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Abstract

Learning in decentralized systems: A nonparametric approach
by
XuanLong Nguyen
Doctor of Philosophy in Computer Science

and the Designated Emphasis

in
Communication, Computation, and Statistics
University of California, Berkeley

Professor Michael I. Jordan, Chair

Rapid advances in information technology result in increased deployment of decen-
tralized decision-making systems embedded within large-scale infrastructures consisting
of data collection and processing devices. In such a system, each statistical decision is
performed on the basis of limited amount of data due to constraints given by the decen-
tralized system. For instance, the constraints may be imposed by limits in energy source,
communication bandwidth, computation or time budget. A fundamental problem arised in
decentralized systems involves the development of methods that take into account not only
the statistical accuracy of decision-making procedures, but also the constraints imposed by
the system limits. Itis this general problem that drives the focus of this thesis. In particular,
we focus on the development and analysis of statistical learning methods for decentralized
decision-making by employing a nonparametric approach. The nonparametric approach
imposes very little a priori assumption on the data; such flexibility allows it to be applica-
ble to a wide range of applications. Coupled with tools from convex analysis and empirical

process theory we develop computationally efficient algorithms and analyze their statistical



behavior both theoretically and empirically.

Our specific contributions include the following. We develop a novel kernel-based al-
gorithm for centralized detection and estimation in the ad hoc sensor networks through the
challenging task of sensor mote localization. Next, we develop and analyze a nonpara-
metric decentralized detection algorithm using the methodology of convex surrogate loss
functions and marginalized kernels. The analysis of this algorithm leads to an in-depth
study of the correspondence between the class of surrogate loss functions widely used in
statistical machine learning and the class of divergence functionals widely used in infor-
mation theory. This correspondence allows us to provide an interesting decision-theoretic
justification to a given choice of divergence functionals, which often arise from asymptotic
analysis. In addition, this correspondence also motivates the development and the analysis
of a novel M-estimation procedure for estimating divergence functionals and the likelihood
ratio. Finally, we also investigate a sequential setting of the decentralized detection algo-
rithm, and settle an open question regarding the characterization of optimal decision rules

in such a setting.

Professor Michael I. Jordan, Chair Date
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Chapter 1

Introduction

Research in the area of decentralized systems focuses on problems in which measurements
are collected by a collection of devices distributed over space (e.g., arrays of cameras,
acoustic sensors, wireless nodes). Due to power and bandwidth limitations, these devices
cannot simply relay their measurements to the common site where a centralized decision
is to be made; rather, the measurements must be compressed prior to transmission, and the
statistical decision-making at the central site is performed on the transformed diasik-
lis, 1993k Blum et al, 1997. A fundamental problem in decentralized systems research
is that of designing local decision rules at individual data collection/transmission devices
and global decision rules at some fusion center(s) so as to optimize an objective function
of interest.

The problems of decentralized decision making have been the focus of considerable
research in the past three decades (see,[@anney and Sandell, 198Tsitsiklis, 1993b
Blum et al, 1997 Viswanathan and Varshney, 199Zhong and Kumar, 20Q03ham-
berland and Veeravalli, 200€henet al, 2004). Indeed, decentralized systems arise in
a variety of important applications, ranging from sensor networks, in which each sensor

operates under severe power or bandwidth constraints, to the modeling of human decision-
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making, in which high-level executive decisions are frequently based on lower-level sum-
maries. In applied databases and computer systems, there has been growing interest in
building large-scale distributed monitoring systems of sensor, enterprise and ISP networks.
In such settings, data are typically collected by distributed monitoring devices, transmit-
ted through the network to a central network operation center for aggregation and analysis
(see, e.g[Cormode and Garofalakis, 2005Istonet al,, 2003 Padmanabhaet al., 2005

Xie et al, 2004 Yegneswarat al., 2004 Huanget al, 2007).

From a broad statistical perspective, the variety of learning and decision-making prob-
lems in decentralized systems can be viewed as interesting and highly nontrivial extensions
of basic statistical analysis tasks that involve aspects of experiment design, where each
particular decentralized system impose a different type of constraints on the experiment
design space. There is a vast statistical literature on experiment designs going back to
David Blackwell and otherBlackwell, 1951 Blackwell, 1953 Bradt and Karlin, 1956
Lindley, 1956 Goel and DeGroot, 1979%hernoff, 1972 Steinberg and Hunter, 1985
Ford et al, 1989 Pukelsheim, 1993Chaloner and Verdinelli, 1995 When applied to
decentralized systems, an experiment design is translated to a variety of types of decision
rules: For example, for a sensor network, it is a collection of compression rules at each in-
dividual sensor§Tsitsiklis, 1993. For a distributed enterprise network, it is the so-called
filtering scheme at monitoring devicgSIstonet al., 2003. It is worth noting that remov-
ing the trapping of “decentralized systems” terminologies, the problems of learning and
decision making in such settings share much in common with many fundamental problems
in modern data analysis, such as dimensionality reduction, feature selection, independent
component analysis, because the latter can also be viewed as instances of the problem of
experiment design.

Despite having strong roots in the classical statistics literature, problems of decentral-
ized decision making exhibit unique challenges that typically render a large portion of

existing methods inapplicable. From a computational viewpoint, the high dimensionality
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of data (e.g., large number of sensors in a large-scale monitoring infrastructure) and a va-
riety of decentralization constraints imposed on the way such devices can communicate
result in an exponentially large space for possible designs. Indeed, with the exception of
special cases, it is known that the problem of computing decentralized decision rules is NP-
hard[Tsitsiklis and Athans, 1985even under assumption that the underlying distribution
generating the data is completely known. From a statistical viewpoint, however, the as-
sumption that the underlying distribution generating the data is known is rather unrealistic
in real applications such as sensor networks or large-scale distributed systems. This neces-
sitates the need to develop methods that impose minimal assumptions on the practitioner’s
statistical knowledge of the data. Instead of computing optimal decentralized decision rules
given the knowledge of relevant probability distributions, one could aim to estimate opti-
mal decentralized decision rules directly on the basis of the empirical data samples which
are more readily available. Therefore, this thesis is motivated by the need of developing
a nonparametricapproach to decentralized decision-making, where the optimal decision
rules have to be estimated from empirical data. The nonparametric approach studies learn-
ing procedures that aim to capture large, open-ended classes of functions of interest for our
decision-making purposes.

This chapter is devoted to an overview of a nonparametric approach to a number of
decision-making problems arised from decentralized systems. We shall start by a more
detailed review of existing approaches to decentralized decision-making in Sedtion
Section1.2 we summarize briefly key ingredients of our nonparametric approach. Sec-

tion 1.3discusses the main problems and contributions of the thesis in some detail.



Chapter 1. Introduction

1.1 Existing parametric frameworks and methods

1.1.1 Decentralized decision making

To be more concrete, let us state a basic problem of decentralized detection in the language
of discriminant analysis augmented with a component of experiment design. In particular,
throughout this thesis our focus will be thatlwhary discriminants. LetX be a covariate

taking values in spac&’, and letY” € ) := {—1,+1} be a binary random variable. The

joint vector (X, Y') is drawn from some probability distributidh A discriminant function

is a measurable functiofimapping fromX to the real line, whose sign is used to make a
detection/classification decision. The standard goal of discriminant analysis is to choose the
discriminant functionf so as to minimize the probability of making the incorrect detection,

also known as thBayes riskP(Y # sign(f(X))).

Figure 1.1. Decentralized detection system wigtsensors, in which’ is the unknown hy-
pothesis, X = (X!,..., X¥) is the vector of sensor observations; aha- (Z',..., Z%)
are the quantized messages transmitted from sensors to the fusion center.

An elaboration of this basic problem in which the decision-maker, rather than having
direct access toY, observes a random variable varialifec Z that is obtained via a
(possibly stochastic) mapping : X — Z. In a statistical context, the choice of the
mapping@ can be viewed as choosing a particubxperimentin the signal processing

literature, whereZ is generally taken to be discrete, the mapping often referred to as

4
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aquantizer A decentralized system naturally imposes constraints on the class of quantizer
@ that need to be taken into account in the decision making process.

When the underlying experimeat is fixed, then we simply have a centralized binary
classification problem on the spage that is, our goal is to find a real-valued discriminant
function~ on Z so as to minimize the Bayes ridKY # signy(Z)). On the other hand,
the basic issue in decentralized detection is the problem of deternjinitly the classifier

~v € I', as well as the experiment choi@ee Q in the following decision-making scheme:

X%z 0y

The problem of designing such compression rules is of substantial current interest in
the field of sensor networf€hong and Kumar, 200€hamberland and Veeravalli, 2003
There has also significant amount of work devoted to criteria other than the Bayes error,
such as criteria based on Neyman-Pearson or minimax formuldfimitsiklis, 19931.
A closely related set of “signal selection” problems, arising for instance in radar array
processing, also blend discriminant analysis with aspects of experimental fi¢aitih,
1967.

It is well-known that the optimal decision rulg),~) has to be a threshold rule on
some likelihood ratiog Tsitsiklis, 1993). On the algorithmic front, the large major-
ity of the literature is based on the assumption that the probability distribufioki$y”)
lie within some known parametric family (e.g., Gaussian and conditional independent),
and seeks to characterize the optimal decision rules under such assumptions. Despite
such rather strong assumptions, the standard formulation rarely leads to computationally
tractable algorithms. One main source of difficulty is the intractability of minimizing the
probability of error, whether as a functional of the discriminant function or of the com-
pression rule. Consequently, it is natural to consider loss functions that act as surrogates

for the probability of error, and lead to practical algorithms. For example, the Hellinger
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distance has been championed for decentralized detection prollemgo et al., 199Q

Kailath, 1961, due to the fact that it yields a tractable algorithm both for the experimen-

tal design aspect of the problem (i.e., the choice of compression rule) and the discriminant
analysis aspect of the problem. Chernoff’s distance was used as a surrogate loss in conjunc-
tion with Gaussian and conditional independence assumptiof$ny’) [Chamberland

and Veeravalli, 2008 More broadly, a class of functions known Ak-Silvey distancesr
f-divergence$Ali and Silvey, 1966 Csiszd, 1967— which includes not only the Hellinger
distance, but also the variational distance, Kullback-Leibler (KL) divergence and Chernoff
distance—have been explored as surrogate loss functions for the probability of error in a
wide variety of applied discrimination problems. AndivergenceD,(P, Q) captures a

kind of “distance” between two distributiosandQ, and has the following form:

D¢(IP>, Q) = /p0¢(€I0/po) dp,

where¢ : R — R is a convex function.

Theoretical support for the use ffdivergences in discrimination problems comes from
two main sources. First, a classical resulfBfackwell, 195] asserts that if procedure
A has a smallerf-divergence than procedure B (for some particiylativergence), then
there exists some set of prior probabilities such that procedure A has a smaller probability
of error than procedure B. This fact, though a relatively weak justification, has nonethe-
less proven useful in designing signal selection and quantization [kikEkth, 1967
Poor and Thomas, 197TZongo et al, 199d0. Second,f-divergences often arise as ex-
ponents in asymptotic (large-deviation) characterizations of the optimal rate of conver-
gence in hypothesis-testing problems; examples include Kullback-Leibler divergence for
the Neyman-Pearson formulation, and the Chernoff distance for the Bayesian formula-

tion [Cover and Thomas, 1991
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1.1.2 Decentralized detection in sequential setting

An interesting variant of the decentralized detection problem is its extension to an-online
setting: more specifically, treequential decentralized detectiproblem[Tsitsiklis, 1986
Veeravalli, 1999Mei, 2009 involves a data sequencgeX;, X,, ...}, and a corresponding
sequence of summary statisti€g/;, Us, . . .}, determined by a sequence of local decision
rules{@,,Q>,...}. The goal is to design both the local decision functions and to specify

a global decision rule so as to predigtin a manner that optimally trades off accuracy
and delay. In short, the sequential decentralized detection problem is the communication-
constrained extension of classical formulation of sequential centralized decision-making
problems (see, e.dWald, 1947 Chernoff, 1972 Shiryayev, 1978Siegmund, 1985Lai,

2001)) to the decentralized setting.

The bulk of the literature so far is confined to setting up general framework for studying
sequential decentralized detection and studying the structure of the optimal solutions. In
setting up a general framework for studying sequential decentralized problems, Veeravalli
et al.[Veeravalliet al, 1993 defined five problems, denoted “Case A’ through “Case E”,
distinguished from one another by the amount of information available to the local sensors.
For example, in Case E, the local sensors are provided with memory and with feedback
from the global decision-maker (also known as fixgion centey, so that each sensor has
available to it the current dat&,,, as well as all of the summary statistics from all of the
other local sensors. In other words, each local sensor has the same snapshot of past state
as the fusion center; this is an instance of a so-called “quasi-classical information struc-
ture” [Ho, 198Q for which dynamic programming (DP) characterizations of the optimal
decision functions are available. Veeravalli et[&keravalliet al, 1993 exploit this fact
to show that the decentralized case has much in common with the centralized case, in par-
ticular that likelihood ratio tests are optimal local decision functions at the sensors and that

a variant of a sequential probability ratio test is optimal for the decision-maker.
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Unfortunately, however, part of the spirit of the decentralized detection is arguably lost
in Case E, which requires full feedback. In applications such as power-constrained sensor
networks, we generally do not wish to assume that there are high-bandwidth feedback
channels from the decision-maker to the sensors, nor do we wish to assume that the sensors
have unbounded memory. Most suited to this perspective—and the focus of this thesis—is
Case A, in which the local decisions are of the simplified féfm= Q,.(X,,); i.e., neither
local memory nor feedback are assumed to be available.

Noting that Case A is not amenable to dynamic programming and is presumably in-
tractable, Veeravalli et alVeeravalliet al, 1993 suggested restricting the analysis to the
class ofstationarylocal decision functions; i.e., local decision functiaps that are inde-
pendent of.. They conjectured that stationary decision functions may actually be optimal
in the setting of Case A (given the intuitive symmetry and high degree of independence
of the problem in this case), even though it is not possible to verify this optimality via DP
arguments. This conjecture has remained open since it was first posed by Veeravalli et
al. [Veeravalliet al,, 1993 Veeravalli, 1999.

In comparison to (non-sequential) decentralized detection, since little is known about
the nature of optimal decision rul€g, in the aforementioned setting of sequential decen-
tralized detection, much less is known about an algorithmic solutions for such problems,

even in a parametric setting.

1.2 Nonparametric framework

Despite enormous advances in the area of (parametric) decentralized decision making,
strong parametric assumptions of data make existing methods inappropriate in a wide
range of application domains. For example, in realistic monitoring infrastructure such
as sensor networks, it is well-known that idealized parametric models can be highly in-

accurate due to variability caused by multipath effects and ambient noise interference

8
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as well as device-specific factors such as the frequencies of node radios, physical an-
tenna orientation, and fluctuations in the power source (e.g.[Bdeasu et al, 200Q
Priyanthaet al,, 200q). What is clearly needed is a flexible framework that requires only
minimal assumtions on the data, and let the computation tasks of decision rules in de-
centralized systems be done through estimation/learning from empirical data, where the
learning is performed under the constraints imposed by the decentralized systems. Non-
parametric statisticBVasserman, 200%rovide a suitable framework for this goal.

In the context otentralizedsignal detection problems, there is an extensive line of re-
search on nonparametric techniques, in which no specific parametric form for the joint
distribution P(X,Y") is assumed (see, e.g., Kassfifassam, 199Bfor a survey). In
the decentralized setting, however, it is only relatively recently that nonparametric meth-
ods for detection have been explored. Several authors have taken classical nonparamet-
ric methods from the centralized setting, and shown how they can also be applied in a
decentralized system. Such methods include schemes based on Wilcoxon signed-rank
test statistid Viswanathan and Ansari, 1988lasipuri and Tantaratana, 199as well as
the sign detector and its extensidis$an et al, 199Q Al-lbrahim and Varshney, 1989
Hussainiet al,, 1995. These methods have been shown to be quite effective for certain
types of joint distributions.

The overarching theme in this thesis is the development of a general nonparametric
framework for decision making in a decentralized systems. Restricting ourselves for a
moment to the basic setup stated in Secfidnlour framework can be succintly described
as follows. LetX be a covariate taking values in spateand lety” € ) := {—1,+1} bea
binary random variable. The joint vectk, Y") is drawn from somenknownprobability
distributionP. Given classe® and.F of decision rules) and~, respectively, and that
the knowledge of the distributiofi( X, Y") is given through the basis of independent and
identically distributed (i.i.d.) samplg Xy, Y1), (Xs,Y2),...,(X,, Y,)), our goal is to learn

the discriminant functiory € I" and decision rulé€) € Q so as to minimize the probability

9
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of making the incorrect detection, i.e., Bayes riBKY" # sign(y(Q(X)))).

There is a suite of important issues underlying our framework:

e What is the appropriate learning procedure for estimating the discriminant functions

and the quantization rules?
e What are the representations of the discriminant functions and the quantization rules?
e How are the constraints imposed by decentralized systems taken into account?

e What optimization techniques can be employed to improve the computational effi-

ciency of the algorithm?
e What are the statistical and computational properties of the algorithm?

Addressing these issues forms the core part of this thesis. Moreover, as we shall elaborate in
Sectionl.3 the answers to some of these issues are also of independent interest in contexts

beyond the realm of decentralized systems.

1.2.1 Classification methods

At a very high level, our development is partly motivated by the recent advances in the
statistical classification literature. By classification we refer to a class of problem of learn-
ing discriminant functions from empirical (training) data. The classification literature has
enjoyed intense research in the past half century with contributions from a variety of dis-
ciplines, including statistics (see, e.fBickel and Doksum, 20Q6Hastieet al., 2001),
engineering (e.g[Dudaet al, 200Q Fukunaga, 1990, artificial intelligence and machine
learning (e.g.[Bishop, 1995 Schblkopf and Smola, 2002Shawe-Taylor and Cristianini,
2004).

Early research on classification focused on learning linear discriminants underlying cer-

tain parametric models, resulting in classical methods such as linear discriminant analysis

10
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and linear logistic regression, which have become standard toolboxes in a wide variety of
applied fields. At the same time, more flexible alternatives have been proposed to explic-
itly model the linear discrinant function in a direct manner. In particular, for the binary
discrinant functions, the well-known perceptron algorithm, due to Rosenblatt, was pro-
posed to find separating hyperplane in the empirical fRtsenblatt, 19598 Another key

idea, due to VapnikVapnik, 1998, was to finds an optimally separating hyperplane us-

ing some measure of loss. These new methods were particularly interesting because they
paved ways for later classification methods that are flexible enough not to rely on strong
assumptions on the underlying distribution generating the empirical data.

The second strand of progress focused on moving from linear classification to non-
linear classification. A significant development was the resurgence of neural networks,
which allow for representing arbitrary nonlinear discriminant functions by compositions
of simpler linear functions and threshold functions via the network’s multiple layers, cou-
pled with the well-known backpropagation learning algoritfiRumelhartet al, 1986
Werbos, 197§ Another important development was the adoption of the kernel method in
representing discriminant functions via the support vector machine algdtlontes and
Vapnik, 1995%. The AdaBoost algorithrfFreund and Schapire, 199introduced a novel
way of constructing more complex discriminant functions out of simpler classification al-
gorithms. These are examples of nonparametric classification algorithms that have enjoyed
a significant level of popularity in the past decade.

The third strand of progress in the field of classification, through the work of many re-
searchers, includes an improved understanding of the statistical and computational behavior
of the proposed learning algorithms, the recognition of the important role of efficient com-
putation via convex optimization (e.gBoyd and Vandenberghe, 20@lertsekas, 1999k

and the (re)integration of the field with the existing statistics literature of nonparametric es-

1strictly speaking, the discriminant functions considered in the methofiSamtes and Vapnik, 1995
and[Freund and Schapire, 1994re linear in some function spaces.
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Figure 1.2. lllustrations of the 0-1 loss function, and three surrogate loss functions: hinge
loss, logistic loss, and exponential loss.

timation (e.g.[Silverman, 1986Wahba, 199]). It is now well-understood that the vast
arsenal of classification algorithms can be characterized in terms of two key components:
(1) The use of computationally-motivated surrogate loss functions and (2) the choice of a
function class representing the class of discriminant functions.

Indeed, in the decision-theoretic formulation of the classification problem, the Bayes er-
ror is interpreted as risk under 0-1 loss. The algorithmic goal is to design discriminant func-
tions by minimizing the empirical expectation of 0-1 loss. In this setting, the non-convexity
of the 0-1 loss renders intractable a direct minimization of the probability of error, so that a
variety of algorithm can be viewed as replacing the 0-1 loss with “surrogate loss functions.”
These alternative loss functions are convex, and represent approximations to the 0-1 loss
(see Figurel.2for an illustration). A wide variety of practically successful machine learn-
ing algorithms are based on such a strategy, including support vector majgbaress and
Vapnik, 1995 Scholkopf and Smola, 2042the AdaBoost algorithriFreund and Schapire,
1997, the X4 methodBreiman, 1998 and logistic regressioiriedmanet al,, 2004.

Although the use of kernel methods in classification problems is relatively recent, they
has been studied extensively in the past three decades in the nonparametric statistics litera-

ture, mostly in the context of regression (i.e., function estimation) and density estimation.

12
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On the algorithmic side, kernel methods are almost synonymous to density and function
estimation algorithms — sd&ilverman, 198Ffor an introduction. The use of reproduc-
ing kernel Hilbert space in general and smoothing splines in particular in both estimation
tasks were pioneered by the work of Wahba and otfétshba, 199D This is related to
but different from the use of kernels in classical kernel density estimation methods (e.qg.,
see[Scott, 199)).

There has been a significant amount of research effort devoting to the theoretical analy-
sis of classification algorithn{¥apnik, 1998 Barron, 1993Bartlett, 1998 Breiman, 1998
Jiang, 2004Lugosi and Vayatis, 200&Mannoret al, 2003 Zhang, 2004 Batrtlettet al.,
2006 Steinwart, 200k These work provide theoretical support for modern classification
algorithms, in particular by characterizing statistical consistency and convergence rates of
the resulting estimation procedures in terms of the properties of surrogate loss functions.
The methods of analysis fall largely within the framework of M-estimation analysisde
Geer, 1999van der Vaart, 1998using empirical process theofyan der Vaart and Well-
ner, 1996 Pollard, 1984. [Zhang and Yu, 2005analyzes the interplay between statistical

convergences and computational properties of boosting algorithms.

1.2.2 Key ideas in our framework

In this section we shall outline at a high level several key ideas in our nonparametric ap-
proach to learning in decentralized systems. An elaboration of these ideas are described in
the next section. Furthermore, to keep this summary relatively focused, the discussion in
this section is confined only to the class of non-sequential decentralized detection problems.
The sequential counterpart shall be discussed in detail in the next section as well.

As in standard classification settings, we deal with the Bayes error as the objective func-
tion. Thus, a natural idea is to replace the 0-1 loss by a convex surrogate loss function

In contrast to the standard classification settings, learning is required for both the discrim-
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inant function and quantization rules at individual monitoring devices. Our algorithm is a
realization of the following M-estimation procedure, i.e., the decision rules are obtained by

minimizing an empirical version of the risk functional:

(f,Q) = argmin(w,Q)e{F,Q}Egb(Y? v(2))

1 n
= argmin(%Q)e{nQ}ﬁ Z Z Q(Z’Xz)¢(}/u ’Y(Z>>

i=1 z€Z

In terms of representation, we apply the kernel methods by Iefiting a reproducing ker-
nel Hilbert space. By a small abuse of notation, we @$&|X) to denote the conditional
probability representing the (stochastic) decision nule> z at individual monitoring de-
vices:x is mapped ta with probability Q(z|z).

In contrast to standard classification algorithms, replacing 0-1 loss by some convex
surrogatep helps but does not completely resolve the computational challenges inherent in
our problem. Although the empirical risk functional can be made convex with respect to
eithery or @), it is not a convex function with respect to the joint vedier)). Nonetheless,
this suggests that an efficient optimization procedure by coordinate-wise optimization is
possible. A more challeging issue is that the risk functional itself is difficult to evaluate,
because it involves summing over an exponential number of possible values of.

The exponentiality is with respect to the number of dimensions, k., the number of
monitoring devices in the decentralized system. To resolve this computational difficulty,
we propose a method for approximating the risk functional. Our approximation method
exploits the decentralization constraints implicitly imposed on the decisior)aled the

use of amarginalizedkernel[Tsudaet al, 2004, where the marginalization is defined
naturally based on the conditional distributi@®Z|X). The theory of duality in convex
analysis is utilized to great effect to ensure that the overall optimization algorithm can be
performed efficiently to overcome the curse of dimensionality presented &yd ~.

From a statistical viewpoint, does the use of surrogate loss fungtitill yield con-
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sistent answers in the sense of the 0-1 loss? It is worth emphazing again that the existing
theory of classification is not adequate to provide an answer to this question, because our
problem involves learning both the discriminant functipand the decentralized decision

rule Q. It has been proved that the broad class of so-callassification-calibratedoss
functions[Bartlettet al., 2004, including the hinge loss, exponential loss and logistic loss,

all yield consistency in the classification context. We show that in our problem, i.e., classifi-
cation plus experiment design, among these three loss functions, only the hinge loss yields
consistent learning procedure. Furthermore, it is possible to construct a class of convex
losses that have the same consistency property.

The proof of these consistency results hinge on a deeper fact about the correspondence
between the class of surrogate loss functionals in binary classification, which is a decision-
theoretic concept, and the classfatlivergence functionals, an information-theoretic con-
cept arising mostly in the asymptotics. This correspondence allows us to catergorize the
class of surrogate of losses into “equivalent” subclasses by examining at equivalent sub-
classes off-divergences. It turns out that only those loss functions which are equivalent
to the 0-1 loss can produce a consistent learning procedure. This correspondence extends
the early work on the relationship between 0-1 loss #rtivergence in experiment de-
sign[Blackwell, 1951 Blackwell, 1953. It also provides concrete decision-theoretic jus-
tifications for certain choices of divergence functionals used in existing (parametric) de-
centralized detection literatuf&ailath, 1967 Poor and Thomas, 197Zongoet al., 199Q
Chamberland and Veeravalli, 200as well as other experiment design contexts such as di-
mensionality reduction and feature selection in machine leaffisgbyet al., 1999. For
instance, the choice of mutual information in the information bottleneck mdtfistiby
et al, 1999 implies an underlying logistic loss function. The choice of Hellinger distance
in [Longoet al,, 1994 implies an underlying exponential loss.

The correspondence between surrogate lossed a@livergences also provides a non-

parametric estimation method fgrdivergence functionals, by turning the estimation prob-
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lem into a convex risk minimization problem. It is worth noting that the problem of esti-
mating divergences is significant from both theoretical and practical standpoints. As will
be shown in this thesis, our method for estimatjitdivergence functionals link together
several interesting estimation problems: estimation of integral functionals of unknown den-
sities, estimation of function (the likelihood ratio of two unknown distributions), and clas-
sification problem (estimating the classifigrdivergences play important roles in many
practical contexts: They are the rate of various coding and compression scheme. They are
also the objective functionals in the estimation procedures for many statistical tasks, includ-
ing dimensionality reduction and feature selection, independent component analysis, and
so on. As we shall elaborate in the sequel, they play key roles in not only (non-sequential)

detection problems, but also sequential detection problems as well.

1.3 Main problems and contributions

In this section we shall elaborate on the main problems considered in this thesis and our

key contributions to such problems.

e a nonparametric approach to centralized detection and estimation tasks and its appli-

cation to the problem of localization in ad hoc sensor network
e a nonparametric approach to decentralized detection problem.

e a characterization of optimal decision rules of sequential decentralized detection

problem

e acharacterization of the correspondence between surrogate loss and divergence func-

tionals.

e a nonparametric estimation method for divergence functionals and the likelihood ra-
tio
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At a a high level, underlying much of our thesis is an insight about the relationship
between loss functions and divergence functionals. This relationship is exploited to charac-
terize optimal decision rules in various decision-making settings of decentralized systems,
to devise efficient algorithms for learning such decision rules, and to provide statistical

analyses of such learning algorithms.

1.3.1 Nonparametric centralized detection and estimation

Before focusing our main attention to decentralized systems, in Chapterconsider an
application of a nonparametric approach to detection and estimation tasks within a cen-
tralized setting of sensor networks. This also provides a concrete platform from which
we investigate and demonstrate in the sequel our nonparametric approach to decentralized
systems.

A sensor network can be viewed as a pattern recognition device. Rather than trans-
forming sensor locations and sensor readings into Euclidean, world-centric coordinates,
we work directly with the (non-Euclidean) coordinate system given by the physical sensor
readings themselves. Using the methodology of “kernel functions,” the topology implicit in
sets of sensor readings can be exploited in the construction of signal-based function spaces
that are useful for the prediction of various extrinsic quantities of interest, using any of a
variety of statistical algorithms for regression and classification. In Chapterillustrate
this approach in a novel setting of a localization probleétightower and Borriello, 2000
Bulusuet al., 200Q Savareset al., 2004.

The localization problem that we study is that of determining the location of a (large)
number of sensors of unknown location, based on the known location of a (small) number
of base sensors. Léf, ..., X,, denote a set afn sensors, and let; denote the position
in R? of sensorX;. Suppose that the locations of the firssensors are known, i.eX; =

x1,...,X, = x,, wheren < m. We want to estimate the positions &f,,1,..., X,,
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solely on the basis of the receive/transmit signals, «;) between pairs of sensors.

An important characteristic of radio or light signal strength is the relationship of the
signal attenuation as a function of distafSeidel and Rappaport, 199For instance, for
radio signals in an idealized environment, given that the sending and receiving antennas are

focused on the same radio frequency, we have:

sox Pd™, (1.1)

wheren > 2 is a constant, and is the sending signal voltage. Such relationships pro-
vide the basis for a variety of localization algorithms in the literature, which consist of
two main steps: (1) a ranging procedure which involves estimating the distance from a
sensor to another sensor based on the signal strength of the signals transmitted/received be-
tween the two, and (2) a procedure that recovers the locations of the sensors based on their
pairwise distance estimates either by triangulation or by least-squares mE®hiydstha

et al, 200Q Girod and Estrin, 20Q1Savvideset al, 2001 Whitehouse, 2002 How-

ever, the idealized model in EdL.() can be highly inaccurate due to variability caused by
multipath effects and ambient noise interference as well as device-specific factors such as
the frequencies of node radios, physical antenna orientation, and fluctuations in the power
sourceg Bulusuet al., 200Q Priyantheet al., 200d. Methods based on ranging inherit these
inaccuracies and improvements are possible only if difficult problems in signal modeling
are addressed.

We propose a method that bypasses the ranging step altogether. We show that it is pos-
sible to pose a coarse-grained localization problem as a detection (classification) problem.
Fine-grained localization is then achieved by a second application of the coarse-grained lo-
calization technique. Our localization algorithm thus involves two phases. First, there is a
training phase that chooses discriminant functions for classifying positions using arbitrarily

constructed target regions. This phase is performed either on-line at the base stations, or
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taken off-line, and take®(n?*) computational time, where is the number of base sensors.
Second, once the training phase is completed, other location-unknown low-power sensors
can determine their own position locally, and the computation takes @ty time for

each of these sensors.

Our approach makes use of kernel methods for classification and regression, an ex-
ample of which is the “support vector machine (SVMBclolkopf and Smola, 2002
Shawe-Taylor and Cristianini, 20P4See Sectioi.2.10on a brief account of classification
algorithms and the kernel methods developed in statistics and machine learning literature).
Central to this approach is the notion okernel function which provides a generalized
measure of similarity for any pair of entities (e.g., sensor locations). The functions that are
output by the SVM and other kernel methods are sums of kernel functions, with the number
of terms in the sum equal to the number of data points.

Kernel functions typically used in practice include Gaussian kernels and polynomial
kernels. A technical requirement of these functions is that they are positive semidefinite,
which is equivalent to the requirement that thex n» Gram matrixformed by evaluating
the kernel on all pairs ai data points is a positive semidefinite matrix. Intuitively, this re-
guirement allows a kernel function to be interpreted as a generalized measure of similarity.
The kernel function imposes a topology on the data points which is assumed to be useful
for the prediction of extrinsic quantities such as classification labels.

Given that the raw signal readings in a sensor network implicitly capture topological
relations among the sensors, kernel methods would seem to be particularly natural in the
sensor network setting. In the simplest case, the signal strength would itself be a kernel
function and thesignal matrix(s(x;, x;));; would be a positive semidefinite matrix. Al-
ternatively, the matrix may be well approximated by a positive semidefinite matrix (e.g., a
simple transformation that symmetrizes the signal matrix and adds a scaled identity matrix
may be sufficient). More generally, and more realistically, derived kernels can be defined

based on the signal matrix. In particular, inner products between vectors of received sig-
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nal strengths necessarily define a positive semidefinite matrix and can be used in kernel
methods. Alternatively, generalized inner products of these vectors can be computed—this
simply involves the use of higher-level kernels whose arguments are transformations in-
duced by lower-level kernels. In general, hierarchies of kernels can be defined to convert
the initial topology provided by the raw sensor readings into a topology more appropriate
for the classification or regression task at hand. This can be done with little or no knowl-

edge of the physical sensor model.

1.3.2 Nonparametric decentralized detection

Consider a decentralized sensor network system, which typically involves a set of sensors
that receive observations from the environment, but are permitted to transmit only a sum-
mary message (as opposed to the full observation) back to a fusion center. On the basis of
its received messages, this fusion center then chooses a final decision from some number
of alternative hypotheses about the environment. The problem of decentralized detection
is to design the local decision rules at each sensor, which determine the messages that are
relayed to the fusion center, as well a decision rule for the fusion center|[itsa$iklis,
1993H. A key aspect of the problem is the presencea@hmunication constraintsnean-
ing that the sizes of the messages sent by the sensors back to the fusion center must be
suitably “small” relative to the raw observations, whether measured in terms of either bits
or power. The decentralized nature of the system is to be contrasted with a centralized
system, in which the fusion center has access to the full collection of raw observations. See
Sectionl.1.1for a review of existing approaches to the problem of decentralized detection,
and Sectiorl.2.2for an overview of our key ideas.

Recalling our setup, &t € {—1,+1} be a random variable, representing the two pos-
sible hypotheses in a binary hypothesis-testing problem. Moreover, suppose that the system

consists ofS sensors, each of which observes a single component Stthmensional vec-
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tor X = (X!,..., X7). One starting point is to assume that the joint distributitf’, ")

falls within some parametric family. Of course, such an assumption raises the modeling
issue of how to determine an appropriate parametric family, and how to estimate param-
eters. Both of these problems are very challenging in contexts such as sensor networks,
given highly inhomogeneous distributions and a large nunsbef sensors. Our focus in

this thesis is on relaxing this assumption, and developing a nonparametric method in which
no assumption about the joint distributid®( X, Y) is required. Instead, we posit that a
number of empirical samplésx;, Y;)" , are given.

Our approach, to be described in Chaeis based on a combination of ideas from
reproducing-kernel Hilbert spact&ronszajn, 1950Saitoh, 1988 and the framework of
empirical risk minimization from nonparametric statistics. Methods based on reproducing-
kernel Hilbert spaces (RKHSs) have figured prominently in the literature on centralized
signal detection and estimation for several decades (®Vginert, 1982 Kailath, 1971).

More recent work in statistical machine learning (d.8cHlkopf and Smola, 200Bhawe-

Taylor and Cristianini, 2003 has demonstrated the power and versatility of kernel meth-
ods for solving classification or regression problems on the basis of empirical data samples.
Roughly speaking, kernel-based algorithms in statistical machine learning involve choosing
a function, which though linear in the RKHS, induces a nonlinear function in the original
space of observations. A key idea is to base the choice of this function on the minimization
of aregularized empirical riskunctional. This functional consists of the empirical expec-
tation of a convex loss function, which represents an upper bound on the 0-1 loss (the
0-1 loss corresponds to the probability of error criterion), combined with a regularization
term that restricts the optimization to a convex subset of the RKHS. It has been shown that
suitable choices of margin-based convex loss functions lead to algorithms that are robust
both computationallyScholkopf and Smola, 2042as well as statisticalljZzhang, 2004
Bartlettet al, 2004. The use of kernels in such empirical loss functions greatly increases

their flexibility, so that they can adapt to a wide range of underlying joint distributions.
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We show how kernel-based methods and empirical risk minimization are naturally
suited to the decentralized detection problem. More specifically, a key component of
the methodology that we propose involves the notion of a marginalized kernel, where the
marginalization is induced by the transformation from the observatiots the local de-
cisionsZ. The decision rules at each sensor, which can be either probabilistic or determin-
istic, are defined by conditional probability distributions of the fag(Z|X), while the
decision at the fusion center is defined in term&)9%| X) and a linear function over the
corresponding RKHS. We develop and analyze an algorithm for optimizing the design of
these decision rules. It is interesting to note that this algorithm is similar in spirit to a suite
of locally optimumdetectors in the literature (e.[Blum et al, 1997), in the sense that
one step consists of optimizing the decision rule at a given sensor while fixing the decision
rules of the rest, whereas another step involves optimizing the decision rule of the fusion
center while holding fixed the local decision rules at each sensor. Our development relies
heavily on the convexity of the loss functian which allows us to leverage results from
convex analysi$Rockafellar, 197Dso as to derive an efficient optimization procedure. In
addition, we analyze the statistical properties of our algorithm, and provide probabilistic

bounds on its performance.

1.3.3 Surrogate losses and f-divergence

In Chapter4 we study the roles of and relationships between surrogate losseg-and
divergences in the context of centralized and decentralized detection problems. As math-
ematical objects, th¢-divergences studied in information theory and the surrogate loss
functions studied in statistical machine learning are fundamentally different: the former are
functions on pairs of measures, whereas the latter are functions on values of discriminant
functions and class labels. However, their underlying role in obtaining computationally-

tractable algorithms for discriminant analysis suggests that they should be related. Indeed,
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Blackwell’s result hints at such a relationship, but its focus on 0-1 loss does not lend itself
to developing a general relationship betwefedivergences and surrogate loss functions.
The primary contribution of Chaptéris to provide a detailed analysis of the relationship
betweenf-divergences and surrogate loss functions, developing a full characterization of
the connection, and explicating its consequences. We show that for any surrogate loss, re-
gardless of its convexity, there exists a corresponding coyfivexch that minimizing the
expected loss is equivalent to maximizing thalivergence. We also provide necessary
and sufficient conditions for aftdivergence to be realized from some (decreasing) convex
loss function. More precisely, given a convgxwe provide a constructive procedure to

generatall decreasing convex loss functions for which the correspondence holds.

Class of f-divergenc

Class of loss functions
Figure 1.3. lllustration of the correspondence betwegwlivergences and loss functions.
For each loss functio, there exists exactly one correspondifiglivergence (induced
by some underlying convex functiof) such that thep-risk is equal to the negativé-
divergence. Conversely, for eaghdivergence, there exists a whole set of surrogate loss
functions¢ for which the correspondence holds. Within the class of convex loss functions
and the class of -divergences, one can construct equivalent loss functions and equivalent
f-divergences, respectively. For the class of classification-calibrated decreasing convex loss
functions, we can characterize the correspondence precisely.

The relationship is illustrated in Figufel, whereas each surrogate l@ssmduces only one
f-divergence, note that in general there are many surrogate loss functions that correspond
to the samef-divergence. As particular examples of the general correspondence estab-
lished in this paper, we show that the hinge loss corresponds to the variational distance, the
exponential loss corresponds to the Hellinger distance, and the logistic loss corresponds to

the capacitory discrimination distance.
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This correspondence—in addition to its intrinsic interest as an extension of Blackwell's
work—nhas several specific consequences. First, there are numerous useful inequalities re-
lating the variousf-divergencegTopsoe, 200]) our theorem allows these inequalities to
be exploited in the analysis of loss functions. Second, the minimizer of the Bayes error
and the maximizer off-divergences are both known to possess certain extremal proper-
ties[Tsitsiklis, 1993& our result provides a natural connection between these properties.
Third, our theorem allows a notion of equivalence to be defined among loss functions: in
particular, we say that loss functions are equivalent if they induce the gadivergence.

We then exploit the constructive nature of our theorem to exhibit all possible convex loss
functions that are equivalent (in the sense just defined) to the 0-1 loss. Finally, we illustrate
the application of this correspondence to the problem of decentralized detection. Whereas
the more classical approach to this problem is based-divergencedKailath, 1967

Poor and Thomas, 197, 6ur method instead builds on the framework of statistical machine
learning. The correspondence allows us to establish consistency results for the algorithmic
framework for decentralized detection described in Chaptar particular, we prove that

for any surrogate loss function equivalent to 0-1 loss, our estimation procedure is consistent

in the strong sense that it will asymptotically choose Bayes-optimal quantization rules.

1.3.4 Sequential decentralized detection

In Chapter5 we take a detour from the non-sequential setting, and consider instead the
sequential setting of the decentralized detection problem. The reader is refered to Sec-
tion 1.1.2for a brief background of this problem.

We are interested in particular the following problem of sequential decentralized de-
tection, which is “Case A’ in the framework ¢¥eeravalli, 1999 Let X;, X,,... be a
data sequence drawn i.i.d. by either probability distributfgror P;, which correspond

to the two hypothesef = 0 or 1, with priorz! and=, respectively. Note that the ran-
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dom X; can be multivariate; each variate is collected by a sensor in a sensor network. Due
to communication constraints, however, given a dgfaeach sensor transmits a message

U; = Q;(X;) to a fusion center. Thus, the fusion center receives a sequence of (possibly
multivariate) messagds,, Us, ..., one at a time, and has to decide when to stop receiv-
ing data based on a stopping time?, and to determine the hypothedisvia an estimate

H = ~v(Uy,...,Uy). In a Bayesian setting of the problem, the performance measure is
sequential costade up by a weighted sum of the detection error, and the expected time

delay:

P(H # H) + cEN,

wherec denotes the cost of each extra sanplerhe overall goal of a sequential detection
problem is to determine the decision trigt@, N, ) so as to minimize the sequential cost.
In the sensor network setting, the decision r@las also called the quantization rule at
Sensors.

Note that wher( is fixed, we are reduced to a classical sequential detection problem,
which was well-understoofiVald, 1947 Shiryayev, 1978Siegmund, 1985Lai, 2001.
Thus the key issues lie in the characterization of the optimal quantization(€jeg), . . ..
Veeravalli et a[Veeravalliet al., 1993 Veeravalli, 1999 conjectured that the optimal deci-
sion ruleQ is stationary, e.g., the quantization rdde at each time step is independent of
n, at least in the asymptotic setting@s- 0. This is due to an observation thatas- 0,
the stopping time tends to infinity. Thus, each sample at a time step may have the same role
in the asymptotic setting. The stationary conjecture has remained open since it was first
posed.

Characterizing the optimal rul€g has important implication if we are to take the se-

guential detection problem beyond the original parametric setting in the existing literature.

2 In technical terms, a stopping tim¥ is a random variable defined with respect to the sigma-field
o(Uy,...,Uy) generated by the random sequebigels, . .. [Durrett, 199%.
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Indeed, if we drop the assumptions that the distributi&nhandP; are known, and now
view U; = Q;(X;) as a summarizing statistic, then a key issue would be how choose the
best class of statistical functiong’s in a sequential estimation procedure.

One primary contribution in this chapter is to show that stationary decision functions
are, in fact,not optimal. Our argument is based on an asymptotic characterization of the
optimal Bayesian risk as the cost per sample goes to zero. In this asymptotic regime, the
optimal cost can be expressed as a simple function of priors and Kullback-Leibler (KL)
divergences. This characterization allows us to construct counterexamples to the stationar-
ity conjecture, both in an exact and an asymptotic setting. In the latter setting, we present
a broad class of problems in which there always exists a range of prior probabilities for
which stationary strategies, either deterministic or randomized, are suboptimal. We note in
passing that an intuition for the source of this suboptimality is easily provided—it is due to
the asymmetry of the KL divergence.

