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Abstract. This paper studies models of computation, software tech-
niques, and analytical models for distributed timed systems. By “timed
systems” we mean those where timeliness is an essential part of the be-
havior. By “distributed systems” we mean computational systems that
are interconnected on a network. Applications of timed distributed sys-
tems include industrial automation, distributed immersive environments,
advanced instrumentation systems, networked control systems, and many
modern embedded software systems that integrate networking. The in-
troduction of network time protocols such as NTP (at a coarse granu-
larity) and IEEE 1588 (at a fine granularity) makes possible time coher-
ence that has not traditionally been part of the computational models
in networked systems. The main question we address in this paper is:
Given time synchronization with some known precision, how does this
change how distributed applications are designed and developed? A sec-
ond question we address is: How can time synchronization help with
realizing coordinated real-time events.

1 Introduction

Despite considerable progress in software and hardware techniques, when embed-
ded computing systems absolutely must meet tight timing constraints, many of
the advances in computing become part of the problem, not part of the solution.
Although synchronous digital logic delivers precise timing determinacy, advances
in computer architecture and software have made it difficult or impossible to esti-
mate or predict the execution time of software. Moreover, networking techniques
introduce variability and stochastic behavior, and operating systems rely on best
effort techniques. Worse, programming languages lack time in their semantics,
so timing requirements are only specified indirectly. This paper studies methods
for programming ensembles of networked real-time, embedded computers where
time and concurrency are first-class properties of the program.

This contrasts with established software techniques, where time and concur-
rency are afterthoughts. The prevailing view of real-time appears to have been
established well before embedded computing was common. Wirth reduces real-
time programming to threads with bounds on execution time, arguing that “it is
prudent to extend the conceptual framework of sequential programming as little
as possible and, in particular, to avoid the notion of execution time” [30]. In this
sequential framework, “computation” is accomplished by a terminating sequence
of state transformations. This core abstraction underlies the design of nearly all
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computers, programming languages, and operating systems in use today. But
unfortunately, this core abstraction does not fit embedded software very well.

This core abstraction fits reasonably well if embedded software is simply
“software on small computers.” In this view, embedded software differs from
other software only in its resource limitations (small memory, small data word
sizes, and relatively slow clocks). In this view, the “embedded software prob-
lem” is an optimization problem. Solutions emphasize efficiency; engineers write
software at a very low level (in assembly code or C), avoid operating systems
with a rich suite of services, and use specialized computer architectures such
as programmable DSPs and network processors that provide hardware support
for common operations. These solutions have defined the practice of embedded
software design and development for the last 25 years or so. In an analysis that
remains as valid today as 18 years ago, Stankovic laments the resulting mis-
conceptions that real-time computing “is equivalent to fast computing” or “is
performance engineering” [29].

Of course, thanks to the semiconductor industry’s ability to follow Moore’s
law, the resource limitations of 25 years ago should have almost entirely evapo-
rated today. Why then has embedded software design and development changed
so little? It may be that extreme competitive pressure in products based on em-
bedded software, such as consumer electronics, rewards only the most efficient
solutions. This argument is questionable, however. There are many examples
where functionality has proven more important than efficiency. It is arguable
that resource limitations are not the only defining factor for embedded software,
and may not even be the principal factor.

Stankovic argues that “the time dimension must be elevated to a central
principle of the system. Time requirements and properties cannot be an af-
terthought” [29]. But in mainstream computing, this has not happened. The
“time dimension,” of course, is inextricably linked to concurrency, and prevail-
ing models of concurrency (threads and message passing) are in fact obstacles
to elevating time to a central principle.

In embedded software, several recent innovations provide unconventional
ways of programming concurrent and/or timed systems. We point to six cases
that define concurrency models, component architectures, and management of
time-critical operations in ways significantly different from prevailing software
engineering techniques. The first is nesC with TinyOS [8], which was developed
for programming very small programmable sensor nodes called “motes.” The
second is Click [16], which was created to support the design of software-based
network routers. These first two have an imperative flavor, and components in-
teract principally through procedure calls. The third is Simulink with Real-Time
Workshop (from The MathWorks), which was created for embedded control soft-
ware and is widely used in the automotive industry. The fourth is SCADE (from
Esterel Technologies, see [2], which was created for safety-critical embedded soft-
ware and is used in avionics. These two have a more declarative flavor, where
components interact principally through messages rather than procedure calls.
The fifth is the family of hardware description languages, including Verilog,
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VHDL, and SystemC, which express vast amounts of concurrency, principally
using discrete-event semantics. The sixth example is LabVIEW, from National
Instruments, a dataflow programming environment with a visual syntax designed
for embedded instrumentation applications. The amount and variety of experi-
mentation with alternative models of computation for embedded systems is yet
a further indication that the prevailing software abstractions are inadequate.

The approach in this paper leverages the concept of actor-oriented design
[20], borrowing ideas from Simulink and from Giotto [12], an experimental real-
time programming language. However, it addresses a number of limitations in
Simulink and Giotto by building similar multitasking implementations from
specifications that combine dataflow modeling and distributed discrete-event
modeling. In discrete-event models, components interact with one another via
events that are placed on a time line. Some level of agreement about time across
distributed components is necessary for this model to have a coherent seman-
tics. While distribution of discrete-event models has long been used to exploit
parallel computing to accelerate execution [31], we are not concerned here with
accelerating execution. The focus is instead on using a model of time as a bind-
ing coordination agent. This steers us away from conservative techniques (like
Chandy and Misra [3]) and optimistic techniques (like Time Warp [15]). One in-
teresting possibility is based on distributed consensus (as in Croquet [28]). In this
paper, we focus on techniques based on distributing discrete-event models, with
functionality specified by dataflow models. Our technique allows out of order
execution without sacrificing determinacy and without requiring backtracking.
The use of dataflow formalisms [26] supports mixing untimed and event-triggered
computation with timed and periodic computation.

