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Abstract

Probabilistic Reachability for Stochastic Hybrid Systems:

Theory, Computations, and Applications

by

Alessandro Abate

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Shankar S. Sastry, Chair

Stochastic Hybrid Systems are probabilistic models suitable at describing the

dynamics of variables presenting interleaved and interacting continuous and discrete

components.

Engineering systems like communication networks or automotive and air traffic

control systems, financial and industrial processes like market and manufacturing

models, and natural systems like biological and ecological environments exhibit com-

pound behaviors arising from the compositions and interactions between their hetero-

geneous components. Hybrid Systems are mathematical models that are by definition

suitable to describe such complex systems. The effect of the uncertainty upon the

involved discrete and continuous dynamics—both endogenously and exogenously to

the system—is virtually unquestionable for biological systems and often inevitable

for engineering systems, and naturally leads to the employment of stochastic hybrid

models.

The first part of this dissertation introduces gradually the modeling framework

and focuses on some of its features. In particular, two sequential approximation

procedures are introduced, which translate a general stochastic hybrid framework

into a new probabilistic model. Their convergence properties are sketched. It is

argued that the obtained model is more predisposed to analysis and computations.

The kernel of the thesis concentrates on understanding the theoretical and com-

putational issues associated with an original notion of probabilistic reachability for
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controlled stochastic hybrid systems. The formal approach is based on formulating

reachability analysis as a stochastic optimal control problem, which is solved via dy-

namic programming. A number of related and significant control problems, such as

that of probabilistic safety, are reinterpreted with this approach. The technique is

also computationally tested on a benchmark case study throughout the whole work.

Moreover, a methodological application of the concept in the area of Systems Biology

is presented: a model for the production of antibiotic as a component of the stress

response network for the bacterium Bacillus subtilis is described. The model allows

one to reinterpret the survival analysis for the single bacterial cell as a probabilistic

safety specification problem, which is then studied by the aforementioned technique.

In conclusion, this dissertation aims at introducing a novel concept of probabilis-

tic reachability that is both formally rigorous, computationally analyzable and of

applicative interest. Furthermore, by the introduction of convergent approximation

procedures, the thesis relates and positively compares the presented approach with

other techniques in the literature.

Professor Shankar S. Sastry, Chair Date
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Introduction

Hybrid Systems (HS) are dynamical models with interacting continuous and discrete

components. They naturally model continuous systems with phased, multi-modal

operation, or with fault recovery procedures; hierarchical, logic-based, quantized-

control systems; embedded, software and networked control of real-time, physical

systems; and systems with heterogeneous models of computations. Seminal work in

this research arena can be found as early as in [Witsenhausen, 1966].

This modeling framework has attracted a lot of attention in the Systems Theory

and Control Engineering community because of its twofold value: first, the theoretical

interest that such models promote; second, the wealth of successful practical arenas

and studies resulting from their applications [Mariton, 1990; Varaiya, 1993; Brockett,

1993; Ramadge and Wonham, 1989].

On the one hand, it is in fact of great interest to systematically build up a mathe-

matical framework for the analysis and the control of compound continuous and dis-

crete systems: the understanding of the unique structural characteristics and the gen-

eral behaviors associated with these models has allowed the exploitation of their full

modeling capabilities. Also, the literature has witnessed an unprecedented confluence

of a system/analytical approach to these models [Lygeros, 1996; Branicky, 1995], and

a computer-science/computational perspective on them [Puri, 1995; Alur et al., 1993;

Alur and Dill, 1994; Henzinger et al., 1998]: this has provided original attention to

aspects at the intersection of the two areas. This has further spurred the study, the

analysis and the verification of descriptive, implementable, computationally efficient

and practically applicable models and control synthesis techniques.

On the other hand, also thanks to the advances of the theoretical understand-

ing of these models, hybrid system models have found exciting application arenas
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in transportation [Varaiya, 1993; Lygeros and Godbole, 1997; Lygeros et al., 1998],

automotive and air traffic control [Tomlin et al., 1998b; Glover and Lygeros, 2004; Hu

et al., 2003; Prandini et al., 2000], robotics (mechanical systems undergoing impacts

or tracking of maneuvering targets, for instance), hierarchical systems [Lygeros, 1996]

for safe and optimal control synthesis, industrial processes (like manufacturing, re-

source allocation, or fault-detection models from operations research) [Mariton, 1990],

financial applications [Davis, 1984; Davis, 1993; Glasserman and Merener, 2003], net-

works (power, and telecommunication ones) [Hespanha et al., 2001; Hespanha, 2004;

Abate et al., 2006a], biological and ecological systems [Lincoln and Tiwari, 2004;

Alur et al., 2001].

The first part of the dissertation (chapter 1, section 1.1) introduces the notion of

deterministic Hybrid System, adhering to what is accepted as one of more general

frameworks, that of the hybrid automaton. A number of structural and dynamical

properties of interest in the proceeding of the thesis are described.

z

Stochastic Hybrid Systems (SHS) have attracted the interest of the System The-

ory community only relatively recently. However, the results for the models that

are currently investigated build on the shoulders of older mathematics (probability

theory, theory of Markov chains, theory of uncertain system). Chapter 1 describes

some theoretical investigations on this class of probabilistic models. In particular, the

attention is focused on the problem of finding a SHS model that is both general and

descriptive, as well as prone to be analyzed and computed. To start with, a thorough

literature review of SHS is contained in section 1.2. Then, a very general class of

Stochastic Hybrid Models (GSHS) are introduced in section 1.2.1—if not the most

general, it is truly the one which encompasses all of the characteristics of HS and

directly extends them to the probabilistic case. In section 1.2.2, some necessary tech-

nical concepts are defined, such as that of extended generator of a solution process of

a stochastic hybrid model. Section 1.3.1 describes a methodology by which a GSHS

model is approximated by a similar probabilistic model that has no spatial guards.

The events, once due to the presence of spatial conditions, are now randomly deter-

mined by properly defined arrival processes, whose parameters are state-dependent.
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The procedure can be likewise applied to subclasses of the GSHS, all the way down to

purely deterministic HS. The intuitive fact that the new systems are “easier” than the

old ones, albeit at the expense of introducing new random quantities, is motivated by

a number of instances in section 1.3.3. In section 1.3.2, the weak convergence of the

solution of the new model to a solution process of the original one is sketched under

proper assumptions. Moreover, at the end of section 1.3.3, it is claimed that the

obtained class of SHS models, while being quite general, is also apt to be analyzed

and simulated. Section 1.4 is dedicated to the discretization in time of the above

model. More precisely, by starting from the “approximated” SHS model obtained in

section 1.3.1, a formulation of its dynamics by the use of random measures is proposed

(section 1.4.1). This new form allows the application of a time sampling procedure,

according to known integration methods, such as the first-order Euler scheme (section

1.4.2). The weak convergence of the obtained discrete-time processes to the original

continuous-time ones is sketched in section 1.4.3.

z

Reachability is an important and well investigated topic in classical control theory.

The overture of chapter 2 gives an informal introduction to the concept, a qualitative

interpretation for the stochastic models under study and a perspective of the (recently

performed) work in the literature (section 2.1).

The prime objective of the dissertation is to introduce a new such concept for a

general class of Stochastic Hybrid Systems. The model under the study is the one

obtained at the end of chapter 1, with the addition of a control structure. This model

is recalled and reframed in section 2.1.1.

The theoretical part of this section 2.2 unfolds as follows. The notion is introduced

in section 2.2.1, where two alternative interpretations of the concept are suggested.

The formal approach is based on formulating reachability analysis as a stochastic

optimal control problem in section 2.2.2, which is solved via dynamic programming

(DP) in section 2.2.3. A number of related and significant control problems, such

as that of probabilistic safety or that of regulation (which subsumes the steady-state

analysis in section 2.2.4), are reinterpreted via this approach and discussed in section

2.2.5, 2.2.6 and 2.2.7. The practical algorithmic solution of the dynamic programming
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scheme assumes a discrete framework, both in time and in space: in section 2.2.8.1,

a state space discretization procedure is introduced, its properties illustrated, and its

convergence properties proved in section 2.2.8.2.

The technique is computationally tested in section 2.3 on a benchmark case study

proposed in past literature: that of temperature regulation in a number of rooms,

by a collection of thermostat-controlled heaters (section 2.3.1). The control synthesis

problem is solved in section 2.3.2 for the single-room and the multiple-rooms case. The

aforementioned concept of regulation is tested on this benchmark in section 2.3.2.2,

and the convergence of the state space gridding shown in section 2.3.3. Also, the use

of a number of techniques are proposed, to partly mitigate the curse of dimensionality

that affects the solution of a DP, and which is common with the other approaches in

literature. This is achieved in sections 2.3.4 and 2.3.4.1.

Finally, a methodological application of the concept in the area of Systems Biology

is presented in section 2.4.1: a model for the production of antibiotic as a component

of the stress response network for the bacterium Bacillus subtilis is described in

section 2.4.2. The model allows one to reinterpret the survival analysis for the single

bacterial cell as a probabilistic safety specification problem (see section 2.4.3), which

is then studied and computed by the aforementioned technique in section 2.4.4.

This part ends with the exploration of possible future research avenues, in section

2.5.

The dissertation places particular emphasis on the connection of the present effort

with other related work in the literature, both at a foundational level (chapter 1), and

at a more technical level (section 2.2.9 in chapter 2). The collection of a thorough

network of exhaustive references (see Bibliography) should help the reader with the

comparisons and give her or him more pointers to the foundational and the adjacent

work.

4



Deterministic Hybrid System General Stochastic Hybrid 
System

Stochastic Hybrid System

Discrete-Time, Stochastic 
Hybrid System

level of generality

ap
pr

ox
im

at
io

n 
pr

oc
ed

ur
e

Discrete-Time, Controlled 
Stochastic Hybrid System

addition of control

spatial guards

discrete time Section 1.4.2

Sections 1.3.2

Section 
2.1.1

Section 1.2.1Section 1.1

Section 1.4

determinism

Section 1.3

Section 1.2

Figure 1: Dependency chart for Sections and corresponding Hybrid System Models.

5



Chapter 1

Modeling

1.1 Deterministic Hybrid System Model

A Hybrid System is described by a formal mathematical model. Such a model can

be defined in a number of different ways, each highlighting particular features of

the system under study or focusing on particular points of the structure or being

more or less synthetic. In particular, some models (possibly coming from Computer

Science) stress the “discrete” features of the system. Others instead, mainly relating

to Systems Theory, focus on the “continuous” dynamics and behaviors.

In this dissertation the template dynamical model of choice is the hybrid au-

tomaton [Lygeros et al., 2003; Lygeros, 2004a]. This choice comes, for the sake of

homogeneity and uniformity, from the ease to extend such a mathematical entity to

the controlled and the probabilistic cases. Let us reiterate that other models are

similar and as meaningful as the one presented. The author, for instance, has worked

on a related framework [Abate et al., 2005; Abate et al., 2006a].

Definition 1 (Deterministic Hybrid System). A Deterministic Hybrid System (HS)

is a collection H = (Q, E,D,Γ, A,R), where

• Q = {q1, q2, . . . , qm} is a finite set of discrete modes;

• E = {ei,j, i, j ∈ Q} ⊆ Q × Q is a set of edges, each of which is indexed by a

pair of modes; given an edge ei,j, i = s(e) is its source and j = t(e) its target;
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Chapter 1. Modeling

• D = {D1, D2, . . . , Dm} is a set of domains, each of which is associated with a

mode. Let us assume that Dq ⊆ Rn, n < ∞,∀q ∈ Q. The hybrid state space is

introduced as S =
⋃

q∈Q q ×Dq (see Remark 1);

• A = {aq, q ∈ Q}, aq : Q×D → D, is the set of vector fields, which are assumed

to be Lipschitz. Each vector field characterizes the continuous dynamics in the

corresponding domain, which evolve in continuous time;

• Γ = {γi,j ⊂ Di} ⊂ S, j 6= i ∈ Q, is the guards set, a subset of the state

space. They represent boundary conditions and are associated with an edge:

∀i, j ∈ Q : γi,j ∈ Γ,∃ ei,j ∈ E;

• R : Q×Q×D → D is a reset function, associated with each element in Γ (or,

equivalently, to each edge): with the point s = (i, x) ∈ γi,j is associated a reset

function R(j, (i, x))).

The initial condition for the hybrid solution process of the above model, will be taken

from a set of hybrid values Init ⊆ S.

Remark 1 (On the Structure of the HS).

• The pair (Q, E) characterizes the discrete structure of the hybrid system, that

of a finite-state automaton.

• The Hybrid State Space S is defined as the disjoint union of the domains per-

taining to each mode, S =
⋃

q∈Q{q} × Dq. A point in the state space will be

a pair s = (q, x), where q ∈ Q and x ∈ Dq. Similarly, as formally described

in Algorithm 1, a hybrid trajectory will be made up of two components, a dis-

crete one and a continuous one, each dwelling in its respective subspace, the

first a discrete set of modes, the second a set of continuous domains, subsets of

Euclidean spaces.

• Let us assume the guard set is forcing, that is, once it gets hit, it instanta-

neously elicits a jump. This affects the semantics of the model (see Algorithm

7



Chapter 1. Modeling

1). More generally, guards may just enable a jump [Lygeros, 2004a]. This in-

troduces issues of non-determinism, the details of which are not covered here;1

incidentally, this issue can be properly handled by stochastic models—see and

page 19 and 1.3.3.

We have used freely the word “process,” or “trajectory” of H . The following

introduces a formal definition of these concepts.

Definition 2 (Hybrid Time Set). A hybrid time set τ = {Ik}k≥0 is a finite or infinite

sequence of intervals Ik = [tk, t
′
k] ⊆ R such that

1. Ik is closed if τ is infinite; Ik might be right-open if it is the last interval of a

finite sequence τ ;

2. tk ≤ t′k for k > 0 and t′k−1 = tk for k > 1.

The length t′k − tk of every interval Ik denotes the dwelling time in a discrete

location of the hybrid flow, while the extrema tk, t
′
k specify the switching instants.

Let us stress that the above set is ordered; hence, it makes sense to use notations

such as tk ≤ t′k, as we shall do throughout the work.

In the succeeding work, boldface shall be used to denote trajectories or executions,

and normal typeset to denote sample values. This convention will also be used for

the processes, solutions of the stochastic models. Also, often the starting time for the

solution of a (S)HS will be taken for simplicity to be t0 = 0.

A hybrid trajectory, or hybrid flow, is a pair (s, τ), where the first component is

the hybrid state s = (q,x) : τ → S, that describes the evolution of the continuous

part x and the discrete part q by means of (possibly multi-valued) functions defined

on the hybrid time set τ and having value on S.

Finally, an hybrid execution is a pair (s, τ) which can be algorithmically described

as follows:

Definition 3 (Hybrid Execution). Consider an HS H = (Q, E,D,Γ, A,R). A tra-

jectory pair s(t) = (q(t),x(t)) with values in S is an execution of H associated with

1For further details, such as sufficient conditions to prevent non-determinism, refer to [Abate et
al., 2006b].
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Chapter 1. Modeling

an initial condition (q(t0),x(t0)) ∈ Init if it is obtained according to the following

scheme:

Algorithm 1.

1. At starting time t0 ≥ 0, pick (q(t0),x(t0)) ∈ Init, set k = 0, τ = ∅;

2. Extract a continuous trajectory x(t) from the vector field and with initial condi-

tion x(tk) until possibly a guard is hit: namely until time t′k ∈ [tk,∞) such that

x(t′k) ∈ γe, where s(e) = q(tk);

3. If t′k = ∞,

add Ik = [tk,∞) to τ and exit the algorithm;

4. Else add Ik = [tk, t
′
k] to τ ;

define t(e) = q(tk+1) and x(tk+1) = R(t(e), s(e), x(t′k));

increment k and go to line 2.

In what follows, let us define an event to be a discrete state transition associated

with the hitting of the guard set by the hybrid trajectory.

Remark 2 (Blocking Conditions). In Algorithm 1, it has been implicitly assumed that

either an event happens in finite time (whenever the hybrid execution intersects the

guard set), or that the execution dwells indefinitely inside a domain. This excludes the

case when a trajectory exits a domain without necessarily hitting a guard, which in the

parlance is known as a blocking condition. It is possible to exclude this from happening

if it is assumed that the boundary of each domain is included in the corresponding

guard set, and noticing that the image of the reset map is a subset of the domain set.

For more details on blocking, explicit conditions to prevent it, and other structural

issues for deterministic HS, refer to [Lygeros et al., 2003; Abate et al., 2006b].

Hybrid Systems pose a problem which is unknown in the simpler setting of dynam-

ical systems, that of Zeno dynamics. In simple terms, Zeno behaviors happen when,

in a bounded time interval, the hybrid trajectory jumps between specific domains

infinitely many times. More precisely, consider the following definition:
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Chapter 1. Modeling

Definition 4 (Zeno Behavior). A hybrid system H is Zeno if for some execution

s(t), t ∈ τ : τ → S of H there exists a finite constant t∞ (called the Zeno time) such

that

lim
i→∞

ti =
∞∑
i=0

(ti+1 − ti) =
∞∑
i=0

Ii = t∞.

the execution s(t), t ∈ τ is called a Zeno execution.

Classification of Zeno Behavior. The definition of a Zeno execution results in two

qualitatively different types of Zeno behavior. They are defined as follows: for an

execution s(t), t ∈ τ that is Zeno, s(t), t ∈ τ is

Chattering Zeno: If there exists a finite constant C such that ti+1−ti =

0 for all i ≥ C.

Genuinely Zeno: If ∀i ∈ N,∃k > 0 : ti+k+1 − ti+k > 0.

The difference between these two classes is especially prevalent in their detection and

elimination. Chattering Zeno can be studied by considering solutions a-la-Filippov

[Sastry, 1999; Khalil, 2001], that is looking at the specific part of the HS that is asso-

ciated with chattering behaviors as originating from a vector field with discontinuous

righ-hand side. Chattering Zeno is also relatively easy to detect [Zhang et al., 2001;

Ames and Sastry, 2005b]. Genuinely Zeno executions instead are much more compli-

cated in their behavior, as well as in their detection. It has been only recently that suf-

ficient conditions have been developed to prove their existence [Heymann et al., 2002;

Ames et al., 2005; Heymann et al., 2005; Ames et al., 2007]. More precisely, [Ames et

al., 2005], introduces a simpler but effectively equivalent definition of Genuine Zeno

(“∀i ∈ N, ti+1 − ti > 0”), and develops sufficient conditions for a simple class of HS,

namely diagonal, first quadrant hybrid systems. The results are based on a study of

the hybrid dynamics in a neighborhood of the Zeno point (or Zeno equilibrium, defined

as a hybrid point on which Zeno behavior happens), and on the use of a Poincaré-like

map, which allows the study of the behaviors in discrete time. The work in [Ames et

al., 2007] extends the previous results to the nonlinear case by the use of a flow box

theorem-like argument. Furthermore, the notion of stable Zeno point is introduced,

and Zeno behaviors are related to exponentially stable Zeno equilibria.

10
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Let us now introduce a well known modeling example. With the exception of

the last section 2.4.1, where a case study from the field of Systems Biology will

be introduced, we shall adhere to the following application instance throughout the

dissertation by first further developing the model, and then by using it on a com-

putational case study. This use is motivated by some benchmarks, which recently

appeared in the literature [Fehnker and Ivančić, 2004], and which will be targeted for

computational test comparisons.

Example 1 (Thermostat). In order to model the temperature dynamics of a room

with a heater controlled by a thermostat, let us introduce the hybrid model H th =

(Q, E,D,Γ, A,R), with

• Q = {ON,OFF};

• E = {(ON,OFF ), (OFF,ON)};

• D = {DON = {x ∈ R : x ≤ 80}, DOFF = {x ∈ R : x ≥ 70}};

• Γ = {GON = {x ∈ R : x ≥ 79} ∩DON , GOFF = {x ∈ R : x ≤ 71} ∩DOFF};

• A = {aON(x) = −α(x− 90), aOFF (x) = −αx}, where α > 0;

• R = {id(x)}.

The set of initial conditions is taken to be the complement of the guard set, with respect

to the domain set, Init = D\Γ. It is assumed that the evolution is in continuous

time. In figure 1.1 (right) the hybrid automaton model for the system is represented.

In figure 1.1 (left), a simple simulation is implemented, where the time horizon is 10

seconds, α = 0.1, the initial condition s(0) = 75oF. Recall that the guards have the

semantics of “forcing” transitions.

Remark 3 (Switching and Hybrid Systems). The reader should ponder over the dif-

ference between the framework of “switching” systems,2 and that of “hybrid” systems.

2To be further precise, the literature distinguishes between autonomous “switching” systems and
controlled “switched” systems. However, we do not further pursue this difference in the remaining
of this dissertation.
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Figure 1.1: Left: hybrid automaton model for the deterministic thermostat system. Right:
MATLAB simulation of the thermostat model (the horizontal axis represents time in
seconds, the vertical temperature in Fahrenheit).

The first category is characterized by event conditions “in time,” that is a priori de-

fined through a sequence of jumping times {tk}k∈N. The second modeling framework,

instead, specifies possible event conditions in terms of the variables of the model, by

introducing a guard set. The event times are then specified on the single trajectory,

and hence the sequence of these times varies depending on the single initial condition.

It is intuitive that hybrid models are intrinsically more complicated than switched

ones. Often, to prove properties of a hybrid system, it is worth considering a switched

model, which is a simulation [Tanner and Pappas, 2002] of it and, as such, contains

all of its behaviors. Properties are then proved on the simulation and translated back

to the original hybrid model [Abate and Tiwari, 2006].

A note on Controlled Deterministic Hybrid System Model. It is legitimate to

introduce the presence of a control structure on the HS model defined above. However,

given our interest in developing control problems only on a discrete-time setting, we

defer such extension to chapter 2. The interested reader is referred to [Abate et al.,

2006b] for a definition and a discussion of related modeling issues.
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1.2 Probabilistic Generalizations

Motivations. The introduction of a stochastic analog to the model presented in

section 1.1 is mainly motivated by two arguments:

To begin with, a probabilistic model is more general, in the behaviors for which

it allows, than its deterministic counterpart. Indeed, a deterministic model can be

thought of as being a possible implementation/instance of a probabilistic one. That

is, the deterministic behaviors are “contained” in the set of stochastic ones [Polder-

man and Willems, 1998]. The Systems Theory literature has witnessed a progressive

generalization in the analysis of dynamical systems. From deterministic models, to

uncertain models [Bertsekas, 1971] (where parameters or signals are known “within

bounds”), the study reaches a general breadth when models that are explicitly prob-

abilistic are analyzed and understood. This often comes with the burden of more

and deeper technicalities that are required in the analysis. In a number of instances,

though, stochastic models may appear to be more manageable than deterministic

ones, as it we further discuss in section 1.3.3.

Furthermore, the introduction of explicitly probabilistic models has been consid-

ered necessary in a number of applicative instances, where the uncertainty entering

the system cannot be simply “averaged out,” when the knowledge of the system is

just too coarse, or when it is evident/manifest that some stochastic mechanisms play

a role in the system under study. Known instances of these last arguments are mod-

els drawn from finance [Cont and Tankov, 2004], models describing air traffic control

applications [Prandini et al., 2000; Blom and Lygeros, 2006], or models describing

specific biological phenomena [Gillespie, 1976; Gillespie, 1977] (especially when only

a limited number of entities are involved).

Levels of Generalization. The deterministic model H = (Q, E,D,Γ, A,R) is made

up by elements that could be embedded with some randomness. More precisely,

probabilistic terms can be introduced in H at the following levels:

1. (Q, E), the underlying discrete structure: rather than having a state-automaton

structure, let us think of having a continuous-time Markov-chain sort of relation-

ship between the modes. The jumps may be due to some transition intensities,
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rather than events defined as conditions by R;

2. A, the continuous dynamics: let us introduce probabilistic continuous dynamics,

in terms of a stochastic differential equation, rather than the deterministic ODE;

3. R, the discrete resets: let us have probabilistic resets, described by stochastic

kernels, rather than the deterministic functions in R;

4. Init, the set of initial conditions: the starting state may be sampled from a

probabilistic distribution, rather than being deterministically picked within the

set of initial conditions.

Let us introduce a rather simple modification of Example 1, which is endowed with

probabilistic continuous dynamics.

Example 2 (Stochastic Thermostat). Let the hybrid model S th = (Q,E,D,Γ, A,Σ, R)

be made up of the same elements of H th, except for the continuous dynamics, which

are now enhanced with a diffusion term and thus described by a stochastic differential

equation (SDE) [Arnold, 1992; Oksendal, 1998] so that, for q ∈ Q, t ≥ 0,

dx(t) = aq(x(t))dt+ bTq bqdw(t),

where w(t) is a one-dimensional standard Wiener process. The following has been

introduced:

• Σ = {σON(x) = σOFF (x) =
√

8}.

In figure 1.2 (right) the hybrid automaton model for the system is shown. In figure

1.2 (left), a simple simulation is implemented, where the time horizon is 10 seconds,

α = 0.1, the initial condition s(0) = 75oF. Recall again that the guards are assumed

to be “forcing” an event.

Literature Review on Stochastic Hybrid Systems. The framework of Stochastic

Hybrid System (SHS) is rather general and encompasses other mathematical models

that have been widely investigated in the literature. It is often inspiring to study,

in generality, how properties that are well understood in the context of SDE’s or
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Figure 1.2: Left: hybrid automaton model for the stochastic thermostat system. Right:
MATLAB simulation of the thermostat model (the horizontal axis represents time in
seconds, the vertical temperature in Fahrenheit).

Lévy processes (first hitting times, occupation measures, martingale properties, for

instance) can be exported to a “switching” or hybrid case.

A body of literature has focused on systems with Markovian switchings (see

remark 3), i.e. models that progress deterministically in the continuous dynam-

ics, while jumping according to some Poisson arrivals and randomly switching ac-

cording to an underlying Markov chain structure [Mariton, 1990]. A wealth of

research has been spent on proving stability properties for systems of this sort.

Some work has focused on weak concepts of stability [Geromel and Colaneri, 2006;

Yuan and Lygeros, 2005b], other on stronger notions [Yuan and Lygeros, 2005a;

Bolzern et al., 2006b; Bolzern et al., 2006a]. Often the approach has been that of

extending results or techniques developed for the deterministic case [Branicky, 1994;

Branicky, 1995; Kourzhanski and Varaiya, 1996; Liberzon et al., 1999; Liberzon, 2003],

such as the use of a common Lyapunov function [Chatterjee and Liberzon, 2004], or

that of multiple Lyapunov functions, with switching conditions. These conditions are

often interpreted as averaging criteria for the probabilistic case [Abate et al., 2004;

Chatterjee and Liberzon, 2006], or translated into supermartingale [Durrett, 2004;

Billingsley, 1995] conditions on the switching processes.

A seminal work which has heavily influenced the literature on SHS is that by

[Davis, 1993]. This work, introducing the Piecewise Deterministic Markov Processes

(PDMP) framework, has pinned down a number of technical issues for these models,
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such as their Markovian nature, their topological structure, the rigorous definition of

the associated extended generator, as well as some issue in their optimal control (both

in the continuous dynamics, as well as in their switchings). The models are deter-

ministic in their continuous evolution, can switch either because of a (deterministic)

spatial condition, or because of some transition intensities. Furthermore, they are

reset randomly upon jumping between different modes of operation. See also [Davis,

1984] for further details.

The rigorous work in [Ghosh et al., 1992; Ghosh et al., 1997] has investigated the

problem of optimal control for the case of switching diffusions. This model describes

the evolution of a process depending on a set of stochastic differential equations,

among which the process jumps according to some state-dependent transition inten-

sities. Notice that, on the one hand, the resets are identical, while on the other the

introduced controls are randomized.

One of the first efforts to introduce a formal model explicitly for SHS was at-

tempted in [Hu et al., 2000], where a system evolving according to probabilistic

dynamics possibly jumps between different operating modes according to some (de-

terministic) conditions on the state space, and resets probabilistically according to

some distributions.

The hybrid structure in [Hu et al., 2000] has been blended with the PDMP ap-

proach [Davis, 1993] in [Bujorianu and Lygeros, 2004a; Bujorianu and Lygeros, 2004c;

Bujorianu and Lygeros, 2004b; Bujorianu and Lygeros, 2006]. In this line of research

a general model for SHS is introduced and its structural and dynamical properties

studied. Because of its generality, this will be the model introduced in section 1.2.1

and initially worked on. Further investigations by the same authors have focused on

the optimal control of these models and some reachability issues related to them.

Other very general SHS models have been investigated, along with their Markovian

properties, in [Ghosh and Bagchi, 2004; Blom, 2003], and their simulations has been

studied in [Blom and Bloem, 2004].

[Lygeros et al., 2006] introduces a SHS model with delays, which will further be

discussed in more details in the following. In [Yuan and Lygeros, 2006] its asymptotic

stability properties are studied.

A brief overview of some SHS models, with a tentative comparison between them,
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is contained in [Pola et al., 2003].

1.2.1 General Stochastic Hybrid System Model

Let us introduce a general Stochastic Hybrid Systems model, first worked out in

[Bujorianu and Lygeros, 2004b] and refined in [Bujorianu and Lygeros, 2006]. The

choice of this particular model hinges on its generality.

For the sake of clarity, a definition is introduced that depends on a particular,

but general enough, choice of the continuous dynamics, which will be characterized

by SDE’s.

Definition 5 (General Stochastic Hybrid System). A General Stochastic Hybrid

System (GSHS) is a collection Sg = (Q, n, A,B,W,Λ,Γ, RΛ, RΓ), where

• Q = {q1, q2, . . . , qm},m ∈ N is a countable set of discrete modes;

• n : Q → N is a map that determines the dimension of the domain associated

with each mode.3 For q ∈ Q, the domain Dq is the Euclidean space Rn(q).

The hybrid state space is introduced as the disjoint union of the domains: S =⋃
q∈Q{q} ×Dq;

• A = {aq, q ∈ Q}, aq : Dq → Dq is the drift term in the continuous dynamics;

• B = {bq, q ∈ Q}, bq : Dq → Dq ×Dq is the n(q)-dimensional diffusion term in

the continuous dynamics;

• W = {wq, q ∈ Q},wq is an n(q)-dimensional standard Wiener process;

• Λ : S×Q → R+ is the transition intensity function. In particular, for j 6= i ∈ Q,

λ(s = (i, x), j) = λij(x);
4,5

3If card(Q) < ∞, then it is possible to embed each domain Dq, q ∈ Q (and its corresponding
dynamics) into their union

⋃
q∈QDq ⊂ RN , where N = maxq∈Q n(q). Notice the potential difference

with the deterministic model in terms of the extension of the domains.
4In general, jumps and resets into the same mode could be allowed, but for the sake of clarity

and notation let us rule this out at this level—the extension to that instance is straightforward and
easy to work out. Notice that the actual domain of definition of Λ can be limited to S \ Γ, which is
not done here because of the approximation procedure introduced in 1.3.1.

5Notice that other authors, mainly following [Davis, 1993], use a global intensity function λ : S →
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• RΛ : B(Rn(·)) × Q × S → [0, 1], and denoted as RΛ(j, ·, (i, x)) = RΛ(·|j, (i, x)),
is a reset stochastic kernel associated with jumps elicited by Λ;

• Γ = {
⋃

j 6=i,j∈Q γi,j ⊂ Di} ⊂ S represents the closed guard set of the each of

the domains, where γi,j are closed sets as well. It could either represent the

boundary of a domain (like in the deterministic case), or only a subset of it,

which deterministic jump events are associated with;

• RΓ : B(Rn(·)) × Q × S → [0, 1], denoted as RΓ(j, ·, (i, x)) = RΓ(·|j, (i, x)) is a

reset stochastic kernel associated with the point s = (i, x) ∈ γi,j, which describes

the reset probabilities associated with the elements in Γ.

The initial condition for the stochastic solution of the above model, will be sampled

from an initial probability distribution π : B(S) → [0, 1].

Remark 4 (Continuous Dynamics). The continuous dynamics (which unfold during

the intervals of time when q(t) is constant), depending on elements in the sets (A,B),

are characterized, for any q ∈ Q, by an SDE of the form

dx(t) = a(q(t),x(t))dt+ b(q(t),x(t))dw(q(t)), (1.1)

where w(t) is a standard, n(q)-dimensional Wiener process. We have denoted aq(s(t)) =

a(q(t),x(t)), bq(s(t)) = b(q(t),x(t)) and wq(t) = w(q(t)).

In principle, the structure of the reset kernels RΛ and RΓ is indistinguishable,

except for their actual domain of definition, which is precisely Q × (S \ Γ) for RΛ,

and Q× Γ for RΓ.

The following is a list of assumptions on the elements of Sg, which shall be

selectively invoked in order to prove properties for the model.

Assumption 1. Introduce the following statements:

R+ on the whole state space, leaving the determination of the target mode to the reset function,
Rλ(·, ·, (i, x)) = RΛ(·, ·|(i, x)).
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1. Both the sets A and B are made up of functions that are globally Lipschitz

continuous within each domain:

∃0 < L <∞ : ∀q ∈ Q, x, y ∈ Dq, (1.2)

‖a(q, x)− a(q, y)‖+ ‖b(q, x)− b(q, y)‖ ≤ L‖x− y‖. (1.3)

2. Condition 1.1 , relaxed to local Lipschitz.

3. Both the drift and the diffusion terms are bounded in space.

4. The drift and the diffusion terms verify the following growth condition: there

exists a positive constant C <∞, such that, ∀s = (q, x) ∈ S,

‖a(q, x)‖2 + ‖b(q, x)‖2 ≤ C(1 + ‖x‖2).

5. The initial condition, sampled from π, is independent of w(t), t ≥ 0, of the ran-

dom events coming from the distribution function (1.4), and of the probabilistic

reset kernels RΛ, RΓ. 6

6. Λ is measurable and such that, for any q′ ∈ Q, s0 ∈ S, there exists a time

interval I(q′, s0) which is such that the intensity function t → Λ(s(t), q′), with

s(0) = s0 is integrable over I(q′, s0).

7. Λ is bounded on its domain of definition.

8. The reset kernels RΛ, RΓ are Borel measurable (that is, measurable with respect

to the Borel σ-algebra defined on their domain). Also, their support is bounded.

9. Sg allows no Zeno behaviors.7

6This condition is necessary for the existence and uniqueness of a global solution of (1.1), s(t), t ≥
0, over any time interval [Has’minskiy, 1980; Arnold, 1992].

7 [Davis, 1993, Assumption 24.4, Proposition 24.6] derives conditions to rule out finite “escape
time” at this level, which are sufficient to exclude Zeno behaviors for Sg. These conditions prevent
any possible pathological behaviors coming from the reset kernels RΓ and its interaction with Γ, for
instance allowing only resets that are within the domains and bounded away from the guard set.
It will be seen in section 1.3.3 that, given a different modeling framework for SHS, Assumption 1.7
will suffice to rule out Zeno behaviors.
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The state of a GSHS is characterized by a discrete and a continuous component.

The discrete state component takes on values in a countable set of modes Q. The

continuous state space in each mode q ∈ Q, excluding the relative guards set, is given

by a subset Dq of the Euclidean space Rn(q), whose dimension n(q) is determined

by the map n : Q → N. Thus the hybrid state space is S :=
⋃

q∈Q{q} × Dq. Let

B(S) be the σ-field generated by the subsets of S of the form
⋃

q{q} ×Aq, where Aq

is a Borel set in Dq. It is possible to show that S can be endowed with a metric.

