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Abstract

A Power/Area Optimal Approach to VLSI Signal Processing

by

Dejan Marko Marković

Doctor of Philosophy in Engineering – Electrical Engineering

and Computer Sciences

University of California, Berkeley

Professor Robert W. Brodersen, Co-chair

Professor Borivoje Nikolić, Co-chair

The complexity of integrated circuits (ICs) in wireless communication devices has

been steadily increasing to support more functionality and new ideas from information

theory. Computational requirements can be quite drastic, especially in multi-antenna

(MIMO) communication systems which use multi-dimensional signal processing algo-

rithms. The required increase in computational efficiency in MIMO systems can be

far greater than the improvements provided by scaling of IC technology alone.

This work will present a methodology for power/area efficient ASIC realization of

signal processing algorithms for wireless communications, taking into account unique

features of scaled technology such as leakage power and process variation. A sensitiv-
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ity based optimization framework will be applied to multiple layers of design abstrac-

tion: circuits, micro-architecture, and macro-architecture. The proposed approach

enables power and area optimizations across the boundary of algorithm, architecture,

and circuits, which is essential for creating globally optimal designs.

In wireless baseband chip realization, the design cycle traditionally requires reen-

tering data at various abstraction levels, thus constraining the implementation choices

and increasing time-to-market. An approach using a unified design description for

algorithm verification and architecture exploration is also presented. The proposed

graphical block-based design entry and retargetable design flow provide the ability to

track technology features in the process of architectural selection.

As a proof of concept, the design methodology will be demonstrated on a wide-

band 4 × 4 MIMO channel decoupling through singular value decomposition. The

computational throughput of 70GOPS was implemented with 0.5 million gates at a

100MHz clock and 385mV supply, dissipating 34mW of power. The chip achieves a

power efficiency of 2.1GOPS/mW in just 3.5mm2 in a standard 90nm CMOS process.

Professor Robert W. Brodersen
Dissertation Committee Co-chair

Professor Borivoje Nikolić
Dissertation Committee Co-chair



i

To my parents



ii

Contents

List of Figures vi

List of Tables xi

Acknowledgments xii

1 Introduction 1
1.1 Power-Limited Design . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Architectural Considerations . . . . . . . . . . . . . . . . . . . 4
1.1.2 Design Productivity . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 MIMO Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Overview of Previous Work . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Sensitivity-Based Optimization 15
2.1 Optimization Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Layered Optimization Approach . . . . . . . . . . . . . . . . . . . . . 18

3 Circuit Optimization 21
3.1 Technology Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Delay Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Energy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Optimization Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Reference Point . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Optimization Procedure . . . . . . . . . . . . . . . . . . . . . 27

3.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Sensitivity to Gate Size, W . . . . . . . . . . . . . . . . . . . 29
3.3.2 Sensitivity to Supply Voltage, Vdd . . . . . . . . . . . . . . . 30
3.3.3 Sensitivity to Threshold Voltage, Vth . . . . . . . . . . . . . . 31

3.4 Optimization Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 32



CONTENTS iii

3.4.1 Inverter Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 Memory Decoder . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Tree Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.4 Takeaway Points . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.5 Multi-Variable Optimization . . . . . . . . . . . . . . . . . . . 46

4 Micro-Architectural Optimization 49
4.1 Choosing Optimal Circuit Topology . . . . . . . . . . . . . . . . . . . 50

4.1.1 Combinational Logic . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Low-Swing Clocking . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Parallelism vs. Pipelining . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 Optimal Leakage and Switching Energy . . . . . . . . . . . . . 66
4.2.2 Optimal Level of Parallelism . . . . . . . . . . . . . . . . . . . 67
4.2.3 Optimal Vdd and Vth . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Time-Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Energy-Area Trade-Off . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Signal Processing Techniques 78
5.1 Data-Stream Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Loop Retiming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Hierarchical Loop Retiming . . . . . . . . . . . . . . . . . . . 85
5.3.2 CPU Runtime Considerations . . . . . . . . . . . . . . . . . . 86

5.4 Delayed Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Iterative Square Rooting and Division . . . . . . . . . . . . . . . . . . 88

5.5.1 Error Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5.2 Initial Condition . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Taxonomy of MIMO Algorithms 94
6.1 Diversity vs. Spatial Multiplexing . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Diversity Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1.2 Spatial Multiplexing Gain . . . . . . . . . . . . . . . . . . . . 96
6.1.3 Optimal Trade-Off Curve . . . . . . . . . . . . . . . . . . . . . 97

6.2 Diversity Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.1 Repetition Scheme . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.2 Alamouti Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.3 Space-Time Coding . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Spatial Multiplexing Algorithms . . . . . . . . . . . . . . . . . . . . . 100
6.3.1 BLAST Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.2 SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.3 QR Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Unified Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



CONTENTS iv

6.4.1 Sphere Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5 Survey of VLSI Implementations . . . . . . . . . . . . . . . . . . . . 109

7 CAD Methodology and Flow 112
7.1 Simulink Design Environment . . . . . . . . . . . . . . . . . . . . . . 113

7.1.1 Design Description . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1.2 Functional Verification . . . . . . . . . . . . . . . . . . . . . . 116
7.1.3 Word-length Optimization . . . . . . . . . . . . . . . . . . . . 117

7.2 Characterization Methodology . . . . . . . . . . . . . . . . . . . . . . 119
7.2.1 Power Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.2 Area Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 “Chip-in-a-Day” Design Flow . . . . . . . . . . . . . . . . . . . . . . 122
7.3.1 INSECTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3.2 Chip Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Design Example: Iterative Square Rooting . . . . . . . . . . . . . . . 127

8 Design Example: 4 × 4 SVD 137
8.1 MIMO System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 SVD: Signal Processing View . . . . . . . . . . . . . . . . . . . . . . 139

8.2.1 Eigen-mode Decomposition . . . . . . . . . . . . . . . . . . . 139
8.2.2 Estimation of V matrix . . . . . . . . . . . . . . . . . . . . . . 141

8.3 SVD: Circuit Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.3.1 Voltage Scaling Limit: SRAM Memory . . . . . . . . . . . . . 143
8.3.2 Optimal Design at Scaled Vdd . . . . . . . . . . . . . . . . . . 144

8.4 Optimizing VLSI Architecture . . . . . . . . . . . . . . . . . . . . . . 146
8.4.1 Architecture for Eigen-mode Decomposition . . . . . . . . . . 148
8.4.2 Architecture for Grahm-Schmidt Orthogonalization . . . . . . 151
8.4.3 Routing: Memory as a MUX . . . . . . . . . . . . . . . . . . . 152

8.5 Estimates from Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.5.1 Timing and Power . . . . . . . . . . . . . . . . . . . . . . . . 153
8.5.2 Study of Energy and Area Efficiency . . . . . . . . . . . . . . 154

9 Experimental Verification 158
9.1 Test Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.1.1 Eigen-mode Decomposition Core . . . . . . . . . . . . . . . . 159
9.1.2 On-Chip Level Converter . . . . . . . . . . . . . . . . . . . . . 160

9.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.3 Measured Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10 Conclusion 168
10.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



CONTENTS v

Bibliography 174

A Chip Synthesis & Test 182
A.1 CPU Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.2 Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



vi

List of Figures

1.1 Architectural choices for wireless baseband chip design: Microproces-
sors, Programmable DSPs, Direct-mapped logic. . . . . . . . . . . . . 4

1.2 Wireless technology today: 802.11a WLAN transceiver chip. . . . . . 6
1.3 Future wireless technology: Multi-antenna (MIMO) communication. . 8
1.4 Layered optimization approach. . . . . . . . . . . . . . . . . . . . . . 9

2.1 Illustration of Energy-Delay sensitivity. . . . . . . . . . . . . . . . . . 16
2.2 Process of balancing sensitivities. . . . . . . . . . . . . . . . . . . . . 17
2.3 Block diagram illustrating various abstraction layers in the optimiza-

tion. Energy is the objective function at the circuit and micro-architectural
layers, while achieving proper energy-area trade-off is the objective at
the macro-architectural layer. . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Delay vs. fanout and supply. . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Delay profile in an inverter chain after sizing optimization: a) fixed, b)

variable number of stages. . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Per-stage supply optimization of an inverter chain with variable num-

ber of stages: a) optimal stage supply, b) delay profile. . . . . . . . . 35
3.4 Sizing and supply optimization of an inverter chain: a) energy reduc-

tion vs. delay increment, b) energy-delay sensitivity. . . . . . . . . . . 36
3.5 Critical path of 8/256 wordline SRAM decoder. Energy profile is also

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Energy profile in SRAM decoder: a) reference design, b) design with

10% incremental delay. (WL = 128, α = 15%) . . . . . . . . . . . . . 39
3.7 Energy profile in SRAM decoder with: a) 7 stages, b) 9 stages. Leakage

energy increases with the number of inactive gates. (d = dmin, WL =
128, α = 15%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Schematic of a 16-bit Kogge-Stone tree adder. . . . . . . . . . . . . . 41



LIST OF FIGURES vii

3.9 Energy distribution in a 64-b adder: a) reference design, b) design
with 10% additional delay after optimal sizing, c) design with 10% ad-
ditional delay, after dual-Vdd optimization. Each sum output is loaded
with CL = 32, input data activity is 10%. . . . . . . . . . . . . . . . . 42

3.10 Energy reduction due to W , Vdd and Vth in inverter chain, 8/256 mem-
ory decoder, and 64-bit adder. Only cases with min and max energy
reduction are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.11 Sensitivity to Vdd, Vth, and W in the adder example. V max
dd and V min

th

are limits on Vdd and Vth. . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.12 Optimal energy-delay trade-off in a 64-bit adder after performing Vdd−

Vth−W optimization. Reference is the design sized for minimum delay
under V max

dd and V ref
th . Sensitivity to each of the tuning variables is

marked on the graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Simplified model of one bit-slice of a 64-bit ALU. . . . . . . . . . . . 50
4.2 Flip-flops used in implementation of the ALU register in Fig.4.1: (a)

high-performance cycle-latch (CL), (b) low-energy static master-slave
latch-pair (SMS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Energy-efficient curves in register, adder, and ALU after gate size op-
timization. The dots indicate transition between CL- and SMS-based
register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Plots after optimal sizing and change in register topology. (a) En-
ergy of adder and register when they are combined as the ALU, (b)
Corresponding sensitivity of register, adder, and ALU. . . . . . . . . 54

4.5 Energy-Delay space in 64-bit CLA adder implemented using domino
and static CMOS logic styles (courtesy of R. Zlatanovici). . . . . . . 56

4.6 To maintain cycle time TClk at low-VClk, logic must absorb increase in
flip-flop delay, ∆tFF , and clock skew, ∆tSkew. . . . . . . . . . . . . . . 58

4.7 Flip-flops for non-critical paths: (a) high-VClk, static master-slave latch-
pair (SMS), (b) low-VClk, NMOS-only clocked SMS (N-SMS). . . . . . 59

4.8 Flip-flops for performance-critical paths: (a) high-VClk, cycle-latch (CL),
(b1) low-VClk, NMOS-only clocked cycle-latch (N-CL), (b2) low-VClk,
push-pull NMOS-only clocked cycle-latch (PPCL). . . . . . . . . . . . 60

4.9 Pulsed flip-flop (PFF) suitable for low-VClk operation. . . . . . . . . . 61
4.10 Energy-Delay space for flip-flops optimized for high-VClk operation.

Preferred high-VClk flip-flops are CL and SMS. . . . . . . . . . . . . . 62
4.11 Energy-Delay space for flip-flops optimized for low-VClk operation. Pre-

ferred low-VClk flip-flops are PFF/PPCL and N-SMS. (VClk = 0.7Vdd) 62
4.12 Low-VClk flip-flops cannot achieve the top speed of high-VClk flip-flops,

but have lower energy at less aggressive delays. . . . . . . . . . . . . . 63
4.13 Parallelism and pipelining relax timing constraints on logic blocks. . . 64



LIST OF FIGURES viii

4.14 Energy-per-operation as a function of the leakage-to-switching energy
ratio in nominal, parallel, and pipeline designs. All designs operate at
the throughput of the nominal design sized for minimum delay under
V max

dd and V ref
th . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.15 Energy-per-operation as a function of the clock cycle in energy-efficient
designs with levels of parallelism from P = 2 to P = 5. Delay and
energy penalty due to multiplexers is included. Diamond dots indicate
min EDP, circle indicates nominal design initially sized for minimum
delay at V max

dd , V ref
th . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.16 Plot of (a) change in threshold ∆Vth and (b) optimal supply voltage
V opt

dd /V ref
dd after performing energy-efficient Vdd-Vth − W optimization

on nominal and parallel-4 designs. Dot represents initial sizing for
minimum delay at V max

dd , V ref
th . . . . . . . . . . . . . . . . . . . . . . . 72

4.17 Time-multiplexing tightens timing constraints on logic block A. . . . 73
4.18 Energy-delay space for designs with various levels of parallelism and

time-multiplexing. Desired cycle time Ttarget can be achieved with
several architectures that differ in energy and area. Numbers represent
the area of respective architectures. . . . . . . . . . . . . . . . . . . . 75

4.19 Energy-area trade-off under performance constraint. All parameters
are normalized to reference architecture optimized for speed under V ref

dd

and V ref
th . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Energy-delay trade-off in digital circuits. . . . . . . . . . . . . . . . . 79
5.2 Concept of data-stream interleaving. (feedback example) . . . . . . . 81
5.3 Interleaving and Folding are area saving techniques. Timing and en-

ergy stay approximately the same (neglecting register overhead). . . . 82
5.4 Concept of folding: (a) time-serial computation, (b) operation folding.

Block Alg performs some algorithmic operation. (star indicates deeper
pipelining) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Data-flow graph model of iterative division. (m, a, u indicate latency) 84
5.6 Data-flow graph model of an iterative eigen-mode decomposition algo-

rithm. Iterative division in Fig.5.5 is used. (m, a, u indicate latency) 87
5.7 Convergence region of iterative square rooting and division. (solid line:

convergence, dashed line: converging stripes, dotted line: divergence) 91
5.8 Choice of initial condition for decreasing absolute error. (V < 0: de-

scending error, dotted line: divergence) . . . . . . . . . . . . . . . . . 93

6.1 Classification of MIMO algorithms in the diversity-multiplexing plane. 98
6.2 D-BLAST decoding scheme. Each codeword is partitioned into four

blocks and distributed over time and space. . . . . . . . . . . . . . . 102
6.3 Vertical BLAST MIMO communication link. . . . . . . . . . . . . . . 104
6.4 Decoupling of MIMO channel through SVD. . . . . . . . . . . . . . . 105



LIST OF FIGURES ix

7.1 Simulink environment illustrating XSG block library. . . . . . . . . . 114
7.2 Example of Simulink design entry: model of a MIMO communication.

Numbers indicate total and fractional bits. . . . . . . . . . . . . . . . 115
7.3 Example of functional verification in Simulink. . . . . . . . . . . . . . 117
7.4 Illustration of FFC-enhanced Simulink model, [1]. . . . . . . . . . . . 118
7.5 Block-level characterization (mult, add examples). . . . . . . . . . . . 120
7.6 Simulink based “Chip-in-a-Day” design flow. . . . . . . . . . . . . . . 123
7.7 Simulink model of inverse square rooting algorithm from Chapter5. . 128
7.8 Simulink/XSG model of “sqrt (fix.pt)” block from Fig.7.7. Each mod-

ule has a mask with user-defined parameters (word-length and latency
are emphasized). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.9 Word-length optimized design. The numbers indicate (total, frac-
tional) bits, respectively. Area before opt: 743 slices, area after opt:
668 slices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.10 Functional verification of iterative square rooting: a) fixed and floating
point outputs for sinusoidal input A, b) error due to finite wordlength
effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.11 Technology characterization: a) Simulated Energy vs. Delay of a FO4
inverter (normalized to nominal Vdd), b) Latency vs. Cycle time of
building blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.12 Layout view of the inverse sqrt design. (235µm× 235µm, 90nm CMOS)134

8.1 Simulink model of adaptive SVD. . . . . . . . . . . . . . . . . . . . . 138
8.2 Adaptive 4-by-4 eigen-mode decomposition algorithm. . . . . . . . . . 140
8.3 Adaptive algorithm for tracking of V matrix. . . . . . . . . . . . . . 141
8.4 Histogram of data retention voltage in SRAM cells (130nm process). . 144
8.5 (a) Inverter VTC does not degrade at VDD=0.4V. (b) Energy mini-

mization via gate sizing and VDD reduction. . . . . . . . . . . . . . . 145
8.6 Basic Energy-Area-Delay trade-offs for constant throughput. . . . . . 147
8.7 (a) Vectoring and time-serial ordering of interleaved data. (b) Folding

of Alg operation (UΣ LMS and deflation). . . . . . . . . . . . . . . . 148
8.8 Energy and Area minimization in UΣ decomposition example. . . . . 150
8.9 Conceptual view of optimization techniques used in UΣ block. . . . . 150
8.10 Grahm Schmidt Orthogonalization: (a) direct mapped architecture,

(b) memory based time-multiplexing approach. . . . . . . . . . . . . . 151
8.11 Power estimates back-annotated to Simulink environment. . . . . . . 154

9.1 Die micrograph of eigen-mode decomposition chip. Die size: 2.3 ×
2.3mm, chip core: 1.9 × 1.9mm. (7M 1P 90nm CMOS technology) . 160

9.2 Schematic of an on-chip level converter (VDDL = 0.4V, VDDH = 1V ,
numbers indicate transistor W in µm, L = Lmin unless indicated oth-
erwise). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



LIST OF FIGURES x

9.3 Simulink environment for real-time hardware comparison. . . . . . . . 162
9.4 Test setup that performs real-time hardware comparison. . . . . . . . 163
9.5 Measured tracking of slowly varying eigen-modes in a 4 × 4 MIMO

channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.6 Trade-off between Energy-Efficiency and Logic Area in the test design. 166

10.1 Design space exploration. . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.1 Conceptual diagram of ASIC test board. . . . . . . . . . . . . . . . . 183



xi

List of Tables

3.1 Activity map of 8/256 wordline SRAM decoder. . . . . . . . . . . . . 37

5.1 Convergence speed of iterative sqrt and div. . . . . . . . . . . . . . . 92

6.1 Summary of ASIC Implementations of 4 × 4 MIMO Decoders. . . . . 110

8.1 Area of UΣ block architectures. (ASEQ/ALOG = 1%, ADef/AUΣ = 0.5) 149
8.2 Summary of GSO implementations. . . . . . . . . . . . . . . . . . . . 152
8.3 Power estimation from chip synthesis. . . . . . . . . . . . . . . . . . . 154

9.1 Summary of main optimization techniques. . . . . . . . . . . . . . . . 159
9.2 Area and power of functional blocks. . . . . . . . . . . . . . . . . . . 165
9.3 Chip features. (op = 12-b add) . . . . . . . . . . . . . . . . . . . . . . 165

A.1 CPU runtime of back-end steps for chip in Fig. 9.1. . . . . . . . . . . 182



xii

Acknowledgments

My sincere gratitude goes to my advisors, Professor Bob Brodersen and Professor
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Chapter 1

Introduction

...It is difficult to predict at the present time just how extensive the inva-
sion of the microwave area by integrated electronics will be. The successful
realization of such items as phased-array antennas, for example, us-
ing a multiplicity of integrated microwave power sources, could completely
revolutionize radar.

G. Moore, 1965

The nature of integrated circuit design has experienced a major change in recent years

due to continued scaling of the underlying technology. In the past, the amount of

functionality that could be integrated on chip was limited by area; today, power dis-

sipation is the primary limiting factor. Technology scaling over the past four decades

has provided about one million times higher integration complexity, and this trend is

continuing. Smaller transistors consume less power, but higher transistor density and

speed result in overall higher chip power consumption and more generated heat. This

is not the only challenge. As technology scales into the deep sub-micron regime (be-

yond 0.25µm node) designers are starting to see some unique technological features
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that they did not have to think about before. Power leakage has been increasing expo-

nentially up to 90nm node, and the impact of process parameter variations on power

and performance has been increasing with each technology generation. As a result,

technology has been degrading, in a way, while design complexity kept increasing.

To address the issue of increased variability and leakage, modern technologies offer

devices with several thresholds. The multiplicity of transistor thresholds from which

to choose gives the designer even more flexibility and makes design more challenging.

1.1 Power-Limited Design

The characteristics of power constraints are different for desktop processors and mo-

bile devices, but in both cases the maximum achievable performance depends on the

degree of energy-efficiency in performing a computation. Focusing primarily on per-

formance for high-speed circuits results in too much power dissipation. Focusing only

on energy for mobile applications is equally inadequate, since this approach rarely

achieves the required performance. The correct optimization either minimizes en-

ergy consumption, subject to a throughput constraint, or maximizes the amount of

computation for a given energy budget.

At the same time, the complexity of chip implementations has been steadily grow-

ing, both in desktop and portable devices. To meet the power challenge, microproces-

sor designs now use a multi-core approaches to increase overall performance, without

increasing the baseline frequency of the operation [2]. Growing demand for mobile,
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multi-functional devices stresses the issue of power efficiency perhaps even more due

to limited energy capacity of portable batteries. Finally, new ideas from commu-

nication theory such as using multiple antennas also add to this complexity quite

substantially. This dissertation will present general concepts related to power and

area minimization while focusing on wireless communication designs.

The scaling of the semiconductor technology has provided an exponential increase

in integration complexity, with the number of transistors that can be integrated on a

chip doubling every 18 to 24 months. This trend is called “Moore’s Law” after Gordon

Moore of Intel who made an observation in 1965 that the number of transistors per

integrated circuit doubled about every year. The pace wasn’t able to sustain quite

this level, but Moore made a downward revision in 1975, saying that they doubled

about every two years. Such a trend has been steadily in place, resulting in integration

capability exceeding a billion transistors on chip today. The question is what could a

designer do with so many components? The dual-core Itanium R© processor is a good

example of successfully tracking the historical trend, with 1.72B transistors integrated

on a single die, [3]. It is hard to predict what kind of designs will be needed in the

future, but the very last sentence of the famous article by Gordon Moore quoted in the

beginning of this chapter [4] is quite indicative. The last visionary statement in the

article predicted the use of scaled technology for realization of phased-array antennas

for radar applications. This dissertation addresses a similar problem in principle:

realization of multiple-antenna (MIMO) wireless communication.
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Figure 1.1: Architectural choices for wireless baseband chip design: Microprocessors,
Programmable DSPs, Direct-mapped logic.

1.1.1 Architectural Considerations

Before investigating realization of MIMO technology, it is interesting to review basic

architectural solutions available for the realization of signal processing algorithms in

wireless baseband chips, Fig. 1.1. Digital baseband functionality in wireless local area

network (WLAN) chips is typically provided with direct-mapped, hardwired logic1.

This approach offers the highest energy-efficiency, which is a prime concern in battery

operated devices. Another extreme is the heavily time-multiplexed microprocessor

architecture, which has the highest flexibility, but it is also the least energy-efficient

because of overhead to support the time multiplexing. Between these two extremes

are programmable DSP solutions, such as those found in cellular phones.