2 Embedded Software

There are clues that embedded software differs from other software in quite fun-
damental ways. If we examine carefully why engineers write embedded software
in assembly code or C, we discover that efficiency is not the only concern, and
may not even be the main concern. The reasons may include, for example, the
need to count cycles in a critical inner loop, not to make it fast, but rather to
make it predictable. No widely used programming language integrates a way
to specify timing requirements or constraints. Instead, the abstractions they of-
fer are about scalability (inheritance, dynamic binding, polymorphism, memory
management), and if anything further obscure timing (consider the impact of
garbage collection on timing). Counting cycles, of course, becomes extremely
difficult on modern processor architectures, where memory hierarchy (caches),
dynamic dispatch, and speculative execution make it nearly impossible to tell
how long it will take to execute a particular piece of code. Embedded software
designers may choose alternative processor architectures such as programmable
DSPs not only for efficiency reasons, but also for predictability of timing.

Another reason engineers stick to low-level programming is that embedded
software has to interact with hardware that is specialized to the application.
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In conventional software, interaction with hardware is the domain of the oper-
ating system. Device drivers are not typically part of an application program,
and are not typically created by application designers. But in the embedded
software context, generic hardware interfaces are rarer. The fact is that creat-
ing interfaces to hardware is not something that higher level languages support.
For example, although concurrency is not uncommon in modern programming
languages (consider threads in Java), no widely used programming language in-
cludes in its semantics the notion of interrupts. Yet the concept is not difficult,
and it can be built into programming languages (consider for example nesC [8]
and TinyOS [13], which are widely used for programming sensor networks).

It becomes apparent that the avoidance of so many recent improvements
in computation is not due to ignorance of those improvements. It is due to a
mismatch of the core abstractions and the technologies built on those core ab-
stractions. In embedded software, time matters. In the 20th century abstractions
of computing, time is irrelevant. In embedded software, concurrency and interac-
tion with hardware are intrinsic, since embedded software engages the physical
world in non-trivial ways (more than keyboards and screens). The most influen-
tial 20th century computing abstractions speak only weakly about concurrency,
if at all. Even the core 20th century notion of “computable” excludes all in-
teresting embedded software, since to be “computable” you must terminate. In
embedded software, termination is failure.

Embedded systems are integrations of software and hardware where the soft-
ware reacts to sensor data and issues commands to actuators. The physical
system is an integral part of the design and the software must be conceptualized
to operate in concert with that physical system. Physical systems are intrin-
sically concurrent and temporal. Actions and reactions happen simultaneously
and over time, and the metric properties of time are an essential part of the be-
havior of the system. Prevailing software methods abstract away time, replacing
it with ordering. In imperative languages such as C, C++, and Java, the order
of actions is defined by the program, but not their timing. This prevailing imper-
ative abstraction is overlaid with another, that of threads or processes, typically
provided by the operating system, but occasionally by the language (as in Java).

The lack of timing in the core abstraction is a flaw, from the perspective of
embedded software, and threads as a concurrency model are a poor match for
embedded systems. They are mainly focused on providing an illusion of paral-
lelism in fundamentally sequential models, and they work well only for modest
levels of concurrency or for highly decoupled systems that are sharing resources,
where best-effort scheduling policies are sufficient. Indeed, none of the six exam-
ples given above include threads or processes in the programmer’s model.

Embedded software systems are generally held to a much higher reliability
standard than general purpose software. Often, failures in the software can be life
threatening (e.g., in avionics and military systems). The prevailing concurrency
model in general-purpose software that is based on threads does not achieve ade-
quate reliability [19]. In this prevailing model, interaction between threads is ex-
tremely difficult for humans to understand. The basic techniques for controlling
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this interaction use semaphores and mutual exclusion locks, methods that date
back to the 1960s [5] and 1970s [14]. These techniques often lead to deadlock or
livelock. In general-purpose computing, this is inconvenient, and typically forces
a restart of the program (or even a reboot of the operating system). However,
in embedded software, such errors can be far more than inconvenient. Moreover,
software is often written without sufficient use of these interlock mechanisms,
resulting in race conditions that yield nondeterministic program behavior. In
practice, errors due to misuse (or no use) of semaphores and mutual exclusion
locks are extremely difficult to detect by testing. Code can be exercised for years
before a design flaw appears. Static analysis techniques can help (e.g. Sun Mi-
crosystems’ LockLint), but these methods are often thwarted by conservative
approximations and/or false positives, and they are not widely used in practice.

It can be argued that the unreliability of multithreaded programs is due at
least in part to inadequate software engineering processes. For example, better
code reviews, better specifications, better compliance testing, and better plan-
ning of the development process can help solve the problems. It is certainly
true that these techniques can help. However, programs that use threads can be
extremely difficult for programmers to understand. If a program is incompre-
hensible, then no amount of process improvement will make it reliable. Formal
methods can help detect flaws in threaded programs, and in the process can
improve the understanding that a designer has of the behavior of a complex
program. But if the basic mechanisms fundamentally lead to programs that are
difficult to understand, then these improvements will fall short of delivering re-
liable software. Incomprehensible software will always be unreliable software.

Prevailing practice in embedded software relies on bench testing for concur-
rency and timing properties. This has worked reasonably well, because programs
are small, and because software gets encased in a box with no outside connec-
tivity that can alter the behavior. However, applications today demand that
embedded systems be feature-rich and networked, so bench testing and encasing
become inadequate. In a networked environment, it becomes impossible to test
the software under all possible conditions. Moreover, general-purpose networking
techniques themselves make program behavior much more unpredictable.

What would it take to achieve concurrent and networked embedded soft-
ware that was absolutely positively on time, to the resolution and reliability of
digital logic? Unfortunately, everything would have to change. The core abstrac-
tions of computing need to be modified to embrace time. Computer architectures
need change to deliver precisely timed behaviors. Networking techniques need to
change to provide time concurrence. Programming languages have to change to
embrace time and concurrency in their core semantics. Operating systems have
to change to rely less on priorities to (indirectly) specify timing requirements.
The separation of operating systems from languages has to be rethought. Soft-
ware engineering methods need to change to specify and analyze the temporal
dynamics of software. What is needed is nearly a reinvention of computer science.