A possible metric is based on the introduction of the notion of a distance. This

notion is equivalent to the usual Euclidean distance metric when restricted to each

domain Dq, albeit being rescaled to the unit interval. It is instead equal to one when

calculated on hybrid points belonging to different discrete domains [Davis, 1993]. The

topology generated by this metric shows that (S,B(S)) is a Borel space , i.e. it is

homeomorphic to a Borel subset of a complete separable metric space. Notice that

this is not the only possible metric that can be induced on the hybrid state space.

As it shall be briefly seen (Proposition 2), the solution process for the model in

Definition 5, which evolves according to the semantics of the algorithm in Definition

6, is constructed on a canonical space Ω = DS [0,∞) of right-continuous S-valued

functions defined on R+, with left-limits (càdlàg functions). This space is commonly

known as Skorokhod space. Let us not deal at this level with any possible notion

of metric on this function space (the interested reader should refer to [Billingsley,

1995]). We will be working on a probability space (Ω,F ,P), made up of the sample

space Ω, an associated σ-field F of subsets of Ω, and an induced probability measure

P acting on the process [Davis, 1993; Durrett, 2004]. More precisely, let us endow

the sample space Ω with (Ft)t≥0, its natural filtration, that is the smallest right-

continuous σ-field, such that for s ≤ t,Fs ⊂ Ft, and such that all the random

variables s(u) = (q(u), x(u)), for a certain u ∈ [0, t], are measurable, with respect to

the induced probability on the trajectories P [Davis, 1993]. In particular, F0 includes

all the P-null states. Also, consider the sigma field F = ∨tFt, that is the smallest

sigma field that contains all the (Ft)t∈R+ . The collection (Ω,F , (Ft)t∈R+ ,P) is called

a filtered probability space.

A stopping time η on (Ω,F , (Ft)t∈R+ ,P) is a random variable taking values in

R+
⋃
{+∞}, such that (η ≤ t) ∈ Ft,∀t ∈ R+. A process M(t), t ∈ R+ is a martingale
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of Ft if E[|M(t)|] <∞, if M(t) is Ft-measurable, and if for any s ≤ t, E[M(t)|Fs] =

M(s). The concepts of super- and sub-martingale are similarly introduced. A process

M(t), t ∈ R+ is a local martingale if there is an increasing sequence of stopping times

ηn, such that almost surely ηn ↑ ∞ and the process M̃n(t)=̇M(t ∧ ηn) is a uniformly

integrable martingale, for all n.

Similar to the deterministic case (Algorithm 1), the semantics of a GSHS can

be defined by the introduction of the concept of execution. Before defining this

concept, let us introduce the notion of survivor function. Let ω(q,x)(t) be a sample

path, evolving in Dq, starting from x = ω(q,x)(0). Introduce a set of functions Fq :

R+ × Rn(q) → [0, 1] for s(t) = (q(t),x(t)) = (q,x(t)):

Fq(t, ω
(q,x)) = I{t<t?(ω(q,x))}e

−
∫ t
0

∑
q′ 6=q,q′∈Q λqq′ (ω

(q,x)(u))du, (1.4)

where, for a process starting at (q, x) ∈ S, t?(ω
(q,x)) is the stopping time associated

with the first hitting, by the sample path ω(q,x), of any guard γq,q′ ∈ Γq, q
′ 6= q ∈ Q.

The first term is then related to to forced transitions. The second term describes an

exponential distribution characterizing the likelihood of an event, due to the presence

of the transition intensities corresponding to mode q. Notice that the quantity in the

integral exists for any t ≥ 0, by Assumption 1.6. The function F (t, ω(q,x)) describes

the probability that no event has happened along the time horizon [0, t], while the

continuous motion ω(q,x) unfolds within Dq, with initial condition x. Introduce the

mode-dependent quantity λ̂i = supx∈Di

∑
j 6=i

j∈Q
λi,j(x), i ∈ Q, which exists and is finite

by Assumption 1.7. An execution is algorithmically defined as follows:

Definition 6 (Execution). Consider a GSHS Sg = (Q, n, A,B,W,Λ,Γ, RΛ, RΓ) and

a time horizon [0, T ], T ∈ R+. A stochastic process {s(t) = (q(t),x(t)), t ∈ [0, T ]}
with values in S =

⋃
q∈Q{q} × Dq is an execution of Sg, associated with an initial

condition s0 = (q0, x0) ∈ S sampled from π ∈ P(S), if its sample paths are obtained

according to the following algorithm:

Algorithm 2.

set q̂ = q0, x̂ = x0, k = 0 and T0 = 0;

while t < T do

21



Chapter 1. Modeling

extract a sample path ω(q̂,x̂)(t), t ∈ [Tk, T ] from the SDE in (1.1), initialized on

(q̂, x̂);

extract a time T̂ from the random variable inf{t > 0|F (t, ω(q̂,x̂)(t)) ≤ e−λ̂q̂t};

set s(t) = (q̂, ω(q,x)(t− Tk)), t ∈ [Tk, Tk + T̂ ∧ T ];

if Tk + T̂ < T , select (q̂, x̂) according to R(·, s(Tk + T̂ ));

set Tk+1 := Tk + T̂ ; k := k + 1;

end. �

Having introduced the concept of executions, it is now possible to seek conditions

for the existence and the uniqueness of a solution of Sg.

Proposition 1 (Existence and Uniqueness of solution of GSHS). If Assumption 1.1,

1.3, 1.5, 1.6, 1.7, 1.8 are valid, then, the GHSH in Definition 5 admits an existing

and unique solution globally, that is over any time interval.

If Assumption 1.2, 1.4, 1.5, 1.6, 1.7, 1.8 are valid, then, the GHSH in Definition 5

admits an existing and unique solution locally.

The proof of the above statement can be directly adapted from that developed

in [Ghosh and Bagchi, 2004] for a less general class of Stochastic Hybrid Systems.

A uniform elliptic condition on the square of the norm of the diffusion term may

allow one to relax the continuity assumption on the drift term. Furthermore, this

assumption may be necessary whenever optimal control problems have to be tackled

in this framework [Borkar, 1989; Ghosh and Marcus, 1995; Ghosh et al., 1997; Borkar

et al., 1999].

The execution of a GSHS is a càdlàg function of time, i.e. continuous from the

right and with left limit. It can be shown that the model in Definition 5, with unique

solution evolving according to the scheme in 6 and under proper conditions, preserves

the Markov property. In simple terms, the solution s(t), t ≥ 0 of the GSHS Sg, is a

Markov process if, for any t ≥ u ≥ 0 and f ∈ B(S),

E[f(s(t))|Fu] = E[f(s(t))|s(u)].

This fact has relevant implications, both theoretically and computationally.

22



Chapter 1. Modeling

Proposition 2. Consider the GSHS Sg. Assume that there exists a unique solution

s(t), t ≥ 0 (Proposition 1). If Assumption 1.9 holds true, then the process s(t) is

Markov.

The actual proof of this statement can be found in [Bujorianu and Lygeros, 2006],

where it is shown that the càdlàg and Markov properties of simpler diffusion processes

can be exported to the hybrid case (including the presence of resets) by constructing

strings of such processes, i.e. proper “concatenations” of them. Let us not pursue here

further refinements of the above notions, such as that of strong Markov property. For

more details along this line of work, please refer to [Davis, 1993] (PDMP case), [Ghosh

et al., 1992] (switching diffusion), [Ghosh and Bagchi, 2004] (switching diffusions with

deterministic resets). From a different perspective, if the cardinality of the discrete

part of the hybrid state space is finite, and each domain has the same dimension,

the above model can be described by the use of random measures. This approach

is embraced in section 1.4.1, where this modeling framework is used to prove weak

convergence of time-discretization schemes. Within this approach, [Blom, 2003] shows

that Markov properties are preserved under assumptions that are equivalent to those

in Proposition 2.

1.2.2 Process Semigroup and Generator

Consider the space of real-valued, bounded and continuous functions f on the metriz-

able space R, denoted as Cb(R). The norm of choice is that of the sup, ‖f‖ =

sups∈R |f(s)|. Consider also the space of real-valued, measurable functions onR, B(R).

For any t ∈ R+, define an operator Pt : B(R) → B(R), for s ∈ R, as

Ptf(s) = Es[f(s(t))].

Contraction and semigroup properties can be easily shown (see [Davis, 1993; Ethier

and Kurtz, 1986] for more details):

‖Ptf‖ ≤ ‖f‖,

Pt(Psf)(x) = Pt+sf(x), t, s ∈ R+, x ∈ R.
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It is possible to associate to Pt a strong generator L (also named infinitesimal gener-

ator), which can be thought of as being the derivative of the semigroup at the initial

time (t = 0). Let D(L) ⊆ Cb(R) be the set of functions f , for which the following

operation exists:

lim
t↓0

1

t
(Ptf − f).

Denote the above limit as Lf , where the convergence is intended to be in the sup

norm. Notice that such an operator is defined by specifying the above limit, as well

as its domain D(L). The following holds [Davis, 1993, Prop. 14.13]:

Proposition 3. For f ∈ D(L), define the real-valued process

Mt = f(s(t))− f(s0)−
∫ t

0

Lf(s(u))du.

Then, for any s(0) = s0 ∈ R,Mt is a martingale on (Ω,F , (Ft)t∈R+ ,P).

For details on the concept of martingale, see page 21 and refer to [Varaiya, 1975;

Billingsley, 1995; Borkar, 1995; Durrett, 2004].

The knowledge of a process generator often allows one to characterize its associ-

ated stochastic process. As it shall be argued, it is also beneficial in deriving conclu-

sions on convergence properties of the process. This should suggest that it is desirable

to find an explicit form for the generator associated with a stochastic process which

is a solution of a stochastic model. Most of the computations involving real-valued

functions f ∈ Cb(R) of the stochastic process under study involve a relation known

as Dynkin formula. This formula says that, for any f ∈ D(L),∀t ≥ 0,

Esf(s(t)) = f(s) + Es

∫ t

0

Lf(s(u))du. (1.5)

This formula holds a certain importance, because of the applicative value of computing

the expectation of functions of the stochastic process. We shall come back to this tenet

in sections 1.4.3 and 2.2.1. Notice also that the Dynkin formula connects between

SDEs (and, more generally, the theory of stochastic processes) and PDEs.
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For the sake of generality, we may be interested in relaxing the claim in Proposition

3. Accordingly, the following entity is introduced.

Definition 7 (Extended Generator). Consider the functions f ∈ D(L) ⊆ Cb(R) that

verify the following: there exists a Borel measurable function g : R → R, g ∈ B(R),

such that, for any t ≥ 0, s(0) = s0 ∈ R the quantity

Mt = f(s(t))− f(s0)−
∫ t

0

g(s(u))du (1.6)

is a local martingale (see page 21). Let us then define the extended generator of the

process s(t) to be the operator Le such that that g = Lef , with domain D(Le) to be

the set of functions f ∈ Cb(R) such that there exists a g ∈ B(R) that verifies the

relation (1.6).

The above definition is justified in terms of Proposition 3, because the concept of

local martingale is weaker and easier to characterize than that of martingale [Varaiya,

1975; Billingsley, 1995; Borkar, 1995; Durrett, 2004]. In the rest of the dissertation,

let us say that a càdlàg Markov process s(t), with values on S, is a solution of the

[local] martingale problem (L, s0) [(g, s0)], if for any f ∈ D(L), Mt in Proposition 3

[Mt in (1.6)] is a martingale [a local martingale].

Consider a real-valued function f of the hybrid state space S, f : S → R.

Assumption 2. Assume f is a class C2
b (S) function, that is a real-valued, bounded,

twice continuously differentiable function, defined on S.

The extended generator for the process associated with the GSHS model in Def-

inition 5 is derived along the ideas developed in the seminal work of [Davis, 1993],

and the extension to the diffusion case presented in [Bujorianu and Lygeros, 2004b].

To the stochastic process associated with the GSHS Sg, let us associate the ex-

tended generator Lg as follows.

Definition 8 (Extended Generator of Sg). Assume Sg verifies Assumptions 1.6 and

1.9. The extended generator Lg : D(Lg) → Bb(S), associated with the solution of Sg,

is an operator acting on real functions f , with domain D(Lg) containing all the f
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verifying Assumption 2. For s = (q, x) ∈ S and f ∈ D(Lg), Lgf is given by

Lgf(s) = Ld
gf(s) +

∑
q′ 6=q∈Q

λqq′(s)

∫
Rn(q′)

(f(s′ = (q′, x′))− f(s))RΛ(ds′ = (q′, dx′), s),

Ld
gf(s) =

∑
i∈Q

∂f(q, x)

∂xi

ai(q, x) +
1

2

∑
j,k∈Q

∑
l∈Q

bjl(q, x)bkl(q, x)G
f (q, x),

Gf (q, x) =
[
gf

ij(q, x)
]

i,j∈Q
, where gf

ij(q, x) =
∂2f(q, x)

∂xj∂xk

, s ∈ S\Γ.

f(s) =

∫
S
f(s′)RΓ(ds′, s) =

∑
q′ 6=q∈Q

∫
Rn(q′)

f(q′, x′)RΓ((q′, dx′), s), s ∈ Γ.
�

Remark 5. The above definition should more properly be a theorem, whereby it is

proved that an operator so defined, verifies the local martingale condition in Definition

7 on functions belonging to its domain. However, the proof of such a statement

closely follows that in [Bujorianu and Lygeros, 2004b, Theorem 2], which in turn

strictly adheres to [Davis, 1993, 26.14]. Notice that, unlike those sources, no bounded-

variation of the expected value of the functions is assumed. This is thanks to the

simplifying boundedness hypothesis for f , as in Assumption 2, and on Assumption

1.9 for the GSHS model, which excludes Zeno behaviors (that is, an infinite number

of transitions in a finite time interval).

In the formulas for Lg, the quantity Ld
g includes the contribution of the contin-

uous part of the HS as it encompasses operations on its drift and diffusion terms.

The second summand in the definition of Lg describes the influence of the transition

intensities, and their related reset kernels. These terms act on points of the hybrid

state space that are away from the guard set. Finally, the boundary condition at the

bottom line accounts for the resets due to the spatial constraints, and in fact acts on

hybrid points belonging to the guard set Γ. Notice that this last condition effectively

restricts the domain of the operator Lg. �

Remark 6 (Special Cases). If the diffusion term B in Sg is neglected, the extended

generator Lg is included in that of PDMPs, as formally derived in [Davis, 1993,

26.14]. More precisely, their structures coincide, but the PDMP’s would have a larger

domain of definition (that of functions of class C1
b (S)).
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Assume that the GHSH Sg has no guards, and (deterministic) identity reset maps

(in other words, Γ = ∅ and ∀j 6= i, i ∈ Q, RΓ(j, {x}, (i, x)) = RΛ(j, {x}, (i, x)) = 1).

We obtain the framework known in the literature as “switching diffusions.” The

extended generator from Definition 8 for this special case coincides with that derived

in the literature, for instance in [Ghosh et al., 1992], modulo the neglect of the two

reset conditions, as well as of the boundary restriction.

Furthermore, to make an intuitive parallel, in the purely deterministic (no dif-

fusion terms, no transition intensities, nor discrete events and corresponding reset

kernels) and dynamical (single-domain) case, notice that the extended generator co-

incides with the Lie derivative of the function f , taken along the corresponding vector

field [Sastry, 1999]. �
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1.3 Elimination of Guards

The objective of this section is to approximate the GSHS model described in section

1.2.1 with a new SHS, where proper transition intensities are replaced to the spatial

guards. Intuitively, the idea is to “substitute” the events due to the intersection of the

trajectory with the guard set with “random events,” which are sampled from proper

probability distributions. The new model will then be characterized exclusively by

jumps that are elicited by transition intensities. This procedure is a generalization

and a formal refinement of the technique first proposed in [Abate et al., 2005], which

was in turn inspired by a preliminary comment in [Hespanha, 2004].

1.3.1 Approximation Procedure

Consider the GSHS system Sg and its guard set Γ = {γi,j} ⊂ Di, i ∈ Q. Assume

that the sets γi,j ⊂ Di can be expressed as zero sublevel sets of continuous functions

hi,j : Rn(i) → R, properly defined on the continuous part of the domain Di:

γi,j = {x ∈ Rn(i) : hi,j(x) ≤ 0}.

Pick a number δ ≥ 0, and leveraging the continuity of the functions hi,j, introduce

the sets8

γ−δ
i,j = {x ∈ Di : hi,j(x) ≤ −δ} ⊆ γi,j ⊆ γδ

i,j = {x ∈ Di : hi,j(x) ≤ δ}.

Given a point z ∈ S and a set A ⊆ S, let d(z, A) = infy∈A ||z−y|| denote the distance

between z and A. Furthermore, for any j 6= i, j ∈ Q, introduce the set of functions

λδ
i,j : Di → R+

λδ
i,j(x) =

 0, x ∈ Di \ γδ
i,j(

1

d(x,γ−δ
i,j )

− 1

sup{y:hi,j(y)=δ} d(y,γ−δ
i,j )

)
∧
(

1

sup{y:hi,j(y)=0} d(y,γ−δ
i,j )

)
, x ∈ γδ

i,j

(1.7)

8Let us assume that there exists a function hi,j such that, for small enough δ > 0, both γδ
i,j , γ

−δ
i,j 6=

∅. The first condition happens if the interior of a domain is non-trivial. The second if the guard is
not strictly inside the corresponding domain and it does not have a trivial volume.
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In the above expression, the operation a ∧ b = min{a, b} has been used. Associated

with this set of intensity functions is a Λδ : S × Q → R+. For any 0 < δ < ∞ the

function Λδ is upper bounded. In the limit as δ → 0, the following set of intensity

functions is obtained

λ0
i,j(x) =

{
0, x ∈ Di\γi,j,

+∞, x ∈ γi,j.

With the system Sg is associated a new stochastic hybrid system Sδ, which is made

up of the elements of Sg, except for the following:

• The spatial guards set is empty, Γ = ∅;

• The new domains are simply Di = Rn(i),∀i ∈ Q;

• The new set of transition intensities Λδ is defined over the whole S;

• The old set of transition intensities Λ, whose original domain of definition was

S \ Γ, are extended to the whole domain by setting their value to be equal to

zero for the points inside the old guard set;

• The reset kernel RΓ (for Λδ), which used to be defined over the domain of the

old guard set Γ of Sg, is extended to the whole S by introducing deterministic

identity resets on the points in S\Γ;

• The reset kernel RΛ (for Λ), which used to be defined just on the interior S\Γ of

the domains of Sg, is extended to the whole S also by introducing deterministic

identity resets on the points in Γ.

Let us remark that the absence of spatial guards implies that the events associated

with a hybrid execution are random events exclusively due to the presence of the tran-

sition intensities (both the old and the newly defined ones). It can be formally shown

that the evolution of the discrete component can be described by a non-homogeneous

continuous-time Markov chain: section 1.4.1 further elaborates this point and lever-

ages this feature.

It is worthwhile to add that the definition of the transition intensities in (1.7) is

not unique. Assuming some simplified form for the guard set, [Abate et al., 2005]
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has come up with an alternative and less general definition. Furthermore, for the

simple instance of the hybrid model of the bouncing ball , [Hespanha, 2004] proposes

yet another set of parameter-dependent intensities. Regardless of the actual shape

of the functions, it is their limiting properties that will draw the attention in the

following.

1.3.2 Convergence Properties

Let us derive the extended generator for the stochastic hybrid process, which is a

solution of Sδ. The form of this generator is based on results in the literature.

[Davis, 1993] derives the extended generator for a PDMP. In [Jacod and Shiryaev,

1987; Ghosh et al., 1992], the generator of a switched diffusion is reported. [Ghosh

and Bagchi, 2004] extend this form to a switched diffusion with deterministic resets.

The generator here derived is then more general than those cited in that the SHS

has random resets associated with the discrete jumps. Consider again real-valued

functions f , defined on the hybrid state space S of Sδ, f : S → R.

Definition 9 (Extended Generator of Sδ). Assume that Sδ verifies Assumptions

1.6 and 1.9.9 The extended generator Lδ, associated with the solution of Sδ, is an

operator acting on real-valued functions f , with domain D(Lδ) containing all the f

verifying Assumption 2. For s = (q, x) ∈ S, and for f ∈ D(Lδ),Lδf is defined as

Lδf(s) = Ld
δf(s)+

∑
q′ 6=q∈Q

λqq′(x)

∫
Rn(q′)

(f(s′ = (q′, x′))− f(s))RΛ(ds′ = (q′, dx′), s)

+
∑

q′ 6=q∈Q

λδ
qq′(x)

∫
Rn(q′)

(f(s′ = (q′, x′))− f(s))RΓ(ds′ = (q′, dx′), s),

Ld
δf(s) =

∑
i∈Q

∂f(q, x)

∂xi

ai(q, x) +
1

2

∑
j,k∈Q

∑
l∈Q

bjl(q, x)bkl(q, x)G
f (q, x),

Gf (q, x) =
[
gf

ij(q, x)
]

i,j∈Q
, where gf

ij(q, x) =
∂2f(q, x)

∂xj∂xk

.
�

Remark 7. Notice the absence of the guard conditions of Definition 8. It is substi-

9As anticipated on page 19, in section 1.3.3 it will be shown that, for the SHS model Sδ, 1.7 is
sufficient for 1.9 to hold true.
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tuted by the third additive term in the definition of Lδ, where the “artificial” transition

intensities Λδ, as defined in equation (1.7), have been introduced. In principle, the

absence of the guard condition in Definition 9 makes D(Lg) ⊆ D(Lδ), for δ > 0. �

For the ease of notations, let us introduce a change of variables: n = 1/δ. As-

suming without effective loss of generality that n ∈ N, in the following let us refer to

the SHS Sn, in place of Sδ. Let us denote with s(t) and sn(t), t ≥ 0, the stochastic

processes solutions of, respectively, the GSHS Sg and Sn. Recall the definition of

their extended generators, Lg in Definition 8 and Ln = L1/δ, given just above.

Let us formally show that, as n → ∞, the sequence of stochastic processes

{sn(t)}n≥1 converges, in some sense, to s(t), for any t ≥ 0. In other words, let

us show that, at the limit, the solutions of the GSHS Sg and of the SHSs Sn are, in

some sense, the same. In the following let us pin down the notion of convergence. The

forthcoming concepts can be found in [Ethier and Kurtz, 1986; Jacod and Shiryaev,

1987], where a number of results on weak convergence of stochastic processes that

will be used in the following are summarized.

Consider C0
b (S), the space of real-valued, bounded and continuous functions f de-

fined on the hybrid state space S and endowed with the sup norm, ‖f‖ = sups∈S |f(s)|.
Let P(S) be the space of probability distributions over S.

Definition 10 (Weak Convergence). A sequence {µn}n≥1 ⊂ P(S) of probability

distributions is said to converge weakly to µ ∈ P(S) if

lim
n→∞

∫
S
fdµn =

∫
S
fdµ, ∀f ∈ C0

b (S). �

Consider a random variable X with values in S. Denote its probability distri-

bution, an element in P(S), as distX : B(S) → [0, 1] :
∫
S distX(x)dx = 1. If

A ∈ B(S), distX(A) = P(X ∈ A).

Definition 11 (Convergence in Distribution). A sequence of S-valued random vari-

ables {Xn}n≥1 is said to converge in distribution to an S-valued random variable X

if {distXn}n≥1 converges weakly to distX , that is

lim
n→∞

∫
S
f(z)distXn(dz) =

∫
S
f(z)distX(dz).
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Equivalently,

lim
n→∞

E[f(Xn)] = E[f(X)], ∀f ∈ C0
b (S). �

With the understanding of the differences between the two notions of convergence,

we shall use the notations µn ⇒ µ and Xn ⇒ X respectively.

The concept of extended generator (section 1.2.2) can be useful in showing that a

sequence of Markov processes converges to a given Markov process. Informally [Ethier

and Kurtz, 1986], given a sequence of S-valued processes {Xn}n≥1 and a process X,

endowed with extended generators (An,D(An)) and (A,D(A)) respectively, to prove

that Xn ⇒ X it is sufficient to show that for all functions f ∈ D(A), there exist

fn ∈ D(An), such that fn → f and Anfn → Af .

Let us introduce the following condition:

Definition 12 (Compact Containment Condition (CCC)). A sequence of stochastic

processes {Xn}n≥1 on S is said to satisfy the Compact Containment Condition if for

any ε > 0, N > 0, there exists a compact set Kε,N ⊂ S such that

lim inf
n↑∞

P [Xn(t) ∈ Kε,N ,∀ 0 ≤ t ≤ N ] ≥ 1− ε. �

The following is verified:

Theorem 1. Consider the GSHS Sg and the SHS Sn,∀n. Let s(t) and sn(t),∀n, be

the unique global solutions of these models, t ≥ 0. Then, the stochastic processes s(t)

and sn(t) verify the CCC in Definition 12. �

Proof. The existence and uniqueness of (global) solutions for the hybrid models re-

quires the validity of a number of assumptions on them (see Proposition 1). Among

these, Assumption 1.3 requires boundedness of both the drift and the diffusion terms.

In addition, Assumption 1.8 implies that the possible resets have a finite “range.”

This is enough to argue for the absence of a finite escape time for the stochastic

processes that are solution of the SHS Sg and Sn. In other words, the solution does

not diverge in finite time: ∀0 ≤ N < ∞, supu∈[0,N ] ‖s·(u) − s·(0)‖ < ∞. Because of

this feature, at any time N ≥ 0, it is always possible to find a set, in particular a
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compact one, that contains the trajectories with probability one for the whole time

interval [0, N ] and for any approximation parameter n = 1/δ. The last formula may

suggest a lower bound for the diameter of such compact set. This argument concludes

the proof.

In the rest of the dissertation, given a sequence of entities {cn}n≥1 and a c, let

us denote with lim?
n cn = c the conditions limn→∞ cn = c and (∨n‖cn‖) ∨ ‖c‖ < ∞,

where again ‖ · ‖ is the supremum norm.

The following statement, drawn from [Xia, 1994, Theorem 4.4] and proven in

generality there, describes a condition for the weak convergence of Markov Processes

by the use of their extended generators. The result is based on some theory developed

and contained in [Ethier and Kurtz, 1986; Jacod and Shiryaev, 1987].

Proposition 4 (Conditions for Weak Convergence). Let (A,D(A)) and (An,D(An))n≥1

be the extended generators of the S-valued stochastic processes X(t) and (Xn(t))n≥1, t ≥
0. The initial conditions for these processes are sampled respectively from π and

(πn)n≥1 in P(S), all probability distributions on S. Assume that the processes (Xn)n≥1

are solutions of the local martingale problem (see page 25) for (An, πn)n≥1, and that

X is a unique solution of the local martingale problem for (A, π). Suppose further

that:

• A ⊂ C0
b (S)× C0(S);

• For all f ∈ D(A),∃fn ∈ D(An), n ≥ 1, such that lim?
n fn = f, limnAnfn = Af ;

• πn ⇒ π.

If (Xn) satisfies the CCC in Definition 12 and D(A) is dense in C0
b (S) with respect

to lim?, then Xn ⇒ X, as n→∞.

Notice that the generators A and (An)n≥1 are not required to have the same

domain. Also, recall that a process X is said to be a solution of the local martingale

problem for a linear operator (A, π) if P ◦ X(0)−1 = π, and for each f ∈ D(A),

f(X(t))−f(X(0))−
∫ t

0
Af(X(s))ds is a local martingale, ∀t ≥ 0. Clearly this property

holds in particular, by Definition 8, for the extended generator of the process X.
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Similar arguments also hold for the sequence of processes {Xn}n≥1.

The upcoming hypothesis can be related to Assumption 1, as well as Assumption 5.

Assumption 3. Given a GSHS, as in Definition 5, assume that the probabilistic reset

kernels RΓ(j, ·, (q, x)) are continuous in x.

In order to complete the proof of the following statement 2, it is necessary to

verify the following claim, the proof of which is, as of yet, still elusive.

Conjecture 1. The local martingale problem for (Lg,D(Lg)) is well posed, that is,

it admits a unique solution.

The result in Proposition 4 can be applied to the (G)SHS setup, thus yielding the

following theorem:

Theorem 2 (Weak Convergence of Sδ to Sg). Consider the SHS model Sδ, the

GSHS model Sg under Assumption 3, and their associated solution processes sδ(t)

and s(t), t ≥ 0, where sδ(0) = s(0) = (q0, x0) ∈ S. Consider further their extended

generators (Lδ,D(Lδ)), (Lg,D(Lg)) and assume Conjecture 1 is valid. As the approx-

imation step δ ↓ 0, the solution of the SHS Sδ weakly converges to that of the GSHS

Sg: sδ(t) ⇒ s(t),∀t ≥ 0. �

Proof. It will be ordinately shown that the conditions in Proposition 4 hold true for

the theorem under study. To begin with, let us relate the SHS models Sδ with the as-

sociated Sn, its corresponding solution sn(t) and the extended generator (Ln,D(Ln)),

where it is safely assumed that n ∈ N. Notice that the initial probability distributions

associated with the processes s and sn coincide, and are in fact concentrated on the

hybrid point (q0, x0) ∈ S.

As previously discussed, because of the boundary condition raised in Definition

8, for any n ≥ 1, the generators Ln and Lg have different domains. Furthermore,

Ln has a shape that differs from Lg, in that there is a contribution from the newly

created intensity functions Λδ and their associated reset maps.

As discussed in Remark 5 both extended generators (Ln,D(Ln)) and (Lg,D(Lg))

verify the local martingale property on functions f of their solution processes, and

which belong to their domain of definition. The stochastic processes sn(t) and
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s(t) are solutions of the corresponding local martingale problems (Ln, (q0, x0)) and

(Lg, (q0, x0)) [Davis, 1993]. However, we have to raise in Conjecture 1 the claim that

s(t) is a unique solution.

Notice that the deterministic initial condition (q0, x0) makes the third condition

in Proposition 4 unnecessary.

Given the domain of the extended generators, which includes f ∈ C2
b (S), as well as

the form of the generators, the first of the three conditions in Proposition 4 certainly

holds for points s ∈ S \Γ. Furthermore, the continuity assumption on the reset kernel

RΓ in Assumption 3 enforces this condition on functions f ∈ C2
b (S), which verify the

third condition in Definition 8, on points s ∈ Γ.

For any n ≥ 1, let us introduce the functions fn :
⋃

q∈Q{q}×Rn(q) → R, to be identical

to f : fn = f,∀s ∈
⋃

q∈Q{q}×Rn(q). Then, we do not need to assume a novel sequence

of functions fn ∈ D(Ln) such that lim?
n fn = f , as in the second point of Proposition

4. Let us then limit ourselves to proving that limn Lnf = Lgf . In this limit the

boundedness of the involved quantities is not required. Recalling the shape of the

generators Lnf and Lgf in Definitions 8 and 9, notice that the only difference lies on

the presence of the third additive term, on one side, and the guard set condition, on

the other. The reader should realize that the extension of the domains of Λ, RΓ, RΛ

does not introduce additional, spurious behaviors to the dynamics of Sδ.

Let us focus on the asymptotics of Λδ. First, on the points inside the domains,

s ∈ S \Γ =
⋃

q∈Q{q}×Dq \Γ, limn→∞ Λδ(s) = 0. Secondly, on the points of the guard

set, s ∈ Γ, the value of the barrier functions diverges. Then, the following limit

lim
n→∞

∑
q′ 6=q∈Q

λn
qq′(q, x)

{∫
Rn(q′)

f(s′ = (q′, x′))RΓ(ds′ = (q′, dx′), (q, x))− f(q, x)

}
= 0

will be verified only if the second multiplicative term is equal to zero, which coincides

with the boundary condition for Lgf in Definition 8:

f(q, x) =

∫
Rn(q′)

f(s′ = (q′, x′))RΓ(ds′ = (q′, dx′), (q, x)).

As it has been discussed in Theorem 1, the sequence of processes (sn(t))n≥1 satisfies

the CCC in Definition 12.
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Let us now show that D(Lg) is dense in C0
b (S). By the Stone-Weierstrass Theorem

[Stone, 1948], given any compact set K in a Haussdorff space (in particular, the

metric space S), C2(K) functions are dense over the set of C0(K) functions. In

fact, they form an algebra that contains constant functions and separates points.

This holds also for the functions C2
b (K) over the set C0

b (K). The claim can be

extended to the set of C2
b (S) functions, as needed in Proposition 4. First, notice

that S is locally compact, as Euclidean spaces are. Then, refer to the extensions of

the Stone-Weierstrass theorem to locally compact spaces, as discussed in [Nel, 1968;

Arens, 1949], which can be leveraged in the framework of [Xia, 1994] that we are

exploiting in Proposition 4.

It has been shown that all the conditions in Proposition 4 are verified. The claim

of the theorem follows.

One alternative way to go about proving such a convergence result is by leverag-

ing the infinitesimal generator of the process. There is a body of literature on the

subject, nicely summarized in [Ethier and Kurtz, 1986; Jacod and Shiryaev, 1987].

These results go through concepts, such that of a core10 of an operator, which is

fundamentally related to the “density” condition raised in Proposition 4, or that of

tightness, which connects with the CCC. However, it appears difficult to derive a

form for the infinitesimal generator of a GSHS ([Ghosh et al., 1992] did this for the

more restricted case of switched diffusions). On a side note, the above result can be

extended to the case where the cardinality of Q is infinite. This instance may create

problems for the validity of the CCC in Definition 12. A solution to the problem, and

a consequent extension of the result in Theorem 2, is based on a martingale approach,

as discussed in [Bhatt and Karandikar, 1993].

1.3.3 Convenience of the new form: A Claim

In Remark 3, it has been stressed how, in the deterministic case, “switched systems”

are fundamentally simpler than “hybrid ones.” The take-away point is that the

10Let A be a closed linear operator. A subspace D of D(A) is said to be a core for A if the closure
of the restriction of A to D is equal to A.
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presence of spatial guards increases the complexity of the model, possibly disrupts

properties, and introduces pathological behaviors.

It is the author’s belief that this statement should be extended to the stochastic

realm. This has further motivated the introduction of the approximated models in

this section.

More precisely, let us formalize the following claim, that “stochastic hybrid sys-

tems which are endowed exclusively with random jumping events (which can be due to

the presence of transition intensities or which, more generally, are due to an arrival

process) are simpler than those that present spatial guards as a possible event mecha-

nism.” In this claim, the attribute simpler has to be intended as a term of comparison

between the original and the approximated models in terms of their structures, their

behaviors, the properties that can be proven and the ease in simulating them.

A special instance of the above proposition is represented by the approximation

of a deterministic HS, as in Definition 1, by a PDMP [Davis, 1993] endowed with

transition intensities, but no guards.

This section is aimed at offering some supporting evidence in favor of the above

claim. Often the argument will hinge on computational case studies which, for the

sake of clarity, will be applied to the aforementioned special instance. A general

statement for the above tenet is certainly not claimed here, but this work intends to

reinforce the argument by offering the description of the many instances where this

statement appears to be valid. The underlying message is that an approach such as

that in section 1.3.1 may be exploited in the analysis and computation of models as

comprehensive as the GHSH.

Absence of Zeno. Recall the concept of Zeno behavior, given in Definition 4. The

following condition recaptures that in Assumption 1.9 on page 19, which was then

used for proving the existence, uniqueness, and the Markov property of the solution

process for the GSHS Sg, and which will also play a role in the ensuing section.

Assumption 4. Let us assume the transition intensities are bounded on their domain

of definition, that is

∃0 ≤ M <∞ : ∀q′ ∈ Q,∀s = (q, x) ∈ S, λqq′(x) < M. �
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Theorem 3 (Absence of Zeno). Given a SHS with no spatial guards (Γ = ∅) (for

instance Sn obtained via the approximation procedure in section 1.3.1), if Assumption

4 holds, then Zeno behaviors are ruled out, with probability one. �

Proof. The survivor function in equation 1.4 on page 21 can be lower bounded by

F (t, s0) ≥ e−Mt. The term on the right hand-side describes the probability that there

is no jump in the interval [0, t], according to an exponential distribution that may be

associated with a Poisson arrival process with rate M. Then, the expected number of

arrivals on [0, t] is simply Mt, hence it is finite for any finite time interval. It follows

that the probability of an infinite number of arrival in a finite time interval is almost

surely equal to zero.