Another look at the three architectural choices along the horizontal axis reveals

that the clock speed required from direct-mapped parallel architectures is significantly

1Hardwired logic can achieve a much higher speed in general. Clock rate shown in this plot is for
the typical case of a wireless local area network baseband.
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lower than the speed of technology tailored for microprocessor designs. The difference

in clock rate also hints to architectural differences, for example a faster clock is

required for time-multiplexing. This discrepancy can be viewed as an opportunity

for further energy and area reduction in chip implementations. It is thus interesting

to study an example built on the concept of a direct-mapped architecture to see what

kind of power and area improvements can be achieved.

Case Study: A 802.11a WLAN Transceiver

Figure 1.2 illustrates an example of a commercial transceiver chip [5], for the 802.11a

wireless LAN standard, [6]. The digital baseband operates with a 80 MHz clock, [7].

In fully parallel direct-mapped transceiver architecture, the clock rate is consistent

with an 80 MHz sampling rate of the ADC. Baseband processor executes 40 billion

operations per second (GOPS) while consuming 200mW of power in a 0.25µm CMOS.

The total die area that includes digital core, ADCs and DACs, I/Os, and PLL is

46.2mm2. The design as such is not the most power/area efficient because the speed of

a 0.25µm technology is greater than the required 80 MHz clock rate. The excess speed

could be used to reduce power and area. Power could be reduced by lowering core

supply voltage, for example. Area could be reduced by introducing time-multiplexing.

In a commercial environment, design architecture is typically ported to two or

three successive technology generations by simply shrinking all device dimensions.

Such an approach works well in terms of power and area due to benefits of scal-
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Figure 1.2: Wireless technology today: 802.11a WLAN transceiver chip.

ing, but the original architecture, often called “lead architecture”, would not be the

most power/area efficient in the new technology. With scaling of technology, speed-

area-power characteristics of the underlying devices change, rendering a previously

optimal architecture sub-optimal in the new technology. In order to achieve the best

power/area efficiency, the architecture has to track the energy-performance charac-

teristics of the underlying circuits.

1.1.2 Design Productivity

The process of re-designing at the architectural level requires significant amount of

engineering resources since it typically involves the close interaction of multiple en-
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gineering teams spanning algorithms, architecture, and circuits. The situation is

further complicated by the fact that these various teams use different design tools to

verify their ideas. Algorithm designers use Matlab or C, for example, while hardware

designers like to work with synthesis tools from Synopsys or Cadence. This creates

the scenario in which the same design needs to be re-entered multiple times. The

ability to re-target an algorithm to a different technology in a power/area efficient

way using a unified design description is crucial to improving design productivity. It

also enables an efficient way to add flexibility required by future wireless devices.

1.2 MIMO Technology

Future devices are going to be much more complex. To satisfy the growing need for

higher capacity and extended range, WLAN devices are moving to using multiple-

input multiple-output (MIMO) algorithms as being defined in the 802.11n standard,

[6]. Particular interest of this work is to find out how this impacts the digital baseband

in terms of power and area. Figure 1.3 shows conceptual diagram of a multi-antenna

communication system, requiring multiple transmit and receive antennas. This sys-

tem will be described in more detail in Chapters 8, 9. For now, observe that the

802.11a chip works with scalar information to estimate the wireless channel. In the

MIMO case, the channel information is in a matrix form, where elements of the ma-

trix represent transfer function between various antenna pairs. The complexity of

matrix-based signal processing for an N ×N MIMO channel would be approximately
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Figure 1.3: Future wireless technology: Multi-antenna (MIMO) communication.

N2 higher than for the single antenna case, while scaling of technology can provide

only linear increase (2×) in computational complexity.

The power and area of a simple direct-mapped parallel implementation would

increase quadratically with the number of antenna-pairs N , for a fixed process. Such

complexity outpaces Moore’s law in terms of area. A simple way to reduce area,

demonstrated in Chapter 4, is to use time-multiplexing, but this increases power

dissipation. On the other hand, supply voltage scaling with parallelism increases the

area. Simultaneous optimization for power and area is therefore needed.

1.3 Overview of Previous Work

The methods for achieving optimum performance are well explored, [8]. Establishing

the balance between performance and power consumption has been a popular research

topic in the past as well. An optimum in the energy-delay space has been searched for

through minimization of objective functions that combine energy and delay. Today,

designers work at each level of design abstraction, Fig. 1.4 separately, which leads to

sub-optimal designs.
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Circuit Techniques

Minimizing the energy-delay product (EDP ) [9], [10] of a circuit results in a particular

design point in the energy-delay space where 1% of the energy can be traded for

1% of the delay. Although the EDP metric is useful for comparison of different

implementations of a design, the design optimization points targeting EDP may not

correspond to an optimum under desired operating conditions. Metrics in a general

form of E ·Dn [11] or energy-performance ratio by Hofstee [12] have been used instead.

For example, the E · D2 metric [13] puts more weight on the delay than the energy,

and is a Vdd-invariant metric. Minimizing E · Dn, however, has limited applicability

since it gives only one (E, D) point in the energy-delay space at which the energy
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E is minimized for a fixed delay D. A complete understanding of the energy-delay

trade-off for a design is obtained by minimizing the energy subject to an arbitrary

delay constraint.

Sizing optimization of digital circuits has been explored extensively resulting in

several optimization tools such as TILOS [14], JiffyTune [15] and EinsTuner [16]. Most

such tools can at least approximate energy-constrained sizing by constraining the total

transistor width available for the circuit. In addition, a number of researchers have

derived analytical solutions for area and energy optimization through gate sizing. The

analysis is typically restricted to simple logic gates and inverter chains [17], [18]. Like

TILOS, a simple analytical timing model is used to guarantee a convex optimization

problem, but the delay dependence on Vdd and Vth is explicitly used to allow multi-

variable optimization to be done.

Architectural Techniques

Supply voltage scaling is another common technique that is used to minimize energy

under performance constraints. It was one of the key techniques in the low-power

DSP work of Chandrakasan et al. [19] and has been practically demonstrated in [20],

[21]. With the emerging importance of leakage power consumption, the threshold

voltage becomes a critical tuning variable and is generally considered together with

supply voltage. Liu and Svensson hinted about the existence of an optimal supply and

threshold for a given design [22]. Gonzalez et al. [10] investigated joint supply and
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threshold voltage scaling for energy-delay product minimization. Kuroda et al. [20]

and Nose and Sakurai [23] extended this work and proposed closed-form expressions

for the optimum supply, threshold, and leakage-to-switching power ratio.

Various architectural techniques in the energy-area-performance space are eval-

uated in order to minimize power and area. Prior work applied similar techniques

to simple building blocks such as FIR filters [24] in standard VLSI design environ-

ments. The methodology presented in this dissertation is scalable to large degrees of

complexity. This work uses the graphical Matlab/Simulink environment, familiar to

both algorithm developers and chip designers, thus giving practical insight to algo-

rithm developers as well providing a better understanding of the algorithms to VLSI

architects.

1.4 Dissertation Outline

Chapter 2 introduces a general sensitivity-based optimization framework. Sensitiv-

ity is defined as the absolute gradient of a cost function to a constraint when

changing some design variable. In a multi-variable optimization, the optimiza-

tion procedure exploits the tuning variable with the largest marginal return.

A fixed point in the optimization is reached when marginal costs of tuning all

tuning variables are equal. In this work sensitivities are used to formalize the

trade-off between energy and performance.
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In order to create more globally optimal designs, the optimization is applied to

several design abstraction layers as shown in Fig. 1.4. Prior work is expanded

by applying a sensitivity-based optimization framework to multi-variable opti-

mizations across several abstraction layers, allowing for a comparison of power,

area and performance for different solutions. Optimization is performed at three

layers of abstraction: system architecture, micro-architecture, and fixed circuit

topology optimization.

Chapter 3 presents circuit-level optimization that minimizes energy subject to delay

constraint using gate size (W ), supply (Vdd) and threshold voltage (Vth) as vari-

ables. All variables are jointly considered to yield the highest energy-efficiency.

The sensitivity framework is applied to circuit logic blocks with significantly

different topologies: an inverter chain, a memory decoder, and a 64-bit adder.

The effectiveness and scope of all variables in the optimization are analyzed.

Since circuit-level optimization is only effective in a very narrow performance

range, micro-architectural optimization is considered.

Chapter 4 takes results from the circuit-level optimization and provides insight for

the micro-architectural optimization. The best choice of circuit topology and

optimal level of parallelism is made by investigating a set of optimal energy-

delay trade-off curves corresponding to various circuits. Design issues such as

determination of the optimal balance between leakage and switching power,
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the optimal Vdd and Vth, and the investigation of energy-area trade-offs are

addressed.

Chapter 5 extends the lessons from micro-architectural optimization and reviews

signal processing techniques such as data-stream interleaving and folding. Im-

plementation cost in terms of cycle latency is also considered. Since different

arithmetic blocks vary in complexity, this also raises a question how to optimally

distribute pipeline registers, both in feed-forward and feedback based computa-

tions. To address this, the methodology for loop retiming is presented, followed

by analysis of iterative square rooting and division techniques.

Chapter 6 provides general classification of MIMO algorithms starting from fun-

damental diversity versus spatial multiplexing trade-off. An overview of diver-

sity methods such as BLAST and spatial-multiplexing methods such as QR-

decomposition and SVD is provided. The goal is to classify basic concepts used

in MIMO detection and investigate the computational complexity involved. The

chapter concludes with a brief survey of published ASIC implementations re-

lated to MIMO baseband signal processing.

Chapter 7 presents the use of the design optimization methodology within a com-

mercial CAD environment. The procedure starts with design entry in Mat-

lab/Simulink, followed by word-length optimization. Technology specific block

characterization is used to determine the optimal micro-architecture and the op-
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erating supply voltage. Finally, the design is taken through highly automated

back-end synthesis tools that incorporate gate sizing and supply voltage opti-

mization. Design procedure is illustrated on the inverse square rooting example.

Chapter 8 applies concepts developed in previous chapters on design and optimiza-

tion of a 4×4 adaptive MIMO algorithm, to demonstrate the level of complexity

that can be supported using proposed methodology. An ASIC chip is fabricated

to verify the validity of the methodology.

Chapter 9 discusses measured results from the ASIC chip. An FPGA-based test

setup for efficient ASIC verification is also described.

Chapter 10 concludes this work and proposes some steps for future research.
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Chapter 2

Sensitivity-Based Optimization

This chapter briefly introduces the general sensitivity-based optimization framework

that will be used throughout this dissertation. The framework quantifies the cost of

tuning each variable in the design and balances sensitivities to all design variables in

order to minimize the cost function subject to design constraints.

2.1 Optimization Principle

Sensitivity analysis is based on simple gradient expression as given by Eq. (2.1),

SA(A0) =
∂E/∂A

∂D/∂A

∣∣∣∣∣
A=A0

(2.1)

where E is a cost function and D is a design constraint. For example, E could be

the energy dissipation and D could be the delay in a digital circuit. Both E and D
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Figure 2.1: Illustration of Energy-Delay sensitivity.

are functions of some general design parameter A, for example supply voltage. The

sensitivity SA to variable A provides intuition about the profitability of optimization,

i.e. how much change in E and D is achieved by tuning design variable A around

operating point A0.

The concept of sensitivity is illustrated in Fig. 2.1 for an example of energy-delay

trade-off, which is described with function f(A, B). Assuming that the design is

positioned at the operating point (A0, B0), the sensitivity to variable A, for example,

is simply defined as the slope of the line tangent to function f(A, B0). The function

f(A, B0) is obtained by varying variable A around (A0, B0). In this example, variable

B has higher sensitivity than variable A resulting in a sub-optimal design.

The key concept to realize is that at the optimal solution point, sensitivities should

be equal. An optimization mechanism based on this principle is illustrated for the

general energy-delay trade-off shown in Fig. 2.2. The goal is to minimize energy
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subject to a delay constraint D0. Assume that the operating point (A0, B0) is the

initial design point. Starting from this point, delay can be reduced ∆D by lowering

the value of variable A. This results in an energy increase1 proportional to sensitivity

SA, ∆E = SA · (−∆D). The delay slack ∆D provided by tuning variable A can be

utilized by tuning a more sensitive variable B to return to the starting delay point

D0. Overall, an energy reduction of ∆E = (SB −SA) ·∆D is achieved because energy

cost of tuning variable B is higher than the energy cost of tuning variable A. In other

words, the energy reduction is possible because sensitivities SA and SB are not equal at

the initial operating point (A0, B0). A fixed point in the optimization, corresponding

to ∆E = 0, is therefore achieved when all sensitivities are equal. During the process

of balancing sensitivities, some variables may reach the upper or lower limit, resulting

in a constrained solution.

1Note that SA is negative. The minus sign represents decrease in delay.
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2.2 Layered Optimization Approach

The general sensitivity based framework is applied to multiple layers of abstraction

as illustrated in Fig. 2.3. The goal is to minimize the overall cost function of a design,

such as energy or area, subject to some constraint, such as performance.

The nature of performance constraints is different at various abstraction layers in

the optimization. For instance, the performance of a circuit is measured by the circuit

delay, while the performance of a micro- or macro-architecture is related to the cycle

time or the number of instructions per cycle. Each new layer in the optimization

introduces more degrees of freedom, such as the level of parallelism at the micro-
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architectural layer or the area of the macro-architecture. However, designs of higher

complexity can be still optimized based on the optimal energy-performance trade-offs

of their building blocks. This is computationally much more efficient than performing

large-scale optimization at the gate level.

The procedure is illustrated in Fig. 2.3, where the goal is to be able to obtain

trade-offs at individual layers and understand the interaction among the different

layers. Also, if the desired operating point in E-D space is known, which corresponds

to some sensitivity, then the optimization problem can be decoupled into a sequential

procedure where independent variables are optimized individually. Decoupling the

problem into independent spaces provides good intuition about various trade-offs

comprising the overall design optimization.

At the circuit level, the goal is to minimize the energy subject to the delay con-

straint in data-path logic and flip-flops, using the gate sizing, supply and threshold

voltage as variables. The result is the values of optimization variables for the opti-

mal energy-delay (E-D) trade-off. Traversing upward through the design abstraction

stack, additional variables in the optimization can be considered, such as the amount

of parallelism or time-multiplexing at the micro-architecture level. (Figure 2.3 is by

no means complete, it illustrates some of the most commonly used variables.)

At the micro-architecture level, the optimal energy-delay trade-off curves from the

circuit level are used to hierarchically extend the optimization. Information about

the optimal E-D trade-off in individual circuit blocks is used, along with top-level
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specifications such as throughput, word-size, algorithm, etc. These trade-off curves

coupled with optimal W , Vdd, and Vth are strategically combined to obtain the op-

timal energy-performance trade-off for circuit macros. With this optimal energy-

performance curve, the designer can select the appropriate circuit topology for each

pipeline stage or choose an optimal level of parallelism based on the circuit optimiza-

tion results. However, the optimal Vdd and Vth in the individual circuits are rarely

the same for all pipeline stages. In order to achieve the most energy-efficient solution

under a single Vdd and Vth combination, several iterations may be required to optimize

all the circuits under that particular Vdd and Vth. This includes finding the optimal

Vdd and Vth for a given architecture based on balancing the leakage and switching

components of energy under some performance constraint. The result is an optimal

E-D curve, along with area information, that becomes important when parallelism

and time-multiplexing are applied to large blocks. Finally, at the top-level the goal is

to find the optimal compromise between the energy and area of the implementation.

The general framework presented in this chapter will be applied to multiple design

abstraction layers. In the next two chapters, individual optimizations at the circuit-

level (Chapter 3) and the micro-architectural level (Chapter 4) are analyzed.



21

Chapter 3

Circuit Optimization

This chapter presents methods for efficient energy-performance optimization at the

circuit level. Optimizations are performed based on the alpha-power law gate delay

model and switching and leakage components of energy. The sensitivity-based ap-

proach is applied to energy minimization subject to a delay constraint, using gate

size, supply and threshold voltage as variables. General energy-delay sensitivity to

each of the variables is derived to provide an understanding of the effectiveness of

various variables in multi-variable optimization. The impact of basic topological

characteristics found in logic gates such as branching and path reconvergence is also

analyzed and illustrated by examples of an inverter chain, a memory decoder, and an

adder. It is demonstrated that energy savings of about 65% can be achieved without

delay penalty with equalization of sensitivities to sizing, supply, and threshold voltage

in a 64-bit adder, compared to the reference design sized for minimum delay.
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3.1 Technology Calibration

The energy and the delay of a logic gate are functions of its size, supply voltage,

and transistor threshold voltage. In order to calculate the sensitivities of larger logic

blocks comprised of simple logic gates, it is necessary to develop simple and accurate

models of the energy and delay of the gate. For the optimization purposes, the

models work with continuous variables. General conclusions derived from continuous

optimizations are applied to synthesis environment that works with discrete variables,

such as standard-cell sizes (Chapter 7).

3.1.1 Delay Model

While there are many different models that can be used, our prior work [25], [26]

suggests the use of the alpha-power law model of [27] as a baseline for derivation of

the gate delay formula:

tp =
Kd · Vdd

(Vdd − Von − ∆Vth)αd
·
(

wout

win

+
wpar

win

)

= τref · g ·
(

h +
p

g

)

= τref · d

(3.1)

This is a curve-fitted expression and parameters Von and αd are intrinsically related,

yet not necessarily equal, to the transistor threshold voltage and velocity saturation

index. ∆Vth is the change from the standard threshold voltage given by technology;
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Kd is a fitting parameter; h = wout/win is the electrical fan-out of a gate; and wpar/win

is a measure of its intrinsic delay. Gate and parasitic capacitances are both linearized

and the effects of transistor capacitance non-linearities are lumped into the fitting

parameters Von, αd, and Kd.

The simple delay model fits SPICE simulated data within 5% over a range of

supply voltages from 0.4V max
dd to V max

dd and fanout factors from 2 to 10, assuming

equal input and output rise and fall times [18]. Using the linear delay model from

the method of logical effort [21], the delay formula can be expressed simply as a

product of the process-dependent time constant τref and the unit-less delay d. This

delay d consists of the intrinsic delay p due to the self-loading of the gate, and the

fanout delay g · h which is the product of the logical effort g and the fanout h. The

logical effort g represents the relative ability of a gate to deliver current for a given

input capacitance. The fanout h is the ratio of the total output to input capacitance.

The simple linear delay model naturally extends to logic paths and multiple-supply

voltages [25]. The delay of a logic path is simply D = dpath · τref , where dpath is the

sum of the normalized gate delays along the path.1

When there are multiple supply voltages, the perception of a “process constant”

to which delays are normalized changes. A gate that operates at a reduced supply

voltage has a smaller device current for the same input capacitance. Thus, if Vdd

is scaled down, the logical effort and the parasitic delay increase, as modeled by

1Small letters label gate parameters, capital letters label circuit and system parameters
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Figure 3.1: Delay vs. fanout and supply.

the voltage-dependent factor kv in Eq. (3.2) and demonstrated in Fig. 3.1. When a

regular gate is placed at the interface between the high and low supply domains, the

pull-up path operates at reduced supply, thus with a higher logical effort. The size

of the pull-up must increase in order to equalize the logical effort of each path. This

is modeled through voltage and gate topology dependent scaling factors.

kv =
V low

dd

V ref
dd

·
(

V ref
dd − Von

V low
dd − Von

)αd

(3.2)

3.1.2 Energy Model

Switching and leakage energy are considered as the two dominant components in this

analysis. The analysis based on the gate-level model is expanded to data-path logic,

taking into account the impact of switching activity and state-dependent leakage.
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Switching Energy

The switching component is the standard dynamic energy term given by Eq. (3.3),

eSw = α · Ke · (wout + wpar) · V 2
dd (3.3)

where Ke · wout is the load capacitance, Ke · wpar is the self-loading of the gate, and

α is the probability of an energy-consuming transition at the output of the gate.

The main optimization parameters are supply voltage Vdd and capacitances which are

directly proportional to gate size.

Leakage Energy

Static leakage of a logic gate at Vgs = 0 is modeled as:

eLk = D · win · I0(Sin) ·
(
V ref

th + ∆Vth − γ · Vdd

)
· Vdd (3.4)

where D = dcritical−path ·τref is the cycle time, I0(Sin) is the normalized leakage current

of the gate with inputs in state Sin, V ref
th is the standard threshold voltage provided

by the technology, and V0 = n · kT/q and γ account for the sub-threshold slope and

DIBL factor, respectively. The model in Eq. (3.4) is calibrated in HSPICE over the

full range (defined by lower and upper limits) of design parameters Vdd, Vth, W , and

also over the entire set of states Sin for each of the gates. The model neglects gate

leakage that occurs due to direct tunneling of carriers through a thin gate oxide.
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Gate leakage is expected to become a problem with oxides thinner than 2nm [28],

or below the 90nm node. (For reference, the diameter of an atom is about 0.1nm.)

With further shrinking of the gate oxide, gate leakage is predicted to increase at a

rate of 500× per technology generation while sub-threshold leakage is predicted to

increase 5× for each technology generation [29].

In large circuit blocks, the logic state and the switching probability of the internal

gates are obtained through logic simulation. This way, the gate-level models given

by Eqs. (3.3), (3.4) are extended to compute the total circuit energy.

3.2 Optimization Approach

Optimization procedure starts by finding the reference point for a design and then

minimizing energy subject to a delay constraint normalized to the reference delay.

3.2.1 Reference Point

Reference point for design optimization is the minimum delay Dmin design obtained

through gate size optimization, under the standard supply V ref
dd and threshold voltage

V ref
th for a technology. The minimum delay point is one of the points on the energy-

efficient curve and is convenient reference, because it is well defined.

Reference supply voltage corresponds to the maximum supply V max
dd specified by

the technology reliability limit. In this chapter, the nominal threshold voltage is the
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low-Vth from a dual-Vth 0.13µm technology, and this value is labeled as reference V ref
th ,

corresponding to ∆Vth = 0 in the model, Eqs. (3.1), (3.3), (3.4). In this particular

0.13µm technology, for example, V ref
on = 0.34V , V max

dd = 1.2V . The minimum delay

Dmin is achieved for some specified output load CL and a fixed input capacitance Cin.

All capacitances are normalized to the input capacitance of a unit inverter.

3.2.2 Optimization Procedure

In the optimization procedure, some percentage incremental change in delay, dinc,

relative to the reference point is specified. The energy is minimized for the new target

delay D = Dmin(1 + dinc/100), by using supply voltage, threshold voltage, gate size,

and optional buffering as optimization variables. Supply optimizations investigated

include global supply reduction, two discrete supplies, and per-stage supplies. In the

discrete supply optimizations, supply voltage can only decrease from input to output

of a block assuming that low-to-high level conversion is done in registers, while sizing

is allowed to change continuously.

3.3 Sensitivity Analysis

In energy-delay optimization, the objective is to utilize available timing slack for

maximal energy reduction. There are usually several tuning variables that can be

used to trade timing slack for energy at various levels in the design hierarchy. As
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pointed out in Chapter 2, the energy-efficient design is achieved when the marginal

costs of all the tuning variables are balanced. Each design variable x carries a certain

energy reduction potential per delay cost, at each point in the energy-delay space, as

given by Eq. (3.5).

