
The Weiner Lecture Archives : An Ontology-Driven
Interface for Viewing Synchronized Lectures and

Notes

Gene Zhang
Sean Carr
Sameer Iyengar
Hava Edelstein
Albert Liu
Dan Garcia

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-135

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-135.html

November 8, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

We wish to acknowledge the generous support of the Larry Weiner Trust
for funding this project. Thanks to Lecturers Mike Clancy and Brian Harvey
for useful feedback throughout, to the helpful folks at ETS for hosting our
video streams, and to project alumni Cassandra Guy, Babak Pahlavan,
Matthew Ng, Jun Kitagawa, Aaron Steele and Steven Chan for their work
developing early versions of WLA. Finally, thanks to Larry Rowe for his
leadership and foresight with the BIBS and CMT projects.

The Weiner Lecture Archives : An Ontology-Driven
Interface for Viewing Synchronized Lectures and Notes

Gene Zhang
University of California, Berkeley

zyc@berkeley.edu

Sean Carr
University of California, Berkeley

seancarr@berkeley.edu

Sameer Iyengar
University of California, Berkeley

sameer@berkeley.edu
Hava Edelstein

University of California, Berkeley

hava@berkeley.edu

Albert Liu
University of California, Berkeley

albert_j_liu@berkeley.edu

Daniel D. Garcia
University of California, Berkeley

ddgarcia@cs.berkeley.edu

ABSTRACT
For several years, the lectures in our introductory Electrical
Engineering and Computer Science (EECS) courses have been
videotaped and webcast, mainly as an aid to students with time
conflicts that prevent them from attending class. We present the
Weiner Lecture Archives -- a project to identify, archive, filter,
and make available the best of these lectures with their notes on
the web. We provide a hierarchical, ontology-driven interface to
entire courses, which allows users to choose any topic and/or
subtopic to view, from a small snippet of one lecture to one that
spans many lectures. Once the topic is chosen, our system
launches RealPlayer to play the lecture video in one window
while showing synchronized lecture notes or slides in another
window. By the spring of 2007, we had finished encoding our
department’s entire four-course introductory sequence into this
system. Student use and feedback has been encouraging, and we
hope to expand to other EECS courses in the near future.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Distance Learning

General Terms
Documentation, Design, Human Factors

Keywords
Distance learning, webcast, Synchronized Multimedia Integration
Language, SMIL, Slide synchronization, topic hierarchy, ontology

1. BACKGROUND
In the mid-1990s, colleague Larry Rowe and his students in the
Berkeley Multimedia Research Center were designing two
systems that would serve as the architectural foundations for this
project. First, they were building the hardware and software
infrastructure of the Berkeley Internet Broadcasting System
(BIBS) [10], which provided live remote viewing and on-demand
replay of course lectures through streaming audio and video over
the web. We were one of the earliest to offer free university
lecture webcasts, and it pushed the limits of bandwidth and
processor capabilities of the day.

Figure 1. Larry Weiner

In parallel, Rowe and his students were working on the Berkeley
Continuous Media Toolkit (CMT), which provided synchronized
continuous media playback [7]. The media could be anything:
video, audio, text, and even commands to control the Tcl-based
client (say, to load a particular lecture slide in a window at a
certain moment). BIBS became so successful that the University’s
Educational Technology Service (ETS) [4] took it over and grew
its capabilities and capacity1. The computer science four-course
introductory sequence was webcast and archived every semester.
This was a great resource to students who missed class or wanted
to review a confusing lecture, and even to autodidacts from

1 ETS currently offers free webcasting and archived playback, in

RealMedia streaming format [9], for 47 of the biggest lecture
courses on campus, as well as hundreds of special events by
guest speakers and luminaries.

around the globe who wanted to learn computing on their own.
However, the webcast system had several shortcomings.