Remark 8. [Abate et al., 2005, Theorem 1] proved a similar result for the special

case mentioned above: the approximation of the dynamics of a deterministic HS with

a PDMP [Davis, 1993], where the guard set is properly substituted by newly introduced

transition intensities.

As we discussed in a footnote of Assumption 1, the work in [Davis, 1993, Assumption

24.4, Proposition 24.6] derived explicit sufficient conditions to almost surely exclude

Zeno behaviors, or the presence of finite “escape time.” A comparison of those con-

ditions with that in Assumption 4 will suggest the simplicity of the latter.

More generally, given any HS (or a GHSH) with guards, the application of an ap-

proximating procedure such as that in 1.3.1 yields a model which, upon verifying the

condition in Assumption 4, is not Zeno. Let us stress that this assumption is practi-

cally verified for simulation purposes. �

Example 3 (Two Water Tanks Hybrid System, from [Abate et al., 2005]). The two

water tanks hybrid system [Zhang et al., 2001; Abate et al., 2005; Ames et al., 2005]

is a simple and well studied hybrid model of a physical system, which can present

Zeno behavior among the allowed executions, depending on the value of some model

parameters. Regardless of how one intends to regard and handle the concept of Zeno,

it is of interest to be able to simulate such trajectories, without any possible disruptive

outcome.

The system represents the dynamics of the level of a liquid (say, water) in two

tanks, set up in a parallel configuration. Both tanks, which allow for some liquid
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outflow, may accept more water when filled up by a single hose. This refill mechanism

is forced to switch between any of the two tanks whenever the corresponding level of

fluid goes below a certain constant level (threshold). The device can be modeled as

a deterministic HS. More precisely, let us introduce a set of two modes, Q = {1, 2},
each of which is associated with a domain, the real line, D1 = D2 = R+. The domains

are related via two symmetric edges, E = {e1 = (1, 2), e2 = (2, 1)}. A mode describes

the active status of the corresponding tank, which is baing filled up. Accordingly, the

other tank will instead be releasing liquid. The dynamics are described by the following

two vector fields, acting on the corresponding domain and with values in R+:

f1(x) =

(
−v2

w − v1

)
; f2(x) =

(
w − v2

−v1

)
.

Here x = (x1, x2)
T is the level of the water in the two tanks, w is the inflow, v1, v2 are

the two outflows. The guards are two threshold levels (say x̄1, x̄2 ≥ 0), and both reset

maps are the identity (i.e., it is assumed that the switch of the external hose happens

instantaneously).

As said, the classical deterministic mathematical model of this system does not

account for delays in the physical switch of the hose from one tank to the other one.

It can be formally shown that this implies, for certain configurations of the parameters

of the system, the existence of Zeno behavior: in particular, for the following case

max{v1, v2} < w < v1 + v2.

In words, this happens in the case when the inflow is less than or equal to the sum of

the two outflows. In this case, it is possible to calculate explicitly the exact value of

the (finite) time when Zeno occurs (Zeno time t∞). In Fig. 1.3, we plotted first a 3D

simulation of this system—under conditions that configure the system to be Zeno—

with the classic deterministic event detection [Shampine and Thompson, 2000]. As

expected, the number of switches of a trajectory diverges while approaching Zeno time.

A proposed solution involves the substitution of the aforementioned constant thresh-

olds (x̄1, x̄2) with barrier functions, whose values rapidly diverges in a neighborhood

of the thresholds, while being close to zero inside the domains. The particular shape
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Figure 1.3: Three dimensional view of the two water tanks hybrid system.
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Figure 1.4: Top view of the two water tanks hybrid system. The model has been simulated
with the classical deterministic event detection software available in MATLAB. After ap-
proximating the threshold via properly defined stochastic barrier functions, the simulations
have been run with increasing precision by tuning a parameter for the intensity barriers.

of these transition intensities has been inspired by [Hespanha, 2004]. Their steepness

depends on controllable parameters.

In the series of plots in Fig. 1.4, it is shown how the stochastic approximation is

able to detect the discrete event with qualitatively as much accuracy as the determinis-

tic counterpart. However, unlike this case, the trajectories are defined for any positive

time interval. In other words, there is no finite Zeno time, and–from a computational

perspective—the simulation does not stop.

Deadlock Behaviors. Recently, the contribution in [Abate et al., 2006b] proposes

a formal definition of the concept of deadlock for a general class of (controlled) de-

terministic HS. It is argued that the concept arises because of 1. the composition of
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different hybrid systems; and 2. the composition of specifications defined on trajec-

tories belonging to their corresponding domains. In the categorization of the possible

deadlock behaviors, it is clear that the vast majority of them is due to the intercon-

nection of the guard sets pertaining to different HS, which yields Zeno or blocking

behaviors. The work suggests that an approximation—along the lines of that of sec-

tion 1.3.1—of the original deterministic HS with a probabilistic one may solve this

issue. The reader is invited to refer to [Abate et al., 2006b] for more details on the

topic.

Hybrid System Composition. The issue of hybrid systems composition has recently

drawn some attention [Tabuada et al., 2004; Abate et al., 2006b], yet it has not

been completely sorted out and understood. However, it is clear that one of the

big challenges in composing HS is to understand, in general, how the dynamics are

affected, or preserved. This is in contrast with the ease in composing purely dynamical

systems: the composition is in this case simply intended as a sharing of signals, and

the system dynamics as a black-box that is unnecessary to fully characterize. This

input-output approach [Lynch et al., 2001; Lynch et al., 2003] has in part shed some

light on how to handle the problem. Still, a general solution does not appear to be

within reach. Especially, the presence of guards seems to allow for a wealth of possible

pathological behaviors (deadlock is only one of them).

On the contrary, the composition of HS with no guard set (in particular, SHS

obtained according to the procedure in section 1.3.1, or—in the deterministic case—

switched systems) is semantically definable in a straightforward way and does not

involve the possible introduction of pathological or unexpected behaviors. The num-

ber of intensity functions can be easily manipulated, provided the assumptions on

their continuity hold valid. The author is interested in further pursuing this avenue

in his future work.

Simulations and Event Detection. As discussed in [Abate et al., 2005] for the

deterministic HS case, the issue of event detection can be problematic. This is true for

particular interconnections of the guards of the system, which may yield pathological

behaviors with respect to a subset of the allowed initial conditions. This issue is well
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discussed in the work [Esposito et al., 2001], which is based on seminal work on the

topic by [Shampine and Thompson, 2000]. The use of a stochastic approximation

may allow one to approach the problem in a much more “controlled” way: by tuning

the steepness parameter of the transition intensity, it is possible to tune the event

detection precision, regardless of possible pathological behaviors of the dynamics.

This is even truer for GHSH: while the event detection problem for diffusion dy-

namics with respect to a spatial guard is a rather hard problem, the corresponding

issue of arrival generation for intensity-based switchings offers easier conditions (sam-

pling from a probability distribution) for the simulation of the probabilistic dynamics.

Refer also to section 1.4.1 and the “thinning procedure” there introduced.

Topological Properties. Recent research on deterministic HS [Simic et al., 2005;

Ames and Sastry, 2005a] has tried to investigate and understand their topological

properties. The use of refined approaches borrowed from differential geometry, ho-

mology theory and category theory has shed some light on the issue, albeit at the

expense of the complicated mathematics involved in the process. The SHS framework

defined in this chapter, on the contrary, offers a rather simple and direct understand-

ing of the above topic. In particular, notions of metric, distance and topology are

straightforwardly introduced in section 1.2.1. It is the author’s belief that the reason

stems from the absence of spatial guards and their substitution with easy-to-handle

transition intensities.

Explicit Dynamics. A further convenience coming out of models with no guards is

the possibility of expressing their dynamics explicitly via a set of random measures.

This is also connected to the applicability of time sampling techniques to the processes

under study. These concepts will be further elaborated in section 1.4.

Use of the Process Generator

The previous section has argued for the structural and analytical simplicity of a

certain class of stochastic hybrid systems. The main argument has been that the

elimination—or proper substitution with approximated entities—of the spatial guards

is associated with analytical and computational benefits. One instance where this
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structural simplicity is evident is in the shape of the extended generator associated

with a solution of the model. We have derived it in Definition 9 and compared it to

the one for the GSHS in Definition 8. We have already stressed the importance of

this entity, both theoretically (characterization of the process and of its convergence

properties) and computationally (Dynkin formula, in equation (1.5)).

In the following let us suggest that the use of the (extended) generator may be

useful in a number of other instances, which would be otherwise harder to analyze

directly via the solution process, or the semigroup (when possible to express it ex-

plicitly).

Delay Systems. The Systems Theory literature has broadly studied dynamical mod-

els with delays [Gyory and Ladas, 1991]. These models naturally describe systems in

which at least part of the signals experience a time lag, often due to a non-negligible

transmission or processing slowdowns.

In particular, the use of such models in population dynamics, or more generally in the

biological arena, is known [Gopalsamy, 1992] and helps in describing heterogeneous

systems with different time scales. The recent contribution in [Lygeros et al., 2006]

extends this modeling effort to the stochastic hybrid framework, by setting up a model

that describes a delayed, noisy and multidimensional version of the Lotka-Volterra

population dynamics.

The continuous dynamics describe an n-dimensional stochastic delayed differential

equation for the population level of each of the the n species. The parameters of the

system depend on the state of a finite discrete-valued process, which changes according

to the discrete dynamics. There is no reset upon transitioning between the discrete

modes.

With the possible exclusion of the delayed term, this class of systems belongs to

that of switching diffusions, and hence is a subset of the SHS given in section 1.3.1.

Denote this new class of SHS as Sτ . This class of systems appears to be difficult

to analyze with the classical approach on delayed differential equations, that is by

introducing a set of generator functions, defined on the interval [−τ, 0), and looking

at the associated infinite-dimensional system [Gyory and Ladas, 1991]. Instead, this

model turns out to be quite easily characterizable via its extended generator.
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With the exception of a newly-introduced spurious variable, which accounts for

the delayed signal, the extended operator has an almost identical form as the one in

Definition 9, and works on the same domain of definition. Refer to [Lygeros et al.,

2006] for the form of the dynamics and of the generator, as well as for an analysis of

the model.

Polynomial Systems. The work in [Hespanha, 2005] introduces a SHS model which

has polynomial components in the continuous dynamics, (deterministic) reset maps

and transition intensities. It is there argued that the expression of the extended

generator as a polynomial allows one to turn polynomial functions of the process

solution of the model into other polynomials, thus inducing an algebraic structure.

Known “moment closure” methods leverage this feature of the extended generator

and allow one to approximate higher-order moments of the process with controllable

accuracy. This has clear repercussions on computations that may be performed on

the model.
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1.4 Time Discretization

In this section, with reference to the approximated models obtained by the procedure

explained in section 1.3.1, let us introduce an alternative expression of its dynamics

in section 1.4.1. Leveraging this representation, let us then introduce a first-order

time discretization scheme in section 1.4.2. By raising some continuity hypotheses on

the elements of the SHS, the weak convergence property of the discrete-time process

to the original continuous-time one is outlined in section 1.4.3.

This procedure is interesting in light of the objectives of this work. It is upon the

obtained discrete-time process (properly enhanced with controls) that the concepts

in chapter 2 shall be developed.

1.4.1 Hybrid Dynamics through Random Measures

Let us consider a SHS, as given in Definition 5 but with no guard set, and let this

model be autonomous (with no controls). The event times are exclusively due to a

random arrival process, their distribution having the shape in (1.4), with exclusive

dependence on the set of state-dependent transition intensities. To reflect this feature,

denote this SHS with Sλ. The structural and analytical conveniences of this hybrid

model has been previously discussed (in section 1.3.3). Among these qualities, we

hinted at the fact that its dynamics (and consequently the semantics of the model)

can be synthetically expressed via a set of (dynamical) relations, rather than by a

scheme, as in Algorithm 6.

Consider the continuous-time Markov process s(t) = (q(t),x(t)), t ≥ 0, unique

solution of Sλ. For the sake of simplicity, let us assume that each domain has the

same dimension n, that is ∀q ∈ Q, n(q) = n. Also, let us consider a finite number of

modes and denote them as Q = {1, 2, . . . ,M},M = card(Q) < ∞. In other words,

the process s(t) takes values in S = Q× (Rn), the hybrid state space.

In the remainder of the section, let us show that the process s(t) can be regarded

as a (marked-)point process, and that we can express its dynamics, and by large

that of the stochastic hybrid system Sλ, by the use of a random measure µ(dz, dt),

to be formally introduced briefly. This measure characterizes the arrivals in time

that depend on the transition intensities, and has marks on the hybrid state space S
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according to the reset kernels in Sλ.

For the sake of reference, the results are based on related work in [Ghosh et

al., 1992; Glasserman and Merener, 2003; Glasserman and Merener, 2004; Krystul

and Bagchi, 2004; Prandini and Hu, 2006a]. The expression that shall be obtained

is to be in fact considered more general than those in the referenced articles. In

particular, [Ghosh et al., 1992] and [Prandini and Hu, 2006a] consider only switching

diffusions (that is, with no reset of the continuous component upon a jumping event);

[Glasserman and Merener, 2003; Glasserman and Merener, 2004] focus on jumping

diffusions, that is processes described by a marked point process that is made up

by a single-mode continuous diffusion component and a random measure with state-

dependent transition intensities which probabilistically reset the trajectory. Finally,

[Ghosh and Bagchi, 2004; Krystul and Bagchi, 2004] consider SHS that are similar to

Sλ, but with deterministic reset functions. Seminal work on the connections between

SDEs and point processes is to be found in [Marcus, 1978], while [Jacod and Shiryaev,

1987, chapter II] contains a detailed presentation of the theory of random measures

within the general framework of semimartingales.

In the ensuing work, let us first show that it is possible to symbolically describe

the dynamics of Sλ by the following pair of equations, ∀t ≥ 0:

dx(t) = a(q(t−),x(t−))dt+ b(q(t−),x(t−))dw(t) +

∫
S
µ(dz, dt); (1.8)

P(q(t+ dt) = j|q(t) = i,x(s),q(s), s ≤ t) = λij(x(t))dt+ o(dt), (1.9)

∀j ∈ Q, j 6= i, where the first equation describes the continuous component, and the

second the discrete one. Let us recall that in the second equation (1.9) the intensities

are introduced, at time t ≥ 0 and for q(t) = i, as λij(x(t)) = λ((i,x(t)), j).

We already discussed (see Proposition 2 in section 1.2.1) the Markov property of

the solution of the SHS Sλ. This allows one to simplify the left-hand side of (1.9) as

follows

P(q(t+ dt) = j|q(t) = i,x(s),q(s), s ≤ t) = P(q(t+ dt) = j|q(t) = i,x(t)).

The first equation in (1.8) describes the continuous dynamics (drift and diffusion
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parts), as well as the probabilistic jumps and resets (contribution of the random mea-

sure). The quantity µ(dz, dt) is a random measure which accounts for the resets in the

continuous component of the trajectory, and contains information on the occurrence

of the jumps. This term is supposed to be “active” only when a transition happens.

However, the reset probability in our model Sλ depends on the second relation in

(1.9), through the state-dependent arrival rates that characterize the jumps of the

discrete component of the hybrid trajectory. Intuitively, because of the definition

of the reset probability distributions, the mark space of this random measure is the

hybrid state space S.

The compensator ν associated with the random measure µ, also known as its

intensity, is a predictable measure which, for any measurable f : R+ × S, makes the

quantity ∫ t

0

∫
S
f(s, z)µ(ds, dz)−

∫ t

0

∫
S
f(s, z)ν(ds, dz)

a martingale, for any t ≥ 0 [Jacod and Shiryaev, 1987; Cont and Tankov, 2004]. For

the SHS Sλ, it is possible to express ν in a closed form: considering a node q′ ∈ Q
so that at time t ≥ 0, q(t) = q′, while at time t− < t, s(t−) = (q(t−),x(t−)), the

intensity of the measure µ(dz, dt) is

ν(dz,q(t), (q(t−),x(t−))) = λ((q(t−),x(t−)), q′)RΛ(q′, z, (q(t−),x(t−)))dzdt. (1.10)

Notice that, at time t ≥ 0, the intensity is characterized by the product of two

terms from the definition of Sλ, an intensity λ and a kernel RΛ (function of the

variable z). It is a random quantity because it depends on a random signal (the

hybrid solution of the SHS Sλ). The first contribution in (1.10) accounts for the

random event times (which hinge on the state-dependent jumping intensities), while

the second term accounts for the probabilistic resets. Notice that these two terms are

taken from the elements in the Definition 5 of GSHS. Let us further assume that ν is

an absolutely continuous function of its variables z, t, which allows one not to worry

about imposing conditions for the validity of the equality ν(dz, dt) = ν(z, t) dz dt.

The following hypothesis can be related to Assumption 1, and in part coincides

with Assumption 4.
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Assumption 5 (Continuity and Boundedness Properties). The elements of Λ and of

RΛ of the SHS Sλ are Lipschitz continuous functions of their continuous component

x, that is of the continuous part of the hybrid state space.

Let Assumption 4, on the boundedness of the transition intensities in Λ, hold true.

Before further working on the dynamical relation in (1.8), where the random

measure (its reset part) depends the specific mode that the hybrid process jumps

to, let us first focus the attention on the dynamics in (1.9), which can instead be

manipulated independently. With regards to the discrete component q(t), let us

introduce a construction which is much like the one in [Ghosh et al., 1992; Prandini

and Hu, 2006a]. The main idea is that it is possible to express the dynamics of an

(non-homogeneous) continuous-time Markov chain by a random measure. Intuitively,

it is possible to associate a continuous-time Markov chain to the discrete dynamics

of the component q(t).

Let us introduce a set of intervals of the real line ∆ij(x) ∈ R, x ∈ Di = Rn,∀i, j ∈
Q, i 6= j, as follows:

∆12(x) = [0, λ12(x)),

∆13(x) = [λ12(x), λ12(x) + λ13(x)),
...

∆21(x) =

[
M∑

n=2

λ1n(x),
M∑

n=2

λ1n(x) + λ21(x)

)
,

...

∆ij(x) =

[
i−1∑
n=1

M∑
m=1,m 6=n

λnm(x) +

j−1∑
m=1,m6=i

λim(x),
i−1∑
n=1

M∑
m=1,m 6=n

λnm(x) +

j∑
m=1,m6=i

λim(x)

)
.

In other words, the general interval ∆ij(x), i 6= j ∈ Q, has length λij(x), x ∈ Di.

Let us recall Assumption 5 on λij(x) < ∞,∀i, j ∈ Q, x ∈ Di, which ensures that

the above intervals are finite, given the finite cardinality of Q. Let us introduce the

“global” interval ∆(x) =
⋃

i6=j,i,j∈Q ∆ij(x), which has length λ∆(x) =
∑M

i6=j=1 λij(x).

Compute the (possibly non-unique) point x̂ = arg supx∈Rn λ∆(x), and define the value

λ̂ = λ∆(x̂) = supx∈Rn λ∆(x) and the interval ∆̂ = ∆(x̂) = [0, λ̂). Notice that the
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quantity λ̂ is related to an analogous one defined on page 21.

At this point, let us introduce two bounded and piecewise constant functions

l : S × R+ → {0,±1,±2, . . . ,±(M − 1)},

m : S × R+ → {0, 1}

as follows:

l(i, x, z) =

{
j − i, if z ∈ ∆ij(x),

0, else;

m(i, x, z) = 1− δ(l(i, x, z)) =


1, if ∆(i−1)M(x) ≤ z < ∆iM(x), i 6= M

1, if ∆(M−1)M(x) ≤ z < ∆M(M−1)(x), i = M

0, else;

where δ(n), n ∈ Z, is the Kronecker delta function.

The dynamics of the discrete component q(t) of the hybrid trajectory can be ex-

pressed, at any time t > 0, by the use of a random measure as:

dq(t) =

∫
∆̂

l(q(t−),x(t−), z)p(dz, dt), (1.11)

where p(dz, dt) is a Poisson random measure with intensity U (dz) × λ̂dt, where U

is a uniform probability distribution over the interval ∆̂. In other words, the random

measure p(dz, dt) characterizes random arrival times according to an homogeneous

exponential distribution of parameter λ̂, and has marks that are sampled uniformly

in the interval ∆̂.

On the side, notice that the dynamics of q(t) could also have been expressed as:

dq(t) =

∫
R
l(q(t−),x(t−), z)p̃(dz, dt),

with p̃(dz, dt) is a Poisson random measure with intensity Leb(dz)× dt, where Leb is

the Lebesgue measure over the real line [Ghosh et al., 1992]. For convenience reasons

that will become clearer in the ensuing discussion, in the rest of the dissertation let

us however stick with the expression in (1.11).

49



Chapter 1. Modeling

Based on the expression in (1.11) for the dynamics in (1.9), it is possible to move

on to further elaborate the dynamics in (1.8). Introduce the following:

Assumption 6. Assume that the following holds on the reset kernels RΛ of Sλ:

∀s = (q, x) ∈ S, q′ 6= q ∈ Q, ∃0 < λ0 <∞, g ∈ P(Q× Rn), g : Q× B(Rn) → [0, 1],

s.t. RΛ(q′, z, s) ≤ λ0 g(q
′, z), for any z ∈ Rn. �

This assumption is not too stringent. It is possible to introduce, for instance, a

real-valued function f̃ : Q× Rn → R+ as

f̃(q′, z) = sup
x∈Dq

max
q 6=q′,q∈Q

RΛ(q′, z, (q, x));

and define a function ξ̃ : Q → [1,M ] such that, for any q′ ∈ Q, ξ̃(q′) =
∫

Rn f̃(q′, dz).

Then, define g(q′, z) = f̃(q′,z)

ξ̃(q′)
.

Furthermore, introduce the function f̄ : Rn → R+, as f̄(z) = maxq′∈Q f̃(q′, z) and the

value ξ̄ = maxq′∈Q ξ̃(q
′). Finally, define f : Rn → R+ as f(z) = f̄(z)

ξ̄
.

Following the approach in [Glasserman and Merener, 2003], define now a function

θ : Rn × R+ ×Q× S → {0, 1} as:

θ(z, u, q′, (q, x)) =

{
1, if u < RΛ(q′,z,(q,x))

ξ̄f(z)
,

0, else.
(1.12)

Consider a Poisson random measure p(dz, du, dt) with mark space Rn× [0, 1], and

with intensity νζ(dz, du, dt) = f(z)dz×U (du)×ξ̄dt, where U is uniformly distributed

in the interval [0, 1]. This random measure has marks z ∈ Rn, distributed as f(z), with

u ∈ [0, 1] according to u ∼ U ([0, 1]), and random arrivals with (homogeneous) rate

ξ̄. The uniform random variable u implements an acceptance/rejection mechanism,

according to the value of the function θ. With each jump time of the Poisson random

measure is associated a mark (z, u).

The likelihood of θ to be non zero is, at time t ≥ 0, conditional on z, the mode q′ ∈ Q
and the value of the trajectory (q(t−),x(t−)), equal to RΛ(q′,z,(q(t−),x(t−))

ξ̄f(z)
. Thus, a
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point process associated with a new random measure

ζ(dz, dt) =

∫ 1

0

θ(z, u, q′, (q(t−),x(t−)))p(dz, du, dt) (1.13)

for any q′ 6= q(t−) ∈ Q, has a point in [t, t+ dt) with mark z ∈ Rn with a probability

given by RΛ(q′, z, (q(t−),x(t−)))dt+ o(dt), conditioned on (q(t−),x(t−)) ∈ S.

Then, let us exploit the relation in (1.13) by introducing an additional Poisson

random measure µ(dz, du, dγ, dt) with mark space Rn× [0, 1]× Γ, where Γ = [0, ξ̄ λ̂),

and intensity f(z) ×U1(du) ×U2(dγ) × ξ̄ λ̂dt. The first probability distribution U1

is uniformly sampled over the interval [0, 1], while the second U2 over the interval Γ.

By exploiting this newly introduced Poisson random measure µ, as well as the func-

tions θ and m, it is possible to express the dynamics of the continuous component of

the hybrid trajectory at time t > 0 as:

dx(t) = a(q(t−),x(t−))dt+ b(q(t−),x(t−))dw(t) (1.14)

+

∫
Rn

∫ 1

0

∫
Γ

θ(z, u,q(t), (q(t−),x(t−)))m(q(t−),x(t−), γ)µ(dz × du× dγ, dt).

Notice that ξ̄ λ̂ ≥ λ̂ (and thus ∆̂ ⊆ Θ), which means that the Poisson random measure

µ, acting in equation (1.14), elicits arrivals more frequently than that in (1.11). In

order to consider an interconnected model for the dynamics (1.11-1.14) of the SHS Sλ

that would be equivalent to (1.8-1.9), we ought to have Poisson arrivals within p, µ

with the same rates. In other words, let us find a way to “synchronize” the random

events in time. Let us rescale the intensity of the random measure p(dγ, dt) in (1.11)

to be U2(dγ)× ξ̄ λ̂dt, where U2 is uniformly distributed in Θ (the new mark space).

Notice that in principle using a higher arrival rate for the introduced random

measures, while keeping the transition intensities unchanged, is computationally un-

desirable. In fact, that does not increase the likelihood of jumping from a specific

point in the hybrid state space to a certain mode, or the likelihood that a jump occurs

at all. More precisely, let us consider the random measure p(dγ, dt): it assigns a mark

in γ ∈ Θ at time τ > 0 if there exists n ≥ 1 such that the arrival time tn is equal to

τ and the point γ is sampled from the distribution U2(Γ). Then, the probability in
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(1.9), for ∀j ∈ Q, j 6= i, can be expressed as:

P(q(t+ dt) = j|q(t) = i,x(t)) = p(∆ij(x(t))× [t, t+ dt])

=
∑

n≥1 1{t≤tn≤t+dt}1∆ij(x(t)) ≈ ξ̄λ̂dt
λij(x(t))

ξ̄λ̂
= λij(x(t))dt,

where 1{·} is the indicator function for the measurable event described in its argument.

The above probability is approximately the expression that was obtained in (1.9),

and is thus independent of the actual arrival rate. This oversampling effect can

be interpreted as the creation of a number of “void samples,” which will regardless

employ some computational time to be processes and discarded. In principle, it

would then be preferable to use random arrivals with the lowest possible intensities.

However, notice that in the present instance it would not be possible to “undersample”

the arrivals of the random measure µ, because that would affect the distribution of

the resets.

To summarize, the global dynamics of Sλ will be described, at any time t ≥ 0,

by a process s(t) = (q(t),x(t)) which, given an initial condition s(0) = (q(0),x(0)) =

(q0, x0) ∈ S, is the solution of the following set of relations:
q(t) = q0 +

∫ t

0

∫
Γ
l(q(s−),x(s−), γ)p(dγ, ds),

x(t) = x0 +
∫ t

0
a(q(s−),x(s−))ds+

∫ t

0
b(q(s−),x(s−))dw(s)

+
∫ t

0

∫
Rn

∫ 1

0

∫
Γ
θ(z, u, q(s), (q(s−),x(s−)))m(q(s−),x(s−), γ)µ(dz × du× dγ, ds).

(1.15)

Notice the dependence, along time, of the second dynamical relation on the value

of the first one. This dependence follows from the semantics of the SHS model Sλ,

and will be reflected in some specific terms of the time-discretized version of the

dynamics in (1.15).

Remark 9. The formulation in (1.15) is rather general and concise. It provides

an advancement from that in [Ghosh and Bagchi, 2004; Krystul and Bagchi, 2004],

because the resets in those works are described by deterministic functions, while here

they explicitly depend on stochastic kernels, which is translated in the necessity to

introduce the function θ.

The model can be generalized to the case where the jumps in the continuous and
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the discrete parts are not synchronized, as further pursued in [Ghosh and Bagchi,

2004]. Also, the assumption that imposes the same domain dimension can be relaxed,

provided some heavier notations are traded off. In particular, it would be necessary to

introduce intervals of the real line (like ∆ij(x)) that are domain-characteristic.

The following result nicely connects with Proposition 1. The proposition is based

on [Blom, 2003], where a proof of the statement can be found.

Proposition 5 (Existence and Uniqueness of Solutions). Assume the conditions 1.1,

1.3, 1.6, 1.7, 1.8 are valid. Let 1.5 hold in terms of the standard Wiener process, and

assume further independence with respect to the introduced random measures p, µ.

Then the system in (1.15) has a unique global solution.

Alternative Formulation. Consider the function l defined above. It has been built

by sampling uniformly over an interval built by summing the contributions of the

single transition intensities. It would be desirable to transpose this approach to the

choice of the reset function, modulo the understanding that they do not affect the

actual jumping conditions, but are instead associated with any jump by influencing

the reset of the hybrid process.

Recall the introduction of functions f̃ and, by the definition of ξ̃, of functions

g. Now, modify the definition of f̆ : Rn → R+ as f̆(z) =
∑

q′∈Q f̃(q′, z) and of the

constant ξ̆ =
∑

q′∈Q ξ̃(q
′). Finally, f̌ : Rn → R+ is defined as f̌(z) = f̆(z)

ξ̆
.

Introduce the following function θ : Rn × R+ ×Q× S → {0, 1} as:

θ(z, u, q′, (q, x)) =

 i− j, if

∑
j<q′,j 6=q

RΛ(j,z,(q,x))

ξ̆f̌(z)
≤ u <

∑
j≤q′,j 6=q

RΛ(j,z,(q,x))

ξ̆f̌(z)
,

0, else.

By introduction of the Kronecker delta function over the integers, define

δ(l(q, x, γ) + θ(z, u, q′, q, x)) =


1, if γ ∈ ∆qq′(x) ∧∑

j<q′,j 6=q

RΛ(j,z,(q,x))

ξ̆f̌(z)
≤ u <

∑
j≤q′,j 6=q

RΛ(j,z,(q,x))

ξ̆f̌(z)
,

0, else.
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Introduce now two random measures: µ(dz, du, dγ, dt), with intensity f̌(z)×U1(du)×
U2(dγ) × ξ̆λ̂dt; p(dγ, dt), with intensity U2(dγ) × ξ̆λ̂dt, which will be oversampled

to achieve synchronization with the first. Then, the dynamics can be expressed as

follows:
q(t) = q0 +

∫ t

0

∫
Γ
l(q(s−),x(s−), γ)p(dγ, ds),

x(t) = x0 +
∫ t

0
a(q(s−),x(s−))ds+

∫ t

0
b(q(s−),x(s−))dw(s)

+
∑
q′∈Q

∫ t

0

∫
Rn

∫ 1

0

∫
Γ
δ(l(q(s−),x(s−), γ) + θ(z, u, q′, (q(s−),x(s−)))µ(dz × du× dγ, ds).

Notice that, because ξ̆ ≥ ξ̄, the expression in (1.15) is computationally more attractive

than that just above. In the following, let us work with the model in (1.15).

The introduced structure for the dynamics will be used to define a time discretiza-

tion scheme in section 1.4.2.

1.4.2 State-Dependent Thinning Procedure

The random hybrid dynamics of the SHS Sλ have been succinctly expressed via the

system of equations in (1.15). The convenience of this form is not only aesthetic. It

is also important to stress that the random measures p, µ that drive the model are

Poisson point processes. In other words, the arrivals occur with an intensity that is

independent of the hybrid state space. This holds for both the continuous and the

discrete dynamics. Section 1.4.1 has shown a rather general procedure to turn a non-

homogeneous arrival and jump processes into one of Poisson kind. This independence

enables one to employ an array of time sampling methods which, provided some

regularity conditions on the elements of the model, allow one to prove some sort of

convergence between the discrete-time sampled process and the original continuous-

time process. Intuitively, sampling a Poisson arrival process does not require the

knowledge, along time, of the stochastic process to be sampled. Let us focus, to

begin with, on the control-independent case.

In order to obtain a discretization in time of the above dynamics, let us start by

introducing a sequence of discrete instants {τi}, i ∈ I = {0, 1, . . . , N}, over a finite

time horizon [0, T ]. This sequence is made up of the deterministic grid {τ̃i}, i =
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0, 1, . . . , Ñ =
⌊

T
δt

⌋
≤ N , obtained by uniformly sampling the interval [0, T ] with

time step δt > 0, and of the random switching instants {τ̄i}, i = 1, . . . , (N − Ñ)

over [0, T ]. It then holds that {τi} = {τ̂i}
⋃
{τ̄i}. It is important to notice that the

random Poisson times can be computed independently of the knowledge of the actual

trajectory, because of the state-independent arrival rates that make up the Poisson

random measures in (1.15).

The values of the discretized process at the time instants {τi} are obtained via a

(first-order) Euler scheme applied to s(t), t ∈ [0, T ]. As a reminder, notice that the

càdlàg process q(t) is piecewise constant, which implies that q(τ−i+1) = q(τi).

Given an initial condition s(0) = (q(0),x(0)) = (q0, x0) and assuming by default

τ0 = 0, the following iterative scheme is obtained on the time instants set {τi}, i ∈ I,

which yields the discrete-time process ŝ(τi) = (q̂(τi), x̂(τi)), i ∈ I:

x̂(τ−i+1) = x̂(τi) + a(q̂(τi), x̂(τi))(τi+1 − τi) + b(q̂(τi), x̂(τi))(ŵ(τi+1)− ŵ(τi))(1.16)

q̂(τi+1) = q̂(τi) +

∫
Γ

l(q̂(τi), x̂(τ−i+1), z)p(dz, τi+1); (1.17)

x̂(τi+1) = x̂(τ−i+1) +

∫
Rn

∫ 1

0

∫
Γ

θ(z, u, q̂(τi+1), (q̂(τ−i+1), x̂(τ−i+1))) · (1.18)

·m(q̂(τ−i+1), x̂(τ−i+1), γ)µ(dz, du, dγ, τi+1).

In these formulas the random measures are evaluated at the jump epochs. In

order to interpret and understand the sequence of the discretization steps above, it is

useful to refer to the original semantics of the hybrid trajectory of a SHS, described in

Definition 6. To begin with, the dynamics of the continuous component are updated

according to the contributions of the drift and diffusion terms in equation (1.16).

Equation (1.17), which depends on (1.16), updates the discrete value of the mode

according to the Poisson random measure p(dz, dt). Finally, the relation in (1.18)

updates the value of the continuous dynamics only at the jump time, according to the

other Poisson random measure µ(dz, du, dγ, dt). Notice that equation (1.18) depends

on the new value assumed in (1.17).
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1.4.3 A Discretization Scheme with Convergence

As discussed while introducing the concept of process generator and presenting the

Dynkin formula (equation (1.5) in section 1.2.2), it is generally interesting to compute

expectations of functions of the stochastic processes under study. This connects to

the notion of weak convergence, introduced in Definitions 10 and 11, which describes

the limiting behavior of the expectation of a sequence of functions of the process

under study. Here, given the original stochastic process s(t), t ≥ 0, solution of the

SHS Sλ, and the time-discretized process ŝ(τi), i ∈ I, obtained by the application

of a discretization scheme as obtained in (1.16-1.17-1.18) with discretization step δt,

given any continuous and bounded function f : S → R, it would be desirable to show

that

|E[f(s(τi))]− E[f(ŝ(τi))]| ≤ β(δt)α,

where 0 < α, β <∞. In particular, if the above bound holds, then α is known as the

order of convergence.

The convergence result of the above thinning procedure that will be presented now

for a time discretization procedure based on the Euler scheme [Milstein, 1994] is drawn

from the works [Glasserman and Merener, 2003; Glasserman and Merener, 2004].

