, i = 1, 2, ...,m.

We can see that this real formulation parallels the complex (CP), but possesses block struc-

ture in the objective matrix and pairwise quadratic equality constraints. We now have an

equivalent problem in R2m, in place of a complex problem in Cm.

A.2.3 Relaxation Derived from Real Formulation

We can derive a dual problem for (RP1) by introducing Lagrange multipliers associated

with each of the m equality constraints, and minimizing the associated Lagragian over

zR and zI . From there, we can compute the associated semidefinite relaxation for (RP1)

by again taking the dual (i.e., it is the “dual of the dual”). Alternatively, resulting in the

same relaxation, we can express (RP1) as a semidefinite program with a rank constraint,
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paralleling (A.1):

min
Z1, Z2, Z3

Tr

([

Z1 Z2

ZT
2 Z3

] [

WR −WI

WI WR

])

s.t. (Z1)ii + (Z3)ii = 1, i = 1, 2, ...,m
[

Z1 Z2

ZT
2 Z3

]

� 0

Rank
([

Z1 Z2

ZT
2 Z3

])

= 1.

Dropping the rank constraint yields the real-valued semidefinite program relaxation:

min
Z1, Z2, Z3

Tr

([

Z1 Z2

ZT
2 Z3

] [

WR −WI

WI WR

])

(RSDP1)

s.t. (Z1)ii + (Z3)ii = 1, i = 1, 2, ...,m
[

Z1 Z2

ZT
2 Z3

]

� 0

A.2.4 Complex to Real Conversion of the Complex Relaxation

How does the real relaxation (RSDP1) relate to the complex relaxation (CSDP)? To express

(CSDP) in terms of real and imaginary parts, we need to use a lemma, proved as an exercise

in [BV04].

Lemma L5: For ZH = Z ∈ Cn×n,

Z � 0 if and only if
[

ZR −ZI

ZI ZR

]

� 0, (Lemma L5)

where ZR and ZI are the real and imaginary parts of Z respectively.

We can then expand (CSDP) in real terms:

min
ZR, ZI

Tr ((ZR + jZI)(WR + jWI))

s.t. (ZR)ii = 1, i = 1, 2, ...,m
[

ZR −ZI

ZI ZR

]

� 0.

Collecting terms and writing in matrix form produces a real-valued semidefinite relaxation,

110



different from (RSDP1):

min
ZR, ZI

1

2
Tr

([

ZR −ZI

ZI ZR

] [

WR −WI

WI WR

])

(RSDP2)

s.t. (ZR)ii = 1, i = 1, 2, ...,m
[

ZR −ZI

ZI ZR

]

� 0.

Problem (RSDP2) differs from (RSDP1) in that the matrix constrained to be positive semidef-

inite in (RSDP2) has a block structure, whereas the positive semidefinite matrix in (RSDP1)

is structurally unconstrained. The feasible sets are different because the number of decision

variables is different. But are these optimization problems equivalent in some sense? Also,

(RSDP2) was obtained by converting to real variables (CSDP). Could it have been obtained

as a relaxation of a nonconvex real-valued problem, and if so, how does this problem relate

to (RP1)? These are the questions we will address in the next section.

A.3 Relations Among Problem Formulations

For the purposes of this report we will consider two optimization problems to be equivalent

if there is a well-defined and simple transformation that converts the optimal solution from

one problem to the optimal solution for the other, and vice-versa. Intuitively this means

that solving one of the problems immediately solves the other.

In what follows we will prove that (RSDP1) is equivalent to (RSDP2), and that they

are related through a linear transformation. It is helpful to refer to Figure A.1 which is a

diagram consisting of different problems, the relationships among which we will establish

in this chapter.

A.3.1 Equivalence of the Relaxations

To prove that (RSDP1) is equivalent to (RSDP2), we first will need to prove a lemma.
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Figure A.1: Relationships among the problems.

Lemma L6:

For
[

X1 X2

XT
2 X3

]

∈ R2n×2n, if
[

X1 X2

XT
2 X3

]

� 0, then
[

X3 −X2

−XT
2 X1

]

� 0.

(Lemma L6)

Proof: Let u and v be arbitrary vectors in Rn. We have
[

u
v

]T [
X3 −X2

−XT
2 X1

] [

u
v

]

= vT X1v + uT X3u − 2uT XT
2 v =

[

−v
u

]T [
X1 X2

XT
2 X3

] [

−v
u

]

≥ 0.

This proves the lemma. �

Theorem T6: Problem (RSDP1) is equivalent to Problem (RSDP2)

(Theorem T6)

.

