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Abstract

D-Trigger: A General Framework for Efficient Online Detection

by

Ling Huang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Anthony D. Joseph, Chair

As the Internet evolves into a valuable and critical service platform for our business and daily life,

there has been growing interest in large-scale distributed monitoring for network infrastructures.

The monitoring systems collect and aggregate information describing status and performance of

networked systems. Remote monitor sensors are typically deployed throughout the network gen-

erating numerous large and widely-distributed, continuous or discrete timeseries data streams, rep-

resenting large-scale information flows from multiple vantage points. Existing research in system

monitoring and data management involves periodically pushing all monitored data to a central Net-

work Operation Center (NOC) for sophisticated analysis and anomaly detection. However, such a

“periodic push” approach suffers from timescale and size scalability limitations. Many anomalies

occur on much smaller time scales than typical polling periods. Detecting events on a second sub-

second time scale requires that the volume of measurement data transmitted through the network

increase dramatically because the monitoring data must be collected on a second (or sub-second)
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time scale. Similarly, an order of magnitude (or more) increase in the number of monitors also

causes a massive growth in the volume of collected data, and could overload the central processing

site’s network capacity, especially for networks such as sensor networks, wireless networks, and

enterprise networks.

In this dissertation, we design and develop D-Trigger as a general framework for effi-

cient online anomaly detection. D-Trigger addresses the lack of efficiency and flexibility in today’s

distributed monitoring and anomaly detection systems, and proposes a general framework which

gracefully integrates a variety of decision-making and optimization algorithms for online detection.

The key goals and accomplishments in this dissertation are to: 1) enable real-time detection where

the system’s state is tracked continuously, so even the smallest anomalies will be exposed; 2) sig-

nificantly reduce the data collected for anomaly detection, thus reducing the communication burden

placed on the network; 3) guarantee desired detection accuracy even with the reduced amount of

collected data. To achieve the three goals, D-Trigger combines in-network processing at distributed

local sites, and decision making at the NOC. The combination of distributed local processing strate-

gies, sophisticated detection algorithms, and theoretical analysis tools enables D-Trigger to perform

in-network tracking with very high detection accuracy and low communication overhead. In addi-

tion, D-Trigger is able to accommodate a broad set of statistical learning algorithms for the detection

of various unusual events, including botnet attacks, volume anomalies in an ISP network, electric

power grid anomalies, etc.

Our work on D-Trigger has resulted in an efficient detection system which is capable of

detecting a wide-range of anomaly types in distributed systems in near real-time with bounded de-

tection error. The system can be applied to a wide variety of monitoring problems and domains,
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ranging from simple monitor functions (e.g., SUM, AVG, MIN, and MAX) to complex mathemat-

ical functions, and spanning areas such as sensor networks, enterprise networks, and even power

distribution networks.

Professor Anthony D. Joseph
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 A New Paradigm for Network Monitoring

Today’s Internet has evolved into a pervasive and critical infrastructure for daily life and

business activities. Large-scale distributed monitoring and anomaly detection systems have been

largely deployed for health monitoring and detection of unusual events on the Internet. They ag-

gregate and present information describing the status and performance of large distributed systems

(e.g., server clusters and large Internet Service Provider (ISP) and enterprise networks). Remote

monitor sites are typically deployed throughout the network (both at the network edge and inside

the internal infrastructure) and, thus, their data streams present information from multiple van-

tage points. The ensemble of these monitors leads to the creation of numerous, large, and widely-

distributed time-series data streams that are continuously monitored and analyzed for a variety of

purposes.

Example applications abound. Consider, for instance, a network-wide anomaly detec-

tion system. In a typical enterprise network, many Intrusion Detection Systems (IDSs) are de-
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ployed across geographically-distributed vantage points to monitor network traffic. These “local”

IDS views need to be continuously fused at a central Network Operations Center (NOC) to en-

able timely detection and warning of abnormal activities. As another example, ISP and enterprise

NOCs employ distributed monitoring to continuously track the health of their infrastructure, iden-

tify element failures, and then track the performance of their failure recovery procedures; they also

monitor load levels for hot spots as a part of capacity planning, to determine when and where ca-

pacity upgrades are needed. Wireless sensornets for habitat, environmental, and health monitoring

also continuously monitor and correlate sensor measurements for trend analysis, and detection of

moving objects, intrusions, or other adverse events.

Consider the example application of botnet detection in detail. In botnet attacks, multiple

zombies try to open a large number of TCP connections to a single server (the victim). Such a

scenario is depicted in Fig. 1.1. This figure can represent either an enterprise or ISP network. If the

hosts in the figure reside inside the network, then this figure captures an enterprise network. If the

hosts reside outside the network infrastructure, then the ensemble of routers can represent an ISP

network. Assume a set of hosts have been recruited by a botnet, some subset of which reside in our

given network. An external commander gives them an order to launch a large number of connections

to a victim, that in this case resides outside our network. By tracking the number of simultaneous

TCP connections at an individual machine or monitor, one might not detect an unusually high

number of connections all headed towards the same destination. However, by tracking the SUM

of the number of simultaneous TCP connections from these hosts, all with the same destination,

one could more easily detect the excess or overload. Both enterprise and ISP networks employ

central operation centers that could track such sums. If an ISP deployed our proposed functionality,



3

If Enterprise

If ISP

Data Flow
Control Flow
Monitoring Flow

Zombie
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Send at rate
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COC
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Victim

Figure 1.1: Example: Distributed detection of botnet attacks.

by using monitors on gateways and pushing data to the operations center, then it could block this

unwanted incoming traffic via filters on the gateways. If an enterprise network could detect such

traffic, the hosts could simply be disconnected. We point out that the goal here is not to completely

squelch the entire Internet-wide botnet attack, nor to completely protect the victim (that, in this case,

lies outside our network domain). Instead, the goal is to reduce an enterprise or ISP’s liability by

blocking the attack traffic emanating from its network.

This is a typical example of detecting whether there are a collection of compromised hosts

within a network launching a Distributed DoS (DDoS) attack to an outside destination address.

In many cases, tracking the traffic level at each individual host may not raise any serious alarms

(e.g., intelligent botnets prevent compromised machines from transmitting at their maximum level

to evade detection). On the other hand, a monitoring system tracking the aggregate of the com-
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promised host behaviors, can indeed reveal alarming levels of outgoing traffic to the destination.

In some cases, simple linear aggregate functions like SUM, MIN, MAX, are enough to perform the

detection; however, in other cases, more sophisticated anomaly detection functions have to be used

to detect usual events in a large system. For example, Lakhina et al. [41] propose anomaly-detection

methods that track the top eigenvalues of the global traffic matrix by monitoring all the link-load

levels in large IP networks. In both scenarios, tracking the aggregate behavior over a physically-

distributed monitoring infrastructure is much more revealing than tracking the local behavior of

individual network elements or hosts.

Over the past few years, the defining characteristics of online anomaly detection have been

identified as posing new challenges that are not addressed by either traditional data management

systems or network monitoring systems. The three fundamental key aspects of such large-scale

monitoring and detection systems can be abstracted as follows:

1. Monitoring is continuous; that is, to ensure timely response to potentially serious problems,

we need real-time tracking of measurements or events, not merely one-shot responses to

sporadic queries. Queries in these monitoring situations are typically long running correlation

analysis and evaluation functions over the data, which continuously run and return answers

as they are found.

2. Monitoring is inherently distributed; that is, the data streams required to answer the monitor-

ing queries are distributed throughout the network. Local data streams (e.g., IP traffic mea-

surements) observed across several remote monitor sites need to be fused and/or correlated at

a coordinator site to allow tracking of interesting phenomena over a global data stream.

3. Monitoring needs to track global detection functions defined over distributed datasets. Beside
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continually recording system state, one primary goal in monitoring a system is to ensure that

all is well. This is typically achieved by maintaining a well-defined set of logical predicates

or detection functions over the entire system. In many situations, tracking the detection func-

tions over system status collected from physically-distributed vantage points is much more

revealing than tracking the local behavior of individual network hosts. At the same time, a

monitoring system needs to accommodate a wide-range of correlation and decision functions,

so that it can satisfy the requirements of different applications under a variety of situations.

1.2 Challenges for Efficient Online Monitoring and Detection

In distributed monitoring environments, useful monitoring data are produced continu-

ously, and are spread across multiple distributed monitor sites. For many monitoring and detection

functions, however, users and applications have to aggregate and access the data at the central NOC

in a continuous way. This is because centralized data access is easy for network management (e.g.,

enforcing policies at a single point), and further more, many detection and correlation functions

are simple to evaluate with global data at a single point. While monitoring and detection proce-

dures tend to become simpler when reduced to centralized data access tasks, a significant challenge

remains: that of collecting, shipping and using data across the system efficiently and effectively.

1.2.1 Communication Constraints

The distributed nature of monitor sites typically implies important communication con-

straints owing to either network overhead restrictions (e.g., large volumes of distributed IP-monitoring

traffic) or power limitations (e.g., sensor battery life). For instance, large enterprise networks typi-
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cally do not overprovision their interconnections to remote office sites (e.g., crossing city, state, or

country boundaries), yielding severe communication restrictions for their enterprise Intrusion De-

tection systems (IDS), as such systems typically generate enormous amounts of data that is pulled

to a central NOC for further analysis by so-called “correlation engines” [1] that look for patterns

across the logs of different machines. Such background management traffic coupled with regular

inter-office traffic can easily saturate inter-site links.

Furthermore, even though ISPs today typically overprovision their backbone networks,

emerging continuous monitoring applications may require much finer time and/or data granularities,

yielding significant measurement traffic volumes, even by ISP standards. For example, typical

SNMP monitors today collect simple link statistics once every five minutes; however, for real-

time anomaly detection, finer time scales are often necessary. As our implementation numbers

show, simply collecting header information for each new TCP connection over 400 PlanetLab nodes

produces a continuous continuous data stream of about 10Mbps at the collection site. And, of

course, in any realistic large-scale monitoring setting, there could be tens or hundreds of distinct

continuous queries running concurrently over the network infrastructure.

In a bandwidth scarce environment, network communication resources can only be used at

some premium. This premium for network usage may stem from the fact that increased congestion

may cause service quality degradation for all applications that use the network. Alternatively, the

premium may be manifest as a monetary cost, either in terms of direct payment to a service provider

or as a loss of revenue due to an inability to sell consumed resources to others. As a result of

communication resources being a valuable commodity, we have seen that the system monitoring

and detection applications described above have to operate in a communication heavily constrained
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environment.

While the sensor network community worries a lot about communication and computation

efficiency [29, 26, 21, 13], few existing anomaly detection approaches in the network community

consider communication efficiency. They always assume that complete data can be collected, and

can be either continuously or periodically shipped to the central NOC for anomaly detection. For

example, Lakhina et al propose the PCA-based method for network-wide traffic anomaly detection

in [41]. They proposed that distributed monitors continuously measure the total volume of traffic (in

bytes) on each network link, and periodically push all recent measurements to the NOC. The NOC

then performs Principal Component Analysis (PCA) on the assembled data matrix to reveal traffic

anomalies that were not detectable in any single link-level measurements. While effective, such a

“periodic push” approach suffers from two scalability limitations:

1. The first limitation has to do with the time scale of operation and how fast anomalies can be

detected. The work by Lakhina, et al was initially shown to work at 5 and 10 minute time

scales [41]. However many anomalies occur on much smaller time scales. If the method

were employed on a second or sub-second time scale, then the volume of measurement data

transmitted through the network would increase dramatically because the monitoring data

would need to be collected on a second (or sub-second) time scale.

2. The second scalability limitation has to do with the effect of increasing the number of moni-

toring sites. An approach in which all monitors upload all of their data to a central processing

site regularly, creates two problems. It may overload the central processing site. Also, sending

such large quantities of data through the network is a problem for certain kinds of networks

such as sensor networks, many wireless networks, and enterprise networks (that do not over-
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Figure 1.2: The abstract data management model.

provision inter-site connectivity). Although such measurement overhead may be supportable

in today’s ISPs, it may not in the future as we move towards petascale monitoring infras-

tructures that will monitor hundreds or thousands of network data features. The combined

effect of increasing the number of monitors while simultaneously reducing the time scale of

operation could lead to an explosion in the volume of data collected for this application.

The above scenarios clearly illustrate the need for intelligent, communication-efficient

distributed monitoring, either to limit the burden on the underlying production network or to simply

avoid overwhelming the centralized coordinator. Naı̈ve solutions that continuously “push” the local

data streams directly to a collection site simply will not scale to large distributed systems.
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1.2.2 Efficient Data Management

The database community has done extensive research on approximate data replication pro-

tocols for efficient management of distributed and continuous data streams [4, 11, 47, 35]. Based on

a one-level tree structure, they study the problem of how to efficiently and effectively facilitate cen-

tralized access to distributed data objects (i.e., a stream is a data object with values changing over

time continuously). One typical way is to maintain copies of data objects of interest at the central

NOC using an operation called replication, as illustrated abstractly in Figure 1.2. In a typical net-

work monitoring system, the central NOC maintains replicas of data objects whose master copies

are distributed across multiple remote and distributed monitors. Various information update and

data synchronization protocols have been proposed to keep replicas synchronized to some degree

with remote master copies using communication links between the NOC and each source. Keep-

ing replicas exactly consistent requires propagating all master copy updates from monitors to the

replicas at the NOC, which is infeasible or prohibitively expensive in many cases: data collections

may be large or frequently updated, and network communication and computation resources may

be limited due to the high communication costs incurred by this approach.

In many applications of network monitoring and detection systems, exact data is often not

a requirement. It is a common practice to use approximate replication techniques, such as periodic

refreshing or change/event-driven information updates, to reduce communication costs. In this case,

the key issue is to study the fundamental tradeoff between the communication cost incurred for data

synchronization and the degree of synchronization achieved. This characteristic property is referred

to the cost-accuracy tradeoff, as shown in Figure 1.3. A particularly interesting tradeoff is to let

users specify a minimum allowable accuracy level (i.e., fix an x-axis position in Figure 1.3), and
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the data management system attempts to minimizing the communication cost while meeting the

specified accuracy requirement.

Consider the stream processing problem of evaluating multiple continuous queries over

distributed streamed data, which usually incurs significant communication overhead in the presence

of rapid update streams. Olston et al. [47] proposed an adaptive filtering approach for reducing

communication cost, by taking advantage of the fact that many applications do not require exact

accuracy for their continuous queries. They allow users to submit a minimum accuracy level along

with continuous queries to the stream processor, and the stream processor installs filters at the

remote monitoring sites. The filters adapt to changing conditions to process data locally, so that

they minimize communication cost while guaranteeing that all continuous queries still receive the

updates necessary to provide answers of adequate accuracy at all times. In this way, users are offered

fine-grained control over the tradeoff between query answer precision and communication cost.
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1.2.3 Detection Instead of Approximation

One of the primary goals for a monitoring system is to ensure the target system performs

well. For this goal, we do not need to record and aggregate global system state continuously at

all times; instead, we want the monitoring system to detect and react in the event of occasional

violations of system pre-defined constraints. Ideally, this detection and response should be achieved

in a manner that remains both timely and efficient at scale. Stream processing protocols, however,

are ill suited to this task. Existing stream processing approaches mainly focus on data approximation

using simple linear aggregate functions. They always aim at collect, store and aggregate network

status at the central NOC within an ε−error bound. They are well suited to answering approximate

queries and continuously recording system status for trend analysis. However, for detection purpose,

they suffer from excessive query overhead in face of bursty data, partly because they always aim

at ε-error approximation of system status regardless of actual system conditions. Always providing

ε-error approximation of system status wastes resource for detection applications, which only care

about 0-1 information (i.e., “normal” vs. “abnormal”). As shown later on in Chapter 3, this is

unnecessary and incurs large communication cost for anomaly detection applications.

In addition, it is unclear how ε-error approximation can achieve a fine-grained tradeoff

between accuracy and communication cost for detection applications, especially when sophisticated

detection functions are used instead of simple linear function like SUM. This is one of the main

research goals and achievements in this dissertation.
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1.3 Overview of D-Trigger

Several recent research proposals suggest architectures for efficient large-scale monitor-

ing systems [14, 15, 33, 58]. Their vision articulates the need for distributed tools that monitor

overall system activity. Other recent work [36, 38] argues convincingly that a critical component

missing from such architectures is that of a flexible distributed triggering mechanism, that can ef-

ficiently detect when a global condition across a set of distributed machines exceeds acceptable

levels. Building upon this vision, we have designed D-Trigger as a general framework for efficient

online detection by adaptively tracking system global conditions.

1.3.1 The System Setup

D-Trigger is designed as a distributed triggering system where continuous data aggrega-

tion is needed to gather timely information for continuous 0-1 queries that involve detection of an

anomaly or constraint violation (e.g., aggregate traffic, memory usage, or other parameter exceeding

a threshold). Constraint violation may be defined in terms of different metrics, such as: instanta-

neously exceeding a threshold (e.g., peak CPU load), exceeding a threshold over a time-varying

window to detect an on-going heavy load or continuous burden on the system, or exceeding an av-

erage rate limit. These types of definitions can be used to support an IDS, provisioning decisions,

performance/availability monitoring, etc.

As shown in Figure 1.4, our D-Trigger system consists of n distributed monitors and a

central coordinator node. Monitors are distributed inside the network, each of which continuously

produces time series signals on the monitored data. Users or applications register triggers at the

coordinator via arbitrary threshold or anomaly detection functions. The coordinator is responsible
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Figure 1.4: The system setup.

for continuous evaluation of the functions and firing a trigger if the aggregate (function-transformed)

signal of the monitors exceeds a pre-specified threshold (See Fig. 1.4). Although the detection

functions are specified at the coordinator, they are defined on the distributed information collected

and produced by monitors. So the coordinator needs timely information updates from monitors to

continuously track the detection functions. It also give monitors feedback and guidelines on how

and when to do information updates.

1.3.2 The Problem and Key Challenges

Our work on D-Trigger focuses on collaborative anomaly detection, involving large sets

of distributed monitors across large network systems. Anomaly detectors are perfect candidates for

achieving a communication-efficient solution if done properly. Anomalies are rare events in a well-
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performing system, so most of the time the monitoring data should be normal and the coordinator

does not need a detailed view of what is happening in the system. It is not necessary for monitors

to send updates of every bit of information to the coordinator because the anomaly detectors do not

need most of it anyway. Only when things start to become questionable, does the coordinator need

a more precise view of system status.

However, in a dynamic environment where system status change rapidly, it is not a easy

task for the detection center to figure out when and how much information is needed to fire the

trigger at the user required accuracy level. Naı̈vely designed solutions easily incur large communi-

cation cost in order to achieve the desired detection goal. The key challenges that D-Trigger faces

can be summarized into the following two aspects:

1. Because monitoring applications are inherently continuous and distributed, algorithms and

protocols in D-Trigger should be designed to minimize the communication overhead that it

introduces, while still guaranteeing user-specified detection accuracy. To achieve the guaran-

teed accuracy, the D-Trigger protocols need to find out which information is important, and

when and how to update information efficiently; the D-Trigger algorithms need to configure

protocol parameters based on concrete theoretic analysis, so that the coordinator can gets “just

enough” information to guarantee the specified detection accuracy.

2. As a general framework for efficient online monitoring and detections, D-Trigger should go

beyond simple triggers (see more descriptions in Section 1.4) to accommodate a broad range

of anomaly detection algorithms. They are crucial for effective detection of various unusual

events, including botnet attacks, volume anomalies on an ISP network, electric power grid

anomalies, etc. The challenge is, with incomplete information, guaranteeing accuracy re-
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quirements for linear detection functions is not easy, and to do so for sophisticated anomaly

detection algorithms (e.g., PCA-method) is even harder!

To reduce the communication cost, D-Trigger engages distributed monitors in local in-

formation processing at the edge of the network. Monitors only send the processed data to the

coordinator, which can be approximated or filtered versions of the original data. Because the co-

ordinator has imperfect knowledge of the monitored data (it receives filtered versions), it can make

mistakes — leading to possible false alarms and/or missed detections. The problem here is to de-

sign protocols for the monitors and coordinator such that the coordinator fires the trigger with high

accuracy while simultaneously using as little communication between the monitors and coordinator

as possible, so that fine-grained tradeoffs between detection accuracy and communication cost can

be achieved.

The D-Trigger system gracefully integrates a variety of approximation and optimization

algorithms to address the inefficiency and inflexibility in today’s distributed monitoring and anomaly

detection systems. D-Trigger is designed with a focus on data collection for anomaly detection,

and brings together the best techniques from continuous data streaming, online machine learning,

and distributed signal processing. D-Trigger combines in-network processing at distributed local

sites, and decision making at the NOC. The combination of distributed local processing strategies,

sophisticated detection algorithms, and theoretical analysis tools enables D-Trigger to perform in-

network tracking with very high detection accuracy and low communication overhead.
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1.4 Going Beyond Simple Triggers

These early efforts on distributed triggers focused solely on instantaneous aggregate trig-

ger conditions [36, 38, 56], where the goal is to fire the trigger as soon as the aggregate (typically,

SUM) of the up-to-date local observations (e.g., site CPU utilizations or messages to a given des-

tination) exceeds a pre-specified threshold. While they are a useful tools for several application

scenarios, they are insufficient for sophisticated detection in many networking applications. One of

the key contributions of this dissertation is to extend the simple trigger model to support more so-

phisticated trigger functions and thresholds. In this section, we discuss the whole problem space of

using distributed triggers for online anomaly detection, and introduce two type of important triggers

– cumulative triggers and extended triggers.

1.4.1 The Problem Space

The problem space of protocol and algorithm design for online anomaly detection appli-

cations is shown in Figure 1.5, and the taxonomy of the design space is formed by the following

three orthogonal axises: violation type, trigger function and system topology.

1. For the violation type, there are at least three distinct types of trigger conditions. Instanta-

neous triggers must fire when an aggregate threshold value is violated within a single time

instance. On the other hand, fixed-window and cumulative triggers aim to catch persistent

threshold violations over a window of time. Cumulative triggers, in particular, monitor ag-

gregate signals for potential threshold violations over a time window of any size in the past,

which is explained in more detail in Section 1.4.2.

2. The trigger functions supported in a triggering system can range from simple linear functions
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like SUM, AVG, MIN, MAX to sophisticated anomaly detection functions like Top-k, PCA

and Support Vector Machine (SVM) classification, etc. Rich types of function support enable

the system to perform detection for a variety of problems, ranging from load-balancing, botnet

attacks, volume anomalies on in ISP network, to electric power grid anomalies, etc.

3. For the system topology, there are triggers defined on a one-level tree topology, in which

every monitor communicates with the coordinator directly; there are triggers defined on a

multi-level tree structure, where monitors have a parent-child relationship, and are organized

into a hierarchical tree structure with the coordinator as the root of the tree; finally, one could

imagine evaluating and tracking triggers in a purely peer-to-peer fashion. In this dissertation,

we only focus on one slice of the whole problem space: designing solutions for triggers

defined on a one-level tree topology (the shaded region in Figure 1.5). It is interesting future

work to extend the algorithms and protocols designed for a one-level tree topology to multi-

level tree and peer-to-peer topologies.

1.4.2 Cumulative Triggers

While instantaneous triggers are undoubtedly a useful tool for several application scenar-

ios, they also have some important limitations when it comes to monitoring distributed phenomena

that are inherently bursty, such as network traffic. Fixing appropriate instantaneous threshold condi-

tions (e.g., for anomaly detection) in such settings can be very difficult, and easily lead to numerous

false positives/negatives: Exceeding a threshold for a short period of time could very well be al-

lowed as natural bursty behavior; on the other hand, even violations that are small in magnitude

could be harmful or malicious if they are allowed to persist over time. For instance, in our DDoS
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Figure 1.5: The whole problem space.

example, a clever attacker could try to “fly under the radar” by ensuring that the instantaneous ag-

gregate volume of traffic to the victim is not large enough to raise any alarm signals; capturing the

persistence of the aggregate traffic over time is key to detecting the attack. Another example where

temporally-persistent violations can play an important role is that of “burstable billing” policies

employed by ISPs for large enterprise network customers with multiple connections to the ISP’s

network. Typically, these customers are allowed to use up to a certain amount of bandwidth across

all the links per month for a fixed fee, with additional charges if the allotted bandwidth is exceeded.

Given the transient bursty nature of traffic, charging customers literally for each excess byte over

their bandwidth allotment is too restrictive; instead, a much more flexible and intuitive billing pol-

icy is to assess extra charges only for bandwidth overuse that persists over time or exceeds the

contracted allotment by a truly excessive amount.

The above scenarios clearly argue for a novel class of cumulative triggers, where the
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threshold condition is defined in terms of the accumulated excess area of the aggregate signal over

time: (bytes × time) or (number of connections × time). Abstractly, a cumulative trigger condition

should fire when the excess area of the observed aggregate signal over a time window of any size,

exceeds the pre-specified cumulative threshold. Such cumulative triggering conditions introduce

a new class of distributed monitoring problems that cannot be captured using existing SUM-trigger

mechanisms based on instantaneous sums of local values [36, 38]. In a nutshell, the accumulation

of signal area can take a place over a time window of arbitrary size (not known a priori), whose

boundary is defined based on the whole history of the aggregate signal (e.g., with periods of un-

derutilization compensating for periods of overuse). This cumulative threshold condition cannot be

expressed in terms of an instantaneous problem.

1.4.3 Extended Triggers for Sophisticated Detections

Many existing online triggering and detection approaches have significant limitations:

they only support simple thresholds on distributed aggregate functions like SUM and COUNT, which

are insufficient for sophisticated detection in many networking applications. In this dissertation,

we develop the support for more sophisticated detection functions for distributed triggers. We give

some examples for detection schemes that may require checking non-linear threshold constraints,

relative triggers, and so on. To illustrate these ideas more concretely, we use the example of a

centralized PCA-based anomaly detection application [41]. This method detects anomalies in traffic

volume levels by simultaneously examining the link load levels of all the links in a large network.