These studies are in turn based on results from [Kloeden and Platen, 1992]. The two

references [Glasserman and Merener, 2003; Glasserman and Merener, 2004] are of

interest here because their results have been derived cognizant of the fact that some

functions appearing in the dynamics (here, the terms θ(·), l(·),m(·)) are inescapably

discontinuous. For reference, the Euler scheme here introduced coincides with the

known Euler-Maruyuama scheme for diffusions, which will be further exploited in

section 2.3. Let us introduce the indicator function 1S(s) = 1,∀s ∈ S, and for

simplicity rename c(z, u, γ, q′, s)
·
= θ(z, u, q′, s)m(s, γ)1S(s).To leverage some results

for martingales, introduce the quantity

ã(s) = a(s) +

∫
Rn

c(·, z)f(s)ξ̄λ̂dz,

where f is the intensity function introduced for equation (1.12), given the validity

of Assumption 6. Consider a bounded function ψ : Rn → R. Introduce the two
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functions, for x ∈ Rn:

ϕc(x) =

∫
Rn

ψ(x+ c(·, z, x))f(z)dz;

ϕ̄c(x) =

∫
Rn

(x+ c(·, z, x))f(z)dz.

The following holds:

Theorem 4 (Weak Convergence of the Euler Scheme). Consider a real-valued func-

tion defined on the hybrid state space, g : S → R, and assume g ∈ C̄4
b (S). Let

s(t), t ∈ [0, N ] be the solution of (1.15), and ŝ(τi), i ∈ I, be the solution of the first-

order Euler scheme in (1.16-1.17-1.18). Assume that

• ϕ̄c(x) ∈ C̄4
b (Rn);

• If, for some 0 < Ψ <∞, ψ ∈ C̄4
b (Rn) with bound Ψ, then there exists a constant

0 < K <∞, such that ϕc ∈ C̄4
b (Rn) with bound KΨ;

• For any q ∈ Q, the functions ã(q, x), b(q, x) ∈ C̄4
b (Rn);

• There exists a constant 0 < H < ∞ such that, for any q ∈ Q, ‖ã(q, y)‖ ≤
H(1 + ‖y‖), and ‖b(q, y)‖ ≤ H(1 + ‖y‖),∀y ∈ Rn.

Then, s(·) has weak convergence of order one to ŝ(·). In other words, for any such g,

there exists a quantity 0 < β <∞ such that, for a small enough integration step δt,

|E[g(s(τi))]− E[g(ŝ(τi))]| ≤ β δt, i ∈ I. �

Proof. The proof is an extension of that in [Glasserman and Merener, 2004, Theorem

6.1], which is also discussed in [Glasserman and Merener, 2003] and based on results

in [Mikulevicius and Platen, 1988].

The main idea comes from realizing that, although some elements in the dy-

namics are possibly discontinuous (θ(·), l(·),m(·)), their discontinuities will possibly

happen only at the switching times τi, i ∈ I. More precisely, for a small enough

integration step (that is, for a small enough interval [τi, τi+1), i ∈ I), the discontin-

uous thinning functions c(·, x), l(·, x), x ∈ Rn will not change their constant value
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within the integration interval [τi, τi+1). That is, the discontinuities of the functions

c(·, x), l(·, x), x ∈ Rn may happen, for small enough time intervals, exclusively at the

jumping instants, for any of the values of the samples of the two uniform distributions

introduced in equations (1.11) and (1.13).

This argument allows one to prove the first continuity requirement in the state-

ment for the functions into play. The third condition requires a strengthening of

Assumption 1. In particular, the continuity of the function ã requires one to proceed

as done for the first point.

The second condition is proven along similar lines and much like in [Glasserman

and Merener, 2004, Theorem 6.1], and again hinges on arguments that are similar as

above.

Finally, the last condition follows from the Lipschitz assumption on the drift and

diffusion terms, as explained in equation (1.2), Assumption 1.1.

These observations allow one to relate the conditions of the statement to [Mikule-

vicius and Platen, 1988, Theorem 3.3], which is then leveraged to actually prove the

claim.

Remark 10. The result has been obtained with a continuity requirement on the func-

tions g. Let us stress that, while the result of the above statement does not strictly

imply the weak convergence of the associated processes, it is of interest to the current

study because we shall be working with expectations of the trajectories of the solutions

to the SHS. Notice also that it is possible to apply discretization schemes of higher

order [Milstein, 1994], as suggested in [Glasserman and Merener, 2004]. Their weak

convergence can be as well proven, albeit at the expense of introducing stronger regu-

larity assumptions.
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Probabilistic Reachability and Safety

2.1 The Concept of Reachability

in Systems and Control Theory

Reachability is an important topic in classical control theory. In general terms, a

reachability problem consists of evaluating whether the state of a system will reach

a certain “target” set during some time horizon, starting from a given set of initial

conditions and possibly subject to a control input (see Figure 2.1).

This problem is of interest, for instance, in those safety problems where the system

should be kept outside of an unsafe region of the state space and the control input

can be chosen so as to avoid this unsafe region (darker, blue region in Figure 2.2).

In a deterministic setting, reachability is a yes/no problem, where one evaluates if

starting from a given set of initial states the system will reach a certain set or not.

In a stochastic setting, the different trajectories originating from each initial state

have a different likelihood and one can then evaluate what is the probability that

the system will reach the assigned set starting from a certain initial distribution over

the set of initial states. In safety problems where the evolution of the system can be

influenced by some control input, one should select it appropriately so as to minimize

the probability that the state of the system will enter the unsafe set.

Much investigation has been done on reachability analysis for system verifica-

tion, where the problem consists in verifying if some designed system satisfies certain
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Set of initial conditions

Target set

Figure 2.1: The reachability problem, a pictorial representation of the entities into play.

Set of initial conditions

Target set

t = 0

t = T

Set of initial conditions

Target set

t = 0

t = -T

Figure 2.2: The reachability problem, two intuitive interpretations of its computational
verification.
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reachability specifications encoding a correct/desired behavior.

In the case of deterministic systems, ‘model checking’ is the most commonly

adopted technique for system verification, where reachability specifications are veri-

fied by constructing reachable sets based on a model of the system (either propagating

“forward,” or “backward” the flow of the system—see Figure 2.2). This is possible

only for simple dynamics [Anai and V.Weispfenning, 2001; Lafferriere et al., 2000;

Lafferriere et al., 2001]. In the hybrid systems case, set representation and propa-

gation by continuous flow is generally difficult, and termination of the algorithm for

reachable set computation is not guaranteed since the state space is not finite, [Tom-

lin et al., 2003]. Decidability results have been proven to hold only for certain classes

of hybrid systems by using discrete abstraction consisting in building a finite automa-

ton that is ‘equivalent’ (bisimilar) to the original hybrid system for the purpose of

verification [Alur et al., 2000].

In the case of complex dynamics, some approximation methods are needed for

reachability computations. Two main approaches have been introduced to this pur-

pose: seeking for an abstraction of the system that would yield a simpler model

for solving the original reachability problem, or adopting an approximation of sets

that can be easily represented and propagated through the system dynamics. In the

first approach, an approximate simulation relation is introduced to obtain an ab-

straction of the original system [Girard et al., 2006], while a quantifier elimination

decision procedure and simple theorem proving is introduced in [Tiwari and Khanna,

2002; Tiwari and Khanna, 2004] to construct a series of successively finer qualita-

tive abstractions of the hybrid automaton under study. In the second approach,

over-approximations by ellipsoids [Kurzhanski and Varaiya, 2000; Kurzhanski and

Varaiya, 2002], polyhedra [Asarin et al., 2000; Asarin et al., 2003], zonotopes [Gi-

rard, 2005], oriented rectangular polytopes [Stursberg and Krogh, 2003; Yazarel and

Pappas, 2004], general polygones [Chutinan and Krogh, 1998; Han and Krogh, 2006;

Kerrigan et al., 2006] were proposed, or, alternatively, asymptotic approximations of

reachable sets that converge to the true reachable sets as some accuracy parameter

tends to zero. Level set methods [Mitchell et al., 2001; Mitchell and Tomlin, 2000]

and gridding [Belta et al., 2004] techniques belong to this latter category.

A connection of reachability (and related concepts, such as safety or viability)
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with optimal control for deterministic problems has been pointed out in [Hedlund

and Rantzer, 2002; Lygeros, 2004b]. The connection between reachability, safety and

dynamic games for deterministic hybrid systems has been stressed in [Mitchell et al.,

2005; Lygeros et al., 1999; Tomlin et al., 1998a], where it is mostly applied to air

traffic management problems.

Reachability for stochastic hybrid systems has been a very recent focus of re-

search. Most of the approaches consider the problem of reachability analysis for con-

tinuous time stochastic hybrid systems (CTSHS) without a control input. The the-

ory of CTSHS, progressively developed since the early contributions in [Davis, 1993;

Ghosh et al., 1997; Hu et al., 2000], is used in [Bujorianu and Lygeros, 2003] to

address theoretical issues regarding the measurability of the reachability events. In

[Bujorianu, 2004], the theory of Dirichlet forms associated with a right-Markov pro-

cess is employed in studying a probabilistic reachability problem, and upper bounds

for the reach set probabilities are derived.

The contributions in [Hu et al., 2003; Hu et al., 2005; Prandini and Hu, 2006a;

Prandini and Hu, 2006b] address the reachability problem using a Markov chain ap-

proximation, [Kushner and Dupuis, 2001], to compute the probability of entering

some assigned set, and apply the concept to air traffic control studies. Probabilities

rather than sets are propagated through the approximating Markov chain transition

kernel. In the same spirit, model checkers for verifying probabilistic reachability

specifications of Markov chains have been developed, [Katoen, 2006]. From a differ-

ent perspective, in [Prajna et al., 2004] certain functions of the state of the system

known as barrier certificates are used to compute an upper bound on the probability

of reaching a set. These barrier functions are synthesized by a sum-of-squares SOS

method [Yazarel et al., 2004]. The approach in [Digailova and Kurzhanski, 2005] is

unique in introducing a ‘mean-square’ definition for the concept of reachability. In

[Mitchell and Templeton, 2005] the control case is considered in a rather general game

theoretical framework, and a reachability problem is introduced as the solution of a

Hamilton-Jacobi-Isaacs partial differential equation. [Lygeros and Watkins, 2003;

Prandini et al., 2000] compute the reachability probability using randomized algo-

rithms, motivated by air traffic control applications.

In this study let us adopt a discrete time point of view in order to gain a deeper
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understanding of the theoretical and computational aspects associated with reach-

ability and safety problems for stochastic hybrid systems, while avoiding technical

measurability issues that arise in the continuous time case. In particular, we develop

a methodology to compute and maximize the probability of maintaining the state of

the system within a certain ‘safe’ region for a class of discrete time stochastic hy-

brid system (DTSHS) whose dynamics can be influenced by a control input. Unlike

previous approaches, the safe set can be time-varying, which allows us to general-

ize the approach towards problems of regulation and stabilization, [Bertsekas, 1972;

Picasso and Bicchi, 2005], by appropriately reinterpreting them as safety problems.

The proposed methodology is based on formulating the reachability problem as a

stochastic optimal control problem. Based on the expression of the probability that

the state of the controlled system will evolve within the safe region as a multiplicative

cost, dynamic programming (DP) can be used to compute the Markov policy max-

imizing the cost, and also the maximally safe sets corresponding to different safety

levels. These are the set of initial conditions for the system, such that there exists

a Markov policy capable of maintaining the state of the system within the safe set

with a probability greater than a prescribed safety level (see [Tomlin et al., 1998a;

Balluchi et al., 2000] for a similar notion in the deterministic case).

Adopting a dual perspective, where the objective is that of minimizing the prob-

ability that the system will exit the safe set, let us again formulate the reachability

problem as a stochastic optimal control problem, but this time with a cost that is

the maximum of a function of the state over the time horizon. DP is shown to be

still effective in this case to determine probabilistic maximal safe sets for Markov

policies. In fact, the value functions for the multiplicative cost and the max cost can

be properly put in relation, thus formalizing the intuition that the two viewpoints for

reachability are complementary to each other.

Connecting with the simple examples introduced in chapter 1, in the second part of

this section a room temperature regulation problem shall be used as running example

to illustrate the DTSHS model formalism and the approach to reachability. This case

study is inspired by one of the benchmark problems proposed in [Fehnker and Ivančić,

2004].
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2.1.1 Discrete-Time Controlled Stochastic Hybrid Systems

Let us define a DTSHS as the discrete time counterpart of the general continuous time

model described in section 1.2.1, which extends in expressiveness previous continuous

time models [Davis, 1993; Ghosh et al., 1997; Hu et al., 2000]. More precisely, the

model about to be introduced can be thought of as being obtained from the GSHS

model by a time-discretization procedure as that in section 1.4, with the addition of

controls. However, for the sake of clarity, let us formally describe this hybrid model

and the properties which are of of nearest interest to the current study. In particu-

lar, let us stress that, unlike the GSHS models introduced in the preceding part, the

following model shall embed the knowledge of the transition probabilities directly in

its definition, rather than passing through the use of transition intensities. This is

motivated by the presence of the discrete time — notice that the time-discretization

procedure reinterpreted the presence of transition intensities as rates of arrival asso-

ciated with a proper point process.

The state of a DTSHS is characterized by a discrete and a continuous component.

The discrete state component takes on values in a countable set of modes Q. The

continuous state space in each mode q ∈ Q is given by the Euclidean space Rn(q),

whose dimension n(q) is determined by the map n : Q → N. Thus the hybrid state

space is S :=
⋃

q∈Q{q} × Rn(q). Let B(S) be the σ-field generated by the subsets

of S of the form
⋃

q{q} × Aq, where Aq is a Borel set in Rn(q). The fact that S
can be endowed with a metric that is equivalent to the usual Euclidean metric when

restricted to each domain Rn(q), [Davis, 1993], shows that (S,B(S)) is a Borel space,

i.e. homeomorphic to a Borel subset of a complete separable metric space.

The continuous state of a DTSHS evolves according to a probabilistic law that

depends on the actual operating mode. A discrete transition from the current oper-

ating mode to a different one may occur during the continuous state evolution, again

according to some probabilistic law. This will in turn cause a modification of the

probabilistic law governing the continuous state dynamics. A control input can affect

the discrete and continuous evolution of the system. After a discrete transition has

occurred, the continuous state component is subject to a probabilistic reset that is

also influenced by some control input. Let us distinguish this latter input from the
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former one, naming them respectively reset and transition input.

Definition 13 (Discrete-Time, controlled Stochastic Hybrid System). A discrete time

stochastic hybrid system (DTSHS) is a tuple S = (Q, n,U ,Σ, Tx, Tq, R), where

• Q := {q1, q2, . . . , qm}, for some m ∈ N, represents the discrete state space;

• n : Q → N assigns to each discrete state value q ∈ Q the dimension of the

continuous state space Rn(q). The hybrid state space is then given by S :=⋃
q∈Q{q} × Rn(q);

• U is a compact Borel space representing the transition control space;

• Σ is a compact Borel space representing the reset control space;

• Tx : B(Rn(·)) × S × U → [0, 1] is a Borel-measurable stochastic kernel on Rn(·)

given S × U , which assigns to each s = (q, x) ∈ S and u ∈ U a probability

measure on the Borel space (Rn(q),B(Rn(q))): Tx(·|s, u);

• Tq : Q×S ×U → [0, 1] is a discrete stochastic kernel on Q given S ×U , which

assigns to each s ∈ S and u ∈ U , a probability distribution over Q: Tq(·|s, u);

• R : B(Rn(·))×S×Σ×Q → [0, 1] is a Borel-measurable stochastic kernel on Rn(·)

given S × Σ ×Q, that assigns to each s ∈ S, σ ∈ Σ, and q′ ∈ Q, a probability

measure on the Borel space (Rn(q′),B(Rn(q′))): R(·|s, σ, q′). �

To describe the semantics of S , an initial condition s0 ∈ S needs to be specified,

as well as how the reset and transition inputs are chosen.

The system initialization can be specified through some probability measure π ∈
P(S), π : B(S) → [0, 1] on the Borel space (S,B(S)). When the initial state of

the system is s ∈ S, then, the probability measure π is concentrated at {s}. As for

the choice of the reset and transition inputs, we need to specify which is the rule

to determine their values at every time step during the DTSHS evolution (control

policy). Here, let us consider a DTSHS evolving over a finite time horizon [0, N ],

with inputs chosen according to a Markov policy. If the values for the control inputs

at each time k ∈ [0, N) are determined based on the values taken by the past inputs

and the state up to the current time k, then the policy is said to be a feedback policy.
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Definition 14 (Feedback policy). Let S = (Q, n,U ,Σ, Tx, Tq, R) be a DTSHS. A

feedback policy µ for S is a sequence µf = (µf
0 , µ

f
1 , . . . , µ

f
N−1) of universally measur-

able maps µf
k : S × (S × U × Σ)k → U × Σ, k = 0, 1, . . . , N − 1. �

Let us denote the set of feedback policies as M.

If the values for the control inputs are determined only based on the value taken

by the state at the current time step, i.e., (uk, σk) = µk(sk), then the policy is said to

be a Markov policy.

Definition 15 (Markov Policy). Consider a DTSHS S = (Q, n,U ,Σ, Tx, Tq, R). A

Markov policy µ for S is a sequence µ = (µ0, µ1, . . . , µN−1) of universally measurable

maps

µk : S → U × Σ, k = 0, 1, . . . , N − 1,

from the hybrid state space S =
⋃

q∈Q{q}×Rn(q) to the control input space U ×Σ. �

Let us denote the set of Markov policies as Mm. Clearly Mm ⊆M. In this work,

let us focus on Markov policies.

Let us recall that a function µk : S → U×Σ is universally measurable if the inverse

image of every Borel set is measurable with respect to every complete probability

measure on S that measures all Borel subsets of S. This measurability condition

is weaker than the Borel measurability condition and is needed to assess properties

which hold uniformly in the initial condition s0 ∈ π, [Bertsekas and Shreve, 1996].

In practice, this assumption is needed for showing the existence of a solution of an

optimization problem that will be set up in the following.

The semantics of a DTSHS can be algorithmically defined through the notion of

execution. In the rest of this work, we shall use boldface to denote random variables

and normal typeset to denote sample values.

Definition 16 (DTSHS Execution). Consider a DTSHS S = (Q, n,U ,Σ, Tx, Tq, R)

and a time horizon [0, N ]. A stochastic process {s(k) = (q(k),x(k)), k ∈ [0, N ]} with

values in S =
⋃

q∈Q{q}×Rn(q) is an execution of H associated with a Markov policy

µ ∈ Mm and an initial condition s0 = (q0, x0) ∈ S if its sample paths are obtained

according to the DTSHS algorithm:

66



Chapter 2. Probabilistic Reachability and Safety

Algorithm 3.

set q(0) = q0, x(0) = x0, and k = 0;

while k < N do

set (uk, σk) = µk((qk, xk));

extract from Q a value qk+1 for q(k + 1) according to Tq(· |(qk, xk), uk);

if qk+1 = qk, then

extract from Rn(qk+1) a value xk+1 for x(k + 1) according to Tx(· |(qk, xk), uk);

else

extract from Rn(qk+1) a value xk+1 for x(k + 1) according to

R(· |(qk, xk), σk, qk+1);

k → k + 1;

end.
�

By appropriately defining the discrete transition kernel Tq, it is possible to model

the spontaneous jumps that may occur during the continuous state evolution, as well

as the forced jumps that must occur when the continuous state exits some prescribed

domain.

As for the spontaneous transitions, if a discrete transition from q to q′ 6= q is

enabled at (q, x) ∈ S by the control input u ∈ U , then this can be encoded by the

condition Tq(q
′|(q, x), u) > 0.

As for the forced transitions, the invariant set Inv(q) associated with mode q ∈ Q,

namely the set of all the admissible values for the continuous state within q, can be

expressed in terms of Tq by forcing Tq(q|(q, x), u) to be equal to zero for all the

continuous state values x ∈ Rn(q) outside Inv(q), irrespectively of the value of the

control input u ∈ U . Thus Inv(q) := Rn(q) \ {x ∈ Rn(q) : Tq(q|(q, x), u) = 0,∀u ∈ U},
and as soon as x /∈ Inv(q) while the system evolves in mode q, a jump from q to some

q′ 6= q is forced. Unlike the continuous time model in [Bujorianu and Lygeros, 2004b],

spatial guards here are implicitly defined through the map Tq. This approach is closely

related to the idea of substituting the spatial guards with transition intensities (or

“barriers”), but subsumes this procedure by directly defining the stochastic kernels
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associated with the transition probabilities, which otherwise would have to be derived

by proper integration of the transition intensities. In a discrete-time framework, the

definition of the transition probabilities is certainly a more convenient choice.

Introduce the stochastic kernel τx : B(Rn(·)) × S × U × Σ × Q → [0, 1] on Rn(·)

given S × U × Σ×Q:

τx(· |(q, x), u, σ, q′) =

Tx(·|(q, x), u), if q′ = q

R(·|(q, x), σ, q′), if q′ 6= q,

which assigns to each s = (q, x) ∈ S, u ∈ U , σ ∈ Σ and q′ ∈ Q a probability measure

on the Borel space (Rn(q′),B(Rn(q′))). τx is used in the DTSHS algorithm to randomly

select a value for the continuous state at time k + 1, given the values taken by the

hybrid state and the control input at time k, and that of the discrete state at time

k + 1.

Based on τx let us introduce the Borel-measurable stochastic kernel Ts : B(S) ×
S × U × Σ → [0, 1] on S given S × U × Σ:

Ts((·, q) |s, (u, σ)) = τx(· |s, u, σ, q)Tq(q|s, u), q ∈ Q, (2.1)

which assigns to each s ∈ S, (u, σ) ∈ U ×Σ a probability measure on the Borel space

(S,B(S)). Then, the DTSHS algorithm in Definition 16 can be rewritten in a more

compact form as:

Algorithm 4 (DTSHS Execution - Markovian controls case).

set s(0) = s0 and k = 0;

while k < N do

set (uk, σk) = µk(sk);

extract from S a value sk+1 for s(k + 1) according to Ts(· |sk, (uk, σk));

k → k + 1;

end.
�

This shows that a DTSHS S = (Q, n,U ,Σ, Tx, Tq, R) can be described as a
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controlled Markov process with state space S =
⋃

q∈Q{q} × Rn(q), control space

A := U ×Σ, and controlled transition probability function Ts : B(S)×S ×A → [0, 1]

defined in (2.1), [Puterman, 1994]. This will be referred to in the following as embed-

ded controlled Markov process.

As a consequence of this representation of S , the execution {s(k) = (q(k),x(k)),

k ∈ [0, N ]} associated with s0 ∈ S and µ ∈ Mm is a stochastic process defined on

the canonical sample space Ω = SN+1,1 endowed with its product topology B(Ω),

with probability measure Pµ
π uniquely defined by the transition kernel Ts, the policy

µ ∈ Mm, and the initial condition s0 ∈ S [Bertsekas and Shreve, 1996, Proposition

7.45]. From the embedded Markov process representation of a DTSHS it also follows

that the execution of a DTSHS associated with a Markov policy µ ∈Mm and an ini-

tial condition s0 samples from the distribution π is an inhomogeneous Markov process

with one-step transition kernels Ts(·|s, µk(s)), k = 0, 1, . . . , N − 1. In the following,

we shall use the more compact notation T µk
s (·|s) for Ts(·|s, µk(s)).

1More precisely, the space of N + 1-dimensional càdlàg paths with values in S.
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2.2 Theory

In this part, after framing the mathematical setup that will support the study, let

us give a formal definition of the concept of probabilistic reachability, and its closely

related concept of stochastic safety. By formulating an optimal control problem to

maximize a safety probability criterion, we shall give precise procedures for solving

this problem. We shall then extend the approach to the infinite-horizon scenario, and

introduce related problems from Control Theory that are prone to be solved with the

same technique. In particular, we discuss ways to embed the concept of performance

in the above theoretical and computational framework.

2.2.1 Definition of the Concept

Let us consider the problem of determining the probability that the state of a DTSHS

S will remain within a certain ‘safe’ set during a time horizon [0, N ], starting from

an initial probability distribution π, under some control policy µ ∈ Mm. This prob-

abilistic safety problem can be clearly classified as a stochastic reachability analysis

problem.

Let the Borel set A ∈ B(S) represent a safe set. Our goal is setting up a reachabil-

ity computation procedure to determine the probability that the execution associated

with the Markov policy µ ∈Mm and initialization π will remain within A during the

time horizon [0, N ]:

pµ
π(A) := Pµ

π{s(k) ∈ A for all k ∈ [0, N ]}. (2.2)

When π is concentrated at {s0}, s0 ∈ S, we shall write simply Pµ
s0

.

If pµ
π(A) ≥ 1− ε, ε ∈ [0, 1], let us say that the system initialized at π is safe with

at least probability 1− ε under policy µ.

Different initial conditions are characterized by different values of the probability

pµ
π(A). Fix ε ∈ [0, 1]. Let us define as probabilistic safe set with safety level 1 − ε

under policy µ the set

Sµ(ε) = {s0 ∈ S : pµ
s (A) ≥ 1− ε}, (2.3)
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of those initial conditions s0 that correspond to a probability pµ
π(A) of remaining

within the safe set A that is greater than or equal to 1− ε.

If for any initial condition s0 ∈ S the control policy µ ∈ Mm can be selected so

as to maximize the probability of staying within A, then, let us define the set

S?(ε) = {s0 ∈ S : sup
µ∈Mm

pµ
s0

(A) ≥ 1− ε}. (2.4)

By comparing the expressions for Sµ(ε) and S?(ε), it is easily seen that Sµ(ε) ⊆ S?(ε),

for each µ ∈Mm and for any ε ∈ [0, 1], since in fact we are exploiting the best available

control to achieve the ε-dependent reachability specification for the largest possible

subset of the hybrid state space. The set S?(ε) is named the maximal probabilistic

safe set with safety level 1 − ε. Computing S?(ε) involves solving an optimization

problem, and is a more challenging goal than computing pµ
s0

(A) and Sµ(ε).

Note that the probability pµ
π(A) defined in (2.2) can be expressed as

pµ
π(A) = 1− Pµ

π(Ā), (2.5)

where Ā is the complement of A in S. A similar expression intuitively holds if the

initial distribution is condensed into a single point. Furthermore,

Pµ
π(Ā) := Pµ

π{s(k) ∈ Ā for some k ∈ [0, N ]} (2.6)

is the probability of entering Ā during the time interval [0, N ], given an initialization

π. This leads to the following alternative expressions for Sµ(ε) and S?(ε):

Sπ(ε) = {s0 ∈ S : Pµ
s0

(Ā) ≤ ε} (2.7)

S?(ε) = {s0 ∈ S : inf
µ∈Mm

Pµ
s0

(Ā) ≤ ε}. (2.8)

In the following, let us show that

1. the problem of computing pµ
π(A), Pµ

π(Ā), and Sµ(ε) for µ ∈ Mm can be solved

by using a backward iterative procedure; and that

2. the problem of computing S?(ε) can be reduced to that of solving an optimal
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control problem by dynamic programming.

These results are obtained by representing pµ
π(A) as a multiplicative cost function,

and Pµ
π(Ā) as a max cost function.

Let 1C : S → {0, 1} denote the indicator function of a Borel set C ∈ B(S):

1C(s) =

{
1, if s ∈ C,
0, if s 6∈ C.

Multiplicative Cost. Observe that

N∏
k=0

1A(sk) =

1, if sk ∈ A for all k ∈ [0, N ]

0, otherwise,

where sk ∈ S, k ∈ [0, N ] are a sequence of N + 1 hybrid points—they may be

thought of as being a single realization of a hybrid execution. Then, given a µ ∈Mm

and an initial probability distribution π, pµ
s0

(A) in (2.2) can be expressed as the

expectation with respect to the probability measure Pµ
s0

of the Bernoulli random

variable
∏N

k=0 1A(s(k)):

pµ
s0

(A) = Pµ
s0

(
N∏

k=0

1A(s(k)) = 1

)
= Eµ

s0

[
N∏

k=0

1A(s(k))

]
. (2.9)

We have implicitly assumed that s0 ∈ S belongs to the support of π. From this

expression it follows that

pµ
π(A) =

∫
S
Eµ

s0

[ N∏
k=0

1A(s(k))
]
π(ds), (2.10)

where the conditional mean Eµ
s0

[∏N
k=0 1A(s(k))

]
= Eµ

π [
∏N

k=0 1A(s(k))| s(0) = s] is

well defined over the support of the probability measure π representing the distribu-

tion of s(0).
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Max Cost. Proceeding similarly as in the above paragraph, observe that

max
k∈[0,N ]

1Ā(sk) =

1, if sk ∈ Ā for some k ∈ [0, N ]

0, otherwise,

where sk ∈ S, k ∈ [0, N ] are a sequence of N+1 hybrid points—they may be thought

of as being a single realization of a hybrid execution. Then, the probability Pµ
π(Ā) in

(2.6) can be expressed via

Pµ
s0

(Ā) = Pµ
s0

(
max

k∈[0,N ]
1Ā(s(k)) = 1

)
= Eµ

s0

[
max

k∈[0,N ]
1Ā(s(k))

]
. (2.11)

From this expression it follows that

Pµ
π(Ā) =

∫
S
Eµ

s0

[
max

k∈[0,N ]
1Ā(s(k))

]
π(ds), (2.12)

where the conditional mean Eµ
s0

[
maxk∈[0,N ] 1Ā(s(k))

]
= Eµ

π [maxk∈[0,N ] 1Ā(s(k))| s(0) =

s] is well defined over the support of the probability measure π representing the dis-

tribution of s(0).

2.2.2 Probabilistic Reachability Computations

Let us next show how to compute pµ
π(A) and Pµ

π(Ā) through a backward iterative

procedure. To this purpose, let us recall that a Markov policy µ ∈Mm is a sequence

µ = (µ0, µ1, µ2, . . . , µN−1) of maps µl : S → U × Σ, l = 0, 1, 2, . . . , N − 1.

Multiplicative Cost. Define the set of functions V µ
k : S → [0, 1], k = 0, 1, . . . , N , as

follows:

V µ
N (s) =1A(s)

V µ
k (s) =1A(s)

∫
SN−k

N∏
l=k+1

1A(sl)
N−1∏

l=k+1

T µl
s (dsl+1|sl)T

µk
s (dsk+1|s), (2.13)

73



Chapter 2. Probabilistic Reachability and Safety

k = 0, 1, . . . , N−1, s ∈ S. Recall that T µh
s (·|sh) stands for Ts(·|sh, µh(sh)). The maps

T µh
s (·|sh), h = 0, 1, . . . , N − 1, are the one-step transition kernels of the embedded

Markov process obtained by applying the Markov policy µ = (µ0, µ1, . . . ) to the

DTSHS (see section 2.1.1). Then, it is easily seen that, by (2.9), if s belongs to

the support of π, then Eµ
π

[∏N
l=k 1A(s(l))|s(k) = s

]
is well defined and equal to the

right-hand side of (2.13), so that

V µ
k (s) = Eµ

s

[
N∏

l=k

1A(s(l))

]
, s ∈ S,

denotes the probability of remaining in A during the residual time horizon [k,N ],

starting from s at time k. Furthermore, V µ
0 (s) evaluated at s = s0 returns pµ

s0
(A).

Hence, by (2.10) and the above expression, it is possible to explicitly express pµ
π(A)

as

pµ
π(A) =

∫
S
V µ

0 (s)π(ds).

Moreover, the probabilistic safe set with safety level 1 − ε, ε ∈ [0, 1], according to

(2.3), can be expressed in terms of function V µ
0 as follows:

Sµ(ε) = {s0 ∈ S : V µ
0 (s0) ≥ 1− ε}.

Let F denote the set of functions from S to R, and define the operator H :

S × U × Σ×F → R as follows:

H(s, (u, σ), Z) := Tq(q|s, u)
∫

Rn(q)

Z((q, v))Tx(dv|s, u) (2.14)

+
∑
q′ 6=q

Tq(q
′|s, u)

∫
Rn(q′)
Z((q′, v))R(dv|s, σ, q′),

for any s = (q, x) ∈ S, (u, σ) ∈ U × Σ, and Z ∈ F . The operator H is easily

seen to be a linear operator. Moreover, H applied to a constant function Z̄(s) = c,

s ∈ S, returns the constant c for any value of the other arguments s and (u, σ):

H(s, (u, σ), Z̄) = c, ∀s ∈ S, (u, σ) ∈ U × Σ. This is because H(s, (u, σ), Z) is the

integral over S of function Z with respect to the (conditional) probability measure
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Ts(·|s, (u, σ)) defined in (2.1).

With an argument inspired by a similar line of reasoning in [Kumar and Varaiya,

1986] for additive costs, let us prove the following lemma.

Lemma 1. Fix a Markov policy µ = (µ0, µ1, . . . , µN−1) ∈ Mm. The functions V µ
k :

S → [0, 1], k = 0, 1 . . . , N − 1, can be computed by the backward recursion:

V µ
k (s) = 1A(s)H(s, µk(s), V

µ
k+1), s ∈ S, (2.15)

initialized with V µ
N (s) = 1A(s), s ∈ S. �

Proof. Let us start by observing that, given the definition of Ts in (2.1) in terms of

its components and that of H in (2.14), equation (2.15) can be rewritten as

V µ
k (s) = 1A(s)

∫
S
V µ

k+1(sk+1)Ts(dsk+1|s, µk(s)).

From the expression in (2.13) of V µ
k , it holds true that

V µ
N−1(s) = 1A(s)

∫
S
1A(sN)T µN−1

s (dsN |s)

= 1A(s)

∫
S
V µ

N (sN)Ts(dsN |s, µN−1(s))

so that equation (2.15) is proven for k = N − 1. For k < N − 1, V µ
k can be expanded

as follows

V µ
k (s) = 1A(s)

∫
S
1A(sk+1)

(∫
SN−k−1

N∏
l=k+2

1A(sl)

N−1∏
l=k+2

T µl
s (dsl+1|sl)T

µk+1
s (dsk+2|sk+1)

)
T µk

s (dsk+1|s)

= 1A(s)

∫
S
V µ

k+1(sk+1)T
µk
s (dsk+1|s),

which concludes the proof.
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Max Cost. Define the set of functions W π
k : S → [0, 1], k = 0, 1, . . . , N , as follows:

W µ
N(s) =1Ā(s)

W µ
k (s) =1Ā(s) + 1A(s)

∫
SN−k

max
l∈[k+1,N ]

1Ā(sl)
N−1∏

l=k+1

T µl
s (dsl+1|sl)T

µk
s (dsk+1|s), (2.16)

k = 0, 1, . . . , N − 1, s ∈ S. Given a properly sized policy µ, the quantity W µ
k (s)

expresses the probability of exiting A for the residual time horizon [k,N ], starting

from s ∈ S. Given the expression of Pµ
π(Ā) as a max cost in (2.11), it is easy to show

that W µ
0 (s) evaluated at s = s0 returns Pµ

s0
(Ā) since

W µ
0 (s0) = Eµ

s0

[
max

l∈[0,N ]
1Ā(s(l))

]
.

Again, the above expression assumes that s0 belongs to the support of π. Furthermore,

by (2.12) and the above expression, it is possible to express Pµ
π(Ā) as

Pµ
π(Ā) =

∫
S
W µ

0 (s)π(ds).

Also, based on (2.7), the probabilistic safe set with safety level 1 − ε, ε ∈ [0, 1], can

be expressed in terms of W µ
0 as

Sµ(ε) = {s0 ∈ S : W µ
0 (s0) ≤ ε}.

