
Compile-Time Schedulability Analysis of
Communicating Concurrent Programs

Cong Liu

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-94

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-94.html

June 28, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Compile-Time Schedulability Analysis of Communicating Concurrent
Programs

by

Cong Liu

B.E. (Tsinghua University, China) 1997
M.E. (Tsinghua University, China) 2000

M.S. (University of California, Berkeley) 2003

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Alberto Sangiovanni-Vincentelli, Chair

Professor Robert Brayton
Professor Jasmina Vujic

Fall 2006

The dissertation of Cong Liu is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2006

Compile-Time Schedulability Analysis of Communicating Concurrent

Programs

Copyright 2006

by

Cong Liu

1

Abstract

Compile-Time Schedulability Analysis of Communicating Concurrent Programs

by

Cong Liu

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

The use of concurrent models has become a necessity in embedded system design. This

trend is driven by the growing complexity and inherent multitasking of embedded systems.

Describing a system as a set of concurrently executed, relatively simple subtasks is more

natural than using a single, complicated task. Embedded systems, however, have limited

resources. They often have a few processors. This implies that several software subtasks

(programs) have to share a CPU. Compile-time scheduling determines a sequential execution

order of the program statements that satisfies certain constraint, e.g. bounded memory

usage, at compile time.

We study compile-time schedulability of concurrent programs based on a Petri

net model. We consider concurrent programs that asynchronously communicate with each

other and the environment through unbounded first-in first-out (FIFO) buffers. The Petri

net represents the control flow and communications of the programs, and models data-

2

dependent branches as non-deterministic free choices. A schedule of a Petri net represents

a set of firing sequences that can be infinitely repeated within a bounded state space,

regardless of the outcomes of the nondeterministic choices. Schedulability analysis for a

given Petri net answers the question whether a valid schedule exists in the reachability

space of this net. Due to the heuristics nature of existing scheduling algorithms, discovering

powerful necessary condition for schedulability is important to gain efficiency in analysis.

We propose a novel structural approach to schedulability analysis of Petri nets. Structural

analysis often yields polynomial-time algorithms and is applicable for all initial states.

We show that unschedulability can be caused by a structural relation among transitions

modelling nondeterministic choices. Two methods for checking the existence of the relation

are proposed. One uses linear programming, and the other is based on the generating sets

of T-invariants. We also show a necessary condition for schedulability based on the rank of

the incidence matrix of the Petri net. These theoretic results shed a light on the sources

of unschedulability often found in the Petri net models of embedded multimedia systems.

Our experiments show that these techniques are effective and efficient.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair

i

To my wife and parents,

ii

Contents

List of Figures iv

1 Introduction 1
1.1 Concurrent Models for Embedded Systems 1

1.1.1 Kahn Process Networks . 3
1.1.2 Synchronous Dataflow . 8
1.1.3 Boolean Dataflow . 12
1.1.4 Petri Nets . 16
1.1.5 Free Choice Petri Net . 23

1.2 Quasi-Static Scheduling . 28
1.3 Major Results . 31

2 Schedule of Petri Net 33
2.1 Related Work . 33
2.2 Free Choice Set . 35
2.3 Definition of Schedule . 37
2.4 Schedule Unfolding . 39
2.5 Schedulability . 42
2.6 False Path Problem . 43

3 The Cyclic Dependence Theorem 47
3.1 A Motivational Example . 48
3.2 Pairwise Transition Dependence Relation 49
3.3 Proof of a Special Case of Cyclic Dependence Theorem 51
3.4 Extending Pairwise Dependence . 54
3.5 General Transition Dependence Relation . 56

4 Algorithms Checking Cyclic Dependence 61
4.1 Checking Cyclic Dependence with Linear Programming 61
4.2 Checking Cyclic Dependence with Generating Sets 64

iii

5 The Rank Theorem 68
5.1 Related Work . 68
5.2 Proof of the Rank Theorem . 69
5.3 Comparison with Cyclic Dependence . 73

6 Experiments 75
6.1 MPEG-2 Decoder . 75
6.2 M-JPEG* Encoder . 76
6.3 XviD MPEG4 Encoder . 77
6.4 PVRG JPEG Encoder . 79
6.5 Worst-Case Tests . 80
6.6 Results and Analysis . 81

7 Conclusion and Future Work 85
7.1 Dependence Considering Firability . 85
7.2 Petri Net Subclasses . 86
7.3 Cyclic Dependence Theorem and Rank Theorem 86
7.4 Folding Infinite Schedule . 86

Bibliography 88

A Another Proof of Proposition 1 95

iv

List of Figures

1.1 Mapping concurrent processes to architectures 2
1.2 A Kahn process network described by concurrent programs 4
1.3 A synchronous dataflow model, its topology matrix, and repetition vector . 10
1.4 Select and Switch actor in Boolean dataflow graph 12
1.5 Boolean dataflow model of a sequential program 13
1.6 A Boolean dataflow model, the topology matrix, the balance equations, and

the repetition vector. 14
1.7 A Boolean dataflow and its bounded-memory schedule 16
1.8 A Petri net . 18
1.9 The reachability graph of the Petri net shown in Figure 1.8 19
1.10 The incidence matrix and minimal T-invariants of the Petri net shown in

Figure 1.8 . 20
1.11 A marked graph . 22
1.12 A free-choice Petri net and its state transition diagram representing a non-

terminating bounded-memory execution. 25
1.13 A free-choice Petri net, its bounded-response-time schedule and the bounded-

memory execution. 26
1.14 Petri net structures exhibiting nondeterminism. 27
1.15 (a) Communicating concurrent processes. (b) Its Petri net model. (c) A

schedule of the Petri net with initialization. (d) The single sequential process
translated from the schedule. 30

2.1 Free choice set differs from equal conflict set. 36
2.2 Transformation of general FCSs to binary FCSs. 37
2.3 The unfolding of the schedule in Figure 1.15. 41
2.4 (a) an unbounded, schedulable Petri net, (b) a bounded, unschedulable Petri

net, (c) a non-live, schedulable Petri net, (d) a live, reversible, unschedulable
Petri net. 42

2.5 A concurrent program and its Petri net model. 44
2.6 A concurrent program, its Petri net model, and its schedule. 45

3.1 A Petri net and its ”schedule”. 48

v

3.2 Illustration of Proof. 52
3.3 A Petri net containing FCSs in cyclic (general) dependence relation. 57
3.4 A Petri net containing a FCS in cyclic dependence relation. 58

4.1 Bipartite graph of a set of FCSs and the generators that involves the FCSs. 66

5.1 Illustration of the construction of N ′ . 70
5.2 A Petri net whose unschedulability can be proved by Theorem 2, but not by

Theorem 5. 74

6.1 An MPEG-2 decoder modeled as a KPN. 76
6.2 An M-JPEG* encoder modeled as a KPN. 77
6.3 An XviD encoder modeled as a KPN. 78
6.4 A baseline JPEG encoder as a Kahn process network. 79
6.5 A simplified JPEG encoder as a Kahn process network using distributed

control. 80
6.6 A simplified JPEG encoder as a Kahn process network using central control. 80
6.7 Statistics of schedulability analysis of Petri net models of JPEG and MPEG

codecs . 81
6.8 Statistics of schedulability analysis of Petri nets in the worst-case test suite 81
6.9 A simplified Huffman coding process and a simplified quantization process. 84

vi

Acknowledgments

First of all, I would like to thank my advisor, Professor Alberto Sangiovanni-Vincentelli,

for his great support, help, and guidance. I owe him a great deal. He introduced me to

the exciting research topic, which totally changed my Ph.D. program path. He taught me

everything that I need to know to start the research, though he gave me quite some freedom

to choose a particular research direction. He provided me a lot of advices, inspiration, and

encouragement throughout my Ph.D. study. He is more than an advisor to me, especially

when some personal matters arise and need his help.

I also want to thank Dr. Alex Kondratyev and Dr. Yosinori Watanabe for spending

their valuable time to hold discussions with me. I enjoyed every discussion, and learned a

lot from their criticism. Their feedback and comments put me on the right track during my

explorations.

I owe a special thank to Professor Robert Brayton. He served as the chair of

my Ph.D. qualification exam committee, and later my Ph.D. dissertation committee. His

enthusiasm for research and kindness to young researchers are respectable.

I want to thank Professor Jörg Desel for his comments that shaped one of the

major theoretic results of my thesis. I want to thank Professor Jasmina Vujic for serving

on my dissertation committee. I want to thank Professor Edward Lee for his valuable

comments on my research. I want to thank my colleagues and the staff at the DOP center

for their warm-hearted help.

Finally, I want to thank MARCO/DARPA Gigascale Systems Research Center for

providing me the financial support.

1

Chapter 1

Introduction

1.1 Concurrent Models for Embedded Systems

An embedded system is a special-purpose computer system that performs dedicated

tasks with stringent requirements (e.g. timing, reliability). It is distinguished from general-

purpose computer systems such as personal computers. The stringent requirements come

from the nature of embedded systems, which usually interact with physical environment and

perform safety-critical tasks. Embedded systems are widely used in airplanes, automobiles,

office and home appliances, consumer electronics, and medical equipments.

The complexity of embedded systems has increased dramatically. This forces de-

signers to adopt formal models to describe the behavior of a system at a high-level of

abstraction and hide implementation details. A formal model with rigorous semantics pro-

vide a mathematical means to analyze the characteristics and properties of the modelled

system. Formal analysis helps designers to detect design errors at early design stages.

Due to the complexity of embedded systems, it is often necessary to decompose

2

DSP1 HW1 CPU HW2

Memory

DSP2 HW3

Figure 1.1: Mapping concurrent processes to architectures

a system into a set of functional entities so that the design complexity of each entity is

manageable. Modular design facilitates the reuse of intellectual property (IP), which many

believe is critical for successful designs.

Representing concurrency explicitly is essential in the models of embedded systems.

This is due to the implementation of embedded systems typically consists of hardware, which

is intrinsically concurrent, or programmable platforms with multiple computing engines.

Exposing the task-level parallelism in a model facilitates experimentations with different

hardware/software partitions and mappings onto architectures. It helps designers to find

an optimal implementation.

For example, Figure 1.1 illustrates the mapping of a functional speciation described

as a set of concurrent processes to a heterogenous multiprocessor architecture. A designer

could use this framework to make trade-offs among different mappings.

Note that the entities (concurrent processes) typically need to communicate with

each other to exchange data or synchronize. This introduces dependence among operations

3

in communicating entities, which complicates the design. Thus, it is often desired for a

model to decouple the inter-dependence as much as possible so that the design of each

entity can be done concurrently and independently.

Concurrent models, such as Kahn process networks [32][33], synchronous dataflow

[36], heterochronous dataflow [26], cyclo-static dataflow [25], and communicating sequential

processes [31], are suited for these purposes. In these models, a system consists of a set

of concurrent autonomous processes. Each is described by a sequential program. The

processes communicate with each other and the environment, and run at their own speed.

In this chapter, we review the concurrent models that are closely related to our work.

1.1.1 Kahn Process Networks

Many digital signal processing and multimedia embedded systems are naturally

represented by a set of cooperating sequential processes incrementally generating or trans-

forming infinite data streams. Kahn and Mac Queen[24, 25] introduced a formal model,

called Kahn process networks, which is particularly well suited for describing these systems.

A Kahn process network consists of a set of concurrent, autonomous processes that

communicate exclusively via unidirectional, unbounded, first-in first-out (FIFO) channels,

with blocking reads and non-blocking writes.

In a Kahn process network, a process is described by a sequential program in an

infinite loop. Figure 1.2 shows an example. The program typically contains computation

and communication instructions, i.e. read and write. A process often reads data from input

channels, performs computations, and writes data to output channels. Reading consumes

data. It means that once a data item is read from an input channel, it is no longer present

4

process TestPrime
(OutPort CHA, OutPort CHB)
begin

loop
for (int n=2; n<10; n++) {

if (isPrime(n))
write (CHA, n, 1)

else
write (CHB, n, 1)

}
end loop

end proc

process Reorder
(InPort CHA, InPort CHB)
begin

int m
loop

read (CHA, m, 1)
print (m)
read (CHB, m, 1)
print (m)

end loop
end proc

Figure 1.2: A Kahn process network described by concurrent programs

in the channel. Reading is blocking. It means that if a process tries to read from an empty

channel, the execution of the read instruction halts until there are enough data items in the

channel to be consumed. Note that it is possible that a single read instruction consumes

more than one data item a time. Writing produces data. Similarly, it is possible that more

than one data item are produced a time. Writing is non-blocking. It means that a writing

operation always succeeds by simply putting data items in the output channel. This is

because channels are assumed to have unbounded capacity, thus there is no overflow. This

is also because writing is asynchronous. The write operation does not need any form of

acknowledgement or synchronization with a read operation to be complete.

In a Kahn process network, a process can not test whether data is present or

absent in an input channel, and then decide whether to perform a read operation. It can

not wait for data from one or another input channel. It means that if a process is blocked

on reading, it is waiting for data exclusively from a single channel. No two process send

5

data to the same channel. If there are more than one process that read from the same input

channel, each process gets an identical stream of the data in the channel.

For example, consider the Kahn process network shown in Figure 1.2. If process

TestPrime first runs an iteration of the for loop, which produces integer 2 in channel CHA,

and then process Reorder read the data and print it out, process Reorder will be blocked

at the next read statement, since it tries to read from an empty channel, CHB. It could

continue execution only after process TestPrime runs the third iteration, which produces

integer 4 in channel CHB. Note that now channel CHA contains integer 3, which will be

consumed in the next run of process Reorder.

An important characteristic of a Kahn process network is its determinacy. It

means that the sequence of data items produced in each channel does not depend on how

the processes are executed, either in parallel or sequentially. Thus, given a Kahn process

network, there is no ambiguity about its behavior.

In the Kahn process network shown in Figure 1.2, the data streams appearing in

channel CHA and CHB are (2, 3, 5, 7)ω and (4, 6, 8, 9)ω, respectively. The data stream that

is finally printed out is (2, 4, 3, 6, 5, 8, 7, 9)ω.

The determinacy of a Kahn process network makes it an attractive model for sys-

tem design methodology. It cleanly separates specification from implementation. Given

a system specified by a Kahn process network, whether processes are implemented by

hardware (executed in parallel) or software (executed sequentially) will not change the

input/output behaviors of a system. Since any implementation is functionally equivalent,

it makes sense to reason about optimality of an implementation for certain metrics, e.g.

6

channel size.

The determinacy also implies that a Kahn process network could be viewed as

a single bulk process within a larger Kahn process network, because the input/output

behaviors remain the same no matter how the internal processes are executed. This means

a Kahn process network is compositional. Compositionality is usually a desired property of

a model. It allows a design to be performed at different levels of hierarchy. At each level,

designers only deal with a network of relatively small size.

Since the execution of a process could be blocked on reading, it is often desired

to know whether an execution of a Kahn process network could lead to a deadlock, where

all processes are suspended. It is known that deadlock is a property of a Kahn process

network. That is, if one execution leads to a deadlock, then any execution will lead to a

deadlock. Meanwhile, if there exists one indefinite execution of a Kahn process network,

then any finite executions can be extended without deadlock.

Though the channels capacities are assumed to be unbounded, it is often desired

to know whether there exists a bounded execution of the Kahn process network. That is, the

number of data items buffered on each channel is always less than a constant finite integer

at any point of execution. It is known that boundedness is not a property of a Kahn process

network. It means that it is possible that some executions of a Kahn process network require

bounded channel capacity while others do not. We refer a sequential bounded execution of

a Kahn process network, a bounded-memory schedule of the network, or simply a schedule.

For example, the Kahn process network shown in Figure 1.2 require unbounded

memory if process TestPrime is executed indefinitely without executing process Reorder.

7

However, it is easy to see that if process TestPrime is executed only when process Reorder

is waiting for data, the Kahn process network can be executed with bounded-memory. The

bound for each channel is 1.

It has been shown that whether there exists a deadlock or a schedule of a Kahn

process network is undecidable [43], respectively. In the sequel, we will focus on the schedu-

lability problem. The decidability result implies that there exists no algorithm that can

always tell whether there exists a schedule in a finite amount of time. Parks [43] devises

a scheduling algorithm that could need an infinite amount of time. He argues that since

an indefinite execution of a Kahn process network is wanted, there is no need to answer

the existence question in a finite amount of time. Lee uses a different approach [36]. He

introduced the synchronous dataflow model, a special kind of Kahn process network, to

trade expressiveness for decidability. We will discuss synchronous dataflow model in details

in next section. Buck [10] suggests another approach. Instead of restricting the model itself,

one could restrict the notion of schedule, e.g. bounded-cycle-length schedule, such that the

existence of a schedule can be answered in a finite amount of time. We will discuss Buck’s

work in details later this chapter.

Kahn process network has been widely used in embedded system design method-

ologies advocated by industrial and academic researchers. Examples of software packages

that support the design methodologies are Ptolemy [1], Metropolis [8], and YAPI [20]. YAPI

is developed at Philips research labs as an implementation of Kahn process network based

on programming language C++. It introduces communication primitives to represent the

interactions between processes. Using a standard C++ compiler, the processes are compiled

8

to run with a multi-threading package. The Kahn process networks used in the experiments

of this thesis are mostly written in YAPI.

In summary, Kahn process network is an attractive model for embedded systems.

It has a clear semantics of process interaction, which facilitates well-structured composi-

tional design. However, whether there exists an indefinite execution of a Kahn process

network that uses bounded-memory is an undecidable problem. The decidability result

indicates that we need to restrict either the expressiveness of the model or the notion of

schedule to check schedulability efficiently.

1.1.2 Synchronous Dataflow

Lee and Messerschmitt [36] proposed a programming model, called synchronous

dataflow, for describing digital signal processing (DSP) systems. The model is a special

case of Kahn process network. It assumes that the number of data items (called tokens)

produced and consumed by a process (called actor) are constants and known a priori. The

advantage of synchronous dataflow over general Kahn process network is that synchronous

dataflow is statically schedulable. The question whether there exists a bounded-memory

execution of a synchronous dataflow model can be answered conclusively at compile time

or design time. If the answer is positive, such an execution can be constructed at compile

time.

In synchronous dataflow, the execution of a process is an atomic action, called

firing. An actor can be fired when all input channels have enough tokens to be consumed.

If an actor has no input channel, it can be fired at any time. When an actor is fired, it

will consume tokens in each input channel, and produce tokens in each output channel,

9

according to the fixed consumption and production rates, respectively.

