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Abstract 

 

A Distributed Operating System for Sensor Networks 

by  

Jana van Greunen 

 

Doctor of Philosophy in Engineering – Electrical Engineering and Computer 

Sciences  

University of California, Berkeley  

Professor Jan Rabaey, Chair  

 
 
Sensor networks are an exciting new technology that promise to revolutionize 

the environment we live in by creating ambient intelligent spaces. In the current 

software model, applications are statically loaded onto the network at compile 

time. This means applications cannot react to changes in the underlying network 

and code reuse is rare because applications are so tightly coupled with hardware. 

Sensor network deployments suffer from a lack of standard software APIs that 

allows applications to interact with the network. 

This dissertation presents SNSP, a distributed service-based operating system for 

sensor networks. SNSP presents an integrated interface to applications, which 

abstracts the distributed nature of the underlying network. It enables dynamic 

application and content management in the sensor network. SNSP’s core consists 
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of seven OS-level services that manage content, discover network resources, 

monitor resource utilization, dynamically map network applications, provide 

fault detection and recovery, migrate applications and implement security for the 

sensor network. Programmers can write services that become a reusable library 

of SNSP code. The dissertation outlines a programming language and integrated 

development environment for programmers.  

Further, the mechanisms for content management and replication and task 

allocation (mapping) are studied in more detail. Three replication schemes are 

compared via simulation. Results indicate that the probabilistic scheme has the 

best performance in terms of cost per data access and increased data availability. 

Moreover, three task allocation schemes are also compared. The third algorithm, 

a hybrid genetic search and market bidding protocol, outperforms the other two 

algorithms. However, due to its twelve times higher computation and 51% 

higher communication cost the greedy algorithm is preferred. 

As a proof-of-concept, SNSP is demonstrated on a TelosB and Mica2 (with 

TinyOS) testbed implementation. The testbed allows applications on different 

hardware platforms (Mica2 and TelosB) to coexist. Measurements from the 

testbed indicate that the content management algorithm lowers data access cost 

and also the time to map a process onto the network.  

 

 
Jan Rabaey, Dissertation Committee Chair 



 i 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my mother and Sterling 



 

ii 

 

 

Contents 

LIST OF FIGURES ........................................................................................................................................... V 
LIST OF TABLES...........................................................................................................................................VII 
1 INTRODUCTION ...................................................................................................................................... 1 

1.1 SNSP GOALS......................................................................................................6 
1.2 ASSUMPTIONS.....................................................................................................6 
1.3 RESEARCH CONTRIBUTIONS ...............................................................................8 

2 RELATED WORK .................................................................................................................................... 10 

2.1 SINGLE-NODE OPERATING SYSTEMS ................................................................10 
2.2 SENSOR NETWORK MIDDLEWARE ....................................................................12 
2.3 SENSOR NETWORK OPERATING SYSTEMS .........................................................14 

3 DISTRIBUTED OS ARCHITECTURE ............................................................................................... 18 

3.1 ABSTRACTIONS.................................................................................................21 
3.2 OS-LEVEL SERVICES..........................................................................................25 

3.2.1 Content Management & Replication..........................................................26 
3.2.2 Task Allocation ..........................................................................................26 
3.2.3 Resource Discovery & Repository Service ..................................................27 
3.2.4 Resource Utilization Monitor.....................................................................27 
3.2.5 Application Migration ...............................................................................28 
3.2.6 Fault Detection and Recovery ....................................................................30 
3.2.7 Security Engine .........................................................................................32 

3.3 USER DEFINED SERVICES ...................................................................................32 
3.3.1 Initialization ..............................................................................................33 
3.3.2 Execution...................................................................................................34 



 

iii 

3.3.3 Termination ...............................................................................................34 
3.3.4 Composition...............................................................................................34 
3.3.5 Performance Metrics ..................................................................................37 
3.3.6 Usage Measures .........................................................................................38 

4 PROGRAMMING LANGUAGE AND USER INTERFACE ........................................................ 40 

PROGRAMMING MODEL.............................................................................................40 
4.1 PROGRAMMING LANGUAGE: SENSC .................................................................41 
4.2 .SERV REQUIREMENT SPECIFICATION................................................................46 
4.3 PROGRAMMING UI ...........................................................................................48 

4.3.1 Creating an SNSP Application ..................................................................49 
4.4 CODING EFFICIENCY GAIN ...............................................................................54 

5 FILE ALLOCATION................................................................................................................................ 55 

5.1 PROBLEM FORMULATION .................................................................................56 
5.2 RELATED WORK ...............................................................................................59 
5.3 LOCATING FILES ...............................................................................................61 
5.4 ALGORITHMS TO EVALUATE.............................................................................62 

5.4.1 Deterministic, Central Replication Algorithm............................................62 
5.4.2 Distributed Algorithm ...............................................................................62 
5.4.3 Adaptive Observation-Based Algorithm.....................................................63 

5.5 SIMULATION SETUP ..........................................................................................64 
5.6 RESULTS............................................................................................................66 
5.7 DISCUSSION ......................................................................................................70 

6 TASK ALLOCATION ............................................................................................................................. 72 

6.1 PROBLEM FORMULATION .................................................................................73 
6.1.1 Assumptions ..............................................................................................73 

6.2 RELATED WORK ................................................................................................78 
6.3 ALLOCATION ALGORITHMS..............................................................................80 

6.3.1 Greedy Spanning Tree ...............................................................................80 
6.3.2 TASK Algorithm: Local Search for Graph Assignment ..............................83 
6.3.3 Genetic Search Algorithm Combined with a Bidding Market Protocol .......86 

6.4 SIMULATION SETUP ..........................................................................................90 
6.5 RESULTS............................................................................................................94 
6.6 DISCUSSION ....................................................................................................104 

7 SNSP TINYOS IMPLEMENTATION............................................................................................... 106 

7.1 CREATING THE IMPLEMENTATION SCENARIO.................................................106 
7.2 TESTBED SETUP...............................................................................................108 

7.2.1 Hardware .................................................................................................108 
7.2.2 Location and Connectivity .......................................................................112 
7.2.3 Sensors and actuators ..............................................................................112 



 

iv 

7.2.4 Content Replication & Capacity...............................................................113 
7.2.5 Task Allocation ........................................................................................114 

7.3 APPLICATIONS................................................................................................114 
7.3.1 Demand Response and HVAC Control ....................................................115 
7.3.2 Motetrack Localization.............................................................................116 

7.4 PERSONA ........................................................................................................118 
7.5 TESTBED USER INTERFACE..............................................................................119 
7.6 EXPERIMENT ...................................................................................................120 

7.6.1 Setup........................................................................................................120 
7.6.2 Results .....................................................................................................122 

7.7 DISCUSSION ....................................................................................................126 
8 CONCLUSION........................................................................................................................................ 127 

8.1 SUMMARY.......................................................................................................127 
8.2 FUTURE PERSPECTIVES....................................................................................129 

BIBLIOGRAPHY ........................................................................................................................................... 131 
APPENDIX I.................................................................................................................................................... 138 

HVAC_CONTROL APPLICATION ........................................................................138 
HVAC_CONTROL.serv .....................................................................................138 
HVAC_CONTROL.h..........................................................................................139 
HVAC_CONTROL.c..........................................................................................140 

RESULTING TINYOS CODE......................................................................................143 
Module ................................................................................................................143 
Configuration ......................................................................................................154 

APPENDIX II .................................................................................................................................................. 156 

ECLIPSE PLUGIN ......................................................................................................156 



 

v 

 

 

List of Figures 

Figure 1: SNSP architecture layers. ...........................................................................20 
Figure 2: SNSP OS-Level Services. ............................................................................25 
Figure 3: Components of a user-defined service......................................................39 
Figure 4: Light control service application structure...............................................41 
Figure 6: Comparison of data access cost and replication overhead. ....................67 
Figure 7: Comparison of data access cost vs topology and data read/write ratio.

..............................................................................................................................68 
Figure 8: Comparison of control message overhead. ..............................................69 
Figure 9: Percentage of unavailable data for different schemes and topologies...70 
Figure 10: Two task descriptions...............................................................................93 
Figure 11: Mapped costs for 3 processes vs. different algorithms including 

optimal exhaustive search..................................................................................96 
Figure 12: Average mapped cost for tasks vs algorithm type. ...............................97 
Figure 13: Tasks' choice obtained in they genetic search + Bidding algorithm.....98 
Figure 14: Average mapped cost for application sizes vs algorithm type.............99 
Figure 15: 3 Histograms of the number of times tasks were mapped n to a 

processor............................................................................................................100 
Figure 16: Mapping complexity vs algorithm type. ..............................................101 
Figure 17: Mapping complexity for different task sizes vs algorithm type.........102 
Figure 18: Annotated Mica2 mote (taken from [66]) .............................................108 
Figure 19: TelosB mote (taken from [67]) ...............................................................110 
Figure 20: Testbed with HVAC control and DR that bridges Mica2 and TelosB 

nodes. .................................................................................................................111 
Figure 21: 31-Node testbed, powered via USB & batteries. ..................................112 
Figure 22: GUI showing the house, repository services, and applications that are 

mapped on the network. ..................................................................................120 



 

vi 

Figure 23: Cost per content access and the proportion of content found replicated 
on the actual node.............................................................................................123 

Figure 24: Time to map a process in milliseconds. ................................................124 
Figure 25: Time to map with rf interference...........................................................125 
Figure 26: Histograms of the number of times tasks were mapped n to a node for 

the two network configurations. .....................................................................126 
Figure 27: Importing an SNSP project into Eclipse................................................157 
Figure 28: Choosing a target to compile. ................................................................158 
Figure 29: An open SNSP project, with an open file and a C compilation error.159 
Figure 30: Compiling SNSP code with Eclipse. .....................................................160 



 

vii 

 

 

List of Tables 

 
Table 1: Persona Example. .........................................................................................23 
Table 2:  Two resource examples...............................................................................24 
Table 3: RemoveProcess and Checkpoint objects for application migration.........29 
Table 4: Example code for a temperature control application. ...............................45 
Table 5: Example of a .serv specification file............................................................48 
Table 6: .h file specifying the relevant services, scopes, and persona....................50 
Table 7: Blank template C file that the programmer needs to fill in. .....................54 
Table 8: FAP Classification ........................................................................................60 
Table 9: Number of cluster heads vs number of hops, D. .......................................66 
Table 10: Pseudo code for the greedy algorithm. ....................................................83 
Table 11: Pseudo-code for the TASK algorithm.......................................................85 
Table 12:  Results of mapping two processes onto the regular grid network. ......95 
Table 13: Additional communication costs incurred during simulation.............103 
Table 14: Number of replicas as a function of time ...............................................122 



Chapter 1 Introduction 

1 

 

 

1 Introduction 

Widespread sensor network deployment has been hampered by lack of a 

standard hardware abstraction and matching API for software development. For 

current sensor network deployments, each deployment is a one-off development 

effort. The software and hardware are developed together and the sensor 

network is then deployed in the field. When the application changes or new 

applications need to be deployed, the nodes are typically retrieved from the field 

and then new nodes are deployed1. If sensor networks are to become a 

ubiquitous part of infrastructure in smart spaces, the sensor network platform 

needs to be more extensible and flexible. Usage scenarios include hospital health 

monitoring, and energy monitoring (heating, ventilation and air conditioning 

HVAC) in buildings. In the first scenario, health monitoring, patients and 

diseases may change every day. The application in a particular room may change 

                                                
1 For small changes it is possible to reprogram nodes over the air. However, this reprograms the entire image and 
requires nodes to reboot 
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as a new patient enters the room and sensors and actuators may leave and enter 

the room with a patient. Further, there are some concerns for patient privacy and 

securing information retained on the sensor nodes. In the second example, 

applications and requirements may change with regulations or as new 

companies rent out the buildings. Health and indoor energy monitoring will be 

used as examples throughout this dissertation to provide illustrative examples of 

the flexible sensor network abstraction benefits. 