It works by using a Principal Components Analysis (PCA) technique to decompose network traffic

into normal and residual components, and then detects anomalies by applying a threshold function

on the residual components. In this detection scheme, distributed monitors periodically ship all
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observations to a central Network Operations Center (NOC), which in turn assembles and analyzes

the data to perform anomaly detection.

However, such a “periodic push” approach suffers from scalability limitations. It is a

central premise of this work that backhauling all distributed monitoring data may be unnecessary,

depending upon the particular monitoring task, and thus smart data-filtering or data-reduction at

the local monitoring sites should be employed. This approach would enable distributed monitoring

systems to scale more gracefully both as the number of monitors increase and as the time scale for

data collection and anomaly detection decreases. The promising effectiveness of the Lakhina, et al.

technique provides strong motivation for designing a significantly more communication-efficient

PCA-based scheme for real-time anomaly detection.

1.5 Contributions and Thesis Organization

1.5.1 Contributions

This dissertation work focuses on algorithm design and system development for D-Trigger,

a general framework for efficient online monitoring and anomaly detection. It proposes a system

framework for in-network anomaly detection by applying signal processing and machine learning

techniques to analyze and model distributed data streams. The key accomplishments throughout the

whole dissertation work have been to: 1) enable near real-time detection where the system’s state

is tracked continuously, so even the smallest anomalies will be exposed; 2) significantly reduce

the data collected for anomaly detection, thus reducing the communication burden placed on the

network; 3) guarantee desired detection accuracy even with the reduced amount of collected data.

With the three achievements, this dissertation work has resulted in an efficient detection system that
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is capable of detecting a wide-range of anomaly types in distributed systems in near real-time with

bounded detection error. D-Trigger is a general purpose framework that can be applied to a wide

variety of monitoring problems and domains, ranging from simple monitor functions (e.g., SUM,

AVG, MIN, and MAX) to complex mathematical functions (see below), and spanning areas such as

sensor networks, enterprise networks, and even power distribution networks.

Online Tracking of Distributed Triggers

We design and develop a general detection framework for efficient online detection with

Distributed Triggers (D-Trigger), which makes the following contributions. First, we provide a

mathematical definition of the distributed triggering problem with different constraint violation

modes, along with the design of the supporting protocols. Our system enables users to tradeoff

desired detection performance with communication overhead. Second, for cumulative triggers, we

provide a principled queuing framework for analyzing the dynamic properties of protocols, and ana-

lytical solutions for finding effective queue sizes based upon the target detection accuracy. Third, for

instantaneous triggers, we provide an adaptive protocol that exploits the specified trigger threshold

to minimize communication while offering deterministic accuracy guarantees. Finally, we evalu-

ate our schemes on real-life distributed data streams collected from PlanetLab IDS monitors, and

clearly demonstrate the significant communication-efficiency gains that our algorithms can achieve.

In all of our testing, the amount of monitor data that needed to be sent to the coordinator varied

from 4% to 20% depending upon the test case, thus reducing the communication burden of the

original signals by over 80%. We also significantly outperform previous streaming solutions for the

instantaneous trigger case, particularly in regions where only very low errors can be tolerated.
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Toward Sophisticated Online Detection

We propose a novel approach to extending simple threshold triggers for sophisticated

anomaly detection problems. Through a set of examples, we show that D-Trigger is an efficient

and extensible vehicle for advanced detection algorithms, and discuss our general extensions to

existing triggering protocols to support wide-range of detection tasks. In particular, with certain

assumptions, we show that D-Trigger can be extended to support distributed protocol for performing

online detection of network-wide anomalies with modest communication overhead.

Online Detection of Network-Wide Anomalies

Based on the D-Trigger framework, we propose a novel approach for communication-

efficient online detection of network-wide traffic anomalies. Our proposed solution is unusual in

that it combines the existing PCA-based method with in-network processing ideas with new insights

based on Stochastic Matrix Perturbation (SMP) theory. We develop an approximation technique in

order to reduce the amount of data needed for anomaly detection. Having incomplete monitoring

data can lead to errors that propagate through the computation, and this results in an anomaly detec-

tor that can make mistakes. We make use of SMP theory to derive analytic bounds on each of the

terms affected by error propagation. We design an algorithm that derives filtering parameters for

the monitors, such that the errors made by the detector are bounded. Our algorithms allows users

to input a target error rate which gives them control over the tradeoff between communication cost

and detection accuracy.

Our evaluation using real-world data streams collected from a well known ISP network

shows that our methods work very well. While sending less than 10% of the original time-series
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data (over an order of magnitude communication reduction), we guarantee that the detection error

would be no more than 4% bigger than when using full data. In fact, our system performs much

better than these bounds; we find that the actual error rates are nearly indistinguishable from the full

data method. This results in a huge savings in communication overhead (e.g., typically 80 or 90%

of the original data is no longer sent) with only a very small impact on errors.

1.5.2 Organization of Dissertation

The remainder of the thesis is organized as follows: We begin in Chapter 2 by providing

context and discussing related work in distributed monitoring and anomaly detection systems. We

then discuss the general framework of D-Trigger, and describe detailed protocols and algorithms

for efficient tracking of distributed triggers in Chapter 3, followed by extended algorithms and

mechanisms for tracking sophisticated triggers in Chapter 4. In Chapter 5 we present the PCA-

based method in detail and give a comprehensive description of how to use D-Trigger framework to

continuously detect network-wide traffic anomalies. Finally, we summarize lessons learned, outline

future work and conclude in Chapter 6.
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Chapter 2

Related Work

In this chapter, we summarize related work in both the networking and database do-

mains, focusing on network monitoring and intrusion detection methods, streaming protocols for

distributed query processing, and online data mining and decentralized machine learning algorithms.

2.1 Network Monitoring and Intrusion Detection

Network intrusions and large-scale attacks happen on the Internet daily, and range from

stolen or corrupted data, widespread denial-of-service attacks, to disruption of essential services.

Protecting networks from intrusions and attacks is challenging, and current best practice for pro-

tecting against intrusions is through the use of firewalls or network intrusion detection systems

(NIDS) [44], which are usually placed at the edge of networks. Firewalls are choke points that filter

traffic at network gateways based on local security policies [7]. NIDS passively observe the local

network traffic and react to specific signatures (misuse detection) or statistical anomalies (anomaly

detection). Examples of NIDS that employ misuse detection are Snort [54] and Bro [49].
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Snort [54] is capable of performing real-time traffic analysis and packet logging on IP

networks. It can perform protocol analysis, content searching/matching and can be used to detect a

variety of attacks and probes, such as buffer overflows, stealth port scans, CGI attacks, SMB probes,

OS fingerprinting attempts, amongst other features. The system can also be used for intrusion

prevention purposes, by dropping attacks as they are taking place.

Bro [49] is an open-source intrusion detection system developed by Vern Paxson et al.

Similar to SNORT, it passively monitors network traffic and detects suspicious activity by compar-

ing network traffic against a set of rules describing attack signatures. Bro detects intrusions by first

parsing network traffic to extract its application-level semantics and then executing event-oriented

analyzers that compare the activity with patterns deemed troublesome. Its analysis includes detec-

tion of specific attacks (including those defined by signatures, but also those defined in terms of

events) and unusual activities (e.g., certain hosts connecting to certain services, or patterns of failed

connection attempts).

However, a misuse-detection based NIDS is incapable of detecting new types of intru-

sions. This fundamental weakness comes from their detection relying on existing signatures. For

detection of new types of intrusions, anomaly detection techniques have been proposed [24], which

establish statistical profiles of network traffic and flag any traffic deviating from the profile as

anomalous. For example, a large component of the work on machine learning, signal processing and

time-series analysis is devoted to detecting outliers or anomalies in time-series [6, 10, 31, 40, 61].

These methods range in sophistication from [10], which suggests the use of the standard Holt-

Winters forecasting technique for network anomaly detection, to [6], which uses a sophisticated

wavelet based method with great potential. It is interesting future to pursue a distributed wavelet
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method for anomaly detection.

The high variability common in network traffic limits the effectiveness of anomaly detec-

tion techniques. In general, current NIDS suffer from two major drawbacks: high false alarm rates

and perspective from a single vantage point, which limits their ability to detect distributed or coordi-

nated attacks. One promising approach to addressing the abovementioned shortcomings is through

the use of distributed and coordinated intrusion detection techniques. In this environment, mea-

surements and alerts from different NIDS are combined and correlated to address above-mentioned

shortcomings.

2.2 Coordinated Monitoring and Detection

Recent progress in network monitoring, profiling and intrusion detection [41, 48, 64, 67]

aims to share information and foster collaboration between widely distributed monitoring boxes

to offer improvements over isolated systems. Specifically, a number of techniques have been pro-

posed to detect network traffic anomalies by correlating measurements from multiple vantage points.

However, most existing approaches for network-wide anomaly detection mainly focus on off-line

diagnosis instead of continuous online detection. These systems provide other examples of dis-

tributed monitoring applications for which our triggering tools would be useful.

Yegneswaran et al. [67] explored the possibility of improving detection speed and accu-

racy of isolated systems by sharing data between widely distributed intrusion detection systems.

They proposed DOMINO as an architecture for a distributed intrusion detection system that fos-

ters collaboration among heterogeneous nodes. Leveraging active-sink nodes which respond to and

measure connections to unused IP addresses, and organizing them into overlay network, DOMINO
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is capable of performing efficient detection of attacks from spoofed IP sources, reduces false pos-

itives, and enables attack classification and production of timely blacklists. This key observation

motivates a set of work to develop distributed data mining techniques for coordinated anomaly de-

tection using network-wide information.

Lakhina et al. [41], carried out pioneering work in detecting network-wide anomalies by

correlating observations from multiple vantage points together. They proposed an anomaly detection

scheme in which monitors ship observations to a central Network Operations Center (NOC), which

in turn assembles and analyzes the data to perform anomaly detection. Specifically, they propose

that local monitors continuously measure the total volume of traffic (in bytes) on each network

link, and periodically push all recent measurements to the NOC. The NOC then performs Principal

Component Analysis (PCA) on the assembled data matrix to reveal traffic anomalies that were not

detectable in any single link-level measurements. Lakhina, et al. demonstrate that this technique is

quite effective in detecting anomalies in traffic, in part due to the inherently low-dimensional nature

of the underlying data. One of our contributions is to illustrate how to redesign this application

in a distributed fashion, with far less communication overhead, by using distributed triggers as an

underlying paradigm. Abstractly, this requires distributed triggers that support complex threshold

functions, and can be composed to lend support to sophisticated distributed detection applications.

Zhang et al. [69], extended it further and proposed a general “anomography” framework

to infer network-level anomalies in both spatial and temporal domains. They tackled the problem of

inferring anomalies from indirect traffic measurement. With clear separation of traffic inference and

anomaly detection, they proposed a framework and developed a whole families of new algorithms

for network-wide anomalies detection, based on ARIMA modeling, the Fourier transform, Wavelets,
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and Principal Component Analysis. They introduced a new dynamic anomography algorithm, which

can effectively track routing and traffic changes, to alert with high fidelity on intrinsic changes

in network-level traffic. It is interesting and challenging future work to redesign these timeseries

analysis algorithms in a distributed online fashion for coordinated anomaly detection.

Network architecture support for large-scale coordinated monitoring and detection sys-

tems has been an important research field in recent years [14, 15, 33, 58]. One of the main focuses

is how to efficiently deliver timely and relevant data about the state of the system to all the dispersed

components of the system. Their vision articulates the need for distributed tools that monitor the

overall activity of the system with efficient data collection and management techniques.

2.3 Continuous Query Processing and Triggering

Database research on continuous distributed query processing has considered efficient

data management for coordinated monitoring systems. For example, a set of stream processing

protocols [12, 16, 20, 35, 47] aim at “ε−error” approximation of the aggregate signal computed

from the continuous and distributed data streams. However, these early efforts always focused on

the accurate estimation of the aggregate signal itself rather than catching a constraint violation. They

are well-suited for answering approximate queries and continuously recording system state.

In a distributed online setting, the work of Olston et al. [47] shares many similarities with

ours. They considered an environment where distributed data sources continuously stream updates

to a centralized processor that monitors continuous queries over the distributed data. To reduce the

communication overhead, they developed a system that allows users to register continuous queries

with accuracy requirements at the central stream processor, which installs filters at remote data
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sources; the filters adapt to changing conditions to minimize stream rates while guaranteeing that all

continuous queries still receive the updates necessary to provide answers of adequate accuracy at all

times. The proposed approach provides applications the tradeoff between approximation accuracy

and communication overhead at a fine granularity. However, they only considered the instantaneous

version of the problem and focus on aggregate approximation rather than accurate triggering.

Jain et al. [35] extended the filtering-based approach further. They recast query processing

on distributed streaming data as a filtering problem, in which the objective is to filter out as much

data as possible to reduce communication overhead, while still meet the accuracy standards specified

by applications. They leveraged the Kalman Filter as a general and adaptive filtering solution for

conserving resources, and realized a significant performance boost by switching from caching of

static data to caching dynamic procedures that can predict data reliably at the centralized processor.

The Kalman Filter method is very powerful in smoothing data (thus reducing communication cost)

for streams with strong temporal correlation. However, it still remains unclear whether this method

is applicable to detection problems, because necessary spiky anomalies might be smoothed out by

the Kalman Filter.

In order to maintain system-wide invariants and catch unusual constraint violations, the

database community has explored centralized triggering mechanisms [27, 63]; however, the goal

of minimizing communication overhead in widely distributed environments introduces new chal-

lenges.

Jain et al. [36] argued convincingly that a critical component missing from network mon-

itoring architectures is distributed triggering. They proposed to use uniform thresholds across all

monitors, and eventually detect instantaneous threshold violations without giving any guarantees
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on the size of the violation; in contrast, we place strict bounds on the size of the violation that our

schemes seek to enforce within specified error rates.

Dilman and Raz [22] studied the problem of detecting whether the sum of a set of numeric

values from distributed sources exceeds a user-supplied threshold value. They proposed and ana-

lyzed novel techniques which allow to significantly reduce the amount of monitoring related traffic,

based on a combination of aperiodic polling and asynchronous event reporting. They demonstrated

how the combination of a central monitoring algorithm, with simple local constraint verification,

can be used to save a significant amount of the monitoring overhead.

More recently, Keralapura et al. [38] proposed solutions to detect threshold violations on

sum functions with specified accuracy while minimizing communication overhead. They study the

“thresholded counts” problem in a monitoring environment where they must return the aggregate

frequency count of an event that is continuously monitored by distributed nodes with a user-specified

accuracy whenever the actual count exceeds a given threshold value. They explored algorithms with

both static thresholds and adaptive thresholds algorithms, which involve setting local thresholds at

each monitoring node and initiating communication only when the locally observed data exceeds

these local thresholds.

To monitor distributed data streams with sophisticated functions, Sharfman et al. [56]

proposed a novel geometric approach by which an arbitrary global monitoring task can be split

into a set of constraints applied locally on each of the streams. The constraints are used to locally

filter out data increments that do not affect the monitoring outcome, thus avoiding unnecessary

communication. As a result, their approach enables monitoring of arbitrary threshold functions over

distributed data streams in an efficient manner. However, their method assumes preset thresholds,
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does not consider global matrix analysis queries, and cannot scale to large networks with high-

speed data streams. Our approach goes further by providing both a firm detection guarantee for

a wide range of trigger functions and conditions, as well as the flexibility for users to trade off

communication overhead with detection accuracy.

2.4 Decentralized Data Mining and Machine Learning

In many networking environments, applications have to deal with different distributed

sources of voluminous data, multiple compute nodes, and distributed user community. Analyzing

and modeling data from distributed sources require data mining techniques designed for distributed

applications.

For the PCA method, [5] and [53] proposed distributed algorithms to compute principal

components of data matrices distributed across blocks of rows or columns. [53] used truncated

singular value decompositions (SVDs) in the distributed locations to reduce communications costs.

This approach is very effective when the local data matrices have low ranks and can be accurately

approximated via a truncated SVD. Unfortunately, truncated SVDs introduce local approximation

errors that could add up and adversely affect the accuracy of the final PCA. [5] introduces a new

method to compute the PCA on a distributed block matrix without incurring local approximation

errors, as well as updating the PCA when new data arrive at the various locations. However, these

methods assume that a block of data are available at each local site, and are not applicable to our case

where only a single column of data are available at each local site. Furthermore, neither [5] and [53]

address the issue of continuously tracking principal components within a given error tolerance or

the issue of implementing a communication/accuracy tradeoff; issues which are the main focus of
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our work.

Data clustering is one of the fundamental techniques in scientific data analysis and data

mining. It partitions a data set into groups of similar items, as measured by some distance met-

ric. For large and distributed datasets, Forman et al. [18] proposes distributed clustering algorithms

to reduce communication overhead and computation time. With a focus on one-shot clustering

with statistic data, their central idea is to communicate only sufficient statistics, which yields linear

speed-up with excellent efficiency. Cormode et al. [18] goes further to study the problem of main-

taining a clustering of distributed data that is continuously evolving, with focus on minimizing the

communication and computational cost while still providing guaranteed accuracy of the clustering.

However, their method requires a pre-specified cluster number, and employs a deterministic data

model for clustering. It is interesting but challenging future work to extend their method to handle

noisy data without specifying a cluster number, using probabilistic data model [8].

Recent work in the machine learning literature considers distributed constraints in learn-

ing algorithms such as kernel-based classification [66] and graphical model inference [39]. (See [52]

for a survey). In [66], Nguyen et al. considered the problem of decentralized detection under con-

straints on the number of bits that can be transmitted by each monitor. Without assuming the joint

distribution of monitor observations to be known, they addressed the problem of when only a set of

empirical samples is available. They proposed a novel algorithm using the framework of empirical

risk minimization and marginalized kernels and analyzed its computational and statistical properties

both theoretically and empirically. It will be of interest for future work to incorporate this approach

into our D-Trigger framework to enable sophisticated online detection via classification methods.
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Chapter 3

Online Tracking of Distributed Triggers

As introduced in Chapter 1, distributed triggering is a critical component in distributed

monitoring and detection systems that can efficiently fire alarms when a global condition across

a set of distributed machines exceeds acceptable levels. In this chapter, we describe the design,

implementation and evaluation of D-Trigger, our general framework for distribution detection and

triggering. We use SUM as the detection function in this chapter, and as shown later on in this thesis,

the D-Trigger framework can be easily extended to support other sophisticated (nonlinear) detection

functions.

Our D-Trigger system consists of n distributed monitors and one coordinator node. Mon-

itors continuously produce time series signals on the monitored data, and send filtered versions of

their signals to the coordinator, which is responsible for firing a trigger if the aggregate signal of the

monitors exceeds a pre-specified threshold (See Fig. 1.4).

Work in the database community on data streaming has considered similar environments

[12, 16, 20, 35, 47]. However, a critical difference between our work and these is that these efforts
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are focused on accurate estimation of the aggregate signal itself. Conversely, we aim to fire the

trigger accurately. This means that when our aggregate signal is far from the constraint violation,

the coordinator can tolerate receiving less accurate updates from the monitors, which in turn lowers

communication overhead. Only when the global state starts approaching the trigger condition do

we need accurate information about the time series data. This key insight enables us to achieve a

far greater amount of communication reduction than previous methods. We thus employ adaptive

control based on how far we are from the triggering condition. We also exploit other avenues for

overhead reduction: adapting to changing data statistics in the time series themselves and exploiting

cancellation of data variations across different monitors.

Our primary goal in D-Trigger is to extend distributed monitoring systems to enable con-

tinuous tracking for anomaly detection applications while still allowing for a scalable system archi-

tecture. We believe that many anomaly detection applications can be successful without collecting

all of the monitored data. Because our applications are focused on anomaly detection, we point out

that most of the time the traffic will be “normal” and there is no need to send such data to the fusion

center. The goal is thus to send only the monitoring data that is “needed” for the anomaly detector

to work properly. To reduce the amount of data transmitted through the network, we install local

triggers on the distributed monitors which allow the monitors to only send updates to the data fusion

center when the local trigger fires.

Our system supports three distinct types of distributed triggers to enable a broad range

of triggering conditions. Instantaneous triggers must fire when an aggregate threshold value is

violated within a single time instance. On the other hand, fixed-window and cumulative triggers aim

to catch persistent threshold violations over a window of time. Cumulative triggers, in particular,
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monitor aggregate signals for potential threshold violations over a time window of any size in the

past. To the best of our knowledge, our work is the first to address the detection of a constraint over

such varying-window sizes. Moreover, our cumulative trigger conditions pose novel algorithmic

problems that have not been addressed in earlier work on data streaming.

We design a solution for cumulative distributed triggers based on ideas from queuing

theory. Briefly, the monitors and coordinator are each assigned an amount of slack that carefully

controls the discrepancy in the views of the data available at the coordinator and the remote moni-

tors. One of our key insights is that this slack can be viewed as analogous to queue sizes. Selection

of these queue sizes affects the resulting amount of communication overhead as well as the resulting

false-alarm and missed-detection rates. We develop an analytical solution to determine the queue

sizes based on user supplied target error rates for false alarms and missed detections. Large reduc-

tions in communication bandwidth used by these systems is of paramount importance for scaling.

To avoid overwhelming a single coordinator when the number of monitors grow, it is critical that

each monitor be able to limit the information it sends to a coordinator.

In summary, our first-step work toward a general detection framework for D-Trigger

makes the following contributions. First, we provide a mathematical definition of the distributed

triggering problem with different constraint violation modes, along with the design of the support-

ing protocols. Our system enables users to tradeoff desired detection performance with commu-

nication overhead. Second, for cumulative triggers, we provide a principled queuing framework

for analyzing the dynamic properties of protocols, and analytical solutions for finding effective

queue sizes based upon the target detection accuracy. Third, for instantaneous triggers, we pro-

vide an adaptive protocol that exploits the specified trigger threshold to minimize communication
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while offering deterministic accuracy guarantees. Finally, we evaluate our schemes on real-life

distributed data streams collected from PlanetLab IDS monitors, and clearly demonstrate the sig-

nificant communication-efficiency gains that our algorithms can achieve. In all of our testing, the

amount of monitor data that needed to be sent to the coordinator varied from 4% to 20% depending

upon the test case, thus reducing the communication burden of the original signals by over 80%. We

also significantly outperform previous streaming solutions for the instantaneous trigger case, partic-

ularly in regions where only very low errors can be tolerated. This shows that our idea of targeting

trigger accuracy rather than aggregate signal estimation accuracy is powerful in reducing overhead.

We also show that our system can perform well in general when there is little error tolerance.

Chapter Organization. The rest of the chapter is organized as follows: we define the problem and

evaluation metrics in Chapter 3.1; we discuss our general framwork and approach in Chapter 3.2;

we present solutions for three different triggers in Chapters 3.3–3.5; we evaluate the approach in

Chapter 3.6; finally, we conclude in Chapter 3.7.

3.1 System Model and Problem Statement

As shown in Fig. 1.4, the distributed triggering system consists of a set of widely dis-

tributed monitoring nodes m1, m2, . . . , mn and a coordinator node X . Each monitor continuously

produces time series signals ri(t) on the variable(s) or condition(s) selected for monitoring. A mon-

itor’s output can be very general, for example, it can be any subset, or any combination of: number

of SYN requests per second, number of DNS transactions per hour, volume of traffic per minute at

port 80, and so on. These time series signals are sent to coordinator X which acts as an aggregation

and detection point. The purpose of the coordinator is to track conditions across its monitors and to
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fire a trigger whenever some limitation on the aggregate behavior of a subset of nodes is violated.

For example, if a number of machines had been compromised and were participating in a botnet,

then the number of TCP connections per second coming from them could reach unacceptably high

numbers. Our coordinator should identify this event, raise a flag and should indicate the machines

involved. In general, such a coordinator can aggregate the incoming time series signals using any

typical aggregation function, such as SUM, AVG, MIN, MAX, etc. In this chapter we focus on linear

aggregators, using the SUM aggregator throughout the chapter as our main example. With this ag-

gregator, the goal of the coordinator is to fire a trigger whenever the sum of the time series signals

exceeds a preselected threshold.

In this dissertation, we assume that: 1) all communication happens only between moni-

toring nodes and the coordinator, and no communication happens among monitoring nodes; 2) all

monitoring nodes want to send as less data to the coordinator as possible in order to reduce commu-

nication overhead; 3) there is no loss in the network, and to simplify the exposition, our discussion

assumes that communication with the coordinator are instantaneous. In the case of non-trivial de-

lays in the underlying network, techniques based on time-stamping and message serialization can

be employed to ensure correctness, as in [47].

If all the monitors sent their time series signals continuously, then the coordinator would

have perfect knowledge of the signals (i.e., global state) and would fire the trigger accurately. By

“accurately” we mean that the coordinator can make two kinds of mistakes when it has imperfect

knowledge: either a violation among monitors occurs and the coordinator fails to catch it (we call

this a missed detection), or no violation occurs yet the coordinator thinks that one has (called a

false alarm). Clearly, sending all the monitored signals all the time is extremely costly in terms of
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communication overhead.

Our intent here is to enable the coordinator to fire its triggers with high accuracy while

using as little communication as possible. We make use of three avenues for reducing overhead: (1)

when the time series itself does not change “much,” no updates are sent to the coordinator since the

most recent information sent is still valid; (2) we focus on the accuracy of firing the trigger and not

on estimating the aggregate time series signal; and (3) we leverage the coordinator’s global view by

letting it inform each monitor the level of accuracy that it must report.

3.1.1 Types of Constraint Violations

Let C denote the distributed trigger threshold. Our goal is to track the trigger condition

approximately to within a specified error tolerance ε, and our tracking algorithms exploit this error

tolerance to minimize communication costs. Since we are dealing with continuous time series of

measurements, the notion of exceeding a threshold is intimately related to the length of time over

which a violation may occur. We now define three distinct types of violations.

