
Tetrahedral Mesh Generation with Good Dihedral
Angles Using Point Lattices

Francois Labelle

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-104

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-104.html

August 17, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Tetrahedral Mesh Generation with Good Dihedral Angles
Using Point Lattices

by

François Labelle

B.Sc. (McGill University) 1997
M.Sc. (McGill University) 2000

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jonathan Shewchuk, Chair
Professor James F. O’Brien

Professor Panayiotis Papadopoulos

Fall 2007

The dissertation of François Labelle is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2007

Abstract

Tetrahedral Mesh Generation with Good Dihedral Angles

Using Point Lattices

by

François Labelle

Doctor of Philosophy

in

Computer Science

University of California, Berkeley

Professor Jonathan Shewchuk, Chair

Three-dimensional meshes are frequently used to perform physical simulations in sci-

ence and engineering. This involves decomposing a domain into a mesh of small ele-

ments, usually tetrahedra or hexahedra. The elements must be of good quality; in partic-

ular there should be no plane or dihedral angle close to 0 or 180 degrees. Automatically

creating such meshes for complicated domains is a challenging problem, especially guar-

anteeing good dihedral angles, a goal that has eluded researchers for nearly two decades.

By using point lattices, notably the body centered cubic lattice, we develop two tetrahe-

dral mesh generation algorithms that, for the first time, come with meaningful guarantees

on the quality of the elements.

For domains bounded by an isosurface, we generate a tetrahedral mesh whose dihedral

angles are bounded between 10.7 and 164.8 degrees, or (with achange in parameters) be-

tween 8.9 and 158.8 degrees. The algorithm is numerically robust and easy to implement

because it generates tetrahedra from a small set of precomputed stencils. The algorithm

1

is so fast that it can be invoked at each time step of a simulation, possibly in real time for

small meshes. The tetrahedra are uniformly sized on the boundary, but in the interior it is

possible to make them progressively larger. This combination of features makes the algo-

rithm well suited for dynamic fluid simulation. If the isosurface is a smooth 2-manifold

with bounded curvature, and the tetrahedra are sufficientlysmall, then the boundary of

the mesh is guaranteed to be a geometrically and topologically accurate approximation of

the isosurface.

For polyhedral domains, Delaunay refinement is a common meshgeneration tech-

nique that produces guaranteed-quality tetrahedra with one exception: sliver-shaped tetra-

hedra that can have dihedral angles arbitrarily close to 0 and 180 degrees. We show how

slivers away from the boundary can be avoided by inserting lattice points while maintain-

ing the Delaunay property of the mesh. It is possible to control the size of tetrahedra, this

time both in the interior and on the boundary, and a user may input a set of points which

must be vertices of the output mesh. The resulting dihedral angles are guaranteed to be

between 30 and 135 degrees, except near the boundary.

Most angle bounds are obtained by recursive bisection of thespace of possible tetrahe-

dron configurations together with interval arithmetic. They are guaranteed by computer-

assisted proofs.

Chair Date

2

Acknowledgments

I would like to thank my advisor Jonathan Shewchuk for his guidance and support,

and the Berkeley Graphics group for feedback. I also thank Nuttapong Chentanez for

providing isosurface code and geometric models, and Carlo Séquin for theWhirled White

Webmodel.

This work was supported in part by the National Science Foundation under Awards

CCR-0204377, CCF-0430065 and CCF-0635381, and in part by anAlfred P. Sloan Re-

search Fellowship.

i

Contents

1 Introduction 1

1.1 The Mesh Generation Problem . 3

1.1.1 Domain Representation . 3

1.2 Mesh Quality . 6

1.2.1 Quality Measures . 9

1.2.2 Size-Optimality . 10

1.3 Point Lattices . 11

1.4 Summary of Results . 13

2 Previous Work 15

2.1 Background Grids . 15

2.1.1 Surface Meshes . 16

2.1.2 Volume Meshes . 17

2.2 Quadtree and Octree . 18

2.3 Delaunay . 19

2.4 Other Mesh Generation Techniques 24

ii

3 Tetrahedral Meshing Inside an Isosurface 27

3.1 Uniform Tetrahedra . 29

3.1.1 Creating the Background Grid 33

3.1.2 Computing Cut Points . 33

3.1.3 Warping the Background Grid 34

3.1.4 Triangulating the Background Grid37

3.2 Mesh Examples . 41

3.3 Computer-Assisted Proofs of Angle Bounds 43

3.3.1 Extrema of a Function ofn Variables 46

3.3.2 Extrema of Elementary Geometric Computations 47

3.3.3 Dihedral Angles . 49

3.3.4 Plane Angles . 51

3.4 Approximation Guarantees .52

3.4.1 Arbitrary Isosurfaces . 52

3.4.2 Isosurfaces with Bounded Curvature 57

3.5 Graded Interior Tetrahedra .. 64

3.5.1 Four Kinds of Tetrahedra . 65

3.5.2 Non-Standard Octree . 67

3.5.3 Conditions Close to the Isosurface 68

3.5.4 Interior Grading . 71

3.5.5 Mesh Generation . 73

3.6 Discussion . 73

4 Delaunay Refinement Without Slivers 77

iii

4.1 Delaunay Refinement . 79

4.1.1 Delaunay Triangulation Algorithms 81

4.1.2 Data Structures . 82

4.2 Simplified Mesh Generation . 82

4.2.1 Sizing Function and Local Feature Size 84

4.3 Uniform Tetrahedra . 86

4.4 Graded Tetrahedra . 87

4.4.1 Algorithm . 89

4.4.2 Analysis . 93

4.5 Adding Vertex Constraints .97

4.5.1 Algorithm . 102

4.5.2 Analysis . 105

4.6 Discussion . 114

Bibliography 116

iv

Chapter 1

Introduction

Meshes of small elements are often used to simulate physicalphenomena numerically

on a computer. In engineering, numerical simulations can help design and test planes,

bridges or components before they are built. This can decrease costs and increase de-

velopment speed where prototypes were once needed. In science, the same techniques

can be used for a wide range of problems like modeling tides orstar interiors. Due to

the success of these methods, more difficult problems are tackled, for example in biology

where geometry tends to be complicated and curved, hence harder to mesh. Figure 1.1

shows example applications.

In computer graphics, the traditional thinking is that onlythe surface of an object is

visible so only surface meshes are necessary. However, volume meshes are used increas-

ingly as researchers incorporate physical simulations in graphics to automatically animate

liquids and gasses, or objects that bend, crack or break. As computing performance im-

proves, some of these simulations are starting to appear in computer games to make the

virtual environment more realistic.

1

Chapter 1. Introduction

Figure 1.1: Part of an exterior mesh used for computational fluid dynamics and
part of a mesh of a femur used for stress analysis.

The finite element method(FEM) is the most common way of solving a partial dif-

ferential equation (PDE) over a meshed domain. The theory for elliptic problems is well

understood and enjoys some nice results; for example a piecewise linear approximation is

sufficient to solve an elliptic PDE of order 2 (such as heat diffusion or elasticity), and in

general a piecewise approximation of degree m is sufficient to solve an elliptic PDE of or-

der 2m. See the book by Johnson [48] for an introduction to theFEM and the mathematics

behind it.

The mesh can follow the material as it moves (Lagrangian formulation), or stay fixed

in space as the material flows through it (Eulerian formulation). Those two possibilities

are normally used for solids and fluids, respectively, but the reverse is technically possible.

There is a third possibility: the mesh is allowed to move but doesn’t necessarily have to

track the material. This extremely flexible formulation is called Arbitrary Lagrangian

Eulerian(ALE); see for example the survey of Donea et al. [30].

In very difficult applications, some people have developed methods that do not require

2

Chapter 1. Introduction

a mesh, called “meshfree methods”. One commonly cited earlyexample issmoothed par-

ticle hydrodynamics, introduced in 1977 by Lucy [60] and Gingold and Monaghan [44].

Meshfree methods have some drawbacks: they are computationally expensive and bound-

ary conditions are harder to impose. Ironically, a mesh is often used at one step of the

method, for example to perform the numerical integration ofthe special basis functions.

1.1 The Mesh Generation Problem

Given a description of the domain geometry, the goal is to produce a mesh of elements that

fill the domain. Sometimes we are also given asizing functiondefined over the domain to

control element sizes.

The mesher doesn’t usually depend on other details of the application (for example

which differential equation is going to be solved with the mesh). This means that the

same mesh generation code can be used for many different applications.

For more background on mesh generation, see the survey by Bern and Plassmann [10].

1.1.1 Domain Representation

Domain geometry can be represented in many different ways which we classify as explicit

or implicit.

Explicit Representation

In anexplicit representation, we are given a list of vertices, segments and facets bounding

the domain. A common example is apiecewise linear complex[62] which can be used

to represent polyhedral domains (internal vertices, segments and facets are also allowed).

3

Chapter 1. Introduction

Figure 1.2: A piecewise linear complex can be the input to a mesh generator
(J. Shewchuk).

Self-intersection is not allowed unless the intersection is explicitly resolved with vertices,

segments and facets. See Figure 1.2.

When meshing such a domain, input vertices must be part of theoutput mesh. Input

segments and facets must appear unchanged or as a union of subsegments or subfacets.

Extension to curved segments and facets is possible [72, 15]. Sharp features are ex-

plicitly listed and must be accurately represented by the mesh. This is similar to boundary

representation (B-rep) in computer-aided design.

Implicit Representation

In an implicit representation, the domain is defined as the volume bounded by a given

isosurface. An isosurface is a surface of constant value{p : f(p) = c} wheref : R
3 → R

is a scalar field called acut functionthat the mesher can interrogate. See Figure 1.3.

Minimally, the domain can be defined implicitly by a black boxthat tells if a point is

“inside” or “outside” without returning any numerical value.

This is a convenient representation in many cases. For example when simulating

a moving liquid, an inside/outside query at a pointp for the current time step can be

4

Chapter 1. Introduction

f (x, y
f x, y
f (x, y

) = − 0.1
) = − 0.2
) = − 0.3

(

f () = 0x, y

f (x, y
f (x, y
f (x, y) = 0.3

) = 0.2
) = 0.1

Figure 1.3: A two-dimensional example showing 7 isosurfaces. The zero-surface
is the isosurface where the function f is zero. The inside and outside regions
correspond to positive and negative values of f , respectively.

answered by movingp backward in time using the estimated velocity field and querying

the previous time step—a method calledsemi-Lagrangian advection[7]. By contrast,

maintaining an explicit representation of a liquid surfacewould be considerably harder.

Isosurfaces are produced by several algorithms for surfacereconstruction [88, 67, 77].

Even for geometric models that do not use isosurfaces, it is usually possible to compute

a suitable cut functionf by approximating thesigned distance function, which is the dis-

tance from a pointp to the boundary of the domain, using a negative distance for points

outside the domain. Signed distance functions can be approximated from geometric mod-

els or voxel data by fast marching level set methods [76, 68].An algorithm of Bærentzen

and Aanæs [5] for watertight triangular surface meshes computes just the sign, which

suffices for our algorithm.

It is theoretically possible to represent sharp features with an implicit representation,

5

Chapter 1. Introduction

ideal good bad

Figure 1.4: The shape of a tetrahedron is important for numerical methods.

but if the mesher is unaware of this, corners and edges of the domain could be rounded

off. There has been some work in detecting sharp features in implicit surfaces [49], but

we feel that this is an exercise in recovering information that should not have been lost. If

there are important sharp features then it is better to represent them explicitly.

1.2 Mesh Quality

The quality of a mesh depends on the quality of its elements, which in turn depends on the

application. In most applications, tetrahedra that are close to regular are favored, while

tetrahedra that are close to degenerate should be avoided [26, 38], see Figure 1.4. In this

section we explain the main reasons for this.

Often, a mesh is used to approximate a function over a domain.For example, given

a tetrahedral mesh and values at its vertices (or a triangular mesh in two dimensions), we

can linearly interpolate the vertex values over each individual tetrahedron (or triangle).

This creates a piecewise linear approximation over the meshed domain.

In what follows,f : R
3 → R is a function with a bound on curvature of2ct inside a

tetrahedront (i.e. a bound of2ct on the second derivative at a point oft in any direction).

6

Chapter 1. Introduction

5

values of f5 6

5
6

6

∆

g arbitrarily large gradient

Figure 1.5: Although the function f is close to constant, linear interpolation of f
over this tetrahedron gives a function g with a large gradient.

Given the value off at the 4 vertices oft, let g be the approximation obtained by linear

interpolation.

Interpolation Error

A bound on the piecewise interpolation error in the tetrahedron t can be given in terms

of lmax, the maximum edge length oft. A tighter bound is possible in terms ofrmc, the

radius of theminimum containmentsphere oft, i.e. the smallest sphere that enclosest.

The bounds [80] are

|f − g| ≤ ctr
2
mc ≤ ct

3

8
l2max.

In short, the shape of an element doesn’t affect the interpolation error, only its size

does.

Gradient Error

In many applications, including the finite element method, the approximationg must also

give accurate derivatives. Bounds on the gradient error‖∇f−∇g‖2 are more complicated

and given by Shewchuk [80]. The conclusion is that plane and dihedral angles near0◦

7

Chapter 1. Introduction

dihedral angle
θ

edge length
l -10

-5

 0

 5

 10

 0 1 2 3

1/tan(x)

Figure 1.6: If a dihedral angle is close to 0◦ or 180◦, a stiffness matrix entry of the
form ± l

6
cot θ can be arbitrarily large because of the cotangent.

don’t cause an error in gradient, but plane and dihedral angles near180◦ do. See Figure 1.5

for an example with two large dihedral angles.

Stiffness Matrix Conditioning

In the finite element method, a partial differential equation is converted into a large, sparse

linear system to be solved. For example, when solving Poisson’s equation with linear ele-

ments, each edge of each tetrahedron contributes four matrix entries of the form± l
6
cot θ

wherel is the edge length andθ is the dihedral angle at that edge (see Figure 1.6). Be-

cause the expression contains a cotangent, dihedral anglesnear0◦ or near180◦ can cause

large matrix entries which lead to poor matrix conditioning.

Anisotropy

The considerations so far assumed that the phenomenon to be modeled isisotropic, i.e.

the same in all directions. In some applications, a PDE or itssolution can beanisotropic,

the opposite. An example is fluid flow close to a boundary, which tends to be uniform

along the boundary but varies dramatically in the orthogonal direction. In such cases,

8

Chapter 1. Introduction

θ ϕ

Figure 1.7: A tetrahedron has 6 dihedral angles (one per edge of the tetrahedron)
and 12 plane angles (3 on each of its 4 triangular faces). One angle of each
type is illustrated. The dihedral angle at an edge is the angle between the two
triangular faces incident on it.

skinny elements that are correctly aligned are desirable [73]. We do not attempt to create

anisotropic meshes in this thesis.

1.2.1 Quality Measures

Many measures of tetrahedron quality have been proposed to express the requirements

imposed by numerical methods. A possible quality measure, the radius ratio, is given

by the inscribed sphere radius divided by the circumscribedsphere radius. Most of the

proposed measures are asymptotically equivalent in the sense that a bound on one implies

a bound on the others [57]. In this thesis, we focus on dihedral angles and plane angles

(see Figure 1.7) because they directly appear in error boundexpressions for tetrahedra

and triangles, and they are easy to interpret. Since a singlebad element can potentially

ruin a whole simulation, it is desirable to guarantee the quality of every element of the

mesh.

9

Chapter 1. Introduction

Covering Efficiency

Good quality elements with a large volume are preferable over those with a small volume

because fewer of them will be needed to cover the mesh.

Given a fixed element budget for the mesh and a quality measurethat favors small

elements, a good mesh optimizer will tend to create “fat” elements even if the volume

of the element is not explicitly part of the quality measure.In some cases, it might be

necessary to include the volume of the element in the qualitymeasure to obtain reasonable

covering efficiency.

1.2.2 Size-Optimality

It is normally much easier to refine a mesh (add vertices) thanto simplify a mesh (remove

vertices) while maintaining mesh quality. For this reason,mesh generators are often

compared based on their ability to create a good quality meshwith as few elements as

possible, knowing that if more elements are needed then thiswon’t be a problem. In the

following definition we compare a mesh with the “optimal” mesh.

Definition 1 (Size-Optimality) A mesh that satisfies some quality bound is said to be

size optimalif its number of elements is at most a constant factor larger than the number

of elements in any other mesh of the same domain that satisfiesthe same quality bound.

The constant may be a function of the quality bound, but cannot depend on the mesh.

10

Chapter 1. Introduction

1

... ...

SC BCC SC BCC1 01 0

U U U U U

Figure 1.8: The point sets SCk and BCCk for k ∈ Z form an infinite sequence of
nested lattices.

1.3 Point Lattices

Point lattices are common in mineralogy where they represent the structure of many crys-

tals. These regular point sets lead to simple grids that can be used directly in some numeri-

cal methods, but more interestingly they can be used as a backbone for more sophisticated

meshing algorithms. They are the special ingredient of thisthesis.

Below we define two families of lattices that are used in this thesis. The first one

simply corresponds to the vertices of a regular grid of cubes. For conciseness, we define

addition and scalar multiplication of point sets as follows:

A + B = {a + b : a ∈ A andb ∈ B},

cA = {ca : a ∈ A}.

Definition 2 (Simple Cubic Lattice) The simple cubic latticeSC0 and its scalingSCk

by powers of two are defined as

SC0 = Z
3,

SCk = 2kSC0 for k ∈ Z.

11

Chapter 1. Introduction

The next lattice can be obtained from the simple cubic lattice by adding new vertices

at the center of each cube.

Definition 3 (Body-Centered Cubic Lattice) The body-centered cubic latticeBCC0 and

its scalingBCCk by powers of two are defined as

BCC0 = {(0, 0, 0), (1
2
, 1

2
, 1

2
)} + Z

3,

BCCk = 2kBCC0 for k ∈ Z.

The following lattice is mentioned for comparison only. It is known to describe a

sphere packing of maximum density, but is not used in this thesis.

Definition 4 (Face-Centered Cubic Lattice) The face-centered cubic latticeFCC0 and

its scalingFCCk by powers of two are defined as

FCC0 = {(0, 0, 0), (1
2
, 1

2
, 0), (1

2
, 0, 1

2
), (0, 1

2
, 1

2
)} + Z

3,

FCCk = 2kFCC0 for k ∈ Z.

The sets above are calledpoint latticesbecause they are discrete subgroups of Eu-

clidean space under vector addition of point coordinates. Other regular point patterns,

such as the centers of spheres in a hexagonal close packing, do not share this property.

None of our results depend on this subgroup property, so non-lattice point sets can be

used in future work if the lattices that we have chosen turn out to have limitations.

Proposition 1 (Nesting of Lattices)

BCCk+1 ⊂ SCk ⊂ BCCk for k ∈ Z.

12

Chapter 1. Introduction

The nesting of lattices is illustrated in Figure 1.8. A latticeL1 is said to befiner than

a latticeL2 if L1 ⊃ L2. L1 is said to becoarserthanL2 if L1 ⊂ L2.

1.4 Summary of Results

In Chapter 3, we show how a background grid of lattice points can be used to generate

a high-quality mesh for bodies whose boundaries are smooth surfaces. The method is

surprisingly quick and easy, and it offers numerical robustness and tetrahedron quality,

which is particularly reassuring for simulations that needto generate new meshes fre-

quently, perhaps even at frame rates.

The algorithm is not heuristic; it absolutely guarantees that all the dihedral angles of

all the tetrahedra it generates are between10.78◦ and164.74◦. To our knowledge, it is the

first tetrahedral mesh generation algorithm of any sort thatboth offers meaningful bounds

on dihedral angles and conforms to the boundaries of geometric domains with compli-

cated shapes. Significant provable bounds on dihedral angles (1◦ or over) are virtually

unheard of outside of space-filling or slab-filling tetrahedralizations.

Besides high-quality tetrahedra, the algorithm offers three other guarantees, described

in Section 3.4. First, every vertex on the boundary of the mesh lies on thezero-surface

{p : f(p) = 0}, presuming that the client can answer a query requesting a zero-surface

point that intersects a specified line segment. Second, any point p sufficiently far from the

zero-surface is correctly classified, in the sense that it isinside the mesh iff(p) is positive,

and outside the mesh iff(p) is negative. (Our notion of “sufficiently far” scales with the

tetrahedron size. See Corollary 5.) The only precondition for these two guarantees to

hold is thatf be continuous. The third guarantee is that if the zero-surface is a smooth

13

Chapter 1. Introduction

2-manifold with bounded curvature, and if the tetrahedra are sufficiently small, then the

boundary of the mesh is homeomorphic to the zero-surface. (We also guarantee ambient

isotopy. See Theorem 8.)

These guarantees imply that the triangles on the boundary ofthe mesh collectively

form an accurate approximation of the boundary of the domain. This is important because

the boundary is often where the most interesting physics occurs, and is the part of the

domain that is most frequently rendered.

In Chapter 4, we show how point lattices can be used in a different type of mesh gen-

eration algorithm where a mesh is iteratively constructed by inserting one vertex at a time,

and the domain to be meshed can have sharp features. The algorithm can create a mesh

from scratch, or fix a pre-existing mesh by adding more vertices. It guarantees dihedral

angles between30◦ and135◦ away from the boundary. In comparison, previous bounds

on dihedral angles were microscopic. Unfortunately, the algorithm offers no guarantee

close to be boundary, where sliver-shaped tetrahedra can exist.

The algorithm accommodates two kinds of constraints: a usermay input a set of

points which must be vertices of the output mesh, and the tetrahedron sizes cannot exceed

a user-specified “sizing function”. The algorithm comes with a bound on the sizes of the

features it creates, and can provably grade from small to large tetrahedra.

The method is an extension of Delaunay refinement, a common mesh generation tech-

nique. This is appealing because the changes can be easily added to a pre-existing Delau-

nay refinement mesher.

14

Chapter 2

Previous Work

Tetrahedral mesh generation has an extensive history in both engineering and computer

science, so we review here mainly methods that share similarities with ours or have theo-

retical guarantees. For more information on mesh generation methods, see the survey by

Bern and Plassmann [10], Bern and Eppstein [8], or Owen [70].