It is well known that optimal quantizers when unrestricted are necessarily likelihood-
based threshold ruld3sitsiklis, 1984. Our counterexamples and analysis imply that op-
timal thresholds are not generally stationary (i.e., the threshold may differ from sample to
sample). We also provide a partial converse to this result: specifically, if we restrict our-
selves to stationary (or blockwise stationary) quantizer designs, then there exists an optimal
design that is a threshold rule based on the likelihood ratio. We prove this result by estab-
lishing a quasiconcavity result for the asymptotically optimal cost function. In this thesis,
this result is proven for the space of deterministic quantizers with arbitrary output alpha-
bets, as well as for the space of randomized quantizers with binary ouputs. We conjecture
that the same result holds more generally for randomized quantizers with arbitrary output

alphabets.
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1.3.5 Nonparametric estimation of  f-divergence functionals and

the likelihood ratio

One consequence of the relationship between surrogate lossesdinergences stud-

ied in Chapter is a non-asymptotic decision-theoretic variational characterizatigf+ of
divergence functionals. This allows us to devise and analyze a nonparametric estimation
method forf-divergence functionals and the likelihood ratio. Recall thaf ativergence

D,(P,Q) captures a “distance” between two distributidhandQ:

D,(P,Q) = / Pod(go/po) dp,

where¢ : R — R is a convex function.

This problem estimatin@, has important applications. As noted earlier, divergences
play important roles not only in learning in (non-sequential and sequential) decentralized
systems. They also have a fundamental role as an objective to optimize in various other data
analysis and learning tasks, including dimentionality reduction and feature selection. An
important quantity in information theory, the Shannon mutual information, can be viewed
as a KL divergence. The KL divergence is used as the bit rate in several compression
schemes. Mutual information is often used as a measure of independence to be minimized
such as in the problem of independent component andlifsigarinenet al, 2001. If
the divergences are to be used as objective functional in such tasks, one has to be able to
estimate them efficiently from empirical data.

We propose a novél/ -estimator for the likelihood ratio and the family ffdivergences
based on the variational characterizatioryadivergence as explained above. Our estima-
tion procedure is inherently nonparametticandQ are not known. Nor do we make strong
assumptions on the forms of the densitiesfFand@Q. The estimation procedure is based

on i.i.d. empirical sampleX, X,, ... andY}, Y, ... drawn fromP and@Q, respectively.
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We provide a consistency and convergence analysis for our estimators. For the analy-
sis, we make assumptions on the boundedness afehsity ratig which can be relaxed
in some cases. The maximization procedure is cast over a whole functiorgatdsken-
sity ratio, thus our tool is based on results from the theory of empirical processes. Our
method of proof is based on the analysisiéfestimation for nonparametric density esti-
mation[van de Geer, 199%an der Vaart and Wellner, 19R6The key issue essentially
hinges on the modulus of continuity of the suprema of two empirical processes (defined on
P and@Q measures) with respect to a metric defined on the gfasbhis metric turns out
to be a surrogate lower bound of a Bregman divergence defined on a pair of density ratios.
Our choice of metrics include the Hellinger distance dachorm.

We provide an efficient implementation of our estimation procedures using RKHS as
the relevant function classes. Our estimation method compares favorably againts existing

approaches in the literature.

1.4 Thesis organization

The remainder of this thesis is organized as follows.

Chapter 2: Nonparametric centralized detection and estimation

This chapter introduces the use of kernel methods in centralized detection and estima-
tion by considering a challenging problem of localization in ad hoc sensor network. It also
provides a concrete application of our nonparametric approach as we go decentralized in
the sequel.

Chapter 3: Nonparametric decentralized detection

This chapter considers the problem of decentralized detection, proposes a nonparamet-

ric learning algorithm and describes its computational and statistical properties.

Chapter 4: Surrogate losses and'-divergence functionals
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This chapter investigates the correspondence of surrogate loss functions and divergence
funtionals and the implications of this correspondence. As an application we prove the
consistency of the learning algorithm proposed in Chapter 3.

Chapter 5: Optimal quantization rules in sequential decentralized detection

This chapter studies the structure of optimal decision rules in a sequential decentralized

detection problem.

Chapter 6: Nonparametric estimation of divergences and the likelihood ratio

This chapter introduces and analyzes a honparametric estimation procedure for diver-
gence functionals and the likelihood ratio.

Chapter 7: Contributions and suggestions

This chapter summarizes the contributions of the thesis, and discusses several directions
for future research.

All background knowledge are included in each individual chapter, making each chap-
ter sufficiently self-contained. Nonetheless, Chaftisra good warm-up for the materials
developed in Chaptél, especially for the readers who are new to kernel methods and their
application to detection and estimation problems. For readers who are interested in the
motivation of the theoretical study of losses and divergence funtionals it is useful to start
with Chapter3 before going into Chaptet. Chapter5 focuses on sequential detection
problems and can be read independently from the rest. Techniques introduced in Ghapter
have useful applications that go beyond the context of decentralized systems and can also

be read independently without the background in the previous chapters.
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Chapter 2

Nonparametric centralized detection

and estimation

This chapter demonstrates the use of kernel methods in a challenging problem of local-
ization in sensor networks. We show that the coarse-grained and fine-grained localization
problems for ad hoc sensor networks can be posed and solved as a pattern recognition
problem using kernel methods from statistical learning theory. This stems from an obser-
vation that the kernel function, which is a similarity measure critical to the effectiveness of

a kernel-based learning algorithm, can be naturally defined in terms of the matrix of signal
strengths received by the sensors. Thus we work in the natural coordinate system provided
by the physical devices. This not only allows us to sidestep the difficult ranging procedure
required by many existing localization algorithms in the literature, but also enables us to
derive a simple and effective localization algorithm. The algorithm is particularly suitable
for networks with densely distributed sensors, most of whose locations are unknown. The
computations are initially performed at the base sensors and the computation cost depends
only on the number of base sensors. The localization step for each sensor of unknown lo-

cation is then performed locally in linear time. We present an analysis of the localization
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error bounds, and provide an evaluation of our algorithm on both simulated and real sensor

networks.!

2.1 Introduction

A sensor network can be viewed as a distributed pattern recognition device. In the pat-
tern recognition approach, rather than transforming sensor locations and sensor readings
into Euclidean, world-centric coordinates, we work directly with the (non-Euclidean) co-
ordinate system given by the physical sensor readings themselves. Using the methodology
of “kernel functions,” the topology implicit in sets of sensor readings can be exploited

in the construction of signal-based function spaces that are useful for the prediction of
various extrinsic quantities of interest, using any of a variety of statistical algorithms for
regression and classification. In the current chapter we illustrate this approach in the
setting of a localization problerfHightower and Borriello, 2000Bulusu et al., 200Q
Savareset al., 2004.

The localization problem that we study is that of determining the location of a (large)
number of sensors of unknown location, based on the known location of a (small) number
of base sensors. Léf, ..., X,, denote a set afh sensors, and let; denote the position
in R? of sensorX;. Suppose that the locations of the firssensors are known, i.eX;; =
x1,...,X, = x,, wheren < m. We want to recover the positions &f,,,, ..., X,, solely
on the basis of the receive/transmit signdls;, z;) between pairs of sensors.

An important characteristic of radio or light signal strength is the relationship of the
signal attenuation as a function of distaf8eidel and Rappaport, 199For instance, for

radio signals in an idealized environment, given that the sending and receiving antennas are

1 This work has been published [Nguyenet al, 20054.
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focused on the same radio frequency, we have:

soc Pd™, (2.1)

wheren > 2 is a constant, ané is the sending signal voltage. Such relationships provide
the basis for a variety of localization algorithms in the literature, which consist of two main
steps: (1) a ranging procedure which involves estimating the distance from a sensor to
another sensor based on the signal strength of the signals transmitted/received between the
two, and (2) a procedure that recovers the locations of the sensors based on their pairwise
distance estimates either by triangulation or by least-squares meRdganthaet al,

200Q Girod and Estrin, 2001Savvideset al,, 2001, Whitehouse, 2002 Unfortunately,
however, the idealized model in E4..0) can be highly inaccurate due to variability caused

by multipath effects and ambient noise interference as well as device-specific factors such
as the frequencies of node radios, physical antenna orientation, and fluctuations in the
power sourcgBulusu et al, 200Q Priyanthaet al, 200J. Methods based on ranging
inherit these inaccuracies and improvements are possible only if difficult problems in signal
modeling are addressed.

In this chapter we propose a method that bypasses the ranging step altogether. We
show that it is possible to pose a coarse-grained localization problem as a discriminative
classification problem that can be solved using tools from the statistical machine learning
literature. Fine-grained localization is then achieved by a second application of the coarse-
grained localization technique. Our localization algorithm thus involves two phases. First,
there is a training phase that chooses discriminant functions for classifying positions using
arbitrarily constructed target regions. This phase is performed either on-line at the base
stations, or taken off-line, and takéxn?3) computational time, where is the number of
base sensors. Hence, our assumption is that the base sensors have sufficient power and

processing capability (indeed, these are also the nodes that might have GPS-capability to
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determine their own exact locations). Second, once the training phase is completed, other
location-unknown low-power sensors can determine their own position locally, and the
computation takes onlg(n) time for each of these sensors.

Our approach makes use of kernel methods for statistical classification and regres-
sion [Scholkopf and Smola, 2042 an example of which is the “support vector machine
(SVM).” Central to this approach is the notion okarnel functionwhich provides a gen-
eralized measure of similarity for any pair of entities (e.g., sensor locations). The functions
that are output by the SVM and other kernel methods are sums of kernel functions, with
the number of terms in the sum equal to the number of data points. Kernel methods are
examples oihonparametricstatistical procedures—procedures that aim to capture large,
open-ended classes of functions.

Kernel functions typically used in practice include Gaussian kernels and polynomial
kernels. A technical requirement of these functions is that they are positive semidefinite,
which is equivalent to the requirement that thex n Gram matrixformed by evaluating
the kernel on all pairs af data points is a positive semidefinite matrix. Intuitively, this re-
quirement allows a kernel function to be interpreted as a generalized measure of similarity.
The kernel function imposes a topology on the data points which is assumed to be useful
for the prediction of extrinsic quantities such as classification labels.

Given that the raw signal readings in a sensor network implicitly capture topological
relations among the sensors, kernel methods would seem to be particularly natural in the
sensor network setting. In the simplest case, the signal strength would itself be a kernel
function and thesignal matrix(s(z;, x;));; would be a positive semidefinite matrix. Al-
ternatively, the matrix may be well approximated by a positive semidefinite matrix (e.g., a
simple transformation that symmetrizes the signal matrix and adds a scaled identity matrix
may be sufficient). More generally, and more realistically, derived kernels can be defined
based on the signal matrix. In particular, inner products between vectors of received sig-

nal strengths necessarily define a positive semidefinite matrix and can be used in kernel
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methods. Alternatively, generalized inner products of these vectors can be computed—this
simply involves the use of higher-level kernels whose arguments are transformations in-
duced by lower-level kernels. In general, hierarchies of kernels can be defined to convert
the initial topology provided by the raw sensor readings into a topology more appropriate
for the classification or regression task at hand. This can be done with little or no knowl-
edge of the physical sensor model.

Our focus is on the discriminative classification problem of locating sensors in an ad
hoc sensor network. It is worth noting that similar methods have been explored recently
in the context of tracking one or more objects (e.g., mobile robots) that move through a
wireless sensor fieltl Systems of this type include Active Badiantet al,, 1994, [Ward
et al, 1997, RADAR [Bahl and Padmanabhan, 2Q0Cricket[Priyanthaet al, 2004,
and UW-CSP (cf. [Li et al, 2004). In [Bahl and Padmanabhan, 2Q0the authors
describe a simple nearest neighbor classification algorithm to obtain coarse localization of
objects. Most closely related to our approach is the workLofet al, 2004 in which
a number of classification algorithms are used for tracking moving vehicles, inclieing
nearest neighbor and support vector machines. We elaborate on the connections between
this work and ours in the description of our algorithm.

The chapter is organized as follows. We begin with a brief background of classification
using kernel methods, and motivate our application of kernel methods to the localization
problem based on sensor signal strength. Next, the localization algorithm and its error
analysis are described. We then present details of the implementation of the algorithm and
its computational cost, followed by an evaluation of our algorithm with simulated and real

sensor networks. Finally, we present our discussions in the final section.

2The alternative to discriminative classification is classification usj@gerativeprobabilistic models.
This is a well-explored area that dates back to contributors such as Wiener and Kalman. Recent work in this
vein focuses on the distributed and power-constrained setting of wireless sensor netwolfl&h@ng.and
Hu, 2003 D’Costa and Sayeed, 20[)3
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2.2 Classification using kernel methods

In a classification algorithm, we are given as training dasamples(z;, ;)i , in X’ X
{£1}, whereX denotes the input space. Eaghspecifies whether the data point € X
liesinaclass’ C X (y; = 1) or not (y; = —1). A classification algorithm involves finding
a discriminant functiony = sign(f(x)) that minimizes the classification errét(Y”
sign(f(X))).

Central to a kernel-based classification algorithm (e.g., the SVM) is the notion of a
kernel functionK (z, ') that provides a measure of similarity between two data paints
andz’ in X. Technically,K is required to be a symmetric positive semidefinite function.
For such a function, Mercer’s theorem implies that there must exist a feature gpiace
which K acts as an inner product, i.é(z, ') = (®(z), ®(«’)) for some mapping ().
The SVM and related kernel-based algorithms choose a linear funttion= (w, ®(x))

in this feature space. That is, they find a vectarhich minimizes the loss
> byif(x:))
i=1

subject to||w|| < B for some constanB. Here¢ denotes a convex function that is an
upper bound on the 0-1 lo&; # sign(f(x))).* In particular, the SVM algorithm is based
on the hinge loss(y f(z)) = (1 — yf(x)).° By the Representer Theorem (EBcholkopf

and Smola, 2003, it turns out that the minimizing can be expressed directly in terms of

the kernel functionk’;

fz) = ZaiK(xi,a:) (2.2)

for an optimizing choice of coefficients;.

3For a translation-invariant kernel, i.ek (z,2') = h(z — 2') for some functionh, K is a positive
semidefinite kernel if the Fourier transform/ofs non-negative.

4The indicator function is defined @64) = 1 if A is true, and O otherwise.

®The subscript + notation means that = max(x, 0).
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There are a large number of kernel functions that satisfy the positive semidefinite prop-

erty required by the SVM algorithm. Examples include the Gaussian kernel:
K(z,2") = exp —(|lz — 2[|* /o)
as well as the polynomial kernel:
K(z,2) = (v + ||z —2'[])™7,

for parameters and~. Both of these kernel functions decay with respect to the distance
||z — ||, a property that is shared by most idealized signal strength models. In particular,
the radio signal modell(1) has a form similar to that of a polynomial kernel.[Bheng and
Hu, 2003, the authors justify the use of an acoustic energy model for localization that has
the form of the Gaussian kernel above. These relationships suggest a basic connection be-
tween kernel methods and sensor networks. In particular, a naive usage of kernel methods
could be envisaged in which signal strength is used directly to define a kernel function. In
general, however, signal strength in real sensor networks need not define a positive semidef-
inite function. Nonetheless, it is the premise of this chapter that signal strength matrices
provide a useful starting point for defining kernel-based discriminant functions. We show
how to define derived kernels which are stacked on top of signal strength measurements in
the following section.

Finally, it is worth noting that multi-modal signals are naturally accommodated within
the kernel framework. Indeed, suppose that we hauwgpes of sensory signals, each of
which can be used to define a kernel functigg(z, 2') for d = 1,..., D. Then any conic

combination of(,; yields a new positive semidefinite function:
D
K<:B7 17,) = Z ﬁde(xa [L‘l).
d=1
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There are methods for choosing the parametgrs 0 based on empirical dathanckriet

et al, 2004.

2.3 Localization in ad hoc sensor network

2.3.1 Problem statement

We assume that a large number of sensors are deployed in a geographical area. The input
to our algorithm is a set of. sensors, denoted by, ..., X,,,. For each we denote byt;

the position inR? of sensorX;. Suppose that the first sensor locations are known, i.e.,

X1 =x1,..., X, = z,, wheren < m. For every pair of sensots; and.X;, we are given

the signals(x;, z;) that sensorX; receives fromX;. We want to recover the positions of
Xnity ooy X

2.3.2 Algorithm description

We first aim to obtain a coarse location estimate Xgr, 1, ..., X,,. Given an arbitrarily
constructed regiod C R?, we ask whetheX; € C or not, fori = n+1,...,m. This

can be readily formulated as a classification problem. Indeed, since the location of the base
sensorsXy, ..., X, are known, we know whether or not each of these base sensors are in
C'. Hence we have as our training datgairs(z;, y; = sign(x; € C))™,. For any sensor

X;,j =n+1,...,m, we can predict whethek; € C or not based on the sign of the

discriminant functionf (z;):
flag) = 0K (x5, 25). (2.3)
i=1

We emphasize that the value ;) is known because the values of the kernéléy;, ),

are known, despite the fact that we do not know the positioper se.
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Next, we turn to the definition of the kernel mati& = (K (z;, z;))1<ij<m- IN general
we envision a hierarchy of kernels based on the signal matrix. An example of such a

hierarchy is as follows:

1. We might simply defines'(z;, z;) = s(x;, ;). We call this naive choice first-tier
kernel. If the signal matri = (s(z;, z;))1<ij<m IS @ Symmetric positive semidef-
inite Gram matrix then this approach is mathematically correct although it may not
yield optimal performance. I is not symmetric positive semidefinite, then a pos-
sible approximation i$S + S7)/2 + 61. This matrix is symmetric, and is positive
semidefinite for sufficiently largé > 0 (in particular, foré larger in absolute value

than the most negative eigenvalug 8f+ S7)/2).

2. Alternatively, definek = S5, to be refered to as second-tiedinear kernel.K is
always symmetric positive semidefinite. This kernel can be interpreted as an inner

product for a feature spaé# which is spanned by vectors of the form:

O(x) = (s(z,x1), s(x,x2),...,s(x,2)).

Specifically, we define:
K(z;,x;) = Zs(xi,mt)s(xj,xt).
t=1

Intuitively, the idea is that sensors that are associated with similar vectors of sensor

readings are likely to be nearby in space.

3. Finally, it is also possible to evaluate any kernel function (e.g., Gaussian) on the
feature spac@{ induced by the second-tier kernel. This yields a symmetric positive

semidefinite matrix, to be refered to ashard-tier kernel. Specifically, a third-tier
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Gaussian kernel has the following form, for a parameter

K(aia;) = exp{ LI <I><a:j>u2}

— eXp{ ~ a(s(wi, ) — S(xj,xt))z}'

()

Given training datdx;, y;)!_, and a kernel functiork’, we apply the SVM algorithm
to learn a discriminant functiofi(x) as in Eq. 2.2). The algorithmic details and computa-
tional costs are discussed in SectibA.

Our classification formulation has several noteworthy characteristics. First, the training
points correspond to the base sensors, and thus may be limited in number, making the learn-
ing problem nominally a difficult one. However, because we are free to choose the target
regionC, the problem can in fact be made easy. This ability to design the geometry of the
boundary to fit the geometry of the classifier distinguishes this problem from a traditional
pattern recognition problem.

The second characteristic is that we require that the network be relatively dense. As
seen in Eq.Z.3), the prediction of position is based on a sum over sensors, and an accurate
prediction can be achieved in general only if there are enough non-zero terms in the sum
for it to be statistically stable.

A related point is that it is not necessary that the network be completely connected.
If the sensor reading(z;, z;) is generally small or zero for a pair of sensors, then that
term does not perturb the kernel calculation or the discriminant calculation. If readings
fluctuate between small values and large non-zero values, then the prediction will generally
be degraded. Given that the approach is a statistical approach, however, with predictions
based on an aggregation over neighboring sensors, it should be expected to exhibit a certain
degree of robustness to fluctuations. This robustness should be enhanced by the protocol

for fine-grained estimation, as we now discuss.
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We now turn to the fine-grained estimate of sensor positions. We use the coarse-
grained solution presented above as a subroutine for a localization algorithm for sensors
X;(j =n+1,...,m). The idea is as follows: We fix a number of overlapping regions
Cs(p =1,...,U) in the geographical region containing the sensor network. For gach
we formulate a corresponding classification problem with respect to Classd predict
whether or notX; € Cs. Hence X; has to be in the intersection of regions that contain
it. We might, for example, assign its locatien to be the centroid of such an intersection.
Given an appropriate choice of granularity and shapes for the regigng most of the
classification labels are correct we expect to be able to obtain a good estimate of

As we have seen in our experiments on both simulated data (using a Gaussian or poly-
nomial kernel) and real sensor data (using kernels that are constructed directly from the
signal matrix), given a sufficient number of base sensors (i.e., training data points), the
SVM algorithm can fit regions of arbitrary shape and size with reasonable accuracy. When
the number of base sensors is limited, it is found that the SVM algorithm can still fit el-
liptic shapes very well. This can be turned to our advantage for fine-grained localization:
By picking appropriate regionSs such as ellipses that are easy to classify, we do not need
many base sensors to achieve reasonable localization performance for the entire network.
In the sequel, we will show that this intuition can be quantified to give an upper bound on

the expected (fine-grained) localization error with respect to the number of base sensors.

2.3.3 Localization error analysis

Suppose that the sensor network of size L is covered uniformly by:? discs with radius

R. Then any given point in the sensor network is covered by approximaftéty/L)>

discs. Each of these discs are used to define the region for a region classification prob-
lem. To obtain a fine-grained location estimate for all remaining sensordor j =

n+1,...,m, we need to solvé? region classification problems. Le be the training
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error for each of these problems, for= 1, ..., k2. Thatis,

ep =Y o(sign(z; € Cp) f(x)).
=1
Since the size and shape of the regions are ours to decide, it is reasonable to assume that
the training error for these classification problems are small. For instance, the circle/elliptic
shape is particularly suited for Gaussian or polynomial kernels. DefiRgeto be the upper
bound for all training errors:

e(R) = max e.
Our analysis needs the following assumption:

Assumption 2.1. If a sensor is correctly classified with respect to all covering discs, then

it is also correctly classified with respect to all remaining discs.

This assumption is reasonable and follows from an observation that the covering discs
imply boundaries that are closer to a given sensor location. Thus the classification problems
with respect to the covering discs tend to be more difficult than with respect to other dics
located farther away from the sensor location.

Using a generalization error bound for margin-based classificfiotichinskii and
Panchenko, 20Q2for eachs = 1,...,k?, the probability of misclassification for each
new sensoX; and regionCy; is ez + O(1/4/n), wheren is the number of training points
(i.e., number of base sensors). Since each location is coveredibd?/L? discs, the
probability of misclassification for at least one these covering discs is, by the union bound,
less than“}#(e(}%) +0(1/+/n)). Ifagiven sensor is correctly classified with respect to all
of its covering discs, then we assign the sensor’s location to be the center of the intersection

of all these discs, in which case the localization error is bounded(liy k).
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Hence, the expectation of the localization error is bounded by

0 (%) + ”RL"" (e(R) + O(1/v/n)).

This asymptotic bound is minimized by lettibgx L2/3R~%/3(¢(R) + O(1//n))~'/3. The
bound then become3(L/3 R*3(e(R) + O(1/y/n))Y/?).

In summary, we have proved the following:

Proposition 2.2. Assume that all sensor locations are independently and identically dis-
tributed according to an (unknown) distribution. For any sensor locatipiet = be the

location estimate given by our algorithm. Then, under Assumgatibthere holds:
Ellz — 2|] < O(L'*R*3(e(R) + O(1/v/n))"/?).

This result has the following consequences for the expected variation of the fine-grained
localization error as a function of the parameter&he number of base sensor#),(the

size of the discs), ankf (the number of discs):

1. Thefine-grained localization error decreases as sensor network becomes more densely
distributed (i.en increases). In addition, the localization error increases with the size

of the network, but this increase is at most linear.

2. The fine-grained localization error increasesrasicreases; on the other hand, as
R increases, the optimal value bfdecreases, resulting in a smaller computational
cost, because there aré discs to classify. Hence, variation i induces a tradeoff

between localization accuracy and computational complexity.

3. We would expect the localization error to increase at a@4t8*?) if ¢(R) were to

remain constant. However, @sincreases, the length of the boundary of the regions
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C also increases, and the training ere0R) is expected to increase as well. As a

result, we expect the localization error to actually increase faster@&d/?).

4. The training errok(R) depends on the distribution of sensor location, but which is

unknown.

Note that our analysis makes some simplifying assumptions—it assumes a uniform dis-
tribution for the locations of regionS; and it assumes circular shapes. While the analysis
can be readily generalized to other specific choices, it would be of substantial interest to

develop a general optimization-theoretic approach to the problem of choosing the regions.

2.4 Algorithm details and computational cost

During the training phase associated with each coarse localization subroutine, i.e., classi-
fication with respect to a fixed regiafi;, we construct the training data set based on the
locations of the base sensors as described in the previous section. This is achieved by hav-
ing all base stations send the signal matrix entsigs, «;) and their known locations to

a central station, a procedure which involves receiving and starfing n numbers at the

central station. The central station then solves the following optimization problem:
i 9, C
min + — i (Zi)),
iin |[wl]” + ;:1 O(yif(x:))

wheref(z) = (w,®(z)), ¢(yf(x)) = (1 —yf(x)),, andc is a fixed parametér.This is
a convex optimization problem, which has the following dual f¢8unhdlkopf and Smola,

2004:
max 2 Zai — Z oYy K (2, x5). (2.4)
i=1

0<a<c —
1<i,j<n

5The parameter s a regularization parameter associated with the SVM algorithm. In all our experiments,
we fix ¢ = 10.
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The algorithm finds optimizing values §f; }, which are then used to form the discriminant

function in Eq. @.2).

Coarse localization algorithm

Input: X; = z; € R*fori = 1,...,n; signal matrix[s(z;, z;)]1<ij<m Where
n < m; aregionC C R2,

Output: y; € {£1}forj=n+1,...,m.

1. Fori=1,...,n,lety; = sign(x; € C).

2. Define a positive semidefinite kernel matiixX(z;, z;)]1<; j<m based upon

[s(i, ;)]
3. Solve the optimization problen2(4) for optimum{o; }7 ;.

4. Forj=n+1,...,m,y; =sign (> ., ;K (z;,x;)).

Figure 2.1: Summary of the coarse localization algorithm.

It is known that the solution to this optimization problem can be found in the worst
case inO(n?) computational time. Thus if there aké regions to classify, this result
suggests a total training time 6f(n3k?). However, this generic worst-case estimate is
overly conservative in our setting. Indeed, an estimate based on the number of support
vectorsn, returned by each classification algorithm (thosesuch thatn; # 0) reveals
that the computational complexity 3(n? + n?n) instead ofO(n?). Usuallyn, < n.

Our simulation experience (to be presented in the next section) shows that when discs with
radius R are used, the support vectors reside mostly along the boundaries of the discs,
hencen, ~ O(min(nwR?/L? 27 R)), in which case the overall training phase takes only
O(R?nk?) time. Note also that this training phase is the most expensive part of our algo-
rithm and is performed at a central station.

Once the training phase is complete, each base sensor is required to stopathen-
eters(ayq, ..., a,) for the purpose of classification of the remaining (location-unknown)

sensors. If the first-tier kernel is used, a new sed§pfor j = n + 1,...,m records the
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signals(z;, z;) from then, base sensorise {1,...,n}, and combines these with the non-
zero valuesy;, resulting in a cost of (n;) in time and storage. If a second-tier linear kernel
or a third-tier Gaussian kernel is used, a new sefSorecordsn-element signal vectors
(s(xj, x1),...,s(z;,x,)) from then, base stations, resulting in(nn) cost in time and
storage. The kernel valu€s(z;, z;) are then readily computable from the received sig-
nalss(z;, z;) in O(1),0(n), O(n?) time for the first-tier, second-tier and third-tier kernel,
respectively. Then a simple computation (Equaa®) determines for senso¥; whether
it resides in the regiod’ or not. The attractive feature of the localizing step is that it is
done locally (in a distributed fashion), taking only linear (for the first-tier and second-tier
kernels) or quadratic (for the third-tier Gaussian kernel) time and storage space (in terms
of n). Since the localization is done on an as-needed basis, its time and storage cost do not
depend on the total number of sensorsn the network. A summary of our algorithm is
provided in Figure2.1

Now we turn to fine-grained localization. At both algorithmic and system levels,
this involves invoking the coarse localization subroutidgimes with respect to regions
Ci,...,C2. Therefore, for each regioh= 1, ..., k* we have a set of parametdrs)’, .
Each sensoX; can then determine its location by settingto be the centroid of the in-
tersection of all region€’; that it finds itself residing in. In the case in whicly are discs

with centers:s, this yields:

o > cal(X; € Cp)
= = .
> i1 I(X; € Cy)

Clearly, the computational cost of a fine-grained localization algorithi fBnes as much
as the computational cost of each coarse localization step. In summary, our fine-grained

localization algorithm is shown in Figuz2
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Fine-grained localization algorithm

Input: X; = z; € R*for i = 1,...,n; signal matrix[s(z;, z;)]1<ij<m Where
n << m;k; R.

Output: z; e R*forj=n+1,...,m.

1. Let A; = min{(x;)1}"; Br = max{(x;)1}"1; Ay = min{(z;)2}";
By = max{(x;)2}" ;.

2. LetCyfor 5 =1,..., k% bek? discs with radiusk distributed uniformly
in a grid of coordinate§A,, B| x [As, By.

3. For3 = 1,...,k? run the coarse localization algorithm with respect to
regionC; to get valuegy; ;17 ;-

4. Letting cg be the center of'; for 3 = 1...,k?, then:
_ S esllyss=1)
Tj= 2 10— "

2 5= 1(ys,5=1)

Figure 2.2: Summary of the fine-grained localization algorithm.

2.5 Experimental Results

We evaluate our algorithm on simulated sensor networks in the first two subsections,

and then on a real network using Berkeley sensor motes.

2.5.1 Coarse localization

Simulation set-up:

We consider a network of size) x 10 square units. The base sensors are distributed
uniformly in a grid-like structure. There are a totalvouch sensors. We are concerned
with recognizing whether a sensor positioncharacterized by the signal readisg:;, x)
fori =1,...,n,liesin aregiornC or not.

We first define a signal model: Each sensor locatishassumed to receive from a sen-

_ lz—a|?

g

N(0,7), whereN (0, 7) denotes an independently generated normal random variable with

sor located at’ a signal value following a fading channel mode(z, ') = exp +
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Figure 2.3: (a) lllustration of a sensor field. (b) a Mica sensor mote.

standard deviation. This signal model is a randomized version of a Gaussian kernel. We
have also experimented with a signal strength model that is a randomized version of the

polynomial kernels(z, z") = (||z — 2'||)~7 + N(0, 7). The results for the polynomial ker-

nels are similar to the Gaussian kernels, and are not presented here. It is emphasized that

although the use of these models have been motivated elsewhere as signal[®eidels
and Rappaport, 1998heng and Hu, 2003in our case they are used merely to generate
the signal matrixS. Our algorithm is not provided with any knowledge of the procedure
that generates.

Next, we define a regio@’ to be recognized. In particular, consists of all locations
that satisfy the following equationgr — v)” H, (z —v) < Rand(z —v)T Hy(x —v) < R,
wherev = [5 5|7, H; = [2 —1;—1 1] andH, = [2 1; 1 1]. The radiusR is used to describe
the size of”. For each simulation set-up, R, o, 7), we learn a discriminant functiofifor
the regionC' using the training data given by the base sensor positions. Pixckearned,
we test the classification &00 x 100 sensor locations distributed uniformly in the region
containing the network.

Figure2.5a) illustrates”' as a green shaded region, #®r= 2, while the black bound-
ary represents the region learned by our localization algorithm. Qualitatively, the algorithm

has captured the shape of the target re@ibriVe now present a quantitative analysis on
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Figure 2.4. Simulation results with (randomized) Gaussian models. zZFagis shows the
number of sensors employed along each dimension of the networky-&kis shows the
ratio between the number of incorrectly classified points and the number of points inside
the area to be recognized. (Note that this ratio is larger than the overall failure rate; in the
latter the denominator includes the points outside the area to be recognized).

the effects o, R, o, andr on the localization (i.e., classification) performance:

Effects of n: The plots in Figure2.4 show the localization (test) error with respect to
the number of base sensors deployed in the network. The test error is defined to be the
ratio between the number of misclassified points and the number of points located within
the area”(R) (out of 100 x 100 locations distributed uniformly in the grid). In this set of
simulations, we fix the noise parameter= 0, and letc = 1 ando = 7, while varying
n. The plots confirm that the localization error tends to decrease as the sensor network
becomes more densely distributed. Note that if we need to recognize a particular area, we
only need to plant base sensors in the area near the boundary, because these are the likely
locations of support vectors. Of course, in our context coarse-grained localization is only
a subroutine for fine-grained localization, and it is our interest to have base sensors spread
throughout the whole geographical area.

Effects of o and 7: The parametes is used to describe the sensitivity of the signal
strength with respect to the sensor distance. In particular, for a Gaussian signal function, a

small value ofr implies that the signal strength fades very quickly for distant sensors. The
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Effects of signal noise and signal decay
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(a) (b)
Figure 2.5. (@) lllustration of a simulated sensor network withx1E base sensors, and
the recognized boundary in black (wih = 2) using a Gaussian kernel with= 1. The
black squares are the support vector base sensors. The test error in this figure is 0.27. (b)
Plots show the effect of the sensor fading signal parameetard signal noise parameter
on coarse localization performance.

plots in Figure2.5b) display the effects of both andr on the localization performance.
In this set of simulations, we fix the number of base sensors along each dimension to be 10,
and set the radius @f to be R = 2, while varyingo andr. It is seen that the localization
performance degrades as we increase the noise parameited the degradation is more

severe for the least sensitive signal, i.e., whes large.

2.5.2 Fine-grained localization

Simulation set-up: The network set-up is the same as the previous section, except that the

n base sensors are now distributed approximately uniformly at random in the whole area.
By this we mean that each base sensor is initially planted at a grid point inthHesquare,

whereL = 10, and then perturbed by Gaussian ndé@), L/(2./n)). There are 400 other
sensors whose locations are to be determined using our algorithm. These 400 sensors are
deployed uniformly in the grid. Again, we assume the signal strength follows a Gaussian

signal model, with noise parameter= 0.2.
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Figure 2.6. The left panel shows the effect of the number of base semsondine-grained
localization error mean and standard deviation (for all nodes). The right panel shows the
effects of the size of discs (by radif and the number of discg?) distributed uniformly

on the field. The means and variances are collected after performing the simulation on 20
randomly generated sensor networks.
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Figure 2.7. This figure shows the effects of the size of diséy on the fine-grained
localization error. The number of disk&?) is chosen so that the mean localization error
(per node) is smallest. The error rate is compared with the ad(##/?) plotted in blue.
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Figure 2.8. Localization results for a simulated sensor network of $ize 10 square units

with 25 base sensors (left figure) and 64 base sensors (right figure). The base sensors are
the black squares. Each blue line connects a true sensor position (in circle) and its estimate.
The signal model is Gaussian. The mean localization error is 0.4672 in the left figure and
0.3877 in the right figure.

We applied the algorithm described in Sect@®d for fine-grained localization. The
algorithm involves repeated coarse localizations with respect to a set of regions that cover
the whole network area. We choose these regions to be discs of radarl distributed
uniformly over the network. Let be the number of discs along each dimension, such that
there are a total? discs to recognize. In this simulation we study the effect®of and
the number of base sensarsn the localization performance. Specifically, we examine the
tradeoff between computational cost and localization accuracy of our algorithm by varying
these parameters, as suggested by the theoretical analysis in Qe8tion

Effects of n: Figure2.6(a) shows that the mean localization error (averaged over all
sensor networks and over all sensors) decreases monotonically as more base sensors are
added to the network. This agrees with the theoretical result presented in S&&tidn
Figure 2.8 illustrates the localization results for each node in the networks with 25 and

64 base sensors. The mean localization error (averaging over all sensors) for these two
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Figure 2.9. Panel (a) shows the noisy relationship between signal strength received by
sensors and the distances. Few sensors exhibit a clear signal strength-distance functional
pattern as in panel (b), while most are like those in panels (c) and (d). Note that only data
points marked with x in red are available for regression training.
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Figure 2.10. Localization result for a real sensor networks covering a4 square-inch

area. There are 25 base sensors (Berkeley motes) spaceci® gid. Each line connects

a true position (in circle) and its estimate. Panel (a) shows the results given by a traditional
2-step localization algorithm, while panels (b,c,d) show the localization results obtained by
our algorithm using three different kernels (the first-tier, second-tier and third-tier Gaussian
kernel, respectively).

networks are 0.47 and 0.39, respectively.

Effects of R and k: Figure2.6(b) shows the effects ok and % on the localization
performance. In this set of simulations, we fix= 0.2, ¢ = 2, andn = 100, while
varying R andk. The analysis in Sectiof.3.3suggests that for each value Bf there
exists an optimal value for that increases aB decreases. Since there afeclassification
problems to solve, the computational cost generally increasésdescreases. However,
the mean localization error improves Bsdecreases. Hence, there is a tradeoff between

computational cost and localization accuracy as manifested by the behaviarafk.
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| Method | Mean | Median| Std |

Two-step ranging-based 6.99 5.28| 5.79
First-tier signal kerne| 6.67 4.60| 7.38
Second-tier linear kernel 3.65 2.51( 4.29
Third-tier Gaussian kernel 3.53 2.63| 3.50

Table 2.1. Comparison between a two-step ranging-based algorithm and our kernel-based
localization algorithm in a sensor network with 25 base sensors coveditigcal0 square-

inch area. The localization error mean, median and standard deviation are taken over all
position estimates, and measured in inches.

To gain more insight of the effects of the size of dis&y On the fine-grained local-
ization error, in Figure.7, we plot the mean localization error for the optimal value: of
This figure shows that the optimal mean localization error increasésinsreases. We
also compare the rate of increase with thatR3f®>. As shown in Figure.7 the rate is
approximately that of22/3 in a middle range and eventually surpasg8s’. Recall from
the analysis in Sectio®.3.3that we expect this increase in rate due to the increaggiin
On the other hand, the analysis does not predict the smaller rate of increase observed for

small values ofRz.

2.5.3 Localization with Berkeley sensor motes

Experiment set-up: We evaluated our algorithm on a real sensor network using Berkeley
tiny sensor motes (Mica motes) as the base stations. The goal of the experiment is to
estimate the positions of light sources given the light signal strength received by a number
of base sensors deployed in the network. Our hardware platform consists of 25 base sensors
placed 10 inches apart onbax 5 grid in a flat indoor environment. Each sensor mote is
composed of one Atmel ATmega 103 8-bit processor running at 4MHz, with 128Kb of
flash and 4Kb of RAM, RFM TR1000 radio, EEprom and a sensor board which includes
light, temperature, microphone sensors and a sounder. Our experiment makes use of light

sensor data received by the motes. The measured signals are a scalar field produced by
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a light source shining on the sensor network from above; the height and intensity of the
light source were constant. Only the position of light sources placed at the base sensors are
given as training data. To be estimated are 81 light source positions distributed uniformly
ina9 x 9 grid spread over the whole network.

A range-based algorithm: We compared our algorithm to a state-of-the-art algorithm
that epitomizes a majority of localization algorithms in the literature. This algorithm was
described ifWhitehouse, 2002 and consists of two main steps: (1) a ranging procedure
aimed at establishing a mapping between the signal strength received by a base sensor
and the distance to the light source, and (2) a localization procedure giving the distance
estimates using least-squares methods.

Figure2.9illustrates the difficulty of the ranging problem—the functional relationship
between distances and signal strengths is very noisy. Much of this noise is device-specific;
as shown in Figur@.9, a few sensors exhibit a clear distance-to-signal-strength pattern,
while most others exhibit a very noisy pattern. As showbihitehouse, 2002improve-
ment in the ranging step can be achieved by accounting for properties of specific base
sensors. This is done by introducing regression coefficients for each of these base sensors.
Once the ranging step is completed, we have estimates of the distance between the base
sensors and the positions of the light source. The initial position estimates are obtained
using the Bounding-Box algorithm, and are then iteratively updated using a least-squares
method (se¢Whitehouse, 2002Savvideset al,, 2001)). Figure2.5.1(a) shows the local-
ization results for this algorithm.

Results for the kernel-based algorithm: Three different kernels are used in our al-
gorithm. The first is a first-tier symmetric positive semidefinite approximation of the sig-
nal matrix. In particular, as discussed in Sectib8 given a signal matrixs, we define
S = (S + ST)/2 + §I. The remaining kernels are a second-tier linear and third-tier
Gaussian kernel, with the parameteiixed to 0.5 in the latter case. For fine-grained local-

ization, coarse localization is repeatedly applied for discs of raflies L /2 = 20 inches
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that cover part of the network area. The centers of these discs are five inches apart in both
dimensions, and there are 10 discs along each dimensiork(€10).

Table 2.1 shows that the localization error achieved by the kernel-based approach is
smaller than that of the two-step algorithm. Among the three choices of signal kernels,
the second-tier kernels are much better than the simple first-tier kernel. The localization
results are depicted spatially in Figuté.1 Note that the minimum distance between two
neighboring base sensors is about 10 inches, and the localization error of our algorithm

(using second-tier kernels) is slightly over one third of that distance.

2.6 Discussions

We have presented a nonparametric learning algorithm for coarse-grained and fine-grained
localization for ad hoc wireless sensor networks. Our approach treats the signal strength
as measured by sensor motes as a natural coordinate system in which to deploy statistical
classification and regression methods. For the localization problem, this approach avoids
the ranging computation, a computation which requires accurate signal models that are dif-
ficult to calibrate. Instead, we use signal strength either directly to define basis functions
for kernel-based classification algorithms, or indirectly via derived kernels that operate on
top of the signal strength measurements. We show how a kernel-based classification algo-
rithm can be invoked multiple times to achieve accurate localization results, and we present
an error analysis for the accuracy that can be achieved as a function of base sensor den-
sity. Our algorithm is particularly suitable for densely distributed sensor networks, and is
appealing for its computational scaling in such networks: The preprocessing computations
are performed at the base sensors, which are assumed to have sufficient processing and
power capability, while the localizing step at location-unknown sensors can be achieved in
linear time.

We have argued for a simple approach to localization that dispenses with ranging com-
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putations and sensor modeling. We do not necessarily believe, however, that our statistical
approach is always to be preferred. In particular, the level of accuracy that we appear
to be able to obtain with our approach is on the order of one third the distance between
the motes. While this accuracy is sufficient for many potential applications of sensor net-
works, in some applications higher accuracy may be required. In this case, ranging-based
approaches offer an alternative, but only in the setting in which highly accurate models of

the relationship between sensor signals and distances are available.
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Chapter 3

Nonparametric decentralized

detection using kernel methods

We consider the problem of decentralized detection under constraints on the number of bits
that can be transmitted by each sensor. In contrast to most previous work, in which the
joint distribution of sensor observations is assumed to be known, we address the problem
when only a set of empirical samples is available. We propose a nhonparametric approach
using the framework of empirical risk minimization and marginalized kernels, and analyze
its computational and statistical properties both theoretically and empirically. We provide
a computationally efficient algorithm, and demonstrate its performance on both simulated

and real data sefs.