Instantaneous Violation. Here, we consider threshold violations occurring in a single time in-

stant t. More formally, we require our trigger to fire a violation for any time instant t such that

∑n
i ri(t) > C + ε. Fig. 3.1, illustrates a sample aggregate signal as it evolves over time, along with

the corresponding error-tolerance zone [C, C + ε). An instantaneous violation is shown at time slot

5. Let V (t, 1) denote the size of the violation (also called a penalty) at time t; it is defined to be

V (t, 1) = max{0,
n
∑

i=1

ri(t) − C}.

Thus, the goal of the system is to fire the trigger whenever the penalty exceeds ε, namely when

V (t, 1) > ε.
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Figure 3.1: Threshold, error tolerance and violations.

Fixed-Window Violation. A threshold violation can also be defined as persistent cumulative viola-

tion of a threshold condition over a given window of time. Consider again the example in Fig. 3.1:

During time slots 11 to 20, the signal remains in our error tolerance zone. However, if this situation

persists over a long period of time, we may very well want to flag this as a violation. The coordi-

nator can achieve this by computing a violation penalty that accrues over time, and fires the trigger

condition when the penalty becomes excessive. Given a fixed time-window size τ , the penalty at

time t accrued over the interval [t − τ, t] is defined to be

V (t, τ) = max{0,
n
∑

i=1

∫ t

t−τ

ri(w)dw − C · τ}

(We maximize this term with zero to keep the penalty non-negative.) Thus, with a fixed-window
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trigger (with window size = τ ) our goal is to fire the trigger at any time t such that V (t, τ) > ε.

Cumulative Violation. In cumulative triggers, the threshold condition is defined in terms of the ac-

cumulated excess area of the aggregate signal over time: (bytes × time) or (number of connections

× time). Abstractly, a cumulative trigger condition should fire when the excess area of the observed

aggregate signal over a time window of any size, exceeds the pre-specified cumulative threshold.

Such cumulative triggering conditions cannot be captured using existing SUM-trigger mechanisms

based on instantaneous sums of local values [36, 38].

To capture temporally-persistent phenomena, we define a violation in terms of the accu-

mulation of excess area of the underlying signal over windows of time. The coordinator computes

a violation penalty that accrues over time, and fires the trigger condition when the penalty becomes

excessive. During a time window of size τ = τ(t), the penalty at time t accrued over the interval

[t − τ, t] is defined to be

V (t, τ) = max{0,
∫ t

t−τ

n
∑

i=1

ri(w)dw − C · τ}.

(We maximize this term with zero to keep the penalty non-negative.) Our cumulative triggering

mechanism does not depend on any fixed window τ ; instead, a cumulative trigger fires at time t if

penalty V (t, τ) > ε for any window size τ ∈ [1, t]. Thus, intuitively, we fire the trigger if there is

some time window that causes the cumulative penalty to exceed the ε constraint; or, more formally,

if maxτ{V (t, τ)} > ε, where max is computed on all possible τ over the entire signal history. One

of our key insights in this work is that, by exploiting an analogy to queuing theory, our system can

track cumulative trigger conditions effectively, without having to retain the entire signal history or

check the condition against all possible τ .

We allow the user or network operator to specify an error tolerance ε which indicates that
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Figure 3.2: Cumulative violations.

it is sufficient to track the global state (i.e., the aggregated time series) approximately with an error

bounded by ε. We will exploit this error tolerance to gain additional savings in communication

overhead reduction.

While undoubtedly useful in several settings, instantaneous and fixed-window triggers are

inherently limited when it comes to signals where transient bursty behavior is the norm, such as IP

network traffic. Depending on the threshold value, an instantaneous trigger may easily over-react

to natural, transient phenomena which are very common in practice. With fixed-window triggers,

choosing the right window size τ can be problematic for several reasons. If we use a small τ (short

window), and the violation lasts for a long time but is small in magnitude, the system is likely to

miss it altogether. For example, in Fig. 3.2, the persistent (but small) violation occurring in time
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slots [10, 20] could go undetected with a window size of τ = 5 because the penalty (over any 5

time slots), V2 or V3, does not grow to exceed ε. If, on the other hand, the violation were short in

duration but large in magnitude, the system would miss it if a large τ (long window) is used. In our

example figure, a short but large violation occurs during the time period [4, 6]. With a window of

size 5 time units, this violation is likely to get averaged out because the positive penalty in period

[4, 6] is canceled out by the negative contribution in period [3, 4] (or, [6, 7]). This illustrates the

difference between fixed sized windows and cumulative violations with varying window sizes. With

a fixed window of size 5, both these violations would have been missed. However, with cumulative

conditions, a window of size 10 would have caught the violation in [10, 20] in our first example since

the penalty V2 + V3 exceeds ε; a window size of 2 would detect the violation in [4, 6] in our second

example since the penalty V1 does exceed ε. We can thus see the flexibility in not having to specify

a priori the time window over which a potential violation is measured. Our cumulative triggering

mechanism can thus capture a wider variety of persistent violation scenarios while avoiding the

pitfalls of fixed time granularities. In several application scenarios, it is important to detect both

types of violations regardless of the specific time window in which they occur.

3.1.2 Problem Statement

Because our approach of using limited data introduces errors, we allow the network oper-

ator to input their tolerable error levels. We allow three such inputs. The first input, ε specifies the

error tolerance on the size of the violation. We also allow network operators to input their tolerance

on false alarms and missed detections.

In our system, a missed detection occurs if maxτ{V (t, τ)} > ε and the system does not

fire the corresponding trigger. Conversely, a false alarm occurs whenever maxτ{V (t, τ)} ≤ ε and
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the system fires a trigger. We define the missed-detection rate β as the fraction of missed detections

over the total number of real violations, and the false-alarm rate η as the fraction of false alarms

over the total number of triggers fired. Allowing β and η to be inputs, creates a flexible system in

which different deployments can be tailored to their own needs. For example, some systems may

consider minimizing false alarms more important than minimizing missed detections; other systems

may take the opposite view.

The problem we address herein is to design the protocols resident at the monitors and at

the coordinator in order to guarantee that the distributed trigger check at the coordinator is accurately

fired as the local monitor signals evolve over time. A user can specify the desired error tolerance ε,

as well as the target missed-detection rate β and false-alarm rate η as inputs to our system — the

triple (ε, β, η) essentially denotes the accuracy level that our tracking schemes target. The goal we

have herein is to guarantee the trigger fires with (ε, β, η)-accuracy while simultaneously keeping

communication overheads low.

Based on the violation types discussed earlier in this section, we now define three key

instances of our triggering problem that we address in the remainder of this paper.

• Problem 1: Instantaneous Trigger: A system that guarantees a trigger will fire when-

ever the instantaneous violation V (t, 1) > ε occurs, with accuracy (ε, β, η), and using minimal

communication overhead.

• Problem 2: Fixed-Window Trigger: Monitor and coordinator protocols that trigger

if the penalty V (t, τ) > ε occurs at any time t, for a fixed τ , with accuracy (ε, β, η), and using

minimal communication overhead.

• Problem 3: Cumulative Trigger: Monitor and coordinator protocols that trigger if the
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penalty V (t, τ) > ε occurs at any time t, for any τ , with accuracy (ε, β, η), and using minimal

communication overhead.

Within the D-Trigger framework, local monitors will do continuous filtering, and thus our

coordinator also does continuous detection at any time t. If an unusual traffic pattern were detected

at one monitor, but not at others, the coordinator will receive an update from that one monitor (and

nothing from the others), thus allowing it to detect the problem immediately.

The protocol at the monitor sites needs to enable filtering, the use of local triggers, and

communication with the coordinator. The protocol at the coordinator needs to oversee the global

data it receives, decide on the level of accuracy it needs, and communicate to the monitors how

they should do their filtering. We measure the communication overhead for our techniques as a

fraction of the original time series (i.e., complete signal data) sent to the coordinator; thus, a 10%

overhead indicates that the data transferred between monitors and coordinator is only 1
10 th of all the

measurement data observed at the monitors.

3.2 The General Framework of D-Trigger

This section provides an overview of several key elements of our novel approach to dis-

tributed trigger tracking. Fig. 3.3 depicts the building blocks of our system. As mentioned earlier,

ri(t) denotes the actual time series observed at monitoring node i. We use Ri(t) to denote the

approximate representation of ri(t) that is available at the coordinator; in general, Ri(t) can be

based on any type of prediction model for site mi that tries to predict the site’s behavior over time

(e.g., based on the recent past of ri(t)). A simple model might set Ri(t) to the latest ri(t) value

communicated from the site, or an average of recent communication, but more sophisticated predic-
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Figure 3.3: Our distributed trigger tracking framework.

tion models [16, 17] can be used. Our techniques remain applicable regardless of prediction-model

specifics.

The key idea here is that, at any time t,
∑n

i=1 Ri(t) captures the coordinator’s view of

the global state. On the other side, each monitor node mi uses its prediction to filter updates to the

coordinator by continuously tracking the deviation of its “true” state ri(t) from the corresponding

prediction Ri(t). This filtering is based on local monitor slack parameters δi > 0 that, intuitively,

upper bound the amount of drift between the coordinator’s view of site i’s data stream and the actual

ri(t) signal. As long as the prediction accurately captures the local stream behavior (i.e., within δ i

bounds), no communication is needed. Since monitors can track their own data continuously and

send an update to the coordinator at any time (e.g., not on 5 minute boundaries), we can achieve

continuous global tracking. Meanwhile, the coordinator continuously monitors its up-to-date global
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Symbol Meaning
X Coordinator, coordination and detection center
mi Monitor sites (i = 1, . . . , n)

ri(t) True local time-series signal at mi

Ri(t) Most recent prediction model for ri(t)

C Trigger threshold
ε Error tolerance for threshold violation

δi, ∆ =
∑

δi Local and global monitor slack parameters
θ Coordinator slack parameter
β Miss detection (i.e., false negative) rate
η False alarm (i.e., false positive) rate

Table 3.1: Notation.

prediction to ensure that it stays below the required trigger threshold (e.g.,
∑n

i=1 Ri(t) ≤ C in the

instantaneous case), and fires the trigger when that condition is violated. We use ∆ =
∑n

i=1 δi to

denote the global monitor slack. Table 3.1 summarizes some of the key notational conventions used

in our discussion.

Adaptive Threshold-based Slack Allocation. Besides maintaining an up-to-date estimate of the

global state
∑n

i=1 Ri(t), the job of the coordinator entails two key steps: (1) determining the amount

of global slack ∆, and (2) splitting this global slack into individual local slacks δi for each monitor.

In our system, both the global and local slacks can vary over time and, thus, are allocated in an

adaptive manner in order to effectively maximize the effect of local filtering, and thus, to minimize

overall communication. Note that, unlike earlier work in the data-streaming literature [20, 35, 47],

we are not interested in maintaining a guaranteed ε-error aggregate at the coordinator at all times.

While such a constraint trivially solves our problem, it is also overly restrictive, given that we care

about accurately estimating the aggregate signal only if its value is close to the trigger threshold

C . Our adaptive slack allocation schemes exploit the trigger condition to allow for much “looser”

(and thus, more effective) filters at monitors when the signal stays well below the C threshold. This
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observation is one of the key motivations for building adaptivity into our distributed trigger monitor-

ing system, and, as our results demonstrate, can lead to very significant savings in communication

costs.

3.3 Instantaneous Triggers

Our algorithms for tracking instantaneous trigger violations follow along the framework

discussed in Sec. 3.2. The tracking protocol at the coordinator and local monitors is quite simple

and, at a high level, very similar to the solutions proposed in earlier work for approximate aggregate

tracking (e.g., [35, 47]).

The framework for instantaneous triggers is illustrated in Fig. 3.4, which has global trigger

threshold, C , and error tolerance, ε as user specified inputs. The time series data collected at monitor

Mi is given by ri(t), while Ri(t) denotes the filtered version of this data sent to the coordinator. The

idea behind the filtering is to send a summary of ri(t) at some time t and then not to send anything

at all until it is deemed necessary. From the point of view of the coordinator, Ri(t) can be viewed

as a prediction of ri(t) because when the coordinator is not receiving any data from monitor i, it

assumes that its most recently received value of Ri(t) accurately predicts ri(t) [35].

Each monitor Mi continuously tracks the (instantaneous) difference di(t) = |ri(t) −

Ri(t)| between the true local signal and its (most recent) prediction. In order to upper bound this

drift, monitor i uses a parameter δi and checks if di(t) > δi. If this occurs at a time t, then Mi

updates the coordinator by sending it the latest ri(t) value. Although in general, Ri(t) can be any

prediction function of ri(t), in our examples herein we simply use Ri(t) = ri(t). The parameter δi

is called the local monitor slack, and this parameter indicates that no communication is needed as
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Figure 3.4: The tracking framework for instantaneous triggers.

long as the prediction captures ri(t) to within a δi bound.

The coordinator has two jobs. The first is to continuously track the value of the aggrega-

tion function based on the predictions it has received. Using the SUM as an aggregation function, this

means tracking
∑

Ri(t). A violation occurs whenever
∑n

i=1 Ri(t) > C +ε. The coordinator’s sec-

ond job is to continuously estimate a parameter ∆(t), called the global monitor slack, and partition

this global slack into individual monitor slacks δi, such that
∑

i δi = ∆ and each δi is proportion

to the variance of the local stream. These values are then sent to each of the monitors for local data

filtering.

Based on the above protocols, it is not difficult to show (see, e.g., [47]) that the above

tracking algorithm always guarantees a ±∆ additive bound for the predictions tracked at the coor-

dinator; this, in turn, directly implies the following result.
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Theorem 1 The above instantaneous trigger-tracking scheme is guaranteed to: (1) fire whenever

∑

i ri(t) > C + ∆; and, (2) never fire whenever
∑

i ri(t) < C − ∆.

In other words, Theorem 1 asserts a “band of uncertainty” (of size 2∆) around the trig-

ger threshold C , where our simple tracking algorithm may or may not fire a trigger violation; an

illustration is shown in Fig. 3.5. A straightforward application of the above theorem with ∆ = ε

(essentially, directly applying the techniques of [35, 47]) would ensure that our algorithm tracks the

instantaneous distributed trigger to within ε additive error (as discussed in Sec. 3.1). Similarly, the

convex optimization algorithms of Olston et al. [47] (based on the idea of marginal gains) can be

used to determine the optimal allocation of the (fixed) global slack ∆ = ε to local monitor slacks δ i.

Clearly, however, such an approach is far too conservative: Our global slack should be able to adapt

to changing local signals at the monitors based on the required threshold value (Sec. 3.2). We now

discuss such an adaptive, threshold-based approach that provides the required ε-error guarantees —

our experimental results in Sec. 3.6 clearly demonstrate the benefits of such adaptivity in practice.

Adaptive Instantaneous Trigger Tracking. The key idea of our adaptive scheme is quite simple.

Unlike [35, 47], we are not interested in ε-error approximations to the true aggregate signal
∑

i ri(t),

unless its value is close to the trigger threshold C . When
∑

i ri(t) < C , the additional slack should

be exploited to effectively minimize updates from monitors to the coordinator. Formally, for any

time instant t, the coordinator estimates the total amount of available slack as:

∆(t) = C + ε −
n
∑

i=1

Ri(t)

and can distribute that slack to local monitor δi’s (e.g., using a marginal-gains strategy, as in [47]).

(The key idea here is to allocate slack based on the expected reduction in the number of monitor

messages per unit of slack, as estimated from the recent update history for each monitor at the
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coordinator.) Thus, aggregate signals that are (expected to be) far from the trigger threshold imply

additional slack and, therefore, reduced communication for each local monitor.

Compared to the simple instantaneous tracking scheme described earlier in this section,

the local monitor protocol remains unchanged while the coordinator protocol changes in order to

effectively adapt to changing values of ∆(t). Specifically, when the coordinator receives a monitor

update (at, say, time t), it recomputes the current global slack ∆(t), based on which it computes

and disseminates new local slacks δi to individual monitors. The following theorem shows that our

adaptive scheme indeed guarantees ε-approximate instantaneous trigger tracking.

Theorem 2 Employing an adaptive global monitor slack equal to ∆(t) = C + ε−
∑n

i=1 Ri(t),

where Ri(t) denotes the up-to-date prediction from monitor mi (for all i) ensures that the coordina-

tor check
∑n

i=1 Ri(t) > C: (1) always fires if
∑

i ri(t) > C + ε; and, (2) never fires if
∑

i ri(t) <

C − ε.

Theorem 2 asserts a “band of uncertainty” (of size 2ε) around the trigger threshold C ,

where our tracking algorithm may or may not fire a trigger violation (see Fig. 3.5). The key ob-

servation is that both global and local slacks vary over time, and can be allocated in an adaptive

manner that maximizes the effect of local filtering, and thus minimizes overall communication. Un-

like earlier data-streaming work [35, 47], we are not interested in continuously guaranteeing that

the coordinator’s estimate of the aggregate function is within an ε-error. Our focus instead is highly

accurate trigger firing: we care about accurate aggregate signal estimation only if its value is close

to the trigger threshold C . Our adaptive slack allocation schemes exploit the trigger condition to

yield significant communication reductions by allowing for much “looser” (and thus, more effec-

tive) filters at monitors when the signal is well below the C threshold.
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3.3.1 Heterogeneous and Adaptive Slack Allocation

Clearly, at any time instant t, Theorem (2) can be used at the coordinator to provide op-

timal settings ∆(t) for our system slack parameters. The key here is to avoid an overly sensitive

coordinator that disseminates new δi’s for small, transient changes in ∆(t). Our coordinator algo-

rithms achieve this through min-based and discretization-based filtering steps on ∆(t), as discussed

in detail in this section.

Obviously, the adaptive global slack ∆(t) can be distributed across local monitor slack

values δi in a non-uniform manner in order to minimize overall communication. As shown in [20,

47], in the case of a fixed global slack, the optimal allocation point is achieved by equalizing the

individual marginal-gain ratios across all monitors. Similar results can be shown to hold in the case

of adaptive global slack as well, and our implementation (discussed in Sec. 3.6) employs such a

marginal-gains-based allocation scheme.

In this section, we briefly discuss non-uniform allocation of local monitor slacks, and

discuss two simple schemes for filtering δ updates at the coordinator. They aim at limiting the

sensitivity of the system to transient variations and the number of required δ-slack dissemination

from the coordinator to the monitors.

Heterogeneous Local-Slack Allocation. One could use non-uniform slacks across monitors. Intu-

itively this could seem useful in that, for example, one could allow highly variable or heavy flows

to send data either more often, or less often if the percentage change remains small. This could

potentially achieve some kind of load balancing across monitors. Instead of using identical δ(t) for

all monitors, the coordinator can compute and distribute non-uniform local slacks δ1(t), . . . , δn(t).

For instance, the coordinator can distribute slacks in proportion to locally observed variances (i.e.,
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δi(t) = σi·nδ
σ

) providing more “cushion” to sites with higher variability. The slacks we compute

are no longer guaranteed to meet the error bounds with this scheme (we leave the extension of the

guarantees as future work). However in our simulations, all the errors were well within the target

bounds.

When to Adapt? At any time instant t, the coordinator can use Theorem 2 to provide optimal

settings δ(t) for our system slack parameters - thus allowing our system to adapt to the evolving

time series being monitored. However, in practice, frequent re-calibration of the δ parameter is

not necessary, and, in fact, could cause system instability and excessive communication. Below

we discuss two simple schemes for disseminating δ updates from the coordinator to the monitors.

Both of our dissemination schemes presented below for uniform slacks are safe, meaning that our

error guarantees hold. It is not the adaptivity that affects the validity of the guarantee, but rather the

heterogeneity.

Min-based δ(t) Dissemination. Consider a scenario where the coordinator estimates a new δ(t)

value that is greater than the previously disseminated local slack. In this situation, the coordinator

may choose not to disseminate the new slack value to save O(n) messages, at the cost of more

conservative filtering (and, thus, maybe more messages) at the local monitors. This choice is correct

for a transient change in δ due to local stream variability; in addition, it can only reduce the actual

miss detection and false alarm rates (albeit at the cost of extra communication). Our min-based

dissemination scheme is based on this intuition: it applies a low-pass filter on the current δ(t) value

based on a window of h time instants, computing the local slack as δ̄(t) = min{δ(t−h), . . . , δ(t)}

and disseminating new slack values based solely on changes in δ̄(t). Note that the min function is

just one way of trying to capture the long-term trend for δ and other aggregates (e.g., AVG) can also
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be applied. Unlike min, however, these other aggregates are not “safe” and may cause more miss

detections and/or false alarms.

Discretization-based δ(t) Dissemination. We can apply the intuition that we really only need

to update the local slack value δ when we see a significant change in its value. As such, we can

quantize the range of slack values into intervals I0, I1, . . ., and update the monitor slacks only when

δ(t) moves across interval boundaries. Since the available slack is usually on the order of ε, we

can use intervals of size ε
b
, where b is a quantization parameter (thus, Ik = ((k − 1) ε

b
, k ε

b
]). Large

b values yield tighter intervals and more accurate local δ settings, but also imply more sensitivity

to transient changes and increased communication, thus giving rise to interesting accuracy and cost

tradeoffs. Note that our two schemes can be combined into a single scheme.

As an example, Fig. 3.6 depicts the the smoothing effect of the two filtering steps on a

real-life aggregate signal.

3.4 Fixed-Window Triggers

The tracking algorithms described in this section for the instantaneous trigger problem are

also naturally applicable to the case of fixed-window triggers. Assuming a (fixed) window size τ ,

the idea is, for each monitor mi to maintain its running local aggregate over the last τ time instants

si(t) =
∫ t

t−τ
ri(x)dx (which is trivial to do assuming O(τ) space). Then, the fixed-window trigger

over the ri(t) signals is essentially transformed into an instantaneous trigger over the si(t) window

aggregates, and all the techniques discussed earlier in this section are naturally applicable.
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3.5 Cumulative Triggers

Th early efforts on distributed triggers, together with our schemes proposed in Sections 3.3,

focused solely on instantaneous trigger conditions, where the goal is to fire the trigger as soon as the

aggregate (typically, SUM) of observations (e.g., CPU utilization or number of messages sent) across

distributed machines exceeds a pre-specified threshold. While such instantaneous triggers are un-

doubtedly a useful tool for several application scenarios, they also have some important limitations

when it comes to monitoring distributed phenomena that are inherently bursty, such as network

traffic and server load. Fixing appropriate instantaneous threshold conditions (e.g., for anomaly de-

tection) in such settings can be very difficult, and easily lead to numerous false positives/negatives.

Exceeding a threshold for a short period of time could very well be allowed as natural bursty behav-

ior; on the other hand, even violations that are small in magnitude could be harmful or malicious

if they are allowed to persist over time. Persistent violations are better observed by measuring ac-

tivity over a window of time. However, the task of selecting a particular window size over which

something is measured is a headache that has long plagued operators because a single window size

cannot accommodate all of their needs. In addition to ISPs, managers of distributed server systems

have found that measuring average server load using fixed sized windows is unsatisfactory in that it

is insufficient to identify good or bad system behavior [68].

Our research goal is to enable broader and more flexible conditions for triggering. In

this section, we introduce and formalize the concept of distributed cumulative triggers. These trig-

gers allow one to detect cumulative violations that are persistent over time and are spread across

a distributed set of machines. We propose a novel algorithmic framework for the communication-

efficient tracking of such global triggering conditions in a networked environment. Our proposed
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solution is built by combining in-network processing ideas [16, 20] with insights based on queueing

theory.

We achieve data reduction through smart filtering at the local monitors. Each monitor is

assigned an amount of slack that carefully controls the discrepancy between its view of the data and

that available at the coordinator. One of our key insights that drives our analysis is that this slack

can be viewed as analogous to queue sizes. The challenge is to select the size of the distributed

queues (or slack) so that the coordinator can still detect anomalies accurately. By only giving the

coordinator a limited view of the data, the detector could make mistakes. We allow the users to input

their tolerable false alarm rate and missed detection rate, as well as an error tolerance on the size of

the violation. One of our key contributions is the development of an analytic solution to choose the

slack values while guaranteeing that the three error tolerances are not exceeded. With our system

we can perform anomaly detection with much less data than naı̈ve “push-all” solutions, and yet

simultaneously bound the error. These user-supplied target error rates enable the user to carefully

control the tradeoff between reducing communication overhead and alarm detection accuracy.

3.5.1 A Queueing Perspective on Cumulative Triggers

Our approach to supporting cumulative violations without having to specify windows of

time a priori is to use insights from queueing theory. Earlier work on data streaming uses window-

based stream processing [19, 25] and focuses only on the case of (time- or arrival-based) windows

of fixed size over the stream. Such techniques are clearly not useful in our case, since the window

sizes of the (potential) trigger violation are not known ahead of time. Instead, our key observation

is that we can accurately model the monitoring of a cumulative trigger condition (see Chapter. 3.1)

using a simple queueing model (see Fig. 3.7), as stated by the following theorem.
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Theorem 3 Consider a queue of size ε with an arrival rate equal to the actual aggregate signal

∑n
i=1 ri(t) and a drain (i.e., service) rate equal to the trigger threshold C . A cumulative trigger

should fire (i.e., ∃τ s.t. V (t, τ) > ε) if and only if the above queue overflows.

Essentially, cumulative triggering aims to guarantee that
∑

i ri(t) does not exceed C in

the long-term, however, it allows
∑

i ri(t) to be bursty (i.e.,
∑

i ri(t) can be any amount larger than

C in any time window, but the volume of the burstiness should not exceed ε). Thus, cumulative

triggering does not care about instantaneous sums or averages over a fixed size window; it cares

only whether (across any possible time scale) the accumulated violation (penalty) exceeds ε and

causes queue overflow.