First, only the raw lecture webcasts were available, replete with
deprecated semester-specific information (e.g., announcements for
talks or midterms that occurred years ago) and wasted lecture time
(e.g., fumbling with a USB drive, mid-lecture breaks, etc.).
Second, slides / notes for these lectures were not linked to the
webcast, so viewers always had to go hunting through outdated
class websites to find them. Once the notes were downloaded,
there was no way of synchronizing them with the video in
RealPlayer [9], so viewers had to manually scroll them in a
separate window while watching the lecture. There was also no
connection to our anonymous course surveys [1,6], so semesters
that were highly rated were indistinguishable from those that were
duds. Finally, the webcasts were presented by date recorded
instead of by curriculum topic, so content that spanned lectures
required extra downloading, and there was no easy way to quickly
jump to a short snippet within a lecture.

In June of 2002, UC Berkeley alumnus Larry Weiner (Figure 1)
passed away, but left a trust fund to our department for
educational resources. We decided to honor his name by building
a system, the Weiner Lecture Archives (WLA) [11], to augment
the existing free webcast infrastructure but address all the
problems we’d noted.

We began by consulting the course surveys to find the most
recent, highest-rated semester for each of the intro courses. We
then gathered and posted all the notes for that semester, and hired
a former A+ student for each course to go through all the lectures
to encode the appropriate time-code slide transitions, allowing for
synchronized playback of slides and video. During this process,
the student filters out all but the purest curriculum content (by not
recording the time-codes for the offending segments or by
recording them under a special category such as “administrative”
or “obfuscated”), essentially cleansing our webcast. This process
can be done in real time, so this step requires approximately 45
hours for a 15-week semester-long course. Finally, we wrap our
content with the gentle, navigable interface of an ontology tree
based on all of the course topics, labeling each node by topic as
well as playback length.

In the following sections, we describe our interface and provide a
detailed description of the implementation of all the varied
components that make up the project. We’ll have a discussion of
the usage we’ve noted, feedback we’ve received, reflection on a
critical architectural decision, and conclude with a discussion of
where the project will go in the future.

2. INTERFACE
From the WLA home page, a student selects one of the four
lower-division computer science classes we currently offer from
the big tabs at the top and is taken to a dedicated class page. From
there, they see all of the main topics covered in that course for that
semester. Exploration of the tree reveals that each main topic
branches off into several sub-topics. Figure 2 shows this for the
CS3 course ontology. Once the user chooses the topic (or sub-
topic, or sub-sub-topic, etc.) they wish, they click the link.

Figure 2. Screen capture of the CS3 course ontology, after the

user has chosen to expand the “Booleans: True and False”
subtopic. The clip length for each topic is shown in

parenthesis. The down-arrow at the right of each topic
displays only that sub-tree.

This brings up RealPlayer with the video cued exactly to the
requested clip in one window and the synchronized notes in the
right. As the video proceeds, the notes auto-advance. Figure 3
shows what results if the user clicks the “Introduction” subtopic
under the “Booleans: True and False” topic for CS3 and watches
for 19 seconds. Note that the overall displayed video length is
exactly the length of the clip requested, with 0:00 labeling the
start and 1:31 (1.5 minutes, as advertised) the end. We abstract
away all information about the originating source video files (e.g.,
the actual time within the webcast(s) that the clip was extracted,
from which webcast(s) they were culled, etc). If the clip happens
to contain lectures from multiple webcasts recorded on different
days, the user notices nothing when the video seamlessly crosses a
day boundary, aside from the fact that the instructor
instantaneously changes clothes (hopefully)! The user need only
consider course content, and leave the heavy lifting (of
determining the sources required to deliver that content) to us.

Figure 3. The lecture webcast video synchronized with HTML

notes. As the lecture progresses, the notes auto-scroll to the
current topic via web anchors. The video can be scrubbed,

and the video and notes will re-sync.

2.1 Integration into UC-WISE
UC-WISE is an interactive collaborative learning environment [2]
currently used in some of our intro CS courses. In a UC-WISE
course, students have a very lab-centric experience: they spend
one hour in lecture per week instead of the traditional three, and
six hours per week in lab instead of just two. Lab activities range
from taking online quizzes, reading web pages, engaging in
collaborative “brainstorms”, responding to directed questions in a
communal newsgroup setting, and interacting with an interpreter.