3.1 Introduction

A decentralized detection system typically involves a set of sensors that receive observa-

tions from the environment, but are permitted to transmit only a summary message (as

1This chapter has been published Nguyenet al., 20051.
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opposed to the full observation) back to a fusion center. On the basis of its received mes-
sages, this fusion center then chooses a final decision from some number of alternative
hypotheses about the environment. The problem of decentralized detection is to design
the local decision rules at each sensor, which determine the messages that are relayed to
the fusion center, as well a decision rule for the fusion center it$slfsiklis, 1993h. A

key aspect of the problem is the presenceamhmunication constraintsneaning that the

sizes of the messages sent by the sensors back to the fusion center must be suitably “small”
relative to the raw observations, whether measured in terms of either bits or power. The
decentralizechature of the system is to be contrasted with a centralized system, in which
the fusion center has access to the full collection of raw observations.

Such problems of decentralized decision-making have been the focus of considerable
research in the past two decadi@snney and Sandell, 198Tsitsiklis, 1993hBlum et al,,

1997 Chamberland and Veeravalli, 2d03ndeed, decentralized systems arise in a variety

of important applications, ranging from sensor networks, in which each sensor operates
under severe power or bandwidth constraints, to the modeling of human decision-making,
in which high-level executive decisions are frequently based on lower-level summaries. The
large majority of the literature is based on the assumption that the probability distributions

of the sensor observations lie within some known parametric family (e.g., Gaussian and
conditionally independent), and seek to characterize the structure of optimal decision rules.
The probability of error is the most common performance criterion, but there has also been
a significant amount of work devoted to other criteria, such as criteria based on Neyman-
Pearson or minimax formulations. See Tsitsiklisitsiklis, 1993lh and Blum et al[Blum

et al, 1997 for comprehensive surveys of the literature.

More concretely, leY” € {—1, +1} be arandom variable, representing the two possible
hypotheses in a binary hypothesis-testing problem. Moreover, suppose that the system con-
sists ofS sensors, each of which observes a single component ¢i-thmensional vector
X = {X*' ..., X%}. One starting point is to assume that the joint distributit(X,Y")
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falls within some parametric family. Of course, such an assumption raises the modeling
issue of how to determine an appropriate parametric family, and how to estimate param-
eters. Both of these problems are very challenging in contexts such as sensor networks,
given highly inhomogeneous distributions and a large nunsbef sensors. Our focus in

this chapter is on relaxing this assumption, and developing a method in which no assump-
tion about the joint distributiorP(X,Y) is required. Instead, we posit that a number of
empirical sampleséx;, y;)!, are given.

In the context otentralizedsignal detection problems, there is an extensive line of re-
search on nonparametric techniques, in which no specific parametric form for the joint
distribution P(X,Y’) is assumed (see, e.g., Kassfifassam, 199Bfor a survey). In
the decentralized setting, however, it is only relatively recently that nonparametric meth-
ods for detection have been explored. Several authors have taken classical nonparamet-
ric methods from the centralized setting, and shown how they can also be applied in a
decentralized system. Such methods include schemes based on Wilcoxon signed-rank
test statistid Viswanathan and Ansari, 1988lasipuri and Tantaratana, 199as well as
the sign detector and its extensidis$an et al, 199Q Al-lbrahim and Varshney, 1989
Hussainiet al,, 1995. These methods have been shown to be quite effective for certain
types of joint distributions.

Our approach to decentralized detection in this chapter is based on a combination of
ideas fromreproducing-kernel Hilbert spacd#\ronszajn, 1950 Saitoh, 1988 and the
framework ofempirical risk minimizatiorfrom nonparametric statistics. Methods based
on reproducing-kernel Hilbert spaces (RKHSs) have figured prominently in the litera-
ture on centralized signal detection and estimation for several def@dssert, 1982
Kailath, 1971 e.g.]. More recent work in statistical machine learnifcholkopf and
Smola, 2002e.g.] has demonstrated the power and versatility of kernel methods for solv-
ing classification or regression problems on the basis of empirical data samples. Roughly

speaking, kernel-based algorithms in statistical machine learning involve choosing a func-
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tion, which though linear in the RKHS, induces a nonlinear function in the original space
of observations. A key idea is to base the choice of this function on the minimization of
aregularized empirical riskunctional. This functional consists of the empirical expec-
tation of a convex loss function, which represents an upper bound on the 0-1 loss (the
0-1 loss corresponds to the probability of error criterion), combined with a regularization
term that restricts the optimization to a convex subset of the RKHS. It has been shown that
suitable choices of margin-based convex loss functions lead to algorithms that are robust
both computationallyScholkopf and Smola, 2042as well as statisticalljZhang, 2004
Bartlettet al, 2004. The use of kernels in such empirical loss functions greatly increases
their flexibility, so that they can adapt to a wide range of underlying joint distributions.

In this chapter, we show how kernel-based methods and empirical risk minimization are
naturally suited to the decentralized detection problem. More specifically, a key component
of the methodology that we propose involves the notion ofaaginalized kernglwhere
the marginalization is induced by the transformation from the observatiottsthe local
decisions”Z. The decision rules at each sensor, which can be either probabilistic or deter-
ministic, are defined by conditional probability distributions of the fap¥| X'), while the
decision at the fusion center is defined in term&)9%| X) and a linear function over the
corresponding RKHS. We develop and analyze an algorithm for optimizing the design of
these decision rules. It is interesting to note that this algorithm is similar in spirit to a suite
of locally optimumdetectors in the literaturEBlum et al, 1997 e.g.], in the sense that
one step consists of optimizing the decision rule at a given sensor while fixing the decision
rules of the rest, whereas another step involves optimizing the decision rule of the fusion
center while holding fixed the local decision rules at each sensor. Our development relies
heavily on the convexity of the loss functiain which allows us to leverage results from
convex analysi§Rockafellar, 197Dso as to derive an efficient optimization procedure. In
addition, we analyze the statistical properties of our algorithm, and provide probabilistic

bounds on its performance.
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While the thrust of this chapter is to explore the utility of recently-developed ideas
from statistical machine learning for distributed decision-making, our results also have
implications for machine learning. In particular, it is worth noting that most of the machine
learning literature on classification is abstracted away from considerations of an underlying
communication-theoretic infrastructure. Such limitations may prevent an algorithm from
aggregating all relevant data at a central site. Therefore, the general approach described in
this chapter suggests interesting research directions for machine learning—specifically, in
designing and analyzing algorithms for communication-constrained environfments.

The remainder of the chapter is organized as follows. In Se&i@nwe provide a
formal statement of the decentralized decision-making problem, and show how it can be
cast as a learning problem. In Sect®®, we present a kernel-based algorithm for solving
the problem, and we also derive bounds on the performance of this algorithm. Sedion
devoted to the results of experiments using our algorithm, in application to both simulated
and real data. Finally, we conclude the chapter with a discussion of future directions in

Section3.5.

3.2 Problem formulation and a simple strategy

In this section, we begin by providing a precise formulation of the decentralized detection
problem to be investigated in this chapter, and show how it can be cast in a statistical
learning framework. We then describe a simple strategy for designing local decision rules,
based on an optimization problem involving the empirical risk. This strategy, though naive,

provides intuition for our subsequent development based on kernel methods.

2For a related problem of distributed learning under communication constraints and its analysis, see a
recent paper by Predd et &Preddet al,, 2004.
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3.2.1 Formulation of the decentralized detection problem

SupposeY” is a discrete-valued random variable, representing a hypothesis about the en-
vironment. Although the methods that we describe are more generally applicable, the fo-
cus of this chapter is the binary case, in which the hypothesis vartaliédes values in
Y :={-1,+1}. Ourgoalistoforman estimaté of the true hypothesis, based on observa-
tions collected from a set ¢f sensors. More specifically, foreachk-1,...,5,letX! e X
represent the observation at sensevhereX” denotes the observation space. The full set of
observations corresponds to tHedimensional random vectot = (X*,..., X%) € x5,
drawn from the conditional distributioR(XY").

We assume that the global estimatés to be formed by dusion center In thecen-
tralized settingthis fusion center is permitted access to the full vedfor (X*, ..., X¥)
of observations. In this case, it is well-knoviman Trees, 1990that optimal decision
rules, whether under Bayes error or Neyman-Pearson criteria, can be formulated in terms
of the likelihood ratioP(X|Y = 1)/P(X|Y = —1). In contrast, the defining feature
of the decentralized settings that the fusion center has access only to some form of
summary of each observatiox’, for t = 1,....S. More specifically, we suppose that
each sensot = 1...,S5 is permitted to transmit anessageZ?, taking values in some
spaceZ. The fusion center, in turn, applies some decision fute compute an estimate
Y =~(Z',..., 75 of Y based on its received messages.

In this chapter, we focus on the case of a discrete observation spacée—=sdyt, 2, . . .,
M?}. The key constraint, giving rise to the decentralized nature of the problem, is that the
corresponding message spate- {1, ..., L} is considerably smaller than the observation
space (i.e.L < M). The problem is to find, for each sengoe= 1,...,5, a decision
ruleq’ : X' — Z!, as well as an overall decision rule: 25 — {—1,+1} at the fusion
center so as to minimize thgayes riskP(Y # v(Z)). We assume that the joint distribu-

tion P(X,Y") is unknown, but that we are givenindependent and identically distributed
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(i.i.d.) data pointgz;, y;)I, sampled fromP(X,Y).

Figure 3.1. Decentralized detection system wittsensors, in which’ is the unknown hy-
pothesis, X = (X!,..., X¥) is the vector of sensor observations; ahea- (Z',..., Z%)
are the quantized messages transmitted from sensors to the fusion center.

Figure3.1 provides a graphical representation of this decentralized detection problem.
The single node at the top of the figure represents the hypothesis variadel the outgo-
ing arrows point to the collection of observatioks= (X!, ..., X®). The local decision
rules+! lie on the edges between sensor observatibhand message&’. Finally, the
node at the bottom is the fusion center, which collects all the messages.

Although the Bayes-optimal risk can always be achieved by a deterministic decision
rule [Tsitsiklis, 1993, considering the larger space of stochastic decision rules confers
some important advantages. First, such a space can be compactly represented and parame-
terized, and prior knowledge can be incorporated. Second, the optimal deterministic rules
are often very hard to compute, and a probabilistic rule may provide a reasonable approx-
imation in practice. Accordingly, we represent the rule for the sensersl,..., S by a
conditional probability distributiord)(Z|X ). The fusion center makes its decision by ap-
plying a deterministic function(z) of z. The overall decision rulé, v) consists of the

individual sensor rules and the fusion center rule.
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The decentralization requirement for our detection/classification system—i.e., that the
decision or quantization rule for senganust be a function only of the observatigh—can
be translated into the probabilistic statement that. . ., Z° be conditionally independent

given X:
S

Q(Z|X) =[] Q"(z'1x"). (3.1)

t=1
In fact, this constraint turns out to be advantageous from a computational perspective, as
will be clarified in the sequel. We uge to denote the space of all factorized conditional
distributionsQ(Z|X), and Q, to denote the subset of factorized conditional distributions

that are also deterministic.

3.2.2 A simple strategy based on minimizing empirical risk

Suppose that we have as our training dataairs(x;, y;) fori = 1,...,n. Note that each
x;, as a particular realization of the random vectoris anS dimensional signal vector
z; = (z},...,29) € X5. Let P be the unknown underlying probability distribution for
(X,Y). The probabilistic set-up makes it simple to estimate the Bayes risk, which is to be
minimized.

Consider a collection of local quantization rules made at the sensors, which we denote

by Q(Z|X). For each such set of rules, the associated Bayes risk is defined by:
1 1
Rop = 5 —SE|P(Y =1|2) = P(Y = -1]2)|. (3.2)

Here the expectatioR is with respect to the probability distributid®(X,Y, Z) :=
P(X,Y)Q(Z|X). ltis clear that no decision rule at the fusion center (i.e., having access

only to z) has Bayes risk smaller thd®),,;. In addition, the Bayes risk,,: can be achieved
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by using the decision function
Yopt(2) = sign(P(Y = 1|z) — P(Y = —1|2)).

It is key to observe that this optimal decision raknnotbe computed, becaug&( X, Y)

is not known, and))(Z|X) is to be determined. Thus, our goal is to determine the rule
Q(Z]X) that minimizes an empirical estimate of the Bayes risk based on the training data
(x:,y:)™ ;. In Lemma3.1we show that the following is one such unbiased estimate of the

Bayes risk:

1 1 u
Repp = 5—%2};@<21xi>yi|. (3.3)

z

In addition,v,,.(z) can be estimated by the decision function

Yemp(2) = sign( Y Qzlz:)yi)-

i=1

SinceZ is a discrete random vector, the following lemma, proved in the Appendix, shows
that the optimal Bayes risk can be estimated easily, regardless of whether the input signal

X is discrete or continuous:

Lemma 3.1. (a) If P(2) > 0 for all z ands(z) = ZFELI U0 thenlim,, .o 5i(2) =
P(Y = 1|z) almost surely.

(b) Asn — 00, Repmp aNdyem,(2) tend toR,,,; and~,,.(z), respectively, almost surely.

The significance of Lemma&.1 is in motivating the goal of finding decision rules
Q(Z|X) to minimize the empirical erroR.,,,,. It is equivalent, using equatior3.@), to

maximize

c@=>

z

, (3.4)

Z Q(z]z:)y;
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subject to the constraints that define a probability distribution:

Q(zlz) = [T, Q' (z!|z") for all values ofz andz, )

Y QU2 =1, andQ'(zf|zf) € [0,1] fort=1,...,S.

The major computational difficulty in the optimization problem defined by Bg4 (
and (.5 lies in the summation over all® possible values of € Z°. One way to avoid

this obstacle is by maximizing instead the following function:

C(Q) = Z(gwxim)?.

z

Expanding the square and using the conditional independence con@itipteéds to the

following equivalent form foiC’,:

S L
Q) = Dy [] D QD). (3.6)
iy t=1 zt=1
Note that the conditional independence conditi®ri)on @ allow us to comput€’s, (@) in
O(SL) time, as opposed tO(L%).

While this simple strategy is based directly on the empirical risk, it does not exploit
any prior knowledge about the class of discriminant functionsyfa). As we discuss in
the following section, such knowledge can be incorporated into the classifier using kernel
methods. Moreover, the kernel-based decentralized detection algorithm that we develop

turns out to have an interesting connection to the simple approach basadn
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3.3 A kernel-based algorithm

In this section, we turn to methods for decentralized detection based on empirical risk min-
imization and kernel methodéronszajn, 1950Saitoh, 1988Schdlkopf and Smola, 2002
Shawe-Taylor and Cristianini, 20D4We begin by introducing some background and def-
initions necessary for subsequent development. We then motivate and describe a central
component of our decentralized detection system—namely, the notiomafginalized

kernel Our method for designing decision rules is based on an optimization problem,
which we show how to solve efficiently. Finally, we derive theoretical bounds on the per-

formance of our decentralized detection system.

3.3.1 Empirical risk minimization and kernel methods

In this section, we provide some background on empirical risk minimization and kernel
methods. We refer the reader to the boffstblkopf and Smola, 2005 hawe-Taylor and
Cristianini, 2004 Saitoh, 1988 Weinert, 1982 for more details. Our starting point is to
consider estimatind” with a rule of the formy(z) = signf(z), wheref : X — Ris a
discriminant functiorthat lies within some function space to be specified. The ultimate
goal is to choose a discriminant functignto minimize the Bayes erraP(Y # 17), or

equivalently to minimize the expected value of the followiid loss

do(yf(z)) = Iy #sign(f(x))]. (3.7)

This minimization is intractable, both because the functigris not well-behaved (i.e.,
non-convex and non-differentiable), and because the joint distribitisunknown. How-
ever, since we are given a set of i.i.d. samdles, y;)}!-,, it is natural to consider mini-
mizing a loss function based on ampirical expectationas motivated by our development

in Section3.2.2 Moreover, it turns out to be fruitful, for both computational and statistical
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reasons, to design loss functions based@mvex surrogateto the 0-1 loss.

Indeed, a variety of classification algorithms in statistical machine learning have been
shown to involve loss functions that can be viewed as convex upper bounds on the 0-1 loss.
For example, the support vector machine (SVM) algoriffguarlkopf and Smola, 2042

uses aiinge losdunction:

¢1(yf(z) = (I—yf(r))s = max{l —yf(z),0}. (3.8)

On the other hand, the logistic regression algoriffimedmaret al,, 200( is based on the

logistic lossfunction:

Ga(yf(x)) = log (1 +exp ¥/ @), (3.9)

Finally, the standard form of the boosting classification algoriffn@und and Schapire,

1997 uses axponential losgunction:

o3(yf(x)) = exp(—yf(x)). (3.10)

Intuition suggests that a functighwith small¢-risk E¢(Y f (X)) should also have a small
Bayes riskP (Y # sign(f(X))). In fact, it has been established rigorously that convex sur-
rogates for the (non-convex) 0-1 loss function, such as the hih8eand logistic l0ss¥.9)
functions, have favorable properties both computationally (i.e., algorithmic efficiency), and
in a statistical sense (i.e., bounds on both approximation error and estimatior Znaomyy,
2004 Bartlettet al,, 2004.

We now turn to consideration of the function class from which the discriminant function
f is to be chosen. Kernel-based methods for discrimination entail chogdnogn within
a function class defined by a positive semidefinite kernel, defined as followESaiteh,
1989):
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Definition 3.2. A real-valued kernel function is a symmetric bilinear mappiig: X x
X — R. Itis positive semidefinite, which means that for any subset. .., x,} drawn

from X, the Gram matrixs;; = K,(x;, z;) is positive semidefinite.

Given any such kernel, we first define a vector space of functions magpioghe real

line R through all sums of the form
FO) =YKyl x;), (3.11)
j=1

where {z;}7" | are arbitrary points fron®’, m € N, anda; € R. We can equip this
space with &ernel-based inner produtty defining(K, (-, z;), K,(-,z;)) := K(z;, x;),
and then extending this definition to the full space by bilinearity. Note that this inner

product induces, for any function of the forr8.11), the kernel-based norrf|3, =

D1 i Ko (x4, 25).

Definition 3.3. Thereproducing kernel Hilbert spa@# associated with a given kernél,
consists of the kernel-based inner product, and the closure (in the kernel-based norm) of

all functions of the forn§3.11).

As an aside, the term “reproducing” stems from the fact for Ary’H, we have

(fs Ko(-y20)) = f(z0),

showing that the kernel acts as the representer of evalU&#itoh, 1988
In the framework of empirical risk minimization, the discriminant functipre H is
chosen by minimizing a cost function given by the sum ofahmpirical ¢-risk Ed)(Yf(X))

and a suitable regularization term

. A
I;aeig;wyif(xi)) + 5117 (3.12)
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where\ > 0 is a regularization parameter that serves to limit the richness of the class
of discriminant functions. The Representer Theorem (Thm. [&&kblkopf and Smola,

2009) guarantees that the optimal solution to problé&xi® can be written in the form
flz) = > i Ka(x, x:),

for a particular vector € R". The key here is that sum rangasly over the observed data
points{(z;, yi) }, .-

For the sake of development in the sequel, it will be convenient to express functions
f € H as linear discriminants involving the tifeature mapb(z) := K,(-,z). (Note that
for eachr € X, the quantity®(z) = ®(z)(-) is a function fromX to the real lineR.) Any
function f in the Hilbert space can be written as a linear discriminant of the farmb(z))
for some functionv € H. (In fact, by the reproducing property, we hafe) = w(-)). As

a particular case, the Representer Theorem allows us to write the optimal discriminant as

wherew = "7 | a;y; P (z).

3.3.2 Fusion center and marginalized kernels

With this background, we first consider how to design the decision~yudé the fusion
center for dixedsetting@Q(Z|X) of the sensor quantization rules. Since the fusion center
rule can only depend on = (z!,...,2%), our starting point is a feature spafe’(z)}

with associated kerné{,. Following the development in the previous section, we consider

fusion center rules defined by taking the sign of a linear discriminant of the form

1(2) = (w, ¥'(2)).
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We then link the performance ofto another kernel-based discriminant functjotihat acts
directlyonz = (2, ...,2°), where the new kernek, associated witty is defined as a
marginalized kerneih terms ofQ(Z| X ) and K.

The relevant optimization problem is to minimize (as a functionvpthe following

regularized form of the empirical-risk associated with the discriminamnt

min {33 6wa()Q) + 2w} (3.13)

z =1

where)\ > 0 is a regularization parameter. In its current form, the objective func8dr8(

is intractable to compute (because it involves summing over afiossible values of of a
loss function that is generally non-decomposable). However, exploiting the convexity of
allows us to perform the computation exactly for deterministic rule@jnand also leads

to a natural relaxation for an arbitrary decision r@gle= Q. This idea is formalized in the

following:

Proposition 3.4. Define the quantities
Op(z) = ZQ(Z|$)(I)/<Z), and f(z;Q) = (w, Pg(z)). (3.14)

For any convexp, the optimal value of the following optimization problem is a lower bound

on the optimal value in problei(3.13:
: A )
min > ¢(yif (25 Q) + 5 |lwl[* (3.15)

Moreover, the relaxation is tight for any deterministic rap¢z|X).

Proof. The lower bound follows by applying Jensen’s inequality to the functigmelds
O(yif(z;Q)) <>, o(yiv(2))Q(2]x;) for eachi =1, ... n. O O
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A key point is that the modified optimization proble® 15 involves an ordinary reg-

ularized empiricab-loss, but in terms of a linear discriminant function

f(#;Q) = (w, Bo(x))

in thetransformedeature spac¢®,(z)} defined in equation3(14). Moreover, the corre-

spondingmarginalized kernelunction takes the form:
Ko(z,7') ==Y Q(z|x)Q(+'|") K.(z,7), (3.16)

whereK,(z,2') := (®'(z), ¢'(2')) is the kernel in{®’'(z) }-space. It is straightforward to
see that the positive semidefinitenesgwfimplies thatK, is also a positive semidefinite
function.

From a computational point of view, we have converted the marginalization over loss
function values to a marginalization over kernel functions. While the former is intractable,
the latter marginalization can be carried out in many cases by exploiting the structure
of the conditional distributiong)(Z|X). (In Section3.3.3 we provide several exam-
ples to illustrate.) From the modeling perspective, it is interesting to note that marginal-
ized kernels, like that of equatior3.(L6), underlie recent work that aims at combining
the advantages of graphical models and Mercer kerdelakkola and Haussler, 1999
Tsudaet al,, 2004.

As a standard kernel-based formulation, the optimization probBeb¥)(can be solved
by the usual Lagrangian dual formulatif®cholkopf and Smola, 2042thereby yielding
an optimal weight vectorw. This weight vector defines the decision rule for the fusion
center by taking the sign of discriminant functig(z) := (w, ®'(2)). By the Representer
Theorem[Schblkopf and Smola, 2042 the optimal solutions to problem 8.15 has an
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expansion of the form

w = Zazyzq)Q xz Z Z azyz |xl ( )?

=1 =1 2z

wherea is an optimal dual solution, and the second equality follows from the definition of
o, () given in equationd.14). Substituting this decomposition af into the definition of

~ yields

Zzazyz |xz Z(Z,Z’). (317)

2l =1
Note that there is an intuitive connection between the discriminant funcfi@ml . In

particular, using the definitions gfand K, it can be seen that

f(x) = E[y(2)]],

where the expectation is taken with respecttc”| X = z). The interpretation is quite
natural: when conditioned on some the average behavior of the discriminant function
v(Z), which doesnot observez, is equivalent to the optimal discriminarf{z), which

does have access 10

3.3.3 Design and computation of marginalized kernels

As seen in the previous section, the representation of discriminant fungtiandy de-
pends on the kernel functiorss, (z, z’) and K (z, 2'), andnot on the explicit representa-
tion of the underlying feature spacé®’(z)} and{®q(z)}. It is also shown in the next
section that our algorithm for solving and v requires only the knowledge of the ker-
nel functionsk’, and K. Indeed, the effectiveness of a kernel-based algorithm typically
hinges heavily on the design and computation of its kernel function(s).

Accordingly, let us now consider the computational issues associated with marginal-
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ized kernelK, assuming thal, has already been chosen. In general, the computation of
Kq(x,2") entails marginalizing over the variabl& which (at first glance) has computa-
tional complexity on the order aP(L°). However, this calculation fails to take advantage

of any structure in the kernel functiali,. More specifically, it is often the case that the
kernel functionk’.(z, z’) can be decomposed into local functions, in which case the com-
putational cost is considerably lower. Here we provide a few examples of computationally
tractable kernels.

Computationally tractable kernels:

Perhaps the simplest example is timear kernel K, (z, 2') = Zle 212", for which it
is straightforward to derivé, (z, ') = 37, E[2*|!] E[2"|2"].

A second example, natural for applications in whi€h and Z¢ are discrete random
variables, is theount kernel Let us represent each discrete value {1,...,M} as a
M-dimensional vectof0, ..., 1,...,0), whoseu-th coordinate takes value 1. If we define
the first-order count kernét’,(z, 2’) := le I[z* = 2*], then the resulting marginalized

kernel takes the form:

S

S
Ko(z,7') = Y QC2)Q() Y I[z' = 2" = Y Q' = "', 2").(3.18)

z,2! t=1

A natural generalization is theecond-order count kerné{,(z,z") = >, _ I[z" =
Z"I[z" = 2'"] that accounts for the pairwise interaction between coordinatasd-". For

this example, the associated marginalized kefg{z, z’) takes the form:

2 Z Q2" = "2t 2" Q(2" = 2" |a", "), (3.19)

1<t<r<S

Remarks: First, note that even for a linear base keragl, the kernel functioni

inherits additional (nonlinear) structure from the marginalization oY% |X). As a con-
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sequence, the associated discriminant functions {i.@nd f) are certainly not linear. Sec-

ond, our formulation allows any available prior knowledge to be incorporatedigtn

at least two possible ways: (i) The base kernel representing a similarity measure in the
guantized space afcan reflect the structure of the sensor network, or (ii) More structured

decision rules)(Z|X) can be considered, such as chain or tree-structured decision rules.

3.3.4 Joint optimization

Our next task is to perform joint optimization of both the fusion center rule, defined by
(or equivalentlya, as in equation3.17), and the sensor rulgg. Observe that the cost

function 3.15 can be re-expressed as a function of botAnd(@ as follows:

)= 5 20wt S QPN ) 4 5lwiE 320
Of interest is the joint minimization of the functi@nin bothw and@. It can be seen easily
that
(a) G is convex inw with @ fixed; and
(b) G is convex in@*, when bothw and all othe{ Q", r # ¢} are fixed.

These observations motivate the use of blockwise coordinate gradient descent to perform
the joint minimization.

Optimization of w: As described in Sectio.3.2 when( is fixed, thenmin,, G(w; Q)
can be computed efficiently by a dual reformulation. Specifically, as we establish in the
following result using ideas from convex dualftRockafellar, 1970 a dual reformulation

of min,, G(w; @) is given by
?G%X{ - - Z ¢*(— ;) — =aT [(yy") o KQ}Q}, (3.21)
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where¢*(u) := sup,er {u - v — ¢(v)} is the conjugate dual of, [Kq)ij == Ko(w;, z;) is

the empirical kernel matrix, anegldenotes Hadamard product.

Proposition 3.5. For each fixed) € Q, the value of the primal problefmf, G(w; Q)
is attained and equal to its dual forif8.21). Furthermore, any optimal solution to

problem(3.21) defines the optimal primal solutian(®) to min,, G(w; Q) via

w(Q) = 225 aitiPo(wi).

Proof. It suffices for our current purposes to restrict to the case where the funatiand
() can be viewed as vectors in some finite-dimensional spaceRBadowever, it is
possible to extend this approach to the infinite-dimensional setting by using conjugacy in
general normed spacfisuenberger, 1969

A remark on notation before proceeding: sirges fixed, we drop from G for no-
tational convenience (i.e., we writ8(w) = G(w;Q)). First, we observe tha¥(w) is
convex with respect taw and thatG — oo as||w|| — oo. Consequently, the infimum
defining the primal problenmf, g~ G(w) is attained. We now re-write this primal prob-
lem asinf,cgm G(w) = infyepm{G(w) — (w, 0)} = —G*(0), whereG* : R — R
denotes the conjugate dual Gf

Using the notatior;(w) := $é((w, y:Pq(z;))) andQ(w) := 1||w|, we can decom-
poseG as the sunt(w) = Y, g;(w) + Q(w). This decomposition allows us to compute
the conjugate dual™ via the inf-convolution theorem (Thm. 16.4; RockafelRockafel-

lar, 197Q) as follows:

uii=1,...,

o = it {Saw ol (3.22)

The functiong; is the composition of a convex functianwith the linear functionw —

(w,y;®¢(x;)), so that Theorem 16.3 of Rockafelldockafellar, 197Dyields the conju-
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gate dual as follows:

1 -
so* (=) if u; = —a;(y;Po(x;)) for somea; € R
g (u;) = X'l ) bi2o(z) (3.23)

400 otherwise

A straightforward calculation yield@* (v) = sup,{(v, w) — 3||w|[*} = 3|[v[[*. Sub-

stituting these expressions into equatidr2@) leads to:

n 2

1 1
* —  inf 2 (= heaws) + =
G*(0) Inf 2 )\qb (— i) + 2’ ,

Z Oéiyiq)Q(l’i)

from which it follows that

_ i 1, 1
inf G(w) = —G*(0) = sup { Y 2925 (—Aa;) — 2 Z O‘iajyiysz(xian)}'
v a€R™ i—1 1<i,j<n
Thus, we have derived the dual for21). See the Appendix for the remainder of the

proof, in which we derive the link between(()) and the dual variables. O

This proposition is significant in that the dual problem involves only the kernel matrix

(Kq(zi,7j))1<ij<n- HENCe, one can solve for the optimal discriminant functipas f (z)

ory = ~(z) without requiring explicit knowledge of the underlying feature spgc&s:)}
and{®q(x)}. As a particular example, consider the case of hinge loss funcii@ és
used in the SVM algorithniSchblkopf and Smola, 2042 A straightforward calculation
yields

u if ue[-1,0]
¢ (u) =

+o00 otherwise
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Substituting this formula into3(21) yields, as a special case, the familiar dual formulation
for the SVM:

- 1
s, { o= o700 o Ko

Optimization of @): The second step is to minimize over ¢, with w and all other
{Q",r # t} held fixed. Our approach is to compute the derivative (or more generally, the
subdifferential) with respect tQ*, and then apply a gradient-based method. A challenge
to be confronted is that' is defined in terms of feature vectob$(z), which are typically
high-dimensional quantities. Indeed, although it is intractable to evaluate the gradient at an
arbitraryw, the following result, proved in the Appendix, establishes that it can always be

evaluated at the poirtv(Q), Q) for any@ € Q.

Lemma 3.6. Let w(Q) be the optimizing argument ofiin,, G(w; Q)), and leta be an

optimal solution to the dual proble3.21). Then the following element

_ o Q(z[z;) o Nt = 7 Tt = 5t
A(%: )al ;Q(z |x])Qt(Zt‘ oy (e 2 )l = 21 ]

is an element of the subdifferenti@): ;. ;G evaluated atw(Q), Q). *

Note that this representation of the (sub)gradient involves marginalizatiord)oviethe
kernel functionk’,, and therefore can be computed efficiently in many cases, as described
in Section3.3.3 Overall, the blockwise coordinate descent algorithm for optimizing the

local quantization rules has the form:

3Thesubgradienis a generalized counterpart of gradient for non-differentiable convex fundfRotk-
afellar, 197Q Hiriart-Urruty and Lema&chal, 200]; in particular, a vectos € R™ is a subgradientof a
convex functionf : R™ — R meansf(y) > f(z) + (s, y — ) for all y € R™. Thesubdifferentialat a
pointz is the set of all subgradients. In our cas@ss non-differentiable when is the hinge loss3.8), and
differentiable wherp is the logistic loss¥.9) or exponential loss3(10).
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Kernel quantization (KQ) algorithm:

(a) With @ fixed, compute the optimizingy(Q)) by solving the dual prob-
lem (3.21).

(b) For some index, fix w(Q) and{Q",r # t} and take a gradient step ¥

using Lemma3.6.

Upon convergence, we define a deterministic decision rule for each genaor

Y (z') = argmax,.zQ(z'|z"). (3.24)

First, note that the updates in this algorithm consist of alternatively updating the de-
cision rule for a sensor while fixing the decision rules for the remaining sensors and the
fusion center, and updating the decision rule for the fusion center while fixing the deci-
sion rules for all other sensors. In this sense, our approach is similar in spirit to a suite of
practical algorithmgTsitsiklis, 1993b e.g.] for decentralized detection under particular
assumptions on the joint distributid?( X, Y). Second, using standard resUBertsekas,
19954, it is possible to guarantee convergence of such coordinate-wise updates when the
loss functiong is strictly convex and differentiable (e.g., logistic 10859 or exponential
loss 3.10). In contrast, the case of non-differentialglde.g., hinge loss3.8)) requires
more care. We have, however, obtained good results in practice even in the case of hinge
loss. Third, it is interesting to note the connection between the KQ algorithm and the naive
approach considered in Sectidr2.2 More precisely, suppose that we fixsuch that all
«; are equal to one, and let the base kerkiglbe constant (and thus entirely uninforma-
tive). Under these conditions, the optimization(®fwith respect ta) reduces to exactly

the naive approach.
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3.3.5 Estimation error bounds

This section is devoted to analysis of the statistical properties of the KQ algorithm. In
particular, our goal is to derive bounds on the performance of our clasgifier) when
applied to new data, as opposed to the i.i.d. samples on which it was trained. It is key to

distinguish between two forms gfrisk:

(a) theempirical-risk Ep(ny(Z)) is defined by an expectation OVE(X, Y)Q(Z|X),

whereP is the empirical distribution given by the i.i.d. samplés;, y;) } ;.

(b) thetrue ¢-risk E¢(Y (7)) is defined by taking an expectation over the joint distri-
bution P(X,Y)Q(Z|X).

In designing our classifier, we made use of the empiricekk as a proxy for the actual
risk. On the other hand, the appropriate metric for assessing performance of the designed
classifier is the true-risk E¢(Y(Z)). At a high level, our procedure for obtaining per-
formance bounds can be decomposed into the following steps:

(1) First, we relate the trueé-risk E¢(Y~(Z2)) to the truegp-risk E¢(Y f(X)) for the func-
tions f € F (andf € F;) that are computed at intermediate stages of our algorithm. The
latter quantities are well-studied objects in statistical learning theory.

(2) The second step to relate the empirigaisk E(Y f(X)) to the trueg-risk E(Y f(X)).

In general, the true-risk for a functionf in some classF is bounded by the empirical
¢-risk plus a complexity term that captures the “richness” of the function dfasghang,

2004 Bartlettet al., 2004. In particular, we make use of tiRademacher complexias a
measure of this richness.

(3) Third, we combine the first two steps so as to derive bounds on the-tiskE¢(Y v (2))

in terms of the empiricap-risk of f and the Rademacher complexity.

(4) Finally, we derive bounds on the Rademacher complexity in terms of the number of

training samples, as well as the number of quantization levéland M .
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Step 1: For each) € Q, the class of functiong, over which we optimize is given
by:
{f a0 (w,®(x)) = Koz, ;) | s.t. |lw]|| < B}, (3.25)

whereB > 0 is a constant. Note tha, is simply the class of functions associated with
the marginalized kernek'. The function class over which our algorithm performs the
optimization is defined by the uniaf := UgcoF g, WhereQ is the space of all factorized
conditional distributiong)(Z|X). Lastly, we define the function clasg := Ugeo, o,
corresponding to the union of the function spaces defined by marginalized kernels with
deterministic distributions).

Any discriminant functionf € F (or F,), defined by a vectar, induces an associated
discriminant functiony; via equation 8.17). Relevant to the performance of the classifier
¢ is the expected-lossE¢(Y v,(Z)), whereas the algorithm actually minimizes (the em-
pirical version of)E¢(Y f(X)). The relationship between these two quantities is expressed

in the following proposition.

Proposition 3.7.
(@) We havéEo(Yv¢(Z2)) > Eo(Y f(X)), with equality wherf)(Z|X) is deterministic.

(b) Moreover, there holds
'fEYX(Q'fEYZ(?'fEYX (3.26)
inf E6(Y f(X)) < inf Eg(Y4(2)) < inf Eo(Y /(X)) -
The same statements also hold for empirical expectations.
Proof. Applying Jensen’s inequality to the convex functiorields

Eo(Y4(Z)) = ExvE[p(Y7:(2))X, Y] = Exyo(E[Y7:(2)|X,Y]) = Eo(Y f(X)),

where we have used the conditional independencé ahdY given X. This establishes
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inequality (ii), and the lower bound (i) follows directly. Moreover, part (a) also implies that
infrer, EQ(Y ¢ (Z)) = infrer, EP(Y (X)), and the upper bound(26) follows since
Fo C F. [ O

Step 2: The next step is to relate the empirigatisk for f (i.e.,IE(Yf(X))) to the true
o-risk (i.e.,E(Y f(X))). Recall that thdRademacher complexitf the function class is
defined[van der Vaart and Wellner, 19p&s

n

2

R, (F)=Esup— o, f(X;),
(F) =Esup - 2; (X3)
where theRademacher variables,, ..., o, are independent and uniform dr-1, +1},
andXy,..., X, are i.i.d. samples selected according to distributonin the case thap

is Lipschitz with constant, the empirical and true risk can be related via the Rademacher
complexity as followgKoltchinskii and Panchenko, 20D2With probability at least — §
with respect to training samplés(;, ;)" ,, drawn according to the empirical distribution

P", there holds

sup [ BO(Y (X)) ~ Bo(Y F(X))] < 26R,()+ [ 02,

(3.27)

Moreover, the same bound applies#g.

Step 3: Combining the bound3(27) with Proposition3.7 leads to the following the-
orem, which provides generalization error bounds for the optipaask of the decision
function learned by our algorithm in terms of the Rademacher complextié%,) and
R, (F):
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Theorem 3.8.Givenn i.i.d. labeled data pointéz;, y;)_,, with probability at least — 24,

I2/9) < iuf B (v+y(2))

feF n 2n T feF

inf * S 6 (1)) — 2R (F) -

n(2/9)

1 n
inf Bo(Yyy(2)) < jnf = ; Oy f (2:)) + 20Rn(Fo) + || 1=

Proof. Using bound 8.27), with probability at least — ¢, for any f € F,

In(2/9)

1 n
EO(YVS(X)) 2 5 3 0lued (@) = 20Rn(F) = [ =5 =

Combining with bound (i) in equatior8(26), we have, with probability — 6,

n(2/9)

on

1 n
inf E$(Y7(2)) = inf E$(Y f(X)) 2 }gj;ﬁ;qﬁ(yif(%))—?mn(f)—

which proves the lower bound of the theorem with probability at léasts. The upper
bound is similarly true with probability at least- . Hence, both are true with probability
at leastl — 24, by the union bound. O O

Step 4: So that Theoren3.8 has useful meaning, we need to derive upper bounds on
the Rademacher complexity of the function clasgesnd.F,. Of particular interest is the
decrease in the complexity & and F, with respect to the number of training samptes
as well as their growth rate with respect to the number of discrete signal lelyetsmber
of quantization leveld,, and the number of sensass The following proposition, proved in
the Appendix, derives such bounds by exploiting the fact that the number of 0-1 conditional
probability distributiong) (7| X) is finite (namely, L*5)).
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Proposition 3.9.

Ru(Fo) <

n

2B n 1/2
{]E sup Z Ko(Xi, Xi)+2(n—1)y/n/2sup K,(z,2')\/2MSlog L| .

Qe ;]
(3.28)

Note that the upper bound involves a linear dependence on corsfaaésuming that
|w|| < B—this provides a statistical justification of minimizirjau||? in the formula-
tion (3.13. Although the rate given in equatio3.28 is not tight in terms of the number
of data samples, the bound is nontrivial and is relatively simple. (In particular, it depends
directly on the kernel functio’, the number of samples quantization levelg.,, number
of sensors5, and size of observation spaté.)

We can also provide a more general and possibly tighter upper bound on the Rademacher
complexity based on the concept @fitropy numbefvan der Vaart and Wellner, 196
Indeed, an important property of the Rademacher complexity is that it can be estimated

reliably from a single sampler,, . . ., z,,). Specifically, if we define

R, (F) = IE[g sup » 03 f ()]

" reF i

(where the expectation is w.r.t. the Rademacher varighigsonly), then it can be shown
using McDiarmid’s inequality thaﬁn(]-") is tightly concentrated around, (F) with high
probability [Bartlett and Mendelson, 20D2Concretely, assuming thdff |, is bounded

from above for alke F, then for anyy > 0, there holds:
PRE) = R = nf <20 (329)

Hence, the Rademacher complexity is closely related to its empirical ve%i(cﬂﬁ), which

can be related to the concept of entropy number. In general, define the covering number
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N (e, S, p) for a setS to be the minimum number of balls of diametéhat completely cover
S (according to a metrig). Thee-entropy number of is then defined akg N (¢, S, p).

In particular, if we define thé.(P,) metric on an empirical sample, ..., z,) as
1 n 1/2
1fi = follzacpn) = [ﬁ > (filw) = fo(z)?|

=1

then it is well known[van der Vaart and Wellner, 19p#hat for some absolute constatit

Ru(F) < C/OOO \/logN(e’];’ La(Po)) g (3.30)

The following result, proved in the Appendix, relates the entropy numbeffoo the

there holds:

supremum of the entropy number taken over a restricted function £lass
Proposition 3.10. The entropy numbdng N (e, F, Lo(P,)) of F is bounded above by

2L sup ||a||; sup, . K.(z, 2
sup log N (e/2, Fo, La(Pn)) + (L — 1)MSlog pllafh sup.. K- (= 2)
QeQ €

(3.31)

Moreover, the same bound holds 5.

This proposition guarantees that the increase in the entropy number in moving from
someF,, to the larger clas§ is only O((L — 1)M Slog(L®/¢)). Consequently, we incur
at most anO([M S%(L — 1) log L/n]2) increase in the upper bound.80) for R,(F) (as
well as R, (Fy)). Moreover, the Rademacher complexity increases with the square root of

the numbell log L of quantization leveld..

3.4 Experimental Results

We evaluated our algorithm using both data from simulated and real sensor networks and

real-world data sets. First, we consider three types of simulated sensor network configura-
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tions:

Conditionally independent observations:In this example, the observatioAs, ..., X
are independent conditional af, as illustrated in Figur8.1 We consider networks with
10 sensors{ = 10), each of which receive signals with 8 leveld (= 8). We applied the
algorithm to compute decision rules for= 2. In all cases, we generate= 200 training
samples, and the same number for testing. We performed 20 trials on each of 20 randomly
generated modelB(X,Y).

Chain-structured dependency: A conditional independence assumption for the ob-
servations, though widely employed in most work on decentralized detection, may be un-
realistic in many settings. For instance, consider the problem of detecting a random signal
in noise[van Trees, 1990in whichY = 1 represents the hypothesis that a certain random
signal is present in the environment, wher&as- —1 represents the hypothesis that only
i.i.d. noise is present. Under these assumptiins . ., X will be conditionally indepen-
dent giveny” = —1, since all sensors receive i.i.d. noise. However, conditioned en+1
(i.e., in the presence of the random signal), the observations at spatially adjacent sensors
will be dependent, with the dependence decaying with distance.