No individual project, obviously, could possibly take all of this on. Fortu-
nately, there is quite a bit of prior work to draw on. To name a few examples,
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architecture techniques such as software-managed caches promise to deliver much
of the benefit of memory hierarchy without the timing unpredictability [1, 6]. Op-
erating systems such as TinyOS [13] provide simple ways to create thin wrappers
around hardware. Programming languages such as Lustre/SCADE [2, 11] pro-
vide understandable and analyzable concurrency. Embedded software languages
such as Simulink provide time in their semantics. Our own prior work shows how
to generate hard-real time code from dataflow graphs [27].

In this paper, we focus on programming languages, pursuing abstractions
that include time and concurrency as first-class properties, creating mechanisms
for programming ensembles of networked embedded computers, rather than just
programming individual computers, and creating mechanisms for tightly inte-
grating hardware behavior into programs. We focus on applications in instru-
mentation and in distributed gaming; the first of these requires more precise
timing synchronization, so we will leverage the new IEEE 1588 standard, which
provides time synchronization across ethernet networks at resolutions down to
tens of nanoseconds. The second requires time synchronization at more human
scales, large fractions of a second, and may be able to effectively use time syn-
chronization protocols such as NTP (network time protocol).

3 Concurrency and Time

We will focus on ways of giving programs where concurrency and time are es-
sential aspects of a design, and most particularly on ways of compiling such
programs to produce deployable real-time code. Time is a relatively simple is-
sue, conceptually, although delivering temporal semantics in software can be
challenging. Time is about the ordering of events. Event x happens before event
y, for example. But in embedded software, time also has a metric. That is, there
is an amount of time between events x and y, and the amount of time may be
an important part of the correctness of a system.

In software, it is straightforward to talk about the order of events, although in
concurrent systems it can be difficult to control the order. For example, achiev-
ing a specified total ordering of events across concurrent threads implies interac-
tions across those threads that can be extremely difficult to implement correctly.
Research in distributed discrete-event simulation, for example, underscores the
subtleties that can arise (see for example [15]).

It is less straightforward to talk about the metric nature of time. Typically,
embedded processors have access to external devices (timers) that can be used
to measure the passage of time. Programs can poll for the current time, and
they can set timers to trigger an interrupt at some time in the future. Using
timers in this way implies immediately having to deal with concurrency issues.
Interrupt service routines typically preempt currently executing software, and
hence conceptually execute concurrently.

Concurrency in software is a challenging issue because the basic software
abstraction is not concurrent. The basic abstraction in imperative languages is
that the memory of the computer represents the current state of the system, and
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instructions transform that state. A program is a sequence of such transforma-
tions. The problem with concurrency is that from the perspective of a particular
program, the state may change on its own at any time. For example, we could
have a sequence of statements:

x = 5;
print x;

that results in printing the number “6” instead of “5”. This could occur, for
example, if after execution of the first statement an interrupt occurred, and the
interrupt service routine modified the memory location where x was stored. Or
it could occur if the computer is also executing a sequence of statements:

x = 6;
print x;

and a multitasking scheduler happens to interleave the executions of the in-
structions of the two sequences. Two such sequences of statements are said to be
nondeterminate because, by themselves, these two sequences of statements do
not specify a single behavior. There is more than one behavior that is consistent
with the specification.

Nondeterminism can be desirable in embedded software. Consider for exam-
ple an embedded system that receives information at random times from two
distinct sensors. Suppose that it is the job of the embedded software to fuse the
data from these sensors so that their observations are both taken into account.
The system as a whole will be nondeterminate since its results will depend on the
order in which information from the sensors is processed. Consider the following
program fragment:

y = getSensorData(); // Block for data
x = 0.9 * x + 0.1 * y; // Discounted average
print x; // Display the result

This fragment reads data from a sensor and calculates a running average using a
discounting strategy, where older data has less effect on the average than newer
data.

Suppose that our embedded system uses two threads, one for each sensor,
where each thread executes the above sequence of statements repeatedly. The
result of the execution will depend on the order in which data arrives from the
sensors, so the program is nondeterminate. However, it is also nondeterminate
in another way that was probably not intended. Suppose that the multitasking
scheduler happens to execute the instructions from the two threads in interleaved
order, as shown here:

y = getSensorData(); // From thread 1
y = getSensorData(); // From thread 2
x = 0.9 * x + 0.1 * y; // From thread 1
x = 0.9 * x + 0.1 * y; // From thread 2
print x; // From thread 1
print x; // From thread 2
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The result is clearly not right. The sensor data read by thread 1 is ignored.
The discounting is applied twice. The sensor data from thread 2 is counted twice.
And the same (erroneous) result is printed twice.

A key capability for preventing such concurrency problems is atomicity. A
sequence of instructions is atomic if during the execution of the sequence, no
portion of the state that is visible to these instructions changes unless it is
changed by the instructions themselves.

Atomicity can be provided by programming languages and/or operating sys-
tems through mutual exclusion mechanisms. These mechanisms depend on low-
level support for an indivisible test and set. Consider the following modification:

acquireLock(); // Block until acquired
y = getSensorData(); // Block for data
x = 0.9 * x + 0.1 * y; // Discount old value
print x; // Display the result
releaseLock(); // Release the lock

The first statement calls an operating system primitive that tests a shared,
boolean-valued variable, and if it is false, sets it to true and returns. If it is
true, then it blocks, waiting until it becomes false. It is essential that between
the time this primitive tests the variable and the time it sets it to true, that no
other instruction in the system can access that variable. That is, the test and
set occur as one operation, not as two. The last statement sets the variable to
false.

Suppose we now build a system with two threads that each execute this
sequence repeatedly to read from two sensors. The resulting system will not
exhibit the problem above because the multitasking scheduler cannot interleave
the executions of the statements. However, the program is still not correct. For
example, it might occur that only one of the two threads ever acquires the lock,
and so only one sensor is read. In this case, the program is not fair. Suppose that
the multitasking scheduler is forced to be fair, say by requiring it to yield to the
other thread each time releaseLock() is called. The program is still not correct,
because while one thread is waiting for sensor data, the other thread is blocked
by the lock and will fail to notice new data on its sensor. This seemingly trivial
problem has become difficult. Rather than trying to fix it within the threading
model of computation, we will show that alternative models of computation
make this problem easy.