Now, thanks to WLA, that can include watching a short lecture
video clip! This can also address the loss of two hours per week
with the esteemed “sage on the stage” (who may be a gifted,
inspirational speaker). The curriculum developer can easily locate
the relevant clips by navigating through our ontology just as a
normal user would. However, instead of clicking on the link, they
copy the link location and paste it into the UC-WISE authoring
environment. They can choose to make the video compulsory or
optional, depending on the context. There are some subtleties still
to be worked out (e.g., we now need to make headphones required
to watch the clips in lab, how do we let them know when content
has been updated, etc.), but this integration with UC-WISE holds
great promise.

3. IMPLEMENTATION
3.1 Slide Synchronization
WLA uses the Synchronized Multimedia Integration Language
(SMIL) [12] for most of its synchronization between lecture
slides/notes and streaming videos. SMIL lets us declare sequences
of multiple video files (useful for viewing lecture topics that span
multiple days of lecture), and start & end times for playback for
each video file. It also lets us specify various actions for
RealPlayer at arbitrary points during playback. For example, we
use this to synchronize all of our lecture slides, by instructing
RealPlayer (via a SMIL extension developed by RealNetworks,
Inc) to display a different URL for a different lecture slide at
specific times during video playback.

All notes are first located from the course web page or individual
instructor and copied to our web server. WLA currently supports
HTML and raw text notes without any pre-processing. In our
system by way of SMIL, time codes are linked to different URLs,
so scrolling is made possible through URLs that link to page
anchors peppered throughout the document. PDF files require a
pre-processing script step that splits each one into individual
pages (which themselves are assigned a unique URL). PowerPoint
slides require must be first converted to a 1-up PDF file, and
processed accordingly. Most slide transitions can be preserved if
the PDF creator chooses the “save with animations”. The most
common technique for putting PowerPoint slides on the web
involves rasterizing each slide into images, a far inferior solution
to PDFs that preserve the object properties of the presentation.

3.2 Ontology System Design
In this section we will describe the internals of our system and
what factors and decisions led us to the current design. Starting
with the low-level data structures, we will build up to the
algorithms that power the core of the user interface.

3.2.1 Data Structures
The main data structure in our system is a tree of topics. We chose
MySQL because we were familiar with it, it was already set up on
our servers, and it would likely be on any servers we might
migrate to in the future. The three main database entities we have
are videos, which reference external video files and contain meta-
data about them; video clips, which define clips within a video
using a specific start and end time and link the clips with their
places in the lecture notes; and tree nodes, which define the
relationships between nodes that create the ontology structure,
store a topic name for each node, and reference any video clips
associated with the node.

3.2.2 Database Abstraction Layer
Given the complexity of the relational tree structure we built and
the redundancy and synchronization requirements it has, we
decided to build an abstraction layer so the application code does
not have to deal with managing it. The idea is similar to the
Model-View-Controller paradigm, although we did not decouple
our controller code from our view. Having a clear data abstraction
layer with a defined interface saved us countless development
hours as we re-factored the system several times. Initially, the
abstraction layer consisted of low level getters and setters for all
of our entities. As the application became more complex,
however, we added higher and higher-level methods so that
complicated data manipulation tasks still seemed simple to the
application code. For example, moving an entire sub-tree from
one place in the tree to another is as simple as making a call to:
moveSubtree(src_node_id, new_parent_node_id).
Other than being easier to use, providing methods for complex
tasks like this allows the abstraction layer to be responsible for
managing transactions rather than relying on the application code
to do it, which eliminates the problems of nested transactions.

3.2.3 Optimizations
3.2.3.1 AJAX On-Demand Loading
The first iteration of our ontology-driven interface loaded an
entire topic tree (or sub-tree) before displaying it and therefore
was extremely slow for a tree of any reasonable size. Once the
tree was loaded, expanding and collapsing sub-trees was relatively
quick, although it required looping over all descendants (of the
clicked node) and hiding or showing them. The current design
eliminates the need to always load the entire tree. Using AJAX,
we delay the loading of sub-trees until they are needed, only load
one level of the sub-tree at a time, and only load more when it is
requested. In addition, expanding/collapsing a sub-tree is faster
because we now only hide/show the immediate children of the
sub-tree. Using AJAX on-demand loading was a big performance
win and changed the feel of the site from sluggish to responsive.