Sx(X) =
∂E/∂x

∂D/∂x

∣∣∣∣∣
x=X

(3.5)

Analysis using relative sensitivity, which was termed hardware intensity, was pro-

posed in [30]. The relative sensitivity simply represents percent power per percent

performance for an energy-efficient design as given by Eq. (3.6). However, formulation

in Eq. (3.5) is preferred since relative contributions of energy and delay from various

blocks are unknown and also may change during the optimization.

ηx(X) = Sx(X) · D

E
(3.6)

The true power minimization method always exploits the tuning variable with the

largest capability for energy reduction. This ultimately leads to the point where the

energy reduction potentials of all tuning variables are equalized. In order to further

develop the understanding of these relative gradients, practical expressions (sensitiv-

ities) are derived for different tuning variables. The variables considered include gate

size W , supply voltage Vdd, and change in threshold voltage ∆Vth as knobs in the opti-

mization. By analyzing sensitivities, the efficiency of W , Vdd, and ∆Vth optimizations
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can be estimated from the energy profile of the logic block. Further, understanding

the relationship between the logic block topology and the energy profile is necessary

in order to identify the most efficient tuning variables without an exhaustive search.

3.3.1 Sensitivity to Gate Size, W

The sensitivity of circuit energy E = ESw + ELk to delay due to a change in size of a

gate in stage i is given by Eqs. (3.7) and (3.8), where eci = α ·Ke · (win,i + wpar,i) ·V 2
dd

represents the switching energy due to capacitances of stage i (this is not the energy

consumed at the output of stage i), eLk,i is the leakage energy of stage i as defined

by Eq. (3.4), ESw and ELk are the total switching and the total leakage energy,

respectively. Parameter heff,i = gi · hi is the effective fanout of stage i.

∂ESw/∂wi

∂D/∂wi
= − eci

τref · (heff,i − heff,i−1)
(3.7)

∂ELk/∂wi

∂D/∂wi
=

ELk

D
− D · eLk,i

τref · (heff,i − heff,i−1)
(3.8)

Equations (3.7), (3.8) show that the largest potential for energy savings occurs at the

point where the design is sized for minimum delay with equal effective fanouts heff ,

resulting in infinite sensitivity. Intuitively, the delay cannot be reduced beyond the

minimum achievable delay, regardless of how much energy is spent. While decreasing

gate size decreases the leakage current, it also increases the cycle time D, which

increases the leakage energy. At the point where the sensitivity in Eq. (3.8) becomes
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positive, the leakage energy will start increasing with further gate size reduction due

to longer cycle time. In order to achieve equal sensitivity in all stages, the difference

in the effective fanouts must increase in proportion to the energy of the gate, which

closely ties the circuit energy profile with optimal sizing [25]. For example, this

matches with the variable taper result of Ma and Franzon [18] for energy minimization

of a delay constrained inverter chain.

3.3.2 Sensitivity to Supply Voltage, Vdd

The sensitivity of total circuit energy to delay increase due to global supply reduction

is given by Eqs. (3.9), (3.10). Similar to the sizing approach, the design sized for the

minimum delay at maximal supply voltage offers the greatest potential for energy

reduction. This potential diminishes with the reduction in supply voltage since the

energy E = ESw + ELk decreases, cycle time D increases, and the Von/Vdd ratio

increases. Supply voltage reduction has a two-fold impact on the leakage energy in

Eq. (3.10): the leakage energy ELk increases because of increase in cycle time D, but

it also decreases because of the supply reduction on leakage power. The resulting

tendency is a decrease in the leakage energy with supply reduction, which results in

negative sensitivity of the leakage energy to delay.

In the sub-threshold regime, however, leakage energy will start to increase with

further supply voltage reduction. At some point the effect of supply reduction on

leakage power saturates, while the delay increases rapidly. This results in an increase
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in the leakage energy. Since the switching energy also saturates with the saturation

of voltage, a minimum energy point exists in the sub-threshold regime [31].

∂ESw/∂Vdd

∂D/∂Vdd
= − 2ESw · (1 − Von/Vdd)

D · (αd − 1 + Von/Vdd)
(3.9)

∂ELk/∂Vdd

∂D/∂Vdd
= − ELk

D
·
(

(1 − Von/Vdd) · (1 + γ · Vdd/V0)

αd − 1 + Von/Vdd
− 1

)
(3.10)

In dual-supply voltage optimization, the same formula holds, where ESw, ELk, and

D represent the total switching energy, the total leakage energy, and the delay of the

stages under the reduced supply voltage, respectively.

3.3.3 Sensitivity to Threshold Voltage, Vth

The sensitivity of energy to delay due to the change in threshold voltage is given by

Eq. (3.11). In the proposed energy model, switching energy is not affected by the

change in threshold voltage. The energy-delay sensitivity decays exponentially with

increasing ∆Vth because ELk is an exponential function of ∆Vth, as in Eq. (3.4).

∂ELk/∂(∆Vth)

∂D/∂(∆Vth)
= −ELk

D
·
(

Vdd − Von − ∆Vth

αd · V0
− 1

)
(3.11)

The exponential dependence of the leakage energy on ∆Vth limits the optimization

range. Lowering ∆Vth while maintaining circuit speed for designs with very low

leakage allows for a reduced Vdd and therefore reduced switching energy. The total



CHAPTER 3. CIRCUIT OPTIMIZATION 32

energy is minimized when the leakage and switching components are comparable [32].

3.4 Optimization Examples

In re-examining circuit examples representing common topologies, it can be seen that

they differ in the amount of off-path loading and path reconvergence. By analyzing

how these parameters affect a circuit energy profile, general principles in energy re-

duction relating to logic blocks can be better defined. This is illustrated using an

inverter chain, a memory decoder, and an adder as examples.

3.4.1 Inverter Chain

Inverter chain is the example of a single path topology without branching. At the

reference point, energy profile grows geometrically toward the output.

Gate Size Optimization

The use of gate sizing to minimize the energy of a fixed length inverter chain is shown

in Fig. 3.2. Initially, when the circuit is sized for minimum delay, all stages have the

same delay. Due to the geometric progression in size, most of the energy is dissipated

in the last few stages, with the largest energy stored in the final load. Starting from

the minimal delay point where all of the sensitivities are infinite, the gate sizes along

the chain are adjusted so that all of the sensitivities decrease equally. This, in turn,

leads to an increase in effective fanout toward the output where most of the energy
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Figure 3.2: Delay profile in an inverter chain after sizing optimization: a) fixed, b)
variable number of stages.

is consumed, as shown in Eq. (3.7). Therefore, the biggest energy savings for a fixed

delay increase are achieved by downsizing the largest gates in the chain first. The

optimal size of stage i is derived in Eq. (3.12). The expression is similar to that in

[18] and directly follows from Eq. (3.7).

Wi =
W ref

i√
1 + eci−1

SW ·τref

(3.12)

In the above formula, W ref
i is the size of stage i that results in the minimum delay

of the chain [8]. In an energy-efficient design, the sizing sensitivity of all stages SW

is equal and also a function of the delay constraint.

If the number of stages can be varied, the delay constraint may be met with a

fewer number of stages leading to a greater energy reduction. Intuitively, as the final

stage is downsized to gain the biggest energy savings for a given delay increase, the
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size and number of the remaining stages adjust to meet the delay constraint, Fig.

3.2(b) [25]. It is important to realize that, due to geometric progression in size in an

inverter chain, most of the energy is consumed in driving the fixed final load, and the

maximum energy saving from sizing is limited to about 30%.

Supply Voltage Optimization

Unlike sizing, scaling the supply directly affects the energy needed to charge the final

load capacitance, and therefore can have a larger effect on the total energy. For

illustration, supply optimization on a per-stage basis in the inverter chain is shown.

The assumption is that the supply voltage can only decrease from the input toward

the output to avoid level conversion inside the block. In the nominal case, in which

the delay of each stage is equal, the supply sensitivity of each stage depends only

on the energy of that stage, as indicated in Eq. (3.9). As in sizing, supply voltage

optimization adds incremental delays, first to the stages with the highest energy

consumption (stages toward the end of the chain), while increasing the effective fanout

of these stages by lowering their supply voltage. Figure 3.3 shows the optimized per-

stage supply and the resulting effective fanout.

Compared to sizing, the supply optimization requires less change in the effective

fanout for the same energy reduction. In practical designs, the effective fanout of

the gate is bounded by the signal slope constraints to around 10-15. This is also

considered in the optimization.
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Figure 3.3: Per-stage supply optimization of an inverter chain with variable number
of stages: a) optimal stage supply, b) delay profile.

Comparison: Gate Size vs. Supply Voltage Optimization

Figure 3.4 is the result of various optimizations performed on the inverter chain:

sizing (cW ), global Vdd (gVdd), two discrete supplies (2Vdd), and per-stage Vdd (cVdd).

These graphs show energy reduction and sensitivity versus delay increment. The key

concept to realize is that the parameter with the largest sensitivity has the largest

potential for energy reduction. For example, at small delay increments sizing has

the largest sensitivity, so it offers the largest energy reduction, but the potential for

energy reduction from sizing quickly falls off. At large delay increments, it pays to

scale the supply voltage of the entire circuit, achieving the sensitivity equal to that

of sizing at around 25% excess delay.

The results in Fig. 3.4(a) also suggest that dual-Vdd closely approximates the

optimal per-stage supply reduction, meaning that there is almost no additional benefit

of having more than two discrete supplies for improving energy in this topology.
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Figure 3.4: Sizing and supply optimization of an inverter chain: a) energy reduction
vs. delay increment, b) energy-delay sensitivity.

An inverter chain has a particularly simple energy distribution, one which increases

geometrically until the final stage. This type of profile drives the optimization over

sizing and supply to focus on the final stages first. However, most practical circuits

have a more complex energy profile. An example of such a circuit is a memory

decoder.

3.4.2 Memory Decoder

The decoder shares some characteristics with a simple inverter chain; the total capac-

itance at each stage grows geometrically, but the number of active paths decreases

geometrically, as well. As a result of this, the peak of the energy distribution is often

in the middle of the structure. For example, the 256 wordline SRAM decoder shown

in Fig. 3.5 has the energy peak at the output of the predecoder because of the path

properties shown in Table 3.1.
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Table 3.1: Activity map of 8/256 wordline SRAM decoder.

Decoder predriver predecoder word driver
gates Inv Nand-Inv Nand-Inv Nand-Inv-Buf

Active 16 4 2 1
Total 16 16 32 256

Figure 3.5 shows the critical path of this SRAM decoder. The multiplication

factor m denotes the number of active gates at each stage. Branching occurs at the

input of each NAND gate and the number of active gates per stage decreases in a

geometric fashion to select only one wordline at the output. In addition to a large

branching factor at the output of the predecoder, there is an extra capacitance CW

from the wire spanning word drivers. The resulting energy peak, on a per-stage basis,

is thus at the output of the predecoder.
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Gate Size Optimization

Gate size optimization effectively reduces the internal energy peaks through direct

gate sizing or buffer insertion, as shown in Fig. 3.6. The initial sizing for minimum

delay does not require an extra buffer at the output of the decoder, thus the total

number of stages is seven. Inserting a buffer stage at the output reduces the effective

load presented by the 256 decoder/word driver cells. Alternatively, optimization by

direct gate sizing minimizes the size of the word driver input and produces the same

effect, as shown in Fig. 3.6(b). This essentially divides the sizing problem into two

sub-problems: a) sizing of the predecoder logic to drive the minimum word driver

input, and b) sizing of the word driver to drive the wordline. This is readily seen

from the per-stage sensitivity expression with branching:

∂ESw/∂wi

∂D/∂wi
= − bi−1 · eci

τref · (heff,i − heff,i−1)
(3.13)

in which bi−1 is the branching factor of stage i − 1. Downsizing the gates driven by

the stage with the highest branching factor yields the biggest energy savings for the

given delay cost. In the decoder example this situation occurs at the output of the

predecoder, as shown in Fig. 3.6. While the peak of switching energy is inside the

block, the peak of leakage energy occurs at the output, due to the activity profile of

the decoder. This is illustrated in Fig. 3.7, where the energy profile in a min-delay

sized decoder is shown for cases with seven and nine stages. Output gates are the
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largest and the majority of the gates are inactive, resulting in the largest leakage at

the output. Although inserting a buffer stage reduces the size of the predecoder, the

leakage energy of the word driver increases relative to the switching energy as shown

in Fig. 3.7, because only one output buffer is active at a time.

Supply Voltage Optimization

The supply optimization is less effective in designs where the peak of energy con-

sumption occurs inside the block. Because of the assumption that the supply voltage

can only decrease from input to output, the delay of all stages after the peak needs to

increase in order for the supply to affect the energy peak. This reduces the marginal

return, as shown in Fig. 3.6(b). Sizing optimization has more marginal return than

discrete supply optimization, because sizing can selectively reduce dominant energy

peaks inside the block at the expense of increased delay in stages immediately after

the energy peak. On the contrary, the supply optimization starts from the output of

the block and works backwards.

3.4.3 Tree Adder

More complex designs may have reconvergent fanouts and multiple active outputs

generated by paths with varying logic depths. The circuit energy profile is crucial to

choose the tuning variable that is most effective in reducing the total energy of the

circuit, as illustrated on a 64-bit Kogge-Stone carry-lookahead tree adder [33]. For
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Figure 3.8: Schematic of a 16-bit Kogge-Stone tree adder.

brevity, Fig. 3.8 shows a 16-bit tree as an example. Various symbols in the figure

correspond to different logic operations [34], as indicated in the figure. Dot operators

compute propagate and generate signals in a parallel-prefix tree. Significant features

of this adder topology include reconvergent fanouts inside propagate-generate blocks,

long wires, and multiple active outputs.

The initial sizing of the reference adder attempts to make all the paths in the

adder equal to the critical path for a fair comparison. Each gate in the adder is

allocated to a bit slice, which is the natural partitioning for tree adders. Figure 3.9

shows the resulting energy map for minimum delay, as well as the case when a 10%
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Figure 3.9: Energy distribution in a 64-b adder: a) reference design, b) design with
10% additional delay after optimal sizing, c) design with 10% additional delay, after
dual-Vdd optimization. Each sum output is loaded with CL = 32, input data activity
is 10%.
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delay increase is allowed. In this type of adder, the switching activity of propagate

logic diminishes rapidly with the number of stages, and most of the switching energy

is consumed by the generate logic in the later stages. The internal energy peak in

Fig. 3.9(a) occurs due to the large activity of the propagate logic that is comparable

to that of generate logic close to the input of the adder, and also due to the large

load by the gates which drive long wires in the final stages of the adder.

Comparison: Gate Size vs. Supply Voltage Optimization

The adder energy map of Fig. 3.9(b) shows that the gate size optimization is very

effective in circuit topologies in which energy peaks occur inside the block. This

statement holds as long as gate sizes do not reach their limits, which happens for

small incremental delays, up to about 20%. For a 10% excess delay, a 55% decrease

in energy is possible using transistor sizing under V max
dd , while only 27% is saved by

using two supplies without resizing, as shown in Fig. 3.9(c). Reducing the supply

over the whole block yields even lower energy reduction at only 17%. Using multiple

supplies is therefore less effective than sizing in designs where the peak of energy

consumption occurs inside the block. In order for the supply optimization to affect

the energy peak, the delay of all stages following the peak needs to increase, thus

reducing the marginal return. On the other hand, sizing can selectively target energy

peaks, by focusing on downsizing of the selected internal gates first, yielding higher

energy returns than the discrete supply optimization.
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Figure 3.10: Energy reduction due to W , Vdd and Vth in inverter chain, 8/256 memory
decoder, and 64-bit adder. Only cases with min and max energy reduction are shown.

3.4.4 Takeaway Points

The analysis of energy reduction potentials in the three topologically different circuit

examples reveals some general conclusions. Plot of energy reduction in Fig. 3.10 shows

regions of the potential energy reduction for an inverter chain, memory decoder, and

an adder due to W , Vdd, and ∆Vth. The results provides some insight into which

parameters are more effective in different regions of delay.

• Sizing optimization is the most effective at small incremental delays. Sensitivity

to sizing is infinite at the reference point, but the benefits of sizing get quickly

utilized at about 20% excess delay. This can be observed from Fig. 3.11 which
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Figure 3.11: Sensitivity to Vdd, Vth, and W in the adder example. V max
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th are
limits on Vdd and Vth.

plots the energy-delay sensitivity to tuning variables in the adder example.

• At larger delays, sensitivity to sizing diminishes and supply voltage becomes

more effective for energy savings.

• The threshold voltage primarily affects leakage energy which is significant in

designs with lots of inactive gates, such as memory decoders [26]. In fact, V ref
th

is too high in most circuits, which could be exploited advantageously to reduce

Vth to speed up the circuit even beyond the reference delay. This in turn creates

the opportunity for other variables such as Vdd or W to exploit the timing slack

for overall energy reduction.
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• The sensitivity gap between variables can be exploited to effectively perform

multi-variable optimization, leading to the most energy-efficient solution.

3.4.5 Multi-Variable Optimization

The highest energy-efficiency is achieved by balancing energy reduction potentials

of all tuning variables, otherwise one would tune the variable with low energy cost

rather than the variable with high energy cost.

The simultaneous use of gate size, supply and threshold voltage is investigated

for the adder example. Figure 3.12 shows the optimal energy-delay trade-off curve

obtained by jointly optimizing gate size, supply and threshold voltage. Energy and

delay are normalized to the reference design (Dref , Eref). As seen in the plot, there is

still significant room for improvement for the reference design, because the sensitivities

differ at that point. In the reference design, the sizing sensitivity is infinite, the supply

sensitivity is fifty percent higher, and the threshold sensitivity is five times smaller

than the sensitivity at the optimal point (Dref , Emin), which is used as the baseline

case in Fig. 3.12.

After balancing the sensitivities by downsizing the gates and decreasing supply and

threshold, about 65% of energy is saved without any delay penalty. This is illustrated

in Fig. 3.12, where the reference design (Dref , Eref) moves down on the y-axis to

the optimal design point (Dref , Emin) on the energy-efficient curve. Alternatively,

speedup of about 25% can be achieved while maintaining the same level of energy.
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Although (Dmin, Eref) is still on the energy-efficient curve, the data in Fig. 3.12 shows

that the sensitivities are not the same in this case, because Vdd reached its upper limit,

V max
dd , resulting in a constrained optimum.

Typically, only a subset of tuning variables is selected for optimization. A general

heuristic for the overall design optimization is as follows: 1) choose two variables

with extreme sensitivities (i.e. variable with the lowest and variable with the highest

sensitivity) and balance sensitivity to these two variables, 2) repeat the procedure

until all variables are balanced. In the adder case, for delays close to Dref , for

example, sizing and threshold voltage should be balanced first since there is the
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largest gap between the sizing and threshold sensitivities around the nominal delay

point, as illustrated in Fig. 3.11. This way, the designer can obtain nearly optimal

energy-delay trade-off.

Although energy savings at the circuit-level are quite significant, the performance

range of effective circuit-level optimization is very narrow. The data in Fig. 3.12 shows

that circuit optimization is really effective only in the region of about ±30 percent

around the reference delay, Dref . Outside of this region, optimization becomes costly

either in terms of delay or energy, and a more efficient variable must to be introduced

at another level in the design hierarchy. This naturally expands the optimization to

the micro-architectural level.
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Chapter 4

Micro-Architectural Optimization

Energy savings of about 65% at the circuit level in the adder example are possible

without any delay penalty by simply choosing appropriate values of supply, thresh-

old, and circuit size. However, individual circuit examples may be misleading. For

example, if the energy of the adder, or some other functional-unit block, is a much

smaller fraction of the total processor energy than that of registers and clocking, then

it might be more beneficial to lower the power of the registers (making the latches

slower) and increase the power of the adder (making the adder faster).

This chapter is focused on micro-architectural optimization demonstrating that

the scope of energy-efficient optimization can be extended by the choice of circuit

topology, the level of parallelism and/or time-multiplexing. Since parallel and time-

multiplexed solutions significantly affect the area of their respective designs, the over-

all design cost is minimized when optimal energy-area trade-off is achieved.
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4.1 Choosing Optimal Circuit Topology

The optimization of a pipeline that jointly optimizes registers and logic is demon-

strated using a modular approach. When cascading heterogeneous circuit blocks,

such as registers and logic, the total available delay has to be optimally divided

among the circuit blocks to achieve minimal energy. As an example, an ALU shown

in Fig. 4.1 is analyzed. The ALU consists of two registers that drive a 64-bit Kogge-

Stone tree adder. Each register can be built with simple cycle-latches (CL) [35] or

static master-slave latch-pairs (SMS) [36] shown in Fig. 4.2. The output load CL is

due to registers, wire, and bus capacitances; term b is the branching effort [37] at the

output of the registers.

The input capacitance of the adder Cin(Add) = 1 is fixed in order to reduce

search space in the global optimization. Without a fixed Cin constraint, the optimal

Cin(Add) would be larger than minimum only in a very narrow range around the

minimum delay. For delays farther away from the minimum delay, Cin(Add) would

quickly reach the lower limit due to a large branching at the output of the register.

Therefore, fixing Cin(Add) is a good heuristic which also allows for a modular design.
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The register and adder significantly differ in their switching activity, which results

in a lower initial ELk/ESw ratio in the registers than in the adder. The register

has higher average activity primarily due to a large activity factor of the clocked

nodes. For this reason, the optimal value of Vdd and Vth tends to be lower in the

registers than in the adder. In reality, however, designs are usually constrained to

one core-level Vdd and Vth, making them global variables. Hence extra effort will

be spent in sizing the register during the Vdd-Vth-W optimization of the ALU. The

goal is to equalize sensitivities to W for both the Reg and Add blocks to obtain the

most energy-efficient solution. With Vdd and Vth fixed, sizing the gates inside each of

the blocks simply compensates for the intrinsic mismatch in sensitivity due to logic

topology and activity.
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Combining the circuit-level results of the Reg and Add optimizations, the total

energy of the ALU is minimized subject to a cycle time constraint. Figure 4.3 shows

the energy of the ALU after optimal sizing under V max
dd and V ref

th . Dashed lines show

sub-optimal designs using an incorrect choice of the register topology. Energy-efficient

curves for registers comprised of CL or SMS latches combine to define a composite

energy-efficient curve for the Reg block, as shown in Fig. 4.3 by the solid line. For each

target ALU delay, points from the optimal Add and Reg curves (solid lines) are chosen

to minimize the overall energy of the ALU. The optimal solution confirms that high-

performance designs naturally use fast cycle-latches, while simple SMS latch-pairs are

suitable for low-energy designs.
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The scope of energy-efficient ALU optimization is extended through the selection

of the optimal register topology. This is best illustrated through observation of the

energy-delay sensitivity in the register and in the adder. The goal of equalizing

sensitivities during sizing optimization at the circuit level applies here as well. Thus,

the sensitivity of the adder block has to be the same as the sensitivity of the register.