Suppose the program is given by the diagram in figure 1. Suppose that the
semantics are those of Kahn process networks (see [21]) augmented with a nonde-
terministic merge, as done in the YAPI model of computation [4]. In that figure,
the components (blocks) are called actors. They have ports (shown by small
triangles), with input ports pointing into the blocks and output ports pointing
out. Each actor encapsulates functionality that reads input values and produces
output values.

In PN semantics, each actor executes continually in its own thread of control.
The Sensor1 and Sensor2 actors will produce an output whenever the correspond-
ing sensors have data (this could be done directly by the interrupt service routine,
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Fig. 1. Process network realization of the sensor fusion example.

Fig. 2. Discrete event realization of an improved sensor fusion example.

for example). The connections between actors represent sequences of data val-
ues. The Merge actor will nondeterministically interleave the two sequences at
its input ports, preserving the order within each sequence, but yielding arbitrary
ordering of data values across sequences. Suppose it is “fair” in the sense that
if a data value appears at one of the inputs, then it will “eventually” appear at
the output [25]. The remaining actors simply calculate the discounted average
and display it. The SampleDelay actor provides an initial “previous average”
to work with (which prevents this program from deadlocking for lack of data
at the input to the Expression actor). This program exhibits none of the diffi-
culties encountered above with threads, and is both easy to write and easy to
understand.

We can now focus on improving its functionality. Notice that the discounting
average is not ideal because it does not take into account how old the old data are.
That is, there is no time metric. Old data is simply the data previously observed,
and there is no measure of how long ago it was read. Suppose that instead of
Kahn process networks semantics, we use discrete-event (DE) semantics [18].
A modified diagram is shown in figure 2. In that diagram, the meaning of a
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connection between actors is slightly different from the meaning of connections
in figure 1. In particular, the connection carries a sequence of data values as
before, but each value has a time stamp. The time stamps on any given sequence
are nondecreasing. A data value with a time stamp is called an event.

The Sensor1 and Sensor2 actors produce output events stamped with the
time at which their respective interrupt service routines are executed. The Merge
actor is no longer nondeterministic. Its output is a chronological merge of the
two input sequences. The TimeGap actor produces on its output an event with
the same time stamp as the input but whose value is the elapsed time between
the current event and the previous event (or between the start of execution and
the current event if this is the first event). The expression shown in the next
actor calculates a better discounted average, one that takes into account the
time elapsed. It implements an exponential forgetting function.

The Register actor in figure 2 has somewhat interesting semantics. Its output
is produced when it receives a trigger input on the bottom port. The value of
the output is that of a previously observed input (or a specified initial value if
no input was previously observed). In particular, at any given time stamp, the
value of the output does not depend on the value of the input, so this actor
breaks what would otherwise be an unresolvable causality loop.

Even with such a simple problem, threaded concurrency is clearly inferior.
PN offers a better concurrency model in that the program is easier to construct
and to understand. The DE model is even better because it takes into account
metric properties of time, which matter in this problem.

In real systems, the contrasts between these approaches is even more dra-
matic. Consider the following two program fragments:

acquireLockA();
acquireLockB();
x = 5;
print x;
releaseLockB();
releaseLockA();

and

acquireLockB();
acquireLockA();
x = 5;
print x;
releaseLockA();
releaseLockB();

If these two programs are executed concurrently in two threads, they could
deadlock. Suppose the multitasking scheduler executes the first statement from
the first program followed by the first statement from the second program. At
this point, the second statement of both programs will block! There is no way
out of this. The programs have to be aborted and restarted.
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Programmers who use threads have tantalizing simple rules to avoid this
problem. For example, “always acquire locks in the same order” [17]. However,
this rule is almost impossible to apply in practice because of the way programs
are modularized. Any given program fragment is likely to call methods or proce-
dures that are defined elsewhere, and those methods or procedures may acquire
locks. Unless we examine the source code of every procedure we call, we cannot
be sure that we have applied this rule.

Deadlock can, of course, occur in PN and DE programs. If in figure 1 we
had omitted the SampleDelay actor, or in figure 2 we had omitted the Register
actor, the programs would not be able to execute. In both cases, the Expression
actor requires new data at all of its input ports in order to execute, and that
data would not be able to be provided without executing the Expression actor.

The rules for preventing deadlocks in PN and DE programs are much easier
to apply than the rule for threads. For certain models of computation, whether
deadlock occurs can be checked through static analysis of the program. This is
true of the DE model used above for the improved sensor fusion problem, for
example. So, not only was the model of computation more expressive in practice
(that is, it more readily expressed the behavior we wanted), but it also had
stronger formal properties that enabled static checks that prove the absence of
certain flaws (deadlock, in this case).

We will next examine a few of the models of computation that have been
used for embedded systems and that form the basis for the work described here.

4 Imperative Concurrent Models

TinyOS has an imperative flavor. What this means is that when one component
interacts with another, it gives a command, “do this.” The command is imple-
mented as a procedure call. Since this model of computation is also concurrent,
we call it an imperative concurrent models of computation.

In contrast, when components in Simulink and SCADE interact, they simply
offer data values, “here is some data.” It is irrelevant to the component when (or
even whether) the destination component reacts to the message. These models of
computation have a declarative flavor, since instead of issuing commands, they
declare relationships between components that share data. We call such models
of computation declarative concurrent models of computation.

TinyOS is a specialized, small-footprint operating system for use on ex-
tremely resource-constrained computers, such as 8 bit microcontrollers with
small amounts of memory [8]. It is typically used with nesC, a programming
language that describes “configurations,” which are assemblies of TinyOS com-
ponents.

A visual rendition of a two-component configuration is shown in figure 3,
where the visual notation is that used in [8]. The components are grey boxes
with names. Each component has some number of interfaces, some of which it
uses and some of which it provides. The interfaces it provides are put on top of
the box and the interfaces it uses are put on the bottom. Each interface consists of
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Component 1

interface us ed

interface provided

Component 2

interface us ed

interface provided

command invoked

command implemented event signaled

event handled

Fig. 3. A representation of a nesC/TinyOS configuration.

a number of methods, shown as triangles. The filled triangles represent methods
that are called commands and the unfilled triangles represent event handlers.
Commands propagate downwards, whereas events propagate upwards.