Proof: Suppose we have calculated an optimal solution {Z∗
1 , Z

∗
2 , Z

∗
3}, for (RSDP1) with

112



objective ν∗. Assign

ZR = Z∗
1 + Z∗

3 (A.3)

ZI = Z∗T
2 − Z∗

2 .

Since {Z∗
1 , Z

∗
2 , Z

∗
3} is feasible for (RSDP1), we have that

[

Z∗
1 Z∗T

2

Z∗
2 Z∗

3

]

� 0, and

(Z∗
1 )ii + (Z∗

3 )ii = 1, i = 1, 2, ...,m.

This means, by using (Lemma L6) and the convexity of the semidefinite cone, that
[

ZR −ZI

ZI ZR

]

=

[

Z∗
1 + Z∗

3 Z∗
2 − Z∗T

2

Z∗T
2 − Z∗

2 Z∗
1 + Z∗

3

]

=

[

Z∗
1 Z∗

2

Z∗T
2 Z∗

3

]

+

[

Z∗
3 −Z∗T

2

−Z∗
2 Z∗

1

]

� 0.

We also can see that

(ZR)ii = (Z∗
1 + Z∗

3 )ii = (Z∗
1 )ii + (Z∗

3 )ii = 1, i = 1, 2, ...,m.

Thus {ZR, ZI} is feasible for (RSDP2).

The objective obtained by {ZR, ZI} is

µ =
1

2
Tr

([

ZR −ZI

ZI ZR

] [

WR −WI

WI WR

])

=
1

2
Tr

([

Z∗
1 + Z∗

3 Z∗
2 − Z∗T

2

Z∗T
2 − Z∗

2 Z∗
1 + Z∗

3

] [

WR −WI

WI WR

])

= ν∗

Suppose there existed an optimal {Z∗
R, Z∗

I } obtaining a strictly smaller objective µ∗ <

µ = ν∗. Then

µ∗ =
1

2
Tr

([

Z∗
R −Z∗

I

Z∗
I Z∗

R

] [

WR −WI

WI WR

])

< ν∗

Assign

Z1 = Z3 =
1

2
Z∗

R (A.4)

Z2 = −
1

2
Z∗

I .
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We have that {Z1, Z2, Z3} is feasible for (RSDP1):
[

Z1 Z2

ZT
2 Z3

]

=
1

2

[

Z∗
R −Z∗

I

Z∗
I Z∗

R

]

� 0,

(Z1)ii + (Z3)ii =
1

2
(2(Z∗

R)ii) = 1, i = 1, 2, ...,m.

The objective ν obtained by {Z1, Z2, Z3} is

ν = Tr

([

Z1 Z2

ZT
2 Z3

] [

WR −WI

WI WR

])

=
1

2
Tr

([

Z∗
R −Z∗

I

Z∗
I Z∗

R

] [

WR −WI

WI WR

])

= µ < ν∗,

which contradicts the fact that ν∗ was the optimal objective for (RSDP1). Thus, {ZR, ZI}

is an optimal solution for (RSDP2), and we have defined a simple linear transformation

(A.3) to obtain an optimal for solution for (RSDP2) given an optimal solution to (RSDP1).

Conversely, if we are given an optimal solution {Z∗
R, Z∗

I } for (RSDP2), we can use

the transformation defined in (A.4) to obtain a feasible point for (RSDP2) with the same

objective. Using similar arguments as above, it is easy to verify that the feasible point

obtained in this way must be an optimal solution for (RSDP1). Thus, given an optimal

solution for one of either (RSDP1) or (RSDP2), we can easily obtain a solution for the

other via the transformations (A.3), and (A.4). This establishes that these problems are

equivalent. �

We have discussed thus far five distinct optimization problems, related to one an-

other through real/complex transformations, semidefinite relaxation, or proven equiva-

lence, shown in Figure A.1. We can conclude as a result of (Theorem T6) and our definition

of problem equivalence that (CSDP) is equivalent to (RSDP1) via (RSDP2). To display this

fact, we can connect these two problems in the diagram, Figure A.2.

A.3.2 Equivalence of the Primal Problems

The five problems encountered so far are the complex-valued primal problem (CP), its

complex-valued semidefinite relaxation (CSDP), a real-valued nonconvex problem (RP1)

derived by expanding (CP) into real and imaginary parts, the semidefinite relaxation (RSDP1)
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Figure A.2: Relationships among the problems with implied connection between (CSDP)
and (RSDP1), and placeholder for (RP2).

of (RP1), and the relaxation (RSDP2) derived by expanding the complex variables in

(CSDP) into real and imagainary parts. In this section we will introduce a sixth prob-

lem, (RP2). In Figure A.2 problem (RP2) is shown as being unrelated to the others, but

we will define it so that it is a real-valued nonconvex problem from which (RSDP2) may

be derived through relaxation. We then will prove that (RP2) is equivalent to (RP1) (and

therefore equivalent to (CP)).