The assumption of constant production and consumption rates has dramatic con-

sequences. Firstly, it implies that synchronous dataflow can not model concurrent programs

that contain data-dependent communications, e.g. a write operation inside a if-then-else

construct and the condition depends on the value of data that is read from an input chan-

nel. This is a major restriction on the expressiveness of synchronous dataflow. Secondly,

it implies that for scheduling purposes we can abstract out data values. Since bounded-

memory scheduling concerns about the number of data items accumulated in channels, and

in synchronous dataflow the number of data items consumed and produced is irrelevant

to data values, we can use tokens that do not carry value to model data items. Conse-

quently, the FIFO ordering of data items in a channel is trivially satisfied, because tokens

are undistinguishable. The abstraction greatly simplifies the scheduling problem.

Based on the abstraction, we could represent a synchronous dataflow as a labelled

directed graph, where a node represents an actor, and an arc represents a channel. Each

input and output of an actor is associated with a constant number, which represents the

number of tokens that will be consumed and produced once it is fired, respectively.

The diagraph in Figure 1.3 depicts a synchronous dataflow model, which consists

of four actors A,B, C, D, and four arcs. The behavior of actor A, for example, can be

interpreted as the following. Actor A has no input channels, thus can be fired at any time.

Once it is fired, it will produce two tokens on the arc connected to actor B, and one token

on the arc connected to actor C. Note that in order to fire actor D, there must exist at

least two tokens on the arc connected from actor B and one token on the arc connected

10

Scheduling Synchronous Dataflow

• Balance equation
• Production/consumption (incidence) matrix
Γ

• Repetition vector q

A

B

C
D

2
1

1
2

1
2

2
1

AABBBBCDD

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=Γ

1200
2010
0201
0012

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2
1
4
2

x

0
r

=Γq

Figure 1.3: A synchronous dataflow model, its topology matrix, and repetition vector

from actor C.

Since tokens do not carry values, the state of a synchronous dataflow model is fully

determined by the number of tokens on each arc. Thus, we can use a nonnegative integer

vector to represent a state, where each entry represents the number of tokens on an arc.

The dimension of a state vector is equal to the number of arcs.

The structure of a synchronous dataflow model can be characterized by a topology

matrix Γ, where there is one column for each actor and one row for each arc. The entry

Γij represents the number of tokens that actor j produced on arc i each time it is fired. If

the actor consumes tokens from the arc, the entry is negative. The entry is zero if the arc

does not connect the actor. For example, the matrix shown in Figure 1.3 is the topology

matrix of the synchronous dataflow shown on the left. Note that the topology matrix of a

synchronous dataflow is not necessarily a square matrix.

With the topology matrix of a synchronous dataflow, we can compute the state s

reached after a sequence of firings from the initial state s0.

s = s0 + Γx

where x is the firing count vector, whose entries represent the number of times each actor

11

is fired. The dimension of a firing count vector is equal to the number of actors.

If a finite, non-empty firing sequence returns a synchronous dataflow to the initial

state, i.e. s = s0, the firing sequence is called a finite complete cycle. The firing count

vector x of a finite complete cycle is called a repetition vector. By definition, x satisfies the

balance equations, i.e.

Γx = 0

For example, the vector shown in Figure 1.3 is the repetition vector of the topology matrix

shown on the left. Clearly, any multiple of a repetition vector is a repetition vector.

A schedule of a synchronous dataflow is defined as a finite complete cycle. By

repeated executing the schedule, the synchronous dataflow is executed indefinitely without

deadlock, requiring only bounded buffer capacity. For example, (AABBBBCDD) repre-

sents a schedule of the synchronous dataflow shown in Figure 1.3.

Since the repetition vector is in the null space of the topology matrix, one can

prove the following necessary condition for schedulability. If there exists a schedule of a

synchronous dataflow model,

rank(Γ) = |V | − 1

where |V | is the number actors in the synchronous dataflow.

This is easy to see, since the topology matrix Γ has rank |V | − 1 implies that the

balance equations have a non-trivial solution. The condition is not sufficient because even

there exists a repetition vector, the synchronous dataflow could contain deadlocks, which

prevent it from being executed indefinitely.

Note that the condition corresponds to a pure structural analysis. It does not

12

SWITCH
F T SELECT

F T

Figure 1.4: Select and Switch actor in Boolean dataflow graph

involve the initial state.

1.1.3 Boolean Dataflow

Buck and Lee proposed a model called Boolean dataflow [10], which is a superset

of synchronous dataflow. Boolean dataflow model extends synchronous dataflow model by

allowing conditional token consumption and production.

This is realized by two special actors called Switch and Select, which are shown

in Figure 1.4. The Switch actor consumes a control token from the control input (the

left) and then routes a token from the data input (the top) to the appropriate data output,

which is determined by the Boolean value of the control token. The Select actor consumes

a control token and routes a token from the appropriate input, which is determined by the

Boolean value of the control token, to the output. A Boolean dataflow model still satisfies

the Kahn conditions, and is just a special case of a Kahn process network.

Switch and Select actors could be used to model conditional constructs (e.g. if-

then-else) in sequential programs. Figure 1.5 shows a Boolean dataflow model and its

imperative equivalent program. Note that the control inputs of the Switch and Select

actors share the same Boolean stream.

13If-Then-Else using BDF

while (1) {
read (IN, x, 1);
if (x>0)

y = f(x);
else

y = g(x);
write (OUT, y, 1);

}

SWITCH
F T

f

SELECT
F T

OUT

IN

g

>0?

Figure 1.5: Boolean dataflow model of a sequential program

The state of a Boolean dataflow model is determined not only by the number of

tokens on regular arcs, but also the values and orders of Boolean tokens on control arcs,

which are connected to the control inputs of Switch and Select actors.

Lee defined the schedule of a Boolean dataflow as a finite list of guarded firings,

where the state after executing the schedule is the same as before, regardless of the outcomes

of the Booleans; and firing rules are satisfied at every point in the schedule. For example,

(1, 2, 3, b : 4, !b : 5, 6, 7) represents a schedule of the Boolean dataflow shown in Figure 1.5.

The actors are referred using the numbers shown in Figure 1.6. The symbol b represents

the Boolean value of control tokens.

Buck showed that whether there exists a bounded-memory schedule of a Boolean

dataflow graph is undecidable. However, we still can adapt the analysis techniques used in

synchronous dataflow models to Boolean dataflow models. We can introduce a symbolic

variable to represent the consumption and production rates of the conditional inputs and

14

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−−

−
−

−

=Γ

0100010
0000110
1100000
0110000
001000
0010100
000100
0000101
0000011

2

2

1

1

p
p

p
p

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
=

1
1
1

1
1
1

p
px

0)()(
r

=⋅Γ pxp

SWITCH
F T

4

SELECT
F T

7

1

5

2

p1

p2

3

6

1-p1

1-p2

Figure 1.6: A Boolean dataflow model, the topology matrix, the balance equations, and the
repetition vector.

outputs. For example, if the production rate of the T data output of a Switch actor

is represented by p, (0 ≤ p ≤ 1), then the production rate of the other data output is

represented by 1− p. The symbolic variable p could be interpreted as the probability that

a Boolean control token takes value True, or the proportion of True tokens at the control

input in one complete cycle. Thus, we could obtain the topology matrix and the balance

equations of a Boolean dataflow similar to that of a synchronous dataflow.

In order for the balance equations to have a non-zero solution, certain constraints

may have to be imposed on the values of the symbolic variables. For example, Figure 1.6

shows a Boolean dataflow model and its topology matrix. The symbolic variable p1 is the

production rate of T output of the Switch actor, and p2 is the consumption rate of T input

of the Select actor. The balance equation has a non-trivial solution only if p1 = p2 = p.

The repetition vector is also shown in Figure 1.6.

15

A Boolean dataflow model is called strongly consistent if its balance equations have

a non-trivial solution no matter what values the symbolic variables may assume. It is called

weakly consistent if its balance equations have a non-trivial solution only for certain values

of the symbolic variables. Thus, the Boolean dataflow model shown in Figure 1.6 is weakly

consistent, since it requires the values of two symbolic variables to be equal. However, it is

strongly consistent if we only introduce one symbolic variable for the two control inputs. It

is easy to see that the two control inputs are provided with the same Boolean stream.

Consistence is related to schedulability. It has been shown that strong consistence

is a necessary but not sufficient condition for schedulability.

Lee’s definition of schedule of Boolean dataflow is restrictive. If a Boolean dataflow

has a schedule as Lee defined, then the schedule can be executed forever with bounded-

memory. However, the reverse is not true in general. In other words, there exists a Boolean

dataflow that can be executed forever with bounded-memory, but does not have a schedule

as Lee defined.

Figure 1.7 shows a Boolean dataflow that is not schedulable according to Lee’s

definition. For example, a Boolean stream contains an odd number of False tokens will

result in one token left in the arc connecting the Switch actor and actor 5. However,

Figure 1.7 also gives an execution of the Boolean dataflow that can be repeated forever

with bounded memory. Particularly, the bound on the arc connecting the Switch actor and

actor 5 is two.

Lee’s schedule definition, in fact, requires a Boolean dataflow to return to its initial

state after a finite number of firings for arbitrary Booleans at the control inputs. Thus, I

16If-Then-Else using BDF

SWITCH
F T

4

1

5

2 3

2

n=0;
do {

fire 1;
fire 2;
fire 3;
if (b) {

fire 4;
} else {

n=n+1;
}

} while (n<2);
fire 5;

Figure 1.7: A Boolean dataflow and its bounded-memory schedule

called it bounded-cycle-length schedule of a Boolean dataflow. The rational behind the

definition is that in many applications, the schedule gives an upper bound of an execution

period of a system, given some worst-case execution time of each actor. Lee’s schedule

definition, however, provides a good example of trading generalness for efficiency.

1.1.4 Petri Nets

In 1962 Carl Adam Petri introduced the basic concepts of a net model, which is

later called Petri net. As a graphical and mathematical model, Petri nets have been widely

used to specify, model, and analyze distributed, asynchronous, communication systems.

Although it has been shown that a Petri net is not equivalent to a Turing machine, its

expressiveness is rich enough to capture many essential system characteristics, such as

causality, concurrence, conflict, and nondeterminism. We discuss Petri net in details because

our compile-time schedulability is based on Petri net models of communicating concurrent

17

programs.

Formally, a Petri net is a 4-tuple (P, T, F, M0).

• P = {p1, p2, . . . , pm} is a finite set of places.

• T = {t1, t2, . . . , tn} is a finite set of transitions.

• F : (P × T) ∪ (T × P) → N is the flow relation.

• M0 : P → N is the initial marking, where N denotes the set of nonnegative integers.

In general, M : P → N is a marking, which represents a state of a Petri net.

We use N = (P, T, F) to denote a Petri net structure without any specific initial marking,

and (N,M0) to denote a Petri net with a given initial marking.

A Petri net can be represented by a directed, weighted, bipartite graph consisting

of two kinds of vertices, places and transitions, where edges are either from a place to a

transition or from a transition to a place. In a graphical representation, places are drawn

as circles, transitions as boxes or bars. There exists an edge from a vertex u ∈ P ∪ T to a

vertex v ∈ P ∪ T if F (u, v) > 0, and F (u, v) is labelled with the arc. If F (u, v) = 1, the

label is usually omitted. A marking is depicted by a distribution of black dots in circles.

For example, Figure 1.8 shows a Petri net graph with 4 places and 5 transitions. Places

p1, p4 are initially marked. We could use a nonnegative integer |P |-vector to represent a

marking, where the k−th entry equals M(pk), the number of tokens contained in place pk.

So the initial marking could be represented as (1001).

A Petri net is connected if there exists an undirected path between any pair of

vertices in the bipartite graph. In the sequel, we assume a Petri net is connected unless

18

t2 t3t1 t4 t5

p1 p2

p3 p4

Figure 1.8: A Petri net

stated otherwise.

Let v ∈ P ∪ T . Its preset and postset are given by •v = {u ∈ P ∪ T |F (u, v) > 0},

v• = {u ∈ P ∪ T |F (v, u) > 0}. We call •t and t•, the input and output places of transition

t, respectively. We call •p and p•, the input and output transitions of place p, respectively.

We call a transition without input places a source transition. For example, the Petri net

shown in Figure1.8 has no source transitions. •t3 = {p1, p2}, t•3 = {p3, p4}.

A transition t is enabled at a given marking M , if for each places p ∈ P , M(p) ≥

F (p, t). Thus, by definition source transitions are always enabled. When a transition is

enabled it can fire. The new marking M ′ reached after the firing of transition t satisfies: for

all place p ∈ P , M ′(p) = M(p) − F (p, t) + F (t, p). For example, in Figure 1.8, transitions

{t2, t4} are enabled at the initial marking (1001). If transition t2 is fired, then the new

marking is (0011).

A marking M ′ is reachable from the marking M if there exists a sequence of firings

that transforms M to M ′. It is denoted by M [σ > M ′, where σ represents a firing sequence

19

t2 t3t1 t4 t5

p1 p2

p3 p4

1001

1100

t4

0011

t5t2t1

t3

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−

−

=

1010
1010
1111
0101
0101

A

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0
1
1

1x

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
1
0
0
0

2x

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
1
1
0
1

3x

Figure 1.9: The reachability graph of the Petri net shown in Figure 1.8

(tσ1, tσ2, · · · , tσk). A firing sequence is said to be cyclic if M ′ = M . The firing count vector

σ̄ of a firing sequence σ is a |T |-vector, where the i-th entry denotes the number of times

transition ti appears in σ. The set of markings reachable from the initial marking M0 is

denoted as R(N,M0). A Petri net could have an infinite set of reachable markings. The

reachability graph of a Petri net is a labelled digraph (V,E), where vertices are associated

with distinct reachable markings, and edges are associated with transitions. There exists

edge (M,M ′) labelled with transition t if and only if M [t > M ′. For example, Figure 1.9

shows the reachability graph of the Petri net shown in Figure 1.8. Note that the set of

reachable markings of the net is finite.

The incidence matrix A = [aij] is a |T | × |P | matrix, where aij = F (ti, pj) −

F (pj , ti). For example, Figure 1.10 gives the incidence matrix of the Petri net shown

in Figure 1.8. If a marking M ′ is reachable from M through a firing sequence σ then

M ′ = M + ATσ̄. The incidence matrix plays an essential role in the structural analysis of

Petri net properties.

A T-invariant is a nonnegative integer solution to ATx = 0. It is known that a

20

t2 t3t1 t4 t5

p1 p2

p3 p4

1001

1100

t4

0011

t5t2t1

t3

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−

−

=

1010
1010
1111
0101
0101

A

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0
1
1

1x

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
1
0
0
0

2x

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
1
1
0
1

3x

Figure 1.10: The incidence matrix and minimal T-invariants of the Petri net shown in
Figure 1.8

|T |-vector x is a T-invariant if and only if there exists a marking M and a firing sequence

σ from M back to M with σ̄ = x. A T-invariant x is minimal if there exists no T-invariant

x′ 6= 0 such that x′ ≤ x. It is easy to see that every T-invariant of a Petri net can

be expressed as a linear combination of minimal T-invariants with nonnegative rational

coefficients. The set of transitions corresponding to non-zero entries in a T-invariant x is

called the support of an invariant and is denoted by ‖x‖. A support is said to be minimal

if no proper nonempty subset of the support is also a support of a T-invariant. Given a

minimal support of a T-invariant, there exists a unique minimal T-invariant corresponding

to the minimal support, that is called a minimal-support T-invariant. It is known that every

T-invariant of a Petri net can be expressed as a linear combination of minimal-support T-

invariants with nonnegative rational coefficients. For example, Figure 1.10 also gives the

minimal T-invariants of the Petri net shown in Figure 1.8. It is easy to check that the

T-invariants are also minimal-support T-invariants.

We adopt the interleaving semantics of Petri nets. It means that when a Petri net

is executed, at most one transition is fired at any time.

Petri nets can be used to analyze many interesting properties of a system. The

21

properties could be categorized as behavioral properties and structural properties. Behavioral

properties refer to those properties that are dependent on the initial marking of a Petri

net, while structural properties refer to those that are independent on the initial marking.

Typically studied behavioral properties include reachability, boundedness, liveness, and

reversibility.

• A Petri net (N,M0) is said to be bounded if there exists a nonnegative integer k, such

that for each reachable marking M ∈ R(N,M0), M(p) ≤ k for each place p ∈ P .

• A Petri net (N,M0) is said to be live, if for each transition t ∈ T and for each reachable

marking M ∈ R(N,M0), there exists a firing sequence σ from M such that σ contains

t.

• A Petri net is said to be deadlock-free if for each reachable marking, there exists at

least one transition enabled. Note that a Petri net is deadlock-free does not necessarily

mean that it is live. It is possible that there always exists a transition enabled at any

reachable marking of a Petri net, but some particular transition is never enabled.

• A Petri net is said to be reversible if for each reachable marking M , the initial marking

can be reached from M .

For example, the Petri net shown in Figure 1.8 is bounded, live, deadlock-free, and reversible,

which can be verified by inspecting its reachability graph shown in Figure 1.9.

By definition, a place of a Petri net has infinite capacity. Thus, a Petri net is an

infinite-state model in nature. However, it is well known that boundedness, reachability,

deadlock-freedom, and reversibility problems are decidable. The computation complexity of

22

2 2

2 2

Figure 1.11: A marked graph

the liveness problem remains open.

Although most of the properties of a Petri net are decidable, checking these prop-

erties is computationally expensive. Thus, Petri nets in restrictive forms are often studied.

Typical subclasses of Petri nets include marked graphs and free-choice Petri nets.

• A marked graph is a Petri net where each place has exactly one input transition and

one output transition.

• A free-choice Petri net is a Petri net where every arc from a place is either a unique

outgoing arc or a unique incoming arc to a transition.

Note that the synchronous dataflow model is equivalent to a marked graph. There

exists a one-to-one mapping from actors and edges in a synchronous dataflow model to

transitions and places in a marked graph, respectively. For example, Figure 1.11 shows a

marked graph that is equivalent to the synchronous dataflow shown in Figure 1.3.

23

1.1.5 Free Choice Petri Net

Free-choice Petri nets have been well studied in Petri net theory. This is mainly

because they maintain a good balance between modelling power and analysis complexity.

On one hand, they are expressive enough to model many essential system characteristics,

such as causality, concurrence, synchronization, and conflicts. On the other hand, their

analysis algorithms often have a low computation complexity compared with general Petri

nets.

Sgroi et al. [46] studied the scheduling problem of free-choice Petri nets. They

aim to increase the modelling power of synchronous dataflow (marked graph) by including

structures that model conflicts/choices, and extend the schedule of synchronous dataflow

by considering each possible choice.