After initialization, computation typically begins with events. In figure 3,
Component 2 might be a thin wrapper for hardware, and the interrupt service
routine associated with that hardware would call a procedure in Component
1 that would “signal an event.” What it means to signal an event is that a
procedure call is made upwards in the diagram via the connections between the
unfilled triangles. Component 1 provides an event handler procedure. The event
handler can signal an event to another component, passing the event up in the
diagram. It can also call a command, downwards in the diagram. A component
that provides an interface provides a procedure to implement a command.

Execution of an event handler triggered by an interrupt (and execution of
any commands or other event handlers that it calls) may be preempted by an-
other interrupt. This is the principle source of concurrency in the model. It is
potentially problematic because event handler procedures may be in the middle
of being executed when an interrupt occurs that causes them to begin execution
again to handle a new event. Problems are averted through judicious use of the
atomic keyword in nesC. Code that is enclosed in an atomic block cannot be
interrupted (this is implemented very efficiently by disabling interrupts in the
hardware).

Clearly, however, in a real-time system, interrupts should not be disabled for
extensive periods of time. In fact, nesC prohibits calling commands or signaling
events from within an atomic block. Moreover, no mechanism is provided for an
atomic test-and-set, so there is no mechanism besides the atomic keyword for
implementing mutual exclusion. The system is a bit like a multithreaded system
but with only one mutual exclusion lock. This makes it impossible for the mutual
exclusion mechanism to cause deadlock.



13

Fuse r

Se nsor1

reading

reading

Printer

print

Se nsor2

reading

reading print

Fig. 4. A sketch of the sensor fusion problem as a nesC/TinyOS configuration.

Of course, this limited expressiveness means that event handlers cannot per-
form non-trivial concurrent computation. To regain expressiveness, TinyOS has
tasks. An event handler may “post a task.” Posted tasks are executed when
the machine is idle (no interrupt service routines are being executed). A task
may call commands through the interfaces it uses. It is not expected to signal
events, however. Once task execution starts, it completes before any other task
execution is started. That is, task execution is atomic with respect to other
tasks. This greatly simplifies the concurrency model, because now variables or
resources that are shared across tasks do not require mutual exclusion protocols
to protect their accesses. Tasks may be preempted by event handlers, however,
so some care must be exercised when shared data is accessed here to avoid race
conditions. Interestingly, it is relatively easy to statically analyze a program for
potential race conditions [8].

Consider the sensor fusion example from above. A configuration for this is
sketched in figure 4. The two sensors have interfaces called “reading” that accept
a command a signal an event. The command is used to configure the sensors.
The event is signaled when an interrupt from the sensor hardware is handled.
Each time such an event is signaled, the Fuser component records the sensor
reading and posts a task to update the discounted average. The task will then
invoke the command in the print interface of the Printer component to display
the result. Because tasks execute atomically with respect to one another, in the
order in which they are posted, the only tricky part of this implementation is in
recording the sensor data. However, tasks in TinyOS can be passed arguments
on the stack, so the sensor data can be recorded there. The management of
concurrency becomes extremely simple in this example.

In effect, in nesC/TinyOS, concurrency is much more disciplined than with
threads. There is no arbitrary interleaving of code execution, there are no block-
ing operations to cause deadlock, and there is a very simple mechanism for
managing the one nondeterministic preemption that can be caused by inter-
rupts. The price paid for this, however, is that applications must be divided into
small, quickly executing procedures to maintain reactivity. Since tasks run to
completion, a long-running task will starve all other tasks.
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5 Declarative Concurrent Models

Simulink, SCADE, LabVIEW and hardware description languages all have a
declarative flavor. The interactions between components are not imperative in
that one component does not “tell the other what to do.” Instead, a “program”
is a declaration of the relationships among components.

Simulink was originally developed as a modeling environment, primarily for
control systems. It is rooted in a continuous-time semantics, something that
is intrinsically challenging for any software system to emulate. Software is in-
trinsically discrete, so an execution of a Simulink “program” often amounts to
approximating the specified behavior using numerical integration techniques.

A Simulink “program” is an interconnection of blocks where the connections
are the “variables,” but the value of a variable is a function, not a single value.
To complicate things, it is a function defined over a continuum. The Integrator
block, for example, takes as input any function of the reals and produces as
output the integral of that function. In general, any numerical representation
in software of such a function and its integral is an approximation, where the
value is represented at discrete points in the continuum. The Simulink execution
engine (which is called a “solver”) chooses those discrete points using sometimes
quite sophisticated methods.

Although initially Simulink focused on simulating continuous dynamics and
providing excellent numerical integration, more recently it acquired a discrete
capability. Semantically, discrete signals are piecewise-constant continuous-time
signals. A piecewise constant signal changes value only at discrete points on
the time line. Such signals are intrinsically easier for software, and more precise
approximations are possible.

In addition to discrete signals, Simulink has discrete blocks. These have a
sampleTime parameter, which specifies the period of a periodic execution. Any
output of a discrete block is a piecewise constant signal. Inputs are sampled at
multiples of the sampleTime.

Certain arrangements of discrete blocks turn out to be particularly easy to
execute. An interconnection of discrete blocks that all have the same sampleTime
value, for example, can be efficiently compiled into embedded software. But even
blocks with different sampleTime parameters can yield efficient models, when the
sampleTime values are related by simple integer multiples.

Fortunately, in the design of control systems (and many other signal pro-
cessing systems), there is a common design pattern where discrete blocks with
harmonically related sampleTime values are commonly used to specify the soft-
ware of embedded control systems.

Figure 5 shows schematically a typical Simulink model of a control system.
There is a portion of the model that is a model of the physical dynamics of the
system to be controlled. There is no need, usually, to compile that specification
into embedded software. There is another portion of the model that represents
a discrete controller. In this example, we have shown a controller that involves
multiple values of the sampleTime parameter, shown as numbers below the dis-
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Fig. 5. A representation of a Simulink program.
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Fig. 6. A simplified representation of a Simulink schedule.

crete blocks. This controller is a specification for a program that we wish to
execute in an embedded system.

Real-Time Workshop is a product from The MathWorks associated with
Simulink. It takes models like that in figure 5 and generates code. Although it
will generate code for any model, it is intended principally to be used only on
the discrete controller, and indeed, this is where its strengths come through.