While there have been successful abstractions for the individual sensor node 

hardware, for example, IEEE’s sensor interface standard [1] and the instruction 

set abstraction defined in [2], abstractions for the distributed network are only 

now starting to emerge. This research presents the Sensor Network Services 

Platform (SNSP), a distributed operating system abstraction for the sensor 

network.  

SNSP’s goal is to allow an application developer to create modular portable code 

for sensor networks and to avoid building the application from the ground up 

every time the sensor network changes. Further, SNSP will help harness the 

potential benefits provided by distributed systems. The advantages of 

distributed systems include:  

• Reliability/fault tolerance 

• Improved resource utilization  

• Scalability  
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SNSP will transform the sensor network into a truly smart environment. It 

describes a platform based on a set of clean abstractions for users, content, and 

devices. The platform’s goals are to minimize device configuration and to adapt 

to different users in the environment. SNSP will be part of the sensor network 

infrastructure that remains in a building or location even if the people and 

applications change. 

As an operating system, SNSP manages the system resources, specifically, it 

performs resources allocation e.g. memory and computation, allows multiple 

programs to co-exist, controls input and output devices and manages files or 

content. Further, SNSP will execute on a physically distributed platform and thus 

implicitly supports communication, concurrency, and synchronization, 

providing location transparency. SNSP provides basic, low-level functions for 

controlling parallel program execution, i.e., functions for loading a parallel 

program, for starting, halting and resuming. In addition, the notion of users is 

included in SNSP. As in traditional operating systems, a user’s rights determine 

which programs, resources, and content they may read, write, and execute.  

A service-oriented model is chosen for SNSP to separate the function of network 

services (i.e., what the services do) from their implementation, creating a 

reusable layer that can be implemented on any hardware platform. There are two 

kinds of services in SNSP: (1) Operating-system services, and (2) User-defined 

services. These services play a crucial role in abstracting the specific hardware 
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platform from the application, presenting any information required by an 

application through a unified service API.  

From the application programmer’s perspective, SNSP presents a familiar 

sequential programming model. The programming model is supported by pre-

defined services that can be invoked to run in a parallel and distributed fashion. 

To facilitate programming, SNSP supports a parallel programming language, 

sensC, and environment abstractions. SensC is syntactically ANSI C with the 

addition of a few specific features, which are outlined in Chapter 4. At a high-

level, this language supports parallelism up to the granularity of a process. Every 

application has at least one main process that executes on a single processor, 

when an application invokes a service, a second “process” is spawned which 

may be executed simultaneously anywhere in the network (constrained by 

timing, resources etc.). When application programmers write services, the 

service/application model provides the way for programmers to explicitly 

partition the program into parallelizable pieces. SNSP dynamically and 

automatically finds a place to execute these application pieces.2 

This dynamic programming model is a departure from the static one normally 

used in sensor networks [3]. However, in examining the application space, it is 

clear that there is use for dynamic migration of programs. Mobile applications 

were first used in pursuer-evader games [4] where the processing follows the 

                                                
2 SNSP does not support implicit application partitioning.  
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evader through the network, i.e. nodes closest to the evader do the sensing and 

processing. In this case it is the same application and the same sensing 

capabilities that are activated in different regions of the network, so it could be 

programmed in advance. However, both applications and sensor network nodes 

are becoming more dynamic. Take for example healthcare applications. Change 

occurs when a new disease is detected, a different sensor is added, a different 

diagnostic test is devised, or when the patient changes location. All of these 

changes must be seamlessly incorporated into the system. The distributed 

operating solution is designed to manage these changes without explicit user 

interference. 

SNSP, as an operating system with a built-in set of services, presents a departure 

from the usual design principles applied in networking. Typically, the network is 

designed to be ‘dumb’ and intelligence is placed only at the edges. The protocols 

used to communicate across the network are designed end-to-end [6], in other 

words, there is end-to-end reliability and end-to-end addressing etc. This 

traditional design has worked very well with powerful and stationary end-

devices. However, with a more heterogeneous and mobile network, there is a 

push toward breaking end-to-end semantics and embedding more intelligence in 

the network to relieve the pressure of processing from the devices. Due to the 

constraints on the sensor nodes, and possible mobility of nodes, SNSP represents 

a similar break in end-to-end semantics. 
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Before describing SNSP in more detail, it is necessary to examine the goals of 

SNSP and state the underlying assumptions.  

1.1 SNSP Goals 

First, SNSP abstracts the internals of distributed sensor networks from 

applications and encourage sensor network deployment. There are three specific 

goals that SNSP aims to achieve: 

• Enable applications to execute on different network configurations (agnostic 

of hardware) which will allow heterogeneous sensor network platforms to 

interoperate 

• Shield applications (enable recovery) from node/hardware failures  

• Optimize application execution by intelligently mapping the application onto 

the network (may involve run-time migration), which saves energy by 

reducing communication, increasing reliability and/or performance  

SNSP is a general platform/middleware that must execute on all sensor network 

platforms, and therefore may have access to only a few parameters from any 

given platform. The following assumptions were made: 

1.2 Assumptions 

• The network contains heterogeneous nodes, which are globally asynchronous 

and run a kernel of SNSP middleware.  
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• SNSP is above the network layer, it cannot change the routing, link, or 

physical layer protocols. 

• SNSP is below the application layer and does not know any application 

semantics. 

• From the application’s perspective, SNSP exposes geographic addressing, but 

for each hardware platform this is translated into the local 

addressing/routing scheme. 

• SNSP knows/may observe the maximum and average point-to-point 

throughput (Mb/s) between two neighboring nodes in the network. 

• There is a standard hardware abstraction for each sensor node which is: 

o MIPS number for CPU 

o Dynamic memory in KB 

o Storage for data in MB 

o Hardware (sensors/actuators)   

Because SNSP does not control the underlying communication medium, there is 

inherent non-determinism and SNSP cannot guarantee communication latency. 

Moreover, guaranteeing correctness and consistency in an asynchronous system 

adds a considerable overhead that is not warranted for every sensor network 

deployment. Therefore, this is not part of the basic SNSP platform. SNSP adopts 

the BASE semantics: Basically Available, Soft State, and Eventual Consistency, 



Chapter 1 Introduction 

8 

which were first introduced in [7] to describe distributed web-caches. BASE 

semantics are adequate for applications that can tolerate delays on the order of a 

second. 

1.3 Research Contributions 

The main contribution of this research is the design of SNSP. SNSP is a full-

fledged operating system with memory management, location transparency, and 

resource allocation. SNSP enables the creation of applications that can be 

mapped onto the network at runtime and allows the programmer to build up a 

library of reusable sensor network services.  

Further, the research focuses on two aspects of SNSP, file allocation and tasks 

allocation. These were chosen because they have a significant impact on sensor 

network performance and they have not been adequately addressed in existing 

work.  

The contributions of the thesis are: 

• Identified and designed the basic set of services for a distributed operating 

system 

• Devised a programming model and user-interface that allows users to create 

reusable libraries of code 

• Developed a novel file allocation algorithm  

• Evaluated the performance of three file allocation algorithms via simulation 
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• Developed two novel task allocation algorithms 

• Evaluated the performance of three task allocation algorithms via simulation  

• Proof of concept implementation of SNSP on top of a TinyOS sensor testbed 

with select performance measurements 

The rest of the thesis is organized as follows: Chapter 2 describes related work in 

sensor network operating systems and middleware. Chapter 3 outlines the 

architecture of SNSP, namely the abstractions and services that it provides 

programmers. The user interface and programming model is described in 

Chapter 4, followed by a problem formulation and detailed analysis of file 

allocation algorithms in Chapter 5. Chapter 6 presents a similar analysis of the 

task allocation problem. Chapter 7 describes SNSP implementation on a 30-node 

testbed, running TinyOS as the underlying operating system.  
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2 Related Work 

The related work on sensor network platforms can be divided into three 

categories: 1) The single-node operating system, which focused mainly on small 

footprint and code size. 2) Sensor network middleware, which attempts to 

abstract commonly used functionality and standardize it. 3) Fully-fledged 

distributed operating systems for sensor networks. The distributed operating 

systems take the goals of middleware platforms a step further by not only 

providing a set of common functionality, but also controlling and optimizing the 

execution of applications on the network. They provide real-time coordination 

and control of the sensor network. Research in the three categories is outlined 

below.  

2.1 Single-Node Operating Systems 

The most popular single-node operating system is TinyOS [8]. TinyOS consists of 

a set of software modules in the NesC language [9]. Components are not divided 
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into user and kernel modes and there is no memory protection. TinyOS does not 

support preemption. The code is statically linked at compile time. Version two of 

TinyOS introduces some lower-level improvements to abstract the platform from 

the hardware. TinyOS is very widely used in sensor network test-beds and in 

published research results. Thus, it is an ideal platform to develop software on 

that other groups will use or compare results with. TinyOS was selected as the 

basis for the implementation platform as described in Chapter 7. 

BTNodes [10] were developed by ETH Zurich. These nodes have their own 

hardware platform and operating system, called BTNut. BTNut is a 

multithreaded preemptive operating system written in C. It also has a TCP/IP 

stack built in. BTNut is the closest to other commercial RTOS systems, but it has 

not had the same traction in the academic setting as TinyOS. 

MANTIS [11] is an open source, multi-threaded operating system written in C 

for wireless sensor networking platforms.  It has automatic preemptive time 

slicing for fast prototyping and an energy-efficient scheduler for duty-cycle 

sleeping of sensor node. Another interesting sensor network operating system is 

SOS [12], which supports dynamic application modules. Application modules 

can be loaded or unloaded at run time. Modules send messages and 

communicate with the kernel via a system jump table, but can also register 

function entry points for other modules to call. SOS is a more extensible platform 
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than TinyOS, but it is not as widely adopted, and it supports fewer hardware 

platforms. 

2.2 Sensor Network Middleware 

Research on sensor network middleware aims to abstract common functionality 

and present it in reusable form. There are four main approaches to designing 

middleware for sensor networks: 1) Database, 2) Publish-subscribe 3) Services, 4) 

Mobile agents/clustering. The database involves abstracting the sensor network 

as a database and then allowing a user to write SQL-like queries to extract sensor 

data from the network. TinyDB [13], Cougar [14], and SINA [15] are the most 

well known of these approaches. The research focus here is on efficient query 

processing and routing. [16] writes wrappers for the underlying sensor network 

(single-node operating system) and then use an XML framework for syntactic 

description and then SQL for data manipulation. 

The second approach, publish-subscribe, disconnects the data production from 

its consumption. A set of data producers publishes their data in the network. 

Interested parties can then subscribe to the data. [17] presents a set of operators 

that interested parties can use to describe patterns of data that they are interested 

in. Typically somewhat complex time stamping is needed to get any useful data.  

Mires Middleware [18] is another publish-subscribe mechanism. Initially sensor 

nodes publish the types of data that they can provide. Client applications then 
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select the data that they care about and subscribe to it. Only after receiving a 

subscription will sensor nodes publish their data. There is not much data 

available on how expensive the subscription language is, or what overhead it 

adds to the network. DSWare [19] is not a traditional publish subscribe 

mechanism, but it does cache data in the network and it provides a language for 

other nodes to subscribe to events. 