Their definition of schedule is based on two central notions: finite cyclic firing se-

quences and the equal conflict relation. The former correspond to the finite complete cycles

in synchronous dataflow. The latter is a new notion. Two transitions are in equal conflict

relation if they have the same nonempty set of input places. Equal conflict transitions model

data-dependent choices which are unknown at compile time or design time. A schedule is

defined as a nonempty finite set Σ = {σ1, σ2, ...σk} of finite cyclic firing sequences satisfying

the following two properties. First, each finite cyclic firing sequences (σi, i = 1, 2, . . . k) con-

tains at least one occurrence of each source transition. Second, if σi contains a transition ti,

for each tj such that ti and tj are in a equal conflict relation, there exists σj such that the

prefix of σj up to the first appearance of tj equals the prefix of σi up to the first appearance

of ti. This implies that if a free-choice Petri net contains a non-deterministic choice, then a

24

valid schedule contains one finite complete cycle for each possible choice.

In the schedule definition of free-choice Petri nets, the requirement of finiteness

and cycle is natural, as we need a finite representation of executions that will be repeated

infinitely. However, the requirement that each source transition must be contained in each

cycle of a schedule impose restrictions on the notion of schedule. It does not only guarantee

that the Petri net can be indefinitely executed with bounded-memory, but also ensures

bounded response time. That is, in a schedule there is a finite number of firings between

two firings of source transitions. If the execution of a transition takes a finite amount of time,

then the time elapsed between two firing of source transitions is finite. Note that source

transitions model the interactions with the environment. Thus, I call Marco’s schedule

bounded-response-time schedule.

The notion of bounded-response-time schedule is stronger than bounded-memory

schedule. We could easily construct a free-choice Petri net that does not have a bounded-

response-time schedule, but has a non-terminating bounded-memory execution. Figure

1.12 shows such an example. It is easy to check that there are two minimal cycles,

{(t1, t2, t4), (t3, t5)}. However, the second cycle does not contain the source transition

t1. Thus, in order to satisfy the first property, any finite complete cycle that is included

in a schedule must contain the first minimal cycle. In order to satisfy Property 2, if a

schedule contains (t1, t2, t4), then it also contains (t1, t3, t5, t2, t4), then it also contains

(t1, t3, t5, t3, t5, t2, t4), Clearly, the schedule would contain an infinite number of cyclic

firing sequences. Thus, it is not schedulable according to the definition. But note that the

execution (t1, (t3, t5)n, t2, t4), where n ∈ N∪{∞}, can be repeated infinitely with bounded-

25

t5 t4

t3 t2

t1

p1

p2 p3

p1

t1

p3

t2

p2

t3
t4

t5

Figure 1.12: A free-choice Petri net and its state transition diagram representing a non-
terminating bounded-memory execution.

memory. Specifically, each place contains at most one token during the non-terminating

execution. As we will see, the Petri net shown in Figure 1.12 models a conditional loop

construct. The firing sequence (t3, t5) corresponds to the iterative computation that does

not interact with the environment directly.

However, the notion of bounded-response-time schedule is more powerful than

bounded-cycle-length schedule. A bounded-response-time schedule may contain a cycle

that has infinite length. We illustrate this with the example shown in Figure 1.13. The

free-choice Petri net has a bounded-response-time schedule. But if at run-time one choice

(transition t2) is chosen first then the other choice (transition t3) is chosen forever, the Petri

net would never return to the initial state. In other words, if the Petri net returns to the

initial state after some firing sequence, then there is no upper bound for the cycle length,

because which choice is chosen at run-time is unknown at compile time.

Clearly, a bounded-response-time schedule does not directly give an execution

order of a free-choice Petri net. Such an execution is derived from the finite cyclic firing

sequences contained in a schedule.

26

t5

t4

t3

t2

p1

t1

Σ = {(t1 t2 t1 t2 t4), (t1 t3 t5)}

n=0;
while(1) {

t1;
if (p1) {

t2; n++;
if (n>=2) {

t4; n=n-2;
}

}
else {

t3; t5;
}

}

2

Figure 1.13: A free-choice Petri net, its bounded-response-time schedule and the bounded-
memory execution.

The schedulability analysis of free-choice Petri net is based on finding the finite

complete cycles for all possible choices. To find complete cycles, a net is decomposed into

a set of conflict-free components, where each place has at most one output transition, one

for each possible choice. It has been shown that a free-choice Petri net is schedulable if and

only if each conflict-free component is schedulable. However, the number of conflict-free

components of a free-choice Petri net is exponential in the number of conflicting transitions.

Thus, the schedulability analysis has an exponential complexity.

It is worth noticing that there are some semantic subtleties in a free-choice Petri

net. A free-choice Petri net introduces nondeterministic choices and nondeterministic merge

structures. Figure 1.14 shows two Petri net structures that exhibit nondeterminism. The

left structure models a conditional branch. Since tokens in Petri net are distinguishable,

which transition to fire is chosen nondeterministically. The right structure models a merge

27

t1 t2 t1 t2

p1

p2

p1 p2

p3

Figure 1.14: Petri net structures exhibiting nondeterminism.

of execution path. This merge is nondeterministic. It means that which transition fires and

produces a token in place p3 is chosen nondeterministically. It is natural to use a nonde-

terministic choice to model a data-dependent choice, which are unknown at compile-time.

However, nondeterministic merge makes the stream of tokens in a merge place indetermi-

nate. Certain restrictions have to be imposed on the scheduler to ensure determinacy. For

example, one could enforce a scheduler not reach a state where there exist two enabled

input transitions to a merge place. In a Petri net model of Kahn process network, such a

state is, in fact, never reachable. This is because the incoming transitions to a merge place

belong to the same process. Each channel has a single reader and a single writer. Since

each process is a finite state machine, in a process, either a single transition or a free choice

set is enabled. Thus, if two incoming transitions to a merge place are enabled, firing one

will disable the other.

28

1.2 Quasi-Static Scheduling

We reviewed some concurrent models of embedded systems. Though exposing

concurrency is essential for a model, in practice, each process or task in a concurrent model

is not allocated a dedicated resource. This is because embedded systems have limited

resources. They often have a few processors, small memories, and limited services provided

by an operating system (if any). This implies that several concurrent processes have to share

a physical resource (e.g. CPU or bus). Thus, scheduling their operations is inevitable.

For embedded software, it means that the concurrent processes (programs) have to be

sequentialized.

Depending on how and when the scheduling decision are made, scheduling algo-

rithms could be classified as: static, quasi-static, and dynamic.

• Dynamic scheduling makes all scheduling decisions at run time. Depending on the

run-time data, a process may halt or execute. When a process halts and another

process executes, the scheduler has to store and restore the state information. It

introduces context switch overhead.

• Static scheduling makes all scheduling decisions at compile time. It reduces the context

switch overhead, because no run-time scheduling decision has to be made. Due to this

static scheduling is restricted to systems without data-dependent choices, e.g. if-the-

else.

• Quasi-static scheduling is applied to systems in which data-dependent choices occur.

It perform static scheduling as much as possible while leaving data-dependent control

29

to be resolved at run-time [16], [9].

In the sequel, we use compile-time scheduling to refer both static scheduling and

quasi-static scheduling, since all or most of the scheduling work is done at compile time.

Clearly, the behaviors of a system is much more predictable when the system is scheduled

at compile-time than when it is scheduled at run-time. In fact, as we will show, compile-

time schedules can even guarantee certain property of the dynamic behaviors of a system,

regardless of the run-time data. This makes compile-time scheduling particularly attractive

for applications where predictability is highly desired.

In general, quasi-static scheduling is implemented manually by rewriting the pro-

grams, i.e. properly interleaving statements in concurrent processes. Obviously, this is a

tedious, time-consuming, and error-prone task. To automate the transformation, a number

of synthesis algorithms [36] [46] [16] have been proposed.

In this work, we rely on a modelling framework [16] that uses Petri nets to represent

concurrent processes, e.g. Kahn process network. The synthesis starts by transforming the

processes that can be specified in a conventional programming language (e.g., C) into a

Petri net. Then the Petri net is scheduled. Finally, the schedule is translated into a single

sequential process.

Consider the example shown in Figure 1.15. Figure 1.15(a) describes two concur-

rent processes. Process Filter receives samples from the environment and then conditionally

keeps sending processed samples to Process Multiplier. Depending on the availability of

data, Process Multiplier either receives a processed sample and outputs the product of the

sample and a coefficient, or updates the coefficient supplied by the environment. If both

30

process Filter
(InPort IN; OutPort CHAN) {
while (1) {

get (IN, sample, 1)
while (sample > threshold) {

sample = f (sample)
put (CHAN, sample, 1)

}
}}

process Multiplier
(InPort CHAN, COEF; OutPort OUT) {
c = 1
while (1) {

select {
case CHAN

get (CHAN, data, 1)
put (OUT, c*data, 1)

case COEF
get (COEF, c, 1)

}
}}

(a)

p2

sample = f (sample)
put (CHAN, sample, 1)

get (IN, sample, 1)

get (CHAN, data, 1)
put (OUT, c* data, 1)

get (COEF, c, 1)

c = 1t2

t4

t1

t3

t5
t6

t7 t8

p1 p4

p6p5

p3

(b)

t2

p1p5
t5

p1p6
t6

p1p2p6

t1

p1p6p7
t2
p3p6

t4

t3

p3p4p6

t7

t8 t5

t6t1

t4

t3

t7

t8

000100

000010

000011100010

010010

011010

(c)

process Filter&Multiplier
(InPort IN, COEF; OutPort OUT) {
c = 1
while (1) {

select {
case IN

get (IN, sample, 1)
while (sample > threshold) {

sample = f (sample)
data = sample
put (OUT, c*data, 1)

}
case COEF

get (COEF, c, 1)
}

}}

(d)

Figure 1.15: (a) Communicating concurrent processes. (b) Its Petri net model. (c) A
schedule of the Petri net with initialization. (d) The single sequential process translated
from the schedule.

31

sample and coefficient are present, the choice of which one to consume is done nondeter-

ministically.

Figure 1.15(b) shows the Petri net model, which represents the control flow and

communications of the processes. Specifically, a token in place p2 models the program

counter of Process Filter, and a token in place p4 or p5 models the program counter in

Process Multiplier. Places p1, p3, and p6 model unbounded buffers IN, CHAN, and COEF,

respectively. Transitions t1 and t6 model environment stimuli, and other transitions model

the inlined operations. Note that the data-dependent choice is modelled by a free choice

(Definition 1).

Figure 1.15(c) depicts the initialization and a schedule (Definition 2) of the Petri

net. The single process shown in Figure 1.15(d) is generated from the schedule by substi-

tuting transition with inlined operations. Note that although originally buffers are assumed

to be unbounded, the sequential process can repeatedly execute using buffers of size one.

1.3 Major Results

The synthesis method suggested in [16] is based on heuristics because the existence

of a solution for the scheduling problem is proven only for simple subclasses of Petri nets

(such as Marked Graphs, see [36]). For general Petri nets the decidability of the scheduling

problem remains open. Therefore, discovering powerful sufficient conditions for unschedu-

lability of Petri nets is important for gaining efficiency in analysis.

We observe that regular and repeated structural patterns exist in schedules of

Petri nets generated from many applications. These patterns result in infinite paths that

32

prevent a schedule to return to a designated set of states (initial state in particular), which

causes unschedulability. The phenomenon is driven by the definition of a schedule and,

interestingly enough, a structural property of the Petri net. Thus, we suggests a structural

approach to schedulability analysis of Petri nets. This approach is chosen due to two reasons.

First, the underlying algorithms have polynomial-time complexity. Second, the results are

applicable to all initial markings.

Our main contribution can be summarized as follows.

• We introduce cyclic dependence relation, a structural property defined on transitions

of Petri net. To the best of our knowledge, this property provides the most general

sufficient condition for Petri net unschedulability.

• Though cyclic dependence is defined through T-invariants, which are nonnegative

integer solutions to a homogenous linear system, we show that it is not necessary to

solve an integer programming problem to check the property. We propose an exact

algorithm that is based on linear-programming.

• We prove another sufficient condition for unschedulability based on the rank of the

incidence matrix. Checking this condition is computationally efficient.

• We demonstrate the effectiveness and efficiency of our approach by applying it to

check unschedulability of Petri nets generated from concurrent models of industrial

JPEG and MPEG codecs.

33

Chapter 2

Schedule of Petri Net

2.1 Related Work

The definition of bounded-memory schedule informally describes a property of an

indefinite execution of a Kahn process network. However, it is difficult to directly apply

the definition to scheduling and schedulability analysis. Parks’ scheduling algorithm [43] is

based on the basic definition. It starts with predetermined bounds of the buffers. Then it

executes the concurrent processes with blocking reads and blocking writes. It increases the

buffer capacity when there is a deadlock due to a blocking write. It continues execution

and repeatedly checks for deadlocks. Though the algorithm does not rely on a restricted

notion of bounded-memory schedule, it could take an infinite amount of time. Thus, it is

not practical, particularly for compile-time schedulability analysis.

The schedule of a synchronous dataflow is defined as a finite complete cycle. It can

be shown to be exact to bounded-memory schedule. A finite complete cycle is much more op-

erational than the basic definition of a bounded-memory schedule. Thus, the scheduliability

34

analysis of synchronous dataflow is focused on finding a finite complete cycle. Though the

schedule definition of a synchronous dataflow can not be directly applied to the schedule

of a general Kahn process network, it gives two important suggestions. First, an opera-

tional definition of schedule is needed to gain efficiency in schedulability analysis. Second,

a schedule is a finite representation of cyclic behaviors.

The bounded-cycle-length schedule of a Boolean dataflow and the bounded-response-

time schedule of a free-choice Petri net are both natural extensions of the schedule definition

of a synchronous dataflow. Their definitions are based on the notion of complete cycles.

However, as we have shown, the two definitions are restrictive and do not cover many in-

teresting applications. In other words, in practice many bounded-memory schedules do not

have bounded cycle length or bounded response time.

In this chapter, we formally define schedule based on a general Petri net. We

believe that Petri net is a good model of communicating concurrent program. It is not

Turing-complete. Thus, it gives hope for a low computation complexity schedulability

analysis. Meanwhile, it is expressive enough to handle many interesting system character-

istics. The rich Petri net theory provides a solid foundation where we can build our theory

of schedulability analysis. We also believe that abstracting away data value is essential to

obtain efficient analysis methods. The rational behind is that bounded-memory schedule,

by definition, only concerns about the maximum number of data items ever accumulated in

a channel. The values and order of data items are not directly related. As we have shown

in a Boolean dataflow, the system state is much more complicated when data values are

considered. This prevents an efficient way to characterize the evolution of system state. For

35

example, in a Petri net, if a marking M ′ is reached from the initial marking M0 through

a firing sequence σ then M ′ = M0 + ATσ̄. Thus, any cyclic firing sequence σc must sat-

isfy ATσ̄c = 0. While a Boolean dataflow lacks such characterizations. As we will show

later, the efficiency of the schedulability analysis of Petri nets comes from the algebraic

characterization.

We define the schedule of a Petri net as a labelled, strongly-connected diagraph.

As we will see, the definition is still stronger than bounded-memory schedule. It means

that a system may have a bounded-memory schedule but no schedule as we defined. But

fortunately, in the applications we have seen so far, if a system does not have a schedule

as we defined, it does not have a bounded-memory schedule. Our schedule definition is

more powerful and general than bounded-cycle-length schedule and bounded-response-time

schedule. Our schedules could contain a cycle with unbounded length or infinite firing

sequences between the firings of two source transitions.

2.2 Free Choice Set

First, we introduce free choice sets, a key concept in the definition of a schedule.

Definition 1 (Free choice) Two distinct transitions t and t′ are in free choice relation

F, if for each place p ∈ •t∪ •t′ and for each transition t′′ ∈ p•, F (p, t) = F (p, t′) = F (p, t′′).

The free choice relation is a binary relation from the set of transitions T of a Petri

net to T . By definition it is symmetric. That is, tFt′ implies t′Ft. We show it is also

transitive.

Lemma 1 If aFb and bFc, then aFc.

36

a b a b c

Figure 2.1: Free choice set differs from equal conflict set.

Proof : Choose a place pb ∈ •b. aFb implies that for each place p ∈ •a and for each

transition t ∈ p•, F (p, t) = F (p, a) = F (pb, b). Similarly, bFc implies that for each place

p ∈ •c and for each transition t′ ∈ p•, F (p, t′) = F (p, c) = F (pb, b). Thus, for each place

p ∈ •a ∪ •c and for each transition t ∈ p•, F (p, t) = F (p, a) = F (pb, b) = F (p, c). �

We call the maximal set of transitions that are pairwise in free choice relation a

free choice set (FCS). It is easy to see that the set of source transitions trivially satisfies

the condition since they have no input places, thus are in a FCS. The notion of FCS differs

from that of equal conflict set (ECS). Figure 2.1 shows an example. Transition a, b in the

left Petri net are in a FCS and a ECS. Transition a, b in the right Petri net are in a ECS,

but not in a FCS.

We introduce the notion of FCS mainly to model environmental stimuli and run-

time data-dependent choices, which are unknown at design time. For example, the Petri net

shown in Figure 1.15(b) has exactly two binary FCSs {t1, t6} (which are source transitions)

and {t3, t4}. For the sake of simplicity, when referring to FCSs we only refer to those

containing exactly two transitions. The assumption can be satisfied by representing an

arbitrary FCS with n transitions as a n-leaf tree of binary FCSs. The transformation is

37

a b c

ab

a b c

FCS={a,b,c} FCS={ab,c}, {a,b}

Figure 2.2: Transformation of general FCSs to binary FCSs.

illustrated by an example shown in Figure 2.2. The FCS contains three transitions a, b, c.

It is transformed into two binary FCSs {a, b}, {ab, c}. Note that this changes the true

concurrent semantics for source transitions to interleaving. But it is not harmful because

we anyway use interleaving semantics in constructing a schedule.

Modelling a data-dependent choice as a nondeterministic free choice is an abstrac-

tion. It enables us to study the run-time behaviors of a system at compile-time, without

knowing which branch is actually taken during execution. As we will show, a schedule of a

Petri net considers that all outcomes are possible when a choice has to be made.

2.3 Definition of Schedule

Definition 2 (Schedule) A schedule of a Petri net (N,M) with a set Ts of source tran-

sitions is a digraph (V,E, r) with the following properties:

1. V and E are finite and nonempty.

2. There exists µ : V → R(N,M) with µ(r) = M . For each (u, v) ∈ E, there exists t ∈ T

38

such that µ(u)[t > µ(v). This is denoted by u
t→ v.

3. Given u
t→ v, there exists u

t′→ v′ if and only if t, t′ are in a FCS.