Problem (RP2) we will define as follows:

min
ZR, ZI

1

2
Tr

([

ZR −ZI

ZI ZR

] [

WR −WI

WI WR

])

(RP2)

s.t. (ZR)ii = 1, i = 1, 2, ...,m
[

ZR −ZI

ZI ZR

]

� 0.

Rank
([

ZR −ZI

ZI ZR

])

= 2
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Problem (RSDP2) is clearly a relaxation of of (RP2); it is obtained by ignoring the rank

constraint. After proving some additional facts, we will be able to verify that (RSDP2) may

be derived from (RP2) through Lagrangian duality.

With the goal of proving that (RP2) is equivalent to (RP1), we first establish a lemma

and a theorem.

Lemma L7: Suppose A,B ∈ Rn×m are such that AAT = BBT . Then there exists an
orthonormal matrix Ψ ∈ Rm×m such that A = BΨ.

(Lemma L7)

Proof: First assume A and B each have full rank m. Since AAT = BBT ≡ C, the

columns of C are in the range of both A and B. Since A and B are each full rank, there

exist m nonzero eigenvalues of C, since the eigenvalues of C are the squares of the singular

values of A and/or B. This means the columns of C span an m-dimensional subspace in

Rn. Since the column space of C is contained in both m-dimensional ranges of A and B,

the ranges of A and B must be the same. Hence, the columns of A are in the range of B,

meaning there exists Q ∈ Rm×m such that A = BQ. But AAT = BQQT BT = BBT ,

which implies QQT = I , since no column of Q is in the nullspace of B (otherwise a

column of A would be zero, contradicting the fact that A has full rank.) Hence Ψ ≡ Q is

orthonormal.

Now, consider the case that A and B have rank r < m. They have the same rank

because they share the same singular values. Let A = UAΣV T
A and B = UBΣV T

B be the

singular value decompositions of A and B. Without loss of generality, assume it is the last

m − r columns of Σ that are zero. Then

[

A′
0
]

= AVA = UAΣ and
[

B′
0
]

= BVB = UBΣ,

defining A′ and B′ to be the first r (nonzero) columns of AVA and BVB respectively. Ob-
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serve that

C = AAT = AVAV T
A AT =

[

A′
0
]

[

A′T

0
T

]

= A′A′T

= BBT = BVBV T
B BT =

[

B′
0
]

[

B′T

0
T

]

= B′B′T .

The n×r matrices A′ and B′ are each full rank, so using the first part of the proof, we know

there exists orthonormal Ψ′ ∈ Rr×r such that A′ = B′Ψ′. Extend Ψ′ to form an m × m

orthonormal matrix

Ψ′′ ≡

[

Ψ′
0

0 I

]

.

Now we can verify that

[

A′
0
]

=
[

B′
0
]

[

Ψ′
0

0 I

]

AVA = BVB

[

Ψ′
0

0 I

]

=⇒ A = BVB

[

Ψ′
0

0 I

]

V T
A .

The matrix

Ψ ≡ VB

[

Ψ′
0

0 I

]

V T
A

is orthonormal, being the product of three orthonormnal matrices, proving A = BΨ. �

Theorem T7: Let X ∈ Cn×n, and denote the real and imaginary parts of X as XR, and
XI respectively.

X � 0, Rank (X) = 1 if and only if
[

XR −XI

XI XR

]

� 0, Rank
([

XR −XI

XI XR

])

= 2 (Theorem T7)

Proof: We know from (Lemma L5) that

X � 0 if and only if
[

XR −XI

XI XR

]

� 0.
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Now, suppose additionally that Rank (X) = 1. Then, since X � 0, it must factor as

X = yyH = (yR + jyI)(y
T
R − jyT

I )

= (yRyT
R + yIy

T
I ) + j(yIy

T
R − yRyT

I )

≡ XR + jXI

This means

[

XR −XI

XI XR

]

=

[

yRyT
R + yIy

T
I −yIy

T
R + yRyT

I

yIy
T
R − yRyT

I yRyT
R + yIy

T
I

]

=

[

yR

yI

]

[

yT
R yT

I

]

+

[

yI

−yR

]

[

yT
I −yT

R

]

,

implying

Rank
([

XR −XI

XI XR

])

≤ 2.