In a 1-D setting, these conditions can be modeled with a chain-structured dependency,
and the use of a count kernel to account for the interaction among sensors. More precisely,
we consider a set-up in which five sensors are located in a line such that only adjacent sen-
sors interact with each other. More specifically, the sen&grs and X, ; are independent
givenX; andY’, asillustrated in Figur8.2 We implemented the kernel-based quantization
algorithm using either first- or second-order count kernels, and the hinge loss fuic8on (
as in the SVM algorithm. The second-order kernel is specified in equaia8 (ut with
the sum taken over only r such thatt — r| = 1.

Spatially-dependent sensorsAs a third example, we consider a 2-D layout in which,

conditional on the random target being presént£ +1), all sensors interact but with the
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Xl

X2

XS

X4

X5
(@) (b)

Figure 3.2. Examples of graphical modeR(X, Y") of our simulated sensor networks. (a)
Chain-structured dependency. (b) Fully connected (not all connections shown).

strength of interaction decaying with distance. THYs(|Y" = 1) is of the form:

P(X]Y = 1) ocexp{ D halu(X) + D O lu(X)L(XT) .
t t#£r;uv

Here the parametek represents observations at individual sensors, wheteamtrols
the dependence among sensors. The distributigki|Y = —1) can be modeled in the
same way with observatiorns, and setting’ = 0 so that the sensors are conditionally
independent. In simulations, we generéte,, ~ N(1/d..,0.1), whered,, is the distance
between sensarandr, and the observationisand/’ are randomly chosen i, 1]°. We
consider a sensor network with 9 nodes (i%e= 9), arrayed in th& x 3 lattice illustrated in
Figure3.2(b). Since computation of this density is intractable for moderate-sized networks,

we generated an empirical data &et y;) by Gibbs sampling.

We compare the results of our algorithm to an alternative decentralized classifier based

on performing a likelihood-ratio (LR) test at each sensor. Specifically, for each sensor
. P(Xt=u]Y=1)
the estimate Xr—aly=——1
evenly into L bins, resulting in a simple and intuitive likelihood-ratio based quantization

) foru=1,..., M of the likelihood ratio are sorted and grouped

scheme. Note that the estimafesire obtained from the training data. Given the quantized
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input signal and labél’, we then construct a naive Bayes classifier at the fusion center. This
choice of decision rule provides a reasonable comparison, since thresholded likelihood ratio
tests are optimal in many cadgsitsiklis, 19930.

The KQ algorithm generally yields more accurate classification performance than the
likelihood-ratio based algorithm (LR). FiguBe3 provides scatter plots of the test error of
the KQ versus LQ methods for four different set-ups, uding 2 levels of quantization.

Panel (a) shows the naive Bayes setting and the KQ method using the first-order count
kernel. Note that the KQ test error is below the LR test error on the large majority of ex-
amples. Panels (b) and (c) show the case of chain-structured dependency, as illustrated in
Figure3.2(a), using a first- and second-order count kernel respectively. Again, the perfor-
mance of KQ in both cases is superior to that of LR in most cases. Finally, panel (d) shows
the fully-connected case of Figuge2(b) with a first-order kernel. The performance of KQ

is somewhat better than LR, although by a lesser amount than the other cases.

Real sensor network data setWe evaluated our algorithm on a real sensor network
using Berkeley tiny sensor motes (Mica motes) as the base stations. The goal of the exper-
iment is to determine the locations of light sources given the light signal strength received
by a number of sensors deployed in the network. Specifically, we fix a particular region
in the plane (i.e., sensor field) and ask whether the light source’s projection onto the plane
is within this region or not (see Figuf4(a)). The light signal strength received by each
sensor mote requires 10 bits to store, and we wish to reduce the size of each sensor message
being sent to the fusion center to only 1 or 2 bits. Our hardware platform consists of 25
sensors placed 10 inches apart ok a 5 grid in an indoor environment. We performed
25 detection problems corresponding to 25 circular regions of radius 30 inches distributed
uniformly over the sensor field. For each problem instance, there are 25 training positions

(i.e., empirical samples), and 81 test positions.

The performance of the KQ algorithm is comparedéntralizeddetection algorithms
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Figure 3.4. (a) lllustration of a sensor field. (b) a Mica sensor mote. (c) Comparison of
test errors of the decentralized KQ algorithm and centralized SVM and NBC algorithms on
different problem instances.

based on a Naive Bayes classifier (NBC), and the SVM algorithm using a Gaussiartkernel.
The test errors of these algorithms are shown in Figudé). Note that the test algorithm

of the KQ algorithm improves considerably by relaxing the communication constraints

from 1 to 2 bits. Furthermore, with the 2-bit bandwidth constraint, the KQ’s test errors are

comparable to that of the centralized SVM algorithm on most problem instances. On the

other hand, the centralized NBC algorithm does not perform well on this data set.

4The sensor observations are initially quantized inte= 10 bins, which then serves as input to the NBC
and KQ algorithm.
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UCI repository data sets: We also applied our algorithm to several data sets from the
machine learning data repository at the University of California Irfiskeke and Merz,
1999. In contrast to the sensor network detection problem, in which communication con-
straints must be respected, the problem here can be viewed as that of finding a good quanti-
zation scheme that retains information about the class label. Thus, the problem is similar in
spirit to work on discretization schemes for classificatiboughertyet al,, 19995. The dif-
ference is that we assume that the data have already been crudely quantized-(we gse
levels in our experiments), and that we retain no topological information concerning the
relative magnitudes of these values that could be used to drive classical discretization al-
gorithms. Overall, the problem can be viewed as hierarchical decision-making, in which
a second-level classification decision follows a first-level set of decisions concerning the

features. We useth% of the data set for training and the remainder for testing. The results

Data|| L =2 4 6 NB CK
Pima| 0.212| 0.217| 0.212| 0.223| 0.212

lono || 0.091| 0.034| 0.079| 0.056 | 0.125
Bupa| 0.368| 0.322| 0.345| 0.322| 0.345
Ecoli || 0.082| 0.176| 0.176| 0.235| 0.188
Yeast|| 0.312| 0.312| 0.312| 0.303| 0.317
Wdbc || 0.083| 0.097| 0.111| 0.083| 0.083

Table 3.1: Experimental results for the UCI data sets.

for our algorithm withZ, = 2,4, and6 quantization levels are shown in Taldel. Note

that in several cases the quantized algorithm actually outperforms a naive Bayes algorithm
(NB) with access to the real-valued features. This result may be due in part to the fact that
our quantizer is based on a discriminative classifier, but it is worth noting that similar im-
provements over naive Bayes have been reported in earlier empirical work using classical

discretization algorithmEDoughertyet al.,, 1999.

92



Chapter 3. Nonparametric decentralized detection using kernel methods

3.5 Discussions

We have presented a new approach to the problem of decentralized decision-making under
constraints on the number of bits that can be transmitted by each of a distributed set of
sensors. In contrast to most previous work in an extensive line of research on this problem,
we propose a nonparametric solution: in particular, we assume that the joint distribution
of sensor observations is unknown, and that a set of data samples is available. We have
proposed a novel algorithm based on kernel methods, and shown that it is quite effective
on both simulated and real-world data sets.

This line of work described here can be extended in a number of directions. First,
although we have focused on discrete observati®ngt is natural to consider continu-
ous signal observations. Doing so would require considering parameterized distributions
Q(Z]X). Second, our kernel design so far makes use of only rudimentary information from
the sensor observation model, and could be improved by exploiting such knowledge more
thoroughly. Third, we have considered only the so-calladhllel configuration of the sen-
sors, which amounts to the conditional independencg(df| X ). One direction to explore
is the use of kernel-based methods for richer configurations, such as tree-structured and
tandemconfigurationd Tsitsiklis, 1993. Finally, the work described here falls within the
area offixed sample sizéetectors. An alternative type of decentralized detection procedure
is asequentiadetector, in which there is usually a large (possibly infinite) number of ob-
servations that can be taken in sequence [gagravalliet al, 1993). It is also interesting
to consider extensions our method to this sequential setting.

On the theoretical front, although we have provided an estimation error analysis with
respect to the surrogaterisk, no guarantee is given with respect to the Bayes error per
se. Specifically, does the quantizer-classifier p@ir~) obtained our learning procedure
is (asymptotically) optimal in the sense of 0-1 loss? A complete answer to this question is

given in Chapted.
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Appendix 3.A Proof of Lemma 3.1

(a) Sincer,, ..., z, are independent realizations of the random vedfothe quantities
Q(z|z1),...,Q(z|x,) are independent realizations of the random variélle/ X). (This

statement holds for each fixed= Z°.) The strong law of large numbers yields
1
o ZQ(ZW) — EQ(z]z;) = P(2)
=1
asn — +oco. Similarly, we have
1«
o Z Q(zlz)l(y: = 1) — EQ(z[X)I(Y = 1).
=1

Therefore, as. — oo,

here we have exploited the fact thais independent oY given X.

b) For each: € 29, we have
(

sign <ZZ LQUlz)I(y =1) YL Q(ela)l(y: = _1)>
Liz Qel) >, Q)

- (G -

Thus, part (a) implieSe,,,(z) — Yope(2) for eachz. Similarly, R.,,, — Ropt-
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Appendix 3.B  Proof of Proposition 3.5

Here we complete the proof of Propositi@b. It remains to show that the optimum
w(Q) of the primal problem is related to the optimalof the dual problem viav(Q) =
Yo, aiyi®o(x;). Indeed, sincé&(w) is a convex function with respect o, w(Q) is an
optimum solution fomin,, G(w; @) if and only if 0 € 0,,G(w(Q)). By definition of the

conjugate dual, this condition is equivalentt¢)) € 0G*(0).

Recall thatG* is an inf-convolution ofn functionsg;,...,¢; andQ*. Leta :=
(aq,...,a,) be an optimum solution to the dual problem, and= (ay,...,u,) be the

corresponding value in which the infimum operation in the definitiof"ofs attained. Ap-
plying the subdifferential operation rule on a inf-convolution function (Cor. 4[5iBiart-

Urruty and Lemagchal, 200]), we have
0G*(0) = dg; (@) N ... N Ag;(un) NOX (= Y @).
=1

ButQ*(v) = 1||v||?, and s@d*(— Y_" ; 4;) reduces to a singleton

- Z u; = Z C/V\iyiq)Q(mi)-
i=1 i=1

This implies thatw(Q) = > | @;y;Po(x;) is the optimum solution to the primal problem.

To conclude, it will be useful for the proof of Lemn®a6 to calculatedg; (u;), and
derive several additional properties relatin¢?)) anda. The expression fog; in equa-
tion (3.23 shows that it is the image of the functi@rzb* under the linear mapping; —
+04(y;Po(x;)). Consequently, by Theorem 4.5.1 of Urruty and Lemareldhiaiart-Urruty
and Lemagchal, 200}), we havedqg; (i;) = {w : (w, y;iPg(z;)) € ¢*(—Aa;)}, which
implies thatd, := (w(Q), v:®q(z;)) € 0¢*(—Aa;) for eachi = 1,...,n. By convex
duality, this also implies that \a; € 0¢(b;) fori =1,... n.
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Appendix 3.C Proof of Lemma 3.6

We shall show that the subdifferentid: ::z+)G can be computed directly in terms of the
optimal solutiona of the dual optimization problenB(21) and the kernel functiori’..
Our approach is to first derive a formula @z z) G, and then to computéy: ;)G by
applying the chain rule.

Defineb; = (w(Q), y:Pq(x;)). Using Theorem 23.8 of RockafelldRockafellar,
1974, the subdifferentiady ;)G evaluated afw(Q); Q) can be expressed as

Z%(z@) i Z@Qﬁ Jyi(w, @ (2))1[z; = 7].

Earlier in the proof of PropositioB.5we proved that-\a; € 0¢(b;) foreachi = 1,... n,
wherea is the optimal solution of3.21). Therefore,dyzzG evaluated a(w(Q);Q)

contains the element;:

Z—)\aiyi<w(Q), d'(2)) Z —Aoyyle; = T ZK 2, Z2)Q(z|z;).
i=1
Foreacht =1,...,S, Ogiz1z1)G is related tadyz )G by the chain rule. Note that for

Q(zz) = [, Q' (2'|z'), we have

aQt(gtpzt)G = ZaQt(2t|xt ( |l‘)aQ ‘IG - ZQt Zt|(D)t) [:L‘t ZL‘]H[Z —Z}(()Q Z|IG
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which contains the following element as one of its subgradients:

ZQt Zt|xt - {Z —Aajo;yy;llz; = @ ZK (2',2) |$])}

Q(z]z:)

Qi (z|zY) Q') K. (7, 2).

Z — A yzyj ]]I[ _t]

1,5,2,2

This completes the proof of the lemma.

Appendix 3.D Proof of Proposition 3.9

By definition [van der Vaart and Wellner, 19B&he Rademacher complexity, (F,) is
given by

n n

2
Esup—» o,f(X;) = E sup =) oi{w, o(X,))
fero M ZZI lwl|<B;QeQo T ZZI

2B
= —Esup HZUZ% )l

n QGQO i=1

Applying the Cauchy-Schwarz inequality yields ttiat(F,) is upper bounded as

2B
n JEsup I3 (X))

Q€0 =1
2B 1/2
= (IE sup ZKQ X, X;) 4+ 2E sup Z 0i0; Kq(X;, X; )) .
" Q€0 5oy Q€0 1< j<n
It remains to upper bound the second term inside the square root in the RHS. The trick is
to partition then(n — 1)/2 pairs of(i, j) inton — 1 subsets each of which hag2 pairs of
different: and;j (assuming is even for simplicity). The existence of such a partition can

be shown by induction on. Now, for eachi = 1,...,n — 1, denote the subset indexed by
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i by n/2 pairs(m;(j), 7(5));3, where all

(m(1), ... m(n/2)Y N {x (1), ..., 7(n/2)} = 0.

Therefore,
n—1 n/2
Esup Y 00;Ko(Xi, X)) = Esup Y > 0ny0m() Ko(Xn), Xni()
Q€0 | ii<n Q€0 i1 j=1

n—1 n/2
< Y Esup Y oni)0n) Ko(Xn() Xei():

=1 @890
Our final step is to bound the terms inside the summation oW invoking Massart’s
lemmal[Massart, 200Pfor bounding Rademacher averages over a finitedset R? to
conclude thatEsup,. , ¢, 0;a; < max ||all2\/2log|A|. Now, for eachi and a real-
ization of Xy, ..., X,,, treato,, ;)0 () for j = 1,...,n/2 asn/2 Rademacher variables,
and then/2 dimensional vectof K¢ (X, (), Xwg(j)));fl takes on only.*% possible values

(since there aré™* possible choices faf) € Q,). Then we have,

n/2
ES“S Y oo Ke(Xn: Xnp) < Vin/2sup K.(z,2)y/2log(LM5),
€Qo z,2!
Jj=1 '

from which the lemma follows.

Appendix 3.E  Proof of Proposition  3.10

We treat eaclf)(Z|X) € Q as a function over all possible valués z). Recall thatX
is an S-dimensional vectoX = (X!,..., X®). For each fixed realization’ of X*, for
t = 1,...,5, the set of all discrete conditional probability distributioR$Z*|z") is a

(L — 1) simplexAy. Since eachX" takes on/ possible values, andl hasS dimensions,
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we have:N (¢, Q, L) < N(e, Ap,lo)M® < (1/€)F~UMS Recall that eaclf € F can be
written as:

f(z) = Z%‘ Z@(zlx)@(zi\xi)f(z(z, ). (3.32)

We now definee := ¢ [2L° sup |||y sup, ,» K.(z,2’)]"!. Given each fixed conditional
distribution @) in the ¢y-coveringG ey, Q, L) for Q, we can construct aa/2-covering
in Ly(P,) for Fq. It is straightforward to verify that the union of all coverings 6y
indexed byQ € G(e, Q, L) forms ane-covering forF. Indeed, given any function
f € F that is expressed in the forn3.82 with a corresponding) € O, there exists
some®* € G(ey, Q, L) such that|@) — Q|| < €. Let f; be a function inFg- using
the same coefficients as those off. Given@Q* there exists som¢, € F,- such that

|.f1 = fallo(py) < €/2. The triangle inequality yields thétf — fs 1, (p,) is upper bounded
by

If = fillzoen) + 1fr = ollzary <0 M1 = filloo +€/2

< L%supllal; suI/)KZ(z,z')HQ — Q| +€/2,

which is less thare. In summary, we have constructed acovering inLy(P,) for F
whose number of coverings is no more th¥(k,, Q, L) supg N(¢/2, Fq, L2(F,)). This
implies that
log N(e, F, Lao(Py)) < log{N(em Q, L) sup N(e/2,.7:Q,L2(Pn))}
Q

{ (QLS sup |||y sup, .. K.(z, z’)>(L1)MS
< log ’

€

sup N(E/Q,fQ7L2(Pn))}
Q

2L sup |||y sup. . K. (z, 2
— cuplog N(e/2, For Lo(Pa)) + (L — 1)MS log Pl s1Pez o2 2)
QeQ €

which completes the proof.
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Chapter 4

Surrogate convex losses and

f-divergences

In this chapter we develop a general correspondence between a family of loss functions
that act as surrogates to 0-1 loss, and the class of Ali-Silvey-divergence function-

als. This correspondence provides the basis for choosing and evaluating various surrogate
losses frequently used in statistical learning (e.g., hinge loss, exponential loss, logistic loss);
conversely, it provides a decision-theoretic framework for the choice of divergences in sig-
nal processing and quantization theory. We exploit this correspondence to characterize
the statistical behavior of the nonparametric decentralized detection algorithm described in
Chapter3 that operate by minimizing convex surrogate loss functions. In particular, we
specify the family of loss functions that are equivalent to 0-1 loss in the sense of producing

the same quantization rules and discriminant functions.
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4.1 Introduction

Over the past several decades, the classical topic of discriminant analysis has undergone
significant and sustained development in various scientific and engineering fields. Much
of this development has been driven by the physical, informational and computational con-
straints imposed by specific problem domains. Incorporating such constraints leads to in-
teresting extensions of the basic discriminant analysis paradigm that involve aspects of
experimental design. As one example, research in the area of “decentralized detection”
focuses on problems in which measurements are collected by a collection of devices dis-
tributed over space (e.g., arrays of cameras, acoustic sensors, wireless nodes). Due to
power and bandwidth limitations, these devices cannot simply relay their measurements
to the common site where a hypothesis test is to be performed; rather, the measurements
must be compressed prior to transmission, and the statistical test at the central site is per-
formed on the transformed dak@sitsiklis, 1993 Blum et al, 1997. The problem of
designing such compression rules is of substantial current interest in the field of sensor
networks[Chong and Kumar, 200&hamberland and Veeravalli, 2002 closely related

set of “signal selection” problems, arising for instance in radar array processing, also blend
discriminant analysis with aspects of experimental defigilath, 1967.

The standard formulation of these problems—namely, as hypothesis-testing within ei-
ther a Neyman-Pearson or Bayesian framework—rarely leads to computationally tractable
algorithms. The main source of difficulty is the intractability of minimizing the probability
of error, whether as a functional of the discriminant function or of the compression rule.
Consequently, it is natural to consider loss functions that act as surrogates for the proba-
bility of error, and lead to practical algorithms. For example, the Hellinger distance has
been championed for decentralized detection problémsgoet al, 1994, due to the fact
that it yields a tractable algorithm both for the experimental design aspect of the problem

(i.e., the choice of compression rule) and the discriminant analysis aspect of the problem.
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More broadly, a class of functions known Ab-Silvey distancesr f-divergence$Ali and
Silvey, 1966 Csisz#, 1967—which includes not only the Hellinger distance, but also the
variational distance, Kullback-Leibler (KL) divergence and Chernoff distance—have been
explored as surrogate loss functions for the probability of error in a wide variety of applied
discrimination problems.

Theoretical support for the use pfdivergences in discrimination problems comes from
two main sources. First, a classical resulfBfackwell, 195] asserts that if procedure
A has a smallerf-divergence than procedure B (for some particiiativergence), then
there exists some set of prior probabilities such that procedure A has a smaller probability
of error than procedure B. This fact, though a relatively weak justification, has nonethe-
less proven useful in designing signal selection and quantization [kikE&gth, 1967
Poor and Thomas, 197TZongo et al, 199d0. Second,f-divergences often arise as ex-
ponents in asymptotic (large-deviation) characterizations of the optimal rate of conver-
gence in hypothesis-testing problems; examples include Kullback-Leibler divergence for
the Neyman-Pearson formulation, and the Chernoff distance for the Bayesian formula-
tion [Cover and Thomas, 1981

A parallel and more recent line of research in the field of statistical machine learning
has also focused on computationally-motivated surrogate functions in discriminant anal-
ysis. In statistical machine learning, the formulation of the discrimination problem (also
known asclassification is decision-theoretic, with the Bayes error interpreted as risk under
a 0-1 loss. The algorithmic goal is to design discriminant functions by minimizing the em-
pirical expectation of 0-1 loss, wherein empirical process theory provides the underlying
analytic framework. In this setting, the non-convexity of the 0-1 loss renders intractable a
direct minimization of probability of error, so that various researchers have studied algo-
rithms based on replacing the 0-1 loss with “surrogate loss functions.” These alternative
loss functions are convex, and represent upper bounds or approximations to the 0-1 loss

(see Figuret.2for an illustration). A wide variety of practically successful machine learn-
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ing algorithms are based on such a strategy, including support vector majgharess and
Vapnik, 1995 Schlkopf and Smola, 2042the AdaBoost algorithrfFreund and Schapire,
1997, the X4 methodBreiman, 1998 and logistic regressiofFriedmanet al., 2004.

More recent work bylJiang, 200 [Lugosi and Vayatis, 2004 [Mannoret al., 2009,
[Zhang, 2004 [Bartlett et al., 2004, [Steinwart, 200band others provides theoretical
support for these algorithms, in particular by characterizing statistical consistency and con-
vergence rates of the resulting estimation procedures in terms of the properties of surrogate

loss functions.

4.1.1 Our contributions

As mathematical objects, thg-divergences studied in information theory and the sur-
rogate loss functions studied in statistical machine learning are fundamentally different:
the former are functions on pairs of measures, whereas the latter are functions on values
of discriminant functions and class labels. However, their underlying role in obtaining
computationally-tractable algorithms for discriminant analysis suggests that they should
be related. Indeed, Blackwell’s result hints at such a relationship, but its focus on 0-1
loss does not lend itself to developing a general relationship betfeivergences and
surrogate loss functions. The primary contribution of this chapter is to provide a detailed
analysis of the relationship betwegrdivergences and surrogate loss functions, developing

a full characterization of the connection, and explicating its consequences. We show that
for any surrogate loss, regardless of its convexity, there exists a corresponding ¢gonvex
such that minimizing the expected loss is equivalent to maximizing tiwergence. We

also provide necessary and sufficient conditions forfativergence to be realized from
some (decreasing) convex loss function. More precisely, given a cofjvere provide

a constructive procedure to generate decreasing convex loss functions for which the

correspondence holds.
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GE

Class of f-divergenc

Class of loss functions
Figure 4.1. lllustration of the correspondence betwegwivergences and loss functions.
For each loss functio, there exists exactly one correspondifiglivergence (induced
by some underlying convex functiofi) such that thep-risk is equal to the negativg-
divergence. Conversely, for eaghdivergence, there exists a whole set of surrogate loss
functions¢ for which the correspondence holds. Within the class of convex loss functions
and the class of -divergences, one can construct equivalent loss functions and equivalent
f-divergences, respectively. For the class of classification-calibrated decreasing convex loss
functions, we can characterize the correspondence precisely.

The relationship is illustrated in Figuéel; whereas each surrogate l@ssmduces only one
f-divergence, note that in general there are many surrogate loss functions that correspond to
the samef-divergence. As particular examples of the general correspondence established
in this chapter, we show that the hinge loss corresponds to the variational distance, the
exponential loss corresponds to the Hellinger distance, and the logistic loss corresponds to
the capacitory discrimination distance.

This correspondence—in addition to its intrinsic interest as an extension of Blackwell's
work—nhas several specific consequences. First, there are numerous useful inequalities re-
lating the variousf-divergencegTopsoe, 200]) our theorem allows these inequalities to
be exploited in the analysis of loss functions. Second, the minimizer of the Bayes error
and the maximizer off-divergences are both known to possess certain extremal proper-
ties[Tsitsiklis, 1993& our result provides a natural connection between these properties.
Third, our theorem allows a notion of equivalence to be defined among loss functions: in
particular, we say that loss functions are equivalent if they induce the gadhvergence.

We then exploit the constructive nature of our theorem to exhibit all possible convex loss

functions that are equivalent (in the sense just defined) to the 0-1 loss. Finally, we illustrate
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the application of this correspondence to the problem of decentralized detection. Whereas
the more classical approach to this problem is based-divergencedKailath, 1967
Poor and Thomas, 19%,7our method instead builds on the framework of statistical ma-
chine learning. The correspondence allows us to establish consistency results for a novel
algorithmic framework for decentralized detection: in particular, we prove that for any sur-
rogate loss function equivalent to 0-1 loss, our estimation procedure is consistent in the
strong sense that it will asymptotically choose Bayes-optimal quantization rules.

The remainder of the chapter is organized as follows. In Sedtianve define a ver-
sion of discriminant analysis that is suitably general so as to include problems that involve
a component of experiment design (such as in decentralized detection, and signal selec-
tion). We also provide a formal definition of surrogate loss functions, and present exam-
ples of optimized risks based on these loss functions. In Se¢tdwe state and prove the
correspondence theorem between surrogate loss functions-divdrgences. Sectiofh.4
illustrates the correspondence using well-known examples of loss functions and-their
divergence counterparts. In Sectidrb, we discuss connections between the choice of
quantization designs and Blackwell’'s classic results on comparisons of experiments. We
introduce notions of equivalence among surrogate loss functions, and explore their proper-
ties. In Sectiort.6, we establish the consistency of schemes for choosing Bayes-optimal
classifiers based on surrogate loss functions that are equivalent to 0-1 loss. We conclude

with a discussion in Sectiof.7.

4.2 Background and problem set-up

4.2.1 Binary classification and its extension

We begin by defining a classical discriminant analysis problem, in particuldbitizey

classification problemLet X be a covariate taking values in a compact topological space
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X,andletY € Y := {—1,+1} be a binary random variable. The product spakex Y)

is assumed to be endowed with a Borel regular probability meaur@ discriminant
functionis a measurable functiofi mapping fromX to the real line, whose sign is used
to make a classification decision. The goal is to choose the discriminant furfcioras
to minimize the probability of making the incorrect classification, also known aBdlges

risk. This risk is defined as follows

P(Y # sign(f(X))) = E[I[Y # sign(f(X))], (4.1)

wherel is a 0-1-valued indicator function.

The focus of this chapter is an elaboration of this basic problem in which the decision-
maker, rather than having direct accesstoobserves a random variablewith rangeZ
that is obtained via a (possibly stochastic) mapgihg X — Z. In a statistical context,
the choice of the mappin@ can viewed as choosing a particugperimentin the signal
processing literature, whet® is generally taken to be discrete, the mappipgs often
referred to as guantizer In any case, the mapping can be represented by conditional
probabilitiesQ(z|z).

Let O denote the space of all stochastic and letQ, denote the subset of determin-
istic mappings. When the underlying experiméhis fixed, then we simply have a binary
classification problem on the spage that is, our goal is to find a real-valued measurable
function~y on Z so as to minimize the Bayes rigKY +# sign(~(2))). We usel" to repre-
sent the space of all such possible discriminant functiong ofthis chapter is motivated
by the problem of specifying the classifier= I', as well as the experiment choiGec Q,

S0 as to minimize the Bayes risk.

Throughout the chapter, we assume thas a discrete space for simplicity. We note in

passing that this requirement is not essential to our analysis. Itis only needed in 8egtion

where we require tha® andQ, be compact. This condition is satisfied whéis discrete.
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4.2.2 Surrogate loss functions

As shown in equatior4( 1), the Bayes risk corresponds to the expectation of the 0-1 loss

o(y,7(2)) = [y # sign(y(2))]. (4.2)

Given the nonconvexity of this loss function, it is natural to consider a surrogate loss func-
tion ¢ that we optimize in place of the 0-1 loss. In particular, we focus on loss functions of
the formo(y,v(2)) = ¢(yvy(2)), whereg : R — R is typically a convex upper bound on
the 0-1 loss. In the statistical learning literature, the quaptjty:) is known as thenargin
ando(yvy(z)) is often referred to as a “margin-based loss function.” Given a particular loss
function¢, we denote the associateeisk by R4(v, Q) := Ep(Yv(Z2)).

A number of such loss functions are used commonly in the statistical learning litera-
ture. See Figurd.2for an illustration of some different surrogate functions, as well as the

original 0-1 loss. First, thhinge lossunction

¢hinge(y’7(z)) = maX{l - y/Y(Z)» 0} (43)

underlies the so-called support vector machine (SVM) algoritBoidlkopf and Smola,
2004. Second, théogistic lossfunction

Drog(y7(2)) = log (1 +exp 7)) (4.4)

forms the basis of logistic regressidRriedmanet al, 2004. As a third example, the

Adaboost algorithniFreund and Schapire, 199ises axponential losgunction:

beap(y7(2)) = exp(—y7(2)). (4.5)

Finally, another possibility (though less natural for a classification problem) it
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—— Zero-one
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Surrogate loss
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Margin value

Figure 4.2. lllustrations of the 0-1 loss function, and three surrogate loss functions: hinge
loss, logistic loss, and exponential loss.

squaredunction:
Gsar(y7(2)) = (1 = y7(2))%. (4.6)

[Bartlett et al, 2006 have provided a general definition of surrogate loss functions.
Their definition is crafted so as to permit the derivation of a general bound that links the
risk and the Bayes risk, thereby permitting an elegant general treatment of the consistency
of estimation procedures based on surrogate losses. The definition is essentially a pointwise
form of a Fisher consistency condition that is appropriate for the classification setting; in

particular, it takes the following form:

Definition 4.1. A loss functiony is classification-calibrateid for any a,b > 0 anda # b:

inf [6(a)a+ ¢(—a)b] > érel]% [p(a)a + ¢p(—a)b]. 4.7)

{a€R | a (a—b)<0}

As will be clarified subsequently, this definition ensures that the decisiorn hebdaves
equivalently to the Bayes decision rule in the (binary) classification setting.

For our purposes we will find it useful to consider a somewhat more restricted definition
of surrogate loss functions. In particular, we impose the following three conditions on any

surrogate loss functiop : R — R U {+o0}:
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Al: ¢ is classification-calibrated.
A2: ¢ is continuous and convex.

A3: Leta® =inf {a € RU {400} | ¢(a) =inf ¢}. If " < +o0, then for anye > 0,
oo™ —€) > o(a” +e). (4.8)

The interpretation of Assumption A3 is that one should penalize deviations away\from

in the negative direction at least as strongly as deviations in the positive direction; this re-

quirement is intuitively reasonable given the margin-based interpretation lforeover,

this assumption is satisfied by all of the loss functions commonly considered in the liter-

ature; in particular, any decreasing functiorie.g., hinge loss, logistic loss, exponential

loss) satisfies this condition, as does the least squares loss (which is not decreasing).
[Bartlett et al, 2004 also derived a simple lemma that characterizes classification-

calibration for convex functions:

Lemma 4.2. Let ¢ be a convex function. Thehis classification-calibrated if and only if
it is differentiable at) and¢’(0) < 0.

Consequently, Assumption Al is equivalent to requiring thake differentiable at 0 and
¢'(0) < 0. These facts also imply that the quantity defined in Assumption A3 is strictly
positive. Finally, althoughy is not defined for—oo, we shall use the convention that

¢(—00) = +o0.

4.2.3 Examples of optimum  ¢-risks

For each fixed experimed, we define theptimal ¢-risk (a function of()) as follows:

Ry(Q) := inf Ry(7.Q). (4.9)

yerl
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Letp = P(Y = 1) andg = P(Y = —1), wherep, ¢ > 0 andp + ¢ = 1, define a prior on
the hypothesis space. Any fixed experiméninduces positive measurgsandr over Z

as follows:

pz) = PY=1,Z==z2)= p/Q(z[:z:)d[P’(x]Y =1) (4.10a)

w(z) = P(Y=-1,Z=2)= q/Q(z|x)dIP(x|Y =—1). (4.10Db)

The integrals are defined with respect to a dominating measure,PégdY = 1) +
P(z|Y = —1). It can be shown using Lyapunov’s theorem that the spacg afr)}
by varying@ € Q (or Q) is both convex and compact under an appropriately defined
topology(see| Tsitsiklis, 19934).

For simplicity, in this chapter, we assume that the sp&esd Q, are restricted such
that bothy, andr are strictly positive measures. Note that the measurasd are con-

strained by the following simple relations:

d u(z) = P(Y =1),) w(z) = P(Y = —1),andu(z)+n(z) = P(z) for eachz € Z .

zEZ z2€EZ

Note thaty” andZ are independent conditioned ah Therefore, letting)(z) = P(Y =

1]x), we can write

Ry(7,Q) = Ex[ D o(v(2)n(X)Q(=1X) + ¢(—1(2))(1 = n(X)Q(=|X)]. ~ (4.11)

110



Chapter 4. Surrogate convex losses and f-divergences

On the basis of this equation, therisk can be written in the following way:

Ry(7,Q) = Eo(Y(Z)) (4.12)
= > ¢(v(2)Ex [n(X)Q(2X)] + ¢(—(2)Ex [(1 — n(X))Q(2|X)]

= > o(y()u(z) + ¢(=y(2)m(2)- (4.13)

This representation allows us to compute the optimal value foy for all z € Z, as well

as the optimab-risk for a fixed@. We illustrate this procedure with some examples:

0-1 loss. In this case, it is straightforward to see from equatidri® that~y(z) =

sign(u(z) — 7(2)). As aresult, the optimal Bayes risk given a fix@dakes the form:

Riaes(@) = S minfu(2),7()} = 5 — 5 3 I(z) — n(2)
= 50 =Vm),

whereV (11, m) denotes the variational distan®&&p, 7) := . - |u(z) — 7(2)| between

the two measuresg and.

Hinge loss.If ¢ is hinge loss, then equatiod.(2) again yields that(z) = sign(u(z)—

7(z)). As a result, the optimal risk for hinge loss takes the form:

Rhinge(@) = 3 2min{pu(2), 7(:)} = 1= Y [(2) - m(2)

z2€EZ z€EZ

= 1—- V(/L,TI') = 2RbayeS(Q)'

Least squares losslf ¢ is least squares loss, thefx) = zgzg;gg so that the optimal
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risk for least squares loss takes the form:

B dp)r(z) o = (z) = 7(2)?
qur(Q) - ;M(z)+ﬁ(2) =1 Z

= 1—A(u,m),

whereA (i, ) denotes thériangular discriminationdistance defined by (i, 7) :=

(u(2)—7(2))*
ZZGZ w(z)+m(z) *

Logistic loss.If ¢ is logistic loss, then(z) = log ﬁg As a result, the optimal risk for

logistic loss takes the form:

_ 0 2) +(z) 7(z)lo pe) ()
Rlog(@) - ZGZZ'U 1 g ,LL(Z) + ( )1 g 7T(Z)

= 10g2—KL(M||u+7T) KL(m ||HJ+7T)

= log2— C(u,m),

where K L(U, V') denotes the Kullback-Leibler divergence between two measurasd

V,andC (U, V') denotes theapacitory discriminatiordistance defined by

U+V U—I—V
)+ KL(V]

C(U,V) = KLU ).

Exponential loss.If ¢ is exponential loss, then(z) = 3 log % The optimal risk for
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exponential loss takes the form:

Rep(Q) = Y 2V/u@)m(z) =1 =Y (Vulz) = V7(2))?

z2€Z z€Z

= 1- 2h2(”77r)7

whereh(u, ) = 33, - (1/u(z) — /7 (2))? denotes the Hellinger distance between mea-
suresu andr.

It is worth noting that in all of these cases, the optimurmisk takes the form of a
well-known “distance” or “divergence” function. This observation motivates a more gen-
eral investigation of the relationship between surrogate loss functions and the form of the

optimum risk.

4.3 Correspondence between surrogate loss func-

tions and divergences

The correspondence exemplified in the previous section turns out to be quite general. So as
to make this connection precise, we begin by defining the clagsdofergence functions

which includes all of the examples discussed above as well as numerous|Gibiswsi,

1967 Ali and Silvey, 1966:

Definition 4.3. Given any continuous convex functign: [0, +00) — R U {+o0}, the

f-divergence between measureandr is given by

Ie(p,m) = Z m(2)f ('Z_Z;) (4.14)

z

As particular cases, the variational distance is giveffifay = |u—1|, Kullback-Leibler

divergence byf(u) = wlnu, triangular discrimination by (u) = (v — 1)?/(u + 1), and
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Hellinger distance by (u) = 3(y/u — 1)%. Other well-knownf-divergences include the

(negative) Bhattacharyya distancg¢) = —2/u), and the (negative) harmonic distance
(f(u) = — ).

As discussed in the introduction, these functions are widely used in the engineering
literature to solve problems in decentralized detection and signal selection. Specifically,
for a pre-specified joint distributioR(.X, Y') and a given quantizep, one defines arf-
divergence on the class-conditional distributids/|Y = 1) andP(Z]Y = —1). This
f-divergence is then viewed as a function of the underlyim@nd the optimum quantizer
is chosen by maximizing thé-divergence. Typically, the discriminant functior—which
acts on the quantized spage— has an explicit form in terms of the distributioR§Z|Y =
1)andP(Z]Y = —1). As we have discussed, the choice of the clasg-divergences as
functions to optimize is motivated both by Blackwell’s classical thedr@lackwell, 1951
on the design of experiments, as well as by the computational intractability of minimizing
the probability of error, a problem rendered particularly severe in practice whisrhigh

dimensiona[Kailath, 1967 Poor and Thomas, 197Zongoet al, 1994.

4.3.1 From ¢-riskto f-divergence

In the following two sections, we develop a general relationship between opthmsis
and f-divergences. The easier direction, on which we focus in the current section, is mov-
ing from ¢-risk to f-divergence. In particular, we begin with a simple result that shows that

any ¢-risk induces a correspondingdivergence.

Proposition 4.4. For each fixed), let v, be the optimal decision rule for the fusion cen-
ter. Then thep-risk for (Q),~¢) is a f-divergencebetweery and «, as defined in equa-

tion (4.10), for some convex functioft

Ry(Q) = —1Ly(p, ). (4.15)
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Moreover, this relation holds whether or netis convex.

Proof. The optimalg-risk has the form

Ry(@) = ) min(d(@)u(z) +d(-a)m(z)) = ) () mg“(¢<—a>+¢<a>”(z)).

= ; m(2)

For eachz, defineu := ;‘8 With this notation, the functiomin,(¢(—a) + ¢(a)u)
is concave as a function af (since the minimum of a collection of linear functions is

concave). Thus, if we define

f(u) := = min(¢(—a) + ¢(a)u). (4.16)

then the claim follows. Note that the argument does not require convexity of O

Remark: We can also writd ;(u, ) in terms of anf-divergence between the two condi-
tional distributionsP(Z|Y = 1) ~ P,(Z) andP(Z|Y = —1) ~ P_(Z). Recalling the

notationg = P(Y = —1), we have:

Iy(um) =g P (U2 — 1y ), (4.17)

where f,(u) := ¢f((1 — q)u/q). Although it is equivalent to study either form of diver-
gences, we focus primarily on the representati) because the prior probabilities are
absorbed in the formula. It will be convenient, however, to use the alterndti/@ (vhen

the connection to the general theory of comparison of experiments is discussed.

4.3.2 From f-divergence to ¢-risk

In this section, we develop the converse of Propos#ignGiven a divergencé (., 7) for

some convex functiorfi, does there exists a loss functiofior which R (Q) = —1(p, m)?
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We establish that such a correspondence indeed holds for a general class of margin-based
convex loss functions; in such cases, it is possible to consgruotinduce a giveny-

divergence.

4.3.2.1 Some intermediate functions

Our approach to establishing the desired correspondence proceeds via some intermediate

functions, which we define in this section. First, let us define, for eactine inverse
mapping
¢~ (B) = inf{a: p(a) < B}, (4.18)

whereinf () := +o00. The following result summarizes some useful properties of

Lemma4.5. (a) Forall 8 € R suchthaty~'(3) < +o0, the inequalityp(¢~1(3)) < 3

holds. Furthermore, equality occurs whens continuous at—(3).

(b) The functionp~! : R — R is strictly decreasing and convex.

Proof. See Appendix.A. O]

Using the functiony~*, we then define a new functioh : R — R by

b o |OCOTO) o) ER 19

400 otherwise.

Note that the domain o¥ is Dom(¥) = {3 € R: ¢ '(3) € R}. Now define

fr = inf{f: ¥(F) < +oo} and Py = inf{f: ¥(F) =inf U}. (4.20)

It is simple to check thaif ¢ = inf ¥ = ¢(a*), andf; = ¢(a*), G2 = ¢(—a*). Further-
more, by construction, we havie(3;) = ¢(a*) = (i, as well asl (5;) = ¢(—a*) = [s.

The following properties o are particularly useful for our main results.
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Lemma4.6. (a) V is strictly decreasing ir{/3;, 32). If ¢ is decreasing, the is also

decreasing in—oo, +00). In addition,¥(3) = +oo for 3 < ;.
(b) Wisconvexin—oo, Bs]. If ¢ is a decreasing function, thehis convexin—oo, +00).
(c) W is lower semi-continuous, and continuous in its domain.

(d) Foranya > 0, ¢(a) = ¥(¢(—a)). In particular, there exists* € (1, 3,) such that
U(u*) = u*.

(e) The functionV satisfiesV(¥(3)) < g for all 3 € Dom(¥). Moreover, ifg is a

continuous function on its domafmax € R | ¢(a) < +oo}, then¥ (W (53)) =  for all

ﬂ € (ﬁlaﬁ?)-
Proof. See Appendixd.B. O

Remark: With reference to statement (b),dfis not a decreasing function, then the func-
tion ¥ need not be convex on the entire real line. See AppefhdixXor an example.
The following result provides the necessary connection between the fudctod the

f-divergence associated with as defined in equatiod (16):

Proposition 4.7. (a) Given aloss function, the associated-divergenceg4.16) satisfies
the relation
flu) =¥ (—u), (4.21)

whereV* denotes the conjugate dual f If the surrogate los® is decreasing, then

() = f1(=0).

(b) For a givenV, there exists a point* € (0;,32) such that¥(u*) = u*. All loss

117



Chapter 4. Surrogate convex losses and f-divergences

functionse that induceV via (4.19 take the form:

;

u* ifa=0

Pla) = SU(gla+u*)) fa>0 (4.22)

g(—a+u*) ifa<0,

\

whereg : [u*, +00) — R is some increasing continuous convex function such that

g(u*) = v*, andy is right-differentiable at* with ¢'(v*) > 0.

Proof. (a) From equation4.16), we have

f) = =t (of-a) + o)) ) = - inf (a):ﬁ}(cb(—a)mu).

{os|o1(B)cr, o

For 3 such thaty~!(3) € R, there might be more than onesuch that(a) = 3. However,

our assumption4.8) ensures that = ¢~'(3) results in minimump(—«). Hence,

s = =it (o607 ()+ u) =~ it (Gu-+ 9(5)
= sup(—fu—¥(F)) = ¥(-u).