2.1 Background Grids

A background gridis an invisible, structured grid that is used to guide mesh generation.

In this section we also review algorithms that produce merely surface meshesin three

dimensions, because they contain ideas that we borrow or extend to generate a full interior

mesh in Chapter 3.

15

Chapter 2. Previous Work

2.1.1 Surface Meshes

Marching Cubes

TheMarching Cubesalgorithm of Lorensen and Cline [59] triangulates an isosurface (but

not its interior). It computes the cut functionf at the vertices of the simple cubic lattice,

and processes the domain cube by cube. When Marching Cubes processes a cube, it

outputs triangles that approximate the intersection of theisosurface with that cube. The

cubes themselves are not part of the output; they form an invisible background grid. The

output triangles are generated from a small table of 15 precomputedstencils. The vertices

of the output triangles depend solely on the values off at the eight vertices of the cube,

and the choice of stencil depends solely on the signs off at those eight vertices.

Chernyaev [22] proposed an improved version with 33 stencils that are selected based

on the topology of the isosurface defined by the trilinear interpolation of values at cube

vertices. However, surface mesh quality remains poor. Tzeng [83] sketched a strategy

to improve the quality of output triangles, but the description given is not precise and

the analysis not rigorous. Attali et al. [4] combine Marching Cubes with a surface sim-

plification heuristic to improve mesh quality without having to store the intermediate

poor-quality surface mesh.

Marching Tetrahedra

Marching Tetrahedrais an obvious extension (or simplification) of Marching Cubes where

the background grid is composed of tetrahedra. The tetrahedral background grid can be

obtained by decomposing each cube of a cubic grid into tetrahedra, as done by Bloomen-

thal [13] in his implementation. The tetrahedral background grid can have a different

16

Chapter 2. Previous Work

Figure 2.1: In Marching Tetrahedra, there are only 3 stencils up to symmetry,
including the case where no surface triangle is produced.

structure, or could even be totally unstructured. Carr et al. [18] compare the results of

Marching Tetrahedra (on several background grids) with Marching Cubes. The main ad-

vantage of Marching Tetrahedra is that there are only 3 stencils to consider, illustrated in

Figure 2.1. Treece et al. [82] use the body-centered cubic lattice and propose a method to

improve the quality of output triangles, but the worst case is not analyzed.

2.1.2 Volume Meshes

Sharp Domains

Field and Smith [39] propose a method to obtaingradedmeshes based on the body-

centered cubic lattice; however their algorithm description is informal and no bounds on

the dihedral angles are provided. Fuchs [43] uses the BCC lattice to create a Delaunay

mesh that is mostly regular.

In two dimensions, the early grid-based algorithm of Baker,Grosse, and Rafferty [6]

is notable, guaranteeing that the angles of the triangles ofthe mesh are between13◦ and

90◦ (excepted input angles, which could be less than13◦ and can’t be eliminated).

17

Chapter 2. Previous Work

Figure 2.2: In an octree, an initial axis-aligned cube is recursively cut into eight
smaller cubes as needed. The octree is said to be balanced if the the sizes of
adjacent cubes differ by a factor of at most two.

Smooth Domains

There are several prior algorithms for filling smooth surfaces with tetrahedra. Molino et

al. [65] begin with a BCC grid, then grade the mesh by using thered-green mesh refine-

ment of Bey [11] to locally adapt tetrahedron sizes as desired. Next, they use an iterative

optimization procedure to deform the tetrahedra so that they conform to the boundary.

This iterative method is necessarily more expensive than a one-pass stencil-based ap-

proach. Molino et al. obtain dihedral angles between13◦ and156◦ for the meshes they

use to illustrate their algorithm, but they offer no guarantees.

2.2 Quadtree and Octree

Quadtrees and octrees are ways of adaptively refining space in two and three dimensions

(respectively); see Figure 2.2. In the context of mesh generation, their advantage over

a simple uniform grid is to provide a way to control and adapt the sizes of elements.

Quadtrees and octrees were used for meshing in the pioneering work of Yerry and Shep-

hard [86, 87].

18

Chapter 2. Previous Work

Guarantees

In two dimensions, the quadtree-based triangular meshing algorithm of Bern, Eppstein,

and Gilbert [9] comes with a small guarantee on angles. The domain is first enclosed in

an axis-aligned square which is recursively subdivided in aquadtree fashion until each

leaf square intersects the domain in a simple way. The quadtree is further refined so that

it is balanced, and is warped to conform to input segments. The guarantee is derived by

looking at the worst possible angle that can be created by theprocess.

The idea is extended to three dimensions by Mitchell and Vavasis [63], who give an

octree-based algorithm that creates meshes with a very small guarantee on radius ratios.

Unlike the two-dimensional version, the meshes obtained are not very satisfactory be-

cause they contain many elements and many small angles. The algorithm is extended to

higher dimensions by the same authors [64].

2.3 Delaunay

TheDelaunay triangulationof a point set has the property that the circumcircle of every

triangle is empty; or in three dimensions, the circumsphereof every tetrahedron is empty.

It is named after Boris Delaunay [29] who introduced it. In two dimensions, Lawson [51]

proves that the Delaunay triangulation maximizes the minimum angle over all possible

triangulation of the point set, a property highly relevant to mesh quality. Figure 2.3 shows

a Delaunay triangulation.

In mesh generation by Delaunay refinement, a Delaunay triangulation is maintained

at all times during the meshing process, and is used to guide the insertion of new ver-

tices. The Delaunay triangulation and Delaunay refinement are described in more details

19

Chapter 2. Previous Work

Figure 2.3: The Delaunay triangulation of 100 points randomly chosen inside a
rectangle.

in Section 4.1. Delaunay refinement algorithms are intimately linked to the following

geometric ratio.

Definition 5 (Radius-Edge Ratio) Theradius-edge ratioof a simplex (triangle, tetrahe-

dron, or higher dimensional analogues) is the ratio of the simplex’s circumradius to the

length of its shortest edge [61].

Sharp Domains

In two dimensions, Frey [42] suggests eliminating poor quality triangles by inserting

their circumcenters. Based on this idea, the Delaunay refinement algorithm of Chew [24]

produces uniform meshes with a radius-edge ratio of at most1, which implies triangle

angles between30◦ and120◦ (Chew assumes some conditions on the domain boundary).

Given a domain with no acute angle, Ruppert’s algorithm [74]producesgradedmeshes

with a radius-edge ratio of at most
√

2, which translates into triangle angles between20.7◦

and138.6◦.

Shewchuk [78] extends Delaunay refinement to three dimensions (see Figure 2.4 for

example results). For domains with no acute angles, his algorithm can guarantee radius-

20

Chapter 2. Previous Work

Figure 2.4: Meshes obtained by three-dimensional Delaunay refinement. The
mesh on the right is a cutaway view of a graded mesh. (J. Shewchuk)

(b) (c) (d)(a)

Figure 2.5: (a) Sliver tetrahedron: a good radius-edge ratio does not rule out poor
dihedral angles (the four vertices are nearly coplanar). (b) Spear tetrahedron: a
lower bound (60◦) on dihedral angles does not rule out a very large dihedral angle.
(c) Splinter tetrahedron: an upper bound (90◦) on dihedral angles does not rule
out very small dihedral angles. (d) Needle tetrahedron: bounds on both small
(60◦) and large (90◦) dihedral angles do not rule out an arbitrary large radius-edge
ratio.

edge ratios of at most2. Unfortunately, this guarantee does not rule out thesliver tetrahe-

dron, which can have dihedral angles arbitrarily close to0◦ and180◦; see Figure 2.5(a).

In a mesh wherein all the tetrahedra have good (small) radius-edge ratios, the problem of

21

Chapter 2. Previous Work

obtaining well-shaped tetrahedra is reduced to eliminating slivers, and an algorithm with

a guarantee on radius-edge ratios should be complemented with a guarantee on the small-

est dihedral angle. See Figure 2.5(b,c,d) for examples of tetrahedra that demonstrate that

bounds on dihedral angles alone may not be sufficient to rule out some types of degenerate

tetrahedra.

Since three-dimensional Delaunay refinement apparently comes so close to providing

well-shaped elements, it is natural to ask whether slivers can be eliminated with a small

modification or in a post-processing step. Chew [25] prevents the creation of slivers

by doing a random search for a suitable new vertex in a ball around the circumcenter

of each bad quality tetrahedron. Cheng et al. [21] show that if the radius-edge ratios

of the tetrahedra are bounded, then slivers can be eliminated by switching to aweighted

Delaunay tetrahedralization and selecting the weights of the vertices in such a way that all

slivers disappear, a process they callsliver exudation. Edelsbrunner et al. [33] show that

smoothing (moving the vertices) can be used instead of weights. For these last two results,

the authors meshed a periodic space to avoid having to deal with the domain boundary.

This is a reasonable simplification in order to make progresson a very hard problem,

which we take advantage of in Chapter 4. Nevertheless, handling of the boundary is

important for applications, and has been accomplished by Liand Teng [53] by improving

upon the algorithm sketched by Chew [25], and by Cheng and Dey[20] who extended

the work of Cheng et al. [21]. The relationships between these results are illustrated in

Figure 2.6.

The weakness of all these results is that the actual dihedralangle bounds, while pos-

itive, are too minuscule to be worth computing explicitly: they are probably less than

10−6 degrees. However, experiments by Edelsbrunner and Guoy [32] show that the sliver

22

Chapter 2. Previous Work

Figure 2.6: Previous theoretical work on sliver removal. The guarantees rule out
microscopic angles only (ǫ slivers).

exudation algorithm of Cheng et al. [21] can eliminate most slivers with dihedral angles

below5◦ in practice.

Smooth Domains

The Delaunay refinement algorithm of Oudot, Rineau, and Yvinec [69] guarantees radius-

edge ratios of at most4+ ǫ for arbitraryǫ > 0. It relies on sliver exudation [21] to remove

poor tetrahedra from meshes. The algorithm is an extension of the earlier of work of

Boissonnat and Oudot [14] which produced a surface mesh only. In both versions, surface

sampling is adapted to the distance to the medial axisdM , which leads to theoretical

guarantees on topological equivalence, Hausdorff distance, normal approximation, and

23

Chapter 2. Previous Work

size-optimality. Quantitatively, points with inter-distance as small as0.03dM might need

to appear in the mesh in order to guarantee topology.

Variational tetrahedral meshing, by Alliez, Cohen-Steiner, Yvinec, and Desbrun [1],

is at the core a mesh improvement procedure where connectivity and vertex positions are

optimized to minimize an energy function. The energy function itself has nice theoretical

properties, but there is no theoretical result on the quality of a mesh that minimizes this

energy. To obtain graded meshes, the energy must be modified to incorporate a sizing

field. The authors turn the mesh improvement procedure into ameshing algorithm by

presenting a way to create the initial mesh needed to start the optimization procedure.

2.4 Other Mesh Generation Techniques

This section briefly covers other techniques which are popular or practical, although un-

related to this thesis.

Advancing Front

In the advancing front method[58], the domain boundary is first segmented (or trian-

gulated if the domain is three dimensional). Elements are generated starting from the

boundary, usually layer by layer, until the whole domain is meshed (See Figure 2.7). This

method tends to create good quality elements close to the boundary where new vertices

can be created at near optimal positions. The situation is much more difficult toward the

end of the process where many fronts collide at the same time,possibly with a mismatch

in element sizes. The method is popular in aerodynamics where mesh quality close to the

boundary is important. There are no mathematical guarantees on mesh quality.

24

Chapter 2. Previous Work

Figure 2.7: The advancing front method generates elements starting from the
boundary. In this example, the second layer of elements is progressing, and we
can foresee the complications that will occur later when fronts collide.

Biting

Thebiting methodintroduced by Li et al. [56] is a method related to advancing front and

circle packing. The domain is iteratively “eaten” by disks until it is completely consumed.

The mesh is obtained from a Delaunay triangulation of the disk centers. An advantage

of the biting method is that it provides guarantees on triangle quality and size-optimality

of the mesh (Section 1.2.2). The method has been extended to anisotropic meshes with

biting ellipses [54], and to three dimensions with biting spheres [55]. The biting sphere

algorithm suffers from the presence of slivers, just like three-dimensional Delaunay re-

finement.

Mesh Improvement

Mesh improvement is technically not a mesh generation technique, but it can be used to

improve meshes that were obtained by other methods, potentially turning a bad quality

mesh into a good one.

Two aspects of a mesh can be improved: its geometry and its topology. Geometri-

25

Chapter 2. Previous Work

cal improvement, often simply calledsmoothing, consists in optimizing the position of

mesh vertices without changing the mesh connectivity. An early and simple example is

Laplacian smoothing[46], where a vertex is moved to the center of mass of its neighbors

(unless doing this would create an inverted element). Typically, a few passes of Laplacian

smoothing can be performed. Superior methods include nonsmooth optimization [41] and

variational approaches [19].

Topological improvement consists in making local operations that change the connec-

tivity of the mesh. One strategy is to consider a large set of topological transformations

and perform those that improve the degree of vertices [17] orany other quality mea-

sure. The best results are obtained by combining smoothing and topological transforma-

tions. Freitag and Ollivier-Gooch [41] achieve better results through optimization-based

smoothing and topological transformations than Edelsbrunner and Guoy with sliver exu-

dation, but dihedral angles less than1◦ sometimes survive, and in many examples dihedral

angles under10◦ survive. Alliez et al. [1] claim good results by combining variational

smoothing and Delaunay tetrahedralization, but it is not clear that they can consistently

avoid boundary slivers.

26

Chapter 3

Tetrahedral Meshing Inside an

Isosurface

In this chapter, we describe an algorithm that we callisosurface stuffingthat can create a

tetrahedral mesh inside an isosurface.

We assume that the input is a continuouscut functionf : R
3 → R that implicitly

represents the geometric domain to be stuffed with tetrahedra, namely the point set{p :

f(p) ≥ 0}. Points wheref is negative are outside the domain, and usually should not

be meshed—though our algorithm offers the option to create compatible meshes on both

sides of the boundary, with a somewhat weaker angle guarantee.

Because our algorithm uses stencils to generate tetrahedra, it is blazingly fast com-

pared to traditional mesh generation algorithms based on Delaunay triangulations or ad-

vancing front methods. It is also much easier to implement—we coded our prototype

mesher for uniformly sized tetrahedra in two days. Furthermore, our algorithm is nu-

merically bulletproof, as its correctness does not rely on numerically sensitive geometric

27

Chapter 3. Tetrahedral Meshing Inside an Isosurface

predicates or any numerical procedure more delicate than using iterated bisection to find

a zero of a function of one variable. Astreamingimplementation is possible, i.e. one that

accepts the values off in any order and outputs tetrahedra as they are ready. If the input

order is reasonable then huge models can be processed with little memory [47].

A second version of isosurface stuffing (Section 3.5) creates meshes whose interior

tetrahedra aregraded—they grade from largest at the core to smallest at the surface, as

Figure 3.1 illustrates. This option reduces the amount of computation the finite element

method expends on the domain interior while maintaining high resolution near the sur-

face, where modeling errors are most visible. Our algorithmuses a nonstandard octree to

create a tetrahedral background grid.

Although our technique can also be used to generate fully graded meshes (whose

surface tetrahedra vary in size too), most of whose tetrahedra have excellent quality, we

are unable to guarantee dihedral angles better than1.66◦ degrees for the worst tetrahedra,

so we do not report details. (But see Section 3.6 for an example.)

A drawback of our approach is that it does not preserve sharp edges or corners.

Guaranteed-quality mesh generation that tightly fits sharpfeatures (without rounding

them off) has challenged researchers for over two decades, and will continue to do so,

because these constraints impose fundamental difficultiesthat arguably could never be ac-

commodated by any approach as simple as the method we describe here. For our smooth

target domains, however, we make guaranteed-quality meshing easy.

28

Chapter 3. Tetrahedral Meshing Inside an Isosurface

20 40 60 80 100 120 140 160 1800

158.215.2

Figure 3.1: A 134,400-tetrahedron mesh produced by isosurface stuffing, with
a cutaway view. At the right is a histogram of tetrahedron dihedral angles in 2◦

intervals; multiply the heights of the red bars by 20. (Angles of 45◦, 60◦, and 90◦

occur with high frequency.) The extreme dihedral angles are 15.2◦ and 158.2◦.
This mesh took 55 seconds to generate on a Mac Pro with a 2.66 GHz Intel Xeon
processor, but the mesh generation time was only 642 milliseconds; nearly all the
time was spent in the isosurface evaluation code.

3.1 Uniform Tetrahedra

The isosurface stuffing algorithm uses thebody centered cubic (BCC) latticeas a space-

tiling background grid to guide the creation of a mesh.

The Delaunay triangulation of these points, illustrated inFigure 3.2, is a tetrahedral

mesh that we call theBCC grid. The BCC grid is composed of identical tetrahedra that

are of excellent quality, having edge lengths1 and
√

3/2, and dihedral angles60◦ and90◦.

This space-filling tetrahedron was noted by Sommerville [81]. The fact that all the BCC

grid tetrahedra are identical simplifies both implementingour algorithm and proving its

correctness.

29

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.2: The body centered cubic (BCC) lattice is composed of two staggered
cubical grids of vertices. The three tetrahedra illustrated here (which are identical)
and copies of them tile space.

We fill a zero-surface with uniformly sized tetrahedra in four steps. All but the third

step are borrowed (with changes) from Marching Cubes.

1. Choose a subsetP of the BCC lattice.P should include every lattice point where

the cut functionf is nonnegative, and every lattice point connected by an edgeof

the BCC grid to a lattice point wheref is positive. Compute and store the value of

f at each lattice point inP .

2. For each edge of the BCC grid with both endpoints inP , if one endpoint is posi-

tive (meaning “inside”) and one is negative (meaning “outside”), then compute or

approximate acut pointwhere the edge crosses the zero-surface.

3. For each lattice pointq ∈ P , check for the presence of cut points on the fourteen

grid edges that adjoinq. If one of these cut pointsc is too close toq, we say thatc

violatesq. If any cut point violatesq, warp the grid by movingq to a cut point that

violatesq. (We usually choose the nearest violating cut point, but ourguarantees do

not depend on it. Technically,q is no longer a lattice point, but we still call it one.)

The effect is to snapq onto the zero-surface. Changeq’s value to zero. Discard

all cut points on the edges adjoiningq, because those edges no longer have both a

30

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.3: Stencils for isosurface stuffing. Vertices of the BCC grid tetrahedra
are labeled with their signs (+, −, 0). Cut points are white, and output tetrahedra
are yellow. The seven stencils in the top row apply in all rotations and reflections,
and their edges can be matched arbitrarily with the long and short edges of the
BCC grid. For the remaining five stencils, the long edges of the BCC grid are
depicted as thick and black; the short edges are red. For the three stencils in the
bottom row (wherein the bottom long edge has both endpoints positive), the Parity
Rule applies and may require a stencil to be reflected. The bottom five stencils
apply in all rotations and reflections (left to right or front to back) that observe the
Parity Rule and correctly match the edge colors.

positive endpoint and a negative endpoint. Because we process every lattice point

in P sequentiallyin this manner, no cut point adjoiningq can subsequently cause

another lattice point to move.

4. For each BCC grid tetrahedron that has at least one vertex with a positive value,

fill the tetrahedron (which might be warped) with a stencil of1–3 precomputed

tetrahedra. Output these tetrahedra. Figure 3.3 depicts the stencils. The choice of

stencil depends on the signs of the four vertices of the BCC grid tetrahedron.

31

Chapter 3. Tetrahedral Meshing Inside an Isosurface

1 2

3 4

Figure 3.4: A two-dimensional illustration of the steps of isosurface stuffing: (1)
Choose a subset of the BCC lattice and store the value of the cut function at each
lattice vertex. (2) Compute cut points where edges cross the isosurface. (3) Warp
the lattice points that are violated, shown as hollow vertices. (4) Triangulate the
warped background mesh using stencils.

These steps are illustrated in Figure 3.4 and are described in more details in the fol-

lowing sections.

We distinguish between three kinds of points and two kinds oftetrahedra.Cut points

(where BCC grid edges cross the zero-surface) andlattice pointsmay or may not become

output vertices. Likewise, some of theoutput tetrahedrathat comprise the final mesh are

distinct from theBCC tetrahedraof the background grid.

32

Chapter 3. Tetrahedral Meshing Inside an Isosurface

3.1.1 Creating the Background Grid

For a general continuous cut functionf , the first step is technically impossible, because

there is an infinite number of lattice points to test. Every isosurface-processing algorithm

faces the problem that it is difficult to find all the components of f(p) = 0—and it is

generally impossible iff is a black box that can only be evaluated at individual points. A

practical way to find the points inP is to begin with several “seed” points known to be

in the domain, then find the rest by depth-first search on the edges of the BCC grid. This

method may fail to find the entire domain if the lattice is not fine enough to resolve the

narrower portions of the domain, or if the domain has a connected component that does

not contain a seed point. For ease of programming, our prototype mesher evaluatesf at

every lattice point in a user-specified bounding box, but this is costly when the volume of

the bounding box is much greater than the domain volume. (Ourtimings reflect that.)

3.1.2 Computing Cut Points

For the second step, we assume that the geometric modeler that defines the cut function

f can answer a query asking for a point where a line segment intersects the zero-surface.

Our prototype implementation does this by iterative bisection, which can approximate

the cut point to arbitrary accuracy, even for a black box function f . If f is expensive to

evaluate, one could estimate the cut point by linear interpolation along the edge, at the

cost of losing all the guarantees about geometric and topological fidelity, and retaining

only the angle guarantee.

33

Chapter 3. Tetrahedral Meshing Inside an Isosurface

0 1α α1−

0 1α α1−

0 1α α1−

Does not cause
warping

α = 0.28511

= 0.39882α short

long

Figure 3.5: On the left: three parts of an edge where a cut point can fall. The
first two cases trigger a lattice point to warp, while the third does not. The lengths
of the parts are determined by a parameter α, which can vary depending on
the edge. On the right: the α parameters from the second line of Table 3.1 are
illustrated.