4. For each v ∈ V , there exists a directed path to an await vertex va satisfying ∀t ∈

Ts, va
t→.

5. For each v ∈ V , there exists a directed path from r to v and from v to r.

The requirement in Property 1 ensures that any execution of a schedule visits a

finite subset of a state space: the underlying system can be executed with bounded memory.

Property 2 states that a vertex in a schedule (called schedule state or simply state)

corresponds to a reachable marking of the Petri net, an edge corresponds to a transition,

and a path corresponds to a firing sequence. Note that it is allowed that several schedule

states are mapped to the same marking, and these states fire different transitions at their

output edges.

Property 3 has two implications. First, if an outgoing edge of a vertex corresponds

to a transition in a FCS, then there must exist another outgoing edge of the vertex that

corresponds to another transition in the FCS. It ensures that a schedule is complete, because

all possible outcomes of FCSs are considered. In this case, the FCS is said to be involved in

the schedule. Second, if a state of a schedule has more than one outgoing edge then these

edges must correspond to transitions in a FCS. Other enabled transitions are not considered

at the state. This property ensures that the schedule can be sequentially executed.

Property 4 guarantees the progress of a schedule, i.e. from any state of a schedule

one can reach an await state in which source transitions fire and therefore inputs from the

39

environment are served. This is a necessary condition for reactive systems. The progress

notion could be formulated with respect to any set of transitions that are in FCS (not

necessarily source ones). This makes it possible to treat Petri nets without source transitions

within the same framework. Note that the theoretic results presented in this thesis are

independent of the notion of progress.

Property 5 implies that a schedule is strongly connected. Thus, following a sched-

ule, the underlying system can be infinitely executed without deadlock. Note that Prop-

erty 5 of returning to the root makes the definition of schedule more stringent than the one

suggested in [16]. We believe that this is acceptable because most practical applications

have a designated reset state that is reachable from any other state (emergency exit) and

from which the operation restarts. Such reset state could play a role of the root state in

the suggested definition of a schedule.

2.4 Schedule Unfolding

In practice, it is often convenient to study the unfolding of a schedule instead of

the schedule itself. In fact, the scheduling algorithm [16] first generates such an unfolding.

In this section, we define the unfolding of a schedule and propose a procedure to construct

such an unfolding from a schedule.

By schedule Property 5, vertex r has a directed path to every vertex of a schedule.

Thus, starting from vertex r we can unfold a schedule G(V,E, r) into a rooted, directed tree

G′(V ′, E′, r′), as described in Procedure 1. In future, objects in the unfolding of a schedule

graph G will be denoted by decorating the corresponding objects from a schedule with ′.

40

Procedure 1 Schedule unfolding
INPUT: a schedule (V,E, r) of a Petri net (N,M).

OUTPUT: returns the unfolding (V ′, E′, r′) of the schedule.

V ′ ⇐ ∅, E′ ⇐ ∅

for all vertex v ∈ V do

visited(v) ⇐ false

end for

explore(r)

Procedure explore (vertex v)

visited(v) ⇐ true

V ′ ⇐ V ′ ∪ {v′}, θ(v′) ⇐ v

for all edge (v, u) ∈ E do

V ′ ⇐ V ′ ∪ {u′}, E′ ⇐ E′ ∪ {(v′, u′)}, θ(u′) ⇐ u

if visited(u) = false then

explore(u)

end if

end for

visited(v) ⇐ false

41

t2

t6t1

t4

t3

t7

t8

1000010

10000111100010

0010010

0011010

t2

t6t1

t4t3

t7

t8

1000010

10000111100010

0010010

0011010

1000010

1000010

0010010

Figure 2.3: The unfolding of the schedule in Figure 1.15.

The unfolding uses a mapping θ : V ′ → V with θ(r′) = r, and an extension of mapping µ

(from schedule Property 2) as µ(v′) = µ(θ(v′)). There exists v′
t→ u′ in G′ only if there

exists θ(v′) t→ θ(u′) in G. The unfolding proceeds as a depth-first search. It terminates at

a leaf vertex v′ when there exists an ancestor u′ of v′ such that µ(v′) = µ(u′). We call the

object obtained by applying Procedure 1 the unfolding of a schedule.

For example, Figure 2.3 shows the unfolding of the schedule in Figure 1.15.

Lemma 2 A schedule unfolding G′(V ′, E′) for a given schedule G(V,E) is finite.

Sketch of proof : The proof immediately follows from the finiteness of a schedule.

One can make only a finite number of steps in the unfolding procedure before seeing the

same marking repeating with some ancestor in the tree. Repeating the marking terminates

the unfolding and keeps the generated prefix finite. �

42

cb

a

d

Rt6vt6rt1it3lt6 t2nt5 unt1t4ht6t5ult2t3lt6

(d)

b2a2

c2

b1a1

c1

(t21t31t41)ω, (t22t32t42)ω

(c)

ba

c d

t3ount5t6t5, L3-livt6 t2nt5 unt1t4ht6t5ult2t3lt6

(b)

Unt3ount5t6t5 t2nt5 t1t4ht6t5ult2t3lt6

ba

(a)

dc

Figure 2.4: (a) an unbounded, schedulable Petri net, (b) a bounded, unschedulable Petri
net, (c) a non-live, schedulable Petri net, (d) a live, reversible, unschedulable Petri net.

2.5 Schedulability

In this section, we formally define schedulability, and briefly discuss its relationship

with other Petri net properties.

Definition 3 (Schedulability) A Petri net (N,M0) is said to be schedulable if there exist

a reachable marking M ∈ R(N,M0) and a schedule of (N,M). A Petri net N is said to be

schedulable, if there exist a marking M of N and a schedule of (N,M).

Thus, a Petri net N is said to be unschedulable, if for any marking M of N there exits no

schedule of (N,M).

In general, schedulability is independent of other Petri net properties, such as

boundedness, liveness, and reversibility. We illustrate this with the examples shown in

43

Figure 2.4. Figure 2.4(a) shows an unbounded Petri net. It is unbounded because the firing

sequence (ab)ω will produce an infinite number of tokens in the place connecting transition

b and c. However, it is schedulable and (abcd) represents the cyclic firing sequence in the

schedule of the Petri net. Figure 2.4(b) shows a bounded Petri net. For all reachable

marking, the maximum number of tokens in a place is no greater than two. We will show

later that it is not schedulable. Figure 2.4(c) models two dining philosophers. If both

philosophers pick one chop stick, which is modelled by firing transition a1, b2 or a2, b1, then

the system deadlocks and no one can obtain a pair. However, the Petri net is schedulable.

The sequence (a1b1c1) and (a2b2c2) are cyclic firing sequences that could be contained in

its schedules. Figure 2.4(d) shows a reversible, live Petri net. It is easy to check that no

matter how many tokens are accumulated in a place, there always exists a firing sequence

that consumes all of them. The Petri net is live because transition a is a source transition,

thus always enabled. Firing a will enable transition b and c. Transition d can be enabled

from any marking by the firing sequence (a, b, a, c). The Petri net is not schedulable, as we

will show later.

2.6 False Path Problem

In practice, the unschedulability of a Petri net is often caused by a scheduler

exploring false paths. False paths are the firing sequences of a Petri net that do not have

corresponding execution traces of the modelled program. False paths exist because data-

dependent controls in a program are modelled by non-deterministic free choices in a Petri

net. Thus, once a scheduler reaches a choice, it will consider all possible outcomes.

44False Path Problem
while(1){

M=read(X);
for(j=0;j<M;j++){

E[j]=read(Y);
}

}

while(1){
N=read(IN);
write(X, N);
for(i=0;i<N;i++){

write(Y, D[i]);
}

}

G

H

B

E

F

A

C

D

X

Y

IN

p1
p2

p3

p4

p5

p6

p7

FCS1= {B,C}, FCS2={F,G}

Minimal T-invariants:
{IN, A, B, E, G}, {C, D, F, H}

C → F, G → B;

B → G, F → C.

G

H

B

E

F

A

C

D

Y

IN

Figure 2.5: A concurrent program and its Petri net model.

We illustrate the false path problem with the example shown in Figure 2.5. The

concurrent program describes a producer and a consumer process. The producer generates

a data stream through a for-loop, and the consumer read the data stream also through a

for-loop. The producer reads data, the number of iterations, from the environment, and

passes it to the consumer. So both for-loops have the same number of iterations. Therefore,

it is not necessary to consider all possible true/false combinations of the two conditions.

However, in the Petri net model, the two conditions are modelled as two indepen-

dent non-deterministic choices. A scheduler will explore all possible outcomes of the two

choices. This leads to false paths. As we will show later, the Petri net is not schedulable.

Arrigoni et al. [7] proposed an approach to the false path problem. It suggests

45

while(1){
for(j=0;j<M;j++){

E[j]=read(Y);
}

}

while(1){
N=read(IN);
write(X, N);
for(i=0;i<N;i++){

write(Y, D[i]);
}

}

G

H

B

E

F

A

C

D

Y

IN

p1
p2

p3

p4

p5

p6

p7

p2p5

p2p6

E

p2p7

G

IN

F

p1p2p7

p3p7

A

p4p7Y

C

B

p4p6
H

p3p6

D

p4p6Y

B

C

F

p4p5Y
GE

Figure 2.6: A concurrent program, its Petri net model, and its schedule.

to modify the original programs so that one of the two control structures having the same

condition would not be modelled by a free choice. However, it requires designers to manually

identify the correlated conditions in programs. In practice, such conditions are distributed

in a number of concurrent processes. Identifying these conditions is a tedious, error-prone

task. Thus, the approach is not practical. Standard static program analysis techniques,

such as abstract interpretation [19], could be applicable. But the technique is known to have

a high computation complexity, and can only deal with arithmetic operations on variables

of a system.

46

Note that false paths do not always cause unschedulability. In other words, a

schedule could contain a firing sequence that does not correspond to an execution trace of

the underlying program. From scheduling point of view, such false paths are not harmful.

We illustrate this with the following example. Figure 2.6 shows a concurrent program

similar to the one in Figure 2.5. The difference is that the producer process does not

pass the number of iterations to the consumer process. Thus, the two for-loops could have

different number of iterations. The Petri net model of the concurrent program is shown

at the bottom. The net, however, is schedulable, and one schedule is shown on the right.

The schedule contains false paths. It is easy to see that a feasible execution of the program

always first enters a for-loop and then exits the loop. Thus, starting from the initial state

of the schedule, any firing sequence beginning with (E,G) does not have a corresponding

execution trace of the program.

Our approach is different from the known ones. We explore the implication of

the correlated conditions in the original programs to their structures in the corresponding

Petri net models. That is, we study the structure of a Petri net and identify a structural

property that causes unschedulability. By exposing the structural correlation among a set

of free-choice sets, we get hints on the correlated conditions in original programs.

47

Chapter 3

The Cyclic Dependence Theorem

In this chapter, we introduce one of our key theoretic results regarding the schedu-

lability analysis of Petri nets. The central concept is the dependence relation among tran-

sitions in FCSs. The connection between the mutual dependence of transitions and the

behavior property of a Petri net was observed by Chen et al.[13], where the dependence

relation was introduced to analyze the boundedness and liveness of a Petri net that is

constructed by connecting live, bounded Petri nets through additional places. However,

as we showed before, schedulability is independent of boundedness and liveness. Our de-

pendence relation is defined, extended, and studied in a different context. Nevertheless, it

is interesting to see the similarities of the central concept between two Petri net analysis

techniques.

48

G

H

B

E

F

A

C

D

X

Y

IN

p1
p2

p3

p4

p5

p6

p7

p2p5

p1p2p5

E

p2p6

A

B

H

p3p6 C

IN

p3p5XG

p4p6Y

p3p7Y
F

F
p2p7 G

p3p5Y
p1p2p7
A

IN

p3p7X

p4p7XY

CB
p2p7X

D
p3p6Y

p4p5YY

CB
p2p5Y

Figure 3.1: A Petri net and its ”schedule”.

3.1 A Motivational Example

We observe that regular and repeated structural patterns exist in schedules of

Petri nets models of many applications. These patterns result in infinite paths that prevent

a schedule to return to a designated set of states (initial state in particular), which causes

unschedulability.

We illustrate our observations with an example. Figure 3.1 shows a Petri net,

the same as the one shown in Figure 2.5, and its ”schedule”. The labelled diagraph is not

strictly a schedule. It is constructed by a scheduling algorithm. We noticed that there exist

two infinite paths starting from the initial state. They are indicated by the two dotted

lines. The infinite paths exhibit certain repeated patterns. For example, transition B,F

alternately appear on the left infinite path. It seems that there exits a underlying force

49

that drives a scheduler to enter an infinite state space. Firing transition B at marking

p3p6 ⇒ firing transition G at marking p2p6 ⇒ firing transition F at marking p2p6 ⇒ firing

transition C at marking p3p7X ⇒ firing transition B at marking p3p7X ⇒

As we will show, the phenomenon is driven by the definition of a schedule and,

interestingly enough, a structural property of the Petri net.

3.2 Pairwise Transition Dependence Relation

We first introduce the pairwise transition dependence relation to give readers some

intuition, and prove a proposition that relates the dependence relation to schedulability of

a Petri net. We will extend the dependence relation later.

Definition 4 (Pairwise transition dependence) A transition t of a Petri net N is said

to be dependent on a transition t′, if for each T-invariant x of N , t ∈ ‖x‖ implies t′ ∈ ‖x‖.

This is denoted by t� t′.

Since the set of T-invariants of a Petri net is often an infinite set, it is difficult

to directly use the definition to prove the existence of dependence relation. We propose a

necessary and sufficient condition for dependence, which allows us only to examine a finite

set of T-invariants.

Lemma 3 A transition t of a Petri net N is dependent on a transition t′, if and only of

for all minimal T-invariant x ∈ Xmin of N , t ∈ ‖x‖ implies t′ ∈ ‖x‖.

Proof : (only-if): We proceed by contradiction. If there exists a minimal T-invariant x

that contains t but not transition t′, then x is a counterexample for t� t′.

50

(if): By definition, each T-invariant x =
∑

i=1,k aixi, where ai ≥ 0,xi ∈ Xmin.

If t ∈ ‖x‖, there exist a rational aj and a minimal T-invariant xj such that aj > 0 and

t ∈ ‖xj‖. Note that t ∈ ‖xj‖ implies t′ ∈ ‖xj‖. Since aj > 0, ai ≥ 0, i = 1, 2, · · · , k, t′ ∈ ‖x‖

follows. �

Obviously, the pairwise transition dependence is a binary relation over the set of

transitions of a Petri net.

Lemma 4 The pairwise transition dependence relation is reflexive and transitive, but not

symmetric in general.

Proof : It is trivial to show that any transition is dependent on itself.

Now we show that the relation is reflexive by contradiction. Assume t1 � t2 and

t2 � t3. If there exists a T-invariant x such that t1 ∈ ‖x‖ and t3 /∈ ‖x‖, then there are two

cases possible.

Case 1. t2 ∈ ‖x‖.

t2 ∈ ‖x‖ and t3 /∈ ‖x‖ conflict with t2 � t3.

Case 2. t2 /∈ ‖x‖.

t1 ∈ ‖x‖ and t2 /∈ ‖x‖ conflict with t1 � t2.

Thus, no such x exists. That is t1 � t3.

Now we show the dependence relation is not symmetric. Let N be a ordinary Petri

net that contains one place and three transitions t1,t2, and t3, where t1 is the input transition

of p and t2, t3 are both output transitions of p. There are two minimal T-invariants with

support {t1, t2}, {t1, t3}. Clearly, t2 � t1, but t1 � t2 does not hold. Any T-invariant with

support {t1, t3} is a counterexample. �

51

3.3 Proof of a Special Case of Cyclic Dependence Theorem

Now we prove a proposition that relates the pair-wise dependence with the schedu-

lability of a Petri net. Note that the proposition is formulated simple enough to illustrate

the basic idea. Another proof based on schedule unfolding is provided in the Appendix. We

will extend the notion of dependence and reformulate its relation with schedulability in the

next two sections.

Proposition 1 Given a Petri net N with two FCSs S1 = {t1, t′1}, S2 = {t2, t′2}, if t′1 � t2

and t′2 � t1, then for any marking M of N , there exists no schedule of (N,M) involving

S1 or S2.

Proof : We prove by contradiction. We assume that there exists a schedule G(V,E, r) of N .

The proof proceeds by showing the validity of at least one of the two following statements:

I1: G contains an infinite path v1
t′1→ y1 v2

t′1→ y2 · · · , such that the path from v1

to vk (k = 2, 3, . . .) does not contain transition t2. For succinctness, we say a path contains

a transition t if the path contains vertices u, v such that u
t→ v.

I2: G contains an infinite path u1
t′2→ z1 u2

t′2→ z2 · · · , such that the path from

u1 to uk (k = 2, 3, . . .) does not contain transition t1.

Without loss of generality, we may assume that G involves S1 = {t1, t′1}. It implies

that there exists v1 ∈ G such that v1
t′1→ y1.

Step 1: By schedule Property 5, there exists a directed cycle π1 : r v1
t′1→ y1

r. Since the firing count vector of a cyclic firing sequence is a T-invariant, t′1 � t2 implies

that π1 contains at lease one vertex u such that u
t2→. Let u1 be the u that is first reached by

52

t2 free

v1

u1

t2

t1’

u2
t2’

v2

t1

t2

t1’

t2’

v2

t1’ t1

u1

t2 t2’

v2

t1’ t1

u1

t2 t2’ t1, t2 free

Case 1 Case 2

σ: t1 free

 σ’: t1 free

σ: t1, t2 free

Figure 3.2: Illustration of Proof.

a traversal from v1 along π1. Clearly, the subpath v1 u1 of π1 does not contain transition

t2.

Step 2: Since t2 and t′2 are in a FCS, by schedule Property 3 there exists u1
t′2→ z1.

Similar to the reasoning in Step 1, by Property 5, there exists a directed cycle π2 : r

u1
t′2→ z1 r. t′2 � t1 implies that π2 contains at least one vertex v such that v

t1→. Let v2

be the v that is first reached by a traversal from u1 along π2. Clearly, the subpath u1 v2

of π2 does not contain transition t1.

Step 3: Let us consider the path σ from u1 to v2. Two cases are possible.

Case 1: σ contains t2.