Because of the fixed interface between the blocks, the sensitivity of each block simply

reduces to the ratio:

Sblock(W ) =
∆Eblock(W )

∆Dblock(W )
(4.1)

where the change in energy ∆Eblock and the change in delay ∆Dblock are both functions

of the size W . For ALU delays greater than 13FO4 inverter delays, the solution with

an SMS-based register becomes more energy-efficient because the benefits from sizing

of the CL-based register are utilized. Timing slack created by a faster adder can be

exploited in the optimization of the register. This leads to an overall energy reduction

of the ALU due to higher register sensitivity to sizing.

The process described above is illustrated in Fig. 4.4(a), which plots energy of

the adder and register when they are combined within an ALU. The design is opti-

mal, because the sensitivities of the adder, the register, and the ALU are equal, as

illustrated in Fig. 4.4(b). Higher energy-efficiency of the ALU due to a change in

register topology means higher sensitivity around the point where the change in reg-

ister topology occurs (the “twiddle” in the graph), extending the performance range

of energy-efficient optimization. Circuit topology and intrinsic node activity have a
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large effect on the optimization result. At the optimum trade-off point, high-activity

gates with large numbers of transistors per stage, such as registers, are downsized,

while the slack is consumed by upsized and lower-activity units, such as adders. This

agrees with the result from [30], which states that the hardware intensity of the regis-

ter should be smaller than that of the adder, i.e. the percentage energy per percentage

delay in the register is smaller than that in the adder. Therefore, the operating point

of the register is pushed out toward longer delays.

4.1.1 Combinational Logic

The discussion so far assumed adder realization using static CMOS gates with con-

tinuous sizes. Synthesized designs using discrete standard-cells typically result in

about 2× worse performance. This still works well for designs with moderate delay

requirements where energy consumption has to be low. Fastest adders are built using

dynamic gates [38], resulting in another factor of 2× better delay than a full-custom

static CMOS, but consume more energy.

Figure 4.5 shows the optimal energy-delay trade-off for several 64-bit adder imple-

mentations. The optimal trade-off curves are obtained through sizing optimization

[39] of representative carry look-ahead (CLA) topologies. Solid lines represent actual

adder points, while the dashed lines represent just additional available slack. In be-

tween domino and static design styles is a compound domino. Rather than having a

simple inverter after a dynamic gate, as in domino, more complex static gates such
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as and-or-inverts are inserted in compound domino. These gates actually perform a

radix-2 carry merge operation. Although fairly fast, they are also quite power-hungry.

Adders implemented with domino gates consume more energy than static counter-

parts and are typically used for performance critical units, such as microprocessor

ALU cores. Detailed analysis of energy-delay trade-offs in CLA adders can be found

in [39], [40]. Zlatanovici et al [41] demonstrated that the fastest 64-bit adder topology

is a radix-4, sparseness-2 CLA tree based on Ling’s equations [42] achieving a 7.5FO4

delay in a 90nm CMOS process.

This work focuses on ASIC realizations of wireless communication algorithms, so

the implementations are based on standard-cell static CMOS gates, which are suitable

for synthesis environment and also for aggressive supply voltage scaling [43].
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4.1.2 Low-Swing Clocking

Due to intrinsically higher switching activity of the clock nodes, it is attractive to

distribute clock signal with reduced swing. The questions are how much performance

degradation this incurs and what are the optimal topologies of clocked storage ele-

ments suitable for reduced swing clocking.

The analysis considers flip-flops, logic, and the clock distribution network. The

preferred flip-flop topologies for low-swing clocking (low-VClk) are different from those

normally used in a full-swing (high-VClk) design. Clock buffers are redesigned to ac-

commodate reduced drive current under low-VClk. In order to maintain performance,

logic and flip-flops must absorb the increase in clock skew due to low-VClk.

Low-swing clocking cannot be implemented by simply scaling down the supply

voltage of the clock subsystem. To maintain the cycle time and overall performance

of a system, the clocked storage elements, logic blocks, and clock distribution network

must be optimized. Extra timing overhead, namely the delay increase in flip-flops

∆tFF and the clock skew increase in the clock distribution network ∆tSkew has to be

distributed among clock tree, flip-flops, and logic blocks, Fig. 4.6, in order to keep

the performance equal to that of the traditional full-swing clock design. This section

elaborates design considerations when making all these optimizations and determines

a design point at which low-swing clocking yields the largest energy returns without

performance loss. Results are based on simulation data of a simple 64-bit ALU in a

130nm dual-VT CMOS technology.
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flip-flop delay, ∆tFF , and clock skew, ∆tSkew.

A clock voltage of 0.7Vdd is used, which is a commonly used ratio resulting in a

good compromise between power reduction and increase in delay [44]. The analysis

can be extended to the optimization of VClk as well, but this is rather application-

dependent. A fixed VClk = 0.7Vdd is assumed to illustrate the general energy-delay

trade-offs involved in the design of low-VClk systems. Flip-flops suitable for low-swing

clocking are compared in terms of performance and energy consumption, relative to

their high-VClk counterparts. Then the impact of low-swing clocking on the 64-bit

ALU example is analyzed, along with the effects of low-VClk on the clock distribution

network. Finally, the overall energy reduction of the low-VClk design is estimated, for

the case where performance equals that of the reference high-VClk design.

Flip-Flops with Low-Swing Clock

Standard flip-flops for traditional full-swing clocking cannot be used with a low-VClk,

since any clocked PMOS transistor will not fully turn off and cause static current

consumption and reduced noise robustness. To combat this problem, a separate well-

bias may be used for PMOS transistors to reduce static currents [45], but this does
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Figure 4.7: Flip-flops for non-critical paths: (a) high-VClk, static master-slave latch-
pair (SMS), (b) low-VClk, NMOS-only clocked SMS (N-SMS).

not fully eliminate the leakage of the PMOS devices. In order to eliminate the PMOS

leakage, low-VClk is applied to NMOS transistors only. Therefore, flip-flops with

NMOS-only clocked transistors are analyzed. These flip-flops are derived either from

their high-VClk counterparts or constructed using NMOS-only circuits. Generally, two

types of flip-flops are needed: one for performance non-critical paths and another for

performance critical paths.

Non-critical paths: Low-power master-slave (MS) latch-pairs are used. Low-VClk

NMOS-only clocked static MS design (N-SMS) in Fig. 4.7(b) is obtained from the

standard high-VClk SMS of Fig. 4.7(a) by simply removing the clocked PMOS tran-

sistors and by gating only the pull-down side in the feedback keepers. In N-SMS,

full-swing at state nodes SM and SS is provided only after the feedback keepers are

enabled. Thus, some additional performance degradation is expected.
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Critical paths: High-speed explicitly-pulsed latches are used. The N-CL shown in

Fig. 4.8(b1) is an NMOS-only clocked cycle-latch derived from the full transmission

gate-based cycle-latch (CL) shown in Fig. 4.8(a), [35]. The push-pull NMOS-only

clocked cycle-latch (PPCL) in Fig. 4.8(b2) is constructed from the N-CL by adding

N1 and N2 for faster pull-up of state node S and also for improved robustness to

clock noise. The weak pull-up performance of the NMOS pass-gate when D = 1 is

improved by differentially discharging the opposite side of the keeper through the

pull-down path N1−N2. Additionally, the gate signals on N1 and N2 are ordered in a

way that allows time-borrowing. The pulsed structure has an inherent negative setup

time, meaning that the clock pulse Cp can arrive before the data D, so Cp “high”

discharges node d prior to data arrival, further improving the setup time and delay.
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Straight derivation of low-VClk flip-flops from their high-VClk counterparts limits

design choices. Flip-flops rarely used with high-VClk due to low-performance or high-

energy should also be considered. An example of such a circuit is an NMOS-only

clocked explicitly pulsed flip-flop (PFF) in Fig. 4.9. The idea is to use semi-dynamic or

dynamic gates for restoration of logic “1” when low-swing signals drive the pull-down

network, [46]. The low-swing clock pulse Cp drives the gates of NMOS transistors

and restores nodes X and S to a full-swing.

All flip-flops are gate-size optimized using the framework in [35], which minimizes

energy subject to a delay constraint. In each circuit, the output load is fixed at 20fF

and the input capacitance restricted to 5fF or less. The simulation results are shown

in Figs. 4.10-4.12, where D-Q delay is the total data-to-output delay normalized to

a FO4 inverter. Energy-delay comparisons of FF designs with high-VClk (Fig. 4.10)

and low-VClk (Fig. 4.11) reveal that CL offers the best performance at high-VClk [2],
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Figure 4.12: Low-VClk flip-flops cannot achieve the top speed of high-VClk flip-flops,
but have lower energy at less aggressive delays.

while PFF or PPCL are the preferred designs for low-swing clocking. Note that PFF

design is sub-optimal with high-VClk.

Low-VClk flip-flops (PFF & PPCL) cannot achieve the top speed of the high-VClk

flip-flops (CL), but offer lower energy at delays greater than 2FO4, as illustrated

in Fig. 4.12. Any energy reduction in the flip-flop itself is a side benefit; the main

energy savings in low-VClk comes from energy reduction in the clock distribution

network. Detailed analysis of flip-flop energy-delay characteristics can be found in

[47], including flip-flop derivations and classification.

After balancing the energy-delay sensitivity in a data-path logic consisting of a

logic block surrounded by pipeline registers, the next step is to investigate energy-

performance characteristics using techniques of parallelism and pipelining.
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Figure 4.13: Parallelism and pipelining relax timing constraints on logic blocks.

4.2 Parallelism vs. Pipelining

This section revisits the original work of Chandrakasan et al. [19] that evaluated the

energy efficiency of a parallel and a pipelined design. It has been shown that both

parallelism and pipelining combined with voltage scaling can improve the energy effi-

ciency while maintaining the throughput. Previous work is extended by introducing

the threshold voltage as an additional variable in the optimization. The results are

evaluated based on the optimal energy-delay trade-off curve for the pipeline logic.

Schematics of the reference, parallel, and pipelined circuits are shown in Fig. 4.13.

Parallelism and pipelining are employed to relax timing constraints on the underlying

blocks A and B as shown with the energy-delay trade-off in Fig. 4.13. These tech-
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niques are particularly useful when the energy of the reference design becomes too

costly. In pipelining, an extra register is inserted between blocks A and B, effectively

doubling the available computation time for each of the blocks. In a parallel design,

the area is doubled by operating the two blocks in parallel. However, the available

computation time is also doubled for each block since every other input operand is

evaluated in an interleaved fashion.

The nominal design is an add-compare unit which uses the adder described in Sec.

3.4.3 for both the adder (block A) and the comparator (block B). In this example, the

SMS latch-pairs of Fig. 4.2(b) are used. The nominal design is first optimized through

gate sizing to achieve minimum delay under V max
dd and V ref

th . Using the throughput of

this design as a constraint and energy-delay trade-offs of the adder and comparator

blocks from the inner layer, the energy needed for the nominal design and its parallel

or pipelined implementation can be estimated.

For all designs in Fig. 4.13, the optimal value of the supply and threshold voltage

that results in minimum energy for a given throughput constraint is found, along

with the corresponding ELk/ESw ratio. The minimal energy is found by Vdd-Vth

optimization, in which ∆Vth is swept from 0 to −200mV in steps of 5mV. Each time

Vth is modified, Vdd is adjusted to achieve the target throughput with minimal energy,

using the multi-variable sensitivity information from the lower-level blocks. The goal

of this sweep is to find the optimal point (V opt
dd , V opt

th ) for each micro-architecture and

to illustrate the trend around the optimal point, as shown in Fig. 4.14.
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Figure 4.14: Energy-per-operation as a function of the leakage-to-switching energy
ratio in nominal, parallel, and pipeline designs. All designs operate at the throughput
of the nominal design sized for minimum delay under V max

dd and V ref
th .

Energy-per-operation in all three designs is compared to the nominal case which

operates at V max
dd and V ref

th . For each design, the optimal (V opt
dd , V opt

th ) point is reached

when the supply and threshold voltage sensitivities of the underlying blocks are equal.

4.2.1 Optimal Leakage and Switching Energy

It has been shown that parallelism is more energy-efficient than pipelining when the

leakage energy is about an order of magnitude smaller than the switching energy

[19]. However, as devices become leakier, the larger area of parallel design causes the

balance between the switching and the leakage energy to occur at a higher supply

voltage than in a pipelined design. This is due to lower effective activity of the parallel
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design. Equivalently, parallelism decreases the amount of time that a device spends on

computations, thereby increasing the ratio of wasted (leakage) to useful (switching)

energy. Hence, a parallel implementation achieves smaller energy savings though the

difference is very small. A parallel implementation may still be preferable since the

energy saving in the pipelined design depends on determining the ideal locations for

pipeline latches. In many systems, these points are hard to find.

Observe that the energy-per-operation as a function of the leakage-to-switching

energy ratio has a very shallow minimum, as shown in Fig. 4.14. This follows from the

logarithmic dependence of the ELk/ESw ratio on the logic depth and activity [26]. In

this example, the optimal ELk/ESw ratio is around 40% for all thee implementations,

roughly corresponding to that of its main sub-block, the adder. When considering

extreme circuit examples with significantly different switching activities, such as in-

verter chains and memory decoders [26], it turns out that the optimal ELk/ESw ratio

of these circuits ranges from 0.2 to 0.8. Since the minimums of the energy curves are

very shallow in the range of leakage-to-switching ratio from 0.1 to 1 (Fig. 4.14), the

conclusion is that the total energy is minimized at the point where the leakage energy

is about half of the active energy.

4.2.2 Optimal Level of Parallelism

Parallelism is most efficient when the target delay is lower than the minimum achiev-

able delay of the underlying blocks. Parallelism of level P implicitly relaxes the delay
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design initially sized for minimum delay at V max

dd , V ref
th .

of the underlying logic about P times (minus the flip-flop delay). Graph in Fig. 4.15

shows the energy-performance space for designs exhibiting parallelism from P = 2 to

P = 5, together with the nominal or reference design, all normalized to the reference

design point as defined in Chapter 3. The results are obtained from joint supply-

threshold-size optimization, with the external load of CL = 32. Delay and energy

overhead due to the additional multiplexer at the output is included in the optimiza-

tion. The data shows that a parallel architecture provides an increase in performance

at a very small marginal cost in energy. As a result, addition of more parallel units

possibly improves the performance/throughput beyond the maximal throughput of

the nominal design. For instance, the parallel architecture P = 5 provides about
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a 3× performance improvement over the nominal design, compared at unit energy,

Fig. 4.15. Parallelism is also an option for energy reduction, which is a well known

result [19], [48]. The largest energy savings due to parallelism are achieved when the

sensitivity to circuit parameters of the reference design become very large.

Minimum EDP is the point at which any given architecture has equal marginal

cost in energy and delay, allowing for energy-efficient optimization around that point.

At the minimum EDP point in Fig. 4.15, the performance of the design increases

with increasing levels of parallelism. This indicates that added parallelism is suitable

for boosting performance. Additionally, allowing more levels of parallelism gives a

wider range of performance over which energy may be optimized. Relative to the

performance level corresponding to the minimum EDP for an architecture, more

parallel units are needed to support higher performance. For a reduced performance,

the level of parallelism should decrease as well.

While parallelism is a very efficient technique for improving the performance, the

area of the parallel design is, to a first order, in linear proportion with the level of

parallelism P. Therefore, one must always keep in mind the energy-area trade-off of

the architectures which employ parallelism.

4.2.3 Optimal Vdd and Vth

This section presents a procedure for finding the optimal supply and threshold voltage

for a given architecture. The procedure is based on tuning the parameters Vdd and
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Vth until the desired ratio of leakage and switching power is achieved, for a given

performance level.

The fact that the optimal ELk/ESw is around 0.5 (Fig. 4.14) provides a way to

quickly estimate the optimal Vdd and Vth in a function block. Using the dependence

of critical-path delay on Vdd and Vth and the dependence of ELk/ESw ratio on Vdd and

Vth, the result in Equations (4.2), (4.3), (4.4) is obtained.

∆Vth =V0 · ln
(

(ELk/ESw)init

(ELk/ESw)opt

· Dopt

Dinit

)
(4.2)

V opt
dd =

V init
on + ∆Vth + χ · αd−1

αd
· (V init

dd )1/αd

1 − χ
αd

· (V init
dd )(1/αd−1)

(4.3)

χ =
V init

dd − V init
on

(V init
dd )1/αd

· (Dinit/Dopt)
1/αd (4.4)

where indices init and opt indicate the initial and optimal design points, respectively.

The above analysis first changes ∆Vth to force the ELk/ESw to be about 0.5, and then

changes Vdd to achieve the desired performance.

Equation (4.2) finds the change in Vth by estimating the required change in leakage

current. It can be easily derived by noticing that the leakage current is equal to the

leakage energy divided by cycle time, assuming that the change in the switching

energy is small. Equations (4.2) and (4.3) follow the analysis in [23] and linearize the

alpha-power law equation by taking Taylor expansion about V init
dd . This expression

relates performance to Vdd and Vth to derive optimal Vdd needed to achieve the desired

performance Dopt under the new Vth.
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The optimal design point determined above is then used as an initial point for

subsequent iterations, approaching the optimal energy-delay trade-off point. Apply-

ing the same procedure to other design points, the full energy-delay trade-off curve

for the design can be obtained. As an example, calculation of optimal Vdd and ∆Vth

for the nominal and P = 4 topologies across a wide performance range is performed,

as shown in Fig. 4.16. The plots are obtained using Taylor expansion about 1V in a

0.13µm technology. The values obtained from analytical models and by optimization

closely match, thus verifying the analysis. The deviation from ideal ∆Vth is because

the analysis assumes a negligible change in Vdd and also due to sub-optimal ELk/ESw

ratio at V max
dd . This analysis also provides insight about the tunable range of supply

and threshold voltages.

Among the circuit examples studied in Chapter 3, the memory decoder has ELk/ESw

ratio of 0.1 under V max
dd and V ref

th (Eref
Lk /Eref

Sw = 10%), which is the closest to the op-

timal ratio of 0.5. The optimal Vth in the decoder is therefore close to standard

V ref
th for the technology. In the adder with Eref

Lk /Eref
Sw = 1% and inverter chain with

Eref
Lk /Eref

Sw = 0.1%, V ref
th is about 200mV higher than the optimal Vth in these cir-

cuits, because of the lower ELk/ESw in their respective reference designs. These three

circuit examples span about three orders of magnitude in the leakage-to-switching

energy ratio under V max
dd and V ref

th and, as such, they can serve as good examples for

the Vdd and Vth tuning range for a particular technology.
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Figure 4.16: Plot of (a) change in threshold ∆Vth and (b) optimal supply voltage

V opt
dd /V ref

dd after performing energy-efficient Vdd-Vth −W optimization on nominal and

parallel-4 designs. Dot represents initial sizing for minimum delay at V max
dd , V ref

th .
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Figure 4.17: Time-multiplexing tightens timing constraints on logic block A.

4.3 Time-Multiplexing

Earlier discussion showed that parallelism, as illustrated in Fig. 4.13, can improve per-

formance or reduce energy at the expense of an increased area. Time-multiplexing,

as shown in Fig. 4.17, does the opposite; it reduces the area at the expense of an

increase in energy. Parallel-to-serial conversion is required at the input of logic block

A, which is shared among multiple incoming data streams. The energy increase is

primarily due to increased speed of processing element A that is required to main-

tain the throughput. As in parallelism, block A is assumed to be the 64-bit adder.

Therefore, reduction in area or energy cannot be the only goal in the optimization

since there is a trade-off between energy and area.
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4.4 Energy-Area Trade-Off

Both area and energy affect the overall cost of a design. Area is most commonly

related to the dollar cost of producing chip wafers, while energy is associated with

chip cooling or battery capacity in portable designs. Intuitively, the cost of a design

is minimized when an optimal trade-off between energy and area is reached. A design

cost function C(x) that considers both energy and area can be formulated as given

by Eq. (4.5).

minimize C(x) = E(x) + β · A(x)

subject to D(x) ≤ Dcon

(4.5)

The quantity x ∈ �n is an n-dimensional vector of tuning variables; E(x) and A(x)

are the total energy and area of the design, respectively. Parameter β is the weight-

factor that defines contribution of area in the design cost, and Dcon is the delay or

performance constraint. Some of the optimization variables do not affect area; for

example, the supply and threshold voltages affect only energy. Some other variables

such as parallelism or time-multiplexing affect both energy and area, with area impact

being much larger when these techniques are applied to large blocks.

Since time-multiplexing and parallelism/pipelining differ in area significantly, in-

vestigation of energy-area trade-offs under a fixed throughput requirement is needed.

Architectures with different levels of parallelism and time-multiplexing span a wide
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differ in energy and area. Numbers represent the area of respective architectures.

performance range while trading energy for area. For a fixed energy budget, par-

allelism improves performance at the expense of an increase in area, while time-

multiplexing is suitable for low-throughput while improving the area.

The basic energy-area trade-off is illustrated in Fig. 4.18 for a 64-bit ALU im-

plemented with varying degrees of time-multiplexing and parallelism. Each of the

performance targets can be achieved with several micro-architectural choices differ-

ing in energy and area. Assume that the maximum energy per operation max Eop is

indicated by the solid horizontal line. Under this energy constraint, a five-fold time-

multiplexed architecture meets the target cycle time Ttarget with minimal area, which

is roughly one-fifth the area of the reference architecture. If the energy limit is more
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th .

aggressive, as indicated by the dashed horizontal line, three-fold time-multiplexing

would have to be used to satisfy the new energy budget. The area required to main-

tain the target performance also increases from Aref/5 to Aref/3.

Optimal architecture selection depends on the available energy and area budget.

Figure 4.19 shows contours of constant performance in the energy-area space. The

results confirm that high-throughput designs generally require larger area than the

low-throughput designs since parallelism must be employed for speed improvement.

A larger energy budget therefore allows for a smaller circuit area, so the optimum is

found at the point where the overall chip cost given by Eq. (4.5) is minimized.

The results derived in this chapter for a simple data-path are fundamental and can

be extended to an arbitrary level of complexity. Next chapter takes the architectural
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concepts established here to study some basic signal processing operations in the

context of their energy-delay-area optimality.
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Chapter 5

Signal Processing Techniques

This chapter reviews some commonly used signal processing techniques applicable

to multi-dimensional algorithms. Techniques of data-stream interleaving and folding

are evaluated using the energy-delay trade-off in the pipeline logic, which leads to the

exploration of loop retiming. The use of interleaving and loop retiming is illustrated

for an iterative square rooting and division. These iterative algorithms are applicable

in adaptive multi-carrier wireless communications.

The practical realization of a signal processing technique is tightly coupled with

the energy-performance characteristics of the underlying circuits. This basic trade-

off explored in previous chapters is repeated in Fig. 5.1. In order to maintain good

energy-delay point (indicated with the dot), parallelism is used for higher throughput,

while time-multiplexing is used for lower throughput rates. The indicated energy-

delay point is good since marginal returns to energy and delay around that point are
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Figure 5.1: Energy-delay trade-off in digital circuits.

similar. Otherwise, energy or delay cost becomes high, as shown in Fig. 5.1.

The choice of micro-architecture is highly influenced by throughput, which requires

analysis of techniques that can span a large throughput range. The basic concepts of

parallelism and time-multiplexing from Chapter 4 enable this. In this chapter, data-

stream interleaving and folding are introduced to support more complex operations

with concurrent or time-serial execution, which may also involve feedback loops.