3.1.3 Warping the Background Grid

The third step uses a simple rule to decide if a lattice point is violated. If a cut pointc

lies on a grid edgee, and the distance betweenc and an endpointv of e is less thanα

times the length ofe, thenc violatesv; sov must be snapped to the isosurface, assigned

a value of zero, and purged of adjoining cut points—unlessthe other endpoint ofe gets

snapped first, eliminatingc. The warping criterion is illustrated in Figure 3.5 (left),and

the warping process in Figure 3.6.

BCC grid edges come in two lengths, and we use a different value of α for each,

chosen by experimentation. Several options are summarizedin Table 3.1, and one is

illustrated in Figure 3.5 (right). In the table,αlong is the coefficient for the longer, axis-

aligned edges, which we call theblack edges; andαshort is the coefficient for the shorter,

diagonal edges, which we call thered edges. Angle bounds are given in Table 3.2, they

are derived with a computer-assisted proof, discussed in Section 3.3.

34

Chapter 3. Tetrahedral Meshing Inside an Isosurface

(a)

(c)

(b)

(d)

Figure 3.6: Warping lattice points: (a) The lattice point at the center is violated
because a cut point lies too close to it. (b) The lattice point is snapped to the
position of the cut point. (c) Because the new position lies on the isosurface, the
lattice point is reassigned a value of zero. (d) The cut points that were adjoining
are removed.

The order in which we process and warp the lattice points affects the final mesh, but

it does not affect most of our guarantees. The exceptions arethe four rows of Table 3.1

wherein an angle bound is improved byordered warping, in which we use the following

algorithm to ensure that a lattice point never warps along anedge toward a neighboring

vertex that will also be warped.

while some negative lattice pointq− is violated by a cut point on

an edge adjoining anunviolatedpositive lattice point

Warpq− to a violating cut point on such an edge

while some positive lattice pointq+ is violated

Warpq+ to a violating cut point

35

Chapter 3. Tetrahedral Meshing Inside an Isosurface

αlong αshort what is optimized safe?
1 0.26649 0.36918 maximum dihedral angle unsafe
2 0.28511 0.39882 minimum dihedral angle unsafe
3 0.24999 0.40173 maximum dihedral angle safe
4 0.24999 0.41189 minimum dihedral angle safe
5 0.24999 0.42978 . . . with ordered warping safe
6 0.21509 0.35900 max dihedral, double-sidedsafe
7 0.22383 0.39700 min dihedral, double-sided safe
8 0.22385 0.40501 . . . with ordered warping safe
9 0.23926 0.27376 max exposed plane angle safe

10 0.23463 0.29505 . . . with ordered warping safe
11 0.36378 0.33951 min exposed plane angle unsafe
12 0.24999 0.35464 min exposed plane angle safe
13 0.23573 0.5 . . . with ordered warping safe

Table 3.1: Choices of αlong and αshort that optimize the minimum or maximum di-
hedral angles, or the minimum or maximum plane angles of triangles exposed
on the boundary of the mesh. Rows marked “safe” indicate values for which the
tetrahedra are guaranteed not to overlap each other, even if the background grid
is not fine enough to resolve the surface correctly. Rows marked “double-sided”
are for guaranteeing good quality when meshing both sides of an isosurface with
compatible tetrahedra. Ordered warping is described in Section 3.1.3. The bot-
tom five rows are of interest mainly for surface meshing; see Section 3.6.

When this algorithm terminates, no violated lattice pointssurvive, because if a neg-

ative lattice point is still violated when the first loop ends, the cut points that violate it

are discarded when the second loop warps the violated positive lattice points. The disad-

vantage of this ordering is that it makes a parallel or streaming implementation difficult,

because the dependencies of the first loop can cascade long distances. When a negative

lattice point warps, the cut points that adjoin it disappear, which may cause a formerly

violated positive lattice point to become unviolated, thereby forcing a different negative

lattice point to warp toward it, and so onad infinitum. It is sometimes better to settle for

a slightly weaker angle bound so that the lattice points can warp in an arbitrary order.

36

Chapter 3. Tetrahedral Meshing Inside an Isosurface

minimum maximum minimum maximum minimum maximum
dihedral dihedral plane plane exposed exposed

angle angle angle angle plane plane
1 8.9716 ∗158.7403 11.9072 150.9944 12.0162 147.6786
2 ∗10.7843 164.7373 9.0454 154.9845 9.0454 154.9845
3 9.0551 160.5331 8.7614 155.7053 8.7614 155.7053
4 9.3171 161.6432 7.7810 158.2252 7.7810 158.2252
5 9.7766 163.5685 10.5695 149.7137 15.1645 138.1929
6 6.4917 164.1013 8.8535 157.8278 13.0689 145.1886
7 7.6872 168.0481 9.2237 155.0594 9.2237 154.5340
8 7.8653 168.0572 9.5400 154.6644 14.4726 135.7164
9 5.3440 163.8969 6.2646 158.2960 11.8387∗124.9195

10 5.8017 162.1673 7.2694 158.0368 12.1108∗124.0867
11 n/a n/a 10.4741 †149.6794 ∗15.1285 ∗149.5205
12 7.8390 160.5447 10.4213 153.7863 13.5241 144.1259
13 7.4904 169.1465 9.2685 †145.4921 16.4299 144.9032

Table 3.2: For the choices of αlong and αshort of the previous table, these columns
list the extremal dihedral angles, plane angles of triangular faces (including tri-
angles in the mesh interior), and plane angles of triangular faces exposed on
the boundary. Asterisks and daggers are explained in Section 3.5.3. All angle
bounds have been computer-verified to be strictly correct as written and tight to
within 0.0001◦.

3.1.4 Triangulating the Background Grid

The fourth step generates the output tetrahedra specified bythe stencils depicted in Fig-

ure 3.3. We store the stencils in a table, indexed by the signsof the vertex values (positive,

negative, or zero). Some stencils generate two or three output tetrahedra, to respect sur-

viving cut points on the grid edges. Symmetry reduces the number of distinct cases from

81 to the 12 illustrated. In accounting for symmetry, note that black edges are not always

interchangeable with red ones—some stencils offer better quality than others in particular

circumstances, and not all stencils meet compatibly face-to-face.

37

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Some cases admit more than one possible stencil because the isosurface truncates

some BCC grid triangles, creating quadrilateral faces, each of which we bisect into two

triangles. Each stencil’s tetrahedra are determined by thechoice of diagonal used to bisect

each quadrilateral. To choose diagonals, we use two disambiguation rules, designed to

produce high-quality output tetrahedra.

Observe that every BCC grid triangle has one black edge and two red ones, so each

quadrilateral has either a whole black edge or a truncated one. We bisect a quadrilateral

with a truncated black edge by choosing the diagonal that adjoins the cut point where the

black edge was truncated. The stencils in Figure 3.3 obey this rule.

The Parity Rule

If a quadrilateral face has a whole black edge (and two truncated red edges), we break

symmetry by using the followingParity Ruleto choose a diagonal. Leta andb be the

endpoints of the black edge, and letc andd be the cut points where the red edges are

truncated, labeled so the quadrilateral’s diagonals areac andbd. Because of the geome-

try of the BCC lattice, eithera has an even number of coordinates that are greater than

c’s corresponding coordinates andb has an odd number of coordinates greater thand’s

coordinates, or vice versa. Ifa andb lie on the cubical latticeZ3 (the black points in Fig-

ure 3.2), we chooseac if a has an odd number of coordinates greater thanc’s coordinates;

we choosebd if the number is even. This rule allows us to use the bottom right stencil in

Figure 3.3, which has better quality than alternatives. Observe that the stencil has not one

but two of these quadrilateral faces, front and back, and thetwo corresponding diagonals

do not share an endpoint.

If a andb lie on the cubical latticeZ3 + (1
2
, 1

2
, 1

2
) (the red points in Figure 3.2), we

38

Chapter 3. Tetrahedral Meshing Inside an Isosurface

reverse the rule and chooseac if a has an even number of coordinates greater thanc’s co-

ordinates. This reversal makes it possible to mesh both sides of an isosurface compatibly

with the same stencil. To implement the Parity Rule, we occasionally have to reflect one

of the stencils in the bottom row of Figure 3.3 after looking it up.

Although isosurface stuffing could be implemented so that itnumerically measures

angles and uses them to choose stencils, we think much of the algorithm’s charm is its

ability to ensure quality with an absolute minimum of geometric computation.

Quadruple-Zero Tetrahedra

Every BCC tetrahedron with no negative (outside) vertex becomes an output tetrahedron,

exceptperhaps a BCC tetrahedron with all four vertices labeled zero. Such aquadruple-

zero tetrahedronis ambiguous; it is not clear whether to treat it as if it is inside or outside

the domain. Because all four vertices of this tetrahedron are warped, the most aggressive

choices for theα parameters in Table 3.1 (those labeled “unsafe”) may cause it to be

inverted(turned inside-out, with negative signed volume)—even if the isosurface is nearly

flat. Parameters are marked “safe” if our computer-assistedproof code (Section 3.3)

guarantees that no BCC tetrahedron can become inverted. Inverted BCC tetrahedra do

not necessarily hurt the mesh or imply that the lattice is insufficiently fine to resolve the

surface. In rare cases, though, they might cause a few outputtetrahedra to have mutually

intersecting interiors. This danger is avoided if the zero-surface is a smooth manifold with

bounded curvature and the BCC grid is sufficiently fine to resolve it.

We offer four options for handling quadruple-zero tetrahedra. The simplest is to dis-

card them all. In some applications this is mandatory; Molino et al. [65] observe that

for modeling large mechanical deformations, a tetrahedronwith all four vertices on the

39

Chapter 3. Tetrahedral Meshing Inside an Isosurface

boundary (or an edge that extends through the mesh interior but has both vertices on the

boundary) is easily crushed and can ruin a simulation.

For applications that can tolerate tetrahedra with all fourvertices on the boundary,

we observe that we can often improve a mesh’s surface fidelityby heuristically retaining

some of the quadruple-zero tetrahedra. We discard the quadruple-zero tetrahedra that

are inverted or whose dihedral angles are poor, and we argue that these tetrahedra are

too flat to have much effect on the surface fidelity. Of the nicely shaped survivors, we

choose to retain a tetrahedron if all four of its faces adjoinoutput tetrahedra (not of the

quadruple-zero kind), and to discard a tetrahedron if none of its faces does. This heuristic

prevents spurious “bubbles” from appearing in the mesh. Forthe remaining tetrahedra,

the decision is made by an evaluation of the cut functionf at each tetrahedron’s centroid.

This heuristic tends to reduce divots on a poorly-resolved surface.

Both these options guarantee the angle bounds in Table 3.2, by discarding quadruple-

zero tetrahedra that fail to meet them.

A third option is to change the warping parameters so that it is safe to output every

quadruple-zero BCC tetrahedron, at the cost of weakening the dihedral angle bounds.

The options labeled “double-sided” in Table 3.1 achieve this; the bounds given in those

rows of the table include BCC tetrahedra with all four vertices warped (whereas the other

dihedral angles in the table do not take them into account). These options make it possible

to mesh both sides of an isosurface with compatible tetrahedra. To mesh the exterior of a

domain, simply swap the+ and− signs in Figure 3.3. Again, heuristics can classify each

quadruple-zero tetrahedron as being inside or outside the domain.

A fourth option is to observe that if the isosurface is a smooth manifold with bounded

curvature, and the BCC grid is sufficiently fine, then the boundary of the mesh will be

40

Chapter 3. Tetrahedral Meshing Inside an Isosurface

a geometrically and topologically accurate approximationof the zero-surface. (See Sec-

tion 3.4.2.) Any good-quality quadruple-zero BCC tetrahedron is a sign that the lattice

does not adequately resolve the surface, and that one might start over with a finer lattice.

(But remember, apoor-quality quadruple-zero BCC tetrahedron isnot a sign of insuffi-

cient resolution; just discard it.)

3.2 Mesh Examples

Figure 3.7 depicts two meshes whose dihedral angles lie between14◦ and158◦. More than

half the dihedral angles in each mesh are60◦ or 90◦. (Note the red bars, which represent

twenty times more angles than blue bars of the same height.) It took 25.2 seconds to

generate the 131,259-tetrahedronWhirled White Webmesh on a Mac Pro with a 2.66

GHz Intel Xeon processor, of which 644 milliseconds were mesh generation time (the

rest being used to evaluate the cut functionf). The 32,853-tetrahedron Stanford dragon

mesh took 24.5 seconds, of which 172 milliseconds were for mesh generation.

Our mesh generation timings are misleadingly slow, becauseour prototype implemen-

tation evaluates the cut function at every lattice point in alarge box, and typically inspects

twenty empty BCC tetrahedra for every BCC tetrahedron that intersects the domain. A

more efficient implementation would never stray far from thedomain. To get a sense of

how much faster this would be, we performed a comparison of our prototype implementa-

tion against Pyramid, Jonathan Shewchuk’s fast Delaunay-based meshing code. We used

a dense domain, intersecting about half the BCC grid tetrahedra, for which evaluating the

cut function took only 20% of the running time. Our implementation generates about 510

tetrahedra per millisecond, whereas the Delaunay mesher generates about 157 tetrahedra

41

Chapter 3. Tetrahedral Meshing Inside an Isosurface

20 40 60 80 100 120 140 1600 180

20 40 60 80 100 120 140 1600 180

157.514.9

154.617.2

Figure 3.7: Meshes of uniformly sized tetrahedra produced by isosurface stuffing
with αlong = 0.28511 and αshort = 0.39882. Whirled White Web is by courtesy of
Carlo Séquin. Histograms tabulate the dihedral angles in 2◦ intervals; multiply the
heights of the red bars by 20.

per millisecond. This discrepancy in running time occurs because isosurface stuffing does

far fewer numerical calculations and requires less complicated data structures.

42

Chapter 3. Tetrahedral Meshing Inside an Isosurface

3.3 Computer-Assisted Proofs of Angle Bounds

Isosurface stuffing guarantees that the tetrahedra it produces have good angles.

Theorem 1 The bounds in Table 3.2 on the angles produced by isosurface stuffing are

correct as written (i.e., lower bounds are rounded down; upper bounds are rounded up).

They are tight to within a margin of0.0001◦—we can exhibit cut functions that cause

these angles to appear. 2

Our angle guarantees were obtained through a computer-assisted proof. There is only

a finite number of stencils to test; but there is an infinite number of locations where a cut

point might be placed, or destinations a lattice point mightbe warped to. Although a proof

by hand might be possible through a (horrendous) case analysis, we verified the angle

bounds by writing a program that breaks the space of possibletetrahedron configurations

into a finite number of subspaces that can be verified by interval arithmetic.

The analysis begins with the observation that each edge of the BCC grid has a central

part (from a fraction ofα to 1 − α of its length) where a cut point triggers no warping,

and two peripheral parts where a cut must trigger warping. The asteriskof a grid vertex

is the union of the peripheral parts adjacent to the vertex, as illustrated in Figure 3.8. We

depend upon the following facts.

• A warped vertex lies on its asterisk, and its value (in choosing a stencil) is zero.

• Stencil vertices labeled+ or− are not warped.

• A cut point cannot lie on an edge adjoining a warped vertex.

• Two vertices that share an edge of the BCC grid cannot both warp toward each other

along that edge. (The first one to warp eliminates the cut point between them.)

43

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.8: On the left, a tetrahedron from one of the stencils. On the right, the
possible positions where the tetrahedron vertices can lie: vertices labeled + or −
are fixed, cut points lie on the central part of an edge, and vertices labeled zero
can be warped and lie on an asterisk which involves seven separate cases.

• If ordered warping is used, a vertex cannot warp along an edgewhose other end-

point also warps.

To divide the configuration space into cases, we consider each tetrahedron in each

stencil; see Figure 3.8. Each cut point’s location is described by a single parameter (its

position along the segment). Each asterisk is composed of seven segments, so a vertex

labeled zero is represented by seven separate cases. In particular, the quadruple-zero

tetrahedron requires the enumeration of74 cases. In each case, the position of each vertex

is fixed or described by one parameter.

Figure 3.9 illustrates the most general case, where we ask for the minimum and max-

imum possible dihedral angle in a tetrahedron where all fourvertices lie on different

segments. Calla0 anda1 the endpoints of the segment where vertexa lies, and similarly

44

Chapter 3. Tetrahedral Meshing Inside an Isosurface

θ c

d

a

b

Figure 3.9: What is the minimum (or maximum) possible dihedral angle at edge
ab if all four vertices of the abcd tetrahedron lie on given segments?

for the three other vertices. Then, the positions ofa, b, c, andd can be parametrized as

a = a0 + λ1(a1 − a0)

b = b0 + λ2(b1 − b0)

c = c0 + λ3(c1 − c0)

d = d0 + λ4(d1 − d0)

whereλ1, λ2, λ3, λ4 ∈ [0, 1]. The dihedral angle at edgeab is some function

f(λ1, λ2, λ3, λ4),

and we are asking for the extrema of that function over[0, 1]4. To be able to answer that

question, we first develop some machinery.

45

Chapter 3. Tetrahedral Meshing Inside an Isosurface

3.3.1 Extrema of a Function ofn Variables

Let f(λ1, . . . , λn) be a function ofn variables for which the global minimum and maxi-

mum over[0, 1]n are sought. We consider several cases.

1. If f is a polynomial of arbitrary degree, but whose degree is at most 1 in each of

λ1, . . . , λn, such asf = λ1 +λ1λ2 +λ1λ2λ3, then the minimum and maximum can

be found by evaluating the2n corners of the box[0, 1]n.

2. If f is a polynomial of degree2, such asf = λ2
1 + λ2, then the extrema could be

one of the2n corners, or somewhere along a boundary edge, a boundary face, or

a boundary entity of some higher dimension, or inside the n-dimensional volume.

We can find local extrema along axis-aligned lines, planes and other subspaces by

computing partial derivatives (which are of degree1), setting them to0, and solving

the linear equation or system. Solutions that fall outside of [0, 1]n are excluded. By

comparing the functionf at every local extremum found, the global extrema are

obtained.

3. If f is the ratio of two polynomials of degree1, such asf = (λ1+λ2)/(λ1−λ2+1),

then partial derivatives will be rational functions with numerators of degree1. Since

only the numerator matters when setting a ratio to 0, the local extrema can be found

by solving linear systems as before, and the global extrema are obtained. This

works for anyf such that poles in[0, 1]n can be ruled out, and the partial derivatives

written as a ratio where the numerator is a polynomial of degree 1.

4. If f is a polynomial of degree3 or higher, such asf = λ2
1λ2, then the partial

derivatives are of degree2 or higher, and the local extrema can be found by solving

46

Chapter 3. Tetrahedral Meshing Inside an Isosurface

non-linear systems in up ton variables. Iff is non-polynomial, then the partial

derivatives are non-linear also.

While solving non-linear systems is possible in practice, remember that the goal is not

only to compute extrema but toprovethem. Even when there are few variables, detect-

ing and computing the intersection of curves and surfaces isnumerically sensitive, and

code that must do this with absolute correctness is unavoidably complicated and hard to

verify [36].

We conclude that cases 1-3 above represent the most complicated functions ofn vari-

ables for which the extrema over the region[0, 1]n can be easily and provably found.

3.3.2 Extrema of Elementary Geometric Computations

Assume the general case where the four vertices of a tetrahedron abcd lie on segments

a0a1, b0b1, c0c1, d0d1, leading to the parametrization

a = a0 + λ1(a1 − a0)

b = b0 + λ2(b1 − b0)

c = c0 + λ3(c1 − c0)

d = d0 + λ4(d1 − d0)

whereλ1, λ2, λ3, λ4 ∈ [0, 1].

Let u = b − a, v = c − a, andw = d − a. The components of these vectors are

polynomials of degree1 in λ1, · · · , λ4, so dot products (such asu · v) and the components

of cross products are polynomials of degree2 and their extrema can be found by the

47

Chapter 3. Tetrahedral Meshing Inside an Isosurface

method described in the previous section.

An interesting case is that of the scalar triple product

[u, v, w] = u · (v × w) = v · (w × u) = w · (u × v).

It has degree3 in λ1 . . . λ4, but it is a special function (equal to 6 times the signed volume

of the tetrahedronabcd) given by the determinants

[u, v, w] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ux uy uz

vx vy vz

wx wy wz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ax ay az

1 bx by bz

1 cx cy cz

1 dx dy dz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

From this last expression, it is clear that this function hasdegree1 in each ofλ1, . . . , λ4

when the three other variables are fixed. This means that extrema of the scalar triple

product[u, v, w] can be found by comparing the values at the 16 combinations ofsegment

endpoints.

In summary, the extrema of simple geometric expressions inu, v, w such as dot prod-

ucts, components of cross products, and the scalar triple product [u, v, w] can be found

easily. The extrema of a more complicated geometric expression cannot, but if we con-

sider the minimum and maximum of an expression to be an interval, we can use interval

arithmetic to compute conservative bounds on the minimum and maximum of compli-

cated expressions. To do this efficiently, it is important toexpress a complicated expres-

sion using as few of the simple geometric expressions as possible.

48

Chapter 3. Tetrahedral Meshing Inside an Isosurface

3.3.3 Dihedral Angles

Suppose a tetrahedron has verticesa, b, c, andd. Letu = b−a, v = c−a, andw = d−a.

Then normals to the triangular facesabc andabd are given byu×v andu×w, respectively.

The dihedral angleθ at edgeab is the angle between these two normals, and can be derived

using the dot product formula

cos θ =
(u × v) · (u × w)

‖u × v‖ ‖u× w‖ .

There are other formulas for the dihedral angle, such as

sin θ =
[u, v, w] ‖u‖

‖u × v‖ ‖u× w‖ , tan θ =
[u, v, w] ‖u‖

(u × v) · (u × w)
.

Remember that a cross product is expensive, with three components in disguise. They

can be eliminated using the “ǫ − δ rule”,

(p × q) · (r × s) = (p · r)(q · s) − (p · s)(q · r).