That is, σ contains at least one vertex u such that u
t2→. Let u2 be the u that is first

reached by a traversal from u1 along σ. Clearly, the subpath u1 u2 of σ does not contain

53

transition t1 and t2. By schedule Property 3, S2 = {t2, t′2} implies there exists u2
t′2→ z2. By

schedule Property 5, there exists a directed cycle π3 : r u2
t′2→ z2 r. t′2 � t1 implies

that π3 contains at least one vertex v such that v
t1→. Redefine v2 be the v that is first reached

by a traversal from u2 along π3. Now we examine the subpath σ′ = u2 v2 of π3. Just

like the path σ, there are two cases possible. σ′ either contains t2 or does not. If it contains

t2, then Case 1 is repeated. Clearly, the same procedure can be repeated forever. Case 1

is infinitely repeated implies that there exists an infinite path u1
t′2→ z1 u2

t′2→ z2 . . .

does not contain t1. Thus, I2 is proved. If Case 2 occurs at uk, then there exists a path

u1
t′2→ z1 . . . uk

t′2→ zk v2 that does not contain t2. Since the subpath v1 u1 of π1

does not contain t2, there exists a path v1
t′1→ y1 u1

t′2→ z1 . . . uk
t′2→ zk v2

t′1→ y2 that

does not contain t3. Repeat the same procedure of v1 at v2, I1 is proved.

Case 2: σ does not contain t2.

Immediately follows that there exists a path v1
t′1→ y1 u1

t′2→ z1 v2
t′1→ y2 that

does not contain transition t2. Repeat the same procedure of v1 at v2, I1 is proved.

If I1 is valid, we show that v1, v2, . . . are distinct vertices in G. If there exist two

vertices vi, vj , 1 ≤ i < j corresponding to the same vertex in G, there exists a directed cycle

vi
t′1→ yi vi+1

t′1→ yi+1 · · · vi, which contains transition t′1 but not t2. This contradicts

with t′1 � t2. v1, v2, . . . are distinct implies that there are an infinite number of vertices in

G, which contradicts with the finiteness of a schedule. Similar arguments hold if I2 is valid.

�

Note that the proof does not rely on schedule Property 4, the notion of progress. In

other words, even if in certain circumstances the progress of a schedule is defined differently

54

from what we defined, the proposition still holds.

We could use Proposition 1 to prove that some Petri nets are not schedulable.

Figure 2.5 shows a Petri net model that satisfies the condition of Proposition 1. It has two

FCSs, {B,C} and {F,G}, and two minimal T-invariants with supports {IN,A, B,E,G} and

{C,D,F, H}. It is easy to verify that C � F and G� B. Thus, according to Proposition 1

there exists no schedule of the Petri net that involves either {B,C} or {F,G}. Note that

in this example, there exist much more dependence relations between the transitions in the

two FCSs than what is needed to prove unschedulability. In fact, C � F , F � C, G� B

and B� G. Either (C � F)∧ (G� B) or (F � C)∧ (B� G) is sufficient to prove that

no schedule of the Petri net involves either {B,C} or {F,G}.

3.4 Extending Pairwise Dependence

By observing the ”chain-like” dependence formulation in Proposition 1, we extend

the dependence relation to more than two FCSs.

Definition 5 (Cyclic pairwise dependence relation) A set of FCSs {t1, t′1}, . . . , {tk, t′k}

of a Petri net is said to be in cyclic pairwise dependence relation, if there exist dependence

relations (t′1 � t2) ∧ (t′2 � t3), · · · , (t′k � t1).

In the case of a single FCS {t1, t2}, the formulation is t1 � t2. In the case of three

FCSs {t1, t2}, {t3, t4}, {t5, t6}, the formulation is (t2 � t3) ∧ (t4 � t5) ∧ (t6 � t1).

55

Theorem 1 Given a Petri net N with a set S of FCSs, if S is in cyclic pairwise dependence

relation, for any marking M of N there exists no schedule of (N,M) involving a FCS in S.

Sketch of proof : The proof can be done in a way similar to the proof of Propo-

sition 1. Given FCSs {t1, t′1}, . . . , {tk, t′k} with t′1 � t2 ∧ t′2 � t3, · · · , t′k � t1. We assume

that there exists a schedule G(V,E, r) of N . The proof proceeds by showing the validity of

at least one of the following statements:

I1: G contains an infinite path v1
t′1→ y1 v2

t′1→ y2 · · · , such that the path from

v1 to vk (k = 2, 3, . . .) does not contain transition t2.

. . .

Ik: G contains an infinite path u1
t′k→ z1 u2

t′k→ z2 · · · , such that the path from

u1 to uk (k = 2, 3, . . .) does not contain transition t1.

Then, we show that each statement implies the existence of an infinite number of

distinct vertices in G. �

The Petri net shown in Figure 2.4(b) has one FCS {a, b} and one minimal T-

invariant with support {a, b, c, d}. {a, b} is in cyclic dependence relation because a � b.

Since every T-invariant contains a transition in {a, b}, we conclude that the Petri net is

not schedulable for any marking of the net. Similarly, in Figure 2.4(d) there is only one

FCS {b, c}, one minimal T-invariant with support {a, b, c, d}. Any T-invariant of the net

contains a transition from the FCS. Thus, the Petri net is not schedulable.

56

3.5 General Transition Dependence Relation

We defined pairwise dependence relation and based on that a sufficient condi-

tion for unschedulability is proposed and proved. However, the power of pairwise depen-

dence relation is limited. Figure 3.3 shows a Petri net that contains four FCSs {B,C},

{F,G}, {I, J}, {L,M}, and five minimal T-invariants with supports {IN,A, B, I, E, G, M},

{C,D,F, H}, {C,D,L,N}, {J,K, F,H}, {J,K, L, N}. Note that there exists no cyclic

pairwise dependence relation among the transitions in the FCSs. But as we show later,

the transitions are in a general notion of cyclic dependence, and consequently we can prove

unschedulability of the net. It is worth noticing that the Petri net shown in Figure 3.3

resembles the Petri net shown in Figure 2.5. It models a producer and a consumer process

which include an additional loop structure, compared with the program shown in Figure 3.3.

Also note that the Petri net is not a free-choice Petri net. The arc from the place modelling

the loop-communication channel to transition H is neither a unique outgoing arc of the

place, nor a unique incoming arc of transition H.

Definition 6 (General transition dependence relation) A transition t of a Petri net

N is said to be dependent on a set S of transitions, if for each T-invariant x of N , t ∈ ‖x‖

implies ∃t′ ∈ S : t′ ∈ ‖x‖. This is denoted by t� S.

The pairwise transition dependence relation can be viewed as a special case of the

general transition dependence relation, or simply dependence relation with |S| = 1.

Lemma 5 The general transition dependence relation is monotonically non-decreasing.

57

ML

N

I J

K

G

H

B

E

F

A

C

D

IN

FCS1={B, C} , FCS2={I, J} ,
FCS3= {F, G} , FCS4={L, M}.
Min. T-invariants:
{IN, A, B, I, E, G, M},
{C, D, F, H}, {C, D, L, N},
{J, K, F, H}, {J, K, L, N}.
C → {B, I , F, L},
J → {B, I , F, L},
G → {B, I , F, L},
M → {B, I , F, L}.

Figure 3.3: A Petri net containing FCSs in cyclic (general) dependence relation.

Proof : We want to show that if t� S, then for each S′ such than S ⊆ S′, t� S′. t� S

implies for all T-invariant x such that t ∈ ‖x‖ there exists t′ ∈ S such that t′ ∈ ‖x‖. S ⊆ S′

implies that t′ ∈ S′. Thus, there exists t′ ∈ S′ such that t′ ∈ ‖x‖. �

This implies a transition t of a Petri net is dependent on any set of transitions that

contains t. Clearly, the dependence relation alone can not characterize the cyclic dependence

relation used in Proposition 1. We introduce the concept of cover of FCSs.

Definition 7 (Cover of a set of FCSs) A cover S of a set S of FCSs is a minimum

subset of transitions such that for each FCS F ∈ S, there exists a transition t ∈ S ∩ F .

Lemma 6 A cover of a set of FCSs contains exactly one transition from each FCS.

Proof : Clearly, a cover S of S must contain at least one transitions in each FCS in S. If

S contains two transition {ti, t′i} of a FCS Fi ∈ S, then S′ = S\{t} is a subset of S that

58

a b

e
c d

s

f g

Figure 3.4: A Petri net containing a FCS in cyclic dependence relation.

satisfies for each FCS F ∈ S, there exists a transition t ∈ S′ ∩ F . This conflicts with the

definition that S is a minimum set that satisfies the condition. �

Definition 8 (Cyclic dependence relation) A set S of FCSs of a Petri net N is said to

be in cyclic dependence relation, if there exists a cover S of S, such that for each transition

t ∈ S, t� S\S.

A FCS is said to be cyclic dependent if there exists a set S of FCSs, such that S

contains the FCS, and is in cyclic dependence relation. Note that although the general de-

pendence relation is monotonic, the cyclic dependence relation is not monotonic in general.

Hence we can not prove the existence of the cyclic dependence relation in a set of FCSs by

proving the existence of the relation for its subsets and vice versa.

We illustrate this with the following examples. Figure 3.4 shows a Petri net with

two FCSs {a, b}, {c, d}. There are three minimal T-invariants with supports {s, a, b, e, c, f},

{c, g}, {d}. Clearly, a � b. Thus, {a, b} is in a cyclic dependence relation. However, it is

59

easy to verify that the two FCSs are not in a cyclic dependence relation.

Figure 2.5 shows a Petri net with two FCSs, {B,C} and {F,G}. There are two

minimal T-invariants with supports {IN,A, B,E,G} and {C,D,F, G}. It is easy to verify

that there exists no cyclic dependence relations in either of two FCSs. But we showed earlier

the two FCSs together are in a cyclic dependence relation.

It implies that given a set of FCSs, in order to find if the set contains a cyclic de-

pendent FCS one needs to examine potentially all subsets of the set, which is an exponential

of the cardinality of the set. We will discuss this in more details in next chapter.

Theorem 2 (Cyclic dependence theorem) No schedule of a Petri net involves a cyclic

dependent FCS.

Sketch of proof : The proof can be done in a way similar to the proof of Proposition 1

and Theorem 1. Given FCSs {t1, t′1}, . . . , {tk, t′k} and a cover S = {t1, t2, . . . tk}, (t1 �

S′) ∧ (t2 � S′), · · · , (tk � S′), where S′ = {t′1, t′2, . . . t′k}. We assume that there exists a

schedule G(V,E, r) of N . The proof proceeds by showing the validity of at least one of the

following statements:

I1: G contains an infinite path v1
t1→ y1 v2

t1→ y2 · · · , such that the path from

v1 to vk (k = 2, 3, . . .) does not contain any transition in S′.

. . .

Ik: G contains an infinite path u1
tk→ z1 u2

tk→ z2 · · · , such that the path from

u1 to uk (k = 2, 3, . . .) does not contain any transition in S′.

Then, we show that each statement implies the existence of an infinite number of

distinct vertices in G. �

60

Clearly, Proposition 1 and Theorem 1 can be viewed as special cases of Theorem 2.

Thus, Theorem 2 is more powerful than them to establish unschedulability. Consider the

Petri net in Figure 3.3. We have showed that Proposition 1 and Theorem 1 can not be used

to prove that it is not schedulable. However, there exists general dependence relations,

and furthermore a cyclic dependence relation for the set of all FCSs in the net. Let S =

{C,G, J, M} be a cover of the S, then S\S = {B, I, F, L}. For each transitions t in S,

t� S\S. Thus, by Theorem 2, for any initial marking there exists no schedule of the Petri

net involving any of the FCSs.

61

Chapter 4

Algorithms Checking Cyclic

Dependence

The cyclic dependence relation is central to the schedulability analysis we have

presented so far. To apply the theoretic results, efficient methods to check the existence

of cyclic dependence relation are needed. In this chapter, we discuss two methods. One is

based on the linear programming (not integer linear programming). The other is based on

generating sets of T-invariants.

4.1 Checking Cyclic Dependence with Linear Programming

Although the dependence relation is defined on the set of T-invariants of a Petri

net, interestingly enough, such a set does not have to be explicitly computed to check the

relation. We propose an exact algorithm based on linear programming to check the cyclic

dependence relation. Note that though T-invariants are nonnegative integer solutions to a

62

homogenous linear system, it is not necessary to solve an integer programming problem to

check the relation.

Algorithm 2 Checking cyclic dependence relation using linear programming
INPUT: A: the incidence matrix of a Petri net, S: the set of FCSs to be checked.

OUTPUT: returns TRUE if there exists a cyclic dependence relation in S, FALSE other-

wise.

1: for all covers S of S do

2: dependent ⇐ TRUE

3: for all ti ∈ S do

4: LP ⇐ (ATx = 0) ∩ (x ≥ 0) ∩ (xi > 0) ∩ (xj = 0,∀j, tj ∈ S\S)

5: if LP 6= ∅ then

6: dependent ⇐ FALSE

7: break

8: end if

9: end for

10: if dependent = TRUE then

11: return TRUE

12: end if

13: end for

14: return FALSE

Given a Petri net N , its incidence matrix A, and a set S of FCSs of N to be

checked, the algorithm iterates through all possible covers of S till one cover leads to a

cyclic dependence relation. For each cover, a feasibility problem of linear programming

63

is constructed. As proved in Theorem 3, a solution to the feasibility problem provides a

counterexample to the dependence relation. If no solution is found, the dependence relation

holds. Note that whether a cover S leads to a cyclic dependence relation for S can be

checked in polynomial-time.

Theorem 3 A transition ti is dependent on a set S of transitions if and only if the following

linear system has no solution:

A
T
x = 0

x ≥ 0

xi > 0

xj = 0 ∀j, tj ∈ S

Proof : (if): We prove the contrapositive. If ti � S does not hold, by definition,

there exists a T-invariant x ∈ N|T |, such that xi ≥ 1 and for each tj ∈ S, xj = 0.

(only-if): We prove the contrapositive. Since the incidence matrix A is an integer

matrix, if there exists a real vector that satisfies all the constraints, then there exist a

rational vector x also satisfying the constraints. Let θ be a common multiple of all the

denominators of the elements of x and let x′ = θx. By definition, x′ is a T-invariant, and

x′ ≥ 0, x′i > 0, for each tj ∈ S, x′j = 0. Thus, x′ is a counterexample for ti � S. �

The complexity of checking a cyclic dependence using Algorithm 2 is exponential

on the number of FCSs. This comes from the need to check explicitly all possible covers

of the set S. The next chapter presents a more efficient way to establish unschedulability

based on checking the rank of the incidence matrix of a Petri net.

64

4.2 Checking Cyclic Dependence with Generating Sets

In this section, we show that the cyclic dependence relation among a set of FCSs

could be established by simply counting the number of minimal T-invariants that contains

transitions in the FCSs. If the number is less or equal to the number of FCSs, then the

FCSs contains a cyclic dependence FCS.

Definition 9 (Generating set) A set Xg of T-invariants {x1,x2, . . . ,xk} is a generating

set of all T-invariants over Q+, the set of non-negative rationals, if for all T-invariant x,

there exist a1, a2, . . . ak ∈ Q+, such that x = a1x1 + a2x2 + · · ·+ akxk.

We call the T-invariants in a generating set generators. It is easy to verify that both the

set of minimal T-invariants and the set of minimal-support T-invariants are generating sets

of all T-invariants over Q+. The two generating sets can be efficiently computed using

algorithms proposed by Martinez and Silva [39], Anna and Trigila [6].

We show that dependence relation could be derived by examining a generating set.

Lemma 7 A transition t is dependent on a set S of transitions, t� S, if and only if there

exists a generating set Xg of T-invariants over Q+, such that for all generators xg ∈ Xg, t ∈

‖xg‖ implies ∃t′ ∈ S, t′ ∈ ‖xg‖.

Proof : (only-if): We proceed by contradiction. If there exists a generating set Xg and a

generator xg ∈ Xg that contains t but none of the transitions in S, then xg is a counterex-

ample for t� S.

(if): By definition, each T-invariant x =
∑

i=1,k aixi, where ai ≥ 0,xi ∈ Xg. If

t ∈ ‖x‖, there exist a rational aj and a generator xj such that aj > 0 and t ∈ ‖xj‖. Note

65

that t ∈ ‖xj‖ implies ∃t′ ∈ S, t′ ∈ ‖xj‖. Since aj > 0, ai ≥ 0, i = 1, 2, · · · , k, t′ ∈ ‖x‖

follows. �

In the sequel, we say a FCS is involved in a T-invariant or a T-invariant involves

a FCS, if there exists a transition in the FCS that corresponds to a non-zero entry in the

T-invariant.

Theorem 4 A set S of FCSs contains a cyclic dependent FCS if there exists a generating

set Xg of all T-invariants over Q+, such that |Xg(S)| ≤ |S|, where Xg(S) is the set of

generators in Xg that involves at least one FCS in S.

Proof : We proceed by induction on |S|.

For |S| = 1, |Xg(S)| ≤ |S| implies Xg(S) = {xg} or ∅. Let {t, t′} be the FCS in

S. If Xg(S) = ∅, t′ � t trivially holds. If Xg(S) = {xg}, then without loss of generality,

assume t ∈ ‖xg‖. Clearly, no matter t′ ∈ ‖xg‖ or not, t ∈ ‖xg‖ holds. By Lemma 7, this

implies t′� t. Thus, FCS = {t, t′} is in a cyclic dependence relation.

Assume the theorem holds for |S| = 2, ..., n− 1, we show it also holds for |S| = n.

There are two cases possible.

Case 1. There exists S′ ⊂ S such that |Xg(S′)| ≤ |S′|. S′ ⊂ S implies |S′| ≤ n− 1.

By the assumption from previous induction steps, |Xg(S′)| ≤ |S′| implies that S′ contains a

cyclic dependent FCS. Since S′ ⊂ S, S contains a cyclic dependent FCS.

Case 2. For all S′ ⊂ S, |Xg(S′)| > |S′|.

1. First, we show that |Xg(S)| = |S|. Choose S′ ⊂ S such that |S′| = |S| − 1. Then

|Xg(S′)| > |S′| implies |Xg(S′)| ≥ |S|. And S′ ⊂ S implies |Xg(S′)| ≤ |Xg(S)|. Thus,

we have |Xg(S)| ≥ |S|. Since |Xg(S)| ≤ |S|, |Xg(S)| = |S| follows.

66

x1FCS1

FCSk xk

FCSi

xj

Figure 4.1: Bipartite graph of a set of FCSs and the generators that involves the FCSs.

2. Then, we show that S is in cyclic dependence relation. For all S′ ⊂ S, |Xg(S′)| > |S′|

and |Xg(S)| = |S| implies that for all S′ ⊆ S, |Xg(S′)| ≥ |S′|.

Construct a bipartite graph G(S, Xg(S), E) as illustrated by Figure 4.1. There exists

an edge (FCSi, xj) ∈ E if and only if generator xj involves a free-choice set FCSi.