If ¢ is decreasing, thew is convex. By convex duality and the lower semicontinuitylof

(from Lemma4.6), we can also write:

U(3) =¥ () = f(=H). (4.23)

(b) From Lemma4.6, we have¥ (¢(0)) = ¢(0) € (51, 52). As a consequence; := ¢(0)

satisfies the relatiod (u*) = u*. Since¢ is decreasing and convex on the interfrabo, 0],
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for anya > 0, ¢(—«) can be written as the form:

¢(—a) = gla+u’),

whereg is some increasing convex function. From Lendrg we haves(a) = V(p(—a)) =
U(g(a + u*) for a > 0. To ensure the continuity at 0, there holds= ¢(0) = g(u*).
To ensure that is classification-calibrated, we require thais differentiable at 0 and
¢'(0) < 0. These conditions in turn imply thgtmust be right-differentiable at* with
g (u*) > 0. O

4.3.2.2 A converse theorem

One important aspect of Propositidri/(a) is that it suggests a route—namely via convex
duality [Rockafellar, 197B—to recover the functiow’ from f, assuming that is lower

semi-continuous. We exploit this intuition in the following:

Theorem 4.8. Given a lower semicontinuous convex functjpn R — R, consider the

function:

V(p) = f(=5). (4.24)

Define; := inf{f : ¥(3) < +oo} andf, := inf{g : ¥(5) < inf ¥}, and suppose that
VU is decreasing, and satisfidg WV (3)) = g forall 5 € (51, 52).

(a) Thenany continuous loss functiop of the form(4.22 must inducef-divergence

with respect tof in the sense of4.15 and (4.16).

(b) Moreover, if¥ is differentiable at the point* € (5, 82) such that¥(u*) = u*, then

any suchy is classification-calibrated.

Proof. (a) Sincef is lower semicontinuous by assumption, convex duality allows us to
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write

flu) = f7(u) = ¥ (—u) = sup(—fu — ¥(f)) = — inf (fu + T(5)).

BER

Proposition4.7(b) guarantees that all convex loss functiorior which equations4.15
and @.16 hold must have the forn#(22). Note that¥ is lower semicontinuous and convex
by definition. It remains to show that any convex loss functioof form (4.22 must be

linked to W via the relation

N L O O w29

+00 otherwise.

SinceV is assumed to be a decreasing function, the functidefined in equatior4(22
is also a decreasing function. By assumption, we also lHgve(3)) = § for any 5 €
(61, B2). Therefore, it is straightforward to verify that there exigtse (/;, 5>) such that

U(u*) = w*. Using the value/*, we divide our analysis into three cases:

e For > u*, there existsy > 0 such thay(a + u*) = 5. Choose the largest that
is so. From our definition of, ¢(—a) = 3. Thus¢=1(8) = —a. It follows that

d(=¢71(8)) = d(a) = ¥(g(a + u*)) = ¥(B).
e For( < By = inf,er ¥(u), we havel (3) = +oo.

e Lastly, for; < 8 < u* < (3, then there exista > 0 such thay(a + u*) € (u*, 52)
andf = Y (g(a + u*)), which implies that? = ¢(«) from our definition. Choose
that smallesty that satisfies these conditions. Then'(3) = «, and it follows that
o(~¢71(8)) = ¢(~a) = gla +u*) = U(V(g(a + u*))) = U(3), where we have
used the fact thaf(a + u*) € (51, 52)).

The proof is complete.
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(b) From Lemmat.6(e), we havel (¥ (53)) = [ for 5 € (01, 52). This fact, in conjunc-
tion with the assumption that is differentiable at.*, implies thatV’(u*) = —1. Therefore,
by choosing; to be differentiable at* with ¢'(v*) > 0, as dictated by Propositich7(b),
ensures that is also differentiable at 0 and(0) < 0. Thus, by Lemmat.2, the function

¢ is classification-calibrated. O

Remark: One interesting consequence of Theor@that any f-divergence can be
obtained from a fairly large set of surrogate loss functions. More precisely, from the pro-
cedure 4.22), we see that any valid is specified by a functiog that need satisfy only a
mild set of conditions. It is important to note that not allosses of the form4.22 are
convex, but they still satisfy4(16). We illustrate this flexibility with several examples in

Sectior4.4.

4.3.2.3 Some additional properties

Theorem4.8 provides one set of conditions for gidivergence to be realized by some
surrogate loss, as well as a constructive procedure for finding all such loss functions. The
following result provides a related set of conditions that can be easier to verify. We say that
an f-divergence isymmetridf I;(u, ) = I;(m, ) for any measureg andz. With this

definition, we have the following:

Corollary 4.9. The following are equivalent:
(a) f isrealizable by some surrogate loss functipfvia Proposition4.4).
(b) f-divergence; is symmetric.
(c) Foranyu > 0, f(u) = uf(1/u).

Proof. (a) = (b): From Propositio.4, we have the representatidty, () = —I;(u, 7).
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Alternatively, we can write:

RAQ) = T4 minofa) + o(-0) 73 ) = = L w2 (25 )

z

which is equal to-1;(7, 1), thereby showing that thé-divergence is symmetric.

(b) = (c): By assumption, the following relation holds for any measurasdr:

Yo m ) /7(2) = D n(2) f(r(z2)/p(2)). (4.26)
Take any instance of = [ € Z, and consider measur@sand~’, which are defined on
the spaceZ — {l} such thati/(z) = u(z) andn’(z) = =(z) for all z € Z — {l}. Since

Equation 4.26) also holds for’ and~’, it follows that

m(2) f((2)/7(2)) = p(2) f(7(2)/ ()

for all z € Z and anyu andw. Hence,f(u) = uf(1/u) for anyu > 0.

(c) = (a): It suffices to show that all sufficient conditions specified by Thegt&rare
satisfied.

Since anyf-divergence is defined by applying to a likelihood ratio (see defini-
tion (4.14), we can assumg(u) = +oo for u < 0 without loss of generality. Since
f(u) = uf(1/u) for anyu > 0, it can be verified using subdifferential calculi&ockafel-
lar, 197Q that for anyu > 0, there holds:

Of (u) = F(1/u) + Of (1/u)—. (4.27)
Given some: > 0, consider any; € df(u). Combined with 4.27), we have
f(u) —viu € 0f(1/u). (4.28)
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By definition of conjugate duality,

o) = v —f(u).

Define¥(3) = f*(—/3). Then,

V(U (~vy)) = Y(f*(v1)) = ¥(viu — f(u))
= [ (f(u) —vu) = %léﬁ(ﬁf(w — Boru — f(B3)).

Note that the supremum is achievediat 1/u because 0f4.28). ThereforeW (¥ (—v;)) =
—uv; foranyv; € df(u) foru > 0. Inother words\W (¥ (3)) = gforanys € {—0f(u),u >
0}. By convex dualityg € —0f(u) for someu > 0 if and only if —u € 0V(3) for some
u > 0 [Rockafellar, 197 This condition on3 is equivalent ta)¥(3) containing some
negative value. This is satisfied by ahye (5, 52). Hence W (U (53)) = g for 5 € (51, B2).
In addition, f(u) = +oo for u < 0, ¥ is a decreasing function. Now, as an application of
Theoremd.§, I; is realizable by some (decreasing) surrogate loss function.

[

Remarks. It is worth noting that not allf-divergences are symmetric; well-known
cases of asymmetric divergences include the Kullback-Leibler divergetiégg, =) and
K L(m, 1), which correspond to the functiorf§u) = — logu and f(u) = ulogu, respec-
tively. Corollary4.9 establishes that such asymmetfidivergences cannot be generated
by any(margin-based) surrogate loss functi@nTherefore, margin-based surrogate losses
can be considered as symmetric loss functions. It is important to note that our analysis
can be extended to show that asymmefrdivergences can be realized by general (asym-
metric) loss functions. Finally, from the proof of Corollafy9, it can be deduced that if
an f-divergence is realized by some surrogate loss function, it is also realized by some

decreasing surrogate loss function.
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Most surrogate loss functions considered in statistical learning are bounded from
below (e.g.,¢p(a) > 0 for all @« € R). The following result establishes a link between

(un)boundedness and the properties of the assocjated

Corollary 4.10. Assume that is a decreasing (continuous convex) loss function corre-
sponding to ary-divergence, wher¢ is a continuous convex function that is bounded from
below by an affine function. Thens unboundedrom below if and only iff is 1-coercive,

e, f(2)/||z]| — +o0 as||z[| — oc.

Proof. ¢ is unbounded from below if and only W (3) = ¢(—¢~'(3)) € Rforall 3 € R,
which is equivalent to the dual functiof(3) = ¥*(—03) being 1-coercive(cf[Hiriart-
Urruty and Lemagchal, 200]). O

Therefore, for any decreasing and lower-boundeldss (which includes the hinge,
logistic and exponential losses), the associgtelivergence isot 1-coercive. Other inter-
estingf-divergences such as tagmmetrick L divergence considered {iBradt and Karlin,
1954 are 1-coercive, meaning that any associated surrogate lcasnot be bounded be-
low. We illustrate such properties gtdivergences and their corresponding loss functions

in the following section.

4.4 Examples of loss functions and  f-divergences

In this section, we consider a number of specific examples in order to illustrate the cor-
respondence developed in the previous section. As a preliminary remark, it is simple to
check that iff; and f, are related byf; (u) = c¢fa2(u) + au + b for some constants > 0

anda, b, thenly, (pu, m) = I, (p, m) +aP(Y = 1) +bP(Y = —1). This relationship implies

that the f-divergenced;, andy,, when viewed as functions @p, are equivalent (up to

an additive constant). For this reason, in the following development, we consider diver-

gences so related to be equivalent. We return to a more in-depth exploration of this notion
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of equivalence in Sectioh.5.

Example 1 (Hellinger distance).The Hellinger distance is equivalent to the negative
of the Bhattacharyya distance, which is #rdivergence withf(u) = —2/u for u >
0. Let us augment the definition ¢f with f(u) = +oo for v < 0; doing so does not
alter the Hellinger (or Bhattacharyya) distances. Following the constructive procedure of

Theorend.8, we begin by recovering from f:

1 h 0
¥(8) = (-8 = sup(—pu— ) = 7

uek +o0o  otherwise.

Thus, we see that* = 1. If we let g(u) = u, then a possible surrogate loss function that

realizes the Hellinger distance takes the form:

(
1 ifa=0
dla) = (-5 ifa>0

—a+1 fa<O.

\

On the other hand, if we set(u) = exp(u — 1), then we obtain the exponential loss
¢(a) = exp(—a), agreeing with what was shown in Sectidr2.3 See Figuret.4 for
illustrations of these loss functions using difference choices of

Example 2 (Variational distance).In Section4.2.3 we established that the hinge loss as
well as the 0-1 loss both generate the variational distance. fFdigergence is based on

the functionf(u) = —2min(u, 1) for u > 0. As before, we can augment the definition by
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settingf(u) = +oo for u < 0, and then proceed to recovérfrom f:

(

0 if > 2
U(B) = f(=B)=sup(=Pu—f(u) =926 f0o<p<2

+00 if 5 <0.

\

By inspection, we see that" = 1. If we setg(u) = u, then we recover the hinge loss

#(a) = (1 — a);. On the other hand, choosiggu) = ¢*~! leads to the following loss:

ba) — (2—e%)y fora<o0 (4.29)

e @ fora > 0.

Note that this choice of does not lead to a convex logs although this non-convex
loss still inducesf in the sense of Propositioh4. To ensure thap is convex,g is any
increasing convex function if, +o00) such thay(u) = u for u € [1,2]. See Figuret.4for

illustrations.

@loss
@ loss
OJ

1 -1 0 1 2 -1 0 1 2
margin value margin value margin value (o)

Figure 4.3. Panels (a) and (b) show examplesidbsses that induce the Hellinger distance
and variational distance, respectively, based on different choices of the fugctidanel

(c) shows a loss function that induces the symmetric KL divergence; for the purposes of
comparison, the 0-1 loss is also plotted.
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Example 3 (Capacitory discrimination distance). The capacitory discrimination dis-
tance is equivalent to af+divergence withf(u) = —ulog “7“ — log(u + 1), for u > 0.

Augmenting this function withf (x) = +oc for u < 0, we have

—log(e? —1) f 0
W(o) = swp—pu— fuy = HC D oo

uek +o0 otherwise.

This representation shows thet= log 2. If we choosey(u) = log(1+ %), then we obtain

the logistic lossh () = log(1 + e™®).

Example 4 (Triangular discrimination distance). Triangular discriminatory distance is
equivalent to the negative of the harmonic distance; it is-givergence withf (u) = —f—jl

for u > 0. Let us augmenf with f(u) = +oo for u < 0. Then we can write

2-vB)? forg>0

400 otherwise.

V() = sup(—fu — f(u)) =

u€eR

Clearlyu* = 1. In this case, setting(u) = u? gives the least square log&) = (1 — ).

Example 5 (Another Kullback-Leibler based divergence) Recall that both the KL diver-
gences (i.e.KX L(p||7) and K L(x||r)) are asymmetric; therefore, Corollagyd(b) implies
that they arenot realizable by any margin-based surrogate loss. However, a closely related

functional is thesymmetric Kullback-LeibledivergencdBradt and Karlin, 1958

K Ly(u,m) = K L(ull) + KL(x]|p). (4.30)

It can be verified that this symmetrized KL divergence isfadivergence, generated by
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the functionf(u) = —logu + wlogu for u > 0, and+oco otherwise. Therefore, Corol-
lary 4.9(a) implies that it can be generated by some surrogate loss function, but the form of
this loss function is not at all obvious. Therefore, in order to recover an explicit form for

someg, we follow the constructive procedure of Theordr8, first defining

U(p) = sup{ —6u+logu—ulogu}.

u>0

In order to compute the value of this supremum, we take the derivative with respect to
and set it to zero; doing so yields the zero-gradient conditiont- 1/u — logu — 1 = 0.
To capture this condition, we define a function [0, +oo) — [—o0, +00] via r(u) =
1/u —logu. Itis easy to see tha{w) is a strictly decreasing function whose range covers
the whole real line; moreover, the zero-gradient condition is equivalertto= 5 + 1.

We can thus writel (3) = u + logu — 1 whereu = r~'(3 + 1), or equivalently

V(B) = r(lju)—1 = r(m> 1

It is straightforward to verify that the functio® thus specified is strictly decreasing and
convex with¥(0) = 0, and that¥(¥(3)) = (3 for any 5 € R. Therefore, Propositiod.7

and Theoremt.8 allow us to specify the form of any convex surrogate loss function that
generate the symmetric KL divergence; in particular, any such functions must be of the
form (4.22:

o(a) = g(—a) fora <0
U(g(a)) otherwise,

whereg : [0, +00) — [0, +00) is some increasing convex function satisfyif{§) = 0. As

a particular example (and one that leads to a closed form expressioh fet us choose
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g(u) = e* + u — 1. Doing so leads to the surrogate loss function
ola)=e“—a—1.

It can be verified by some calculations that the optimizeikk is indeed the symmetrized

KL divergence. See Figuré4(c) for an illustration of this loss function.

4.5 On comparison of surrogate loss functions and
guantizer designs

The previous section was devoted to study of the correspondence befvaddesrgences

and the optimalp-risk R,(Q) for a fixed experiment). Our ultimate goal, however, is
that of choosing an optima), which can be viewed as a problem of experimental de-
sign[Blackwell, 1953. Accordingly, the remainder of this chapter is devoted to the joint
optimization of¢-risk (or more precisely, its empirical version) over both the discriminant
function~ as well as the choice of experimeapt(hereafter referred to as a quantizer). In
particular, we address the fundamental question associated with such an estimation pro-
cedure: for what loss functions does such joint optimization lead to minimum Bayes
risk? Note that this question is not covered by standard consistency rekaitg, 2004
Lugosi and Vayatis, 2004&hang, 2004 Steinwart, 2005Bartlettet al., 2006 Mannoret

al., 2009 on classifiers obtained from surrogate loss functions, because the optimization

procedure involves both the discriminant functipand the choice of quantiz€).

4.5.1 Inequalities relating surrogate losses and f-divergences

The correspondence between surrogate loss functiong-divétrgence allows one to com-

pare surrogate-risks by comparing the correspondirigdivergences, and vice versa. For
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instance, since the optimatrisk for hinge loss is equivalent to the optimakisk for 0-1

loss, we can say affirmatively that minimizing risk for hinge loss is equivalent to mini-
mizing the Bayes risk. Moreover, it is well-known that tliedivergences are connected
via various inequalities, some of which are summarized in the following lemma, proved in

Appendix4.C.

Lemma 4.11. The following inequalities amonfydivergences hold:
(@ V2<ALV.
(b) 2h? < A < 4h?. AsaresultiV? <2h* < V.
(c) 3A <C <log2-A.Asaresult;V? < C < (log2) V.

Using this lemma and our correspondence theorem, it is straightforward to derive the

following connection between different risks.

Lemma 4.12. The following inequalities among optimizeerisks hold:
(@) Rhinge(Q) = 2Rpayes(Q)-
(0) 2Rpayes(Q) < Rogr(Q) < 1 — (1 = 2Rpyes(Q)).
(©) 2 10g 2Rpuyes (Q) < Riog(Q) < log2 — 5(1 — 2Rpayes(Q))*.

(d) 2Rbayes(Q) S Remp(Q) S 1-— %(1 - 2Rbayes(Q))2'

Note that Lemmat.12shows that all the-risks considered (i.e., hinge, square, logis-
tic, and exponential) are bounded below by the variational distance (up to some constant
multiplicative term). However, with the exception of hinge loss, these resultedell us
whether minimizingg-risk leads to a classifier-quantizer pair, Q) with minimal Bayes
risk. We explore this issue in more detail in the sequel: more precisely, we specify all
surrogate losseg such that minimizing the associateerisk leads to the same optimal

decision rulg(@, v) as minimizing the Bayes risk.
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4.5.2 Connection between 0-1 loss and  f-divergences

The connection betweefrdivergences and 0-1 loss can be traced back to seminal work on
comparison of experiments, pioneered by Blackwell and otfigiesckwell, 1951 Black-
well, 1953 Bradt and Karlin, 195p

Definition 4.13. The quantizer); dominates), if Rpuyes(Q1) < Rpayes(Q2) for any
choice of prior probabilities; = P(Y = —1) € (0,1).

Recall that a choice of quantizer desigrinduces two conditional distribution3(Z|Y =
1) ~ PandP(Z|Y = —1) ~ P_,. Hence, we shall us®? and P¥ to denote the fact
that bothP_, and P, are determined by the specific choice(pf By “parameterizing” the
decision-theoretic criterion in terms of loss functiwand establishing a precise correspon-
dence between and thef-divergence, we can derive the following theorem that relates

0-1 loss andf-divergences:

Theorem 4.14.[Blackwell, 1951 Blackwell, 1953 For any two quantizer desigrg, and

@2, the following statement are equivalent:

(@) @1 dominates), (i.e., Rpayes(@1) < Rpayes(Q2) for any prior probabilitiesq €
(0,1)).

(b) I;(P2', P%) > I,(PR, P%), for all functions of the formf(u) = — min(u, c)
for somec > 0.

(c) I;(P?, P9) > I;(PP, P9, for all convex functiong.

We include a short proof of this result in AppendhD, using the tools developed in
this chapter. In conjunction with our correspondence betwedivergences ang-risks,

this theorem implies the following

Corollary 4.15. The quantizer), dominates), if and only if R4(Q;) < R;(Q-) for any

loss functiony.
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Proof. By Propositiord.4, we haveRy(Q) = —I¢(p, ) = =1, (P1, P_1), from which the

corollary follows using Theorem.14 O]

Corollary4.15implies that if

Rg(Q1) < Ry(Q2)

for some loss function, then

Rbayes (Ql ) S Rbayes (QQ)

for some set of prior probabilities on the hypothesis space. This implication justifies the
use of a given surrogate loss functigmn place of the 0-1 loss fasomeprior probability;
however, for a given prior probability, it gives no guidance on how to chgoséoreover,

in many applications (e.g., decentralized detections), it is usually the case that the prior
probabilities on the hypotheses are fixed, and the goal is to determine optimum quantizer
design( for this fixed set of priors. In such a setting, the Blackwell’s notiord)gfdom-

inating (), has limited usefulness. With this motivation in mind, the following section is
devoted to development of a more stringent method for assessing equivalence between loss

functions.

4.5.3 Universal equivalence

In the following definition, the loss functiong and¢, realize thef-divergences associated

with the convex functiory,; and f,, respectively.

Definition 4.16. The surrogate loss functiorgg and¢, are universally equivalendenoted

by ¢, ~ ¢9, if for any P(X, Y') and quantization ruleg);, -, there holds:

R¢1 (Ql) < R¢>1 (QQ) A R¢2 (Ql) < R¢2(Q2>‘
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In terms of the correspondinfrdivergences, this relation is denoted ﬁy& fa.

Observe that this definition is very stringent, in that it requires that the ordering between
optimizedy,; andg, risks holds for all probability distributionB on X’ x ). However, this
notion of equivalence is needed for nonparametric approaches to classification, in which
the underlying distributiof® is not available in parametric form.

The following result provides necessary and sufficient conditions forfadivergences

to be universally equivalent:

Theorem 4.17.Let f; and f, be convex functions off), +oo) — R and differentiable
almost everywhere. Thefi ~ f, if and only if fi(u) = cfa(u) + au + b for some

constants: > 0 anda, b.

Proof. One direction of the theorem ("if") is easy. We focus on the other direction. The

proof relies on the following technical result (see Appentli for a proof):

Lemma 4.18. Given a continuous convex functign R* — R, define, for any:, v € R,

define:

Tr(u,v) =

wa =i = fW+ ) _ F@=FO) |, g .
{rozri=f 2] L= L0 o cor).o € oft0).a £ 5}

If f1 ~ f2, then for anyu, v > 0, one of the following must be true:

1. T¢(u,v) are non-empty for bottf; and f,, and 7y, (u,v) = T, (u,v).

2. Both f; and f; are linear in (u, v).

Note that if functionf is differentiable at. andv and f'(u) # f'(v), thenT(u,v) is

reduced to a number:

uf'(u) —vf'(v) = flu) + flv) _ f () = [*(5)

f'(w) = f'(v) a—pf
133




Chapter 4. Surrogate convex losses and f-divergences

wherea = f'(u), § = f'(v), andf* denotes the conjugate dual pf
Let v is a point where botly; and f, are differentiable. Letl; = f|(v), do = fi(v).
Without loss of generality, assunfe(v) = fo(v) = 0 (if not, we can consider functions
filu) = fi(v) and fo(u) = fa(v)).

Now, for anyu where bothf; and f, are differentiable, applying Lemm&a18for v
andu, then eitherf; and f, are both linear ifv, u] (or [u,v] if v < v), in which case

f1(u) = e¢fz(u) for some constant, or the following is true:

ufi(u) — fi(u) —vdy _ ufy(u) — fa(u) — vdy
filu) —dy fo(u) — dy .

In either case, we have

(wfi(u) = fi(u) = vdi)(f3(u) = d2) = (wfy(u) = fo(u) — vda)(fi(u) — di).

Let fi(u) = gi(u) + diu, fo(u) = g2(u) + dau. Then,(ug)(u) — gi(u) — vdi)gs(u) =
(ugs(u) — g2(u) — vdz)gy(u), implying that(g (v) + vdy)g5(u) = (g2(u) + vdz)g; (u) for
anyu wheref; and f, are both differentiable. It follows that (u) + vd; = ¢(g2(u) + vds)
for some constant and this constant has to be the same for amydue to the continuity
of f; and f,. Hence, we havd)(u) = ¢1(u) + diu = cga(u) + dyu + cvdy — vdy =
cfa(u) 4+ (dy — edy)u + cvdy — vd;. It is now simple to check that > 0 is necessary and

sufficient for/;, andy, to have the same monotonicity. O

An important special case is when one of ffidivergences is the variational distance.

In this case, we have the following

Proposition 4.19. (a) All f-divergences based on continuous congex0, +oc0) — oo

that are universally equivalent to the variational distance have the form

f(u) = —cmin(u, 1) + au+b for somec > 0. (4.31)
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(b) The 0-1 loss is universally equivalent only to those loss functions whose correspond-

ing f-divergence is based on a function of the fdgr81).

Proof. Note that statement (b) follows immediately from statement (a). The proof in Theo-
rem4.17does not exactly apply here, because it requires fo#imd f> to be differentiable

almost everywhere. We provide a modified argument in Appe#dix O

Theorem4.17 shows that each class of equivalefitlivergences are restricted by a
strong linear relationship. It is important to note, however, that this restrictivenessaloes

translate over to the classes of universally equivalent loss functions (by Thédem

4.5.4 Convex loss functions equivalent to 0-1 loss

This section is devoted to a more in-depth investigation of the class of surrogate loss func-

tions ¢ that are universally equivalent to the 0-1 loss.

4.5.4.1 Explicit construction

We begin by presenting several examples of surrogate loss functions equivalent to 0-1 loss.
From Propositiord.19 any such loss must realize gndivergence based on a function
of the form @.31). For simplicity, we leta = b = 0; these constants do not have any
significant effect on the corresponding loss functigrienly simple shifting and translation
operations). Hence, we will be concerned only with loss functions whose correspgihding
has the formf(u) = —cmin(u, 1) for u > 0. Suppose that we augment the definition by
setting f(u) = +oo for u < 0; with this modification,f remains a lower semicontinuous
convex function. In Sectiod.4, we considered this particular extension, and constructed
all loss functions that were equivalent to the 0-1 loss (in particular, see equata®).(As
a special case, this class of loss functions includes the hinge loss function.

Choosing an alternative extension pfor v < 0 leads to a different set of loss func-

tions, also equivalent to 0-1 loss. For example, if weffet) = —k min(u, 1) foru < 0

135



Chapter 4. Surrogate convex losses and f-divergences

wherek > ¢, then the resultingy takes the form

— f k
(3) = (c=p)y foro<p<

+00 otherwise.

In this case, the associated loss functigrisas the form:

(4(c/2—a) fora <0
¢(a) = (c—g(c/2+a)).  wheng(c/2+a) <k (4.32)
+00 otherwise,

\

whereg is a increasing convex function such thét/2) = ¢/2. However, to ensure that
¢ is a convex function, it is simple to see thahas to be linear in the interval/2, u| for

someu such thaty(u) = k.

45.4.2 A negative result

Thus, varying the extension gffor v < 0 (and subsequently the choice gfleads to a

large class of possible loss functions equivalent to the 0-1 loss. What are desirable prop-
erties of a surrogate loss function? Properties can be desirable either for computational
reasons (e.g., convexity, differentiablity), or for statistical reasons (e.g., consistency). Un-

fortunately, in this regard, the main result of this section is a negative one: in particular, we

prove that there is no differentiable surrogate loss that is universally equivalent to the 0-1

loss.

Proposition 4.20. There does not exist a continuous and differentiable convex loss function

¢ that is universally equivalent to the 0-1 loss.

Proof. From Propositio.19 any¢ that is universally equivalent to 0-1 loss must generate

an f-divergence of the form4(31). Leta = b = 0 without loss of generality; the proof

136



Chapter 4. Surrogate convex losses and f-divergences

proceeds in the same way for the general case. First, we claim that regardless ofshow

augmented for, < 0, the function¥ always has the following form:

(

+oo  forpg <0
U(3) = f(=F) = sup{ - Pu—f(u)} = {c—p3 foro<p<c (4.33)

u€eR

>0 otherwise.

\

Indeed, for3 < 0, we have
U(3) >sup,so{— fu+cmin(u, 1)} = +oo.

Turning to the cas@ < |0, |, we begin by observing that we must hafte:) > —cu for

u < 0 (sincef is a convex function). Therefore,

sup { — fu— f(u)} < sulg{—ﬁu—i—cu} = 0.

u<0

On the other hand, we havep,,. { — fu+ cmin(u, 1)} = c¢— [ > 0, so that we conclude
that¥(3) = ¢ — g for g € [0,c]. Finally, for 8 > ¢, we have¥(3) > sup,-, { — Bu +
cmin(u,1)} = 0.

Given the form 4.33, Theorem4.7 implies that the loss functiod must have the

following form:

;

g(c/2 — a) whena < 0
¢(a) =1 (¢ —g(c/2+a)). whena > 0andg(c/2 + a) <, (4.34)
> () otherwise,

\

whereyg is an increasing continuous convex function frpn2, +oco) to R satisfyingg(c/2) =
c/2.
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For ¢ to be differentiable, the function has to be differentiable everywhere in its
domain. Letz > 0 be the value such that= g(c/2 + a). Since¢ achieves its minimum at
a, ¢'(a) = 0. This implies thaty has to satisfy)/(¢/2 + a) = 0. That would imply thay
attains its minimum at/2+a, butg(c/2+a) = ¢ > g(c/2), which leads to a contradiction.

]

4.6 Empirical risk minimization with surrogate con-

vex loss functions

As discussed in Sectiohl, surrogate loss functions are widely used in statistical learning
theory, where the goal is to learn a discriminant function given only indirect access to the
distributionP( X, Y') via empirical samples. In this section, we demonstrate the utility of
our correspondence betwegrdivergences and surrogate loss functions in the setting of
the elaborated version of the classical discriminant problem, in which the goal is to choose
both a discriminant functions as well as a quantizep. As described in the previous
chapter, our strategy is the natural one given empirical data: in particular, we dldpose

by minimizing the empirical version of the-risk. It is worthwhile noting that without
direct access to the distributidh( X, Y), it is impossible to compute or manipulate the
associated-divergences. In particular, without closed form knowledge @f) and~ (=),

it is impossible to obtain closed-form solution for the optimal discrimingrds required

to compute thef-divergence (see Propositidrd). Nonetheless, the correspondencgto
divergences turns out to be useful, in that it allows us to establish Bayes consistency of the

procedure based aftrisks for choosing the quantizer and discriminant function.
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4.6.1 Decentralized detection problem

We begin by recalling the set-up and notations for the decentralized detection problem;
see the previous chapter for further details. Edbe an integer, representing some num-
ber of sensors that collect observations from the environment. More precisely, for each
t=1,...,9, let X! € X' represent the observation at sengowhereX* denotes the
observation space. The covariate vector= (X', t = 1,...,5) is obtained by concate-
nating all of these observations together. We assume that the global estinmte be
formed by afusion center In the centralized settingthis fusion center is permitted ac-
cess to the full vectoX of observations. In this case, it is well-knoywan Trees, 1990
that optimal decision rules, whether under Bayes error or Neyman-Pearson criteria, can
be formulated in terms of the likelihood rat®{ X |Y = 1)/P(X|Y = —1). In contrast,
the defining feature of thdecentralized setting that the fusion center has access only
to some form of summary of each observati@h. More specifically, we suppose that
each sensot = 1...,S5 is permitted to transmit anessageZ?, taking values in some
spaceZ’. The fusion center, in turn, applies some decision fute compute an estimate
Y = v(ZY,...,Z%) of Y based on its received messages.

For simplicity, let us assume that the input spates identical for eact = 1,..., .5,
and similarly, that the quantized spagé is the same for ali. The original observation
spaceX’ can be either finite (e.g, having possible values), or continuous (e.g., Gaussian
measurements). The key constraint, giving rise to the decentralized nature of the problem,
is that the corresponding message sp&ce {1, ..., L} is discrete with finite number of
values, and hence “smaller” than the observation spacel(i;,M in the case of discrete
X). The problem is to find, for each sengot 1, ..., S, a decision rule represented as a
measurable functio® : Xt — Z!, as well as an overall decision rule represented by a

measurable function : Z — {—1,+1} at the fusion center so as to minimize tBayes
risk P(Y # v(2)).
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Figure 4.4. Decentralized detection system wittsensors, in whicly” is the unknown hy-
pothesis X = (X',..., X®) is the vector of sensor observations; ahd-= (Z*,..., Z%)
are the quantized messages transmitted from sensors to the fusion center.

Figure4.4 provides a graphical representation of this decentralized detection problem.
The single node at the top of the figure represents the hypothesis vafiadel the outgo-
ing arrows point to the collection of observatioks= (X!, ..., X°). The local decision
rules Q! lie on the edges between sensor observativhsnd messageg’. Finally, the
node at the bottom is the fusion center, which collects all the messages.

Recall that the quantiz&p can be conveniently viewed as conditional probability dis-
tribution Q(z|x), which implies that an aggregate observatios mapped to an aggregate
quantized messagewith probabilityQ(z|z). In particular, the decentralization constraints
require that the conditional probability distributio@gz|z) factorize; i.e., for any realiza-
tion z of Z, Q(z|X) = T[_, Q'(+'|X*) with probability one. For the remainder of this
section, however, we shall ugg (z) to denoteQ(z|z), to highlight the formal view that
the quantizer rulé) is a collection of measurable functiofs : X — R for z € Z.

In summary, our decentralized detection problem is a particular case of the elaborated
discriminant problem—namely, a hypothesis testing problem with an additional component

of experiment design, corresponding to the choice of the quarfizer

A learning algorithm for decentralized detection. In Chapter3 we introduced an al-

gorithm for designing a decentralized detection system (i.e., both the quantizer and the
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classifier at the fusion center) based on surrogate loss functions. The algorithm operates
on an i.i.d. set of data samples, and makes no assumptions about the underlying prob-
ability distributionP(X,Y"). Such an approach is fundamentally different from the bulk
of previous work on decentralized decentralization, which typically are based on restric-
tive parametric assumptions. This type of nonparametric approach is particularly useful
in practical applications of decentralized detection (e.g., wireless sensor networks), where
specifying an accurate parametric model for the probability distributioX, Y') may be
difficult or infeasible.

Let (z;,v;)!, be a set of i.i.d. samples from the (unknown) underlying distribution
P(X,Y’) over the covariateX and hypothesi¥” € {-1,+1}. LetC, C I'andD,, C
Q represent subsets of classifiers and quantizers, respectively. The algorithm chooses an

optimum decision ruléy, @) € (C,, D,,) by minimizing an empirical version af-risk:

Ru5@) 5= 30 3 () Qs (). (4.35)

It is worth noting that the perspective of surrogatoss (as opposed tH-divergence)
is the most natural in this nonparametric setting. Given that the minimization takes place
over the subsetC,, D,,), there is no closed-form solution for the minimizere C, of
problem @.35 (even when the optimur® is known). Hence, it is not even possible to for-
mulate an equivalent closed-form problem in termga@fivergences. Despite this fact, we
demonstrate that the connectionftalivergences is nonetheless useful, in that it allows to
address the consistency of the estimation procedu8®)( In particular, we prove that for
all ¢ that are universally equivalent to the 0-1 loss, this estimation procedure is indeed con-
sistent (for suitable choices of the sequences of function clé@sseslD,,). The analysis is
inspired by frameworks recently developed by a number of authors (se¢Zaang, 2004
Steinwart, 2005Bartlettet al., 2004) for the standard case of classification (i.e., without

any component of experiment design) in statistical machine learning.
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4.6.2 A consistency theorem

For eachz € Z, let us endow the space of functiofs : X — R with an appropriate
topology, specifically that defined in the proof of Proposition 2.{Tisitsiklis, 19934,
and endow the space ¢ with the product topology, under which it is shown to be com-
pact[Tsitsiklis, 19934 In addition, the space of measurable functionsZz — {—1,1} is
endowed with the uniform-norm topology.

Consider sequences of increasing compact function clagsesC, € ... C I" and
D, € D, C ... C Q. This analysis supposes that there exists oracle that outputs an

optimal solution to the minimization problem

~

min Ry(v,Q), 4.36
(1.Q)E(Cn,Dn) #(7, Q) (4.36)

and let(v,, Q) denote one such solution. Lét, . denote the minimum Bayes risk
achieved over the space of decision rulesQ) € (I', Q). We refer to the non-negative
quantity Ryayes (7, @) — Rpayes the excess Bayes riséf our estimation procedure. We
say that such an estimation procedureusiversally consistenf the excess Bayes risk
converges to zero (in probability) as — oo. More precisely, we require that for any

(unknown) Borel probability measui® X, Y)

lim Ryayes(7n, @) = Rzayes. (4.37)

n—oo

In order to analyze statistical behavior of this algorithm and to establish universal con-
sistency for appropriate sequen¢és, D,,) of function classes, we follow a standard strat-

egy of decomposing the Bayes error in terms of two types of errors:

e the approximation errorintroduced by the bias of the function clasggsC I, and

D, C Q,and
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¢ theestimation errorintroduced by the variance of using finite sample size
These quantities are defined as follows:

Definition 4.21. The approximation error of the procedure is given by

&(Co, D) =  inf Ry(v,Q)} — R*, 4.38
of ) w,@é?cn,m){ s(7,Q)} — Ry (4.38)

WhereR;; = inf(%Q)E(p’Q) R¢(”y, Q)
Definition 4.22. The estimation error is given by

A

81 (Cn7 Dn) =E sup R¢(77 Q) - R¢(7> Q) ) (439)
(’Y>Q)€(Cn7Dn)

where the expectation is taken with respect to the (unknown) meBgkird”).

Conditions on loss function¢. Our consistency result applies to the class of surrogate
losses that are universally equivalent to the 0-1 loss. From Propoditi@nall such loss

functions¢ correspond to arf-divergence of the form
f(u) = —cmin(u, 1) + au + b, (4.40)

for some constants > 0, a, b. For any suchp, a straightforward calculation (see the proof

of Propositiordt.4) shows that the optimum risk (for fixed quantizgy takes the form
Ry(Q) = —I;(n,m) = ¢ ) min{u(z), 7(2)} — ap — ba, (4.41)
zEZ

wherep =P(Y =1)andg =P(Y = —-1) =1 —p.
Recall that any surrogate logss assumed to be continuous, convex, and classification-

calibrated (see DefinitioA.1). For our proof, we require the additional technical condi-
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tions, expressed in terms gfas well as its induced-divergence 4.40):
(a=b)(p—q) >0 and  ¢(0) > 0. (4.42)

Intuitively, these technical conditions are needed so that the approximation error due to
varying (Q dominates the approximation error due to varyinfbecause the optimumis
determined only aftef) is). Simply letting, sayq = b would suffice.

Any surrogate loss that satisfies all of these conditions (continuous, convex, classification-
calibrated, universally equivalent to 0-1 loss, and condittad?) is said to satisfyprop-
erty P. Throughout this section, we shall assume that the loss fun¢tiwas propertyP.

In addition, foreacln = 1, 2, .. ., we assume that

M, = max sup sup |p(yy(2))] < +oc. (4.43)
ye{-1+1}  (4,Q)e(Cn,Dn) 2€2

The following theorem ties together the Bayes error with the approximation error and

estimation error, and provides sufficient conditions for universal consistency:

Theorem 4.23.LetC; CC, C ... CT'andD; C D, C ... C Q be nested sequences of
compact function classes, and consider the estimation proc€dL86 using a surrogate

loss¢ that satisfies propertfp.

(a) For any Borel probability measur®(X,Y'), with probability at leastl — ¢, there
holds:

2 In(2/6
Rbayes('}/:” Q;) o RZayes S 2{251 (Cna Dn) + 80(Cn7 Dn) + 2Mn 2—11( / ) }

n
(b) Universal ConsistencySuppose that the function classes satisfy the following prop-
erties:
Approximation condition: lim,, .., &(C,, D,) = 0.
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Estimation condition: lim,, ., & (C,,D,) =0 and lim,_.., M, y/Inn/n = 0.

Then the estimation procedufé.36) is universally consistent:

M Rpayes (Vs @) = Rpayes in probability. (4.44)

The proof of this theorem relies on an auxiliary result that is of independent interest.
In particular, we prove that for any function clasgeandD, and surrogate loss satisfying

propertyP, the excess-risk is related to the excess Bayes risk as follows:
Proposition 4.24. Let ¢ be a loss function that has properfy. Then any classifier-

quantizer pair(y, Q) € (C,D), we have

5 [Roen(1.Q) = Biel] < Ro(1.Q) - RS, (4.45)

See Appendix.Gfor a proof of this result. A consequence of equatiddp is that in
order to achieve Bayes consistency (i.e., driving the excess Bayes risk to zero), it suffices

to drive the excesg-risk to zero.

With Propositior4.24, we are now equipped to prove Theordrd3

Proof. (a) First observe that the valueofp. ¢ ocp, |}?¢,(~y, Q) — Rs(7, Q)| varies by at
most2M,, /n if one changes the values 6f;, y;) for some index € {1,...,n}. Hence,
applying McDiarmid’s inequality yields concentration around the expected value, or (alter-

natively stated) that with probability at lealst- 4,

sup  |Ro(7, Q) — Ro(7, Q)| — £1(Cpy Do) | < Myn/21n(1/3) /. (4.46)

V€ECR,QEDy
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Suppose thak(v, Q) attains its minimum over the compact subgkt D,,) at(+}, Q).

Then, using Propositio#.24, we have

C * * * * * *
§(Rbayes (’yn’ Qn) - Rbayes) < R¢>(7n7 Qn) - R¢
= Ry(n, Q) — Ro(7}, Q1) + &0(C, D)

Hence, using equatiod (46, we have with probability at leagt— ¢:

c * * * > * * >
§(Rbay€5(fyn7 Qn) - Rbayes) < R¢(7n7 Qn) - R¢(’Y’:rw QL) + 281 (CTH Dn)

+ 2M,\/210(2/8) /1 + E9(Cp, D)
S 251(6’”, Dn) + 80(67“ Dn) + 2Mn\/ 21n(2/5)/n,

from which Theoremt.23a) follows.
(b) This statement follows by applying (a) with= 1/n, and noting thatt,,.s(7:, Q) —
Ry, 1S bounded. O

A natural question is under what conditions the approximation and estimation condi-
tions of Theoremt.23hold. We conclude this section by stating some precise conditions
on the function classes that ensure that the approximation condition holds.He=h Borel
subset oft’ such thatPx(U) = 1, and letC(U) denote the Banach space of continuous
functions@. (z) mappingU toR. If U, D,, is dense ilKNC(U) and if U2, C,, is dense in
', then the approximation condition in Theorén23holds. In order to establish this fact,
note thatR,(v, @) is a continuous function with respect to, () over the compact space
(', Q). (Here compactness is defined with respect to the topology defined in the proof of
Proposition 2.1 i Tsitsiklis, 19934) The approximation condition then follows by ap-

plying Lusin’s approximation theorem for regular measures, using an argument similar to
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the proof of Theorem 4.1 ifzhang, 2004

4.6.3 Estimation error for kernel classes

For the estimation condition in Theoref23b) to hold the sequence of function classes
(Cn, Dy)22, has to increase sufficiently slowly in “size” with respectitoln this section,
we analyze the behavior of this estimation error for a certain kernel-based function class.
Throughout this section, in addition to the conditions imposed amthe preceding sec-
tion, we assume that the loss functigris Lipschitz with constanL,. We also assume
without loss of generality that(0) = 0 (otherwise, one could consider the modified loss
functiong(a) — ¢(0)).

First of all, we require a technical definition of a particular measure of function class

complexity:

Definition 4.25. Let F be a class of measurable functions mapping from its domalh to

TheRademacher complexityf F is given by

Zaz’f(Xi>

i=1

R, (F) = zIEsup
n. fer

, (4.47)

wheres;, i = 1,...narei.i.d. Bernoulli variables (taking valugs-1, +1} equiprobably),

and the expectation is taken over both...,0, and Xy, ..., X,,.