By applying it to the tangent equation, we derive our final formula for the dihedral an-

gle, written so that every expression in parentheses corresponds to a “simple expression”

of the previous section, whose extrema can be computed directly. Becausetan θ has a

discontinuity at90◦, it is important to turn it into an inverse cotangent formula:

θ = cot−1

√

(u · u)(v · w) − (u · v)(u · w)/
√

(u · u)

[u, v, w]
. (3.1)

In our problem, each vertex of the tetrahedronabcd is constrained to lie on a segment

49

Chapter 3. Tetrahedral Meshing Inside an Isosurface

a

b

θ c

d

a

b

Figure 3.10: To find the dihedral angle extrema, recursively subdivide the param-
eter space, bound angles in each range with interval arithmetic, and stop when
the bound accuracy is 0.0001◦

(different for each vertex). Suppose that the four verticescannot be coplanar under that

constraint. (This can be verified by computing the minimum and maximum of the scalar

triple product[u, v, w], and making sure that they have the same sign.) Then it is easyto

see that the dihedral angle at edgeab can be minimized (or maximized) withc andd lying

at endpoints of their respective segments. (For intuition,imagine opening an infinitely

large door that is constrained to intersect a line segment floating in space.) Therefore, we

only need to consider cases wherein each ofc andd lies at one of the two endpoints of the

segment it is constrained to lie on. We reduce every case to cases that have at most two

continuously varying parameters.

Our program verifies the dihedral angle bounds by subdividing this two-dimensional

parameter space with a quadtree, and estimating the worst-case angles using (3.1) for

each quadrant by interval arithmetic. When an interval doesnot prove our conjectured

bound to within a specified tolerance, the program subdivides the quadrant into smaller

quadrants, and tries again on those. Figure 3.10 illustrates this.

50

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.11: Some of the limiting cases in which a dihedral angle of 10.7843◦

arises (where the two yellow triangles meet). Warped background vertices must
lie on their green asterisks. Cut points must lie on the magenta segments.

By this means, we have verified all the dihedral angle bounds in Table 3.2. The

cases that limit our bound on the smallest dihedral angle to10.7843◦ degrees appear in

Figure 3.11.

3.3.4 Plane Angles

Using the same notation as in the previous section, formulasfor the plane angleϕ = 6 bac

(illustrated in Figure 3.12) are

cos ϕ =
u · v

‖u‖ ‖v‖ , sin ϕ =
‖u × v‖
‖u‖ ‖v‖ , tan ϕ =

‖u × v‖
u · v .

By expanding the cross product in the tangent formula, we obtain our final expression

for the plane angle. Again, every expression in parenthesesis a “simple expression”, and

we transform the formula to use a cotangent:

ϕ = cot−1 (u · v)
√

(uxvy − uyvx)2 + (uyvz − uzvy)2 + (uzvx − uxvz)2
. (3.2)

51

Chapter 3. Tetrahedral Meshing Inside an Isosurface

ϕ
d

b

c

a

Figure 3.12: What is the minimum (or maximum) possible plane angle ϕ if all
four vertices of the abcd tetrahedron lie on given segments? Obviously ϕ doesn’t
depend on the position of d, but it is not possible to argue that angle extrema must
be achieved at the endpoints of segments at a, b, or c. The parameter space is
thus three-dimensional.

To verify plane angle bounds, we subdivide a three-dimensional parameter space with

an octree, and use (3.2) with interval arithmetic. By this means, we have verified all the

plane angle bounds in Table 3.2. This concludes the overviewof the proof of Theorem 1.

3.4 Approximation Guarantees

A mesh generation algorithm needs more than good elements; it also needs to produce

a mesh that is a reasonable facsimile of the domain it is supposed to represent. In this

section, we give some approximation results that hold for anarbitrary isosurface, and

some stronger results that hold if the isosurface has bounded curvature.

3.4.1 Arbitrary Isosurfaces

An interesting feature of our algorithm is that it can be run on an arbitrary isosurface. This

means that, in principle, we can run it with a cut function that returns a random value in

52

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.13: Isosurface triangulation torture. We mesh a random cut “function”
with a spherical probability distribution. Despite having nonsense for input, the
algorithm created a 16,240-tetrahedron mesh with all its dihedral angles between
13.6◦ and 147.5◦.

response to any probe; see Figure 3.13.

Hausdorff Distance

The one-sided Hausdorff distance between two subsetsA andB in any metric space is

defined to be

H∗(A, B) = sup
a∈A

d(a, B),

whered(a, B) is the distance from the pointa to the setB, given byinfb∈B d(a, b). A

consequence is that every point inA is at most at distanceH∗(A, B) from B. Another

way to think of it is that if we were to increase the thickness of B by brushing it with a

sphere of radiusH∗(A, B) centered at points ofB, thenA would be completely included

in it.

The expression is not symmetric inA andB. The full (symmetrized) Hausdorff dis-

53

Chapter 3. Tetrahedral Meshing Inside an Isosurface

p
L

L
L

L
L

Lp

L

LL

Figure 3.14: A point p lies as far as possible from the vertices of a triangle with
maximum edge length L. In the worst case, the distance is L/

√
3. For a tetra-

hedron, the distance is
√

3/8L, and in general for a simplex of dimension d, the
distance is

√

d/(2d + 2)L.

tance is

H(A, B) = max{H∗(A, B), H∗(B, A)}.

One-Sided Hausdorff Distance Between Surfaces

We start with a very simple general result, and then apply it to isosurface stuffing.

Theorem 2 If a surfaceS is approximated by triangles whose vertices lie exactly onS,

and there is an upper boundL on triangle edge lengths, then the one-sided Hausdorff

distance between the approximationT and the surfaceS satisfiesH∗(T, S) ≤ L/
√

3.

PROOF: Given a pointp on the triangulated surfaceT , p lies in some triangle△abc. Since

L is an upper bound on edge lengths,p is at distance at mostL/
√

3 from a vertex of the

triangle (the worst case is depicted in Figure 3.14, left). Since vertices of the triangle are

assumed to lie exactly on the surfaceS, d(p, S) ≤ L/
√

3. Sincep was arbitrary, the result

follows. 2

It is clear from the description of isosurface stuffing that every vertex on the boundary

of the mesh is a cut point or is labeled zero, and therefore lies on the isosurface. For a

54

Chapter 3. Tetrahedral Meshing Inside an Isosurface

mesh produced by our algorithm with a unitBCC background grid,

L = max{1 + 2αlong,

√
3

2
(1 + 2αshort)}.

A straightforward application of Theorem 2 gives the following result.

Corollary 3 For a mesh produced by isosurface stuffing with a unitBCC background

grid, every point on the mesh boundary is within a distanceωs from the zero-surface,

where

ωs = L/
√

3 = max{1 + 2αlong√
3

,
1

2
+ αshort}.

For example, ifαlong = 0.28511 andαshort = 0.39882—the parameters from the

second line in Table 3.1, thenL = 1.57022 andωs = 0.90657.

The Hausdorff distance discussed above is one-sided because, if we can only access

the cut functionf by pointwise probing, it is impossible to guarantee that every point

on the zero-surface is close to the mesh boundary. In general, an isosurface can have

extremely tiny components that are unlikely to be found by pointwise probing.

The bound applies for the unscaled BCC lattice. If the BCC lattice is scaled by a

factor c, then the bound is scaled byc also. Asc → 0, the greatest distance between a

mesh boundary point and its nearest neighbor on the zero-surface converges to zero.

One-Sided Hausdorff Distance Between Volumes

Since Hausdorff distance can apply to arbitrary subsets, itcan apply to volumes too. The

results are similar:

55

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Theorem 4 Suppose a volumeV is approximated by a meshA of tetrahedra whose ver-

tices are correctly labeled by the volume, and are labeled0 (boundary) or+ (inside).

If there is an upper boundL on tetrahedron edge lengths, then the one-sided Hausdorff

distance between the approximationA and the volumeV satisfiesH∗(A, V) ≤
√

3/8L.

PROOF: Given a pointp in the approximation meshA, p lies in some tetrahedronabcd.

SinceL is an upper bound on edge lengths,p is at distance at most
√

3/8L from a vertex

of the tetrahedron (the worst case is depicted in Figure 3.14, right). Since vertices of the

tetrahedron are labeled0 or +, they are part of the volumeV , so d(p, V) ≤
√

3/8L.

Sincep was arbitrary, the result follows.2

By inspection of the stencils, we see that isosurface stuffing never connects a vertex

inside the isosurface (labeled+) to one outside (labeled−), so the mesh respects the

isosurface and Theorem 4 applies with the same bound on edge length as before. Also if

we assume that isosurface stuffing is used to generate compatible meshes on both sides

on the isosurface, then the theorem and Hausdorff bounds apply between the exterior

mesh and the closure of the complement volumeR
3\V . These considerations lead to the

following result.

Corollary 5 Suppose isosurface stuffing meshes a continuous cut function f . (It does not

matter which quadruple-zero tetrahedra become output tetrahedra.) For any pointp in

space, ifp lies in an output tetrahedron butf(p) < 0 (implying thatp should lie outside

the mesh), or ifp does not lie in a output tetrahedron butf(p) > 0, thenp is within a

distance no greater than

ωv =

√

3

8
L =

√

3

8
max{1 + 2αlong,

√
3

2
(1 + 2αshort)}.

56

Chapter 3. Tetrahedral Meshing Inside an Isosurface

from the isosurface.

If αlong = 0.28511 andαshort = 0.39882, thenL = 1.57022 as before andH∗(A, V) ≤

0.96156. By taking into account the special geometry of the BCC tetrahedron, a tighter

bound is possible:

ωv = max{
√

α2
long + αlong + 5/16,

1

2

√

3α2
short + 3αshort + 5/4}.

This bound also gives a tighter value ofωs for surfaces, but an even tighterωs could be

derived by analyzing the geometry of a BCC tetrahedron’s face. The bound applied to the

exampleα values above givesH∗(A, V) ≤ 0.85494.

3.4.2 Isosurfaces with Bounded Curvature

Bounds will be given in terms ofdM , the minimum distance between the isosurfaceS and

its medial axisM .

Medial Axis

The medial axis of a surfaceS is defined to be the set of points in space that have at least

two closest points onS. The medial axis is illustrated in Figure 3.15.

Write dM(p) = d(p, M) for p ∈ S, and letdM = d(S, M) be the minimum value that

dM(p) can attain—a constant which depends on the surface. An isosurface with bounded

curvature will havedM > 0, but a surface with a corner or an edge will havedM = 0.

An important property ofdM is that for any pointp ∈ S, a sphere tangent toS at p

(on either side) is empty. Furthermore, ifS is the isosurface of some cut function, then

57

Chapter 3. Tetrahedral Meshing Inside an Isosurface

S

M

Figure 3.15: A two-dimensional representation of the medial axis M of a sur-
face S. Also, a tangent sphere of radius dM at the position where the minimum
distance between the surface and the medial axis is attained.

the cut function is all positive inside one of the spheres, and all negative inside the other.

Also note that1/dM is an upper bound on the curvature ofS, but it isn’t necessarily the

maximum curvature becausedM might be determined where different parts of the surface

come close to each other.

Assuming thatdM is bounded away from zero, the Delaunay-based surface approxi-

mation algorithm of Boissonnat and Oudot [14] and its extension [69] enjoy many surface

approximation guarantees. Their guarantees follow from results by Amenta and Bern [2],

which themselves depend on results by Edelsbrunner and Shah[34]. Unfortunately, all of

this machinery is intimately linked with Delaunay properties that don’t necessarily hold

in our case. Fortunately, equivalent results can be proved directly.

58

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Normal Approximation

Below is a general result, followed by its application to isosurface stuffing.

Theorem 6 Let S be a surface and let△abc be a triangle whose vertices lie exactly on

S. Assume that|ab|, |ac| ≤ L, sin(6 bac) ≥ s, anddM(a) ≥ r. Then the angleθ between

the normal of△abc and the normal ofS at a satisfies

sin θ ≤ L

rs
.

PROOF: For ease of notation, translate and rotate the geometry so thata = (0, 0, 0) and

the plane tangent toS ata is thexy-plane (hence the normal is thez-axis). The fact that

b, c ∈ S anddM(a) ≥ r implies thatb andc lie on or outside spheres of radiusr centered

at(0, 0, r) and(0, 0,−r). Since this is the only property ofb andc that will be used, move

b andc along the rays
−→
ab and−→ac (respectively) so that|ab| = |ac| = L. The property still

holds and the angle6 bac didn’t change. Note also that the maximum distance betweenb

andc and the planez = 0 is h = L2/(2r) (see Figure 3.16).

If the triangle△abc is completely horizontal, thenθ = 0 and we are done. Otherwise,

there exists a direction of maximal slope on the triangle, given by the projection of the

z-direction onto the triangle plane. Draw a line on the triangle △abc in the direction

of maximal slope so that the line goes through a vertex of the triangle and crosses the

opposite edge. Callq the intersection point on the opposite edge.

• In case the line goes through vertexa, the maximum height difference betweena

59

Chapter 3. Tetrahedral Meshing Inside an Isosurface

L/2
L/2

r

r

h

a
h

h

old b new b

(0,0,−r)

(0,0,r)

z

r

xy−plane

S

Figure 3.16: The vertices a and b are part of a triangle △abc whose vertices lie on
a surface S which avoids two open spheres of radii r tangent at a. The vertex b is
moved along the ray ab so that |ab| = L. The distance between b and the plane
z = 0 is at most h, where h = L2/(2r) by geometry with similar triangles.

andq is h. Let φ = 6 bac. The minimum distance betweena andq is

L cos(φ/2) ≥ L cos(φ/2) sin(φ/2)

= L(sin φ)/2

≥ Ls/2

60

Chapter 3. Tetrahedral Meshing Inside an Isosurface

c
q

Lφ/2
φ

c

q
L

(a)

LL

(b)a
a

b
b

Figure 3.17: (a) A line goes through vertex a, exiting at q on the opposite edge.
The shortest possible distance between a and q is L cos(φ/2). (b) A line goes
through vertex b, exiting at q on the opposite edge. The shortest possible distance
between b and q is L sin φ.

See Figure 3.17(a). This implies thatsin θ ≤ h/(Ls/2) = 2h/(Ls).

• In case the line goes through vertexb or c (without loss of generality assumeb), the

maximum height difference betweenb andq is 2h. The minimum distance between

b andq is L sin φ ≥ Ls; see Figure 3.17(b). This implies thatsin θ ≤ 2h/(Ls).

In both cases we havesin θ ≤ 2h/(Ls). Plugging in the expressionh = L2/(2r) we

get the result,sin θ ≤ L/(rs). 2

For a mesh produced by our algorithm with a unitBCC background grid with parame-

tersαlong = 0.28511 andαshort = 0.39882, the maximum edge length isL = 1.57022, the

minimum sine of an exposed plane angle iss = 0.15721 (from Table 3.2), therefore the

angleθ between the normal of△abc and the normal ofS ata satisfiessin θ ≤ 9.9881/r.

Note that ifL/(rs) is small, the bound given by Theorem 6 implies that the angleθ is

close to0◦ or close to180◦. The180◦ case represents an inversion of the normal direction

and cannot be excluded based on the preconditions of Theorem6 only.

61

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Two-Sided Hausdorff Distance

Theorem 7 Suppose isosurface stuffing uses a background BCC grid scaled byc to mesh

a continuous cut functionf whose zero-surfaceS is a smooth 2-manifold. LetdM > 0

be the shortest distance from a point on the zero-surface to apoint on the medial axis of

the zero-surface. IfdM > ωvc, with ωv defined as in Corollary 5, then every point on the

zero-surface is within a distance ofωvc from the mesh boundaryT .

PROOF: SupposedM > ωvc. For each pointp on the zero-surface, leti(p) be the point

found by moving a distance infinitesimally greater thanωvc from p along the inward-

facing normal to the zero-surface, and leto(p) be the point found by moving the same

distance outward. Theisotopy segments(p) is the segment with endpointsi(p) ando(p);

it is perpendicular to the zero-surface atp. Imagine an isotopy segment for each point on

the surface. None of these isotopy segments intersect the medial axis or each other, and

their union forms an envelope around the zero-surface. See Figure 3.18.

By Corollary 5, for any pointp on the zero-surface,i(p) lies in a tetrahedron ando(p)

does not, sos(p) intersects at least one point on the mesh boundary. Thus, we obtain the

two-sided Hausdorff distance boundH(T, S) ≤ ωvc whendM > ωvc. 2

Topology

Theorem 8 Assume the preconditions of Theorem 7. Ifc/dM is sufficiently small, then

the boundary of the mesh is homeomorphic to the zero-surface, and there is a continuous

deformation of space that carries the zero-surface to the mesh boundary. (I.e., there is

an ambient isotopy from the identity map on the zero-surfaceto the homeomorphism that

maps the zero-surface to the mesh boundary.)

62

Chapter 3. Tetrahedral Meshing Inside an Isosurface

p

i(p)

o(p)

S T
s(p)

Figure 3.18: Three isotopy segments are shown, including the isotopy segment
s(p) corresponding to point p of the surface S. The union of all the isotopy seg-
ments forms an envelope around the surface, and the approximate surface T
must lie inside the envelope.

Proof sketch. We use the same isotopy segment construction as in the proof of Theo-

rem 7. Our approach is similar to that of Kolluri [50]. We construct a continuous map

m : R
3 → R

3 that maps each isotopy segment to itself, and maps each pointp on the

zero-surface to the point where its isotopy segments(p) intersects the boundary of the

mesh. Our goal is to show that each isotopy segment intersects the mesh boundary in one

and only one point. (Every point on the mesh boundary intersects exactly one isotopy

segment, because by Corollary 3, every point on the mesh boundary is within a distance

of ωsc from the zero-surface.) It follows thatm induces a homeomorphism between the

zero-surface and the mesh boundary, and we have an ambient isotopy by linearly interpo-

lating between the identity map andm.

The hard part is showing that each isotopy segment intersectsonlyone point—loosely

speaking, that the mesh boundary does not have wrinkles or extraneous components. Sup-

63

Chapter 3. Tetrahedral Meshing Inside an Isosurface

pose for the sake of contradiction that an isotopy segments(p) intersects several points

on the mesh boundary. Then on a “walk” fromi(p) to o(p) one re-enters the mesh at least

once, implying that some boundary trianglet faces the “wrong” way relative tos(p).

Becauset is a boundary face, all three of its vertices lie on the zero-surface, and it is

a face of a high-quality output tetrahedronh. Let v be the vertex oft oppositet’s longest

edge. The two balls of radiusdM tangent to the zero-surface atv have interiors that do not

intersect the zero-surface, so no vertex oft lies inside them. The size oft is proportional

to the BCC grid sizec, so if c/dM is sufficiently small, the balls constraint to be nearly

parallel to the tangent plane (see Theorem 6, or Theorem 5 of Amenta, Choi, Dey, and

Leekha [3]). Becauseh has good quality, its fourth vertex must lie inside one of thetwo

balls, so the vertex is labeled+ (rather than0) and the ball lies entirely within the domain

(as its interior does not intersect the isosurface). Thus the isotopy segments(v), which is

collinear with the ball centers, is correctly oriented relative to t (i.e., i(v) is on the same

side oft ash). So are all the isotopy segments that intersectt, because the curvature of

the zero-surface is bounded (see Lemma 3 of Amenta and Bern [2]). We omit details.2

3.5 Graded Interior Tetrahedra

For many applications in rendering and engineering, the need for accuracy is greatest

near the surface of the domain. This section addresses the goal of creating a graded

mesh that has uniformly fine (small) elements on its boundary, where accuracy is most

crucial, but increasingly coarse elements deeper in its interior, as illustrated in Figures 3.1

and 3.19. By reducing the number of tetrahedra in the mesh, wereduce the finite element

method’s computation time. (Ideally, we would like to allowelement sizes to grade on

64

Chapter 3. Tetrahedral Meshing Inside an Isosurface

20 40 60 80 100 120 140 160 1800

14.5 158.0

Figure 3.19: Cutaway view of a 42,053-tetrahedron mesh whose elements are
uniformly fine on the surface but grade to coarse in the interior. Produced with
αlong = 0.28511 and αshort = 0.39882. A histogram of dihedral angles in 2◦ intervals
appears at lower right; multiply the heights of the red bars by 20. This mesh took
4.9 seconds on a Mac Pro with a 2.66 GHz Intel Xeon processor, of which 403
milliseconds were mesh generation time.

the boundary too, but we have not been able to achieve satisfying dihedral angle bounds.

See Section 3.6.)

3.5.1 Four Kinds of Tetrahedra

We replace the BCC grid with a graded background grid composed of four kinds of tetra-

hedra, illustrated in Figure 3.20. In addition to the BCC tetrahedron, we use a bisected

BCC tetrahedron, created by splitting a BCC tetrahedron at the midpoint of one of its long

edges, and a quadrisected BCC tetrahedron, created by splitting a bisected BCC tetrahe-

65

Chapter 3. Tetrahedral Meshing Inside an Isosurface

bisected

bisected quadrisected half−pyramids

BCC tetrahedron

Figure 3.20: Graded background grids consist of BCC tetrahedra, bisected BCC
tetrahedra, quadrisected BCC tetrahedra, and half-pyramids.

tetrahedron kind dihedral angles radius-edge ratio
BCC 60◦, 60◦, 60◦, 60◦, 90◦, 90◦ ≈ 0.645

bisected 45◦, 60◦, 60◦, 90◦, 90◦, 90◦ ≈ 1.118
quadrisected 45◦, 45◦, 60◦, 90◦, 90◦, 90◦ ≈ 0.866
half-pyramid 45◦, 45◦, 60◦, 60◦, 90◦, 120◦ ≈ 0.866

Table 3.3: Quality statistics on the four kinds of tetrahedra used to grade the
interior of the mesh.

dron along the surviving long edge. These tetrahedra are nearly as well shaped as the

BCC tetrahedron. The fourth tetrahedron kind is a half-pyramid. A cube can be divided

into six pyramids—one for each face of the cube—with their apices meeting at the center

of the cube, as illustrated. Each pyramid can be bisected by adiagonal into two half-

pyramids. Half-pyramids can also be obtained by bisecting the red edge of a quadrisected

BCC tetrahedron. The dihedral angles and radius-edge ratios of these tetrahedra are listed

in Table 3.3.