From the definition of W µ
k in (2.16), and that of H in (2.14), Lemma 2 follows:

Lemma 2. Fix a Markov policy µ = (µ0, µ1, . . . , µN−1) ∈ Mm. The functions W µ
k :

S → [0, 1], k = 0, 1 . . . , N − 1, can be computed by the backward recursion:

W µ
k (s) = 1Ā(s) + 1A(s)H(s, µk(s),W

µ
k+1), s ∈ S, (2.17)

initialized with W µ
N(s) = 1Ā(s), s ∈ S. �
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Proof. From the Definition(2.16) of W µ
k , it holds that

W µ
N−1(s) = 1Ā(s) + 1A(s)

∫
S
1Ā(sN)T µN−1

s (dsN |s)

= 1Ā(s) + 1A(s)

∫
S
W µ

N(sN)T µN−1
s (dsN |s)

so that equation (2.17) is proven for k = N − 1. For k < N − 1, W µ
k can be expanded

as follows

W µ
k (s) = 1Ā(s) + 1A(s)

∫
S

(
1Ā(sk+1) + 1A(sk+1)∫

SN−k−1

max
l∈[k+2,N ]

1Ā(sl)
N−1∏

l=k+2

T µl
s (dsl+1|sl)T

µk+1
s (dsk+2|sk+1)

)
T µk

s (dsk+1|s)

= 1Ā(s) + 1A(s)

∫
S
W µ

k+1(sk+1)T
µk
s (dsk+1|s)

which concludes the proof.

It is worth noting that the iterative backward recursion derived in Lemma 2 is

much like that in [Prandini and Hu, 2006a; Prandini and Hu, 2006b] for reachability

computations on the Markov chain approximation of certain classes of uncontrolled

continuous time stochastic hybrid systems.

Equivalence of the two Representations. Since, for any sl ∈ S, l = 0, 1, . . . , N ,∏N
l=k 1A(sl) = 1 − maxl∈[k,N ] 1Ā(sl), k = 0, 1, . . . , N , not surprisingly, the following

equivalence result holds.

Lemma 3. Fix a Markov policy µ = (µ0, µ1, . . . , µN−1) ∈ Mm. Then, for any

k ∈ [0, N ], W µ
k (s) = 1− V µ

k (s), s ∈ S. �

Proof. The statement trivially holds for k = N . Assume now that it holds at time
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k + 1. Then,

W µ
k (s) =[by Lemma 2]

=1Ā(s) + 1A(s)H(s, µk(s),W
µ
k+1)

=[by induction assumption]

=1− 1A(s) + 1A(s)H(s, µk(s), 1− V µ
k+1)

=[by the properties of the operator H]

=1− 1A(s) + 1A(s)(1−H(s, µk(s), V
µ
k+1))

=1− 1A(s)H(s, µk(s), V
µ
k+1))

=[by Lemma 1]

=1− V µ
k (s), s ∈ S,

so that the statement holds for any k = 0, 1, . . . , N .

2.2.3 Maximal Probabilistic Safe Sets Computation

The calculation of the maximal probabilistic safe set S?(ε) defined in (2.4) (or equiv-

alently in (2.8)) amounts to finding the supremum over the Markov policies of the

probability pµ
π(A) of remaining within the safe set A starting from s0, for all s0 inside

A (the probability of remaining within A starting from s0 /∈ A is 0 for any policy). A

policy that achieves this supremum is said to be maximally safe. More precisely,

Definition 17 (Maximally safe policy). Let S be a DTSHS, and A ∈ B(S) a safe

set. A Markov policy µ? is maximally safe if pµ?

s0
(A) = supµ∈Mm

pµ
s0

(A), ∀s0 ∈ A. �

Note that, in view of Lemma 3, a maximally safe policy can be equivalently

characterized as that policy µ? ∈ Mm that achieves the minimum over A of Pµ
s0

(Ā):

Pµ?

s0
(Ā) = infµ∈Mm Pµ

s0
(Ā), ∀s0 ∈ A.

In general, a maximally safe policy is not guaranteed to exist. Let us next provide

sufficient conditions for the existence of a maximally safe Markov policy, and describe

an algorithm to compute supµ∈Mm
pµ

s0
(A) in terms of the multiplicative cost, and

infµ∈Mm Pµ
s0

(Ā) in terms of the max cost.
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Multiplicative Cost. Let us now show how to compute a maximally safe Markov

policy µ? ∈Mm through a recursion much like that in Lemma 1, based on the repre-

sentation (2.9) of pµ
s0

(A) as a multiplicative cost. The proof is inspired by [Bertsekas

and Shreve, 1996, section 11.3], addressing a finite horizon stochastic optimal control

problem with a multiplicative cost to be minimized.

Theorem 5. Define V ?
k : S → [0, 1], k = 0, 1, . . . , N , by the recursion:

V ?
k (s) = sup

(u,σ)∈U×Σ

1A(s)H(s, (u, σ), V ?
k+1), (2.18)

s ∈ S, initialized with V ?
N(s) = 1A(s), s ∈ S.

Then, V ?
0 (s0) = supµ∈Mm

pµ
s0

(A), s0 ∈ S.

If µ?
k : S → U × Σ, k ∈ [0, N − 1], is such that

µ?
k(s) = arg sup

(u,σ)∈U×Σ

H(s, (u, σ), V ?
k+1), s ∈ A, (2.19)

then, µ? = (µ?
0, µ

?
1, . . . , µ

?
N−1) is a maximally safe Markov policy. A sufficient condi-

tion for the existence of such a µ? is that Uk(s, λ) = {(u, σ) ∈ U×Σ : H(s, (u, σ), V ?
k+1) ≥

λ} is compact for all s ∈ A, λ ∈ R, k ∈ [0, N − 1]. �

Proof. For ease of reference to [Bertsekas and Shreve, 1996, section 11.3], let us set

Jµ
k := −V µ

N−k, µ ∈ Mm, and J?
k := −V ?

N−k, k = 0, 1, . . . , N , and rewrite equation

(2.19) and the recursions (2.15) and (2.18) in terms of these functions as:

µ?
k(s) = arg inf

(u,σ)∈U×Σ
H(s, (u, σ), J?

N−k−1), s ∈ A, (2.20)

Jµ
k (s) = 1A(s)H(s, µN−k(s), J

µ
k−1) (2.21)

J?
k (s) = inf

(u,σ)∈U×Σ
1A(s)H(s, (u, σ), J?

k−1), (2.22)

initialized with Jµ
0 (s) = J?

0 (s) = −1A(s), s ∈ S.

Consider a (universally measurable) function µ : S → U × Σ and define the

map Tµ : F → F as Tµ[J ](s) = K(s, µ(s), J), s ∈ S, where K(s, (u, σ), J) =

1A(s)H(s, (u, σ), J), s ∈ S, (u, σ) ∈ U × Σ, J ∈ F .
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Let F̃ ⊂ F denote the set of universally measurable real functions J : S → R. The

map Tµ preserves the universal measurability property: if J ∈ F̃ , then, Tµ[J ] ∈ F̃ .

This is because the integration of a universally measurable function with respect to

the stochastic kernel involved in the computation of H(s, µ(s), J) (see (2.14)) is a

universally measurable function, and its product with the Borel measurable function

1A(s) remains universally measurable.

Observe that, since the recursion (2.21) can be rewritten as Jµ
k = TµN−k

[Jµ
k−1] and

Jµ
0 ∈ F̃ , we then have that Jµ

k ∈ F̃ , k = 1, 2, . . . , N .

Map Tµ satisfies also the following properties: for all J, J ′ ∈ F̃ such that J(s) ≤
J ′(s), ∀s ∈ S, then Tµ[J ](s) ≤ Tµ[J ′](s), ∀s ∈ S (monotonicity, [Bertsekas and

Shreve, 1996, section 6.2]), and for any J ∈ F̃ and any real number r > 0,

Tµ[J ](s) ≤ Tµ[J + r](s) ≤ Tµ[J ](s) + r, s ∈ S. (2.23)

The monotonicity property immediately follows from the definition of Tµ. As for prop-

erty (2.23), it is easily shown observing that, by the definition of K and the properties

of H, the following chain of equalities hold: K(s, (u, σ), J+r) = 1A(s)H(s, (u, σ), J+

r) = 1A(s)H(s, (u, σ), J)+1A(s)r, s ∈ S, (u, σ) ∈ U×Σ, and, hence, given that 1A(s)

is either equal to 0 or to 1, K(s, (u, σ), J) ≤ K(s, (u, σ), J + r) ≤ K(s, (u, σ), J) + r,

s ∈ S, (u, σ) ∈ U × Σ.

Now, define the map T : F → F as T [J ](s) = inf(u,σ)∈U×ΣK(s, (u, σ), J), s ∈ S.

Then, the recursion (2.22) can be rewritten as J?
k = T [J?

k−1], and, from this latter

expression, it follows that J?
k = T k[J?

0 ], k = 0, 1, . . . , N , where T 0[J ] = J and T k[J ] =

T [T k−1[J ]]. Let F∗ ⊂ F̃ denote the set of lower-semianalytic functions. The map T

preserves the lower-semianalytic property: if J ∈ F∗, then, T [J ] ∈ F∗. This follows

from [Bertsekas and Shreve, 1996, Proposition 7.47], given thatH(s, (u, σ), J) is lower-

semianalytic as a function of its arguments s ∈ S and (u, σ) ∈ U × Σ [Bertsekas and

Shreve, 1996, Proposition 7.48], and, hence, K(s, (u, σ), J) = 1A(s)H(s, (u, σ), J)

is lower-semianalytic as well [Bertsekas and Shreve, 1996, Lemma 7.30(4)]. Since

J?
k = T [J?

k−1] and J?
0 ∈ F∗, we then have that J?

k ∈ F∗, k = 1, 2, . . . , N .

After these preliminary considerations, let us prove by induction on N the follow-
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ing two statements:

1. inf
µ
Eµ

s [−
N∏

k=0

1A(sk)] = TN [J?
0 ](s), s ∈ S

2.∀ε > 0, ∃µε = (µε,0, µε,1, . . . ) ∈Mm : ∀s ∈ S,

inf
µ
Eµ

s [−
N∏

k=0

1A(sk)] ≤ Jµε

N (s) ≤ inf
µ
Eµ

s [−
N∏

k=0

1A(sk)] + ε.

Note that by the first statement, it follows that V ?
0 (π) = −J?

N(π) = −TN [J?
0 ](π) =

supµ∈Mm
pµ

π(A), for any π ∈ S, so that the first part of the theorem is proven. As for

the second statement, observe that for any µε ∈Mm

Jµε

N (s) = −V µε

0 (s) = Eµε
s [−

N∏
k=0

1A(sk)] ≥ inf
µ
Eµ

s [−
N∏

k=0

1A(sk)],

so that the part of the second statement that needs to be actually proven is the

right-hand-side.

The statements clearly hold for N = 0. Suppose that they hold for N = h. This

implies that ∀ε > 0, ∃µε = (µε,0, µε,1, . . . ) ∈Mm such that

Jµε

h (s) ≤ inf
µ
Eµ

s [−
h∏

l=0

1A(sl)] + ε, s ∈ S.

For any universally measurable function µ : S → U × Σ, we then have that, by the

monotonicity of Tµ and (2.23),

Tµ[Jµε

h ](s) ≤ Tµ[inf
µ
Eµ

s [−
h∏

l=0

1A(sl)] + ε]

≤ Tµ[inf
µ
Eµ

s [−
h∏

l=0

1A(sl)]] + ε, s ∈ S.
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Now, if a policy µ̄ε = (µ, µε,0, µε,1, . . . ) is considered, it is easily seen that

inf
µ
Eµ

s [−
h+1∏
l=0

1A(sl)] ≤ J µ̄ε

h+1(s) = Tµ[Jµε

h ](s), s ∈ S,

which, combined with the inequality above, leads to:

inf
µ
Eµ

s [−
h+1∏
l=0

1A(sl)] ≤ Tµ[inf
µ
Eµ

s [−
h∏

l=0

1A(sl)]] + ε, s ∈ S,

for any universally measurable function µ : S → U × Σ. From this, it follows that

inf
µ
Eµ

s [−
h+1∏
l=0

1A(sl)] ≤ T [inf
µ
Eµ

s [−
h∏

l=0

1A(sl)]]

= T h+1[J?
0 ](s), s ∈ S,

where the last equality is due to the induction hypothesis. On the other hand, it is

true that

T h+1[J?
0 ](s) ≤ inf

µ
Eµ

s [−
h+1∏
l=0

1A(sl)], s ∈ S,

which allows one to conclude that

inf
µ
Eµ

s [−
h+1∏
l=0

1A(sl)] = T h+1[J?
0 ](s), s ∈ S. (2.24)

Let us now proceed with the second statement.

By the induction hypothesis, for any ε̄ > 0 there exists µ̄ = (µ̄0, µ̄1, . . . ) ∈ Mm such

that

J µ̄
h (s) ≤ inf

µ
Eµ

s [−
h∏

l=0

1A(sl)] +
ε̄

2
, s ∈ S.

Also, by [Bertsekas and Shreve, 1996, Proposition 7.50] there exists a universally
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measurable function µ̄ : S → U × Σ such that

Tµ̄[Eµ
s [−

h∏
l=0

1A(sl)]](s) ≤ T [Eµ
s [−

h∏
l=0

1A(sl)]](s) +
ε̄

2
,

s ∈ S. Then, if µε̄ = (µ̄, µ̄0, µ̄1, . . . ) is considered, by the monotonicity of Tµ̄ and

(2.23), we obtain

Jµε̄

h+1(s) = Tµ̄[J µ̄
h ](s) ≤ Tµ̄[inf

µ
Eµ

s [−
h∏

l=0

1A(sl)]] +
ε̄

2

≤ T [inf
µ
Eµ

s [−
h∏

l=0

1A(sl)]] + ε̄, s ∈ S.

By the induction hypothesis and (2.24), we finally get

Jµε̄

h+1(s) ≤ T h+1[J?
0 ] + ε̄ = inf

µ
Eµ

s [−
h+1∏
l=0

1A(sl)] + ε̄,

s ∈ S, which concludes the proof of the two statements.

Next, let us show that µ? = (µ?
0, µ

?
1, . . .) satisfying (2.20) is a Markov policy and

that it is maximally safe. To this purpose, note first that function µ?
k satisfying (2.20)

can be characterized through the equation

Tµ?
k
[J?

N−k−1](s) = inf
(u,σ)∈U×Σ

K(s, (u, σ), J?
N−k−1) = J?

N−k(s), s ∈ S.

As discussed at the beginning of this proof, J?
N−k ∈ F∗ and, hence, K(s, (u, σ), J?

N−k)

is lower-semianalytic as a function of s ∈ S and (u, σ) ∈ U ×Σ. Then, if its infimum

with respect to (u, σ) ∈ U × Σ is attained for any s ∈ S (for s ∈ Ā this is always the

case), the resulting function µ?
k : S → U × Σ is universally measurable, [Bertsekas

and Shreve, 1996, Proposition 7.50].
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Now observe that

inf
µ
Eµ

s [−
N∏

l=0

1A(sl)] = J?
N(s) = Tµ?

0
[J?

N−1](s)

= Tµ?
0

[
Tµ?

1
[J?

N−2]
]
(s) = . . .

= Tµ?
0
[Tµ?

1
[. . . Tµ?

N−1
[J?

0 ]]](s)

= Jµ?

N (s) = Eµ?

s [−
N∏

l=0

1A(sl)],

s ∈ S, which shows that µ? is maximally safe.

For any s ∈ S and k ∈ [0, N − 1], a sufficient condition for the existence of a

minimum over U × Σ of function K(s, (u, σ), J?
N−k−1) is that Zk(s, α) = {(u, σ) ∈

U×Σ : K(s, (u, σ), JN−k−1?) ≤ α} is compact, [Bertsekas and Shreve, 1996, Lemma

3.1]. Since J?
N−k−1 = −V ?

k+1, then K(s, (u, σ), J?
N−k−1) = 1A(s)H(s, (u, σ), J?

N−k−1) =

−1A(s)H(s, (u, σ), V ?
k+1), from which the condition on Uk(s, λ) easily follows.

Max Cost. In the following theorem, let us describe an algorithm to compute a

maximally safe Markov policy µ? ∈Mm based on the representation (2.11) of Pµ
π(Ā)

as a max cost, by a recursion much like that in Lemma 2.

Theorem 6. Define W ?
k : S → [0, 1], k = 0, 1, . . . , N , by the recursion:

W ?
k (s) = inf

(u,σ)∈U×Σ

(
1Ā(s) + 1A(s)H(s, (u, σ),W ?

k+1)
)
,

s ∈ S, initialized with W ?
N(s) = 1Ā(s), s ∈ S.

Then, W ?
0 (π) = infµ∈Mm Pµ

π(Ā), π ∈ S.

If µ?
k : S → U × Σ, k ∈ [0, N − 1], is such that

µ?
k(s) = arg inf

(u,σ)∈U×Σ
H(s, (u, σ),W ?

k+1),∀s ∈ A,

then, µ? = (µ?
0, µ

?
1, . . . , µ

?
N−1, . . . ) is a maximally safe Markov policy. A sufficient con-

dition for the existence of such a µ? is that Uk(s, λ) = {(u, σ) ∈ U×Σ : H(s, (u, σ),W ?
k+1) ≤

λ} is compact for all s ∈ A, λ ∈ R, k ∈ [0, N − 1]. �
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Proof. Let us start proving that for any k ∈ [0, N ],

W ?
k (s) = 1− V ?

k (s), s ∈ S. (2.25)

The statement is trivially satisfied for k = N , since W ?
N(s) = 1Ā(s) = 1 − 1A(s) =

1− V ?
N(s), s ∈ S. Assume that it is valid for k + 1. Then,

W ?
k (s) = inf

(u,σ)∈U×Σ
(1Ā(s) + 1A(s)H(s, (u, σ),W ?

k+1))

= [by induction assumption]

= inf
(u,σ)∈U×Σ

(1Ā(s) + 1A(s)H(s, (u, σ), 1− V ?
k+1))

= [by the properties of the operator H]

= inf
(u,σ)∈U×Σ

(1Ā(s) + 1A(s)(1−H(s, (u, σ), V ?
k+1)))

= 1− sup
(u,σ)∈U×Σ

1A(s)H(s, (u, σ), V ?
k+1)

= [by Theorem 5]

= 1− V ?
k (s), s ∈ S.

It then easily follows from Theorem 5 and the definitions of pµ
π(A) and Pµ

π(Ā) that

W ?
0 (π) = 1− V ?

0 (π) = 1− sup
µ∈Mm

pµ
π(A)

= inf
µ∈Mm

(1− pµ
π(A)) = inf

µ∈Mm

Pµ
π(Ā).

Furthermore, in view of the duality equation (2.25) the characterization through the

V ?
k functions of a maximally safe policy µ?

k : S → U × Σ, k ∈ [0, N − 1], in Theorem

5 can be equivalently expressed in terms of the W ?
k functions as follows:

µ?
k(s) = arg sup

(u,σ)∈U×Σ

H(s, (u, σ), V ?
k+1)

= arg sup
(u,σ)∈U×Σ

H(s, (u, σ), 1−W ?
k+1)

= arg inf
(u,σ)∈U×Σ

H(s, (u, σ),W ?
k+1), s ∈ A.
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Probabilistic Reachability

Probabilistic Safe Sets

Maximal probabilistic safe set 
and Maximally safe policy
DP - Multiplicative Cost

Maximal probabilistic safe set 
and Maximally safe policy

DP - Max Cost

Figure 2.3: Dual interpretation of the probabilistic reachability and safety problem.

A sufficient condition on the control space to ensure the existence of this optimal

argument at each time step is again easily derived from the corresponding one in

Theorem 5.

Remark 11. If the control input spaces U and Σ are both finite sets, then a maximally

safe policy is guaranteed to exist. �

2.2.4 Extensions to the Infinite Horizon Case

Motivated by the quest for generality, as well as by the obtained outputs from the

simulations of the case study (see in particular the outputs of Figure 2.9), let us extend

the reachability analysis problem for DTSHS to the infinite time-horizon setting and

address the question of convergence of the optimal control law to a stationary policy.

The extension will adhere to the max cost approach.

Let us consider a system that is described by a controlled DTSHS model S (see

Definition 13). The sets M and Mm of feedback and Markov policies are extension

to the infinite horizon case of those introduced in section 2.1.1. A Markov policy

µ ∈Mm is said to be stationary if µ = (µ̄, µ̄, µ̄, . . . ), with µ̄ : S → U ×Σ universally

measurable. The execution of the DTSHS S associated with some policy µ and initial

distribution π is easily obtained by extending Definition 16 to the infinite horizon.
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Then, the execution {s(k), k ≥ 0} associated with µ ∈ Mm and π is a stochastic

process defined on the canonical sample space Ω = S∞, endowed with its product

topology B(Ω), with probability measure Pµ
π,∞ uniquely defined by the transition

kernel Ts, the policy µ, and the initial distribution π (see [Bertsekas and Shreve,

1996, Proposition 7.45]).

For a given policy µ ∈Mm and initial distribution π, let

Pµ
π,∞(Ā) := Pµ

π,∞(s(k) ∈ Ā for some k ≥ 0),

be the probability of entering the unsafe region specified by Ā ∈ B(S). If π is

concentrated in a single point s, let us use the notation Pµ
s,∞(Ā).

The goal is again that of finding an optimal Markov policy that singles out the

maximal probabilistic safe set

S?
∞(ε) := {s0 ∈ S : inf

µ∈Mm

Pµ
s0,∞(Ā) ≤ ε}

with safety level 1− ε.

Let us aim at computing this maximally safe policy again by means of a dynamic

programming scheme. In addition, as it is reasonable in an infinite horizon setting

for a time-invariant system, let us try to investigate if such a policy can be selected

among the stationary Markov policies.

In the following, let us focus on the interpretation based on the expression for the

probability Pµ
π,∞(Ā) in terms of the max cost: Pµ

π,∞(Ā) = Eµ
π,∞
[
maxk≥0 1Ā(s(k))

]
.

Unlike the additive-cost, the max cost framework is not of widespread usage and

has not been deeply investigated. Extending the results developed for the infinite

horizon additive cost case to the infinite horizon max cost case requires some attention

regarding the following aspects:

1. it is first necessary to take care of the asymptotic properties of the max cost

function at the limit;

2. and the measurability properties of the limit function, its behavior when mini-

mized, the existence and properties of the optimal argument have to be carefully

assessed.
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An iterative procedure to compute Pµ
π,∞(Ā) is again possible. Conditions that

yield a stationary optimal Markov policy can also be provided. Before presenting

the main result, let us introduce the following change of variables, for any N > 0 :

l = N − k. According to this, the initial condition, chosen at l = 0, for any policy

µ = (µ0, µ1, . . .), is W µ
0 (s) = 1A(s), s ∈ S.

Theorem 7. Define the maps W ?
l : S → [0, 1], l ≥ 0, by the recursion:

W ?
l+1(s) = inf

(u,σ)∈U×Σ

(
1Ā(s) + 1A(s)H(s, (u, σ),W ?

l )
)
,

s ∈ S, initialized with W ?
0 (s) = 1Ā(s), s ∈ S.

Suppose that ∃l̄ ≥ 0 s.t. Ul(s, λ) = {(u, σ) ∈ U × Σ : H(s, (u, σ),W ?
l ) ≤ λ} is

compact for all s ∈ A, λ ∈ R, l ≥ l̄. Then, W ?
∞(s) = infµ∈Mm Pµ

s,∞(Ā), s ∈ S.

Furthermore, there exists a maximally safe stationary Markov policy µ? = (µ̄?, µ̄?, . . .),

with µ̄? : S → U × Σ, given by

µ̄?(s) = arg inf
(u,σ)∈U×Σ

H(s, (u, σ),W ?
∞), ∀s ∈ A.

�

Proof. For any N ≥ 0, function W ?
N can be shown to be universally measurable and

lower semianalytic. This is easily obtained by induction, applying the same line of

reasoning as in Theorem 6 for proving Assumption A2 and taking into consideration

the initialization W ?
0 (s) = 1Ā(s), s ∈ S of the iterative procedure to compute W ?

N .

Observe now that the sequence of functions W ?
N(·), N ≥ 0, is increasing and upper

bounded: W ?
N(s) ≤ W ?

N+1(s) ≤ 1, ∀s ∈ S, ∀N ≥ 0, (W ?
N(s) is the minimum probabil-

ity of entering the unsafe set Ā starting from s along the time horizon [0, N ]). Then,

the limit function W ?
∞ will also be lower semi-analytic (ref. [Bertsekas and Shreve,

1996, Lemma 7.30(2)]), hence universally measurable. By [Bertsekas and Shreve,

1996, Prop. 9.17], it can be proven that, for any s ∈ S,

W ?
∞(s) = inf

(u,σ)∈U×Σ

(
1Ā(s) + 1A(s)H(s, (u, σ),W ?

∞)
)
.

Exploiting [Bertsekas and Shreve, 1996, Prop. 5.8], it is possible to show that the

dynamic programming scheme has a fixed point and that W ?
∞(·) is the limit function;
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thus it is the infimum in the statement. Finally, by [Bertsekas and Shreve, 1996, Cor.

9.12.1], it is possible to conclude that there exists a stationary optimal policy, the

form of which is that in the statement. This concludes the proof.

Alternative, extended proof. Let us start by studying some measurability issues. Mea-

surability and analyticity properties are directly transferred from Theorems 5 and 6

as follows: we have shown that each W µ
l (s),∀s ∈ S, and in particular W ?

l (s), are

universally measurable and lower semi-analytic, for any l ∈ [0, N ]. By [Bertsekas and

Shreve, 1996, Lemma 7.30(2)], the limit W µ
∞(s) will be as well lower semi-analytic.

Furthermore, W ?
∞(s) will also be lower semi-analytic [Bertsekas and Shreve, 1996,

Prop. 7.47]. Being a semi-analytic function analytically measurable [Bertsekas and

Shreve, 1996, Sec. 7.7], it follows that W ?
∞(s) is also endowed with universal measur-

ability.

Let us now turn our attention to some structural considerations. Observe that,

fixing any particular s ∈ S and a policy µ = (µ0, µ1, . . .) ∈ Mm, the cost function

W µ
k (s) is monotonic with time. More precisely, the following holds:

W µ
0 (s) ≤ W µ

k (s) ≤ W µ
∞(s), ∀k > 0, ∀s ∈ S. (2.26)

This increasing property also encompasses the monotonicity assumption, as defined in

[Bertsekas and Shreve, 1996, Sec. 6.1], which is retained at each time interval thanks

to the structure of the cost functions.

From the monotonically increasing property of equation (2.26), in particular, it fol-

lows that, for an optimal policy µ? = (µ?
0, µ

?
1, . . .), W

?
k (s) ≤ W ?

k+1(s) ≤ W ?
∞(s),∀k >

0. This, in conjunction with the property that 0 ≤ W ?
k (s) ≤ 1,∀k > 0,∀s ∈ S, en-

sures that the sequence {W ?
k (s)}k=0,1,... will converge to a fixed W ?

∞(s). Furthermore,

the following fact is particularly interesting:

W ?
∞(s) = inf

(u,σ)∈U×Σ

(
1Ā(s) + 1A(s)H(s, (u, σ),W ?

∞)
)
. (2.27)

In words, the application of the dynamic programming scheme yields a convergent

cost function. At this point, we need to show that the optimal cost function attained

by the application of the dynamic programming scheme is in fact the one obtained
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optimizing the infinite horizon cost function directly over all the possible policies

µ ∈ Mm: this is obtained by use of [Bertsekas and Shreve, 1996, Proposition 9.10,

section 5.4].

Next, let us show that the dynamic programming scheme yields a stationary op-

timum. Picking any λ ∈ R, Uk(s, λ) is compact for all k > 0 by assumption. Further-

more, from the monotonicity property of the cost functions it follows that, in particu-

lar, it is possible to select λ = W ?
∞(s). This suggests that all the points of the sequence

µ ∈Mm, {µk}k=(0,1,...) are contained in the compact set
⋂

k={0,1,...} Uk(s,W
?
∞(s)),∀s ∈

S. Hence, its limit point µ̄ is as well. In particular, (2.27) holds for µ̄ = (ū, σ̄). This

says that, for any s ∈ S, k > 0, there exists a µ̄ = (ū, σ̄) ∈ U × Σ such that

µ̄ = µ? = arg inf
(u,σ)∈U×Σ

H(s, (u, σ),W ?
k ).

We have explicitly shown that the infimization of the quantities W µ
k (s) will yield

a result, for all s ∈ S and k > 0. This is what in Theorems 5 and 6 is called

the exact selection assumption and is proved by the Jankov-von Neumann theorem

and [Bertsekas and Shreve, 1996, section 6.2 and Proposition 7.50]. In addition, the

optimal control µ̄ will be stationary [Bertsekas and Shreve, 1996, Propositions 9.9

and 9.12]. This concludes the proof.

2.2.5 Regulation and Practical Stabilization Problems

Reachability can also be studied within the framework of regulation theory where the

aim is to steer the state of the system close to some desired operating condition. This

can be achieved by considering a small neighborhood around the desired operating

condition, and by solving a reachability problem with a time-varying region that

shrinks to that neighborhood as the “safe” set for the system.

If the state of the system has then to be maintained within this neighborhood

indefinitely, [Bertsekas, 1972], one can split the problem into a finite horizon time-

varying reachability problem and a subsequent infinite horizon one. This approach has

close connections with control design for practical stabilization, [Picasso and Bicchi,

2005]. The application of reachability analysis to regulation problems for DTSHS
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is discussed in section 2.3.2.2 with reference to a simple application example, where

the problem is to drive the temperature of a room close to some desired value by

controlling a heater.

2.2.6 Other Related Control Problems

Fault-Tolerant Control. A further possible application of the dynamic program-

ming approach to stochastic reachability is the verification of fault-tolerant control

schemes, within the DTSHS setting. By introducing a policy that selects the worst

faulty action based on the current value of the state to model the faulty system be-

havior, one can verify if the state of the system will remain within a well-behaved set

with high probability, despite of the possible occurrence of faults. In this application

context, it may be useful to enlarge the class of considered policies from determin-

istic to randomized policies since the occurrence of faults is typically governed by a

probabilistic law rather than a deterministic (quasi-adversarial) behavior.

Adversarial Uncertainty. Engineering Systems can be characterized not only by

random uncertainty, coming either from noise or from lack of perfect knowledge of the

system or of its environment. It is often also the case that the system may include an

adversarial input, which acts on the system with an objective that is either different,

or in competition, with the one of the main actor. An example of such a system comes

from Air Traffic Control or general military applications [Ghosh and Marcus, 1995;

Lygeros et al., 1997; Tomlin et al., 2000; Bayen et al., 2003].

Mathematically, this can be described by introducing a game-theoretical frame-

work, rather than the known optimal control one. Some classic literature on the topic

come from [Issacs, 1967; Evans and Souganidis, 1984; Lagunov, 1985; Fleming and

Souganidis, 1989].

2.2.7 Embedding Performance into the Problem

More challenging extensions of the approach include the treatment of general optimal

control problems with safety constraints, as in [Batina et al., 2002]. Quite common is

that the controlled system is required to behave optimally or efficiently according to
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some performance criterion, while evolving within a safe or desired set. Related to

this, an interesting approach is that proposed in [Lygeros et al., 1999], addressing a

multi-objective control problem with requirements ranking, for deterministic hybrid

systems. Other related work on the subject of hierarchical or multi-objective control

can be found in [Tomlin et al., 1998a; Oishi et al., 2001; Lygeros, 2004b].

In some cases, such as when the system performance is evaluated in terms of

an additive cost, a relaxed version of the optimal constrained control problem can

be formulated where a new state component representing at each time instant the

cumulated cost is introduced and the objective is maintaining the system within an

extended safe region where the cost is sufficiently low. As an example, suppose that

in the considered temperature regulation case study it is desirable to limit the number

of switchings. It is then possible to assign a unitary cost to each commutation, add

a state variable counting the number of commutations, and keep this new variable

within a bounded region around the origin, with an upper limit corresponding to the

total number of allowed commutations. Clearly, the caveat to this approach is that an

increase in dimensionality may turn out to be computationally unfeasible in practice.

2.2.8 State and Control Discretization

This section unfolds from the consideration that since an analytic solution to the

dynamic programming scheme (such as that in Theorem 5, or in 6) is generally hard

to find, the computational aspects to the problem are of key importance to its actual

implementation. This is particularly true for the case under study, where the general

dynamics and the nonlinear shape of the cost function do not enable a closed-form

expression of the quantities of interest.

The above issue can be tackled in two different ways. One can resort to a numerical

approximation scheme relying on the discretization of the continuous state and control

input spaces. Alternatively, one can introduce a family of finitely parameterized

functions, and then look for the cost-to-go function within that family according

to the neuro-dynamic programming approach, as in [Bertsekas and Tsitsiklis, 1996].

Here, the first option is considered.

Let us study a discretization procedure for the numerical solution to the dynamic
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programming equation of either of the stochastic reachability problems described in

the previous sections. The convergence of the numerical solution to the actual solu-

tion as the grid size goes to zero will be assessed. Additionally, explicit bounds on

the level of approximation introduced for a given small but nonzero grid size will be

derived. The study is inspired by the reference work [Bertsekas, 1975], which dis-

cusses discretization procedures for the numerical solution to dynamic programming

in the additive cost case and for stochastic– non hybrid– systems. The present con-

tribution extends this approach to a hybrid system setting with multiplicative cost

and general disturbances. The current approach is not the unique attempt within the

set of approximation techniques. For instance, a numerical approximation scheme

was proposed in [Prandini and Hu, 2006a] for estimating the probability of remaining

within a safe set for a certain class of autonomous, continuous time SHS, namely

switching diffusions. The discretization process in that case involved gridding the

system both in time and in space, and is based on weak convergence approximation

methods studied in [Kushner, 1984]. Asymptotic convergence of the estimate to the

true probability was proven, but no bounds were provided for assessing the quality

of the derived non-asymptotic estimates.

For notational simplicity, let us consider the following case:

Assumption 7. The control space A = U × Σ is a finite set. �

Under this assumption, the compactness condition required in Theorem 5 (or in

Theorem 6) for the existence of a maximally safe Markov policy is not required.

Some comments on the generalization of the results to the case when A is a compact

uncountable set in an Euclidean space is postponed to the conclusion section.

Let us focus on the max approach in Theorem 5 and recall the DP scheme in equa-

tions (2.18)-(2.19), involved in the computations of the maximal probabilistically safe

sets and of the maximally safe policies. For the purpose of numerical approximation,

it is important to note that the scheme can be restricted to the safe set A, assmed to

be compact, of the state space as follows:

V ∗
k (s) = max

a∈A

∫
A

V ∗
k+1(sk+1)Ts(dsk+1|s, a), s ∈ A, (2.28)
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initialized with V ∗
N(s) = 1, s ∈ A, and

µ∗k(s) = arg max
a∈A

∫
A

V ∗
k+1(sk+1)Ts(dsk+1|s, a), ∀s ∈ A. (2.29)

This is quite intuitive, since for values of the state outside A the cost-to-go function

is identically zero for any µ. Moreover, the optimal policy µ∗ : S → A can be set

arbitrarily on the set S \ A. Thus, we just have to consider the values for the state

within the compact set A. The advantage of considering only the compact set A is that

we can adopt a finite discretization for the continuous state component within A in

the numerical approximation scheme for solving the dynamic programming algorithm

and determining the optimal policy µ∗. The idea is that, under suitable regularity

conditions on the transition kernels, the optimal cost-to-go functions can be shown

to be Lipschitz continuous in the continuous state component over A. This property

(valid only within A, given the discontinuity when passing from a safe state within

A to an unsafe state outside A) is used for determining bounds to the numerical

approximated solution.

