
Standby Power Management Architecture for Deep-
Submicron Systems

Michael Alan Sheets

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-70

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-70.html

May 19, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Standby Power Management Architecture for Deep-Submicron Systems

by

Michael Alan Sheets

B.S.C.E. (Georgia Institute of Technology) 1999
M.S. (University of California, Berkeley) 2003

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Jan Rabaey, Chair
Professor Robert Brodersen

Professor Paul Wright

Spring 2006

The dissertation of Michael Alan Sheets is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2006

Standby Power Management Architecture for Deep-Submicron Systems

Copyright 2006

by

Michael Alan Sheets

1

Abstract

Standby Power Management Architecture for Deep-Submicron Systems

by

Michael Alan Sheets

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jan Rabaey, Chair

In deep-submicron processes a significant portion of the power budget is lost in standby

power due to increasing leakage effects. For systems that have long idle times punctuated

by bursts of activity, such as PDAs, cell-phones, and wireless sensor networks nodes, this

standby power consumption reduces the effectiveness of duty-cycling. This work surveys

a number of subthreshold leakage reduction techniques and identifies supply rail gating

(MTCMOS) as the most promising. MTCMOS is a dynamic technique that has two

distinct modes: an active processing mode and a lower power sleep mode.

The smallest area implementations of MTCMOS have the side-effect of losing the

state of the system when in sleep mode. This complicates the resumption of the active

mode, because traditional designs are intolerent to the loss of state. This work presents

a general framework to reduce the state maintainence requirements during sleep mode,

without losing information required to resume the active mode. The framework is applied

to finite state machines and microprocessors, since these are commonly used in system

design.

Partitioning the system into subsystems with individually controlled supply rails (termed

power domains) allows fine-grain control of the power mode for portions of the chip. Each

power domain must be dynamically put in the appropriate power mode to ensure correct

system operation while minimizing power consumption. This control logic collectively

forms the core of a power manager. Most power manager implementation approaches are

largely ad-hoc and custom designed for each application.

This work presents a structured methodology and architecture for the implementation

2

and control of power domains to form a power managed system. Approaches to the

partitioning and implementation of individual power domains are explored. The functional

requirements for the power manager are examined, including the physical and temporal

composition of the power domains.

This methodology and architecture are demonstrated on the protocol processor for the

PicoRadio wireless sensor network node. The Charm test chip, implemented in 130nm

CMOS, uses supply rail gating for eight power domains to reduce standby power 92%.

Professor Jan Rabaey
Dissertation Committee Chair

i

For my parents

ii

Contents

List of Figures v

List of Tables vii

Acknowledgments viii

1 Introduction 1
1.1 Problem statement . 1

1.1.1 Increasing dominance of standby power 1
1.1.2 Impact on burst systems . 2

1.2 Thesis . 3
1.2.1 Power domain modes . 4
1.2.2 Power managed system . 4

1.3 Overview of thesis . 5
1.3.1 Contributions . 5
1.3.2 Outline . 6

2 Power Reduction Techniques 7
2.1 Standby Power Reduction . 7

2.1.1 Clock Gating . 7
2.1.2 Reducing Standby Activity . 9

2.2 Sources of Static Power . 9
2.2.1 Gate Leakage . 9
2.2.2 Subthreshold Leakage . 11

2.3 Devices and Circuits . 11
2.3.1 Raising the Threshold Voltage . 12
2.3.2 Power Rail Gating . 17
2.3.3 Comparison of Techniques . 21

3 System State 23
3.1 Types of State . 23
3.2 Methodology . 25
3.3 Case Studies . 26

3.3.1 Finite State Machines . 26

CONTENTS iii

3.3.2 Extended Finite State Machines . 34
3.3.3 Microprocessors . 41

4 Power Managed System 44
4.1 Power Domains . 44
4.2 Physical Composition . 45
4.3 Temporal Composition . 46

4.3.1 Correctness . 46
4.3.2 Efficiency . 47
4.3.3 Scheduling . 48

4.4 Power Manager Components . 53
4.4.1 Scheduler . 53
4.4.2 System Timewheel . 56
4.4.3 Power Control Network . 57
4.4.4 Domain Controllers . 59

4.5 Locality and Scalability . 59

5 PicoRadio Design Driver 61
5.1 Quark PicoNode System . 61
5.2 Power Domain Architecture . 63

5.2.1 Partitioning . 63
5.2.2 Power Modes . 65
5.2.3 Power Interface . 66
5.2.4 Sleep Mode Implementation . 69

5.3 Power Domain Functionality . 71
5.3.1 Domain ‘dw8051’ . 72
5.3.2 Domain ‘netq’ . 78
5.3.3 Domain ‘dll’ . 80
5.3.4 Domain ‘neighbor’ . 85
5.3.5 Domain ‘serial’ . 87
5.3.6 Domain ‘interface’ . 88
5.3.7 Domain ‘location’ . 89
5.3.8 Domain ‘baseband’ . 90

5.4 Power Manager Architecture . 91
5.4.1 Power Network Interface (PNI) . 91
5.4.2 Time subsystem . 92
5.4.3 Power subsystem . 94
5.4.4 Domain controller subsystem . 97
5.4.5 Command and Event FSMs . 99

5.5 Implementation . 99
5.5.1 Design Flow Overview . 99
5.5.2 Emulation Targets . 101
5.5.3 ASIC implementation . 104
5.5.4 Hierarchical Floorplanning . 104
5.5.5 Power Domain Implementation . 104

CONTENTS iv

5.5.6 JTAG Test Port . 106
5.6 Results . 107

5.6.1 Functional Testing . 107
5.6.2 Leakage Measurements . 110

6 Conclusions and Future Work 113

Bibliography 115

A Charm C Library Header File 120

v

List of Figures

1.1 Leakage and active power trends according to ITRS roadmap. 2
1.2 Duty cycling savings curve with 5% activity factor and accounting for leak-

age power consumption. 3

2.1 Gated and enabled clocks used to reduce switching activity. 8
2.2 Load lines for stack effect . 12
2.3 Stack effect performance degradation . 13
2.4 Circuit for multiple threshold CMOS (MTCMOS) using sleep transistors. . 18
2.5 Circuit variants of MTCMOS that retain the state. 19
2.6 Graph of performance and leakage vs. MTCMOS power switch size for

inverter chain. 20
2.7 Graph of lowest virtual supply voltage vs. MTCMOS power switch size for

inverter chain with VDD = 1.2V. 20
2.8 Graph of performance vs. virtual supply node capacitance for same test

circuit used for Figure 2.6 (W/L = 10). 21

3.1 Baseline and pipelined datapath example circuit. 25
3.2 Basic concept of FSM transformation. 31
3.3 State transition diagram of sleep FSM. 31
3.4 Block diagram of transformed FSM next state logic. 33
3.5 State transition diagram for a basic EFSM. 35
3.6 State transition diagram for EFSM in Figure 3.5 expanded to a FSM. . . . 37
3.7 State transition diagram from Figure 3.6 where the idle checkpoints reduce

to a single configuration. 38
3.8 Algorithm to classify EFSM state by simulation 40
3.9 Abstract block diagram of a basic microprocessor 42

4.1 Example of wasted power using reactive scheduling. 49
4.2 Example scenarios for packet (a) transmission and (b) reception. 50
4.3 Examples of improvements from stochastic scheduling of packet forwarding

scenario. 52
4.4 Block diagram of scenario scheduler inside PM. 54
4.5 Hierarchical tree structure for distributed power managers (DPMs). 60

LIST OF FIGURES vi

5.1 Quark system protocol stack. 62
5.2 Quark system block diagram. 63
5.3 Charm chip power domains and major port interconnections. 65
5.4 Signal interface between domain and the PIF. 67
5.5 Port open/close sequence chart for PIF. 68
5.6 Sleep switch circuit to gate virtual supply (VDDV) rail. 70
5.7 Signal wall circuit used to force signal to ground when the domain is asleep

or the port is closed. 71
5.8 Block diagram of the dw8051 power domain. 72
5.9 Algorithm for microcontroller main processing loop. 77
5.10 Block diagram of the netq power domain. 79
5.11 Block diagram of the dll power domain. 80
5.12 DLL TICER rendezvous scheme for unicast session. 81
5.13 Block diagram of the neighbor power domain. 85
5.14 Block diagram of the baseband power domain. 91
5.15 Block diagram of the Charm power manager. 92
5.16 Block diagram of the time subsystem in the Charm PM. 93
5.17 Block diagram of the power subsystem in the Charm PM. 94
5.18 Session table used to implement the PM scheduling policy. 95
5.19 Circuit diagram of the reset logic in the domain controller. 98
5.20 Overview of design flow used to implement Charm chip. 100
5.21 Mapping an arbitrary network topology to the BEE crossbar switch. 102
5.22 Block diagram of the interface logic used for multi-node emulation on the

BEE. 103
5.23 Power switch cells are regularly spaced to align with the global power grid

(not drawn to scale). 105
5.24 Block diagram of the JTAG test port logic. 107
5.25 Die photo and floorplan of the Charm chip. 108
5.26 Measured waveform showing power domain activity during broadcast packet

transmission. 109
5.27 Bar graph of calculated and measured leakage currents for each domain. . . 111
5.28 Pie graphs of leakage current measurements by power domain. 111
5.29 Pie graph of leakage power measurements by power domain. 111

vii

List of Tables

2.1 Summary of leakage reduction techniques. 22

4.1 Example command set implemented by scenario scheduler. 55

5.1 Complete list of domains and port interconnections. 65
5.2 BIF event signal mapping to processor interrupts. 77
5.3 Packet types supported by the DLL. 82
5.4 Fields in each row of the neighbor table. 86
5.5 Command interface to access the neighbor table. 86
5.6 Truth table of power state for each domain. 97
5.7 Summary of results of Charm test chip. 108

viii

Acknowledgments

Thanks to my advisor and mentor Jan Rabaey. He was instrumental in helping me find

the vision for my thesis, and his technical comments were always punctuated by his razor

sharp wit. The numerous invitations to parties, ski trips, and rafting trips made me feel

like more than just a student. Thanks also to Bob Brodersen, Paul Wright, and David

Culler for serving on my dissertation and/or qualifying exam committees.

This work was funded over the years by a number of sources including the Gigas-

cale Systems Research Center (GSRC), Defense Advanced Research Projects Agency

(DARPA), and the Berkeley Wireless Research Center (BWRC) member companies. In

particular, many thanks to ST Microelectronics for fabrication of several chips over the

years. Also, thanks to Pam Atkinson, Isabel Blanco, and Jennifer Michals of the CalVIEW

office giving me the opportunity to teach the digital circuits distance learning course to

dozens of working engineers, while simultaneously funding the purchase of a red Mini

Cooper with white stripes and several international vacations.

Design of the test chip presented in this dissertation was truly a group effort. Thanks

to Josie Ammer for the baseband processor, Fred Burghardt for the data link layer, Tufan

Karalar for the location processor, Allen Tsao for the emulation environment and countless

other odd jobs, Jonathan Tsao for the serial port logic, Jacob Poppe for the inital software,

Yuen Hui Chee for the clock oscillator, and Huifang Qin for the voltage converter. Extra

thanks to Tufan Karalar for his late-night marathon hacking during the chip tapeout.

Special thanks to all the staff who helped me on countless occasions. Tom Boot was

instrumental in making the BWRC a nice working environment and has been the only

source of constancy in the BWRC front office over the years. Thanks also to Ruth Gjerde

in the graduate division office for patiently answering all my questions while serving up a

giant bowl of rejected Jelly Belly’s straight from the factory. Thanks to Brian Richards,

Kevin Zimmerman, and Brad Krebs for keeping the computers computing all these years.

I wish also to thank Josie Ammer, DeLynn Bettencourt, Tufan Karalar, Ian O’Donnell,

David Sobel, and my many other friends at the BWRC. Not only did they supply me

with a wealth of technical knowledge, they were also engaging and entertaining company

at our daily lunches and weekly Friday beer ritual across the street.

Lastly, I want to thank my family for being very supportive throughout my entire

graduate school career.

1

Chapter 1

Introduction

Power reduction is critical for portable devices to maximize battery life and potentially

to enable operation on scavenged energy. Historically, the focus has been on reducing

dynamic power consumption, since that is where the most power was spent. As process

dimensions shrink further toward deep-submicron, traditional methods of dynamic power

reduction are becoming less effective due to the increased impact of standby power. Cir-

cuits and techniques for reducing standby power consumption are becoming increasingly

common, but these methods are currently rather ad-hoc and lack a formalized method for

inclusion in a power-managed system. This thesis presents a scalable architecture that

reduces standby power through the design and composition of power-aware subsystems.

1.1 Problem statement

1.1.1 Increasing dominance of standby power

The impact of standby power is increasing steadily as process dimensions shrink. In

most systems the two largest components of standby power are subthreshold leakage and

gate leakage. An analysis of trends based on the International Technology Roadmap for

Semiconductors [1] shows that the power lost to leakage is beginning to exceed the power

spent on useful computation [2] as shown Figure 1.1. Several possible solutions for gate

leakage have been proposed at the process level, most through the use of high-K dialectrics

or alternative transistor technologies [3].

CHAPTER 1. INTRODUCTION 2

1995 2000 2005 2010 2015 2020
10

−6

10
−4

10
−2

10
0

10
2

Year

N
or

m
al

iz
ed

 c
hi

p
po

w
er

 d
is

si
pa

tio
n

static power

dynamic power

Figure 1.1: Leakage and active power trends according to ITRS roadmap.

However, many techniques exist today to reduce the impact of subthreshold leakage.

Unfortunately, as will be shown in Chapter 2, most of these techniques significantly de-

grade the performance of the circuit. A common solution is to introduce multiple power

modes to allow a dynamic trade-off between performance and leakage.

1.1.2 Impact on burst systems

The standby power impact worsens for systems that have a low average activity factor,

because leakage power becomes a large percentage of the total power dissipation. Although

these low duty cycle systems have similar leakage to a comparable high duty cycle systems,

they spend less time and power performing useful computation. Thus, a larger percentage

of the power is wasted, which degrades the expected impact of duty-cycling. For example,

in the 5% duty cycle system shown in Figure 1.2, the expected 20× savings is significantly

degraded each year as gate length decreases.

Burst systems are a class of low duty cycle systems where most of the activity is

naturally grouped together in time. This happens often in event-driven systems where

a bustle of activity occurs in response to an input event, and the system is otherwise

idle. Examples of event-driven, burst systems are sensor network nodes, personal digital

assistants (PDAs), and cell-phones. In the case of a sensor network node, the system is

CHAPTER 1. INTRODUCTION 3

1995 2000 2005 2010 2015 2020
0

2

4

6

8

10

12

14

16

18

20

Year

S
av

in
gs

 fa
ct

or

Figure 1.2: Duty cycling savings curve with 5% activity factor and accounting for leakage

power consumption.

usually waiting for a new data packet, a periodic sensor reading, or user input. When one

of these events occurs, the node will process it to completion and then wait for the next

one.

1.2 Thesis

To reclaim the benefits of duty cycling, a burst system must enter a lower power mode

during the idle time. Historically, the lower power mode was implemented by simply

gating the clock which reduced the activity factor component of the dynamic power. Since

dynamic power is no longer the clearly dominant consumer of power, other techniques must

be applied to lower the power during standby. An analysis of state of the art techniques

will be made in Chapter 2.

For all these techniques, it is not necessary for the entire system to be idle at the same

time. Indeed, a finer granularity of control can exploit the way data flows through the

system by dividing the logic into subsystems that interact with discrete events. Each of

these subsystems can then implement its own set of power modes independent of the other

subsystems. This work uses the term power domain to describe a particular subset of the

logic that implements an independent set of power modes.

CHAPTER 1. INTRODUCTION 4

It is the thesis of this dissertation that activity-based integrated power management

reduces the standby power consumption of burst systems through the design and compo-

sition of power domains.

1.2.1 Power domain modes

The concept of power modes is not new, because clock gating has long been used as a

method of reducing dynamic power consumption. In a sense, gating the clock is a method

of switching from active mode to a standby mode. The overhead associated with clock

gating is usually negligible both in implementation cost and performance. Indeed, the

implementation overhead usually consists of a few simple gates, and most systems can

restore a gated clock to active mode within one clock cycle. Commercial synthesis tools

can even add automatic register-level clock gating to an existing design through a simple

transformation of the clock network.

More aggressive power reduction schemes typically have a higher overhead, in terms of

design time, logic complexity, performance, and/or latency. Thus, there exists a penalty for

the implementation of the mode, as well as a penalty for activating it. Power domains allow

different subsystems to have different power modes that can be controlled independently.

A higher level controller, typically called a power manager, determines the desired mode

for each power domain based upon a scheduling policy.

1.2.2 Power managed system

The purpose of a power manager is to control the power modes of the subsystems, usually

minimizing power consumption while still meeting performance requirements. While some

aspects of the power manager, such as scheduling, are the focus of existing research, the

formal architecture of a complete power managed system is less well-understood.

This work employs a common domain power interface to allow design of the power

manager independently of the individual domains. This interface abstracts the details of

a particular implementation, and thus removes the design dependency between the power

domains and the power manager. The goal is to enable design freedom on both sides of

the interface, as power domain designers can implement arbitrary power modes without

constraining the architecture of the power manager. Additionally, the choice of the power

manager architecture does not require the redesign of the power domains.

CHAPTER 1. INTRODUCTION 5

This view allows a scalable view of the power manager, from simple local glue logic

between domains to a complex centralized subsystem. In this model, different architectural

choices can be explored for the same underlying set of power domains. This freedom allows

a plug-and-play approach for power manager architectures, ranging from centralized to

distributed logic, reactive to predictive scheduling, etc. Further, existing research on power

manager architecture can be cast in this model, such as the ChipOS architecture proposed

in [4].

1.3 Overview of thesis

1.3.1 Contributions

A primary contribution of this thesis is that it explores different architectural choices for

a power managed system within a common framework. These choices are explored at two

primary levels: power modes within a power domain and the composition of domains by

a power manager. The main goals of this work are to explore the following.

• Effectiveness of different power mode implementations. Power domains can imple-

ment arbitrary power modes, and this work focuses on those that reduce standby

power consumption.

• Methodology to handle state during standby. The most effective standby power re-

duction techniques have the side-effect of destroying the state of the domain. A

methodology to reduce the standby state requirements is proposed, along with al-

gorithms for the conversion of existing designs to a form more suitable for power

control.

• Physical composition of power domains. One purpose of a power manager is to

compose the individual power domains into a power managed system. Physical

issues includes signaling on the power network, locality of logic, and scalability.

• Temporal composition of power domains. A second purpose of a power manager is to

ensure the power domains are in the correct mode to meet the performance require-

ment. The goal is to find a schedule that also minimizes total power consumption.

CHAPTER 1. INTRODUCTION 6

Thus, the temporal component includes scheduling methods and techniques that

enable power domains to remain in lower power modes longer.

• Proof of concept sensor network node. The ideas presented in this thesis are applied

to the digital protocol stack of a sensor network node. Although the primary mo-

tivation of the work is for sensor network nodes, the methods and results can be

applied to the wider class of burst systems.

1.3.2 Outline

This thesis is organized into the following chapters:

Chapter 1 motivates the need for standby power management and provides an introduc-

tion to the basic ideas and definitions used throughout the work.

Chapter 2 compares existing circuit techniques for standby power reduction and identi-

fies issues with their usage.

Chapter 3 explains the impact of state maintenance upon power domain modes. A

methodology is proposed to address the problem, and it is applied to common sub-

system types.

Chapter 4 discusses the composition of power domains into a power managed system.

This chapter first addresses physical issues, like locality of logic and scalability. Then

it discusses temporal composition and the impact of different scheduling methods.

Chapter 5 details the implementation of a power-managed sensor network node. The

results of this implementation are given, along with projections of the effectiveness

in smaller process nodes. Practical issues are also discussed, such as integration into

a standard place and route design flow.

Chapter 6 makes some concluding remarks and identifies areas for future work.

7

Chapter 2

Power Reduction Techniques

A key architectural choice for a power managed system is the underlying method(s) of

reducing standby power inside power domains. This chapter focuses on two aspects of

this: reducing the switching activity during standby mode and reducing leakage current

of the idle circuitry.

2.1 Standby Power Reduction

For systems with burst activity profiles, switching activity should be minimized between

the bursts. This section reviews clock gating, as it is the simplest method to reduce power

consumption of idle circuitry. It then describes the general approach to handle the ungated

logic.

2.1.1 Clock Gating

Clock gating is a method to reduce switching activity by simply preventing the clock from

reaching the core logic. This technique is widely used in digital circuits, and forms the

basis of many of the other power reduction techniques later described. Clock gating can

be applied at two conceptual levels: the block level and the register level.

The gating element itself is simply a combinational gate with a controlling input that

either passes the clock through (perhaps with an inversion) or sets it to a constant value.

Care must be taken when changing the controlling input to avoid runt clock pulses or

glitches that can cause timing violations and logic failures in the driven logic. As shown in

CHAPTER 2. POWER REDUCTION TECHNIQUES 8

data_in

clk

D Q data_out

en D Q

L

(a) Gated clock

data_in

clk

D Q data_out

en

0

1

(b) Enabled clock

Figure 2.1: Gated and enabled clocks used to reduce switching activity.

the flip-flop based logic in Figure 2.1a, the most common solution is to use a level-sensitive

latch to prevent this problem.

Block level clock gating attempts to disable an entire section of the logic, called a

clock domain, because a subsystem is not required at a particular time. Even though

a subsystem is conceptually idle, the logic may continue to compute outputs that are

simply discarded. Block level clock gating prevents the registers from changing values,

therefore most internal and output logic paths are held statically, which can significantly

reduce the average activity factor. Further, the gating reduces the switching activity on

the downstream clock line, further reducing active power. Since ungated clock lines are

usually long and have the highest activity factors in the entire chip, it makes sense to

attempt to physically locate each block level clock gating element as close to the root of

the tree as possible. Multiple gating elements can be used in series to form a hierarchy of

clock domains. In most cases, block level clock gating requires the design of a controller

to sequence the activation and deactivation of the various clock domains.

On the other hand, opportunities for register level clock gating can be automatically

detected and exploited by CAD tools. As shown in Figure 2.1b, the basic idea is that

many logics have registers that are selectively updated based upon an enable (en) signal.

The enable signal determines whether the register maintains its previous value or stores a

new value at the appropriate clock transition. The enable need not be specifically called as

such, because the various candidates can be mathematically determined through analysis

of the logic functions. If a particular candidate is used for enough registers, the feedback

multiplexors are removed and replaced by the gating elements in Figure 2.1a.

CHAPTER 2. POWER REDUCTION TECHNIQUES 9

2.1.2 Reducing Standby Activity

Although clock gating can significantly reduce the switching activity in the system, there

are typically subsystems or components that cannot be gated. The most common of these

are distributed counters, clock generation logic, voltage converters, and event monitors.

Whenever possible, these components should share as much logic as possible to reduce the

overhead through economies of scale. This approach is particularly effective for counters,

as will be described in Section 4.4.2.

Thus, the high-level approach is to separate the gated logic from the ungated logic.

Many of the most effective leakage power reduction approaches preclude any switching

at all when in the power saving mode. Through physical separation of the active and

inactive logic, the appropriate standby power reduction approach can be applied to each.

Monitoring logic that must remain active can often be clocked at a much lower rate, since

external events occur at a slower rate (human interfaces, serial port communication, etc).

A slower clock can be generated by physically dividing down the clock or, if a 50% duty

cycle is not necessary, all except every N th system clock pulse can be gated.

2.2 Sources of Static Power

Static power consumption comes from two primary sources in deep-submicron digital

circuits, gate leakage and subthreshold leakage. Gate leakage is linked to the rapidly

scaling thickness of the gate dialectric material, and is thus a characteristic of the process

technology. Subthreshold leakage is caused by the inability to completely turn off the

devices and becomes more pronounced with lower threshold voltages. Although this is

a process parameter, subthreshold leakage is also highly dependent on circuit topology.

As shown in Figure 1.1, static power consumption is expected to increase significantly in

future process generations and is now discussed in further detail, with an eye for techniques

to mitigate their effects.

2.2.1 Gate Leakage

Gate leakage is caused by the continued desire to increase device performance by scaling

the gate dialectric thickness Td. Performance of the logic can be described by the switching

time constant τ = CloadVDD/ID, so one method to increase performance is to increase the

CHAPTER 2. POWER REDUCTION TECHNIQUES 10

device current ID. The device current is proportional to, among other terms, Cox/L,

where Cox is the capacitance density between the gate and the inverted channel. Thus,

one obvious method is to decrease the channel length L, but another method is to increase

Cox. This is typically accomplished by decreasing Td in the approximate parallel-plate gate

capacitor:

Cox =
κoxε0
Td

(2.1)

where κ is a dielectric constant (κox = 3.9) and ε0 is the permittivity of free space. Unfor-

tunately, as Td is reduced, the probability of electron tunneling increases. This tunneling

effect is quantum mechanical in nature and increases exponentially as Td decreases. For

thicknesses less than 2 nm, this tunneling becomes a significant leakage current flowing

through the gate, and it increases by an order of magnitude for each 0.2 nm decrease in

thickness [5]. This is in stark contrast to the previous, purely capacitive view of MOS

gates.

One approach to reducing gate leakage involves decreasing the tunneling current by

replacing the gate dielectric material. The goal is to find a material with a higher dielectric

constant than silicon dioxide that also has a large band gap barrier to limit tunneling.

Additionally, the material must meet a large number of manufacturing and stability re-

quirements for use in large scale fabrication. Much current process research is focused on

the search for these “high-K” dielectrics [6][3][7]. Even though many potential candidates

do not have band gap energies as high as silicon dioxide (9.0 eV), just having a thicker

dielectric will also decrease gate leakage current [5].

Circuit designers have little control over the gate leakage, as it is a function of the

materials used during manufacturing, but there are a few possibilities. First, there can

be no leakage where there is no potential difference across the gate dielectric. In practice,

this cannot be ensured for all transistors during normal operation, but powering down the

circuit may be possible in standby operation. Second, if the process provides transistors

with different gate dielectric thicknesses, a circuit can select the thickest dielectric that

still meets the performance requirements. Indeed, some foundries now offer “low-power”

processes that include transistors with a thicker dielectric than the comparable high-

performance transistors.

CHAPTER 2. POWER REDUCTION TECHNIQUES 11

2.2.2 Subthreshold Leakage

Subthreshold leakage is caused by the inability to completely turn off a transistor. Digital

designers have long viewed the threshold voltage as the boundary between cutoff and

strong inversion regimes of a transistor. In reality, however, this boundary is not abrupt,

and the device continues to conduct weakly below the threshold according to the weak

inversion equation derived in [8]:

ID =
W

L
It exp

(
VGS − Vt

nkT/q

)[
1− exp

(
− VDS

kT/q

)]
(2.2)

where n = (1 + Cjs/Cox) uses the ratio of depletion region capacitance Cjw to oxide

capacitance Cox. The parameter It is dependent on the process parameters and is the

drain current when VGS = Vt, W/L = 1, and VDS À kT/q. Clearly, subthreshold leakage

is a strong function of the threshold voltage Vt and temperature T , since they both appear

in exponential terms. Current in this regime is undesirable in digital designs, because it

results in a leakage current when an ideal transistor would be completely cutoff.

Historically, the threshold voltage of the device has been high enough that the sub-

threshold current was negligible, but this is no longer true in modern processes. Threshold

voltages have scaled down to maintain circuit performance at reduced supply voltages, re-

sulting in an increased subthreshold current. Thus, even when the devices are intended

to be completely cutoff at VGS = 0, devices will leak. This leakage is especially egregious

when multiplied by the millions of leakage paths present in modern designs.

2.3 Devices and Circuits

Circuit designers have three main approaches to mitigate leakage in standby mode, as sug-

gested by Eq. (2.2). The first approach is to increase the threshold voltage, either through

selection of higher-Vt devices or through exploitation of the body-effect. The second ap-

proach attempts to turn “off” a device more completely by forcing VGS < 0, typically

through the use of an on-chip charge pump. This is most often used in conjunction with

the third approach that reduces the power supply voltage during standby. The power rail

gating approach reduces both VDS for less subthreshold leakage and the voltage across

the gate dielectric, resulting in less gate leakage. Many survey papers give overviews of

various techniques [9][10][11][12], and the most promising techniques are now examined

and compared.

CHAPTER 2. POWER REDUCTION TECHNIQUES 12

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Voltage at internal node

N
or

m
al

iz
ed

 c
ur

re
nt

/w
id

th

← upper transistor ← lower transistor

← operating point has 85.4% less current than single transistor

Figure 2.2: Load lines for upper and lower transistors illustrate the stack effect in 90nm
process.

2.3.1 Raising the Threshold Voltage

The three basic techniques to raise the threshold voltage are source biasing, body effect,

and changing the process. In most cases, raising the threshold voltage reduces the sub-

threshold leakage, but also significantly degrades the performance of the circuit in active

mode. Usually, some localized performance loss is acceptable, since most circuit paths are

not critical and additional logic delay on these paths will not change the overall circuit

performance.