5.1 Data-Stream Interleaving

Data-stream interleaving is a technique that improves area efficiency. In essence it

is a way of time multiplexing the data. The analysis in this section is focused on a

specific case with feedback loops, which is a concept commonly found in recursive

computation. It is shown that interleaving of independent data streams reduces

area savings without significant increase in energy per operation, because interleaving
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essentially requires up-sampling together with deeper pipelining.

The case when the algorithm contains a recursion is analyzed as described with

the simple difference equation (c �= 0):

z(k) = x(k) + c · z(k − 1) (5.1)

that updates the output sample at time k as a sum of input sample at time k and

scaled version of the previous output sample z(k − 1).

The signal processing representation of Eq. (5.1) is shown in Fig. 5.2(a). The

latency of one symbol period is represented with an explicit register between the

output z(k) and the multiply block. The symbol rate is defined by clock frequency

fClk. This simple model abstracts away any extra latency in the add and multiply

blocks. From an implementation perspective, an N bit add operation is less complex

in terms of logic gates and area than an N ×N multiplication. Thus, to balance the

complexity of datapath logic blocks, the add and multiply operations require different

latencies.

A more realistic model of Eq. (5.1) captures the different latency of addition and

multiplication as shown in Fig. 5.2(b). The latency is described by adding a and m

registers to the output of the adder and the multiplier, respectively. Going around the

loop, the feedback signal y(k− 1) will have an increased latency of a + m. Increasing

the clock rate by a factor a + m maintains the same algorithmic latency. In order to
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Figure 5.2: Concept of data-stream interleaving. (feedback example)

fill the added pipeline with useful computation, multiple independent signal streams

can be interleaved onto the same hardware. If the number of independent signals N

is greater than a+m, then b = N −a−m additional pipeline registers are required to

maintain the latency. Interleaving effectively improves the area efficiency by sharing

data-path logic across independent streams of data. A practical use of interleaving

is in multi-carrier communications, where the independent narrow-band sub-carrier

streams can be time-interleaved.

By sharing logic blocks between pipeline registers, interleaving improves data-path

utilization and therefore increases area efficiency. Energy remains the same, to a first

order (neglecting the impact of registers, i.e. assuming long chains of logic), since

interleaving is equivalent to pipelining and up-sampling. Examining the energy-delay
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(E-D) line for data-path logic, Fig. 5.3, suggests that pipelining moves the operating

point down toward lower energy and longer delay, but up-sampling brings it back to

the original position in E-D space. The technique of interleaving is applicable for

concurrent computation. For time sequential ordering, the idea of folding is consid-

ered.

5.2 Folding

Folding is much like data-stream interleaving, except that not all data samples are

independent. To analyze this, assume serially ordered execution of the same operation

as shown in Fig. 5.4, where the first block in the chain takes independent data samples

y1(k). All other blocks down the chain take the result from previous block. Block

Alg performs some algorithmic operation with feedback loops.

Assume serially ordered execution of some algorithmic operation Alg as shown in
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Figure 5.4: Concept of folding: (a) time-serial computation, (b) operation folding.
Block Alg performs some algorithmic operation. (star indicates deeper pipelining)

Fig. 5.4(a). The first block in the chain takes independent data samples y1(k), all

other blocks take the result from the previous block. The concept of folding is shown

in Fig. 5.4(b), [49]. The input to Alg∗ is provided by a multiplexer, which selects

the primary input y1 or internal results y2, y3, y4. During the first quarter of the

symbol period, up-sampled and interleaved data y1 is used. The output of Alg∗ is

then folded over in time, back to its input, to compute y2, y3, and y4. Re-ordering of

incoming y1 samples is needed to align data at input in, as shown in the life-chart in

Fig. 5.4(b). Up-sampling the clock in block Alg is necessary to sustain the external

(y1) throughput rate.

If Alg is a simple feed-forward unit, no additional pipeline registers are needed. In

case Alg block has internal feedback loops, additional pipelining is necessary to store

the internal states. This raises the issue of optimally distributing pipeline registers

around loops to maximize throughput or scale voltage for power minimization.
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5.3 Loop Retiming

Loop retiming is a technique of distributing pipeline registers around loops [50]. The

goal is to assign the right amount of latency to functional blocks, and then distribute

the pipeline registers inside the blocks to position all internal datapath logic blocks

at the same point (shown in Fig. 5.1) in the energy-delay space. This guarantees top-

level optimality. As in the case of interleaving, additional balancing registers may be

needed to ensure equal loop latency in all recursive loops.

The approach to loop retiming is illustrated in Fig. 5.5 on the example of iterative

division. This is a simple example with two nested loops, but the concept can be

generalized to virtually arbitrary complexity. The analysis starts from a data-flow

graph (DFG) representation of a function, where a, m, u are the latencies of pre-

characterized adder, multiplier, and multiplexer blocks, respectively. This extends

the retiming algorithm from [51] that assumes equal latency in all arithmetic blocks.

Starting from the DFG representation in Fig. 5.5, the retiming procedure is carried

out as follows. For each loop, constraints are formulated as described in Eq. (5.2).
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I/O latency is also needed for hierarchical expansion.

loop L1: m + u + b1 = N

loop L2: 2m + a + u + b2 = N

I/O latency (div(1)): 2m + a + u

(5.2)

where b1 and b2 are the number of balancing registers needed to satisfy the loop latency

N . The next step is to solve for the latency parameters (m, a, u). Often times, system

of equations appears underconstrained, but this is not really true since the cycle time

is common for all the blocks. The cycle time, which is derived from a throughput

requirement, determines latency parameters (m, a, u) in various functional blocks as

shown in Fig. 7.5 in Chapter 7 for add and multiply operations. Finally, the right

amount of balancing latency is determined in each of the loops in order to meet the

loop latency constraints.

5.3.1 Hierarchical Loop Retiming

The retiming strategy above can be easily expanded to multiple layers of hierarchy.

Each block hierarchy is characterized with internal loop constraints as well as latency

from its primary inputs to its primary outputs. For example, I/O latency in Eq. (5.2)

indicates the latency of a divider block at level 1 of hierarchy, div(1). This procedure

is then hierarchically extended upward for the overall design optimization. At the
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top-level, loop constraints from all levels beneath are thus considered.

loop L
(2)
1 : div(1) + 2m + 4a + 2u + b1 = N

loop L
(2)
4 : 3m + 6a + u + b4 = N

loop L
(2)
5 : 6m + 11a + 2u + b5 = N + N

(5.3)

Equation (5.3) illustrates the retiming procedure at level 2 of hierarchy that uses the

latency of the divider from Eq. (5.2) from level 1 of hierarchy (div(1) term, loop L
(2)
1 ).

The hierarchical retiming approach corresponding to Eq. (5.3) is shown in Fig. 5.6

for iterative eigen-mode decomposition. A few loop constraints are detailed for this

example (L1, L4, L5) to illustrate the principle of hierarchical expansion. The use of

delayed iteration for loop L5 is presented in Section 5.4.

5.3.2 CPU Runtime Considerations

Retiming at the block level (e.g. adder or multiplier) can be done very efficiently

in terms of CPU runtime using commercial tools for chip synthesis. Retiming of

more complex feed-forward blocks is also fairly efficient, but the runtime required for

retiming of designs with feedback loops increases in a super-linear fashion with the

number of loops. For example, loop retiming of iterative sqrt and div takes about 15

minutes while eigen-mode decomposition block of Fig. 5.6, which is just 15 times more

complex in terms of area, took over 40 hours of CPU runtime on a 64-bit dual-opteron

machine with 4GB of memory.
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Figure 5.6: Data-flow graph model of an iterative eigen-mode decomposition algo-
rithm. Iterative division in Fig. 5.5 is used. (m, a, u indicate latency)

To improve computational efficiency, the top-level design is partitioned into simple

feed-forward blocks that can be efficiently retimed, and the results are incrementally

compiled at the top-level. The runtime using this approach is roughly proportional

to the number of different blocks. As an example, retiming of the eigen-mode de-

composition algorithm takes about 45 minutes1 with the proposed approach, which is

an order of magnitude reduction compared to the straightforward top-level retiming

method. The block-based approach is not only more computationally efficient, it also

provides insight into the partitioning of the overall design and better understanding

of the optimization results.

1Actual runtime is highly dependent on design constraints.
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5.4 Delayed Iteration

Another technique which can be used for power and area efficient implementation is

delayed iteration. The idea is to insert the extra sample period to the performance-

critical loops to relax timing constraints for pipeline logic.

This concept is illustrated by Eq. (5.3) for design in Fig. 5.6, where the performance-

critical loop L5 takes delayed sample. Loops L1, L2, L3, and L4 are performance non-

critical, but comprise majority of the design in terms of area and power. Ideally, all

loops should have the same loop latency and the same criticality from the perfor-

mance perspective. Forcing an aggressive constraint on the performance-critical loop

L5 results in a sub-optimal implementation since the non-critical loops operate too

fast and consume too much power. A delayed iteration can be considered in such

a case, if possible from the algorithmic standpoint. This way, pipeline stages are in

balance from the energy-delay standpoint. An ASIC implementation of this block is

described in Chapters 8 and 9.

5.5 Iterative Square Rooting and Division

Square rooting and division are operations common to many wireless communica-

tion algorithms [52]. For example, space-time decoding [53] such as V-BLAST [54],

QR decomposition [55] and the SVD-based algorithms [56], [57] often require vector

normalization, which is in essence a sequence of square root and division operations.
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Square root and division can be implemented in many different ways. Division

algorithms have been extensively studied in the literature, and a taxonomy based upon

hardware implementation is found in [58]. Square root algorithms were explored less

frequently, yet there is an array of existing implementation architectures such as those

using vectoring-mode CORDICs [59], iterative formulas, and look-up tables.

This section studies a particular case of adaptive algorithms with slowly-varying

input argument, inspired by requirements in signal processing for indoor wireless

channels. Among the algorithms for iterative square root and division, a method

based on Newton-Rhapson formulas [60] is selected for the analysis due to its favorable

convergence properties. Equations (5.4) and (5.5) describe inverse square root and

division, respectively, where N is the input operand, xs is the result of inverse square

root operation, and xd is the result of division operation.

1/sqrt(N): xs(k + 1) =
xs(k)

2
· (3 − N · xs(k)2

)
, xs(k) → 1√

N

∣∣∣∣∣
k→∞

(5.4)

1/N : xd(k + 1) = xd(k) · (2 − N · xd(k)) , xd(k) → 1

N

∣∣∣∣∣
k→∞

(5.5)

Algorithms in Eqs. (5.4) and (5.5) can be analyzed as discrete systems, which have

equilibrium points at 0, ±1/
√

N (1/sqrt) and 0, ±1/N (div). Using this result,

analysis of convergence properties and required initial conditions is presented.
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5.5.1 Error Dynamics

The analysis of error dynamics allows finding the number of iterations necessary to

achieve a given degree of accuracy as well as the choice of proper initial condition.

Both algorithms analyzed in this chapter converge quickly. This capability is desir-

able when dealing with large word-lengths since the number of bits resolved in each

iteration is related to the speed of convergence. The algorithms achieve a quadratic

convergence rate, which corresponds to two significant bits per iteration.

The convergence of the system described by Eqs. (5.4) and (5.5) can be studied

by looking at an equivalent system given by Eq. (5.6), where normalization of xs and

xd is done such that ys and yd converge to 1.

ys(k) =
√

N · xs(k), ys(k + 1) =
ys(k)

2
· (3 − ys(k)2

)
, ys(k) → 1


k→∞

yd(k) = N · xd(k), yd(k + 1) = yd(k) · (2 − yd(k)) , yd(k) → 1


k→∞

(5.6)

Figure 5.7 displays Eq. (5.6) graphically. Several regions define convergence of the

sqrt algorithm (left plot): a) for ys(k) <
√

3, the algorithm converges without sign

changes, b) for
√

3 < ys(k) <
√

5, the algorithm converges with possible sign changes,

and c) for ys(k) >
√

5, the algorithm diverges. Similarly, the solid line indicates

convergence while the dotted line corresponds to the divergent div algorithm (right

plot). Square markers label equilibrium points. The desired operating point is ys = 1.
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Figure 5.7: Convergence region of iterative square rooting and division. (solid line:
convergence, dashed line: converging stripes, dotted line: divergence)

From Equation (5.6), the error dynamics are derived as given by Eq. (5.7).

es(k + 1) = −1

2
· es(k)2 · (3 + es(k)) , where es(k) = ys(k) − 1

ed(k + 1) = −ed(k)2, where ed(k) = yd(k) − 1

(5.7)

The result shows quadratic convergence of both algorithms. Besides fast convergence,

getting to the solution point quickly also requires a good choice of initial condition.

5.5.2 Initial Condition

The algorithm has to be properly initialized first to guarantee convergence. Given an

initial condition, it is further interesting to find out how many iterations are required

to reach arbitrary level of accuracy. This section analyzes convergence properties of

sqrt and div algorithms in terms of required accuracy and number of iterations.
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Table 5.1: Convergence speed of iterative sqrt and div.

Target rel err (%) 0.1% 1% 5% 10%

e0 = 50%, # iter (s/d) 5 / 4 5 / 3 4 / 3 3 / 2
e0 = 25%, # iter (s/d) 3 / 3 3 / 2 2 / 2 2 / 1

For fast convergence, it is desirable to have time evolution with descending abso-

lute error. This condition can be formulated as in Eq. (5.8), where E(xk) is an error

term. The quadratic dependence is taken to ensure positive values of E(xk). The

condition for descending absolute error is then given by V (xk).

E(xk) = (xk − 1)2

V (xk) = E(xk+1) − E(xk) < 0, ∀k, k = 0, 1, 2, 3, ...

(5.8)

Solving the inequality from Eq. (5.8) with respect to initial condition x0 yields the

solution given by Eq. (5.9). In the general case, one can set V (x0) < a and find a set

S of feasible initial conditions, S = {x0 : V (x0) < a}.

Vs(x0) =
x0

4
· (x0 − 1)2 · (x0 + 1) · (x2

0 + x0 − 4)

Vd(x0) = x0 · (x0 − 1)2 · (x0 − 2)2

(5.9)

Figure 5.8 shows feasible initial conditions x0 that satisfy conditions in Eq. (5.9). In

the sqrt example the range of desirable x0 is more restrictive than the convergence

range, while in the div example it coincides with the convergence range.

The number of iterations required for convergence is a function of initial condition
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and error dynamics. Table 5.1 summarizes convergence properties for a 25% and 50%

initial error, for varying accuracy of the final answer. Even for very large initial error

of 50%, only five iterations are needed to achieve accuracy within 0.1%. The results

in Table 5.1 also suggest that the error quickly decreases in every iteration. So, if the

previous solution is taken as the initial condition for the next iteration, the answer

is obtained in just one iteration, assuming a slow-varying input. This concept is

illustrated on design examples in Chapters 8 and 9.
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Chapter 6

Taxonomy of MIMO Algorithms

This chapter contains a survey of MIMO algorithms for wireless systems. Various

conceptual algorithms form the basis for study of computational complexity of some

common signal processing kernels and their suitability for hardware implementation.

Due to the vast variety of MIMO algorithms available, classification begins with the

fundamental diversity vs. spatial multiplexing trade-off in multiple-antenna channels

[61], followed by a study of schemes that provide diversity and spatial multiplexing

gains. The chapter concludes with an overview of some VLSI realizations.

6.1 Diversity vs. Spatial Multiplexing

Fundamentally, a MIMO system can improve the reliability of a wireless link through

increased diversity or improve the channel capacity through spatial multiplexing.

Given a MIMO channel, both gains can be simultaneously achieved, but there is a
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fundamental trade-off between the achievable gains for each type. Zheng and Tse

introduced this trade-off in [61] and evaluated existing MIMO schemes with respect

to the optimal trade-off curve. The basic definitions are repeated here, followed by

investigation of signal processing requirements found in MIMO algorithms.

6.1.1 Diversity Gain

Multiple antennas have traditionally been used as a method to overcome channel

fading through increased diversity [54]. The diversity gain can be achieved using

multiple transmit or receive antennas that provide multiple signal paths between

the transmitter and the receiver. By sending the same information over different

paths and averaging over multiple independently-faded replicas at the receiver, more

reliable communication is achieved. For example, if the transmitted signal is passed

through n different paths, which correspond to n transmit antennas, the average

error probability decays as 1/SNRn as opposed to 1/SNR for the single-antenna

case. Under these conditions, when the error probability decays as 1/SNRn, the

diversity gain is equal to n [52].

Furthermore, having both multiple transmit and multiple receive antennas im-

proves the link reliability by essentially averaging over multiple independently-faded

paths. For a system with m transmit and n receive antennas, the maximum achiev-

able diversity gain is mn. The diversity gains help overcome channel fading, but

fading is not necessarily always detrimental. In fact, fading can be helpful if different
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paths that fade independently combined constructively, exploiting spatial multiplex-

ing gains.

6.1.2 Spatial Multiplexing Gain

Spatial multiplexing is a method that takes advantage of fading by increasing the

degrees of freedom available for communication. This is possible under the assumption

that path gains between transmit-receive antenna pairs fade independently. In this

case, the channel matrix is well conditioned, so different Tx-Rx antenna pairs can be

essentially viewed as independent spatial channels. Sending independent data streams

over these spatial channels improves throughput proportionally to the number of

independent spatial sub-channels.

The spatial multiplexing gain can be quantified with the channel capacity increase.

Foschini [54] showed that for a m×n system with independent identically distributed

(i.i.d.) Rayleigh faded gains between individual antenna pairs in a high-SNR regime,

the capacity of the channel increases linearly with the number of spatial channels as

given by Eq. (6.1).

C(SNR) = min{m, n} · log(SNR) + O(1) (6.1)

The number of available spatial channels is the minimum between the number of

transmit antennas m and the number of receive antennas n.
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6.1.3 Optimal Trade-Off Curve

Optimizing for spatial multiplexing alone typically results in reduction of diversity

gain and vice versa. Zheng and Tse analytically formulate this trade-off in [61]. For

an m×n system, they shown that, for a slow-fading environment with random channel

gain that is constant over l symbols (l ≥ m + n− 1), the optimal diversity gain d∗(r)

is given by Eq. (6.2).

d∗(r) = (m − r)(n − r) (6.2)

where r is the achieved multiplexing gain, m is the number of transmit antennas and

n is the number of receive antennas.

This trade-off tells us that r antenna pairs provide spatial multiplexing gain, while

the remaining (m − r)(n − r) paths provide the diversity gain. In other words, this

is a trade-off between the error probability and the data rate. The error probability

decays as 1/SNRd∗(r) with channel capacity proportional to rlog(SNR).

The optimal trade-off curve can be used an effective tool for evaluation of MIMO

algorithms. Diversity and spatial-multiplexing algorithms as shown in Fig. 6.1 are

analyzed next.

6.2 Diversity Algorithms

Diversity gain can be achieved using the general principle of space-time coding. A

simple way to maximize diversity is to use orthogonal designs, such as a simple rep-
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Figure 6.1: Classification of MIMO algorithms in the diversity-multiplexing plane.

etition scheme where the same symbol is repeated over multiple antennas or the

Alamouti scheme [62] which relies on the transmission of two data symbols. Orthog-

onal schemes closely approximate the optimal curve in the low spatial multiplexing

region, but they become increasingly sub-optimal for higher r. Space-time coding

proposed by Tarokh [63] achieves an improved multiplexing gain. Due to low spatial

multiplexing gains, these schemes are not suitable for high data rate links.

6.2.1 Repetition Scheme

A repetition scheme is the simplest way to achieve diversity gain. This can be un-

derstood by looking at a simple 2 × 2 system. Such a system has four Tx-Rx paths,

which need to be combined for maximal diversity gain d∗
max. This is accomplished
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with a transmission scheme described in Eq. (6.3).

X =


 x1 0

0 x1


 (6.3)

where x1 is the transmitted symbol, rows of X correspond to time and columns

correspond to antennas. This way, the same symbol is repeated over the transmit

antennas in consecutive symbol time slots. Since one symbol is transmitted in two

symbol times, spatial multiplexing gain is 1/2.

6.2.2 Alamouti Scheme

The Alamouti scheme achieves the same diversity gain as the repetition scheme, but

provides increased throughput, since two information symbols are transmitted in two

symbol times. This is made possible with a transmission scheme in Eq. (6.4).

X =


 x1 −x†

2

x2 x†
1


 (6.4)

where columns correspond to transmit antennas. In terms of diversity, the Alamouti

scheme with two transmit and one receive antenna is equivalent to a maximum ratio

receiver combining (MRRC) scheme with one transmit and two receive antennas.

For a 2 × 2 system, for example, the Alamouti scheme still achieves maximal

diversity gain of d∗
max(0) = 4, but results in sub-optimal spatial multiplexing gain
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for r > 0. Since only two information symbols can be transmitted in two symbol

periods, the best achievable multiplexing gain is r = 1, which is twice as much as

the repetition coding scheme. While achieving the maximal diversity, both repetition

and Alamouti codes achieve sub-optimal diversity-multiplexing trade-off due to their

inability to maximize the spatial multiplexing gain.

6.2.3 Space-Time Coding

Orthogonal designs based on repetition coding or the Alamouti scheme are not op-

timized in terms of data rate. Tarokh has shown [63] that with optimal coding, a

2×2 system can achieve full multiplexing gain of r = 2, which corresponds to sending

two data symbols over two antennas in each symbol period. The same study shows,

however, that systems with more than two transmit antennas cannot achieve the full

transmission rate of symbol per symbol period. Therefore, the potential of a MIMO

channel to support extra degrees of freedom in a form of spatial multiplexing is not

fully exploited by the space-time coded orthogonal designs.

6.3 Spatial Multiplexing Algorithms

Spatial multiplexing algorithms primarily focus on exploiting multiple degrees of free-

dom in MIMO channels to maximize data throughput. Unlike diversity schemes which

can work with single receive antenna, spatial multiplexing requires both multiple
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transmit and multiple receive antennas (MIMO). This section summarizes basic con-

cepts most commonly encountered in various MIMO algorithms, including BLAST,

QR decomposition, and SVD based channel estimation.

6.3.1 BLAST Algorithms

The pioneering work in MIMO decoding [54], [64] by Foschini and researchers from

Bell Labs resulted in formulation of the Bell Labs Layered Space Time (BLAST)

algorithms for MIMO communication. In BLAST, codewords are arranged in a space-

time grid. The data is encoded over multiple transmit antennas and distributed in

time. Depending on how the data is organized in the space-time grid, two algorithms

can be distinguished: diagonal (D-BLAST) and vertical (V-BLAST).

D-BLAST

The diagonally layered BLAST (D-BLAST) architecture was proposed by Foschini

[54] as a point-to-point communication architecture that uses an equal number of

antennas at both the transmitter and the receiver. The architecture is designed for a

Rayleigh fading environment where the transmitter does not have knowledge of the

channel.

D-BLAST is a space-time coding scheme. Codewords are partitioned in space and

time as shown in Fig. 6.2 for the case of a 4 × 4 MIMO system. Each codeword, a

for example, is strategically distributed over space (antennas) and time. The time
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Figure 6.2: D-BLAST decoding scheme. Each codeword is partitioned into four blocks
and distributed over time and space.

interval τ contains N symbols.