Since |Xg(S)| = |S| and for all S′ ⊆ S, |Xg(S′)| ≥ |S′|, by Philip Hall’s Theorem[29],

there exists a complete (perfect) matching for S and Xg(S). By definition, for each

match (FCS,x) in a complete matching, there exists a transition t that is both

contained in FCS and ‖x‖. Let S denote the set of such transitions for a complete

matching. Clearly, every generator x ∈ Xg(S) contains at least one transition in S,

and S contains exactly one transition from each FCS. Since each FCS contains two

transitions, S\S is a cover of S. Denote it S′. Since for all x ∈ Xg(S) there exists t in

S such that t ∈ ‖x‖, then

∀t ∈ S′,∀x ∈ Xg(S), t ∈ ‖x‖ ⇒ ∃t′ ∈ S, t′ ∈ ‖x‖.

By Lemma 7, it implies that there exists a cover S′ of S such that for ∀t ∈ S′, t� S.

Thus, S is in cyclic dependence relation. �

67

Theorem 4 provides a sufficient condition for the existence of a cyclic dependent

FCS in a set of FCSs. Once a set of FCSs of a Petri net and a generating set satisfying

the condition are identified, then by Theorem 2 no schedule of the net involves such a set

of FCSs. Thus, we could use Theorem 4 to prove unschedulability. In practice, we usually

examine two generates sets of T-invariants of a Petri net, the set of minimal T-invariants

and the set of minimal-support T-invariants.

Consider the Petri net shown in Figure 2.5. It has two FCSs and two minimal

T-invariants. Thus the two FCSs contain a cyclic dependent FCS, and consequently no

schedule of the Petri net involves the two FCSs.

Although checking the condition of Theorem 4 is easy once a generating set is

computed, Theorem 4 is weaker than Theorem 3 to prove unschedulability. There are cases

where there exists a cyclic dependent FCS in a set of FCSs, but can not be derived by

examining the set of minimal (or minimal-support) T-invariants. Consider the Petri net

shown in Figure 3.3. It has four FCSs {B,C}, {F,G}, {I, J}, {L,M}, and five minimal T-

invariants with supports {IN,A, B, I, E, G, M}, {C,D,F, H}, {C,D,L,N}, {J,K, F,H},

{J,K, L, N}. Note that the set of minimal T-invariants is also the set of minimal-support

T-invariants. It is easy to verify that no subset of FCSs satisfy the condition of Theorem 4.

However, the existence of a cyclic dependent FCS in the Petri net can be established by

Theorem 3 and the rank theorem, which we discuss in next chapter.

68

Chapter 5

The Rank Theorem

So far our schedulability analysis is based on the cyclic dependence relation. In

this chapter, we introduce another important approach. We show how the incidence matrix,

particularly its rank, is related to schedulability.

5.1 Related Work

The connection between behavioral properties of Petri nets and the rank of the

incidence matrix was first observed for free-choice Petri nets [22]. The rank property shown

there states that a Petri net of a specific class of free-choice nets has a live and bounded

marking if and only if the number of conflict clusters exceeds the rank of the incidence

matrix by one. In our terminology, conflict clusters of free-choice nets are either free-choice

sets or transitions which are not in conflict with any other transition. Since we assume

that free-choice sets have exactly two transitions, the number of all transitions equals the

number of conflict clusters plus the number of conflict sets. In other words, the number

69

of conflict clusters can be written as |T | − k, where T is the set of all transitions and k is

the number of free-choice sets. So, the rank condition translates to rank(A) = |T | − k − 1.

The same property is shown in [22] to be sufficient for the existence of a live and bounded

marking in case of certain non-free-choice nets.

Our setting is quite different to the one considered in [22]. The class of nets is

different, and so is the behavioral property under investigation. Nevertheless, the condition

provided in our rank theorem looks pretty similar to the characterization mentioned above.

5.2 Proof of the Rank Theorem

Theorem 5 (Rank theorem) For a Petri net N with |T | transitions and incidence ma-

trix A, if there exists a schedule of N that involves k FCSs, then rank(A) ≤ |T | − k − 1.

Proof : Let sch be a schedule of a Petri net N = (P, T, F) for some marking M of N . Let S

be the set of FCSs involved in sch. |S| = k. First, we construct a Petri net N ′ = (P ′, T, F ′)

by adding places and edges to N . Then, we show that rank(A′) ≤ |T | − 1, where A′ is

the incidence matrix of N ′. Finally, we show that rank(A′) = rank(A) + k. Therefore,

rank(A) ≤ |T | − k − 1.

1. Construct a Petri net N ′ = (P ′, T, F ′) by adding places and edges to N . As illustrated

in Figure 5.1, for each FCSi = {ti, t′i} ∈ S, add 2 places pti, pti′ and 4 edges F ′(pti, ti) =

ni, F
′(ti, pti′) = ni, F

′(pti′ , t
′
i) = n′

i, F
′(t′i, pti) = n′

i.

2. Determine ni, n
′
i. Since for each edge (u, v) in sch there exists a directed path from r

to u and from v to r, there must exist a closed walk W in sch from r to r, such that

70

pti’

pti

ti ti’

ni

ni ni’

ni’

Figure 5.1: Illustration of the construction of N ′

W traverses each edge in sch at least once. Since the length of any path in sch is

bounded by |E|, the length of W is bounded by 2|E|2. Also note that E is nonempty.

Thus, W is a walk of finite and non-zero length.

Let σ be the corresponding firing sequence of W . Clearly, σ is finite and nonempty.

Let ci, c
′
i be the number of times of ti, t

′
i of FCSi appears in the σ, respectively. Since

W traverses each edge at least once, ci ≥ 1, c′i ≥ 1. Let c be a common multiple of

{c1, c
′
1, . . . , ck, c

′
k}, and ni = c/ci, n

′
i = c/c′i.

3. Show that rank(A′) ≤ |T | − 1. First, define M ′ of N ′ as the following.

M ′(p) =


M(p) if p ∈ P ∩ P ′

c otherwise

It is easy to see that the definition of ni, n
′
i and M ′ ensures that σ can be fired at M ′

in N ′, and the number of tokens in added places pti, pti′ , i = 1, . . . , k are unchanged

after the firing sequence. That is, σ is a nonempty firing sequence of N ′ from M ′ to

M ′. It implies that A′Tσ̄ = 0, where σ̄ is the firing count vector of σ. Since σ̄ is not

71

a vector full of zeros, rank(A′T) < |T |. Thus, rank(A′) ≤ |T | − 1.

4. Compare the incidence matrix A′ of N ′ and the incidence matrix A of N . As illus-

trated by the following graph, for each FCSi = {ti, t′i} ∈ S, N ′ contains two additional

column vectors yi,y
′
i corresponding to pti, pti′ , respectively. Let Y = [y1 . . .y|S|] and

Y ′ = [y′
1 . . .y′

|S|]. Then A′ = [A|Y |Y ′].

pti pti′

. . . 0
. . . 0

. . .

ti . . . −ni . . . ni . . .

. . . 0
. . . 0

. . .

ti′ . . . n′
i . . . −n′

i . . .

. . . 0
. . . 0

. . .

In vector yi, there are exactly two non-zero entries −ni, ni, corresponding to transition

ti, t
′
i respectively. Similarly, in vector yi

′, there are entries n′
i,−n′

i, corresponding to

transition ti, t
′
i respectively. A′ is the incidence matrix of N ′

5. Show that rank(A′) = rank(A) + |S|.

Since yi + yi
′ = 0, yi,yi

′ are linearly dependent. Thus, rank(A′) = rank([A|Y]).

Then, we show that each column vector yi of Y is linearly independent with respect

to other column vectors in [A|Y]. We proceed by contradiction. It is known that

vector yi is linearly dependent with respect to other columns vectors in [A|Y] if and

72

only if yi is a linear combination of other vectors.

yi =
∑

1≤j≤|P |

ajAj +
∑

1≤k≤|S|
k 6=i

bkyk

where A = [A1 . . .A|P |], aj ∈ Q, bk ∈ Q. Let vector a = [a1 . . . a|P |]T, and z =

yi − (
∑

1≤k≤|S|
k 6=i

bkyk). That is, z = Aa. Then for each T-invariant x of N ,

ATx = 0 ⇒ aTATx = 0 ⇒ (Aa)Tx = 0 ⇒ zTx = 0.

We then show that zTx = 0 implies the existence of a cyclic dependence relation.

Clearly, the non-zero entries in z corresponds to transitions in FCSs, and for a FCS

{ta, tb}, za > 0 if and only zb < 0. Let S′ ⊆ S be the set of FCS that has non-zero

entries in z. Obviously, FCSi ∈ S′. Let S = {ta|za > 0}, S′ = {tb|zb < 0}. It is

easy to see that S is a cover of S′, and S′ = S′\S. Since zTx = 0, for each transition

tj ∈ S, xj > 0 implies that there exists at least one transition tk ∈ S′ such that

xk > 0. That is, for each transition t ∈ S, t � S′. Since S′ = S′\S, S′ is in cyclic

dependence relation. It implies that the schedule sch involves a cyclic dependent

FCS. This contradicts Theorem 2. Thus, each column vector yi of Y is linearly

independent with respect to other column vectors in [A|Y], where Y = [y1 . . .y|S|].

Therefore, rank(A′) = rank([A|Y]) = rank(A) + |S|. �

Theorem 5 is equivalent to the statement: a schedule of a Petri net involves at

most (|T | − rank(A) − 1) FCSs. It implies that if rank(A) > |T | − |S| − 1, where S is the

set of all FCSs of a Petri net N , then for any marking M of N , there exists no schedule of

(N,M) that involves all FCSs of the net. Thus, we could use the rank theorem to prove

unschedulability of a Petri net.

73

Consider the Petri net shown in Figure 2.5. |T | = 9, rank(A) = 7, |S| = 2, thus

no schedule involves all FCSs. For the Petri net shown in Figure 3.3, |T | = 15, rank(A) =

11, |S| = 4, thus no schedule involves all FCSs.

5.3 Comparison with Cyclic Dependence

Since computing the rank of a matrix has a polynomial-time complexity (Gaussian

elimination), checking unschedulability by the rank of incidence matrix is more efficient than

by a cyclic dependence, because the latter requires to iterate through potentially all possible

covers of a set of FCSs. The number of covers of a set of FCSs is an exponential of the

number FCSs.

However, the rank condition is weaker in establishing the unschedulability as is

illustrated by the following example. Figure 5.2 shows a Petri net with |T | = 15, rank(A) =

12, and |S| = 2. Thus, we can not prove unschedulability by the rank theorem. Note that

the left part of the Petri net is identical to the Petri net shown in Figure 2.5. There exists

a cyclic dependence relation in FCSs {B,C}, {F,G}. Thus, we can prove unschedulablity

by the cyclic dependence theorem.

74

B GFC

 D

A

IN

E

H

I J

K L

M

N

Figure 5.2: A Petri net whose unschedulability can be proved by Theorem 2, but not by
Theorem 5.

75

Chapter 6

Experiments

In this Chapter, we show that the sufficient conditions introduced in the cyclic

dependence theorem and the rank theorem hold for a wide class of real-life industrial ap-

plications. It means that the Petri nets generated from their system specifications are not

schedulable, and our approach can be effectively applied to establish that. Note that to

prove unschedulability of a Petri net based on the cyclic dependence theorem, we need to

assert that each schedule involves at least one cyclic dependent FCS. To prove unschedula-

bility based on the rank theorem, we need to assert that each schedule involves all FCSs of

a Petri net. We use some public available JPEG and MPEG codecs as our test bench. The

codecs used in our experiments are modelled as Kahn process networks.

6.1 MPEG-2 Decoder

We use an MPEG-2 decoder [51] developed by Philips Research Laboratories. The

decoder is written in about 5,000 lines of YAPI [20] code, a system specification language

76

start from a functionally correct sequential C-program of the ap-
plication. The modeling of the MPEG-2 video decoder application
started from a C-program that had originally been derived from the
MPEG decoder software from UC Berkeley. This C-code was to
be turned into a set of parallel communicating processes according
to the Kahn Process Networks model [1]. In Kahn Process Net-
works, parallel processes communicate via unbounded FIFO chan-
nels. Each process executes sequentially. Reading from channels
is blocking; writing to channels is non-blocking. The Kahn model
is timeless; there is only an ordering on the data in each channel.

SPADE offers a simple API that can be used to turn a sequen-
tial C-program into a Kahn Process Network. The API contains
the functionsread, write, and execute. With the read and write
functions, data can be read from or written to channels via process
ports. The read and write calls correspond to thecommunication
workloadof a process. The execute function can be used to instru-
ment the application code withsymbolic instructionsthat identify
the computation workload. This function itself performs no data
processing. Figure 2 shows an example of an application modeled
as a Kahn Process Network.

execute

Trace

Process
Port

read write

Process Channel

Figure 2: Application modeled as Kahn Process Network. Pro-
cesses are depicted as circles; small circles represent process ports;
the circle segments in the processes represent the use of API func-
tions.

The following code fragment illustrates the use of the API.

while(1) {
Input->read(token);
ProcessToken(&token);
Process->execute(PROCESSTOKEN);
Output->write(token, size);

}

The code fragment shows an infinite process that repeatedly reads a
token from its input port, processes the token, and sends the result
to its output port. Each time a token is processed, this is signaled
via the execute call.

The API has been implemented on top of a multi-threading
package. Upon execution of the application model, each process
runs as a separate thread. Processes synchronize via the read and
write operations on the FIFO channels. These operations have been
implemented with the help of semaphores, which synchronize the
underlying threads.

The modeling of the MPEG-2 video decoder application started
with the specification of the processes that may run in parallel as
well as the specification of the types of the tokens that are commu-
nicated by these processes. Thus, during this functional partition-
ing phase we decided on the grain sizes of the processes as well as
on the grain sizes of the tokens that get communicated by the pro-
cesses. For example, we decided to have a process Tvld that parses
an MPEG bit-stream under control of a process Thdr. The Thdr pro-
cess is aware of the high level bitstream organization and distributes
the retrieved sequence and picture properties to other processes.
The Tvld process parses picture data autonomously. It sends mac-
roblock headers into a functional pipeline that retrieves the predic-
tion data for the reconstruction of macroblocks. The coefficient

data for the error blocks is sent into a second functional pipeline
for inverse scan, inverse quantization, and IDCT. The grain size for
this coefficient data is a macroblock. A memory manager process
TmemMan was introduced to control the access to the frame mem-
ories. It takes care that a frame is used for prediction or display
only after it has been reconstructed completely. Thus, we see that
during the parallelization of the application, control processes may
appear that explicitly synchronize the operation of other processes.

During the actual coding, the sequential C-code of the decoder
was split up into processes and the communication among the pro-
cesses was made explicit by instrumenting the C-code with read
and write calls. The parallelization of the C-code required sev-
eral global data structures to be removed. Next, execute calls were
added to be able to monitor the computation workload. The Kahn
Process Network is shown in Figure 3.

decMV_prop_pred
decMV_prop_mvTinput Tvld

Thdr

Tisiq Tidct Tadd TwriteMB

Toutput

ToutputRD

Tpredict

TpredictRD

TdecMVvld_bits
vl

d_
pr

op
_s

eq
vl

d_
pr

op
_p

ic
vl

d_
pr

op
_s

lic
e

vl
d_

cm
d

is
iq

_p
ro

p_
pi

c

de
cM

V
_p

ro
p_

se
q

pr
ed

ic
t_

pr
op

_p
ic

de
cM

V
_p

ro
p_

pi
c

hd
r_

st
at

us

is
iq

_p
ro

p_
se

q
is

iq
_p

ro
p_

m
b

mb_QFS

predict_prop_pred
predict_prop_seq

mb_F mb_f mb_d

m
b_

p

idct_prop_seq
idct_prop_mb

add_prop_seq
add_prop_mb

writeMB_prop_seq
writeMB_prop_mb

memMan_prop_seq

memMan_cmd
writeMB_mem_id

predict_ref_mem_id

ou
tp

ut
_p

ro
p_

se
q

TmemMan

ou
tp

ut
_c

m
d

m
em

M
an

_r
dy

_m
em

_i
d

MPEG-2
Video

Elementary
Stream

Decoded
frames

w
rit

eM
B

_p
ro

p_
pi

c

predict_mv

predict_data

output_data

Tstore

store_data

pr
ed

ic
tR

D
_c

m
d

outputRD_cmd

Figure 3: MPEG-2 video decoder modeled as Kahn Process Net-
work.

The application model could now readily be used to analyze the
workload of MPEG-2 video decoding for different MPEG streams.
Upon execution of the model with a particular MPEG stream, the
Kahn API reports:

� For each process: which symbolic instruction is invoked how
often by the process.

� For each channel: how many tokens of which size(s) are
transferred over the channel.

The results of such aworkload analysisare presented in the form
of two tables, as exemplified by the tables below:

Process Instruction Frequency

Tidct IDCT MB 12514
Tadd SkippedMB 158
Tadd Intra MB 2037
...

Channel #Tokens #Bytes

predictdata 88218 5645952
predictmv 12514 400448
...

4 MPEG Decoder Architecture

In addition to the application model, we had to define anarchitec-
ture modelonto which the application model could be mapped. See
the flow in Figure 1. The SPADE methodology is intended for top-
down design of heterogeneous architectures and must permit effi-
cient evaluation of a range of candidate architectures. For this case
study, we decided to start from a single, but parameterized, archi-
tecture specification in order to validate that this architecture could
be evaluated correctly, conveniently, and efficiently with SPADE.
The parameterization would then allow us to do sensitivity analysis
and some design space exploration for this architecture.

For the case study to be useful, we wanted to exercise a realistic
architecture for MPEG-2 video decoding. For this we selected the
TM-2000 MPEG decoder architecture from the Philips TriMedia
Group, for which an internal databook level specification is avail-
able. The TM-2000 consists of a dedicated MPEG decoder attached
to a bus structure together with a VLIW CPU and several other ded-
icated co-processors. The parts of the architecture specification that
are relevant to MPEG decoding are depicted in Figure 4.

Figure 6.1: An MPEG-2 decoder modeled as a KPN.

based on C++. As shown in Figure 6.1, the system consists of 11 concurrent processes

communicating through 45 channels. We perform schedulability analysis on 5 processes:

TdecMV, Tpredict, Tisiq, Tidct, and Tadd. The first two processes implements the spatial

compression decoding. The last three processes implements the temporal compression de-

coding and image generation. In total, the 5 processes have 10 channels, and 13 interfaces

(communicating ports with other processes or the environment).