3.2.3.2 Lineage Field
To efficiently select all the clips for a given sub-tree we created a
“lineage” field that lists all the node’s descendents. Having this
field allows us to select, with a single database query, all nodes
with the same ancestry. Therefore, when the user clicks on a topic
to watch the video we can select all nodes that are descendants of
that topic node in a single query. We also have another field that
defines the absolute ordering of these nodes. We use to efficiently
sort the results so the aggregated video clips are shown in the
correct order. The key benefit here is we only need one query

whereas traversing the tree would have required many queries,
had we only kept track of a node’s parent and/or children.

3.3 Architecture
Due to certain constraints, our PHP web server, MySQL database
server, and video-streaming server are all on separate machines
and networks. The speed of a single MySQL query doesn’t suffer
much from this setup, but there remains a fair amount of overhead
involved, which is one of the reasons we made all possible efforts
in our application to reduce every task to a single query. We use a
laptop on the same network as the web server as a backup
database server. Nightly backups are made from our master server
to the backup server, and also to our test server to ensure that the
test data closely mimics our production data. The basic
components of our architecture are fairly generic and are readily
available in most web application environments without having to
navigate around our server constraints. Thus, it would be fairly
easy to replicate WLA in another setting, provided that a high-
bandwidth RealVideo streaming server were available to power
the actual video delivery, as ETS does for our project.

3.4 Data Entry and Ontology Layout
3.4.1 Topic Tree Delineation
To facilitate the data entry process, we created a standard text file
format which allowed the editors to specify all necessary video,
clip, and node information, as described in 3.2.1. After uploading
the timing files, the topic tree is fine-tuned if needed using a web-
based topic tree editor.

3.4.2 Ontology Development
The process of developing a final configuration of nodes in the
topic tree from the raw videos and lecture notes involved several
steps and decisions, each with its own considerations. We chose
start and end times of each clip so that each corresponded to a
single topic, ideally lasting around three to four minutes.
Keywords were used in the naming of nodes to aid searches; for
instance, all nodes corresponding to examples in lecture began
with “Example”. By the nature of the topic tree, nodes
representing broader topics occupied shallower positions in the
tree. Where possible, each of the siblings in a group represented
roughly equally important/broad topics, and each non-leaf node
branched off into five to seven children in order to limit the depth
of the tree without confusing users with too many choices at each
node [8]. Siblings were arranged so that topics that were more
basic, broad, important, and/or earlier in the course appeared first.

3.4.3 Data Entry Personnel, Resources, & Strategies
One student was assigned to each course to be presented on the
website. These students had each achieved a grade of A+ in the
course that they were assigned. To facilitate the viewing of the
webcasts, instead of streaming the webcasts from the server, each
student was given a local copy of all the webcasts for their
assigned course on DVD. Some strategies were used to speed up
the production of timing files. For example, we discovered
Enounce 2xAV [5], a plug-in for RealPlayer that allowed videos
to be played back at speeds greater than real time. The accuracy of
lecture start and end times were later spot-checked by jumping to
those precise times in the raw video to confirm that the times were
exactly the ones desired.

4. DISCUSSION
We went live with WLA in the spring of 2005. It featured an
early, non-ontology-based interface design, and listed only CS3,
our computer science service course. We advertised it heavily to
the students in that semester’s UC-WISE lab-centric CS3, and
waited eagerly to see the adoption. The usage statistics we saw
(which have since become unavailable) showed three spikes: one
right after our announcement, one before the first midterm, and
one before the final. Whether our viewers were star students
wanting to hear another perspective on the material or slackers
who had panicked and were looking for a savior, we don’t know.
Since we just recently went live with the remaining three
introductory computer science courses (CS61A, CS61B and
CS61C) in the spring of 2007, we don’t yet have good data on
their usage. What we do know is that even without all the benefits
of WLA, we had gained an active global community of distance
learners from just the raw webcasts! Here are a few of the many
thanks we’ve received:

“Just a quick note to thank you and Berkeley University for
putting Machine Structures CS61C on the web. ... Great stuff,

thanks. I’m a 55 year old computer tech/engineer”
– Tony Atkinson, Norwich Norfolk UK

“I am a 35 year old electronics engineer. I have always loved
programming and as a hobby. I just wanted to say...great stuff!”