The discrete controller shown in figure 5 has fast running components (with
sampleTime values of 0.02, or 20 ms) and slow running components (with sam-
pleTime values of 0.1, or 1/10 of a second). In such situations, it is not unusual
for the slow running components to involve much heavier computational loads
than the fast running components. It would not do to schedule these computa-
tions to execute atomically, as is done in TinyOS and Click (and SCADE). This
would permit the slow running component to interfere with the responsivity (and
time correctness) of the fast running components.

Simulink with Real-Time Workshop uses a clever technique to circumvent
this problem. The technique exploits an underlying multitasking operating sys-
tem with preemptive priority-driven multitasking. The slow running blocks are
executed in a separate thread from the fast running blocks, as shown in figure 6.
The thread for the fast running blocks is given higher priority than that for the
slow running blocks, ensuring that the slow running code cannot block the fast
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running code. So far, this just follows the principles of rate-monotonic scheduling
[23]. But the situation is a bit more subtle than this, because data flows across
the rate boundaries. Recall that Simulink signals have continuous-time seman-
tics, and that discrete signals are piecewise constant. The slow running blocks
should “see” at their input a piecewise constant signal that changes values at the
slow rate.To guarantee that, the model builder is required to put a zero-order
hold (ZOH) block at the point of the rate conversion. Failure to do so will trigger
an error message. Cleverly, the code for the ZOH runs at the rate of the slow
block but at the priority of the fast block. This makes it completely unnecessary
to do semaphore synchronization when exchanging data across these threads.

When rate conversions go the other way, from slow blocks to fast blocks,
the designer is required to put a UnitDelay block, as shown in figure 5. This
is because the execution of the slow block will typically stretch over several
executions of the fast block, as shown in figure 6.

To ensure determinacy, the updated output of the block must be delayed by
the worst case, which will occur if the execution stretches over all executions of
the fast block in one period of the slow block. The unit delay gives the software
the slack it needs in order to be able to permit the execution of the slow block
to stretch over several executions of the fast one. The UnitDelay executes at the
rate of the slow block but at the priority of the fast block.

This same principle has been exploited in Giotto [12], which constrains the
program to always obey this multirate semantics and provides (implicitly) a unit
delay on every connection. In exchange for these constraints, Giotto achieves
strong formal structure, which results in, among other things, an ability to per-
form schedulability analysis (the determination of whether the specified real-time
behavior can be achieved by the software).

The Simulink model has weaknesses, however. The sensor fusion problem that
we posed earlier does not match its discrete multitasking model very well. While
it would be straightforward to construct a discrete multitasking model that polls
the sensors at regular (harmonic) rates, reacting to stimulus from the sensors at
random times does not fit the semantics very well. The merge shown in figure 2
would be challenging to accomplish in Simulink, and it would not benefit much
from the clever code generation techniques of Real-Time Workshop.

In figure 2, we give a discrete-event model of an improved sensor fusion
algorithm with an exponential forgetting function. Discrete-event modeling is
widely used in electronic circuit design (VHDL and Verilog are discrete-event
languages), computer network modeling and simulation (OPNET Modeler and
Ns-2, for example), and many other disciplines. In discrete-event models, the
components interact via signals that consist of events, which typically carry both
a data payload and a time stamp. A straightforward execution of these models
uses a centralized event queue, where events are sorted by time stamp, and a
runtime scheduler dispatches events to be processed in time order. Compared to
the Simulink/RTW model, there is much more flexibility in DE because discrete
execution does not need to be periodic. This feature is exploited in the model of
figure 2, where the Merge block has no simple counterpart in Simulink.
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A great deal of work has been done on efficient and distributed execution of
such models, much of this work originating in either the so-called “conservative”
technique of Chandy and Misra [3] or the speculative execution methods of Jef-
ferson [15]. More interesting is the work in the Croquet Project, which focuses
on optimistic techniques in the face of unreliable components. Croquet has prin-
cipally been applied to three-D shared immersion environments on the internet,
similar to the ones that might be used in interactive networked gaming. Much
less work has been done in adapting these models as an execution platform for
embedded software, but there is some early work that bears a strong seman-
tic resemblance to DE modeling techniques [24][9]. A significant challenge is to
achieve the timed semantics efficiently while building on software abstractions
that have abstracted away time.

6 Discrete-Event Runtime Framework

The ability of TinyOS and nesC to create thin wrappers around hardware pro-
vides a simple and understandable mechanism for creating event-triggered, fine-
grained, atomic reactions to external events. When these external events trigger
significant computations, nesC programs will “post tasks” that are executed
later. These tasks, however, all execute atomically with respect to one another,
and hence a long-running task will block other tasks. This can create unac-
ceptable latencies, and often forces software designers to manually divide long-
running tasks into more fine-grain ones.

Simulink and Giotto, by contrast, freely mix long-running tasks with hard-
real-time fine-grained tasks by exploiting the properties of an underlying priority-
driven multitasking real-time operating system. They do this without requiring
programmers to specify priorities or use mutexes or semaphores. However, these
tasks are required to be periodic, and their latencies are strongly related to their
periods, so they lack the event-triggered, reactive nature of nesC programs.

These two ideas can be combined within a dataflow framework with elements
borrowed from discrete-event models to specify timing properties. Dependen-
cies within the dataflow model can be statically analyzed, and with a carefully
chosen variant of dataflow called heterochronous dataflow (HDF) [10], schedula-
bility becomes decidable and synthesis of efficient embedded software becomes
possible. We believe that the resulting language will prove expressive, efficient,
understandable, and analyzable.

We are building a prototype of this combination of HDF and DE using the
Ptolemy II framework [7]. This prototype can synthesize multitasking C code for
execution on embedded processors or general-purpose processors. That is, the
target language for the compiler will be C. The source language will be graphical,
exploiting the graphical syntaxes supported by Ptolemy II. We will specifically
target instrumentation applications, and, at coarser temporal granularity, dis-
tributed games. We leverage a C code generator for Ptolemy II that supports
HDF [10], built by Jackie Mankit Leung and Gang Zhou, for code generation.
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The overall architecture of an application is a distributed discrete-event
model of interactions of concurrent real-time components (which we call actors).
The components themselves have functionality that can be specified either by
dataflow models, combinations of dataflow and state machines (heterochronous
dataflow), or conventional programming languages (C or Java, in this case).