A training phase precedes the decoding shown in Fig. 6.2. During training, known

signals are transmitted and processed at the receiver to initialize the decoding algo-

rithm. The decoding algorithm is based on interference suppression. In time interval

τ < t < 2τ , detection of space-time layer a begins. The layers below a which have

already been detected are subtracted from the received waveform. At the receiver,

the first block of layer a is estimated through maximum ratio combining. In the

time interval 2τ < t < 3τ , layer b (that is above a) is treated as interference to be

suppressed. So far, codeword a sees two blocks corresponding to spatial sub-channels

1 and 2. Moving forward in time, during interval 4τ < t < 5τ , layer a can be

successfully decoded if the condition in Eq. (6.5) holds.

4∑
i=1

(1 + SINRi) ≥ R (6.5)
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In Eq. (6.5), SINRi is the signal-to-interference-and-noise ratio of the MMSE de-

modulator at the ith stage of the cancellation, and R is the target data rate. In each

time interval, once a partial codeword is decoded, it is subtracted from the received

symbol, and the detection process moves forward in time.

In D-BLAST, the detection of each layer is based on successful detection of the

underlying layers. Consequently, failure in a layer will likely cause the detection of

all subsequent layers to fail. Additionally, the D-BLAST scheme suffers from a rate

loss because some of the antennas are not utilized. For a large number of antennas,

however, the rate loss gets amortized. Compared to the Alamouti scheme, the signal

processing in D-BLAST is more complex. Unlike the Alamouti scheme, however,

D-BLAST does generalize to an arbitrary number or transmit and receive antennas.

V-BLAST

In V-BLAST, each coded stream, or layer, extends horizontally in the space-time

grid and is stacked vertically. Such vertical organization eliminates boundary waste

of D-BLAST at the start and end of a burst.

A V-BLAST communication link is illustrated in Fig. 6.3. Transmit data streams

have different data rates, in general. In case the transmitter knows the channel, it

can allocate different amounts of power in the different eigen-modes depending on

their strengths. When the transmitter does not know the channel and the channel

is random, equal amounts of power are allocated across the eigen-modes. A detailed
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derivation of this result can be found in [52]. The receiver performs a joint maximum

likelihood (ML) decoding of data streams.

The spatial processing at the receiver [64] consists of three steps: a) interference

cancellation, b) interference nulling/suppression, and c) compensation. Assume that

the receiver has detected the first i− 1 symbols. During the interference cancellation

step, interference from already detected symbols is subtracted out. In the interference

nulling step, interference from m−i yet to be detected sub-streams is removed. This is

achieved by projecting the result of the first step onto the m− i dimensional subspace

spanned by the vectors of the matrix channel response, using the Grahm Schmidt

process. Finally, in the compensation phase, the error probability is minimized by

optimizing the order of symbol detection such that symbol elements with the highest

SNR are detected first. The element with the best decision statistic is moved to the

bottom of the stack, and the other sub-streams are shifted up.

Compared to D-BLAST, V-BLAST employs simplified processing without coding

across the transmit antennas. In the absence of coding, an outage occurs whenever

one of the sub-channels is in a deep fade and cannot support the rate of the stream
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using that sub-channel. D-BLAST, on the other hand, has a higher communication

efficiency due to encoding, but is also more computationally complex. Zheng and

Tse have shown that both algorithms achieve the same spatial multiplexing gain,

while D-BLAST delivers higher diversity gains. This makes sense, since fade on any

transmit antenna affects only a fraction of the codewords layered in space and time.

6.3.2 SVD

Singular value decomposition (SVD) [65] [66] [67] of a wireless channel relies on partial

channel knowledge at the transmitter to extract spatial multiplexing gains. Decoding

of a MIMO channel requires matrix inversion which can be done in block-form using

an SVD as shown in Fig. 6.4. SVD is a composition of three operations: a rotation

(U), a scaling operation (Σ), and another rotation (V †). U and V are unitary and

Σ is a diagonal matrix.

When the channel matrix H is partially known to the transmitter, the optimal

strategy is to transmit independent streams in the directions of the eigenvectors of
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H†H [52]. Using partial channel knowledge V at the transmitter (Tx) and projecting

the received vector y onto space of U† at the receiver (Rx), the channel can be

effectively orthogonalized, looking between x’ and y’. The independent data streams

are then sent across Tx antennas. This is achieved by pre-rotating the data so that

the parallel streams can be sent along the eigen-modes of the channel. At the receiver,

data streams arrive orthogonally without interference between the streams.

6.3.3 QR Decomposition

The QR decomposition of a matrix H is a factorization H = QR, where Q is

a unitary matrix and R is an upper triangular matrix. The QR decomposition is

commonly used in various signal processing applications such as beamforming, [68].

Traditionally, the eigen-value decomposition (EVD) of the sample decorrelation ma-

trix or the singular value decomposition (SVD) of the data matrix have been used to

compute subspaces in various beam-forming algorithms, [69]. The QR decomposition

is used as an alternative since it is more computationally efficient than EVD or SVD.

In the QR decomposition, matrix R is upper triangular. The SVD is difficult to

update due to relatively large computational complexity. Signal processing methods

that rely on subspace projections generally do not require all of the information pro-

vided by the SVD. For example, beamforming requires the eigenstructure information

contained in the submatrix Σ, but this information does not have to be in the form of

a diagonal matrix. This gives some leeway in the matrix factorization. Decoding of
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y = QR · x reduces to solving a linear system using simple Gaussian elimination due

to the triangular nature of matrix R. A comprehensive study of subspace tracking

algorithms can be found in [55], [69].

Algorithms that maximize diversity or spatial multiplexing have been well ex-

plored and documented in literature. Pure spatial multiplexing or diversity gives

limited benefit in the other dimension. Recently, there have been some efforts toward

unification in a diversity-multiplexing trade-off sense, [70], [71], [72], [73].

6.4 Unified Algorithms

The optimum decoding method for MIMO channels is maximum likelihood (ML)

where the receiver compares all possible combinations of symbols which could have

been transmitted with what is observed. The complexity of ML decoding is very high,

especially when many antennas are used, [74]. To meet the complexity requirements,

lattice decoders have recently gained attention, [70]. This decoding strategy is also

known as sphere decoding.

6.4.1 Sphere Decoding

The main challenge of receiver design for MIMO systems is in the non-orthogonality

of the channel and superposition of the signals arriving from all transmit antennas.

Optimal ML detection requires finding the signal point x̂ of the transmitter vector
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signal set that minimizes the Euclidean distance with respect to the received vector

y. This can be equivalently formulated as the problem of finding the closest lattice

point in a transformed vector space described by Eq. (6.6).

x̂ = argmin||y − Hx||2 (6.6)

This problem is exponential in the number of possible constellation points, mak-

ing ML detection very difficult for practical realization. To avoid the exponential

complexity of the ML detection problem, the idea is to restrict the search for the

closest lattice point in a way that includes only vector constellation points that fall

withing a certain search sphere, [75], [76], [77]. This approach allows for finding the

ML solution with polynomial complexity.

In its search for the ML solution, the sphere detector evaluates all transmit vector

signals x fulfilling the condition in Eq. (6.7)

||y − Hx||2 < SR2 (6.7)

where SR is the search radius of the sphere. The choice of SR influences the com-

plexity of the algorithm. When SR is too large, it leads to a sphere containing a

very high number of hypotheses and thus high detection complexity. When SR is too

small, this may result in an empty sphere and the search has to be restarted with an

increased radius. In searching for SR, decompositions of the channel matrix can be
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used [78], such as QR decomposition already described.

||Q†y − Rx||2 < SR2

||y′ − Rx||2 < SR2

(6.8)

Equation (6.8) is an equivalent form of Eq. (6.7). Using the triangular nature

of matrix R, the detection process starts from the last transmit antenna and works

its way up until the first antenna is detected. Zimmermann et al. [78] did an ex-

tensive study of various modifications of this sphere decoding algorithm and their

complexities. They determined that the complexity of sphere decoding increases

quadratically with the number of Tx-Rx antenna pairs. Gamal et al. presented a

study of lattice coding and decoding schemes [72] for delay-limited MIMO channels

in terms of achieving the optimal diversity-multiplexing trade-off. Sphere decoding is

a relatively new research area and major effort is now being directed towards devel-

oping low-complexity variants of the generalized minimum Euclidian distance lattice

decoder.

6.5 Survey of VLSI Implementations

Implementation of MIMO based communication links is an active area of research.

This section studies some existing ASIC realizations of MIMO decoders in order to

establish a reference in terms of power, speed, and area.
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Table 6.1: Summary of ASIC Implementations of 4 × 4 MIMO Decoders.

Year, [Reference] 2005, [79] 2005, [80] 2004, [81], [82] 2003, [83], [82]

Modulation 16-QAM QPSK 16-QAM QPSK
Detection depth-free sphere ML-APP K-best sphere V-BLAST
Bandwidth 14 MHz* 5 MHz 4 MHz* 26 MHz*

Technology 0.25µm 0.18µm 0.35µm 0.35µm
Clock frequency 71 MHz 123 MHz 100 MHz 80 MHz
Gate count 50k + preproc. 685k 91k + preproc. 190k
Throughput 169 Mbps 28.8 Mbps 52 Mbps 160 Mbps
Power 473 mW (2.5V) N/A 626 mW (2.8V) 608 mW (2.7V)

E100k (90nm) 768 pJ (1V) N/A 162 pJ (0.85V) 94 pJ (0.81V)
Spec.Eff (bps/Hz) 12.07 5.76 13 6.15
FOM (pJ/bps/Hz) 63.6 N/A 12.5 15.28

Table 6.1 summarizes features of some existing 4 × 4 MIMO implementations.

Due to the wide variety of algorithms implemented over multiple technology genera-

tions, it is most meaningful to study power/energy efficiency normalized to the same

technology. The reported numbers are thus normalized to a 90nm process with nom-

inal supply of 1V. For implementations with scaled voltage (columns 3 and 4), the

power is normalized to a 90nm technology with accordingly scaled Vdd. To account

for area differences in terms of gate count, the power is further normalized to an

equivalent 100k gate power. Finally, a 100k gate equivalent energy, E100k, is obtained

to eliminate the clock frequency. The V-BLAST design (column 4) turns out to be

the most energy efficient, taking 94pJ per 100k gates. This comparison should be

taken cautiously since no information about algorithm complexity is available. Due

to the lack of information about GOPS, normalization is done with respect to area.
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Another interesting parameter is the spectral efficiency, Spec.Eff , obtained as the

ratio between the throughput and available communication bandwidth. Paper [80]

reports communication bandwidth (second column in the table). For other papers

that did not explicitly state the bandwidth, the bandwidth is estimated from the

decoding throughput and modulation scheme, assuming the spatial gain of 3 in a

4 × 4 system. For fair comparison, E100k is normalized by Spec.Eff to obtain a

figure of merit, FOM in the table. Although the V-BLAST design is the most

energy-efficient, the K-best sphere decoder has the highest overall efficiency in terms

of 12.5 pJ/bps/Hz. This number is used as a reference to evaluate the results in

Chapter 9.
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Chapter 7

CAD Methodology and Flow

This chapter presents a design methodology that incorporates the results from previ-

ous chapters: circuit and micro-architectural optimizations as well as signal processing

techniques. As an integral part of the design methodology, key design procedures are

integrated into a commercial CAD environment. The idea is to bring together the

algorithms, circuits, and VLSI architectures that create the most energy and area

efficient implementations in a highly automated fashion.

The design procedure starts with design entry in the widely adopted, graphi-

cal Simulink environment to create bit-true, cycle-accurate models using hardware

equivalent blocks. Architectural choices are made early in the design process, at the

Simulink level, using architectural feedback from logic synthesis. Proper character-

ization of Simulink blocks for power, speed, and area at the circuit level allows for

early estimates of the algorithm implementation. Upon word-size and register retim-
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ing optimizations, the physical design is done using standard industry tools. This

step is highly automated: a chip with complexity of 0.5M gates can be synthesized in

one day (excluding verification steps). An FPGA-based chip testing that uses an ad-

ditional FPGA board is described. The testing conveniently interfaces with Simulink

environment, providing a nice framework to unify the ASIC and FPGA flows.

7.1 Simulink Design Environment

Design re-entry is standard practice today. A design is entered in various forms

by different engineering teams, resulting in heterogeneous design descriptions. Al-

gorithm developers tend to work in a Matlab environment, which has an array of

built-in functions convenient for quick algorithm modeling and verification. Software

code like systemC [84] is another sequential processing entry, which requires more

sophisticated programming skills. Still, neither of the representations captures the

architecture and information about sampling rate. The architectural description is

then created separately by hardware designers who have to completely re-enter the

design in hardware description language (HDL). Design re-entry presents an enormous

overhead, which can be avoided by using a unified Simulink design environment.

The Simulink design environment is convenient, because it provides an intuitive

graphical description for both algorithm developers and chip designers. An algorithm

is entered only once is a graphical block form, providing timed data-flow representa-

tion of the design and abstract view of design architecture. With technology-specific
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Figure 7.1: Simulink environment illustrating XSG block library.

data for speed, power, and area of functional blocks, algorithm designers can explore

the implementation space while remaining in the Simulink environment to verify the

algorithm. Hardware designers can use the Simulink description to generate an HDL

description automatically and also be able to verify the results of hardware emulation

using Simulink test vectors.

In this work, Simulink is used in the full design cycle, starting with algorithm

modeling, through design optimizations, and final ASIC verification.
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Figure 7.2: Example of Simulink design entry: model of a MIMO communication.
Numbers indicate total and fractional bits.

7.1.1 Design Description

The Matlab/Simulink environment is widely used for evaluation of signal processing

algorithms because of its widespread use by the algorithmic community. Systems can

be quickly modeled using components from the basic floating-point library, which

enables cycle-accurate functional verification with ideal, infinite word size. Taking

one step further to work with the Xilinx System Generator (XSG) [85] block-set

enables the creation of a hardware-equivalent model suitable for implementation. In

the XSG library, there are readily available basic arithmetic operators, as shown in

Fig. 7.1, that capture hardware parameters, such as word-size and latency.
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Fig. 7.2 illustrates an example of a Simulink design description. It is a timed

data-flow model of the design showing the block-level representation of a multiple-

antenna communication. The model in Fig. 7.2 allows algorithmic exploration in

a realistic, closed-loop environment. Each functional block can be described with

C or Matlab S-functions (software), or with timed data-flow hardware blocks. This

flexibility also allows for comparison of ideal floating-point behavior against the fixed-

point realization of the algorithm.

7.1.2 Functional Verification

The bit-true, cycle-accurate behavior of a design is obtained at the Simulink level.

Mixed simulation can be performed to compare floating and fixed point behavior,

before mapping the fixed point design onto hardware for emulation.

This example illustrates that functional verification can be done in a simple way,

with an intuitive graphical display of results. The example in Fig. 7.3 illustrates

the result of eigen-mode decomposition done by the multi-antenna algorithm from

Fig. 7.2. Plots in Fig. 7.3 show an adaptive MIMO channel decoupling (top) and

signal constellations corresponding to different spatial channels/antennas (bottom).

Analysis and design of the MIMO example will be presented in detail in Chapter 8.

To speed up verification process, the fixed-point design can be directly mapped to

an FPGA without the need to simulate the design in Simulink. Instead, the design

can be emulated much faster on real hardware, while remaining in the Simulink



CHAPTER 7. CAD METHODOLOGY AND FLOW 117

1 2 3 4 5

x 10
4

0

2

4

6

8

10

12

Number of Symbols

E
ig

en
va

lu
es

1

2

λ 3

4

Channel decoupling

λ

λ

λ

Ant-2: 8-PSKAnt-1: 16-PSK Ant-3: QPSK Ant-4: BPSK

Figure 7.3: Example of functional verification in Simulink.

environment to collect the emulation data. Once bit-true cycle-accurate behavior is

obtained, the first step in the overall design optimization procedure is to determine

the optimal word-lengths that minimize area of the design. This is done using an

in-house tool for word-length reduction.

7.1.3 Word-length Optimization

Word-length optimization is carried out in Simulink, using the floating-to-fixed point

conversion (FFC) tool developed by Changchun Shi, [1]. The FFC minimizes hard-

ware cost (FPGA area utilization) subject to user defined performance measures,

such as MSE error due to quantization. In essence, the tool determines integer word-
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Figure 7.4: Illustration of FFC-enhanced Simulink model, [1].

lengths by node profiling and range detection, while fractional word-size optimization

is determined by perturbation theory, [86], [1].

A typical FFC environment is illustrated in Fig. 7.4. An FFC spec marker defines

MSE spec for a desired node in the system, while hardware cost estimation blocks

summarizes FPGA hardware utilization in terms of FPGA slices, flip-flops, look-up

tables, etc. After the MSE constraints have been formulated, the FFC tool runs a

number of simulations to calculate word-size sensitivities and applies perturbation

theory to find the optimal result.

The limitations of the FFC tool are: a) input data dependency and b) simulation

based optimization. First, the node profiling is done based on input data range, so

representative data has to be provided. To address this issue, the tool can include

some extra guard bits in order to avoid long simulation times. Additionally, the

designs of large complexity can take very long time to simulate even for input data

sets of small size. Specifically related to the example in Fig. 7.2, the tool has been

upgraded to support cases with user-defined word-sizes and their respective nodes.
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This is then used for hierarchical optimization in which word-lengths of primary

inputs and outputs are fixed. A detailed description of the tool can be found in [1]

along with numerous design examples and also a user tutorial.

After successful functional verification, the design has to be refined at the archi-

tectural level in order to best utilize the underlying technology in terms of power,

area, and speed. Extensive circuit-level characterization of building blocks from the

XSG library is key to choosing the optimal architecture for the implementation. Ef-

ficient algorithm implementation is then possible without requiring much top-level

post synthesis information to Simulink.

7.2 Characterization Methodology

The goal of circuit-level characterization is to augment the XSG block-set with

technology-dependent information such as speed, power, and area. The complex-

ity of the basic and most commonly used library blocks is very low (granularity of

add, multiply, shift, mux, register etc.), so full characterization over a range of latency

and word-size parameters is possible.

The approach for block-level characterization is illustrated in Fig. 7.5 for cases of

16-bit addition and multiplication. These two blocks differ in logic gate complexity,

which translates into different latency of their implementations, for equal cycle time.

Since cycle time is common for the entire top-level design, the blocks are characterized

for speed on the latency versus cycle time plot shown in Fig. 7.5. Each point along



CHAPTER 7. CAD METHODOLOGY AND FLOW 120

Simulink

Synopsys

RTL

netlist

Area
Power

Speed

Switch-level
accuracy

HSPICE

12

9

6

3

0
0 1 2 3

cycle time (norm.)

la
te

nc
y

mult

add

Area
Power

Speed

Figure 7.5: Block-level characterization (mult, add examples).

the curve is also characterized for power and area. Equal cycle time implies equal

complexity (i.e. logic depth) of pipelined logic. This approach enables hierarchical

expansion around the simple block-set.

7.2.1 Power Estimation

Estimates for power can be taken from physical synthesis or further refined with

switch-level accuracy. The switch-level characterization can be very time consuming.

For example, Eldo simulation over several clock cycles of a 16-bit multiplier with a

fully distributed RC interconnect model took 19 days! The results of switch-level

simulator can result in 2× higher power than that from synthesis, with the difference

depending on the accuracy of the wire load models used in synthesis and extraction.
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Refining the power estimate can be time-consuming for another reason: the power

also depends on the switching activity of the block inputs and the corresponding

activity profile inside the block. An accurate calibration requires long simulations over

a large number of cycles, which can be managed with extensive characterization at few

points and extrapolation of the results. Still, no matter how accurate characterization

results are, the numbers may change when the pre-characterized blocks are placed in

a different environment. Usually, synthesis estimates with default activity are fairly

realistic since, to a first order, the effects of overestimating the activity factors and

underestimating the parasitics nearly cancel out.

7.2.2 Area Estimation

The area of a design can be characterized in terms of FPGA resource utilization

or silicon area. Simulink/XSG provides area estimates in terms of FPGA resources

(slices, flip-flops, lookup tables, etc.) while the ASIC flow gives estimates in terms

of physical silicon area. To link the two, characterization of several blocks revealed

the following observation: 10,000 FPGA slices = 1mm2 of layout area in a 90nm

CMOS technology (with ∼ 80% layout density). This number is obtained from linear

extrapolation of area dependency vs. the number of slices and silicon area for three

examples that are about an order of magnitude apart from each other in terms of

complexity: adder, multiplier, and inverse square root circuits. This way, an early

estimate of chip area is provided at the Simulink level.
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It is common practice in IC design to normalize silicon area by the area of a gate

from standard cell library (e.g. 2-input NAND). At higher levels of granularity, the

area can be normalized to an atomic operation, such as add or multiply-accumulate.

7.3 “Chip-in-a-Day” Design Flow

An automated “chip-in-a-day” design flow is illustrated in Fig. 7.6. The flow starts

with design description in Simulink using the XSG block-set. The Simulink descrip-

tion of the block interconnect is used to generate the hardware description for mapping

the design onto a FPGA array. The same description is also used to create another

form of hardware description for ASIC place and route tools.

Making correct architectural decisions in Simulink relies on architectural feedback

from synthesis. This is needed as early in the flow as possible to avoid unnecessary

iterations. First estimates for area, speed, and power are fed back after initial logic

synthesis, Fig. 7.6. These results can be refined, if desired, by more accurate estimates

after physical layout synthesis. Efficient algorithm implementation is possible with-

out requiring much post-synthesis information to Simulink, assuming that extensive

characterization of basic building blocks is done as described in previous section.

VLSI implementations rely on low-level blocks from the hardware Simulink library

that can be readily synthesized by commercial back-end synthesis tools. The block-set

includes add, multiply, shift, mux, register, counter, etc. Logic synthesis is performed

based on the behavioral HDL description provided by the INSECTA tool [87].
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Figure 7.6: Simulink based “Chip-in-a-Day” design flow.

7.3.1 INSECTA

INSECTA is an in-house tool which performs HDL translation, first synthesis, and

functional verification through HDL simulation. Each of the steps is described below.

HDL Translation

INSECTA begins by producing HDL descriptions that are compatible with the Syn-

opsys Design Compiler and Module Compiler tools, suitable for mapping to standard

cell libraries. The Module Compiler Language (MCL) allows a function to be de-
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scribed with a single parameterized file, with conditional I/O ports, a capability not

supported by VHDL or Verilog, but necessary for compatibility with XSG. Most basic

blocks, including adders, multipliers, registers, and multiplexers are supported with

this approach, with the goal of mapping the blocks to standard cells provided by the

ASIC foundry. If the foundry provides smaller and more efficient IP blocks such as

memory, the designer can include them by writing a VHDL wrapper that translates

the timing and signaling expected by the original libraries into the timing expected

by the ASIC vendor IP.

Logic Synthesis

Once the MCL and VHDL have been generated, INSECTA builds scripts to run

Module Complier and Design Compiler, and executes these tools. Module Compiler is

first run to generate VHDL for library primitive blocks. INSECTA allows constraints

to be passed to Module Compiler to improve compilation results.