Source Biasing and Stack Effect

Source biasing is the general term for several techniques that changes the voltage at the

source of a transistor. The goal is to reduce VGS , which has the effect of exponentially

reducing the subthreshold current according to Eq. (2.2). Another result of raising the

source is that it also reduces VBS , resulting in a slightly higher threshold voltage due to

the body effect. Circuits that directly manipulate the source voltage are rare, and those

that exist usually use a switched source impedance or a self-reversed biasing technique

[13].

Probably the simplest example of source biasing occurs when “off” transistors are

stacked in series. Conceptually, the source voltage of the upper transistor will be a little

CHAPTER 2. POWER REDUCTION TECHNIQUES 13

0 1 2 3 4 5 6 7 8 9 10
4

4.2

4.4

4.6

Device size factor

N
or

m
al

iz
ed

 d
el

ay

← delay

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

N
or

m
al

iz
ed

 le
ak

ag
e

← leakage

Figure 2.3: Simply stacking two identical NMOS transistors in an inverter significantly
degrades the performance in 90nm process.

higher than the source voltage of the lower transistor. Since the gates are driven identi-

cally, the upper transistor has a significantly lower current, as shown in Figure 2.2. This

reduction in leakage is commonly known as the stack effect. Clearly, it is advantageous

from a leakage perspective, but the trade-off is a significant degradation in performance.

Figure 2.3 shows the effect of simply replacing each device in an inverter with two in series.

In the case where the input capacitance is the same, i.e. each transistor in the stack has

half the width of the baseline device, the delay of an inverter chain is over 4.5×. The

reason is the significantly decreased drive current resulting from quadrupling the equiva-

lent resistance. Increasing the width of the stacked devices does not significantly improve

the performance because the input capacitance (and thus load capacitance) also increase.

Further increasing the device size results in a larger leakage current, that begins to exceed

the baseline inverter at a delay penalty of 4.1×. Another analysis of the effectiveness of

forced stacks can be found in [14].

Since the leakage reduction comes at the expense of delay, one potential use of stacked

devices is where delay is actually desired. It is not uncommon for designs to have a large

number of minimum delay path violations, stemming from short logic paths like a scan

path that directly chains registers together. The traditional approach is to add delay

elements (typically inverters) to these paths, which results in large rise in leakage. Usage

CHAPTER 2. POWER REDUCTION TECHNIQUES 14

of “stack effect” inverters means that fewer gates are required for the same delay target,

and each gate leaks less than an ordinary inverter.

A second implicit use of the stack effect comes from the selection of more complex

gates during technology mapping. In this way, stacks are formed more naturally. The

performance penalty still exists, but its effect is mitigated by the reduction in the number

of gates required to implement the desired logic function.

A third potential use is to exploit the natural stacks in logic gates by forcing a known

input pattern during sleep mode. For example, a typical two-input NAND gate has a

pull-down network with two NMOS transistors in series. When the inputs are both low,

both these transistors are “off” minimizing the leakage. In all other configurations, the

leakage current is higher. Exploitation of this state dependent nature of leakage in gates

is the subject of existing research [15]. The approach in [16] attempts to minimize leakage

during gate mapping, by analyzing the dominant leakage paths and input probabilities for

each potential mapping and using this result as part of the mapping cost function.

Body effect

The source biasing techniques described above decrease leakage by simultaneously reducing

VGS and VBS , but another class of techniques focuses specifically on the VBS term. The

primary method is to manipulate the body voltage to modulate the threshold voltage.

Since subthreshold leakage is inversely dependent upon the threshold voltage, increasing

the threshold reduces the power consumption. However, the gate performance degrades

with increasing Vt, so techniques that statically increase the body voltage are undesirable.

Instead, by dynamically controlling the body voltage, the circuit can be tuned to the best

trade-off between power consumption and performance at any given time. This technique

is typically called Variable Threshold CMOS (VTCMOS) and is now explored in more

detail.

Although not always specifically called VTCMOS, schemes that modify the body bias

to affect the threshold voltage have been proposed for older process generations. The

self-adjusting threshold-voltage scheme (SATS) in [17] bounds the leakage regardless of

the process corner and temperature using a sense stage that dynamically tunes the body

voltage to the set the minimum Vt to meet the performance requirements. In [18], the

intention is to switch between an active and a sleep mode, and it is found that the Vt is

CHAPTER 2. POWER REDUCTION TECHNIQUES 15

can be increased 0.4V through the application of a −2V substrate (body) voltage. The

approach in [19] applies the VTCMOS approach to SRAM structures, where the word line

signal is used for control instead of an explicit standby signal.

Effectiveness of the VTCMOS approach depends on the ability to dynamically change

the threshold voltage. For long-channel devices, the threshold voltage is calculated ac-

cording to Eq. (2.3), using an approach similar to [20]:

Vt(long) = VFB + 2|φp|+ 1
Cox

√
2εsqNa (2|φp|+ VSB) (2.3)

In this formulation, VFB is the gate voltage required to bring the silicon to a charge-neutral

condition, Cox is the capacitance of the gate oxide, 2|φp| is the Fermi potential required

to cause inversion in the channel, εsq is a constant, Na is the dopant density, and VSB is

the potential between the source and the body. For ready-use, this formulation is usually

transformed into the “body-effect” equation, Eq. (2.6), by separating it into two terms:

the threshold voltage when VSB = 0 (called Vt0) and the body-effect term (called ∆Vt):

Vt0 = VFB + 2|φp|+ γ
√

2|φp| (2.4)

∆Vt = γ

(√
|2φp|+ VSB −

√
|2φp|

)
(2.5)

Vt(long) = Vt0 + ∆Vt = Vt0 + γ

(√
|2φp|+ VSB −

√
|2φp|

)
(2.6)

The parameter γ is called the body-effect coefficient and is defined as γ = 1
Cox

√
2εsqNa.

Equation (2.6) makes it seem that the threshold voltage can be raised to any value

by just increasing VSB. In reality this is not true, because this equation assumes a one-

dimensional model of the transistor that does not account for the depth of the channel. For

shorter channel lengths and higher VSB values, the depletion regions grow large enough

that the channel appears to have a different length at the top and bottom. A geometric

trapezoidal approximation of this phenomenon yields a body-effect coefficient discounting

factor

f = 1− rj

L

(√
1 +

2xdmax

rj
− 1

)
(2.7)

Vt(short) = Vt0 + fγ

(√
|2φp|+ VSB −

√
|2φp|

)
(2.8)

where rj is the junction radius, r2 is the radial distance to the corner of the trapezoid,

xdmax is the channel depth [20]. A similar shortening of the channel occurs when the drain

CHAPTER 2. POWER REDUCTION TECHNIQUES 16

depletion region widens due to a high drain to source voltage VDS . The effect, called drain-

induced barrier lowering (DIBL), is that the threshold voltage is also dependent upon the

drain voltage. The DIBL effect is not included in Eq. (2.8), although it can be included

using some additional empirical parameters.

The three primary complications with VTCMOS are that it must be dynamically

controlled, the different body voltages must be generated, and they must be distributed

throughout the chip. For designs that have a single set of body voltages to distribute

throughout the entire logic, the additional wiring complexity is minor and can be handled

similarly to the power rails. However, distribution can become significant if different

sections of the logic must be controlled with different body voltages. In both cases, the

appropriate bias voltage must be generated. The approach in [21] uses a self-substrate

bias circuit (SSB) which employs a charge pump to produce a body voltage that is less

than ground.

The control issue can be more complicated, especially if more than two body voltage

are permitted. For the case of two modes, the control case is similar to clock gating

and subsystems can often be locally controlled. The situation becomes more complex if

more power/performance points are permitted. In most cases, the controller must also

handle any problems arising from the time it takes to charge or discharge the large well

capacitances when changing modes.

Multiple threshold transistors

Another method to incorporate different thresholds on a chip is to simply use transistors

with different intrinsic thresholds. Of course, this method requires the ability to choose

the threshold voltage of a transistor during fabrication, thus the set of allowable threshold

voltages is usually set by the foundry for a particular process. Although it is possible

to have an arbitrary number of thresholds, most foundries provide two devices: a low-

threshold, high-leakage device for performance; and a high-threshold, low-leakage device

for low power. This approach is commonly called a dual-Vt scheme, and the goal is to use

as many low-leakage devices as possible while meeting the performance requirements. This

approach fits well in standard cell design flows, because each gate can have a high-speed

and a low-leakage implementation. Although this doubles the size of the gate library, the

resulting library is still feasible for use by commercial tools [22]. Different approaches exist

CHAPTER 2. POWER REDUCTION TECHNIQUES 17

for the assignment of high-speed versus low-leakage gates. The most basic method maps to

the high-speed library first, then replaces gates with low-leakage version wherever possible

(or vice-versa). More advanced synthesis tools can incorporate power as part of the cost

function. A more algorithmic approach is given in [16], where the threshold selection and

gate sizes are simultaneously optimized.

The dual-Vt method is widely used because there is no performance or area penalty,

and the standby power consumption can be significantly decreased. The analysis in [23]

indicates that a dual-Vt process can have a 2.5× improvement in the energy-delay product,

which is a common metric used to compare different logic styles.

2.3.2 Power Rail Gating

Although leakage for non-critical paths can be reduced using high-Vt devices, devices still

leak when the system is in standby. First, often a large number of low-Vt devices to be

required to meet the timing requirements for a design. Second, even the “low-leakage”

devices can have a large aggregate leakage current due to their large numbers. Thus, it

is desirable to use a dynamic technique to reduce leakage further during a standby mode.

The most promising approach is to gate the power supply rails as shown in Figure 2.4.

This technique, called multi-threshold CMOS (MTCMOS), isolates the circuit from the

supply rails using high-Vt power switches, called sleep transistors. Although the figure

shows sleep transistors on both the VDD and GND supplies, leakage currents are reduced

even if only one polarity device is used.

Probably the most obvious way to avoid losing the state is to prevent the virtual rails

from degrading to the point that the state is lost. The minimum (maximum) voltage at

which the state of the system is preserved is called the data retention voltage (DRV). One

approach is to simply apply this voltage to the virtual supply rails using additional power

switches, as shown in Figure 2.5a. The power switch transistors must be implemented

using high-Vt devices to reduce the additional leakage current through the switches them-

selves. The DRV is determined through simulation of the various memory storage elements

in the design, and the strictest constraint is typically used for all devices to reduce the

number of voltages that must be generated and distributed. Although the DRV is the

strict lower bound, a margin is usually reserved to improve reliability in the presence of

noise. The DRV approach suffers from an increased area penalty to implement the sec-

CHAPTER 2. POWER REDUCTION TECHNIQUES 18

logic block

standby

standby
vvdd

Cvvdd

Cvgnd
vgnd

VDD

Figure 2.4: Circuit for multiple threshold CMOS (MTCMOS) using sleep transistors.

ond set of power switches. Also, a voltage converter is needed to generate the retention

voltage, and it has an area and power overhead.

Another approach to save the state clamps the virtual rails within a certain range.

As shown in Figure 2.5b, this is the approach used in virtual rail clamp (VRC) logic [24],

which employs small forward-biased diodes to ensure that the virtual supply does not

float too far. When the sleep transistors turn off, the virtual supply rails are isolated until

they reach the intrinsic potential barrier of the diode, at which point the diode clamps

the virtual supply. Assuming the clamping voltage is higher than the DRV, the VRC

method avoids the problems caused by the loss of state. Since the clamps do not require

the explicit generation of the retention voltage, VRC can be viewed as a “poor man’s”

DRV. The cost, of course, is the area required to implement the diodes, which can be

significant and is in addition to the large sleep transistors.

Both the DRV and VRC approaches have larger leakage than the basic MTCMOS

approach, because the rails are not entirely isolated from the logic. However, the time to

restore the circuit is reduced, because the capacitance on the virtual supply does not need

to be charged much to achieve a level acceptable for active operation. The major benefit

of the DRV and VRC methods are that the state of the system is maintained, although

both require area and power overhead to do so. A nice analysis of the trade-offs between

CHAPTER 2. POWER REDUCTION TECHNIQUES 19

logic block

standby
vvdd

Cvvdd

Cvgnd

vgnd

standby

VDD DRV

(a) Data retention voltage (DRV)

logic block

standby

standby
vvdd

Cvvdd

Cvgnd

vgnd

(b) Virtual rail clamp (VRC)

Figure 2.5: Circuit variants of MTCMOS that retain the state.

MTCMOS and VRC are found in [25], where both techniques are applied to a memory

structure and an adder.

The most important static parameter for an MTCMOS design is the size of the sleep

transistor. The trade-off here is the area of the sleep transistor vs. the performance

degradation of the circuit. As shown in Figure 2.6 for a MTCMOS test circuit with a

PMOS sleep transistor, a larger transistor (higher W/L) has a lower equivalent resistance

in series with the circuit, so the performance improves. Just the presence of the sleep

transistor increases the stack effect, which significantly reduces the leakage. As shown,

sizing the sleep transistor has only a 6% effect on leakage over the sizing range, when

compared to a baseline circuit with no sleep transistor.

Also important for MTCMOS is amount of capacitance on the virtual supply. Current

spikes cause the virtual voltage to temporarily degrade, since they increase the voltage

drop across the sleep transistor. A larger capacitance on the virtual supply reduces the

effects of current spikes by essentially forming a low-pass filter with the sleep transistor.

Figure 2.7 shows the lowest level the virtual supply rail V vdd reaches for the test circuit.

The more the virtual supply degrades, the lower the performance of the circuit. Further,

if this dips below the retention voltage, the circuit can malfunction in active mode. As

shown in Figure 2.8, some performance can be recovered by adding additional capacitance

at the virtual supply node.

CHAPTER 2. POWER REDUCTION TECHNIQUES 20

0 5 10 15 20 25 30 35 40
1

2

3

4

5

N
or

m
al

iz
ed

 p
ro

pa
ga

tio
n

de
la

y
fa

ct
or

W/L
0 5 10 15 20 25 30 35 40

0

0.02

0.04

0.06

0.08

N
or

m
al

iz
ed

 le
ak

ag
e

fa
ct

or

Figure 2.6: Graph of performance and leakage vs. power switch size for inverter chain.
Values are normalized to the same basic circuit without the sleep transistor.

0 5 10 15 20 25 30 35 40
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

W/L

M
in

im
um

 v
irt

ua
l V

dd
 (

V
)

Figure 2.7: Graph of lowest virtual supply voltage vs. MTCMOS power switch size for
inverter chain with VDD = 1.2V.

CHAPTER 2. POWER REDUCTION TECHNIQUES 21

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 p
ro

pa
ga

tio
n

de
la

y
fa

ct
or

Capacitance at Vvdd (pF)

← delay

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 p
ro

pa
ga

tio
n

de
la

y
fa

ct
or

Capacitance at Vvdd (pF)

← delay

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 p
ro

pa
ga

tio
n

de
la

y
fa

ct
or

Capacitance at Vvdd (pF)

← delay

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.8

0.9

1

1.1

1.2

M
in

im
um

 v
irt

ua
l V

dd
 (

V
)

← minimum virtual Vdd

Figure 2.8: Graph of performance vs. virtual supply node capacitance for same test circuit
used for Figure 2.6 (W/L = 10).

2.3.3 Comparison of Techniques

The effectiveness of various power saving devices and circuits is summarized in Table 2.1,

simulated using a small test circuit in a 90nm process. The stack effect can be combined

with any of the other techniques, as it is simply a choice of gate topology. The dual-

Vt technique can also be combined with other techniques, although it loses effectiveness

at lower VDD voltages because there will simply not be enough margin to separate the

Vt voltages much. Similarly, VTCMOS is expected to lose effectiveness as L and Vt

decrease, due to the described short channel effects. Thus, the most promising leakage

reduction schemes are the MTCMOS variants, due to their high leakage reduction factor

and tunable delay impact. The simplest MTCMOS implementation has a problem with

state maintenance, which is addressed in the DRV and VRC variants, at the expense of

additional overhead.

Each of the techniques can be classified as either static or dynamic. Static techniques

are those that are set at design time and do not require any time-dependent controlling

parameters. The dual-Vt and stack effect techniques fall into this category. Dynamic

techniques require one or more controlling parameters to select the correct circuit mode.

The clock gating, VTCMOS, and MTCMOS variants fall into the dynamic category.

Dynamic techniques have additional concerns because the appropriate control signal(s)

CHAPTER 2. POWER REDUCTION TECHNIQUES 22

Technique Leakage savings Delay penalty Outlook

Stack effect 8-40× free (natural);
2× (artificial)

Combinable with other techniques

Dual-Vt 1-38× Tunable Combinable; less at lower VDD

VTCMOS 4× (VSB = 0.5V) None Loses effect for smaller L and Vt

MTCMOS 2-1000× Tunable Most promising but loses state
w/DRV Retains state with power overhead
w/VRC Retains state with area overhead

Table 2.1: Summary of leakage reduction techniques (leakage factors for 90nm process).

must be generated so that power consumption is reduced. Even in a system with a simple

control mechanism for each circuit, the situation quickly becomes more complicated when

multiple modes are supported. Care must be taken that interacting circuits are active

when necessary to ensure correct operation of the system. This is made more difficult if

the transitions between modes take some time.

23

Chapter 3

System State

The current state of the system is the aggregation of all values stored in the individual stor-

age elements in the design. It is typical for a design to have thousands to millions of storage

elements in the form of flip-flops, latches, and memory elements. Unfortunately, mainte-

nance of this state can complicate the usage of MTCMOS, which is the most promising

of the standby power reduction techniques described in the previous chapter.

This chapter outlines an approach to reducing the storage requirements through clas-

sification of the storage elements, grouping the similar types, and then applying an ap-

propriate power reduction technique to each type. The approach is applied to several

common design types, including finite state machines and microprocessors.

3.1 Types of State

The primary purpose of the storage devices is to hold the current state of the system long

enough to compute the next state or output. In some cases, it is possible to compute

these with only a subset of the current state, and the remaining state is don’t care (DC).

To determine whether a state element is DC, all the storage elements are classified based

upon an analysis of their read and write patterns. If an element is never read again after

a certain point, its contents can be safely discarded. The contents can also be discarded

if it is rewritten before it is next read.

The state read/write analysis assumes that storage elements have discrete read and

write operations. Most flip-flops, latches, and some memories output the current state

continuously, so it must be determined when the value is actually being used. At any point

CHAPTER 3. SYSTEM STATE 24

in time, the value only affects the system if it is a controlling input that can potentially

cause an observable change at either a primary output or in the next system state. If no

such change can be observed, then the element has not been implicitly read, and its value

is DC. Write operations are usually more explicit and can be easily identified by observing

an explicit write signal and/or the clock, set, or reset inputs.

The read/write analysis need only be performed at checkpoints, which are defined

as the possible states when the system is stationary, i.e. it does not change state on

the next clock cycle. Checkpoints can be specified by the designer or, in some cases,

mathematically computed from the next state logic. The set of all possible checkpoints is

denoted Ccandidate, and the lifetime of each state element is analyzed with respect to each

checkpoint c ∈ Ccandidate. State that is not required for correct operation after checkpoint

c is called temporary at checkpoint c. State that is required again after the checkpoint is

called persistent through checkpoint c.

If a particular storage element is temporary at checkpoint c, ∀ c ∈ C, then the state

need never be saved at any checkpoint, and it is classified as simply temporary. The

obvious choice for checkpoints then lies between computations, since this is exactly when

the system would ordinarily be put into a lower power mode. The set of checkpoints that

occur between computations is the subset C ⊆ Ccandidate. Any state that is not classified

as temporary across all checkpoints c ∈ C is called persistent and must be maintained or

restored upon return to active mode.

Temporary state is typically required during the computation of an algorithm or re-

quired because of the particular underlying architectural implementation. As an example

of an algorithmic requirement, consider a byte counter that determines the number of

bytes in received packets, and checkpoints are defined between packets. At the beginning

of each packet, the counter value is reset to zero, and the result is read at the end of the

computation. The value held in the counter’s memory after the checkpoint, but before the

counter is reset to zero, does not affect the system state. As an example of an underlying

architectural requirement, consider the datapath in Figure 3.1 where the desired result is

the sum of A, B, and C, and the checkpoints occur between complete computations. In

the pipelined case, register R2 is used to relax the timing requirements of the logic imple-

mentation, while R3 is used to match the pipeline delay. Since the output of R1 is only

valid and read after two clock cycles, the initial contents of R2 and R3 are inconsequential.

CHAPTER 3. SYSTEM STATE 25

D Q
R1

READ_R1

CA

B

CLK

(a) Baseline

D Q
R1

READ_R1

C

A

B

D Q
R2

D Q
R3

CLK

CLK CLK

(b) Pipelined

Figure 3.1: Baseline and pipelined datapath example circuit.

Persistent state is required due to an algorithmic concept that spans multiple check-

points. For the byte counter case above, an example of persistent state example would be

a packet counter that counts the total number of received packets. Clearly, the current

count must be maintained from packet to packet, which spans multiple checkpoints. For

the case in Figure 3.1, the classification of R1 depends on whether the contents are re-

quired after the checkpoint. This can only be determined through analysis of the read r1

signal.

3.2 Methodology

Application of power savings techniques that destroy the system state require an approach

to ensure proper system operation after resumption of normal mode. The basic methodol-

ogy is to assign a set of suitable checkpoints C, classify the state across these checkpoints,

group the persistent state together, and apply an appropriate technique to preserve it.

Checkpoints can often be assigned based on a simple analysis of the application or

algorithm. Typical designs do not need to enter low power modes randomly. If the power

savings technique destroys the state, the logic cannot perform any computation while

in this mode. The result is that typical designs finish up pending computations before

entering the power savings mode. Thus, these natural idle times are the most effective

places to put checkpoints.

In the case of a burst systems, the checkpoints should be located between bursts. For

example, a reasonable checkpoint location for a sensor network node would be between

packets. For a pager or cellphone, the checkpoints would likely be assigned between calls

CHAPTER 3. SYSTEM STATE 26

or basestation interactions. The number of assigned checkpoints depends on the expected

duration of the idle time. For effective power reduction, the idle time must be long enough

to amortize the overhead. This puts an upper bound on the number of useful checkpoints,

and is discussed further in Section 4.3.

Once checkpoints are assigned, all the state must be classified as temporary or per-

sistent. However, it is often difficult for a designer to determine the class for all storage

elements. A conservative approach is to assume all state is persistent, and then remove

state that can be definitively shown as temporary. Although this can result in a higher

state maintenance requirement, it is prudent to err on the side of a higher power design

that is correct versus a low power version that is not.

After classification, the persistent state is grouped together so that it can be preserved

across the checkpoints. This grouping occurs naturally in memory structures, such as the

code memory for a microprocessor. The grouping can also be performed by physically

locating the elements in such a way that their state is not destroyed by the change in power

modes. Lastly, the persistent state can be duplicated and stored in shadow registers that

are not put into the lower power mode. The original storage elements are restored upon

resumption of normal mode, thus they are rendered temporary according to the definition.

3.3 Case Studies

The approach to classification depends on the type of logic, and a number of cases are

presented here as examples. Often the algorithm or architecture implies that state is tem-

porary, such as pipeline registers in a datapath and scratch registers in a microprocessor.

This section shows that computer analysis can aid the designer in the case of control-

dominated logic like finite state machines. The hybrid case of a processor is discussed as

a special case, due to its prevalence in the target systems.

3.3.1 Finite State Machines

Finite state machines (FSMs) are used to implement output sequences based upon an

input pattern. When the system is idle, it is expected that the inputs either do not

change or that the change does not change the state of the machine. Thus, the goal of

this section is to identify these self-loops, create a list of candidate checkpoint states for

CHAPTER 3. SYSTEM STATE 27

designer approval, and use the approved checkpoints to transform the machine into a form

that reduces the persistent state requirements.

A Moore FSM is described as the sextuple (X, Y, S, s0, δ, λ), where X is the set of

inputs, Y is the set of outputs, S is the set of states, s0 is the initial (reset) state, δ is the

transition (next state) function, and λ is the output function. The transition function is

defined as si+1 = δ(x, si), i.e. it computes the next state si+1, given the current state si

and a particular input combination x. The output function is defined as yi = λ(si), i.e.

it computes the outputs based upon the current state. In this formulation, the output

function is the only difference from a Mealy machine, where the outputs are dependent

upon the current state and the inputs. There is no loss of generality for restricting to

Moore machines, because any Mealy machine can be transformed to a Moore machine

using existing case-splitting algorithms [26].

The algorithms are described using Reduced, Ordered Binary Decision Diagrams

(ROBDDs) to implicitly store the FSM without explicitly enumerating all possible states.

ROBDDs are useful structures to represent the logic, as they are canonical descriptions and

are, on average, quite efficient with a good variable ordering [27]. Sets can be represented

by ROBDDs using their characteristic function, which evaluates to 1 if the input is in the

set. As is common in the literature, this approach will use a set and its representative

characteristic function interchangeably.

The existential quantification operator (∃x)f is defined as fx̄ + fx, where fx is the

cofactor of f with respect to x. The following will use a shorthand notation that re-

cursively defines (∃x1, x2, . . .)f as (∃x1)((∃x2, . . .)(f) . . .). Thus, for a set of variables,

X = x1, x2, . . ., then (∃X)f = (∃x1, x2, . . .)f . The order of the quantifications is unimpor-

tant. The support of a function is the set of variables upon which the function depends.

One way to think of the existential quantification (∃x)f operation (also known as smooth-

ing) is that it gives a projection of f onto the remaining support after x is removed.

Detecting Self-Loops

Conceptually, self loops are intuitively described as transitions that do not change the

state of the machine. When this occurs, the machine is waiting for a particular input

combination, and it remains stationary until this input combination occurs. These idle

conditions are obvious checkpoint candidates to put the machine into a lower power mode.

CHAPTER 3. SYSTEM STATE 28

This technique builds upon a power saving approach in [28] that synthesizes gated

clocks for sequential circuits. The goal in that paper is to gate the clock when the next

state will remain the same as the current state. This is similar to the desired case for

a checkpoint, since power can be reduced by entering a destructive lower power mode

during these stationary states. In the gated clock case, the gating condition is analyzed

every clock cycle, and it is assumed that the machine can be immediately resumed when

required. This allows the transformed logic to produce the same output sequence for a

given input sequence (i.e. a functionally identical machine). The case here differs, since

the latency to return the original power mode is likely larger than a single cycle. This

means that the transformation will likely change the output sequence of the circuit. Thus,

as will be described later, it is possible to detect good candidates for checkpoints, but if

the resume time is larger than one cycle, the designer will need to prune manually the

candidates that are not latency insensitive. Typically, latency insensitivity can be achieved

using a two- or four-phase hardware handshake to add enough wait states to resume the

machine.

The self-loop function Selfs : X → {0, 1} is defined as true when the next transition

would not change the state of the machine. In other words, Selfs = 1 ∀x ∈ X, such

that δ(x, s) = s. Given the State Transition Graph (STG) or a table representation of

the FSM, the self-loops are often not explicitly enumerated, so it can be easily generated

by complementation of transitions that change the state (Selfs = 0 ∀x ∈ X, such that

δ(x, s) 6= s) [28].

The idle function fidle : {X,S} → {0, 1} is a Boolean function that is true only when

the machine is in a self-loop. The support of the function is the state bits and the primary

inputs of the circuit. It is defined as the union of all possible self-loops from each state:

fidle(X, S) =

(⋃

s∈S

s · Selfs(X)

)
(3.1)

The idle function is true for the state and input conditions under which a self-loop is

traversed. The set of states contained in the idle function are the checkpoint candidates

Ccandidate ⊆ S. The candidate list is computed by projecting fidle(X,S) onto S by suc-

cessive existential quantifications over all primary inputs x ∈ X of the circuit:

Ccandidate = ∃X(fidle(X,S)) (3.2)

CHAPTER 3. SYSTEM STATE 29

Pruning Unreachable States

The candidate set Ccandidate contains all possible self-loops in the machine. However, some

of these states might not be reachable for any input combination when starting from the

initial state(s) s0. Since they can never occur during normal operation, these unreachable

states can be removed from the list of candidates. This section describes a method to

determine the set of reachable states given the starting (reset) state(s) of the machine.

The set of reachable states is computed iteratively by computing all possible next

states from the current set of reachable states, for any input combination. The initial

set of reachable states Ro is the set of possible starting states for the machine. For most

applications, this is a single minterm representing the conditions after the system is reset.

At each iteration j, the set possible next states is computed using an image of the

transition relation for the FSM. Given the function f : Bn → Bm, the corresponding

transition relation F : Bn×Bm → B is defined as F (x, y) = {(x, y) ∈ Bn×Bm | y = f(x)}.
For the case of a FSM, the transition function is si+1 = δ(x, si). Thus, the transition

relation for the FSM is ∆(xi, si, si+1) : Bn×Bm×Bm → B. The current set of reachable

states is represented by its characteristic equation Rj . The image by δ of Rj ⊆ S is the

projection on Bm of the set ∆∩ (Rj×Bn×Bm). The image is easily computed in a single

pass over the ROBDDs using a Boolean AND and a smooth:

Img(si, ∆) = ∃X∃si (Rj(si) ·∆(x, s, si+1)) (3.3)

Conceptually, the image is computing the set of reachable states from the current set

of reachable states and is iteratively applied:

R0 = s0 (3.4)

Rj+1 = Rj ∪ Img(Rj , ∆) (3.5)

This iteration is continued until it converges to the set of all reachable states when

Sreachable = R∞. In practice, the iterations can be stopped when Rj+1 = Rj , since

this means that all transitions move to already discovered states. Given the set of reach-

able states Sreachable, the unreachable states can be pruned from the list of checkpoint

candidates:

Creachable candidates = Ccandidate · Sreachable (3.6)

CHAPTER 3. SYSTEM STATE 30

At this point, the list of reachable candidates is presented to the designer for manual

selection. The designer is required, because the checkpoints must be tolerant of the non-

zero resume latency. This latency means that the output sequence of the new machine can

differ from the original, even though the input sequence is the same. Since the machines

cannot be proven equivalent, the designer must manually verify that the result will not

cause an error. The result is the set of legal, desired checkpoints C ⊆ Creachable candidates.