2.2.8.1 Discretization Procedure

State discretization. As discussed before, let us restrict computations–and the

discretization procedure–to the compact safe set A. The set A ⊂ S is given by

A =
⋃

q∈Q{q} × Xq. The size of the continuous state space within A is measured

by λ := maxq∈Q Leb(Xq), where Leb(Xq) denotes the Lebesgue measure of the set

Xq ⊂ Rn(q). For simplicity, let us assume that the compact set Xq is Xq 6= ∅,

for all q ∈ Q. Let us introduce a partition of cardinality mq of set Xq ⊂ Rn(q),

q ∈ Q: Xq =
⋃mq

i=1X
q
i , where Xq

i , i = 1, . . . ,mq are pair-wise disjoint Borel sets

Xq
i ∈ B(Rn(q)), Xq

i ∩ X
q
j = ∅, ∀i 6= j. For any q and i, pick a hybrid state value

vq
i ∈ {q} × Xq

i . The set of all these discrete values in the hybrid state is the grid

G := {vq
i , i = 1, . . . ,mq, q ∈ Q}. Notice that the compactness assumption on A en-

sures the finiteness of the cardinality of G. Denote with dq,i the diameter of the set

Xq
i , d

q
i = sup{‖x − x′‖ : x, x′ ∈ Xq

i }. Then, ∆s := maxi=1,...,mq ,q∈Q d
q
i is the grid size

parameter.

Note that, unlike [Bertsekas, 1975] where the system dynamics are described
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through a difference nonlinear equation affected by a stochastic disturbance, we do

not have a disturbance input appearing explicitly. The definition of the dynamics

of the system via stochastic kernels incorporates both the disturbance effect and the

deterministic contribution to the system evolution. As a consequence, by discretizing

the state space, a discretization of the disturbance space is also implicitly defined (see

the example in section 2.3.3).

Dynamic programming approximation. With reference to the finite state grid G
and the scheme in Theorem 5, equation (2.18), let us introduce a discretized version

of the dynamic programming equations as follows:
V̂ ∗

N(vq
i ) = 1, if vq

i ∈ G
V̂ ∗

N(s) = V̂ ∗
N(vq

i ), if s ∈ {q} ×Xq
i ,∀i = 1, . . . ,mq, q ∈ Q

V̂ ∗
k (vq

i ) = maxa∈A
∫

A
V̂ ∗

k+1(s)Ts(ds|vq
i , a), if vq

i ∈ G
V̂ ∗

k (s) = V̂ ∗
k (vq

i ), if s ∈ {q} ×Xq
i , i = 1, . . . ,mq, q ∈ Q, for k ∈ [0, N − 1].

(2.30)

Note that due to the piecewise constant approximation of the optimal cost-to-go

function and to the definition of Ts in equation (2.1), the integral in equation in (2.30)

can be rewritten as

V̂ ∗
k (vq

i ) = max
a∈A

{ ∑
j=1,...,mq

V̂ ∗
k+1(v

q
j )Tq(q|vq

i , a)

∫
Xq

j

Tx(dx|vq
i , a)

+
∑

j=1,...,mq̄,

q̄ 6=q∈Q

V̂ ∗
k+1(v

q̄
j )Tq(q̄|vq

i , a)

∫
X q̄

j

R(dx|vq
i , a, q̄)

}
,

which explicitly shows that (2.30) consists of a computation on the finite grid G.

Based on the approximated optimal cost-to-go V̂ ∗ let us define a piecewise constant

Markov policy µ̂∗ = (µ̂∗0, . . . , µ̂
∗
N−1), µ̂

∗
k : S → A, k ∈ [0, N − 1], as follows:{

µ̂∗k(v
q
i ) = arg maxa∈A

∫
A
V̂ ∗

k+1(s)Ts(ds|vq
i , a), if vq

i ∈ G,
µ̂∗k(s) = µ̂∗(vq

i ), if s ∈ {q} ×Xq
i , i = 1, . . . ,mq, q ∈ Q.

(2.31)

As previously argued in general for any policy, also µ̂∗ can be be arbitrarily selected

outside the safe set A.
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The actual performance of the so-obtained policy µ̂∗ are given by the correspond-

ing values for the original cost-to-go functions V µ̂∗

k , k = 0, 1, . . . , N (notice the differ-

ence with the terms in 2.30), that can be computed by the recursion in Lemma 1. In

particular, V µ̂∗

0 (s), s ∈ A, provides the value of the probability that the system will

remain within A in the time horizon [0, N ] starting from s under policy µ̂∗.

In the following section, it will be shown that under proper assumptions the

performance of policy µ̂∗ tends to the one of a maximally safe policy µ∗, as the grid

size parameter ∆s goes to zero.

2.2.8.2 Convergence Analysis

Let us suppose that the stochastic kernels Tx and R on the continuous component

of the hybrid state in Definition 13 of the DTSHS admit density tx and r. Let us

further assume that the densities tx and r, as well as the stochastic kernel Tq, satisfy

the following Lipschitz condition.

Assumption 8. Let the following hold:

1. |Tq(q̄|s, a)− Tq(q̄|s′, a)| ≤ k1‖x− x′‖, for all s = (q, x), s′ = (q, x′) ∈ A, a ∈ A,

and q̄ ∈ Q,

2. |tx(x̄|s, a)− tx(x̄|s′, a)| ≤ k2‖x− x′‖, for all s = (q, x), s′ = (q, x′) ∈ A, a ∈ A,

and (q, x̄) ∈ A,

3. |r(x̄|s, a, q̄)−r(x̄|s′, a, q̄)| ≤ k3‖x−x′‖, for all s = (q, x), s′ = (q, x′) ∈ A, a ∈ A,

(q̄, x̄) ∈ A, and q̄ 6= q,

where k1, k2 and k3 are suitable finite Lipschitz constants.

Based on this assumption, it is possible to prove that the optimal cost-to-go

functions satisfy some Lipschitz condition over A. This property will be fundamental

in proving the convergence result.

Theorem 8. Under Assumption 8, the optimal cost-to-go functions satisfy the fol-

lowing Lipschitz condition over A:

|V ∗
k (s)− V ∗

k (s′)| ≤ K‖x− x′‖, ∀ s = (q, x), s′ = (q, x′) ∈ A, (2.32)
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for any k ∈ [0, N ]. The constant K is given by K = mk1 + λ
(
k2 + (m− 1)k3

)
. �

Proof. Since V ∗
N(s) = V ∗

N(s′) = 1, for all s, s′ ∈ A, then, the inequality in (2.32) is

trivially satisfied for k = N . For any k ∈ [0, N − 1], s = (q, x), s′ = (q, x′) ∈ A, from

the dynamic programming equation (2.18) and definition (2.1) of Ts, we have:

|V ∗
k (s)− V ∗

k (s′)| = (2.33)

=
∣∣∣max

a∈A

{∫
A

V ∗
k+1(sk+1)Ts(dsk+1|s, a)

}
−max

a∈A

{∫
A

V ∗
k+1(sk+1)Ts(dsk+1|s′, a)

}
=
∣∣∣max

a∈A

{
Tq(q|s, a)

∫
Xq

V ∗
k+1(q, x̄)Tx(dx̄|s, a) +

∑
q̄ 6=q

Tq(q̄|s, a)
∫

X q̄

V ∗
k+1(q̄, x̄)R(dx̄|s, a, q̄)

}
−max

a∈A

{
Tq(q|s′, a)

∫
Xq

V ∗
k+1(q, x̄)Tx(dx̄|s′, a) +

∑
q̄ 6=q

Tq(q̄|s′, a)
∫

X q̄

V ∗
k+1(q̄, x̄)R(dx̄|s′, a, q̄)

}∣∣∣
≤ max

a∈A

{∣∣∣Tq(q|s, a)
∫

Xq

V ∗
k+1(q, x̄)Tx(dx̄|s, a)− Tq(q|s′, a)

∫
Xq

V ∗
k+1(q, x̄)Tx(dx̄|s′, a)

∣∣∣
+
∑
q̄ 6=q

∣∣∣Tq(q̄|s, a)
∫

X q̄

V ∗
k+1(q̄, x̄)R(dx̄|s, a, q̄)− Tq(q̄|s′, a)

∫
X q̄

V ∗
k+1(q̄, x̄)R(dx̄|s′, a, q̄)

∣∣∣}.
Let us next show two intermediate results that will be useful for proving the Lipschitz

property for V ∗
k . The following chain of inequalities can be easily proven using the

fact that |V ∗
k+1(q, x̄)| ≤ 1 and Assumption 8:

∣∣∣ ∫
Xq

V ∗
k+1(q, x̄)Tx(dx̄|(q, x), a)−

∫
Xq

V ∗
k+1(q, x̄)Tx(dx̄|(q, x′), a)

∣∣∣
≤
∣∣∣ ∫

Xq

V ∗
k+1(q, x̄)(Tx(dx̄|(q, x), a)− Tx(dx̄|(q, x′), a))

∣∣∣
≤
∫

Xq

|V ∗
k+1(q, x̄)|

∣∣Tx(dx̄|(q, x), a)− Tx(dx̄|(q, x′), a)
∣∣

≤
∫

Xq

∣∣Tx(dx̄|(q, x), a)− Tx(dx̄|(q, x′), a)
∣∣

≤ λk2‖x− x′‖,∀(q, x), (q, x′) ∈ A, a ∈ A.
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Similarly, we have that∣∣∣ ∫
X q̄

V ∗
k+1(q̄, x̄)R(dx̄|(q, x), a, q̄)−

∫
X q̄

V ∗
k+1(q̄, x̄)R(dx̄|(q, x′), a, q̄)

∣∣∣
≤ λk3‖x− x′‖,∀(q, x), (q, x′) ∈ A, q̄ ∈ Q, a ∈ A.

Recall now that the product of two functions α, β : E → R that are Lipschitz

continuous over a compact set E of a Euclidean space, with Lipschitz constants re-

spectively kα and kβ, satisfies:

|α(z1)β(z1)− α(z2)β(z2)| ≤
{
kα sup

z∈E
|β(z)|+ kβ sup

z∈E
|α(z)|

}
‖z1 − z2‖.

By this inequality, applied twice to the two terms on the rhs of equation (2.33) with

α(z) = Tq(q|(q, z), a) both times, and with either β(z) =
∫

Xq V
∗
k+1(q, x̄)Tx(dx̄|(q, z), a)

or β(z) =
∫

X q̄ V
∗
k+1(q, x̄)R(dx̄|(q̄, z), a, q̄), it is easily shown that

|V ∗
k (s)− V ∗

k (s′)| ≤
[
mk1 + λ

(
k2 + (m− 1)k3

)]
‖x− x′‖,

which concludes the proof.

Finally, let us prove the following convergence result, relating the error on the

optimal cost functions, as well as the error on the use of the approximate optimal

policy in the optimal cost function.

Theorem 9. Under Assumption 8, there exists positive constants γk, k = 0, . . . , N ,

such that the solutions V̂ ∗
k to the approximated dynamic programming equations (2.30)

and the cost-to-go functions of the corresponding Markov policy µ̂∗ defined in (2.31)

satisfy:

∣∣V ∗
k (s)− V̂ ∗

k (s)
∣∣ ≤ γk∆s, s ∈ A, (2.34)∣∣V ∗

k (s)− V µ̂∗

k (s)
∣∣ ≤ νk∆s, s ∈ A. (2.35)

where γk = γk+1 + K, k = 1, 2 . . . , N − 1, initialized with γN = 0, and νk = γk +

γk+1 + K + νk+1, k = 1, 2 . . . , N − 1, initialized with νN = 0, and where K = mk1 +
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λ
(
k2 + (m− 1)k3

)
. �

Proof. Let us prove equation (2.34) by induction. Since V ∗
N(s) = V̂ ∗

N(s) = 1, s ∈ A,

then, equation (2.34) trivially holds for k = N .

Let us suppose by induction hypothesis that
∣∣V ∗

k+1(s) − V̂ ∗
k+1(s)

∣∣ ≤ γk+1∆s, s ∈ A.

Then, for any vq
i ∈ {q} ×Xq

i ⊂ A, i = 1, . . . ,mq, q ∈ Q, we have:

|V ∗
k (vq

i )− V̂ ∗
k (vq

i )| =∣∣∣max
a∈A

{∫
A

V ∗
k+1(sk+1)Ts(dsk+1|vq

i , a)
}
−max

a∈A

{∫
A

V̂ ∗
k+1(sk+1)Ts(dsk+1|vq

i , a)
}∣∣∣

≤ max
a∈A

∣∣∣ ∫
A

V ∗
k+1(sk+1)Ts(dsk+1|vq

i , a)−
∫

A

V̂ ∗
k+1(sk+1)Ts(dsk+1|vq

i , a)
∣∣∣

≤ max
a∈A

∫
A

∣∣V ∗
k+1(sk+1)− V̂ ∗

k+1(sk+1)
∣∣Ts(dsk+1|vq

i , a) ≤ γk+1∆s.

Thus, for any s ∈ {q} ×Xq
i ⊂ A, i = 1, . . . ,mq, q ∈ Q:

|V ∗
k (s)− V̂ ∗

k (s)| = |V ∗
k (s)− V̂ ∗

k (vq
i )| ≤ |V ∗

k (s)− V ∗
k (vq

i )|+ |V ∗
k (vq

i )− V̂ ∗
N−1(v

q
i )|

≤ K∆s + γk+1∆s = γk∆s,

where Theorem 8 has been used. This concludes the proof on equation (2.34).

As for equation (2.35), let us start observing that it trivially holds for k = N since

V ∗
N(s) = V µ̂∗

N (s) = 1, s ∈ A. Note that, for any s ∈ {q} × Xq
i ⊂ A, i = 1, . . . ,mq,

q ∈ Q,

∣∣V ∗
k (s)− V µ̂∗

k (s)
∣∣ ≤ ∣∣V ∗

k (s)− V̂ ∗
k (s)

∣∣+ ∣∣V̂ ∗
k (s)− V µ̂∗

k (s)
∣∣

≤ γk∆s +
∣∣V̂ ∗

k (vq
i )− V µ̂∗

k (s)
∣∣,

where the last inequality follows from equation (2.34) and the definition of V̂ ∗
k , which

is constant and equal to V ∗
k (vq

i ) within each set {q} ×Xq
i . In view of this inequality

we need to prove that

∣∣V̂ ∗
k (vq

i )− V µ̂∗

k (s)
∣∣ ≤ (γk+1 + νk+1 +K)∆s. (2.36)

Suppose by induction hypothesis that
∣∣V ∗

k+1(s) − V µ̂∗

k+1(s)
∣∣ ≤ νk+1∆s, s ∈ A. By
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Lemma 1 we get

∣∣V̂ ∗
k (vq

i )− V µ̂∗

k (s)
∣∣

=
∣∣∣max

a∈A

{∫
A

V̂ ∗
k+1(sk+1)Ts(dsk+1|vq

i , a)
}
−
∫

A

V̂ µ̂∗

k+1(sk+1)Ts(dsk+1|s, µ̂∗(vq
i ))
∣∣∣

=
∣∣∣ ∫

A

V̂ ∗
k+1(sk+1)Ts(dsk+1|vq

i , µ̂
∗(vq

i ))−
∫

A

V̂ µ̂∗

k+1(sk+1)Ts(dsk+1|s, µ̂∗(vq
i ))
∣∣∣

≤
∣∣∣ ∫

A

V̂ ∗
k+1(sk+1)Ts(dsk+1|vq

i , µ̂
∗(vq

i ))−
∫

A

V ∗
k+1(sk+1)Ts(dsk+1|vq

i , µ̂
∗(vq

i ))
∣∣∣

+
∣∣∣ ∫

A

V ∗
k+1(sk+1)Ts(dsk+1|vq

i , µ̂
∗(vq

i ))−
∫

A

V ∗
k+1(sk+1)Ts(dsk+1|s, µ̂∗(vq

i ))
∣∣∣

+
∣∣∣ ∫

A

V ∗
k+1(sk+1)Ts(dsk+1|s, µ̂∗(vq

i ))−
∫

A

V̂ µ̂∗

k+1(sk+1)Ts(dsk+1|s, µ̂∗(vq
i ))
∣∣∣.

Now, the first term in the right-hand-side of this inequality can be upper bounded as

follows ∣∣∣ ∫
A

V̂ ∗
k+1(sk+1)Ts(dsk+1|vq

i , µ̂
∗(vq

i ))−
∫

A

V ∗
k+1(sk+1)Ts(dsk+1|vq

i , µ̂
∗(vq

i ))
∣∣∣

≤
∫

A

∣∣V̂ ∗
k+1(sk+1)− V ∗

k+1(sk+1)
∣∣Ts(dsk+1|vq

i , µ̂
∗(vq

i )) ≤ γk+1∆s,

by using equation (2.34). As for the second term, by analogous steps than in the

proof of Theorem 8, one can derive that∣∣∣ ∫
A

V ∗
k+1(sk+1)Ts(dsk+1|vq

i , µ̂
∗(vq

i ))−
∫

A

V ∗
k+1(sk+1)Ts(dsk+1|s, µ̂∗(vq

i ))
∣∣∣ ≤ K∆s.

Finally, by using the induction hypothesis, the third term can be bounded as follows∣∣∣ ∫
A

V ∗
k+1(sk+1)Ts(dsk+1|s, µ̂∗(vq

i ))−
∫

A

V̂ µ̂∗

k+1(sk+1)Ts(dsk+1|s, µ̂∗(vq
i ))
∣∣∣

≤
∫

A

∣∣V ∗
k+1(sk+1)− V̂ µ̂∗

k+1(sk+1)
∣∣Ts(dsk+1|s, µ̂∗(vq

i )) ≤ νk+1∆s.

These bounds complete the proof of equation (2.36).

From this theorem it follows that the quality of the approximation by the nu-
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merical procedure described in equations (2.30) and (2.31) improves as the grid size

parameter ∆s decreases. The rate of convergence is linear in ∆s with a constant that

depends on the Lipschitz constants k1, k2, and k3 in Assumption 8 through the K
constant defined in Theorem 8. This is not surprising because we are using a piece-

wise constant approximation of the optimal cost-to-go function and we expect that

the optimal cost-to-go function is more regular as k1, k2, and k3 are smaller. As the

time horizon grows, the approximation error propagates. This is taken into account

by the constants γk and νk in Theorem 9, which grow linearly as k decreases from N

to 0, where N is the time-horizon length.

In section 2.3.3, a computational case study is developed, which aims at showing

the convergence properties of the discretization scheme here introduced.

2.2.9 Connections with the Literature

This subsection concludes the theoretical investigations described in this part of the

dissertation by putting in perspective the developed techniques and by bridging be-

tween the proposed methodologies and other efforts in the literature. Please refer to

Figure 2.4 for a visualization of these connections.

As already discussed in the opening of section 2, the literature on reachability

analysis for Stochastic Hybrid Systems mostly polarizes into two classes of SHS mod-

els: the GSHS (section 1.2.1, Figure 2.4 on the top-left corner), and the switching

diffusion [Ghosh et al., 1992]. This can be thought of as a subset of (Figure 2.4,

top-left set).

For the GHSH model in the uncontrolled case, the concept of probabilistic reacha-

bility is formulated in a number of possible different ways (Figure 2.4, center-left): via

the concept of hitting time [Krystul and Bagchi, 2004]; that of occupation measures

[Bujorianu and Lygeros, 2003]; or through the use of Dirichlet forms [Bujorianu, 2004].

These studies, while interesting from a theoretical perspective, have thus far not been

followed by an assessment of their computational aspects. In the controlled GSHS

case, [Mitchell and Templeton, 2005] defines probabilistic reachability as a solution

of a Hamilton-Jacobi PDE, which is set up in a game-theoretical framework. Succes-

sively, the problem is computationally solved by the application of level sets methods
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[Mitchell, 2004] (Figure 2.4, bottom-left arrow). A related approach is taken, in the

single-control case, by [Koutsoukos and Riley, 2006], where the problem is solved with

a discretization technique inspired by [Kushner, 1984].

The second SHS model that has been used as a framework for the reachabil-

ity analysis problem is that of switching diffusions. The work in [Hu et al., 2003;

Hu et al., 2005; Prandini and Hu, 2006a; Prandini and Hu, 2006b] addresses the

reachability problem from the viewpoint of air traffic control studies. Computation-

ally, a Markov chain approximation is introduced to compute the probability of en-

tering some assigned set, and weak convergence of the (space and time) discretization

method is proved, based on earler work by [Kushner, 1984; Kushner and Dupuis, 2001;

Kushner, 2002] (Figure 2.4, bottom-left arrow).

Other efforts in the literature approach the problem from a more limited perspec-

tive: for instance, from a controlled Markov chain model [Katoen, 2006]; or from a

probabilistic dynamical model [Digailova and Kurzhanski, 2004]. These instances can

be thought of as being subset classes of (Figure 2.4, top-left set). In the latter case,

computational approaches to the probabilistic reachability problem are also proposed

in [Lygeros and Watkins, 2003; Prajna et al., 2004] (Figure 2.4, bottom-left area).

The present study starts by considering the controlled GSHS model in section

1.2.1 (Figure 2.4, top-left). Then, a weak approximation technique is introduced,

which allows one to translate the original GSHS into a SHS with no spatially-triggered

events, but simpler random arrivals of an inhomogeneous Poisson process (Figure 2.4,

center-top arrow). This new model carries a number of benefits, among which the

opportunity to express its dynamics via a set of relations that depend on properly

defined random measures. In turn, this new expression yields itself to be passed

through a time-discretization scheme (again, Figure 2.4, center-top arrow). The new,

discrete-time solution of the obtained model has been shown to verify some weak

convergence to the old solution, as the discretization step tends to zero. It is from

this DTSHS model (Figure 2.4, top-right area), enhanced with controls, that the

main part of the dissertation unfolds. First, the concept of probabilistic reachability is

formally defined (Figure 2.4, center-right circle). Then, an optimal control problem is

formulated. The associated computation technique, based on dynamic programming,

is analyzed (Figure 2.4, bottom-right area). The DP problem, which necessarily has
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CTSHS DTSHS
guards elimination

discretization in time

Prob. Reach
Formulation

Prob. Reach
Formulation

Computations Computations

discretization in spaceapproximations

Figure 2.4: A perspective of the study.

to be computed on a discretized version of the state, control and disturbance spaces

(Figure 2.4, bottom-right arrow), is shown to converge to the continuous counterpart,

with proven explicit bounds.

With reference to the schematics proposed in Figure 2.4, it then makes sense to

establish a comparison between the different approaches in terms of

a) the formulation of the notion of probabilistic reachability;

b) the complexity of their associated computations.

With reference to the first point, we stress that the proposed methodology is com-

parable, in general terms, to the techniques in [Bujorianu and Lygeros, 2003; Bu-

jorianu, 2004; Mitchell and Templeton, 2005; Koutsoukos and Riley, 2006]. These

other approaches benefit from working with continuous-time models, but this forces

some restrictions on the allowed dynamics. Unlike these adjacent results, the possible

time-dependence of the target set may be cleverly exploited in the present formulation

to relate the current problem to other important concepts in the control literature

(see section 2.2.5 for further details). The approach developed in [Hu et al., 2003;

Hu et al., 2005; Prandini and Hu, 2006a; Prandini and Hu, 2006b], while beautifully
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formalized, has the limitation of being autonomous, and with no associated resets.

Furthermore, the application of weak convergence methods does not yield explicit

bounds on the speed of convergence. Notice that the approximation method suffers

from state space explosion issues that are relatable to the computational complexity

of the techniques proposed in this thesis. This problem is further elaborated in the

remainder of the paragraph.

With regards to point b), a comparison is feasible with the techniques proposed

in [Mitchell and Templeton, 2005; Koutsoukos and Riley, 2006]. It is fair to say

that all of the approaches suffer from the curse of dimensionality that comes from

the solution of DP. This poses a limitation on the practical model dimensionality

that can be handled. It looks like this limit is intrinsic to the study. The model

abstraction methodologies proposed in the literature do not appear to handle the

controlled case in a meaningful way. On a side note, the space/time discretization

techniques proposed in the related literature (see, for instance, [Mitchell, 2004]) are

less prone to have convergent behavior to the actual solution, unless strict continuity

requirements on the dynamics and the cost functions are raised. As it will be argued in

section 2.3.4, the computational framework proposed in this thesis is instead adapted

to be enhanced with some ideas which could potentially, at least in part, mitigate the

computational burden which unavoidably affects the proposed methodology.

The guard elimination method introduced in section 1.3.1, and its convergence

study (section 1.3.2) are original . The time-discretization technique here introduced

may be compared with that in [Krystul and Bagchi, 2004], where for an autonomous

switched diffusion setup a strong approximation scheme is introduced.
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2.3 Computations: A Benchmark Case Study

Section 2.2 has focused on the definition of the related concepts of probabilistic reach-

ability and safety, the understanding of these notions, and on the optimization prob-

lem that can be solved to maximize a certain criterion and to synthesize a specific

controller that would yield that optimum.

In this section, the computational aspects of the solution for the above opti-

mal control problem are investigated and discussed. This is done by considering a

benchmark case study which recently appeared in the hybrid systems verification and

control literature [Fehnker and Ivančić, 2004].

Although it shall be argued that, similar to other efforts which appeared in the

literature, the current problem is intrinsically not “computationally friendly,” (es-

pecially in its control synthesis aspects) a number of approaches will be suggested,

which are aimed at in part mitigating the computational burden that the study carries

along.

2.3.1 Case Study: Temperature Regulation - Modeling

Let us consider the problem of regulating the temperature in r rooms. Let us suppose

that each room can be warmed by a single heater and that at most one heater can be

active at a time. The problem consists in designing a control switching strategy that

decides which room should be heated, based on the measurements of the temperatures

of r rooms, so as to maintain the temperature of each room within a prescribed

interval.

Let us next describe the controlled system through a DTSHS model S . The precise

formulation of the temperature control synthesis problem is postponed to section

2.3.2.

The system configuration is naturally described by a hybrid state, whose discrete

component represents which of the r rooms is being heated, and whose continuous

component represents the average temperature in each of the r rooms. The discrete

state space can then be defined as Q = {ON1, ON2, . . . , ONr, OFF}, where in mode ONi

it is room i to be heated and in mode OFF no room is heated. The map n : Q → N,
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defining the dimension of the continuous component of the hybrid state space, is the

constant map n(q) = r,∀q ∈ Q.

The only available control consists in a transition input dictating which room is to be

heated. Thus, the reset control space is Σ = ∅, whereas the transition control space is

U = {SW1, SW2, . . . , SWr, SWOFF}, where SWi and SWOFF corresponds to the command of

heating room i and heating no room, respectively. Note that if the system is operating

in mode ONi and the transition control input SWi is applied, it means that the heater

in room i should stay active, thus leaving the current situation unchanged. Likewise

for the control SWOFF within mode OFF.

Regarding the dynamics of the continuous state x = (x1,x2, . . . ,xr), let us model the

evolution of the average temperature xi in room i by the following linear stochastic

differential equation:

dxi(t) =
∑
j 6=i

ãij

(
xj(t)− xi(t)

)
dt+ b̃i

(
xa − xi(t)

)
dt+ c̃ihi(t)dt+ dwi(t). (2.37)

These dynamics are based to those in [Malhame and Chong, 1985], where they are

however restricted to the case of a single room, controlled by a single heater. The

meaning of the coefficients ãij =
aij

∆
, b̃i = bi

∆
, c̃i = ci

∆
and of the binary control function

hi(·) will be explained in a few lines. The term wi(t) is a standard Wiener process

modeling the noise affecting the temperature evolution. By applying the constant-

step Euler-Maruyama scheme with constant discretization step ∆,2 [Milstein, 1994]

to (2.37), we obtain dynamic relations characterized by the following stochastic dif-

ference equation:

xi(k + 1) = xi(k) +
∑
j 6=i

aij

(
xj(k)− xi(k)

)
+ bi

(
xa − xi(k)

)
+ cihi(k) + ni(k). (2.38)

The meaning of the terms appearing in equation (2.38) is the following: xa is the

ambient temperature, which is assumed to be constant; bi, aij, and ci are non negative

constants representing the average heat loss rates of room i to the ambient (bi) and

to room j 6= i (aij), and the rate of heat supplied by the heater in room i (ci),

2Notice that this discretization method is the one used also in section 1.4.3.
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all normalized with respect to the average thermal capacity of room i and rescaled

by ∆. The values taken by the aij constants reflect the rooms layout, for instance

aij = 0 if rooms i and j are not adjacent. The term hi(k) is a Boolean function

equal to 1 if q(k) = ONi (i.e. if it is room i to be heated at time k), and equal

to 0 otherwise. Furthermore, the disturbance {ni(k), k = 0, . . . , N} affecting the

temperature evolution is a sequence of i.i.d Gaussian random variables with zero

mean and variance ν2 proportional to ∆. Let us suppose for simplicity that the

disturbances affecting the temperatures of different rooms are independent: for i 6= j,

E[nin
T
j ] = 0.

Let N (·;m,V ) denote the probability measure over (Rr,B(Rr)) associated with

a Gaussian density function with mean m and covariance matrix V . Then, the con-

tinuous transition kernel Tx (implicitly defined via the stochastic difference equation

(2.38)) can be expressed as follows:

Tx(· |(q, x), u) = N (·;x+ Ξx+ Γ(q), ν2I), (2.39)

where Ξ is a square matrix of size r, Γ(q) is an r-dimensional column vector that

depends on q ∈ Q, and I is the identity matrix of size r.

The element in row i and column j of matrix Ξ is given by [Ξ]ij = aij, if j 6= i,

and [Ξ]ij = −bi −
∑

k 6=i aik, if j = i, for any i = 1, . . . , r. As for the vector Γ(q), its

ith component is [Γ(q)]i = bixa + ci, if q = ONi, and [Γ(q)]i = bixa, if q ∈ Q \ {ONi},
for any i = 1, . . . , r.

Note that the transition kernel Tx governing the temperature evolution within a

mode does not depend on the value u taken by the transition control input. This

follows from the fact that the transition control input does not affect the temperature

dynamics described in (2.38). Let us then use the notation Tx(·|(q, x)) in place of

Tx(·|(q, x), u).
Let us assume that during the time step when a discrete transition occurs, say

from mode ONi to mode ONj, the temperature keeps evolving according to the dynamics

characterizing the starting condition ONi. This is modeled by defining the reset kernel

as R(· |(q, x), q′) = Tx(· |(q, x)), q, q′ ∈ Q, x ∈ Rr. Note that R does not depend on

the value σ of the reset control input, since in this example the reset control space is
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defined to be empty.

The transition control input affects the discrete state evolution through the dis-

crete transition kernel Tq. In this example, discrete transitions are not influenced

by the value taken by the continuous state component, so that we can take Tq :

Q × Q × U → [0, 1], with Tq(q
′|q, u) representing the probability that mode q′ is

the successor of mode q when the transition control input u is applied. For ease of

notation let us set

Tq(q
′|q, u) = αqq′(u), q, q

′ ∈ Q. (2.40)

Thus, the discrete state evolves according to a (finite state and finite input) controlled

Markov chain, which can be represented by a directed graph with r + 1 nodes (the

r+1 discrete modes) and (r+1)2 arches, with the arch from node q to node q′ labeled

by the corresponding controlled transition probability αqq′(u). Figure 2.5 represents

the graph of the controlled Markov chain in the case of r = 2 rooms.

Not all transitions may actually occur from a node q. For instance, if the con-

trol input value u = SWi is applied at node q = ONi, then with probability one the

successor node is q′ = ONi, because room i is currently heated and the command

of heating room i is issued. If everything worked perfectly, then, the control input

u = SWi would lead to node q′ = ONi from any node q, and, similarly, u = SWOFF

would lead to q′ = OFF from any node q. The definition of the controlled transition

probabilities {αqq′(u), q, q
′ ∈ Q} associated with the different u ∈ U offers the pos-

sibility of encoding delays or faulty behaviors in the commutations and structural

constraints imposing, for instance, that the heat can be conveyed only from a room

to a contiguous one.

2.3.2 Case Study: Temperature Regulation - Control Synthesis

2.3.2.1 Single Room Case

In this case, r = 1. The continuous part of the state space is one-dimensional.

Consider the relations in (2.37)-(2.38). The cross-parameters aij are equal to zero,

and let us name b1 = a
C
∆, c1 = r

C
∆ (this notation for the single room case strictly
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Figure 2.5: Structure of the controlled Markov chain governing the mode transitions in
the case of r = 2 rooms.

adheres to [Malhame and Chong, 1985] by reintroducing the room average thermal

capacity C and the time step ∆). The time-discretized dynamics get simplified as

follows:

x(k + 1) =

x(k)− a
C
(x(k)− xa)∆ + n(k), if the heater is off

x(k)− a
C
(x(k)− xa)∆ + r

C
∆ + n(k) if the heater is on.

(2.41)

This dynamical relation can be equivalently expressed with the following stochastic

kernel:

Tx(· |(q, x)) =

N (·;x− a
C
(x− xa)∆, ν

2), q = OFF

N (·;x− a
C
(x− xa)∆ + r

C
∆, ν2), q = ON.

(2.42)

For the sake of clarity (notice the slight semantic difference with the general definition

in 2.3.1), let us name the continuous control space as U = {0, 1} with the under-

standing that “1” means that a switching command is issued, “0” that no switching

command is issued.

Let us again assume that it takes some (random) time for the heater to actually

switch between its two operating conditions, after a switching command has been is-

sued. This is modeled by defining the discrete transition kernel Tq (and its parameters
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αij) as follows

Tq(q
′|(q, x), 0) =

1, q′ = q

0, q′ 6= q

Tq(q
′|(q, x), 1) =



α, q′ = OFF, q = ON

1− α, q′ = q = ON

β, q′ = ON, q = OFF

1− β, q′ = q = OFF,

(2.43)

∀x ∈ R, where α ∈ [0, 1] represents the probability of switching from the ON to the

OFF mode in one time-step. Similarly for β ∈ [0, 1].

Finally, the reset kernel is modeled as previously: let us assume that the actual

switching between the two operating conditions of the heater takes a time step. Dur-

ing this time step the temperature keeps evolving according to the dynamics referring

to the starting condition.

Näıve Switching Law. Let x̄−, x̄+ ∈ R, with x̄− < x̄+. Consider the (stationary)

Markov policy µk : S → U defined by

µk((q, x)) =

1, q = ON, x ≥ x̄+ or q = OFF, x ≤ x̄−

0, q = ON, x < x̄+ or q = OFF, x > x̄−

that switches the heater on when the temperature drops below x̄− and off when the

temperature goes beyond x̄+.

Suppose that initially the heater is off and the temperature is uniformly distributed

in the interval between x̄− and x̄+, independently of the noise process affecting its

evolution. In Figure 2.6, let us report some sample paths of the execution of the

DTSHS associated with this policy and initial condition. The implementation is done

in MATLAB. Let us plot only the continuous state realizations. The temperature is

measured in Fahrenheit degrees (◦F ) and the time in minutes (min). The time horizon

N is taken to be 600 min. The discretization time step ∆ is chosen to be 1 min.
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Figure 2.6: Sample paths of the temperature for the execution corresponding to a Markov
policy switching the heater on/off when the temperature drops below 70◦F/goes above
80◦F , starting with heater off and temperature uniformly distributed on [70, 80]◦F .

The parameters in equation (2.39) are assigned the following values: xa = 10.5◦F ,

a/C = 0.1 min−1, r/C = 10◦F/min, and ν = 1◦F . The switching probabilities α

and β in equation (2.43) are both chosen to be equal to 0.8. Finally, x̄− and x̄+ are

set equal to 70◦F and 80◦F , respectively.

Note that some of the sample paths exit the set [70, 80]◦F . This is due partly to

the delay in turning the heater on/off and partly to the noise entering the system.