As an example, the bottom half of Fig. 3.8 depicts a sample aggregate time-series signal

∑n
i=1 ri(t), while the top half shows the occupancy of the above-described queue, Q(t), over time.

Clearly, if the queue overflows at some time t, then there must be some time ts < t denoting the start
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of a busy period [ts, t] (i.e., a period during which the queue is persistently non-empty; that is, ts =

max{x|x ≤ t and Q(x) = 0}) ending at t with a queue occupancy Q(t) ≥ ε. Fig. 3.8 shows two

busy periods, [t1, t2] and [t3, t4], the second of which results in sufficient queue buildup to fire the

trigger. It is not difficult to see that, by our queueing model, Q(t) = V (t, t − ts), so that Q(t) > ε

(i.e., a queue overflow) indeed implies that our trigger should fire. Similarly, for any time window

τ ≤ t, V (t, t − ts) ≥ V (t, τ) (i.e., windows smaller or larger than the latest busy period can only

reduce the cumulative size of the violation). In other words, Q(t) = V (t, t− ts) = maxτ{V (t, τ)},

implying the cumulative trigger should fire if and only if the queue overflows. The model in Fig. 3.7

captures the equivalence between an overflowing queue and a violation of the cumulative trigger

constraint.
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The simple queueing model discussed in Chapter 3.2 is ideal since it assumes the true

aggregate
∑

ri(t) feeds a single coordinator queue. However, in our distributed environment, the

global coordinator only observes approximate predictions Ri(t) of the local signals. We extend our

queueing model to the distributed environment by placing queues at each of the monitors in addition

to the one queue at the coordinator. This distributed queueing model is depicted in Fig. 3.9. Our

task is then to design algorithms to convert the centralized queue model of size ε into a coordinator

queue of size θ and a set of local monitor queues of size δ1, . . . , δn, while still guaranteeing the

necessary false alarm and missed detection rates.

3.5.2 The Distributed Tracking Protocols

The Local Monitor Protocol. In our distributed model, each local queue has an arrival rate or ri(t),

a drain rate of Ri(t) and a size of δi. Let tprev
i denote the time of the last update message from mi
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Figure 3.10: Local prediction-based filtering.

to the coordinator. At any time t, the size of the monitor’s queue captures the cumulative devia-

tion of ri(t) from its most recent prediction Ri(t
prev) over the interval [tprev

i , t], namely di(t) =

∫ t

t
prev
i

(ri(x) − Ri(x))dx. Should the local queue overflow, i.e., when |di(t)| > δi, this means the

drift has exceeded the allowed slack. At this time the monitor sends the coordinator an update on its

time series. It sends the current value ri(t), a prediction Ri(t) for near-term future values, and the

current value di(t). The amount di(t) corresponds to the cumulative deviation of ri(t) from its most

recent prediction. At the time of the update, the local queue also resets di(t) to zero. Note that,

unlike traditional queueing, local monitor queue occupancies are allowed to become negative, if

predictions consistently overestimate the true local signals. Such conditions are important to detect

and bring to the coordinator’s attention since they also capture excessive drift and thus lead to more



62

updates. Sending underflow information to the coordinator can also enable cross-site variations to

cancel out (thus avoiding false alarms).

We point out that the queues we are using here are models, not actual physical queues. In

an implementation, a queue that stores data is not needed. Instead only a counter is needed that is

incremented and decremented according to the queueing models herein. We use these models for

our analysis that enables us to compute slack sizes while meeting guarantees for upper bounds on

errors.

As an example, Fig. 3.10 shows the (true) ri(t) and (smoothed) Ri(t) curves for a real

data set (number of TCP requests in 5-minute intervals over a two-week period on a PlanetLab

node), using a static prediction model (i.e., the prediction used was exactly the last value at the local

monitor), and a queue size of 5,000. Periods where Ri(t) remains constant imply that ri(t) stays

consistently within bounds (i.e., no communication).

The Coordinator Protocol. In our distributed queueing model, the coordinator’s queue has an

arrival rate of
∑n

i=1 Ri(t), a drain rate equal to the trigger threshold C , and is of size θ, as in

(Fig. 3.9). In addition to the continuous “arrivals” at rate
∑n

i=1 Ri(t) to the coordinator queue,

each update from monitor mi also introduces a chunk of di(t) arrivals into the queue. Note that

if the queue underflows (drops below zero), then di(t) is negative. The coordinator continuously

tracks this complex arrival process at its queue and fires a trigger violation if its queue overflows. A

high-level pseudo-code description of both the local-monitor and coordinator protocols is depicted

in Fig. 3.11.

Intuitively, the local slacks δi at the remote monitors aim to filter out local variations in

individual ri(t) signals, while the coordinator slack θ is useful for canceling out variations across
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monitors (e.g., when distinct ri(t)’s moving in opposite directions). In addition to tracking the

global constraint, one of the coordinator’s key tasks is to compute values for δi (i = 1, . . . , n)

and θ that lower communications costs yet guarantee that none of the three errors (ε, β, η) exceed

their tolerance levels. In order to be adaptive, the coordinator can recompute and redistributed these

slacks either periodically or upon each monitor update. In the next section, we give our algorithm

for computing these slack values.

Procedure Monitor(i, δi)

Input: Monitor index i, local slack parameter δi.

1. while (true) do

2. t := current time

3. tprev
i := time of last update to coordinator

4. di(t) :=
R t

t
prev

i

(ri(x) − Ri(x))dx

5. if (|di(t)| > δi) then

6. Send update message (i, di(t), Ri(t)) to

coordinator

7. Set di(t) := 0

8. if (new slack δ∗i is received) then

9. Set δi := δ∗i

Procedure Coordinator(ε, β, η)

Input: Trigger error threshold ε;

miss-detection/false-alarm rates (β, η).

1. while (true) do

2. Continuously simulate a virtual queue Q of size θ with

arrival rate
P

i
Ri(t) and drain rate C

3. for each (monitor update (i, d∗i (t), R
∗

i (t)) received) do

4. Set local prediction Ri(t):= R∗

i (t)

5. Enqueue the d∗i (t) chunk in the virtual coordinator

queue Q

6. if (Q overflows) then

fire(“trigger violation”); break

7. Compute new optimal settings for local slacks {δi} and

coordinator slack θ based on (ε, β, η) and maintained

statistics (Sec. 3.5.3)

8. if (adaptive allocation) then disseminate({δi})

Figure 3.11: Procedures for (a) local monitor update processing, and (b) distributed trigger tracking
at the coordinator.
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3.5.3 Queueing Analysis for Slack Estimation

We now present an analysis of a simplified variant of our distributed queueing model

(Fig. 3.9), and discuss the application of our results to estimating effective settings for the monitor

and coordinator slack parameters in our system. The existence of the local δi filters obviously

reduces communication costs by allowing monitors to “absorb” updates with no communication to

the coordinator. At the same time, however, this local filtering also makes the arrival process at the

coordinator queue more bursty by introducing bursts of queue arrivals and departures when the filter

constraints at local monitors are violated. Thus, abstractly, the role of the coordinator queue (of size

θ) is to allow for such bursts to be effectively absorbed (or, cancel each other out) as long as the

cumulative trigger bound is not exceeded.

The system slack parameters (δi’s and θ) interact with each other as well as the input error

threshold ε, miss-detection rate β, and false-alarm rate η parameters in complex ways. Intuitively,

given an error threshold ε for our trigger monitor, we would like to maximize the size of the local-

monitor filters δi, as that would obviously minimize the number of monitor updates to the coordi-

nator. However, larger monitor filters also imply larger (more bursty) chunks of arrivals/departures

at the coordinator queue (due to monitor updates) which may, in turn, cause: (1) false alarms when

a combination of bursts causes the queue to overflow even though the true aggregate signal has not

violated the trigger condition; and, (2) miss detections when the local monitor filters absorb enough

traffic variability to mask a real trigger violation. To minimize the false alarm problem, we would

like to have a large coordinator queue size θ to absorb the monitor bursts — however, the size of the

coordinator slack θ and monitor slacks δ1, . . . , δn are also clearly constrained by the overall error

threshold ε that our triggering schemes must try to guarantee.
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In what follows, we employ queueing theory to analytically explore the aforementioned

tradeoffs (under some simplifying assumptions), and obtain results that provide effective settings

for our system slack parameters for a given input triple (ε, β, η). Our approach is to develop two

non-linear equations relating δ and θ to the parameters (ε, β, η) as well as the model parameters.

These two equations can then be solved simultaneously to derive δ and θ.

We make two key assumptions to make the analysis tractable. First, we assume uniform

local slack parameters, where δi = δ for all i (in Sec. 3.5.4 we briefly discuss non-uniform pa-

rameters). Second, we assume an M/M/1 queueing model for the coordinator queue1 . Under the

M/M/1 assumption, let λr and λR denote the mean “arrival rates” for the true signal and predicted

signal, respectively (i.e., the estimated averages of
∑

i ri(t) and
∑

i Ri(t) over time). Similarly,

let λe and λd be the mean arrival rates for enqueue and dequeue chunks (respectively) at the co-

ordinator. Note that, the λR, λe, and λd rates are directly observable at the coordinator, and can

be computed empirically (e.g., through averaging over a time window of recent queueing activity).

Since the overall “mass” of the true aggregate signal is preserved over time, the coordinator can also

accurately estimate λr as λr = λR + (λe − λd) · δ. 2

Now, consider the effect of θ and δ on the miss detection rate β. It is not difficult to see

that having ε ≥ θ + n · δ always guarantees a miss detection rate β = 0. However, this condition is

simply too conservative and may result in excessive communication, especially if (a) some β > 0

is acceptable, or (b) the true value of the cumulative violation maxτ{V (T, τ)} is well below the ε

threshold. Essentially, fixing a total slack of ε is an overly conservative, non-adaptive solution. As

proved in the Appendix, the following theorem presents a more versatile, less conservative analytical
1In the Appendix, we also provide analyses under other possible queueing models, such as M/D/1.
2Note that (unlike λr and λR) λe and λd here are in units of chunks (of size δ).
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result relating the miss-detection rate to ε, θ, and δ, under the assumption of normally-distributed

local “queue” sizes.

Theorem 4 Assume an M/M/1 model for the coordinator queue, and that the aggregate occu-

pancy of all local monitor “queues” follows a Normal N(0, σ2) distribution. Then, setting

∫ ∞

x=0

[

1 − F

(

ε − θ

δ
+ x + 1

)]

ρx(1 − ρ)dx = β (3.1)

guarantees a miss detection rate ≤ β, where F () denotes the CDF of N(0, σ2), and ρ = λr

C
denotes

the average coordinator queue utilization (over time).

The assumption of a zero mean for the aggregate occupancy of all local monitor queues

is motivated by the fact that, over a large enough window of time, the true and predicted signal

rates are approximately equal (i.e., λR ≈ λr). Similarly, the normality assumption can be justified

under the assumption of independent updates across local monitors and the law of large numbers

(for large enough n)3. To estimate the aggregate variance σ2 in our system, each local monitor mi

continuously tracks the up-to-date variance σ2
i of its local occupancy and ships that information to

the coordinator in its update messages if there is a significant change with respect to the most recent

measurement; the coordinator then estimates the aggregate variance as σ2 =
∑n

i=1 σ2
i . Note that

Theorem (4) has the ability to support adaptivity through its dependence on ρ = λr

C
. As the rate λr

evolves, so will ρ, and the resulting value computed for δ.

Now, consider the false alarm rate η. Observe that, in our distributed queueing model,

the arrival and drain rates at the coordinator queue can be naturally approximated as λR + λe · δ

and C + λd · δ (respectively), whereas the corresponding rates for the idealized (centralized) case
3Experience with several real data sets shows that a Normal model of aggregate local occupancy is accurate under

reasonable time windows.



67

are simply λr and C . Based on this observation and our M/M/1 assumption, we can prove the

following result (see the Appendix for details).

Theorem 5 Assume an M/M/1 model for the coordinator queue. Then, setting:

1 −
(

λr

C

) ε
δ
+1
/

(

λR + λe · δ
C + λd · δ

) θ
δ
+1

= η (3.2)

guarantees a false alarm rate ≤ η.

Given a triple of trigger-tracking requirements (ε, β, η), our coordinator algorithms use

the derived system of two non-linear equations (Theorems 4 and 5) to solve for the optimal (under

our assumptions) coordinator- and monitor-slack values θ and δ (Step 7 in Fig. 3.11(b)). The local

slacks δ are then distributed to the monitors. Both Eqn (3.1) and Eqn (3.2) depend on queue input

rates, and can be solved again as often as desired; as the time series change, the queue input and

drain rates will evolve and thus delta can be updated. Thus supporting adaptivity with our scheme

is straightforward.

3.5.4 Heterogeneous and Adaptive Slack Allocation

Clearly, at any time instant t, Theorems (3.1) and (3.2) can be used at the coordinator

(with the up-to-date estimates of queue arrival rates and variances) to provide optimal settings θ(t),

δ(t) for our system slack parameters. Thus, our system can naturally adapt to changing monitor

characteristics. It is important to note, however, that the aggregate statistics employed in our queuing

analysis are likely to be quite stable (i.e., vary slowly over time). This implies that, in practice,

frequent re-calibration of the θ and δ parameters is not necessary, and, in fact, could cause system

instability and excessive communication. Our coordinator algorithms achieve this through min-

based and discretization-based filtering steps on θ(t), δ(t), similar to those described in Sec 3.3.1.
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3.6 Evaluation

In this section, we use our protocol implementation and protocol simulator with a real

wide-area network activity dataset, and present results for performance metrics, and cumulative and

instantaneous triggers.

3.6.1 Implementation and Data

We implemented our triggering system using Java, and deployed the monitor protocol on

40 PlanetLab nodes along with the coordinator protocol on a single PlanetLab host. SNORT sensors

were activated on each monitor node and have been continuously running for approximately one

year. In the deployment, our Java module extracts information from these logs in periodic epochs,

the size of which can ranges from 5 seconds to 10 minutes. These epochs determine the underlying

time unit of the resulting time series data. For the examples presented herein, we use the time series

of the number of TCP requests per 5 minutes time window. We have checked our results, especially

the reduction on communication overhead, against results for other time granularities. Clearly, time

series with different underlying time scales will exhibit different amounts of volatility, which in

turn affect the communication overhead. We observe 85% to 96% of communication reduction

when using time series with 5 minute time bins, while in time series with 5 second time windows,

we observed 70% to 90% of communication reduction. We thus believe the data presented herein

are representative of the general gains possible using our methods.

In addition to our implementation, which confirms proper functioning of our code, we

have also developed a trace-driven simulator. The simulator emulates our protocols and is fed with

the SNORT time series as input. This simulator serves many purposes. First, because our Java code
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was deployed only recently, the simulator allows us to evaluate our methods on the time series data

produced from the SNORT sensors throughout this last year. Also our code is currently deployed

on 40 machines whereas the SNORT sensors are deployed on 200 machines. Using the simulator

with all 200 SNORT time series allows us to do some scalability assessment. Third, the simulator

is also useful for rerunning experiments which is very important for evaluating our protocols under

a wide variety of settings (e.g., target accuracy levels).

In addition to this PlanetLab SNORT dataset, we also conducted some evaluations on two

other datasets. One monitors per-connection packet rates from sources spread over a wide-area net-

work [50], another is a dataset of temperatures from an environmental sensor network. Among these

three datasets, the time series extracted from the SNORT logs (number of TCP requests/5 min) were

the most volatile and thus the most difficult to handle. Thus, we have elected to present the results

from the most challenging data set, namely SNORT data. The results for the other datasets illustrate

the same properties as those presented here, but achieve even greater communication overhead re-

duction due to smoother time series data. In most of the plots below, we used a time series of length

2 weeks (corresponding to 4000 data points per time series per node).

3.6.2 Performance Metrics

In evaluations of cumulative triggers, the target performance level is specified by the usual

triplet parameters (ε, β, η). We start with experiments in which the monitors are given uniform

slacks δi = δ, and evaluate the effect of heterogeneous slack allocation later on. In our evaluations,

the target performance level is specified by the usual triplet parameters (ε, β, η). We use these values

with our models to compute the monitor and coordinator queue sizes (δ, θ) for the simulator, which

we then drive with the PlanetLab TCP request time series data as input. The simulator’s outputs
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are the false alarm and missed detection rates actually achieved by our system. The false alarm rate

achieved by our system when run on real data is computed as follows. If a trigger is fired, but no

corresponding real violation occurred within 3 time intervals (1 interval before, during, and after) of

the detected one, then we count it as a false alarm. The achieved false alarm rate, denoted by η∗, is

then given by the ratio of the number of false alarms over the total number of triggers fired. For each

real violation, if no trigger is fired within the 3 time intervals around the real violation, we count this

as a missed detection. The missed detection rate, denoted by β∗, achieved by our system is given

by the ratio of the number of missed detections over the number of real constraint violations.

For each experiment, we compute the communication overhead as follows. Let num

be the number of messages exchanged between monitors and the coordinator, including both the

signal updates from monitors to coordinator as well as the filter updates from the coordinator to the

monitors. Let n be the number of monitors and m the number of values in each monitor’s time

series. Thus m ·n indicates the worst-case communication overhead (giving the coordinator perfect

knowledge). Then communication overhead is calculated as num/(m · n) which gives the per-node

communication cost.

Thus, one single experiment consists of the following. We feed an input triple (ε, β, η)

and the PlanetLab data into our model, and compute the monitor and coordinator queue sizes (δ, θ)

using Theorems 4 and 5. Recall that the computation uses the data variability σ, along with the

enqueue and dequeue rates λR, λe and λd. We ran our simulator using each pair of selected queue

sizes, with the actual SNORT traces as input, for 40 nodes, each of which has 4,000 values in the

time series. This produces a single result for our three performance metrics (overhead, β ∗, η∗). We

used hundreds of triples of (ε, β, η) to generate all the points in the graphs below.
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Figure 3.12: Triggering on instantaneous violation.

3.6.3 Results for Instantaneous Triggers

Recall that our guarantee for instantaneous triggers is slightly different from varying-

window triggers. Given an error tolerance ε, our algorithms assert a “2ε-zone of uncertainty” around

the trigger threshold C , and have zero false alarm and zero miss detection outside this band.

Model Validation

We first show in Fig. 3.12 a sample of aggregate time series used in experiments and the

triggering performance guaranteed by Theorem 2. In the graph x-axis is time and y-axis is signal

value. The solid curve denotes the time series signals. The dotted line denotes the value that no

false alarm should be triggered when signals are below this line, and the dashed line denotes the
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Figure 3.13: Impact of target C on communication overhead.

value that no miss detection should happen when signals are above this line. The region between

the two lines are the uncertainty zone. In the experiment, we set trigger threshold C to be the value

of the 99th percentile of the distribution of all values in the time series. Error tolerance ε = 0.05, so

the size of uncertainty zone is 2ε · C = 0.1 · C . Circles denote the real violations under this setup,

and stars denote triggers fired by our protocol. We can clearly see that our protocol guarantees the

desired performance: detecting all real violations and only has false alarms inside the uncertainty

zone. When aggregate signals are above the uncertainty zone, no trigger is missed, as indicated

by one star for each circle; if aggregate signals are below uncertainty zone, no trigger is fired, as

indicated by no star for signals under the dotted line. Inside the uncertainty zone, our protocol has

one false alarm, as indicated by the second star in the graph.
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Experiment Configuration

The following results show the tradeoff between the error tolerance and the communi-

cation overhead incurred. We start with how the value of C and the data volatility impact the

communication overhead under different error tolerances, followed by the comparison of our work

with existing approaches and the scalability of our system.

Fig. 3.13 shows the relationship between the communication overhead and the target

threshold C when setting C to be the 85th, 90th, 95th and 98th percentile of the distribution of

all aggregate signals. We first see from the graph that for all different C values, communication

overhead decreases quickly as error tolerance ε increases. More importantly, for any given ε, the

communication overhead decreases as the target threshold C increases. This is expected, when C

is as large as the 98th percentile, aggregate signals are always far away from C . So our protocol

always keeps a loose eye on signals from individual monitors, thus paying low cost to achieve the

desired detection accuracy; however, when C is as small as 85th percentile, aggregate signals are

always close to C , and our protocol has to keep a close eye on individual signals to see whether they

cause constraint violations, thus paying a relatively high cost to achieve the desired detection accu-

racy. However, when the error tolerance is big enough, the protocol pays a low cost even when C is

small. This demonstrates that our ideal of letting total slack adapt according to aggregate signals is

very effective in reducing communication overhead.

The amount of communication bandwidth used between our monitors and the coordinator

will depend upon the data, and it is intuitive — more volatile data will use more bandwidth. In order

to see the range of gains we achieve on communication overhead reduction for different sets of time

series, we did the following. Of the 200 PlanetLab SNORT logs, we selected 40 machines (time
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Figure 3.14: Impact of volatility on communication overhead.

series) at a time. We did this by first computing the variance of each of the 200 time series and then

sorting them. We selected three different sets of 40 machines each: the “high volatility” set are the

nodes with the 40 largest variances, the “low” set used the 40 machines with the lowest variances,

while the “middle” volatility set selected 40 nodes at random. The communication overhead reduc-

tion versus error tolerance for these three sets of machines is given in Fig. 3.14. As expected, for

every given value of ε, the communication overhead decreases quickly as the volatility of the data

decreases, indicating that our solution is adaptive to data properties.
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Detection Performance vs. Communication Overhead

We now compare our work with previous work. The only adaptive filtering approach

similar to our problem is that proposed by Olston et al. in [47] in the context of data streaming. We

also compare our solution with a naı̈ve approach that might be attractive for its simplicity, as the δ i

are fixed (non-adaptive) and homogeneous. In any time epoch, each monitor i sends an update to

the coordinator only if its time series ri(t) > (C+ε)
n

. 4 We consider two versions of our protocol. In

one, called uniform adaptive detection, the δi’s are homogeneous but change based on the total slack

∆. In the second version, called MG (Marginal Gain) adaptive, the local slacks are heterogeneous

and are computed according to their Marginal Gain in reducing communication cost. The method

for computing the MG is given in [47] where the authors prove that this is optimal for when there

is a given total amount of slack to distribute to the monitors. Both our MG adaptive version and the

data streaming scheme use the same approach when doing heterogeneous local slack. The essential

difference is that in the data streaming scheme, the total slack to be distributed remains constant,

whereas in the MG adaptive scheme the total slack is adaptive and varies according to how far we

are from the triggering constraint. Recall that we can do this because our goal is to estimate the

trigger accurately, while the data streaming scheme’s goal is ε-accurate estimation of the aggregate

signal.

The results of this comparison are shown in Fig. 3.15. For these tests, we set C to be the

98th percentile of the aggregate signal. As one would intuitively expect, the communication over-

head decreases as error tolerance increases. (Note that Theorem 2 essentially guarantees no false

alarms/missed detections outside the “uncertainty” zone for our instantaneous triggering scheme.)
4We do not compare with [36] since, unlike our schemes and [47], they offer no strict error guarantees.
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Figure 3.15: Comparing our approach to existing approaches.

We see that our MG adaptive scheme substantially outperforms both the naı̈ve and data

streaming methods, at any error tolerance level. Our uniform adaptive scheme also outperforms data

streaming in the lower ranges of error tolerance (e.g., ε < 0.27 in this case). The strong performance

of our schemes illustrates that adapting the global slack is a powerful idea for reducing communi-

cation overhead. This implies that when designing systems for distributed triggering, rather than

signal estimation, a very different level of communication efficiency is achieved.

We also observe that our MG adaptive scheme outperforms our uniform adaptive scheme.

This implies that allowing heterogeneous filters at each monitor can lead to communication reduc-

tion; however the gain resulting from adaptivity of the total slack is certainly more dramatic than

the gain resulting from allowing heterogeneity of local slack across monitors.

The improvement of our schemes over previous methods is particularly notable in the low
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Figure 3.16: Communication overhead versus system size.

error tolerance region (e.g., ε < 0.1). For example, when ε = 0.1, our approach can filter out more

than 90% of the original time series signals while achieving the desired detection accuracy, with

transmission of only 10% of the original signal. Our scheme results in 3.5 times less communication

overhead than the data streaming technique which sends 35% of the original signal for the same

target accuracy level. For even smaller values of ε, the gains of our schemes over existing schemes

are even greater. Thus, we conclude that our scheme is well suited for distributed triggering systems

with very low error tolerances.

Fig. 3.16 shows the scalability of our protocol for instantaneous triggers. We measure the

communication overhead as a function of the number of distributed monitors, which vary from 20

to 200 in the system. The experiment setup is similar to that shown in Fig. 3.20. As seen from the

results, the (per-node) communication overhead is relative stable and slightly decreasing when the
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ε 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4

Desired
β 0.02 0.02 0.02 0.04 0.04 0.02 0.02 0.02 0.04 0.04
η 0.02 0.04 0.06 0.02 0.04 0.02 0.04 0.06 0.02 0.04

Achieved
β∗ 0.008 0.000 0.008 0.000 0.008 0.010 0.000 0.000 0.028 0.028
η∗ 0.008 0.023 0.030 0.020 0.031 0.010 0.018 0.026 0.009 0.036

Table 3.2: Desired vs. achieved detection performance.

system size increases, indicating that our protocol is scalable to large systems.

3.6.4 Results for Cumulative Triggers

Model Validation

In Table 3.2, we give a few examples of the actual false alarm rate (η∗) and missed de-

tection rate (β∗) that occurred in the system, along with the corresponding target η and β that was

given as input. We can see that the achieved β∗ and η∗ are always lower than the target β and η.

These results indicate that our model finds upper bounds on the detection performance, and that it is

always safe to use our model’s derived queue size parameters δ and θ; although it also implies that

there is future work to do in identifying further optimizations that reduce the communication cost.