Recoding Checkpoints

This section describes how the original machine is transformed into a power manageable

one, given a set of desired checkpoints C. It exploits the fact that there are likely fewer

checkpoints than total states, i.e. |C| < |S|. Thus, the checkpoints can be encoded using

fewer bits than are used for the encoding of the entire machine. Since the machine can

only awake in one of the checkpoint states, only this smaller encoding is required to return

the state of the entire machine.

The basic concept is illustrated in Figure 3.2. For simplicity, Figure 3.2a focuses on

only the transitions to and from a particular checkpoint ci ∈ C, where the index i is a

natural number used to distinguish the checkpoints and is assigned to the set of checkpoints

in arbitrary order such that C =
⋃

i ci. By definition, the function Selfci is the condition

to remain in ci, and the system is permitted to enter a destructive power mode in ci. When

the self loop ends, control is returned to the original checkpoint c1. For the example in

Figure 3.2b, an additional state is added called “sleep c1,” and similar extra states are

added for all other ci ∈ C. This example clearly shows that the behavior of the machine is

changed, because the Selfc1 condition must remain asserted for an additional clock cycle

for correct operation of the machine. Further, if the resumption of active mode is more

complicated, the “sleep c1” state may actually be implemented as a hierarchical machine

and take multiple cycles to return from the sleep mode.

In Figure 3.2b the complete state space of the composite machine is the product

S × T of the states of the original machine S and the sleep machine T . However, when

execution transitions to the sleep machine, the state of the original machine is discarded

and restored upon return. Also, when the original machine is not in a self-loop, the sleep

machine remains in the “run” state Trun ∈ T . This is shown more clearly in Figure 3.3,

where transitions in the original machine are only permitted in the “run” state (easily

CHAPTER 3. SYSTEM STATE 31

C

Selfc

Selfc

clk

(a) Original

c1

Selfc1

clk
Trun

sleep
c1

Selfc1

Selfc1 :
:

sleep
cN clk

Trun

original machine
states = S

sleep machine
states = T

(b) New

Figure 3.2: Basic concept of FSM transformation.

run

sleep c1
S=x

c 1 &
 S

el
f c1

Sel
f c1

 \
S=C

1

sleep cN
S=x

SelfcN \ S=C
N

c
N & SelfcN

. . .

Figure 3.3: State transition diagram of sleep FSM.

CHAPTER 3. SYSTEM STATE 32

implemented by gating the clock). Thus, the actual care state space is (S × Trun)
⋃

(T −
Trun).

The next state and output logic for the transformed FSM is shown in Figure 3.4. This

circuit explicitly separates the Trun state from the remaining states T ′ = T − Trun by

encoding it as a specific “run” register. This separation makes it simple to generate the

control signals for the multiplexors and clock gating element. The T ′ registers should be

a minimal encoding of the checkpoints, with the mapping functions χS→T ′ : S → T ′ and

χT ′→S : T ′ → S. The fidle block is implemented as described above. The original FSM

circuitry can be put into a destructive sleep mode when “run” transitions to low, and it

should be returned to active mode when the “resume” signal transitions high. The “run”

signal is also used in the output logic. A strict mapping of the sleep machine output

function λT ′ : T ′ → Y requires

λT ′(t) = λS(χT ′→S(t)) ∀t ∈ T ′ (3.7)

The shaded elements in Figure 3.4 must remain active when the rest of the machine

is put in the sleep mode. As will be seen in the next chapter, the goal is to group all the

shaded elements together for all machines to form the core logic of a power manager. It

is desirable to design this logic independently from the FSMs, but the T ′ registers, the

“wakeup” block, and the output logic are all dependent upon the particular FSM. In a

practical circuit, the number of allowable bits to encode T ′ can be limited to a reasonable

number, which simply places an upper limit on the number of checkpoints in any single

FSM.

The “wakeup” block is more complicated, because a straightforward implementation

requires that it implement the complement of the idle function. However, the original fidle

function is dependent on the original state encoding of S. Thus, the wake-up condition is

computed by transforming it to the T ′ state space:

fwakeup =

(⋃

s∈C

χS→T ′(s) · Selfs

)
(3.8)

Even with this implementation of the fwakeup, it must still be customized for each

controlled state machine. A more general implementation is achieved by noting that the

machine operates correctly, albeit with less power savings, if it is returned to active mode

unnecessarily. The result is that the sleep controller can be sensitive to the support of

CHAPTER 3. SYSTEM STATE 33

δS

D QD QD Q

S

fidle

S -> T’

S <- T’ D QD QD Q

D Q
RUN

clk

T’

Wake
up

0

1

gated clk

resume

state to resume

state to save

saved state

clk

clk

0

10

1

X

X

λS λT’

Y

1 0

S T’

Figure 3.4: Block diagram of transformed FSM next state logic.

CHAPTER 3. SYSTEM STATE 34

fwakeup and activate the rest of the machine if one of these signals change. This idea is the

foundation of the session-based, port communication model for the test chip, described in

Section 5.2.3. The penalty for this simplification is, of course, less power savings if the

block is resumed without need.

The output logic in the λT ′ block is dependent upon the mapping to S, so it must be

customized for each machine. Typically, the checkpoints occur when the FSM is between

tasks, so it is expected that the outputs will be set to deasserted values. Over the set of

checkpoints, the output function may indeed be reducible to a constant. If this is true,

the constant can be set at the boundary of the original FSM instead of in the manager

logic, thus removing the dependency for the manager logic. If the output function is non-

constant over T ′, it precludes the clustering of manager logic. This undesired case can

be corrected by adding a register on the difficult outputs that saves the output before

entering sleep mode. Unfortunately, the state of these registers must be maintained,

which can complicate the implementation of the sleep mode. These cases are flagged and

presented to the designer since minor design changes can usually eliminate the problem

altogether.

3.3.2 Extended Finite State Machines

Extended Finite State Machines (EFSMs) are similar to ordinary FSMs, except that they

can express datapath operations on the transitions and use the datapath variables in

the transition predicates and output function. The variables used on the transitions are

assumed to maintain their current value, unless they are explicitly drawn otherwise. Thus,

these variables imply additional state that must be included in the checkpoint analysis

and classified as persistent or temporary.

Equations (3.9) and (3.10) show the formal definition of an EFSM, based upon the

model in [29]. An EFSM is a six-tuple

M = (X,Y, S, s0, V, T) (3.9)

where X, Y , S, s0, V , and T are finite sets of inputs, outputs, states, starting (reset)

states, variables, and transitions, respectively. Each transition t ∈ T is a six-tuple

t = (st, qt, at, yt, Pt, At) (3.10)

CHAPTER 3. SYSTEM STATE 35

idle
0

A

count
1

A A / v:=0

A / v:=(v+1) mod 4

Figure 3.5: State transition diagram for a basic EFSM. Outputs are not drawn for sim-
plicity.

where st, qt, at, and ot are the start (current) state, end (next) state, input, and output,

respectively. Pt(V) is a predicate on the current variable values and At(V) is an action on

variable values. The transition is followed at state st if the input condition at is satisfied

and the predicate P (V) evaluates to TRUE. If the transition is followed, the machine

outputs y, changes the current variable values according to V = At(V), and moves to

state qt. The following analysis assumes that the EFSM is deterministic, meaning that for

each state st ∈ S and input combination at ∈ X, the predicates are mutually disjoint. Put

simply, this means that at any point in time there is one, and only one, possible transition

to follow.

In this formulation, there is a clear separation between the explicit state S represented

by nodes (the controlling state) and the extended implicit state variables V on the tran-

sitions (the datapath state). Checkpoint candidates are easily computed by analyzing all

transitions where the next state is the same as the current state.

Ccandidate =
⋃

t∈T

{st : st = qt, Pt ≡ TRUE} (3.11)

Transitions that depend on the current variable state are ignored, because it is expected

that the machine is in the middle of a computation. Thus, in the STG shown in Figure 3.5,

the self loop in the idle state is a checkpoint candidate, but the self loop in the count state

is not.

Due to the increased state space in an EFSM, some of the checkpoint encodings may

CHAPTER 3. SYSTEM STATE 36

be equivalent. This section first describes how detection of equivalent configurations can

reduce the number of checkpoints. Next, the machine is divided into, possibly overlap-

ping, subsets called sub-machines. The sub-machines are individually analyzed using a

simulation method that classifies the datapath variables as temporary or persistent.

Equivalent Checkpoints

The complete state space for the candidate checkpoints |Ccandidate| can be quite high for an

EFSM with even a simple STG. The reason is that the datapath variables are assumed to

hold their value unless otherwise specified. Thus, each explicitly drawn self loop potentially

encapsulates a large number of distinct implicit self loops, where the variables hold different

values. A configuration is defined as a tuple (Si, V0,i, . . . , VN,i) of the state variables S and

the individual variables Vnum in the machine, where the i subscript denotes a particular

encoding of the variable [29]. The total number of configurations is the entire state space

of the machine |S| × |V0| × · · · × |VN |. Although some of these configurations may not be

reachable, even the number of reachable configurations can explode quite quickly. Thus,

it is desirable to partition them into equivalence classes, such that configurations in the

same class undergo the same sequences of transitions. Checkpoints contained in the same

equivalence class can be collapsed into a single checkpoint.

An example of equivalent configurations is shown using the simple EFSM STG in

Figure 3.5. This example consists of two explicit states {idle, count}, a single external

signal A, and the two-bit variable V = (2 ∗ v0 + v1). It is clear from casual inspection of

the STG that the counting variable V is not manipulated inside the idle state, but it can

hold any possible value leftover from the last counting operation. Using the state encoding

idle → (s0 = 0); count → (s0 = 1), the next state logic and idle functions are:

s∗0 = A (3.12)

v∗0 = As0 v0 v1 + Av0 v1 (3.13)

v∗1 = As0 v1 + Av1 (3.14)

fidle = A s0 (3.15)

The idle function has four state minterms, namely (s0 v0 v1) = {000, 001, 010, 011}, which

are the initial checkpoint candidates. These checkpoints are shown more clearly in Fig-

ure 3.6, where the EFSM is expanded into an ordinary FSM and all encodings are drawn

CHAPTER 3. SYSTEM STATE 37

idle3
011

count3
111

A

A

idle2
010

count2
110

A

A

idle1
001

count1
101

A

A

idle0
000

count0
100

A

A

A A A

A

A A A A

Figure 3.6: State transition diagram for EFSM in Figure 3.5 expanded to a FSM.

explicitly. Since all non-looping transitions from these checkpoints have the same pred-

icate and result in the same next state, they can be collapsed into a single equivalence

class. The result is the STG shown in Figure 3.7 where no state need be saved during

sleep mode since the machine always wakes in the idle equivalent configuration. Although

this example showed the explicit EFSM expansion and intuitive reduction into a machine

with equivalence classes, a formal mathematical algorithm to directly compute a reduced

machine without explicit expansion is found in [29].

In Figure 3.7, the value of ‘X’ in an encoding means that the variable is DC, and its

value does not matter to specify the next state correctly. In other words, the value of the

variable is written before it is read, which is the definition of a temporary state variable.

Thus, the contents of v0 and v1 need not be saved during sleep mode and can be set to

any value upon resumption of active mode. In this case, the DC set can be used to reduce

the size of the mapping functions χS→T ′ and χT ′→S .

Machine Partitioning

The ultimate goal is to classify all the state (both explicit state and implicit datapath

variables) into two groups: the persistent state Sp,c and the temporary state St,c for each

checkpoint c ∈ C. The partition must be complete (Sp,c
⋃

St,c = S) and non-overlapping

(Sp,c
⋂

St,c = ∅). For each variable, the same treatment is used for all checkpoints, so the

CHAPTER 3. SYSTEM STATE 38

count3
111

A

count2
110

A

count1
101

A

idleX
0XX

count0
100

A

A A A

A

A

A

Figure 3.7: State transition diagram from Figure 3.6 where the idle checkpoints reduce to
a single configuration.

constraints for the final partition between temporary state St and persistent state Sp are

tighter

St =
⋂

c∈C

St,c (3.16)

Sp = S − St (3.17)

There may be multiple correct partitions, and the best one maximizes the number

of elements in St, since these can be discarded when arriving at a checkpoint. This is

computationally infeasible to determine directly, so a divide-and-conquer approach is used

to analyze smaller sub-machines. The state partition is performed for each sub-machine

independently, and the results are applied to Eq. (3.16) and Eq. (3.17). The resulting

temporary state is a subset of the exact solution, because the locally optimal solution at

each checkpoint ignores the fact that a better global solution may be achievable using

non-optimal local classifications with a larger intersection of temporary variables. The

solution is conservative because a variable that is persistent at any checkpoint is included

in Sp. Thus, if the variable is required in any sub-machine, it will not be discarded.

A sub-machine is generated for each checkpoint cm ∈ C using the set of reachable

states from cm bounded by other checkpoints. The method is similar to the recursive

image computation described in Section 3.3.1, except all checkpoints are removed from

the reachable set after each iteration. After the image computation converges, the original

CHAPTER 3. SYSTEM STATE 39

checkpoint is returned to the set to form the complete sub-machine bounded by the other

checkpoints. The image itself is computed for each state using the set of transitions,

without need to generate the transition relation:

Img(s, T) =
⋃

t∈T

{qt : s = st} (3.18)

Simulation

The example in Figure 3.5 assigned the temporary variable a value immediately upon ex-

iting the checkpoint. This assignment can be delayed, as long as it is performed sometime

before the variable is read. This section describes a simulation that traverses the EFSM

to determine the worst case read/write sequence for each variable.

The simulation is performed separately for the sub-machine m rooted at each check-

point cm ∈ C. During the simulation, variables V will be put into sets: persistent variables

P and unknown variables U . The P set holds variables that are read before being written,

and the U set holds variables that have not yet been written nor read. The P set is global

across the simulation, because any variable that is read before written must be restored at

the checkpoint and is available for all paths through the sub-machine. A separate U set is

kept at each state to handle loops and reconvergence when traversing the sub-machine.

Simulation progresses according to the algorithm in Figure 3.8. The sub-machine is

traversed using a breadth-first search, and the list of states to process next are held in

the frontier list. The U set for each visited state is stored in a list accessed by the

AddVisited and GetVisited functions. If the state has not been previously visited, the

GetVisited function returns an empty unknown set. At the beginning of the simulation,

the frontier list is initialized with the checkpoint cm, and all variables are added to the

U set for cm using the AddVisited function.

Each pass through the main simulation loop analyzes a single state scur in the sub-

machine. The unknown set for scur is retrieved from the visited list, and then all transitions

out of the current state t ∈ T, scur = st are analyzed. For each transition, the read/write

analysis is performed on the unknown set. First, any variables already identified as per-

sistent are removed from the set. Next, the set of all variables read in the predicate and

output functions is stored in read1. The set of all variables read in the action function is

stored in read2. The read2 set is computed separately for each variable v in the unknown

set, because it is permitted for an unknown variable to hold its previous value. Thus,

CHAPTER 3. SYSTEM STATE 40

Input: T = set of transitions (st, qt, at, yt, Pt, At)
V = set of variables to classify
C = set of checkpoints; cm = starting checkpoint

Data : frontier = FIFO of states to process
P = current set of persistent variables
Ucur = variables of unknown value in current state
Utrans = variables of unknown value after transition
Unext = variables of unknown value in next state

Result: The set of variables that must be persistent
begin1

P ← ∅;2

AddVisited(cm, V);3

Push(frontier, cm);4

repeat5

scur ← Pop(frontier);6

{visited, Ucur} ← GetVisited(scur);7

foreach t ∈ T , scur = st do8

Utrans ← Ucur − P ;9

read1 ← Support(Pt) ∪ Support(ot);10

foreach v ∈ Utrans do11

read2 ← ∅;12

foreach v̂ ∈ V, v̂ 6= v do read2 ← read2 ∪ Support(At,v̂);13

if At,v(V) 6= v then read2 ← read2 ∪ Support(At,v);14

if v ∈ (read1 ∪ read2) then15

// variable read before write
P ← P ∪ v;16

Utrans ← Utrans − v;17

else if v 6= At,v(V) then18

// variable written with known value
Utrans ← Utrans − v;19

if |Utrans| > 0 and qt 6= scur and qt /∈ C then20

{visited, Unext} ← GetVisited(qt);21

if not visited or |Utrans − Unext| > 0 then22

// Update unknown set in next state
AddVisited(qt, Utrans ∪ Unext);23

Push(frontier, qt);24

until IsEmpty(frontier);25

return P ;26

end27

Figure 3.8: Algorithm to classify EFSM state by simulation

CHAPTER 3. SYSTEM STATE 41

although it is technically in the support of its component of the action function, the spe-

cial case where At,v(V) = v is not considered a read. If an unknown variable is read in

the predicate, output, or action functions, it is removed from the unknown set and added

to the persistent set. Next, the action function for the transition is analyzed to detect

any variables that are written with known values. Since these variables are written before

being read, they are removed from the unknown set for the transition.

Once the transition’s unknown set is computed, it is determined whether the next

state qt should be added to the frontier list. If the transition is not a self loop and the

next state is not a checkpoint, the unknown set of the next state is updated. The new

unknown set is the union of the incoming and previous unknown sets, because a variable’s

value is only considered known if all paths to the state write the value. If any variables

are added to the next state’s unknown set, then it is added to the frontier list to be

processed in a future simulation pass.

At the end of the simulation, the algorithm returns the P set, and the persistent state

at checkpoint cm is Sp,cm = P . The state that is temporary at checkpoint cm is easily

computed as St,cm = V − P . When all checkpoints cm ∈ C are analyzed, the final state

partition is computed using Eq. (3.16) and Eq. (3.17).

Each simulation is guaranteed to complete, because a state is only put in the frontier

list if it has never been visited or the number of unknown variables increases. Thus, the

worst case complexity is O(|S| × |T | × |V |), if the number of unknowns increases by one

each time a state is put in the frontier list. In most cases, the simulation will converge

must faster, because all persistent variables are removed from future unknown lists as

soon as they are discovered. Note that, as given, the simulation algorithm also implicitly

computes the sub-machine rooted at cm by never inserting checkpoints into the frontier

list.

3.3.3 Microprocessors

Microprocessors come in many different configurations, but all have a large number of state

elements as part of the memory subsystem and execution logic. The abstract architecture

of a basic MIPS microprocessor is shown in Figure 3.9, including the program counter

(PC), instruction memory, data memory, register file, and arithmetic logic unit (ALU)

[30]. Collectively, the instruction and data memories form the main memory subsystem

CHAPTER 3. SYSTEM STATE 42

Data
memory

Address
Instruction
memory

Register filePC ALU

Data

Data

Register #Instruction

Figure 3.9: Abstract block diagram of a basic microprocessor [30, p. 272].

and typically have a large amount of state. Instruction and data memories may be unified

in a single memory, separated into multiple memories, and/or have a hierarchy of caches

to speed accesses. In modern microprocessors, the ALU usually contains pipeline registers

that hold intermediate results. The PC holds the address of the current instruction. The

register file holds a set of registers for the local storage of operands or results. High per-

formance processors may have additional memories for branch prediction, virtual memory

paging, etc.

A classical microprocessor can be essentially paused by executing a series of NO Op-

eration (NOP) instructions, since these are designed to simply flush the pipeline registers

in the execution unit. Assuming that the pipeline is flushed with NOP instructions before

entering a destructive power mode, the pipeline registers can be discarded and restored

with the values set by the NOP instruction. However, even when executing a NOP, it is

expected that the PC, register file, and memory subsystem retain their state.

A microprocessor can be specially designed to reduce the state maintenance require-

ments when it is idle using a combination of architectural and software code changes. First,

the notion of checkpoints can be extended to software by allowing the destructive power

mode at only specific points in the code. After passing through a software checkpoint,

the code should assume that all values in the register file are unknown. This effectively

makes the register file temporary state at the software checkpoints. Second, the addresses

of the software checkpoints can be recoded in a way similar to the FSM. This reduces the

state maintenance requirements for the PC. In most event-driven application software,

there will be only one software checkpoint that is typically crossed at the end of the main

event loop. Thus, the PC can often be restored to a constant value when the processor is

CHAPTER 3. SYSTEM STATE 43

resumed.

This approach is similar to that used in traditional interrupt service routines (ISRs). A

traditional ISR is stored at a specific code address, to which the microprocessor automat-

ically jumps when an interrupt occurs. Upon completion of the ISR, the PC is returned

to the previous point of execution. In the proposed architecture, the ISR mechanism is

modified to simply jump to the instruction following the software checkpoint when the

microprocessor is resumed.

The classification of the memory subsystem depends on its intended use. It is expected

that the main code memory is persistent and should retain its value during sleep mode. It

is also expected that the data memory is persistent, although if there are a large number

of temporary values it may be advantageous to partition the data memory into separate

persistent and temporary portions. Caches and virtual memories can be either temporary

or persistent, depending on performance requirements and whether the cached values are

still useful after sleep mode. In the most basic implementation, only the code and data

memories need be maintained during sleep mode, and the values of all other registers can

be discarded. Thus, the persistent state is nicely grouped together, which simplifies the

implementation of the low power mode.

44

Chapter 4

Power Managed System

The discussion thus far has assumed that the logic enters a lower power mode at a check-

point, but it has not yet been described how this is performed. In practice, a module

called the power manager (PM) performs the oversight and control of the system’s power

mode. This chapter describes the components of a power managed system and discusses

some issues involved with their physical and temporal composition.

4.1 Power Domains

For systems with components that change power modes at different times or on different

timescales, the design itself can be partitioned into individually controlled subdesigns.

Each of these subdesigns is called a power domain and can have its own set of power

modes and checkpoints. Although other types of domains exist, this thesis uses the term

domain as shorthand for a power domain unless otherwise specified. Nearly all designs

have at least one “always on” power domain that has no checkpoints and never changes its

global power mode. Power-managed designs will have additional domains that implement

additional power modes and checkpoints.

Power modes are divided into two types: global control modes and local control modes.

Global control modes export the status of the domain and relegate control to an external

PM, while local control modes are entirely implemented and controlled inside the do-

main. Typically, global power modes, such as gating supply rails, have a larger overhead

associated with them than local control modes, such as register-level clock gating.

Choice of power domain boundaries can have a significant impact on the final power

CHAPTER 4. POWER MANAGED SYSTEM 45

profile of the resulting system. A poor selection can cause a particular power domain to

remain in a more expensive power mode longer or to incur more transition overhead by

changing modes frequently. Often, a natural partitioning is evident from the functional

subsystems and serves as a starting point. In any case, it is useful to group logic with

correlated activity profiles, so that idle sections can be put in a less expensive power mode

than active sections.

4.2 Physical Composition

Each power domain has an interface to the PM and one or more interfaces to other

domains. These interfaces can be used to decouple the design of domains from the PM

through component virtualization. Virtualization has gained momentum in recent years

as a method of making reusable components to speed time to market and support a plug-

and-play approach to SoC design [31][32][33]. The component virtualization approach is

extended to power domains through the use of a generic PM interface called the Domain

Power Interface (DPI). The DPI describes all the signaling and protocols required for the

domain logic to communicate with the PM.

For proper virtualization of the PM, the domains need only understand the DPI.

The PM can then be designed independently from the domains, enabling a wide variety

of potential PM architectures: centralized vs. distributed, reactive vs. predictive, flat

vs. hierarchical, etc. An example of a DPI implementation is the Charm PIF, which is

described in Section 5.2.3.

Inter-domain signaling can be complicated if the interface changes during different

power modes. For example, when a power rail gating technique is used, the domain

outputs may be disconnected from the supply rails. In this case, the outputs can float to

a value that causes static current consumption in a connected domain. This problem is

well-known, and the standard solution is to insert an isolation cell that forces inter-domain

signals to appropriate values [4][34]. The isolation cell also implements the constant output

function determined during the FSM transformation in Section 3.3.1.

CHAPTER 4. POWER MANAGED SYSTEM 46

4.3 Temporal Composition

In addition to physical composition, power domains usually have activation constraints

that require an external scheduler. The scheduler is implemented as part of the PM and

is responsible for controlling the global power modes for each domain given the exported

power events. The laws that govern this operation are traditionally called the power man-

agement policy. The scheduler has two primary concerns when choosing power modes:

correctness and efficiency. Correctness requires the scheduler to put each domain in an

appropriate global power mode to meet the operating requirements of the system. Effi-

ciency means that it should simultaneously attempt to minimize the total power of the

system.

4.3.1 Correctness

From the perspective of the PM, power domains can be viewed as event generators. As

already stated, checkpoints are events used to influence the global power mode for a

particular domain. Additional events are required to inform the PM about intended

communication with connected domains. These communication events can be sent for

each transaction, but it is typically more efficient to use a session-based approach. In the

session-based method, a domain signals the PM when it first intends to communicate with

a neighboring domain and then, again, when it is finished.

The correctness constraint can sometimes be implemented as a set of invariant condi-

tions for the domains based upon the communication events. For example, consider a PM

that separates global power modes into active and inactive categories. In this situation,

individual domains can only communicate to connected domains if both are active. Thus,

if domain A attempts to signal domain B without notifying the PM, the system may fail if

the target domain is inactive. Although physical failure can be prevented using isolation

cells, the communication itself will be lost in the case. The effects of this can be graceful,

such as simply a reduction in Quality of Service (QoS), or they can be catastrophic, such

as a communication deadlock that halts the system. If the PM tracks communication

events, this situation can be avoided by ensuring that all communicating domains are in

an active power mode.

Other measures of correctness are more difficult to guarantee, such as trying to meet

a particular QoS requirement. Some global power modes have different computation

CHAPTER 4. POWER MANAGED SYSTEM 47

capabilities, either through architectural techniques like enabling/disabling subsystems or

through circuit techniques like forward body-biasing or increasing the clock frequency. In

these circumstances, there is typically a feedback loop between the power domain and/or

an estimator that watches the system to determine the required control parameters. A

more detailed discussion of a stochastic scheduler to meet QoS requirements for a Network

On Chip (NOC) are found in [35].

4.3.2 Efficiency

The second scheduling issue is efficiency, which attempts to minimize a cost function while

still providing a correct schedule. For the case of power-managed systems, the most basic

cost function is to minimize overall system power. However, other cost functions may have

to be taken into account when resources are limited. For example, particular care must be

taken to limit current consumption when the power source is constrained, such as when

operating on a solar cell or within a fixed wattage. In this case, the scheduler may elect to

throttle the current by sequencing the activation of individual domains. This technique is

employed in [36] to avoid rush currents when multiple domains activate simultaneously.

The cost function is complicated by the fact that local minimization at each particular

instant does not necessarily yield the best global result. The reason is that changes between

power modes usually have an associated overhead, both in terms of time (latency) and of

power. Thus, if a power savings is desired, the domain must remain in a lower power mode

long enough to amortize the overhead. This is explored in [25] in terms of the minimum

idle time required to save power in the idle mode of a MTCMOS design. The minimum

idle time formula can be adapted to the more general minimum turnaround time (MTT),

which puts a lower limit on the time spent in the lower power mode before it returns to

the higher power mode in order to achieve a power savings:

MTT =
Elost

Psavings
=

Eoverhead − Plower ∗ tswitch

Phigher − Plower
(4.1)

where Eoverhead is the energy required to change modes, Phigher is the power consumption

in the higher power mode, Plower is the power consumption in the lower power mode,

and tswitch is the time it takes to transition between modes. This analysis assumes the

worst case, where Phigher is consumed while transitioning. Both the Eoverhead and tswitch

parameters have multiple components:

Eoverhead = Elh + Ehl (4.2)

CHAPTER 4. POWER MANAGED SYSTEM 48

tswitch = tlh + thl (4.3)

where the parameters subscripted with “hl” specify the contribution during the transition

from the higher power mode to the lower power mode and the “lh” subscripts are for the

reverse transition.

If the time required to resume the higher power mode tlh is non-trivial, the latency

is another form of overhead. The latency manifests itself as a time lag when beginning

communication with a domain in an undesired mode. In some instances, the initiating

domain can simply wait until the destination is available. However, in cases where data is

sourced externally, architectural modifications may be required to queue the data until it

can be consumed. The additional power consumption from the queuing elements should

be included for fair comparisons to designs without power management.

4.3.3 Scheduling

In practice it is difficult, if not impossible, to know in advance that the domain can

remain in the lower power mode for the MTT, while still guaranteeing the correctness

requirement. The reason stems from the unfortunate law of causality, which essentially

dictates that it is not possible to react to an event until it happens. Thus, the most basic

and straightforward scheduler is reactive and will simply choose the lowest possible power

modes and wait for an event to happen that necessitates a return to a higher mode.