Suppose

Rank
([

XR −XI

XI XR

])

< 2.

The rank being strictly less than 2 means the factors above must be linearly related. In

other words, there exists a real scalar t such that

[

yR

yI

]

= t

[

yI

−yR

]

.

This, in turn, is only possible if yR ≡ yI ≡ 0. This means X ≡ 0, contradicting the

assumption that Rank (X) = 1. Therefore

Rank
([

XR −XI

XI XR

])

= 2.

Conversely, suppose Rank
([

XR −XI

XI XR

])

= 2. Then there exists a factorization

[

XR −XI

XI XR

]

=

[

a1

a2

]

[

aT
1 aT

2

]

+

[

b1

b2

]

[

bT
1 bT

2

]

=

[

a1a
T
1 + b1b

T
1 a1a

T
2 + b1b

T
2

a2a
T
1 + b2b

T
1 a2a

T
2 + b2b

T
2

]

. (A.5)
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This implies

XR = a1a
T
1 + b1b

T
1 = a2a

T
2 + b2b

T
2

=
[

a1 b1

]

[

aT
1

bT
1

]

=
[

a2 b2

]

[

aT
2

bT
2

]

.

Now, using (Lemma L7), we know there exists an orthonormal 2 × 2 matrix Ψ such that

[

a1 b1

]

=
[

a2 b2

]

Ψ. (A.6)

From (A.5), we also have

XI = −
[

a1 b1

]

[

aT
2

bT
2

]

=
[

a2 b2

]

[

aT
1

bT
1

]

.

Substituting, we have

−
[

a2 b2

]

Ψ

[

aT
2

bT
2

]

=
[

a2 b2

]

ΨT

[

aT
2

bT
2

]

(A.7)

For Ψ to be a 2 × 2 orthonormal matrix, it must possess the following form:

Ψ =

[

sin θ − cos θ
cos θ sin θ

]

.

Combining with (A.7), we have

a2a
T
2 sin θ − a2b

T
2 cos θ + b2a

T
2 cos θ + b2b

T
2 sin θ

= −a2a
T
2 sin θ + a2b

T
2 cos θ − b2a

T
2 cos θ − b2b

T
2 sin θ. (A.8)

We know that a1, a2, b1, b2 cannot all be identically zero because of our rank assumption

(A.5). We can assume without loss of generality that either a2 or b2 possesses a nonzero

element (if not, we can rewrite (A.7) in terms of a1 and b1). Looking at a diagonal element

corresponding to this nonzero element in (A.8), we see that θ must be either 0 or π, implying

Ψ =

[

0 −1
1 0

]

or Ψ =

[

0 1
−1 0

]

.

Using (A.6), we can write a1 and b1 in terms of a2 and b2:

(a1 = −b2 and b1 = a2) or

(a1 = b2 and b1 = −a2)
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This allows us to see that XR and XI are indeed the real and imaginary parts of a

complex rank 1 matrix. In the first case, the complex factorization giving rise to XR and

XI is

XR = a2a
T
2 + b2b

T
2 = Re{(a2 + jb2)(a

T
2 − jbT

2 )}

XI = −a2b
T
2 + b2a

T
2 = Im{(a2 + jb2)(a

T
2 − jbT

2 )}.

And in the second case,

XR = a2a
T
2 + b2b

T
2 = Re{(a2 + jb2)(a

T
2 − jbT

2 )}

XI = a2b
T
2 − b2a

T
2 = Im{(a2 − jb2)(a

T
2 + jbT

2 )}.

Either way, we have proved the matrix

X = XR + jXI (A.9)

has rank 1, completing the proof of the theorem. �

Corollary C1: Problem (RP2) is equivalent to Problem (CP), and therefore the three
problems, (CP), (RP1), and (RP2) are all equivalent.

(Corollary C1)

Proof: Using (Theorem T7), we can see that

Z is feasible for (A.1) (and therefore (CP)) if and only if
[

ZR −ZI

ZI ZR

]

is feasible for (RP2).

It is easy to check that the objective functions match at every feasible point, establishing

the equivalence. Since (CP) is equivalent to (RP1), we can also conclude that (RP1) is

equivalent to (RP2). �

This allows us to complete the diagram. Figure A.3 displays the relationships among

the different formulations. We see that for this problem it does not matter in which order

we derive the relaxation, the resulting problem will be the same.
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Figure A.3: Fully connected relationships among the problems.
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