In addition to the black and red edges of the BCC grid, bisection and quadrisection

66

Chapter 3. Tetrahedral Meshing Inside an Isosurface

also introduce a new kind of diagonal edge we callblue edges. Bisection and quadrisec-

tion also split black edges into shorter black edges, and quadrisection creates a new black

edge (so colored because it is axis-aligned).

3.5.2 Non-Standard Octree

We use an octree to help create a graded tetrahedral background grid using these four

kinds of tetrahedra. The vertices of the background grid will be corners and centers of the

octants (cubes) in the octree. As in the BCC grid, one tetrahedron can span two octants.

If the octree were refined to the same depth everywhere, the background grid would be

composed of BCC tetrahedra, except at its boundary. However, we try to refine the octree

as little as possible, to minimize the number of tetrahedra.

Our octree is not quite the usual one. In a classical octree, when an octant is refined, it

is divided into eight octants of half the length—itschildren. For better grading, our octree

is adjusted so that an octant can be refined without creating all eight children—rather,

we can choose to create any subset of an octant’s eight possible children, and thus target

refinement more precisely.

Figure 3.21 shows how to bridge between BCC grids whose edge lengths differ by a

factor of two. Not only can our four tetrahedron kinds bridgebetween an octant and an

adjoining octant twice the size; they can bridge between an octant and its parent (unlike

with most octree meshing algorithms). On the coarse side, weuse quadrisected BCC

tetrahedra. On the fine side, we use half-pyramids. (Bisected BCC tetrahedra are also

needed, because some octants have extra vertices at the midpoints of some of their edges.)

A useful intuition is to observe that, given a BCC grid, we canbisect any arbitrary

subset of black (long) edges independently, yielding a meshof our first three tetrahedron

67

Chapter 3. Tetrahedral Meshing Inside an Isosurface

Figure 3.21: Background tetrahedra used to bridge two levels of the octree,
viewed from two different angles. Cube centers are red.

kinds. This fact is germane in the transition regions, wheresmaller tetrahedra force some

larger ones to be bisected.

3.5.3 Conditions Close to the Isosurface

The main idea of our meshing algorithm is to ensure that only BCC tetrahedra will inter-

sect the isosurface, so most of the angle bounds in Table 3.2 apply to our graded meshes

as well as our uniform ones. Tetrahedra of the other three kinds might still have their ver-

tices warped, however. It is a straightforward extension ofour computer-assisted proof,

described in Section 3.3, to show that these tetrahedra willnot be warped enough to vio-

late the angle bounds in Table 3.2, except for the two bounds marked by daggers, which

68

Chapter 3. Tetrahedral Meshing Inside an Isosurface

deteriorate to158.1918◦ and147.0470◦, respectively.

To start the algorithm, a user selects an approximate tetrahedron size by specifying the

width w of the leaf octants of the octree. Conceptually, the algorithm partitions space into

an infinite grid of cubes having widthw. Each cube has nineprobe points: its center and

its eight vertices. Thesignof a probe point is the sign of the cut functionf at that point.

Ideally, we wish to find every cube that the isosurface passesthrough. Practically, we

search for every cube that has at least one nonnegative probepoint and one nonpositive

probe point, as illustrated in Figure 3.22(a). (This includes every cube with a zero probe

point.) If the isosurface is connected, and the grid is fine enough to resolve it accurately,

and we can find one such cube, then we can find the others by depth-first search through

the space of cubes (using a hash table to store the cubes, keyed on their coordinates). This

is a standard technique, sometimes calledcontinuation; see Bloomenthal [13] for details.

These cubes will be among the leaves of the octree. To ensure that only BCC tetrahe-

dra will intersect the isosurface, we gather additional cubes according to aContinuation

Condition.

If a leaf octanto has a square faces with at least one nonpositive vertex and

one nonnegative vertex (a zero vertex counts as both), then we must create

a leaf octant (the same size aso) adjoining the other side ofs. Moreover,

if a leaf octanto has a corner vertexv whose sign is opposite the sign ofo’s

center point, or if either sign is zero, then we must create the three leaf octants

incident onv that share a square face witho.

Next, to obtain the angle guarantees marked by asterisks in Table 3.2, we sometimes

must create a few additional leaf octants to prevent half-pyramids from becoming overly

69

Chapter 3. Tetrahedral Meshing Inside an Isosurface

a

f

c d

e

b

Figure 3.22: A two-dimensional illustration of the (three-dimensional) algorithm.
(a) Cells intersecting the isosurface. (b) After enforcing the Continuation Con-
dition and building an octree. (c) After enforcing the Weak Balance Condition.
(d) The background grid. (e) After introducing cut points and warping the ver-
tices. (f) The final mesh.

70

Chapter 3. Tetrahedral Meshing Inside an Isosurface

deformed by warping. We determine which lattice points are violated by cut points. If

a leaf octant has a violated center point and a faces with two opposite violated corners,

we create a leaf octant adjoining the other side ofs. The goal is to ensure that the kind

of triangle shared by two half-pyramids, having two red edges and one blue edge, never

has all three vertices warped. This step is unnecessary to achieve the angle bounds not

marked by asterisks.

3.5.4 Interior Grading

Next, we create an octree whose octants are the leaf cubes andtheir ancestors. We keep

the octree as sparse as possible by taking advantage of the fact that an octant can have a

child without having eight children. See Figure 3.22(b).

We cannot bridge directly between two octants whose lengthsdiffer by more than a

factor of two while maintaining high element quality, so thenext step is to impose the

following Weak Balance Condition, illustrated in Figure 3.22(c).

If an octanto intersects an edgee of the octree for which the length ofe is

strictly less than halfo’s width, then we must create every child ofo that

intersects the interior ofe. (Note thate could be on the boundary or in the

interior ofo—in the latter case, it would be an edge of a grandchild ofo.)

The algorithm in Figure 3.23 converts a balanced octree to a background grid, as

illustrated in Figure 3.22(d).

71

Chapter 3. Tetrahedral Meshing Inside an Isosurface

for each octanto that is a leaf or has a nonnegative center point
c ⇐ the center vertex ofo.
for each square faces of o

if there is no vertex at the center ofs
if s is shared with another octanto′ the same size aso

c′ ⇐ the center vertex ofo′.
for each edgee of the squares

if there is no vertex at the midpoint ofe
Create the BCC tetrahedronconv(e ∪ {c, c′}).

else
m ⇐ the midpoint vertex ofe.
for each endpointp of e

Create the bisected BCC tetconv({p, m, c, c′}).
else{s is shared with a larger octant or the boundary}

Create two half-pyramids filling the pyramidconv(s ∪ {c}).
The diagonal bisecting the pyramid must
adjoin a corner or center vertex ofc’s parent.

else{there is a vertex at the center of the squares}
d ⇐ the center vertex ofs.
for each edgee of the squares

if there is no vertex at the midpoint ofe
Create the bisected BCC tetrahedronconv(e ∪ {d, c}).

else
m ⇐ the midpoint vertex ofe.
for each endpointp of e

if o has no child with vertexp
Create the quadrisected BCC tetconv({p, m, d, c}).

{ else do nothing;o has a child that will take care of
tetrahedralizing the corner ofo nearp. }

Figure 3.23: Algorithm for creating a background grid from our weakly balanced
octree. Note that the algorithm as written here creates any background tetrahe-
dron that spans two octants twice; an implementation should take care to avoid
this duplication.

72

Chapter 3. Tetrahedral Meshing Inside an Isosurface

3.5.5 Mesh Generation

Once we have a background grid, our algorithm for constructing an internally graded

mesh is almost identical to the uniform meshing algorithm. We compute the value of

the cut functionf at every vertex of the background grid. (Most of these valueswere

already computed to enforce the Continuation Condition.) We compute cut points and

warp the background grid as described in Section 3.1 and illustrated in Figure 3.22(e).

(The Continuation Condition ensures that blue edges are never cut.) We use the stencils

in Figure 3.3 to create output tetrahedra from the BCC tetrahedra in the background grid.

Every background tetrahedron of the other three kinds becomes an output tetrahedron if

it has at least one positive vertex. See Figure 3.22(f) for a two-dimensional analog.

3.6 Discussion

Surface Meshing

Isosurface stuffing doubles as a guaranteed-quality, watertight isosurface triangulation

algorithm almost as simple and fast as Marching Cubes: simply output the triangles on

the boundary of the mesh generated by isosurface stuffing, and enjoy the exposed plane

angle bounds listed in Table 3.2. The upper bounds of less than 125◦ on plane angles

are noteworthy. They compete with the120◦ guarantee of Chew’s algorithm [24], at a

fraction of the effort and running time.

For theα parameters listed as “safe” in Table 3.1, the background BCCtetrahedra

cannot become degenerate, so the surface mesh generated by the algorithm cannot have

self-intersections. The15.1285◦ bound in the table is unsafe; a BCC lattice tetrahedron

73

Chapter 3. Tetrahedral Meshing Inside an Isosurface

with four warped vertices could become inverted, and could potentially cause a few of the

output triangles to have intersecting interiors (though wehave not seen it in practice) if

the grid is insufficiently fine or if the zero-surface is not a smooth manifold with bounded

curvature. To obtain the most aggressive bound on the smallest angle (16.4299◦, with

ordered warping), we useαshort = 0.5, which allows a BCC tetrahedron to become ar-

bitrarily close to degenerate. To prevent it from becoming perfectly flat, we adopt the

convention that a cut point precisely at the midpoint of a rededge violates the endpoint

on the cubical latticeZ3 + (1
2
, 1

2
, 1

2
), but not the endpoint on the cubical latticeZ

3. The

choiceαshort = 0.5 means that no cut point ever survives on a red edge, so most of the

stencils are never used. This simplifies the algorithm, and also makes the16.4299◦ bound

possible.

Surface Grading

An alluring goal that we have not been able to achieve is a tetrahedral meshing algorithm

that permits grading of both surface and interior tetrahedra and has a strong bound on the

dihedral angles. This is not to say that we have no algorithm.With our techniques, we

can construct a background grid that is graded on the domain boundary as well as in the

interior, and we can apply our cutting and warping techniqueto it. We have experimented

with different stencils for the four kinds of background tetrahedron, and found some good

choices. The majority of the tetrahedra produced this way are good in practice, as Fig-

ure 3.24 shows. However, we cannot make guarantees on dihedral angles better than1.66◦

or 174.72◦. We see three main obstacles: the half-pyramid background tetrahedron can be

severely distorted by warping (because of its120◦ dihedral angle); smaller tetrahedra can

have their vertices warped a long distance by larger neighbors; and although we can find

74

Chapter 3. Tetrahedral Meshing Inside an Isosurface

20 40 60 800 100 120 140 160 180

144.713.8

Figure 3.24: A 22,728-tetrahedron mesh, and a cutaway view thereof, generated
in 2,859 milliseconds by a variant of isosurface stuffing that allows tetrahedra to
grade both on and inside the surface. Dihedral angles vary from 13.8◦ to 144.7◦.
Plane angles on the surface vary from 10.9◦ to 138.5◦. These results are typical,
but much worse angles can occur.

good stencils for all four kinds of background tetrahedron,we cannot get them to agree

on their shared diagonals without sacrificing quality. We are optimistic that a solution to

this hard problem is tantalizingly within reach, but it might require a more clever graded

background grid, one that somehow avoids dihedral angles much larger than90◦.

Conclusion

Nevertheless, we achieve a goal that has eluded researchersfor nearly two decades: a

mesh generation algorithm for complicated shapes that offers theoretical guarantees on

75

Chapter 3. Tetrahedral Meshing Inside an Isosurface

dihedral angles strong enough to be meaningful to practitioners. The shortcomings of

isosurface stuffing—its tendency to round off sharp cornersand edges, and the reduction

of guaranteed quality if the surface tetrahedra are not of uniform size—are balanced by its

simplicity and raw speed. The combination of three features—speed, guaranteed quality,

and numerical robustness—makes isosurface stuffing the first mesh generation algorithm

suitable for robust remeshing in physically-based animation at interactive rates.

For isosurfaces with bounded curvature, it would be interesting to improve the bound

on Hausdorff distance fromO(c) to O(c2) in Theorem 7, and to derive an explicit condi-

tion onc/dM that guarantees isotopy in Theorem 8.

76

Chapter 4

Delaunay Refinement Without Slivers

In this chapter, we present a Delaunay refinement algorithm that we calllattice refine-

ment that can generate a mesh without slivers away from the boundary. New vertices

are carefully chosen from lattices described in Section 1.3. The minimum dihedral angle

guarantee of30◦ is spectacularly good.

Inserting new vertices to get rid of slivers is a powerful tool which can be abused: a

first solution is to lay down a very fine regular grid, and to slightly perturb it to match the

input vertices. A second solution is to find a way to wrap each input vertex individually

with a small shell of lattice vertices, and to fill the outsideof the shells in some regular

way. See Figure 4.1. The problem with these two solutions is that they require a lot of

new vertices. The algorithm that we propose has the second solution as its worst case, but

is likely to be much better in practice for two reasons.

1. A new vertex is inserted only in response to a bad-quality tetrahedron. If the Delau-

nay tetrahedralization of the input is already a good quality mesh, then it won’t be

changed by the algorithm. If the input has only a few bad tetrahedra, it is likely that

77

Chapter 4. Delaunay Refinement Without Slivers

(b)(a) (c)

Figure 4.1: Two-dimensional equivalents of two possible strategies to get rid of
slivers by refinement. (a) The Delaunay triangulation of the input contains a poorly
shaped element. (b) Use a distorted fine grid. (c) Create small shells around input
vertices and use a regular mesh outside.

a few vertex insertions will suffice to eliminate them because good angles can also

be obtained by chance, especially if the quality requirements are relaxed to, say, a

15◦ minimum dihedral angle.

2. Although one can start with standard Delaunay refinement to bound the radius-edge

ratios and then use our algorithm to eliminate the remainingslivers, it is a much

better idea to use our algorithm to do both at the same time. Inlattice refinement,

vertices with arbitrary coordinates are the enemy; they should not be needlessly

generated.

In Section 4.4, we present a way to incrementally generate a good quality mesh made

out of lattice vertices only. The tetrahedra generated by our algorithm can grade from

small to large and are guaranteed to have dihedral angles in the interval[30◦, 135◦] and

radius-edge ratios at most1.119. Using this technique as part of a Delaunay refinement

algorithm guarantees good-quality tetrahedra away from the boundary (and internal fea-

tures of the domain), where the mesh is locally composed of lattice vertices only.

78

Chapter 4. Delaunay Refinement Without Slivers

In Section 4.5, we add the ability to handle the simplest of internal features: input

vertices with arbitrary coordinates. This makes our resultdirectly comparable to previous

results [25, 21]. This also slightly broadens the possible applications to, for example, the

simulation of a number of point-like heat sources in three dimensions, where each source

should be a vertex of the mesh. The dihedral angle guarantee stays the same,[30◦, 135◦],

and the bound on radius-edge ratio slightly worsens to1.368. The algorithm can still

grade from small to large tetrahedra, although the constantin the grading guarantee is

weaker.

4.1 Delaunay Refinement

In this section, we briefly review Delaunay refinement, a popular mesh generation tech-

nique that is based on the Delaunay triangulation.

As we mentioned in Section 2.3, the Delaunay triangulation of a vertex set obeys the

empty circumcircle property: for every triangle in the triangulation, its circumcircle con-

tains no vertex in its interior. In three dimensions, the property is that every tetrahedron

has an empty circumsphere. For more details and other properties, see the chapter by de

Berg et al. [28].

A Delaunay refinement algorithm first computes the Delaunay triangulation of the

input vertices (in two or three dimensions). If this gives a good quality mesh of the

domain then we are done. Most likely, the triangulation contains a poor quality element,

or doesn’t even conform to the domain boundary, in which casea new vertex is inserted

to correct the problem and the Delaunay triangulation is updated. The steps are repeated

until a good quality mesh is obtained.

79

Chapter 4. Delaunay Refinement Without Slivers

v v

t

Figure 4.2: In Delaunay refinement, poorly-shaped triangles are eliminated by
inserting their circumcenters (J. Shewchuk).

By poor quality we mean a radius-edge ratio greater than someboundB, in which

case the circumcenter of the poor quality simplex is inserted to eliminate the simplex (see

Figure 4.2).

The domain boundary makes this simple procedure more complicated. If the domain

boundary is missing from the mesh, it must be recovered by inserting vertices. During

refinement, new vertices cannot be inserted too close to the boundary or outside of the do-

main; instead a vertex is inserted somewhere on the boundary. Domains with small angles

are another issue that is important to deal with. Using a constrained Delaunay triangula-

tion [23, 79] can help. We defer to the literature for detailson boundary handling [78, 71],

as the issue is unimportant in this chapter.

It is important to guarantee that the refinement procedure terminates. A proof of

termination can be given—it depends on the constantB and on details of the domain

boundary handling.

80

Chapter 4. Delaunay Refinement Without Slivers

4.1.1 Delaunay Triangulation Algorithms

In two dimensions, the Delaunay triangulation of a set ofn points containsΘ(n) triangles

and can be computed in optimalO(n log n) time by a divide-and-conquer algorithm [52,

45, 31], or by Fortune’s sweep-line algorithm [40]. In threedimensions, a Delaunay

tetrahedralization can have anywhere betweenΩ(n) andO(n2) tetrahedra, which means

that the worst case running time must be at leastO(n2).

Incremental Insertion

For the purpose of mesh generation, the ability to constructa Delaunay triangulation

from scratch is not as useful as the ability toupdatea Delaunay triangulation when a

vertex is inserted. Incremental insertion can be done with edge flips in two dimensions,

as shown by Lawson [51], or by retriangulating a cavity by an algorithm of Bowyer [16]

and Watson [85] that works in arbitrary dimensions.

Because the effect of inserting one vertex is usually a localoperation, the running time

of one insertion is usuallyO(1), although in the worst case this could beO(n), giving a

O(n2) incremental Delaunay triangulation algorithm in two dimensions. Clarkson and

Shor [27] randomize the order in which vertices are inserted. The randomization means

that inserting a vertex now requires the ability to locate a point in the mesh based on co-

ordinates. By using a smart point location algorithm, the expected running time of one

insertion isO(log n), leading to an expected running time ofO(n logn) to compute the

full triangulation, andO(n⌈d/2⌉) in d ≥ 3 dimensions. In mesh generation, we cannot ran-

domize the order in which vertices are inserted so a randomized analysis is not possible.

In practice, insertions takeO(1) time on average during refinement, and mesh generation

81

Chapter 4. Delaunay Refinement Without Slivers

takesO(n) time wheren is the size of the final mesh.

4.1.2 Data Structures

While a simple list of triangles might be sufficient to rendera mesh, it is not a good

format to manipulate a mesh. To allow fast local operations,the mesh must be represented

in computer memory in a way that makes it easy to look up neighboring elements. In

the straightforward implementation, the structure for a simplex contains pointers to the

neighboring simplices, in addition to pointers to its vertices. This requires 6 pointers per

triangle in two dimensions, and 8 pointers per tetrahedron in three dimensions.

Guibas and Stolfi [45] proposed a quad-edge representation in two dimensions. Some

advantages are that it can represent planar subdivisions, not just triangulations, and one

can access the dual subdivision without any work. Unfortunately, it is an expensive way

to represent a triangulation, requiring 12 pointers per triangle.

More recently, Blandford et al. [12] proposed representingtwo and three dimensional

triangulations in a special, compressed way that requires about 3 times less memory than

the straightforward representation. Neighbors can still be found rapidly, and the method

has the practical advantage that mesh operations can be performed by deleting and adding

simplices without having to update any pointer.

4.2 Simplified Mesh Generation

Ideally one would like to be able to mesh anypiecewise linear complex(PLC) with high-

quality tetrahedra, even when the boundary is complicated.This chapter doesn’t treat the

boundary. Provably eliminating slivers is a very hard problem that has seen little progress,

82

Chapter 4. Delaunay Refinement Without Slivers

so even a partial solution is significant.

Here are a few concrete ways to interpret boundary-less meshgeneration, the first two

being mathematically precise.

Periodic space [21, 33].The algorithm is used to mesh the periodic space[0, 1)3, where

space wraps around at the boundary like in the gameAsteroids. Assuming that the

space is initialized with enough vertices that inserting a new vertex won’t create a

tetrahedron that uses that new vertex twice, the periodic space behaves locally like

R
3.

Superset mesh.Given a domainΩ ⊂ R
3 with boundary, one can ask for a good quality

mesh that does not necessarily respect the boundary but is a superset ofΩ, some-

times called asimulation envelope[77]. This can be accomplished by considering

only the quality of tetrahedra that intersectΩ and allowing the insertion of new ver-

tices outside ofΩ. When the algorithm terminates, delete the tetrahedra thatdo not

intersectΩ. The result is a superset mesh ofΩ with good quality tetrahedra only.

Good quality except at the boundary. The algorithm is used as part of an existing so-

lution to mesh PLCs. If the lattice refinement algorithm is about to insert a vertex

that is too close to the boundary or even outside the domain, abort the insertion and

do what the PLC algorithm would do instead.

These are illustrated in Figure 4.3. In this chapter the results and proofs are written

with the notation of the superset mesh problem.

83

Chapter 4. Delaunay Refinement Without Slivers

guarantee

periodic space superset mesh good quality except
at the boundary

Figure 4.3: Three problems that can be solved by a mesh generation algorithm
that doesn’t handle the boundary.

4.2.1 Sizing Function and Local Feature Size

Definition 6 (Sizing Function) Thesizing functionis a scalar fields : Ω → (0,∞] used

to prescribe the approximate size of elements at each point of the domain.

We will use the sizing function as follows: the final mesh should be such that a closed

ball of radiuss(p) centered atp is non-empty, for allp ∈ Ω. Because the mesh is Delau-

nay, this directly implies an upper bound ofs(p) for the circumradius of a tetrahedron,

wherep is its circumcenter.