The reactive scheduler has the benefit of being very simple to implement in the PM.

Unfortunately, it suffers from two primary problems that result in wasted power. First,

a domain must wait until the destination domain is alive after issuing a communication

event to the PM. As shown in Figure 4.1, a non-trivial resume time (tlh) causes the waiting

domains to remain in higher power modes longer. Also shown in Figure 4.1 is the second

problem with reactive scheduling, where a domain may enter a lower power mode for less

than the MTT, resulting in a larger overall power consumption. This example shows three

layers of an OSI protocol stack [37] during a packet forwarding operation. After receiving

the packet, the layer 2 domain enters a lower power mode, then it is immediately required

to transmit the packet. The layer 3 domain wastes (Phigher−Plower) while waiting for the

layer 2 domain to resume, and layer 2 wastes some fraction of Eoverhead since it did not

remain in the lower power mode long enough to amortize the overhead.

Both problems can be reduced by providing more information to the PM about ex-

CHAPTER 4. POWER MANAGED SYSTEM 49

Layer 1
t

Layer 2
Layer 3

Layer 2
Layer 1

resume overhead

turnaround before MTT

Figure 4.1: Example of wasted power using reactive scheduling for packet forwarding in a
protocol stack. This example assumes that each layer is implemented as a separate power
domain.

pected future events. Although this is a form of prediction, it need not be stochastic be-

cause some future events are certain to occur. The best examples of this are timers, which

are common in embedded systems. These timers are often used to perform repeated activ-

ities, such as polling a basestation, or detecting extraordinary situations, such as a timeout

while waiting for a response. In typical designs the timers are distributed throughout the

system, so information about their expiration is unavailable to the PM. An alternative

approach is to collect the timers inside the PM, which has several benefits. First, a timer

is a known source of a future event, which places an upper bound on the turnaround time

for the affected domain. Second, exporting the timers can save power since a domain can

often enter a lower power mode when there is no longer any internal switching. Third, as

will be explained in Section 4.4.2, the centralization can allow multiple virtual timers to

share the same implementation.

Another method to predict future events with certainty is to exploit how data flows

through a particular system. In many cases, sequences of events occur in known patterns,

called scenarios. If the PM can select the appropriate scenario, it can reliably predict

future events. For example, consider the example in Figure 4.2a, which shows the three

protocol layers during a packet transmission. In this case, the layer 3 domain can alert

the PM to its intentions before it sends the communication event for layer 2. The PM

will then internally select the transmission scenario for layer 3. When the communication

event eventually occurs, the PM can also simultaneously activate layer 1, thus reducing

the impact of wakeup overhead and possibly preventing a short turnaround for layer 1.

In practice, the scenario tracking alerts can be treated as another type of checkpoint

CHAPTER 4. POWER MANAGED SYSTEM 50

Begin L3 TX
Scenario

Is
Comm. Event

(L3->L2)

N

Y

Activate L2

Activate L1

Deselect Scenario

(a) Simple example

Begin L3 RX
Scenario

Is
Checkpoint

N

Override L2
Deactivation

Deselect Scenario

Forward

Y

Consume

Is
Comm. Event

L3->L2

YY

N

N

Y

N

(b) Expanded example

Figure 4.2: Example scenarios for packet (a) transmission and (b) reception.

CHAPTER 4. POWER MANAGED SYSTEM 51

event. This makes sense, as the previously stated purpose of a checkpoint event is to signal

intention to do less computation. Now, it is expanded to include a larger set of intentions

to the PM. As with the other checkpoint events, choice of which alerts to export is up to

each domain. However, clearly checkpoints that have expected external ramifications are

more valuable for tracking scenarios.

A more realistic scenario designed to prevent the quick turnaround in Figure 4.1 is

shown in Figure 4.2b. In this case, the layer 3 domain can quickly determine whether the

packet should be forwarded, even though it takes some time to ascertain exactly where.

In the meantime, it exports the forward/consume decision to the PM, which overrides

the deactivation of layer 2 if it expects it to be reactivated within the MTT. Although

it is tempting to simply implement logic in layer 3 that forces layer 2 to remain in the

higher power mode (by sending an early communication event to the PM), this violates the

principle of power domain independence. Quite simply, this requires the layer 3 domain

to make assumptions about the activation time and MTT of layer 2, and it is the purpose

of the PM to make such decisions that span power domains.

Some future events are truly uncertain, often because the event source is external to

the system (such as a human operating the user-interface) or because the event is not

known until it is too late to alert the PM. In this case, it is possible to follow the time-

honored strategy of seers and attempt to predict the uncertain future. Although some

prophets have a greater reported hit rate than others [38], the predictions are usually

suspect without some underlying mathematics. One of the more mathematical treatments

is found in [39], where the event generator is a human whose historical access patterns are

analyzed using a Markov decision process. A similar approach can be applied to select

scenarios, based upon historical activity.

As an example of stochastic scheduling, consider the reactive schedule for the packet

forwarding case shown in Figure 4.3a. If the PM keeps statistics on the probability and

amount of time to wait after activating layer 1 before activating layer 2, it can predictively

activate domains to minimize the impact of the overhead switching time. As shown in

Figure 4.3b, the time spent in layer 1 is reduced by the activation time of layer 2 and

layer 3, and so on. Further, if it is not possible for the layer 3 device to determine quickly

enough whether it should forward the packet, the scenario in Figure 4.2b cannot be applied

early enough to override the deactivation of layer 2. However, if the forward/consume

checkpoints are still sent, the PM can keep statistics on the ratio of forwarded versus

CHAPTER 4. POWER MANAGED SYSTEM 52

Layer 1
t

Layer 2
Layer 3

Layer 2
Layer 1

L2 overlap L3

L1 overlap L2, no overlap with L3

L1 no overlap with L2

L1 overlap L2&L3

L3 overlap L2, no overlap with L1

L2 overlap L1, not L3L3 only (actual turnaround time for L2)

L3 overlap L2&L1

(a) Baseline schedule using reactive scheduling

Layer 1
t

Layer 2
Layer 3

L2 overlap L3

L1 overlap L2, no overlap with L3

L1 no overlap with L2

L1 overlap L2&L3

Layer 2
Layer 1

L3 overlap L2, no overlap with L1

L2 overlap L1, not L3L3 only (actual turnaround time for L2)

L3 overlap L2&L1

(b) Improved schedule using prediction to reduce resume overhead

Layer 1
t

Layer 2
Layer 3

Layer 2

L3 only (actual turnaround time for L2)

Layer 1

PM overrides Layer 1 and Layer 2 deactivation

(c) Optimal schedule using prediction to reduce resume overhead and prevent turnarounds less than MTT

Figure 4.3: Examples of improvements from stochastic scheduling of packet forwarding
scenario.

CHAPTER 4. POWER MANAGED SYSTEM 53

consumed packets. Depending on whether the ratio reaches a level where an average

savings is predicted, the PM can selectively override the deactivation of layer 2. In this

way, it is possible to achieve the optimal schedule in Figure 4.3c, where the layer 2 domain

is kept on. Note that this eliminates the startup overhead from the layer 2 domain during

the turnaround, which also shortens the turnaround time for layer 1 to a level below the

MTT. Thus, in this scenario the PM would ideally keep layer 1 at the higher power mode,

as well.

4.4 Power Manager Components

The previous sections describe some issues and requirements for the design of a PM.

This section goes into more detail on the actual implementation issues for the scheduler,

system timewheel, power control network, and domain controller subsystems inside the

PM. Note that different PM implementations have different requirements for each of

these subsystems, and an example PM implementation for a real system is presented in

Chapter 5.

4.4.1 Scheduler

The scheduler component of the PM is responsible for selecting the appropriate global

power mode for each domain at each point in time. As previously described, the most

basic scheduler uses a reactive policy to put each domain in the lowest possible power

mode at each time instant. This policy is easily implemented in hardware using two

tables: a connection table and a power mode table. Both tables are two-dimensional and

list the domains in each dimension. Each entry in the connection table indicates a physical

connection between domains and the minimum power mode required for each domain when

the link is active. This is used when a domain issues a communication event, so that the

PM can determine which domain will receive the communication and into what mode it

should be put. This table is static, and is either hard-coded or programmed during system

initialization. The power table, however, is updated as communication events are received

and each entry indicates whether the communication link is active. Since diagonal entries

would be empty with this definition, they are instead used to indicate the desired power

mode as requested by the domain’s checkpoint events.

The set of power constraints for a particular domain are formed using the connection

CHAPTER 4. POWER MANAGED SYSTEM 54

Scenario selector Instruction pointer

Command
processor

Scenario memory
select
addr

enable

event
instruction

addr

Figure 4.4: Block diagram of scenario scheduler inside PM.

and power tables. Conceptually, a derivative table is generated by selecting the minimum

power mode from the connection table for each active link in the power table. The entries

for all inactive links are set to zero. The set of power constraints is then simply the union

of all entries in the row and column for the domain. Since the domain must satisfy all these

constraints, the minimum permissible power mode is the maximum of the constraints in

the set.

A more complicated scheduler that implements scenarios, as described in Section 4.3.3,

can be implemented as the small processor shown in Figure 4.4. For this example, the

underlying scheduler is reactive, but scenarios are used to improve system power perfor-

mance. The scenarios are stored in a memory, which can be a read-only ROM or a writable

SRAM for dynamic scenario programming.

At the heart of the scenario scheduler is a small command processor that implements

a limited set of commands used to encode scenario flowcharts like those in Figure 4.2. An

example set of commands is listed in Table 4.1. Using this set, the scenario can override

a domain power down (deactivation), cancel an override, select a new scenario, deselect

all scenarios, or wait. The single override command allows the scenario to predictively

activate and also prevent the explicit power down of a domain. The override command

essentially adds an additional power mode constraint to the set generated by the reactive

scheduler. The constraint remains in effect until the domain would have been activated

normally in the reactive policy or it is explicitly canceled. The scenario selection command

allows scenarios to be chained together, and is similar to a jump command in a traditional

processor.

The deselect scenario command ends the current scenario. Upon execution of this com-

mand, there is a choice whether to automatically cancel all active overrides. If overrides are

canceled, then each scenario should be programmed with suitable wait conditions before

the deselection. These waits can be avoided if overrides are not automatically canceled.

CHAPTER 4. POWER MANAGED SYSTEM 55

Command Arguments

Override power down Domain
Cancel override Domain
Select new scenario Addr
Deselect scenario
Wait time Time
Wait event Event

Table 4.1: Example command set implemented by scenario scheduler.

However, if an improper scenario program fails to cancel an override before deselection,

the domain will errantly remain in a higher power mode. To avoid a similar situation

where an improper scenario program gets stuck, it may be advantageous for the sched-

uler to automatically cancel all overrides and deselect a scenario after a specified timeout.

This essentially “reboots” the scenario processor and is similar to the watchdog timer

commonly found in embedded microcontrollers.

Once a scenario is selected, the command processor sequentially processes instructions

until it encounters a wait statement. There are two different wait statement types: one

that waits for a specific amount of time and one that waits for a particular event to occur.

The former is easy to implement, since the timeout can be scheduled using a virtual timer

within the PM. The latter is a bit more complicated because it requires the scheduler

to detect a particular incoming event. In practice, individual events can be encoded by

simply labeling (often in binary) all the domains and events and specifying the appropriate

pair. The problem comes when simultaneous sensitivity to multiple events is required. For

example, the flowchart in Figure 4.2b attempts to compare all incoming events to (layer 3,

forward) or (layer 3, consume). Since power control events are expected to be relatively

rare, these can usually be handled sequentially, as intimated by the flowchart. If a second

event occurs in rapid succession, the PM may have to stall the issuing domain until the

backlog is processed. A small event queue can be used to smooth out burst traffic without

these stalls.

Since each scenario is activated by a sensitizing certain event, the scenario selector

block is used to monitor the entire sensitivity list for all scenarios. When one of the

activating events is detected, it sets the instruction pointer to the start of the appropri-

ate scenario. This block is the most difficult scheduler element to implement, because it

CHAPTER 4. POWER MANAGED SYSTEM 56

must be simultaneously sensitive to all events that activate scenarios. This can be per-

formed sequentially, possibly using a top-level dispatch scenario that is executed in the

command processor for every incoming event. In this case, if an event occurs uniformly

every tevent interarrival clock cycles, there are N scenarios to check per event, and it takes

tcheck clock cycles to check each scenario, then the minimum requirement to avoid a system

stall is

tevent interarrival ≤ N · tcheck (4.4)

Unfortunately, since the event arrival profile is unlikely to be uniform, the margin must be

much larger to avoid a backlog that stalls the system. Again, a queue can be used to over-

come small bursts, but this can be prohibitive for a large number of scenarios or extended

bursts of event traffic. Thus, a more time efficient solution is to implement a small content-

addressable memory (CAM) that simultaneously matches the scenarios. This CAM can

be static or programmable, to match the desired level of scenario programmability.

4.4.2 System Timewheel

The system timewheel component of the PM is the master timekeeper for the system

and used to implement the virtual timers described in Section 4.3.3. Using virtual timers

saves power by sharing the counters and comparators, instead of having separate ones for

each timer. The result is that the overall switching activity for active timers is reduced.

Timewheels were first used in logic simulators [40], and the core of the hardware imple-

mentation is essentially a free-running counter. The counter width and rate need to be

large enough to handle the largest value and latency required by any controlled domain.

When the timewheel counter reaches the highest allowable value, it simply rolls over to

zero and continues from there.

A virtual timer is scheduled by specifying the desired time delta before generating

a particular event upon expiration. This relative value is converted to timewheel clock

cycles, if necessary, and added to the current timewheel value. The resulting absolute

time is stored in a table of pending virtual timers, alongside the event to generate when

it expires. The pending timer table must be large enough to handle the largest possible

number of simultaneous virtual timers.

For each tick of the timewheel, the current time value must be compared to those in

the pending timer table. This can be accomplished with a bank of comparators, one for

CHAPTER 4. POWER MANAGED SYSTEM 57

each virtual timer. However, it is likely more efficient to simply sort the timer entries in

the table and export only the most urgent one. In this way, only a single value need be

compared to the current timewheel value. The comparator can usually be implemented

using a low-power sequential topology that simply detects equality.

For reasonable comparison, each entry in the pending timer table need not specify

the entire width of the counter. Indeed, as the timescale of timer expiration increases,

the LSBs become increasingly less important. Pending timers over wide time range can

be specified using a form of exponential notation. Only the most urgent timer need be

decoded for comparison. In this notation, the allowed exponents can be a small subset to

reduce the muxing requirements in the decoding logic.

Care must be taken if multiple timers can expire simultaneously. Usually, the rate of

the timewheel is lower than the rest of the PM and serviced domains, so it is typically

possible to handle more than one expiration per timewheel tick in a sequential fashion. If

the difference between the event generation rate and the timewheel rate is insufficient to

handle the worst case of simultaneous expiration of all timers, then additional comparison

logic may be required. Alternatively, the system can simply not allow the scheduling of

too many timers with simultaneous expiration.

For the basic timewheel configuration, timers are considered guaranteed future events.

In many systems, however, timers are used to detect extraordinary situations such as a

software lockup (watchdog timer) or a missing event (timeout timer). In these cases, if

the software is still running or the packet is received, then the extraordinary situation

is avoided by canceling or rescheduling the pending virtual timer. Virtual timers can

be identified by the event they generate upon expiration, so they can be removed or

rescheduled by simply updating the pending timer table.

Automatic overrides of domain power downs can be highly effective when the pending

timer table is exported to the scheduler. The virtual timers can be used to set an upper

bound on the actual turnaround time for a particular domain. The scheduler can override

a domain power down if this bound is smaller than the MTT.

4.4.3 Power Control Network

The power control network interfaces the PM to each domain’s DPI. A typical PM contains

a central processor that can only handle a single stream of commands and events. The

CHAPTER 4. POWER MANAGED SYSTEM 58

main function of the power control network is to multiplex the DPIs for each domain into

a single DPI. This can be accomplished conceptually by simply tagging each command

and event with the associated domain and serializing any simultaneous communication.

In practice, the choice of multiplexing topology impacts the efficiency and the serializing

operation must take care to avoid system deadlock.

Because a single PM can service a large number of domains, the efficiency of the

multiplexing topology can significantly impact the overhead of the PM. This is particularly

true if the sum total distance between each domain and the PM is large or if the event

activity on the network is high. The power control network is no different than any other

system-wide signaling network, so existing network topology research applies. A survey

of common network topologies, as applied to local area networks, is found in [41].

The basic trade-off is between a system-wide bus and point-to-point wiring, although

there are a number of hybrids topologies. For the bus topology, all DPIs share a single set

of wires so each communication requires the same amount of energy. The point-to-point

topology uses a dedicated set of wires between each DPI and the PM. A star topology

uses the minimum amount of energy for each link, at the expense of a lot of wiring. The

ring topology uses less wiring to connect DPIs sequentially in a chain that begins and ends

at the PM. Hybrids, such as a mesh topology, are hierarchical and can be used to separate

the network into smaller sections. Each section is similar to an island, and communication

into or out of the island is sent through a bridge to the next level of hierarchy [41]. It is

also possible to implement routing in the interconnect, forming a true network on a chip

[42]. Clearly, there are many possible topologies, and this list presents just some of the

most commonly used.

In addition to having the lowest energy consumption, the star is most useful for do-

mains that are located far apart from each other. In practice, domains are usually spatially

correlated so there exist several topologies between the extremes that reduce the wiring

overhead while maintaining a reasonable energy consumption. All these topologies are

essentially methods of implementing a distributed multiplexer through some hierarchical

division. The most common techniques use a tree (mesh) structure or a routed (switch

box) structure.

Regardless of the multiplexer topology, the different DPIs must be eventually formed

into a single stream in the PM core. When multiple DPIs have simultaneous communica-

tion care must be taken to avoid starvation or deadlock. The easiest method is to avoid

CHAPTER 4. POWER MANAGED SYSTEM 59

starvation is to use an arbiter than implements a fair arbitration scheme, such as round-

robin, token-passing, or time-slotting. Power control deadlock can be avoided by requiring

domains to process incoming events without blocking. Outgoing events or commands can

block until completion, as these will stall only the associated domain.

4.4.4 Domain Controllers

Each power domains needs a controller to sequence the power control signals, clocks, and

resets. These domain controllers physically implement the signals to set the power modes.

The logic typically amounts to a small state machine, counter, or other custom logic to

detect when a domain has effectively entered the desired power mode. As an example,

domain clocks must be gated when the domain is in an inactive power mode, as these

modes disallow switching by definition.

In addition, the domain controller is responsible for controlling the isolation cells

used to separate connected domains that are in incompatible power modes. Thus some

communication between domain controllers is potentially necessary to determine whether

the adjacent domains are in a compatible mode or not. In practice, if isolation cells are

implemented on both sides of each signal between domains, each domain can simply isolate

itself. This has the benefit of being easy to implement and verify, but requires twice as

many isolation cells than the minimal requirement.

4.5 Locality and Scalability

One nice characteristic of well-designed power domains is that logic with similar power

characteristics are naturally grouped together, which simplifies the implementation of

power modes. If all the PM logic is also grouped together, it is easier for the PM to

implement its own power modes. However, a centralized PM has several drawbacks. First,

it must operate at the finest time granularity required by all the domains. Second, the

design might have a natural hierarchy of power domain activation which is not exploited

by a centralized PM. Third, if power control events are frequently issued on long wires,

the power spent in the control network can be significant.

One possible solution is to separate the PM functionality into smaller components

called distributed power managers (DPMs). Each DPM is spatially closer to the domains

that it services and can operate on the timescale appropriate for those domains. Further,

CHAPTER 4. POWER MANAGED SYSTEM 60

DPM A

DPM B

DPM C PD 3

PD 2PD 1

DPM D
DPI

DPI

DPI

DPIDPI DPI DPI DPI

DPI DPI DPI

DPI DPI DPI

DPI

DPIDPI

Figure 4.5: Hierarchical tree structure for distributed power managers (DPMs).

if DPMs are arranged hierarchically in a tree structure, as shown in Figure 4.5, each can

be treated as a power domain at the next higher level of hierarchy. Thus, each subtree

rooted at a DPM is essentially a “super” power domain that wraps an arbitrary number

of sub-domains. Functions that are unsupported in a particular DPM can be exported to

a higher-level DPM. For example, each DPM could implement a system timewheel with

only the width and rate required by the domains it services. Further, it can also implement

an even smaller system timewheel and simply export longer timers to a higher level DPM.

This hierarchical approach exploits the fact that a higher level DPM can usually operate

at a slower clock rate than the lower level ones, thus implementing the long timer more

efficiently.

In addition to the microarchitectural level, the power domain idea can be easily ex-

tended to larger systems. Since each PM or DPM can control any device that implements

the DPI, the physical implementation of the domain can be outside of the chip. For do-

mains that do not have a native DPI, a DPI adapter can be used to export the power

control information to the PM. Further, by exporting a DPI from the top-level PM or

DPM, the chip itself can be used as a power domain in a larger power-managed system.

In this way, the entire power management architecture can be flexibly used in a system of

arbitrary scale.

61

Chapter 5

PicoRadio Design Driver

PicoRadio is a research project aimed at the creation of a low-power, ad-hoc, multi-hop,

sensor network. A PicoRadio network is composed of individual PicoNodes, each with a

low overall activity factor and long idle times between packet transmission/reception. It is

important to minimize power consumption in the PicoNodes to increase battery longevity

and possibly enable energy scavenging [43][44]. Thus, it is a prime candidate for the

power-management architecture described in this thesis.

This chapter first describes the PicoNode system and power domain architecture,

which includes the partitioning of power domains and their circuit implementation using

sleep transistors. The functionality of each domain is then briefly described, with partic-

ular emphasis on the architectural decisions that reduce power consumption. Next, the

architecture of the PM is discussed in detail, followed by the implementation of the chip

using an industry-standard place and route design flow. Lastly some measurements from

the chip are presented.

5.1 Quark PicoNode System

The Quark system is a PicoNode that implements a complete protocol stack for a node

in a PicoRadio network. The design of the protocol stack began with a subset of the

OSI reference model [37], but it includes an additional layer responsible for computing

the location of a node. This locationing layer does not fit well in the reference model

because it requires a physical ranging component, a notion of neighborhood (DLL), and

the concept of network connectivity. The layer manifest and desired functionality is shown

CHAPTER 5. PICORADIO DESIGN DRIVER 62

Application
Sensor interface (I2C, SPI, GPIO)
User interface (RS-232)

Data Link
Automatic ID assignment
Cycled receiver multi-user access

Baseband Digital baseband

RF Phy 1.9GHz two-channel transceiver

Network Directed diffusion routing algorithm

Position trilaterationLocationing

Physical

Quark layersOSI layers

Data Link

Network

Application

Quark purpose

Figure 5.1: Quark system protocol stack.

in the PicoNode protocol stack in Figure 5.1.

The functionality of the Quark system is divided between two primary custom chips:

Charm and Strange. The Charm chip contains the entire digital portion of the protocol

stack, which includes all the layers except the analog portion of the physical layer. The

remainder of the physical layer is in the Strange chip, which contains a CMOS imple-

mentation of a two-channel On-Off Keyed (OOK) 2.4GHz radio. As shown in Figure 5.2,

these two chips and some additional circuitry (power train, antenna, crystal, et al.) form

a PicoNode.

The Charm SoC implements the digital portion of the PicoNode protocol stack. The

primary architectural components in the design are a synthesized 8051-compatible em-

bedded microcontroller with 64k of program RAM, two 256B packet queues, a custom

data-link layer, a neighborhood management subsystem, a digital baseband, a location

computation subsystem, and several external interfaces. The Charm chip is designed to

interface to an external two-channel On-Off Keyed (OOK) radio, an external Electrically

Erasable Programmable Read-Only Memory (EEPROM), an arbitrary sensor(s), and var-

ious user-interface components such as a serial display.

CHAPTER 5. PICORADIO DESIGN DRIVER 63

location

data link
layer (dll)

256B
Reg File

power network

64kB
Memory

baseband

interface
(SPI,I2C,GPIO)

serial
(console)

voltage
converter

Charm Digital Protocol Processing Chip ADC & Strange C

OOK
TX/RX
OOK

TX/RX

ADCADC

neighbor

1kB packet
queues (netq)

power
manager

dw8051 uC
(app & net)clock

oscillator

JTAG
test port

location

data link
layer (dll)

256B
Reg File

power network

64kB
Memory

baseband

interface
(SPI,I2C,GPIO)

serial
(console)

voltage
converter

Charm Digital Protocol Processing Chip ADC & Strange C

OOK
TX/RX
OOK

TX/RX

ADCADC

neighbor

1kB packet
queues (netq)

power
manager

dw8051 uC
(app & net)clock

oscillator

JTAG
test port

Figure 5.2: Quark system block diagram.

5.2 Power Domain Architecture

The first step toward applying the power management architecture in this thesis is to

divide the functionality and architectural components into power domains. This section

describes the partitioning approach for the Charm chip, followed by a discussion of the

implementation issues common to all the domains.

5.2.1 Partitioning

As described in Section 4.1, the particular power domain partitions have a significant

impact on the power profile for the system. In the Charm chip, a natural partition would

be to make a power domain for each hardware layer of the protocol stack. In this case,

the network and application layers would be grouped together in the dw8051 domain,

because they are both implemented as software running on the same microcontroller. The

dll domain contains the custom state machine logic for the data link layer. The bb domain

contains the datapath and control state machine for the baseband portion of the physical

layer. Likewise, the locationing domain contains the custom logic for the locationing layer.

Although a good starting point, a strict, layer-driven partitioning method gives a poor

result because it neglects how data flows through the system. The partitioning is improved

through examination of data flow and activity factors. In the particular case where data

crosses layers, it is not clear whether the data should be queued in the source or sink

CHAPTER 5. PICORADIO DESIGN DRIVER 64

domain. One possible solution to this problem is to queue the data on both sides of the

partition. Unfortunately, this can result in duplicate memories that are purely overhead

introduced by the choice of domain partitioning.

The approach employed in the Charm chip is to identify situations where data storage

“overlaps” power domains and create an additional domain between them. The purpose of

the new domain is to decrease the activity factor of the accessing domains, by decoupling

the producing domain(s) from the consuming domain(s). It has the additional benefit of

automatically grouping state together, which follows nicely the methodology suggested

in Section 3.2 for handling state inside power domains. Two additional domains are

introduced to the Charm chip to handle data storage that overlaps power domains.

The first additional domain is the netq domain, which contains the primary receive

and transmit packet queues. This additional domain allows the packet queues to be set

simultaneously in the microcontroller’s memory map and accessible by the DLL, enabling

packets to be processed “in-place” by both. This reduces the overhead typically found

when packets are copied from one memory space to another when crossing layers in the

protocol stack, while still maintaining a nice separation between layer functionality.

The second additional domain is the neighbor domain, which keeps statistics on other

nearby PicoNodes. In this case, neighbor is defined to mean a node that is within commu-

nication range of the radio and with which can exchange packets. From the perspective of

the DLL each neighbor is a separate link, all link data associated with a neighbor is stored

as a “line” in the neighbor table. The DLL is responsible for adding and removing entries

from the table and maintains some statistics on the link quality and status. The location-

ing layer updates the table with new node position calculations. The network layer uses

the locations and link quality metrics when selecting the next hop during routing. Similar

to the case with the network queues, all neighborhood data is nicely collected together

which eases the design of the accessing power domains.

Lastly, there are two additional domains for subsystems that have very low activity

factors. The interface domain implements the Motorola SPI and Philips I2C [45] inter-

face protocols, which are commonly used interfaces for external sensors and memories.

It additionally contains a general purpose interface with pin direction and timing that is

programmed by the microcontroller. The serial domain implements the logic for a pro-

grammable baud rate serial port. With the addition of an external line-driver, the node

can communicate with a terminal or laptop using the standard RS-232 interface. Both

CHAPTER 5. PICORADIO DESIGN DRIVER 65

interface

dw8051

netq

neighbor

dll

baseband

location

serial

ADC+radio

RS-232

I2C,
SPI,
GPIO

A

B

C

D

A

B D

E

A

BA

B

A

B

C A

A

A

Figure 5.3: Charm chip power domains and major port interconnections.

Domain Port A Port B Port C Port D Port E Port F Port G

dll netq baseband location neighbor dw8051
dw8051 netq neighbor dll serial interface location baseband
netq dw8051 dll
location dll netq dw8051
neighbor dw8051 dll location
serial dw8051
baseband dll dw8051
interface dw8051

Table 5.1: Complete list of domains and port interconnections.

of these power domains can be awoken by events external to the Charm chip, which they

handle and optionally activate the dw8051 domain for further processing. Both of these

domains are quite small compared to the others, and thus they can provide some data on

how the architecture performs with small domains. The final partition for the Charm

chip has eight power domains: dw8051, dll, baseband, locationing, netq, neighbor, inter-

face, and serial. The interfaces between domains are shown in Figure 5.3 along with most

of the interconnections. Those not shown are used for system initialization and are not

used during normal operation afterward. Thus the activity factors of these connections

are neglected during system design and analysis. The entire interconnection table, as

programmed into the power manager, is shown in Table 5.1.