Discrete-event semantics is typically used for modeling physical systems where
atomic events occur on a time line. For example, hardware description languages
for digital logic design, such as Verilog and VHDL, are discrete-event languages.
So are many network modeling languages, such as OPNET Modeler1 and Ns-22.
Our approach is not to model physical phenomena, but rather to specify coordi-
nated real-time events to be realized in software. Execution of the software will
first obey discrete-event semantics, just as done in DE simulators, but it will
do so with specified real-time constraints on certain actions. Our technique is
properly viewed as providing a semantic notion of model time together with a
relation between the model time of certain events and their physical time.

Our premise is that since DE models are natural for modeling real-time sys-
tems, they should be equally natural for specifying real-time systems. Moreover,
we can exploit their formal properties to ensure determinism in ways that evades
many real-time software techniques. Network time synchronization makes it pos-
sible for discrete-event models to have a coherent semantics across distributed
nodes. Just as with distributed DE simulation, it will be neither practical nor
efficient to use a centralized event queue to sort events in time order. Our goal
will be to compile DE models for efficient and predictable distributed execution.

We emphasize that while distributed execution of DE models has long been
used to exploit parallel computation to accelerate simulation [31], we are not
interested in accelerated simulation. Instead, we are interested in systems that
are intrinsically distributed. Consider factory automation, for example, where
sensors and actuators are spread out physically over hundreds of meters. Multiple
controllers must coordinate their actions over networks. This is not about speed
of execution but rather about timing precision. We use the global notion of time
that is intrinsic in DE models as a binding coordination agent.

For accelerated simulation, there is a rich history of techniques. So-called
“conservative” techniques advance model time to t only when each node can be
assured that they have seen all events time stamped t or earlier. For example, in
the well-known Chandy and Misra technique [3], extra messages are used for one
execution node to notify another that there are no such earlier events. For our
purposes, this technique binds the execution at the nodes too tightly, making it
very difficult to meet realistic real-time constraints.

So-called “optimistic” techniques perform speculative execution and back-
track when the speculation is incorrect [15]. Such optimistic techniques will also
not work in our context, since backtracking physical interactions is not possible.

Our method is called PTIDES, Programming Temporally Integrated Dis-
tributed Embedded Systems [32]. It is conservative, in the sense that events are

1 http://opnet.com/products/modeler/home.html
2 http://www.isi.edu/nsnam/ns
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processed only when we are sure it is safe to do so. But we achieve significantly
looser coupling than Chandy and Misra using a new method that we call relevant
dependency analysis. We leverage the concept of causality interfaces introduced
in [22], adapting these interfaces to distributed discrete-event models. We have
developed the concept of “relevant dependency” to formally capture the ordering
constraints of temporally ordered events that have a dependency relationship.
This formal structure provides an algebra within which we can perform schedu-
lability analysis of distributed discrete-event models.

Our emphasis is on efficient distributed real-time execution. Our framework
uses model time to define execution semantics, and constraints that bind certain
model time events to physical time. A correct execution will simply obey the
ordering constraints implied by model time and meet the constraints on events
that are bound to physical time.

6.1 Motivating Example

We motivate our programming model by considering a simple distributed real-
time application. Suppose that at two distinct machines A and B we need to
generate precisely timed physical events under the control of software. Moreover,
the devices that generate these physical events respond after generating the event
with some data, for example sensor data. We model this functionality with an
actor that has one input port and one output port, depicted graphically as
follows:

This actor is a software component that wraps interactions with device drivers.
We assume that it does not communicate with any other software component
except via its ports. At its input port, it receives a potentially infinite sequence
of time-stamped values, called events, in chronological order. The sequence of
events is called a signal. The output port produces a time-stamped value for
each input event, where the time stamp is strictly greater than that of the input
event. The time stamps are values of model time. This software component
binds model time to physical time by producing some physical action at the
real-time corresponding to the model time of each input event. Thus, the key
real-time constraint is that input events must be made available for this software
component to process them at a physical time strictly earlier than the time
stamp. Otherwise, the component would not be able to produce the physical
action at the designated time.

Figure 7 shows a distributed DE model to be executed on a two-machine,
time-synchronized platform. The dashed boxes divide the model into two parts,
one to be executed on each machine. The parts communicate via signal s1. We
assume that events in this signal are sent over a standard network as time-
stamped values.

The Clock actors in the figure produce time-stamped outputs where the time
stamp is some integer multiple of a period p (the period can be different for each
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Fig. 7. A simple distributed instrumentation example.

clock). Upon receiving an input with time stamp t, the clock actor will produce
an output with time stamp np where n is the smallest integer so that np ≥ t.
There are no real-time constraints on the inputs or outputs of these actors.

The Merge actor has two input ports. It merges the signals on the two input
ports in chronological order (perhaps giving priority to one port if input events
have identical time stamps). A conservative implementation of this Merge re-
quires that no output with time stamp t be produced until we are sure we have
seen all inputs with time stamps less than or equal to t. There are no real-time
constraints on the input or output events of the Merge actor.

The Display actor receives input events in chronological (time-stamped) order
and displays them. It also has no real-time constraints.

A brute-force implementation of a conservative distributed DE execution of
this model would stall execution in platform B at some time stamp t until an
event with time stamp t or larger has been seen on signal s1. Were we to use the
Chandy and Misra approach, we would insert null events into s1 to minimize
the real-time delay of these stalls. However, we have real-time constraints at the
Device actors that will not be met if we use this brute-force technique. Moreover,
it is intuitively obvious that such a conservative technique is not necessary. Since
the actors communicate only through their ports, there is no risk in processing
events in the upper Clock-Device loop ahead of time stamps received on s1. Our
PTIDES technique formalizes this observation using causality analysis.