Since the simplified setting does not allow input edges or faces, we use a definition of

local feature size adapted to the case of an input vertex set with a sizing function. (See

Ruppert [74] for the original definition.)

Definition 7 (Local Feature Size) Letp be any point inR3. The local feature size due to

input vertices,lfsi(p), is the distance betweenp and its second-closest input vertex. The

local feature size due to the sizing function islfss(p) = inf{s(a) + dist(p, a) : a ∈ Ω}.

The combined local feature size islfs(p) = min(lfsi(p), lfss(p)).

84

Chapter 4. Delaunay Refinement Without Slivers

By considering the casea = p in the definition oflfss(p) we see thatlfss(p) ≤ s(p) for

p ∈ Ω. Note thatlfss(p) can be interpreted as a “1-Lipschitzation” of the sizing function

s(p).

Lemma 9 For any two pointsp andq,

1. lfsi(q) ≤ lfsi(p) + dist(p, q),

2. lfss(q) ≤ lfss(p) + dist(p, q),

3. lfs(q) ≤ lfs(p) + dist(p, q);

i.e. the functions are 1-Lipschitz.

PROOF: The proof is adapted from Ruppert [74].

1. By the definition oflfsi(p), there are two input verticesv andw at distance at most

lfsi(p) from p. By the triangle inequality,v andw are at distance at mostlfsi(p) +

dist(p, q) from q. Thereforelfsi(q) ≤ lfsi(p) + dist(p, q).

2.

lfss(q) = inf{s(a) + dist(q, a) : a ∈ Ω}

≤ inf{s(a) + dist(q, p) + dist(p, a) : a ∈ Ω}

= inf{s(a) + dist(p, a) : a ∈ Ω} + dist(p, q)

= lfss(p) + dist(p, q).

3. Follows by taking the minimum of both sides of inequalities (i) and (ii).

2

85

Chapter 4. Delaunay Refinement Without Slivers

4.3 Uniform Tetrahedra

Creating a superset mesh composed of uniform tetrahedra is easy because we only have

to consider an infinite tiling of space with tetrahedra and retain those that intersect the

domain. Sommerville [81] asked which tetrahedra can fill space with congruent copies

and found four such space-filling tetrahedra. More space-filling tetrahedra exist, but they

do not meet face-to-face, which makes them unsuitable for a finite element mesh. See the

survey of Senechal [75] on space-filling tetrahedra.

Combining tetrahedra with different shapes gives more flexibility. Field [37] proposes

filling the interior of a domain with a tetrahedral mesh constructed from a complicated

icosahedral assembly. Naylor [66] compares the suitability for numerical methods of five

ways to fill space with tetrahedra, including Field’s assembly. Based on five conditioning

measures, he concludes that the best choice was simply givenby one of Sommerville’s

space-filling tetrahedra. This assembly corresponds to theBCC grid of Section 3.1, and

is the Delaunay tetrahedralization of the body-centered cubic lattice. It gives a mesh with

dihedral angles of60◦ and90◦, and radius-edge ratios of
√

15/6 (≈ 0.645).

Eppstein, Sullivan and̈Ungör [35] show that it is possible to tile space with acute

tetrahedra—tetrahedra with dihedral angles all strictly less than90◦. They give several

constructions, one even achieving dihedral angles between60◦ and74.21◦, and radius-

edge ratios at most≈ 0.711. This way of filling space is more complicated than the BCC

grid, but its quality is comparable and possibly better, depending on the application.

86

Chapter 4. Delaunay Refinement Without Slivers

4.4 Graded Tetrahedra

In this section, we show the lattices defined in Section 1.3 can be used in concert to

generate tetrahedra that can grade from small to large.

An algorithm to generate graded meshes of guaranteed quality that honor a sizing

function s (but not input vertices) can be devised easily: one can construct a balanced

octree and take its Delaunay tetrahedralization. By analyzing the26 possible types of cells

in a balanced octree, we find that the dihedral angles are in the interval[19.471◦, 135◦]

and radius-edge ratios at most1.347. The dihedral angle bounds can be improved to

[45◦, 120◦] by using templates of transition tetrahedra, as shown in Section 3.5. The

radius-edge ratios are at most
√

5/2 (< 1.119).

The technique presented in this section is simple and generates tetrahedra with di-

hedral angles in the interval[30◦, 135◦] and radius-edge ratios of at most
√

5/2. It is

formulated as an incremental insertion method to make it easy to combine with standard

Delaunay refinement.

Given any full-rank latticeL ⊂ R
3, let e(L) be the minimum distance between two

distinct points inL. Let r(L) be the radius of the largest empty open ball inR
3\L.

Lemma 10 Any ball of radiusr(L) contains at least one point ofL in its interior, or at

least4 on its boundary.

PROOF: Let B be an open ball of radiusr(L) with no point of L in its interior. By

definition ofr(L), B must be a largest possible empty open ball. SinceB is of maximum

radius, there must be at least4 points ofL on its boundary to prevent the radius from

being increased further. The result follows.2

87

Chapter 4. Delaunay Refinement Without Slivers

Proposition 2

e(SCk) = 2k, e(BCCk) = 2k
√

3/2,

r(SCk) = 2k
√

3/2, r(BCCk) = 2k
√

5/4.

PROOF: The first two are clear. For the last two, note that maximal open balls occur at

Voronoi vertices of the lattices. For example,(1
2
, 1

2
, 1

2
) is a Voronoi vertex ofSC0 with

a maximal empty ball of radius
√

3/2, and(1
2
, 1

4
, 0) is a Voronoi vertex ofBCC0 with

a maximal empty ball of radius
√

5/4. Due to the symmetry of these lattices, all other

maximal balls are of equal sizes.2

The method depends crucially on the following two lemmas, which assert that a tetra-

hedron with vertices in a lattice and a small circumradius either has good dihedral angles,

or its circumsphere contains a lattice point (that the algorithm can insert to eliminate the

tetrahedron).

Lemma 11 Lett be a tetrahedron with vertices inSCk and a circumradius ofr(BCCk+1)

or less. Then the dihedral angles oft are all at least30◦ and at most135◦.

PROOF: By rescaling, it suffices to show that a tetrahedron with vertices inSC0, a di-

hedral angle of less than30◦ or of more than135◦, and a circumradius of
√

5/2 or less

doesn’t exist. Because of the bound on circumradius, there is a finite number of possible

tetrahedra to test. The verification was carried out by a computer. Figure 4.4 shows the

tetrahedra that achieve the extreme angles.2

Lemma 12 Let t be a tetrahedron with vertices inBCCk and a circumradius ofr(SCk)

or less. If t has a dihedral angle less thanarccos(
√

6/3) (≈ 35.264◦) or larger than

arccos(−
√

3/3) (≈ 125.264◦), then there exists a point ofSCk inside the circumsphere

of t.

88

Chapter 4. Delaunay Refinement Without Slivers

30°

135°

30° 30°

Figure 4.4: Two worst-case tetrahedra for Lemma 11. Each tetrahedron has ver-
tices in SC0 and a circumradius of

√
5/2 or less. They are the only such tetrahedra

to achieve at least one of the angle bounds of Lemma 11.

PROOF: By rescaling, it suffices to show that a tetrahedron with vertices inBCC0, a dihe-

dral angle of less thanarccos(
√

6/3) or of more thanarccos(−
√

3/3), and a circumradius

of
√

3/2 or less must always contain a point ofSC0 inside its circumsphere. Because of

the bound on circumradius, there is a finite number of possible tetrahedra to test. The

verification was carried out by a computer.2

In fact, there is a finite number of tetrahedra with vertices in SCk or BCCk that do

not contain a vertex from a coarser lattice inside their circumspheres. They are listed in

Table 4.1, and the first two tetrahedra from the table are illustrated in Figure 4.4. By

negation, every lattice tetrahedronnot in the table contains a vertex from a coarser lat-

tice inside its circumsphere, which we can insert to refine the mesh and eliminate the

tetrahedron. Thus, by refinement, it is possible to construct a graded mesh composed of

tetrahedra appearing in Table 4.1 only. (The proof of grading appears in Section 4.4.2.)

4.4.1 Algorithm

Algorithm 1 generates a mesh by incrementally inserting lattice vertices while maintain-

ing a Delaunay tetrahedralization of these lattice vertices. It uses Algorithm 2 to refine

89

Chapter 4. Delaunay Refinement Without Slivers

minimum maximum radius- can refine
dihedral dihedral edgefrom same coordinates of an example

angle angle ratio lattice tetrahedron (SC0 or BCC1)
SCk

30.0000 120.0000 1.1180 yes (0,0,0), (0,0,1), (0,2,0), (1,1,1)
30.0000 135.0000 0.7906 yes (0,0,1), (0,1,2), (0,2,1), (1,1,0)
35.2644 125.2644 0.8660 no (0,0,0), (0,0,1), (0,1,0), (1,1,1)
35.2644 90.0000 1.1180 yes (0,0,0), (0,0,1), (0,2,1), (1,1,1)
45.0000 90.0000 0.8660 no (0,0,0), (0,0,1), (0,1,1), (1,1,1)
45.0000 90.0000 1.1180 yes (0,0,0), (0,0,2), (0,1,1), (1,1,1)
48.1897 90.0000 1.1180 yes (0,0,0), (0,1,1), (1,0,2), (1,1,1)
54.7356 109.4712 0.7071 yes (0,0,1), (0,1,0), (0,1,2), (1,1,1)
54.7356 90.0000 0.8660 no (0,0,1), (0,1,0), (0,1,1), (1,1,1)
60.0000 90.0000 0.6455 yes (0,0,1), (0,2,1), (1,1,0), (1,1,2)
70.5288 70.5288 0.6124 no (0,0,1), (0,1,0), (1,0,0), (1,1,1)

BCCk

35.2644 125.2644 0.8660 yes (0,0,0), (0,0,2), (0,2,0), (2,2,2)
45.0000 120.0000 0.8660 yes (0,0,2), (0,2,2), (1,1,1), (2,2,2)
45.0000 90.0000 0.8660 yes (0,0,0), (0,0,2), (0,2,2), (2,2,2)
54.7356 90.0000 0.8660 yes (0,0,2), (0,2,0), (0,2,2), (2,2,2)
60.0000 90.0000 0.6455 no (0,2,2), (1,1,1), (1,1,3), (2,2,2)
70.5288 70.5288 0.6124 yes (0,0,2), (0,2,0), (2,0,0), (2,2,2)

Table 4.1: Tetrahedra that do not contain a vertex of a coarser lattice inside their
circumsphere. The tetrahedra under the heading “SCk” relate to Lemma 11, and
the tetrahedra under the heading “BCCk” relate to Lemma 12. The fourth column
indicates if the tetrahedron’s circumsphere contains a vertex of the same lattice,
implying that these tetrahedra can be refined, but doing so may lead to a uniform
mesh (not graded).

empty balls that are too large. When a vertex is created it is assigned alabel, eitherSCk

or BCCk for somek, and is tagged with atype number. The labels are needed in the

implementation, but the type numbers are not (they are only used in the analysis). Each

vertex belongs to the lattice of its label, but the label is not necessarily the coarsest lattice

that contains the vertex.

90

Chapter 4. Delaunay Refinement Without Slivers

Algorithm 1: Simple graded meshing
Input:

• A domainΩ ⊂ R
3.

• A sizing functions : Ω → (0,∞].

Repeat the enforcement steps below in any order until none apply. Maintain a Delau-
nay tetrahedralization as new vertices are inserted. When finished, remove all tetrahedra
whose interiors do not intersectΩ.

Size enforcement: If there exists a pointp ∈ Ω such that a closed ballB of radiuss(p)
centered atp is empty, thencall Algorithm 2 to refine the empty ballB with a
safety factorf = 0.

Quality enforcement: If the Delaunay tetrahedralization contains a tetrahedront with
circumradiusr and shortest edge lengthe whose interior intersectsΩ and which
has a dihedral angle smaller than30◦ or larger than135◦, or a radius-edge ratior/e
larger thanβ =

√
5/2, do:

Among the4 vertices oft, find the vertexv with the finest lattice label, according
to the nesting of lattices.

Case 1: The label ofv is SCk.

By assumption,r > eβ ≥ e(SCk)β = r(BCCk+1), or t has a dihedral angle
that is less than30◦ or greater than135◦. By Lemma 11,r > r(BCCk+1). Let
B be a closed ball of radiusr(BCCk+1) tangent atv inside the circumsphere
of t (see Figure 4.5, left). By Lemma 10 there exists a pointw of BCCk+1 in
B\{v}. Insert w with label BCCk+1 and type 1.

Case 2: The label ofv is BCCk.

By assumption,r > eβ ≥ e(BCCk)β > r(SCk), or t has a dihedral angle
that is less than30◦ or greater than135◦. If r > r(SCk), then letB be a
closed ball of radiusr(SCk) tangent atv inside the circumsphere oft (see
Figure 4.5, right). By Lemma 10 there exists a pointw of SCk in B\{v}.
Else by Lemma 12 there exists a pointw of SCk inside the circumsphere oft.
Insert w with label SCk and type 2.

The algorithm inserts vertices for one of two reasons: the sizing function, or a bad-

quality tetrahedron. In the latter case, the inserted vertex always comes from a lattice that

91

Chapter 4. Delaunay Refinement Without Slivers

v in SC0
w in BCC1

0v in BCC

w in SC0

3
2

5
2

B

insert insert

B

Figure 4.5: Two-dimensional examples of the geometric constructions in cases 1
and 2 of the quality-enforcement step of Algorithm 1. The new vertex w is chosen
from a lattice that is one level coarser than the label of v. Furthermore, w is
chosen from an inner ball B tangent at v in order to be close to v. This strategy
generates a mesh that grades quickly.

Algorithm 2: Refine empty ball
Input:

• An empty ballB (open or closed) with centerc and radiusr > 0.

• A safety factorf ≥ 0 (a nonzero value will be used by Algorithms 3 and 6).

One of the following two cases holds because these two families of intervals cover every
possibler > 0.

Case 1: r ∈ (2j(
√

3/2 + f), 2j(
√

5/2 + f)] for somej ∈ Z.

By Lemma 10 there exists a pointw of SCj at distance at most2j
√

3/2 from c.
Insertw with labelSCj into the Delaunay tetrahedralization.

Case 2: r ∈ (2j(
√

5/2 + f), 2j(
√

3 + 2f)] for somej ∈ Z.

By Lemma 10 there exists a pointw of BCCj+1 at distance at most2j
√

5/2 from c.
Insertw with labelBCCj+1 into the Delaunay tetrahedralization.

BecauseB is empty, the new vertexw is at a distance greater than2jf from any previous
vertex, where the label ofw is SCj or BCCj+1.

is strictly coarser than the finest lattice label of the tetrahedron vertices. This allows a

proof of good grading. The refinement strategy is closer toÜngör’s off-centers [84] than

92

Chapter 4. Delaunay Refinement Without Slivers

to the circumcenter method.

Because the algorithm is building a superset mesh, any emptyhalf-space that is tan-

gent to a vertex, an edge, or a triangle of the tetrahedralization can be considered a de-

generate circumsphere with missing vertices at infinity. Vertices at infinity are considered

infinitely coarse in the nesting of lattices. Obviously, thetangent vertices can only be on

the convex hull of the tetrahedralization. If such a half-space intersectsΩ, then the cor-

responding fictive tetrahedron with 1, 2 or 3 vertices from the mesh and the half-space as

its circumsphere qualifies for quality enforcement in Algorithm 1. During that step, the

vertexv with the finest lattice label is from the mesh. The circumradiusr is considered to

be infinite. The circumcenter does not exist but it is not used. B is a closed ball tangent

at v inside the half-space. The other steps are unaffected.

As written, the algorithm starts with no vertices at all, so it must first perform a size

enforcement step. When there is at least one vertex, the empty half-space rule can apply

and lead to quality enforcement steps.

4.4.2 Analysis

A mesh generation algorithm hasgood gradingif the sizes of the elements can vary from

small to large over a short distance. Since the work of Ruppert [74], a grading guarantee

is usually a proof of a linear relationship between the nearest neighbor distance of a vertex

v of the final mesh and its local feature sizelfs(v).

As a first step we show that there exist positive constantsa andb such that

lfs(v) ≤











2ka if v has labelSCk,

2kb if v has labelBCCk.
(4.1)

93

Chapter 4. Delaunay Refinement Without Slivers

We show by induction that these bounds are maintained by the algorithm. The con-

stantsa and b are derived at the end of this section. Once we have these bounds, the

following theorem shows that we obtain good grading.

Theorem 13 If a mesh consists of onlySC or BCC lattice vertices, and if there exist

positive constantsa and b such that (4.1) holds, then for any vertexv of the mesh, the

distance to its nearest neighbor is at least

min(1
1+a

, 1

1+2b/
√

3
)lfs(v).

PROOF: (Adapted from Ruppert [74]). Letv be any vertex of the mesh. Letw be its

nearest neighbor.

If the label ofv is as fine or finer than the label ofw we argue as follows.

• In casev has labelSCk, dist(v, w) ≥ e(SCk) = 2k andlfs(v) ≤ 2ka, so

dist(v, w) ≥ 1
a
lfs(v).

• In casev has labelBCCk, dist(v, w) ≥ e(BCCk) = 2k
√

3/2 andlfs(v) ≤ 2kb, so

dist(v, w) ≥
√

3
2b

lfs(v).

In either case,

dist(v, w) ≥ min(1
a
,
√

3
2b

)lfs(v).

94

Chapter 4. Delaunay Refinement Without Slivers

Else (w is finer thanv), we use Lemma 9 and apply the bound above tow.

lfs(v) ≤ lfs(w) + dist(v, w)

≤ dist(v, w)/ min(1
a
,
√

3
2b

) + dist(v, w)

= max(1 + a, 1 + 2b√
3
)dist(v, w).

Sodist(v, w) ≥ min(1
1+a

, 1

1+2b/
√

3
)lfs(v). 2

We perform a separate analysis for each type of inserted vertexw in Algorithm 1.

Insertion due to size

In the size enforcement step of Algorithm 1,p ∈ Ω is a point such that a closed ballB of

radiuss(p) centered atp is empty. Letw be the new vertex. By Lemma 9,

lfss(w) ≤ lfss(p) + dist(p, w) ≤ s(p) + dist(p, w).

• If w was given labelSCj by Algorithm 2, then

s(p) + dist(p, w) ≤ 2j(
√

5/2 + f) + 2j
√

3/2

(heref = 0, but a different value will be used in Section 4.5.2). We require that

√
5/2 + f +

√
3/2 ≤ a

so thatlfss(w) ≤ 2ja and the insertion preserves (4.1).

95

Chapter 4. Delaunay Refinement Without Slivers

• Else (w has labelBCCj+1),

s(p) + dist(p, w) ≤ 2j(
√

3 + 2f) + 2j
√

5/2.

We require that
√

3 + 2f +
√

5/2 ≤ 2b

so thatlfss(w) ≤ 2j+1b and the insertion preserves (4.1).

Type 1 insertion

The new vertexw has labelBCCk+1 at a distance at most2r(BCCk+1) = 2k
√

5 from v

with labelSCk. So

lfs(w) ≤ lfs(v) + dist(v, w) ≤ 2ka + 2k
√

5.

We require that

a +
√

5 ≤ 2b,

so that by inductionlfs(w) ≤ 2k+1b.

Type 2 insertion

The new vertexw has labelSCk at a distance at most2r(SCk) = 2k
√

3 from v with label

BCCk. So

lfs(w) ≤ lfs(v) + dist(v, w) ≤ 2kb + 2k
√

3.

96

Chapter 4. Delaunay Refinement Without Slivers

We require that

b +
√

3 ≤ a,

so that by inductionlfs(w) ≤ 2ka.

Guarantee

The requirements (underlined in the text) can be satisfied bysetting

a = 2
√

3 +
√

5, and

b =
√

3 +
√

5.

By applying Theorem 13 we deduce that during the course of thealgorithm, the distance

between any vertexv and its nearest neighbor is at least

lfs(v)/6.701.

Assuming there is a positive lower bound on the sizing function s, this result gives a

positive lower bound on the distance between any pair of vertices. This in turn implies

termination of the algorithm, becauseΩ has finite volume. (A slightly bigger volume

must be considered in the case of a superset mesh).

4.5 Adding Vertex Constraints

In this section we extend lattice refinement to allow input vertices with arbitrary coordi-

nates inΩ. The algorithm inserts lattice vertices, but never “too close” to an input vertex.

97

Chapter 4. Delaunay Refinement Without Slivers

Each lattice point has an associatedforbidden regionaround it. No lattice point is ever

inserted that has an input vertex in its forbidden region.

Definition 8 (Forbidden Region) Let p ∈ R
3 andk ∈ Z. The forbidden regionR(p, k)

is an axis-aligned cube with side2k(2 +
√

6)/2 centered atp. Mathematically,

R(p, k) = {q : ‖q − p‖∞ ≤ 2k(2 +
√

6)/4}.

Also define

ρ =
√

3(2 +
√

6)/4 (4.2)

to be the safety radius constant, which is the distance fromp to the furthest point of

R(p, 0).

The lattice points that the algorithm inserts are calledrefinement verticesto distinguish

them from input vertices. The algorithm maintains the invariant that if a refinement vertex

v has labelSCk or BCCk+1, thenR(v, k) contains no input vertex.

Theorem 14 For any p ∈ R
3 and anyk ∈ Z, let S = {p} ∪ (SCk\R(p, k)). Then

every Delaunay tetrahedron inS has dihedral angles in the interval[30◦, 127.903◦], and

a radius-edge ratio of at most1.368.

PROOF: By rescaling, it suffices to consider the casek = 0. Because the forbidden region

is an axis-aligned cube with half-sideσ = (2 +
√

6)/4 (≈ 1.112), if the coordinate ofp

along some axis falls in the set(σ, 3 − σ) + Z, then two points ofSC0 will be covered

by the forbidden regionR(p, 0) along that axis. If the coordinate falls in the complement

[3 − σ, 1 + σ] + Z, then three points ofSC0 will be covered along that axis. The total

98

Chapter 4. Delaunay Refinement Without Slivers

number of points ofSC0 that are removed by the set difference withR(p, 0) is therefore

8, 12, 18 or 27, depending on the three coordinates ofp.