In our experiments, we observed that the size of the time-window needed to catch each of

the violations varied from 5 to 100 minutes. There is no good single value of a fixed window size

that would have caught all of these events. This broad range illustrates that indeed the notion of a

time-varying window for violation detection is needed, and this provides motivation for the idea of

cumulative triggers.
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Experiment Configuration

Clearly the reduction in communication overhead is a function of the time series them-

selves, and smoother data streams will yield larger overhead reductions. We now examine two

properties of our data to be sure that the general observations we make are not artifacts of a partic-

ular time series. We also use these next two plots to help us select the experiments to run for the

remainder of the evaluation.

Our target constraint C is data dependent. The value of C would typically lie near the

extreme behavior of the data since the triggers are usually designed to detect anomalous behavior.

In the following experiment we select C to be the value of the 85th percentile of the distribution

of all 4,000 values (time instants) of
∑

ri(t). Similarly, we try the 90th and 98th percentiles as

different values for the threshold C . In Fig. 3.17 we plot the communication overhead as a function

of the error tolerance for each of these four values of C . In all cases, the shapes of the monotonically

decreasing curves are very similar to each another. For any particular value of ε, the communication

reduction is substantial. A communication overhead in the range of 0.1-0.2 means that we only need

80-90% of the original time series data to fire the triggers with high accuracy (the exact amount

depends upon the target accuracy level). We elect to use C corresponding to the data value at the

90th percentile of the distribution for the remainder of our experiments.

Fig. 3.18 shows the impact of data volatility on communication overhead. The experiment

setup is similar as that in Fig. 3.14. For all experiments (one for each dot), we used β = η = 0.06.

As expected, for a given value of ε, the communication overhead decreases as the volatility of the

data decreases. The fact that this graph matches our expectations can be taken to indicate that our

protocol and its implementation are doing what they are suppose to do. We see that even with the
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Figure 3.17: Impact of constraint violation threshold C .

most volatile set we considered, we still achieve efficient communication. In the remainder of our

experiments, we use the middle volatility set.

Detection Performance vs. Communication Overhead

We examined the tradeoffs between the false alarm and missed detection rates with the

communication overhead and the two queue sizes. We use ε = 0.2C for these experiments.

Fig. 3.19(a) shows the communication overhead tradeoff, (b) and (c) show the monitor queue and

coordinator queue sizes used for each achieved (β∗, η∗) pair. Note that to facilitate viewing of the

3-dimensional plots, the order of increasing β∗ and η∗ in Fig. 3.19(a) differs from that in (b) and

(c).

In Fig. 3.19(a) we see that the communication overhead decreases quickly as β and η
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Figure 3.18: Impact of volatility on overhead.

increase. The basic phenomenon here is that for any error type (ε, β, and η are different error

types), the communication overhead can be reduced if we can tolerate higher errors. In this sense,

Fig. 3.19(a) is consistent with Figs. 3.17 and 3.18. What is surprising is that the range of com-

munication overhead is very limited (4-20%), implying that even when very low false alarm and

missed detection rates are desired, we can still achieve efficient communication. For example, when

β = η = 0.04, we can filter out 92% of the original signal. We point out that looking across

Figs. 3.17, 3.18, and 3.19(a), we see that the communication overhead is typically in the range of

5-20%, even when looking at it from different perspectives (in terms of volatility, percentage error

tolerance, constraint definition, and target performance levels). While these numbers are particular

to our dataset, we nonetheless therefore believe that our methods can regularly achieve significant

data reduction even for low target error rates. Comparing our system to distributed monitors to-
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day that do not support distributed cumulative triggers, we see that we achieve difficult monitoring

tasks with less than 80% of the monitored data compared to today’s systems. Moreover today’s

prototypes do not provide any guarantees.

Fig. 3.19(b) shows that as the tolerable false alarm rate increases, the local queues increase

in size because we can do more filtering at the monitors, which in turn brings down the overhead.

This explains why the overhead decreases with increasing false alarm rate. A similar behavior

occurs when the tolerable missed detection rate is raised. Looking at both (b) and (c) together, we

see that a small change in (β, η) can lead to sizable change in the local queue, but relatively small

amounts of change in the coordinator queue. Because the coordinator does not vary much, even

when we change the accuracy requirements, we conclude that cancellation across the signals of

different monitors is indeed occurring.

We now examine our system’s scalability as the number of distributed monitors grows.

Recall that one of the key reasons for controlling the communications cost is to avoid overwhelming

the coordinator should it receive lots of data from many monitors. The communications overhead

metric we have been using until now (namely num/n · m) is an average value for the overhead

per monitor. This therefore captures how much reduction can be done on each typical time series.

However the communications bandwidth coming into the coordinator is the sum of all these filtered

time series. We refer to this as the communications cost. This cost with respect to the coordinator

can be computed from num/m. This captures the average number of messages the coordinator

receives in one time slot.

We plot the communications cost as a function of the number of monitors in Fig. 3.20. We

varied the number of monitors from 40 to 200, and used the target performance triplet (ε, β, η) =
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Figure 3.19: Parameters design and tradeoff between false alarm, miss detection and communication
overhead.
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Figure 3.20: Communication overhead versus system size.

(0.2C, 0.06, 0.06) . For each system size n, we run 5 rounds of experiments, each of which runs

on n randomly picked monitors. In this Figure, as the system size increases: 1) the communication

overhead of each monitor decreases slightly; and 2) the communication cost of coordinator increases

slowly with the slope roughly being 0.1. This result indicates that the communication cost increases

sub-linearly as system size increases, and that our system thus scales gracefully. The intuition here

is that as the number of monitor nodes increases, when one monitor queue overflows, it is more

likely that there will be an underflowing queue elsewhere, and this leads to more signal cancellation

at the coordinator. Our algorithm captures this trend and enables monitors to use larger queue sizes

to filter out more updates, which in turn results in less communication overhead.

We note that the monitor and coordinator queues grow as the system scales. We point out

that this is not related to scalability because when our solutions are implemented there is no need
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Figure 3.21: Number of messages per node.

to implement actual buffers; instead the queues are implemented as counters, and the queue sizes

correspond to maximum counter values.

Non-Uniform Slack Allocation

Finally we consider the case of non-uniform slack allocation. Recall that this means

that the queue sizes the coordinator assigns to each monitor will be heterogeneous. We run this

experiment using a network with 80 nodes over 4000 time slots, in which each node is randomly

assigned a data stream. We run this experiment twice, once with homogeneous queue sizes and once

with heterogeneous queue sizes. The performance in terms of our three main performance metrics

is nearly identical. The values for (overhead,β∗, η∗) are (10.7%, 0.030, 0.032) with homogeneous

queues and (10.6%, 0.020, 0.035) for heterogeneous queues.
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The difference in these two systems will be in terms of how much data each monitor sends

in these two scenarios. We measured the volatility of our 80 data streams through their standard

deviation. The distribution of these standard deviations was a bell shaped curve that ranged from

100 to 2000, indicating that we are indeed using a collection of time series with a broad range of

volatility. One might hypothesize that more volatile time series need to send more data than less

volatile ones (or at least that these two time series would differ; the amount sent clearly depends

upon the queue size as well). Consider the plots in Fig. 3.21. In (a) we illustrate the number of

messages sent by each monitor for the homogeneous queue case. On average around 440 messages

are sent by each node over all time slots. We see that there exists some “hot-spot” heavy nodes, that

send more than 1100 messages in the experiment, a great deal more than other monitors. In (b) we

provide the same plot as (a) but for the heterogeneous case. We see that the distribution of per-node

messages sent is concentrated in a smaller region (200-700), and there are no longer any unusually

heavy nodes. Using non-uniform slack allocation can remove “hot-spot” nodes because it allocates

more slack to nodes with more volatile data streams. This shows another feature of our system,

namely that we can achieve some kind of load balancing by using non-uniform slack allocation,

without paying any penalty in terms of error and overhead performance.

3.7 Chapter Summary

We have presented a novel solution and proposed the D-Trigger framework to the problem

of efficient online detection and triggering on aggregate constraint conditions in a distributed moni-

toring system. We believe our work is the first to address the constraint detection over a time-varying

window. Our work relies on a key insight: focus on accurate triggering, and not ε-accurate aggre-



87

gate value reporting. This insight enables a greater than 85% reduction communication overhead,

while preserving high detection accuracy.

Our contributions include: providing a mathematical definition of distributed triggering

with different constraint violation modes; using a queuing theory-based problem definition, which

makes analytical solutions possible; providing strong guarantees for the instantaneous case; and per-

forming a detailed evaluation of our schemes (and representative alternatives) using real world and

trace-based streaming data. Overall, the combination of our contributions offers users the power

to tradeoff desired detection accuracy and performance with communication overhead. Our gen-

eral and efficient detection framework, D-Trigger, is the foundation and extensible vehicle for the

sophisticated detection approaches discussed in the following chapters.
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Chapter 4

Toward Sophisticated Online Detection

To support the continuous detection and triggering functionalities in distributed monitor-

ing system, a set of approaches, including our D-Trigger framework discussed in Chapter 3, have

been proposed recently for communication-efficient tracking of distributed triggers [38, 56, 32].

However, existing approaches have significant limitations: they only support simple thresholds on

distributed aggregate functions like SUM and COUNT, which are insufficient for sophisticated detec-

tion applications.

In this chapter, we present our initial efforts to support more sophisticated triggering func-

tionalities in D-Trigger system. We give some examples for detection schemes that may require

checking non-linear threshold constraints, relative triggers, and so on. To illustrate these ideas more

concretely, we use the example of a centralized PCA-based anomaly detection application [41].

This method detects anomalies in traffic volume levels by simultaneously examining the link load

levels of all the links in a large network. It works by using a Principal Components Analysis (PCA)

technique to decompose network traffic into normal and residual components, and then detects
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anomalies by applying a threshold function on the residual components. One of our contributions

is to illustrate how to redesign this application in a distributed fashion, with far less communication

overhead, by using D-Trigger as an underlying paradigm. Abstractly, this requires D-Trigger that

support complex threshold functions, and can be composed to lend support to sophisticated dis-

tributed detection applications. We describe, for example, a simple approximation to a non-linear

threshold constraint that works well in our example application: our method achieves roughly the

same level of accuracy as the centralized scheme, while communicating only around 20% of the

underlying data.

4.1 Extensions to Simple Triggers

We believe that more general constraints, that include varied aggregation functions, thresh-

old functions, that use subsets of monitors, and that are defined over varying time period, can all be

incorporated into a more general triggering protocol. We briefly introduce these ideas here.

4.1.1 Supporting Complex Constraints

In detection systems, the constraints are typically made up of an aggregation function,

a threshold and a set of nodes whose data is used to determine whether or not the constraint has

been violated. Our previous work used linear aggregation functions. In this work, we introduce

methods for dealing with quadratic aggregation functions, which is useful in detecting network-

wide anomalies. We now discuss how a variety of complex constraints can be built by varying

these elements of the constraint(s). Each of these variations can be expressed in the terms of our

framework, and incorporated into a generalized triggering protocol.
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In our anomaly detector application we used a Taylor series expansion (for the aggre-

gation function on f [R1, . . . , Rn]), dropping higher order terms, to deal with a quadratic con-

straint. This approach can be applied more generally. For any such continuous function f(t) =

f [r1(t), . . . , r2(t)], the Taylor Expansion is

f [R1, . . . , Rn] − f [r1, . . . , rn] =

n
∑

i=1

∂f

∂ri
· (Ri − ri) + O





n
∑

i,j=1

(Ri − ri) · (Rj − rj)



 .

Then, if (Ri − ri), i = 1, . . . , n, are small and independent, and we ignore all second and higher

order terms, we can linearize this continuous function, and the distributed simple triggers can track

this function based on its first order components. We define gi ≡ ∂f
∂ri

as the marginal impact of

local value ri(t) on the global function. This is incorporated into our system by the monitor which

performs filtering using |ri(t) − Ri(t)| > δi

|gi| . Note that the marginal factor gi can be computed by

Mi itself (simple constant) or computed by the coordinator (time-varying distributed values).

So far we have used a constant trigger threshold C . However, this threshold could, for

example, vary in time. It could be determined or computed as a user specified input, or be a function

of the data - computed using all the data (as in our anomaly detector), or using data from only a

subset of the monitors. Other constraints can be built when the set of monitoring nodes are split

into different subsets. Let A and B be two subsets of monitors of interest, with n1 and n2 monitors,

respectively. To denote variables from monitors in the set, we use set labels in the superscript.

More complex threshold functions and the ideas of using subsets of monitoring data can be

incorporated into the coordinator’s protocol. The coordinator can track one or more global functions

that are defined on subsets of distributed data streams. For example, let f(t) be the function defined
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on set A, and C(t) on set B. The coordinator computes

f(t) = f
[

RA
1 , . . . , RA

n1

]

, C(t) = C
[

RB
1 , . . . , RB

n2

]

,

and triggers an alarm if f(t) > C(t). Based on its view of global information, the coordinator

computes a set of parameters and sends them to monitors when necessary as:

max(ε, C(t) + ε − f(t)) = δA
1 + · · · + δA

n1
+ δB

1 + · · · + δB
n2

,

gA
i =

∂f

∂rA
i

, gB
j =

∂C

∂rB
j

.

Various optimization algorithms can be used to compute δi’s that minimize communication, how-

ever our protocol remains applicable regardless of algorithm choice.

It is also possible to incorporate the notion of time, in case one seeks to detect constrain

violations that occur over a period of time. To support such constraints, we can extend the form into

cumulative triggers as discussed in Chapter 3, which track the relationship between f(t) and C(t),

and only trigger alarms when f(t) exceeds C(t) over time.

4.1.2 Advanced Queries For Load Balancing

We now demonstrate how a generalized triggering protocol can support advanced queries

for hot spot detection in distributed systems. Consider: 1) relative triggers that fire an alarm if the

total workload of servers in set A is β times more than that of set B; 2) any-set triggers that fire

an alarm if the total workload of any α% servers is more than C; 3) composite triggers that fire an

alarm if the total workload of any α% servers is more than β portion of the total system workload.

Tracking relative triggers. We view relative triggers as normal ones with time-varying threshold

C(t) as follows: 1) the coordinator has threshold C(t) = β ·
∑

RB
j (t), and 2) it triggers whenever
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∑

RA
i (t) > C(t). Monitors and the coordinator have to track both values of

∑

rA
i (t) and

∑

rB
j (t).

One can easily extend the instantaneous trigger to detect unbalanced load and guarantee a “2ε-band”

of detection accuracy.

Tracking any-set and composite triggers. One can prove that detecting whether the workload sum

from any subset of k servers is above a threshold is equivalent to detecting whether the sum of the

top-k workload is above the threshold. So by composing distributed top-k monitoring [3] with our

triggering protocols, we can efficiently track both any-set and composite triggers with guaranteed

accuracy. We leave as future work to extend and customize triggers for top-k monitoring.

4.2 Extended Triggers for Network-Wide Traffic Anomaly Detection

In this section, we first summarize a centralized algorithm [41] for doing network-wide

volume anomaly detection. Network volume anomalies are unusual and significant changes in end-

to-end traffic flows typically caused by worms, DoS attacks, device failures, misconfigurations,

etc. We then show how this problem can be mapped onto our D-Trigger system and explain the

functionality required at our monitors and coordinator to implement this approach.

4.2.1 Problem description

We consider a monitoring system that includes a set of distributed monitor nodes M1, . . . ,Mn,

each of which collects a locally-observed time-series data stream (Fig. 4.1). A central coordinator

node seeks to observe the ensemble of these time series (i.e., the global network-wide data), and

make global decisions such as those concerning matters of network-wide health. The application of

detecting volume anomalies across a large network employs such a distributed monitoring infras-



93

tructure. A volume anomaly refers to unusual traffic load levels in a network that are caused by

anomalies such as DDoS attacks, flash crowds, device failures, misconfigurations, and so on.

Each monitor Mi collects a new data point ri(t) at every time step, and assuming a naı̈ve

“continuous push” protocol, sends the new point to the coordinator. Based on these updates, the

coordinator keeps track of a sliding time window of size m (i.e., the m most recent data points)

for each monitor’s time series, organized into a matrix Y of size m × n (where the ith column Yi

captures the data from monitor i, see Fig. 4.1). The coordinator then makes its decisions based on

this global Y matrix.

In the network-wide volume anomaly detection algorithm of [41], the local monitors mea-

sure the total volume of traffic (in bytes) on each network link, and periodically (e.g., every 5 min-

utes) centralize the data by pushing all recent measurements to the coordinator. The coordinator

then performs PCA on the assembled Y matrix to detect volume anomalies. This method has been

shown to work remarkably well, presumably due to the inherently low-dimensional nature of the

underlying data [42]. However, such a “periodic push” approach suffers from inherent limitations:

To ensure fast detection, the update periods should be relatively small; unfortunately, small periods

also imply increased monitoring communication overheads, which may very well be unnecessary

(e.g., if there are no significant local changes across periods).

4.2.2 Using PCA for Centralized Detection

Detecting anomalies is the first, critical step for network diagnostics, however they are

usually hidden in large amounts of high-dimensional, noisy data. Volume anomalies usually propa-

gate through the network and are observable on all links they traverse. As observed by Lakhina et

al., although, the measured data is of seemingly high dimensionality (n = number of links), nor-
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Figure 4.1: (a) The distributed monitoring system; (b) Data sample (‖y‖2) collected over one week
(top); its projection in residual subspace (bottom). Dashed line represents a threshold for anomaly
detection.
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mal traffic patterns actually lie in a very low-dimensional subspace; furthermore, separating out this

normal traffic subspace using PCA (to find the principal traffic components) makes it much easier to

identify volume anomalies in the remaining subspace. Lakhina et al. [41] proposed a solution to un-

covering volume anomalies within a network by examining the traffic on all links inside a network

simultaneously. Their approach assumes a protocol such as SNMP is available to collect link counts

on every link and ship these statistics to a central network operations center (NOC). Their technique

performs PCA on these link traffic measurements, and decomposes the high-dimensional space oc-

cupied by a set of network traffic measurements into disjoint subspaces corresponding to normal and

anomalous network conditions. By performing statistical analysis on traffic signals in anomalous

subspaces, they can effectively detect, identify, and quantify network-wide traffic anomalies.

Their method is summarized as follows. Consider a network with n links each of which

has a monitor, Mi, where i = 1, ..., n, that measures the traffic load every measurement interval.

After m measurement intervals, the monitor effectively has a time series of link counts for its link.

The times series data from all of the monitors is sent to the NOC where it is assembled in a matrix

Y, in which each column i denotes the timeseries measurements of the i-th link and each row t

represents an instance of all the links at time t (where t = 1, ...,m). We use y to denote a vector of

measurements of all the links from a single timestep, which is an arbitrary row of Y, transposed to

a column vector,

y =

[

r1 r2 . . . rn

]T

,

where ri = ri(t), link i’s value at time t, for i = 1, . . . , n.

PCA is a coordinate transformation method that maps a given set of data points onto

principal components, which are ordered by the amount of data variance that they capture. Applying
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PCA to Y yields a set of n principal components, {vi}n
i=1, which are computed as:

vk = arg max
‖x‖=1

‖(Y −
k−1
∑

j=1

Yvjv
T
j )x‖.

They are essentially the n eigenvectors of the estimated covariance matrix A := 1
m

YTY. As shown

in [41], PCA reveals that the Origin-Destination (OD) flow traffic matrices (i.e., the complete traffic

demand across an entire network) of ISP backbones have low intrinsic dimensionality. Because the

link traffic and the end-to-end traffic demands are linearly related, it turns out that the ensemble of

all link traffic in a backbone network also exhibits low dimensionality. For example, in the Abilene

network with 41 links, most data variance can be captured by the first k = 4 principal components.

Thus, the underlying normal OD flows effectively reside in a (low) k-dimensional subspace of R
n.

This subspace is referred to as the normal traffic subspace Sn. The remaining (n − k) principal

components constitute the abnormal traffic subspace Sa.

Detecting volume anomalies relies on the decomposition of link traffic y = y(t) at any

time step into normal and abnormal components, y = yn + ya, such that (a) yn corresponds to

modeled normal traffic (the projection of y onto Sn), and (b) ya corresponds to residual traffic (the

projection of y onto Sa). Mathematically, yn(t) and ya(t) can be computed as

yn(t) = PPTy = Cny and ya(t) = (I−PPT )y = Cay,

where P = [v1,v2, . . . ,vk], is formed by the first k principal components which capture the dom-

inant variance in the data. The matrix Cn = PPT represents the linear operator that performs

projection onto the normal subspace Sn, and, Ca projects onto the abnormal subspace Sa.

As observed in [41], a volume anomaly typically results in a large change to ya; thus, a

useful metric for detecting abnormal traffic patterns is the squared prediction error (SPE): SPE ≡
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‖ya‖2 = ‖Cay‖2 More formally, their proposed algorithm signals a volume anomaly if

SPE = ‖Cay‖2 > Qα, (4.1)

where Qα denotes the threshold statistic for the SPE residual function at the 1−α confidence level.

Such a statistical test for the SPE residual function, known as the Q-statistic [34], can be computed

as a function Qα = Qα(λk+1, . . . , λn), of the (n − k) non-principal eigenvalues of the covariance

matrix A. With the computed Qα, this statistical test can guarantee that the false alarm probability

is no more than α (under certain assumptions).

4.2.3 Distributed Detection

Shifting from a centralized to a distributed anomaly detection algorithm raises some im-

portant issues. First, we want to understand which functionality can be pushed from the coordinator

to the monitors, so as to engage them more actively in the detection process. In our system, this will

involve “smart” filtering. The second issue is to ensure that even in this distributed system, and with

a discrepancy between its view and the true network state, the coordinator can still fire the trigger

on the global system aggregate accurately. There are at least two significant obstacles to extending

the subspace method to a distributed setting:

1. With minimal communication overhead, maintain projection matrix Ca while matrix Y (formed

by distributed link measurements) evolves over time.

2. With minimal communication overhead, track and fire triggers to indicate anomalies when

‖Cay‖2 > Qα.

Maintaining the subspace projection matrix Ca in a distributed way is difficult, because

computing Ca = I−PPT is equivalent to solving the symmetric eigenvalue problem for the
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covariance matrix YTY, which involves quadratic terms of measurement data from all links. The

stability of matrix P is a function of the stability of the network’s traffic matrix, and impacts how

often Ca needs to be updated. There is some indication that traffic matrices are stable for up to 5

day periods (weekdays) [42]. However, in general, it is assumed that the matrix P will need to be

updated frequently (although the exact frequency is unclear). In this chapter, we assume a stable P

and choose to focus on obstacle 2. We design a novel method for tracking the principal components

in Chapter 5.

Given a relatively stable projection matrix Ca, it is still not easy to compute the distributed

function ‖Cay‖2 and check whether it is above the threshold Qα in a communication-efficient way.

This is because ‖Cay‖2 is a quadratic function and involves the cross-product of measurements

from different links (i.e., it has terms like ri · rj for i 6= j). It is unclear how local link measurement

ri impacts ‖Cay‖2 without knowing the measurements from other links. Our way to tackle this

issue is to use the first order approximation of the quadratic function. One can compute the partial

derivative of ‖Cay‖2 w.r.t. ri, which is the marginal factor of ri on ‖Cay‖2

gi :=
∂‖Cay‖2

∂ri
=

∂
(

∑n
j=1

(

yTc̃j

)2
)

∂ri
= 2yT Cac̃i, (4.2)

where c̃i is the i-th column of matrix Ca. If we ignore second order terms, we can see that if ri

changes by 1 unit, then ‖Cay‖2 would change by a factor of gi = 2yT Cac̃i units. The coordinator

can compute these derivatives gi, because it has all information needed to do so. The coordinator

sends each monitor i, its partial derivative gi at the same time it sends the local slack δi. We can



99

now describe the functionality at the monitors and coordinator as follows.

Each monitor Mi tracks the change of its ri(t) and sends the coordinator updates whenever |ri(t)−

Ri(t)| > δi

|gi| . Even though each monitor cannot see the data from other monitors, in this way, it

can filter its traffic not only based upon how far the data is from its own most recent prediction (as

in earlier triggers), but also according to the relative impact of a particular monitor’s data on the

aggregation function, relative to other monitors.

The coordinator computes ‖Cay‖2 and triggers an alarm indicating an anomaly if ‖Cay‖2 > Qα.

Second, it continuously computes ∆ = max(ε,Qα + ε − ‖Cay‖2), based on which it computes

δi’s. Third, it computes the partial derivatives gi’s according to Eqn.4.2, and disseminates the pa-

rameters (δi, gi) the monitors. To maintain system stability, the coordinator uses low-pass filtering

techniques (e.g., based on discretization intervals as discussed in Chapter 3) to avoid disseminating

new parameters for small, transient changes in ∆.

We justify using a first order approximation as follows: 1) ‖Cay‖2 is a quadratic function

of ri(t)’s and has terms only up to the second order; 2) the approximation is only used to determine

when to send ri(t) values to the coordinator, thus bounding the difference between ri(t) and Ri(t).

Once ri(t) is updated, the coordinator uses ‖Cay‖2 for calculations; 3) when δi is small, which

is the case as ‖Cay‖2 approaches the threshold, |ri(t) − Ri(t)| is small and its high order is even

smaller. Thus, the accuracy is sufficient for our detection purposes when using only the first order

of ‖Cay‖2 to control updates. Our experiments show that this approximation is accurate and does

not introduce detection errors.
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Figure 4.2: Distributed detection on the timeseries of SPE = ‖C̃y‖2 with ε = 0.
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ε Missed Detections False Alarms Comm. Overhead
week a week b week a week b week a week b

0.00 0 0 0 0 0.13 0.30
0.05 0 1 1 0 0.12 0.24
0.10 0 1 0 0 0.10 0.21
0.15 0 1 0 0 0.10 0.19

Table 4.1: Detection error vs. communication overhead. Week a has 6 anomalies and week b has
15 anomalies.