To make this example more concrete, we have in our lab prototype systems
provided by Agilent that implement IEEE 1588. These platforms include a Linux
host and simple timing-precise I/O hardware. Specifically, they include a device
driver API where the software can request that the hardware generate a digital
clock edge (a voltage level change) at a specified time. After generating this
level change, the hardware interrupts the processor, which resets the level to
its original value. Our implementation of the Device actor takes input events as
specification of when to produce these level changes. That is, it produces a rising
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edge at physical time equal to the model time of an input event. After receiving
an input, it outputs an event with time stamp equal to the physical time at which
the level is restored to its original value. Thus, its input time stamps must precede
physical time, and its output events are guaranteed to follow physical time. This
physical setup makes it easy to measure precisely the real-time behavior of the
system (oscilloscope probes on the digital I/O connectors tell it all).

The feedback loops around the two Clock and Device actors ensure that the
Device does not get overwhelmed with requests for future level changes. It may
not be able to buffer those requests, or it may have a finite buffer. Without the
feedback loop, since the ports of the Clock actor have no real-time constraints,
there would be nothing to keep it from producing output events much faster
than real time.

This model is an abstraction of many realistic applications. For example,
consider two networked computers controlling cameras pointing at the same
scene from different angles. Precise time synchronization allows them to take
sequences of pictures simultaneously. Merging two synchronous pictures creates
a 4D view for the scene (three physical dimensions and one time).

PTIDES programs are discrete-event models constructed as networks of ac-
tors, as in the example above. For each actor, we specify a physical host to
execute the actor. We also designate a subset of the input ports to be real-time
ports. Time-stamped events must be delivered to these ports before physical-
time exceeds the time stamp. Each real-time port can optionally also specify a
setup time τ , in which case it requires that each input event with time stamp t
be received before physical time reaches t− τ . A model is said to be deployable
if these constraints can be met for all real-time ports. Causality analysis can
reveal whether a model is deployable.

The key idea is that events only need to be processed in time-stamp order
when they are causally related. We defined formal interfaces to actors that tells
us when such causal relationships exist.

6.2 Summary of Relevant Dependency Analysis

A formal framework for analyzing causality relationships to determine the mini-
mal ordering constraints on processing events is given in [32]. We give a summary
of the key results here. The technique is based on causality interfaces [22], which
provide a mechanism that allows us to analyze delay relationships among ac-
tors. The interface of actors contains ports on which actors receive or produce
events. Each port is associated with a signal. A causality interface declares the
dependency that output events have on input events.

A program is given as a composition of actors, by which we mean a set of
actors and connectors linking their ports. Given a composition and the causality
interface of each actor, we can determine the dependencies between any two
ports in the composition. However, these dependencies between ports do not tell
the whole story. Consider the Merge actor in figure 7. It has two input ports,
and the dependency analysis tells that there is no path between these ports.
However, these ports have an important relationship, noted above. In particular,



22

the Merge actor cannot react to an event at one port with time stamp t until
it is sure it has seen all events at the other port with time stamp less than or
equal to t. This fact is not captured in the dependencies. To capture it, we use
relevant dependencies. Based on the causality interface of actors, the relevant
dependency on any pair (p1, p2) of input ports specifies whether an event at p1

will affect an output signal that may also depend on an event at p2. Given the
relevant dependency interfaces for all actors in a composition, we can establish
the relevant dependency between any two input ports in the composition.

When the relevant dependency from input port p1 to p2 is r, r ∈ R0, this
means that any event with time stamp t2 at p2 can be processed when all events
at p1 are known up to time stamp t2 − r. When the relevant dependency from
p1 to p2 is ∞, this means that events at p2 can be processed without knowing
anything about events at p1.

What we gain from the dependency analysis is that we can specify which
events can be processed out of order, and which events have to be processed
in order. Recall that p2 is designated as a real-time port. Relevant dependency
analysis tells us that events at p2 can be processed without knowing anything
about events at p3 or p4. This is the first result we were after. It means that the
arrival events over the network into p3 need not interfere with meeting real-time
constraints at p2. This would not be achieved with a Chandy and Misra policy.
And unlike optimistic policies, there will never be any need to backtrack.

If we modify the model in figure 7 by adding a Delay actor with a delay
parameter d, we get a new model as shown in figure 8. Relevant dependency
analysis now tells us that an event with time stamp t at p4 can be processed
if all events with time stamps smaller than or equal to t − d at p3 have been
processed. With the same assumptions as discussed in section 6.1 (an event with
model time t is produced at physical time t by the Device process, and the
network delay is bounded by C), at physical time t− d + C we are sure that we
have seen all events with time stamps smaller than t− d at p3. Hence, an event
e at p4 with time stamp t can be processed at physical time t− d + C or later.
Note that although the Delay actor has no real-time properties at all (it simply
manipulates model time), its presence loosens the constraints on the execution.

In [32] we show that relevant dependencies induce a partial order (called the
relevant order) on events. We use notation <r for the relevant order. We interpret
e1 <r e2 to mean that e1 must be processed before e2. Two events e1 and e2 are
not comparable, denoted as e1||re2, if neither e1 <r e2, nor e2 <r e1. If e1||re2,
then e1, e2 can be processed in any order. What we mean by “processed” is that
the actor that is the destination of the event is fired, meaning that it is executed
and allowed to react to the event. It is then straightforward to show that any
execution that respects the relevant order correctly implements discrete-event
semantics.

We further show in [32] that this technique can be adapted to distributed
execution if we are given bounds on the communication latency and on the
timing synchronization order.
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Fig. 8. The motivating example with a delay actor.

7 Conclusion

Existing methods for addressing real-time computation typically deal with a por-
tion of the problem of constructing and executing real-time programs. Real-time
operating systems (RTOSs) provide mechanisms for prioritizing tasks and trig-
gering computations in response to timer interrupts. Time-triggered networking
techniques such as the Time Triggered Architecture (TTA) provide determin-
istic sharing of networking resources and insulation from faults. Network time
synchronization protocols such as NTP and IEEE 1588 provide a common time
base across computers on a network. All of these technologies, however, are used
with relatively conventional concurrency models (threads and processes) and
conventional programming languages. This paper elevates timing and distribu-
tion to the level of the programmers model, so that applications are built by
directly expressing timing and distribution properties. The objective is a frame-
work for designing deployable timed distributed systems. Our technique adapts
discrete-event semantics, traditionally used for modeling and simulation, for use
as a programmers’ model for distributed real-time software.
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