– Naim Lesmer, DENMARK

“Thank you for making the web casts and much of the course
material available online for free. I am learning a great deal from
your lectures alone. Having the lecture slides available separately

is a plus. I am an autodidact that greatly appreciates having
learning resources, such as your lectures, freely available via the

internet” – Gary Buczkowski, Tennessee, USA

“I am currently a student at the University of Houston and watch
the Webcast to supplement my computer architecture class

material. Once again thank you and the University of California
Berkeley for making this service available.”

– Carlos J. Restrepo, Texas, USA

4.1 Dueling Webcasts
In retrospect, we believe we made the right design choices along
the way. At the dawn of WLA, we evaluated other systems for
presenting synchronized slides and video. The most promising
was one our colleagues across campus at the Digital Chemistry
Project were developing called PRISM [3] that interfaced with
Macromedia’s Flash Communication Server in a very novel way
[3]. Instructors first converted their PowerPoint slides into Flash
format before class. Then, during class, instead of running a
traditional PowerPoint slideshow, they displayed their slides using
PRISM. Meanwhile, in the room at the back of the hall, the video
from the camera was being encoded into Flash format onto the
server in real time. The beauty of the system was that the slide
transitions were also being recorded in real time (with appropriate
time-codes) onto the server, so that the moment lecture concluded,
the webcast (with synchronized notes) was ready!

When we saw a demo, however, the first thing we noticed was
that the video “stuttered” and was unwatchable! That is, every
second, both video and audio would freeze for a quarter second,
and this was on a fast campus wired network connection with the
fastest laptop available at the time. There were other deal-killers

as well – we’d have to ask every instructor to adopt the PRISM
system, the slide converter program wasn’t perfect, and we’d have
convince the campus ETS to pay for a Flash media server to serve
our data. We decided their system wasn’t yet ready for prime
time, and instead focused on building our system around the
existing campus webcast framework.

5. FUTURE WORK
One issue we have yet to deal with is what to do with deprecated
content, e.g., a Java 1.1 demo. Our current practice is to mark it as
obsolete (making it unavailable to a user), and replace it with
updates if available. Ideally, we would provide a natural way to
navigate through our deprecated material as well ... heck, some of
our viewers may still be running Java 1.1! We have yet to decide
how to present this content in a way that is clean and consistent
with our current design.

Another limitation of our system is that we do not support
arbitrary meta-data tags for ontology nodes. This has great
benefits for search, especially if combined with tags that users
could supply. While we’re letting users contribute content (Web
2.0 meet WLA. WLA, Web 2.0), why not release the keys to the
castle and let them submit their own webcast annotations?
Certainly the clips and accompanying ontology would have to go
through an approval process, but opening up the indexing process
could make it much easier to add other courses to our archive. A
huge step in this direction would be to find or develop
PowerPoint-embedded software that automatically recorded slide
transition time-codes during lecture, as PRISM did. One would
still need to filter an instructor’s “back, back, back, (oops too
far!), forward, (long pause for explanation), forward, forward”
clicks into “jump-back-2-slides, (long pause), jump-forward-2-
slides”, but it might be possible to write scripts to help automate
that process to search for common instructor patters.

We do intend to add more courses to our archive, probably
starting with our Electrical Engineering introductory courses and
then moving on to the EECS upper-division and maybe even
graduate courses. We also hope to add one-time lectures, culled
from our weekly colloquium series, research group talks and
thesis presentations. In the long term, following in the footsteps of
BIBS, we hope to eventually become adopted by the campus and
become fully integrated in their webcast infrastructure.