By invoking translational symmetry, we can assume that the coordinate ofp along

some axis falls in the interval(σ, 1 + σ]. We consider two separate cases: either the

coordinate falls in(σ, 3 − σ), or it falls in [3 − σ, 1 + σ]. In the first case, the interval is

mirror symmetric about(σ + (3 − σ))/2 = 3
2

and the integers covered by the forbidden

region are 1 and 2, also symmetric about3
2
. So without loss of generality we can assume

that the coordinate ofp falls on the left half of the interval, i.e.I = (σ, 3
2
]. The second

case is similar: the symmetry axis is((3 − σ) + (1 + σ))/2 = 2, the covered integers are

1,2 and 3, so without loss of generality we assume that the coordinate ofp falls in the left

half J = [3−σ, 2]. There are further symmetries because the three axes can be permuted,

e.g. the caseI×J×I is equivalent toI×I×J . The possible cases forp are then reduced

to these four:

1. p ∈ I3 andS = {p} ∪ (SC0\{1, 2}3)

2. p ∈ I2 × J andS = {p} ∪ (SC0\{1, 2}2 × {1, 2, 3})

3. p ∈ I × J2 andS = {p} ∪ (SC0\{1, 2} × {1, 2, 3}2)

4. p ∈ J3 andS = {p} ∪ (SC0\{1, 2, 3}3)

The hole inSC0 created by the set difference withR(p, 0) is a box with side either 3

or 4 in each axis direction (see Figure 4.6).

In each case the lattice vertices forming the box aroundp can be naturally classified

as corner, edge or face vertices. We claim that in a Delaunay tetrahedralization ofS, p

always connects exactly to the convex hull of the box face vertices only. This is because

99

Chapter 4. Delaunay Refinement Without Slivers

...

... ...

...

p

R(p,0)

...

...

... ...
p

Figure 4.6: A two-dimensional equivalent of the set S = {p} ∪ (SC0\R(p, 0)) and
its Delaunay tetrahedralization in the proof of Theorem 14. In this example, p lies
in the rectangular frame [3− σ, 1 + σ]× (σ, 3− σ) shown at the center of the right-
hand figure, so the hole in SC0\R(p, 0) is a 4 × 3 rectangle. By mirror symmetry,
we assume that p lies in the smaller sub-rectangle [3−σ, 2]×(σ, 3

2
] = J×I. Hollow

circles are the box face vertices.

the box corner and box edge vertices are isolated fromp by Delaunay tetrahedra. The

tetrahedra whose circumspheres come closest to containingp occur in case 1. An example

is a tetrahedron with circumsphere center(1
2
, 1

2
, 3

2
) and radius

√
3/2. The circumsphere

goes through the point(σ, σ, 3
2
) which is avoided byp ∈ (σ, 3

2
]3. This is why we chose

this value ofσ.

The angle bounds are more difficult to prove formally than in Lemmas 11 and 12

because the coordinates of pointp can vary continuously in a range. Nonetheless the di-

hedral angles are smooth functions of the position ofp (there is no change in connectivity

asp moves) and the extrema are easily found. See Table 4.2 for a summary of the bounds

in each case. Figure 4.7 shows tetrahedra that achieve the lower bounds.2

Corollary 15 Let p ∈ R
3 and k ∈ Z. Let t be a tetrahedron with vertices in the set

S = {p} ∪ (SCk\R(p, k)). Suppose thatp is not inside the circumsphere oft. If t has

100

Chapter 4. Delaunay Refinement Without Slivers

case min dihedral max dihedral max ratio achieved atp =
1 ≈ 31.962◦ ≈ 125.264◦(*) ≈ 1.198 (σ, σ, σ)
2 ≈ 30.129◦ ≈ 125.264◦(*) ≈ 1.267 (σ, σ, 3 − σ)
3 30◦ < 127.903◦ ≈ 1.329 (σ, 3 − σ, 3 − σ)
4 ≈ 34.785◦ ≈ 125.264◦(*) < 1.368 (3 − σ, 3 − σ, 3 − σ)

Table 4.2: Four cases in the proof of Theorem 14. In all cases the dihedral angles
are in the interval [30◦, 127.903◦) and the radius-edge ratios are less than 1.368.
The bounds marked (*) are intrinsic to the simple cubic lattice and are achieved
independently of the position of p. (The Delaunay tetrahedralization of a simple
cube may contain a dihedral angle of arccos(−

√
3/3) ≈ 125.264◦.)

 p p p p30°

Figure 4.7: Tetrahedra achieving a minimum dihedral angle in each case of The-
orem 14. Only two sides of the box around the input vertex p are shown. The
minimum dihedral angles and coordinates of p appear in Table 4.2. (The coordi-
nate system is different for this figure.)

a dihedral angle smaller than30◦ or larger than127.903◦, or a radius-edge ratio larger

than1.368, then there exists a pointq of SCk\R(p, k) inside the circumsphere oft.

PROOF: By Theorem 14,t cannot be Delaunay inS. Therefore there exists a pointq in S

inside the circumsphere oft. Since we assumed thatp is not inside the circumsphere oft,

q 6= p. Soq ∈ SCk\R(p, k). 2

101

Chapter 4. Delaunay Refinement Without Slivers

Algorithm 3: Meshing with input vertices
Input:

• A domainΩ ⊂ R
3.

• A finite number of input vertices with arbitrary coordinatesin Ω.

• A sizing functions : Ω → (0,∞].

Compute a Delaunay tetrahedralization of the input vertices. Repeat the enforcement
steps below in any order until none apply. Maintain a Delaunay tetrahedralization as new
vertices are inserted. When finished, remove all tetrahedrawhose interiors do not intersect
Ω.

Size enforcement: If there exists a pointp ∈ Ω such that a closed ballB of radiuss(p)
centered atp is empty, thencall Algorithm 2 to refine the empty ballB with a
safety factorf =

√
3(2 +

√
6)/4 (ρ of Definition 8). Assigntype 0 to the new

vertex.

Quality enforcement: If the Delaunay tetrahedralization contains a tetrahedront whose
interior intersectsΩ and which has a dihedral angle smaller than30◦ or larger than
135◦, or a radius-edge ratio larger thanβ = 1.368, thencall Algorithm 4 if t has at
least 1 refinement vertex, orAlgorithm 6 if t has at least 2 input vertices. (If both
cases apply, then choose either algorithm.)

4.5.1 Algorithm

Algorithm 3 is an extension of Algorithm 1 of Section 4.4.1. It uses Algorithms 2, 4,

5 and 6 to handle specific geometric cases. At places these algorithms make queries of

the form “Is there an input vertex in the regionR(w, k)?” This kind of query can be

answered efficiently by using the Delaunay tetrahedralization as a search structure.

In Algorithm 4, an attempt is made to insert a new vertex from astrictly coarser lattice,

to obtain good mesh grading. The attempt is aborted if the candidate for insertion is “too

close” to an input vertex.

In Algorithm 5, there is an input vertex nearby and the algorithm has permission

102

Chapter 4. Delaunay Refinement Without Slivers

Algorithm 4: Refine tetrahedron (Case 1)
Input:

• A tetrahedront of bad quality (dihedral angle smaller than30◦ or larger than135◦, or a
radius-edge ratio larger thanβ = 1.368) with circumcenterc, circumradiusr, and at least
1 refinement vertex.

Let v be the refinement vertex oft with the finest label, according to the nesting of lattices.

1.1 If the label ofv is SCk for somek.

1.1.1 If r > r(BCCk+1), then letB be a closed ball of radiusr(BCCk+1) tangent atv inside the
circumsphere oft. By Lemma 10 there exists a pointw of BCCk+1 in B\{v}. Note that
dist(w, v) ≤ 2r(BCCk+1). w is a candidate for insertion.

1.1.2 Else if t has at least one input vertexu1, then call Algorithm 5 . Return. Note that
dist(u1, v) ≤ 2r(BCCk+1) anddist(u1, c) = r.

1.1.3 Else (t has 4 refinement vertices), the radius-edge ratio oft is at most
r(BCCk+1)/e(SCk) =

√
5/2 < β, so t must have a dihedral angle smaller than

30◦ or larger than135◦. This is impossible by Lemma 11, so this subcase never happens.

If the forbidden regionR(w, k) of the candidatew doesn’t contain any input vertex, then
insert w with label BCCk+1 and type 1.1. Else, letu1 be an input vertex in the forbidden
region. Note thatdist(u1, v) ≤ 2r(BCCk+1) + 2kρ anddist(u1, c) ≤ r + 2kρ < (1 +
2ρ/

√
5)r becauser > r(BCCk+1) = 2k

√
5/2. Call Algorithm 5 .

1.2 Else (the label ofv is BCCk+1 for somek).

1.2.1 If r > r(SCk+1), then letB be a closed ball of radiusr(SCk+1) tangent atv inside the
circumsphere oft. By Lemma 10 there exists a pointw of SCk+1 in B\{v}. w is a
candidate for insertion.

1.2.2 Else if t has at least one input vertexu1, then call Algorithm 5 . Return. Note that
dist(u1, v) ≤ 2r(SCk+1) anddist(u1, c) = r.

1.2.3 Else (t has 4 refinement vertices), the radius-edge ratio oft is at most
r(SCk+1)/e(BCCk+1) = 1 < β, so t must have a dihedral angle smaller than30◦

or larger than135◦. By Lemma 12 there exists a pointw of SCk+1 inside the circumsphere
of t. w is a candidate for insertion.

If the forbidden regionR(w, k+1) of the candidatew doesn’t contain any input vertex, then
insert w with label SCk+1 and type 1.2. Else, letu1 be an input point in the forbidden
region. Note thatdist(u1, v) ≤ 2r(SCk+1) + 2k+1ρ and dist(u1, c) ≤ r + 2k+1ρ ≤
(1 + 4ρ/

√
3)r becauser ≥ e(BCCk+1)/2 = 2k

√
3/2. Call Algorithm 5 .

103

Chapter 4. Delaunay Refinement Without Slivers

Algorithm 5: Refine tetrahedron (Case 2)
Input:

• A tetrahedront of bad quality (dihedral angle smaller than30◦ or larger than135◦,
or a radius-edge ratio larger thanβ = 1.368) with circumcenterc, circumradiusr,
and at least 1 refinement vertex. Letv be the finest refinement vertex oft, with label
SCk or BCCk+1.

• An input vertexu1 (possibly a vertex oft) such thatdist(u1, v) ≤ 2k(2
√

3 + 2ρ)
anddist(u1, c) ≤ (1 + 4ρ/

√
3)r.

2.1 If r > r(SCk) + 2kρ/2, then letB be a closed ball of radiusr(SCk) + 2kρ/2 tangent
at v inside the circumsphere oft. Let B′ be a closed ball of radiusr(SCk) lying
in B as far as possible fromu1. By Lemma 10 there exists a pointw of SCk in
B′\{v}. By construction, the forbidden regionR(w, k) doesn’t containu1, and
dist(w, v) ≤ 2r(SCk) + 2kρ. w is a candidate for insertion.

2.2 Else if t has no input vertex except possiblyu1, by Corollary 15 there exists a point
w of SCk inside the circumsphere oft such thatw /∈ R(u1, k). This implies that
u1 /∈ R(w, k). Note thatdist(w, v) < 2r(SCk)+2kρ. w is a candidate for insertion.

2.3 Else (t has an input vertexu2 6= u1), note thatdist(u2, c) = r. Call Algorithm 6 .
Return.

If the forbidden region ofR(w, k) doesn’t containany input vertex, theninsert w with
label SCk and type 2. Else letu2 be an input vertex in the forbidden region. Note that
dist(u2, c) ≤ r + 2kρ ≤ (1 + 2ρ)r becauser ≥ e(SCk)/2 = 2k/2. Call Algorithm 6 .

Algorithm 6: Refine tetrahedron (case 3)
Input:

• A tetrahedront with circumcenterc and circumradiusr.

• Two input verticesu1 andu2 that are vertices oft or are at distance at most(1 +
4ρ/

√
3)r from c.

Call Algorithm 2 to refine the empty circumsphere oft with a safety factorρ. Assign
type 3 to the new vertex.

to insert a new vertex from a lattice that is just as fine as the finest vertex of the bad-

quality tetrahedron, or even one level finer (inserting a vertex fromSCk when the finest

104

Chapter 4. Delaunay Refinement Without Slivers

tetrahedron vertex label isBCCk+1). Corollary 15 allows an analysis of this case.

In Algorithm 6, there are two input vertices nearby. Corollary 15 cannot be used

because it can only deal with one nearby input vertex at a time. We have no other choice

than to refine the mesh with a lattice vertex and try to make thelocal lattice resolution

smaller than the distance between the two input vertices.

4.5.2 Analysis

The analysis is structured in the same way as in Section 4.4.2. We find positive constants

a andb such that (4.1) holds.

We perform a separate analysis for each type of the inserted vertexw. The first three

analyses are identical to what was done in Section 4.4.2 (except for type 1.2 wherek is

defined to be one less).

Insertion due to size

As in Section 4.4.2, we require that

√
5/2 + f +

√
3/2 ≤ a and

√
3 + 2f +

√
5/2 ≤ 2b

so that the insertion preserves (4.1), wheref = ρ this time.

Type 1.1 insertion

As in Section 4.4.2 (for a Type 1 insertion), we require that

a +
√

5 ≤ 2b,

105

Chapter 4. Delaunay Refinement Without Slivers

so that by inductionlfs(w) ≤ 2k+1b.

Type 1.2 insertion

The new vertexw has labelSCk+1 at a distance at most2r(SCk+1) = 2k+1
√

3 from v

with labelBCCk+1. So

lfs(w) ≤ lfs(v) + dist(v, w) ≤ 2k+1b + 2k+1
√

3.

We require that

b +
√

3 ≤ a,

so that by inductionlfs(w) ≤ 2k+1a.

Type 3 insertion

By assumption, the two input vertices are at distance at most(1 + 4ρ/
√

3)r from c. By

Lemma 9,

lfsi(w) ≤ lfsi(c) + dist(c, w) ≤ (1 + 4ρ/
√

3)r + dist(c, w).

• If w was given labelSCj by Algorithm 2, then

lfsi(w) ≤ (1 + 4ρ/
√

3)2j(
√

5/2 + ρ) + 2j
√

3/2.

We require that

(1 + 4ρ/
√

3)(
√

5/2 + ρ) +
√

3/2 ≤ a

106

Chapter 4. Delaunay Refinement Without Slivers

so thatlfsi(w) ≤ 2ja.

• Else (w has labelBCCj+1),

lfsi(w) ≤ (1 + 4ρ/
√

3)2j(
√

3 + 2ρ) + 2j
√

5/2.

We require that

(1 + 4ρ/
√

3)(
√

3 + 2ρ) +
√

5/2 ≤ 2b

so thatlfsi(w) ≤ 2j+1b.

Type 2 insertion

This case is the most difficult because in the neighborhood ofan input vertex, new lattice

vertices are not necessarily coarser than their neighbors.Given a vertex of type 2, the

idea is to construct a sequence of lattice vertices. The sequence is designed to consist of

type 1.1 and type 2 vertices because type 2 vertices do not come from a coarser lattice and

they can undo the coarsening progress made by type 1.1 vertices. The sequence is used to

discover a nearby vertex of type 0, 1.2 or 3, or to discover a second nearby input vertex.

Figure 4.8 illustrates all possible sequences.

Each new vertexw produced by the algorithm will be assigned aparentp(w) and a

nearby input vertexn(w), depending on the type of inserted vertexw.

For type 1.1, letp(w) = v andn(w) = n(v).

For type 2, letp(w) = v andn(w) = u1.

For type 0, 1.2, or 3, letp(w) = null andn(w) = null.

107

Chapter 4. Delaunay Refinement Without Slivers

k−1

k

k

k+1

k+1

k+2BCC

SC

BCC

SC

BCC

SC
fin

er
co

ar
se

r

type 2

type 1.1

...

type 2

type 1.1

...

type 2

type 1.1

...
type 0 or 3

type 0, 1.2, or 3

type 0 or 3

type 0, 1.2, or 3

type 0 or 3

type 0, 1.2, or 3

Figure 4.8: This diagram shows all possible parent relationships in the analysis
of a Type 2 insertion. Nodes represent vertices and arrows point to all possible
parents. A chain of parents correspond to one path in this graph, starting from
one of the leftmost vertices (of type 2), and ending at one of the red vertices (or
anywhere before). The vertical position of a node indicates its lattice label from
the nesting of lattices. We see that a chain can consist of a sequence of type 1.1
or type 2 vertices of arbitrary length from the same two lattices, and must end if a
vertex of type 0, 1.2 or 3 is encountered.

Lemma 16 If p(w) 6= null wherew has labelSCk or BCCk+1 thenw is of type 1.1 or 2

and

dist(p(w), w) ≤























2k
√

5 if w is of type 1.1,

2k(
√

3 + ρ) if w is of type 2,

2k(
√

3 + ρ) in general.

PROOF: The bounds appear in Algorithms 4 and 5.

For type 1.1,dist(p(w), w) ≤ 2r(BCCk+1) = 2k
√

5.

For type 2,dist(p(w), w) ≤ 2r(SCk) + 2kρ = 2k(
√

3 + ρ). 2

108

Chapter 4. Delaunay Refinement Without Slivers

Lemma 17 If n(w) 6= null wherew has labelSCk or BCCk+1 thenw is of type 1.1 or 2

and

dist(n(w), p(w)) ≤























2k(3
√

3 + 3ρ) if w is of type 1.1,

2k(2
√

3 + 2ρ) if w is of type 2,

2k(3
√

3 + 3ρ) in general.

PROOF: For type 2, the bound comes from the input conditions of Algorithm 5.

For type 1.1, letv = p(w) which has labelSCk. Note thatn(v) = n(w) 6= null. v

must be of type 2 because this is the only type of vertex with label SC andn(v) 6= null.

We use the triangle inequality

dist(n(w), p(w)) ≤ dist(n(v), p(v)) + dist(p(v), v)

wherev = p(w) andn(w) = n(v). v has labelSCk, so

dist(n(v), p(v)) ≤ 2k(2
√

3 + 2ρ)

from the consideration above for type 2, and

dist(p(v), v) ≤ 2k(
√

3 + ρ)

from Lemma 16. By combining these inequalities the result follows. 2

Lemma 18 If n(w) 6= null wherew has labelSCk or BCCk+1 thenw is of type 1.1 or 2

109

Chapter 4. Delaunay Refinement Without Slivers

and

dist(n(w), w) ≤























2k(3
√

3 + 3ρ +
√

5) if w is of type 1.1,

2k(3
√

3 + 3ρ) if w is of type 2,

2k(3
√

3 + 3ρ +
√

5) in general.

PROOF: The bound for each particular type follows by applying the triangle inequality

to the corresponding bounds in Lemmas 16 and 17. The boundin generalis simply the

maximum.2

Lemma 19 If a vertexw is of type 0, 1.2, or 3, with labelSCk or BCCk+1, thenlfs(w) ≤

2k max(b +
√

3, α), where

α = (1 + 4ρ/
√

3)(
√

3 + 2ρ) +
√

5/2. (4.3)

PROOF: From the previous analyses we have the following, depending on the type ofw.

For type 0,lfss(w) ≤ 2k(
√

5/2 + ρ +
√

3/2) or lfss(w) ≤ 2k(
√

3 + 2ρ +
√

5/2) from

Section 4.5.2.

For type 1.2,lfs(w) ≤ 2k(b +
√

3) from Section 4.5.2 withk replacingk + 1.

For type 3,lfsi(w) ≤ 2k((1 + 4ρ/
√

3)(
√

5/2 + 2ρ) +
√

3/2) or lfsi(w) ≤ 2k((1 +

4ρ/
√

3)(
√

3 + 2ρ) +
√

5/2) from Section 4.5.2.

The result follows by considering the maximum over all possibilities. 2

Now, starting from a vertexw of type 2, follow the chain of parents as follows.

• Initialize w′ := w.

• While p(w′) is of type 1.1 or 2, andn(p(w′)) = n(w), dow′ := p(w′).

110

Chapter 4. Delaunay Refinement Without Slivers

Note that by construction, every vertex of the chain fromw to w′ has labelSCk or

BCCk+1 with thesamek. n(w′) = n(w) because otherwise thewhile loop would have

stopped on the previous iteration. Furthermore,w′ must be of type 2 because ifw′ is of

type 1.1 withn(w′) = n(w) 6= null, thenp(w′) is of type 2 withn(p(w′)) = n(w) and

thewhile loop would have continued.

dist(p(w′), n(w′)) ≤ 2k(2
√

3 + 2ρ) sincew′ is of type 2.

dist(n(w′), w) ≤ 2k(3
√

3 + 3ρ) sincen(w′) = n(w) andw is of type 2.

By the triangle inequality,

dist(p(w′), w) ≤ 2k(5
√

3 + 5ρ).

The rest of the analysis depends on which condition made thewhile loop stop.

• If p(w′) is of type 0, 1.2, or 3:

By Lemma 19,

lfs(p(w′)) ≤ 2k max(b +
√

3, α).

By Lemma 9,

lfs(w) ≤ lfs(p(w′)) + dist(p(w′), w) ≤ 2k max(b +
√

3, α) + 2k(5
√

3 + 5ρ).

We require that

max(b +
√

3, α) + 5
√

3 + 5ρ ≤ a

so that by inductionlfs(w) ≤ 2ka.

• Else ifn(p(w′)) = null:

111

Chapter 4. Delaunay Refinement Without Slivers

p(w′) must be of type 1.1 andp(p(w′)) of type 0, 1.2 or 3. By Lemma 19,

lfs(p(p(w′))) ≤ 2k max(b +
√

3, α).