Design Compiler is then executed to map the complete design to the gate level,

producing both structural VHDL and Verilog output files. In addition, an SDF file is

produced, containing library parameters that are passed to Modelsim to improve the

accuracy of the functional simulation. The functional simulation is performed using

testbench created in Simulink.

Upon completion, area, speed, and power estimates are obtained which provide

early architectural feedback for design comparison and analysis.
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HDL Simulation

Once the design is synthesized, Modelsim can be run to verify functional equivalence

and to extract statistics to improve performance estimates. The same test-bench and

data recorded by Simulink can be applied to the synthesized design to confirm that

the results are still cycle accurate and bit accurate. If custom VHDL code is written

for IP such as memories, the functional simulation also allows validation of these

wrappers. INSECTA creates command scripts for Modelsim that allow user-defined

libraries to be included during compilation and simulation.

To produce more accurate power estimates later in the flow, the simulation uses

the SDF file generated by the first synthesis to give Modelsim more accurate timing

information about the standard cell libraries. Modelsim can then record signal activity

factors for each internal node. By leveraging the SDF file for more accurate timing

simulation, glitch activity will affect the activity factor and lead to more realistic

power estimates during the second synthesis.

7.3.2 Chip Synthesis

With activity factors in hand, Design Compiler can then re-synthesize the design to

produce a more efficient result, as well as more accurate power estimates. As before,

the estimates might suggest areas for improving the architecture to reduce power

consumption. The designer can iterate this step until desired results are obtained.



CHAPTER 7. CAD METHODOLOGY AND FLOW 126

Register Retiming

The netlist is then optimized using a set of custom scripts for register retiming and

logic optimization, before going to the final stage of physical layout synthesis. The

“optimize registers” command in Design Compiler is used to perform register retiming

on a mapped gate-level netlist. It determines the placement of registers in a design to

achieve a target clock period and minimizes the number of registers while maintaining

that clock period. It improves designs that already contain registers. Retiming is

done on simple feed-forward blocks followed by top-level incremental compile. This

procedure can be easily expanded to loop retiming as described in Chapter 5.

Physical Synthesis

After the logic synthesis has completed, the results are exported to a vendor-specific

place-and-route design flow. Different ASIC vendors generally provide recommended

design flows from HDL or RTL descriptions through synthesis to place-and-route

tools. Our back-end flow is based on a standard Synopsys suite of tools for floorplanning

and place-and-route. An Astro flow was used for the back-end with occasional use of

Physical Compiler for placement optimization. All of the steps are highly automated

by our ASIC vendor.

The resulting netlist from physical synthesis is simulated for functionality using

test vectors from Simulink, in addition to formal logic verification. Detailed checks

for timing, cross-talk, DRC, and LVS are performed on the extracted final layout.
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7.4 Design Example: Iterative Square Rooting

The proposed design methodology is applied to the iterative square root algorithm

from Chapter 5. The intent is to illustrate a procedure that is generally applicable.

Step 1: Design Entry in Simulink

The first step in the design procedure involves modeling in Simulink. The goal is to

create a cycle-accurate model of the design using the XSG blocks. This step may also

involve functional verification against an ideal floating-point model described either

in block form or in M-code.

Figure 7.7 illustrates a typical top-level view of an algorithm model. The algorithm

functionality is realized with the XSG blocks (“sqrt (fix.pt)”) and also with ideal

floating point block-set (“sqrt (float.pt)”), which allows comparison of the results

and their graphical display (“zout”). The System Generator block provides control

of system and simulation parameters and is used to invoke the code generator. Every

Simulink model containing any element from the XSG library must contain at least

one System Generator block. Once a System Generator block is added to a model,

it is possible to specify how code generation and simulation should be handled. The

inputs are stored in ROM memories for an FPGA emulation purposes.

The Xilinx Resource Estimator block provides fast estimates of FPGA resources

required to implement a System Generator subsystem or model. These estimates are

based on block-specific estimators for Xilinx blocks, which obtain estimates of lookup
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Figure 7.7: Simulink model of inverse square rooting algorithm from Chapter 5.

tables (LUTs), flip-flops (FFs), block memories (BRAM), 18×18 multipliers, tristate

buffers, and I/Os. An estimator block can be placed in any subsystem of a model to

provide estimates for individual subsystems.

Each functional block from the XSG library can be configured with user-defined

parameters. Figure 7.8 shows macro-architecture of the implemented algorithm.

Blocks that implement arithmetic operations such as add and multiply are grouped

in subsystems for retiming purposes later. This grouping is done to keep track of

naming hierarchy in Design Compiler. The insert in Fig. 7.8 is parameter dialog box

for the “mult2” subsystem. User can specify a range of parameters including data

type, wordlengths, quantization, latency, cycle time, etc.

The multiplier block also supports a size-performance trade-off in its implemen-

tation. It can be implemented either as a parallel multiplier that operates on the full

width data (faster and larger) or as a sequential multiplier that computes the result
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Figure 7.8: Simulink/XSG model of “sqrt (fix.pt)” block from Fig. 7.7. Each module
has a mask with user-defined parameters (word-length and latency are emphasized).

from smaller partial products (slower and smaller). This choice affects the hardware

implementation only. The simulation behavior of the block is not affected. For the

ASIC flow, this does not matter since each module is later synthesized by INSECTA.

Mandatory parameters for the ASIC flow are latency and word-length, Fig. 7.8.

Step 2: Word-length Optimization

Upon establishing functionally correct behavior, the next step is word-length opti-

mization to reduce the area/power of the implementation. The goal is to obtain the

word size at all nodes. For this purpose, the FFC spec marker block is placed in the
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Figure 7.9: Word-length optimized design. The numbers indicate (total, fractional)
bits, respectively. Area before opt: 743 slices, area after opt: 668 slices.

model shown in Fig. 7.7, so a user can specify the error tolerance due to quantization.

The result of word-length optimization is shown in Fig. 7.9. The numbers in

brackets indicate total and fractional bits, respectively. This model is simulated to

verify the algorithm behavior under finite word size. A sinusoidal input spanning

the desired input range is used. Figure 7.10 is the result of functional check. The

plot on the left shows the input waveform and output from floating and fixed point

simulations, and the difference is displayed in plot on the right. The algorithm is ini-

tialized with 0.125, which results in discrepancy for few iterations until the algorithm

converges. Each iteration is then initialized with solution of previous step to achieve

single-cycle convergence for continuously varying input.

Step 3: Technology Characterization

The architecture has to be selected before technology mapping in order to avoid costly

design iterations. The choice of architecture is highly dependent on characteristics of
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Figure 7.10: Functional verification of iterative square rooting: a) fixed and floating
point outputs for sinusoidal input A, b) error due to finite wordlength effects.

the underlying technology. The objective of this step is to determine relative speed

of the technology compared to the required cycle time for the application, to be able

to optimally combine circuit-level and architecture-level parameters.

At the circuit level, standard calibration test is to determine the energy-delay

trade-off for a fanout-of-four (FO4) inverter, which is a metric commonly used for

delay scaling in digital circuits. The shape of the E-D curve for an inverter as shown

in Fig. 7.11(a) can be used to predict the E-D scaling for CMOS logic in general, to

a first approximation. Given a clock period specification, the designer can determine

the FO4 complexity of pipelined logic that maintains a good E-D trade-off point as

indicated on the plot. Related to the prior discussion, this point corresponds to the

general trade-off illustrated in Fig. 5.1 in Chapter 5. The optimal point is reached

through supply voltage reduction, which is the most efficient way to reduce power,

and sizing optimization as discussed in following steps.
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Going up toward the architectural level, it is most important to understand right

amount of cycle latency associated with each arithmetic block. The goal is to balance

the complexity in pipelined logic at the top level. The block characterization, as

explained earlier in this chapter, is the key to obtaining this information. The desired

operating point from Fig. 7.11(a) translates into some equivalent target speed for logic

synthesis at the nominal supply as shown in Fig. 7.11(b), which is used to determine

the cycle latency for the required speed.

Step 4: Architectural Optimization

Architectural optimization starts with a direct mapped parallel implementation. The

objective is to minimize the power and area of the design. The outcome of this step

highly depends on the area and energy requirements for a specific design. A number



CHAPTER 7. CAD METHODOLOGY AND FLOW 133

of architectural choices exist in energy-area space that satisfy the same throughput

as shown in previous chapters. Still, some general guidelines exist.

A good heuristic for simultaneous power and area minimization is outlined here. In

overall design optimization for power and area, the variables affecting only the power

or only the area should be exploited first, followed by others that affect both power

and area. For example, supply voltage is a major parameter for power reduction, but

it does not affect the area of the design. Similarly, interleaving and folding reduce area

without affecting power, to a first order, as discussed in Chapter 5. Generally, power

is more constraining than area, so the first goal in the optimization is to position

the operating point at the trade-off point illustrated in Fig. 7.11(a), compare the

achieved circuit speed with the required speed, and finally choose a suitable micro-

architecture. Time-multiplexing should be used if the achieved speed is too high,

otherwise pipelining or parallelism should be used. In most wireless applications, the

required speed is very low so time-multiplexed architectures should be used, which is

against the popular belief that parallelism is the best choice due to its power efficiency

(this is only true if the required throughput is very high).

Step 5: Chip Synthesis

The final step for a fixed architecture design is chip synthesis. This step is fairly

straightforward with the support of highly automated, commercial back-end tools.

Due to a limitation of synthesis tools, joint optimization of gate sizing and supply
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Figure 7.12: Layout view of the inverse sqrt design. (235µm× 235µm, 90nm CMOS)

voltage cannot be performed, because the standard cell libraries are typically charac-

terized for a single value of supply voltage.

Following the lessons of continuous circuit-level optimization, gate sizing is most

effective for small incremental delays, so the clock cycle constraint for initial synthesis

should be set to be about 20% − 30% more aggressive than the required speed. The

result of initial synthesis is basically a fixed architecture of the design (e.g. type of

adder and multiplier). The next step is to perform incremental compilation on this

design to utilize gate sizing for power reduction.
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Register Retiming (Optional)

Optionally, a design can be retimed to optimally (re)-distribute registers in the design.

Hierarchical retiming is performed using the simple procedure outlined in Chapter 5.

The key to highly efficient retiming in terms of CPU runtime is in correctly specifying

block latencies, using block characterization results like those in Fig. 7.5. Block-based

retiming is performed followed by incremental compilation at the top-level.

The final phase in producing chip layout is physical synthesis through commercial

place and route tools. A good practice in avoiding synthesis iterations is to over-

constrain the design with some extra budget for clock tree synthesis and routing

steps. Typically, about 10% excess timing is sufficient. The final result of physical

synthesis is a design layout, such as that illustrated in Fig. 7.12 for the inverse square

root block.

Step 7: Power/Area Estimation

Finally, final estimates of power, speed, and area are obtained based on the netlist

with complete parasitic information extracted from layout. In this particular exam-

ple, a 16-bit multiplier consumes about 6× the area of a 16-bit adder. The overall

complexity of the design in Fig. 7.9 is estimated to be about 20 equivalent adders,

including latency balancing registers and control logic. Technology specific, absolute

numbers are omitted here for the sake of generality.

The inverse square root example presented in this chapter is used as a building
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block to implement a much more complex algorithm: an adaptive 4×4 singular value

decomposition (SVD).



137

Chapter 8

Design Example: 4 × 4 SVD

This chapter presents decoupling of a MIMO wireless channel through singular value

decomposition, as an example of joint power and area minimization. The SVD al-

gorithm performs adaptive real-time decoupling of a 4 × 4 complex matrix. Signal

processing, architecture and circuit level techniques are simultaneously considered

during design optimization. Adaptive signal processing for MIMO channel decoupling

is analyzed with focus on the VLSI realization of main building blocks: eigen-mode

decomposition and Grahm-Schmidt orthogonalization. The optimization procedure

and preliminary estimates of power and area are discussed.

8.1 MIMO System Model

Performance of the SVD algorithm can be best evaluated in a realistic closed loop

environment as shown in Fig. 8.1. The channel matrix is estimated at the receiver,
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Figure 8.1: Simulink model of adaptive SVD.

which periodically sends partial channel information V back to the transmitter to

assist in channel decoupling. The throughput is maximized using adaptive modulation

at the transmitter, based on the estimated SNR in spatial sub-channels. The model

also monitors bit errors on a per-channel basis to verify bit-accurate behavior under

ideal channel conditions.

The main building blocks of the SVD algorithm [56] are highlighted in Fig. 8.1.

Blind tracking of the channel is realized in UΣ decomposition and V matrix blocks.

System is modeled using a mix of M-code (S-functions) and fixed-point blocks to

speed-up the simulations. A “fixed-point” behavior is modeled with a floating-point

block followed by register from the XSG library.
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The narrow-band algorithm from [56] is extended to wide bandwidth by simply

interleaving multi-carriers. Ideally, decoupling of the channel has to be performed on

all sub-carriers simultaneously. This can be properly modeled in Simulink with the

choice of appropriate sampling period and time re-ordering of samples to represent

data-stream interleaving. The Simulink model is finally refined with word-size op-

timization that minimizes hardware area, subject to user defined MSE error due to

quantization. After determination of the optimal word-lengths and functional verifi-

cation of the algorithm, the next step is to analyze core building blocks.

8.2 SVD: Signal Processing View

The key task in algorithm description using hardware blocks is to create a partition

of functional blocks, which are described in equation format, into processing elements

that can be mapped to hardware. The first order grouping for simulation purposes

primarily has to satisfy block-level latency requirements to ensure functionally correct

behavior. Block latencies are parametrized to allow hierarchical design specification

as explained in Chapter 7.

8.2.1 Eigen-mode Decomposition

This section studies signal processing operations required for adaptive eigen-mode

decoupling of indoor wireless channels, as part of the SVD algorithm. The SVD in
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Figure 8.2: Adaptive 4-by-4 eigen-mode decomposition algorithm.

[56] reduces matrix operations to vector operations at the expense of extra square root

and division operations. The core of the algorithm is adaptive least mean squares

(LMS) and deflation associated with each antenna.

The algorithm performs LMS-based estimation of eigen-pairs (ui, σi), and defla-

tion for successive rank reduction as shown in Fig. 8.2. The eigen-modes are updated

every symbol period. Square root and division are implemented using an iterative

Newton-Rhapson method achieving single-iteration convergence under slow channel

variations. The algorithm is highly adaptive; the step-size of the UΣ LMS is also

adaptively adjusted as 0.05/λi.

The narrow-band algorithm described in Fig. 8.2 is extended over 16 sub-carriers.

Each sub-carrier performs the same operation, which is convenient for the data-stream

interleaving presented in Chapter 5.
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8.2.2 Estimation of V matrix

The estimation of V matrix is quite simple in comparison to the eigen-mode decom-

position. Tracking of the V matrix is done concurrently on a per-vector basis as

shown in Fig. 8.3. This information is sent back to the transmitter with periodicity

of a couple hundred symbols. For reduced frequency of feedback information, esti-

mation of the V matrix is done using the detected symbols at the receiver instead of

transmitter-based estimation that relies on previously transmitted symbols [56].

One caveat for the SVD algorithm is that one of the matrices U or V has to

be periodically orthogonalized to guarantee closed loop convergence. Since the es-

timation of V is done based on detected symbols, which have prior assumption of

U , small phase of amplitude variations can drive the algorithm out of stability if the

vectors are not orthogonal. Orthogonalization of the V eigen-vectors is forced and

the orthogonalized set of vectors is sent back to the receiver.

The Grahm-Schmidt orthogonalization procedure [88] is used for vector orthog-

onalization. It is an interesting signal processing operation by itself, since vector

projection onto an orthogonal base is commonly found in communication algorithms.



CHAPTER 8. DESIGN EXAMPLE: 4 × 4 SVD 142

Grahm-Schmidt Orthogonalization

The Grahm-Schmidt procedure constructs a set of orthonormal waveforms out of a

set of finite energy signal waveforms, [88]. The first waveform is simply constructed

by normalization to unit energy. Each successive waveform is constructed by first

computing the projections of prior waveforms from the new base onto the current

waveform, then normalizing the result to unit energy. This procedure is detailed on

the example using a set of four vectors {v1, v2, v3, v4}, Eq. (8.1).

v1n =
v1√
v†

1 · v1

v2p = v2 − v1n · v2, v2n =
v2p√

v†
2p · v2p

v3p = v3 − v1n · v3 − v2n · v3, v3n =
v3p√

v†
3p · v3p

v4p = v4 − v1n · v4 − v2n · v4 − v3n · v4, v4n =
v4p√

v†
4p · v4p

(8.1)

8.3 SVD: Circuit Perspective

The main idea to explore at the circuit level is how to make use of the excess speed

available in today’s technology, compared to the clock rate required from a direct-

mapped parallel realization of a digital baseband. This allows for aggressive voltage

scaling and gate sizing to minimize power consumption. The goal is to keep the

energy-delay sensitivity balanced in across pipelined logic.
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Circuit-level results are essential in choosing the optimal micro-architecture, which

is tightly coupled with the required supply voltage. An important trade-off to consider

at very low Vdd is whether to store data in memory or flip-flops, since these structures

are first to fail at low voltage, [31].

Supply voltage scaling is beneficial for the minimization of active power in logic

blocks and leakage power in memories. The lower limit to Vdd scaling is commonly

found in SRAM memories.

8.3.1 Voltage Scaling Limit: SRAM Memory

This section examines the lower limit on supply voltage scaling in a standard SRAM

module optimized for nominal supply voltage. By reducing the standby supply voltage

to its limit, that is the Data Retention Voltage (DRV), leakage power can be sub-

stantially reduced. An analytical model for DRV as a function of process and design

parameters is found in [89], [90]. The derivation presented is based on sub-threshold

current model, applicable to very low Vdd. The model is verified using simulations

and also measurements from 32Kb SRAM chip in a 0.13µm technology.

A commercial SRAM module with a high-Vt process is shown to be capable of

sub-300mV standby data preservation, Fig. 8.4. Under this low standby Vdd, leakage

power saving of more than 90% can be achieved with a dual-rail standby scheme in

[90]. The DRV is observed to be a strong function of process variation and SRAM cell

sizing. Due to large on-chip variation, the DRV of the 32Kb SRAM module ranges
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Figure 8.4: Histogram of data retention voltage in SRAM cells (130nm process).

between 60mV and 390mV, with the mean value around 120mV.

While the memory states can be preserved at sub-300mV Vdd, adding an extra

guard band of 100mV to the standby Vdd enhances data stability. With the resulting

490mV standby Vdd, SRAM leakage current can still be reduced by 85%. The long

tail of the histogram increases the minimal Vdd quite substantially. An important

design decision is to store data directly in pipeline registers to be able to aggressively

reduce the supply voltage below DRV.

8.3.2 Optimal Design at Scaled Vdd

This section presents a procedure for design optimization at a reduced Vdd withing

synthesis environment that works with nominal supply voltage. Transistor level sim-

ulations of a 90nm standard-cell inverter optimized for 1V shows that Vdd can be
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via gate sizing and VDD reduction.

scaled down to 0.4V, without compromising static VTC characteristic of logic gates,

Fig. 8.5(a). The target clock speed for a chosen architecture is 64MHz at 0.4V in the

SS corner which translates into 512MHz timing constraint for logic synthesis under

the worst case model (0.9V, 125C).

Due to limitations of the synthesis tool, a sequential procedure is applied to bal-

ance the trade-offs with respect to logic sizing (W ) and supply voltage (Vdd) [91].

First, logic synthesis is constrained with a 20% slack at the nominal supply, followed

by sizing optimization, as illustrated in Fig. 8.5(b). The supply voltage is then scaled

down to 0.4V to balance the sensitivities to 0.8, resulting in a design optimized for the

target speed of 64MHz. The sensitivity information with respect to gate sizing can

be simply obtained from the power and speed estimates of incremental compilation

around the design point, while Vdd sensitivity is calculated using Eqs. (3.9) and (3.10)

from Chapter 3.
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This procedure can be applied to any fixed architecture design. Architectural op-

timization is done in Simulink, based on the energy-area-delay estimates of building

blocks such as add or multiply. Word-length reduction is also performed using an

automated Simulink-based FFC optimizer [86] that minimizes hardware area sub-

ject to quantization error at the output. The word-length optimization results in a

30% reduction in area and energy compared to a 16-bit design for the case of UΣ

decomposition block.

8.4 Optimizing VLSI Architecture

Architectural optimization minimizes area and energy/power for a fixed throughput.

The minimum in area and energy is achieved using the architectural/circuit techniques

that yield largest area or energy savings for a given decrease of throughput, starting

from a direct-mapped architecture at a nominal supply. This process is repeated

until all the techniques are balanced, [91]. The clock speed required to implement the

algorithm in a direct-mapped parallel architecture is significantly below the capability

of current technology. This is used to reduce power and area through concurrent

architecture and circuit-level optimizations.

Techniques for energy and area minimization are illustrated in Fig. 8.6. Starting

from a reference design with optimal Vdd and W , interleaving and folding reduce the

area without an energy increase, as shown in Fig. 5.3 in Chapter 5. Both techniques

introduce pipeline registers around feedback loops, but also speed-up the clock to
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maintain throughput, thus coming back to the original point on the energy-delay line

of pipelined logic blocks (assuming negligible overhead in registers). Parallelism and

pipelining map out to approximately the same energy point, with parallelism requiring

more implementation area. This favors the pipelining approach in technologies with

high leakage power. Time-multiplexing decreases the area, but may increase energy

substantially, unless the delay of the pipelined logic blocks in the reference architecture

is very long.

Architectural transformations illustrated in Fig. 8.6 are the core of the design

methodology. The architectural techniques outlined here are applied next to the

eigen-mode (UΣ) decomposition algorithm and the Grahm-Schmidt orthogonalization

procedure.
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8.4.1 Architecture for Eigen-mode Decomposition

The UΣ block is optimized for 16 simultaneous 4×4 matrix decompositions on 1MHz-

wide sub-carriers. Since 1MHz-wide sub-channels require 1MS/s to process the data, a

direct-mapped architecture needs a 1MHz baseline clock to realize the Alg∗ operation

with one cycle of latency. The critical loop of the algorithm has 6 real multiply, 11

add, and 2 mux operations. While this is feasible within 1µs, even at a reduced Vdd,

area minimization dictates a streamed architecture with folding, resulting in a 64MHz

clock rate (1MHz × 16 sub-carriers × 4 antennas).

Using data-stream interleaving over antennas/vectors and sub-carriers, Fig. 8.7(a),

the area and routing complexity are reduced. Vectoring and re-organization in time

domain allows for folding over the antennas, Fig. 8.7(b), for further area reduction.