6. CONCLUSION
We have presented the Weiner Lecture Archives, a system built
by U. C. Berkeley undergraduates over the course of several
years, that provides an ontology-driven interface to synchronized
webcast video and slides of the “greatest hits” of our computer
science introductory courses. Our hierarchical topic tree allows
the viewer to easily navigate to the content they want, and with
the click of a single link, watch anything from a 1-minute clip for
a simple demo to the 1.5-day video of an entire course. This
feature has been critical to the integration of our repository with
the UC-WISE lab-centric instruction project, which will be
infusing our synchronized video snippets into its curriculum. The
feedback we have received from all over the globe has been
unanimously positive, and is quite encouraging. In the near term,
we hope to add more courses and one-time lectures to our archive,
to provide an even richer experience for our worldwide
community of distance learners.

7. ACKNOWLEDGMENTS
We wish to acknowledge the generous support of the Larry
Weiner Trust for funding this project. Thanks to Lecturers Mike
Clancy and Brian Harvey for useful feedback throughout, to the
helpful folks at ETS for hosting our video streams, and to project
alumni Cassandra Guy, Babak Pahlavan, Matthew Ng, Jun
Kitagawa, Aaron Steele and Steven Chan for their work
developing early versions of WLA. Finally, thanks to Larry Rowe
for his leadership and foresight with the BIBS and CMT projects
that got the webcasting and slide-synchronization balls rolling on
campus.

8. REFERENCES
[1] Chen, Carl, GoodProfOrNot: About,

http://goodprofornot.sourceforge.net/about.html

[2] Clancy, M., Titterton, N., Ryan, C., Slotta, J., and Linn, M.
2003. New roles for students, instructors, and computers in a
lab-based introductory programming course. In Proceedings
of the 34th SIGCSE Technical Symposium on Computer
Science Education (Reno, Navada, USA, February 19 - 23,
2003). SIGCSE ‘03. ACM Press, New York, NY, 132-136.
DOI= http://doi.acm.org/10.1145/611892.611951

[3] Cuthbert, A., Kubinec, M., Tanis, D. O., Ieong, F., Wei, L.,
and Schlossberg, D. 2005. Advanced technology for
streamlining the creation of ePortfolio resources and
dynamically-indexing digital library assets: a case study from
the digital chemistry project. In CHI ‘05 Extended Abstracts
on Human Factors in Computing Systems (Portland, OR,
USA, April 02 - 07, 2005). CHI ‘05. ACM Press, New York,
NY, 972-987. DOI=
http://doi.acm.org/10.1145/1056808.1056812

[4] Educational Technology Services, Webcasting,
http://ets.berkeley.edu/Webcast/

[5] Enounce, Enounce 2xAV,
http://www.enounce.com/products.shtml

[6] Eta Kappa Nu, Course Surveys,
http://hkn.berkeley.edu/student/CourseSurvey/

[7] Mayer-Patel, K., Simpson, D., Wu, D., and Rowe, L. A.
1996. Synchronized continuous media playback through the
World Wide Web. In Proceedings of the Fourth ACM
international Conference on Multimedia (Boston,
Massachusetts, United States, November 18 - 22, 1996).
MULTIMEDIA ‘96. ACM Press, New York, NY, 435-436.
DOI= http://doi.acm.org/10.1145/244130.244458

[8] Miller, G. A. (1956). “The magical number seven, plus or
minus two: Some limits on our capacity for processing
information”. Psychological Review, 63, 81-97

[9] RealNetworks, http://www.realplayer.com
[10] Rowe, L. A.; Harley, D; Pletcher, P; and Lawrence, S.

“BIBS: A Lecture Webcasting System”. Berkeley
Multimedia Research Center, TR 2001-160, June 2001.
http://bmrc.berkeley.edu/research/publications/2001/160/

[11] University of California, Berkeley, The Weiner Lecture
Archives, http://wla.berkeley.edu/

[12] World Wide Web Consortium, Synchronized Multimedia,
http://www.w3.org/AudioVideo/