6.2 M-JPEG* Encoder

We use an M-JPEG* [38] encoder also developed by Philips. The source code is

obtained through the Sesame [2] project public release. The encoder is written in about

2,000 lines of YAPI code. As shown in Figure 6.2, the system consists of 8 processes

communicating through 18 channels. Video data are parsed by Process DMUX and are

sent directly to Process DCT or via Process RGB2YUV, depending on the video format.

Video parameters are send to Process OB-Control, which controls the video processing

77

• M-JPEG* can process each incoming video frame with a dif-
ferent set of quantization and Huffman tables, depending on
the output bit-rate and the accumulated statistics from previous
video frames. Such dynamic change of the tables is typically
not performed by traditional M-JPEG encoders.

The last two points imply that the behavior of M-JPEG* is de-
pendent on the incoming video data. The M-JPEG* encoder ap-
plication is depicted as a block diagram in Figure2.

RGB to YUV
Video stream

(YUV)
JPEG encoding

M-JPEG encoded

conversion
video stream

observed bitrate

(RGB or YUV)
Video stream

Figure 2. Block diagram of the M-JPEG* application.

4.2 Application Modeling in Spade
As we are going to map the application onto a multiprocessor

architecture, we have to expose task level parallelism and make
communication explicit. In SPADE, we use the Kahn Process Net-
works [12] model of computation for application modeling. In
the Kahn model, parallelprocessescommunicate via unbounded
FIFO channels. The Kahn model fits nicely with signal process-
ing applications as it conveniently modelsstream processingand
as it guarantees that no data is lost. Further, the execution of a
Kahn Process Network is deterministic, meaning that for a given
input always the same output is produced and the same workload
is generated, irrespective of the execution schedule.

Application modeling in SPADE is done using YAPI [13]. YAPI
is a simple API that can be used to structure C/C++ code as a
Kahn Process Network. Upon execution of an application model,
each process in the network produces a trace to capture the work-
load of that process. The following three API functions are pro-
vided1.

• A read function. This function is used to read data from a
channel via a process port. Furthermore, the function generates
a trace entryin the trace of the process by which it is invoked,
reporting on the execution of a read operation at the application
level.

• A write function. This function is used to write data to a chan-
nel via a process port. It also generates a trace entry, reporting
on the execution of a write operation.

• An execute function. This function performs no data process-
ing, but is used as an annotation of computations performed by
the process by which it is invoked. It generates a trace entry,
reporting on processing activities at the application level. The
execute function takes asymbolic instructionas an argument
in order to distinguish between different processing activities.
For example, such an instruction may correspond to a DCT
operation on an eight by eight image block.

The trace entries generated by theread andwrite functions rep-
resent thecommunication workloadof a process. The trace en-
tries generated by theexecute function represent thecomputa-
tion workloadof a process.
1Note that the YAPIselect function is not supported by SPADE.

Table−info
fra

me

YUV blocks (4:1)
Select_channel block

Y
U

V
 b

lo
ck

s
(4

:1
)

RGB block
s (

3:1)

St
at

is
tic

s,
 B

itr
at

e

bl
oc

k

H
−t

ab
le

s

block

Q blocks (4:1)

DCT b
loc

ks
 (4

:1
)

bl
oc

k

(3:1 or 4:1)
Data blocks

{(H,V),B,b} frame

(H,V)frame

B
frame

{N
T,

E
O

F,
O

T}{N
T,O

T}

Q
−tables if N

T

if
N

T

{NLP,LP}
packet

Bitstream packets

block = 8x8 pixels
pixel = integer
packet = 16 bits
H = Horizontal size of frame (in pixels)
V = Vertical size of frame (in pixels)
B = Blocks per frame

b = frame format bit = {RGB,YUV}
NT = New Tables
OT = Old Tables
EOF = End Of Frame
NLP = Not Last Package
LP = Last Package

OB−Control

Video outQuantizerVideo in

DCT

RGB2YUV

VLEDMUX

Figure 3. Structure of the M-JPEG* application model.

4.3 M-JPEG* Application Model
For modeling the M-JPEG* application we started from a pub-

lic domain JPEG codec implementation in C. First, we extracted
the encoder part from the implementation. Then we modified it
to match the M-JPEG* application. This involved the addition
of an RGB to YUV conversion and of the implementation of the
adaptation of the quantization and Huffman tables.

Next, we restructured this sequential implementation into a set
of parallel communicating processes using YAPI. This restructur-
ing involved, for example, removing global data structures, par-
titioning of the application, and insertion of calls to the YAPI
functionsread andwrite. The resulting Kahn Process Network
has the structure shown in Figure3.

The network is composed of eight processes. TheVideo in,
DCT, Quantizer, VLE (Variable Length Encoding), andVideo out

processes together form the regular M-JPEG encoding algorithm.
RGB2YUV is an additional process such that the application also
accepts RGB frames as input data; theDMUX process is added
to route the incoming data either directly to theDCT process or
via theRGB2YUV process, depending on the incoming video for-
mat. TheOB Control process takes care of the quantization and
Huffman table adaptation; it receives statistics from theVLE pro-
cess and sends updated tables to both theQuantizer and theVLE

processes.
Finally, we annotated the computations of each process using

the YAPI execute function and symbolic instructions. For ex-
ample, theVLE process has twoexecute calls; one with an in-
structionop VLE, which represents all processing needed to per-
form the variable length encoding of an 8 by 8 block, and one
with an instructionop MakeStatistics, which represents the
calculation of image statistics that are used in the adaptation of
the quantization and Huffman tables.

4.4 Workload analysis
The M-JPEG* application model can be used for workload

analysis. When it is executed, the YAPI functionsread, write,
andexecute generate information on computation and commu-
nication workload of the application. For an input sequence of 8
RGB frames of size 720×576 pixels (PAL/SDTV), the workload
numbers obtained are partly shown in Tables1 and2. Consid-
ering that all block data tokens are blocks of 8 by 8 pixels, with

Figure 6.2: An M-JPEG* encoder modeled as a KPN.

in Process DCT, VLE, and Vudeo Out. It also collects statistics information to adjust

Huffman coding tables and quantization tables. We perform schedulability analysis on the

entire system.

6.3 XviD MPEG4 Encoder

Our model of a XviD MPEG4 encoder is based on the Kahn process network

described in [45] and the C source code from [4]. XviD is a open source implementation of

the ISO MPEG-4 video codec. The Kahn process network model was originally developed as

a Sesame [2] application. As illustrated by Figure 6.3, the system consists of 15 processes

with 40 channels. The input to the system is a video frame with parameters, which is

modelled by a producer process Video In. The output is the encoded video data stream,

78

Figure 7: A more detailed version of the MPEG-4 Video Encoding Scheme

Encoder-, Frame-parameters, Frame type

 M
otion vector

B
lock m

ode

Video In

Motion Estimation
Frame Analysis

Motion

Esimation
Comp.

DEMUX MUX

SUB ADD

DCT

IDCT

DeQuant

Quant

Vector
Coding

Bitstream
Out

Control

ACDC
Coding

F
ram

e-param
eters

Q
uant-param

eters

 A
C

D
C

 F
lag

M
acroblock (Intra)

 Macroblock (Inter)

 Macroblock (Intra)

 Macroblock

 Macroblock

Motion Comp Macroblock

 Frame

 Frame

Frame type Frame

Encoder parameters

 Block mode

M
V

Figure 8: A more detailed version of the KPN model

13

Figure 6.3: An XviD encoder modeled as a KPN.

which is modelled by a consumer process Video Out.

The encoder supports two types of frames: I-frame and P-frame. It performs

motion estimation analysis to determine if an incoming frame will be treated as I-frame or

P-frame. Consequently two types of frame will go through different processing paths. An

I-frame will be split into macro-blocks and encoded independently. In a P-frame, a macro-

block could be an intra-block, an inter-block, or an not-coded-block, depending the value of

Sum of Absolute Differences (SAD). The granularity of tokens passing between processes is

macroblock.

79

SImage

SFrame

Quantize Zigzag Huffman

Frame

Block

Control

ScanHeader

DC

FrameHeader

Image

Input

OutputSScan

Scan

SInterval

Interval

SMCU

MCU

DCT
Block Block Block

Header Header

EBlock

Marker

Marker, Header

Marker, Header

Marker

Figure 6.4: A baseline JPEG encoder as a Kahn process network.

6.4 PVRG JPEG Encoder

We obtain the Stanford Portable Video Research Group (PVRG) JPEG codec

source code from [3]. We adjusted it based on JPEG baseline standard. Our model consists

of 10 processes and 21 channels. As shown in Figure 6.4, the input image first goes through a

set of decomposition processes. An image is first decomposed into frames, then each frame is

decomposed into scans, then each scan is decomposed into intervals, and finally each interval

is decomposed into Minimum Coded Units (MCU). The functional core part consists of 4

processes implementing Discrete Cosine Transform (DCT), quantization, Huffman coding,

and control. The granularity of tokens passing between the four processes is 8×8 block. We

preform schedulability analysis of the Petri nets generated from the model of the encoder

and its functional core.

We also experiment different modelling decisions in this test case. For example,

80

Demux DCT Quantize Zigzag Huffman
Block Block Block Block

Header Header

Block

Figure 6.5: A simplified JPEG encoder as a Kahn process network using distributed control.

Demux DCT Quantize Zigzag Huffman
Block Block Block Block

Control
Header Header

Header

Block

Figure 6.6: A simplified JPEG encoder as a Kahn process network using central control.

the control of synchronization between concurrent processes could be managed by a single

master process, or distributed among processes. As shown in Figure 6.5 and Figure 6.6,

Process Demux splits the input bit stream into two token streams: header stream and block

stream. The header contain all the parameters and tables necessary to transform a block.

It could be passed to a control process then sent to quantization and encoding processes. It

could also be sent directly to quantization process, and then passed to encoding process.

6.5 Worst-Case Tests

Additionally, we create a set of instances to test the worst case performance of our

analysis. They are listed in Figure 6.8. Each Petri net instance is a chain of free choices

and contains no cyclic dependence. It is relatively easy to find a schedule for this kind of

Petri nets. However, it is computationally expensive to prove there is no cyclic dependent

81

Runtime
Instance Place Tran. Arc FCS Rank Schedulable Check Rank Check Dependence Scheduling
JPEGenc1 26 27 64 6 21 N <0.01s 0.19s 523.75s
JPEGenc2 67 68 167 14 57 N <0.01s 0.54s >24hr
MJPEGenc 117 124 330 25 108 N <0.01s 0.04s >24hr
MPEG2dec1 116 144 358 38 111 N <0.01s 0.25s >24hr
MPEG2dec2 115 106 309 8 97 Y <0.01s 17.28s 6.91s
MPEG4enc 72 72 184 15 63 N <0.01s 0.16s >24hr

Table 1. Statistics of schedulability analysis of PN models of JPEG and MPEG codecs

Runtime
Instance Place Tran. Arc FCS Rank Schedulable Check Rank Check Dependence Scheduling
choice3 6 9 20 3 5 Y <0.01s 0.01s <0.01s
choice4 7 11 25 4 6 Y <0.01s 0.02s 0.01s
choice5 8 13 30 5 7 Y <0.01s 0.05s 0.01s
choice6 9 15 35 6 8 Y <0.01s 0.14s 0.04s
choice7 10 17 40 7 9 Y <0.01s 0.45s 0.05s
choice8 11 19 45 8 10 Y <0.01s 1.42s 0.09
choice9 12 21 50 9 11 Y <0.01s 4.45s 0.29s
choice10 13 23 55 10 12 Y <0.01s 14.06s 0.87s
choice11 14 25 60 11 13 Y <0.01s 44.86s 1.06s
choice12 15 27 65 12 14 Y <0.01s 141.55s 4.43s

Table 2. Statistics of schedulability analysis of PNs in the test suite

PROCESS Huffman(
In_DPORT Control_headerIn,
In_DPORT Zigzag_blockIn,
Out_DPORT Output)

{
while(1) {

READ_DATA(Control_headerIn, header, 1);
Vi = getVSF(header);
Hi = getHSF(header);
Htable = getHtable(header);
for(v=0; v<Vi; v++) {

for(h=0; h<Hi; h++) {
READ_DATA(Zigzag_blockIn, block, 1);
block = HuffmanEncoding(block, Htable);
WRITE_DATA(Output, block, 1);

} } } }

Figure 6. A simplified Huffman coding
process.

the correlated control structures that result in cyclic depen-
dence using the technique described in [4]. Note that our
schedulability analyzer computes the minimum set of FCSs
that has a cyclic dependence relation, once it proves a PN is
unschedulable. The minimum set of FCSs provides useful
information to find the correlated control structures.

Table 2 shows that for schedulable PNs, the run time
of checking cyclic dependence grows exponentially as the
number of FCSs increases. However, checking rank re-
mains efficient. In fact, checking rank takes less than 10
milliseconds for all of our experiments.

Our schedulability analyzer is effective because there ex-
ist certain program structures in the codecs. We illustrate
this using a Huffman coding process of a JPEG encoder.
Figure 6 shows a simplified description of the process. The
process first reads from a control process a header which in-

cludes all parameters necessary to perform Huffman coding
on a block. Then it iterates through all blocks of a com-
ponent in a Minimum Coded Unit (MCU). The Huffman
coding and reading from a zigzag process are performed at
the block level inside the loop. Since JPEG standard re-
quires samples of a component must use the same Huffman
coding table, and multiple component samples could be in-
terleaved within a compressed data stream, it needs to up-
date the Huffman table from time to time. Also note that
the loop has a variable number of iterations. The vertical
and horizontal sampling factors could be different for dif-
ferent components and only known at run-time. All of the
above requires communications inside and outside a loop
structure. The quantization process has a similar program
structure to the Huffman coding process, because samples
of a component are required to use the same quantization
table and processing and communication data is performed
at block level. The control process synchronizes the two
concurrent processes such that a block is processed in the
quantization process and later in a Huffman coding process
with the set of parameters (e.g. vertical and horizontal sam-
pling factors) of the same component.

Synchronized communications inside and outside a loop
structure are common in the codecs. However, the controls
of loops are abstracted as non-deterministic free choices in
a PN. These two factors cause unschedulability that can be
efficiently checked by our structural analysis. Note that this
particular code structure is just a special case that results in
cyclic dependence.

Figure 6.7: Statistics of schedulability analysis of Petri net models of JPEG and MPEG
codecs

Runtime
Instance Place Tran. Arc FCS Rank Schedulable Check Rank Check Dependence Scheduling
JPEGenc1 26 27 64 6 21 N <0.01s 0.19s 523.75s
JPEGenc2 67 68 167 14 57 N <0.01s 0.54s >24hr
MJPEGenc 117 124 330 25 108 N <0.01s 0.04s >24hr
MPEG2dec1 116 144 358 38 111 N <0.01s 0.25s >24hr
MPEG2dec2 115 106 309 8 97 Y <0.01s 17.28s 6.91s
MPEG4enc 72 72 184 15 63 N <0.01s 0.16s >24hr

Table 1. Statistics of schedulability analysis of PN models of JPEG and MPEG codecs

Runtime
Instance Place Tran. Arc FCS Rank Schedulable Check Rank Check Dependence Scheduling
choice3 6 9 20 3 5 Y <0.01s 0.01s <0.01s
choice4 7 11 25 4 6 Y <0.01s 0.02s 0.01s
choice5 8 13 30 5 7 Y <0.01s 0.05s 0.01s
choice6 9 15 35 6 8 Y <0.01s 0.14s 0.04s
choice7 10 17 40 7 9 Y <0.01s 0.45s 0.05s
choice8 11 19 45 8 10 Y <0.01s 1.42s 0.09
choice9 12 21 50 9 11 Y <0.01s 4.45s 0.29s
choice10 13 23 55 10 12 Y <0.01s 14.06s 0.87s
choice11 14 25 60 11 13 Y <0.01s 44.86s 1.06s
choice12 15 27 65 12 14 Y <0.01s 141.55s 4.43s

Table 2. Statistics of schedulability analysis of PNs in the test suite

PROCESS Huffman(
In_DPORT Control_headerIn,
In_DPORT Zigzag_blockIn,
Out_DPORT Output)

{
while(1) {

READ_DATA(Control_headerIn, header, 1);
Vi = getVSF(header);
Hi = getHSF(header);
Htable = getHtable(header);
for(v=0; v<Vi; v++) {

for(h=0; h<Hi; h++) {
READ_DATA(Zigzag_blockIn, block, 1);
block = HuffmanEncoding(block, Htable);
WRITE_DATA(Output, block, 1);

} } } }

Figure 6. A simplified Huffman coding
process.

the correlated control structures that result in cyclic depen-
dence using the technique described in [4]. Note that our
schedulability analyzer computes the minimum set of FCSs
that has a cyclic dependence relation, once it proves a PN is
unschedulable. The minimum set of FCSs provides useful
information to find the correlated control structures.

Table 2 shows that for schedulable PNs, the run time
of checking cyclic dependence grows exponentially as the
number of FCSs increases. However, checking rank re-
mains efficient. In fact, checking rank takes less than 10
milliseconds for all of our experiments.

Our schedulability analyzer is effective because there ex-
ist certain program structures in the codecs. We illustrate
this using a Huffman coding process of a JPEG encoder.
Figure 6 shows a simplified description of the process. The
process first reads from a control process a header which in-

cludes all parameters necessary to perform Huffman coding
on a block. Then it iterates through all blocks of a com-
ponent in a Minimum Coded Unit (MCU). The Huffman
coding and reading from a zigzag process are performed at
the block level inside the loop. Since JPEG standard re-
quires samples of a component must use the same Huffman
coding table, and multiple component samples could be in-
terleaved within a compressed data stream, it needs to up-
date the Huffman table from time to time. Also note that
the loop has a variable number of iterations. The vertical
and horizontal sampling factors could be different for dif-
ferent components and only known at run-time. All of the
above requires communications inside and outside a loop
structure. The quantization process has a similar program
structure to the Huffman coding process, because samples
of a component are required to use the same quantization
table and processing and communication data is performed
at block level. The control process synchronizes the two
concurrent processes such that a block is processed in the
quantization process and later in a Huffman coding process
with the set of parameters (e.g. vertical and horizontal sam-
pling factors) of the same component.

Synchronized communications inside and outside a loop
structure are common in the codecs. However, the controls
of loops are abstracted as non-deterministic free choices in
a PN. These two factors cause unschedulability that can be
efficiently checked by our structural analysis. Note that this
particular code structure is just a special case that results in
cyclic dependence.

Figure 6.8: Statistics of schedulability analysis of Petri nets in the worst-case test suite

FCSs. The analyzer has to check all subsets of FCSs and all covers of each subset.