This is the final architecture used in the ASIC realization. Memory inside the Alg∗

block (∼64Kb) is directly realized in pipeline registers to allow aggressive Vdd scaling.
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Table 8.1: Area of UΣ block architectures. (ASEQ/ALOG = 1%, ADef/AUΣ = 0.5)

Direct mapped 16 ·
(
4ASEQ,LOG

UΣ + 3ASEQ,LOG
Def

)
Interleaved 16 ·

(
4ASEQ

UΣ + 3ASEQ
Def

)
+ 4ALOG

UΣ + 3ALOG
Def

Intl/Fold 64 ·
(
ASEQ

UΣ + ASEQ
Def

)
+ ALOG

UΣ + ALOG
Def

In the direct-mapped parallel implementation (reference design), the area of the

sequential elements is about 1% of the logic area, with the deflation block being

about half the size of the UΣ block. Starting from the reference design, the area

of architectures with interleaving and combined interleaving and folding is obtained

using the equations in Table 8.1. The area of data-path logic is shared by sub-carriers

and also over antennas, leading to a 36× reduction in total area due to interleaving

and folding combined.

Techniques for energy and area minimization are illustrated in Figs. 8.8, 8.9. Upon

word-size optimization, architectural optimization is performed based on the circuit-

level energy-delay characteristics and the top-level throughput specification. The

final architecture is taken through logic synthesis that also optimizes the gate size.

All techniques combined result in 64× area and 16× power reduction.

The example presented in this section is quite complex, but highly regular; the

same signal processing operation is performed on multiple independent data-streams.

Operations are partitioned on a per vector basis, interleaving and folding the data

for substantial area reduction. The next example examines the Grahm-Schmidt or-

thogonalization procedure, where such a convenient partitioning is not possible.
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memory based time-multiplexing approach.

8.4.2 Architecture for Grahm-Schmidt Orthogonalization

The concept of Grahm-Schmidt orthogonalization (GSO) is repeated in Fig. 8.10(a).

Two basic operations are indicated in boxes A and N . In the figure, v1 − v4 are

complex vectors of dimension 4, and v1n − v4n is their orthogonal form. Since input

vectors v1 − v4 experience different signal processing operations, this algorithm is not

suitable for straightforward interleaving. Instead, time-multiplexing is applied to the

repetitive operations A and N .

The regular time-multiplexing (TM) introduced in Chapter 4 is possible, but this

results in enormous routing complexity. Each of the lines in Fig. 8.10 represents a
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Table 8.2: Summary of GSO implementations.

Architecture Direct mapped Time mux (TM) TM w/ memory

Area (silicon/FPGA) 2.6mm2/60k 1.2mm2/14k 1.0mm2/14k
Total wire length 6.6m 3.2m 2.2m

complex vector with a certain number of bits. For example, a vector of dimension 4

and 16 bits for in-phase and quadrature components is equivalent to 4×16×2 = 128

signal wires in hardware, and this number is further multiplied by the level of time-

multiplexing (4 for block N , 6 for block A). So, traditional time-multiplexing results

in sizable multiplexing overhead in terms of interconnect complexity.

8.4.3 Routing: Memory as a MUX

A more attractive hardware solution for the GSO implementation is the memory-

based time-multiplexed design, as shown in Fig. 8.10(b). This approach eliminates

some of the routing overhead from traditional time-multiplexing, by sharing a 128

bit data bus over multiple operands. To illustrate the savings in interconnect as

well as area, three different architectures are synthesized: direct-mapped, regular and

memory-based time-multiplexing.

The summary of silicon area and interconnect length provided in Table 8.2 shows

a 50% reduction in total interconnect length when time-multiplexing is done with

memory rather than using the traditional approach. This is beneficial for place and

route and also for reduction of the power dissipated in switching of interconnect.
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8.5 Estimates from Synthesis

The algorithm for adaptive UΣ decomposition is implemented in silicon. Expected

power and timing estimates from synthesis are presented here, followed by an analysis

of energy and area efficiency. Measured results are found in the next chapter.

8.5.1 Timing and Power

Timing and power are based on the estimates at nominal supply voltage. Logic

synthesis is done at the nominal voltage used for characterization of the standard-

cell library, as discussed earlier in this chapter. For correct timing, the design is

constrained to meet the timing constraints under the worst case (125C, 0.9V). A

standard-Vt process is chosen to allow more leakage in order to balance the leakage

and switching components of power, [91]. A 20% timing margin is also included for

routing overhead and avoidance of synthesis iterations.

The power estimation from logical and physical synthesis under different process

corners is summarized in Table 8.3. Data corresponding to the typical corner is used

in further analysis since expected operation is at room temperature. Scaling the

supply voltage from 1V down to the desired 0.4V operating point results in a 10×

reduction in clock frequency and a 70× reduction in total power. The expected power

consumption at the desired operating point (64MHz, 0.4V) is 14mW.

The power estimates are further analyzed down at the block level. Figure 8.11

illustrates the power estimates back-annotated in Simulink. The area of the blocks
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Table 8.3: Power estimation from chip synthesis.

Corner worst (125C, 0.9V) typ (25C, 1.0V) best (-40C, 1.1V)
P(mW) Psw Plk Ptot Psw Plk Ptot Psw Plk Ptot

Synth 550 252 802 659 3.3 662 792 3.7 796
Layout 804 316 1120 971 5 976 1174 6 1180
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Figure 8.11: Power estimates back-annotated to Simulink environment.

indicated in the figure is proportional to their power since the design is retimed to

balance hardware intensity in data-path logic. This partitioning allows for comparison

of various building blocks. About 20% of the total power/area is used for data re-

ordering that supports interleaving and folding.

8.5.2 Study of Energy and Area Efficiency

The estimates from chip synthesis are used to predict the power and area efficiency

of the design. This can be simply done, starting from basic definitions.
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Energy Efficiency

Energy efficiency is defined as the amount of energy required to perform an operation.

Counting the number of operations and energy per unit time, it turns out that energy

and power efficiency are the same, both expressed in MOPS/mW, Eq. (8.2).

Energy efficiency =
# operations

energy required
=

# operations

nJ

=
op/s

nJ/s
=

MOPS

mW
= Power efficiency

(8.2)

In this study, a 12-bit equivalent addition is used as the atomic operation. Block

characterization shows that an equivalent multiply is about 6 times more complex,

in terms of area and power. The total computational complexity of the UΣ block

is equivalent to 700 12-bit equivalent add operations. At 64MHz, this amounts to

44.8GOPS, resulting in an estimated energy/power efficiency of 3.2GOPS/mW.

To analyze the achieved efficiency, it is instructive to examine the design param-

eters that affect the energy efficiency the most, as suggested by Eq. (8.3). Neglecting

the leakage power (which is estimated at about 0.5% of the total), the efficiency for-

mula simplifies to the inverse of the switching energy. Energy/power efficiency can

be thus improved by minimizing the total capacitance Csw,op charged per operation

and/or by minimizing the supply voltage Vdd.

P/E efficiency ∝ f

f · Csw,op · V 2
dd + Pleakage

→ 1

Csw,op · V 2
dd

(8.3)
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The above formula reveals that the highest efficiency per computation is achieved

with techniques that allow voltage scaling and down-sizing of the data-path logic.

Parallelism and pipelining enable this, while time multiplexing does not. Time-

multiplexed architectures also have sizable overhead in data flow control and memory

required to support the time-multiplexing, which adds to their inefficiency. A com-

prehensive study of the energy efficiency in various architectural techniques can be

found in [7].

Looking at the energy efficiency alone is misleading, since it can be improved by

parallelism with increased area. More complete information about the cost of a design

is gathered by looking into the efficiency of silicon area utilization.

Area Efficiency

Area efficiency is defined as the amount of silicon area required to perform an opera-

tion per unit time. For highest area efficiency, the goal is to maximize the utilization

of data-path logic. This can be done by interleaving streams of data such as in the

UΣ example.

By sharing data-path logic, UΣ decomposition is implemented in just 3.5mm2

of core chip area in a 90nm CMOS technology (for comparison, the Simulink/XSG

model takes 35k FPGA slices). The area related to the pipeline registers is about

40% of the total chip area. The estimated computational complexity of 44.8GOPS

translates into a 12.8GOPS/mm2 area efficiency.
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The area efficiency can be improved by increasing the speed of computation, which

is implicit to time-multiplexing. This also increases the energy, so both metrics have

to be simultaneously considered. The next chapter presents a chip implementation

that demonstrates simultaneous power/area optimization.
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Chapter 9

Experimental Verification

This chapter presents experimental validation of the concepts developed throughout

the dissertation. An ASIC realization of the MIMO baseband processing for a multi-

antenna WLAN is described. The chip core which operates at reduced supply voltage

is presented, followed by discussion of the on-chip level converter that interfaces the

core with the I/O pads operating at standard 1V supply. The experimental Simulink-

based setup is then described, followed by an analysis of measured results.

9.1 Test Chip

The chip implements a 4×4 adaptive eigen-mode decomposition algorithm outlined in

the previous chapter, with combined power and area minimization achieving a power

efficiency of 2.1GOPS/mW in just 3.5mm2 in a 90nm digital CMOS technology. The

die micrograph is shown in Fig. 9.1. The chip is fabricated in a standard-Vt process
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Table 9.1: Summary of main optimization techniques.

Opt technique Area reduction Energy reduction

Word-length opt 30% 30%
Gate sizing 20% 40%
VDD scaling N/A 7×
Interleaving / folding 13.8× / 2.6× −2%

that offers good balance between the leakage and active components of power. Since

Vth is reduced, a lower Vdd is required for the same speed, which results in reduced

overall power consumption. The leakage power is measured to be 10% of the total

power in active mode.

9.1.1 Eigen-mode Decomposition Core

The chip core is optimized for operation at 400mV as discussed in Chapter 8. Scaling

of supply voltage is the key to achieving high power/energy efficiency. The main

optimization techniques used in this design and their impact on energy and area

efficiency are summarized in Table 9.1. The area of the design is substantially reduced

through the combined interleaving and folding of the Alg operation (Figs. 8.2, 8.7 in

Ch. 8). This is achieved without much penalty in energy (only a 2% increase) since

multiplexing overhead is negligible compared to the complexity of the Alg operation.

Physical synthesis is done using an Astro based flow, which achieves high layout

density. The first attempt with an 80% initial density could not satisfy the routing

constraints, so the initial density of standard cells was then set at 75%. The resulting
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Figure 9.1: Die micrograph of eigen-mode decomposition chip. Die size: 2.3×2.3mm,
chip core: 1.9 × 1.9mm. (7M 1P 90nm CMOS technology)

layout after routing, clock tree optimization steps, and insertion of hold-time fixing

buffers is 88% dense. More details about synthesis steps are found in Appendix A.

9.1.2 On-Chip Level Converter

The standard cross-coupled PMOS level converting circuit [92] is used, as shown

in Fig. 9.2. A dual-well approach is used in layout to separate VDDL from VDDH

and maintain the standard cell height. Level converting cells are placed at the core

boundary, close to the output pads. Level converters are used only at the output,

while core inputs are driven with a full-swing signal.
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Figure 9.2: Schematic of an on-chip level converter (VDDL = 0.4V, VDDH = 1V ,
numbers indicate transistor W in µm, L = Lmin unless indicated otherwise).

Chip outputs are delivered to the printed circuit board (PCB) through digital

pads which operate at a standard 1V supply. An extra analog pad, connected to the

input of level converter, is used to allow testing of the level converter. Both the chip

and level converter are functionally verified down to 250mV, 10MHz operation.

9.2 Experimental Setup

The Simulink environment is also used for experimental verification. This is the final

touch-point between the FPGA and ASIC flows. The Simulink design is programmed

into the FPGA which feeds the data into the ASIC and samples outputs for real-time

comparison. The Simulink model that enables such an approach is shown in Fig. 9.3.

Outputs of the comparison are stored in block RAMs on the FPGA, which can be

read out through the serial port. Signals that control the read and write ports of the

block RAMs as well as other controls, such as reset and clock enable, are set by the

user.
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Figure 9.3: Simulink environment for real-time hardware comparison.

Figure 9.4 shows part of the experimental setup that includes the FPGA and chip

boards. The FPGA board is an infiniband break-out board (i-BOB) that is a part

of much larger system at the BWRC, [93]. In that system, the i-BOB is used as RF

interface with an array of FPGAs that emulate the baseband. In this experimental

setup, the i-BOB is used purely for signal processing purposes. The FPGA chip (Xil-

inx Virtex-II Pro) has dedicated 18-bit multipliers, a PowerPC processor, a memory,

and a regular FPGA fabric. Dedicated FPGA multipliers are used throughout the

design in order to save the FPGA fabric for other functional blocks. With this ap-

proach, the entire design fits in one chip quite easily (13,400 slices, less than 50%

utilization).

Communication between the i-BOB and the chip board is done through general
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Figure 9.4: Test setup that performs real-time hardware comparison.

purpose I/Os with 3.3V , single-ended signaling, as required by the FPGA. Level

conversion from 3.3V (FPGA) to 1V (ASIC) is realized on the ASIC board in a form

of simple resistive divider with 50Ω termination, while up-conversion is done with

integrated comparators.

9.3 Measured Results

The result of the adaptive 4 × 4 eigen-mode decomposition is shown in Fig. 9.5.

The chip is trained with a stream of identity matrices, after which it goes into blind

tracking mode. In the blind tracking mode, PSK modulated data is sent over the
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Figure 9.5: Measured tracking of slowly varying eigen-modes in a 4×4 MIMO channel.

antennas with constellations varying according to the estimated SNR, achieving up

to a 250Mbps over 16 sub-carriers. The achieved throughput is quite high, consid-

ering that the implemented algorithm is limited to use of constant magnitude PSK

modulation. On average, 10 bits per symbol are transmitted.

A 100MHz operation is measured at supplies from 385mV to 425mV over 9 die

samples, with a 2× variation in leakage power. This performance level corresponds

to TT corner (the chip was optimized for 64MHz in SS corner). The leakage and

clocking power are 12% and 30% of the total power, respectively. Area and power of

functional blocks at 100MHz are given in Table 9.2, where area and power breakdown

is based on synthesis estimates. Die features are summarized in Table 9.3.
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Table 9.2: Area and power of functional blocks.

100MHz Power (mW) Area (mm2) GOPS

UΣ LMS 20 2.31 42.6
Deflation 14 1.19 27.4

Table 9.3: Chip features. (op = 12-b add)

Technology 90nm CMOS
Core area 1.9 × 1.9mm
Die area 2.3 × 2.3mm
Pad count 120
IO/core VDD 1V / 0.4V
Cell count 420,304
Frequency 100MHz
Power (act/leak) 30mW / 4mW

Power Efficiency 2.1GOPS/mW
Area Efficiency 20GOPS/mm2

The computational throughput of 70GOPS is implemented with 0.5M gates at a

100MHz clock and 385mV supply, dissipating 34mW of power. Measured power is

30% higher than the gate-level post-layout estimate. With optimal channel conditions

the implemented algorithm delivers up to 250Mbps over 16 sub-carriers.

Comparison to Prior Work

Using derivations in Chapter 6, Table 6.1, the resulting FOM of 8.1 pJ/bps/Hz is

achieved, which is about 2× better than the reference point established in prior work.

More details for existing designs, such as the number of operations, is needed for

accurate comparison.
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Figure 9.6: Trade-off between Energy-Efficiency and Logic Area in the test design.

Exploration of Energy-Area Space

The design optimized for 0.4V is just a single point in the energy-area space. It can be

optimized for a different voltage using a different architecture, based on energy-area

tradeoff discussed in Chapter 4.

Taking into account the area of logic gates and pipeline registers in the experi-

mental design, Figure 9.6 plots the trade-off between energy-efficiency and logic area

(including pipeline registers). The dot indicates a design optimized for 0.4V oper-

ation. Starting from this point, energy-efficiency can be traded for smaller area by

increasing the level of time-multiplexing, which requires increase in supply voltage
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and hence reduced energy-efficiency. This graph is not completely accurate, because

it neglects area overhead of time-multiplexing and parallelism, but does indicate a

general trend.

Going in the direction of increased parallelism, the energy-efficiency can is im-

proved by further scaling the supply voltage, but the area increases with the number

of parallel units. However, there is a limit to supply voltage scaling. As Vdd scales

down, at some point memory will fail, followed by a failure in flip-flops, and finally

the logic gates. Another effect illustrated in Fig. 9.6 is that at some point leakage

energy will start rapidly increasing due to increased delay at very low voltage. The

energy-efficiency peaks at the point of minimum energy. With further Vdd scaling,

overall energy increases, so the energy-efficiency decreases despite increased area.

The result in Fig. 9.6 is quite meaningful in the optimization of power constrained

designs. When power is limited, which is often the case in practical designs, the

area can be minimized as follows. Given the power limit, desired power efficiency

is calculated from the required amount of functionality, using a known relationship

between the energy per operation and supply voltage. This determines the desired

operating point on E-D line. The optimization procedure then applies appropriate

transformations to reach the desired point.



168

Chapter 10

Conclusion

This dissertation presents a sensitivity based optimization framework for power and

area efficient VLSI realization of signal processing algorithms for wireless communica-

tions. The choice of architecture is highly influenced by the power-speed capability of

the underlying technology. It is thus important to obtain these technology estimates

as early in the design process as possible. Characterization of a few basic blocks from

the Simulink hardware library provides much needed information, so that optimal

architecture can be chosen early at the Simulink level, without the need for extra

feedback information. The design process starts from the algorithm description in a

simple Matlab-Simulink environment, followed by an automated flow for rapid FPGA

evaluation and VLSI implementation. Several examples commonly found in commu-

nication signal processing are demonstrated. A power efficiency of a 2.1GOPS/mW

is experimentally verified in the 4 × 4 SVD example.
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Figure 10.1: Design space exploration.

10.1 Research Contributions

The goal of this research is to significantly improve power/area efficiency in wireless

baseband signal processing through effective design optimization across the boundary

of algorithm, architecture, and the underlying circuits. This dissertation presents a

methodology that allows for large design space exploration including algorithm mod-

eling, signal processing architectures, and circuits, as illustrated in Fig. 10.1. All

of these areas are combined under a unified framework for rapid hardware evalua-

tion and implementation of very complex signal processing algorithms. Several key

contributions which address the goal of this research are:

• Developed a sensitivity based optimization framework that provides insight into

the effectiveness of various tuning variables in the design. A fixed point in the
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optimization is reached when marginal returns to all variables are balanced.

• Applied the sensitivity framework to minimize the energy consumption subject

to a delay constraint at the circuit level. Multi-variable optimization of gate

size, supply and threshold voltage is applied to an inverter chain, a memory

decoder, and an adder.

• Demonstrated significant energy savings at the circuit level: a 50-70% of energy

reduction can be achieved with only 10% excess delay, compared to the design

optimized for minimum delay through gate sizing. It has been also demonstrated

that significant energy reduction can be achieved without delay penalty, by

simply balancing the sensitivities to all variables in the design.

• Provided insight into effectiveness of various optimization variables at the circuit

level, starting from the design sized for minimum delay: 1) gate sizing is the

most effective for small incremental delays, up to about 20% excess delay due to

infinite sensitivity at the minimum delay, 2) supply voltage scaling is the most

effective for large incremental delays, above 20%.

• Detailed analysis of micro-architectural techniques of parallelism, pipelining,

and time-multiplexing revealed that the energy is best minimized when the

leakage and switching components of energy are about equal. The minimum of

the total energy is fairly broad in the range of ELk/ESw from 0.1 to 10.

• Established formalism for architectural selection in the energy-area space, for
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a fixed throughput, as demonstrated with an ALU design implemented with

varying degrees of parallelism and time-multiplexing.

• Exported main optimization results from the circuit level into a commercial

chip design flow: gate sizing is exploited by synthesizing designs with a 20%

slack, supply voltage is exploited by constraining the design with an equivalent

specification at the reference voltage for a technology.

• Developed a Matlab/Simulink model for an adaptive 4× 4 SVD algorithm that

evaluates algorithm performance under hardware constraints, such as latency

and finite word-lengths.

• Developed heuristic for hierarchical word-size selection and applied it to the

SVD algorithm. This was necessary due to limited memory resources in a

simulation-based perturbation approach.

• Developed a methodology for hierarchical loop retiming in Simulink-based ASIC

chip design flow. The proposed approach allows optimization of macro-architecture

at the Simulink level. Block based approach also significantly improves runtime

compared to top-level retiming done by synthesis tools.

• Applied aforementioned concepts to design and power/area optimal implemen-

tation of an adaptive 4 × 4 SVD algorithm over 16 sub-carriers. Prototype

silicon achieves the energy-efficiency of 2.1GOPS/mW and area efficiency of

20GOPS/mm2, running at a 100MHz clock under 385mV supply voltage.
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• Developed FPGA assisted ASIC test and debug methodology that enables ASIC

testing through real-time hardware co-simulation. Test vectors are exported

from Simulink, thereby greatly improving design efficiency and shortening the

design cycle.

The methodology established in this dissertation therefore enables rapid ASIC

implementation of complex signal processing algorithms, from algorithm description,

through design optimizations, and final ASIC verification, within a unified Mat-

lab/Simulink environment.

10.2 Future Work

This dissertation has provided the framework for a variety of continuing research di-

rections. Further research is required on flexible architectures and CAD flow method-

ologies addressing energy and power efficiency in future wireless devices.

Looking forward, it is interesting to consider the cost of adding flexibility in multi-

standard wireless devices. Two possible directions are as follows: investigate the

flexibility required for the execution of common operations across multiple standards

and study the flexibility of having multi-functionality on a single hardware unit.

Study of various baseband algorithms is required to identify common computational

kernels that need to be optimized for power and area. Additional research is needed

to quantify the cost of varying degrees of flexibility on power and area.
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As process technology continues to advance, the impact of interconnect on power

and area becomes more pronounced. Thus, further investigation of energy reduc-

tion principles related to interconnect, such as low-swing signaling, is needed. Sim-

ilarly, with shrinking device dimensions, the impact of process parameter variations

on power and performance is increasing. Robust circuit design methodologies have

to be therefore developed to reduce the impact of variations.

As an integral part of the design cycle, new concepts in VLSI design have to

be ported over to automated CAD environment, to improve the design productivity.

Additional research is needed to investigate power-area-speed trade-offs in logic blocks

and memories in deeply scaled technologies, to determine optimal architectures for

future wireless devices.
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Appendix A

Chip Synthesis & Test

A.1 CPU Runtime

Complete physical synthesis of the chip in Fig. 9.1 completed in 26 hrs (∼ 20,000

gates / hour). CPU runtime details are summarized in Table A.1.

Table A.1: CPU runtime of back-end steps for chip in Fig. 9.1.

Design phase CPU runtime (hr) Total runtime (hr)

Import 0:05 0:05
Floorplan 0:10 0:15
Placement 3:30 3:45
Tree synthesis 0:30 4:15
Post CTS 2:30 6:45
Route 3:30 10:45
Post route 15:00 25:15
Finish 1:00 26:15
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Figure A.1: Conceptual diagram of ASIC test board.

A.2 Test Methodology

The ASIC test board is sketched in Fig. A.1. The board has thee power supply

domains: a board-level 3.3V supply which is compatible with general purpose I/O

(GPIO) pins that interface with the FPGA board, a 1V supply for chip I/Os, and a

0.4V supply for the ASIC core. Both 1V and 0.4V supplies are generated using tunable

linear regulators (LR). A resistive divider bank is used to down-shift inputs to the

chip, while active comparators are used to up-convert outputs back to 3.3V. Power

is measured using current sensing (CS) circuitry consisting of an instrumentation

amplifier with a tunable gain and the output level adjusted with a voltage reference.