4.2.4 Evaluation

For a preliminary validation for our approach, we used two one-week long Abilene net-

work traffic matrices, collected in 10 minute intervals on 41 individually monitored links. We set

the threshold Qα to a 1−α = 99.5% confidence level, and set ε = 0. The results are shown in Fig-

ure 4.2. The solid curve is SPE, the timeseries of ‖Cay‖2, and the dashed line is the threshold Qα.

Note that our distributed algorithm (star points) detects all anomalies (6 in week a and 15 in week

b) that are detected by the centralized algorithm (circle points). Examining the timeseries values

of ‖Cay‖2, we find that the signal values of anomalies computed by our distributed algorithm are

exactly the same as those computed by the centralized algorithm, when setting ε = 0. These results

demonstrate that our approximation up to the first order of the SPE function is accurate.

Table 4.1 shows the tradeoff between triggering accuracy ε, and missed detections, false

alarms, and communication overhead (including messages from monitors to coordinator and from

coordinator to monitors). When varying ε from 0.00 to 0.15, our distributed algorithm has low de-

tection error (at most 1 missed detection/false alarm), and incurs modest communication overhead,

ranging from 13% to 10% of original data for week a, and 30% to 19% of original data for week

b. While using only 13% (or 30%) of original data, our distributed algorithm is as equally effective

as the centralized algorithm. We hypothesize that this per-node communication overhead remains
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stable as the network size increases.

4.3 Chapter Summary

We have presented our novel approach to extending simple threshold triggers for sophis-

ticated anomaly detection problems. Through a set of examples, we have shown that D-Trigger

is an efficient and extensible vehicle for advanced detection algorithms, and discussed our general

extensions to existing triggering protocols to support wide-range of detection tasks. In particular,

we designed a distributed protocol that can perform online detection of network-wide anomalies

with modest communication overhead, with the assumption that the dominant traffic pattern does

not change over time. In the next chapter, we further extend this line of research to design a concrete

solution to efficiently update traffic principal components in a dynamic environment, and perform

network-wide anomaly detection without any assumption about the dominant traffic pattern.
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Chapter 5

Online Detection of Network-Wide

Anomalies

Today’s large distributed systems (e.g., server clusters, large Internet Service Providers

(ISPs), and enterprise networks) employ distributed monitoring infrastructures to collect and ag-

gregate information describing system status and performance. An example application is one that

seeks to detect network-wide traffic anomalies. Recent work by Lakhina et al. [41] proposes an

anomaly detection scheme in which monitors ship observations to a central Network Operations

Center (NOC), which in turn assembles and analyzes the data to perform anomaly detection. In-

stead of performing detection at local nodes for node-level anomalies, they developed a network-

wide anomaly detection scheme based on Principal Component Analysis (PCA). They showed that

the minor components of PCA (the subspace obtained after removing the components with largest

eigenvalues) revealed anomalies that were not detectable in any single node-level trace.

However, this work assumes that local monitors continuously measure the total volume of



104

traffic (in bytes) on each network link, and periodically push all recent measurements to the NOC

for anomaly detection. Such a solution cannot scale either for networks with a large number of

monitors nor for networks seeking to track and detect anomalies at very small time scales. Our

solution proposed in Chapter 4 only touches the surface of decentralized anomaly detection using

the PCA-based method: it built upon the strong assumption that principal components of network

traffic do not change over time, which is not realistic in many situations; neither does it proposed

feasible solution for updating principal components when network traffic evolves over time.

We are thus motivated to study how well principal components can be approximated and

traffic anomalies can be detected if only a portion of the monitored data is shipped to the NOC.

Using D-Trigger as an efficient and extensible vehicle for advanced anomaly detection, we aim to

recast the ideas of Lakhina, et al. in our D-Trigger framework and design a solution that detects

anomalies at a desired accuracy level with low communication cost. In the D-Trigger framework,

we engage the monitors in local filtering so that they only send data to the NOC on an “as-needed”

basis. The NOC (often referred to as a coordinator hereafter) guides the monitors in how to do

the filtering because it sees the global data and knows, via the triggering condition, the extent of

dependencies across different monitors. With the guideline, the distributed monitors collect data

continuously but each monitor only updates the coordinator with new data as needed (determined

by the filtering parameter). Monitors can do so at any moment in time, and are not restricted to time

window boundaries (such as every 5 minutes). Because the NOC will find out anything it “needs”

to know immediately (ignoring network delays), the NOC is effectively doing continuous tracking,

which in turn enables real-time detection.

Our approach demonstrates a classical example for applications of machine learning meth-
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ods in distributed networking systems. One of the most interesting aspects of such applications is

that learning algorithms that are embedded in a distributed computing infrastructure are themselves

part of that infrastructure and must respect its inherent local computing constraints (e.g., constraints

on bandwidth, latency, reliability, etc.), while attempting to aggregate information across the infras-

tructure so as to improve system performance (or availability) in a global sense. Designing a scalable

solution presents several algorithmic challenges. Viable solutions need to process data “in-network”

to intelligently control the frequency and size of data communications. The key underlying problem

is that of developing a mathematical understanding of how to trade off quantization arising from

local data filtering against fidelity of the detection analysis. We also need to understand how this

tradeoff impacts overall detection accuracy. Finally, the implementation needs to be simple if it is

to have impact on developers.

Our approach for communication-efficient online detection is novel and unusual. It ex-

tends the power of the PCA-based method by coupling insights from Stochastic Matrix Perturbation

(SMP) theory together with in-network processing ideas [16, 47]. Because we filter locally at the

distributed monitors, the NOC’s view of the global data (captured in a matrix) is approximate since

elements in the matrix can become out-of-date. Thus the computation of the principle components

is done on a perturbed data matrix. We appeal to Matrix Perturbation theory as it helps to quantify

the effect of such perturbations on the computation of eigenvectors and eigenvalues. Out-of-date

data can lead to errors that propagate through the anomaly detector including not only the eigenval-

ues, but also the anomaly trigger thresholds – because all of these are data-driven. This results in

an anomaly detector that can make mistakes. Using SMP theory, we derive analytic bounds on the

terms affected by error propagation. We design an algorithm that derives filtering parameters for
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the monitors, such that the errors made by the detector are bounded. Our algorithm combines many

techniques together, SMP theory, binary search, and Monte Carlo simulation.

Our evaluation using real-world data streams collected from a well known ISP network

shows that our methods work very well. While sending less than 10% of the original time-series

data (over an order-of-magnitude reduction in communication), we guarantee that the detection error

would be no more than 4% bigger than when using full data. In fact, our system performs much

better than these bounds; we find that the actual error rates are nearly indistinguishable from the

full-data method. This results in a huge savings in communication overhead (e.g., typically 80 or

90% of the original data is no longer sent) with only a very small impact on errors. Put another way,

within the same (fixed) communication budget, our algorithms can allow for a ten-fold increase in

the time granularity of network-statistics collection. Finally, we show that our system can indeed

scale gracefully as the number of monitors grows.

Chapter Organization. The rest of the chapter is organized as follows: we present the problem

description in Chapter 5.1; we describe our protocols for efficient online tracking PCA and detecting

network anomalies Chapter 5.2; we discuss our algorithm for system parameter design and error

guarantee in Chapter 5.3; we evaluate our approach in Sec. 5.4; finally, we summarize the chapter

in Chapter 5.5.

5.1 Communication Efficient Detection Problem

The Centralized PCA method for network-wide traffic volume anomaly detection is sum-

marized in Chapter 4. The problem we address here is how to do the filtering at the monitors, so as

to send as little data as possible through the network but still allow the anomaly detector to work
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accurately. The idea is that monitors should send a description of their time series signal, and then

not send any more measurements (or summaries) until a change happens that is either “sufficiently

large” or likely to impact the global trigger condition being monitored. In our application, the trig-

ger condition being monitored by the coordinator is that in Eqn (4.1). Because the monitors send

data less frequently to the coordinator, the coordinator’s view of the global network data can be

out-of-date and perturbed. Thus, the statistics it computes for anomaly detection, such as the eigen-

values and projection matrix, will deviate from those of the true global state. This implies that the

detection error at the coordinator (when triggering on condition (4.1)) will differ from that achieved

using the full data.

Our solution includes the design of protocols used by the monitors and coordinator, and

an algorithm to determine how to do the appropriate filtering. We allow the user (network operator)

to input the tolerable deviation µ of the false alarm probability, a parameter that specifies how much

the false alarm probability achieved by our approximation technique is permitted to deviate from

the false alarm probability achieved by the centralized-data solution. We provide an algorithm for

computing each monitor’s filtering parameter that guarantees that our false alarm probability does

not deviate by more than the specified deviation µ. In order to guarantee an error performance

within µ, we need to track and limit the perturbations in the system caused by the local filtering at

the monitors. This amounts to bounding the perturbations of the eigenvalues λi, projection matrix

Ca and trigger threshold Qα (all of which get perturbed due to error propagation that occurs with

out-dated measurement data). In this paper, we show that all of these system component errors can

be bounded, and thus excellent detection can still be achieved, even with a substantial reduction in

data transmitted to the coordinator.
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Figure 5.1: Distributed detection system.

Our filtering parameters are both heterogeneous (across different monitors) and adaptive

in time. Intuitively, the selection of the filtering parameter at a monitor should take into account two

things: the variability of the local time series data itself, and the marginal impact this particular data

has on the global trigger condition relative to other data streams. We thus aim to do filtering locally

at monitors using parameters that are derived based upon global correlations across different data

streams and their joint impact on the trigger condition being tracked.

5.2 Our Approach

The architecture of our system is depicted in Fig. 5.1. Our approach consists of two parts:

(1) the monitors process their collected data by applying local filtering to suppress unnecessary

message updates to the coordinator; and (2) the coordinator makes global decisions and provides
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feedback to the monitors (e.g., local filter parameter settings) based on the observed updates.

We use Yi(t) to denote the actual time series observed at monitoring node Mi, which is

one column vector of data matrix Y. We use Ri(t) to denote the approximate representation of

Yi(t) that is sent to the coordinator. If no further data is sent shortly after time t, the coordinator

assumes that Ri(t) serves as a prediction of the true data at these latter time instances. A simple

prediction model might set Ri(t) to the latest Yi(t) value communicated from the site, or an average

of recent communications, but more sophisticated prediction models [16, 35] can be used. Our

techniques remain applicable regardless of prediction-model specifics.

Each monitor i maintains a filtering window Fi(t) of size 2δi centered at a value Ri (i.e.,

Fi(t) = [Ri(t) − δi, Ri(t) + δi]). At each time t, the monitor sends both Yi(t) and Ri(t) to the

coordinator only if Yi(t) /∈ Fi, otherwise it sends nothing. The window parameter δi is called the

slack; it captures the amount the time series can drift before an update to the coordinator needs to

be sent. Let t∗ denote the time of the most recent update. The monitor needs to send both Yi(t
∗)

and Ri(t
∗) to the coordinator when it does an update, because the coordinator will use Yi(t

∗) at

time t∗ and Ri(t
∗) for all t > t∗ until the next update arrives. For any subsequent t > t∗ when the

coordinator receives no update from that monitor, it will use Ri(t
∗) as the prediction for Yi(t).

The coordinator has two principal tasks: (1) to carry out anomaly detection, based on the

PCA subspace method, using the inputs Ri(t) it receives, and (2) to compute the filtering slacks

δi for each monitor. The inputs to the coordinator are the deviation of false alarm probability µ,

and the filtered time series. The outputs of the coordinator are a trigger that is fired whenever

the condition in Eqn (4.1) is true, and the filtering parameters δi, that are sent to the monitors

whenever they change. We will informally call the filtering parameter at a node the “slack” for
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Symbol Meaning
Mi Monitor sites (i = 1, . . . , n)

Yi(t), Ŷi(t) Data at monitor i and its approx. at the coordinator
Y, Ŷ Data matrix at monitors and its approx. at the coordinator
A, Â Cov. matrix at monitors and its approx. at the coordinator

λi, λ̂i, λ̄ Eigenvalues of A, Â, and λ̄ =
∑

λ̂i/n

Ri(t) Most recent prediction model for Yi(t)

Wi(t),W Filtering error time-series and matrix, W = Y − Ŷ

y, ŷ One time-step data from all monitors (one row of Y, Ŷ)
Ca, Ĉa The projection matrix of residual subspace
α, α̂ False alarm (i.e., false positive) probability

Qα, Q̂α The detection threshold
ε, ε∗ Tolerable and actual aggregate eigen-error
µ Tolerable deviation of false alarm probability

δ, δi Local monitor slack parameters

Table 5.1: Notation.

that node. The monitors use slacks when tracking the drift between the actual time series signal

and the prediction function; whenever this drift exceeds the allowed slack, the monitor sends the

coordinator an updated prediction, Ri(t). Intuitively, these slacks are used to upper bound the

difference between the coordinator’s view of the data and the actual data.

The Local Monitor Protocol. Given a slack parameter δi, the protocol that runs at each monitor

site Mi is fairly straightforward. Let Ri(t) be the most recent prediction model for Yi(t) sent to

the coordinator. At any time t, monitor Mi continuously tracks the deviation of Yi(t) from its

prediction Ri(t) as Wi(t) = Yi(t) − Ri(t), and checks the condition |Wi(t)| ≤ δi . Whenever

|Wi(t)| > δi, the monitor sends an update message to the coordinator that includes Yi(t) and an

up-to-date prediction Ri(t), and resets Wi(t) to zero. (Table 5.1 summarizes our notation.)

The Coordinator Protocol. The global detection task at the coordinator is the same as in the cen-

tralized scheme. However, the coordinator does not have an exact version of the raw data matrix Y;

it has the approximation Ŷ instead. The connection between the slacks and the coordinator’s detec-
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tion accuracy comes from the following. The PCA at the coordinator is performed on a perturbed

version of the covariance matrix, Â := 1
m

ŶT Ŷ = A + ∆. The magnitude of the perturbation ma-

trix ∆ is determined by the slack parameters δi (i = 1, . . . , n). We can thus bound the perturbation

of the covariance matrix through the control of the slack parameters.

The coordinator protocol works as follows. Each time t, if a new input arrives at the

coordinator from some or all of the monitors, it carries out the following steps:

1. Makes a new row of data ŷ as ŷ = [ Ŷ1(t) Ŷ2(t) . . . Ŷn(t) ], where Ŷi(t) is defined

as either the update received from monitor i (if one exists), or the corresponding prediction

Ri(t) otherwise.

2. Updates its view of the global data Ŷ, by replacing the oldest row of Ŷ using ŷ.

3. Re-computes PCA on Ŷ, the residual projection matrix Ĉa, and the trigger threshold Q̂α.

4. Performs anomaly detection using Ĉa, Q̂α and ŷ; fires an alarm if ‖Ĉaŷ‖2 > Q̂α.

The coordinator can recompute the monitor slacks either periodically or upon each moni-

tor update. The coordinator only sends new slacks to the monitors if there is a substantial change. A

high-level pseudo-code description of both the local-monitor and coordinator protocols is depicted

in Fig. 5.2.

5.3 Algorithm for Filtering Parameter Selection

We now describe our method for determining the parameters used for filtering δi (also

called slacks) by the local monitors. Let α denote the false alarm probability that is guaranteed by

the Qα-statistic condition in Eqn (4.1) in the original push-all solution. Similarly, α̂ denotes the
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Procedure Monitor(i, δi)

Input: Monitor index i, local slack parameter δi.

1. while (true) do

2. t := current time

3. Wi(t) := Yi(t) − Ri(t)

4. if (|Wi(t)| > δi) then

5. Send update message (i,Yi(t), Ri(t))

to coordinator

6. Set Wi(t) := 0

7. if (new slack δ∗i is received) then

8. Set δi := δ∗i

Procedure Coordinator(µ)

Input: Deviation µ on false alarm probability.

1. while (true) do

2. Make a new row of data ŷ =

»

R1(t) . . . Rn(t)

–

3. Replace the oldest row of Ŷ using ŷ, pointed to by Ŷi(t)

4. for each (monitor update (i, Yi(t), R
∗

i (t)) received) do

5. Set local prediction Ri(t):= R∗

i (t)

6. Set Ŷi(t):= Yi(t)

7. Re-compute PCA on Ŷ

8. Re-compute threshold Q̂α, matrix Ĉa and residual

‖Ĉaŷ‖
2

9. if ( ‖Ĉaŷ‖
2 > Q̂α ) then

fire(“anomaly”);

10. Compute new optimal settings for local slacks {δi}

based on µ and maintained statistics (Sec. 5.3)

11. if (adaptive allocation) then disseminate({δi})

Figure 5.2: Procedures for (a) local monitor update processing, and (b) distributed detection at the
coordinator.
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false alarm probability of our approximation algorithm. The false alarm deviation, µ, specifies the

extent to which the α̂ is allowed to increase compared to α. In particular, our goal is to determine δ i

values such that the false alarm probability α̂ of our technique satisfies α̂−α < µ, while minimizing

communication cost on the network1. To determine the δi values minimizing communication for a

given µ, we need to be able to quantify the effects of local monitor filtering on the observed false

alarm probability.

We remind the reader that because the monitors filter their data and thus often do not send

updates to the coordinator, the coordinator’s matrix of the global data can have elements that are out-

of-date. This perturbed view of the data propagates errors forward through a PCA-based detector

as follows. First there will be errors in the computation of the eigenvalues of the covariance matrix,

and second there will be errors introduced into the projection matrix (projecting onto the anomalous

subspace) as well as to the Qα threshold. The errors in these last two terms, cause errors in the

trigger condition, thus causing errors in the detection accuracy. The direction of error propagation

is depicted in (Fig. 5.3(a)) via the dashed lines.

Because the goal of our algorithm is to take the tolerable deviation µ of false alarm prob-

ability as input, and produce the δi parameters as output, we need a model of error propagation in

the inverse direction to which it naturally flows. This turns out to be a non-trivial task due to the

complex dependencies across different parameters in our monitoring framework. The errors in the

eigenvalues are critical in our methodology as they impact all parts of the PCA-based detector. We

thus elect to control the errors introduced into the eigenvalues. Let λi and λ̂i (i = 1, . . . , n) denote

the eigenvalues of the covariance matrix A = 1
m

YTY, and its perturbed version Â = 1
m

ŶT Ŷ, re-

1Even though condition (4.1) is only a one-sided test, our experimental results demonstrate that our methods achieve
very small missed-detection rates, similar to [41].
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spectively. We use the L2 aggregate eigen-error ε∗, defined formally as ε∗ :=
√

1
n

∑n
i=1(λ̂i − λi)2,

as a metric of the errors across the set of eigenvalues. By limiting this quantity, we can limit error

propagation. Our approach thus consists of a two step method: 1) given a false alarm deviation

bound µ, determine an upper bound on eigen-error ε∗; 2) then for a given eigen-error ε∗, find moni-

tor slacks δi such that eigen-error does not exceed its bound.

5.3.1 Perturbation Analysis

Our perturbation analysis goes as follows. We measure the size of a perturbation using

a norm on ∆. We derive an upper bound on the changes to the eigenvalues λi and the residual

subspace Ca as a function of ‖∆‖. We choose δi to ensure that an approximation to this upper

bound on ∆ is not exceeded. This in turn ensures that λi and Ca do not exceed their upper bounds.
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Controlling these latter terms, we are able to bound the false alarm deviation.

Recall that the coordinator’s view of the global data matrix is the perturbed matrix Ŷ =

Y + W, where all elements of the column vector Wi are bounded within the interval [−δi, δi].

Let λi and λ̂i (i = 1, . . . , n) denote the eigenvalues of the covariance matrix A = 1
m

YTY and its

perturbed version Â := 1
m

ŶT Ŷ. Applying the classical theorems of Mirsky and Weyl [60], we

obtain bounds on the eigenvalue perturbation in terms of the Frobenius norm ‖.‖F and the spectral

norm ‖.‖2 of ∆ := 1
m

(A − Â), respectively:

ε∗ :=

√

√

√

√

n
∑

i=1

1

n
(λ̂i − λi)2 ≤ ‖∆‖F /

√
n and max

i
|λ̂i − λi| ≤ ‖∆‖2, (5.1)

where

‖∆‖ =
1

m
‖YTW + WTY + WT W‖. (5.2)

Applying the sin theorem and results on bounding the angle of projections to subspaces [60]

(see the Appendix for more details), we can bound the perturbation of the residual subspace Ca in

terms of the Frobenius norm of ∆:

‖Ca − Ĉa‖F ≤
√

2‖∆‖F

ν
. (5.3)

where ν denotes the eigengap between the kth and (k + 1)th eigenvalues of the approximated

covariance matrix Â.

To obtain a practical (i.e., computable) bound on the norms of ∆, we make the following

assumptions on the error matrix W:

1. The column vectors W1, . . . ,Wn are independent and radially symmetric m-vectors.

2. For each i = 1, . . . , n, all elements of column vector Wi are i.i.d. random variables with

mean 0, variance σ2
i := σ2

i (δi) and fourth moment µ4
i := µ4

i (δi).
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Note that the independence assumption is on the single-monitor errors only – this by no means im-

plies that the signals received by different monitors are statistically independent. The error variance

σ2
i := σ2

i (δi) is a function of the corresponding monitor slack because the slack determines the size

of the allowed drift (or discrepancy), between the true data and the coordinator’s view of the data,

before the coordinator needs an update. Under the above assumption, we can show that ‖∆‖F /
√

n

is upper bounded in expectation by the following quantity:

ε = 2

√

√

√

√

1

mn

n
∑

i=1

λi ·
n
∑

i=1

σ2
i +

√

√

√

√

(

1

m
+

1

n

) n
∑

i=1

σ4
i +

1

mn

n
∑

i=1

(

µ4
i − σ4

i

)

. (5.4)

Similar results can be obtained for the spectral norm as well. In practice, these upper bounds are

very tight because σ1, . . . , σn tend to be small compared to the top eigenvalues.

5.3.2 Step 1: From false alarm deviation to eigen-error

Unfortunately, there is no closed-form solution for determining the tolerable eigen-error

ε given a desired bound on the false alarm probability α̂. As mentioned earlier, errors in the eigen-

values and eigenvectors propagate through ‖Ĉaŷ‖2 and the threshold Q̂α, thus affecting the trigger

condition ‖Ĉaŷ‖2 > Q̂α, which determines the false alarm deviation µ.

From our observations, µ is typically monotonically increasing in ε; this matches our in-

tuition as larger perturbations to eigenvalues naturally imply higher false alarm probabilities. Thus,

given an efficient method for computing µ for a given tolerable eigen-error ε, our strategy is to de-

termine ε for a given µ using a binary search strategy. Our search starts with an initial guess for a

tolerable ε, and then computes our estimate for the resulting µ∗. If this is too far from our target µ,

then a standard binary search procedure can be used to iteratively find a better ε value that satisfies

our requirements on µ. A pseudo-code description of our method for estimating the eigen-error ε
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Procedure FalseAlarmToEigenError(µ, err)

Input: Deviation µ of false alarm probability; desired approximation

factor (err) for eigen-error ε.

1. εl := 0.0; εu := λ̄ // search range for ε

2. while ( (εu − εl) > err · εl ) do

3. ε := 0.5 · (εl + εu)

4. ηX := MonteCarloSampling(ε)

5. µ∗ := Pr [cα − ηX < N(0, 1) < cα]

6. if (µ∗ > µ) then εu := ε else εl := ε

7. return(ε)

Figure 5.4: Procedure for estimating eigen-error given a false alarm probability deviation µ using
binary search.

corresponding to a desired µ is given in Fig. 5.4. Detailed analysis is as follows.

The false alarm deviation µ is closely related to the perturbation on the trigger condition

‖Cay‖2 > Qα. We can compute an upper bound on the perturbation of ‖Cay‖2 as follows. First,

note that

|‖Ĉaŷ‖ − ‖Cay‖| ≤ ‖(Ĉa −Ca)ŷ‖ + ‖Ca(y − ŷ)‖ ≤
√

2‖∆‖F ‖ŷ‖
ν

+ ‖Ca‖2

√

√

√

√

n
∑

i=1

δ2
i

≤
√

2‖∆‖F ‖ŷ‖
ν

+

(

‖Ĉa‖ +

√
2‖∆‖F

ν

)

√

√

√

√

n
∑

i=1

δ2
i =: η1(ŷ).

|‖Ĉaŷ‖2 − ‖Cay‖2| ≤ η1(ŷ)(2‖Ĉaŷ‖ + η1(ŷ)) =: η2(ŷ). (5.5)
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To estimate µ for a particular ε, we consider the following random variables:

X =
φ1[(‖Cay‖2/φ1)

h0 − 1 − φ2h0(h0 − 1)/φ2
1]

√

2φ2h2
0

, (5.6)

where h0 = 1 − 2φ1φ3

3φ2
2

, φp =
∑n

j=k+1 λp
j for p = 1, 2, 3. The X random variable essentially

normalizes the random quantity ‖Cay‖2 and is known to approximately follow a standard normal

distribution [37]. To perform detection on ‖Cay‖2 with false alarm α, the threshold Qα can be

determined as a high-order complex function of λk+1, . . . , λn [34]:

Qα = φ1

[

cα

√

2φ2h2
0

φ1
+ 1 +

φ2h0(h0 − 1)

φ2
1

] 1

h0

, (5.7)

where cα is the (1 − α)-percentile of the standard normal distribution. Based on (5.6), we can

express the false alarm probability (of the original PCA-based detector) as

Pr
[

‖Cay‖2 > Qα

]

= Pr [X > cα] = α,

where cα denotes the (1 − α)-percentile of a standard normal distribution.