If the objective is keeping the temperature within the set [70, 80]◦F, more effective

control policies can be found, as described in the ensuing section.

Maximally Safe Switching Law. By interpreting the desired temperatures interval

as a safe set, we intuitively understand how this case study can be formulated as a

stochastic reachability analysis problem.

More precisely, in the following three safe sets are considered: A1 = (70, 80)◦F ,

A2 = (72, 78)◦F , and A3 = (74, 76)◦F . The dynamic programming recursion de-

scribed in section 2.2.3 is used to compute maximally safe policies and maximal

probabilistic safe sets. The implementation is again performed in MATLAB. The

temperature coordinate is discretized into 100 equally spaced values within the safe

set (see section 2.2.8.1).

Figure 2.7 shows the plots of 100 temperature sample paths resulting from sam-

pling the initial temperature from the uniform distribution over the safe sets, and

using the corresponding maximally safe policy. The initial operating mode is chosen
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at random between the equiprobable ON and OFF values.

It can be observed from each of the plots that the maximally safe policy computed

by the dynamic programming recursion leads to an optimal behavior in the following

sense: regardless of the initial state, most of the temperature sample paths tend

toward the middle of the corresponding safe set. As for the A1 and A2 safe sets, the

temperature actually remain confined within the safe set in almost all the sample

paths, whereas this is not the case for A3. The set A3 is too small to enable the

control input to counteract the drifts and the randomness in the execution in order to

maintain the temperature within the safe set. The maximal probability of remaining

in the safe set pµ∗
π(Ai) for π uniform over Q× Ai, i = 1, 2, 3, is computed. The value

is 0.991 for A1, 0.978 for A2 and 0.802 for A3.

The maximal probabilistic safe sets S?(ε) corresponding to different safety levels

1−ε are also calculated. The results obtained are reported in Figure 2.8 with reference

to the heater initially off (plot on the left) and on (plot on the right). In all cases, as

expected, the maximal probabilistic safe sets get smaller as the required safety level

1 − ε grows. When the safe set is A3, there is no policy that can guarantee a safety

probability greater than about 0.86.

The maximally safe policies at some time instances k ∈ [0, 600] µ∗k : S → U are

shown in Figure 2.9, as a function of the continuous state and discrete state (the

red crossed line refers to the OFF mode, whereas the blue circled line refers to the

ON mode). The obtained result is quite intuitive. For example, at time k = 599,

close to the end of the time horizon, and in the OFF mode, the maximally safe policy

prescribes to stay in same mode for most of the continuous state values except near

the lower boundary of the safe set, in which case it prescribes to change the mode

to ON since there is a possibility of entering the unsafe set in the residual one-step

time horizon. However, at earlier times (for instance, time k = 1), the maximally safe

policy prescribes to change the mode even for states that are distant from the safe

set boundary. Similar comments apply to the ON mode. This shows that a maximally

safe policy is not stationary. By observing from top to bottom each column of Figure

2.9, one can see that this non-stationary behavior appears limited to a time interval

at the end of the time horizon. This has suggested to pursue the investigation of the

infinite horizon case (see section 2.2.4). Furthermore, by comparing the columns of
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Figure 2.7: Sample paths of the temperature for the execution corresponding to maximally
safe policies, when the safe set is: A1 (top), A2 (middle), and A3 (bottom).
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Figure 2.8: Maximal probabilistic safe sets: heater initially off (left) and on (right). Blue,
black, and red colors refer to cases when the safe sets are A1, A2, and A3, respectively.

Figure 2.9, this time interval gets progressively smaller moving from A1 to A2 and

A3.

It is interesting to note the behavior of the maximally safe policy corresponding to

the safe set A1 at k = 575 and k = 580. For example, for k = 580, the maximally safe

policy for the OFF mode fluctuates between actions 0 and 1 when the temperature

is around 75◦F . This is because the corresponding values taken by the function

to be optimized in (2.19) (or, equivalently, in (2.20)) are almost equal for the two

control actions. This feature may be exploited when we add to the safety problem a

performance specification, as discussed in section 2.2.7.

Let us stress that the obtained results refer to the case of switching probabilities

α = β = 0.8. Different choices of switching probabilities may yield qualitatively

different maximally safe policies.

2.3.2.2 Single Room, Regulation and Practical Stabilization Problem

In this section let us apply the methodology for reachability computations developed

earlier to solve a practical stabilization problem. In particular, we will leverage the

results on the infinite horizon case developed in section 2.2.4.

As in section 2.3.2, the transition control space is U = {0, 1}, with the under-

standing that “1” means that a switching command is issued to the heater, “0” that

no switching command is issued. As before, the reset control space is Σ = ∅, since

114



Chapter 2. Probabilistic Reachability and Safety

70 72 74 76 78 80
0

1

70 72 74 76 78 80
0

1

70 72 74 76 78 80
0

1

70 72 74 76 78 80
0

1

70 72 74 76 78 80
0

1

70 72 74 76 78 80
0

1

70 72 74 76 78 80
0

1

70 72 74 76 78 80
0

1

70 72 74 76 78 80
0

1

72 74 76 78
0

1

72 74 76 78
0

1

72 74 76 78
0

1

72 74 76 78
0

1

72 74 76 78
0

1

72 74 76 78
0

1

72 74 76 78
0

1

72 74 76 78
0

1

72 74 76 78
0

1

74 74.5 75 75.5 76
0

1

74 74.5 75 75.5 76
0

1

74 74.5 75 75.5 76
0

1

74 74.5 75 75.5 76
0

1

74 74.5 75 75.5 76
0

1

74 74.5 75 75.5 76
0

1

74 74.5 75 75.5 76
0

1

74 74.5 75 75.5 76
0

1

74 74.5 75 75.5 76
0

1

Figure 2.9: Maximally safe policy as a function of the temperature at times k = 1, 250,
500, 575, 580, 585, 590, 595, and 599 (from top to bottom) for the safe sets A1 , A2,
and A3 (from left to right). The darker (blue) circled line corresponds to the OFF mode
and the lighter (red) crossed line corresponds to the ON mode.

the switching command to the heater is the only control input. The dynamics follow

again the relations in section 2.3.2. The discrete transition kernel Tq is simplified as

follows

Tq(q
′|(q, x), 0) =

1, q′ = q

0, q′ 6= q

Tq(q
′|(q, x), 1) =

α, q′ 6= q

1− α, q′ = q
(2.44)

where α ∈ [0, 1] represents the probability of switching from one mode to the other

in one time-step.

The temperature is again measured in Fahrenheit degrees (◦F ) and the time in

minutes (min). The discretization time step ∆ is chosen to be 1 min. The parameters

are assigned the following values: xa = 10.5◦F , a/C = 0.1 min−1, r/C = 10◦F/min,

and ν = 0.33◦F . The switching probability α in the above equation is set to be equal
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to 0.8.

Let us consider the following regulation problem: determine a control law that

maximizes the probability that the average room temperature x is driven close to 75◦F

in t min starting from any value in the set (70, 80)◦F , with an admissible excursion

of ±1◦F around 75◦F , and maintained within 75◦F ± 1◦F thereafter. The variable t

is the allowed time to steer the temperature to the desired region and can be specified

by the user or can be chosen by the control designer. In the results reported next,

let us consider any of the three t = 150, 300, 450. The implementation is done in

MATLAB with a discretization step for the temperature coordinate equal to 0.05◦F .

The regulation problem can be reformulated as that of computing a maximally

safe policy for a time varying safe set A(k) = Q × X (k), where X (k) shrinks from

the region (70, 80)◦F towards the desired region (74, 76)◦F during the time interval

[0, t) min, and then keeps equal to (74, 76)◦F from time t min on.

The results discussed below refer to the following three different evolutions in time

of the safe set for the temperature during the time interval [0, t):

X1(k; t) = (70, 80), k ∈ [0, t)

X2(k; t) =

(70, 80), k ∈ [0, t/2)

(66 + 8k
t
, 84− 8k

t
), k ∈ [t/2, t)

X3(k; t) =

(
70 +

4k

t
, 80− 4k

t

)
, k ∈ [0, t).

Correspondingly, Ai(·; t) = Q×Xi(·; t), i = 1, 2, 3.

We determined the maximally safe Markov policies µ?(i, t), i = 1, 2, 3, for three

different values of t: t = 150, t = 300, and t = 450. The maximally safe policies for

t = 150, t = 300, and t = 450 are plotted, respectively, in Figures 2.10, 2.11, and 2.12.

In each one of these figures, the plots in the first row refer to the safe set A1, those

in the second row to A2, and those in the third row to A3. The plots in the same

column correspond to the OFF mode (plot on the left) and the ON mode (plot on the

right). Each plot represents the value taken by the binary input u during the time

horizon from 0 to 600 min (on the horizontal axis) as a function of the temperature

(on the vertical axis). For any time instant k ∈ [0, 600] only the corresponding safe
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temperature range is considered. The value 0 (“do not switch”) for u is plotted in

gray, whereas the value 1 (“switch”) is plotted in black. The maximally safe policies

are expected to be time-varying during the time interval [0, t). When t = 450 (Figure

2.12), the time variability is confined to the time interval [378, 450] for A1, whereas

for A2 and A3 it extends to the intervals [208, 450] and [0, 450], respectively. This is

due to the fact that in the last two cases, the safe set is time-varying over [225, 450]

and [0, 450], respectively.
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Figure 2.10: Maximally safe policy as a function of the temperature and time for the safe
sets A1 , A2, and A3 (from top to bottom). The left (right) column corresponds to the
OFF (ON) mode. The darker (lighter) shade indicates that “switch” (“do not switch”) is
the recommended action (t = 150).

We also determined the probabilities p
µ?(i,t)
π (Ai(·; t)), of remaining in the time-

varying safe sets Ai(·; t), i = 1, 2, 3, t = 150, 300, 450, when the initial distribution π

is uniform over Q× (70, 80).

Not surprisingly, p
µ?(i,t)
π (Ai(·; t)) increases with the transient length t, for any i.

For each t, it instead remains almost the same for the three safe sets Ai(·; t), i = 1, 2, 3,

with the value for A1(·; t) only marginally higher than the others. For instance, when

t = 450, the value is 0.831 for A1(·; t), 0.822 for A2(·; t), and 0.815 for A3(·; t). This is

easily explained by noting that, for each t, A3(k; t) ⊆ A2(k; t) ⊆ A1(k; t), ∀k ∈ [0,∞),
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Figure 2.11: Maximally safe policy as a function of the temperature and time for the safe
sets A1 , A2, and A3 (from top to bottom). The left (right) column corresponds to the
OFF (ON) mode. The darker (lighter) shade indicates that “switch” (“do not switch”) is
the recommended action (t = 300).

hence, pµ
π(A3(·; t)) ≤ pµ

π(A2(·; t)) ≤ pµ
π(A1(·; t)), for any µ and π.

We determined also the maximal probabilistic safe sets S?(ε; i, t) =
⋃

q∈{OFF,ON}{x ∈
R : p

µ?(i,t)
(q,x) (Ai(·; t)) ≥ 1 − ε} corresponding to different safety levels 1 − ε. For any

i, S?(ε; i, t) gets smaller as the required safety level 1 − ε grows, and get larger for

higher values of t. For each t and ε, the maximal probabilistic safe sets are almost

the same for the three safe sets. In Figure 2.13 we plotted the subset of S?(ε; i, t)

corresponding to q = OFF for i = 1 and t = 150, 300, 450 (the plots when q = ON are

similar).

2.3.2.3 Multiple Rooms Case

The temperature regulation problem described briefly in section 2.3.1 was extended

to a multi-room scenario.

The objective is to maintain the temperature of r rooms within a certain range

over some finite time horizon by heating one room at a time (single heater case). To

this purpose let us devise a Markov policy that decides at each time instant which
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Figure 2.12: Maximally safe policy as a function of the temperature and time for the safe
sets A1 , A2, and A3 (from top to bottom). The left (right) column corresponds to the
OFF (ON) mode. The darker (lighter) shade indicates that “switch” (“do not switch”) is
the recommended action (t = 450).

room should be heated based on the current value of the temperature in the r rooms.

As before, this control design problem can be reformulated as a safety problem for

the DTSHS model introduced in section 2.3.1, with the continuous state given by the

r room temperatures and the discrete state given by the room that is being heated.

The safe set is represented here by the desired temperature range for any discrete

state.

Let us present the results obtained in the r = 2 rooms case. In this set of

simulations, the temperature is measured in degrees Celsius and one discrete time

unit corresponds to ∆ = 10 minutes. The discrete time horizon is [0, N ] with N = 60,

which corresponds to an effective length of N∆ = 600 minutes.

The discrete state space is Q = {ON1, ON2, OFF} and the continuous state space is

R2 in each mode q ∈ Q (in other words, the coordinates are the temperature level in

each of the two rooms). The desired temperature interval is [17.5, 22] in both rooms.

Thus, the safe set A is given by A = Q× Ax with Ax := [17.5, 22]× [17.5, 22]. The

parameters values in equation (2.38) are set equal to: xa = 6, b1 = b2 = 0.0167,
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Figure 2.13: Maximal probabilistic safe sets for X1(·; t) when t = 150, 300, 450 (from left
to right) and the heater is initially off. On the vertical axis is reported the safety level, on
the horizontal axis the temperature values.

a12 = a21 = 0.022, c1 = 0.8, c2 = 0.9333, and ν2 = 0.06.3 In this implementation,

the temperature interval [17.5, 22] was discretized with a grid size 0.1, resulting in a

uniform gridding of the set Ax into 45 intervals along each coordinate axis. Recall

that in sections 2.2.8.1 and 2.2.8.2 it was shown that, under rather weak regularity

assumptions on the stochastic kernels, as the continuous state gridding size goes to

zero, the numerical solution to the dynamic programming equations tends to the

actual solution with an explicitly computable convergence rate.

The transition control input takes on values in U = {SW1, SW2, SWOFF} and affects

the evolution of the controlled Markov chain governing the discrete transitions of the

DTSHS model (see Figure 2.5). Let us suppose that when a command of commut-

ing from a node to a different one is issued, then the prescribed transition actually

occurs with a probability 0.8, whereas with probability 0.1 the situation remains un-

changed (which models a delay) and with probability 0.1 a transition to the third,

non-recommended node, occurs (which models a faulty behavior). Instead, when a

command of remaining in the current node is issued, this happens with probabil-

ity 1. These specifications can be precisely formalized by appropriately defining the

controlled Markov chain transition probabilities {αqq′(u), q, q
′ ∈ Q} introduced in

(2.40), for any u ∈ U . For instance, for u = SW1, αON1ON1(SW1) = 1, αON2ON1(SW1) = 0.8,

αON2ON2(SW1) = 0.1, αOFFON1(SW1) = 0.8, and αOFFOFF(SW1) = 0.1, the other probabili-

ties αqq′(SW1) being determined by the normalization condition
∑

q′∈Q αqq′(SW1) = 1,

3The smaller dimension of the variance of the noise is also due to the new temperature range,
which is scaled down as it is expressed in Celsius degrees, rather than according to the Fahrenheit
scale.
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q ∈ Q.

The dynamic programming recursion described in section 2.2.3 can be used to com-

pute a maximally safe policy µ? = (µ?
0, µ

?
1, . . . , µ

?
N−1), µ

?
k : S → U , k = 0, 1, . . . , N−1,

and the maximal probabilistic safe sets S?(ε), ε ∈ [0, 1]. In the implementation, the

multiplicative setup was chosen, and computations were performed in MATLAB.

Figure 2.14 shows some ‘optimal’ sample paths of the continuous state component

of the DTSHS executions associated with the maximally safe policy µ? and different

initial conditions. The initial conditions were chosen at random, according to the

uniform distribution, over the safe set A. Note that, as expected, most of the tem-

perature sample paths tend toward the central area of Ax, and those sample paths

that exit Ax correspond to initial conditions close to its boundary. This is due partly

to the delay in the commutations, and partly to the noise affecting the temperature

dynamics.

In Figure 2.15,4 let us represent the component of the maximal probabilistic safe set

S?(ε) associated with the discrete state OFF, that is {x ∈ R2 : (OFF, x) ∈ S?(ε)} ⊆ Ax,

for different safety levels 1 − ε. The plots corresponding to the discrete modes ON1

and ON2 are similar. As expected, the maximal probabilistic safe sets get smaller as

the required safety level 1− ε grows. Also, their shape reveals some asymmetry due

to the structure of the temperature dynamics. Because of the low value of the ambi-

ent temperature (xa = 6), the temperature tends naturally to decrease (see equation

(2.38)).

The values taken by function µ?
0 : S → U over the set Ax when q = OFF are plotted

in Figure 2.16.5 µ?
0(OFF, x) is the maximally safe transition control input issued at

time k = 0 when s(0) = (OFF, x). The maximally safe controls for the other time

steps k within the horizon [0, N ] are indeed really much like the one in Figure 2.16,

except for the very final time steps. This shows that a stationary control policy would

be nearly maximally safe in this case. Different choices of the discrete transition

probabilities (2.40) may yield qualitatively different maximally safe policies.

4Notice that this figure coincides with the bottom right one in 2.18, modulo properly modified
parameters of the dynamics.

5Notice that this figure coincides with the bottom right one in 2.19, modulo properly modified
parameters of the dynamics.
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Figure 2.14: Sample paths of the two rooms temperatures for executions corresponding
to different initial conditions, under the same maximally safe policy.
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Figure 2.15: Maximal probabilistic safe sets corresponding to different safety levels (0.5,
0.6, 0.7, 0.8, 0.85, 0.9, 0.95,0.96, and 0.97) within the discrete state OFF. The temper-
ature of room 1 is reported on the horizontal axis, and that of room 2 on the vertical
axis.
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Figure 2.16: Value taken by the maximally safe transition input at time k = 0 over the set
of desired temperatures, when the heating system is in the OFF mode. The temperature
of room 1 is reported on the horizontal axis, and that of room 2 on the vertical axis. The
colors black, white, and grey respectively stand for the transition input command SWOFF,
SW1, and SW2.
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2.3.3 Numerical Approximations

In this section let us present the results of a computational study for the multi-room

heating benchmark where the convergence of quantities computed by the discretiza-

tion scheme proposed in section 2.2.8.1 and analyzed in section 2.2.8.2 are numerically

studied.

The benchmark in [Fehnker and Ivančić, 2004] deals with the problem of regulating

temperature in a house with n rooms via m heaters. In this section let us focus

on m = 1, the single heater case, formally introduced in section 2.3.1, and which

notations we shall mostly adhere to in the rest of the work.

Aiming at highlighting the structure of the controller more explicitly than in

section 2.3.1, let us introduce the following formalism. The heater is controlled by

a thermostat that is prone to delay and failures in switching the heater between

one room to another and between the “on” and “off” status: the effect of these

control actions on the discrete state transitions is specified by a finite-state, finite-

action, controlled Markov chain which is independent of the continuous state, that is,

Tq : Q ×Q × A → [0, 1]. One can easily check that the number of possible discrete

states is n+ 1 and the maximum number of available control actions is n(n+ 1) + 1

(notice that this number is smaller than that in (2.40), because we cluster the “do

not switch” action in each mode into a single action). Let us define the compact safe

set to be

A =
⋃

q∈{1,...,(n+1)}

⋃
i∈{1,...,n}

{q} × {i} × [xq
li, x

q
ui],

where xq
ui and xq

ui specify the lower and upper limits for the desired temperature in

room i for discrete state q. For simplicity, these are assumed to be independent of i and

q. Let us now describe the discretization procedure as follows: let us adopt a uniform

partitioning of the set [xq
li, x

q
ui] into m disjoint intervals each of size κ = (xq

ui−x
q
li)/m.

Therefore, [xq
li, x

q
ui] = [xq

li, x
q
li + κ)

⋃
, . . . ,

⋃
, [xq

li + (m − 1)κ, xq
ui]. The value of the

temperature in room i for the discrete state q is defined by eq
rii

= xq
li + (ri − 1)κ,

where ri ∈ {1, . . . ,m}. Define r = [r1, . . . , rn]T . Let us pick vq
r = (q, [eq

r11, . . . , e
q
rnn]T )

as hybrid state value. Thus, the set of all discrete values for the hybrid state is G =

{vq
r , r = [r1, . . . , rn]T ; ri = 1, . . . ,m; i = 1, . . . , n; q = 1, . . . , (n + 1)}. Let N (·; η, σ2)
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denote the probability measure over (R,B(R)) associated with a Gaussian density

function with mean η and variance σ2. Then the stochastic kernel Ts(ds
′|vq

r , a) that is

used in the discretized dynamic programming equations (2.30) be defined as follows:

Ts(ds
′|vq

r , a) = Tx(dx
′|vq

r , a)Tq(q
′|q, a),

for vq
r ∈ G, a ∈ A, and s′ ∈ S. Here, Tx(·|vq

r , a) = N (·;µq
r, ν

2In), In being the identity

matrix of size n, µq
r = [µq

r1
, . . . , µq

rn
]T and µq

ri
= eq

ri
+
(
bi(xa−eq

ri
)+
∑

i6=j ai,j(e
q
rj
−eq

ri
)+

cihi

)
∆. It is easy to check that Tx(dx

′|vq
r , a) and Tq(q

′|q, a) satisfy the Assumption 8.

Convergence Properties. Let us first analyze the convergence properties of the

discretization scheme for the case when n = 2 (two rooms). The number of modes is

3 and maximum number of allowable control actions is 7, as shown in Figure 2.17(a).

The computations are performed for the safe set A =
⋃

q∈{1,2,3}
⋃

i∈{1,2}{q} × {i} ×
[17.5, 22]oC. The size of time interval is ∆ = 1/15 and the number of intervals is

N = 60. The parameters values in equation (2.38) are: xa = 6, b1 = b2 = 0.25, a12 =

a21 = 0.33, c1 = 12, c2 = 14 and ν2 = 0.9.6 All the parameters should be interpreted in

appropriate units. For each control action by the thermostat that elicits a transition

between two different modes of the heater, the transition happens with probability 0.8.

The remaining 0.2 probability is divided evenly between the “do nothing” transition

that models the delay and the transition to the third, non-recommended mode that

models a faulty behavior.

The computations of the solutions V̂ ∗
0 to the approximated DP equations in (2.30)

were performed for four discretization levels: m ∈ {9, 18, 36, 45}. Following section

2.2.1, let us define the approximately maximal probabilistic safe sets Ŝ∗(ε) with safety

level (1−ε) as Ŝ∗(ε) = {s ∈ S : V̂ ∗
0 (s) ≥ (1−ε)}. Figure 2.18 shows the approximately

maximal safe sets when the initial discrete state is OFF, and corresponding to different

safety levels. As expected, the maximal safe sets get smaller as the required safety

level increases. Furthermore, as the discretization level decreases, the maximal safe

sets tend to graphically converge: this visually confirms the numerical convergence of

6In this set of simulations, lat us assume a time-discretization interval that is smaller than the
one assumed in the previous case studies. This is because of the improved needed precision. Hence,
the parameters are properly rescaled, for the sake of uniformity with the other computations.
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Figure 2.17: (a) Maximum available control actions for n = 2. (b) Maximum available
control actions for n = 3. (c) Reduced number of available control actions for n = 3.
The discrete states are assigned numbers clockwise starting from the top-left state.

the proposed discretization scheme.

The optimal control actions for the case when the initial discrete state is OFF

are plotted in Figure 2.19 for the four discretization levels and k = 1. The optimal

actions at finer resolution were obtained from that of coarser resolution by nearest

neighbor interpolation. It can be noticed that the regions of optimal recommended

actions become more well-formed and again visually converge as the discretization

step decreases.

2.3.4 Mitigating the Curse of Dimensionality

To conclude this part dedicated to the computational aspects of the proposed method-

ologies, let us propose possible improvements in the implementation. It is of interest

to understand when the underlying structure of the DTSHS can be exploited to im-

plement the DP algorithm in a computationally efficient manner. More precisely,

let us reinterpret some ideas proposed in [Bertsekas, 1982] and [Kveton et al., 2006]

within the hybrid systems framework to suggest that particular structural properties

of the problem, such as its decentralized nature, may be exploited to obtain a more

compact state representation and efficient implementation of the computations in-

volved in the solution of the DP. This feature may at least in part mitigate the curse

of dimensionality the DP is doomed to, but which similarly affects the other related

approaches to the problem in the literature [Mitchell and Templeton, 2005].

For a more thorough discussion and further references, the reader is referred to section

2.5 (Computational Improvements).
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Figure 2.18: Maximal probabilistic safe sets corresponding to safety levels:
0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.96 and 0.97 for the case n = 2 and initial discrete state
OFF. In going from left-to-right and top-to-bottom, the plots correspond to discretization
levels of 9, 18, 36 and 45 respectively.

2.3.4.1 Scaling to Higher Dimensions

Let us present the results from the three-room, one heater benchmark case. For this

case, the number of continuous states is n = 3, the number of discrete states is 4

and maximum number of allowable actions is 13, as shown in Figure 2.17(b). The

safe set is specified to be A =
⋃

q∈{1,2,3,4}
⋃

i∈{1,2,3}{q} × {i} × [17.5, 22]oC. The size

of time interval is ∆ = 1/15 and the number of intervals is N = 60. The parameters

values in equation (2.38) are: a12 = a21 = 0.80, a13 = a31 = 0.60, a23 = a32 = 0.70,

xa = 6, b = [0.30, 0.20, 0.30]T , c = [12.00, 14.00, 12.00]T and ν2 = 0.33. Similar to

the two-room case, the effect of control actions is described by a controlled Markov

chain. The computation of the DP algorithm was performed for the discretization

level m = 18. Figure 2.20 shows the maximal safe sets corresponding to the safety

level 1 − ε = 0.95, at different times. As expected, as the number of steps-to-go

increases, the size of the safe sets also decreases. It is of interest to compare the effect

of number of available control actions on the size of the maximal safe set. In order to

study this, we performed the DP computations for the three-room, one heater example
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Figure 2.19: Maximally safe actions for the case n = 2, initial discrete state OFF and k = 1.
In going from left-to-right and top-to-bottom, the plots correspond to discretization levels
of 9, 18, 36 and 45 respectively. The colors black, white and grey respectively stand for
“do nothing,” “switch heater to room 1” and “switch heater to room 2” actions.

for the reduced set of actions shown in Figure 2.17(c). The resulting maximal safe sets

corresponding to safety level 1−ε = 0.95 are shown in Figure 2.21. Let us observe that

the maximal safe set is becomes very small and eventually decreases to the empty set

as the number of steps-to-go increases. Let us finally notice an important structural

property of the benchmark, namely the conditional independence of the continuous

stochastic kernel: Tx(x̄|vq
r , a) = Tx(x̄1|vq

r , a) × . . . × Tx(x̄n|vq
r , a). This enables us

to efficiently compute the state transition probabilities, as well as to propagate the

calculations of the DP scheme in a “distributed” fashion. Please refer to section 2.5

for further details.
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Figure 2.20: Maximal probabilistic safe sets corresponding to a safety level of 0.95 for the
case when n = 3 and initial discrete state is OFF. Available control actions are shown in
Figure 2.17(b). In going from left to right and top to bottom, the plots correspond to
k = 60, 55, 50, 40, 20 and 1.

Figure 2.21: Maximal probabilistic safe sets corresponding to the safety level 0.95 for the
case n = 3 and initial discrete state OFF. The reduced set of available control actions is
shown in Figure 2.17(c). In going from left-to-right, the plots correspond to k = 55, 50
and 45. The safe set for k = 60 is same as the corresponding safe set in Figure 2.20.
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2.4 Applications

In this section, an application of the concept that has been introduced in this chapter

will be developed as a case study taken from Biology.

Briefly pausing from this task, let us remark that, more generally, a wealth of pos-

sible applications can be envisioned for a general concept such as that of reachability,

as well as that of safety. The regulation problem introduced in section 2.2.5 further

connects with important possible applications related to the objective of system stabi-

lization. In section 2.2.6 a potential direct application of the concept in fault tolerant

control problems has been investigated. Furthermore, provided a game-theoretical

setup is developed from the current framework (which is a topic of future research),

a number of other engineering problems could also be modeled and studied. The

computational study presented in section 2.3.4 hinted at the analysis of distributed

control strategies in networks as a possible target for the proposed methodology. The

author has looked, for the sake of instance, at the use of reachability and safety anal-

ysis for buildings automation applications. Other areas that appear to be easy and

fruitful target for the techniques presented in this thesis are disease spread analysis

and control, or power management studies in communication networks.

In the following, let us instead concentrate on a methodological study in System

Biology. Starting from a general concept, that of optimality, let us propose a way

to interpret this notion in a study of survival analysis. This approach is further

framed within a particular biological case study, by reinterpreting survival as a safety

specification, and optimality is obtained and interpreted by solving a related optimal

control problem. This solution is associated to specific production mechanisms and

stress-response behaviors observed in nature.
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Mathematical Biology and Systems Biology. The application of the qualitative

theory of ordinary differential equations in the biological sciences has a long and suc-

cessful history [Rubinow, 1975]. Fibonacci, Lotka, Vehrlust, Volterra and Maynard

Smith are just a few examples of mathematicians that have left a groundwork con-

tribution in biological modeling and analysis, furthering the understanding of such

real-world systems. From a taxonomic perspective, the application of mathematical

models in Biology can be done at different levels: from the large scale (population dy-

namics, ecology, epidemiology), through the human level (physiology, rehabilitation

and medicine), to the small scale (cellular, molecular and genetic).

More recently, the attention has been focused especially at the cellular and molec-

ular level, with the study of genetic pathways, metabolic networks, protein-protein

interactions, signalling pathways. This research has been made possible by the avail-

ability of data in a thus far unexperienced quantity. Over-employed is “the post-

genomic era” slogan, which is often used to describe the new frontiers opened by

the available knowledge of quantitative information of entities–and their functions–at

the genomic level. This wealth of data comes, in particular, in the form of microar-

rays, databases, imaging, vision and high-throughput experiments and by the use of

reporter systems.

The field of Systems Biology leverages the availability of data, and responds to

the need for proper mathematical models to analyze, interpret and understand it.

Furthermore, it has a clear focus on the system properties of a biological entity

[Kitano, 2002]: the motives and modules that it builds [Rao and Arkin, 2001; Wolf

and Arkin, 2003; Voigt et al., 2005], their interconnections, and the network structures

that emerge from these clusters [Strogatz, 2001].

From a different categorical perspective, if we look at the complete spectrum of

possible mathematical and formal models in biology, then it is possible to single out,

at the two ends, either purely discrete models, or purely continuous ones.

Examples of discrete models are, for the sake of instance, finite-state automata, struc-

tures from graph theory, Boolean and Petri nets. The advantage to exploit this dis-

crete modeling framework is that a lot of information can be extracted directly from

its structure (connectivity, cycles, dependencies, functions), the algorithms that can

be used on it and their associated complexity.
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Continuous models, at the other end of the spectrum, are capable of modeling

the evolution of concentrations (which, for example, can be derived from stoichiomet-

ric reactions), the rates of these dynamics, and the possible dependence on spatial

components (distributed-parameters systems). The advantages related to continu-

ous models are their precision, the possibility to encompass multiple time scales, the

possible study of their robustness properties, and their sensitivity analysis. More

generally, they benefit from a suite of techniques, offered by Systems and Control

Theory, that helps in investigating their properties.

The observation suggests that many biological instances are naturally made up of

systems with interacting continuous and discrete components. One notable example

is the cell cycle [Novak and Tyson, 1997], where phases of continuous growth are inter-

leaved with discrete, logical conditions that influence one out of a number of possible

outcomes (continued growth, apoptosis, or quiescence for instance). From a differ-

ent level, biological systems often present heterogeneity coming from the interplay of

behaviors happening at different levels (for instance, cellular vs. environmental).

It is intuitively desirable then to introduce a formal approach for integrating the

previous two modeling efforts into a systematic whole. Hybrid Systems theory offers

this opportunity. It is then not surprising that the use of Hybrid System models

has been recently advocated in the Systems Biology literature [Rao and Arkin, 2001;

De Jong, 2002; Lincoln and Tiwari, 2004; Cho et al., 2005].

An undeniable feature of biological models, especially at the small-scale level, is

the presence of noise, and the lack of complete and precise knowledge of the system.

This uncertainty of the actual dynamics often comes from the quality of the data

which, given its origin, is measured with errors. Furthermore, often the data is

available in a coarse form, i.e. it is difficult to single out the signals or features of

interest among the noisy and information-crammed observations. The role of noise

actually goes beyond this simple and intuitive negative connotation. It is argued that

it often plays a constructive role in biological phenomena [McAdams and Arkin, 1997;

McAdams and Arkin, 1998; Hasty et al., 1999; McAdams and Arkin, 1999; Rao et al.,

2002; Blake et al., 2003]. Also, the nature of certain phenomena, both continuous and

discrete, appears to be ruled by chance, especially when a limited number of entities

are interacting [Gillespie, 1976; Gillespie, 1977].
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The above arguments lead to the suggestion that the use of Stochastic Hybrid

Systems is a natural choice of modeling and analysis framework for a wide class of

biological systems.

2.4.1 Survival Analysis of Bacillus subtilis

The investigation of the stress response network of Bacillus subtilis ATCC 6633 offers

a detailed explanation of how the bacterium reacts to competitive environmental

conditions, among the many options, by producing the antibiotic subtilin in order to

directly suppress other cells while getting immunized [Msadek, 1999]. The antibiotic

production is just one possible action, among a network of potential responses that the

bacterium can employ to survive. The mechanisms of the generation of the antibiotic

subtilin are fairly well understood and described by a genetic and protein pathway

that involves some non-deterministic interplay between its quantities. The interplay is

non-deterministic because of the noise in the environment and the partial knowledge

we have of the whole production mechanism. More precisely, the presence of switching

modes exhibits the activation/deactivation of certain genes and the increase/decrease

in production of the corresponding proteins. Furthermore, the dynamics and the

triggering conditions are intrinsically not perfectly known, and hence prone to be

modeled in probabilistic terms. Furthermore, if we interpret any response mechanism

as a “control action,” then it may well be that a randomized sort of control could be

employed by the bacterium [Wolf et al., 2005].

The concept of optimum is common and shared between engineering and bio-

logical systems. Prior to its employment, though, it is necessary to answer some

fundamental questions: optimality with respect to what? And at what level? And

under which constraints? The biology literature offers numerous examples where

optimality appears to regulate a certain behavior, or to explain the properties of a

particular entity. [Rosen, 1967] presents probably the first attempt, rather quali-

tative in nature but nevertheless very stimulating, to systematically frame the con-

cept of optimality in biology. At various “levels,” a number of observed biological

phenomena are interpreted as a solution of certain optimal problems: the vascu-

lar system, at a physiological level, is deemed responsible of optimally transporting
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the fluid within a body, and of optimally covering its interior with its branching

network; the phenomenon of homeostasis hints at how robustness and tolerance in

cellular and physiological entities is achieved by minimizing the error offset from

certain references; similarly for a number of biological regulators, instance of opti-

mal adaptive systems; the allometric law, dealing with form functionals, describes

the evolution of shapes in as a proportion-preserving phenomenon, at the cellular

and physiological level. More recently, [Segre et al., 2002] employs an optimal-

ity interpretation in the context of metabolic networks, where the objective or to

maximize the survival analysis at the cellular level. Contributions in metabolic

flux analysis also exploit perspective [Klapa, 2007]. Furthermore, [Weibull, 1995;

Wolf et al., 2005] look at dynamical game theory as a means to think about optimal-

ity in the context of evolution, both at a population level, as well as at a cellular one.

Along the same lines, theoretical questions about evolution and optimality are raised

by [Maynard Smith, 1982]—in his work optimality is related to the notion of stability

of a strategy.