5.2.2 Power Modes

As described in Section 4.1, the presented power-management architecture divides each

domain’s power modes depending on whether they are locally or globally controlled. Each

CHAPTER 5. PICORADIO DESIGN DRIVER 66

power domain in the Charm chip implements up to three power modes: active, idle, and

sleep. The idle mode is locally controlled in each domain, while the active and sleep modes

are global and are exported to the PM.

Idle mode is intended to reduce the dynamic power consumption of the power domain

using latch-based clock gating. One key characteristic of clock gating is that the overhead

is almost negligible, because it requires only a small amount of control logic and mode

changes occur within a single clock cycle. This enables some power domains to include

multiple clock domains where sections can briefly idle while other sections remain active.

This is useful in situations where the activity profiles of the sections is not identical but is

timing-critical or too highly correlated to warrant the creation of a separate power domain.

The Charm chip implements two global control modes: active and sleep. During sleep

mode, the domains are not allowed to perform any computation or interact with any

other domains. During active mode, the domains may compute as necessary and are free

to change internal power modes at any time. Because of the expected overhead to enter

sleep mode, domains should enter this mode when relatively long idle times are expected.

For the Charm chip, these cases are typically obvious, such as between packets and when

waiting for timeouts. For shorter idle periods, on the order of tens of clock cycles or less,

domains should simply enter the lowest power internal control mode. In the case where

the length of the idle time cannot be determined a priori, the decision should be sent to

the PM, which may have more information about the system as a whole.

5.2.3 Power Interface

The Charm Power InterFace (PIF) is a DPI that defines the signaling and protocol for

communication between the domains and the PM. The main purpose of the DPI is

to standardize the signaling and protocol on the domain-facing side, which allows the

domains to be implemented somewhat independently from the core PM logic. As shown

in Figure 5.4 from the domain perspective, sourced communication is in the form of

commands, and received communication from the PM is in the form of events. Commands

allow the block to enable/disable communication to other domains, setup virtual timers,

and export power management checkpoints to the PM. Commands must be asserted until

the PIF returns cmd ack. Events occur either in response to commands or when the

system requires some action by the block, such as a timer expiration or an external port

CHAPTER 5. PICORADIO DESIGN DRIVER 67

Domain PIF

cmd_code[1:0]
timer_res[1:0]
timer_val[9:0]

hint[3:0]
cmd_valid
cmd_ack

event_code[1:0]
event_data[3:0]

event_valid
hint[3:0]

Command interface

Event interface

Figure 5.4: Signal interface between domain and the PIF.

communication request. Events are held constant by the PIF until the domain asserts

event ack.

External signals are bundled into separate ports that can be open or closed. Signaling

is only permitted through an open port, so the PIF contains commands to change the state

of the domain’s ports. The Charm chip uses a session-based communication approach,

and the PIF implements the four-phase session handshaking scheme shown in Figure 5.5.

When a domain intends to communicate through a port, it must first become a master of

the port by issuing a Request-To-Send (RTS) command to the PIF. After an unknown

delay, the PIF will respond with a Clear-To-Send (CTS) event. At this point, the port

is open, and communication is permitted. When the domain is finished with the port, it

issues an End-Of-Transmission (EOT) command. The PIF will issue an EOT event to

acknowledge the command, but the port may remain open if required by another master.

As shown in Figure 5.5b, this permits multiple masters to use the same port. A port will

remain open as long as any master requires it. To simplify the decoding logic, the PIF

provides two signals, ports open and ports open by me, where the latter disambiguates

why a port is open.

The PIF timer command allows a domain to set a timer up to one million clock ticks

in the future. When a timer expires, the domain is wakened, if necessary, and issued a

CHAPTER 5. PICORADIO DESIGN DRIVER 68

Command: RTS to B

Event: CTS to AEvent: CTS to B

Domain A

Communicate with B until
decide to close port

Communicate with A
until port is closed

Command: EOT to B

Event: EOT to AEvent: EOT to B

PIF Domain B

(a) Single master

Command: RTS to B

Event: CTS to AEvent: CTS to B

Domain A

port_open=1, port_open_by_me=1

Command: EOT to B
Event: EOT to AEvent: EOT to B

PIF Domain B

Command: RTS to A

Event: CTS to B Event: CTS to A

port_open=1, port_open_by_me=0

port_open=1, port_open_by_me=1 port_open=1, port_open_by_me=1

port_open=1, port_open_by_me=0 port_open=1, port_open_by_me=1

Command: EOT to B

Event: EOT to A Event: EOT to B

port_open=0, port_open_by_me=0 port_open=0, port_open_by_me=0

(b) Multiple master

Figure 5.5: Port open/close sequence chart for PIF.

CHAPTER 5. PICORADIO DESIGN DRIVER 69

timer expiration event. A domain can differentiate between timers by supplying a hint

with the command. The same hint is returned when the timer expires. Thus, a block can

sleep while waiting and can return to the desired state when the timer expires.

Two different types of domains are supported through by the PIF: masters and slaves.

A master domain can influence its own power mode through the use of checkpoint com-

mands. This command allows domains to export power management hints to the PM.

The goal is to give enough information to the PM to enable scenario tracking or prediction

based on the current system state. All master domains must implement a sleep checkpoint,

defined as checkpoint number zero, which indicates that it is finished processing and can

be put to sleep. Master domains can issue custom checkpoints to expose more information

to the PM. A slave domain is active only when another domain opens a connected port,

thus it need not issue checkpoints since it does not have any local influence over its global

power mode. The PM automatically puts a slave domain to sleep, whenever it is not

required by the connected domains.

Events are issued when a timer expires or there is control activity on a port. Since it

is possible to receive events without issuing a command, it is important to process these

in a timely manner to avoid system deadlock. Domains should not block event processing

while waiting for the response from a command. Other sources of potential deadlocks

and livelocks associated with power mode changes, especially those in response to a sleep

checkpoint, are handled by the PIF and are described in Section 5.4.3.

5.2.4 Sleep Mode Implementation

The sleep global power mode for the Charm chip is implemented by lowering the voltage on

the VDD supply rail. As discussed in Chapter 3, state in memory components complicates

the use of power rail gating. The Charm prototype addresses this problem by maintaining

a virtual supply rail (VDDV) that is higher than the data retention voltage (DRV). In this

way, the state of the domain is preserved, and the leakage of the domain is reduced.

As shown in Figure 5.6, the power switches are implemented using wide transistors

between the nominal supply (VDDHI) and the lower retention voltage (VDDLO). A high-Vt

NMOS is used for the retention device during sleep mode. The control signal swings from

GND to VDDHI so the voltage at VDDV will eventually settle to either (VDDHI − Vt) or

VDDLO, whichever is smaller. This enables two deployment options for the chip. First,

CHAPTER 5. PICORADIO DESIGN DRIVER 70

awake awake_buf

virtual vdd

vddhi vddhi

vddhi

vddlo

CMOS logic

CMOS logic

CMOS logicpower
switches

vddhivddlo

Figure 5.6: Sleep switch circuit to gate virtual supply (VDDV) rail.

the VDDLO supply can be set equal to VDDHI . With this option, there is virtually no

power overhead to implement the sleep mode, and the Vt drop significantly reduces the

leakage due to the exponential relationship to VDS . The second option uses a lower value

for VDDLO which further reduces leakage at the cost of voltage converter overhead. Both

options are implemented on the Charm chip.

The active mode switch is sized as a trade-off between leakage minimization and perfor-

mance loss. As described in Section 2.3.2, a larger sleep transistor has higher performance

but also higher leakage. The prototype Charm chip targets a 15% reduction in speed,

which is not critical, because the performance requirements of the chip can still be met at

this level.

Although the switches are sized to account for the worst case switching activity in

the domain, this situation rarely (if ever) occurs. Unfortunately, analysis of the true peak

current for all possible input and state combinations over all process corners is compu-

tationally infeasible. However, a failure on any timing path will cause errant operation,

so the prototype errors on the conservative side, at the expense of additional area for the

switches.

Since the true active mode peak current for the entire domain is not known, a different

method is used to design the power switches. Instead of using one large switch, the switch

is divided into N smaller power switch cells (PSCs). Each PSC is designed to control one

standard cell row with a length equal to the horizontal stride of the global power grid. A

switch cell tile is designed to meet both these requirements, and this cell is repeated N

times in the domain. For domains that contain logic with a different current/area ratio,

such as embedded memories, the value of N is adjusted accordingly. The actual usage of

PSCs in the ASIC implementation is described in further detail in Section 5.5.5.

CHAPTER 5. PICORADIO DESIGN DRIVER 71

pd_en openpd_en

pd_en

open

open

hot gated

Figure 5.7: Signal wall circuit used to force signal to ground when the domain is asleep
or the port is closed.

No switching is allowed when the domain is in sleep mode, because the sleep mode

power transistor is sized to meet the worst-case leakage for the cells within the target

row. Any switching in the domain will cause a higher current that degrades the VDDV

voltage, possibly corrupting the state of the domain. Thus, all spurious switching must

be prevented. The clock is externally gated by the PM, so the only potential source of

activity is from the primary inputs to the domain. The signal wall shown in Figure 5.7 is

used to gate the external “hot” signals and force all domain inputs to GND. The choice of

GND is convenient, because it is always available in the domain, even when it is sleeping.

The signal wall is also used as an isolation cell to prevent static current in cells that

are connected to outputs of the domain. During sleep mode, the nominal “high” value for

cells is VDDLO, and this will cause a static current when interfaced with active mode cells

powered by VDDHI . The signal wall is used in reverse to gate the degraded outputs from

the domain.

Since all domain inputs and outputs have signal walls, it is convenient to include the

port gating logic in them, which is the purpose of the “open” signal in Figure 5.7. This

logic gates communication through a closed port, which helps debug the port control logic

in the domain. During simulation, a monitor in each signal wall watches the “hot” signal

and warns of switching when the domain is active but the port is closed.

5.3 Power Domain Functionality

This section details the function and design of each power domain described in the previ-

ous section, with a particular emphasis on the power reduction techniques at the micro-

CHAPTER 5. PICORADIO DESIGN DRIVER 72

bootcopy

dw8051
core

netq

64kB
Code/Data

SRAM

PIF

serial, netq, interface
neighbor, baseband
dll, location

sfr2bif

mem_bus

256B
Register

File

iram_bus

sf
r_

bu
s BIF bus

bif2pif
in

tr
squarer

Figure 5.8: Block diagram of the dw8051 power domain.

architecture and logic level.

5.3.1 Domain ‘dw8051’

The dw8051 domain consists of a 8051-compatible microcontroller; associated memory

for code, data, and registers; and some accelerators to increase the efficiency of packet

processing. This domain supports the application and network layers of the protocol

stack. It also performs several initialization tasks to allow software parameterization of

the other subsystems in the chip. A block diagram of the subsystems in this domain is

shown in Figure 5.8.

Application layer

The purpose of the application layer is allow the acquisition, communication, and obser-

vation of sensor data in the network. Since the desired functionality can change over time,

this layer is implemented in software on the 8051 microcontroller. For sensor data acqui-

sition and user interface, the 8051 communicates through its serial and interface ports.

These ports provide access to several standard external interfaces: I2C, SPI, RS-232, and

a general purpose I/O port (GPIO). System initialization is performed through the dll

and baseband ports. Communication with the network layer is internal, since it is also

implemented in software.

CHAPTER 5. PICORADIO DESIGN DRIVER 73

Network layer

The network layer supports the reception and transmission of packets over the multi-

hop network. The network layer assumes two packet transmission modes: broadcast and

unicast. In the broadcast mode, all viable nodes in the transmission radius receive the

packet simultaneously. In the unicast mode, the packet is only received by the node with

the specified node identifier or node id. The network layer retrieves node ids and positions

for possible next hops through the neighbor port.

The basic routing algorithm implemented in the software is a variant of geographical

routing [46]. In this algorithm, the node location is used as an address for routing and

no a priori knowledge of network topology is assumed. In the most basic routing mode,

no node ids or positions are required, and all nodes simply retransmit new broadcast

packets. In this way, each reliable node will receive the packet. The last few packets are

remembered and duplicates are dropped to avoid wasting power on loops.

If location information is available, broadcasts can be directed to a particular three-

dimensional box in the location space. The network layer on each node will forward a

broadcast packet if it is “closer” to the desired box than the last node. The notion of

being strictly closer can be relaxed to overcome the impact of location errors or failure

cases caused by obstacles or poor network connectivity.

Although packets can be directed to specific nodes in the neighborhood using the

unicast facility, this is of little use until it can be determined which node is desired. For

this reason, initial communication is sent to a location using the directed flooding of

broadcast packets. Nodes along the way remember the initial location of each packet and

the node id of the hop on which it was received. It is possible, and likely, that duplicates

of the packet will be received by the same node, so all are kept in a destination cache as

possible paths back to the source. When the destination wishes to return data, it simply

chooses a valid hop from the destination cache and unicasts the packet to that node. That

node will then lookup the desired location in its destination cache and forward the packet.

Assuming no changes in network connectivity, the packet will thus back-trace one of the

paths discovered during the broadcast flooding stage.

If the network connectivity changes, a particular return path may become invalid at a

particular node. The network layer uses the result from the dll to determine whether the

packet transmission succeeded, failed, or is questionable. Depending on the required qual-

CHAPTER 5. PICORADIO DESIGN DRIVER 74

ity of service, failed and possibly questionable next hops are removed from the destination

cache. In this case, the packet is retransmitted to one of the other choices in the table. If

there are no other possibilities, an error packet is sent back up the path. In this way, the

algorithm performs a depth-first search of all possible return paths. If no path is valid,

the packet can either be dropped or returned using the more costly broadcast method.

Different network performance can be achieved using different metrics for the selection

of the return path. Although it may be tempting to always use the shortest path (i.e.

the one with the fewest hops), this may result in significant traffic through a few well-

connected nodes. This can overtax these nodes, deplete their power, and cause significant

network connectivity loss. Current research examines network survivability and suggests

algorithms that result in longer paths but increase the lifetime of the network as a whole

[46]. To support this, the destination cache can be annotated with various metrics for

each next hop, such as the number of remaining hops, the estimated energy reserve of

the next hop, the total energy reserve of the path, etc. The implementation described in

this work simply chooses a hop arbitrarily, but alternate schemes can be used with minor

software modifications.

Hardware accelerators

As is becoming increasingly popular in network processors [47], hardware accelerators are

used to reduce packet processing latency and improve power performance. Profiles of

typical packet processing code showed that a substantial amount of time is spent in two

operations: copying packets and computing routing distance metrics.

Memory copies on the 8051 microcontroller are expensive because external memory

accesses use a 16 bit address pointer and incrementing this pointer takes several additional

instructions using the 8 bit datapath. Each of these instructions requires four clock cycles,

so each byte to copy takes at least 20 cycles. Two enhancements are made to minimize the

impact of packet copies. First, the network layer assumes the existence of a receive and

a transmit packet buffers, which are both accessible through the netq port. The packet

buffers are incorporated into the processor memory map, so packets can be processed or

assembled in-place. This avoids the copying problem completely and allows the processor

to access the required bytes directly. Additionally, the packet buffers always show just

the current packet at a fixed address, so no processor overhead is required to implement

CHAPTER 5. PICORADIO DESIGN DRIVER 75

a packet queue.

Second, a large portion of packets are not consumed by the node and are, instead,

forwarded to another node. Thus, the node must often transmit a packet that is nearly

identical to one just received. The qcopy accelerator allows the processor to setup a

direct memory access (DMA) copy operation that takes place in the background. This

accelerator performs the copy between queues efficiently with one cycle per byte. Once in

the transmit queue, the processor can then manipulate the packet header in-place, such

as decrementing the time to live field.

Computation of the primary routing distance metric is also an expensive operation

on the 8051 microcontroller. The complete calculation in three-dimensions requires three

subtractions, three squares, two additions, and a square root. Since the square root

operation is computationally expensive, the algorithm is modified to use the squared

distance metric:

squared distance metric = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (5.1)

This computation takes a very long time on the 8051 because multiplication is not directly

supported by the processor and has to be coded using shifts and additions. Further,

each position component is 8 bits, so the intermediate and final results exceed the native

datapath width. To address these problems, the sub square accum accelerator accepts the

position components directly, performs the subtraction, squares the result, and adds it to

an internal accumulator. The result is held in three special registers, until the accumulator

is reset before beginning a new computation.

System initialization

When the system is initialized, another accelerator is used to boot the processor from

an external Electrically-Erasable Programmable Read-Only Memory (EEPROM). After

system reset, this boot copy accelerator stops the 8051 processor, accesses the EEPROM

though the I2C interface port, reads the length of the program, and copies it into the

internal RAM. When the program is copied, the processor is released and begins executing

the software. The software can then disable the external EEPROM, as it is not required

for normal system operation.

The external EEPROM is also used to store network parameters that are used to

initialize the individual subsystems. Parameters vary depending on the connected subsys-

CHAPTER 5. PICORADIO DESIGN DRIVER 76

tems, and some examples include the baseband spreading code, the desired bit rate, and

receive/transmit window settings for the DLL.

System Bus Interface (BIF)

To enable the relatively independent design of domains on the processor bus, this domain

includes a system bus interface (BIF) that maps the relevent processor registers (SFRs)

onto a simpler set for each external domain. This method assumes that virtual registers

in each BIF peripheral are numbered sequentially and begin at address zero. Some SFRs

are used internally by the 8051 for normal processing, but the remainder are available for

assignment to external peripherals. The address virtualization allows the usage of available

SFR addresses without requiring that the peripherals understand the processor memory

map. The list of additional SFRs used to implement the BIF is shown in Appendix A.

Additionally, the BIF maps the peripheral event lines to processor interrupts. Typ-

ically, external domains that require attention will open a port, toggle an event signal,

then close the port (and possibly go to sleep). By attaching these signals to the proces-

sor interrupt lines, the processor can note the event, reset a special can sleep flag, and

continue regular processing until the event can be handled.

As shown in Figure 5.9, the top-level processor code consists of some initialization code

and an event-processing loop. At the beginning of the loop, a special hardware can sleep

register is set. Any pending events are processed in the main functions. If a new event

is detected during normal processing or in an interrupt handler, the can sleep register

is reset. After each pass through the loop, the special atomic hardware test and sleep

function is called. If the can sleep register is low, this function will return immediately,

and the main loop will begin again to process the event. If the can sleep is high in the

test and sleep function, the logic will automatically issue a checkpoint “sleep” command

to the PIF. Since the command is atomic, it avoids a potential deadlock condition that

occurs when a wake-up event happens between the register test and the issue of the sleep

command. With the hardware test and sleep implementation, the worst that can happen

is that the processor will go to sleep and be reawakened immediately.

The BIF event sources and corresponding interrupt mapping are shown in Table 5.2.

Different priority levels are used to ensure correct processing. The event valid PIF signal

is mapped to the Power Fail Interrupt (PFI) of the processor, which is the highest priority

CHAPTER 5. PICORADIO DESIGN DRIVER 77

Algorithm:mainloop()1

begin2

initialize();3

while TRUE do4

can sleep ← TRUE;5

app main();6

net main();7

test and sleep();8

end9

end10

Figure 5.9: Algorithm for microcontroller main processing loop.

Signal Port BIF int. 8051 int. Priority

PM Event PIF - PFI high
Serial port serial 0 0 medium
RX queue pkt rec’d netq 0 1 low
TX queue no longer full netq 1 2 low
SPI/I2C/GPIO interface 0 3 low
Packet tx result dll 0 4 low

Table 5.2: BIF event signal mapping to processor interrupts.

CHAPTER 5. PICORADIO DESIGN DRIVER 78

interrupt. This ensures that PIF events are processed immediately and do not cause

deadlock. Even with timely processing in an interrupt handler, it still takes many clock

cycles to acknowledge a PIF event, so a one-place event queue is implemented in hardware.

In the rare case that multiple events occur back-to-back, the system will halt momentarily

until the backlog is handled. Serial port events have a higher priority than other interrupts

to allow single-stepping through interrupt handlers by an external software debugger.

Debugging software code

Hardware debugging of software code is supported through an external port. Application

and network code can be relocated to higher memory addresses to make room for a resident

MON51 debugging program. When this program is active, code execution on the micro-

controller is controlled by an external debugger running on a PC. Standard debugging

facilities are available in this mode, including single-stepping, breakpoints, and memory

manipulation. Arbitrary code can be debugged, with the exception of the PM and serial

port interrupt handlers. The only code change required is to relocate the program to the

higher address range, which typically requires relinking the program image.

It is possible to pipe the debugging protocol through any of the external interfaces,

through either the interface port or serial port. However, the availability and simplicity

of using the PC serial port makes it the most logical choice.

5.3.2 Domain ‘netq’

The purpose of the netq domain is to implement the transmit and receive packet buffers

between the network and data link layers. Thus, this domain has two ports: one to

interface with the network layer and one to interface with the data link layer. As shown

in Figure 5.10, the internal implementation uses a 1kB, dual-port SRAM for each of

the receive and transmit buffers. The SRAMs are each wrapped with control logic to

implement circular queues.

On the network layer side, the domain implements a random-access read/write inter-

face for the transmit queue and a random-access read-only interface for the receive queue.

Since the buffer is intended for incorporation into the processor memory map, address

translation is performed to export the current packet at memory address 0. Thus the

processor only sees a small “window” of each queue at a time. This increases processor ef-

CHAPTER 5. PICORADIO DESIGN DRIVER 79

qcopy

memory map & BIF

DLL FSM

ci
rc

ul
ar

 lo
gi

c

1kB
dual-port
SRAM

RX queue

ci
rc

ul
ar

 lo
gi

c

1kB
dual-port
SRAM

TX queue
Power

Controller PIF

dw8051

dll

Figure 5.10: Block diagram of the netq power domain.

ficiency by avoiding the modulo arithmetic required to implement software queues. When

the processor finishes processing a particular packet, it issues a command that “rolls” the

queue forward and exposes a fresh packet buffer. The command interface returns a status

result indicating if each queue is full or empty.

On the data link layer side, random-access is not required, since packets are received

and transmitted serially. Thus packets are accessed one byte at a time. The transmit

queue will source bytes at the rate they are acknowledged by the data link port. The

receive queue will accept bytes at the rate provided by the data link port. If the queue

becomes full before a packet is finished, the packet is automatically dropped and a status

bit is set to indicate this error condition to the network layer.

The internal domain controller has four modes: transmitting, receiving, both, and

none. The controller enters the transmit mode when the network interface indicates that

the packet is ready to send. In this case, the domain opens the dll port to transmit the

packet. The reverse situation occurs when the dll port indicates the end of a received

packet, and the domain opens the network port. It is possible for both modes to occur

simultaneously, thus any combination of transmitting and receiving on both ports is per-

CHAPTER 5. PICORADIO DESIGN DRIVER 80

Initialization
Manager

DLL Message
Processor

Neighbor
Interface

MAC

Port/Timer
Control

Source
Mux

Queue

CRC

Serializer

Dispatch

Queue

CRC

Deserializer

baseband baseband

netqnetq locationlocation

neighbor

T
X

 d
at

ap
at

h

R
X

 d
at

ap
at

h

Figure 5.11: Block diagram of the dll power domain.

mitted. Finally, if neither side is transmitting or receiving, the domain issues a checkpoint

“sleep” command through the PIF.

5.3.3 Domain ‘dll’

The purpose of the dll domain is to handle communication between nodes in the local

neighborhood. This domain roughly corresponds to the data link layer and implements

packetization, error detection and handling, and maintenance of individual links. The

state of each link is kept externally in the neighbor domain, as described in Section 5.3.4.

A block diagram of the subsystems in this domain is shown in Figure 5.11. As shown,

the majority of the logic is in the receive and transmit datapaths. For the transmit

datapath, packets can come from several sources: network packets from the netq port,

location packets from the location port, and DLL packets from the internal DLL message

processor. TX packets are locally queued in case a retransmission is required, a cyclic

redundancy check (CRC) field is added to the header to allow error detection at the

receiver, and then passed through a parallel to serial converter to produce a bit stream

CHAPTER 5. PICORADIO DESIGN DRIVER 81

RTS beacons
CTS

DATA
Ton

Ton

TX

RX

T

EOT

Figure 5.12: DLL TICER rendezvous scheme for unicast session. Adapted from [49].

that is sent out of the baseband port. Received packets follow a similar path in reverse.

The bit stream from the baseband port is first deserialized, and then the CRC is verified.

Packets that fail the CRC test are immediately dropped. Good packets are saved in a

queue until they are dispatched through the appropriate port.

Medium Access Control (MAC)

The Medium Access Controller (MAC) controls the timing for the receive and trans-

mit datapaths to allow multiple nodes to coexist in the same neighborhood. It uses the

Transmitter-Initiated CyclEd Receiver (TICER) algorithm [48] shown in Figure 5.12. In

this algorithm nodes are not synchronized, and each listens for a packet during their own

periodic receive window. Although the destination node may not be listening when a

particular packet is transmitted, the packet is repeated enough times to overlap any re-

ceive window at least once. To avoid retransmitting long data packets, a short Request

To Send (RTS) packet is used as a beacon that synchronizes the receivers. For broadcast

packets, the RTS packet is always repeated enough times for all nodes to receive it. For

unicast packets, the desired node responds with a Clear To Send (CTS) packet when it has

synchronized with the RTS beacon. This saves power by reducing the average number of

transmitter beacons. After the receivers have a chance to synchronize to the RTS beacon,

the transmitter sends the data packet. Unicast transmissions are acknowledged by the

receiver using a End of Transmission (EOT) packet. All other packets shown in Table 5.3

are sent during the data phase of the TICER sequence.

The MAC uses two main techniques to reduce packet loss due to collisions. First, be-

fore transmission begins, the MAC uses a baseband carrier sense mode to detect whether

CHAPTER 5. PICORADIO DESIGN DRIVER 82

Name Category Length Purpose

Discovery Request ID assign 6 Queries neighborhood for other nodes
Discovery Response ID assign 15 Response to a “Discovery Request”
New Neighbor ID assign 15 Sent when a new node id is chosen
Ping Maintenance 15 Node heartbeat (can be disabled)
Link test Maintenance 15 Test link to a node (unicast)
Location Location 12 Nearby node and anchor positions
RTS TICER 6 TICER Request to Send
CTS TICER 6 TICER Clear to Send (unicast)
Network Network (7 + N) Network packet (N-byte payload)
EOT TICER 6 TICER End of Transmission (unicast)

Table 5.3: Packet types supported by the DLL [50].

another node is currently transmitting. If one is detected, an exponential back-off tech-

nique is used to wait until the channel is free. The exponential back-off is also used to

attempt to spread out highly correlated transmissions from multiple nodes, like broadcast

packet responses caused by network flooding. Second, it uses two channels to separate

broadcast and unicast traffic. The first channel, called the broadcast channel, is primarily

used for node synchronization, and RTS packets are alway sent on this channel. In the

case of a unicast transmission, the remainder of communication takes place on the second

channel.

Node ID Assignment and Conflict Resolution

The DLL also implements a node ID assignment algorithm that must be run before unicast

packets can be exchanged. The reason is that a node identifier (node id) is used to

differentiate nodes during the TICER unicast sequence. It is important that each ID

is used at most once in any neighborhood, so that each nearby node can be uniquely

identified. Further, the selected node id should not cause a duplicate identifier in any of

the nearby nodes’ neighborhoods. To choose a node id that meets these conditions, the

DLL initialization manager queries all nearby nodes for their list of known neighbors using

a Discovery Request packet. Each node returns a Discovery Response packet, and these

entries are added to the neighbor table through the neighbor port. A unique node id is

computed according to the algorithm in Section 5.3.4, and the nearby nodes are notified

with a New Neighbor packet.

CHAPTER 5. PICORADIO DESIGN DRIVER 83

It is possible for duplicate node ids to occur in a single neighborhood, so a conflict

resolution algorithm is used to detect and correct this condition. Duplicates can occur

when a node is moved or had an unreliable link during the discovery procedure. Since

node ids are cached at the network layer in the list of next hops available to the routing

algorithm, it is important to correct this condition with minimal perturbation to the

network as a whole. Detection is performed using a packet sequence number for each

node id in the neighborhood. The sequence number for a node id is transmitted with the

every unicast data packet sent over that particular link. When the unicast data packet is

received, the sequence number is verified, incremented, and returned in the EOT packet.

When the EOT packet is received, the updated sequence number is saved for the next

unicast session. With a reliable communication between uniquely identified nodes, these

sequence numbers should always be in perfect agreement. If they do not agree, then two

nodes must have the same node id. The first receiver to detect this condition should

compute a new node id and broadcast it in a New Neighbor packet.

More intertwining occurs the longer the duplicates remain in the neighborhood. This

intertwining can cause a flurry of ID reassignments even after the duplicate is removed,

because it is impossible to know which sequence numbers were associated with which node

with the same node id. A simple stopgap, which is unfortunately not implemented in the

prototype, would include the old node id in the New Neighbor packet. The conflict resolu-

tion would be disabled for this node id until the sequence number can be resynchronized.

Nodes that are truly “new”, as is the case immediately after initialization, would simply

zero out the old node id field.