For analyzing the estimation error, the relevant class of functions takes the form
g = {g : X — R|g(z) = y(argmax,Q.(x)) for some (v, Q) € (C,D N QO)(}LAS)

We now show that the Rademacher complexity of this class can be used to upper bound the

estimation error:
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Lemma 4.26. For a Lipschitzg (with constantL,), the estimation error is upper bounded

by the Rademacher complexity®as follows:

Proof. Using the standard symmetrization metHoen der Vaart and Wellner, 19p6ve

have:

&(C,D) < Ru(H)

2
= sup
(7,Q)€(C,D)

Zchﬁ yi7(2)) Q- ()

z€EZ

whereH is the function class given by

H o= {h:Xx{il}eR‘h(:cy 3 6(y1(2))Q- () for somey, Q) € (c,p)}
z€Z
Let H, be the subset df{ defined by restricting tg) € Q,. SinceQ = coQ, (where
co denotes the convex hull), it follows thaf = coH,, from which it follows from a
result in[Bartlett and Mendelson, 20D2hat R,,(H) = R,(H,). Forh € H,y, we have
h(z,y) = ¢(yy(argmax,Q.(z))). Using results from{Bartlett and Mendelson, 2002
again, we conclude that,, (H,) < 2LsR,(9), O

Using Lemma4.26 in order for the estimation condition to hold, it is sufficient to
choose the function classes so that the Rademacher complexity converges to zero as
tends to infinity. The function classes used in practice often correspond to classes defined
by reproducing kernel Hilbert spaces (RKHS). Accordingly, herein we focus our analysis
on such a kernel class.

Briefly, a kernel class of functions is defined as follows. ket Z x Z — R be a pos-

itive semidefinite kernel function witbup, ., K(z, 2') < 4-00. Given a kernel functior,
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we can associate a feature mbp Z — H, where’H is a Hilbert space with inner product
(., yandforallz,z € Z, K(z,2') = (®(2), (¢')). As a reproducing kernel Hilbert
space, any function € H can be expressed as an inner prodyet = (w, ®(z)), where
w can be expressed as= ) ", o;®(z;) for somew, ..., o, andzy, ..., 2, € Z for
somem. See[Aronszajn, 195pand[Saitoh, 198Bfor general mathematical background
on reproducing kernel Hilbert spaces, d®tholkopf and Smola, 204Zor more details
on learning approaches using kernel methods.

If we use this type of kernel class, then the classificationydan be written as(z) =

o, K (z,z). Suppose that is the subset of{ given by

¢ - {vlv(@z(w 3(:). HngB} (4.50)

whereB > 0 is a constant that controls the “size” of the space. Assume further that the
spacet is discrete with)M/° possible values, and that hasL® possible values. (Recall
that.S is the total number of covariatéx(y, ..., Xg)). In Chapter3, Prop.3.9 we proved

that for the function clasg defined in 4.48), the Rademacher complexity, (G) is upper
bounded by

n

E sup Z K (argmax,Q.(X;), argmax,Q,(X;))+
Q€Po ;=

2B
n
1/2

2(n —1)\/n/2sup K(z,2')\/2MSlog L| , (4.51)

which decays with orde®(1/n'/4). (We note in passing that thi3(1/n'/*) rate is not

tight, but the bound is nonetheless useful for its particularly simple form).

It follows from Lemma4.26and equation4.51) that&, (C, D) = O(B/n'/*), whereB

is the constant used to control the “size” of the function cladefined in equation4(50.
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Let B,, denote the constant for the corresponding function cfasand let(B,,)>° , be an
increasing sequence such tigt — +oo. Then, we see from the bound.$]) that if B,
increases sufficiently slowly (i.e., slower thah*), then the estimation erréy (C,,, D,,) —
0. Note also that

()] < lwll-[[@(2)]] = O(Bn),

so thatM,, = O(B,,) (wherel,, is defined in equatiord(43). As a consequence, we have

M,\/Inn/n — 0, so that the estimation condition of condition of Theor4123b) holds.

4.7 Discussions

The main contribution of this chapter is a precise explication of the correspondence be-
tween loss functions that act as surrogates to the 0-1 loss (which are widely used in statisti-
cal machine learning), and the classfedlivergences (which are widely used in information
theory and signal processing, and arise as error exponents in the large deviations setting).
The correspondence helps explicate the use of various divergences in signal processing
and guantization theory, as well as explain the behavior of surrogate loss functions often
used in machine learning and statistics. Building on this foundation, we defined the notion
of universal equivalence among divergences (and their associated loss functions). As an
application of these ideas, we investigated the statistical behavior of a practical nonpara-
metric kernel-based algorithm for designed decentralized hypothesis testing rules proposed
in Chapter3, and in particular proved that it is strongly consistent under appropriate con-

ditions.
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Appendix 4.A Proof of Lemma 4.5

(@) Sincep™(8) < +o0, we havep(¢p~1(3)) = d(inf{a : ¢(a) < 3}) < 3, where the
final inequality follows from the lower semi-continuity of If ¢ is continuous a—(3),
then we havey ! (3) = min{«a : ¢(a) = 3}, in which case we have(¢—1(3)) = 3.
(b) Due to convexity and the inequaligy(0) < 0, it follows that¢ is a strictly decreasing
function in (—oo, o*]. Furthermore, for alB € R such thatp~*(3) < 400, we must have
¢ 1(B) < a*. Therefore, definition4.18 and the (decreasing) monotonicity @fimply
that for anya, b € R, if b > a > inf ¢, theng='(a) > ¢~ *(b), which establishes that™*
is a decreasing function. In addition, we have ¢~ (b) if and only if ¢(a) < b.

Now, due to the convexity ap, applying Jensen’s inequality for afly< A < 1, we
havep(A¢~ (B1)+ (1= N~ (B2)) < Ab(6~ (B1)+ (1= V(¢ () < ABy+(1—N)a.

Therefore,

Ao (B) + (1= N (B2) = ¢ (ABL+ (1= N)Ba),

implying the convexity ofs—*.

Appendix 4.B Proof of Lemma 4.6

(a) We first prove the statement for the case of a decreasing fungtiemst, if « > b and
¢ 'a) ¢ R, theng~'(b) ¢ R, hence¥(a) = U(b) = +oo. If only ¢~ '(b) ¢ R, then
clearly ¥ (b) > ¥(a) (since¥(b) = +o0). If a > b, and bothp~! (), o1 (3) € R, then
from the previous lemmay=!(a) < ¢~1(b), so thatp(—¢~'(a)) < ¢(—¢~1(b)), implying
thatW is a decreasing function.

We next consider the case of a general functiofor 3 € (31, 52), we havep () €
(—a*, a*), and hence-¢~'(3) € (—a*, a*). Sinceg is strictly decreasing ifi—oo, a*],
then¢(—¢~1(3)) is strictly decreasing i3, 32). Finally, wheng < inf ¥ = ¢(a*),
¢~ 1(B) ¢ R, so¥(3) = +oo by definition.
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(b) First of all, assume that is decreasing. By applying Jensen’s inequality, for any

A < 1, and~yq, 7., we have:

Ap(=¢7 () + (1 = N)d(=¢7" (12)

A(=Xp (1) — (1 = N)o™H(2)) due to convexity ofb
> (=7 (M + (1= M)

= U7+ (1= A7),

AV(71) + (1= A)¥(72))

Y]

where the last inequality is due to the convexitygof' and decreasing. Hence,V is a
convex function.
In general, the above arguments go through for any. € [01, 52]. Since¥(3) =

+o0 for 3 < 31, this implies thatl is convex in(—oo, (3].

(c) For anya € R, from the definition ofp—!, and due to the continuity af,

{B]2(B) =o(=07'(B) <a} = {B] —¢7'(8) =9 '(a)}
= {8lo7'(B) < —¢7(a)}
= {882 oé(—¢7"(a))}

is a closed set. Similarly,3 € R | ¥(3) > a} is a closed set. Henck is continuous in its

domain.

(d) Since¢ is assumed to be classification-calibrated, Lendn2amplies thato is differ-
entiable at 0 and’(0) < 0. Sinceg is convex, this implies thap is strictly decreasing
for o < 0. As aresult, for anyx > 0, let 3 = ¢(—«a), then we obtainy = —¢~1(3).
Since¥(8) = ¢(—¢~1(B)), we havel (5) = ¢(a). Hence,W(4(—a)) = ¢(a). Letting
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u* = ¢(0), then we havel (v*) = u*, andu* € (31, 32).

(e) Leta = ¥(B) = ¢(—¢~1(B). Then from @.18), ¢~ (a) < —¢~1(B). Therefore,

We have proved tha¥ is strictly decreasing fop € (81, 3:). As such,p™!(a) =
—¢~1(B3). We also haves(¢p~1(3)) = j3. It follows thatW (¥ (3)) = B forall 3 € (31, B2).
Remark: With reference to statement (b),dfis not a decreasing function, then the func-
tion ¥ need not be convex on the entire real line. For instance, the following loss function

generates a functiod that is not convex:

)
(1—a)* whena <1

P(a) =40 whenl < a < 2

a—2 otherwise.
\

We havel (9) = ¢(2) = 0, ¥(16) = ¢(3) = 1, ¥(25/2) = ¢(—145/v/2) = —=3+5/v/2 >
(W(9) + ¥(16))/2.

Appendix 4.C Proof of Lemma 4.11

(a) The inequalityA < V is trivial. On the other hand, the inequality? < A follows by
applying the Cauchy-Schwarz inequality:

A= Z(&%)Z(W) z(Z () —w<z>|)2 V2.
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(b) Note that for any: € 2, we havel < V* M(z)tﬂv(z(z < 2. Applying these inequalities

in the following expression

A7) = S - V) VAT

z2€Z +7T< )

yields2h? < A < 4h2.
(c) Sed Topsoe, 200Pfor a proof.

Appendix 4.D Proof of Theorem 4.14

We first establish the equivalence (@) (b). By the correspondence between 0-1 loss
and anf-divergence withf(u) = — min(u, 1), and the remark following Propositiah4,
we haveRyyes(Q) = —I;(u,7) = —I5,(P1, P-y), where f,(u) == ¢f (F%u) = —(1 —
¢) min(u, 1%). Hence, (@) (b).

Next, we prove the equivalence (b} (c). The implication (c)= (b) is immediate.
Considering the reverse implication (b} (c), we note that any convex functiof(u)
can be uniformly approximated over a bounded interval as a sum of a linear function and
— >, apmin(u, ¢x), whereoy, > 0, ¢, > 0 for all k. For a linear functiory, I;(P_,, P;)

does not depend oR_;, P;. Using these facts, Statement (c) follows from Statement (b).

Appendix 4.E Proof of Lemma 4.18

Consider a joint distributiof?( X, Y") defined byP(Y = —-1) =¢=1-P(Y = 1) and

P(X|Y = —1) ~ Uniform[0,b], and P(X|Y = 1) ~ Uniformia, ¢],
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where0) < a < b < c¢. LetZ € {1,2} be a quantized version of. We assumeZ
is produced by a deterministic quantizer desigspecified by a threshold € (a,b); in
particular, we se@(z = 1|z) = 1 whenz > t, andQ(z = 2|x) = 1 whenz < ¢. Under

this quantizer design, we have

p(1) = (-9 p@) =01
m(1) = qé; W(2)=qbf;t

Therefore, thef-divergence between andr takes the form:

gt ((t—a)b(l—q) qb—1) ,((c—1)b(1 —q)
[f(“’”)‘?f< (e a)ig )+ b f((o—a)(b—wq)'

f f1 = fo, thenIy, (p, m) andly, (1, ) have the same monotonicity property for any
(0, 1) as well for for any choice of the parametgranda < b < c¢. Lety = % which
can be chosen arbitrarily positive, and then define the function

Fu =t (U5 s 0-0r (20,

t b—1t

Note that the function$’( f1,¢) and F'( f», t) have the same monotonicity property, for any
positive parameterg anda < b < c.
We now claim thatF'(f,t) is a convex function of. Indeed, using convex dual-

ity [Rockafellar, 1971) F'(f,t) can be expressed as follows:

(t—a)y

AT

reR

r=rm} s e-ompf G- o)

o flmar o eens
_ p{—7 )+ 0 tf()},

r,s

which is a supremum over a linear functiontpthereby showing thak'(f, ¢) is convex of
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It follows that bothF'(f,,t) and F'( f», t) are subdifferentiable everywhere in their do-

mains; since they have the same monotonicity property, we must have
0 € F(f1,t) & 0 € OF(fo,t). (4.52)

It can be verified using subdifferential calculus (elgjriart-Urruty and Lemagchal, 200])

that:

e = For(S) s (U ) (52 o (7).

(t— a) (c—t)
Lettingu = 1, v = =1, we have

0€dF(f.1) € (v —w)df(u) + f(u) — f(v) + (v —7)0f(v) (4.53a)

Ja € df (u), 5 € f(v) s.t.0= (v —u)a+ flu) — f(v) + (v(4.53B)

Ja € 0f(u), B € 0f(v) st.y(a—pB) =ua— f(u) + f(v) — (453c)
), (v)

st.y(a—p5) = f(a) = f7(5). (4.53d)

ﬁﬂiﬁiiﬁ

da € 0f(u), 5 € df(v

By varying our choice ofy € (0, 1), the numbery can take any positive value. Similarly,
by choosing different positive values 6fb, ¢ (such thatu < b < ¢), we can ensure that
u andv can take on any positive real values such that v < v. Since equation4(.52
holds for anyt, it follows that for any triples: < v < v, equation 4.539 holds for f; if
and only if it also holds forfs.

Considering a fixed pair < v, first suppose that the functigi is linear on the interval
[u, v] with a slopes. In this case, equatior (539 holds for f; and anyy by choosing
a = [ = s, which implies that equatior4(539 also holds forf, for any~. Thus, we

deduce thay; is also a linear function on the intervial, v].
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Suppose, on the other hand, thfatand f, are both non-linear ifu, v]. Due to the
monotonicity of subdifferentials, we hawg; (u) N dfi(v) = 0 andd f2(u) N A fa(v) = 0.
Consequently, it follows that both, (v, v) andT’, (u, v) are non-empty. Ify € T, (u,v),
then @.539 holds for f; for somey. Thus, it must also hold fof, using the same, which
implies thaty € 7%, (u,v). The same argument can also be applied with the rol¢gs affid

f> reversed, so that we conclude tigt(u, v) = T, (u, v).

Appendix 4.F Proof of Proposition  4.19

Using Lemma4.18 the proof of Propositiod.19follows relatively easily. Note that the
variational distance correspondsftqu) = |u — 1| = v+ 1 — 2min{u, 1}, which is linear
above and below. Therefore, the same must be true for any continuous convex function
fo. All such functions can indeed be written ag min(u, 1) 4+ au + b, for some constant

¢, a,b. In order for f, to have the same monotonicity #s it is necessary and sufficient

thatc > 0.

Appendix 4.G Proof of Proposition  4.24

Following a similar construction as in the proof of Propositib8Q, all ¢ satisfying prop-
erty P have¢(0) = (¢ — a — b)/2. Now, note that

Rbayes (7, Q) = Rpayes = Frayes(7, @) = Rbayes(Q) + Rayes(Q) — Rigyes
=Y w()(() > 0) + u(2)L(y(2) < 0) = min{u(=), 7(2)} + Roayes(Q) = Rigyes

zEZ

= > [1(2) = w(2)| + Rpages (@) = Rpayes:

z:(u(2)=m(2))7(2)<0
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In addition,

R¢(’y, Q) — RZ) = R¢(77 Q) - R¢(Q) + R¢<Q) - Rj;

By Propositiord.4,

Ry(Q) — Ry = —If(p,m) —énf( Iy(p,))
= chin{u (2)} — mf chm{u

= C(Rbayes<Q) - Rbayes)‘

Therefore, the lemma would be immediate once we could show that

S ) =73 < Ro(1.Q) - Ro(Q)
z:(u(2)—7(2))7(2)<0

=) 7z + u(2)0((2)) — emin{pu(z2), 7(2)} + ap + b (4.54)

z€Z

It is simple to check that for any € Z such thatu(z) — w(z))y(z) < 0, there holds:

m(2)¢(=7(2)) + u(2)9(1(2)) = w(2)¢(0) + u(2)H(0). (4.55)

Indeed, w.o.l.g., suppose(z) > =w(z). Since¢ is classification-calibrated, the convex

function (with respect tex) 7(z)¢(—a) + u(2)¢(a) achieves its minimum at some> 0.

Hence, for anyy < 0, 7(2)o(—a) + p(2)o(a) > 7(2)p(0) + u(2)¢(0). Hence, .55 is
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proven. The RHS of Eqn4(54) is lower bounded by:

> (m(2) + 1(2))9(0) — emin{p(z), 7(2)} + ap + bq
1(u(z) = (2)7(2)<0

=Y @) el enin{u(2).7(2)) + ap + by

1(z) =7 (2)| = (@ +b)(p +q)/2 + ap + bg

1
u(z) = m(2)| + 5(a = b)(p —q)

#(1(z) ~m(2))y(2)<0
>

> u(z) = 7(2)]-

z:(u(2)—7(2))7(2)<0

VN

This completes the proof.
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Chapter 5

Decentralized sequential detection

In this chapter we consider the problem of sequential decentralized detection, a problem
that entails several interdependent choices: the choice of a stopping rule (specifying the
sample size), a global decision function (a choice between two competing hypotheses), and
a set of quantization rules (the local decisions on the basis of which the global decision is
made). We resolve an open problem concerning whether optimal local decision functions
for the Bayesian formulation of sequential decentralized detection can be found within the
class of stationary rules. We develop an asymptotic approximation to the optimal cost of
stationary quantization rules and show how this approximation yields a negative answer to
the stationarity question. We also consider the class of blockwise stationary quantizers and

show that asymptotically optimal quantizers are likelihood-based threshold rules.

5.1 Introduction

In Chapter3 and Chapte# we have studied the problem of non-sequential decentralized
detection. Detection is a classical discrimination or hypothesis-testing problem, in which
observationd X;, X5, ...} are assumed to be drawn i.i.d. from the (multivariate) condi-

tional distributionP( - | H ) and the goal is to infer the value of the random variakle
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which takes values if0,1}. In a typical engineering application, the casF = 1}
represents the presence of some target to be detected, wKéfeas 0} represents its
absence. Placing this problem in a communication-theoretic context, a decentralized de-
tection problem is a hypothesis-testing problem in which the decision-maker is not given
access to the raw data points,, but instead must infeH/ based only on the output of

a set of quantization rules or local decision functions, §dy = ¢,(X,)}, which map

the raw data to quantized values. Of interest in this chapter is the extension to an-online
setting: more specifically, treequential decentralized detectiproblem[Tsitsiklis, 1986
Veeravalli, 1999Mei, 2009 involves a data sequendeX;, X», ...}, and a corresponding
sequence of summary statisti¢s/;, Us, . . .}, determined by a sequence of local decision
rules{¢i, ¢o,...}. The goal is to design both the local decision functions and to specify

a global decision rule so as to predidtin a manner that optimally trades off accuracy
and delay. In short, the sequential decentralized detection problem is the communication-
constrained extension of classical formulation of sequential centralized decision-making
problems; see, e.dChernoff, 1972 Shiryayev, 1978Lai, 2001 to the decentralized set-

ting.

In setting up a general framework for studying sequential decentralized problems, Veer-
avalli et al.[Veeravalliet al, 1993 defined five problems, denoted “Case A’ through
“Case E”, distinguished from one another by the amount of information available to the
local sensors. In applications such as power-constrained sensor networks, we gener-
ally do not wish to assume that there are high-bandwidth feedback channels from the
decision-maker to the sensors, nor do we wish to assume that the sensors have unbounded
memory. Most suited to this perspective—and the focus of this thesis—is Case A, in
which the local decisions are of the simplified forpn(X,); i.e., neither local mem-
ory nor feedback are assumed to be available. Noting that Case A is not amenable to
dynamic programming and is presumably intractable, Veeravalli di/atravalliet al.,

1993 suggested restricting the analysis to the classtationarylocal decision functions;
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i.e., local decision functions,, that are independent of. They conjectured that sta-
tionary decision functions may actually be optimal in the setting of Case A (given the
intuitive symmetry and high degree of independence of the problem in this case), even
though it is not possible to verify this optimality via DP arguments. This conjecture
has remained open since it was first posed by Veeravalli divakravalliet al, 1993
Veeravalli, 1999.

The main contribution of this chapter is to resolve this question by showing that station-
ary decision functions are, in factpt optimal for decentralized problems of type A. Our
argument is based on an asymptotic characterization of the optimal Bayesian risk as the cost
per sample goes to zero. In this asymptotic regime, the optimal cost can be expressed as
a simple function of priors and Kullback-Leibler (KL) divergences. This characterization
allows us to construct counterexamples to the stationarity conjecture, both in an exact and
an asymptotic setting. In the latter setting, we present a class of problems in which there
always exists a range of prior probabilities for which stationary strategies, either determin-
istic or randomized, are suboptimal. We note in passing that an intuition for the source of
this suboptimality is easily provided—it is due to the asymmetry of the KL divergence.

It is well known that optimal quantizers when unrestricted are necessarily likelihood-
based threshold ruld3sitsiklis, 1984. Our counterexamples and analysis imply that op-
timal thresholds are not generally stationary (i.e., the threshold may differ from sample to
sample). We also provide a partial converse to this result: specifically, if we restrict our-
selves to stationary (or blockwise stationary) quantizer designs, then there exists an optimal
design that is a threshold rule based on the likelihood ratio. We prove this result by estab-
lishing a quasiconcavity result for the asymptotically optimal cost function. In this chapter,
this result is proven for the space of deterministic quantizers with arbitrary output alpha-
bets, as well as for the space of randomized quantizers with binary ouputs. We conjecture
that the same result holds more generally for randomized quantizers with arbitrary output

alphabets.
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The remainder of this chapter is organized as follows. We begin in Sestibnith
background on the Bayesian formulation of sequential detection problems, and Wald’s ap-
proximation. Sectiorb.3 provides a simple asymptotic approximation of the optimal cost
that underlies our main analysis in Sect@d. In Section5.5, we establish the existence
of optimal decision rules that are likelihood-based threshold rules, under the restriction to

blockwise stationarity. We conclude with a discussion in Seci6r

5.2 Background

This chapter provides background on the Bayesian formulation of sequential (centralized)
detection problems. Of particular use in our subsequent analysis is Wald's approximation
of the cost of optimal sequential test.

Let P, andP; represent the distribution o, when conditioned o{H = 0} and
{H = 1} respectively. Assume th&, andP; are absolutely continuous with respect to
one another. We usf(x) andf!(x) to denote the respective density functions with respect
to some dominating measure (e.g., Lebesgue for continuous variables, or counting measure
for discrete-valued variables).

Our focus is the Bayesian formulation of the sequential detection prol8einyayev,
1978 Veeravalli, 1999, accordingly, we letr! = P(H = 1) and#® = P(H = 0) denote
the prior probabilities of the two hypotheses. gt X5, . .. be a sequence of conditionally
i.i.d. realizations ofX. A sequential decision rule consists oft@pping timeN defined
with respect to the sigma field( X1, ..., X ), and a decision functiom measurable with
respect tar( Xy, ..., Xxy). The cost function is the expectation of a weighted sum of the

sample sizeéV and the probability of incorrect decision—namely

J(N,7) :=E{cN +I[v(Xy,...,Xn) # H]}, (5.1)

1This work has been published [Nguyenet al., 2004.
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wherec > 0 is the incremental cost of each sample. The overall goal is to choose the pair
(N, ) so as to minimize the expected l08s1).

It is well known that the optimal solution of the sequential decision problem can be
characterized recursively using dynamic programming (DP) arguri®mtsv et al.,, 1949
Wald and Wolfowitz, 1948Shiryayev, 1978Bertsekas, 199%aAlthough useful in clas-
sical (centralized) sequential detection, the DP approach is not always straightforward to
apply todecentralizedrersions of sequential detectifvieeravalli, 1999. In the remainder
of this section, we describe an asymptotic approximation of the optimal sequential cost,
originally due to Wald (cf[Siegmund, 198, valid asc — 0. To sketch out Wald's ap-
proximation, we begin by noting the optimal stopping rule for the cost functadl) {akes

the form

N=inf{n>1]|L,(X1,...,X,):= Zlog ;Og; ¢ (a,b)}, (5.2)

for some real numbers < b. Given this stopping rule, the optimal decision function has

the form

1 if Ly >0,
(Ln) = (5.3)
0 if LN S a.

Consider the two types of error:

a = Po(v(Ln)# H) =Po(Ly > )
B = Pi(v(Ln) # H) =Pi(Ly < a).

As ¢ — 0, it can be shown that the optimal choicesfndb satisfiess — —o0,b — o0,
and the corresponding, # satisfya + 3 — 0. Ignoring the overshoot of ; upon the

optimal stopping timeV (i.e., instead assuminfyy attains precisely the valueor b) we
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can express, b, EN and the cost functiod in terms ofa and3 as follows[Wald, 1947:

b and b= b(a,[) = log 15 (5.4)

— (07

a~ a(a, ) :=log 1

Eo[Lny] = (1 —a)a+ab and E;[Ly] = (1—5)b+ Ga (5.5)

Now define the Kullback-Leibler divergences

fH(X0)
fo(X1)

=D, and = —Bflog S = DI
(5.6)

With a slight abuse of notation, we shall also usgy, 3) to denote a function iff), 1] —
R such that:

' = Eiflog

11—«
1-4

With the above approximations, the cost functibaf the decision rule based on envelopes

D(a, B) = ozlog% + (1 —a)log

a andb can be written as

J = 7m'Ei(cN +1[Ly < a]) + 7 Eo(cN +I[Ly > b])
E,L FoL
1t lN + cwoo—év + a4+ 7, (5.7)

It —p
Dlas1=p) D= Fra)

e I

= CT

l
Q
=

+ a4+ 7, (5.8)

where the third line follows from Wald’s equati¢Wald, 1947.
Let J* denote the cost of an optimal sequential test. Singe — 0, D(1 — 3,a) =
log(1/a) + o(1), andD(1 — «, ) = log(1/3) + o(1). We approximate/* by minimizing

J overa and/3. The minimum is achieved at* = Cl : andsg* = —CO ° s ielding:
70 ol
He He

log(1 log(1
J* = inf{wooz + 718+ CWO—Og( /B) + cwl—Og( ) } + o(c)
o 10 /!
70 1

(F + %)clog ¢4+ 0(c). (5.9)

Q
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The approximations described here can be made rigorous using the results of Jiiranff
noff, 1959.

5.3 Characterization of optimal stationary quantiz-

ers

Turning now to the decentralized setting, the primary challenge lies in the design of the
guantization rule®,, applied to dataX,,. When.X,, is univariate, a deterministic quantiza-
tion rule ¢,, is a function that mapg’ to the discrete spa¢é = {0, ..., K — 1} for some
natural number<. For multivariateX,, with d dimension arising from the multiple sensor
setting, a deterministic quantizey, is defined as a mapping from thledim product space
XtoU ={0,..., K — 1} In the decentralized problem defined as Case A by Veeravalli
et al.[Veeravalliet al, 1999, the functiong,, is composed ofl separate quantizer func-
tions, one each for each dimension. A randomized quantizes obtained by placing a
distribution over the space of deterministic quantizers.

Any fixed set of quantization ruleg,, yields a sequence of compressed ddta=
¢n(X,), to which the classical theory can be applied. We are thus interested in choosing
guantization rules., ¢, . . . so that the error resulting from applying the optimal sequential
test to the sequence of statisti¢s Us, . . ., is minimized over some spadeof quantization

rules. For a given quantizer, we use

to denote the distributions of the compressed data, conditioned on the hypothesis. In gen-
eral, when randomized quantizers are allowed, the vegtdr(.), f; (.)) ranges over a
convex set, denotedonv®, whose extreme points correspond to deterministic quantizers
based on likelihood ratio threshold rulgssitsiklis, 19934

166



Chapter 5. Decentralized sequential detection

We say that a quantizer designsistionaryif the rule ¢,, is independent of.; in this
case, we simplify the notation tﬁdﬁ and fg. In addition, we define the KL divergences
g = D(f,1|f3) andp := D(f3|lf,). Moreover, let/; and.J; denote the analogues of
the functions/ in Eqg. 6.7) andJ* in (5.9), respectively, defined usin@, fori =0,1. In
this scenario, the sequence of compressedldata ., U, ... are drawn i.i.d. from either
f}; or fq{. Thus we can use the approximatio®.d) to characterize the asymptotically
optimal stationary quantizer design. This is stated formally in the lemma to follow.
We begin by stating the assumptions underlying the lemma. For a given class of quan-
tizers ®, we assume that the Kullback-Leibler divergences are uniformly bounded away

from zero
D(f311f9) > 0, D(f3llf}) > Oforall ¢ € & (5.10)
and moreover that the variance of the log likelihood ratios are bounded

Zlelg Var 1 log(f}/f])) < oo, and Zlelg Var o log(f,/f3)) < oo. (5.11)

Examples of distributions that satisfy these assumptions include pairs of discrete distribu-

tions, pairs of Gaussian distributions, and so on.

Lemma 5.1. Under assumptiong.10 and (5.11), the optimal stationary cost takes the

form

w0 ol
Jy = (—0 + —1) cloge™ (1+0(1)) (5.12)
He Mg

asc — 0.

Proof: We prove the lemma using results originally due to CherbGfiernoff, 1959,
restricted to a simple binary hypothesis test betwgéandfd{. By Theorem 1 from Cher-
noff [Chernoff, 1959, under conditions¥.10 and 6.11), there is a sequential teg¥, )
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for which:

J*<J(N,y) = 7°%a+cEyN)+ (B + cEN)

< w1 +o(1))cloge™ /g 4+ 7' (1 + o(1))clog e /.

But then the optimal test with the cost (i.e., the likelihood ratio based test) must satisfies
thata+cEyN = O(clogc™!) andB+cE; N = O(clogc™!). Theorem 2 of ChernofiCher-
noff, 1959 implies that

V

0 1
J* > <7r_0 + W—l) (14 o0(1))cloge™,
Ho Mo

concluding the proof.

Remarks:

1. The preceding approximation of the optimal cost essentially ignores the overshoot of
the likelihood ratioL ;. While it is possible to analyze this overshoot to obtain a finer
approximation (cf[Lorden, 1970 Siegmund, 1983_ai, 2001 Poor, 1994), we see
that this is not needed for our purpose. Lem®ashows that given a fixed prior
(7%, 7!), among all stationary quantizer designsdin¢ is optimal for sufficiently

smallc if andonly if  minimizes what we shall call th&equential cost coefficient

7r0 1
Gy =5+
He  Hg

2. As a consequence of Lemmba/ to be proved in the sequel, if we consider the class
¢ of all binary randomized quantizers, then sequential cost coeffiCigns$ a qua-
siconcave function with respect {g(.), f,;(.)). (A function F is quasiconcave if
and only if for anyn, the level sef F'(x) > n} is a convex set; see Boyd and Van-

denberghdBoyd and Vandenberghe, 200r further background). The minimum
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of a quasiconcave function lies in the set of extreme points in its domain. For the
set Conv®, these extreme points correspond to deterministic quantizers based on
likelihood ratios[Tsitsiklis, 1993lh. Consequently, we conclude that for quantizers

with binary outputs, the optimal cost is not decreased by considering randomized

guantizers. We conjecture that this statement also holds beyond the binary case.

Section5.5is devoted to a more detailed study of asymptotically optimal stationary
guantizers. In the meantime, we turn to the question whether stationary quantizers are

optimal in either finite-sample or asymptotic settings.

5.4 Suboptimality of stationary designs

It was shown by Tsitsiklig Tsitsiklis, 1986 that optimal quantizers,, take the form of
threshold rules based on the likelihood ratid X,,) / f°(X,,). Veeravalli et al[Veeravalliet

al., 1993 Veeravalli, 1999asked whether these rules can always be taken to be stationary, a
conjecture that has remained open. In this section, we resolve this question with a negative

answer for both the finite-sample and asymptotic settings.

5.4.1 Suboptimality in exact setting

We begin by providing a numerical counterexample for which stationary designs are sub-
optimal. Consider a problem in whicki € X = {1, 2, 3} and the conditional distributions

take the form
0 — |8 1999 1 1 — |1 1 1
fia) = 10 10000 10000 and f*(z) = [5 3 5} ‘

. - s e
Suppose that the prior probabilities are= 5 and=’ = =2, and that the cost for each

e — 1
sample isc = 5.
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If we restrict to binary quantizers (i.e4 = {0,1}), by the symmetric roles of the

output alphabets there are only three possible deterministic quantizers:

1. Design A:¢a(X,) = 0 < X, = 1. As aresult, the corresponding distribution

for U, is specified byf) (u,) = [3 1] andf}, (u) =[5 3].

2. Design B:¢p(X,) =0 < X, € {1,2}. The corresponding distribution fa,
is given by f9_(u) = [s5ees o005) @nd f;, (u) = [2 3.
3. Design C:¢c(X,,) = 0 < X, € {1,3}. The corresponding distribution far,

is specified byffgc ~ S0 ] andf(;c (u) = [2 4].

Now consider the three stationary strategies, each of which uses only one fixed design, A, B
or C. For any given stationary quantization rglewe have a classical centralized sequen-
tial problem, for which the optimal cost (achieved by a sequential probability ratio test)
can be computed using a dynamic-programming procefiveéd and Wolfowitz, 1948
Arrow et al,, 1949. Accordingly, for each stationary strategy, we compute the optimal cost
function J for 10° points on thep-axis by performing 300 updates of Bellman’s equation
(cf. [Bertsekas, 199%3n In all cases, the difference in cost between the 299th and 300th
updates is less tham—°. Let.J 4, .Jz and.J denote the optimal cost function for sequential
tests using all A's, all B’s, and all C’s, respectively. When evaluated'at 0.08, these
computations yield/4, = 0.0567, Jg = 0.0532 and.J- = 0.08.

Finally, we consider a non-stationary rule obtained by applying design A for only the
first sample, and applying design B for the remaining samples. Again using Bellman’s

equation, we find that the cost for this design is

J, = min{min{r', 1 — 7'}, ¢ + Jp(P(H = 1|u; = 0))P(u; = 0)+
Jp(P(H = 1ju; = 1))P(uy = 1)} = 0.052767,

which is better than any of the stationary strategies.
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In this particular example, the cogt of the non-stationary quantizer yields a slim
improvement (0.0004) over the best stationary tgle This slim margin is due in part to
the choice of a small per-sample cest 0.01; however, larger values efdo not yield
counterexample when using the particular distributions specified above. A more significant
factor is that our non-stationary rule differs from the optimal stationary Rilenly in
its treatment of the first sample. This fact suggests that one might achieve better cost by
alternating between using design A and design B on the odd and even samples, respectively.

Our analysis of the asymptotic setting in the next section confirms this intuition.

5.4.2 Asymptotic suboptimality for both deterministic and ran-

domized quantizers

We now prove that in a broad class of examples, there is a range of prior probabilities for
which stationary quantizer designs are suboptimal. Our result stems from the following
observation: Lemma.1implies that in order to achieve a small cost we need to choose a
quantizery for which the KL divergenceg?, := D(fJ||f,;) andu) := D(f}]| f3) are both

as large as possible. Due to the asymmetry of the KL divergence, however, these maxima
are not necessarily achieved by a single quantiz&rhis suggests that one could improve
upon stationary designs applying different quantizers to different samples, as the following

lemma shows.

Lemma 5.2. Let¢; and ¢, be any two quantizers. If the following inequalities hold

,ug)l < ,u2>2 andu;51 > ,ué)z (5.13)
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then there exists a non-empty interyal V') C (0, +o00) such that ag: — 0,

[e=]

« . . e T
‘]¢>1 < J¢17¢2 < Jd>2 if F <U
0
* . * * — . m
o100 < mln{J¢1, J¢2} —O(clogc™) if - e (U, V)
* * * : 71'0
‘]¢>1 2 J¢17¢2 2 Jd>2 if F >V,

whereJ; , denotes the optimal cost of a sequential test that alternates betweengysing

and ¢, on odd and even samples respectively.

Proof: According to Lemmé.1, we have

w0 ol
Jy, = (—O + —1)clog c (14 0(1), i=0,1. (5.14)
Ko, Hg,

Now consider the sequential test that applies quantizeend ¢, alternately to odd and
even samples. Furthermore, let this test consider two samples at a tinf@i&eandfgm
denote the induced conditional probability distributions, jointly on the odd-even pairs of
guantized variables. From the additivity of the KL divergence and assumptidd,(there
holds:

D(folFhron) = 1o + 13, > 2018, (5.15a)

D(f3 o\l fen) = mh + 1y, < 20}, (5.15b)

Clearly, the cost of the proposed sequential test is an upper boudg for. Furthermore,
the gap between this upper bound and the true optimal cost is no mor&tharHence,

as in the proof of Lemma.1, asc — 0, the optimal cost/; , can be written as

270 27t
( 5 T o T T )clogc_l(l—i—o(l)). (5.16)
'u¢>1+’u¢>2 Foy T Hg,
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From equationsH.14) and 6.16), simple calculations yield the claim with

’ugl(’ué)l _“éh)('ugl +'u2>2> <V = Mgm(#él _'uéz)('ugn +”%2)

U =
Mél('uél_l_uéz)(ugz_'ugl) 'uém(ﬂél—{_”}bz)('ugz_”gﬁl)

: (5.17)

O
Example: Let us return to the example provided in the previous section. Note that the
two quantizersp, and ¢5 satisfy assumption5(13, since D(f9 [|f1 ) = 0.4045 <
D(f9,11f1,) = 0.45 and D(fL ||f3,) = 24337 > D(f} ||f9,) = 0.5108. Further-
more, both quantizers dominatgs in terms of KL divergencesD(f;_||f,..) = 0.0438,
D(f3.11f5.) = 0.0488. As a result, there exist a range of priors for which a sequential test

using stationary quantizer design (eitlter, ¢z or ¢ for all samples) is not optimal.

Theorem 5.3. Suppose thab is a finite collection of quantizers, and that there is no single

guantizere that dominates all other quantizers dnin the sense that
py > pg and py > py forall ¢ € @. (5.18)

Then there exists a non-empty range of prior probabilities for which no stationary design

based on a quantizer i is optimal.

Proof. Since there are a finite number of quantizer®iand no quantizer dominates all
others, the interva(0, oo) is divided into at least two adjacent non-empty intervals, each
of which corresponds to a range of prior probability ratidg=' for which a quantizer

is strictly optimal (asymptotically) among all stationary designs. Let therfvhe) and

(8, d2), for two quantizers, namelyy; and¢,. In particular,s is the value forr® /7! for
which the sequential cost coefficients are equal—@z. = G 4,—which happens only if

assumptiong.13 holds. Some calculations verify that

0 ,,0 1 1
_ Hoy Moy (o, — Hoy)

) .
1 1 0 0
M¢1#¢2(M¢1 _N¢2)

(5.19)
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By Lemmab.2, a non-stationary design by alternating betweemnd ¢, has smaller se-
quential cost than both;, and¢, for 7°/x! € (U, V), whereU andV are given in equa-
tion (5.17). Since it can be verified thatas defined§.19 belongs to the intervall, V),

we conclude that for? /=* € (U, V) N (41, d2), this non-stationary design has smaller cost

than any stationary design using= ®. ]
Remarks:

1. Suppose that> is restricted a finite class of deterministic quantizers with binary
outputs. By the second remark following Lemisd, it follows that stationary ran-

domized quantizers are not optimal under the assumptions of Thé&oBm

2. It is interesting to contrast the Bayesian formulation of the problem of quantizer
design with the Neyman-Pearson formulation. Our results on the suboptimality of
stationary quantizer design in the Bayesian formulation repose on the asymmetry of
the Kullback-Leibler divergence, as well as the sensitivity of the optimal quantizers
on the prior probability. We note that Méiei, 2003 (see p. 58) considered the
Neyman-Pearson formulation of this problem. In this formulation, it can be shown
that for all sequential tests for which the type 1 and type 2 errors are bounded by
a and 3, respectively, then as + 5 — 0, the expected stopping tini&, N under
hypothesisH = 0 is asymptotically minimized by applying a stationary quantizer
¢* that maximizesD(fJ||f;). Similarly, the expected stopping tini&, N' under
hypothesisH = 1 is asymptotically minimized by the stationary quantizét that
maximizesD(f,f3) [Mei, 2003. In this context, the example in secti@4.1
provides a case in which the asymptotically minimal KL divergengesind ¢**
are not the same, due to the asymmetry, which suggests that there may not exist a

stationary quantizer that simultaneously minimizes @t andEq,N.
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5.4.3 Asymptotic suboptimality in multiple sensor setting

Our analysis thus far has established that with a single sensor per timel step)( ap-
plying multiple quantizers to different samples can reduce the sequential cost. It is natural
to ask whether the same phenomenon persists in the case of multiple sénsoti3. (In
this section, we show that the phenomenon does indeed carry over, more specifically by
providing an example in which stationary strategies are still sub-optimal in comparison to
non-stationary ones. The key insight is that we have only a fixed number of dimensions,
whereas ag — 0 we are allowed to take more samples, and each sample can act as an
extra dimension, providing more flexibility for non-stationary strategies.

Suppose that the observation vectgy at timen is d-dimensional, with each compo-
nent corresponding to a sensor in a typical decentralized setting. Suppose that the observa-
tions from each sensor are assumed to be independent and identically distributed according
to the conditional distributions defined in our earlier example (see sesdol). Of inter-
est are the optimal deterministic binary quantizer designs fet sdinsors. Although there
are three possible choices, ¢z and¢¢ for each sensor, the quantiz&r is dominated by
the other two, so each sensor should choose efthend¢z. Suppose that among these
sensors, a subset of sizehoosep, and whereas the remaininlg— ¢ sensors choosgs
for 0 < k < d. We thus havel + 1 possible stationary designs to consider. For gatie

sequential cost coefficient corresponding to the associated stationary design takes the form

0 mt

= + .
g, +(d =g, tug, +(d =)y,

Now consider the following non-stationary design: the first sensor alternates between

G : (5.20)

decision rulesy4 and¢g, while the remainingl — 1 sensors simply apply the stationary

design based ong. For this design, the associated sequential cost coefficient is given by

279 ort

G = + .
Ho, +(2d =Dy, pg, + (2 = Dpg,

(5.21)
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Consider the intervglU, V'), where the interval has endpoints

o= W — i, ) (g, + (2d — D )i,
(1, — pg,) (g + (2d — D)pg Y
(s, — by, (1, + (2d — 1)l ) (g, + (d — 1))

(1, — g ) (s, + (2d — D)pg ) (g, +(d— 1))

V=

(5.22)

Sincepy, , > ug,, andug >, straightforward calculations yield that for any prior like-
larger than the sequential castof the non-stationary design, previously defined in equa-
tion (5.21).

5.5 On asymptotically optimal blockwise stationary

designs

Despite the possible loss in optimality, it is useful to consider some form of stationarity in
order to reduce computational complexity of the optimization and decision process. In this
section, we consider the class ldbckwise stationarylesigns, meaning that there exists
some natural numbé@r such thatvr, 1 = ¢1, ¢r 2 = @2, and so on. For each, let Cr de-
note the class of all blockwise stationary designs with pefiote assume throughout the
analysis that each decision rupe (n = 1,...,7T) satisfies conditions5(10 and 6.17).
Thus, adl’ increases, we have a hierarchy of increasingly rich quantizer classes that will be
seen to yield progressively better approximations to the optimal solution.

For a fixed prior(z°,7') andT > 0, let (¢1,...,¢r) denote a quantizer design in

Cr. As before, the cost; of an asymptotically optimal sequential test using this quantizer
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design is of ordet log ¢~* with the sequential cost coefficient

Tr° Trt

Gy = + .
R

(5.23)

G is a function of the vector of probabilities introduced by the quantizg$(.), f;(.)).
We are interested in the properties of a quantizationguteat minimizesJ;.

It is well known[Tsitsiklis, 1986 that optimal quantizerswhen unrestricted-can be
expressed as threshold rules based on the log likelihood ratio (LLR). Our counterexamples
in the previous sectionimply that the thresholds need not be stationary (i.e., the threshold
may differ from sample to sample). In the remainder of this section, we addresses a par-
tial converse to this issue: specifically, if we restrict ourselves to stationary (or blockwise
stationary) quantizer designs, then there exists an optimal design consisting of LLR-based
threshold rules.