The Milan platform [20] is an example of a service-based approach. Applications 

wishing to execute represent their requirements to Milan through specialized 

graphs that incorporate state-based changes in application needs. The graphs 

contain variables and QoS for each variable. Milan knows the level of QoS that 

data from each sensor or set of sensors can provide for each variable. For a given 

application, Milan can send and receive data from these variables. There is not 

much data on how the matching between applications and resources is done. [21] 

defines a set of roles in the sensor network that have rules associated with them. 

An application must choose one of these roles to play and the network knows 

how to load balance the application based on the role it is playing. Sensorware 

[22] defines a set of base services that the network must provide to an 

application. However, it does not define the mechanisms by which the network 

must deliver these services. These services are as follows: 

• Communications Protocol Stacks 

• Power Management 
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• User Interaction 

• Network Synchronization 

• Query Processing 

• Configuration (e.g. health status and maintenance) 

• Fault Tolerance 

• Security/Authentication 

The last type of middleware is agent-based. In Agilla [23], each application is a 

mobile agent that decides independently when and where to migrate. Agilla is 

based on the mate platform [24]. Nodes have Linda-like [25] tuple spaces and an 

acquaintance list that allows them to find a place to migrate. The shortcoming of 

this approach is that there is no attempt to achieve network optimality or 

analysis of what happens when there is inter-agent interaction.  

2.3 Sensor Network Operating Systems 

The first two operating systems presented both rely on applications that are 

comprised of identical code fragments, in other words, applications that can be 

decomposed into smaller, identical sub-problems. In [26] the main abstraction is 

that of Microcells. Microcells begin their life-cycle as inactive software 

components and are activated by stimuli in the environment, as well as by events 

in the computing system. The programmer must specify how a microcell reacts 

to stimuli. Once a microcell is activated, stimuli can cause it to perform self-
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replication, migration, or grouping. For example, growth may be controlled to 

reach the required computing capacity or geographic coverage for different 

functions performed in the vicinity of an event. The distributed operating system 

determines where and when microcells execute. The system implements its own 

microcells, which implement fundamental activities in the infrastructure, such as 

information storage. [27] outlines Bertha, an operating system that can 

accommodate 11 process fragments at a time. Bertha manages processor startup, 

memory, access to hardware peripherals, communication with neighboring 

Pushpins, and provides a mechanism for installing, executing, and passing 

neighbors code and data to execute. The main drawback of these two approaches 

is that they only fit applications which can be broken down into small 

homogenous pieces. 

Kaizen [28] focuses on a resource usage description and sandboxing strategy. 

CPU, memory, radio, and sensor/actuator usage contracts are outlined, in 

addition to methods to stop processes from consuming more resources than 

specified in their contracts. However, they do not address the optimal placement 

for processes or other services that may aid process execution.  

The Eyes project [29] aims to achieve small code size and to solve the limited 

available energy problem by defining clear stop and start portions in the code 

after which the processor can be put to sleep. Nodes are able to make resources 

requests via remote procedure calls to their directly connected neighbors when 
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they do not have enough energy or processing power to fulfill a certain task. 

EYES also defines a distributed services layer which provides a lookup service 

and an information service. The lookup service supports mobility, instantiation 

and reconfiguration. The information service collects network data. The 

drawback of eyes is that nodes can only make local resource requests and they 

do not support a full mapping of applications onto the network. 

[30] defines a service manager that is responsible for receiving and 

accomplishing service requests.  There are two primitive request types: query 

and order, and two complex types: conditional and repetitive. The service 

manager uses the distributed service directory (DSD) to find a pairing for the 

request. Their DSD uses S-CAN [31], a distributed hashtable developed for 

content-addressable networks. The service manager and DSD is similar to the 

mapper and repository service presented in this research, but the services 

presented here can deal with a richer set of applications. 

The last two distributed systems are the most similar to SNSP in their goals and 

generality. The [32] design separates the core OS kernel, OS services, and 

distributed applications. The core kernel and the OS services control the behavior 

of a single node, while applications implement the distributed system behavior 

of the sensor network. Applications consist of processing elements connected via 

arcs. As SNSP does via equivalence classes, they allow for runtime 

reconfiguration of the model, including changing interconnections and 
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replacement of processing elements (PEs). Communicating PEs can be located on 

the same, or different physical nodes. There is not much data on how Omni 

achieves placement of applications, a core aspect of the system that this research 

focuses on. 

Last, Magnet OS [33] provides a single system image of a unified Java virtual 

machine to applications. It partitions applications components statically along 

object interfaces. Magnet OS then finds an initial placement for these components 

on the network. MagnetOS uses the Java RMI interface for remote object 

invocation during run-time. During execution, two services adjust task 

placement to optimize communication cost. NetPull migrates components one 

hop at a time in the direction of greatest communication. NetCenter migrates 

components to the host that a given object communicates with the most. Magnet 

OS conceptually has the same goals and achieves them in a similar way as SNSP. 

However, it has the overhead of a full Java implementation in addition to not 

being able to reuse or share Java classes among applications at runtime. Note, 

classes are shared at compile time. SNSP’s application construction is specifically 

designed so that applications can use existing components on the network. 
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3 Distributed OS Architecture 

SNSP is a distributed operating system. SNSP code executes directly on the 

nodes in the sensor network. Each node runs its own native operating system 

and SNSP code runs as middle-ware on each node. SNSP is designed to run on a 

heterogeneous sensor network; a network comprised of nodes with different 

capabilities e.g. battery-powered nodes, constantly powered nodes and perhaps 

different bandwidth availability. It can also operate on a homogenous network, 

and a totally asymmetric network, where the base-station does all processing and 

the other nodes simply collect data. 

 As an operating system, SNSP manages system resources, performing resource 

allocation e.g. memory and computation, allowing multiple programs to co-exist, 

controlling input and output devices and managing files/content. Due to the 

nature of sensor networks, SNSP will execute on a physically distributed, 

heterogeneous platform and thus implicitly supports communication, 
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concurrency, and synchronization, providing location transparency. As in 

traditional operating systems, a user’s rights determine which programs, 

resources, and content they may read, write, and execute.  

There are several ways to design the architecture of a distributed operating 

system. The most common approach is the micro-kernel approach. In this 

approach, each component that comprises the distributed computing system 

runs the same kernel of code that takes care of basic services. A more flexible 

approach was desired for sensor networks as the entire computing system is not 

designed at one time, and parts may be incrementally added.  Therefore, SNSP is 

actually middleware that runs on top of a basic operating system for each node. 

When SNSP layer is ported to a new operating system, it must be able to 

interface directly with that operating system and also be able to translate the 

routing and addressing. 

SNSP is not only a distributed operating system for sensor networks, it also 

provides a uniform abstraction for applications running on it. This abstraction 

encompasses a common terminology to refer to applications, resources and 

people in the environment. An abstraction set was included in SNSP because 

sensor networks are intimately tied to the environment, and being able to 

compactly present aspects of the environment is essential to the success of 

reusable and general sensor network software.    
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A service-oriented model was chosen for SNSP to separate the content of network 

services from their implementation. These services form a reusable layer that can 

be implemented and shared across any hardware platform. The core layer of 

SNSP is comprised of services that handle concurrency, file allocation, security 

and resources. These services are a standard part of SNSP and are described in 

detail below. However, SNSP is also extensible via user-defined services. User 

defined service are meant to encapsulate higher-layer functionality so that they 

can be re-used across different sensor networks. A specific API is provided that 

allows users to write these modular components (or applications). The API is 

outlined in this section and further elaborated on in Chapter 4. Figure 1 shows a 

graphical representation of SNSP architecture. 

 

 

 

 

        Figure 1: SNSP architecture layers. 
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rate, blood sugar level, breathing speed, stress levels etc. There is also a 

stationary sensor network in the hospital. These nodes may monitor the 

environmental conditions in the room (temperature, humidity), or be attached to 

larger machines, or to a system that alerts doctors and nurses when a patient 

needs them. As patients enter and leave the hospital, the applications executing 

change in accordance with the diseases being monitored. For example, the sensor 

network may be monitoring a patient for seizures. This application could 

combine heart-rate monitoring with stress level monitoring and it may also 

involve administering of certain anti-seizure drugs. Further, the application may 

require fine sampling of data from the sensors and thus it may be better to 

execute the control function locally, rather than route a large amount of data to a 

central base-station in the hospital. In addition, the data that the sensor network 

collects about the person must be interpreted and stored correctly.  

SNSP abstractions are presented below, followed by a description of OS and 

user-level services. 

3.1 Abstractions 

There are three main abstractions in SNSP environment: Personae, Content, and 

Resources. These abstractions were first presented in [34]. First, a persona 

represents a single person, groups of people, or organizations (e.g. nurses 

organization). In addition, a persona with sufficient privilege may set rules of 
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operation for the environment (e.g. only nurses may have access to the medicine 

cabinet). A persona may be present or absent in a certain environment, but can 

still affect its operation even if they are not present. The run-time system uses 

personae rules to interpret, act on, and resolves conflicts between multiple users. 

A persona consists of the following components: 

• Permissions are user's access rights to devices, content, services, and 

applications. For example, permissions may limit a user's ability to control 

devices in the home such as lights. Further, permissions specify a persona’s 

category or priority (e.g. ability to override another persona). Persona 

categories are described in more detail in the equivalence section  

• Properties contain information that describe user(s), e.g. age or gender. 

Properties may help the system to detect and distinguish users from each 

other. The persona also has an authenticate function. 

• Preferences contain information regarding user actions or default system 

configuration. Preferences may also be used to enforce certain user behavior. 

For example, in health monitoring it is important to determine whether a 

person has taken the correct medicine each day and to encourage them if they 

have not done so. 

In order to make personae more concrete, an example persona, describing a 

homeowner is shown below: 
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Class: Persona 
Name: Homeowner 
Permissions: r,w,x for content, programs, devices  
Properties:  

Sex: Female,  
Age: 60 

Preferences: -  
isPresent(location); 
 

Table 1: Persona Example. 

 

Second, the concept of content abstracts information that services and application 

can manipulate. Content may represent a range of data: media streams, sensor 

readings (light, temperature, motion, identification), security information, energy 

monitoring results, health data etc. Separating content from the sensors that 

generate it, and actuators that consume it, allows the system to cache and 

replicate content to provide fault tolerance. In SNSP, all content has unique 

identifiers, a size field and properties. In the health monitoring example, content 

is very important. The content must be stored to provide doctors with accurate 

medical data to look for potential problems as well as a record of patient care 

especially of medicines taken. It is important that this content is not lost in the 

sensor network. Content must also be kept private.  

Last, resources uniformly abstract physical resources in the environment. 

Resources are typically categorized by functionality (e.g. sensor –“current 

temperature” content source, routing node – connection from A to B, transcoder –

conversion Celsius to Fahrenheit). Resources do not have an invocation/execution 
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API. For each resource there is a corresponding service that indicates how to 

utilize it. There are two main types of resources: The first is a specific physical 

resource, for example a sensor or actuator. The second is computation and 

connectivity resources. The physical resources have an input and an output 

domain. The input/output domains may be physical (lumens, heat to measure 

temperature) or they may be numerical, ie reading from an on/off switch. A 

resource also has a description of how much connectivity, computation power 

and memory it can provide. An example of a heater is shown below followed by 

an example computation resource that has the heater attached to it: 

 
Class: Resource 
Name: Heater 
Location: LivingRoom 
Properties: 
 Manufacturer: GE 
 Power: 1000W 
Input Domain: numerical (10 bit) 
Output Domain: physical (heat) 
 
 
Class: Resource 
Name: Computation 
Location: LivingRoom 
Reliability: 99.9% 
CPU: 1 MIPS 
CPU Used: 0 
Dutycycle: 10%;1 second 
RAM: 10KB 
Memory: 100MB 
Current used: 10MB 
Connectivity: 10kbit/s 
Hardware: Heater 
 

Table 2:  Two resource examples. 
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3.2 OS-level Services 

OS services are the lowest level services that keep track of the system at the 

device and connectivity level. OS services play several roles in the system, they: 

• Resolve resource allocation conflicts between applications or persona. 