Since the links are not always reliable, this can cause a misaligned sequence number,

even though the node ids may be unique. This happens if the EOT packet is not correctly

returned to the transmitter, which can occurs in two cases. First, if the data packet

was never received, the EOT packet was never sent, so the receiver never incremented its

sequence number. Second, if the data packet was received but the EOT packet was lost,

the receiver’s sequence number has been incremented. Since the transmitter cannot know

which case occurred, it cannot know the correct sequence number to send for the next

unicast session. So whenever an EOT is not received, the conflict resolution mechanism is

disabled and the numbers are resynchronized during the next unicast session over the link.

In this case, the receiver cannot know that its sequence number is invalid until it receives

another data packet, so the transmit sequence number is separate from the receive sequence

CHAPTER 5. PICORADIO DESIGN DRIVER 84

number. With these improvements, it should be rare that a node mistakenly reassigns its

node id.

Link Maintenance

The DLL also performs some periodic maintenance to verify link integrity and expire

neighbors that are no longer present in the network. The algorithm assigns a color-coded

status to each link: green indicates a good link, yellow indicates a questionable link, and

red indicates no link. The network layer can use this status to select green links to increase

the probability of success when exchanging packets.

The algorithm to change the link status is found in [51] and is summarized here. All

links begin in the red state. The appropriate link transitions from red to yellow when

a new node is discovered. Once enough packets have been received, a special Link Test

packet is exchanged to ensure reasonable bidirectional connectivity between the nodes. If

this test passes, the link is changed to green. A green link must receive a certain number

of packets within a certain amount of time to retain its status. If there are too few packets,

the Link Test packet is again exchanged to verify the green status. If the Link Test fails,

the link is considered dead and set to red. The average packet rate can be artificially

inflated using a periodic Ping packet, which essentially keeps nodes in the green state

without having to repeatedly explicitly test the link.

Power Control

The power control for the DLL uses a combination of virtual timers and sleep commands.

Timers are used to set periodic events for the TICER receive windows and transmit

beacons. The timers are also used to detect and recover from time-out conditions when

another node fails to respond. Whenever the DLL is not in the process of transmitting or

listening, it issues a sleep command to the PM. It will then awaken when the next timer

expires. The timer manager uses the hint field to differentiate between the different timer

purposes. During normal operation, the DLL always has at least one, and usually more,

pending timers that are active in the PM.

CHAPTER 5. PICORADIO DESIGN DRIVER 85

Neighbor Table

dw8051

V
al

id
 ID

 L
is

t

dll, location

arbiter

Command
FSM

LFSR

Row
decoder

64x32 bit
Neighbor

Table

BIF wrapper

dll

location

Figure 5.13: Block diagram of the neighbor power domain.

5.3.4 Domain ‘neighbor’

The purpose of the neighbor domain is to centralize the data associated with the node’s

neighborhood. This is in keeping with the methodology for handling state, described in

Section 3.2. As shown in Figure 5.13, the main component of this domain is a 1024 byte

SRAM that contains information about each link in the neighborhood. This neighbor table

is organized into sixty-four 128 bit rows that can contain fields accessible through three

external ports. The remaining logic is used to manipulate the rows of the neighbor table.

Each node in the network has a node identifier (node id) that is used for unicast

transmissions. The node id of the local node is stored in this domain as the self id. There

are sixty-four possible valid IDs, although a self id of zero is defined to be invalid for

unicast. This case usually only happens immediately after a reset, and only broadcast

transmissions are permitted in this mode. Once a self id is assigned, the node can begin

sending and receiving unicast packets.

Each row in the neighbor table corresponds to a possible node id that can be sent

a unicast transmission. Since it is invalid to send a unicast to node id = 0, commands

can use node id = 0 as an alias for the current node (i.e. the local loopback ID). Each

row contains the eight fields summarized in Table 5.4. Although not explicitly required,

the link status, valid, population, and sequence number fields are usually set by the DLL.

CHAPTER 5. PICORADIO DESIGN DRIVER 86

Field Description Width (bits) Bit assignment (unspecified are X)

0 Location 24 x=23:16, y=15:8, z=7:0
1 Link status 16 status=15, ttl=14:8, metric=7:0
2 Valid 1 valid=0
3 Population (high) 16 population(63:48)=15:0
4 Population (mid) 24 population(47:24)=23:0
5 Population (low) 24 population(23:0)=23:0
6 Sequence number 16 seqnum=15:0
7 Extra (unused) 8 extra=7:0

Total 129 Stored as 16 byte row + valid bit

Table 5.4: Fields in each row of the neighbor table.

Number Command Inputs Outputs

0 no operation
1 get field ID, field valid, result
2 move row ID=src, data=dest valid
3 compute self id self id
4 compute p0 population
5 set field ID, field, data valid

Table 5.5: Command interface to access the neighbor table.

The location layer will occasionally update the location field, as described in Section 5.3.7.

The network layer uses the valid and status fields to verify the existence and integrity of

next hops used in the routing algorithm. One unassigned extra field is available to save

any additional neighbor-specific data.

The domain implements the command interface, shown in Table 5.5, to manipulate

the fields in each row. The interface is accessible through three ports, which are intended

to interface to the location domain, dw8051 domain, and dll domain. The signaling for

the dll and location ports are similar, and the dw8051 port includes a small wrapper to

convert the interface into BIF format. Since the neighbor table is a shared resource, a

round-robin arbiter ensures fair access to it. The arbiter permits a locking operation that

guarantees mutual exclusion to ensure the integrity of the data when multiple commands

are required to access the data.

Table 5.5 also shows the parameters and results for each command. As shown, the

“get field” and “set field” commands can be used to read and write specified field. The

CHAPTER 5. PICORADIO DESIGN DRIVER 87

“move row” command is used to relocate the src node id to the dest node id. This can

happen if one of the neighbors broadcasts a packet indicating its ID has changed.

The “compute self id” command attempts to find a valid non-zero ID to enable unicast

packets. The main constraint is that every node should have a unique ID within any

neighborhood. So, before computing a new ID, the node must first build a list of IDs that

are already in use. Clearly, this means that the list of nearest neighbors must be excluded

from the list of possible new IDs. Further, all their neighbors must also be excluded to

avoid duplication of an ID that is already in their neighborhood. Thus, a list of all used

IDs within two hops must be computed before the local ID can be assigned. To facilitate

this, each node i computes a local population vector p0 that indicates which IDs are in

use in its immediate neighborhood. Note that this vector is the same as the valid vector

for the neighbor table, so although there is a command “compute p0”, the value is in fact

always available. When node i is added to another node’s neighbor table, its population

vector is assigned to pi. The two-hop population p2hop for a node is then computed as:

p2hop = p0 ∨ (
∨

∀(p0(i)=1)

pi) (5.2)

This equation is realized by looping through all valid entries in the table and computing

the union using a logical OR. An unused ID is then randomly selected and assigned to the

current node. If an unused ID cannot be found, the self id is set to zero. Once computed,

the new self id and the p0 local population vector should be broadcast to all nearby nodes,

so that they can update their neighbor tables.

Since the neighbor domain is essentially just a repository of memory, the power control

is very simple. The domain must be active whenever one of the ports is open. Since it

performs no processing when the ports are closed, it can be immediately put to sleep.

This fits the definition of a slave domain, and power control is completely relegated to the

PM.

5.3.5 Domain ‘serial’

The purpose of the serial domain is to permit communication between the microcontroller

and an external terminal. Thus, the domain has two ports: one which connects to dw8051

through the BIF and one which connects to external uart rx and uart tx pins of the chip.

When these external pins are connected to a standard off-the-shelf RS-232 level shifting

CHAPTER 5. PICORADIO DESIGN DRIVER 88

chip, the domain can communicate at a programmable baud rate with a terminal that

supports 8-N-1 encoding (one start bit, eight data bits, one stop bit, and no parity).

The baud rate and receive oversampling factors are programmable. The oversampling

factor is used to locate the sampling point near the center of each bit. When the first

edge of a start bit is detected, the logic waits until half the oversampling factor has passed

before actually sampling the bit. Bits are then clocked in at the baud rate. This centering

operation increases the tolerance to small differences in baud rate between the terminals,

caused by variations in clock frequency. The baud rate times the oversampling factor

must be less than the system clock frequency. Higher values are more tolerant of baud

rate variation, but reduce the maximum baud rate. Typical oversampling factors are on

the order of 8 or 16, which limits the maximum baud rate to 1Mbps or 500kbps with an

8MHz system clock.

Power control of this domain is influenced through registers on the BIF port. The

registers determine whether the domain should remain on continuously or go to sleep. A

small serial watcher component resides outside the domain and is always on. When this

component detects a change in the uart rx signal, it alerts the PM of the external event.

The PM wakes up the domain and the receiving logic takes over. Since the delay between

the external event and the wakeup is not guaranteed, the receiver may miss the first byte

of the reception. For this reason, the external wakeup mechanism is designed to cause the

chip to enter a “monitor” mode. In this mode, the domain remains on continuously to

allow faithful reception. A BIF register allows the microcontroller to return the domain

to its normal inactive mode. This method permits the domain to be asleep when deployed

in a real network, but also allows a user to connect a laptop to any node for diagnostics,

hardware debugging, or an application-specific purpose.

5.3.6 Domain ‘interface’

The purpose of the interface domain is to enable communication with external devices

through a variety of protocols. The domain supports I2C, SPI, and general-purpose I/O

(GPIO). A survey of commercially available sensors, ADCs, and EEPROMs showed that

these interfaces are sufficient to communicate with nearly all parts. The domain is designed

to interface between external parts and the microcontroller. Thus, it has two ports: one

for external communication and one that uses the BIF to communicate with the dw8051

CHAPTER 5. PICORADIO DESIGN DRIVER 89

domain.

The individual interfaces are controlled separately through the BIF port. When the

I2C interface is active, the logic acts as an I2C master and can communicate with external

I2C slaves. Multiple devices are supported on the I2C bus through the use of program-

mable bit rates and addressing logic. The domain assumes that the I/O pads used support

bidirectional signaling and can be placed in a high-impedance state, as required by the

standard. When the SPI interface is active, the logic can address up to four external parts

using four independent chip select signals. The SPI bit rate is also programmable. When

the GPIO interface is active, eight external pins can be flexibly programmed as inputs,

outputs, or event sources. The state of outputs is held using some small always-on logic

outside the domain.

Power control of the domain is highly influenced by the microcontroller through BIF

registers. However, the ability to program GPIO pins as external event sources allows an

external device to wake up the domain and microcontroller. Among other uses, this can

allow a circuit board power controller to put the chip entirely to sleep and wake it up at

a later time, perhaps when energy stores are recharged.

5.3.7 Domain ‘location’

The purpose of the location domain is to handle the position of each node in the network.

Nodes with positions are divided into two classes: anchors and mobiles. An anchor node

has a preprogrammed position, whereas a mobile node attempts to compute its position

using the anchors as reference points. The positions of a node and all its neighbors are

stored in the external neighbor table, accessed through the neighbor port. Packets are

exchanged through the dll port, and parameters are programmed through the BIF on the

dw8051 port.

The basic algorithm is Hop-TERRAIN [52] which uses the number of hops to each

anchor as an estimate of the Euclidean distance. Periodically, the anchor nodes broadcast

a packet that indicate their location. Other nodes relay this packet, increasing the hop

count. Once a mobile node knows the distance to at least four anchors, it begins a

triangulation algorithm to compute the node position. The data from the anchors is put

into a (possibly over-specified) linear equation, and a least squares algorithm with QR

decomposition is used to determine the solution. Newly computed positions are broadcast

CHAPTER 5. PICORADIO DESIGN DRIVER 90

to the neighbors which store them in their neighbor table. Each node thus keeps a record

of its own location and the locations of all its neighbors. A more detailed description of

this block can be found in [53].

Power control for this block is determined by parameters set during system initializa-

tion. If locations are not required for the application, the domain can be permanently

disabled. If the node is an anchor node, the position beaconing packet rate is program-

mable. If the node is a mobile node, the domain will automatically compute the location

when enough anchor beacons are received. Although these computations are quite expen-

sive, this is a rare operation, and it is most common for this domain to be asleep.

5.3.8 Domain ‘baseband’

The purpose of the baseband domain is to interface between the external radio chip and

an input/output bit stream to the DLL. During normal operation, the domain uses two

ports: one connects to the dll and one connects to the external ADC and associated radio

logic. As shown in the block diagram in Figure 5.14, the logic in the domain consists of

the baseband core logic and some surrounding interfaces. The muxes provide a method

to bypass the entire baseband core, which effectively brings the dll interface directly out

to the pins. This is useful for testing the DLL independent from the baseband, as well

as allowing the use of an arbitrary external baseband implementation. The dw8051 BIF

interface is used to select the mode, as well as provide initialization parameters such as

the bit rate and carrier sense threshold.

The baseband core supports half-duplex transmission, reception, and carrier sensing

of bits on a choice of two radio channels. A simple On-Off-Keying modulation scheme

is used, since that is directly supported by the target radio chip [Otis05]. The baseband

core is clocked by bbclk, which is generated from the system clock and programmed to

be 10X the desired bit rate. Received data is 10X oversampled by the ADC, and consists

of a header and a data payload. The header contains an alternating sequence of values

used to determine an amplitude threshold. This threshold is used in the timing estimator

to detect a 7-bit sequence and the optimum sampling instant. Once found, the threshold

and estimation blocks are disabled and the appropriate correlator is enabled to actually

receive the bits. A more detailed analysis of this algorithm and implementation is found

in [54].

CHAPTER 5. PICORADIO DESIGN DRIVER 91

BIF params

ADC
controller

dll

dw8051 bbclk
generator

by
pa

ss

Match
filter

Frame
detect &

timing est.

Carrier
sense

correlator

Data
correlator

Sync.
FSM

PPI

I/O pins

bbclk

Power
controlPIF

Figure 5.14: Block diagram of the baseband power domain.

The power control for this block is almost entirely controlled by sessions through the

dll port. When activated by a new session on this port, the domain opens the external

I/O port to communicate with the radio circuitry. After the dll port session is remotely

closed, the baseband simply terminates all internal operations, closes the external port,

and issues a sleep command to the PM.

5.4 Power Manager Architecture

The PM is responsible for controlling the global power mode of each power domain, imple-

menting the virtual timers, and responding to commands from each power domain. The

PM is coded flexibly in VHDL using generic parameters. This allows the same PM to be

reused in future designs with a different number of domains, number of ports per domain,

number of virtual timers, and timer resolution.

A block diagram of the PM is shown in Figure 5.15. The four major components of

the PM are the power network interface, the time subsystem, the power subsystem, the

domain controller, and a command FSM. Each of these subsystems is now described.

5.4.1 Power Network Interface (PNI)

The power network interface (PNI) connects the power manager core logic to the PIFs

in each power domain. The PNI multiplexes the commands from the individual power

CHAPTER 5. PICORADIO DESIGN DRIVER 92

Power
Network
Interface

P
ow

er
 N

et
w

or
k

Time
subsystem

Domain
Controller

Power
subsystem

Command/
Event

Dispatcher

Power Domain 0

Power Manager Core

PIF
Agent

Main
Logic

PIF

PIF
Agent

Main
Logic

PIF

… Clock enables,
Switch enables

Power Domain (N-1)

Figure 5.15: Block diagram of the Charm power manager.

domains into a single command stream that is sent to the command FSM described in

Section 5.4.5. Events from the command FSM are demultiplexed and issued to the appro-

priate power domain.

The signaling between the PM and the PIF agents in each domain is almost identical

to the PIF itself. The only additions are two signals arbit req and arbit grant, which are

used to arbitrate between domains when there are multiple pending commands. The PNI

uses a hybrid tree and round-robin arbitration scheme to ensure fairness and speed. The

arbiter is modeled after [55], and its tree design allows instantiation for any number of

domains as specified by VHDL generic parameters.

Connections between the PM and the domains are made at the top level of the chip

using a star topology. This is chosen because the short wiring distance and relatively

small number of signals does not warrant a more complicated bus or mesh distribution

scheme. However, it is trivial to retrofit the PNI to use a different wiring topology, if it is

required for a different chip. In fact, it is the purpose of the PIFs and PNI to abstract the

power network topology, allowing maximal reuse of power domains and the remainder of

the PM.

5.4.2 Time subsystem

The time subsystem implements the system timewheel and virtual timers that can be

set by individual power domains, as shown in Figure 5.16. The width of the system

timewheel and number of supported virtual timers are set by a parameters. For the Charm

implementation, the timewheel is 24 bits wide and 16 virtual timers are implemented.

CHAPTER 5. PICORADIO DESIGN DRIVER 93

alarm_time

Free-running
Counter

=Alarm Entry #0

Alarm Entry #N-1

new_alarm

Alarm
Scheduler

beep_beep

Virtual Timer Manager System Time-wheel

To/From
Dispatcher

TIMERCLK

SYSCLK

Figure 5.16: Block diagram of the time subsystem in the Charm PM.

The system timewheel is implemented as a single counter. Since it is always on, the

switching activity is reduced by operating on a slow timerclk. The timerclk is generated

by dividing the main system clock by a factor of 100. This technique trades off reduced

power consumption for a lower the granularity of virtual timer expiration.

The timer values are stored in a timer table that is sorted by expiration time. When

the domains set a virtual timer, they use a relative time. This time is added to the current

system time to create an absolute timewheel count for timer expiration. This absolute

timewheel count, the associated domain, and the domain-provided hint are stored in the

timer table. Entries in the table are sorted according to the absolute timewheel count. A

set of muxes allows the existing entries to be shift up or down to expire a timer or insert

a new one. The table exports only the most urgent timer, i.e. the timer that is due to

expire next. When this timer expires, a message is sent to the dispatcher, which wakes

the domain (if necessary) and issues the timer expiration event. Due to the relatively

large number of muxes and registers used to implement the timer table, it is the largest

component in the PM.

At every tick of the timerclk, the most urgent timer is compared to the system time-

wheel using a low-power comparator. Power is saved by using a sequential comparator,

which begins at the most significant bit. For each tick, the higher bits change infrequently,

thus the intermediate nodes in the comparator rarely switch. The comparator produces a

single beep beep signal to indicate that one of the virtual timers has expired.

When the system is idle, only the most urgent timer, the system timewheel, and

the comparator need to be active. In the Charm implementation, the remainder of the

CHAPTER 5. PICORADIO DESIGN DRIVER 94

Src
Decoder

Dest
Decoder

Connection
Table

Session Table

Session
FSM

PM
Dispatcher

sysclk

want_on

Figure 5.17: Block diagram of the power subsystem in the Charm PM.

PM logic is clock gated to reduce switching activity during this mode. Although not

implemented in this design, it is possible to separate these components from the rest of

the PM. With a bit more control logic, this would allow the majority of the PM itself to

form another power domain.

5.4.3 Power subsystem

The power subsystem implements the scheduling policy that ensures that the power do-

mains are active when required and asleep otherwise. As shown in the block diagram in

Figure 5.17, it receives commands (RTS, EOT) and wake-up commands from the main PM

dispatcher. From these, it issues the appropriate port events (CTS, EOT) to the main PM

event processor and generates a want awake vector, that indicates which domains should

be active.

As described in Section 5.2.3, there are two different types of domains that must

be supported: masters and slaves. Since a master domain can influence its own power

mode through the use of checkpoint commands, the power subsystem keeps an internal

“processing” bit for each master domain. When a checkpoint “sleep” command is received,

the appropriate processing bit is cleared. The bit is automatically set for master domains

whenever they are awakened by the PM, any non-sleep checkpoint command is received,

or the system is reset. Slave domains simply never set this bit.

The Charm chip uses a reactive scheduling technique, since it only takes one clock cycle

CHAPTER 5. PICORADIO DESIGN DRIVER 95

S
rc

 D
om

ai
n

j

Dest Domain k

1 1

0

...

...

1

0

0

1

0

0

11

1 0

0

...

...0

1

N-1

0 1

...

... N-1

(j, k) =





1 j 6= k and session is open
from domain j to domain k

1 j = k and domain j is processing
0 otherwise

Figure 5.18: Session table used to implement the PM scheduling policy.

to restore the chip from sleep mode. Thus, all predictive techniques would not provide any

benefit and would simply consume overhead. The reactive power policy stipulates that a

domain must be active when:

• The domain is processing

• The domain has one or more port sessions open

• Any connected domain(s) has remotely opened a port session

Note that although bidirectional communication is permitted when a domain’s port is

open, the PM keeps track of which domain actually issued the command to open the

session. This keeps the distinction between ports open and ports open by me described in

Section 5.2.3. This allows domains to ensure that the port is not closed by the remote

domain in the middle of communication.

The processing bits and lists of open ports are collected in the session table, shown in

Figure 5.18. The session table is organized as a square table with a row and a column for

each power domain. A sessions sjk is open from domain j to domain k when a TRUE

value is stored at (row, column) = (j, k) where j 6= k. Note that since the table is square,

both session directions are present in the table, i.e. j → k and k → j. The diagonal entries

of the table sjj are defined to store the the processing bit for domain j.

CHAPTER 5. PICORADIO DESIGN DRIVER 96

The power policy can then be rewritten as

want on(i) = (session from i) ∨ (session to i) ∨ (processing at i) (5.3)

=
∨

∀(k 6=i)

(sik) ∨
∨

∀(k 6=i)

(ski) ∨ sii (5.4)

=
∨

∀k
(sik) ∨

∨

∀k
(ski) (5.5)

Thus, each bit of the want on vector is computed using a large logical OR of all the entries

in row j and column k. For ease of implementation, the session table is complete, meaning

that any domain may connect to any other domain. In practice, this is not true, since most

domains are not physically connected to each other. Thus, this table is actually sparse

and a large number of entries can be removed since they will always hold a FALSE value.

One minor refinement to the power policy prevents “livelock” and “deadlock” condi-

tions that would set the domain power mode incorrectly. The situation can occur because

the processing bit is set by the power subsystem, but reset by a command from the domain.

Further, there is a latency between the PIF and the power subsystem, so an unfortunately

timed sleep command can essentially cross a wake-up event (CTS, TIMER). Part of the

problem is handled in the PIF, where a pending unprocessed sleep command is dropped

if a wake-up event is received. A pending sleep command can still be lodged in the PM

command FSM, so the power subsystem matches the command latency and drops a sleep

command that occurs with that window.

The power subsystem also includes a FSM that sequences the response to requests

that change port states. Since individual domains issue requests with respect to their

own port, the power subsystem keeps an interconnection table that matches every valid

requesting (domain, port) combination to the connected remote (domain, port). In the

Charm chip, this table is hard-coded to the connections shown in Figure 5.1. To ensure

that the requester does not try to communicate when the remote domain is unavailable,

events back in a different order, depending on whether the port is being opened or closed.

For RTS opening commands, the remote domain is activated (if necessary) and sent a CTS

event. Once complete, the requesting domain is sent the CTS event. For EOT closing

commands, the requesting domain is sent an EOT event first, followed by an EOT event

to the remote domain. Either EOT may cause the domain to be put to sleep according to

the power policy described above.

The actual power state of each domain is computed according to the truth table in

CHAPTER 5. PICORADIO DESIGN DRIVER 97

want on(i) is on(i) power state

0 0 off
0 1 turning off
1 0 turning on
1 1 on

Table 5.6: Truth table of power state for each domain.

Table 5.6. The is on signal comes from the domain controller subsystem, which actually

changes the power mode of the individual domains. To avoid sending events to a domain

that is “turning on”, the power subsystem waits until the domain is fully “on” before

continuing. Thus, the power subsystem can work with an arbitrary wake-up latency

caused by the domain controller subsystem.

5.4.4 Domain controller subsystem

The domain controller subsystem generates the control signals for each domain, including

resets, clocks, and power modes. It treats the PM as a separate special power domain, so

it can be clock and power gated just like any other domain.

The gating logic for the special PM domain is very simple and simply keeps the PM

active when any other domain is active. When all other domains are asleep, the domain

controller puts the PM to sleep by gating the system clock to all internal subsystems

except the system timewheel. This implementation does not gate the power rails for the

PM, although this is theoretically possible with explicit separation of the always-on logic

in the time subsystem from the remainder of the PM. When the system clock is gated, the

domain controller clock logic will wake up the PM when it receives the beep beep alarm

from the time subsystem or an external reset signal, as described below.

Each of the other power domains has a separate mode controller that sequences its

power switch and clock enable signals, based upon the want on vector from the power

subsystem. When a rising edge is detected on this signal for a particular domain, the

mode controller first enables the power switches, waits for the power to turn on, then

opens the pd en portion of the signal walls, and lastly enables the clock to the domain.

Although the clock enable signals are generated here, the actual clock gating elements are

implemented outside the PM to allow more optimal placement at the top-level of the chip.

When a falling edge is detected on a bit of the want on vector, the domain is deactivated

CHAPTER 5. PICORADIO DESIGN DRIVER 98

Reset Sequence FSM

D Q
CLR

D Q
CLR

reset_n_pin

clk

1 2 3 4

reset_n_clk
reset_n_switch

reset_n_pm
reset_n_domain

Figure 5.19: Circuit diagram of the reset logic in the domain controller.

in reverse order.

The domain controller subsystem reset logic is designed to put the system in a known

state before normal processing occurs. An external asynchronous system reset signal is

used to activate the reset logic state machine. This signal is synchronized to the sys-

tem clock, using the circuit in Figure 5.19, which has two back-to-back asynchronously

reset D-flip-flops. Although all synchronizers have an inherent non-zero probability of

monostability, the double flip-flops and long clock period makes the probability negligible.

After synchronization, a FSM is used to bring the chip out of reset in the following

sequence: clock logic, power switch logic, PM subsystems, and finally all other domains.

This sequence ensures that the clocks and power switches are correctly initialized before

the PM and domains begin processing. Since the Charm chip is small enough to distribute

the reset signal across the chip within a single clock cycle, the last two items are actually

released in parallel.

Although the domain controller primarily uses the want on vector from the power

subsystem to determine whether to activate a domain, there are a couple of cases where this

signal is overridden. First, domains must be active during reset to initialize correctly, so the

domain controller ensures that this happens. Second, the sleep mode can be deactivated

for any set of domains for testing purposes. An external local disable vector deactivates

the power control, although the rest of the PM continues to operate as normal. In the

Charm implementation, the disable vector is accessible through a JTAG register and a

chip pin called disable power gating.

CHAPTER 5. PICORADIO DESIGN DRIVER 99

5.4.5 Command and Event FSMs

The command and event FSMs are the main responsible for dispatching and collecting

commands and events, respectively. Commands arrive in a single stream, after being

multiplexed by the PNI, as described in Section 5.4.1. The command FSM simply dis-

patches the commands to the appropriate subsystem: port and checkpoint commands are

issued to the power subsystem and timer commands are issued to the time subsystem. It

also detects when a virtual timer expires and issues the wake-up command to the power

subsystem.

The event FSM performs the opposite function and multiplexes the event streams from

the time and power subsystems into a single stream that is sent to the PNI. Virtual timer

events are considered higher priority than other events, since if they are not serviced in a

timely manner they might get overwritten when the next timer expires.

5.5 Implementation

Implementation of the Charm prototype is performed in five primary phases: design,

functional simulation, emulation, silicon layout, and verification. This section describes

each of these phases and includes a discussion of specific techniques required to include

different power domains.

5.5.1 Design Flow Overview

An overview of the design flow and tools for the first four implementation phases are

shown in Figure 5.20. The primary goal of this flow is to make a single description that

can be targeted for simulation, emulation, or ASIC implementation. To this end, the

common point for all paths is a register transfer level (RTL) description of the design in

VHDL. This description can be targeted to functional simulation, single-node emulation

on a commercial FPGA test board, multiple-node emulation using the Berkeley Emulation

Engine (BEE), and silicon implementation using a commercial place and route (P&R) flow.

In the design phase, subsystems are captured at a variety of abstraction levels in a

variety of tools. The logic for the baseband and DLL are captured in Simulink, Stateflow,

and Module Compiler. These descriptions are converted to VHDL using a combination

CHAPTER 5. PICORADIO DESIGN DRIVER 100

������

���	
���

�	
��	��������

���������
�������	�

��������
������

�
�	 ����	�
���

��� �	 ��!
����	�"��	���
���	
�

���
������
���
����

#����$
�	�� ���	�

���!��%�	 �
&������	�
'����(�
)

�����%�	 �
&������	�
'*&&)

���	
���
����!��	�
���

���	
���
+,�������	�
���
�
-��
	��

���.

�����	�
"��	��

���"/0"
 ���
�
��	�

&������	�

�	 ���

��������	�
'�	 �����)

�� ����

��(
�
�

0���(���,��

Figure 5.20: Overview of design flow used to implement Charm chip.

of the Xilinx System Generator and several in-house tools [56]. Most of the remaining

primary subsystems, including the PM, are hand-coded in VHDL. Whenever possible, the

same VHDL description is used for all implementation targets. However, this is not always

possible because of the VHDL generation method and the usage of components that cannot

be emulated. For example, the dw8051 microcontroller is a commercial implementation

from Synopsys that is mapped to both the Xilinx and ASIC target libraries and written

out as separate VHDL netlists. Custom memory layouts and functional VHDL models

are provided by the foundry, but emulation models are hand-coded to match the same

behavior. Simulation and emulation models are also required for other custom layout

components, such as the voltage converter and clock oscillator.