On the other hand, many notable instances from the same biological domain

caution that the abuse of this notion may yield to incorrect conclusions for such

systems.

According to the general tenets of evolution, it can be cogently argued that a bio-

logical structure is “optimal” (at least locally and temporarily) because it has survived

evolution under the pressure of natural selection. It is important to stress the local

value of the statement, as well as its “non uniformity” in time. A few comments on the

above statement are due. While such notion is generally accepted by the proponents

of the so-called adaptationist approach to evolutionary sciences (notable advocates

are Maynard Smith, Dawkins, Pinker and a number of ethologists), other scientists

contend its over-accentuation of the power of natural selection [Gould and Lewontin,

1979] and its neglect of constraints (genetic, as well as ecological). In an attempt to

reconcile these two takes, in [Duprè, 1987] the difference between optimality as a fact,

rather than as a heuristic, is highlighted. While the first concept relates possible op-

timality traits in organisms from the role of natural selection in evolution, the second

claims that if a trait is optimal, then it evolved by natural selection. Clearly the first

position is less pervasive than the second. Furthermore, it does not hint at any pos-
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sible teleological argument, which the present work has no intention to embrace. To

quote [Duprè, 1987, p.2, italic added], optimality as a fact may emerge as “evolution

. . . is a process by which organisms have come to adopt the best available strategy

for dealing with the exigencies of their environment.” Notice that a strategy can be

just partly reflected by phenotypic traits, upon which natural selection plays a role.

Hence, by the factual tenet, a strategy may display some optimality properties.

With regards to the “level,” that is the focus of the selection forces, we assume

it to be the single species. Again, this is arguable, in that it may be postulated

that instead the whole group, or the kin, and their corresponding fitness, should be

the objective (the “unit”) of study. To hunt away further possible criticism of this

last point, and then of the validity and generality of the above claim, let us also

stress that, along with that of survival, the objective of offspring yield (that is, its

maximization and nurture) should be accounted for. However, we shall disregard this

second objective. This is because of the nature of the present work, which focuses

purely on the stress response network, rather than on other, more general behaviors

related to survival.

In our study, the above reasoning translates into postulating that the functioning

of the subtilin production pathway follows certain criteria and levels of optimality. In

this context optimality is intended as a measure of personal fitness or, in the particular

instance, of survival of the single bacterium. In particular, one would expect that the

activation/deactivation of the production path in the network happens “optimally”

in the above sense.

Bacillus subtilis has been the object of much experimental work, analysis and syn-

thesis because of its availability, accessibility, and easy manipulation. In particular,

the subtilin production pathway has been deeply investigated, both at a genetic and

at a signaling level (further details can be found in section 2.4.2).

In this work, let us look at a recently developed dynamical model for the genetic

network describing the biosynthesis of the lantibiotic subtilin [Hu et al., 2004] and

propose a few improvements and modifications to the model to bring it in line with

newer evidence reported in the literature [Tjalsma et al., 2004; Stein, 2005]. A system

that presents partially decoupled high-level dynamics (those dealing with the popu-

lation size and the nutrient level) and low-level ones (those describing the mechanism
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of production of subtilin by a single cell) is obtained. The high-level model is non-

linear and deterministic, while the low-level one is hybrid, affine and probabilistic.

The model, while limited in scope and properly reduced to a workable abstraction,

has to be looked at and interpreted as a framework for the methodological procedure

presented in this work. This endeavor does not claim to shed new light into the

dynamics of the antibiotic pathway, but rather on its structure. More specifically,

the effort is focused on the artificial synthesis of the control mechanism for the sub-

tilin production, and on an interpretation of this mechanism in terms of a certain

optimality criterion.

The system in its entirety can be interpreted (and therefore modeled) as a stochas-

tic hybrid system. Upon this modeling setup, let us develop our study in two steps:

1. reinterpret survival analysis as a probabilistic safety problem;

2. leverage (stochastic) optimal control theory to address this problem in terms of

optimality.

This approach allows one to study the survival of the single B. subtilis cell as a

probabilistic, decentralized safety specification problem. It is “probabilistic” because

of the inevitably stochastic dynamics. It is “decentralized” because each entity, while

optimizing for its own fitness, does not communicate with all the competitors, nor

has knowledge of their single actions, but only receives an averaged feedback from

the environment (this signal could be due to the process of quorum sensing [Tjalsma

et al., 2004], for instance). The solution of this survival problem may not then be

globally optimal. Using the techniques developed in this thesis, let us reinterpret the

above probabilistic safety problem as a (stochastic) optimal control one, where the

controls are functions of the state-space and encode the subtilin production strategies.

We argue that, under a proper choice of the survival function (i.e., the safety region),

the solution of this stochastic and decentralized optimal control problem yields the

location and the structure of the switching behaviors under study. We draw some

fair comparisons on the outcomes of the above procedure based on a set of putative

and spurious survival functions.

This methodological approach may shed light on the strategies employed by the

organisms to improve their chances of survival, conditioned on the possibility of cod-
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ifying such fitness into a cost function. More generally, let us argue that, in certain

instances, a function in a genetic network may be synthesized by an optimization

problem, where the objective is to maximize the probability of survival of the indi-

vidual. Prospectively, matching these outcomes with the data in the literature allows

concluding that the corresponding switching mechanisms in the subtilin production

network may function with a degree of optimality, according to certain survival cri-

teria. Moreover, this approach suggests that it is according to this survival interpre-

tation, rather than other ad hoc characterizations, that the thresholds in the system

could be specified and determined.

2.4.2 A Model for Antibiotic Synthesis

Resorting to a schematization proposed in [Hu et al., 2004], based on a wealth of recent

research [Banerjee and Hansen, 1988; Entian and de Vos, 1996; Kiesau et al., 1997;

Msadek, 1999; Stein et al., 2002; Kobayashi et al., 2003; Stein, 2005], it is possible to

abstract the biosynthesis network into a five-dimensional model (see figure 2.22, taken

from [Hu et al., 2004]). The model encompasses two “global” variables (population

and nutrient level) and three “local” ones (the concentration of the sigma factor SigH

and of the two proteins SpaRK and SpaS).

In order to prune away details that may be uninteresting at this level, the presence

of the peptide SpaS is equated to represent the actual antibiotic subtilin. In actuality,

a proportional relationship has been observed between these two quantities. For the

sake of simplicity the scheme disregards some of the components in the otherwise

complex subtilin biosynthesis pathway, as well as some behavior only tangentially of

interest at this level. For instance, in Figure 2.22 one can notice the presence peptides

SpaF, Spae, SpaG and SpaI, which play a role for the immunity response [Klein and

Entian, 1994; Stein et al., 2003; Stein et al., 2005]. This immunization action prevents

the cell from perishing by producing its own antibiotic. Let us disregard their role

for now.

Furthermore, for the sake of simplicity (and, as it shall be seen in the following,

of computation), given the symmetric and repetitive structure of the dynamics of

SpaRK and SpaS in their dependence on, respectively, SigH and SpaRK [Hu et al.,

137



Chapter 2. Probabilistic Reachability and Safety

2004], in the current case study let us disregard the evolution of SpaRK and just

hypothesize a direct influence of SigH on SpaS, without much change in the final

behaviors. Compare, for reference, the trajectory plots in [Hu et al., 2004, Figure 2].

Ideally, a model that keeps track of each of the dynamics of a variable set of species

in a certain environment may yield extremely precise results. However, this approach

is discarded because of its sheer impracticality and because of the difficulty in its

dynamical analysis. Hence, it is preferred to introduce a model that decouples high-

level from low-level dynamics (see figure 2.23). The higher level, which encompasses

the first two global variables (population level and food level), is deterministic and

based on average dynamics. The lower one, involving the last three local coordinates

(protein and sigma factor concentration levels), describes cellular processes and is

made up of stochastic and switching dynamics. The reader may notice that the

model is endowed with a decentralized structure (see figure 2.23).

SigH

spaRK SpaRK SpaSspaS
S1 S2

Figure 2.22: The subtilin biosynthesis pathway. The top figure represents a scheme where
the relationship among the most important entities in the pathway have been highlighted.

Let us denote with [SigH] and [SpaS] the concentration of the respective species,

and with [SigH] and [SpaS] the corresponding averaged values throughout the whole

environment. In the following, a modification of the model in [Hu et al., 2004] is

described.
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population level
deterministic
(averages)

cellular level
hybrid

stochastic

SpaS D, X

SpaS

safe?

no    : SigH

yes  : SigH
SpaRK

D: number of cells

X: food

Figure 2.23: The decentralized structure of the model under study.

Let us start from the lower-level relations. In words, this part of the pathway

depends on the dynamics of SigH, which is thought to be the actual initiator of

the subtilin production mechanism. The dynamics of SigH depend on some external

signals, the form of which we aim at unveiling. SigH influences the dynamics of SpaS7

through a switching mechanism. This switching condition is encoded as a two-state

Markov Chain: the higher the concentration level of SigH, the more likely it is that

SpaS is produced, and hence that its level increases.

The level of the sigma factor SigH follows a controlled switching behavior:

d[SigH]

dt
=

{
−λ1[SigH] if production is OFF

−λ1[SigH] + k3 if production is ON.

In [Hu et al., 2004] the conditions determining the ON/OFF status depended on

a fixed, arbitrary threshold on the food level. This was suggested by the observed

dependence of the production mechanism on some sort of quorum sensing [Tjalsma et

al., 2004]. In [Kouretas et al., 2006b], instead, an identification scheme is employed to

7Notice again from Figure 2.22 that we skip the influence of the SpaRK cluster, because of the
symmetry in the relation between SigH:SpaRK and that between SpaRK:SpaS.
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find out parameters of the system, which can potentially represent the position of the

switching thresholds for the system. The underlying hypothesis for this identification

procedure to yield a meaningful outcome is that the thresholds have to be constant

levels on any of the model coordinates. Notice further that, since all the models

built so far are time-invariant, no threshold dependence on the growth phase of the

species is taken into account [Stein, 2005]. The two mentioned approaches rule out

the possibility of having a more complex dependence on the state space, which is

indeed what this work aims at finding. Assuming fictitiously that the production can

be “controlled,” it is instructive to write out the above dynamical relations as follows:

d[SigH]

dt
= −λ1[SigH] + k3u. (2.45)

The essential assumption is that the control has the form

u = f(D,X, [SigH], [SpaS]) : D → {0, 1}, (2.46)

where D = [0, DM ] × [0, XM ] × R2
+ ⊂ R4. This state feedback represents a general

binary function of the variables of the model. Let us leave the actual shape of this

control function to be determined—actually, we will argue that the synthesis of this

control will be the outcome of the procedure this work is about to set up.

Next, the concentration of the protein SpaS depends on one of the two possible states

of a switch S1 as:

d[SpaS]

dt
=

{
−λ3[SpaS] if S1is OFF

−λ3[SpaS] + k5 if S1is ON.
(2.47)

S1 = {OFF,ON} is assumed to be a Markov Chain, whose transition probability

matrix is:

P1 =

[
1− b0 b0

b1 1− b1

]
. (2.48)

The coefficients b0, b1 depend directly on [SigH] according to [Hu et al., 2004]

b0([SigH]) =
e−∆Grk/RT [SigH]

1 + e−∆Grk/RT [SigH]
, b1([SigH]) = 1− b0([SigH]).
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The quantity ∆Grk represents the Gibbs free energy of the molecular configuration,

R is a gas constant and T the environment temperature in Kelvin. This choice of

transition probabilities makes S1 reversible [Durrett, 2004], which helps in its analysis

in that the steady state corresponds to the vector [πOFF , πON ]T = [b1, b0]
T . Intuitively,

as discussed above, SigH promotes the production of SpaS by increasing the likelihood

of S1 to be in the ON state.

At the higher level, the dynamics of the population and of the food level will be

influenced by the amount of subtilin currently present in the environment. As the

modeling choice was not to describe the dynamics of each single bacterial cell, we

shall only account for the average production of subtilin, computed from the current

antibiotic level for the single cell and depending from the environment in terms of the

food and population levels.

The food level will directly depend on this average function, while the population

level shall depend indirectly from it, through the value of the food.

The variation in the population level is modeled by a logistic equation as follows:

dD

dt
= rD

(
1− D

D∞

)
. (2.49)

It is a quadratic equation, with two equilibria. It is considered purposely for its clear

asymptotics. The non-trivial equilibrium relation depends on the quantity D∞, which

is called the carrying capacity. Let us a priori define it to be equal to

D∞ =
X

XM

DM ,

where DM and XM represent the maxima for the population and the food levels in

the environment. In other words, as intuitive, the steady state dynamically depends

on the relative quantity of food in the environment. The food dynamics are taken to

be:
dX

dt
= −k1DX + k2[SpaS]. (2.50)

The above dynamical relation says that the food gets consumed at a rate proportional

to its present level and the population density, while the average production of subtilin

decreases this rate. This is due to the indirect negative influence of the presence of
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the antibiotic on the population level. This average quantity is introduced to be the

following:

[SpaS] =
D

DM

(
1− X

XM

)
k5

λ3

b0h(X), (2.51)

where b0 = b0([SigH]) and [SigH] = k3

λ1
, and h(X) is the Heaviside step function over

the food variable, i.e. it is equal to 1 if X > 0, and to 0 if X = 0. The above relation

stresses two separate influences. First, a dependence on the “competition” in the

environment, given by first two terms. The average will be positively influenced by

the relative population level (more bacteria induce a higher stress), whereas it will be

negatively influenced by the amount of food (less food will increase the competition

in the environment). Secondly, the average level of antibiotic depends on the steady-

state dynamics for [SpaS] (fraction k5/λ3), that is on the production level for the

single cell, which in turn depends on the steady state of SigH (πON = b0(k3/λ1),

taken from the equations (2.45-2.47)).

From the dynamical relations in (2.49-2.50) for the higher-level variables and

equation (2.51), the steady state of the population and food variables is going to

be either [Deq, Xeq]
T = [0, β]T , β ∈ [0, XM ], or [Deq, Xeq]

T = [αDM , αXM ]T , where

α ≤ k2k3k5

k2k3k5+k1λ1λ3DMXM
≤ 1. While the first equilibrium, as we discussed, is unstable,

the second is stable for any combination of the model parameters.

The above set of dependencies and dynamical relations can be formally reframed

as a SHS. In order to relate these dynamics to the framework in this chapter, from now

on we shall work in discrete time, assuming that the above dynamical relations have

been properly approximated, for instance with a simple first-order time discretization

method. Notice that the probabilistic terms in the model are concentrated on the

switching structure of S1. The hybrid state space is made up of a discrete component

θ (the state of S1), and a continuous one (a vector in D ⊂ R4). The hybrid state

space will be denoted as S = {OFF,ON} × D. The dynamics of SigH depend on

a binary function that depends, according to equation (2.46), on a general feedback

contribution f , function of the (continuous component of the) state space. Following

[Hu et al., 2004], it could for instance be assumed that f is piecewise-constant ac-

cording to a proper spatial guard that depends on the food variable. Another discrete

hybrid component would then be obtained.
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However, in this work let us retain most generality: the objective will then be that

of synthesizing this function according to certain optimality criteria that will be made

explicit in the following. The shape of the outcome of this optimal control problem

will then be fed back into the dynamics of SigH and will dictate whether it will present

a threshold (as suggested in the literature) or, more generally, be non-linear function

of the whole state space.

As in Definition 15, a control profile over a certain finite (discrete) time horizon

[0, N ], i.e. a sequence of mappings µ = (µ0, µ1, . . . , µN) of the form in (2.46), shall be

named a strategy, or a policy. The simple binary control space, denoted U = {0, 1},
is in this case discrete and finite.

A solution of the above SHS model is a stochastic process with two components

s(k) = (θ(k),x(k)), k ∈ [0, N ] which, given an initial condition at time k = 0 (possibly

sampled from an initial probability distribution), evolves in either of the two discrete

modes until a jumping condition is verified (which reduces to sampling, along the

evolution of the trajectory, from the inhomogeneous probability distribution of the

MC S1). Once a transition is triggered, the discrete state changes mode, while the

continuous state remains unchanged (in the hybrid systems parlance, it is said the

deterministic “reset” function is the identity), and the evolution continues from the

unaltered conditions in the new mode. By construction, the solution of the model is

a controlled stochastic process. Furthermore, given the structure of the policy and its

sole dependence on the present state at each time step, once a strategy is selected the

process is simply Markovian. Along with the general SHS interpretation, the model

can be also thought as being a piecewise-deterministic Markov process, as in [Davis,

1993; Kouretas et al., 2006b].

2.4.3 Survival Analysis as Probabilistic Safety Verification

The literature on antibiotic synthesis as a stress response for B. subtilis suggests that

the production activation or de-activation follows some sort of “switching” profile

[Stein et al., 2002; Stein, 2005]. This observation has been thus far interpreted as

the presence of specific spatial thresholds, that is precise values that are function

either of the species concentration, or of the food or the population level, which are
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characteristic to these switching behaviors. A research thrust has focused, assuming

a special structure for these functions, on automatically identifying these thresholds

from the data [Kouretas et al., 2006b].

As motivated in the preceding section, in this work a rather different perspective

is taken. The presence of the thresholds will not be a-priori postulated, but possi-

bly obtained with respect to a certain survival property. That is, these switching

conditions may be obtained as the outcome of a specific control synthesis problem.

The use of the word “possibly” is stressed because while a binary function has been

specifically chosen for the feedback control, an outcome with the shape of a threshold

may not necessarily result from the synthesis problem. It is then key to make use of

a proper survival function.

According to the claim discussed in the previous section, it is assumed that a

species elicits or deactivates the “production pipeline” for the antibiotic with the

main objective of maximizing its own survival likelihood. From an optimal control

perspective, survival is encoded as an objective function for the single cell. Now,

reinterpreting survival within the dynamic model introduced in section 2.4.2, it is

possible to introduce certain safety regions within the state space that are associated

with a specific survival status. In a deterministic setting, the survival status could be

“alive” or “dead.” Instead, in a less coarse stochastic modeling setup, we may better

opt for defining a survival probability. Next, because a solution process of the SHS is

dependent on a Markovian control, we aim at maximizing the chances of survival by

synthesizing an optimal strategy. Given an educated choice for the survival function,

let us claim that this strategy will turn out to be “of switched kind.” In other words,

let us argue that rather than associating the production activations/deactivations to

spatial thresholds, as in the previous literature, these should be referred to certain

safety levels for the species under study, once a proper survival criterion is selected.

Clearly, the above argument hinges on the relationship between survival and

safety. The choice of selecting a proper survival function then translates into be-

ing able to formalize a proper definition of safety for the case under study. According

to the interpretation for the present model, associating a safety region to a survival
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condition can be schieved by stating that the single B-subtilis bacterium is safe if

[SpaS] > [SpaS]. (2.52)

Informally, if the subtilin production level of the single species under study is higher

than the average subtilin present in the surrounding environment, then the species

will be deemed to be safe. The opposite interpretation will hold for the complement

of the claim. Intuitively, the relationship in (2.52) encodes a higher likelihood for the

species to kill other bacteria, rather than being killed by their antibiotic. Equivalently,

exploiting the expression in equation (2.51), let us define the safe region A to be the

set of points

A =

{
s ∈ S : [SpaS] >

D

DM

(
1− X

XM

)
k5

λ3

b0h(X)

}
.

In general terms, in a stochastic setting a safety analysis problem consists in evaluat-

ing the probability that the state of the system remains outside a certain set deemed

to be unsafe during a given time horizon, starting from some set of initial conditions.

The objective of the study then becomes that of modeling antibiotic production via

safety analysis in a SHS framework. Notice that the above survival objective, as well

as the corresponding safety specification, do not include any energy cost as a possible

penalty term. This is due to the model of choice, which does not include any food

consumption term at the level of the single species. However notice that, as we are

interested in focusing on the presence of thresholds in the production mechanism,

rather than understanding its compete structure, this limitation plays a second role.

In general, a performance criterion could be introduced in the survival analysis and

retained within the safety interpretation by exploiting the ideas in section 2.2.7.

Having set up the above mathematical machinery, it is now possible to apply it to

the problem under study. This can be done by leveraging the results in the first part

of this chapter. The procedure outlined in Thm. 5 is practically implemented via

a dynamic programming algorithm. This procedure, along with the optimal safety

level pµ∗
s (A) associated with any point in the state space, yields also the optimal

state-dependent, time-varying policies µ∗. This second output is really the focus of
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our attention, as it shall represent the synthesized control functions for the relation

(2.45), to be interpreted as the activation thresholds for the production of subtilin.

2.4.4 Numerical Results and Discussion

In this section let us report the outcomes of the simulations for the following exper-

imental setup. The parameters have been chosen to be the following: r = 0.8, k1 =

2, k2 = 4, k3 = 2.5, k5 = 0.8, λ1 = 0.5, λ3 = 0.2,∆Grk/RT = 1.1. The time horizon

has been set to N = 40. In Fig. 2.24, the plots of the maximal probabilistic safe

Figure 2.24: Maximal probabilistic safety level set corresponding to ε = 1, backwards in
time.

level sets, with safety level ε = 1, are shown for different time samples. The colors

have been added only to enhance the perspective and the height. Given the choice

of the safety level ε, all the points in the plots above the surfaces are to be consid-

ered to be “almost surely” safe. Notice that, as expected, the safe set shrinks as we

proceed backwards in time (this in fact translates to a longer safety requirement for

the trajectories of the system). For the sake of visualization, we plotted the results

corresponding to a fixed value of the sigma factor [SigH] = 1. All the plots refer to

the discrete state being in the OFF mode. Fig. 2.25 represents, for a particular fixed
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time sample, different maximal probabilistic safety level sets, each corresponding to

a particular safety probability ε. For each level set, the corresponding safety region

includes all the points above the set. The lower the probabilistic safety level, the

larger the safety region. Finally, Fig. 2.26 represents pairs of plots referring to max-

Figure 2.25: Maximal probabilistic safety level set corresponding to different safety levels
(decreasing along the left-right and top-bottom direction).

imal probabilistic safe sets (for ε = 0.95) and corresponding optimal actions. More

precisely, the green plots (second and fourth row) represent the regions in the state

space that are associated with a switching action, and are to be matched with the

safety level sets plotted directly above them.

It is interesting to realize that the optimal control functions, associated with the

activation thresholds, have a characteristic “onion layer” shape, varying along time.

It can be thus argued that the optimal actions single out switching surfaces corre-

sponding to certain safety levels. These surfaces have profiles that match the variation

in safety probability (or, according to our interpretation, in survival likelihood, for

the selected survival criterion) for the species, as appears by comparing the control

plots with the safety level sets. In general, these surfaces are not hyper-rectangular,

as the previous research efforts that sought to identify thresholds related to them

assumed [Kouretas et al., 2006a]. Instead, they are rather nonlinear functions of the

state space, showing a manifest but non-explicit dependence with the change in safety

level of the single species.

To make sure that the obtained outcome is indeed of value to the problem, similar
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Figure 2.26: Maximal probabilistic safety level sets and optimal switching control, back-
wards in time.
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simulations are implemented, which are instead based on a survival function depend-

ing on a simple feedback describing the competition coming from the environment.

This is suggested by two ideas: first, the observation in the literature that the bac-

terium adjusts its behavior according to some sort of quorum sensing [Tjalsma et al.,

2004]; second, the tentative of the former modeling efforts to define thresholds which

depend only on food level and population density [Hu et al., 2004]. More precisely,

the set of safe points can be defined to be:

A =

{
s ∈ S :

D

DM

(
1− X

XM

)
> thresh

}
.

Notice that the subtilin level influences the food level, and indirectly also the popu-

lation level. In the above, we have assumed a value thresh = 0.3. The outcomes of

the simulations (to be interpreted as the above ones in figure 2.26), shown in figure

2.27, do not appear to yield any threshold behavior for the production mechanism.

Similarly, some experiments performed by assuming a safe set which is defined on the

food coordinate (as in [Hu et al., 2004]) were run. However, the outcomes (see figure

2.27) did not show any particular “threshold,” thus suggesting that such boundary

may not be the actual discriminant for the subtilin production mechanism.

Let us remark that the argument developed in this section leads to conclude that

the observed production mechanism shows a switched feature, which is associated

with a condition that, rather than being referred to some value for the external

coordinates of the system, has instead to be interpreted in terms of a particular level

of the survival probability for the species.

Clearly, this approach subsumes the ability to define a specific survival function,

or a corresponding safety set, for the system under study. As already discussed above,

in general it may be argued that some energy-related terms ought to be included in a

cost with the shape of (2.52). A wrong choice for this function may lead to misleading

conclusions, as described above.

From a biological perspective, it is necessary to understand what are the exogenous

“signals” that the species is able to sense, and which can presumably build up the

survival function. Our choice of an average feedback may not be valid in general.

Furthermore, the present study assumes that each cell optimizes its own survival, thus
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Figure 2.27: Maximal probabilistic safety level sets and optimal control, backwards in
time, based on a fitness function encoding competition in the environment.
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ruling out any possible cooperative, or emerging global behavior. As we discussed

in the introduction to this section, this idea may be contended: while this arguably

makes sense for the current study, the reader is urged to ponder over the general

meaning of the “unit of selection.”

As an extension to the present work, it would be instructive to understand what

is the critical safety level that corresponds to the activation of the production of

subtilin. Our computations hint at showing that, for the particular case under study,

the level is a safety probability value close to one. More accurate testing needs to be

performed on this aspect.

151



Chapter 2. Probabilistic Reachability and Safety

2.5 Further Theoretical Investigations

and Computational Studies

There are a number of problems that directly extend those already tackled in this

section, as well as other issues that stem from the work presented in this dissertation.

Let us leave the following points as possible avenues for future research.

Sufficiency of Markov Policies. Much like other stochastic optimal control prob-

lems appeared in the literature, in this theoretical setup it looks likely that Markov

policies are optimal within the set of general feedback policies. This statement is

fairly straightforward to prove for additive cost functions, under weak assumptions

on the entities into play [Kumar and Varaiya, 1986; Bertsekas and Shreve, 1996].

However, at this time the formal proof of this statement for either the max or the

multiplicative cost functions used in this work appears to be elusive.

Game-theoretical framework. Modeling adversarial uncertainty and synthesizing

control strategies for this problem setup has an intrinsic interest, as well as a clear and

direct applicability to a number of important control problems. Results originating

from this line of research would also connect with related efforts in the SHS community

[Mitchell and Templeton, 2005]. Please refer to section 2.2.6 for some preliminary

details.

Randomized Strategies. It is certainly of interest to extend the developed frame-

work to controls that, while being dependent on the state space, are not necessarily

deterministic.

From a theoretical perspective, the introduction of randomized policies requires spe-

cial care. For instance, the non-anticipativity of such signals may be assumed, that is

independence between the filtration they induce in the past, and the filtration result-

ing from the other probabilistic terms in the future dynamics. The work in [Ghosh et

al., 1992; Ghosh et al., 1997] contains a number of details on how to properly handle

such instance, and solve related optimal control problems.

The benefits of this approach are its generality and its possible connection with in-
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teresting engineering applications. We have mentioned in section 2.2.6, for instance,

that this would model a key feature of fault-tolerant control. The tradeoff on this

point is that the solution of a control synthesis problem for randomized problems may

be computationally heavier. This suggests that the computational aspect may be a

limiting factor for the proposed approach.

Computational Improvements. Along the above lines, which emphasize the dimen-

sionality limitations of the proposed techniques, the study of more efficient approaches

to solve the DP algorithm on a hybrid state space is of primary focus. The literature

suggests some methods to attack this problem. As introduced in section 2.3.4, one

technique exploits some decentralization in the structure of the dynamics in order to

distribute the computations: HS models naturally yield themselves to this distributed

approach according to the topology of the underlying graph, consisting of the modes

and the edges of the HS. However, notice that this does not generally reduce the “con-

tinuous” part of the dimension. In [Bertsekas, 1982], an approach to asynchronously

perform in parallel the computations – with proven convergence – is suggested.

A second, more recent approach suggests to solve large-scale Markov Decision Pro-

cesses (MDPs) by approximating the optimal value function by a linear combination

of basis functions and finding the associated optimal weights by linear programming

[Kveton et al., 2006].

Another idea is that of exploiting an automated control synthesis toolbox to ease

the solution of the DP scheme. The work in [Baotic et al., 2003; Christophersen

et al., 2005] bridges the solution of a general DP program with that of a model

predictive control (MPC) one. The latter optimization setup can be solved by the

multi-parametric toolbox (MPT), for a number of model instances which depend

on the dynamical structure (for instance, in the piece-wise affine case) and the cost

functions (for example, in the linear case). The author is currently investigating

and experimenting with these methods to achieve computationally attractive perfor-

mances for the proposed schemes, to be further tested on the benchmark in [Fehnker

and Ivančić, 2004] and compared to the other techniques in the literature.
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Embedding Performance. As it has been argued in section 2.2.7, the author is in-

vestigating ways to “hide” some performance specifications in the reachability/safety

framework under study. From a heuristic point of view, and embracing the state-

augmentation technique proposed in section 2.2.7, a number of approaches can be

implemented. According to these approaches, certain forms of discounting can be

used, which allow to express a safety specification problem as a norm minimization

one. While practically functional, these approaches often are not prone to be formally

expressed and investigated. Furthermore, they often tarnish the underlying proba-

bilistic interpretation of the output of the optimization problem (which may be still

recovered a-posteriori).

More generally, embedding further performance specifications in the control de-

sign procedure, while guaranteeing safety, is a well studied problem. An interesting

approach which could also be inspiring for this research is that proposed in [Lygeros

et al., 1999], addressing a multi-objective control problem with requirements ranking

for deterministic hybrid systems. This can have important applicative outcomes, and

yield interesting new interpretations of the problem under study.

Connections with Continuous Time. An important issue to be addressed is how to

extend the proposed methodology for probabilistic reachability analysis and design to

a continuous time stochastic hybrid setting. In section 2.2.9 we have connected and

compared the presented work with other approaches. We have further strengthened

this connection by discussing the limiting equivalence of approximated models in the

SHS literature (see chapter 1). Upon extending such approximation procedure to the

controlled case, we would like to run fair comparisons of the two methods under the

common benchmark in [Fehnker and Ivančić, 2004].

Discretization of the Control Space. As mentioned in section 2.3.3, the extension

of the discretization approach to the control space has to be formally pinned down.

However, it appears to be straightforward from that obtained for the state space,

which has been presented in section 2.2.8.1.

The next two subjects refer to the theory developed in chapter 1.
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Stochastic Hybrid Systems with no spatial guards. The author is interested in

further exploiting the generator approach in section 1.3.3 and the formal and compu-

tational simplicity of SHS models with no spatial conditions. This may be of interest

in investigating other problems that are not strictly related to the probabilistic reach-

ability and safety ones.

A Time Discretization Scheme with Stronger Convergence. In connection with

the theory developed in section 1.4, the author is working on an extension of the

results towards proving some stronger notion of convergence. The main reference

work for these results is [Krystul and Bagchi, 2004], which heavily hinges on results

formerly shown in [Gobet, 2000]. More restricted results are proven with similar

techniques in [Yuan and Mao, 2004], where the framework of switching diffusions

is taken in consideration. Furthermore, higher-order discretization schemes can be

obtained as extensions of the presented one [Kloeden and Platen, 1992].

z
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Symbols, Notations, and Acronyms

Let us recapitulate here the most common notations, symbols and conventions from

the literature, that are used throughout the text. We exclude from this list recent or

novel concepts formally introduced in the thesis. These quantities are also formally

introduced or defined when first used.

• N denotes the natural numbers, Z is the set of integers, R are the real numbers,

R+ the positive real numbers, R+
0 the nonnegative reals.

• A trajectory, an execution, or a stochastic process is denoted with bold fonts,

whereas values that this function may assume are denoted with regular fonts

(even if they may be vectors).

• When taking the expectation of (a function of) a Markov process, let us use a

subscript to denote the initial distribution of the process, or the initial value of

the process: Ex0 [x(t)] = E [x(t)|x(0) = x0].

• The probability that a certain event is true for a stochastic process, condi-

tioned on its initial condition, will be denoted with a subscript, with the initial

condition: Px0 (x(t) ∈ A) = P (x(t) ∈ A|x(0) = x0).

• Ω is the underlying event space over which let us define the probability space

assigned to a stochastic model, see page 21.

• F is the natural filtration.

• P is the probability assigned to events on a sigma-field, or to trajectories of a

system.
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• N (m,σ) denotes a normal probability distribution with mean m and variance

σ2. If the two parameters are an n-dimensional vector and a x× n symmetric,

positive semidefinite matrix, then N (m,σ) is a multi-dimensional distribution.

• U ([a, b]) denotes a uniform probability distribution over the interval [a, b], a <

b ∈ Rn, 1 ≤ n <∞.

• Given a E-valued random variable X, the function distX : E → [0, 1] denotes

its probability distribution. Further, let us say that distX belongs to P(E),

the space of probability distributions over E.

• Unless otherwise stated, ‖ · ‖ is the supremum norm.

• Given a point z and a set A in a normed space (like the Euclidean space endowed

with its natural norm), let d(z, A) = infy∈A ||z−y|| denote the distance between

z and A. Similarly if A is made up by a single point.

• Given two numbers a, b, a ∨ b = max{a, b}.

• Given a sequence (an)n≥1 and an a, lim?
n an = a ⇔ limn→∞ an = a and

(∨n‖an‖) ∨ ‖a‖ <∞.

• The function card, when applied to a general discrete set, yields the cardinality

of that set, that is the number its elements.

• Leb denotes the Lebesgue measure over the specified space.

• δ(n), n ∈ Z denotes the Kronecker delta extended to the integers.

• The empty set is denoted as ∅.

• Given a set A, its complement is denoted by Ac, or Ā.

• Given two homogeneous sets A,B, their difference is defined as A\B = {x : x ∈
A ∧ x /∈ B}.

• Given a pair (usually referred to an edge in a HS model) e = (e1, e2), we have

introduced s(e) = e1 and t(e) = e2.

157



• Given a vector x of dimension n, for instance x ∈ Rn, diag(x) denotes the

n× n square diagonal matrix, with elements taken orderly from vector x. The

n-dimensional identity matrix, made up of unity terms along the diagonal and

null terms elsewhere, is denoted by In.

• The identity function maps points in a space into themselves, for instance,

∀x ∈ Rn, id(x) = x.

• Consider a function f : A→ A′. If f ∈ B(A), then f is Borel-measurable in its

domain of definition; if f ∈ C(A) = C0(A), then f is continuous in its domain

of definition A; if f ∈ Cb(A), then f is continuous and bounded in its domain

of definition; if f ∈ Cn
b (A), n ≥ 1, then f is n-times continuously differentiable

and bounded; if f ∈ C̄n
b (A), n > 1, then f is n-times continuously differentiable

and uniformly bounded.

• A function f : A ⊆ R+ → R is said to be càdlàg if, for any t ∈ A, lims↓t f(s) =

f(t), and if lims↑t f(s) exists.

• a.s. = almost surely . When a property holds a.s. on a probability space

(Ω,F , P ), it does so for every events in Ω, except possibly a set A such that

P (A) = 0.

- OC = Optimal Control

- HS = Hybrid System

- SHS = Stochastic Hybrid System

- GSHS = General Stochastic Hybrid System. Throughout the thesis, the term

GSHS is often associated with a SHS model with a non-trivial guard set, while

SHS to a model with no spatial conditions.

- CTSHS = Continuous-Time Stochastic Hybrid System

- DTSHS = Discrete-Time Stochastic Hybrid System
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- DP = Dynamic Programming

- CCC = Compact Containment Condition

- ODE = Ordinary Differential/Difference Equation

- SDE = Stochastic Differential Equation

- PDE = Partial Differential Equation

- PDMP = Piecewise-Deterministic Markov Process

z
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