• Support discovery of resources, persona, and content in the system  

• Track of the utilization and availability of resources, persona, and content.  

• Replicate code and content in the sensor network to maximize availability 

and minimize data access costs 

• Map applications onto the nodes at runtime 

• Detect application failure and take corrective action 

• Manage security and trust for the system resources, persona, and content 

These functions have been divided into seven services shown in the figure below.  

 
 
 
 
 
 
 
Figure 2: SNSP OS-Level Services. 
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3.2.1 Content Management & Replication 

The content management and replication service distributes content throughout 

the sensor network. The underlying challenge providing this service is to 

optimize content placement for availability and minimize communication (both 

access and update) costs. This problem is known as the file allocation problem 

(FAP) and has been extensively studied for traditional distributed databases. The 

FAP may be based on static allocation or dynamic allocation; the access patterns 

may be deterministic, probabilistic or unknown. All versions of the FAP are NP 

complete [35]. This thesis evaluates two well-known file allocation algorithms in 

addition to developing its own. A formal problem statement as well as 

simulation results are presented in Chapter 5. 

3.2.2 Task Allocation 

This problem is closely related to the file allocation problem; in fact, the file 

allocation problem can be turned into a task allocation problem. The tasks 

comprising the application are the files. The application specifies an access 

pattern between the files. The tasks have additional constraints: namely, 

computation, dynamic memory, hardware, and location and bandwidth 

constraints. The optimal task allocation has been shown to be NP complete [36]. 

However, there is a large body of research on heuristic task allocation 

algorithms. This thesis presents and compares three heuristic task allocation 
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algorithms in the sensor network setting. The formal problem statement, with 

detailed constraints, is outlined in Chapter 6. 

3.2.3 Resource Discovery & Repository Service 

In SNSP we have chosen to do reactive resource discovery. The system does not 

proactively send out discovery messages, instead, nodes send out a register 

message when they join the distributed system. The register message contains 

information about the resources present on the node, as well as a content and/or 

service code that may be present on the node. This information is wrapped up as 

repository content then stored in the network. The distributed content 

management and replication service decides where to store this repository 

content. Further, the repository contents have soft-state. Thus, nodes must 

periodically re-announce their presence, otherwise it is assumed that they have 

died or left the network. 

Querying the repository service accesses the repository contents. The repository 

service provides the following types of information:  

• Available content, personae, and resources 

• Available services in the network and their API’s 

3.2.4 Resource Utilization Monitor 

The resource utilization service gives information about resources that are used 

by applications and services currently executed in the network, in addition to the 



Chapter 3 Distributed OS Architecture 

28 

unallocated resources remaining in the sensor network. The mapper and content 

management service use the resource utilization service to determine what is 

available for allocation. The resource utilization service receives the resource 

record from nodes that send their periodic registration updates (as part of 

resource discovery). This provides the service with information about currently 

available resources.  

The resource utilization service also works with the mapping service to keep 

track of resources that have been allocated to processes, but that have not yet 

been “consumed”. To facilitate this, SNSP has a coupon system. A coupon is 

placed on each resource that the mapper decides to allocate to a process. Once 

the process has been initialized, it “consumes” the coupon and the nodes’ 

resource state gets updated. The resource utilization service also keeps track of 

coupons issued to resources to assure that a resource is not over-provisioned. 

Resource utilization records are distributed and managed in the same way that 

content is. 

3.2.5 Application Migration 

To enable applications to migrate from one node to another node, the 

application’s state must be captured. This is known as checkpointing an 

application. When the mapper wants to relocate an application, it will request 

that the application checkpoints itself. Note, both applications and services may 
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migrate from node-to-node, thus the application/service will be referred to as a 

remote process.  

Checkpointing involves the creating of a checkpoint object. The checkpoint object 

stores the remote process’s current execution position, any local content that may 

have been generated as part of the process state, the services that the process are 

currently using (including specific queries to these services that the process has 

made and not yet received responses to), and services/applications that have 

sent queries to the process (there are referred to as waiting services). This state is 

captured in the RemoteProcess object. The interfaces for the RemoteProcess and 

checkpoint objects are given in Table 3. 

 
Class: RemoteProcess 
ID: XXX 
Location: XXX 
start(void* args); 
stop(void* args); 
suspend(); 
resume(location); 
servicesUsed(name, loc, queries); 
waitingServices (name, loc, queries); 
stateContent(content); 
processDescription(ast); //abstract syntax tree rep of proc code 
processStackPointer(void *); 
 
Class: Checkpoint 
ProcessID: 
commit(); //update complete 
initialize(processID); 
recover(); //returns last committed checkpoint 
recoverLast(); //returns last data 
update(void* args); //updates part of a remote process e.g. stack 
ptr 
 

Table 3: RemoveProcess and Checkpoint objects for application migration. 
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3.2.6 Fault Detection and Recovery 

The advantage of distributed systems is that it allows applications to be more 

tolerant of partial failures (there is redundant hardware for applications to 

recover from failure or faults). Due to homogeneity of different platforms and 

various energy constraints in sensor networks, it is not practical to require a 

universal fault tolerance/recovery standard for sensor networks. However, 

SNSP supports three loosely defined levels of fault tolerance: recoverable 

processes, fault detecting processes and none.  Recoverable processes have the 

maximal support from the underlying network to both detect and recover from 

faults. Fault detecting processes will simply be restarted when a fault is detected, 

but are not guaranteed to preserve state. Last, there are processes for which the 

system guarantees no tolerance at all.  

The first step of fault tolerance is fault detection. Due to energy constraints, SNSP 

does not, by default, actively monitor for faults in the network. Instead, it relies 

on a combination of information from the application and the resource 

discovery/utilization services. First, SNSP provides applications with a 

mechanism to signify a fault in one of its sub-processes (i.e. a service that it has 

invoked) Given the application composition (the task graph described in Chapter 

4), a component that is using a service can naturally detect if a fault has occurred 

(e.g. data is not arriving according to specification or an incorrect service was 
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invoked). This mechanism can also be used to validate semantics of requests in 

the system.   

The second method of fault detection is relying on information from the resource 

discovery and utilization services. Through these services, SNSP keeps track of 

resource states in the network. A variety of faults, i.e. nodes dying, nodes not 

executing a process, etc., can be detected by combining information from these 

two built-in services. 

Once a fault has been detected, the system must recover from the fault. From the 

fault detection information, SNSP will know what process failed. If that process 

is still executing, it will immediately be terminated. If the program is a 

recoverable process, SNSP must resume the process instead of simply re-starting 

it. Recoverable processes must create checkpoint objects (described in the 

application migration service). The processes determine how often to update 

their checkpoint objects. The checkpoint objects are stored and replicated by the 

content management service to ensure that an accessible copy exists in the 

network. Once SNSP has located the process’s checkpoint, the process is 

remapped onto the network.  

The re-mapped process starts executing again from its last checkpoint. However, 

the other tasks in the application may receive old or duplicate information from 

the re-mapped process, which may lead to race conditions. In order to avoid this, 

SNSP notifies all tasks belonging to an application when the process is re-
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mapped and provides them with the checkpoint sequence number. Further, it is 

recommended that communicating tasks include sequence numbers in the 

packets they exchange.  

For processes that are fault detecting, no checkpoint object exists, so the process 

is simply remapped and restarted by the mapper service. 

3.2.7 Security Engine 

As in [34], the security in SNSP is based on persona and their access permissions. 

Personae control access to content and are able to set permissions dictating what 

can instantiate processes on the sensor network. A full-blown implementation of 

this security is left as future work for SNSP. There has been other work done on 

authentication, encryption and privacy in sensor networks, [37], [38], and [39] 

serve as excellent staring points for a secure system.  

3.3 User defined services 

The service description can be used to determine how a service should be 

replaced on failure and to check compatibility if a user wants to use or extend a 

service. The service description includes a high-level description of what the 

service does, and other properties that are useful in defining the service. The 

service API consists of several components; a brief description of these 

components is given below, followed by more detailed subsections. 



Chapter 3 Distributed OS Architecture 

33 

Services have three stages of operation: initialization, execution, and termination. 

Each of these phases consists of a usage API and a high-level functional 

representation. When services are invoked, their initialization code is executed. 

During the execution stage applications and/or other services may query the 

executing service for content, or actuation of a resource. Queries and actuations 

are equivalent and handled through the same API. In addition to the three 

stages, services have structural, usage, and performance properties. Structural 

properties pertain to the service composition. Usage and performance properties 

are collected and stored in the repository service whenever the service is 

executing. These properties are expounded on and illustrated below. 

3.3.1 Initialization 

Initialization is an important part of setting up an application or preparing the 

system to record data. Initialization may contain several functions, e.g. turning 

resources on, calibrating sensors etc. Every function has an identifier and an API 

for calling the function. In addition to the functional API, there is also a 

description of what each function does (computationally), called the behavioral 

task. In the health monitoring example initialization might involve calibrating a 

particular sensor e.g. oxygenation or heart monitoring sensor to work with a 

particular patient.  
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3.3.2 Execution 

The execution stage also consists of two main components: the service invocation 

API, and the service behavioral task description (computation description of each 

function in the API). The service invocation API refers to a set of queries that you 

can make to the service once it is running. It consists of a set of functions with 

typed arguments and return values. The basic functions through which a service 

module interacts with its environment is depicted in Figure 5 and an example 

service is given in Table 4 and Appendix I.  

3.3.3 Termination 

Similar to initialization, termination may consist of several functions, which are 

represented as an API and a behavioral task component. In the health-

monitoring example, termination may happen when the patient is discharged 

from the hospital. It could involve recording all patient data in a permanent 

database and then erasing it from the sensor nodes. 

3.3.4 Composition 

These properties specify how a service is “put together”. They are listed below: 

• Resources This component specifies the type of sensor/actuator that is 

required and also other resources (ADC, bus etc.) that will be used during 

service execution. Further, computation and connectivity are also resources. 

Resources may be specified as a particular entity, or as an equivalence class. 
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Equivalence classes are explained in Section 4.2. In health monitoring, a 

resource may be the sensor required to monitor a particular patient’s 

condition. A temperature sensor may be needed to monitor the patient’s 

temperature. Temperature sensor is the equivalence group, and specific 

incarnations of it may be an oral temperature sensor or an inner-ear sensor 

etc.  

• Service Structure A service can be either simple or compound. Simple services 

are self-contained and do not invoke any other services during execution. In 

contrast, compound services do invoke other services. If a service if 

compound, the service structure must also contain a list of the sub-services 

that are invoked during execution. These sub-services may be specified 

according to their equivalence class. A compound service’s access restrictions 

must be a superset of all the access restrictions of its sub-services. For 

example, a seizure monitoring service may use inputs from the heart-rate 

sensor, the skin-moisture sensor, whereas a simple patient-temperature 

monitoring service may only use a temperature sensor. Note: these two 

services may themselves be part of a larger patient wellness application that 

is launched on patient arrival. 

• Service Scope defines the scope, location and time, that a service can operate 

in. This is not the instantiation scope that is passed to the service as an 

invocation parameter. Rather, it is the scope that it is possible for the service to 



Chapter 3 Distributed OS Architecture 

36 

operate at all.  The service may be limited in location because certain services 

are provided by individual pieces of hardware. This hardware may be 

restricted in space and also in the time of usage. Also for certain services, it 

makes no sense to measure during certain times, e.g. nocturnal activity 

during the day or photovoltaic cell power generation in the night. 