Subsystems and circuit elements that have multiple underlying implementations use

different architectures based upon common component interfaces. A suite of VHDL con-

figurations are used to select the appropriate architectures for a particular target. For

example, the number and organization of PSCs is unknown in the RTL description, so an

empty power switch bank component is used as a placeholder in each power domain. Also,

a generic clock gater component is used to describe the gated clock tree, and the various

memory architectures are pin-compatible.

CHAPTER 5. PICORADIO DESIGN DRIVER 101

5.5.2 Emulation Targets

The VHDL description is extensively simulated at the RTL level. Testbenches are written

for each domain, for an entire node, and for multiple node tests. Unfortunately, a large

number of simulation cycles are required to test the protocols between multiple nodes, so

emulation is used for this. A single-node emulation target enables interface testing between

external peripherals, such as ADCs, EEPROMs, sensors, and a laptop. The multi-node

emulation target enables testing of correct protocol operation in larger network.

Both the single-node and multi-node emulation targets use Xilinx FPGAs as the un-

derlying fabric. These devices do not directly support some of the circuits and logic that

is desired in the ASIC implementation, such as clock and supply rail gating. Alternate

models are used for all these circuits so that the majority of the logic can be emulated

through direct synthesis of the golden VHDL description.

The desired ASIC implementation of the clk gater cells is shown in Figure 2.1a, which

uses a latch-based gating element. This style of clock gating is not directly supported

by the FPGAs, because the gating elements prevent usage of the global low-skew clock

distribution trees, which causes difficulties with the timing analyzer. Further, latches

are not directly supported by the FPGA. Instead, clock gating is achieved through the

identification and automatic conversion of the clk gater cells to enabled clocks during

netlist synthesis. The difference, as shown in Figure 2.1b, is that the enabled clock method

does not actually gate the clock signal itself. Rather, the enable signal is fed to a mux that

feeds back the previous value of the register, if the register is not enabled. This results

in a design that distributes the clock to all registers simultaneously and implements the

same logic function, at the expense of higher power consumption and more logic. Since

power consumption and additional logic are not of critical concern during emulation, this

is sufficient for functional testing.

The emulation targets have no support for power rail gating, so the power switch bank

cell is replaced with an empty logic. Since there are no degraded voltage levels, the pass

transistor logic in the signal walls is replaced with simple Boolean logic. The resulting cir-

cuitry does not actually implement power rail gating, but is still able to test the functional

correctness of the PM. The PM still provides the pd en signal used to close the signal walls

(Figure 5.7) on every domain input and output. Thus, the domain logic is isolated when

it should be in sleep mode, which mimics the situation in actual ASIC implementation.

CHAPTER 5. PICORADIO DESIGN DRIVER 102

5

1

2

4

3

(a) Network

1 2 3 4 5
1 - 1 0 0 0
2 1 - 1 1 0
3 0 1 - 1 1
4 0 1 1 - 1
5 0 0 1 1 -

(b) Connection table (c) Upload to BEE

Figure 5.21: Mapping an arbitrary network topology to the BEE crossbar switch.

Multi-node Emulation

Most of the Charm chip functionality is extensively verified through multi-node emulation

of a complete network. This emulation is performed on the Berkeley Emulation Engine

(BEE), which is a platform with twenty Xilinx FPGAs that are connected in a hierarchical

mesh topology [57]. There are four clusters on the BEE, each of which contains four

moderately connected leaf FPGAs and one well-connected FPGA that interfaces between

clusters. Each of the sixteen leaf FPGAs is large enough to emulate the Charm chip logic.

The remaining four well-connected FPGAs are programmed to implement a distributed

crossbar switch.

The crossbar switch implements arbitrary connectivity between the sixteen Charm

nodes in any topology, which means that an arbitrary network of up to sixteen nodes can

be mapped onto the BEE. As shown in Figure 5.21, the network topology is first mapped

to a connection table, which is saved in a text file, and can be sent to the crossbar switch

on the BEE using a custom software interface. The crossbar implements the signaling and

functions required to create a variety of virtual channels for each node. These constructs

include bidirectional data transfer, a notion of channel activity used for virtualized carrier

sensing, clocking for use with different basebands, and the ability to inject random bit

errors into the data stream received by each node.

Since the nodes themselves are actually designed to interface through an external radio

chip, some glue logic is required to interface them through the crossbar switch, as shown

in Figure 5.22. One nice characteristic of the OSI layer model is that it enables a virtual

CHAPTER 5. PICORADIO DESIGN DRIVER 103

Charm core

Serial
snooper

Packet
snooper

BB
interface

(fake ADC)

DLL
interface
(fake BB)

Clock
generator

serialbb/dll

sysclk

DataIO
dual-port

RAM

BEE
Processor

ethernet

DataIO
dual-port

RAM

DataIO
dual-port

RAM

Other Charm
Node

Snoopers

Crossbar interface Snooper logic

Programmable
Crossbar

DataIO
dual-port

RAM

DataIO
dual-port

RAM
Other Charm

Nodes

Figure 5.22: Block diagram of the interface logic used for multi-node emulation on the
BEE.

connection between corresponding protocol layers in different nodes. This abstraction is

used to connect the nodes through the crossbar between corresponding DLLs or digital

basebands. When connecting between DLLs, the internal baseband logic is disabled and

the DLL-baseband interface (DBI) is passed directly to the Charm chip pins. A small

adapter converts the DBI into the crossbar interface implements a “fake” baseband that

uses the synchronized crossbar clocking to avoid the need for timing recovery. When con-

necting between digital basebands, another small adapter is used to emulate the functions

of the radio and ADC. Data is still transmitted over the crossbar as bits, but the receiving

adapter randomly assigns a signal strength to each packet and provides appropriate ADC

values to the baseband receiver.

It is important to observe the actions of each node for analysis, so another adapter

is used to provide access to the Charm chip serial interface. The adapter is essentially

the same serial logic core used inside the chip, and thus simply converts the asynchronous

serial output bit stream into bytes. These bytes are placed in a queue implemented in

dual-port block RAM on the FPGA. The queue is accessed through the BEE Ethernet

interface, and its contents are parsed for on-screen or disk logging on a PC. In this way, the

embedded software code running on the Charm microcontroller can simply issue printf C

statements that appear for analysis on a remote computer. In addition, a packet monitor

is included on each emulated node. The packet monitor sniffs the transmit and receive bit

streams for user-selectable packet types and places the appropriate packets in the same

queue for off-line parsing and logging.

CHAPTER 5. PICORADIO DESIGN DRIVER 104

5.5.3 ASIC implementation

The ASIC implementation path is used to generate verified layout from the golden RTL

description. Since most of the logic functionality is tested during the RTL simulation and

emulation phases, the focus here is on replacement of the emulation-specific models with

actual implementations and the faithful implementation of the logic. The issues are the

integration of the PSCs, the clock generation and distribution, and the JTAG testability

features.

5.5.4 Hierarchical Floorplanning

The power domains require some special constraints and methods to ensure their proper

implementation. The logic in each power domain must be kept separate, so that the power

supply can be correctly distributed and gated. The approach used in the Charm chip is

to use a hierarchical design flow, where domains are floorplanned and constrained at the

top level, but are implemented separately. Top logic that is not inside a power domain is

considered to be always on, and thus is always powered by the VDDHI supply.

Top level floorplanning is performed on the entire gate-level netlist inside a commercial

floorplanning tool. A custom script computes the number of PSCs required in each power

domain, based upon the total of all other cells inside the domain. This result can be

manually modified if desired, such as when the domain contain memory modules that

require a lower PSC density. Area is reserved in each power domain for the PSCs, and

the design is floorplanned with each power domain as a soft macro. Area is also reserved

at the top level for all other always-on logic. For the Charm prototype, the PM is also

implemented as a separate soft macro, but this is not strictly required. Once the macro

locations are determined, a regularly-spaced power grid is created for the VDDHI , VDDLO,

and GND supplies on the M5 and M6 metal layers. The chip pads and soft macro pins are

also placed at this time. All pin and power rail constraints are pushed into the individual

soft macros for use during their individual implementation.

5.5.5 Power Domain Implementation

As described in Section 5.2.4, the PSC is a custom tileable standard cell used to form the

power switches inside each power domain. These cells are added during the implementation

of each domain macro, and the method is highly automated to eliminate the need for

CHAPTER 5. PICORADIO DESIGN DRIVER 105

V
dd

lo
V

dd
hi

G
nd

V
dd

lo
V

dd
hi

G
nd

V
dd

lo
V

dd
hi

G
nd

Gnd

Gnd

Vvdd

Vvdd

columns of power
switch cells

Figure 5.23: Power switch cells are regularly spaced to align with the global power grid
(not drawn to scale).

further custom layout and minimize the need for hand-tweaking. In this way, the power

rail gating is easily integrated into an industry standard place and route design flow,

without the need to make changes to the existing standard cell library.

This is accomplished using a power switch bank module in each power domain that is

manipulated by custom scripts in the implementation flow. In the RTL description, the

power switch bank is simply a placeholder and contains no logic. During the synthesis

phase, a dummy library model is used to prevent the cell from being eliminated from the

output netlist. The gate-level netlist for the domain is loaded into the floorplanning tool,

along with the hierarchical floorplanning constraints that contain the pin and supply rail

locations.

Although the PSCs are not yet present in the netlist, a custom script creates a control

file with the desired placement locations. As shown in Figure 5.23, these locations are

aligned with the global power grid and are automatically computed by the script. The

control file is fed into a custom program that analyzes the locations of the PSCs and

creates a buffer tree for the awake control signal. The tree is created using the internal

buffer present in each PSC, since only they have access to the ungated VDDHI supply

voltage. The program generates a gate-level netlist for the power switch bank module

that references the actual power switch standard cells and describes their connectivity.

CHAPTER 5. PICORADIO DESIGN DRIVER 106

At this point, the dummy power switch bank cell is replaced with the actual imple-

mentation. The location control file is used to place the cells in the desired positions and

they are marked as fixed cells that cannot be moved during the rest of the implementation

flow. The awake signal routing will be completed with the rest of the signals, so con-

straints are set on the power switch bank to prevent additional buffer insertion or logic

manipulation.

The signal walls are placed in the ordinary way using a placement tool. The placement

of these cells is important though, because the pd en and pd en signals cannot be buffered

inside the domain. The reason is that transmission gates inside the input signal walls will

not completely turn off with a degraded control signal, potentially causing a static current

path. Although this is of primary concern for input signal walls, constraints added for

all signal walls to place them near the corresponding pin on the domain boundary and to

prevent the insertion of buffers on these signals inside the domain. Appropriate buffering

is allowed at the top level, where the repeaters have access to the full VDDHI supply.

5.5.6 JTAG Test Port

A test port is included to facilitate testing of the completed design. The test port im-

plements a JTAG compliant TAP [58] with several custom instructions to access special

test modes. As shown in Figure 5.24, these modes include boundary scan (external test),

internal scan, a built-in self-test for the memory modules, scan collars to manipulate

the memory contents without disturbing neighboring logic, several shift registers to read

quickly the FSM state, and a shift register that overrides the power rail gating mechanism

for leakage tests.

Test modes are divided into two categories based upon whether they disturb the state

of the system. All power switches are turned on during all test modes to avoid accesses to

domains that are asleep. This does not necessarily change the state of the system though,

since it is technically permissible for normal power to be applied to and removed from a

sleeping domain, as long as it is not inappropriately clocked or sent a wakeup event. In

this mode, the memory scan collars and FSM state shift registers can be read without

affecting the rest of the system. Also, the memory scan collars can be used to write the

internal contents of the memory modules without disturbing nearby logic. The remaining

commands disturb the state of the chip, so a reset is typically required after exiting test

CHAPTER 5. PICORADIO DESIGN DRIVER 107

chip
outputs

ID Register

Bypass Register

Instruction Register

TAP

Location Observe

DLL Observe

Power Control

BIST Results

Scan4: all others

Scan3: location

Scan2: dw8051

Scan1: dll

Scan0: pm

Memory Read/Write

BSR

BSR

BSR

BSR

BSR

BSR

chip
inputs

TDI

TMS

TCK

TRST

TDO

JTAG
pins

Figure 5.24: Block diagram of the JTAG test port logic.

mode.

5.6 Results

The Charm chip, shown in Figure 5.25, is implemented in a 0.13µm triple-well, digital

CMOS process with six metal layers. The chip is 2.78 x 2.76 mm2 and integrates 3.2

million transistors. The core logic runs on a 1.0V supply, and the I/O voltage is 1.8V for

compatibility with off-the-shelf sensors, EEPROMs, and ADCs.

The chip integrates eight power domains, a centralized power manager, a custom

clock oscillator, and a custom voltage converter to generate the retention voltage. The

key statistics and power numbers for each of these blocks are summarized in Table 5.7.

5.6.1 Functional Testing

The functionality of the chip is tested in two stages: node tests and network tests. The

node tests include the testing of the external interfaces and correct operation of the power

CHAPTER 5. PICORADIO DESIGN DRIVER 108

64kB code/data RAM
(dw8051)

clk osc

volt
conv.

1kB TX/RX
queue
(netq)

dll

serial.

if

location

neighbor

baseband

dw8051
µµµµP

PM

64kB code/data RAM
(dw8051)

clk osc

volt
conv.

1kB TX/RX
queue
(netq)

dll

serial.

if

location

neighbor

baseband

dw8051
µµµµP

PM

Figure 5.25: Die photo and floorplan of the Charm chip.

Design stats Power (µW)

Subsystem Area (mm2) Duty cycle Sleep Active Average

dll 0.503 10% 0.69 687 68.7
dw8051 2.225 2% 10.1 527 10.5
netq 0.645 1% 2.3 137 1.37
location 0.627 2% 0.286 1130 11.3
neighbor 0.147 2% 0.458 110 2.2
serial 0.028 0% 0.057 36 0
baseband 0.195 10% 0.115 - -
interface 0.032 0.1% 0.057 13 0.013
always on 0.131 100% 45.8 23 23
clock osc. 0.112 100% - 10 10

Total 7.659 - 59.9 2639 94.1

Table 5.7: Summary of results of Charm test chip. The “always on” subsystem includes
the power manager, global buffering, and test logic. The serial port is only used for
debugging purposes. It is not possible to separately measure the active power, so the sum
is reported in the dll row. Duty cycles are highly dependent on network traffic and user
parameters, so reasonable values are given for a test network.

CHAPTER 5. PICORADIO DESIGN DRIVER 109

t

P
ow

er
 (

µW
)

60

766

1200

dw8051

dll

queues

serial

if

location

neighbor

baseband

t

P
ow

er
 (

µW
)

60

766

1200

dw8051

dll

queues

serial

if

location

neighbor

baseband

Figure 5.26: Measured waveform showing power domain activity during broadcast packet
transmission. Domain power control signals are high when sleeping.

domains. A suite of software diagnostics is run on the microprocessor to check initial

functionality of the individual subsystems.

For more realistic tests, the node must be put in a network with nodes. Rather

than complicate the test setup with multiple questionable devices, these tests are initially

performed by replacing one of the nodes in the BEE network emulation with the real

ASIC. In this configuration, the baseband I/O of the ASIC is passed through some level

converters and wired to the external I/O interface of the BEE. The same logic adapters

used for the initial emulation are reused to interface the ASIC to the virtual channel

crossbar. In this way, the same network tests used for initial logic verification can be used

to test the actual silicon.

As a simple example of the power of this technique, Figure 5.26 shows the power

domain activity when the actual ASIC is “transmitting” to an emulated node in a test

network with five nodes. This figure clearly shows the periodic TICER receive window

where the node is listening for others. During this time, the baseband domain and dll

domain are active. The flurry of activity in the middle is the node transmitting a broad-

cast packet. Countless scenarios can be tested in this way before adding the additional

complexity of actually interfacing with the radio chip and deploying the nodes.

CHAPTER 5. PICORADIO DESIGN DRIVER 110

5.6.2 Leakage Measurements

The expected leakage power for each domain without power rail gating is computed using

Power Compiler. This tool simply sums the leakage power for each cell, as characterized

and stored in the technology library by the foundry. The result is scaled to a nominal

supply of 1.0V (from the characterized 1.08V). In the actual chip implementation during

normal operation, there is a large PMOS transistor in series with the standard cell supply.

This causes a stack effect that reduces the leakage inside the domains, even during active

mode. A load line simulation, similar to the one in Section 2.3.1, shows that the stack

effect alone should reduce the typical leakage current by 70% when the PMOS is active.

Leakage current for the actual silicon is measured by disabling the on-chip voltage

regulator and externally driving all the supplies. Since the power consumption is too

low for the available lab equipment to measure directly, a custom ammeter is used. The

ammeter uses a small sense resistor and an amplifier to measure currents in the microwatt

range. To reduce power supply noise during measurements at low voltages, a battery and

a resistive voltage divider is used instead of a bench-top supply.

The leakage estimates and measured values for each domain are shown in Figure 5.27.

Leakage measurements are made by putting the system in a known state, stopping all

clocks, and measuring the current through the power gating transistors in the PSC. The

measurements are made for two modes: when sleep mode is disabled (current through the

PMOS active mode device) and during sleep mode (current through the NMOS sleep mode

device). The calculated active mode leakage current varies from the measured value by an

average of ten times. This is not terribly surprising, as leakage has a strong dependence on

process variations and temperature, and neither is accounted for in the calculated values.

The library characterization is made at 85◦C, while the measurements were taken when

the chip is at approximately 70◦C. Further, the process parameters for the prototype

fabrication run are not known.

The percentage breakdown of leakage by domain is shown in Figure 5.28. With sleep

mode disabled, the “always on” logic accounts for about 18% (45.8µW) of the total

255.8µW leakage current. When sleep mode is enabled, the always on current does not

change, but since the total leakage current drops to 59.9µW, it becomes a larger per-

centage of the pie. The true value of sleep mode is shown in the power breakdown in

Figure 5.29, because the domain leakage power is computed as the product of the lower

CHAPTER 5. PICORADIO DESIGN DRIVER 111

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

Alw
ay

s o
n dll

dw
80

51

loc
at

ion ne
tq

ne
igh

bo
r

se
ria

l

ba
se

ba
nd

int
er

fa
ce

Domain

L
ea

ka
g

e
P

o
w

er
 (

W
, l

o
g

 s
ca

le
)

no gating (calculated)

sleep disabled

sleep mode

Figure 5.27: Bar graph of calculated and measured leakage currents for each domain.

Always on, 18%

dll, 10%

dw8051, 36%

location, 12%

netq, 10%

neighbor, 5%

serial, 1%

baseband, 5%

interface, 3%

(a) Gating disabled

Always on, 50%

dll, 2%

dw8051, 37%

location, 1%

netq, 8%

neighbor, 2%

serial, 0%

baseband, 0%

interface, 0%

(b) Gating enabled

Figure 5.28: Pie graphs of leakage current measurements by power domain.

Always on, 77%

dll, 1%

dw8051, 17%

location, 0%

netq, 4%

neighbor, 1%

serial, 0%

baseband, 0%

interface, 0%

Figure 5.29: Pie graph of leakage power measurements by power domain.

CHAPTER 5. PICORADIO DESIGN DRIVER 112

retention voltage and the lower leakage current. In this case, the sleep mode reduces leak-

age power by 77% over active mode. Although it is not possible to measure, recall that

active mode already has an inherent leakage reduction of approximately 70% due to the

stack effect from the sleep transistor. Thus, when compared with a design without any

power gating, the Charm chip reduces leakage power approximately 92%.

113

Chapter 6

Conclusions and Future Work

This dissertation presents a power management architecture and proves its feasability

through implementation in the Charm protocol processor. The Charm design shows the

effectiveness of supply rail gating on subthreshold leakage for even a high-threshold (low-

leakage) design in a 130nm process. For designs that require low-threshold devices for

higher performance and for designs at smaller process nodes, the benefits of supply rail

gating are expected to increase.

The plug-and-play power management architecture meets the original goal to decouple

the design of the power domains from the design of the PM. Indeed, the RTL designs

for several of the Charm power domains were made by different designers who were well-

insulated from the power mode implementation details. They simply used the power inter-

face to communicate with a virtual PM, without regard for its underlying implementation.

The power switch cells were added to the netlist as a final step before place-and-route,

without any need for the original designer to intervene.

The Charm chip represents an initial implementation of the architecture that can

be improved in several ways. First, the implementation of virtual timers has a large

number of stored bits to enable timers to be scheduled over a large time window. A better

implementation can reduce the number of bits by encoding the times similar to floating

point. In this approach, a shorter mantissa and small exponent can store the wide range

of timeouts using fewer total bits. There are sixteen twenty-four bit virtual timers in the

Charm chip (384 total bits), and with trivial modifications this can be reduced by half

without losing any of the desired accuracy.

Second, although the Charm chip used the DRV variant of MTCMOS, much of the area

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 114

used for the power switch cells can be recovered by using NMOS footswitch MTCMOS.

The smaller mobility of the PMOS requires a wider device, making the NMOS footswitch

approach more attractive from an area perspective. This approach, of course, requires the

state classification described in Chapter 3, although much of the work is already done.

Indeed, nearly all of the persistent state is clustered in the neighbor domain, netq domain,

and code/data memory in the dw8051 domain. What remains is to analyze the state

transition graphs of the logic to identify and handle any remaining persistent state. Also,

the dw8051 microcontroller and associated software can be modified slightly to remove

the persistency of the register file and internal pipeline registers.

Third, the largest portion of the final leakage goes to logic that is always on. This

means that the largest leakage benefits can be achieved by improving this logic. One

observation is that a significant number of buffers are added during the back-end imple-

mentation to correct hold-time violations. These buffers are the leakiest structures in the

chip, because they have only two stacked transistors. It is expected that a large improve-

ment in this leakage can be achieved by simply replacing the standard cell with another

that has a stacked inverter. The trade-off between leakage and delay is not an issue here,

because the only purpose of the cell is as a delay element.

Another way to reduce the leakage of the always on logic is to gate the supply of

idle portions of the PM itself. In the Charm implementation, the PM clock is gated, but

the supply rails are not. It is possible to gate the supply of all the virtual timers except

the most urgent one, and activate them only when the timer list needs to be updated.

Further, the entire power subsystem is only used when a timer expires or a port is opened

or closed. Thus, it is possible to gate this logic as well, as long as the power domains are

tolerant of the additional resume latency.

115

Bibliography

[1] “International technology roadmap for semiconductors,” 2004. Online
http://public.itrs.net/.

[2] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin,
M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,”
Computer, vol. 36, no. 12, pp. 68–75, 2003. Publisher: IEEE Comput. Soc, USA.
English Journal Paper.

[3] P. M. Zeitzoff, “MOSFET scaling trends and challenges through the end of the
roadmap,” in Custom Integrated Circuits Conference, (Orlando, FL, USA), pp. 233–
40, IEEE, 2004.

[4] H. Mizuno and T. Kawahara, “ChipOS: open power-management platform to over-
come the power crisis in future LSIs,” in IEEE International Solid-State Circuits
Conference, (San Francisco, CA), pp. 344–5, 463, IEEE, 2001.

[5] M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (¡4 nm)
SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: understanding the
processing, structure, and physical and electrical limits,” Journal of Applied Physics,
vol. 90, no. 5, pp. 2057–121, 2001.

[6] R. M. Wallace and G. D. Wilk, “Exploring the limits of gate dielectric scaling,”
Semiconductor International, vol. 24, no. 6, pp. 153–4, 156, 158, 2001.

[7] M. Caymax, S. De Gendt, W. Vandervorst, M. Heyns, H. Bender, R. Carter,
T. Conard, R. Degraeve, G. Groeseneken, S. Kubicek, G. Lujan, L. Pantisano,
J. Petry, E. Rohr, S. Van Elshocht, C. Zhao, E. Cartier, J. Chen, V. Cosnier, S. E.
Jang, V. Kaushik, A. Kerber, J. Kluth, S. Lin, W. Tsai, E. Young, and A. Man-
abe, “Issues, achievements and challenges towards integration of high-k dielectrics,”
International Journal of High Speed Electronics, vol. 12, no. 2, pp. 295–304, 2002.

[8] P. Gray, P. Hurst, S. Lewis, and R. Meyer, Analysis and Design of Analog Integrated
Circuits. New York, NY, USA: John Wiley and Sons, Inc., fourth ed., 2001.

[9] J. Kao, S. Narendra, and A. Chandrakasan, “Subthreshold leakage modeling and re-
duction techniques [ic cad tools],” in IEEE/ACM International Conference on Com-
puter Aided Design, (San Jose, CA, USA), pp. 141–8, IEEE, 2002.

BIBLIOGRAPHY 116

[10] K. Roy, “Leakage power reduction in low-voltage CMOS designs,” in IEEE Interna-
tional Conference on Electronics, Circuits and Systems, vol. 2, (Lisboa, Portugal),
pp. 167–73, IEEE, 1998.

[11] V. De, Y. Ye, A. Keshavarzi, S. Narendra, J. Kao, D. Somasekhar, R. Nair, and
S. Borkar, “Techniques for leakage power reduction,” in Design of High-Performance
Microprocessor Circuits (A. Chandrakasan, W. Bowhill, and F. Fox, eds.), New York,
NY, USA: IEEE Press, 2000.

[12] M. Hamada, Y. Ootaguro, and T. Kuroda, “Utilizing surplus timing for power re-
duction,” in IEEE Custom Integrated Circuits Conference, (San Diego, CA, USA),
pp. 89–92, IEEE, 2001.

[13] J. Nikhil, D. Sandeep, and P. K. Sunil, “A self-adjusting scheme to determine the
optimum RBB by monitoring leakage currents,” in Design Automation Conference,
(Piscataway, NJ, USA), pp. 43–6, IEEE, 2005.

[14] S. Narendra, S. Borkar, V. De, D. Antoniadis, and A. Chandrakasan, “Scaling of
stack effect and its application for leakage reduction,” in International Symposium
on Low Power Electronics and Design (ISLPED), (Huntington Beach, CA, USA),
pp. 195–200, ACM, 2001.

[15] Z. Chen, M. Johnson, L. Wei, and W. Roy, “Estimation of standby leakage power in
CMOS circuit considering accurate modeling of transistor stacks,” in International
Symposium on Low Power Electronics and Design, (New York, NY, USA), pp. 239–44,
ACM, 1998.

[16] S. Sirichotiyakul, T. Edwards, O. Chanhee, R. Panda, and D. Blaauw, “Duet: an
accurate leakage estimation and optimization tool for dual-vt circuits,” IEEE Trans-
actions on Very Large Scale Integration (Vlsi) Systems, vol. 10, no. 2, pp. 79–90,
2002.

[17] T. Kobayashi and T. Sakurai, “Self-adjusting threshold-voltage scheme,” in Custom
Integrated Circuits Conference (CICC), (San Diego, CA, USA), pp. 271–4, IEEE,
1994.

[18] K. Seta, H. Hara, T. Kuroda, M. Kakumu, and T. Sakurai, “50% active-power saving
without speed degradation using standby power reduction (SPR) circuit,” in IEEE
International Solid-State Circuits Conference (J. H. Wuorinen, ed.), (San Francisco,
CA, USA), pp. 318–19, IEEE, 1995.

[19] H. Kawaguchi, Y. Itaka, and T. Sakurai, “Dynamic leakage cut-off scheme for low-
voltage sram’s,” in Symposium on VLSI Circuits, Digest of Technical Papers, (Hon-
olulu, HI, USA), pp. 140–1, IEEE, 1998.

[20] R. Muller and T. Kamins, Device Electronics for Integrated Circuits. New York, NY,
USA: John Wiley and Sons, second edition ed., 1986.

BIBLIOGRAPHY 117

[21] T. Kuroda, T. Fujita, S. Mita, T. Nagamatsu, S. Yoshioka, K. Suzuki, F. Sano,
M. Norishima, M. Murota, M. Kako, M. Kinugawa, M. Kakumu, and T. Sakurai,
“A 0.9-V, 150-MHz, 10-mW, 4 mm2, 2-d discrete cosine transform core processor
with variable threshold-voltage (VT) scheme,” IEEE Journal of Solid-State Circuits,
vol. 31, no. 11, pp. 1770–9, 1996.

[22] M. Hirabayashi, K. Nose, and T. Sakurai, “Design methodology and optimization
strategy for dual-vTH scheme using commercially available tools,” in International
Symposium on Low Power Electronics and Design (ISLPED), (Huntington Beach,
CA, USA), pp. 283–6, ACM, 2001.

[23] Z. Chen, C. Diaz, J. D. Plummer, M. Cao, and W. Greene, “0.18um dual vt MOSFET
process and energy-delay measurement,” in International Electron Devices Meeting,
(San Francisco, CA, USA), pp. 851–4, IEEE, 1996.

[24] K. Kumagai, H. Iwaki, H. Yoshida, H. Suzuki, T. Yamada, and S. Kurosawa, “A novel
powering-down scheme for low vt CMOS circuits,” in Symposium on VLSI Circuits,
(Honolulu, HI, USA), pp. 44–5, IEEE, 1998.

[25] W. Liao, J. M. Basile, and L. He, “Leakage power modeling and reduction with data
retention,” in ICCAD (IEEE, ed.), (San Jose, CA, USA), pp. 714–19, 2002.