In our approximation setting, the normalized quantity of ‖Ĉaŷ‖2 is denoted by X̂ rather

than X . Let ηX denote an upper bound on |X̂−X|. Then, the deviation of the false alarm probability

in our approximate detection scheme can be estimated as

µ = Pr [cα − ηX < N(0, 1) < cα] , (5.8)

where N(0, 1) denotes a standard normal random variable. A key issue here is how to estimate the

ηX upper bound on |X̂ − X|. Our approach is to use a Monte Carlo (MC) sampling technique to

obtain observations of the |X̂ −X| random variable, and use the maximum of these observations as

an estimate of ηX .

Monte Carlo Sampling For Estimating ηX . In principle, ηX , the perturbation of X , could be

analytically derived from the perturbation of the eigenvalues and ‖Cay‖2 based on Eqn (5.6).
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However, such an analytic approach would be cumbersome – instead, we have adopted a simple

and computationally efficient alternative using Monte Carlo sampling of the perturbed values of the

(non-principal) eigenvalues and ‖Cay‖2 to extract the upper bound ηX . The procedure is summa-

rized as follows:

1. For each non-principal eigenvalues λi, we randomly generate samples from interval [λ̂i −

ε, λ̂i + ε].

2. We may bound the perturbation on the ‖Cay‖2 term. In our data set, compared to the eigen-

value perturbation, this perturbation has much less impact on X . For computational sim-

plicity, in place of this term we simply use the average value of timeseries ‖Ĉaŷ‖2 for the

estimation.

3. Plug the above generated elements into Eqn (5.6) to compute the perturbed statistics X̂ . This

procedure of sample generation and plug in calculation is repeated 1000 times to generate

1000 instances of X̂ , based on which we compute ηX = max{|X̂ − X|}.

5.3.3 Step 2: From tolerable eigen-error to monitor slacks

After we derive an upper bound on eigen-error ε∗, we need to find a set of monitor δi such

that the eigen-error does not exceed its bound. This can be achieved by analyzing the norms of ∆

discussed in Section 5.3.1 Let λ̄ := 1
n

∑

λ̂i denote the average of the perturbed eigenvalues of Â.

Based on the Equation 5.4, we can further prove the following theorem relating monitor slacks δ i to

an upper bound of the aggregate eigen-error ε∗.



120

Theorem 6 Under the independent assumptions on filtering errors, setting δ1, . . . , δn to satisfy

2

√

√

√

√

λ̄

m
·

n
∑

i=1

σ2
i +

√

√

√

√

(

1

m
+

1

n

) n
∑

i=1

σ4
i = ε (5.9)

guarantees that ε∗ ≤ ε with probability ≥ 1 − o( 1
m3 ).

(We refer to ε as the tolerable eigen-error in what follows.) Given a tolerable eigen-error ε as input,

we can then solve for the slacks δi using the equation in Theorem 6. However to do so, we need to

quantify the relationship between error variances σi and local slacks δi. We now discuss different

techniques employed in our system for this purpose.

Homogeneous Slack Allocation: Uniform Distribution Method. A simple method that often

works well in practice is to assume that filtering errors are independently and uniformly distributed

in [−δi, δi]. This gives a closed form for local variances: σi =
δ2
i

3 . Assuming homogeneous slack

allocation, that is, all monitors share the same slack δi = δ, we can directly solve Eqn. (5.9) for δ:

δ =

√

3λ̄n + 3ε
√

m2 + m · n −
√

3λ̄n√
m + n

.

Homogeneous Slack Allocation: Local Variance Estimation Method. In some cases, the uniform-

distribution assumption for filtering errors may be unrealistic. A more accurate method is to estimate

local error variances σi(δ) directly from the data. Variance estimation is performed locally (at each

monitor) by fitting a (e.g., quadratic) function of δ using a recent window of observations. These

local functions are sent to the coordinator (either periodically or on-demand), and plugged into

Eqn. (5.9) to solve for a new δ. While imposing some additional overhead on the network and local

monitors, this method avoids possibly unrealistic uniformity assumptions on the monitor data.

Heterogeneous Slack Allocation. We now consider allowing the local slacks δ1, . . . , δn to differ

from one another, and to dynamically adapt to local stream characteristics. Let the message update
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frequency (a direct measure of communication cost) of each monitor Mi be a function fi(δi). Then,

assuming each slack takes on a random value uniformly in the range [−δi, δi], we can formalize

heterogeneous slack allocation as the following optimization problem:

Minimize
n
∑

i

fi(δi) such that 2

√

√

√

√

λ̄

m
·

n
∑

i=1

δ2
i

3
= ε,

where the second summand in Eqn. (5.9) is ignored, since it is typically an order of magnitude

smaller than the first. We used the method in [47], based on Lagrangian multipliers to solve for

the optimal slack allotments. Although heterogeneous slack values are intuitively appealing, they

often bring marginal benefit over homogeneous allocations. We will see this to be the case in our

evaluations as well.

5.4 Evaluation

5.4.1 Evaluation Methodology and Metrics

We implemented our system and developed a trace-driven simulator to validate our meth-

ods. The real world traffic, used as input to our simulator, comes from the Abilene network. We

used four one-week traces of router-to-router origin-destination (OD) traffic matrices. The traces

contain OD-flow traffic loads measured every 10 minutes, for all 121 flows of the Abilene network,

from which we can compute the per-link traffic loads for all 41 links, using its provided routing

matrix. Using a time unit of 10 minutes, data was collected for 1008 time units for each week.

To evaluate the detection accuracy of our approach, we synthetically injected 60 anoma-

lies and 60 non-malicious bursts2 into the dataset using the method described in [41], so that we
2In [41] the authors use the term “small anomaly” to refer to events that should be ignored (not flagged) and whose

detection counts as false alarms. While we use their same method for synthetic anomalies, we change the terminology to
be more intuitive.
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would have sufficient anomaly data to compute error rates. We used a threshold Qα corresponding

to a 1 − α = 99.5% confidence level. In the detection process, when any anomaly is missed, we

count it as a missed detection; when any non-malicious burst is detected, we count it as a false

alarm. To make the results intuitive, we define the false alarm rate as the fraction of false alarms

over the total number of injected bursts, which is α (defined in Sec. 5.2) re-scaled as a rate rather

than a probability. We define missed detection rate as the fraction of missed detections over the total

number of injected anomalies.

In order to evaluate the scalability of our method, we had to generate synthetic traffic

matrices because no traffic matrix datasets with thousands of links and tens of thousands of OD

flows exist. We used the BRITE topology generator [43] to generate both sample topologies and

their associated routing matrices. We considered a number of networks with anywhere from 100 to

1000 links, and up to 500× 500 pairs of OD flows. For each of the 250, 000 OD flows, we generate

four weeks of data based on the method discussed in [46], by extracting the relevant statistics (e.g.,

mean distribution, noise level, etc.) from the Abilene network traffic matrices.

5.4.2 Model Validation

For model validation, we set the input parameter for our algorithm to be the tolerable

relative error of the eigenvalues (“relative eigen-error” for short), which acts as a tuning knob.

(Precisely, it is ε/
√

1
n

∑

λ2
i , where ε is defined in Eqn (5.9).) Given this parameter and the input

data we can compute the filtering slack δ for the monitors using Eqn (5.9). We then feed in the

data to run our protocol in the simulator with the computed δ. The simulator outputs a set of results

including: 1) the actual relative eigen errors and the relative errors on the detection threshold Qα;

2) the missed detection rate, false alarm rate and communication cost achieved by our method.
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Figure 5.5: In all plots the x-axis is the relative eigen-error. (a) The filtering slack. (b) Actual
accrued eigen-error. (c) Relative error of detection threshold. (d) False alarm rates. (e) Missed
detection rates. (f) Communication overhead.
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The results are shown in Fig. 5.5. In all plots, the x-axis is the relative eigen-error. In

Fig. 5.5(a) we plot the relationship between the relative eigen-error and the filtering slack δ when

assuming filtering errors are uniformly distributed on the interval [−δ, δ]. With this model, the

relationship between the relative eigen-error and the slack is determined by a simplified version of

Eqn (5.9) (with all σ2
i = δ2

3 ). The results make intuitive sense. As we increase our error tolerance,

we can filter more at the monitor and send less to the coordinator. The slack increases almost linearly

with the relative eigen-error because the first term in the right hand side of Eqn (5.9) dominates all

other terms.

In Fig. 5.5(b) we compare the relative eigen-error to the actual accrued relative eigen-

error (defined as ε/
√

1
n

∑

λ2
i , where ε is defined in Eqn (5.1)). These were computed using the

slack parameters δ as computed by our coordinator. We can see that the real accrued eigen-errors

are always less than the tolerable eigen errors. The plot shows a tight upper bound, indicating

that it is safe to use our model’s derived filtering slack δ. In other words, the achieved eigen-error

always remains below the requested tolerable error specified as input, and the slack chosen given

the tolerable error is close to being optimal. Fig. 5.5(c) shows the relationship between the relative

eigen-error and the relative error of detection threshold Qα
3. We see that the threshold for detecting

anomalies decreases as we tolerate more and more eigen-errors. In these experiments, an error of

2% in the eigenvalues leads to an error of approximately 6% in our estimate of the appropriate cutoff

threshold.

We now examine the false alarm rates achieved by the procotol. In Fig. 5.5(d) the curve

with triangles represents the upper bound on the false alarm rate as estimated by the coordinator. The

curve with circles is the actual accrued false alarm rate achieved by our scheme. Note that the upper

3Precisely, it is 1 − Q̂α/Qα, where Q̂α is computed from λ̂k+1, . . . , λ̂n.
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bound on the false alarm rate is fairly close to the true values, especially when the slack is small.

The false alarm rate increases with increasing eigen-error because as the eigen-error increases, the

corresponding detection threshold Qα will decrease, which in turn causes the protocol to raise an

alarm more often. (If we had plotted Q̂ rather than the relative threshold difference, we would

obviously see a decreasing Q̂ with increasing eigen-error.) We see in Fig. 5.5(e) that the missed

detection rates remain below 4% for various levels of communication overhead.

5.4.3 Detection accuracy vs. communication cost

We now evaluate the performance and tradeoffs of our protocols and algorithm for com-

puting the monitor slacks. We implemented both methods of homogeneous allocation for comput-

ing the monitor slack δ: the closed-form solution relying on uniform assumptions and the variance

measurement solution.

In Fig. 5.6 we consider a whole range of possible inputs on the tolerable false alarm

rate deviation µ (the probability Eqn (5.8) is re-scaled to a rate). We show in the top plot the

relationship between µ and the filtering slack δ, and in the middle plot the relationship between µ

and communication cost. These results make intuitive sense. As we allow more error tolerance µ,

we can use larger slack values and filter out more data at the monitors, and consequently reduce the

amount of data sent to the coordinator. For example, when the tolerable deviation of false alarm

is 5%, our algorithm reduces the data sent through the network by more than 90% when using the

variance estimation method.

The bottom plot shows the actual accrued detection errors. The curve with circles depicts

the missed detection rate; the curve with pluses depicts the false alarm rate; the dashed lines depict

the corresponding detection errors of the centralized approach. First we point out that in all cases,



126

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

1

2

3
x 107

M
on

ito
r S

la
ck

Variance Estimation
Uniform Distribution

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.2

0.4

0.6

0.8

C
om

m
. C

os
t Variance Estimation

Uniform Distribution

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

A
cc

ru
ed

 D
et

ec
tio

n 
E

rr
or

Deviation of False Alarm Rate µ

Missed Detection Rate
False Alarm Rate
Error Rates of Centralized Approach

µ Communication Cost
Uniform Distr. Variance Est. Difference

0.006 0.430 0.330 0.100
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0.080 0.111 0.064 0.047

Figure 5.6: Monitor slacks, communication cost and accrued detection. The dashed line is the
detection error of centralized approach with complete data.

the actual false alarm rate with our protocols is always smaller than the guaranteed bound. In other

words, although we may input that we can tolerate an additional µ = 5% errors, in fact we actually do

not incur reduced accuracy, as the lower plot illustrates that our method performs nearly identically

to the original subspace method in terms of false alarms and missed detections. Moreover, this

nearly identical error performance can be achieved with far less data; values such as 80% or 90%

less data (depending upon the particular value of µ) are typical. These results show, that for our
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µ Relative Eigen Error Communication Cost
Homo. Hetero. Homo. Hetero. Difference

0.006 0.004 0.006 0.430 0.420 0.010
0.018 0.015 0.013 0.266 0.253 0.013
0.032 0.029 0.039 0.185 0.169 0.014
0.064 0.052 0.049 0.141 0.121 0.020
0.080 0.075 0.070 0.111 0.092 0.019

Table 5.2: Homogeneous vs. heterogeneous slack allocation.

dataset, the reduction in communication costs can be enormous whereas the tradeoff in terms of

increased detection error is very small. These promising results confirm our hypothesis that it is not

necessary to back-haul all the data for an anomaly detection problem such as [41].

In comparing the variance estimation and the uniform distribution methods for slack es-

timation, we see from the table in Fig. 5.6 that the measurement-based variance estimation method

always performs better. The absolute difference in communication cost varied from 5% to 10% for

tight requirements on µ (with µ=0.006 to 0.08, respectively). The advantage of the closed-form

method is its simplicity and low computational overhead. Since, for this dataset, its performance

is quite close to the measurement-based method, we conclude that such solutions might be “good

enough” for many datasets.

We also implemented our heterogeneous slack allocation and compared its performance to

that of the homogeneous slack allocation. In the experiment we assume filtering errors are uniformly

distributed on the interval [−δi, δi]. The result is shown in Table 5.2. We found that the performance

did not differ greatly (at most 3% in terms of communication costs) between the two. This indicates

that the simpler solution may be good enough for the data type we consider. However the benefits

of having the more general solution using heterogeneous slacks would need to be evaluated for each

data type and application.



128

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 
− 

M
is

se
d 

D
et

ec
tio

n 
R

at
e

False Alarm Rate

Centralized
Our approach, µ=0.025
Our approach, µ=0.055
Daily update
Weekly update

Approach Communication Cost
Centralized, daily and weekly update 1.000

Our approach, µ = 0.025 0.159
Our approach, µ = 0.055 0.097

Figure 5.7: ROC curve: benefit and cost of data update approaches.

We now compare our method and the original subspace method using an ROC curve [57].

The y-axis plots the true positives (one minus the missed detections) and the x-axis depicts the false

alarms. ROC curves allow one to compare two methods over a range of detection thresholds; each

point on each curve corresponds to a different cutoff threshold for signaling an alarm. In general, if

one curve lies entirely above and to the left of another [57], then that method is superior in that it

handles the tradeoff between missed detections and false alarms better.

Because in [41] they do not indicate how often they update their PCA transform, we tested

3 variants of their method. The “centralized” version updates the principal components each time



129

interval (upon the arrival of new data). The “daily update” version updates the principal components

once a day (based on the previous 24 hours); the “weekly update” version updates the components

once a week (based on the previous week). The results are shown in Fig. 5.7.

We can see from the plot that the ROC curve and detection accuracy of our approximation

technique (either µ = 0.015 or µ = 0.045) are extremely close to that of the centralized approach.

It is surprising, that using only 10% to 20% of the data, our technique has a detection ability that is

essentially as good as the fully centralized approach.

This figure also indicates that it is important to keep the principal components up to date

because the performance drop-off is considerable for either the daily or weekly data update cases.

We point out that in our technique, the recomputation of the principle components is done less

frequently than in the original algorithm (we refer here to the version in which the PCA transform is

updated every time interval). This is because in any time interval (e.g., 5 minutes in this example),

if none of our monitors send anything to the coordinator, then the principle components are not

recomputed. There may be additional ways to reduce this computation overhead such as checking

the norm of the covariance matrix and only doing updates if the change to this norm “is large

enough”. We leave that for future work.

5.4.4 System Scalability

We now examine our system’s scalability as the number of distributed monitors grows.

Recall that one of the key reasons for controlling the communications cost is to avoid overwhelming

the coordinator should it receive lots of data from many monitors. The communications cost metric

we have been using until now (namely num/n ·m) is an average value for the cost per monitor. The

communication cost coming into the coordinator is the sum of costs of all monitors, which is can be
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Figure 5.8: System Scalability.

computed from num/m. This captures the average number of messages the coordinator receives in

one time slot.

We plot the communications cost at the coordinator as a function of the number of moni-

tors in Fig. 5.8. We varied the number of monitors from 100 to 1000, and used tolerable deviation of

false alarm rate µ = 0.025 and µ = 0.055. For each system size n, we run 5 rounds of experiments,

each of which runs on n randomly picked monitors. In the Figure, in our approach, as the system
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size increases: 1) the communication cost of each monitor roughly remains constant (which is the

slope of the line); and 2) the communication cost at the coordinator increases linearly with system

size with the slopes roughly being 0.150 (µ = 0.025) and 0.088 (µ = 0.055), which are far less

than 1.0, the slope of the centralized approach. This result indicates that the communication cost

increases slowly as system size increases, and that our system thus scales gracefully.

5.5 Chapter Summary

In this chapter we developed an approximate online scheme for PCA-based anomaly de-

tection method, and incorporated it into our D-Trigger framework, by leveraging ideas from “in-

network” processing (to engage local monitors to filter based on global conditions) combined with

ideas from stochastic matrix perturbation theory. Perturbation theory is used to derive bounds on

the terms in the anomaly detector that are affected by error propagation when limited data is used.

We designed an algorithm to select filtering parameters so that that monitors only send data to the

central tracking site “when necessary”. The necessity is determined from individual traffic behav-

iors, correlations across traffic streams, and the global trigger tracking condition. We show that

anomaly detection can still be done very accurately even when 80 or 90% of the original data is

never sent to the coordinator. Thus the tradeoff between detection accuracy and communication

savings is very lopsided - there is a huge reduction in communication overhead accompanied by a

very small increase in errors. Moreover we illustrated that this data reduction leads to a system that

scales gracefully as the number of monitors grows. In particular, we showed that the coordinator’s

input data rate grows more than an order of magnitude more slowly than a system that back-hauls

all monitoring data for volume anomaly detection.
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Chapter 6

Conclusion and Future Work

In this chapter, we conclude the dissertation by summarizing our contributions and propos-

ing several directions for future work.

6.1 Summary of Contributions

In this dissertation, we present the D-Trigger system for continuous online anomaly detec-

tion, which gracefully integrates a variety of approximation and optimization algorithms to address

the inefficiency and inflexibility in today’s distributed monitoring and anomaly detection systems.

Our key contributions in this work can be summarized as follows:

• In order to design and develop an efficient detection system which is capable of detecting

anomalies in near real-time with bounded error requirement, our work on the D-Trigger

framework makes the following contributions. First, we provide a mathematical definition

of different constraint violation modes for D-Trigger, along with the design of the supporting

protocols. Our system enables users to tradeoff desired detection performance with commu-
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nication overhead. Second, for instantaneous and fixed-window triggers, we provide an adap-

tive protocol that exploits the specified trigger threshold to minimize communication while

offering deterministic accuracy guarantees. Third, for cumulative triggers, we provide a prin-

cipled queuing framework for analyzing the dynamic properties of protocols, and analytical

solutions for finding effective queue sizes based upon the desired target detection accuracy.

• To enable D-Trigger to detect a wide range of anomaly types in distributed systems, we

present our novel approach to extending simple threshold triggers for sophisticated anomaly

detection problems. Through a set of examples, we have shown that D-Trigger is an efficient

and extensible vehicle for advanced detection algorithms, and discuss our general extensions

to existing triggering protocols to support wide-range of detection tasks. In particular, we

design a distributed protocol that can perform online detection of network-wide anomalies

with modest communication overhead, using PCA-based method with a strong assumption.

• Using the D-Trigger framework, we propose a novel approach for communication-efficient

online detection of network-wide traffic anomalies. Our solution is unusual in that it extends

the power of the PCA-based method by coupling insights from Stochastic Matrix Perturba-

tion (SMP) theory together with in-network processing ideas. Because we process data locally

at the distributed monitors, the NOC’s view of the global data (captured in a matrix) is ap-

proximate since elements in the matrix can become out-of-date. Thus the computation of the

principle components is done on a perturbed data matrix. We appeal to Matrix Perturbation

theory as it helps to quantify the effect of such perturbations on the computation of eigenvec-

tors and eigenvalues. Out-of-date data can lead to errors that propagate through the anomaly

detector including not only the eigenvalues, but also the anomaly trigger thresholds – because
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all of these are data-driven. This results in an anomaly detector that can make mistakes. Using

SMP theory, we derive analytic bounds on the terms affected by error propagation. We design

an algorithm that derives filtering parameters for the monitors, such that the errors made by

the detector are bounded. Our algorithm combines many techniques together, SMP theory,

binary search, and Monte Carlo simulation.

In summary, D-Trigger is designed with a focus on data collection for anomaly detection,

and brings together the best techniques from continuous data streaming, online machine learning,

and distributed signal processing. D-Trigger combines in-network processing at distributed local

sites, and decision making at the NOC. The combination of distributed local processing strategies,

sophisticated detection algorithms, and theoretical analysis tools enables D-Trigger to perform in-

network tracking with very high detection accuracy and low communication overhead.

6.2 Future Directions

Our work to date has demonstrated that D-Trigger is an efficient, general and extensible

framework for online anomaly detection. In order to enable D-Trigger to support a broader range

of applications in large-scale dynamic systems, there are several interesting extensions to our work,

including using a multi-level tree structure or a Peer-to-Peer topology to further reduce the process-

ing and communication workload at the coordinator, support for more types of detection algorithms,

and development of resilient monitoring infrastructures, to name a few. They are discussed in detail

as follows.
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6.2.1 Going Beyond a One-Level Tree Structure

In this dissertation, we develop efficient online anomaly detection schemes for monitor-

ing systems with a one-level tree topology, which is a subset of the whole problem space. With

a one-level tree structure, D-Trigger has a single coordinator responsible for firing triggers, which

could possibly be a single point of failure. There are several approaches that can be used to tolerate

this single point of failure, including having monitors multicast data to multiple coordinators, and

using hierarchical aggregation structures [62] or peer-to-peer topology management [70]. Regard-

less of the choice of fault-tolerance mechanism, our D-Trigger scheme offers benefits and remains

applicable.

Our approach can be extended to a multi-level tree structure with the following benefits:

1) further reducing the coordinator’s communication and processing workload because the roots of

subtrees can perform partial aggregation and detection; 2) mapping monitors in different adminis-

trative or network domains into different subtrees (one for each domain) to exploit spatial locality.

However, extending our detection protocols to a multi-level tree is not easy. It is challenging to

analyze the detection performance and guarantee the user-specified detection accuracy on the multi-

level tree structure in the face of limited data. It would be interesting and useful future work to

extend the algorithms and protocols designed for one-level tree topology on to multi-level tree and

peer-to-peer topologies.

6.2.2 Supporting a Broader Range of Detection Functions

In this dissertation, we propose a decentralized detection approach that is capable of de-

tecting anomalies identified by thresholding either simple (linear) functions, or complicated residual
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components in the subspace method. Our solution detects a set of anomaly types with user-specified

accuracy while minimizing communication overhead, as well as providing the flexibility for users

to trade off communication overhead with detection accuracy. We believe that our model of efficient

and extensible D-Trigger can support a variety of monitoring tasks and can be composed with exist-

ing query and detection techniques to enhance applications with sophisticated distributed detection

capabilities.

To tackle different detection problems under a variety of situations, the D-Trigger system

needs to accommodate a wide range of correlation and decision functions. There are large sets

of data mining and machine learning algorithms for sophisticated anomaly detections [23, 28], in-

cluding clustering [18], classification [66], entropy analysis [65], and sequential hypothesis testing

methods [45]. It is interesting but challenging future work to develop decentralized data mining

and machine learning algorithms for online continuous anomaly detection. These algorithms would

improve D-Trigger’s detection capabilities and make it applicable to a wider range of applications.

6.2.3 Toward Fault-Tolerant and Self-Adaptive Network Systems

Monitoring and detection are not the ultimate goals. Instead, they should provide service

for the target systems and help them react, adapt and evolve according to the system status. One

interesting and challenging research direction is to explore the design space of fault-tolerant, self-

adaptive, large-scale network systems. This would require bridging the best techniques from overlay

networking protocols, machine learning algorithms, and efficient detection approaches, amongst all

other things. One area we would like to explore is the construction of self-diagnosing and self-

repairing networks, where member nodes use distributed protocols to perform network measure-

ments and fault diagnosis. Nodes in the system would continuously perform self-checks on con-
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sistency, securely collaborate to detect abnormal behavior, and produce human-readable reports at

each administrative level of the network. Such a network would be useful for detecting and resolv-

ing failures, and providing protection mechanisms against a variety of attacks ranging from Internet

worms to distributed denial of service attacks and targeted network intrusions. A key characteris-

tic of this problem is that it requires the creation of a global view in the presence of distributed,

incomplete data, which could be achieved by leveraging D-Trigger-like infrastructures.
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Appendix A

Background: Matrix Perturbation

Theory

This dissertation addresses the problems of approximate but accurate online anomaly de-

tection with low overhead. In this appendix, we review a set of mathematical tools for system

performance analysis and parameter calculation. Based on these set of tools, we can derive mathe-

matical bounds on the detection errors in the face of limited available data, so that we can provide

users with a fine-grained tradeoff between detection accuracy and system overhead.

We start with a few basic concepts of matrices, and then introduce matrix perturbation

theory, which measures the impact of small perturbation on matrices on relevant quantities, such as

the eigenvalues and eigenvectors.
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A.1 Eigenvalues and Eigenvectors

For an n × n matrix A, scalars λ and vectors xn×1 6= 0 satisfying Ax = λx are called

eigenvalues and eigenvectors of A, respectively, and any such pair, (λ,x), is called an eigenpair for

A. The set of distinct eigenvalues, denoted by σ(A), is called the spectrum of A:

λ ∈ σ(A) ⇐⇒ A − λI is singular ⇐⇒ det(A − λI) = 0.

where det(·) denotes the determinant of a matrix.