• Service Content Services generate results when they are executed. These 

results are classified as “content”. Content may be stored in the network and 

used for later reference or consumed immediately. Caching may be used so 

the service does not have to execute each time it is invoked, rather, it may 

return already stored content. Further, a personae who instantiates a service 

may also impose privacy restrictions on the content (e.g. can it be shared with 

other personae or other services). For example, content may be a history of 

the patient’s heart rate over 1 second intervals. 

• Security & Access All services in the sensor network are controlled (and 

instantiated) by a persona or a group of personae. Access to service 

information (read/write) is determined by these personae. This component 

grants or restricts the access of certain personae to the service description. As 

an example, medical information may be accessed by the patient’s direct 

family only, and not by other visitors. Further, the restriction is specified on a 

component-by-component level, it may differ across individual parts of the 

service description. Another important security constraint is instantiation 
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rights (execute). Personae can be denied access to instantiate a service in the 

network. Read/write and execute privileges are specified independently of 

each other. For compound services (calls other services to complete its result), 

the service’s security must be at least as strict as its sub-classes. The security 

and access components are limited only to the service description. We assume 

that data encryption and other authentication is done by the service during 

runtime.  

3.3.5 Performance Metrics 

These are the performance metrics that the underlying network must have for 

the service to complete successfully. The performance of a service can be broken 

down into the following components. Each of these can be specified as a max or 

min value: 

• Delay  

• Synchronization (order on events & to reference) 

• Accuracy 

• Reliability (exactly one delivery, at most one delivery, best effort …  etc) 

• Throughput (network bandwidth) 

If an application requests a performance level that a service cannot meet, or the 

service itself requests a performance level that the underlying network cannot 

meet, SNSP will simply send the application an error message. 
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3.3.6 Usage Measures 

This section keeps statistics of the number of times a service is accessed. Also, 

statistics are kept just for each incarnation of the service definition, i.e. if two 

service definitions differ in any component, they must have different usage 

measures. The usage measures are of the following: 

• Access Count indicates how many times this service definition is read, 

written, or executed. This is for unique accesses by different 

services/personae. 

• Alive Count of how many alive/executing copies there are in the network. 

The repository makes a distinction between simply accessing the service 

definition, and accessing it to execute/instantiate it. 

• Validity Time period specifying how long the current copy is valid for, e.g. 1 

hour, 2 days. This time period specifies the refresh rate, entities (that are 

executing, or using the service definition) must check with the repository to 

see if the service has been updated. This requirement allows programmers to 

keep the code in the sensor network up to date and allow updates to 

propagate through the network in a timely manner. Note: when nothing 

changes, the “check-back” is only a control message exchange (check version 

#), so its overhead is relatively small. 
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A summary of the different parts that comprise a user-defined service is given 

below: 

 

 

 

Figure 3: Components of a user-defined service.
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4 Programming Language and User 
Interface 

This chapter presents a programming model for SNSP. The programming 

language for SNSP is ANSI C, which it is very standard and well known. 

However, ANSI C is augmented with other descriptors (stored in separate files), 

which specify constraints and auxiliary services used by applications. The 

chapter concludes by presenting an Eclipse [40] integrated development 

environment (IDE) that can be used to write applications for SNSP. A sample 

application is presented in Appendix I and SNSP Eclipse IDE is presented in 

Appendix II. 

Programming model 

In SNSP’s programming model, an application is a task that has inputs, outputs 

and a computational part. Any of these portions may be provided by other 

tasks/services. Given this structure, the application can conceptually be seen as a 
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hierarchical combination of tasks. The diagram below shows an example light-

control application structure in which the application uses the person locating 

service (which gives the locations of people in the building), the sunlight 

metering service (which determines if sunlight is providing sufficient 

luminance), and the lightSwitch service (which actuates a given set of lights). In 

turn, the person locating service uses a combination of RFID reading services and 

services exposing data from motion sensors.  The arrows between tasks in the 

figure signify communication between the different processes. Services can be 

considered a library of applications that conform to SNSP’s service API  

presented in Chapter 3. 

  

Figure 4: Light control service application structure. 

4.1 Programming language: sensC 

The programming language sensC is ANSI C [41] with a few extensions. C was 

chosen because of its widespread use in the embedded world. The language 
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consists of two types of files: the first type is standard C (.c and .h files with a few 

reserved keywords and functions) the second type is service specification files, 

which end with a .serv extension. 

First, the .c and .h files define the functionality of the sensC program. A sensC 

program is divided into three sections: the initialization, execution and termination 

sections. The sections may also contain standard C functions. By default, these 

functions are public and may be called directly by other sensC modules in the 

sensor network. sensC supports timers and non-preemptive event queues for 

scheduling computation.       

 

Further, sensC modules interact with SNSP via a set of functions. Figure 5 

illustrates the function calls between SNSP core, an application represented as a 

sensC module, and a third-party service that the application is using. The four 

functions are listed below: 

Figure 5: SNSP and sensC module. 

....interaction. 
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• requestService() This function is called by a sensC module when it wants 

to use a service deployed on the sensor network. The first three parameters of 

the function are: (1) the requested service, which may be a user-defined 

service, or an essential service such as localization or the repository service, 

(2) scope, location and time to execute the service, and (3) the argument to the 

service. The argument to the service is a section, followed by the desired 

function within that section, for example execution:invoke(). Optional 

parameters are authentication, encryption, and request performance 

constraints, e.g. delay, reliability, accuracy etc. 

• invokeService() This function is called by SNSP to notify a service that it 

has been requested. A sensC module that behaves like a service needs to 

implement this invokeService function. The parameters are the same as those 

of the requestService() function. 

• serviceRespond() This function is called by a sensC service module when it 

responds, has results to return, to another module that requested the service. 

The required parameters are the request ID, the return scope, the return 

service, and a result value field. Note that the value field is a C struct, with a 

header that indicates the total payload length. The payload contains result 

entries, which contain the type and length of the result, as well as the actual 

result value. Optional parameters are authentication and encryption. 
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• serviceResult() This function is called by SNSP to return the result of a 

request to the original sensC module. The parameters are the same as 

serviceRespond(). 

• register() This function is periodically called by every sensC service 

module. It registers the service as belonging to the network and gives a 

complete service description (i.e. its interface as a list of functions with the 

formats of their arguments and results). See section 3.3 for more information 

on the service description. 

When a user wants to write an application, they are presented with a blank 

template file containing the four service calls. The template file is further 

explained in section 4.3 as a part of SNSP IDE. Table 4 shows an example of a 

thermostat application. Some code has been left out to simplify the application.  

In the example code the application initializes some default values on startup. 

SNSP (not shown in the user-code) will also query the repository service (CRS) to 

find out where the heater, temperature sensing and user-desired temperature 

sensing services are located. This information is stored in the availService array 

(the exact format of this is specified in Section 4.4.). Then, in the execution 

section, the application keeps requesting the temperature and a user temperature 

until it has received them, after which a control function is executed to turn the 

heater on or off.  
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boolean hasTemp 
scope   tempScope 
int     temperature; 
boolean hasUserTemp; 
scope   userTempScope 
int     userTemperature; 
scope   heatScope; 
servDat availServices[SERVICES_USED]; 
 
Invocation: 
  invoke(){ 
    hasUserTemp = hasTemp = false; 
  } 
 
Execution: 
  executeControl (){ 
    if(!hasTemp && availServices[temp].exist){ 
 tempID = requestService(TEMP, tempScope);  
     return; 
    } 
    if(!hasUserTemp && availServices[userTemp].exist){ 
 userTempID = requestService(USERTEMP, userTempScope);  
     return;     
    } 
    if (availServices[heater].exist) { 
        if(temperature < userTemperature) 
           requestService(HEATER, heatScope, ON);  
        else  
           requestService(HEATER, heatScope, OFF);  
        } 
    } 
  } 
  terminate(){} 
serviceResult(id, value){ 
  switch(id){ 
    case tempID: 
      temperature = value->payload; 
      break; 
    case userTempID: 
      userTemperature = value->payload; 
      break; 
  }   
} 

Table 4: Example code for a temperature control application. 
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4.2 .serv Requirement Specification 

The .serv file consists of two segments. The first segment details information 

about the sensC module’s runtime requirements. This will be used by SNSP to 

dynamically deploy the module on the sensor network. These requirements are: 

• Data in-flow rate (shaped by leaky bucket) 

• Data out-flow rate (shaped by a leaky bucket) 

• Memory requirements such as dynamic memory and intermediate storage on 

a node  

• Resource requirements (i.e hardware that must be co-located on the node) 

• Fault tolerance requirements (see section 3.2.6 on fault detection and 

recovery) 

The second segment contained in a .serv file specifies information about the 

other services or modules that the sensC module will invoke during execution. In 

order to make the sensC module more applicable to general sensor networks, 

services are specified via equivalence classes. Equivalence classes specify a set of 

properties that a service must have to be considered an equivalent candidate. In 

order to evaluate different equivalent services, the properties may be specified 

with an evaluation function that assigns a grade to the service depending on its 

exact value of its property. For example, there may be two temperature services 

in the network; one may have an accuracy of ±1°C and the other ±5°C. These 
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services are equivalent, but the first is more valuable to a module that has high 

accuracy requirements. Equivalence classes allow a service to be substituted for 

another when the original one is not present in a sensor network. 

For large equivalent sets, a decision tree structure can be used to efficiently 

represent an equivalence class. The decision tree not only encodes all the 

properties required of the service, but also an order in which to evaluate them. 

Given a good choice of variable ordering, [42] has shown that decision trees are 

both a compact way to store evaluation functions and an efficient mechanism to 

check whether a service matches the criteria.  In the current SNSP 

implementation equivalence classes are specified as priority lists. 

Table 5 shows an example .serv file. The top half of the file specifies the 

constraints such as data in-flow-and-outflow rates. The second half of the file 

lists equivalent services. The line “Service:x” denotes the start of a new 

equivalent group. For service 2 there are two equivalent services: Cricket [43] 

and Motetrack [44] localization. Cricket is an acoustic localization service 

whereas Motetrack uses RF and is not as accurate. The accuracy of both 

localization services is known (represented in the functional API). The algorithm 

prefers Cricket to Motetrack if it is available in the network. Also, if QueryPeriod 

is set to 0, then it is the responsibility of the application to query the service 

during execution. If it is non-zero, SNSP will periodically query the service for 

results. 
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ModuleName:example 
 
DataIn:10,5                 /* units are kb/s */ 
DataOut:8,2 
Memory: 2                   /* units are kbytes */ 
Processing: 10  
ResourceReq:ServiceName     /* Can also be left blank */ 
FaultTolerance:detection    /* recoverable, detection, nothing */ 
 
Service:0 
Name:TEMPERATURE 
Scope:KITCHEN 
QueryPeriod:5               /* query once every 5 seconds */ 
Name:TEMPERATURE 
Scope:LIVINGROOM 
QueryPeriod:8 
 
Service:1 
Name:HUMIDITY 
Scope:SP_SCOPE_ALL 
QueryPeriod:10 
 
Service:2 
Name:CRICKET_LOCALIZATION 
Scope: SP_SCOPE_ALL 
QueryPeriod:0 
Name:MOTETRACK_LOCALIZATION 
Scope: SP_SCOPE_ALL 
QueryPeriod:0 
 

Table 5: Example of a .serv specification file. 

4.3 Programming UI  

SNSP is not just a distributed operating system for sensor networks. It is also a 

platform that allows users to write applications for sensor networks. This is 

known as an integrated development environment (IDE), which is a PC-side tool 

that allows users to create and compile SNSP applications. IDEs normally consist 

of a source code editor, and a compiler/interpreter. 
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Eclipse was chosen as the IDE for SNSP. [40] Eclipse started as an open-source 

Java tool to build Java IDE’s, but now consists of an open source community 

whose projects are focused on building an open development platform 

comprised of extensible frameworks, tools and runtimes for building, deploying 

and managing software across the lifecycle.  