In the analysis to follow, it is sufficient to assurfie= 1 so as to simplify the exposition.

Our main result, stated below as TheorBri, provides a characterization of the optimal
quantizerpy, denoted more simply by*. ForT > 1, due to the symmetry in the roles of
individual quantizer functionsy,,, forn = 1,..., T, result can be obtained by proving for
eachn while the quantizer rules for other time steps in the period remain fixed. Indeed,
fixing the rules for other time steps except fo= 1, the sequential cost coefficient has the

form:
B Tr0 n Tl
Ho, +do g, +dy

Gy

for some non-negative constanrksandd;. It can be verified that our proof for the case
T = 1, which corresponds i@, = d; = 0, can be extended to the general casé,ofl; > 0

in a straightforward manner.

Definition 5.4. The quantizer design function: X — U is said to be dikelihood ratio

threshold ruldf there are thresholdgdy, = —co < d; < ... < dg = 400, and a permu-
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tation (uq,...,ux) of (0,1,..., K — 1) such that forl = 1,..., K, with Py-probability 1,
we have:
O(X) =w if diy < f1(X)/fU(X) < di

Whenf!(X)/f%(X) = d;_y, setd(X) = u;_; or ¢(X) = u; with Py-probability 12

Previous work on the extremal properties of likelihood ratio based quantizers guaran-
tees that the Kullback-Leibler divergence is maximized by a LLR-based qualfiziegik-
lis, 19934. In our case, however, the sequential cost coefficigninvolves a pair of KL
divergences#g and Mé, which are related to one another in a nontrivial manner. Hence,
establishing asymptotic optimality of LLR-based rules for this cost function does not fol-
low from existing results, but rather requires further understanding of the interplay between
these two KL divergences.

The following lemma concerns certain “unnormalized” variants of the Kullback-Leibler
(KL) divergence. Given vectors = (ag, a;) andb = (b, by ), we define function®® and

D' mapping fromR? to the real line as follows:

_ b

D°®a,b) = aglog 22 + bylog 2 (5.243)
aq b1

_ b

DYa,b) = ailog ™+ bilog 2. (5.24b)
Qo bo

These functions are related to the standard (normalized) KL divergence via the relations
D%a,1—a) = D(ag,a,), andD(a,1 — a) = D(ay, ap).

Lemma 5.5. For any positive scalars, by, ¢1, ag, by, o Such thatg—(l) < Z—é < i—; at least

2This last requirement of the definition is termed ttanonicallikelihood ratio quantizer by Tsitsik-
lis [Tsitsiklis, 19934 Although one could consider performing additional randomization when there are ties,
our later results (in particular, Lemn3a7) establish that in this case, randomization will not further decrease
the optimal cost/;.
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oneof the two following conditions must hold:

D°a,b+¢) > D°b,c+a) and Da,b+c) > D°(b,c+a), or (5.25a)

D°c,a+b)>Db,c+a) and D'(c,a+b) > D°b,c+a). (5.25b)

This lemma implies that under certain conditions on the ordering of the probability
ratios, one can increag®th KL divergences by re-quantizing. This insight is used in the
following lemma to establish that the optimal quantizdsehaves almost like a likelihood
ratio rule. To state the result, recall that #ssential supremura the infimum of the set of

all n such thatf(x) < n for Py-almost allz in the domain, for a measurable functign

Lemma 5.6. If ¢ is an asymptotically optimal quantizer, then for all pairs,, us) € U,

uy # us, there holds:

£ () ) ()
Fotw) © <¢<“>f @) s f“(as))'

Note that a likelihood ratio rule guarantees something strongerPfatmost allx
such thats(z) = uy, f1(x)/f°(x) takes a value either to the left or to the right, but not to
both sides, of the interval specified above. As we shall show, the proof that there exists an
optimal LLR-based rule turns out to reduce to the problem of showing that the sequential
cost coefficient’7, is a quasiconcaveunction with respect td fJ(.), f;(.)). Since the
minima of a quasiconcave function are extreme points of the function’s dofBaiyd
and Vandenberghe, 200)4and the extreme points in the quantizer space are LLR-based
rules [Tsitsiklis, 19934 we deduce that there exists an optimal quantizer that is LLR-
based.

Lemmab.7 stated below guarantees quasiconcavity for the case of binary quantizers.

179



Chapter 5. Decentralized sequential detection

To state the result, €t : [0,1]> — R be given by

Co 4 C1
D(ao,al) +d0 D(al,ao) +d1

F(CL(), al) = (526)

Lemma 5.7. For any non-negative constantg, ¢, dy, di, the functionF’ defined in(5.26)

IS quasiconcave.

We provide a proof of this result in the Appendix. An immediate consequence of
Lemmab.7 that LLR-based quantizers exists for the class of randomized quantizers with
binary outputs. It turns out that the same statement can also be proved for deterministic

guantizers with arbitrary output alphabets:

Theorem 5.8. Restricting to the class of (blockwise) stationary and deterministic decision
rules, then there exists an asymptotically optimal quantizehat is a likelihood ratio

threshold rule.

We present the full proof of this theorem in the Appen8ik. The proof exploits both

Lemma5.6and Lemméab.7.

5.6 Discussions

In this chapter, we have considered the problem of sequential decentralized detection. More
specifically, focusing on the case of quantization rules with neither memory nor feedback,
we have analyzed the (sub)-optimality of stationary quantizer designs. For quantizers with
neither local memory nor feedback (Case A in the taxonomy of Veeravalli [ateadravalli

etal, 1993), we have established that stationary designs are not optimal in general. More-
over, we have shown that in the asymptotic setting (i.e., when the cost per sample goes to
zero), there is a class of problems for which there exists a range of prior probabilities over

which stationary strategies are suboptimal.
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Chapter 5. Decentralized sequential detection

There are a number of open questions raised by the analysis in this chapter. First,
our analysis has shown only that the best stationary rule from finite sets of deterministic
guantizers need not be optimal. Is there a corresponding example with an infinite number of
deterministic stationary quantizer designs for which none is optimal? Second, The&rem
establishes the optimality of likelihood ratio rules for randomized decision rules based
on binary outputs. Is the sequential cost coeffici@ptalso a quasiconcave function for
guantizers other than binary ones? Such quasiconcavity would establish the validity of

Theoremb.8for the general class of randomized quantizers.
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Appendix 5.A Dynamic-programming
characterization

In this appendix, we describe how the optimal solution of the sequential decision problem
can be characterized recursively using dynamic programming (DP) arguf@erdss et

al., 1949 Wald and Wolfowitz, 194B We assume that;, X,, ... are independent but not
identically distributed conditioned oH. We use subscript in f°(x) and f!(z) to denote

the probability mass (or density) function conditioned/n= 0 and H = 1, respectively.

It has been shown that the sufficient statistic for the DP analysis is the posterior probability

pn = P(H = 1|X4,...,X,), which can be updated as by:

pnfrlz—o—l (Xn-‘rl)
pnf%—kl(Xn—i-l) + (1 - pn)fv(z)—kl(Xn-irl).

1. _
Po=T"3Pnt1 =

Finite horizon: First, let us restrict the stopping tini€ to a finite interval0, 7'] for some
T. At each time step, defineJ ' (p,) to be the minimum expected cost-to-go. A= T,

it is easily seen that

J%(pT) = g(pr),

whereg(p) := min{p, 1 — p}. In addition, the optimal decision functionat time stef’’,
which is a function ofr, has the following formx(pr) = 1 if p > 1/2 and 0 otherwise.

For0 <n < T — 1, a standard DP argument gives the following backward recursion:

JL (pn) = min{g(p,), c + AL (pa)},

where

Ag@n) = E{Jg+1<pn+l)‘Xla cee aXn} = Z JE-H(pn—i—l)(pnfi-u(xn+l)+(1_pn)fn0+1(33n+1))-

Tn+1
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The decision whether to stop dependgnif g(p,) < ¢+ AL (p,), there is no additional
benefit of making one more observation, thus we stop. The final decigigh takes value

1if p, > 1/2 and0 otherwise. The overall optimal cost function for the sequential test just
described is/{ .

It is known that the functiong” and A7 are concave and continuous jirthat take
value 0 wherp = 0 andp = 1 [Arrow et al, 1949. Furthermore, the optimal region for
which we decideH = 1 is a convex set that contaips = 1, and the optimal region for
which we decidelf = 0 is a convex set that contaips = 0. Hence, we stop as soon as
eitherp, < p}! orp, > p;, for some0 < p; < p, . This corresponds to a likelihood ratio
test: For some thresholg, < 0 < b,,, let:

(2

fil(X'
FX

< ayorL,>b,}. (5.27)

7

N =inf{n > 1|L, := Zlog ;
i=1

Sety(Ly) = 1if L, > b, and 0 otherwise.

Infinite horizon: The original problem is solved by relaxing the restriction that the stop-
ping time is bounded by a constdhft LettingT — oo, for eachn, the optimal expected
cost-to-goJ! (p,) decreases and tends to a limit denoted/ly,) := limy . J,,(pn)-

Note that sinceX;, X5, ... are i.i.d. conditionally on a hypothesis, the two functions
JT(p) andJ ! (p) are equivalent. As a result, by letttiffiy— oo, J,,(p) independent of:
and can be denoted d$p). A similar time-shift argument also yields that the cost function
limr_. AL (p) is independent ofi. We denote this limit byA(p). It is then easily seen
that the optimal stopping timé&’ is a likelihood ratio test where the thresholgsandb,,
are independent of. We usea to denote the former andthe latter. The functiond(p)

andA(p) are related by the following Bellman equatif®ertsekas, 199%a
J(p) = min{g(p),c+ A(p)} forallp € [0,1]. (5.28)
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(bl — bo)/l)l ]. — b(] ap
Figure 5.1: lllustration of the domaim.

The cost of the optimal sequential test of the problepi(is, ).

Appendix 5.B Proof of Lemma 5.5

By renormalizing, we can assume w.l.0o.g. that+ b; + ¢; = ag + by + ¢g = 1. Also
w.l.o.g, assume that > b,. Thus,c; > ¢y anda; < ag. Replacinge; = 1 — a7 — b and
co = 1 —ag — by, the inequalitye; /¢y > by /by IS equivalent tay; < agby /by — (by — by) /bo.

We fix values ob, and consider varying € A, whereA denotes the domain fdu,, a,)
governed by the following equality and inequality constraifts: a; < 1 —by; 0 < ag <
1—by; a; < agand

ay < agby /by — (b1 — bo)/bo. (5.29)

Note that the third constraint is redundant due to the other three constraints. In particular,
constraint $.29 corresponds to a line passing through — b,)/b,,0) and(1 — by, 1 —b;)

in the (ao, a;) coordinates. As a resuld is the interior of the triangle defined by this line

and two other lines given by, = 0 anday = 1 — b, (see Figuré.B).

It is straightforward to check that boih°(a, 1 — a) and D' (a, 1 — a) are convex func-

tions with respect tdao, a;). In addition, the derivatives with respectipare4.=%~ < (

ai1(l1—ar)
ai(l—ap)

andlog aoli—a) < 0, respectively. Hence, both functions can be (strictly) bounded from

184



Chapter 5. Decentralized sequential detection

below by increasing:;; while keepinga, unchanged, i.e., by replacing by a} so that
(ap, a}) lies on the line given byH.29), which is equivalent to the constraint/ ¢y = by /bo.
Letc’l =1-—0b — CL’l, thencll/Co = bl/bg.

We have

(@) al by + ¢}

DO b " log —L b AR 5.30a
(CL, +C) ay Oga0+( 1+Cl) Ogb0+Co ( )
/ /
b

® ay log 4 + ) log a + 01 log = (5.30Db)

Qo Co bo

(© al + ¢ by
S / V1 1 1 by log — 5.30c
> (ay+ ) Oga0+00+ 1 Ogbo ( )

where inequality (c) follows from an application of the log-sum inequdk@ypver and

Thomas, 19911 A similar conclusion holds fob!(a, b + ¢) as well.

Appendix 5.C Proof of Lemma 5.6

Suppose the opposite is true, that there exist twosgtS; with positivelP,-measure such
thato(X) = uy forany X € S; U S,, and

< < . (5.31)

By reassigningS; or S, to the quantileu;, we are guaranteed to have a new quantiZer
such thatug, > pg. andpug, > ., thanks to Lemm&.5. As a result,y’ has a smaller

sequential cosf},, which is a contradiction.
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Appendix 5.0 Proof of Lemma 5.7

The proof of this lemma is conceptually straightforward, but the algebra is involved. To
simplify the notation, we replaag by x, a; by y, the functionD(ay, a;) by f(z,y), and the
function D(a4, ag) by g(x,y). Finally, we assume thak = d; = 0; the proof will reveal
that this case is sufficient to establish the more general result with arbitrary non-negative
scalarsi, andd; .

We havef (z,y) = xlog(z/y) + (1 — z)log(l — x/1 —y) andg(z, y) = ylog(y/z) +
(1—-y)log(1—y/1—x). Note that bothf andg are convex functions and are non-negative
in their domains, and moreover that we haver, y) = ¢/ f(z,y) + ¢1/g(z,y). In order
to establish the quasiconcavity Bf it suffices to show that for anyt, y) in the domain of

F, whenever vectoh = [hg h;] € R? such thati” VF(x,y) = 0, there holds
hI'V2F(z,y) h < 0. (5.32)

Here we adopt the standard notationNof” for the gradient vector of’, and V2 F for its
Hessian matrix. We also uge to denote the partial derivative with respect to variahle

F,, to denote the partial derivative with respect:tandy, and so on.

We haveV F = —Cof—vgf — Clg#. Thus, it suffices to prove relatios.B2) for vectors of
the form
T
h=[(-sh ) ()]
It is convenient to writeh = cyvy + civ1, Wherevy, = [—f,/f*  f./f?" andv; =

[~9,/9% 92/9°]"

The Hessian matriX’2F' can be written a&?F = coH, + coH;, where

i fzxf_zfg? fwyf_2f:c.fy

Hy— —
S R Y
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and

= L[ 9e09 =295 9n9 = 2020,

3
9L Goyg — 2929y Gyy9 — 29,

Now observe that
th2Fh = (C()UO —+ Clvl)T<CgH() + ClHl)(C(ﬂ)g + 011)1),

which can be simplified to

V2 Fh = vl Hyvo+cvl Hyvy+cier (208 Hovy+ol Hyvg)+eoc (2ug Hyvi+vl Houy).

This function is a polynomial iy andc;, which are restricted to be non-negative scalars.
Therefore, it suffices to prove that all the coefficients of this polynomial (with respegt to

andc,;) are non-positive. In particular, we shall show that
® UgHQUO <0, and
(ll) QU(Z;H()Ul + UgHﬂ)O S 0.

The non-positivity of the other two coefficients follows from entirely analogous arguments.

First, some straightforward algebra shows that inequality (i) is equivalent to the relation

foaly + Foyfe = 2fufyfay

But note thatf is a convex function, s@,, f,, > §y. Hence, we have

@ ®)
Frafo + fou 2 2 28/ Foafyyfofy 2 2fufyfuy,

thereby proving (i). (In this argument, inequality (a) follows from the fact tHat »*> >

2ab, whereas inequality (b) follows from the convexity f)
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Regarding (ii), some further algebra reduces it to the inequality
G1+Gy—G3 >0, (5.33)

where

Gi = 2(fy9yfox + fo0ulfyy — (fyGx + f20y) fay),
G2 - f;gacr + f;?gyy - Qfxfygacya
Gz = S(fygm - fzgy)2~

At this point in the proof, we need to exploit specific information about the functfons
andg, which are defined in terms of KL divergences. To simplify notation, we tetz /y

andv = (1 — z)/(1 — y). Computing derivatives, we have

(z,y) = log(z/y) —log((1 —z)/(1—y)) = log(u/v),
fulwy) = 1-2)/(1-y)—z/y=v—u,

(z,y) = A-y)/A-=)—y/z=1/v-1/u,

(z,y) = log(y/z) —log((1 —y)/(1 —z)) = log(v/u),

L ! 1-y y 1
1 1 ey Ly
Vif(z,y) = f”(lflz) vI-9) | andV2g(z,y) = (1—:c)21 22 x(ll—x)
e T Yy

Noting thatf, = —g,; Gzy = — fox; foy = —9yy, We see that equatiod 33 is equivalent

to

W fogoty + Fo0e0wy) — P2y + Fo00e > §<fygx ~fa)’. (5:34)

188



Chapter 5. Decentralized sequential detection

To simplify the algebra further, we shall make use of the inequélity?®)? < (t — 1/t)?,

which is valid for anyt. This implies that
fo9e = (w—u)(1/v—1/u) < fogy, = —(log(u/v))* = —f2 = _95 <0.

Thusa_fg?gyy > fyga:gyy1 and%(fygx - fxgy)2 < %fyga:(fygx - fzgy)' As a I’ESU“, 534)
would follow if we can show that

2
2(fmgacfyy + fygwgyy) + fyg:vgyy + f;g:m > Efygz(fygz - fmgy)‘

For allz # y, we may divide both sides by f,(z, v)g.(z,y) > 0. Consequently, it suffices

to show that:

_Qfxfyy/fy - fygz’x/g:c - 3gyy 2 g(fxgy - gxfy)a

or, equivalently,

210g(u/v)<ﬁ+ 1fv)+<1fx +%) = y(l?’_y) > 3(@;:)2 —(log%)2),

or, equivalently,

(u—v)(ut+v—1) (u—2)*(u+v—4duw) _ 2 [ (u—v)? U,
2log(u/v) (u—1)(1—-v) * wo(u —1)(1 —v) ZE( uv —(log;)).

(5.35)
Due to the symmetry, it suffices to prove. 85 for x < y. In particular, we shall use the

following inequality for logarithm meafMitrinovic et al., 1993, which holds foru # v:

3 - logu — logw - 1
2y/uv + (u+v)/2 u—v (uwo(u+v)/2)1/3°

We shall replacé"i(_Lé”) in (5.35 by appropriate upper and lower bounds. In addition, we

shall also bound(z, y) from below, using the following argument. When< y, we have
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u<1<wv,and

gla,y) = ylog+(1-y)log 1:31
- 3y(y — x) (1—y)(z—y)
2y + (@ +y)/2  [(1-2)1-y)d - (z+y)/2]/?
3(1—v)(1—w) (u—1)(1 —v)

= + > 0.

(u—v)2vVu+)  (u—v)(v(v+1)/2)1?

Let us denote this lower bound lgyu, v).

Having got rid of the logarithm terms5 35 will hold if we can prove the following:

6(u—v)*(u+v—1) N (u —v)?*(u+ v — 4duw)
(2y/uv + (u+v)/2)(u —1)(1 — v) wo(u —1)(1 —v)
2 ((u —v)? 9(u —v)?

q(u,v) w (2y/uv + (u+v)/2)2)’ (5.36)

or equivalently,

< 6(u+v—1) +(u—|—v—4uv))< 3 1 )
vt wro) T w 0 we it 5 (- @t D2

1 9
=2~ o) 6

which is equivalent to

(u + v — 2v/u) (v +v) /2 + 3y/uv + duv)  3(v(v+1)/2)Y3 — (2y/u+ (u+1)/2)

(v + (u+ )/ Duv (0 — W)@+ (a+ D/2)(v+ 1)/2)17
(u+v—2yuw)((u+v)/2+ 5y/uv)
= uv(2y/uv + (u +v)/2)? (5.38)
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and also equivalent to

((u+v)/2 4+ 2y/uv)((u+v) /2 + 3v/uv + 4uv)[3(v(v +1)/2)* — (2v/u + (u +1)/2)]
> (2vu + (u+1)/2)(v(v + 1)/2)Y3((u +v) /2 + 5v/aw) (v — ) (5.39)

It can be checked by tedious but straightforward calculus that inequal®g) (holds

foranyu <1 < v, and equality holds whemn =1 = v, i.e.,xz = .

Appendix 5.E  Proof of Theorem 5.8

Suppose that is not a likelihood ratio rule. Then there exist positieprobability disjoint

setsSy, Ss, S3 such that for anyX; € Sy, X, € Sy, X3 € S5,

Define the probability of the quantiles as:

FO(ur) :=Po(A(X) =u1), and fO(usg) :=Po(p(X) = ug),
fHur) =Pi(d(X) =u1), and f'(uz) :=P1(¢(X) = ug).

Similarly, for the setsS, S, andS3, we define

ag — fO(Sl), bo = f0<52> and Co — f0<55>7
ap = fl(Sl), b1 = fl(SQ)7 and c1 = f1<53)
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Finally, letpo, p1, go andg; denote the probability measures of the “residuals”

Po = fo(u2)—b07 n = fl(u2)—bh

9 = fo(u1>_a0_007 g1 = fl(u1)—a1—01-

Note that we havél—1 < Z—; < i—; In addition, the set§1 and S; were chosen so that

ap — qo — Po+bo fo uz) ag’ co

a <4< 4 From Lemmeb.6, there holdgitls — Jo(u2) g(a—l c—l). We may assume

without loss of generality thaﬁ#‘1 < 4. Then, gl)jz(l) < g, soft < 51121 Overall, we

are guaranteed to have the orderlng

b b
DLbito oo 4 (5.41)
Do po +bo ~ap by <o

Our strategy will be to modify the quantizeéronly for thoseX for which ¢(X) takes
the valuesu; or u,, such that the resulting quantizer is defined by a LLR-based threshold,
and has a smaller (or equal) value of the correspondingtiostor simplicity in notation,
we useA to denote the set with measures uniigrandP; equal toay, anday; the sets
B, C, P andQ are defined in an analogous manner. We begin by observing that we have
elther“; < ;“iil < bl or bl < Zliz(ﬁ < . Thus, in our subsequent manipulation of sets,
we always bundle) W|th eltherA or C accordingly without changing the ordering of the
probability ratios. Without loss of generality, then, we may disregard the corresponding
residual set corresponding @in the analysis to follow.

In the remainder of the proof, we shall show that either one of the following two modi-

fications of the quantizes will improve (decrease) the sequential cdgt
(i) Assign.A, B andC to the same quantization leve|, and leaveP to the leveh,, or
(i) AssignP, A andB to the same leval,, and leave: to the levelu;.
It is clear that this modified quantizer design respects the likelihood ratio rule for the quan-
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tization indicesu; andus. By repeated application of this modification for every such pair,
we are guaranteed to arrive at a likelihood ratio quantizer that is optimal, thereby complet-
ing the proof.

Letay, by, ¢, pp be normalized versions af, by, ¢y, po, respectively (i.e4y = ao/(po+
ap + by + co), and so on). Similarly, let}, b}, ¢}, p; be normalized versions af, by, ¢, p1,

respectively. With this notation, we have the relations

+0b +
/‘Sﬁ = u7§m fO(u)log EZ; + (po + bo) log ?1) n b(l) + (ag + co) log Z? n 2(1)
0 0 / / po + by / / ag + ¢g
= Ao+ (flu )+f°( 2))DO(p + ¥, d + ),
1= Z fH(u)lo <)+( +b1)lo pl+bl+(a +cp)lo hta
Md) N UFUL U2 g (U) " : gpo +bo ' ' gao +CO
= Av+ () + fH(u2)) D' + ¥, + ),
where we define
— 0 f (U) 0 0 O(ur) + fO(usg)
= 1) fHun) + [ (ug)
A s 2 Plos e+ )+ fl) s ey 20

uFUL U2
due to the non-negativity of the KL divergences.
Note that from $.41) we have

7 m+m<¢ b

Py Pytby Tay by

in addition to the normalization constraints thgt- aj + b, + ¢, = p} +ay + b} +¢) = 1.
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P} +b] pi+al+byj+cf
It follows that Pt < Pormiod = 1.

Let us consider varying the valuesdf v/, while fixing all other variables and ensuring
that all the above constraints hold. Theh,+ ¥, is constant, and both®(p’ 4+ ¥/, a’ + ¢)
and Dl(p’ +V,d + ) increase a$, decreases ang, increases. In other words, if we
definea; = aj, by = b, anda] andb! such that

al b 1-ph—d
ay by 1—py—cy’

then we have
bo(p’+b/,a’—0—c’) S ZN)O(p/—Q—b”,a”—O—c/) andbl(p/—i—b/,a/—l—c/) S Dl(p/—b—b”,a”—l—c/). (5.42)

Now note that vectofb, b/) in R? is a convex combination @f), 0) and(afj + b{j, a] +
bY). It follows that(pf, + by, py + b) is a convex combination dfy, p}) and(p, + aj +
0,01+ ai +07) = (ph + ag + by, Py + @y + by).
By (5.42 we have:

7T0 ’/T1
G, = — 4+
AT
7T0 7T1
T Aot (FOlu) + ) DO Va ) Ayt () + S ) DU+ Y+ )
7T0 71'1
= Aot () + P DO TV a" + ) | A+ (P ) + S (wa) DA £ B 1)
’/TO 7T1
= Aot (OTun) + FO(u2)) Dy + 5o ph 1 07) At (F () + T () Do + Oy + 05
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Now, by the quasiconcavity result in Lemr&,

70 mt

Ao+ (F(ur) + F(u)) Doy ph) v+ (' (ur) + F () D0 )
7T0
Ag + (f°(ur) + [O(u2)) D(po + ag + by, py + ay + b))
1

Gy > min{

+

v
A+ (fHwr) + fLu2))D(p) + af + b, py + ag + bp) }

But the two arguments of the minimum in the final equation are the sequential cost coeffi-

cient corresponding to the two possible modifications.aflence, the proof is complete.
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Chapter 6

Estimation of divergence

functionals and the likelihood ratio

We present a novel M-estimation method for the divergence functionals and the density ra-
tios of two probability distributions. Our method is based on a non-asymptotic variational
characterization of -divergences, which turns the problem of estimating divergences to a
convex risk optimization. We present an analysis of consistency and convergence for our
estimator. Given conditions only on the ratios of densities, we show that our estimators can
achieve optimal minimax rates for the likelihood ratio in some regime. Finally, we present
an efficient optimization algorithm for our estimator and demonstrate its convergence be-

havior and practical viability by simulatioris.

6.1 Introduction

Given empirical samples from two (multivariate) probability distributidhand Q, we
are interested in estimating a divergence functional betviand Q. We consider in

particular Kullback-Leibler divergence, and then all divergences in the class of Ali-Silvey

IPart of this chapter has been publishe@Niguyenet al., 2007.

196



Chapter 6. Estimation of divergence functionals and the likelihood ratio

distance, also known a&divergence$Ali and Silvey, 1966 Csisz#, 1967. This family
of divergence, which shall be defined formally in the sequel, is of the yi{P, Q) =
[ ¢(dQ/dP)dP, whereg is a convex function of the likelihood ratit)/dP.

The divergences have a fundamental role as an objective to optimize in various data
analysis and learning tasks. Divergences are used as a measure to distinguish between
two hypotheses. In experiment design for binary hypothesis testing and classification ap-
plications, the experiments are designed so that the divergence between two underlying
hypothesis distributions are maximized. Problems of this type can be seen in signal selec-
tion [Kailath, 1961, decentralized detectidiNguyenet al, 2005¢ (see Chapted). An
important quantity in information theory, the Shanon mutual information, can be viewed
as a KL divergence. Mutual information is often used as a measure of independence to be
minimized such as in the problem of independent component andlygisrinenet al.,

2001]. If the divergences are to be used as objective functional in such tasks, one has to be
able to estimate them efficiently from empirical data.

There are two ways in which divergences can be characterized. Taking the KL diver-
gence in particular, in the Neyman-Pearson setting of a binary hypothesis testing problem,
the KL divergence emerges as the correct asympotic rate of the probability error, a result
known as Stein’s lemma. On the other hand, a non-asymptotic view of KL divergence
emerges through Fano’s lemma, which provide a lower bound for the error probability for
decoding/hypothesis test in terms of KL divergencel[€bver and Thomas, 1991 Note
that there are a multitude of results in the same vein for other divergences, due to statisti-
cians such as Craen, Chernoff, Le Cam, and othdrgan der Vaart, 1998

In this chapter, we shall present an estimation method that is motivated by a non-
asymptotic characterization gfdivergence that was explicated in Theorér@ Roughly
speaking, this theorem states that that there is a correspondence between the fgmily of
divergences and a family of losses such that the minimum risk is equal to the negative of

the divergence. In other words, any negatfirdivergence can serve as a lower bound of
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a risk minimization problem. While this result deals only with binary hypotheses (as op-
posed to Fano’s lemma) it goes significantly further than Fano’s lemma in that it covers a
whole class of losses and divergences. This correspondence provides what we shall call
avariational characterizatiorof divergence: One can write a divergenog(PP, Q) as the
maximum of an Bayes decision problem involving two hypothédesd Q. This char-
acterization is stated in Lemntal As a result, one can estimafe,(P, Q) by solving

the Bayes decision (maximization) problem. Not surprisingly, we show how the problem
of estimatingf-divergence is intrinsically linked to that of estimating the likelihood ratio

go = dP/dQ. As a result we obtain an/ estimator for the likelihood ratio, from which

one can obtain an estimation of the divergences by a plug-in procedure.

Our contributions are three-fold:

e We propose a novel/-estimator for the likelihood ratio and the family gfdiver-
gences based on a variational characterizatiofi-divergence as explained above.
Our estimation procedure is inherently nonparametric. We make no strong assump-

tion on the form of the densities f@randQ.

e We provide a consistency and convergence analysis for our estimators. For the anal-
ysis, we make assumptions on the boundedness adehsity ratio which can be
relaxed in some cases. The maximization procedure is cast over a whole function
classg of density ratio, thus our tool is based on results from the theory of empirical
processes. Our method of proof is based on the analysig-ektimation for non-
parametric density estimatigaan de Geer, 199%an der Vaart and Wellner, 19P6
The key issue essentially hinges on the modulus of continuity of the suprema of two
empirical processes (defined BrandQ measures) with respect to a metric defined
on the clasgj. This metric turns out to be a surrogate lower bound of a Bregman
divergence defined on a pair of density ratios. Our choice of metrics include the

Hellinger distance and, norm.

198



Chapter 6. Estimation of divergence functionals and the likelihood ratio

e We provide an efficient algorithm for our estimation procedure. In particular, we
approximates by a reproducing kernel Hilbert space given a positive definite kernel
function K (u,v) [Saitoh, 1988 We control the size of the function clagsby
introducing a penalty term for the RKHS norm @fc¢ G. The estimation problem
is converted into a convex optimization problem, which is then turned into a dual
form involving only the Gram matrix< (u;, v;), whereu, andv; are drawn from
eitherP or Q. This kernel-based method has been widely used in statistical learning
tasks[Schilkopf and Smola, 200 hawe-Taylor and Cristianini, 20D4Finally, we
demonstrate our estimator in a large number of simulation runs on a number of pairs

of probability distributions.

Several interesting properties of this estimator is worth highlighting.

e First, in terms of convergence rates. When the likehood matilies in a function
classG of smoothnessy with o > d/2, whered is the number of dimensions of
the data, our estimation of the likelihood ratio achieves the optimal minimax rate
n~—®/(2e+d) gccording to the Hellinger metric, and divergence estimator achieves the
same rate. It remains an open question what is the optimal minimax rate for the

divergence estimation.

e An obvious alternative approach to our problem would be to separately estimate the
densities for® andQQ and then use an appropriate plug-in estimator for the diver-
gences. As we shall see in our analysis, estimating directly the density ratio has sev-
eral distinct advantages. Firstly, from computational viewpoint, it is more efficient to
perform one estimation procedure instead of two. Comparing to an M-estimator for
density estimation (e.¢Silverman, 198D, there is no need to enforce the constraint
that the estimated function is a valid density. Secondly, from a statistical viewpoint,
we achieve the same estimation efficiency without making individual assumptions on

each density. Assumptions are made only on the density ratios.
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o Finally, if we use small function classésthat might not include the true likelihood
ratio, our estimator of the divergence has the property of being a lower bound of the

true divergence. This might provide additional useful information for a task in hand.

Related work. The variational representation of divergences has been derived inde-
pendently and exploited by several authiddsoniatowski and Keziou, 200&eziou, 2003
Nguyenet al, 2005¢. Broniatowski and Kezio{iBroniatowski and Keziou, 20Q94stud-
ied testing and estimation problems based on dual representatigihdieérgences, but
working in a parametric setting as opposed to the nonparametric framework considered
here. Nguyen et a[Nguyenet al, 2005¢ established a one-to-one correspondence be-
tween the family off-divergences and the family of surrogate loss functidertlett et
al., 2004, through which the (optimum) “surrogate risk” is equal to the negative of an as-
sociatedf-divergence. Another link is to the problem of estimating integral functionals of
a single density, with the Shannon entropy being a well-known example, which has been
studied extensively dating back to early wdtkragimov and Khasminskii, 1978&evit,

1979 as well as the more recent wolRickel and Ritov, 1988Birgé and Massart, 1995
Laurent, 1998 See alsdGyorfi and van der Meulen, 1983oe, 1989Hall and Morton,

1993 for the problem of (Shannon) entropy functional estimation. In another branch of
related work, Wang et alWanget al, 2003 proposed an algorithm for estimating the KL
divergence for continuous distributions, which exploits histogram-based estimation of the
likelihood ratio by building data-dependent partitions of equivalent (empirigat)easure.

The estimator was empirically shown to outperform direct plug-in methods, but no theoret-
ical results on its convergence rate were provided.

The chapter is organized as follows. In S62 we describe the variational charac-
terization of f-divergence in general and KL divergence in particular, followed by an M-
estimator for the KL divergence and the likelihood ratio. S&8and Sec6.4 are devoted

to the analysis of consistency and convergence rates of our estimators. 16.5e@
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describe our estimation method and the analysis in a more general light, encompassing
virtually all f-divergences. We also consider a general estimation framework based on the
delta method, assuming thas a differentiable function. Se6.7describe the optimization

in detail. In Sec6.9we present our simulation results.

6.2 M-estimators for KL divergence and the density

ratio

6.2.1 Variational characterization of  f-divergence

Let X,..., X, ben ii.d. random variables according to a distribut®nandY;,....,Y,

ben random variables according to a distributi@n We assume that is absolutely con-
tinuous with respect td), and both are absolutely continuous with respect to Lebesgue
measurg. with densitiesp, andg,, respectively, on some compact domainc R¢. The

Kullback-Leibler divergence betweé&hand(Q is defined as:

Dg(P,Q) = /po 1og% du.

The KL divergence is a special case of a broader class of divergences known as Ali-

Silvey distance, off-divergencedCsisz#, 1967 Ali and Silvey, 1966:

Dy(P.Q) = / Pod(go/po) dp,

where¢ : R — R is a convex function. Different choices ofresult in many divergences
that play important roles in information theory and statistics, including the variational dis-
tance, Hellinger distance, KL divergence and so on (see[&apsoe, 2000).

Sinceg is a convex function, by Legendre-Fenchel convex dugityckafellar, 197D
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we can write:

¢(u) = supuv — ¢"(v),

veR

where¢* is the convex conjugate @f. As a result,

Dy(P,Q) = /po SUP(fQo/po —¢*(f)) du
- sup/fqo )po dp

_ sgp/fd@—qs(f)dp

where the suppremum is taken over all measurable fungtiont¥ — R, and [ f dP
denotes the expectation pfunder distributior®. It is simple to see that equality the supre-
mum is attained at functiofi such thaty /py € 0¢*(f) whereqy, po and f are evaluated at
anyz € X. By convex duality, this is true if € 0¢(qo/po) for anyz € X. Thus, we have

proved the following lemma:

Lemma 6.1. Let F be any function clasg” — R, there holds:

Dy(P,Q) >sup/fd@ o (f (6.1)

feFr

Furthermore, equality holds whenev&rn d¢(qo/po) # 0.

Remark. There is an interesting connection between Lenfifaand Fano’s lower
bound in coding theory. Indeed, consider a Bayesian hypothesis testing problem between
two distributionsP and@, which have equal priors (1/2). Letf be the loss for incorrectly
rejectingQ, and¢*( f) the loss for incorrectly rejecting. Then—D (P, Q) is nothing but

the lower bound of the risk:
it [(~f) dQ+¢'(f) &P = ~Dy(P. Q).
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In other words, for eaclf divergenceD,, (PP, Q) there exists a binary classification problem
with appropriate loss functions whose optimal risk is characterized by the divergence. For
a thorough analysis of this correspondence, see Chdpthrcan be seen that for some
(appropriately parametrized) choicesfaiind¢ so that both loss functior(s- /) and¢*(f)
correspond to the 0-1 loss functiab,, becomes the variational distance (plus a constant).
As a result, one obtain a special case of Fano’s lemma for binary classification. This con-

nection extends to multiple hypothesis testing, but we shall not pursue further here.

6.2.2 An M-estimator of density ratio and KL divergence

Returning to the KL divergence; has the formp(u) = — log(u) for u > 0 and+oo for
u < 0. The convex dual ob is ¢*(v) = sup, uv — ¢(u) = —1 — log(—v) if u < 0 and

+o00 otherwise. By Lemm&.1,

< (P,Q) _sup/fd@ / 1—log(— dIP’:sup/logngP’—/gd@+1. (6.2)

<0 g>0

In addition, the supremum is attainedgat py/qo. This motivates our estimator of the KL
divergence as follows: L&l be a function class o — R.,and| dP,and/ dQ, denote
the expectation under empirical measufesandQ,,, respectively, then our estimator has

the following form:

Dy = sup/logg dP,, — /gd@n + 1. (6.3)

geg

For the implementation, we shall assume tfat a convex function class. The above
estimator can be posed as a convex optimization problem that can be solved efficiently (see
Section X). Suppose that the supremum is attaingg.atheng, is an M-estimator of the

density ratiogy = po/qo-
For the KL divergence estimation, there are two sources of error, namely, approxima-
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tion error&y(G) and estimation erraf; (G):

8(G) = DilP.Q) = s / (logg dP — g dQ +1) > 0 (6.4)
&(9) = su / log g d(P, — ) — gd(Q, — Q). 6.5)

From 6.2)(6.3)(6.4) and €.5), it is simple to see that:
~&1(G) — &0(9) < D — Dx(P,Q) < &1(G).

For the density ratio estimatiorlf)K — Dk (P, Q) can also be considered as a perfor-
mance measure. Note that/q, can be viewed as a density function with respecflto

measure. A natural performance measure is the Hellinger distance:

h (9. 90) = %/(9”2 — /%)% dQ. (6.6)

As we shall see, this distance measure is less strongihan Dy (P, Q), but it allows us

to obtain convergence rate guarantees with less assumption.

6.3 Consistency analysis

In this section we shall prove consistency results and obtain convergence rates of our esti-
mators. Throughout the chapter, the following assumptions are made with resffe to
and the function class.
Assumptions.(i) Dk (P, Q) < oo.
(i) G is sufficiently rich, i.e.go € G.
Due to (ii), &(F) = 0. Hence, we shall focus on estimation eréafG) only. Note

that if (ii) does not hold, we should obtain instead a lower bound of the KL divergence.

204



Chapter 6. Estimation of divergence functionals and the likelihood ratio

6.3.1 Preliminary lemmas

Define the following processes:

v, (G) = sup
g€eg

/10g id(ﬂ”n -P) - /(g — 90)d(Qy, — Q)‘-

wnlg0) =] [ 10800 (e~ B) — i@, - @)\.

We have:
E1(G) < vn(G) + walgo)- (6.7)

Lemma 6.2. w,(go) —= 0.

Note that in this lemma and other theorems, all almost sure convergence statement can

be understood with respect to eitlieor Q because they share the same support.

Proof. This follows immediately from the law of large numbers. We only need to check
the condition for which this law applies. Applying the following inequality due to Gsisz

(cf. [Gyorfi and van der Meulen, 1987

/ pollog(po/q0)| < Dx(P,Q) + 4y/ D (P, Q)

so thatlog gy is P integrable. In additiory, is Q integrable, sincd ¢odQ = [(po/q0)dQ =
1. ]

Next, we shall relate,, (G) to the Hellinger distance. This is done through an interme-

diate term which is also a (pseudo) distance betwgemdy:

g0, g) = / (9~ 0)dQ ~ log £ P 6.8)
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Lemma 6.3. (i) d(go, 9) > 2h3(g, g0)-
(i) If g, is an estimate of, thend(go, §») < v, (G).

Proof. (i) Note that forz > 0, 1 logz < /7 — 1. Thus,floggiO dP < 2f(gl/2go_1/2 _
1) dP. As aresult,
d(go,9) > /(g — g0) dQ — 2/(91/2901/2 —1) dP
~ [o-awda-2 [(g6 - m) dQ
N /(91/2 — g5/ *)?dQ.

(i) By our estimation procedure, we hayej,,dQ,,— [ log §,dP, < [ godQ,,— [ log godP,,.
It follows that
digodn) = [(@n—g0)dQ ~ [ (10, - loggn)ap
/(!}n —90)d(Q —Q,) — /(log gn —log go)d(P — IP;)
< sup [1og (B, - #) - [ (g~ m)d(@, - Q).

9€g 90

IN

]

We can prove the Hellinger consistency using less assumption. For that we shall need
the following lemma using a similar idea of usifg + ¢)/2 due to Birge and Massart (cf.
[van de Geer, 199%

Lemma 6.4. If g, is an estimate of, then:

1 ~ + An An - An +
S0, ) < 2mb(o0, 23 ) < - [ P20 4(@, - ) + [ 105 3o B~ P).

Proof. The first inequality is straigthforward. We shall focus on the second. By the defini-
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tion of our estimator, we have:

Both sides are convex functionals @f Use the following fact: IfF’ is a convex function

andF(u) < F(v), thenF((u +v)/2) < F(v). We obtain:

N L ey ey s

2

Rearranging,

[Tl - - [s2 0w, -7 < [10g

2 9o
90 + Gn 9o+ In
- _d(gU7 ) S _2hé(907 2 )7

where the last inequality is an application of Lemé&a

6.3.2 Consistency results

Our analysis shall rely on results from empirical processes theory. We firstintroduce several

gn+godp_/gn—god(@
290 2

standard notions afntropyof a function class (see, e.gvan der Vaart and Wellner, 19p6

for more detail). For each > 0, a covering for function clas§ using metricL,(Q) is a

collection of functions which cover enti@ using L, (Q) balls of radiuss and centering

at these functions. Le¥;(G, L.(Q)) be the smallest cardinality of such a covering, then
Hs(G, L.(Q)) := log Ns(G, L.(Q)) is called the entropy fog using L, (Q) metric. A

related notion igntropy with bracketingLet N2 (G, L, (Q)) be the smallest value of for

which there exist pairs of functiodg, ¢’} such that|gY —g%||.,(q) < d, and such that for
eachg € G thre is aj such thay| < g < gf. ThenHg (G, L.(Q)) := log N (G, L,(Q))
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is called the entropy with bracketing Gf Define the envelope functions:

Go(r) = sup |g()].

geg

) = Ssu (0] g(x)
Gi(z) = geg|1 ® (@)

B

Proposition 6.5. Assume the envelope conditions

/ng@ < 00

/GldP < o0

and suppose that for al > 0 there holds:

%Wg — g0, L1(Q)) 2 QU

1
ﬁHg(log G/go, L1(P,)) - PO.

Thenw,(G) == 0. As aresultg; (G) == 0, andhg(go, §n) — 0.

(6.9a)

(6.9b)

(6.10a)

(6.10b)

Proof. Thatv,(G) <> 0is a direct consequence of TrirlL5(see the Appendix). By§(7)

and Lemmab.2, £(G) <% 0. By Lemma6.3, this would also imply thakg(j,, go) == 0,

i.e., our estimation of the ratim /g, is consistent in Hellinger sense.