[26] J. Hartmanis, Algebraic Structure Theory of Sequential Machines. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc, 1966.

[27] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-decision dia-
grams,” Computing Surveys, vol. 24, no. 3, pp. 293–318, 1992.

[28] L. Benini, P. Siegel, and G. De Micheli, “Saving power by synthesizing gated clocks
for sequential circuits,” IEEE Design & Test of Computers, vol. 11, no. 4, pp. 32–41,
1994.

[29] D. Lee and M. Yannakakis, “Online minimization of transition systems,” in Sympo-
sium on the Theory of Computing (ACM, ed.), (Victoria, BC, Canada), pp. 264–74,
1992.

[30] D. Patterson and J. Hennessy, Computer Organization and Design: The Hard-
ware/Software Interface. San Francisco, CA, USA: Morgan Kaufmann Publishers,
Inc., 1994.

[31] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd, Surviving the
SOC Revolution. Norwell, MA, USA: Kluwer, 1999.

[32] “Vsi alliance.” Online http://www.vsi.org.

[33] “Ocp-ip.” Online http://www.ocpip.org/home.

[34] Y. Kanno, H. Mizuno, N. Oodaira, Y. Yasu, and K. Yanagisawa, “mu I/O architecture
for 0.13um wide-voltage-range system-on-a-package (SoP) designs,” in Symposium on
VLSI Circuits, (Honolulu, HI, USA), pp. 168–9, IEEE, 2002.

BIBLIOGRAPHY 118

[35] T. Simunic, S. P. Boyd, and P. Glynn, “Managing power consumption in networks on
chips,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12,
no. 1, pp. 96–107, 2004.

[36] Y. Kanno, H. Mizuno, Y. Yasu, K. Hirose, Y. Shimazaki, T. Hoshi, Y. Miyairi,
T. Ishii, T. Yamada, T. Irita, T. Hattori, K. Yanagisawa, and N. Irie, “Hierarchical
power distribution with 20 power domains in 90-nm low-power multi-CPU processor,”
in IEEE International Solid-State Circuits Conference, (San Francisco, CA, USA),
pp. 540–541,671, 2006.

[37] “Information technology - open systems interconnection - basic reference model,”
Tech. Rep. ISO/IEC 7498-1:1994, International Organization for Standardization
(ISO), 1994.

[38] F. King, Nostradamus: Prophecies Fulfilled and Predictions for the Millennium and
Beyond. New York, NY, USA: St. Martin’s Press, 1994.

[39] T. Simunic, L. Beniani, and G. De Micheli, “Event-driven power management of
portable systems,” in International Symposium on System Synthesis (IEEE, ed.),
(San Jose, CA, USA), pp. 18–23, 1999.

[40] G. Ruan, J. Vlach, and J. A. Barby, “Current-limited switch-level timing simulator for
MOS logic networks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 7, no. 6, pp. 659–67, 1988.

[41] W. Stallings, Local & Metropolitan Area Networks. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc, 5th ed., 1997.

[42] S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja,
and A. Hemani, “A network on chip architecture and design methodology,” in IEEE
Computer Society Annual Symposium on VLSI, (Los Aalmitos, CA, USA), pp. 117–
24, 2002.

[43] J. M. Rabaey, M. J. Ammer, J. L. da Silva, Jr., D. Patel, and S. Roundy, “Picoradio
supports ad hoc ultra-low power wireless networking,” Computer, vol. 33, no. 7,
pp. 42–8, 2000.

[44] J. M. Rabaey, J. Ammer, T. Karalar, L. Suetfei, B. Otis, M. Sheets, and T. Tuan,
“Picoradios for wireless sensor networks: the next challenge in ultra-low power de-
sign,” in IEEE International Solid-State Circuits Conference, vol. 1, (San Francisco,
CA, USA), pp. 200–1, IEEE, 2002.

[45] “The I2C-bus specification, version 2.1,” Tech. Rep. 9398 393 40011, Philips Semi-
conductors, 2000.

[46] R. C. Shah and J. M. Rabaey, “Energy aware routing for low energy ad hoc sensor
networks,” in Wireless Communications and Networking Conference, vol. 1, (Orlando,
FL, USA), pp. 350–5, IEEE, 2002.

BIBLIOGRAPHY 119

[47] V. Yalala, D. Brasili, D. Carlson, A. Hughes, A. Jain, T. Kiszely, K. Kodandapani,
A. Varadharajan, and T. Xanthopoulos, “A 16-core RISC microprocessor with net-
work extensions,” in ISSCC (IEEE, ed.), (San Francisco, CA, USA), pp. 100–101,
641, IEEE, 2006.

[48] E. Lin, A Comprehensive Study of Power-Efficient Rendezvous Schemes for Wireless
Sensor Networks. PhD thesis, University of California, Berkeley, 2005.

[49] E. Lin, “PicoRadio power model for PHY and DLL layer,” April 4, 2003.

[50] F. Burghardt, “Picoradio packet classes, types, and structures, revision 10,” April 19
2005.

[51] F. Burghardt, “Pn3v2 dll users guide,” 2005.

[52] C. Savarese, J. Rabaey, and K. Langendoen, “Robust positioning algorithms for dis-
tributed ad-hoc wireless sensor networks,” in USENIX Annual Technical Conference,
(Monterey, CA, USA), pp. 317–27, 2002.

[53] T. C. Karalar, S. Yamashita, M. Sheets, and J. Rabaey, “A low power localization
architecture and system for wireless sensor networks,” in IEEE Workshop on Sig-
nal Processing Systems Design and Implementation, (Austin, TX, USA), pp. 89–94,
IEEE, 2004.

[54] J. Ammer, Low Power Synchronization for Wireless Communication. PhD thesis,
University of California, Berkeley, 2004.

[55] S. Q. Zheng, Y. Mei, J. Blanton, P. Golla, and D. Verchere, “A simple and fast
parallel round-robin arbiter for high-speed switch control and scheduling,” in Midwest
Symposium on Circuits and Systems, vol. 2, (Tulsa, OK, USA), pp. 671–4, IEEE,
2002.

[56] C. Chang, K. Kuusilinna, B. Richards, A. Chen, N. Chan, and R. Brodersen, “Rapid
design and analysis of communication systems using the BEE hardware emulation
environment,” in Rapid System Prototyping Workshop, IEEE, 2003.

[57] K. Kuusilinna, C. Chang, H. Bluethgen, R. Davis, B. Richards, B. Nikolic, and
R. Brodersen, “Real-time system-on-a-chip emulation: emulation driven system
design with direct mapped virtual components,” in Winning the SoC Revolution
(G. Martin and H. Chang, eds.), pp. 229–253, Norwell, MA, USA: Kluwer, 2003.

[58] “IEEE standard test access port and boundary-scan architecture,” Tech. Rep. Std
1149.1-1990, IEEE, 1990.

120

Appendix A

Charm C Library Header File

The following pages show the Charm C header file. This file contains constants that

show all the special function register addresses and the bit encodings in each register. It

also catalogs the functions available in the Charm function library that can be used to

implement application and network layer code.

APPENDIX A. CHARM C LIBRARY HEADER FILE 121

/∗--
∗ charm.h

∗
∗ Header file for CHARM specific peripherals

∗
∗ Author: Mike Sheets

∗ Project: PicoRadio Charm v2

∗ Created: 28 January 2003

∗ Revision history:

∗
∗ --∗/

#ifndef charm h
#define charm h

//--

// Common defines

//--

#define UINT8 unsigned char
#define UINT16 unsigned int
#define UINT32 unsigned long
#define INT8 char
#define INT16 int
#define INT32 long int
#define BOOL unsigned char

#define TRUE 1
#define FALSE 0

#ifndef NULL
#define NULL ((void ∗) 0)

#endif

//--

// Custom DW8051 CHARM sfr registers

//--

sfr SFR GPIO DIR = 0x80; // read/write

sfr SFR GPIO IO = 0x90; // read/write

sfr SFR QTX LEN = 0xF1; // write

sfr SFR QTX STATUS = 0xF1; // read

sfr SFR Q CTRL = 0xF2; // write

sfr SFR QRX STATUS = 0xF2; // read

sfr SFR QRX LEN = 0xF3; // write

sfr SFR QCOPY LEN = 0xF4; // write

sfr SFR QTX COMMIT = 0xE9; // write

sfr SFR UART TX = 0xF5; // write

sfr SFR UART RX = 0xF5; // read

sfr SFR UART CONTROL = 0xF6; // write

APPENDIX A. CHARM C LIBRARY HEADER FILE 122

sfr SFR UART STATUS = 0xF6; // read

sfr SFR UART CLKDIVHI= 0xF7; // write

sfr SFR UART CLKDIVLO= 0xF9; // write

sfr SFR UART OVERSAMPLE=0xFA; // write

sfr SFR UART MASK = 0xFB; // write

sfr SFR SPI CONTROL = 0xFC; // read/write

sfr SFR SPI TX = 0xFD; // write

sfr SFR SPI RX = 0xFD; // read

sfr SFR SPI STATUS = 0xFE; // read/write

sfr SFR SPI SSR = 0xFF; // write

sfr SFR I2C CLKDIVLO = 0xDA; // read/write

sfr SFR I2C CLKDIVHI = 0xDB; // read/write

sfr SFR I2C CTRL = 0xDC; // read/write

sfr SFR I2C TX = 0xDD; // write

sfr SFR I2C RX = 0xDD; // read

sfr SFR I2C CMD = 0xDE; // write

sfr SFR I2C STATUS = 0xDE; // read

sfr SFR NL ARBIT REQ = 0xEA; // write

sfr SFR NL CMD CODE = 0xEB; // write

sfr SFR NL CMD ID = 0xEC; // write

sfr SFR NL CMD DATA LO = 0xED; // write

sfr SFR NL CMD DATA MID = 0xEE; // write

sfr SFR NL CMD DATA HI = 0xEF; // write

sfr SFR NL ARBIT GRANT = 0xEA; // read

sfr SFR NL CMD STATUS = 0xEB; // read

sfr SFR NL RES DATA LO = 0xED; // read

sfr SFR NL RES DATA MID = 0xEE; // read

sfr SFR NL RES DATA HI = 0xEF; // read

sfr SFR SS TIMERLO = 0xE1; // write

sfr SFR SS TIMERHI = 0xE2; // write

sfr SFR SS CMD = 0xE3; // write

sfr SFR SS CANSLEEP = 0xE6; // write

sfr SFR SS EVENT = 0xE1; // read

sfr SFR SS OPEN PORT = 0xE2; // read

sfr SFR LOC CONTROL = 0xE4; // read/write

sfr SFR LOC TIMER = 0xE5; // read/write

sfr SFR SQ RESULT HI = 0x93; // read

sfr SFR SQ RESULT MID = 0x94; // read

sfr SFR SQ RESULT LO = 0x95; // read

sfr SFR SQ DATA1 = 0x93; // write

sfr SFR SQ RESET = 0x94; // write

sfr SFR SQ DATA2 = 0x95; // write

sfr SFR DLL PIF TIMER 01 = 0xA0; // 0xA0 write

APPENDIX A. CHARM C LIBRARY HEADER FILE 123

sfr SFR DLL PIF VAL 0 = 0xA1; // 0xA1 write

sfr SFR DLL PIF VAL 1 = 0xA2; // 0xA2 write

sfr SFR DLL PIF TIMER 23 = 0xA3; // 0xA3 write

sfr SFR DLL PIF VAL 2 = 0xA4; // 0xA4 write

sfr SFR DLL PIF VAL 3 = 0xA5; // 0xA5 write

sfr SFR DLL PIF TIMER 45 = 0xA6; // 0xA6 write

sfr SFR DLL PIF VAL 4 = 0xA7; // 0xA7 write

sfr SFR DLL PIF VAL 5 = 0xA9; // 0xA9 write

sfr SFR DLL PIF TIMER 67 = 0xAA; // 0xAA write

sfr SFR DLL PIF VAL 6 = 0xAB; // 0xAB write

sfr SFR DLL PIF VAL 7 = 0xAC; // 0xAC write

sfr SFR DLL PIF TIMER 8 = 0xAD; // 0xAD write

sfr SFR DLL PIF VAL 8 = 0xAE; // 0xAE write

sfr SFR DLL BITS = 0xAF; // 0XAF write

sfr SFR DLL BITS2 = 0xB0; // 0XB0 write

sfr SFR DLL DRNNCOUNT = 0xB1; // 0XB1 write

sfr SFR DLL UCCOUNT = 0xB2; // 0XB2 write

sfr SFR DLL RTSCOUNT = 0xB3; // 0XB3 write

sfr SFR DLL CTSCOUNT = 0xB4; // 0XB4 write

sfr SFR DLL CTSDELAYCOUNT = 0xB5; // 0XB5 write

sfr SFR DLL DX THRESH = 0xB7; // 0XB7 write

sfr SFR DLL ADD THRESH = 0xB9; // 0XB9 write

sfr SFR DLL REM THRESH = 0xBA; // 0XBA write

sfr SFR DLL DEF TTL = 0xBB; // 0XBB write

sfr SFR DLL DEBUG = 0xBC; // 0XBC write

sfr SFR DLL RXWINDOWEXTEND= 0xBD; // 0XBD write

sfr SFR DLL SMS RESET = 0xBE; // 0XBE write

sfr SFR DLL SMS TOTAL SESSIONS = 0xA0; // 0xA0 read

sfr SFR DLL SMS SESSION RETRIES = 0xA1; // 0xA1 read

sfr SFR DLL SMS BROADCAST = 0xA2; // 0xA2 read

sfr SFR DLL SMS RX PACKETS = 0xA3; // 0xA3 read

sfr SFR DLL SMS BACKOFF = 0xA4; // 0xA4 read

sfr SFR DLL SMS RTS = 0xA5; // 0xA5 read

sfr SFR DLL SMS CTS = 0xA6; // 0xA6 read

sfr SFR DLL SMS DATA = 0xA7; // 0xA7 read

sfr SFR DLL SMS FAILED SESSIONS = 0xA9; // 0xA9 read

sfr SFR DLL SMS HDR CRC FAILURES = 0xAA; // 0xAA read

sfr SFR DLL SMS PLD CRC FAILURES = 0xAB; // 0xAB read

sfr SFR DLL SESSION BITS = 0xAC; // 0xAC read

sfr SFR DLL UCRESULT = 0xAD; // 0xAD read

sfr SFR BB MODE = 0xD9;
sfr SFR BB CLK ON TIME = 0xD7;
sfr SFR BB CLK OFF TIME = 0xD6;
sfr SFR BB CS THRESH = 0xD5;
sfr SFR BB SCLK HI CYCLES = 0x9A;
sfr SFR BB SCLK LO CYCLES = 0x9B;
sfr SFR BB SAMPLE COUNT = 0x9C;
sfr SFR BB CONVERT COUNT = 0x9D;

APPENDIX A. CHARM C LIBRARY HEADER FILE 124

//--

// Network packet queue peripheral (netq.c)

//--

void netq initialize();
void netq loopback(UINT8 enable); // NOTE: uses DLL block

UINT8 netq copy();

#define NETQ TXBASE 0xFE00
#define NETQ RXBASE 0xFF00

//--

// DLL peripheral (dll.c)

//--

#define DLL BIT START 0x80
#define DLL BIT RESTART 0x40
#define DLL BIT QUICKSTART 0x20
#define DLL BIT DISABLE PING 0x10
#define DLL BIT IGNOREHDRCRC 0x08
#define DLL BIT IGNOREPLDCRC 0x04
#define DLL BIT LINEBALDISABLE 0x02
#define DLL BIT SLEEPDISABLE 0x01

#define DLL BIT CUST MASK 0x1f // bits that are programmable using

customize

#define DLL BIT2 INTRDISABLE 0x10
#define DLL BIT2 NLMONDISABLE 0x08
#define DLL BIT2 SESSIONQOS 0x04
#define DLL BIT2 WD DISABLE 0x02
#define DLL BIT2 RXDISABLE 0x01

#define DLL SMS RXPKT RST 0x10
#define DLL SMS TXPKT RST 0x08
#define DLL SMS RXCNT RST 0x04
#define DLL SMS TXCNT RST 0x02
#define DLL SMS CRC RST 0x01

#define DLL DBG LOOPBACK 0x80

#define DLL RESULT STATUS MASK 0x60
#define DLL RESULT TAG MASK 0x1f

#define DLL RESULT STATUS GREEN 0x00
#define DLL RESULT STATUS YELLOW 0x20
#define DLL RESULT STATUS RED 0x40

//--

// Serial port peripheral (serial.c)

APPENDIX A. CHARM C LIBRARY HEADER FILE 125

//--

#define UART STAT RX INTR 0x01 // rx interrupt

#define UART STAT TX INTR 0x02 // tx interrupt

#define UART STAT ERR INTR 0x04 // error interrupt

#define UART STAT WAKE INTR 0x08 // uart just woke up interrupt

#define UART STAT OVERFLOW 0x10 // rx data overflowed

#define UART STAT FRAME ERR 0x20 // rx frame error

#define UART STAT RX DATARDY 0x40 // rx data ready

#define UART STAT TX BUFEMPTY 0x80 // tx buf empty

#define UART CTRL RX CLEAR 0x01
#define UART CTRL TX CLEAR 0x02
#define UART CTRL ERR CLEAR 0x04
#define UART CTRL WAKE CLEAR 0x08

#define UART MASK RX INTR 0x01
#define UART MASK TX INTR 0x02
#define UART MASK ERR INTR 0x04
#define UART MASK WAKE INTR 0x08
#define UART MASK TURN OFF 0x10 // uart will always stay on unless this bit is

set

#define UART MASK DEBUG 0x20 // disables TURN OFF mode

void com initialize(void);
void com debug(UINT8 debug mode);
UINT8 kbhit(void);
void flush(void);

//--

// SPI peripheral (spi.c)

//--

#define SPI CTRL SPIEN 0x80
#define SPI CTRL INTEN 0x40
#define SPI CTRL START 0x20
#define SPI CTRL CLKDIV 0x18
#define SPI CTRL CPHA 0x04
#define SPI CTRL CPOL 0x02
#define SPI CTRL RCV CPOL 0x01

#define SPI STAT DONE 0x80
#define SPI STAT SPIERR 0x40 // shouldn’t every have any errors

#define SPI STAT BB 0x20 // busy bit

#define SPI STAT INT N 0x10 // same as actual interrupt pin (active low)

#define SPI STAT XMIT EMPTY 0x08 // if high, can send more data

#define SPI STAT RCV FULL 0x04 // if high, can read the data

// lowest two bits are unused

void spi initialize(void);
void spi slave select(UINT8 value);
UINT8 spi put(UINT8 c);

APPENDIX A. CHARM C LIBRARY HEADER FILE 126

UINT8 spi get(void);

//--

// I2C peripheral (i2c.c)

//--

#define I2C STAT RXNACK 0x80
#define I2C STAT BUSY 0x40
#define I2C STAT AL 0x20
#define I2C STAT RESERVED 0x1C
#define I2C STAT TIP 0x02
#define I2C STAT IF 0x01

#define I2C CMD STA 0x80
#define I2C CMD STO 0x40
#define I2C CMD RD 0x20
#define I2C CMD WR 0x10
#define I2C CMD NACK 0x08
#define I2C CMD RESERVED 0x06
#define I2C CMD IACK 0x01

void i2c initialize(void);
UINT8 i2c write(UINT8 cmd, UINT8 byte);
UINT8 i2c read(UINT8 cmd);

//--

// Neighborlist peripheral (nl.c)

//--

#define NL CMD NONE 0x00
#define NL CMD GET FIELD 0x10
#define NL CMD MOVE ID 0x20
#define NL CMD COMPUTE SELF ID 0x30
#define NL CMD COMPUTE SELF BM 0x40
#define NL CMD SET FIELD 0x50

#define NL FLD LOCATION 0x00
#define NL FLD MAINT 0x01
#define NL FLD VALID 0x02
#define NL FLD BM HI 0x03
#define NL FLD BM MID 0x04
#define NL FLD BM LO 0x05
#define NL FLD CONINFO 0x06

#define NL ARBIT LOCK 0x80

#define NL STATUS COMPLETE 0x80
#define NL STATUS RES ID VALID 0x40
#define NL STATUS SELF ID 0x3f

typedef struct {
UINT8 bm[8];

APPENDIX A. CHARM C LIBRARY HEADER FILE 127

UINT8 loc x;
UINT8 loc y;
UINT8 loc z;
UINT8 maint[3];

} nl neighbor type;

void nl initialize();
void nl set location(UINT8 id, UINT8 ∗loc);
void nl get location(UINT8 id, UINT8 ∗loc);
UINT16 nl get conflictinfo(UINT8 id);
UINT8 nl get self id(void);
UINT8 nl get valid(UINT8 entry);
UINT8 nl print identity demo(void);
void nl print location(UINT8 ∗loc);
UINT8 nl print id change(UINT8 self id);

void nl add neighbor(UINT8 id, nl neighbor type ∗new data);
void nl set valid(UINT8 id, UINT8 valid);
UINT8 nl compute self id(void);
void nl update id(UINT8 src id, UINT8 dest id);
void nl get all valid(UINT8∗ valid8bytes);
void nl set all valid(UINT8∗ valid8bytes);
void nl print entry(UINT8 num);
UINT8 nl print identity(void);
void nl move neighbor(UINT8 src id, UINT8 dest id);

//--

// Supervisor peripheral (ss.c)

//--

#define PIF INTR ENABLE 0x80 // Enables interrupt for events

#define PIF CMD TIMER 0x00 // Set an alarm

#define PIF CMD CHECKPOINT 0x10 // Checkpoint (for sleep, set hint and port

to 0)

#define PIF CMD SLEEP 0x10 // Alias for checkpoint

#define PIF CMD RTS 0x20 // Request To Send (open session)

#define PIF CMD EOT 0x30 // End of Transmission (close session)

#define PIF CMD CLEAREVENT 0x80 // Clear event in status register

#define PIF TIME CYCLES 0x00 // timerclk resolution

#define PIF TIME DOHEXACYCLES 0x04 // timerclk∗32 resolution???

#define PIF TIME KCYCLES 0x08 // timerclk∗1024 resolution

#define PIF TIME MCYCLES 0x0c // timerclk∗1024∗1024 resolution

#define PIF EVENT TIMER 0x00 // Timer event

#define PIF EVENT CTS 0x10 // Clear To Send event (session opened)

#define PIF EVENT EOT 0x30 // End of transmission (session closed)

APPENDIX A. CHARM C LIBRARY HEADER FILE 128

#define PIF CHECKPOINT SLEEP 0x0 // Sleep

#define SS STATUS CMD ACTIVE 0x80
#define SS STATUS EVENT RDY 0x40
#define SS STATUS CODE MASK 0x30
#define SS STATUS DATA MASK 0x0f

#define PORT NETQ 0x00
#define PORT NL 0x01
#define PORT DLL 0x02
#define PORT SERIAL 0x03
#define PORT IF 0x04
#define PORT LOC 0x05
#define PORT BB 0x06

void ss set timer(UINT8 number, UINT16 value, UINT8 resolution);
void ss ack timer(UINT8 mask);
UINT8 ss timer expired(void);
void ss standby(void);
void ss sleep(void);
void ss test and sleep(void);
void ss begin event handler(void);
void ss event occurred(void);
void ss initialize(UINT8 new trace level);
void ss rts(UINT8 port) reentrant;
void ss eot(UINT8 port) reentrant;
void ss pps(void);
UINT8 ss is port open(UINT8 port);
void ss cur time(UINT16 ∗time);

typedef void (∗PPS HOOK)(void);
PPS HOOK ss pps hook(PPS HOOK newhandler);

typedef void (∗PRINT HOOK)(void);
PRINT HOOK ss print hook(PRINT HOOK newhandler);

//--

// Miscellaneous peripherals (misc.c)

//--

// squarer distance result

typedef struct SDist {
UINT8 hi;
UINT8 mid;
UINT8 lo;

} TDist;

void distance(UINT8 ∗loc1, UINT8 ∗loc2, TDist ∗ dist);
INT8 dist compare(TDist ∗ d1, TDist ∗ d2);

#define LOC TIMER RES 0xC0

APPENDIX A. CHARM C LIBRARY HEADER FILE 129

#define LOC TIMER MSB 0x30
#define LOC UNUSED 0x0C
#define LOC EN 0x02
#define LOC ANCHOR 0x01

#define LT DISABLE 0
#define LT MOBILE 1
#define LT ANCHOR 2

void loc initialize(UINT8 loc type);

#define QRX STAT EMPTY 0x01
#define QRX STAT OVERFLOW 0x02

#define QTX STAT FULL 0x01
#define QTX STAT COPY ACTIVE 0x02

#define Q CTRL RX RESET 0x08
#define Q CTRL TX RESET 0x04
#define Q CTRL RX INTR EN 0x02
#define Q CTRL TX INTR EN 0x01

#define BB MODE BBCLK ON 0x02
#define BB MODE INTERNAL 0x01
#define BB MODE EXTERNAL 0x00

void bb initialize(UINT8 internal, UINT8 cs thresh, UINT8 clk on);

void gpio dir(UINT8 dir);
void gpio write(UINT8 byte);

//--

// BEE

//--

// On the BEE, there is a packet monitor controlled by the GPIO pins

#define BEE PKTMON ENABLE 0x01
#define BEE PKTMON DISCOVERY 0x02
#define BEE PKTMON NL MAINT 0x04
#define BEE PKTMON TICER 0x08
#define BEE PKTMON DATA 0x10
#define BEE PKTMON LINK MAINT 0x20
#define BEE PKTMON LOCATION 0x40
#define BEE BB MODE 0x80 // 0: external BB, 1: internal digital BB

//--

// Debug code

//--

void ss set trace level(UINT8 level);
UINT8 ss get trace level(void);

APPENDIX A. CHARM C LIBRARY HEADER FILE 130

void no trace(const char ∗str, ...);
void trace print(const char ∗str, ...);
void no tracen(UINT8 n, const char ∗str, ...);
void tracen print(UINT8 n, const char ∗str, ...);
void finish(void);

#ifndef TRACE
#ifdef SIMULATION

#define TRACE no trace
#define TRACEN no tracen

#else
#ifdef DEBUG
#define TRACE trace print
#define TRACEN tracen print

#endif
#endif
#endif

#define TRACE MIN 1
#define TRACE APP 2
#define TRACE NET 3
#define TRACE CACHE 4
#define TRACE INIT 5
#define TRACE SMS 6
#define TRACE PACKETS 7
#define TRACE DETAIL 255

#endif // guard

	List of Figures
	List of Tables
	Acknowledgments
	1 Introduction
	1.1 Problem statement
	1.1.1 Increasing dominance of standby power
	1.1.2 Impact on burst systems

	1.2 Thesis
	1.2.1 Power domain modes
	1.2.2 Power managed system

	1.3 Overview of thesis
	1.3.1 Contributions
	1.3.2 Outline

	2 Power Reduction Techniques
	2.1 Standby Power Reduction
	2.1.1 Clock Gating
	2.1.2 Reducing Standby Activity

	2.2 Sources of Static Power
	2.2.1 Gate Leakage
	2.2.2 Subthreshold Leakage

	2.3 Devices and Circuits
	2.3.1 Raising the Threshold Voltage
	2.3.2 Power Rail Gating
	2.3.3 Comparison of Techniques

	3 System State
	3.1 Types of State
	3.2 Methodology
	3.3 Case Studies
	3.3.1 Finite State Machines
	3.3.2 Extended Finite State Machines
	3.3.3 Microprocessors

	4 Power Managed System
	4.1 Power Domains
	4.2 Physical Composition
	4.3 Temporal Composition
	4.3.1 Correctness
	4.3.2 Efficiency
	4.3.3 Scheduling

	4.4 Power Manager Components
	4.4.1 Scheduler
	4.4.2 System Timewheel
	4.4.3 Power Control Network
	4.4.4 Domain Controllers

	4.5 Locality and Scalability

	5 PicoRadio Design Driver
	5.1 Quark PicoNode System
	5.2 Power Domain Architecture
	5.2.1 Partitioning
	5.2.2 Power Modes
	5.2.3 Power Interface
	5.2.4 Sleep Mode Implementation

	5.3 Power Domain Functionality
	5.3.1 Domain `dw8051'
	5.3.2 Domain `netq'
	5.3.3 Domain `dll'
	5.3.4 Domain `neighbor'
	5.3.5 Domain `serial'
	5.3.6 Domain `interface'
	5.3.7 Domain `location'
	5.3.8 Domain `baseband'

	5.4 Power Manager Architecture
	5.4.1 Power Network Interface (PNI)
	5.4.2 Time subsystem
	5.4.3 Power subsystem
	5.4.4 Domain controller subsystem
	5.4.5 Command and Event FSMs

	5.5 Implementation
	5.5.1 Design Flow Overview
	5.5.2 Emulation Targets
	5.5.3 ASIC implementation
	5.5.4 Hierarchical Floorplanning
	5.5.5 Power Domain Implementation
	5.5.6 JTAG Test Port

	5.6 Results
	5.6.1 Functional Testing
	5.6.2 Leakage Measurements

	6 Conclusions and Future Work
	Bibliography
	A Charm C Library Header File