The Eclipse platform is extensible via plug-ins. Plug-ins are “pluggable 

components,” which conform to Eclipse's plug-in contract. These plugins work 

seamlessly with the core part of Eclipse during runtime. They may do something 

simple like adding a single button that displays a message to a user, or soething 

complex like adding support for compiling another language. There is a Tinyos 

plugin [45] that allows users to write and compile TinyOS code within the 

Eclipse IDE. SNSP Eclipse plugin is fully described in Appendix II. 

4.3.1 Creating an SNSP Application 

The first step in creating an SNSP application is defining all the services that will 

be used during the application’s execution. The services as well as the scope are 

defined in the .serv file. See Section 4.2 for an example. Next, these specifications 

must be reflected in the C files. First, the services and locations used are defined 

in numerical format in the .h file. An example .h file is given in Table 6 below.  

 

 



Chapter 4 Programming Language and User Interface 

50 

/*  
 * Place the names of locations and services here 
 * Note, the spelling & capitalization must be the same as that     
 * used in the .serv file 
 */ 
enum { 
 
/* eg location:  
 * KITCHEN = 1, 
 * LIVINGROOM = 2, 
 * DININGROOM = 3, 
 */ 
 
/* eg Service names 
 * TEMPERATURE = 9, 
 * HVAC = 14, 
 * COMFORT = 15, 
 * DESIRED_TEMP = 16, 
 * HVAC_CONTROL = 19, 
 */ 
 
/* eg persona  
 * OWNER = 22, 
 */ 
  
  BRIDGE = 17, 
  OFF = 2, 
  ON = 1, 
  SENSOR = 10, 
  ACTUATOR = 20, 
  CONTROL_TRIES = 3, //#times try to respond before timeout 
  REPLY_TRIES = 3, 
  ACTIVATE = 2, 
  DEACTIVATE = 3, 
}; 
 
typedef struct serviceUsage { 
  uint8_t  name; 
  scope_t  scope; 
  int      platform; 
  uint16_t ticksToQuery; 
  int      invocationID; 
  int      exists;   
} 
 

Table 6: .h file specifying the relevant services, scopes, and persona. 
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Table 6 also shows the serviceUsage structure, which is of particular interest. 

SNSP will create a serviceUsage array the size of all the services used. During 

execution, SNSP will periodically query the repository service to determine 

which of the equivalent services exist in the network. It will populate the 

serviceUsage array with information about the top equivalent service that it finds 

in the repository. If an application wants to query this service, it can find the 

service name and scope in the service usage array at the index specified in the 

.serv file.  

When the application programmer starts a new SNSP project, the main 

functionality of the application gets placed in the C file that is created. The blank 

C file contains a number of functions that need to be filled in. Table 7 shows the 

blank C file. Most of the functions have comments describing the calling context 

and arguments. These functions are essentially those described in Section 4.1 by 

the sensC module interaction. An example of a completed C file and the resulting 

compiled tinyOS code is given in Appendix I. The example shows a thermostat 

application.  

 
#include "table.h" 
 
/*  
 * Place all the variables to store results from services used  
 * eg uint16_t sensorSample1 
 * uint16_t sensorSample2 
 */ 
  
/*  
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 * during execution these will be filled in and updated  
 * with the name & scope of the equivalent service that  
 * exists in the network - see bottom of file for 
 * a definition of the struct 
 */ 
serviceUsage services[NUM_SERVICES_USED]; 
 
/*  
 * fill in, it will be called on initialization  
 */ 
void invoke()  
{  
} 
 
/*  
 * fill this in - it will be called every second 
 * Use it to process results, query more services, actuate etc.  
 */  
void executeControl() 
{ 
} 
 
/*  
 * Fill this in if you want other components to use this service 
 * it will be called on the service in response to a  
 * requestService call and it should call serviceRespond  
 * to pass the result back to the callee 
 * @param fn function that will be called 
 * @param args - arguments to the function 
 * @param arg_len length of the arguments (not null terminated)  
 * @param id -identifies the request, should be passed back to  
 *          serviceRespond 
 * 
 *@return int return 0 if the service successfully invoked,  
 *          1 otherwise 
 */ 
int invokeService(uint8_t fn, char *args, uint16_t arg_len, 
uint8_t id) 
{  
} 
 
/* 
 * Fill in to process the result of a service query/invoke 
 * service  
 * @param fn - function name that was called 
 * @param payload - results 
 * @param payload_len - length of results (they are not null 
 *        terminated) 
 * @param id - request id that was returned in requestService 



Chapter 4 Programming Language and User Interface 

53 

 */ 
void serviceResult(uint8_t fn, char *payload, uint16_t 
payload_len, uint8_t id) 
{ 
} 
 
/* called when the mapper is wrapping up the service  
 * clean up any last minute state 
 */ 
void terminate ()  
{ 
} 
 
/*------------------STUBS-----------------------* 
 * Leave at the bottom of the file - will be filled in by SNSP */ 
 
/*  
 * This is a stub will send a service  query  
 * @param servNum is the equivalence class specified in  
 *        the .serv file  
 * @param servName is the class that was found in the network  
 *        (that is equivalent from  - serviceUseage 
 *        services[NUM_SERVICES_USED];) 
 * @param fn is the function name that will be called 
 * @param args is a void pointer to arguments to the service 
 * @param argLen is the length of args (not null terminated) 
 * 
 * @return int returns the id that will be used in  
 *         serviceResult to pass result back 
 */ 
int requestService(uint8_t servNum, uint8_t servName, uint8_t fn, 
char *args, uint16_t argLen)  
{ 
} 
 
/*  
 * This is a stub 
 * @param fn - function that was called 
 * @param results - pointer to results 
 * @param  
 * 
 * @return 0 if successful 1 if not 
 */ 
int serviceRespond(uint8_t fn, char *results, uint16_t resLen, 
uint8_t id) 
{ 
} 
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Table 7: Blank template C file that the programmer needs to fill in. 

4.4 Coding Efficiency Gain 

 The programming language and UI were developed to make writing sensor 

network applications easier for programmers. One way to measure the gain in 

efficiency is to compare the number of code lines saved. In the example given in 

Appendix I, the C code is 146 lines long. The resulting TinyOS code is 711 lines 

for the HVAC_CONTROLM.nc module (which contains the application code) 

plus an additional 2109 lines for the supporting SNSP TinysOS code. That is a 

savings of 1932%. As the program gets more complex, the application’s C part 

will get longer and the supporting SNSP code will be amortized over many 

modules. However, there is still a significant savings of 2674 lines of code. 
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5 File Allocation 

The underlying challenge in providing this service is to optimize content 

placement for availability and to minimize communication (both access and 

update costs). This problem is known as the file allocation problem (FAP) and 

has been extensively studied for traditional distributed databases. The FAP may 

be based on static allocation, which means that the files are allocated once ahead 

of time, or dynamic allocation. Further, the file access patterns may be 

deterministic, probabilistic or unknown. All versions of the FAP are NP 

complete.  

This research focuses on dynamic file allocation with unknown file access 

patterns. Further, the work places more importance on reducing the 

communication cost to access a file, and aims to increase file availability. The 

chapter starts by outlining the formal file allocation problem. Next related work 

and the process of locating files are addressed, followed by the presentation of 
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three heuristic algorithms: A deterministic central replication algorithm, a 

distributed probabilistic replication algorithm, and a learning-based algorithm. 

These algorithms are compared via simulation to a control case with no 

replication.  

5.1 Problem Formulation 

A version of the static FAP, similar to that in [35] is formulated below.  

Given: 

• n nodes 

• m files 

• lj is the length of the jth file for  0 < j ≤ m 

• bi is the available memory of the ith node for 0 < i ≤ n  

• cj is the storage cost per unit at the jth node  

• CAi is the capacity of the ith link 

And traffic vectors where the incoming traffic arrives with a poisson distribution: 

•  uij is the query traffic originating from node i for file j  

• vij is the update traffic originating at node i for file j 

• u’ij is the return traffic to node i from queries for file j 

• v’ij is the return traffic to node i from updates of file j 
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Chu [35] formulated the file allocation problem as a zero-one integer-

programming problem. The variable Xij is the indicator function that the jth file is 

stored on the ith node. 
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The total traffic generated in the network is now: 

( )( ) ( )( )[ ]!!
= =

"++"+=
n

i

m

j

ijjijijijijijcomm XqvvXuuZ
1 1

'1'  
 
(4) 

The objective of the file allocation problem is to minimize the storage cost (eqn 2) 

and the total communication cost (eqn 4) of transporting data through the 

network. 

For SNSP, storage capacity and availability constraints can be formulated as 

follows: 
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Analytical expressions for availability are hard to obtain, so an approximation, 

given in [46] is used. This approximation is explained below. 

First, we define rik to be the probability that two nodes i, and k successfully 

communicate. In order to derive the analytical expression, we assume rjk is 

independent rmn for all m not equal to j and all n not equal to k. This can be 

calculated for each pair of nodes if the routing and node availability is known. 

This probability includes the probability that node k is available. (In the 

simulation the availability to access a file at location k from location j is not 

explicitly calculated; only the availability of the node k is taken into account).The 

availability aij of file j accessed by node i is 
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Let Wij be the total traffic demand at node i for file j. Wij = uij + u’ij + vij + v’ij. The 

weights indicate the relative popularity of files. The traffic-weighted availability 

for each file is given by: 
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The optimization problem given a target t, availability constraint a and variable 

λ, is: an allocation F(X) that minimizes  

F(X)= Zstore + λZcomm    (eqn 2, 4) 

subject to 

Ccap          (eqn 5) 

C javail > a     for   0 < j ≤ m   (eqn 7) 

 

5.2 Related Work 

Content replication algorithms (also known as file allocation problems) were 

studied extensively with the rise of networked computer systems in the late 60’s 

and 70’s. The optimal solution is NP complete. Techniques for file allocation 

include branch and bound, randomization, predictive Markov techniques, 

genetic algorithms and other heuristics. [47] gives a good overview of these 

difference techniques. Further, the solution techniques employed depend on the 

assumptions that are made and the different constraints that are considered.  

As shown in Table 8, in one variant of the content replication problem the input 

pattern is not known in advance but the algorithm must react to file requests as 

they arrive. This class of problem is known as online problems. Typically, 

competitive algorithms are used to solve/analyze online problems. Competitive 

algorithms have the property that their performance on any sequence of requests 

is within a constant factor of the performance ‘of any other algorithm (including 

the optimal) on the same sequence. See [48] for more details. This work will 
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compare algorithms that do not know the access pattern in advance to each 

other. 

Input Pre-determined 

Probabilistic  

Unkown 

Solution type Static (files are allocated once) – optimal or heuristic 

Dynamic (files migrate during process) – optimal or heuristic 

Structure Single File (assume files are independent) 

Multiple Files (for high-throughput case, files may content 
with each other w.r.t. queueing delay) 

Files as program data 

Metrics  Minimize execution cost  

Minimize communication cost 

Maximize availability 

Maximize throughput 

Minimize access delay 

Minimize file transfer times 

Table 8: FAP Classification  

In the sensor network setting there has not been task allocation work per se, but 

there has been work on the related problem of data storage and retrieval. 

Solutions include modeling the sensor network as a database [13], adapting hash 

tables from content addressable networks with geographically distributed hash 

tables [49]. This is used to find and store data and sensor network fusion, where 

a sensor needs to figure out where to send its data when queried [50]. This work 

has focused on making data retrieval more reliable and cheaper, but it has been 
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mostly focused on collecting data through a central point, and has not allowed 

for data replication in the network. 