A.2 Matrix Norms

The Frobenius norm of matrix A is defined by the equation

‖A‖F =
∑

i,j

|aij |2 = trace(AT ·A),

where aij is the element at ith row and jth column in matrix A .

The 2-norm of matrix A is defined by the equation

‖A‖2 = max
‖x‖2=1

‖Ax‖2 =
√

λmax,

where x is a Euclidean vector, λmax is the largest number λ such that AT ·A− λI is singular, i.e.,

λmax is the largest eigenvalue of matrix AT ·A.

A.3 Eigenvalue perturbation bounds

The basic perturbation bounds for eigenvalues of a matrix are due to Weyl and Mirsky

given in the following two theorems [59]. Let matrix A have eigenvalues λi, and its perturbated

matrix, Â = A + ∆, have eigenvalues λ̂i, for i = 1, . . . , n. We have:
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Theorem 7 (Weyl) maxi|λ̂i − λi| ≤ ‖∆‖2.

Theorem 8 (Mirsky)
√

1
n

∑n
i=1(λ̂i − λi)2 ≤ ‖∆‖F√

n
.

Here ‖.‖2 and ‖.‖F denote the spectral 2-norm and the Frobenius norm (cf. [60]).

A.4 Invariant subspace perturbation

While eigenvalues are quite stable under matrix perturbation, the individual eigenvectors

are not. Instead one needs to look at the perturbation of subspaces spanned by the eigenvectors.

Subspaces spanned by eigenvectors are an example of invariant subspaces, which are known to be

stable 1.

Let L(·) denote the set of eigenvalues of a matrix, S(·) denote the subspace spanned by

a matrix, and Θ denote the matrix of canonical angle between two subspaces (cf. [60]). Then

the perturbation of an invariant subspace spanned by eigenvectors can be quantify by the sin of the

canonical angle by the following sin Θ theorem [60]:

Theorem 9 Let A have the spectral resolution








XT
1

XT
2









A

[

X1 X2

]

=









L1 0

0 L2









,

where
[

X1 X2

]

is unitary with X1 ∈ Cn×k. Let Z ∈ Cn×k have orthonormal columns, and

for any symmetric M of order k, let

R = AZ− ZM,

1A subspace X is invariant of transformation A if AX ⊂ X .
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and suppose that L(M) ⊂ [a,b] and for some eigengap ν > 0,

L(L2) ⊂ R\[a− ν,b + ν],

then for any unitarily invariant norm

‖ sin Θ [S(X1),S(Z)] ‖ ≤ ‖R‖
ν

.

Note that this theorem applies to any unitarily invariant norm such as the spectral norm

‖.‖2 and Frobenius norm ‖.‖F . Applying this result to the eigen subspaces for (symmetric) covari-

ance matrix A and its perturbed version Â, assume that Â has the following the spectral resolution








ZT
1

ZT
2









Â

[

Z1 Z2

]

=









M1 0

0 M2









,

where
[

Z1 Z2

]

is unitary with Z1 ∈ Cn×k. Then we have Z1
TÂZ1 = M1 and ÂZ1 =

Z1M1. Let R = AZ1 − Z1M1 = AZ1 − ÂZ1 = ∆Z1. For any unitarily invariant norm, there

holds ‖R‖ = ‖∆Z1‖ = ‖∆‖. As a result, we have:

‖ sin Θ [S(X1),S(Z1)] ‖ ≤ ‖R‖
ν

=
‖∆‖

ν
.

Finally, there is a close relationship between the perturbation of the projection operator onto in-

variant subspaces and the canonical angle of the subspace perturbation. Let PX and PZ be the

orthogonal projections onto S(X) and S(Z). There holds [60]:

‖PX −PZ‖F =
√

2‖ sinΘ [S(X),S(Z)] ‖F ≤ ‖∆‖F

ν
.

In summary, in order to assess the perturbation in eigenvalues and eigensubspace, we need

to estimate the upper bounds given in terms of the Frobenius norm and the spectral norm of ∆.
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Appendix B

Proofs for Instantaneous Triggers

We present here the proofs of theorems for instantaneous triggers in Chapter 3, for both

the simple protocol and the adaptive protocol.

B.1 Proof of Theorem 1

The simple scheme for instantaneous trigger-tracking has the following guarantee for each

monitor mi:

|ri(t) − Ri(t)| ≤ δi.

Summing over i on Ri(t) ≥ ri(t) − δi, we get
∑n

i=1 Ri(t) ≥ ∑n
i=1 ri(t) − ∆. Whenever

∑n
i=1 ri(t) > (C + ∆), the coordinator has

n
∑

i=1

Ri(t) > (C + ∆) − ∆ = C,

and immediately fires the trigger.

With the same reasoning, the scheme guarantees
∑n

i=1 Ri(t) ≤ ∑n
i=1 ri(t) + ∆. When
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∑n
i=1 ri(t) < (C − ∆), the coordinator has

n
∑

i=1

Ri(t) < (C − ∆) + ∆ = C,

and never fires the trigger.

B.2 Proof of Theorem 2

The detection error of the adaptive scheme for instantaneous trigger-tracking is caused by

the value discrepancy between monitors and the coordinator. With ∆(t) = C + ε−∑n
i=1 Ri(t), the

value discrepancy of the scheme can be analyzed as follows.

• When
∑

i Ri(t) ≥ C , we have ∆(t) ≤ ε. The value discrepancy between monitors and

coordinator is up-bounded by ε. The coordinator always has an ε- approximation of aggregate

signals produced by monitors, and has the desired detection guarantee as that in Theorem 1.

• When
∑

i Ri(t) < C at time t, monitors have
∑

i ri(t) and coordinator believes monitors

have
∑

i Ri(t). This accrues value discrepancy
∑

i ri(t) −
∑

i Ri(t). Because the setting of

∆(t), total value discrepancy can be big up to C+ε−∑i Ri(t) at any subsequent time t′ > t.

So, without triggering any value update at monitors, the change from
∑

i ri(t) to
∑

i ri(t
′)

can be at most

DR = (C −
∑

i

Ri(t) + ε) − (
∑

i

ri(t) −
∑

i

Ri(t)) = C −
∑

i

ri(t) + ε.

This “non-update” would not cause constraint violation, because the value of
∑

i ri(t
′) un-

known to the coordinator is at most

n
∑

i=1

ri(t
′) ≤

∑

i

ri(t) + C −
∑

i

ri(t) + ε = C + ε.



144

Appendix C

Proofs for Cumulative Triggers

Here we present the proofs of theorems for the cumulative triggers in Chapter 3. For the

cumulative trigger, both the centralized ideal model and the distributed solution model are shown in

Figure C.1. Let the coordinator queue be Qc with size ε in the ideal model, and be Qs with size θ in

the solution model.

C.1 Proof of Theorem 4

Missed detections happen if both monitor queues and coordinator queue in the solution

model are so large that they absorb enough update traffic to mask a real trigger violation. Let the

occupancies (in unit of δ) of monitor queues over time be random variables α1, ..., αn, then we have

−δ < αi < δ in our setting. It is reasonable to assume that each αi follows an independent Normal

N(0, σi) distribution. Then the aggregate occupancy of monitor queues, S =
∑n

i=1 αi, follows a

Normal N(0, σ2) distribution, where σ2 = σ2
1 + ... + σ2

n. Let F (·) denotes the CDF of N(0, σ2),

then the probability that monitor queues have aggregate occupancy more than x is 1 − F (x).
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C

Qc
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λR

(a) The centralized idea model

-

-

-

-

-

-
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θ · C

C
∑n

i=1 Ri(t)

λe
λd

Q

(b) The distributed solution model

Figure C.1: Queuing model for slack estimation.

In the centralized model, arrivals of
∑

i ri(t) overflow queue Qc with probability, which

is relative small in real system because constraint violations are rare events. So
∑

i ri(t) should be

less than C on average over time, however,
∑

i ri(t) is bigger than C in some periods and causes

Qc to overflow. When assuming an M/M/1 model for the coordinator queue at the granularity of

δ, we have the following approximation for Qc: 1) length of Qc is ε
δ
; 2) enqueue of

∑

i ri(t) is

approximated by a Poisson arrival with (average) rate λr

δ
; 3) dequeue is approximated by a Poisson

arrival with rate C
δ

. With this setup, the overflow probability of Qc in centralize model can be

determined by [51]

Pr(lr >
ε

δ
) =

(

λ

µ

)
ε
δ
+1

=

(

λr

C

)
ε
δ
+1

= ρ
ε
δ
+1,

where ρ = λr

C
is the queue utilization. When Qc is overflowed, it is possible that Qc has occupancy

(in unit of δ) lr = ε
δ

+ i, for each i = 1, ...,∞, each of which has probability:

Pr
(

lr =
ε

δ
+ i|lr ≥ ε

δ
+ 1
)

=
ρ( ε

δ
+i)(1 − ρ)

ρ
ε
δ
+1

= ρi−1(1 − ρ).

A missed detection happens when Qc has occupancy ε
δ

+ i (which causes constraint vi-

olation), but Qs has occupancy ls ≤ θ
δ

(otherwise, Qs is overflowed and the trigger fires). This
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happens because monitor queues hold too much fluid and have aggregate occupancy more than

ε
δ

+ i − θ
δ

= ε−θ
δ

+ i, which has probability 1 − F
(

ε−θ
δ

+ i
)

. So the missed detection rate (proba-

bility) β can be approximated as

β = Pr(ls ≤
θ

δ
|lr ≥ ε

δ
+ 1)

=

∞
∑

i=0

{[

1 − F

(

ε − θ

δ
+ i + 1

)]

· ρi(1 − ρ)

}

.

When using i as a continuous variable, we get the integral version of the equation.

If assuming an M/D/1 model for the coordinator queue, we can approximately compute

its queue length distribution as [51]

Pr(lr > x) = exp

[

−2x

(

µ − λ

λ

)]

= πx,

where π = exp
[

−2
(

µ−λ
λ

)]

. With this model, β can be computed as

β = Pr(ls ≤
θ

δ
|lr ≥ ε

δ
+ 1)

=

∞
∑

i=0

{[

1 − F

(

ε − θ

δ
+ i + 1

)]

· πi(1 − π)

}

.

C.2 Proof of Theorem 5

False alarms happen when a combination of chunk bursts in the solution model causes Qs

to overflow even though the true aggregate signals have not caused Qc to overflow in the centralized

model.

On the granularity of δ, we have following approximation for Qs in the solution model:

1) length of Qs is θ
δ
; 2) enqueue of

∑

i Ri(t) is approximated by a Poisson arrival with (average)

rate λR

δ
; 3) dequeue is approximated by a Poisson arrival with rate C

δ
. 4) chunk enqueue from all
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monitors are approximated by a Poisson arrival with rate λe, and chunk dequeue by a Poisson arrival

with rate λd. Then, the overflow probability of Qs is

Pr(ls >
θ

δ
) =

(

λ

µ

) θ
δ
+1

=

(

λR + λe · δ
C + λd · δ

) θ
δ
+1

.

Apparently, the solution model is more bursty than the centralized model, and θ
δ

is less

than ε
δ
. So Pr(ls > θ

δ
), the overflow probability in the solution model, is bigger than Pr(lr > ε

δ
),

the overflow probability in the centralized model. The false alarm rate (probability) η can be simply

approximated by

η =

[

Pr(ls > θ
δ
) − Pr(lr > ε

δ
)
]

Pr(lr > θ
δ
)

= 1 −
(

λr

C

)
ε
δ
+1
/

(

λR + λe · δ
C + λd · δ

)
θ
δ
+1

.

Using an M/D/1 queuing model, the overflow probability and false alarm rate can be

computed as

Pr(lr >
ε

δ
) = exp

[

−2ε

δ

(

C − λr

λr

)]

,

P r(ls >
θ

δ
) = exp

[

−2θ

δ

(

µ − λ

λ

)]

,

= exp

[

−2θ

δ

(

C − λr

λr + λd · δ

)]

,

η =

[

Pr(ls > θ
δ
) − Pr(lr > ε

δ
)
]

Pr(lr > θ
δ
)

= 1 − Pr(lr > ε
δ
)

Pr(ls > θ
δ
)

= 1 − exp

[

2θ

δ

(

C − λr

λr + λd · δ

)

− 2ε

δ

(

C − λr

λr

)]

.
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Appendix D

Perturbation Analysis for PCA-Based

Method

In this appendix we develop a more detailed analysis of the impact of the slack parame-

ter (δ1, . . . , δn) on the eigenvalues and eigen subspaces on the principal components using matrix

perturbation theory. Some of the main results presented herein are summarized in Chapter 5.3.

Based on the brief background description of known results from matrix perturbation theory in Ap-

pendix A, we here proceeds to its application on our problem, and present bounds and estimation of

the Frobenius norm and spectral norm of the perturbation.

D.1 Error Matrix and Assumptions

Recall that A = 1
m

YTY and Â = 1
m

ŶT Ŷ, where Ŷ = Y+W. Wi is a column vector

of filtering error at each monitor i and W is the filtering (perturbation) error on the distributed

matrix Y. Each element eji of vector Wi is bounded within [−δi, δi].
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The norm of the perturbation error matrix ∆ = 1
m

(A− Â) can be bounded as follows:

‖∆‖ =
1

m
‖YTW + WTY + WT W‖ ≤ 1

m

(

‖YT W‖ + ‖WT Y‖ + ‖WT W‖
)

.

Our strategy is to obtain bounds for each terms in the RHS of this inequality. It is possible to derive

absolute bounds in terms of the absolute error δi(i = 1, . . . , n). However, such bounds would be

too loose for practical purposes. Instead, we appeal to stochastic perturbation theory. The basic idea

is to assume that the error matrix W is random according to a certain distribution with estimated

mean and higher-order moments. In order to estimate the absolute upper bound for ‖∆‖, we start

with estimating or bounding E‖∆‖. This is done by bounding the expectation of the terms on the

RHS of the above inequality.

Our assumption on the random distribution of W is given as follows:

1. The column vectors W1, . . . ,Wn are independent and radially symmetric m-dim vectors.

2. For each i = 1, . . . , n, all elements of column vector Wi are i.i.d. random variables with

mean 0, variance σ2
i := σ2

i (δi) and the fourth moment µ4
i := µ4

i (δi).

Note that the independence assumption is on the single-monitor errors only – this by no means im-

plies that the signals received by different monitors are statistically independent. The error variance

σ2
i := σ2

i (δi) and the fourth moment µ4
i := µ4

i (δi) are functions of the corresponding monitor slack

because the slack determines the size of the allowed drift (or discrepancy), between the true data

and the coordinator’s view of the data, before the coordinator needs an update.
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D.2 Analysis of Frobenius norm

Computation of E‖YTW‖2F. We exploit results from [9]: For any m-dimensional random vector

v uniformly distributed on the unit sphere S
m−1, and given a m × n matrix Y, there hold:

E(‖YTv‖2) =
‖YT ‖2

F

m
, Var(‖YT v‖2) ≤ 2

m + 2
.

As observed in [55], since Wi is assumed to be radially symmetric m-dimensional random vector,

its projection on the unit sphere as Wi = vi · ‖Wi‖, where vi is uniformly distributed on S
m−1,

and is independent with ‖Wi‖. Then we have

E(‖YTWi‖2) = E(‖YTvi‖2 · ‖Wi‖2) = E(‖YTvi‖2) · E(‖Wi‖2)

= ‖Y‖2
F · E(‖Wi‖2)

m
= ‖Y‖2

F · σ2
i ,

E(‖YTW‖2
F ) = E(‖YTW‖2

F ) = E(
n
∑

i=1

‖YT Wi‖2
F ) =

n
∑

i=1

E(‖YTWi‖2
F )

=

n
∑

i=1

‖Y‖2
F · σ2

i = ‖Y‖2
F ·

n
∑

i=1

σ2
i

= tr(YTY) ·
n
∑

i=1

σ2
i = m

n
∑

i=1

λi ·
n
∑

i=1

σ2
i = m

n
∑

i=1

λi · σ,

where λ′
is are eigenvalues of covariance matrix A = 1

m
YTY.1

Computation of E(‖WT W‖2
F ) This is a high order term, and its value is generally dominated

by E‖YTW‖2F . Our computation relies on the assumption that the error vectors W1, . . . ,Wn

are independent. In addition, we use the following fact from [30]: if u, v are independently and

uniformly distributed column vectors on S
m−1, then there hold:

E(uT · v) = 0, E[(uT · v)2] =
1

m
, Var[(uT · v)2] =

2(m − 1)

m2(m + 2)
.

1For simplicity, we typically suppress the dependence on δ in our notations, such as using σ instead of σ(δ).
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For i 6= j, we have

E[(WT
i Wj)

2] = E

[

(

WT
i

‖Wi‖
· Wj

‖Wj‖

)2

· ‖Wi‖2 · ‖Wj‖2

]

=
1

m
· E(‖Wi‖2 · ‖Wj‖2)

=
1

m
· E(‖Wi‖2) · E(‖Wj‖2) =

m2σ2
i σ

2
j

m
= mσ2

i σ
2
j .

Define zi := WT
i Wi =

∑m
j=1 e2

ji. We have

E(e2
ji) = σ2

i , Var(e2
ji) = E(e4

ji) − (E(e2
ji))

2 = µ4
i − σ4

i .

Then we have

E(zi) = E(
m
∑

j=1

e2
ji) =

m
∑

j=1

E(e2
ji) = mσ2

i ,

Var(zi) = Var(

m
∑

j=1

e2
ji) =

m
∑

j=1

Var(e2
ji) = m(µ4

i − σ4
i ),

E(z2
i ) = (E(zi))

2 + Var(z) = m2σ4
i + m(µ4

i − σ4
i ).

In sum, we have

E(‖WT W‖2
F ) =

n
∑

i=1

E[(WT
i Wi)

2] + 2

n
∑

i=1

n
∑

j=i+1

E[(WT
i Wj)

2]

= m2
n
∑

i=1

σ4
i + m

n
∑

i=1

(µ4
i − σ4

i ) + 2
n
∑

i=1

n
∑

j=i+1

mσ2
i σ

2
j .

Expectation bounds An application of Jensen’s inequality yields E(x) ≤
√

E(x2). Then we can

upper bound E(‖∆‖F ) as follows

E(‖∆‖F ) ≤ 2

m
E(‖YTW‖F ) +

1

m
E(‖WTW‖F )

≤ 2

m

√

E(‖YTW‖2
F ) +

1

m

√

E(‖WTW‖2
F )

=
2

m

√

√

√

√m

n
∑

i=1

λi ·
n
∑

i=1

σ2
i +

1

m

√

√

√

√m2

n
∑

i=1

σ4
i + m

n
∑

i=1

(µ4
i − σ4

i ) + 2

n
∑

i=1

n
∑

j=i+1

mσ2
i σ

2
j

≤ 2

√

√

√

√

1

m

n
∑

i=1

λi ·
n
∑

i=1

σ2
i +

√

√

√

√

n
∑

i=1

σ4
i +

1

m

n
∑

i=1

(µ4
i − σ4

i ) +
n

m

n
∑

i=1

σ4
i :=

√
n · TolF
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Combining with Mirsky’s theorem, we have that

E

√

√

√

√

1

n

n
∑

i=1

(λ̂i − λi)2 ≤ E

(‖∆‖F√
n

)

≤ TolF ,

where TolF is given by our foregoing analysis.

Proof of Theorem 6 We now have the tool to prove Theorem 6. Recall that

ε∗ ≤ 1√
n
‖∆‖F =

1

m
√

n
‖YTW + WTY + WT W‖F ,

where WTW is a high order term, and ‖YTW‖F = ‖WT Y‖F . So the deviation of ‖∆‖F from

its expectation is dominated by the deviation of ‖YTW‖F from its expectation. Using Chebyshev

Inequality, we have

Pr

[

‖YTW‖F −
√

E‖YTW‖2
F ≥ m

√
nζ

]

≤ Pr

[

|‖YT W‖2
F − E‖YTW‖2

F | ≥ m
√

nζ(2
√

E‖YTW‖2
F )

]

≤ Var(‖YT W‖2
F )

m2nζ2(2
√

m
∑

λi

∑

σ2
i )

2
≈ O

(

1
m

m2n2n

m2nζ2mmnn

)

= O

(

mn3

ζ2m4n3

)

= O

(

1

ζ2m3

)

.

Thus with probability 1 − O(1/ζ2m3), we have

ε∗ ≤ 1

m
√

n
‖∆‖F ≤ 2

m
√

n

√

E‖YTW‖2 +
1

m
√

n

√

E‖WTW‖2 + 3ζ

≤ 2

√

√

√

√

1

mn

n
∑

i=1

λi ·
n
∑

i=1

σ2
i +

√

√

√

√

1

n

n
∑

i=1

σ4
i +

1

mn

n
∑

i=1

(µ4
i − σ4

i ) +
1

m

n
∑

i=1

σ4
i + 3ζ

≈ 2

√

√

√

√

1

mn

n
∑

i=1

λi ·
n
∑

i=1

σ2
i +

√

√

√

√

(

1

m
+

1

n

) n
∑

i=1

σ4
i + 3ζ,

where the last step is achieved by ignoring the high order term 1
mn

∑n
i=1(µ

4
i − σ4

i ).
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Computation of variances The variances of the terms analyzed above can also be computed

analytically. Using the following identity for independent variables X and Y that

Var(XY ) = Var(X)Var(Y ) + (EY )2Var(X) + (EX)2Var(Y ),

we obtain

Var(‖YTWi‖2) = Var(‖YTvi‖2‖Wi‖2)

= Var(‖YTvi‖2)Var(‖Wi‖2) + (E‖Wi‖2)2Var‖YTvi‖2 + (E‖YTvi‖2)2Var‖Wi‖2

≤ 2

m + 2
Var(‖Wi‖2) +

2

m + 2
(E‖Wi‖2)2 +

‖YT‖4F
m2

Var(‖Wi‖2)

=
2m

m + 2
Var(e2

1i) +
2m2

m + 2
(Ee2

1i)
2 +

1

m
‖Y‖4

F Var(e2
1i).

Noting that W1, ...,Wn are independent, each element eji has the forth moment µ4
i , then

we have Var(e2
ji) = E(e4

ji) − (E(e2
ji))

2 = µ4
i − σ4

i . Thus,

Var(‖YTW‖2
F ) = Var

(

n
∑

i=1

‖YTWi‖2
F

)

=

n
∑

i=1

Var(‖YTWi‖2)

≤ 2m

m + 2
·

n
∑

i=1

Var(e2
1i) +

2m2

m + 2

n
∑

i=1

σ4
i +

1

m
‖Y‖4

F

n
∑

i=1

Var(e2
1i)

=
2m

m + 2
·

n
∑

i=1

(µ4
i − σ4

i ) +
2m2

m + 2

n
∑

i=1

σ4
i +

1

m
‖Y‖4

F

n
∑

i=1

(µ4
i − σ4

i ).

The variance of ‖WT W‖2
F can also be computed analytically using result from [30]. The compu-

tation is tedious, so we omit the procedure here.

Note that our computation of means and variances can be simplied signficantly by using

further assumption on the distribution of the error elements eji of matrix W, so that the result de-

pend directly on the slack parameters δi(i = 1, . . . , n). For example, if e1i is uniformly distributed
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on [−δi, δi], we have Var(e2
1i) = µ4

i (δi) − σ4
i (δi) =

δ4
i

5 − δ4
i

9 =
4δ4

i

45 , and so on. On the ther hand, if

e1i ∼ N(0, σ2
i (δi)), we have Var(e2

1i) = µ4
i (δi)− σ4

i (δi) = 3σ4
i (δi)− σ4

i (δi) = 2σ4
i (δi) and so on.

D.3 Analysis of spectral norm

In this section, we turn to the estimation of the spectral norm of the perturbation error

matrix ∆. This quantity provides a tighter upper bound for the eigenvalue perturbation (via Weyl’s

theorem). Unfortunately, it is also difficult to bound. For many applications, it suffices to replace a

bound on ‖.‖2
2 by its expectation E‖.‖2

2. In the following derivations, we rely on the concentration of

eigenvalues of random symmetric matrices [2]. This result is applicable to matrices whose elements

are independent or weakly correlated.

Let Lmax(·) denote the maximum eigenvalue of a matrix. Then we have

E(‖WTY‖2
2) = E(Lmax(YTWWTY)) ≈ Lmax(E(YTWWTY))

= Lmax(YT
E(WW)TY) = Lmax(YT [

n
∑

i=1

σ2
i I] · Y)

= = Lmax(YTY) ·
n
∑

i=1

σ2
i

= λmax ·
n
∑

i=1

σ2
i .

Likewise, we have

E(‖YTW‖2
2) = E(Lmax(WTYYTW)) ≈ Lmax(E(WTYYTW))

= Lmax

(

E
[

WT
i YYTWj

]

1≤i,j≤n

)

= = Lmax



E





m
∑

k,l

eik(YYT )klejl







 .
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Because the elements eji of matrix W are independent with mean 0, the matrix inside

Lmax is a diagonal matrix. As a result,

E(‖YTW‖2) = Lmax



E

[

m
∑

k=1

σ2
i (YYT )kk

]

1≤i≤n





= max
i

{

σ2
i

m
∑

k=1

(YYT )kk

}

= σ2
max

m
∑

k=1

(YYT )kk

= σ2
maxtr(YYT).

A remaining term is E‖WTW‖2, which is generally dominated by E(‖YTW‖2) +

E(‖WTY‖) and is omitted in our analysis. Thus we have the following approximate upper bound

on expected spectral norm of the perturbation error matrix:

E‖∆‖2 . Tol2,

where

Tol2 =

√

√

√

√λmax ·
n
∑

i=1

σ2
i +

√

σ2
maxtr(YYT).

By Weyl’s theorem, there holds

E max
i

|λi − λ̂i| . Tol2.
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