6.6 Results and Analysis

We implemented our schedulability analyzer in C. All experiments were run on a

3.0 GHz Intel Pentium CPU with 512 MB memory. Since no other schedulability analyzer

is available, we compare its performance with a scheduler [16]. The scheduler performs a

schedulability analysis via heuristic construction of a schedule. Figure 6.7 summarizes the

experiment results of Petri nets modelling JPEG MPEG codecs. Our analyzer typically

proves a Petri net is not schedulable within a second, while the scheduler often fails to

82

terminate in 24 hours. Note that there are two instances modelling MPEG2 decoders,

MPEG2dec1 and MPEG2dec2. The former, generated from the original YAPI source code,

is not schedulable. The second, generated from a modified source code, is schedulable.

The modification removes the correlated control structures that result in cyclic dependence

using the technique described in [7]. Note that our schedulability analyzer computes the

minimum set of FCSs that has a cyclic dependence relation, once it proves a Petri net is

unschedulable. The minimum set of FCSs provides useful information to find the correlated

control structures.

Figure 6.8 shows that for schedulable Petri nets, the run time of checking cyclic

dependence grows exponentially as the number of FCSs increases. However, checking rank

remains efficient. In fact, checking rank takes less than 10 milliseconds for all of our exper-

iments.

Our schedulability analyzer is effective because there exist certain program struc-

tures in the codecs. We illustrate it using a Huffman coding process and quantization

process of a JPEG encoder. Figure 6.9 shows a simplified description of the processes. The

process first reads from a control process a header which includes all parameters necessary

to perform Huffman coding on a block. Then it iterates through all blocks of a component

in a Minimum Coded Unit (MCU). The Huffman coding and reading from a zigzag process

are performed at the block level inside the loop. Since JPEG standard requires samples of

a component must use the same Huffman coding table, and multiple component samples

could be interleaved within a compressed data stream, it needs to update the Huffman

table from time to time. Also note that the loop has a variable number of iterations. The

83

vertical and horizontal sampling factors could be different for different components and

only known at run-time. All the above requires communications inside and outside a loop

structure. The quantization process has a similar program structure to the Huffman coding

process, because samples of a component are required to use the same Quantization table

and processing and communication data is performed at block level. The control process

synchronizes the two concurrent processes such that a block is processed in the quantization

process and later in a Huffman coding process with the set of parameters (e.g. vertical and

horizontal sampling factors) of the same component.

Synchronized communications inside and outside a loop structure are common in

the codecs. However, the controls of loops are abstracted as non-deterministic free choices

in a Petri net. These two factors cause unschedulability that can be efficiently checked by

our structural analysis. Note that this particular code structure is just a special case that

result in unschedulability. Our analysis can be applied to general Petri net models.

84

PROCESS Huffman(
In_DPORT Control_headerIn,
In_DPORT Zigzag_blockIn,
Out_DPORT Output)

{
while(1) {

READ_DATA(Control_headerIn, header, 1);
Vi = getVSF(header);
Hi = getHSF(header);
Htable = getHtable(header);
for(v=0; v<Vi; v++) {
for(h=0; h<Hi; h++) {

READ_DATA(Zigzag_blockIn, block, 1);
block = HuffmanEncoding(block, Htable);
WRITE_DATA(Output, block, 1);

} } } }

PROCESS Quantization(
In_DPORT Control_headerIn,
In_DPORT DCT_blockIn,
Out_DPORT Zigzag_blockOut)

{
while(1) {

READ_DATA(Control_headerIn, header, 1);
Vi = getVSF(header);
Hi = getHSF(header);
Qtable = getQtable(header);
for(v=0; v<Vi; v++) {
for(h=0; h<Hi; h++) {

READ_DATA(DCT_blockIn, block, 1);
block = Quantization(block, Qtable);
WRITE_DATA(Zigzag_blockOut, block, 1);

} } } }

Figure 6.9: A simplified Huffman coding process and a simplified quantization process.

85

Chapter 7

Conclusion and Future Work

We formulated the compile-time schedulability problem of concurrent programs as

the schedulability problem of a general Petri net. We formally defined the schedulability

of Petri nets and provided several sufficient conditions for checking unschedulability using

linear algebra and linear programming techniques. Our experimental results indicate that

these techniques effectively and efficiently detect unschedulability of Petri nets for practical

examples. They help to identify the correlated control structures in original programs that

cause unschedulability.

Our work provides a sound foundation for further investigation of compile-time

schedulability based on Petri nets. We list below some interesting research directions.

7.1 Dependence Considering Firability

We defined a dependence relation between transitions statically based on the ex-

istence of T-invariants. However, not every T-invariant may be firable in a Petri net. If the

86

dependency relation is violated because of non-firable T-invariants, our approach would fail

to establish unschedulability. Taking into account firability of T-invariants would increase

the resolution power of the proposed method.

7.2 Petri Net Subclasses

The cyclic dependence theorem and the rank theorem provide only sufficient condi-

tions for unschedulability. One possible research direction is to look for subclasses of Petri

nets (e.g. free choice Petri net) for which these conditions are also necessary, or weaker

sufficient conditions can be proved. Petri net models of concurrent programs in many ap-

plications are free-choice Petri nets. Due to the existing rich free-choice Petri net theory,

the research direction is particularly promising.

7.3 Cyclic Dependence Theorem and Rank Theorem

Though we treat the cyclic dependence theorem and the rank theorem as two

independent approaches to schedulability analysis, we believe that they have connections.

It would be interesting if one could establish a direct relation between the rank of the

incidence matrix and the existence of cyclic dependence relation.

7.4 Folding Infinite Schedule

Our results can be used to represent the unbounded parts of the schedule in an

implicit but finite form. Hence, we believe an implementation could be derived that guaran-

tees boundedness as long as a system functions in a “good” part of the schedule and raising

87

the flag when it enters a potentially unbounded part. This approach would significantly

extend the applicability of quasi-static scheduling for practical applications.

88

Bibliography

[1] The ptolemy project. URL: http://ptolemy.eecs.berkeley.edu.

[2] Sesame project public release. URL: http://sesamesim.sourceforge.net.

[3] Stanford PVRG JPEG codec. URL: http://www.dclunie.com/jpegge.html.

[4] XviD MPEG-4 video codec. URL: http://www.xvid.org.

[5] Spw 5-xp - the dsp workbench. In CoWare, Inc, 2004.

[6] M. D. Anna and S. Trigila. Concurrent system analysis using petri nets: an optimized

algorithm for finding net invariants. Comput. Commun., 11(4):215–220, 1988.

[7] G. Arrigoni, L. Duchini, L. Lavagno, C. Passerone, and Y. Watanabe. False path

elimination in quasi-static scheduling. In Proceedings of the Design Automation and

Test in Europe Conference, March 2002.

[8] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio Passerone,

and Alberto Sangiovanni-Vincentelli. Metropolis: An integrated electronic system de-

sign environment. Computer, 36(4):45–52, 2003.

http://ptolemy.eecs.berkeley.edu
http://sesamesim.sourceforge.net
http://www.dclunie.com/jpegge.html
http://www.xvid.org

89

[9] Shamik Bandyopadhyay. Automated memory allocation of actor code and data buffer

in heterochronous dataflow models to scratchpad memory. Master’s thesis, University

of California, Berkeley, 2005.

[10] J. T. Buck. Scheduling dynamic dataflow graphs with bounded memory using the token

flow model. PhD thesis, University of California, Berkeley, 1993.

[11] J. T. Buck. Static scheduling and code generation from dynamic dataflow graphs with

integer valued control streams. In Proceedings of the 28th Asilomar conference on

Signals, Systems, and Computer, October 1994.

[12] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy:

A framework for simulating and prototyping heterogenous systems. Int. Journal in

Computer Simulation, 4(2):0–, 1994.

[13] Y. Chen, W. T. Tsai, and D. Chao. Dependency analysis-a petri-net-based tech-

nique for synthesizing large concurrent systems. IEEE Trans. Parallel Distrib. Syst.,

4(4):414–426, 1993.

[14] Citation removed to allow blind review.

[15] J. Cortadella, A. Kondratyev, L. Lavagno, M. Massot, S. Moral, C. Passerone,

Y. Watanabe, and A. Sangiovanni-Vincentelli. Task Generation and Compile-Time

Scheduling for Mixed Data-Control Embedded Software. In Proceedings of the 37th

Design Automation Conference, June 2000.

[16] J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone, and Y. Watanabe. Quasi-

90

static scheduling of independent tasks for reactive systems. IEEE Transactions on

Computer-Aided Design, 2004.

[17] J. Cortadella, A. Kondratyev, L. Lavagno, and A. Taubin Y. Watanabe. Quasi-static

scheduling for concurrent architectures. Fundamenta Informaticae, 62, 2004.

[18] Jordi Cortadella, Alex Kondratyev, Luciano Lavagno, C. Passerone, and Y. Watanabe.

Quasi-static scheduling of independent tasks for reactive systems. In Proceedings of

the 23rd International Conference on Applications and Theory of Petri Nets, pages

80–100, 2002.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In 4th ACM Symp.

on Principles of Programming Languages, Los Angeles, January 1977.

[20] E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf, J.-Y. Brunel, W.M. Krui-

jtzer, P. Lieverse, and K.A. Vissers. YAPI: Application Modeling for Signal Processing

Systems. In Proceedings of the 37th Design Automation Conference, June 2000.

[21] Joerg Desel. Private communication, August 2004.

[22] Jorg Desel and Javier Esparza. Free choice Petri nets, volume 40 of Cambridge Tracts

In Theoretical Computer Science. Cambridge University Press, New York, NY, USA,

1995.

[23] S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli. Design of embedded

systems: formal models, validation, and synthesis. Proceedings of the IEEE, 85(3):366–

390, March 1997.

91

[24] Javier Esparza. Decidability and complexity of petri net problems - an introduction.

In Petri Nets, pages 374–428, 1996.

[25] R. Lauwereins G. Bilsen, M. Engels and J. A. Peperstraete. Cyclostatic dataflow. IEEE

Trans. Signal Processing, 44:397–408, 1996.

[26] A. Girault, B. Lee, and E.A. Lee. Hierarchical finite state machines with multiple con-

currency models. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 18(6):742–760, June 1999.

[27] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic

Publishers, 1993.

[28] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by

means of convex approximations. In B. LeCharlier, editor, International Symposium

on Static Analysis, SAS’94, 1994.

[29] Philp Hall. On representatives of subsets. Journal of the London Mathematical Society,

10:26–30, 1935.

[30] D. Har’el, H. Lachover, A. Naamad, A. Pnueli, et al. STATEMATE: a working en-

vironment for the development of complex reactive systems. IEEE Transactions on

Software Engineering, 16(4), April 1990.

[31] C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer

Science. Prentice-Hall, 1985.

92

[32] G. Kahn. The semantics of a simple language for parallel programming. In Information

processing, pages 471–475, Aug 1974.

[33] G. Kahn and David B. MacQueen. Coroutines and networks of parallel processes. In

Information processing, pages 993–998, Aug 1977.

[34] A. Kalavade and E.A. Lee. A hardware-software codesign methodology for DSP appli-

cations. IEEE Design and Test of Computers, 10(3):16–28, September 1993.

[35] H. Kopetz and G. Grunsteidl. TTP – A protocol for fault-tolerant real-time systems.

IEEE Computer, 27(1), January 1994.

[36] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow graphs

for digital signal processing. IEEE Transactions on Computers, January 1987.

[37] Y.T.S. Li and S. Malik. Performance analysis of embedded software using implicit path

enumeration. In Proceedings of the Design Automation Conference, June 1995.

[38] Paul Lieverse, Todor Stefanov, Pieter van der Wolf, and Ed Deprettere. System level

design with spade: an m-jpeg case study. In Proceedings of IEEE/ACM International

Conference on Computer Aided Design, pages 31–88, Nov 2001.

[39] J. Martinez and M. Silva. A simple and fast algorithm to obtain all invariants of a

generalized petri net. In Informatik-Fachberichte 52: Application and Theory of Petri

Nets, pages 301–310. Springer-Verlag, 1982.

[40] H. Mathony. Universal Logic Design Algorithm and its Application to the Synthesis of

Two-level Switching Circuits. IEE Proceedings, 136 Pt. E(3), May 1989.

93

[41] T. Murata. Petri nets: properties, analysis, and applications. Proceedings of the IEEE,

77(4):541–580, April 1989.

[42] T. Murata. Petri Nets: Properties, analysis and applications. Proceedings of the IEEE,

pages 541–580, April 1989.

[43] T. M. Parks. Bounded scheduling of process networks. PhD thesis, University of Cali-

fornia, Berkeley, 1995.

[44] C. Passerone, Y. Watanabe, and L. Lavagno. Generation of minimal size code for sched-

ule graphs. In Proceedings of the Design Automation and Test in Europe Conference,

March 2001.

[45] Andy D. Pimentel. Modeling XviD as a Kahn process network, a Sesame application

design document. URL: http://staff.science.uva.nl/∼andy/apps/xvid.pdf.

[46] Marco Sgroi, Luciano Lavagno, Yosinori Watanabe, and Alberto Sangiovanni-

Vincentelli. Synthesis of embedded software using free-choice petri nets. In DAC ’99:

Proceedings of the 36th ACM/IEEE conference on Design automation, pages 805–810,

New York, NY, USA, 1999. ACM Press.

[47] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere. System Design

using Kahn Process Networks: The Compaan/Laura Approach. In Proceedings of the

Design Automation and Test in Europe Conference, February 2004.

[48] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and et al. Scheduling hardware/software

systems using symbolic techniques. In International Workshop on Hardware/Software

Codesign, 1999.

http://staff.science.uva.nl/~andy/apps/xvid.pdf

94

[49] Karsten Strehl, Lothar Thiele, Dirk Ziegenbein, Rolf Ernst, and Jürgen Teich.

Scheduling hardware/software systems using symbolic techniques. In Proceedings of the

seventh international workshop on Hardware/software codesign, pages 173–177, 1999.

[50] F. Thoen, M. Cornero, G. Goossens, and H De Man. Real-time multi-tasking in soft-

ware synthesis for information processing systems. In Proceedings of the International

System Synthesis Symposium, 1995.

[51] P. van der Wolf, P. Lieverse, M. Goel, D.L. Hei, and K. Vissers. An MPEG-2 Decoder

Case Study as a Driver for a System Level Design Methodology. In Proceedings of the

7th International Workshop on Hardware/Software Codesign, May 1999.

[52] P. Wauters, M. Engels, R. Lauwereins, and J.A. Peperstraete. Cyclo-dynamic dataflow.

In Proceedings of the 4th EUROMICRO Workshop on Parallel and Distributed Process-

ing, January 1996.

95

Appendix A

Another Proof of Proposition 1

Given a Petri net N with two FCSs S1 = {t1, t2}, S2 = {t3, t4}, if t1 � t3 and

t4 � t2, then for any marking M of N , there exists no schedule of (N,M) involving S1 or

S2.

Proof : We show that the unfolding G′(V ′, E′, r′) of a valid schedule G(V,E, r)

with S1 or S2 involved is infinite, which violates finiteness of a schedule.

The proof proceeds by showing the validity of at least one of the two statements:

I1: G′ contains an infinite path r′ v′1
t1→ y′1 v′2

t1→ y′2 · · · , such that the firing

sequence corresponding to the path from r to vk (k = 1, 2, . . .) does not contain transition

t3.

I2: G′ contains an infinite path r′ u′1
t4→ z′1 u′2

t4→ z′2 · · · , such that the firing

sequence corresponding to the path from r to uk (k = 1, 2, . . .) does not contain transition

t2.

In G′ let us choose vertex v′ in which transitions from S1 or S2 are enabled and v′

96

to be the closest vertex to the root r′ with this property. This vertex exists because S1 or

S2 is involved in a schedule. Without loss of generality we may assume that S1 is enabled

in v′. Then v′1 = v′ in proving I1.

From Property 5 of a schedule, follows that there exists w′, v′ ∈ V ′ such that the

path from v′ to w′ contains t1 and µ(w′) = µ(v′). This path corresponds to a firing sequence

σ that makes a cycle from marking µ(v′) back to itself and hence σ̄ is a T-invariant. t1 � t3

implies t3 ∈ σ. Therefore, σ contains a vertex u′ such that u′
t3→. Let u′ be the closest

descendant of v′ with t3 enabled.

Let us consider path σ1 ⊂ σ that goes from v′ to u′. Two cases are possible.

Case 1. If t2 ∈ σ1 then σ1 goes through vertex v′2 with enabled t2. t1 and t2

are from the same FCS and hence t1 is also enabled in v′2. Clearly the path from r′ to v′2

does not contain t3 and therefore v′2 satisfies the conditions of I1 and is a descendant of v′1.

Repeating the consideration for v′2 one can conclude about the existence of infinite path

satisfying I1.

Case 2. Suppose that t2 6∈ σ1. Then the path from r′ to u′ does not contain

transition t2. In addition t4 is enabled in u′ (being in the same FCS as t3) and therefore

one can use u′ as u′1 in proving I2.

Bearing in mind that t4 � t2 and applying the same arguments for closing the

cycle from u′1 one can conclude that there must exist a path δ from u′1 to v′2 in which t2 is

enabled. If δ does not contain t3 then v′2 satisfies the conditions of I1, which is the basis

for constructing an infinite path. If δ contains t3 then by choosing the first firing of t3 in δ,

one can obtain a vertex u′2 in which t3 is enabled together with t4, and u′2 is a descendants

97

of u′1. This proves I2. �

	List of Figures
	Introduction
	Concurrent Models for Embedded Systems
	Kahn Process Networks
	Synchronous Dataflow
	Boolean Dataflow
	Petri Nets
	Free Choice Petri Net

	Quasi-Static Scheduling
	Major Results

	Schedule of Petri Net
	Related Work
	Free Choice Set
	Definition of Schedule
	Schedule Unfolding
	Schedulability
	False Path Problem

	The Cyclic Dependence Theorem
	A Motivational Example
	Pairwise Transition Dependence Relation
	Proof of a Special Case of Cyclic Dependence Theorem
	Extending Pairwise Dependence
	General Transition Dependence Relation

	Algorithms Checking Cyclic Dependence
	Checking Cyclic Dependence with Linear Programming
	Checking Cyclic Dependence with Generating Sets

	The Rank Theorem
	Related Work
	Proof of the Rank Theorem
	Comparison with Cyclic Dependence

	Experiments
	MPEG-2 Decoder
	M-JPEG* Encoder
	XviD MPEG4 Encoder
	PVRG JPEG Encoder
	Worst-Case Tests
	Results and Analysis

	Conclusion and Future Work
	Dependence Considering Firability
	Petri Net Subclasses
	Cyclic Dependence Theorem and Rank Theorem
	Folding Infinite Schedule

	Bibliography
	Another Proof of Proposition 1