5.3 Locating Files 

Existing content replication algorithms do not address locating the content. In the 

worst case, nodes need to flood the network to locate information. In order to 

avoid flooding, an indexing system is used. Indices are placed at warehouse 

nodes, which have higher availability and storage space than their peers. 

Warehouse nodes are selected via a clustering algorithm in a d-hop 

neighborhood. This work uses the clustering scheme presented in [51], which 

selects as cluster heads nodes within D hops having the highest id. This work 

uses a combination of the node’s availability and storage as criteria for cluster 

head selection. The cost of maintaining the content indices is added as overhead 

cost. Note, the cost of accessing a warehouse is on average be D/2, the average 

distance a node is from its cluster head. Thus it is beneficial to reduce D to lower 

the cost. However, as D is decreased, the total number of cluster heads increases, 

which increases the cost to write a new location to all warehouses. 
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5.4 Algorithms to Evaluate 

5.4.1 Deterministic, Central Replication Algorithm 

This algorithm was adapted from [52]. The algorithm is O(logn) competitive. For 

each data item, the algorithm maintains a list of L read requests and also a tree 

structure T of pointers to all replicated data. d is the size of the data. The 

algorithm executes as follows: 

• On read request r, the algorithm finds sphere S with radius k that contains d 

reads 

• If no copy of a file exists within a sphere of radius λk of the r, the file is 

replicated to the node with the highest availability in the sphere, and it is 

added to T 

• Read requests from nodes in S are deleted from L 

• After d writes, all copies in T are deleted and the one on the node with the 

highest availability is kept 

5.4.2 Distributed Algorithm 

This algorithm was adapted from [53] to improve the availability of the data. It is 

O(log2n/log2d) competitive (where d is the size of the data and n is the number of 

nodes). A tree Tp is kept for replicas of item p: 

• On a read request from r, insert the node with the highest availability in r’s 

one-hop neighborhood in Tp  with probability 1/d 
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• On a write request from w, with probability 1/(sqrt(3)*d), delete all nodes in 

Tp, except for the one with the highest availability and add w to T 

5.4.3 Adaptive Observation-Based Algorithm 

This algorithm uses an observation period during which nodes observe the 

number of read/write requests. Replication decisions are made after this period. 

Initial step: 

• Observe 100 accesses of a data item p, keep record of their location and 

whether it was a read/write. 

Reallocation: 

• After r reads 

• Create k = floor(r/20) replicas of the data item 

• Use k-means to divide the data requesters into k clusters and store one data 

item on the node within each cluster with highest availability.  

Now that there are replicas in the network, writes can either come directly from a 

node (meaning that the replica was the closest copy to be written) or they can 

happen when data is written through for consistency. 

Refinement steps (on each node that has a copy of p): 

• Observe 100 accesses of the data item. 

• Accesses are either reads r, direct writes wd, or update writes wu. 
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• If wu > r + wd   remove the replica from the node 

• If r > wd create k = floor(r/20) replicas and use k-means to distribute the 

replicas onto a node with the highest availability in each cluster. 

5.5 Simulation Setup 

I used the discrete event simulator Omnet++ [54] with the Mobility Framework 

(MF) [55] extension. MF was developed at TU-Berlin and provides a good model 

of the WSN physical and MAC layers. The simulation consists of 1000 nodes 

randomly placed in a 2000m x 2000m square. The nodes have a radio range of 

approximately 150m. The network’s heterogeneity is also varied, with a 

heterogeneous network consisting of nodes with 3 amounts of storage: 10k, 50k, and 

200k. Nodes with a large amount of storage are available 99.9% of the time, 

nodes with a medium amount of storage have a 95% availability and the smallest 

nodes have a 80% availability. In the homogenous network, nodes have 2 different 

amounts of storage, 50k and 100k, and they are available at rates 97% and 94% 

respectively. Availability refers to the percentage of the time a node will be 

awake and respond to incoming packets. All nodes are unavailable for an 

exponentially distributed time with the same mean, so a higher availability 

means lower chance of becoming unavailable. The relative times are calculated 

so that nodes are probabilistically awake for the percentage specified by their 

availability. 
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When a node is available, it wakes up every 0.25 seconds, and decides with 

probability 0.1 to read or write a randomly selected piece of data. Each 

simulation consisted on average of 39,000 queries. All data items are the same 

size (100), but they have different read to write ratios of 1:1, 3:1, 15:1 and 100:1. 

Cluster head election occurred at the start of the simulation and the cluster heads 

did not change during the simulation. 

For the lower layers, a standard fading channel was used with an Aloha MAC 

[56] (both of these are provided by the mobility framework). At the network 

layer, geographic routing and addressing is used. 

The following assumptions are made: 

• Nodes know the id’s of data items they want to access 

• ID’s are much smaller in length than the data item 

• Data items are indivisible and the original copy cannot be deleted or migrated 

to another node 

• There are no concurrent read/writes (relatively few events in WSN) 

• Nodes have a finite amount of storage 

• Node failures/deaths are modeled as an independent binomial process, 

independent of other nodes. 

• Nodes also fail temporarily (which corresponds to temporary downtime e.g. 

sleeping to conserve power).  
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• Nodes know their own availability, i.e. the proportion of time that they are in 

functioning condition. 

5.6 Results 

The first experiments examined the tradeoff between number of cluster heads, 

their availability, and the number of hops, D. Results in Table 9 show a summary 

of the number of cluster heads vs number of hops, D. The results were similar 

across both topologies. All cluster heads were the highest availability nodes, 

even with D of 2. Further, there is clearly a tradeoff between the number of hops, 

D, a cluster head is away from a node and the number of cluster heads to keep 

synchronized when a data item’s location changes. Due to the relatively small 

change in number of clusters from 3 to 8 hops, D was chosen to be 3 for the 

remainder of the simulations. 

D  # Cluster 
Heads 

Availability  

2 10 99.9 
3 6 99.9 
4 5 99.9 
8 3 99.9 

Table 9: Number of cluster heads vs number of hops, D. 

Figure 6 shows the total cost (the number of hops data was transported) per data 

access for each of the schemes. The solid portion of the bar represents the direct 

cost of the operation. For example, for a write operation that represents the cost 

to transport the data from the writing node to the closest replica in the network. 
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The top portion of the bar is overhead to keep replicas consistent. Considering 

the data access cost, the adaptive algorithm performs the best, followed by the 

distributed algorithm, the deterministic algorithm and last the control algorithm.  

However, considering total cost, the distributed algorithm outperforms the 

adaptive algorithm. This is because the distributed algorithm saves on 

replication cost by replicating to the nodes (or nodes very close to them) that 

make the queries. While the adaptive algorithm has a better placement of 

replicas (because its access cost is lower), it incurs additional cost because it 

locates replicas independent of queries. The overhead of the deterministic 

algorithm makes it more costly than the control algorithm. 

 
Figure 6: Comparison of data access cost and replication overhead. 

Figure 7 shows the cost breakdown for the distributed and adaptive schemes by 

topology and data read/write ratio. Topology 1 is the heterogeneous topology 

and topology 2 is the homogeneous topology. There is not much difference 
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between the two topologies. On average, across all read/write ratio entries for 

the same scheme, the two topologies differ by, 0.3 hops or roughly 4%. 

The read/write ratio has a bigger impact on cost. In both schemes the same 

pattern is visible; the overhead is much larger for data with lower read/write 

ratios. This overhead shrinks to almost nothing for data with a read/write ratio 

of 100 in the distributed algorithm. Intuitively, this is because the placement of 

the data does not incur an overhead, and even though there are many replicas, 

writes are so infrequent that they add little to the total cost. Thus, these schemes 

provide more benefit for data that is read much more frequently than it is 

written. 

 
Figure 7: Comparison of data access cost vs topology and data read/write ratio. 
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The previous graphs showed only the cost of moving data around the network. 

Figure 8 shows the control message overhead. The distributed algorithm has the 

lowest control message overhead followed by the deterministic and the adaptive 

algorithms. The data read/write ratio does not have a large impact on overhead 

cost, because the overhead is dominated by the cost of finding an item; there is 

not much difference between finding a location to read from or one to write to. 

Moreover, this overhead is not as significant as the data cost shown in Figures 6 

and 7. If data ids are a 10th the size of the data payload, then these numbers 

should be divided by 10 to scale them to those in Figure 6. On average, the 

distributed algorithm would cost 0.27 hops more, the deterministic algorithm 

would cost 0.34 more and the adaptive algorithm would cost 0.4 hops more. The 

control overhead becomes even more significant if the ratio between the data 

payload size and the data id size becomes larger.   

 
Figure 8: Comparison of control message overhead. 
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In addition to the cost of the replication scheme, data availability is also an 

important concern in SNSP. Figure 9 shows the percentage availability of data for 

all schemes and topologies (the 1, 2 on the x axis indicates topology). Topology 

does have an impact on availability; the homogeneous topology has a higher 

availability than the heterogeneous topology. The distributed replication 

improved reliability the most with a 33% improvement for topology 1 and a 51% 

improvement for topology 2. 

 
Figure 9: Percentage of unavailable data for different schemes and topologies. 

5.7 Discussion 

This chapter presented a formal problem definition of content replication and 

management. The problem was then investigated in the context of sensor 

networks. Specifically, as part of SNSP, a distributed operating system, which 

dynamically maps data and programs onto the sensor network. Out of the three 

algorithms that were empirically compared, the distributed replication scheme 
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performed the best with the lowest total cost and the highest availability. The 

adaptive algorithm developed for SNSP performed the best when considering 

only data access cost, indicating that it had better placement than the other 

algorithms. However, it also had higher control message overhead.  

The simulations showed that all replications schemes provided more benefit for 

data with more frequent reads than writes. Finally, the simulations showed that 

although the replications schemes improved data availability, the sensor network 

topology has an impact on data availability. The homogenous network had 

roughly 2% more availability than the heterogeneous network.  From a practical 

perspective, the distributed algorithm performed the best, it is very simple to 

implement and has low overhead. 
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6 Task Allocation 

 
This chapter formulates the task allocation problem for SNSP. The task mapper 

takes SNSP task description (including a list of sub-tasks that can be further 

partitioned or assigned to individual sensor nodes) as input. In a sensor network 

the mapping must happen in a decentralized way. The problem is formally 

stated in this chapter, followed by related work. The optimal solution is NP 

complete, and therefore the goal of this chapter is to evaluate heuristic file 

allocation solutions for SNSP.  In order to facilitate this, three algorithms are 

outlined in this chapter and then compared via simulation. The algorithms can 

also implement incremental mapping of processes. Incremental mapping is when 

a task (that is part of a process) is already running in the network, it is shared 

between the two processes, instead of mapping two copies of the task on the 

network. The results compare both incremental and non-incremental approach. 
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The algorithms are distributed. The solution can be structured so that each task 

has an independent mapping agent or each resource has a mapping agent. The 

task-mapping agent evaluates the best mapping and then takes care of obtaining 

the resource for the task and any contention that may result. The resource agent 

receives bids to obtain its resource and performs allocations to the highest 

bidders. The algorithms chosen are aimed to reduce the communication 

overhead between tasks and to increase information availability. 

6.1 Problem Formulation 

The mapper’s function is to allocate resources to processes so that they can 

execute on the sensor network.  

6.1.1 Assumptions 

• Nodes know the IDs of data items they want to access 

• Data id’s may be arbitrary in length, so long as they are prefix-free 

• Nodes have a finite amount of storage available for data items 

• Node failures/deaths are modeled as an independent binomial process, 

whereby each node fails independently of others.  