By Lemma 16,

dist(p(p(w′)), p(w′)) ≤ 2k
√

5

sincep(w′) is of type 1.1. By Lemma 9 and the triangle inequality,

lfs(w) ≤ lfs(p(p(w′))) + dist(p(p(w′)), p(w′)) + dist(p(w′), w)

≤ 2k max(b +
√

3, α) + 2k
√

5 + 2k(5
√

3 + 5ρ).

We require that

max(b +
√

3, α) +
√

5 + 5
√

3 + 5ρ ≤ a

so that by inductionlfs(w) ≤ 2ka.

• Else (n(p(w′)) 6= n(w) andn(p(w′)) 6= null):

By Lemma 18,

dist(n(p(w′)), p(w′)) ≤ 2k(3
√

3 + 3ρ +
√

5).

By the triangle inequality,

dist(n(p(w′)), w) ≤ dist(n(p(w′)), p(w′)) + dist(p(w′), w)

≤ 2k(3
√

3 + 3ρ +
√

5) + 2k(5
√

3 + 5ρ).

112

Chapter 4. Delaunay Refinement Without Slivers

On the other hand,

dist(n(w), w) ≤ 3
√

3 + 3ρ

sincew is of type 2.n(p(w′)) 6= n(w), which implies that

lfsi(w) ≤ max(dist(n(p(w′)), w), dist(n(w), w))

≤ 2k(8
√

3 + 8ρ +
√

5).

We require that

8
√

3 + 8ρ +
√

5 ≤ a

so thatlfs(w) ≤ 2ka.

Guarantee

The requirements (underlined in the text) can be satisfied bysetting

a = α +
√

5 + 5
√

3 + 5ρ, and

b = (a +
√

5)/2.

Theorem 13 does not apply directly because of the input vertices (which have no labels).

We need to add two cases to the proof of Theorem 13:

• If v andw are both input vertices, then we directly havedist(v, w) ≥ lfs(v).

• If v is a refinement vertex andw is an input vertex, then:

– In casev has labelSCk: dist(v, w) ≥ 2kσ, whereσ = (2 +
√

6)/4.

113

Chapter 4. Delaunay Refinement Without Slivers

– In casev has labelBCCk: dist(v, w) ≥ 2kσ/2.

The bound given by Theorem 13 becomes

min(1
1+a

, 1
1+2b/σ

)lfs(v).

By applying this, we deduce that during the course of the algorithm the distance between

any vertexv and its nearest neighbor is at least

lfs(v)/53.086.

This implies that the algorithm terminates, as argued in Section 4.4.2.

4.6 Discussion

The use of two types of lattices is complicated but appears tobe necessary to obtain a

lower bound of30◦ on dihedral angles. For a system that would give good gradingbased

uniquely on one of the simple, body-centered, or face-centered cubic lattices we could

only obtain these respective approximate lower bounds:17.023◦, 14.312◦, and14.197◦.

Lattice refinement tends to create coplanar and cosphericalvertices so the Delau-

nay code must be robust. Fortunately, lattice point coordinates are rational numbers

with a power-of-two denominator, so in reasonable cases they are exactly represented

by floating-point numbers.

Because of the guarantee on tetrahedron quality and the bound on element size in

terms of local feature size, when the domain is convex it should be possible to prove

114

Chapter 4. Delaunay Refinement Without Slivers

size-optimality (Section 1.2.2). This doesn’t hold for non-convex domains where two

input vertices can be very close geometrically, but quite far apart when the distance is

computed as a geodesic inside the domain. In this case our algorithm will refine the mesh

around the two input vertices while the optimal mesh doesn’tneed to. The same issue

affects conforming Delaunay mesh generation algorithms.

The time complexity of the algorithm depends on the particularities of mesh opera-

tions like point location and incremental insertion, so we leave the analysis as an open

problem.

It would be interesting to perform experiments with Algorithm 3 to see how much re-

finement is done in practice compared to standard Delaunay refinement, and when trying

to eliminate slivers from an already refined mesh.

We hope that this work is just a first step toward a lattice refinement algorithm for

domains with boundary constraints. As a step in that direction, we showed in Section 4.5

how internal input vertices can be handled. We believe that planar constraints can also

be handled without much difficulty. Sharp features like segments and corners are more

challenging because when a segment is split, there is only one degree of freedom for the

position of the split point. Of course, the dihedral angle guarantees don’t have to stay as

good as30◦ and135◦.

115

Bibliography

[1] Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. Varia-

tional Tetrahedral Meshing.ACM Transactions on Graphics, 24(3):617–625, 2005.

Special issue on Proceedings of SIGGRAPH 2005.

[2] Nina Amenta and Marshall Bern. Surface Reconstruction by Voronoi Filtering.

Discrete & Computational Geometry, 22(4):481–504, December 1999.

[3] Nina Amenta, Sunghee Choi, Tamal Krishna Dey, and N. Leekha. A Simple Algo-

rithm for Homeomorphic Surface Reconstruction.International Journal of Compu-

tational Geometry and Applications, 12(1–2):125–141, 2002.

[4] Dominique Attali, David Cohen-Steiner, and Herbert Edelsbrunner. Extraction and

Simplification of Iso-surfaces in Tandem. InSymposium on Geometry Processing

2005, pages 139–148, Vienna, Austria, July 2005. Eurographics Association.

[5] J. Andreas Bærentzen and Henrik Aanæs. Generating Signed Distance Fields from

Triangle Meshes. Technical Report IMM-TR-2002-21, Informatics and Mathemat-

ical Modelling, Technical University of Denmark, Lyngby, Denmark, 2002.

116

Bibliography

[6] Brenda S. Baker, Eric Grosse, and Conor S. Rafferty. Nonobtuse Triangulation of

Polygons.Discrete and Computational Geometry, 3(2):147–168, 1988.

[7] Adam W. Bargteil, Tolga G. Goktekin, James F. O’Brien, and John A. Strain. A

Semi-Lagrangian Contouring Method for Fluid Simulation.ACM Transactions on

Graphics, 25(1):19–38, January 2006.

[8] Marshall Bern and David Eppstein. Mesh Generation and Optimal Triangulation.

In Ding-Zhu Du and Frank Hwang, editors,Computing in Euclidean Geometry,

volume 1 ofLecture Notes Series on Computing, pages 23–90. World Scientific,

Singapore, 1992.

[9] Marshall Bern, David Eppstein, and John R. Gilbert. Provably Good Mesh Genera-

tion. Journal of Computer and System Sciences, 48(3):384–409, June 1994.

[10] Marshall Bern and Paul Plassmann. Mesh Generation. In Jörg Sack and Jorge

Urrutia, editors,Handbook of Computational Geometry, chapter 6. Elsevier Science,

2000.

[11] Jürgen Bey. Tetrahedral Grid Refinement.Computing, 55:355–378, 1995.

[12] Daniel K. Blandford, Guy E. Blelloch, David E. Cardoze,and Clemens Kadow.

Compact Representations of Simplicial Meshes in Two and Three Dimensions.

International Journal of Computational Geometry and Applications, 15(1):3–24,

February 2005.

[13] Jules Bloomenthal. An Implicit Surface Polygonizer. In Graphics Gems IV, chapter

IV.8, pages 324–349. Academic Press, 1994.

117

Bibliography

[14] Jean-Daniel Boissonnat and Steve Oudot. Provably GoodSurface Sampling and

Approximation. InSymposium on Geometry Processing, pages 9–18. Eurographics

Association, June 2003.

[15] Sergey N. Borovikov, Igor A. Kryukov, and Igor E. Ivanov. An Approach for De-

launay Tetrahedralization of Bodies with Curved Boundaries. In Fourteenth Inter-

national Meshing Roundtable, pages 221–238, San Diego, California, September

2005. Sandia National Laboratories.

[16] Adrian Bowyer. Computing Dirichlet Tessellations.Computer Journal, 24(2):162–

166, 1981.

[17] Scott A. Canann, S. N. Muthukrishnan, and R. K. Phillips. Topological Refinement

Procedures for Triangular Finite Element Meshes.Engineering with Computers,

12(3 & 4):243–255, 1996.

[18] Hamish Carr, Torsten Möller, and Jack Snoeyink. Artifacts Caused by Simpli-

cial Subdivision. IEEE Transactions on Visualization and Computer Graphics,

12(2):231–242, 2006.

[19] Long Chen. Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations.

In Proceedings of the Thirteenth International Meshing Roundtable, pages 109–120,

Williamsburg, Virginia, September 2004.

[20] Siu-Wing Cheng and Tamal K. Dey. Quality Meshing with Weighted Delaunay

Refinement.SIAM Journal on Computing, 33(1):69–93, 2003.

118

Bibliography

[21] Siu-Wing Cheng, Tamal Krishna Dey, Herbert Edelsbrunner, Michael A. Facello,

and Shang-Hua Teng. Sliver Exudation.Journal of the ACM, 47(5):883–904,

September 2000.

[22] Evgeni V. Chernyaev. Marching Cubes 33: Construction of Topologically Correct

Isosurfaces. Technical Report CERN-CN-95-17, European Organization for Nu-

clear Research, Geneva, Switzerland, 1995.

[23] L. Paul Chew. Constrained Delaunay Triangulations.Algorithmica, 4(1):97–108,

1989.

[24] L. Paul Chew. Guaranteed-Quality Triangular Meshes. Technical Report TR-89-

983, Department of Computer Science, Cornell University, 1989.

[25] L. Paul Chew. Guaranteed-Quality Delaunay Meshing in 3D. In Proceedings of the

Thirteenth Annual Symposium on Computational Geometry, pages 391–393, June

1997.

[26] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. North-

Holland, Amsterdam, 1978.

[27] Kenneth L. Clarkson and Peter W. Shor. Applications of Random Sampling in Com-

putational Geometry, II.Discrete & Computational Geometry, 4(1):387–421, 1989.

[28] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. De-

launay Triangulations. InComputational Geometry: Algorithms and Applications,

chapter 9. Springer-Verlag, Berlin, 1997.

119

Bibliography

[29] Boris Nikolaevich Delaunay. Sur la Sphère Vide.Izvestia Akademia Nauk SSSR,

VII Seria, Otdelenie Matematicheskii i Estestvennyka Nauk, 7:793–800, 1934.

[30] J. Donea, Antonio Huerta, J.-Ph. Ponthot, and A. Rodrı́guez-Ferran. Arbitrary

Lagrangian-Eulerian Methods. InEncyclopedia of Computational Mechanics, Vol-

ume 1, chapter 14. John Wiley, 2004.

[31] Rex A. Dwyer. A Faster Divide-and-Conquer Algorithm for Constructing Delaunay

Triangulations.Algorithmica, 2(2):137–151, 1987.

[32] Herbert Edelsbrunner and Damrong Guoy. An Experimental Study of Sliver Exuda-

tion. In Tenth International Meshing Roundtable, pages 307–316, Newport Beach,

California, October 2001.

[33] Herbert Edelsbrunner, Xiang-Yang Li, Gary Miller, Andreas Stathopoulos, Dafna

Talmor, Shang-Hua Teng, Alper̈Ungör, and Noel Walkington. Smoothing and

Cleaning Up Slivers. InProceedings of the 32nd Annual Symposium on the The-

ory of Computing, pages 273–278, Portland, Oregon, May 2000. Association for

Computing Machinery.

[34] Herbert Edelsbrunner and Nimish R. Shah. Triangulating Topological Spaces. In

Proceedings of the Tenth Annual Symposium on ComputationalGeometry, pages

285–292, 1994.

[35] David Eppstein, John M. Sullivan, and AlperÜngör. Tiling Space and Slabs with

Acute Tetrahedra.Computational Geometry: Theory and Applications, 27(3):237–

255, March 2004.

120

Bibliography

[36] EXACUS. Libraries for efficient and exact algorithms for curves and surfaces.

http://www.mpi-inf.mpg.de/projects/EXACUS/.

[37] David A. Field. Implementing Watson’s Algorithm in Three Dimensions. InPro-

ceedings of the Second Annual Symposium on Computational Geometry, pages 246–

259, Yorktown Heights, New York, June 1986. Association forComputing Machin-

ery.

[38] David A. Field. Qualitative Measures for Initial Meshes. International Journal for

Numerical Methods in Engineering, 47:887–906, 2000.

[39] David A. Field and Warren D. Smith. Graded Tetrahedral Finite Element Meshes.

International Journal for Numerical Methods in Engineering, 31(3):413–425,

March 1991.

[40] Steven Fortune. A Sweepline Algorithm for Voronoi Diagrams. Algorithmica,

2(2):153–174, 1987.

[41] Lori A. Freitag and Carl Ollivier-Gooch. Tetrahedral Mesh Improvement Using

Swapping and Smoothing.International Journal for Numerical Methods in Engi-

neering, 40(21):3979–4002, November 1997.

[42] William H. Frey. Selective Refinement: A New Strategy for Automatic Node Place-

ment in Graded Triangular Meshes.International Journal for Numerical Methods

in Engineering, 24(11):2183–2200, November 1987.

[43] Alexander Fuchs. Automatic Grid Generation with Almost Regular Delaunay Tetra-

hedra. InSeventh International Meshing Roundtable, pages 133–148, October 1998.

121

Bibliography

[44] R.A. Gingold and J.J. Monaghan. Smoothed Particle Hydrodynamics: Theory and

Application to Non-Spherical Stars.Monthly Notices of the Royal Astronomical

Society, 181:375–389, 1977.

[45] Leonidas J. Guibas and Jorge Stolfi. Primitives for the Manipulation of General

Subdivisions and the Computation of Voronoi Diagrams.ACM Transactions on

Graphics, 4(2):74–123, April 1985.

[46] L. R. Hermann. Laplacian-Isoparametric Grid Generation Scheme. Journal of

the Engineering Mechanics Division of the American Societyof Civil Engineers,

102:749–756, October 1976.

[47] Martin Isenburg and Peter Lindstrom. Streaming meshes. In Visualization 2005,

pages 231–238, Minneapolis, Minnesota, October 2005. IEEE.

[48] Claes Johnson.Numerical Solution of Partial Differential Equations by the Finite

Element Method. Cambridge University Press, Cambridge, 1987.

[49] Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter Seidel. Fea-

ture Sensitive Surface Extraction from Volume Data. InComputer Graphics (SIG-

GRAPH 2001 Proceedings), pages 57–66, 2001.

[50] Ravikrishna Kolluri. Provably Good Moving Least Squares. Submitted toACM

Transactions on Algorithms, 2007.

[51] Charles L. Lawson. Software forC1 Surface Interpolation. In John R. Rice, editor,

Mathematical Software III, pages 161–194. Academic Press, New York, 1977.

122

Bibliography

[52] Der-Tsai Lee and Bruce J. Schachter. Two Algorithms forConstructing a Delau-

nay Triangulation. International Journal of Computer and Information Sciences,

9(3):219–242, 1980.

[53] Xiang-Yang Li and Shang-Hua Teng. Generating Well-Shaped Delaunay Meshes

in 3D. In Proceedings of the Twelfth Annual Symposium on Discrete Algorithms,

pages 28–37, January 2001.

[54] Xiang-Yang Li, Shang-Hua Teng, and AlperÜngör. Biting Ellipses to Generate

Anisotropic Mesh. InEighth International Meshing Roundtable, pages 97–108,

South Lake Tahoe, California, October 1999.

[55] Xiang-Yang Li, Shang-Hua Teng, and AlperÜngör. Biting Spheres in 3d. InEighth

International Meshing Roundtable, pages 85–95, South Lake Tahoe, California, Oc-

tober 1999.

[56] Xiang-Yang Li, Shang-Hua Teng, and AlperÜngör. Biting: Advancing Front Meets

Sphere Packing. International Journal for Numerical Methods in Engineering,

49(1):61–81, September 2000.

[57] Anwei Liu and Barry Joe. Relationship between Tetrahedron Shape Measures.BIT,

34:268–287, 1994.

[58] R. Löhner and P. Parikh. Generation of Three-Dimensional Unstructured Grids by

the Advancing Front Method.International Journal of Numerical Methods in Flu-

ids, 8(10):1135–1149, 1988.

123

Bibliography

[59] William E. Lorensen and Harvey E. Cline. Marching Cubes: A High Resolution 3D

Surface Construction Algorithm. InComputer Graphics (SIGGRAPH ’87 Proceed-

ings), pages 163–170, Anaheim, California, July 1987.

[60] L. B. Lucy. A Numerical Approach to Testing the Fission Hypothesis.The Astro-

nomical Journal, 82(12):1013–1924, December 1977.

[61] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington. A Delaunay

Based Numerical Method for Three Dimensions: Generation, Formulation, and Par-

tition. In Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory

of Computing, pages 683–692, Las Vegas, Nevada, May 1995.

[62] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, Noel Walkington, and Han Wang.

Control Volume Meshes Using Sphere Packing: Generation, Refinement and Coars-

ening. InFifth International Meshing Roundtable, pages 47–61, Pittsburgh, Penn-

sylvania, October 1996.

[63] Scott A. Mitchell and Stephen A. Vavasis. Quality Mesh Generation in Three Di-

mensions. InProceedings of the Eighth Annual Symposium on Computational Ge-

ometry, pages 212–221, 1992.

[64] Scott A. Mitchell and Stephen A. Vavasis. Quality Mesh Generation in Higher

Dimensions.SIAM Journal on Computing, 29(4):1334–1370, 2000.

[65] Neil Molino, Robert Bridson, Joseph Teran, and Ronald Fedkiw. A Crystalline,

Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra. In

Twelfth International Meshing Roundtable, pages 103–114, Santa Fe, New Mexico,

September 2003.

124

Bibliography

[66] David J. Naylor. Filling Space with Tetrahedra.International Journal for Numerical

Methods in Engineering, 44(10):1383–1395, April 1999.

[67] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Sei-

del. Multi-Level Partition of Unity Implicits. ACM Transactions on Graphics,

22(3):463–470, July 2003. Special issue on Proceedings of SIGGRAPH 2003.

[68] Stanley Osher and Ronald Fedkiw.Level Set Methods and Dynamic Implicit Sur-

faces. Springer-Verlag, New York, 2002.

[69] Steve Oudot, Laurent Rineau, and Mariette Yvinec. Meshing Volumes Bounded by

Smooth Surfaces. InProceedings of the 14th International Meshing Roundtable,

pages 203–219, 2005.

[70] Steven J. Owen. A Survey of Unstructured Mesh Generation Technology. InPro-

ceedings of the Seventh International Meshing Roundtable, pages 239–267, Dear-

born, Michigan, October 1998.

[71] Steven E. Pav and Noel J. Walkington. Robust Three Dimensional Delaunay Refine-

ment. InThirteenth International Meshing Roundtable, pages 145–156, Williams-

burg, Virginia, September 2004. Sandia National Laboratories.

[72] Steven E. Pav and Noel J. Walkington. Delaunay Refinement by Corner Lopping.

In Fourteenth International Meshing Roundtable, pages 165–182, San Diego, Cali-

fornia, September 2005. Sandia National Laboratories.

[73] Shmuel Rippa. Long and Thin Triangles Can Be Good for Linear Interpolation.

SIAM Journal on Numerical Analysis, 29(1):257–270, February 1992.

125

Bibliography

[74] Jim Ruppert. A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh

Generation.Journal of Algorithms, 18(3):548–585, May 1995.

[75] Marjorie Senechal. Which Tetrahedra Fill Space?Mathematics Magazine,

54(5):227–243, 1981.

[76] James A. Sethian. A Fast Marching Level Set Method for Monotonically Advanc-

ing Fronts. Proceedings of the National Academy of Sciences, 93(4):1591–1595,

February 1996.

[77] Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk. Interpolating and Ap-

proximating Implicit Surfaces from Polygon Soup.ACM Transactions on Graphics,

23(3):896–904, August 2004. Special issue on Proceedings of SIGGRAPH 2004.

[78] Jonathan Richard Shewchuk. Tetrahedral Mesh Generation by Delaunay Refine-

ment. InProceedings of the Fourteenth Annual Symposium on Computational Ge-

ometry, pages 86–95, Minneapolis, Minnesota, June 1998. Association for Comput-

ing Machinery.

[79] Jonathan Richard Shewchuk. Constrained Delaunay Tetrahedralizations and Prov-

ably Good Boundary Recovery. InEleventh International Meshing Roundtable,

pages 193–204, Ithaca, New York, September 2002. Sandia National Laboratories.

[80] Jonathan Richard Shewchuk. What Is a Good Linear Element? Interpolation, Con-

ditioning, and Quality Measures. InEleventh International Meshing Roundtable,

pages 115–126, September 2002.

126

Bibliography

[81] D. M. Y. Sommerville. Space-Filling Tetrahedra in Euclidean Space.Proceedings

of the Edinburgh Mathematical Society, 41:49–57, 1923.

[82] Graham M. Treece, Richard W. Prager, and Andrew H. Gee. Regularised Marching

Tetrahedra: Improved Iso-Surface Extraction.Computers & Graphics, 23(4):583–

598, 1999.

[83] LeeAnn Tzeng. Warping Cubes: Better Triangles from Marching Cubes. In20th

European Workshop on Computational Geometry, Seville, Spain, March 2004.

[84] Alper Üngör. Off-Centers: A New Type of Steiner Points for Computing Size-

Optimal Guaranteed-Quality Delaunay Triangulations. InLatin American Theoret-

ical Informatics, pages 152–161, Buenos Aires, Argentina, April 2004.

[85] David F. Watson. Computing then-dimensional Delaunay Tessellation with Appli-

cation to Voronoi Polytopes.Computer Journal, 24(2):167–172, 1981.

[86] Mark A. Yerry and Mark S. Shephard. A Modified Quadtree Approach to Finite

Element Mesh Generation.IEEE Computer Graphics and Applications, 3:39–46,

January/February 1983.

[87] Mark A. Yerry and Mark S. Shephard. Automatic Three-Dimensional Mesh Gen-

eration by the Modified-Octree Technique.International Journal for Numerical

Methods in Engineering, 20(11):1965–1990, November 1984.

[88] Hong-Kai Zhao, Stanley Osher, and Ronald Fedkiw. Fast Surface Reconstruction

Using the Level Set Method. InWorkshop on Variational and Level Set Methods,

pages 194–202, July 2001.

127