O

The envelope conditior(99 is satisfied ifG is uniformly bounded from above. The

envelope conditiongd.9b) is much more severe. Due to logarithm, this can be satisfied if all

functions inG is bounded fronbothabove and below. To ensure the Hellinger consistency

of the estimation fog,, however, we can essentially drop the envelope condiB®b) as

well as the entropy conditior6(100, which is replaced by a milder entropy condition.
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Proposition 6.6. Assume that6.99 and(6.109 holds, and

g+ 9o
290

1
~Hj(log ,Li(P,)) = PO. (6.11)

thenh@(QOa gn) ﬁ) 0.

Proof. Define Gy(x) = sup,cg | log g(f;)gt(gg)(f”) |. Due to Lemmab.4(i) and Thm6.15 (see

the Appendix), it is sufficient to prove that

/%W<m. (6.12)

Indeed,

/ngIP’ < /supmaux{w—l,logQ}clIED < log2—|—/ sup |g(z)—go(x)]|dQ < oo,
g€G 290(55) 9€G

where the last inequality is due to envelope conditi®”®§. O

Remark. Let us now turn to a discussion of the entropy conditions. Note that both
entropy conditions@.10g9 and ©6.11) can be deduced from the following single condition:
Forallé > 0,

HE(G, L,(Q)) < . (6.13)

Indeed, that .13 implies 6.109 is a direct consequence of the law of large numbers

(given (6.99). To show 6.11), note that (by Taylor’s expansion):

g1+ 9 g2+ 9o 91 — 92|
log =——— —log < ,
9o 290 9o

S0 +H;(log G0 Ly (P,)) < +H5(G /g0, L1(Py)). SinceGy € Li(Q), we haveGy/go €
Ly(P). In addition,H?(G /g0, L1(P)) < HP(G, L,;(Q)) < oco. By the law of large num-
bers,Hs(G /g0, L1(P,)) is bounded in probability, thu$(11) holds.
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In the remaining of this section, we shall consider an example of smooth function
classes for which the conditions of Pr@p5and6.6 hold.

Sobolev spaces-orz € R?, and-dimensional multi-index = (k1, ..., x4) (all x; are
natural numbers), write” = Hle zit and|k| = Zle ;. Let D" denote the differential

operator:
s o=l
g(l‘) - ax/fl o awgdg(xla s 7$d)'

We uselV*(X) to denote the Sobolev space of functighsX’ — R. The norm inlW*(X’)
is defined by

[ fllweca) =[]

o) + [ fllzeca),

where

in

ey = D /|Dﬁf($)|r dz.

|k|=cx
Suppose, for simplicity, that the domaiti is a compact set such as a cubeh]?.
Assume thap, andq, are bounded from abowend below by some constants (these as-
sumptions shall be relaxed in the next section). As a reguis bounded from above and

below. Suppose that

<mnforallz e X. (6.14)

We now restrict our function class to a Sobolev’s space of functions that are bounded

from above and below:

g :{g € W(X) such that|g||wex) < M}ﬁ{g : Ky <g(x) < Kyforallz € X},
(6.15)
where K; and K, are some constants satisfyihg < n; < 1, < K. In the algorithmic

development and subsequent analysis of our estimator, we typically restrict ourselves to
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r = 2 unless indicated otherwise.

Under the boundedness assumption, the envelope condid)$0ld trivially. For a
function class that is sufficiently smooth, i.e., when > d, then it was showifBirman
and Solomjak, 19€¢7hat

Hs(G, Loo) < 0¥ < o0,

wherec is some constant independentiofAs a result, it is simple to see that the condi-
tion (6.13 holds. The entropy condtio® (10 also holds due to the boundedness condi-
tion.

Finally, while the boundedness conditions are rather severe, we can study the rate of
convergence under such conditions. Once having the convergence rates for bounded cases,
it would be easy to obtain consistency in more general unbounded cases if we have addi-

tional knowledge of the tail condition for the densities.

6.4 Rates of convergence

6.4.1 Convergence rate of the likelihood ratio in Hellinger met-

ric
In this section, we shall obtain the same convergence rate of the likelihood;rasimg
Hellinger metric as a performance measure. Our result is based on Lémima which

the Hellinger distance is bounded from above by the suprema of two empirical processes.

We shall need the assumption that
sup [|g[loc < Ko (6.16)
geg

One empirical process in the RHS in Lem®a involves function classF := log %

For eachg € G, let f, := log 9;% We endowF with a new norm, namelyBernstein
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distance for a constant > 0,

() i= 202 (@ 1 || K

The Bernstein distance is related to the Hellinger distance in several crucial ways (see,

e.g.,[van de Geer, 1999page 97):

® pl(fg) < 4h@(90’ g-;go).

e The bracket entropy based on Bernstein distance is also related to the bracket entropy

based Hellinger distance (i.e., which is thenorm for the square root function):
Has(F. 1) < HP (G, Lo(Q)). (6.17)

whereG := {((g + 90)/2)"/*, g € G}, andg := (g + go)/2-

We shall need an assumption on function cl@sd-or some constartt < 75 < 2, there
holds for anys > 0,
M5 (G, L(Q)) = O(679). (6.18)

Combining this condition with.16), we deduce that fog,
H5 (G, Lx(Q)) < O(679).

In the following theorempr means “bounded in probability” with respectfomea-

sure.

Theorem 6.7. Assumé6.16) and (6.18), thenhg(go, §n) = Op(n~1/ (6 +2),
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Proof. By Lemma6.4, for anyd > 0, with respect t@ measure:

P(hg(g0,Gn) > 0) < P(hg(go, (gn + 90)/2) > 6/4)

P _ _ 2h2 — 0
: <g€g, hsg}igbam /(g go)d /fg Q(gmg) > )
= P( Sup /(9 90)d(Q,, — Q) — hi(90,9) = 0) +

9€G, ho(go,g)>0/4

P( sup /fg R )::A+B.

9€G, hg(go,g)>d/4

We need to upper bound the RHS’s two quantitieand B, both of which can be handled

in a similar manner. Since?(G, L,(Q)) < oo the diameter of] is finite. LetS be the
minimums such thas*'§ /4 exceeds that diameter. We apply the so-called peeling device:
Decompose; into layers of Hellinger balls aroung and then applying union bound on
the probability of excess. For each layer, one can now apply the modulus of continuity of

suprema of an empirical process.

[\’jco

P( sup / £, d(P, — B) > 22(5/4)* >
9€G, ho(go,§)<25+16/4

Note that ifhg (g0, g) < 2°15/4 thenp,(f,) < 25716. Note that for any = 1,...,S, the

s=0

bracket entropy integral can be bounded as:

25115
[ e E halang) < 27574300 de
0
25+15
< [ HE 0N tholon. ) < 270/4}. L(@) de
0

25115
/ Cole/V2)79"% de
0
< 08(25+15)17'yg/2’

IN
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whereCy, Cy are constants independent of Now apply Thm6.16 (see the Appendix),
whereK = 1, R = 25716, a = Cy/nR?*/ K = C,/n2**t1§2. We need

a > CyCs(2°716)1779/2 > CyR.

This is satisfied ib = n~/05+2) andC; = C,Cs, whereCy is sufficiently large (indepen-
dently of s). Finally, C2 > C?*(C; + 1) = C?*(CyCs + 1) if Cy := 2C%*Cg v 2C, whereC

is some universal constant in THerilG Applying this theorem, we obtain:

S
02n22(s+1)52 nd?
B < C - - | < - —
= 2 eXp[ C*(Cr+1) ] —"‘GXP{ z }
for some universal constant A similar bound forA, with respect td) measure and with
§ = n~'/(6*2) can be obtained in the same manner. Singe, is bounded from above,
this also implies a probability statement with respedPtdhus,hq(go, §») is bounded in
PP probability byn—1/(6+2), O

In the following we note that the rate of convergence with respect to Hellinger metric

is also the optimal minimax rate, which is defined as:

r, = inf sup Ephg(go, gn)-
gn€G P,Q

First, note that,, > inf; g supp Eh, (g0, §,), Where we have fixe@ = . the Lebesgue
measure ott’. Our strategy is to reduce this bound to that minimax lower bound for a non-
parametric density estimation probldivu, 1994. Note a technicality here, in which the
spacey ranges over smooth functions that need not to be valid probability density. There-
fore, an easy-to-use mimimax lower bound such as thBtarig and Barron, 1999s not
immediately applicable. Nonetheless, we can still apply the hypercube argument and the

Assouad lemma to obtain the right minimax rate. Bea der Vaart, 1998 Sec. 24.3) for
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a proof for the case of one dimension. The proof goes through for geheral
Proposition 6.8. For G defined in(6.15, P, Q satisfy(6.14), r, = Q(n"*/0*2), where

v =d/a.

6.4.2 Convergence rate for divergence estimation

In this section we shall obtain the convergence rate of our estimation procedure for the KL
divergence, i.e)|Dx — Dk (P, Q).|| We shall need the assumption that all functiongin

are bounded from abownd below:
0<Ki<g< K,forallg e G. (6.19)

Theorem 6.9. Assumé6.19 and (6.18), then| D — D (P, Q)| = Op(n~/0a+2),

Proof. Note that
Di — Di(P,Q)| = /mwm—/wwﬁQ®MW—/M@’

< | [rogan/ai®, ~) - [ (@ - aa, - @)\
; /mmme—/@e%mq

+ /loggod(IP’n -P) - /god(@n —Q)‘ =A+B+C.
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We haveC' = Op(n~'/?) by the central limit theorem. Using assumpti@n1(9),

B

IN

) K i
/|gn—g0|ﬁd@|+/|gn_90|d(@

< (KQ/Kl + 1)||§n - gOHLQ(Q)
(KQ/K1+1></ 4K,/ = 95) dQ)

(Ka/ Ky + 1)Ky *4ho(go, §n) = Op(n~ /@),

1/2

IN

IA

where the last equality is due to THh#.

Finally, to boundA, we shall apply a modulus of continuity result on the suprema of
empirical processes with respect to functign— g,) and(logg — log go). In particular,
due to 6.19, the bracket entropy for both function classkandlog G has the same order
as that ofG, as given in 6.18. Apply Lemma6.17 (see the Appendix), we obtain that for

5, = n~ Y9 there holds:

— 1 2 _ -
A= O0p(n V2|3 — goll 08 v 62) = Op(n2/+19).

The overall estimation error is bounded by the upper bouné. of O

6.5 General methods for estimating  f-divergence

In this section, we shall present several general methods for estinyatingrgence, and

discuss their properties and limitations.

6.5.1 M-estimator of D, and py/qo

It is not difficult to see that our method for estimating the KL divergence can be easily

applied to any divergencB,(po, qo). In fact, the method for consistency analysis, while
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tailored to each specific choice ¢f is also very similar in spirit. Assume in this section
that¢ is a differentiable (convex) function. Motivated by Lem#@a, our estimator has the

following form:

Dy = sup/fd(@n— /¢*(f) dP,,. (6.20)

feF
Let f be the supremum of the above optimizatiohis considered an estimator ¢f =
¢'(qo/po). As before, we define the estimation and approximation error. The latter is

assumed to be 0, i.eb;(qo/po) € F.

ENF) = Dy(P,Q) - sup / (f dQ — ¢°(f) dP) > 0 (6.21)
feF
&) = | [ 1@, - @ - o) d(ﬂ%—P)]. 6.22)
feF

From (6.20,(6.4) and 6.5), itis simple to see that-£{(F) — £ (F) < Dy — D4(P,Q) <
E1(F). Since&l (F) = 0, our main focus is in analysis 6F (F). As before, define:

vfi(]—") = sup
feF

[ ) - e, —#) - [ - @, - @)}.

w(fo) =‘ [ ot d®. - - f@. - @)‘.

We have&!(F) < v?(F) + wl(f,). Sincew,(F) converges to 0 almost surely under
mild assumptions om,, to prove consistency of our estimator, it remains to analyze the
convergence of?(F). This can be done in the same manner as in Seétign

To analyze the convergence rate of our estimator, the key idea of our analysis is to

exploit the modulus of continuity of the supremum of the empirical processes involved in
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the definition ofv?(F) with respect the a notion of distance betwgeand f;:

do(for ) = Dy(P,Q) - / £dQ — ¢°(f)dP (6.23)
- / (6" (f) — 6" (fo))dP — (f — fo)dQ (6.24)
- [ew-euw -5 U-mazo  ©2)

fo

The last line in the above equation shows thatis a Bregman divergencesing con-
vex function¢*. The following lemma is an analogue of Lemr@&(ii) whose proof is

straightforward:
Lemma 6.10. If f is an estimation of;, by solving(6.20), thend,( fo, f) < v¢(F).

Sinced,( fo, f) is usually not a proper metric, to apply standard results from empirical
process theory one usually needs to replacby a lower bound which is a proper metric
(such ad., or Hellinger metric). In the case of KL divergence, we have seen that this lower
bound is the Hellinger distance.

In the following we shall demonstrate our general method to the estimation yet an-
other f-divergence: the-square distance. This divergence is very amenable to the general
framework just described. As we shall see, it also plays a special role in another general
method for divergence anf+divergence.

The x-square divergence is defined Bg(P,Q) = [ p?/qodp. It is a f-divergence
with ¢(u) = 1/u. We haveg*(v) = —2v/—v if v < 0 and+oco otherwise. As a result,
we only need to restricE to the subset for whicli < 0 forany f € F. Letg :== v/—f
andG = —F. G is a function class of positive functions. We hayg:= /—f, =

vV —¢(q0/po) = po/g. We shall also replace notatiafy( fo, f) by dy(g0,9). For our

218



Chapter 6. Estimation of divergence functionals and the likelihood ratio

choice ofy, we have:

d(gog) = dy(fo.f) —/ (—2/=F + 23/ Jo)dP — (f — fo)dQ
= /(90_9)(2p0/QO_90_9)dQ
- [t9- 9020

WX(G) = vX(F)=sup / 2g? — @R)d(Q, — Q) — / (g — go)d(B, —P)|

geg

Assume moreover that for some constart v < 2,
H5(G.L>(Q)) < Agd™ (6.26)

The following theorem is a parallel of Thng.7, the proof is essentially the same (if not

simpler) and therefore not included herein:

Theorem 6.11.Assumé6.16) and(6.26), andg,, be our estimator of, then:d, (go, §») =
Op(n -2/( 7+2))

Remark. Comparing with Thnm6.7 the assumption on thg,(Q)-based entropy and
the assertion on the,(Q) metric are both weaker, because Q) metric is less strong
than the Hellinger distance.

Finally, it is straightward to show that our method is applicable to a broader class of

functional of the following form:

T(P,Q) = / Pod(do/po) du,

wherey : X — R, is a known positive function that is also bounded from both above
and below (away from 0). All analysis goes through, with the insertian iof all integrals

involved. We also obtain the same convergence rate as when.
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6.5.2 Plug-in estimator based on Taylor expansion

In this section we shall present an estimator based on functional delta method. This idea
was also used bfdoe, 1989Birgé and Massart, 19950 estimate integral functional of

a density function. WhileD,(IP,Q) is a functional of two densities, we can exploit its
special structure and our method of estimating the density ratio to achieve an estimator of

with similar effects. Indeed, we can write

Dy(P,Q) = / (90/a0)6(d0/p0) dQ = / g0(1/g0) dQ.

Thus, D, can be viewed as an integral functionalgf= p,/q,. Of course, the difference
here is that the integration is with respect to unkndwn

Suppose thap : R, — R is a differentiable convex function up to the third ordér,
is a smooth function class bounded from both above and below &s1i§ (with smooth
parametety). Suppose thaj, is an estimator of, such as the one described in the previous
section, i.e.)|d, — gollz.@ = dy(90,Gn) = Op(n=2/+d) Using a Taylor expansion

aroundg,, we obtain:

9go(1/g9) = Gup(1/Gn) + (9 — Gu)(D(1/Gn) — ¢,<1/gn>/gfb> + (g — §n>2¢”(1/§n)/g§z +
O((g — gn)*)
= ¢'(1/gn) + ¢"(1/3n) /G0 + 9(6(1/Gn) — ¢'(1/Gn) /Gn — 26" (1/§n) [ 32) +

9" (1/n)/ g + O((g = gu)°)-
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We arrive at

Di2.Q) = [ go1/g)a0
= [ $0/a)+ 0" 1/3.) 0 a0+
601/ = 611/8.) /5. - 261/ /2 @B +

l/%hw%ﬂ%ﬂﬁdu+0m%—@M9

In the above expression, the first two integrals can be estimated from (other) sets of empir-
ical data drawn fronf? and@Q. Because of the boundedness assumption, these estimations
have at mosOp(n~1/2) error. The error of our Taylor approximationd¥||go — dn||3) =
Op(n=3e/Qatd)  This rate is less tha®(n~1/2) for a > d/4. Thus whem > d/4, the
optimal rate of convergence for estimatiig hinges on the rate of estimating the integral
of the form [ p3 /g0t dp.

Before ending this section, it is informative to return to the case of KL divergence, i.e.,
¢(u) = —logu. If we use Taylor approximation up to first order (thus guaranteeing an

error rate ofOp(n~2¢/(22+d) the estimator has the following form:

~

b, = / (O(1/dn) — & (1/3)/3n) AP, + / &(1/3n) dQn

= /log Jn + 1dP, — §,dQ,,,

which has exactly the same form as our original estim&@d),(except that herg, can be

any estimator of the density ratio. The estimat@B)( achieves simultaneously both goals

(i) estimating the density ratio and (ii) estimating the divergence. While our method for (i)
achieves the optimal minimax bound, our method for (ii) can be viewed as only a first-order
Taylor expansion based plug-in estimator. As discussed in the previous paragraph, it seems

that one might obtain a better rate by using Taylor expansion up to second order. This is,
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of course, possible only if we can obtain a better rate for estimating the integral of the form

[ 3/ a0 dp.

6.6 M-estimation with penalties

In practice, the “true” size of is not known. Accordingly, our approach in this chapter
is an alternative approach based on controlling the sizé bf/ using penalties. More
precisely, let/(g) be a measure of complexity far. Assume that/ is a non-negative

functional and/(gy) < oo. We decompose the function clagss follows:

G = Ui<m<cOum, (6.27)

whereGy, = {g | I(g) < M} is a ball determined by(-).

The estimation procedure involves solving the following program:

A
Jn = argmin g /gd@n — /logg dP,, + ?”]2(9)’ (6.28)

where \,, > 0 is a regularization parameter. The minimizing argumgnis plugged
into (6.3 to obtain an estimate of the KL divergenbe.

For the KL divergence, the different® — Dy (P, Q)| is a natural performance mea-
sure. For estimating the density ratio, various metrics are possible. Viewiag,/q, as a
density function with respect tQ measure, one useful metric is the (generalized) Hellinger

distance:

h2(go, 9) = %/(93/2 —g"%)? dQ. (6.29)

For the analysis, several assumptions are in order. First, assumg (hatall of G) is
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bounded from above and below:
0 < no < go <y for some constantsgy, 7. (6.30)

Next, the uniform norm o, is Lipchitz with respect to the penalty measii(e), i.e.:

sup |gleo < cM forany M > 1. (6.31)

9€GMm

Finally, on the bracket entropy ¢f[van der Vaart and Wellner, 19R&or some) < v < 2,

HE (Gar, Lo(Q)) = O(M/8)" foranys > 0. (6.32)
The following is our main theoretical result, whose proof is given in Se@ién

Theorem 6.12.(a) Under assumption&.30 (6.31) (6.32, and set\,, — 0 so that:
At = Op(n® ) (1 4 1(g0)),
then underP:
ha (90, Gn) = Oe(N/?)(1+ 1(90)), 1(gn) = Or(1 + I(g0)).
(b) If, in addition to(6.30) (6.31) (6.32), there holddnf g g(x) > n, for anyz € X, then

Dy — Di(P,Q)| = Op(A\Y*)(1 + I(go))- (6.33)

6.7 Algorithm: Optimization and dual formulation

G is an RKHS. Our algorithm involves solving progrars.@8), for some choice of function

classG. In our implementation, relevant function classes are taken to be a reproducing
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kernel Hilbert space induced by a Gaussian kernel. The RKHS'’s are chosen because they
are sufficiently ricHSaitoh, 1988 and as in many learning tasks they are quite amenable
to efficient optimization procedurg¢Schilkopf and Smola, 2042

Let K : X x X — R be a Mercer kernel functioiSaitoh, 1988 Thus,K is associated
with a feature ma@ : X — H, whereH is a Hilbert space with inner produ¢t .) and
forall z,2’ € X, K(z,2') = (®(x), (2’)). As a reproducing kernel Hilbert space, any
functiong € H can be expressed as an inner produat) = (w, ®(z)), where||g|lx =

|wl|+. A kernel used in our simulation is the Gaussian kernel:
—Nr—eayll2
K(z,y) =e lz—yll /U’

where||.|| is the Euclidean metric iiR?, ando > 0 is a parameter for the function class.
Let G := 'H, and let the complexity measure b&) = ||g|l». Thus, Eq. 6.28 be-

comes:

n

min J := miml Z(w, O (z;)) — %Zlog(w, P(y;)) + %HwH%, (6.34)

w w n
i=1 j=1

where{z;} and{y,} are realizations of empirical data drawn fr@nandP, respectively.

Thelog function is extended take valueco for negative arguments.

Lemma 6.13. min,, J has the following dual form:

) 1
~ min 2 - log nayj + o\ sz:azajK(yi,yJ) t o ;K(xl,x])
1
- A nZOéJK(IuyJ)
1,J
Proof. Let vy(w) = 3{w, ®(z:)), ¢;(w) = —7log(w, ®(y;)), andQ(w) = 2 ||w]|3,
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We have

minJ = —mgx((O, w) — J(w)) = —=J*(0)

= —min Yoo () + 0 0 (0) + (=D o)

=1 j=1 i=1 Jj=1

where the last line is due to the inf-convolution theordtockafellar, 197 Simple cal-

culations yield:

1 1 . ,
p;(v) = - log noyj if v = —a;®(y;) and + oo otherwise

Yi(u) = 0ifu= l<I>(:ci) and + oo otherwise
n
1

X(v) = EHUH%-
So,min,, J = —ming, 337 (=5 — lognay) + o= o7 ay®(y;) — 5 20, ()|l
which implies the lemma immediately. O

If & is solution of the dual formulation, it is not difficult to show that the optiniabk
attained ato = - (3°7_, a;P(y;) — » Doimy (i)

For an RKHS based on a Gaussian kernel, the entropy cond&i8g) (olds for any
v > 0[Zhou, 2002. Furthermore,§.31) trivially holds via the Cauchy-Schwarz inequal-
ity: |g(z)] = [{w, ®(2))| <[]+l ®(@)|+ < I(9)y/K(z,z) < I(g). Thus, by Theo-
rem6.12a), |||+ = ||gallnx = Or(||goll2), SO the penalty term,||«w||* vanishes at the

same rate a&,,. We have arrived at the following estimator for the KL divergence:

. ~, 1 1 . 1 .
Dk =1+ Z(_ﬁ - Elognaj) = Z —Elognaj.

=1 j=1

log G is an RKHS. Alternatively, we could selog G to be the RKHS, letting/(z) =
exp(w, ®(x)), and lettingZ(g) = |[logg|lx = ||w|». Theorem6.12is not applicable
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in this case, because conditiofi31) no longer holds, but this choice nonetheless seems
reasonable and worth investigating, because in effect we have a far richer function class
which might improve the bias of our estimator when the density ratio is not very smooth.

A derivation similar to the previous case yields the following convex program:

n n

1 1 A
Irgn mu%n - ;:1 e o JE 1(w, (?/J)> + 9 ||w||7—(
L RS 2
= —min ) 1 a; log(na;) Oéz+—H E a; P (z;) - E 1(13(%)”71-
i j=

Letting & be the solution of the above convex program, the KL divergence can be estimated
by:
. " n
Dk =1 AZ' 1 Ai Ai 1 -
K + E «;log o + & log -

=1

6.8 Proof of Theorem 6.12

We now sketch out the proof of the main theorem. The key to our analysis is the following

lemma:

Lemma 6.14.1f g, is an estimate of using(6.29, then:

1 D S . gn + An
Zh@é(gOagn)—'—?]Q(gn) S _/(gn_QO)d(Qn_Q)+/210gg nggod(Pn_P)+7]2(go)

Proof. Defined;(go, 9) = [ (9 — 90)dQ — log ~dP. Note that forz > 0, Llogr < /7 —
Thus,

/1ogi dP < 2/(g1/2g0_1/2 —1) dP.

9o
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As a result, for any, d; is related tah as follows:

di(g0,9) > /(g—go) dQ — 2/(91/2951/2 —1)dP

= /(g—go)d@—2/(”2 )2 = o) dQ = /1/2 1/2y2

= 203 (90, 9)-
By the definition 6.28 of our estimator, we have:
N A )\n 2/ A )\n 2
gnd@n - log gnd]P)n + 7] (gn) S gOdQn - 1Og gOdPn + ?] (90)

Both sides are convex functionals @f By Jensen’s inequality, if’ is a convex function,
thenF ((u+v)/2) — F(v) < (F(u) — F(v))/2. We obtain:

n + G + A An
/g god(@n—/ og 2 gOdIP’ + () < /godc@n—/loggodpn+Zﬂ(go).

Rearranging, &5%4(Q, — Q) — [ log 9n+90d(]P) LB+ 12(G,) <

gn + 90 9n — Go 90 + gn )\n 2
log 2790 qp _ dQ _ 4 7
/ 0g ——— 200 / 5 + I*(go) 1(90, 5 ) + 1 (90)
An

1 A
2 2 ~ n r2
1 L (90) < =2 hgy(90, Gu) + =717 (90),

gO+gn

2)+

< _2hé(907

where the last inequality is a standard result for the (generalized) Hellinger distance
(cf. [van de Geer, 1999 O

Let us now proceed to part (a) of the theorem. Defipe= log % 9+9° , and letF,, =

{fslg € Gu}. Sincef, is a Lipschitz function of;, conditions 6.30) and 6.32 imply that

HE (Far, Lo(P)) = O(M/6)". (6.35)
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Apply Lemma6.18 (see the Appendix) using distance metfiggo, 9) = |9 — 9ol z2(Q)»
the following is true undef) (and so true unddP as well, sincelP/dQ is bounded from

above),

sup /(9= 90)(Qn — Q)] = Op(1)(6.36)

9e6 n=12dy(go, 9)' (1 + 1(g) + I(g0))/2 V 05 (1+ I(g) + I(g0))

In the same vein, we obtain that undemeasure:

d(P, — P
sup — L] fod( ) 5 = Op(1)6.37)
9€6 n=12dy(go, 9) " (1 + 1(g) + 1(g0) /2 V ™5 (1 + 1(g) + 1(g0))
By condition 6.31), it is easy to see that:
da(90,9) = 19 — goll (@) < 2¢*(1 + I(g) + I(90))"*ha (g0, 9)-
Combining Lemma&.14and Egs. §.37), (6.36), we obtain the following:
1 2 ~ )\n 2/~ 2
Zlh(@(g(bgn) + 7] (Gn) < Ml(g0)°/2+
o ("‘”%@(go, 9)' 21+ T(g) + 1(g0) 7% v 75 (14 1(g) + f(go>>)‘
(6.38)

From this point, the proof involves simple algebraic manipulation6o3®. To simplify
notation, leth = hg(go, ), I = I(4n), andl, = I(g,). There are four possibilities:
Caseah >n Y@ (1 4]+ Iy)Y2andl > 1 + I,. From {.38), either

B2 /4 + \d?)2 < Op(n~Y2)RIV2[Y209/4 or B2 44 N, 12 /2 < M, 12/2,
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which implies, respectively, either
h < A 2050 ) T < A1 Op(n” Y ),

or

~ ~

h < Op(NY210), 1< Op(1y).

Both scenarios conclude the proof if we gt = Op(n? 0+2 (1 + Iy)).
Caseb h > n V@M1 + ]+ I,)Y2 and] < 1 + I,. From (6.39), either

h2 /4 + A\ I?/2 < Op(n YR (1 + I)Y#/% or 244 M 1% /2 < M 12/2,

which implies, respectively, either

or

Both scenarios conclude the proof if we $gt = Op(n? 0+2 (1 4 Iy)).
Casech <n V(1 41+ I,)/?2and] > 1 + I,. From 6.39

h2 /4 + \I?)2 < Op(n~ Y@ ],

which implies that, < Op(n~/@t)) /2 andl < A-1O0p(n~2/(2t7). This means that

if we set\; ! = Op(n¥))(1 + Iy).
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Cased h < n Y@M(1 + ] + Iy)">andl < 1+ I,. Part (a) of the theorem is
immediate.
Finally, part (b) is a simple consequence of part (a) using the same argument as in

Thm6.9.

6.9 Simulation results

In this section, we describe the results of various simulations that demonstrate the practical
viability of our estimators, as well as their convergence behavior. We experimented with
our estimators using various choiceslbfand Q, including Gaussian, beta, mixture of
Gaussians, and multivariate Gaussian distributions. Here we report results in terms of KL
estimation error. For each of the eight estimation problems described here, we experiment
with increasing sample sizes (the sample sizaanges fromL00 to 10* or more). Error

bars are obtained by replicating each set-up 250 times.

For all simulations, we report our estimator’s performance using the the simple fixed
rate \, ~ 1/n, noting that this may be a suboptimal rate. We set the kernel width to be
relatively small ¢ = .1) for one-dimension data, and largeirfor higher dimensions. We
use M1 to denote the method in whichis the RKHS, and M2 for the method in which
log G is the RKHS. Our methods are compared to algorithim Wang et a[Wanget al,,

2004, which was shown empirically to be one of the best methods in the literature. Their
method, to be denoted by WKYV, is based on data-dependent partitioning of the covariate
space. Naturally, the performance of WKV is critically dependent on the amafrdata
allocated to each partition; here we report results with n”, wherey = 1/3,1/2,2/3.

The first four plots present results with univariate distributions. In the first two, our
estimators)M/ 1 and M2 appear to have faster convergence rate than WKK. The WKYV esti-
mator performs very well in the third example, but rather badly in the fourth example. The

next four plots present results with two and three dimensional data. Again, M1 has the best
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Figure 6.1. Results of estimating KL divergences for various choices of probability dis-
tributions. In all plots, the X-axis is the number of data points plotted on a log scale, and
the Y-axis is the estimated value. The error bar is obtained by replicating the experiment
250 times. Ny(a, I},) denotes a truncated normal distributionkoflimensions with mean
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Figure 6.2. Results of estimating KL divergences for various choices of probability dis-
tributions. In all plots, the X-axis is the number of data points plotted on a log scale, and
the Y-axis is the estimated value. The error bar is obtained by replicating the experiment
250 times. Ny(a, I},) denotes a truncated normal distributionkoflimensions with mean
(a,...,a) and identity covariance matrix.
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convergence rates in all examples. The M2 estimator does not converge in the last example,
suggesting that the underlying function class exhibits very strong bias. WKV have weak
convergence rates despite different choices of the partition sizes. It is worth noting that as
one increases the number of dimensions, histogram based methods such as WKV become
increasingly difficult to implement, whereas increasing dimension has only a mild effect

on our method.
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Appendix 6.A Increments of empirical processes

In this section we summarize several key theorems from empirical process theory that have
been used in the proof of theorems in this chapter.
The following theorem (Thm 3.7 ifvan de Geer, 1999 specifies conditions under

which the supremum of an empirical process goes to 0 almost surely.

Theorem 6.15.Let G be the envelope function f@. Assume thaff GdP < oo, and
suppose that for any > 0, 1 Hs(G, L1 (P,)) ., po, thensup,<g [ gd(P, — P) 5 0.

Next, this is a result on the convergence rate of the supremum of an empirical process
(Thm 5.11 in[van de Geer, 199%

Theorem 6.16.Let K, R be some constantg, satisfysup, . px(9) < R. If there hold,

for some sufficiently large universal constarit

S|
VAN

CivnR*/K

R

Co(/ Hf(g,pK)I/zdu\/R>
0

C2 > C*Ci+1),

S
Y

then

CLQ
P d(P,, —P)| > <C - .
(sgggw gd(P, — P ) exp[ CQ(OIH)RJ

Finally, we shall present several results on the modulus of continuity of the supremum

of empirical processes. Consider a uniformly bounded class of functions, say:

sup |g — goloo < 1. (6.39)
geg
Assume more over that
H (G, La(P)) < A5, forall 6 > 0, (6.40)
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for some constartt < o < 2, and some constant. A direct consequence of Lemma 5.13

of [van de Geer, 1999s the following:

Lemma 6.17. Assumé6.39 and (6.40), then as: — oo, for §,, = n~/(+) there holds:

o VLI (0 = a0)d(P, — P)

1—a/2
9€6 g — goll 0"V V/né?

= Op(1).

This lemma can be extended to function classes of infinite size (in terms of entropy
and other metrics), and proves useful in the analysis of M-estimators with penalties. In the
remainder of this appendix we state this result.

Suppose thaf has infinite entropy, but that

G = Ui<m<ccOu, (6.41)

whereG,, :={g | I(g9) < M} is a ball determined by(-). Here, we think off (¢) as the
complexity of irregularity of the functiog (e.g., some Sobolev or Besov norm).
We shall present a result of modulus of continuity of the (infinite) function class

terms of a general distance functidq, -) such that:

19 — gollz.e) < d(g, 90)- (6.42)

Our result is also applicable if the above condition holds up to a multiplicative constant.

The following conditions will be used: there exist constaits. o < 2, 0 < G <
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1, ¢g > 0andA > 0 such that for all\/ > 1,

sup d(g, go) < coM.
9geGmr

HEZ(Gur, Ly(P)) < A (%)a

sup g — goleo < (cod)’ M7 forall § > 0.
9€Gar,d(g,90)<d

Now we are ready to state Lemma 5.14wdn de Geer, 1999

(6.43)

(6.44)

(6.45)

Lemma 6.18. Assumg6.42), (6.43, (6.44), (6.45. Then, for some constantsand n,

depdending o, 3, ¢y and A, we have for alll’ > ¢ andn > ny,

| [(9 — 90)d(P,, — P)|
I(g)

__2-p
P sup >1Tn 2+a25) < cexp {—

1
geg: d(g,go)gn 2+a=2p I(g)

Moreover, forl” > ¢, n > ny,

Vil (g~ g0)d(B, ~B)] _ r) < con|

P
( P d(g, go) P 1(g)e2 =

1
9€G, d(g,g0)>n 2+a=281(g)
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Chapter 7

Conclusions and suggestions

In this thesis we have investigated several settings of decision-making in decentralized

systems. Our main contributions can be summarized as follows:

e anonparametric approach to centralized detection estimation tasks and its application

to the problem of localization in ad hoc sensor network

a nonparametric aproach to decentralized detection problem

a characterization of optimal decision rules of sequential decentralized detection

problem

a characterization of the correspondence between surrogate loss and divergence func-

tionals.

a nonparametric estimation method for divergence functionals and the likelihood ra-

tio

There are a number of issues and open questions arising from this thesis. In the follow-
ing we shall outline several of such issues, and in some cases suggest possible avenues of

attack.
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7.1 Tradeoff between quantization rates and statis-
tical error

In Chapter3 we considered the problem of learning local quantization rules and global
decision rule so as to minimize the detection error. The quantization rules are constrained
by the number of bits (which is decidedpriori) to be transmitted by each sensor. There
are two key quantities, the communication constraint and the statistical efficiency, whose
interplay is of interest. From a practical viewpoint, it is useful for a designer to specify a
priori a desirable level of detection error, based from which communication constraints are
set and the quantization rules are learned. Thus, one key issue here is to study the tradeoff
between the number of bits allowed and the optimal detection error.

In the setting of binary classification, in Chaptiewe have shown that the optimal de-
tection error is equal to the correspondifiglivergence between the two distributions un-
derlying the binary hypotheses. As a result, the relationship between detection error and bit
constraints hinges on the approximation error rate offtllévergence, since the communi-
cation constraints (especially for continuous data) essentially amount to an approximation
method using step functions. It appears that results from approximation tlizevpre
and Lorentz, 1993can be applied. Furthermore, key properties such as the subadditivity
of certain f-divergences (e.g., the KL divergence and log-sum inequalityCzfver and
Thomas, 199 could be exploited (for an example, d@8rman and Solomjak, 194Y.

We could consider alternative routes that are more amenable to the analysis. For in-
stance, the class of quantization rules can be specified up front, and the tradeoff between
the quantization rates and the statistical error rate can be studied within this class of quanti-
zation rules. Although the optimal quantization rules do not necessarily lie within the speci-
fied class, the loss might be negligible in practice, and searching for the optimal rules within
the specified class might be a more tractable task. This is the approach takéuamget

al., 2007 in the context of an anomaly detection method using principle component anal-
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ysis. In this work the quantization rules are simple rules based on thresholding the data
magnitude. By studying the effects of approximating the covariance matrix the authors

are able to characterize the tradeoff between the number of bits and the anomaly detection
error. It is of interest to extend this approach to other settings such as classification and

regression.

7.2 Nonparametric estimation in sequential detec-
tion setting

In Chapter5 we have studied the sequential setting of the decentralized detection problem.
We have obtained results on the characterization of (asymptotically) optimal quantization
rules. One key issue is: How can the quantization rules be learned for a decentralized
system? In a parametric setting, where the (binary) hypotheses are assumed to be known,
the asymptotic formulae given in Lemngal provides a method for computing the quan-
tization rules by minimizing over a sum of the inverse of two KL divergences. Thus, it
is of substantial interest to come up with efficient algorithms for optimizing divergence
functionals over a class of quantization rules.

In the nonparametric setting, the underlying distributions are typically not known, but
assumed to be within certain function classes. Results in Chapten be used to jus-
tify our focus to classes of stationary quantizers. The objective functional involves the KL
divergences, which can be estimated using the nonparametric method developed in Chap-
ter 6. It would be interesting to explore efficient algorithms for learning quantizer rules by
optimizing such objective functional.

While the main focus of the thesis is in binary sequential hypothesis testing, it is a
promising direction to consider various other statistical tasks (e.g, point estimation, regres-

sion, dependence testing) in a decentralized system. For such different tasks, itis promising
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to consider other statistical functionals (other thifadivergence functionals) and accompa-
nying nonparametric sequential procedui®sn, 1981 Many such procedures are not of

the M-estimation type, and are potentially more tractable from a computational viewpoint.

7.3 Multiple dependent decentralized subsystems

Throughout the thesis, we considered a decentralized system that consists of multiple mea-
surements (collected by local monitoring devices) and a global fusion center aggregating
the local measurements. From the viewpoint of each monitoring device, the processing is
distributed, but the whole system is coordinated centrally by the fusion center to solve a
singlestatistical task (e.g., detection, estimation, etc). In practice, we may be given a dis-
tributed architecture in which there amaultiple statistical tasks that partially share the set

of measurements. In other words, each statistical task corresponds to a subsystem within
a decentralized system. It is an important problem to devise distributed protocol that fa-
cilitate the performance for the dependent statistical tasks in a computationally efficient
manner.

For concreteness, consider the following application. There are a number of sensors
placed in a geographical area such as highway or building. We are interested in finding
sequential procedures for detecting the failure of these sensors. Typically, only one sen-
sor fails at a time, and so a reasonable statistic to be exploited is the correlations among
neighboring sensors. If there is a change in the distribution of the correlation between two
neighboring sensors, then at least one of them must have probably failed. Thus, we can
have a set-up involving multiple sequential detection problems, each of which is concerned
with the status of one sensor. Furthermore, these detection problems are dependent because
they have shared measurements.

For simplicity, suppose that we have two sensors, which can be measured by two sep-

arate covariateX andY. Furthermore, these two sensors share a measurémeéviore
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formally, given three sequences of i.i.d. déf&, Xs,...), (Y1,Y5,...), (Z1, Zs,...)). At

each time point we receive the triplé X;,Y;, Z;). If sensor 1 fails at time point;, then
there is a change in distribution fof;, i« > k; from f; to f,. Similarly, if sensor 2 fails at

ko, then there is a change in distribution ¥y i > &, from go to g;. The change in distribu-

tion for sequence; happens atin(k1, k2) from hg to h,. We are interested in a sequential
and decentralized detection procedure for sensor 1, i.e., a stoppingtitkieZ ), based

on the sequences andZ, and a sequential and decentralized procedure for sensor 2, i.e.,
a stopping time, (Y, Z), based on the sequencésand Z so as to minimize the delay of

the detection of the respective change-points, while maintaining an upper boamthe

false alarm rates.

One could treat these two sequential change-point detection problem as separate, ig-
noring the shared sequenge In a collaboration with Ram Rajagopal, we proposed a de-
centralized sequential detection method that involve sharing information between the two
sensors. Specifically, the two sequential procedures devised for each of two sensors also
exploit the information passed by the other sensor. We show that the resulting procedures
exhibit shorter detection delay times than the method that treat the two detection problems
separatelyRajagopal and Nguyen, 20Dt is of significant interest to extend this idea to

the setting of multiple sensors.

7.4 Minimax rate for divergence estimation

In comparison to the problem of estimating divergence functionals (which are integrals of
two densities), the problem of estimating integrals of a single density has been studied more
extensively by[Bickel and Ritov, 1988Donoho and Liu, 1991Birgé and Massart, 1995
Laurent, 199pand others.

Let ¢ be a smooth function of one variable, afidoelongs to some class @tdim

densities of smoothness Then, the optimal minimax rate for estimatifig/) = [ ¢(f)
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isn~!/2 whena > d/4, andn~*/Ue+d) whena > d/4.

In the case of divergences of the forf(f, g), it is of interest to find the optimal
minimax rate. By fixing a density, say to be known, the minimax rate of an integral of
two densities cannot be better than that of one density. However, does there still exist a
critical threshold of smoothness for botlandg above which the integral can be estimated
at the semiparametric rate '/2? It seems that such a threshold does exist for integrals of
two densities. Note that our estimation method developed in Chafigelds only the rate
of n—22/(e+d) "which is always worse tham /2. This is perhaps due to the fact that our

estimator is essentially a linear estimator.

7.5 Connection to dimensionality reduction and fea-

ture selection

Both decentralized detection problem and dimensionality reduction or feature selection
problem can be viewed as instances of an experiment design problem: In a decentralized
detection problem, the design is the quantization rules applied across dimensions of data;
in a dimensionality reduction problem, the design is the transformation of the original data
to lower dimensional data; in a feature selection problem, the design is a combinatorial
choice of a subset of dimensions.

There is a huge literature on the development of efficient algorithms and their analy-
sis in the context of (parametric) linear regression and basis pursuit (se¢Tshjrani,
199G Tropp, 2004 Tropp, 2006 Donoho, 2004 Candes and Tao, 2005u and Knight,
200Q Fan and Li, 2001Fan and Peng, 200%ainwright, 2004), graph structure learn-
ing [Meinshausen and Buhlmann, 2Qpélassificatio{van de Geer, to appdaand non-

parametric regression and density estimafioafferty and Wasserman, 200kiu et al,

1 Personal communication with Peter Bickel, who suggested a suite of estimation methods studied
in [Bickel et al,, 1999.
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2007. With the exception of the last two references, the majority of the cited work consid-
ered variations of; relaxation method to obtain computationally efficient algorithms with
good statistical properties. It would be interesting to exploit the connection of these prob-
lems to decentralized detection problems to devise more efficient procedures that overcome
the computational intractability of the learning of quantization rules. At the same time, itis
interesting to explore potential applications of the correspondence between surrogate losses
and divergences to devise and study alternative surrogate losses for the existing feature se-

lection and dimensionality reduction algorithms in the literature.
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