• Nodes know their own availability, i.e. the proportion of time that they are in 

functioning condition. 
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In the mapping problem, we assume that we are given the following 

information: 

Given n nodes and m processes 

for 0 < j ≤ m and 0 < i ≤ n 

• hj is the RAM requirement of the jth process 

• gi is the computation requirement of the jth process  

• oi is the hardware requirement (e.g. sensors) of the jth process 

• tj is the location requirement (e.g. kitchen, house) for the jth process 

• ei is the available RAM of the ith node  

• qi is the available CPU of the ith node 

• ci is the cost to execute a process at the ith node  

• ui is the hardware on the ith node 

• pi is the location of the ith node 

• sik is the bandwidth between nodes i and k for 0<k≤ n 

• CAkj is the communication cost between tasks k and j if they are executed on 

different processors for 0 < k ≤ m 

The problem can be formulated as a zero-one integer programming problem 

where: 
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! 

Xij =
1     if jth process is executed on node i

0    otherwise,

" 

# 
$ 

% 
$ 

 
(8) 

and one copy of the process is executing 

! 

Xij =1.

i=1

n

"              
(9) 

Note, multiple copies of a process could be executing on the network if different 

applications are using the same service and it is not convenient to share the 

output of the service. However, each application has its own allocation matrix X, 

and if two applications share the output of the same service, the mapper keeps 

note of that separately. 

The goal of the mapper is to find an allocation that minimizes the execution cost 

(9) and the total communication cost (10). The execution cost is: 

! 

Zexe = cTX •1              

Where c = (c1, c2, …, cn)T  

(10) 

The communication cost is: 

! 

Z
comm

= CAij

k=1

n

"
(i, j )#e

1

m

" Xik(1$ Xjk)         

where e1 is the set of edges in the task graph. 

(11) 

The constraints of the mapping problem will be unique to each application. 

While the delay, reliability, processing, bandwidth, and memory constraints are 
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given by a less or greater than operator. The hardware and location constraints 

may have more complex matching functions. For example, a location may be 

contained within another, or hardware may be a superset of what is required etc.  

The mapping problem can then be formulated as follows: 

Given operators α and β, that take as input location or hardware data and 

constraints and return 1 if the data or hardware constraints respectively are met, 

an availability vector a, and parameter λ find an allocation X that minimizes: 

F(X)= Zexe + λZcomm 

subject to 

(12) 
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where  Ykj =  
1  if processes j and k communicate

0 otherwise
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and r
pi
   is the probability that nodes p,i communicate 

successfully.
 

(13) 
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(15) 
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(18) 

 

Equation 13 represents the availability constraint. Equation 14 represents the 

bandwidth constraint between all processes allocated on nodes j,k. Equations 15 

and 16 represent memory and cpu requirements respectively, while 17 and 18 

represent the subtasks’ location and hardware requirements.  

As mentioned above, the optimal mapping problem is NP complete. Future work 

will investigate different heuristics for mapping. Further, this is a static 

formulation of the problem whereas in a real system the number and type of 

applications and services executing on the network is dynamic. Other future 

work includes evaluating mapping cost and performance trade-offs for partial 

vs. complete remapping when either the underlying sensor network or the 

applications change. In addition, because duty-cycling to save power is such an 

important part of sensor network operation, the computation constraint will 

contain a duty-cycle field as well. 
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This research focuses on assigning tasks to processors. It does not deal with 

scheduling multiple tasks on a single processor once they have been assigned. 

There are however, many different optimal algorithms for doing this. For 

example, generalized processor sharing (GPS) [57] with earliest deadline first. 

GPS is well suited here, because in the task description it already specifies a rate 

of processing required for each task.  

6.2 Related work  

Mapping has been extensively studied. First in the context of mapping multiple 

processes onto a single processor and then later in the context of mapping 

processes onto distributed networked systems. There are many different metrics 

for which task allocation can be optimized, e.g. execution time, task 

communication, system reliability or load balancing. This thesis considers task 

communication and system reliability as metrics to evaluate the task allocation 

algorithms.  

The typical formulation is as follows: Given a set of partially ordered 

communicating tasks T and a set of interconnected processors P, each with pi 

processing resources, define a mapping of processes to processors that minimizes 

cost. The typical cost model is minimizing execution time on the processors 

(processes take different amounts of time to run on the processors depending on 

their load and cpu power). Alternatively, the communication cost may be 
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minimized (number of messages related to where the communicating tasks are 

allocated), or reliability may be maximized (by replicating processes or allocating 

them to more reliable processors). For a graph formulation, the set of tasks are 

given as a task graph T = (V1, E1) where the edges represent the amount of 

communication required between tasks. The set of processors are given as a 

processor graph P = (V2, E2) where the edges represent the bandwidth of the 

links between processors. A valid allocation then finds a weak homomorphism 

from T to P, that is, T is weakly homomorphic to P if there exists a mapping such 

that if an edge (a, b) → E1, then edge (M(a),M(b)) → E2. 

Optimal task allocation is NP-complete for any of these metrics. Thus, heuristic 

algorithms have been extensively studied since the early 70’s [58]. These 

algorithms have largely been designed to operate in traditional networked 

environments, with high bandwidth connections and reliable nodes. Typical 

solutions utilize heuristics such as dynamic programming, genetic search 

algorithms, graph embedding techniques, and micro-economic approaches. [59] 

gives a detailed overview of various mapping solutions.  

This research draws from the graph search method to construct a greedy 

mapping solution as well as taking the TASK algorithm presented in [60]. For the 

last algorithm, a micro-economic resource mapping approach is combined with a 

genetic search algorithm. Existing micro-economic algorithms outline bidding 

functions and strategies for which the market will reach a fair equilibrium. 
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However, they do not specifying how much value the bidder should actually 

place on one resource compared to another. The genetic search algorithm solves 

the problem of determining values for resources by searching through the 

solution space and coming up with fitness values for a set of different allocations.  

A side result of the genetic algorithm is it searches through many different 

allocations, thus if the bidder cannot obtain the best choice resource because 

there is contention, it has other options. The three chosen algorithms are 

presented next. 

6.3 Allocation Algorithms 

6.3.1 Greedy Spanning Tree 

This algorithm finds a feasible mapping by greedy allocation. Tasks are allocated 

independently, and there is no contention mechanism. That is, if task A is taking 

up a resource that task B values more, the resource is not reallocated to task B. 

Every task that is allocated has a single agent that allocates the entire task. The 

algorithm takes a task graph as input, and allocates submodules of the task 

similar to how a spanning tree is built in Prim’s algorithm [60]. Prim’s algorithm 

works as follows: Given a graph G = (V, E), take the edge with the minimum cost 

and put that edge in the spanning tree, place the two nodes that it connects in V’. 

Repeat the minimum cost edge selection until all vertices in V are in V’.  The 
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greedy algorithm chooses edges in the same way, however, it does not remove 

vertices from the task graph, as all edges in T must be mapped to P. 

The greedy task allocation algorithm will choose the first two tasks t1, t2, in the 

task graph T with the highest inter-communication rate. It will then allocate these 

tasks as close to each other as possible in the processor graph P to minimize 

communication cost. The mapping must be feasible, that is, all other constraints 

must be met. The link between t1 and t2 is then removed from the task graph T. 

Next, the algorithm will choose two tasks linked with the highest remaining 

communication cost, and allocate these. If one, or both, of the modules are 

already allocated to processors, the algorithm simply allocates the remaining task 

or finds the minimum communication path in P. As a slight modification, when 

the algorithm is allocating two tasks t1 and t2, the communication cost between t1, 

t2 and other previously allocated nodes will be taken into account.  

The allocation at each step is now reduced to allocating at most 2 tasks. 

However, if all possibilities are enumerated, this could still lead to 0(n2e2), where 

n is the number of vertices in P, and e2 is the number of edges in P. This is 

because there are at worst n(n-1) locations for the two tasks, and once a task is 

assigned to a location the best communication path between the two nodes must 

be established. This allocation of two tasks may also take place at worst m-1 

times. The allocation will instead follow a set of heuristics even for two nodes. 

First, the algorithm will evaluate the cost if the two nodes are allocated on the 
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same processor. The two tasks will be allocated as follows: scan all processors in 

P to determine if the two tasks can be co-located. If the tasks communicate with 

other tasks that are already allocated, choose the processor that minimizes the 

communication cost to these nodes. If the two tasks cannot be allocated on the 

same processor, do a gradient-based local search. In the gradient-based local 

search, assign the two tasks randomly to two processors. Take turns examining 

each task. When a task is examined, randomly choose another processor and 

evaluate whether swapping the task to this processor would improve the cost. If 

it does, move the task, if it does not, leave the task where it is, and look at the 

second task. If the allocation has not improved more than δ in the last k iterations 

of swapping, the allocation is done.  

Given: processor graph P=(v2, e2), a process graph T=(v1, e1) where v1 is a list of 
tasks and e1 is a list of edges, each edge connects two tasks.  

 

sortEdgesByCost(e1) 

while there are edges in e1  

    edge =  e1.pop_front() 

     task 1 :=  getFirstTask(edge) 

    task 2 = getSecondTask(edge) 

     if (MapOnTheSameNode(task1, task2, edge.bandwidth)) { 

           continue; 

     } 

     mapTask(task 1) 

     mapTask(task 2) 

     iter := 0 
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     do  

            t := task1 or task 2 in order 

            improve = swapProcessors (t) 

            if (improve < delta)   /* calculate # of iterations without improvement */ 

                   iter++ 

            if iter > k 

                   goto end 

     end do loop 

end – when all edges are scheduled 
 

Table 10: Pseudo code for the greedy algorithm. 

6.3.2 TASK Algorithm: Local Search for Graph Assignment 

This algorithm is taken from [61]. The algorithm constructs a list of the highest 

cost nodes and then evaluates if moving them to new positions will improve the 

task allocation cost. [61] defines several terms: 

• Entry node where data is created (enters the task graph) 

• Exit node where data is consumed (exits the task graph) 

• Weight of a node w(ni) is the cost to execute task ni 

• tlevel(ni) the largest sum of communication and computation costs at the top 

level of a node ni (from an entry node to ni) excluding its own weight w(ni) 

• blevel(ni) the largest sum of communication and computation costs at the 

bottom level of node ni, (from ni to an exit node) 

• CP The critical path is the longest path in the task graph, that is, the path with 

the highest communication & processing requirements 
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•  

! 

L(ni) = tlevel(ni) + blevel(ni)

LCP =max{L(ni)}
 

If the graph has been scheduled 

• pe(ni) is the processor that task ni is scheduled on 

• p(ni) is the predecessor node that has been scheduled immediately before 

node ni on pe(ni). If no other node has been scheduled on processor pe(ni) then 

p(ni) is set to 0 

• s(ni) is the successor node that has been scheduled immediately after ni on 

pe(ni)  

The TASK algorithm starts from an initial, feasible schedule. It guarantees for 

each step thereafter that the allocation either improves or stays at least as good. 

The initial allocation marks every edge in the task graph T unvisited. In addition, 

if two tasks are scheduled on the same processor, a pseudo edge of weight 0 is 

inserted between the two tasks, this creates a modified graph T’. There is also a 

variable called nextk for each processor k, and it points to the next task scheduled 

on processor k that has not yet been visited by the local search algorithm. Initially 

nextk points to the first node scheduled on k. A node is ready to be visited by the 

search algorithm if all its parents in T’ have been inspected. 

The Task algorithm is described in pseudo code given below. 
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Given: an initial schedule of nodes in the task graph T=(v1, e1) onto processors in 
the processor graph P=(v2, e2) 
Find LCP and each node ni ∈ LCP 

while there are nodes to be scheduled: 

   ni := a node in LCP that is ready 
   find Lt(ni) where  
    Lt(ni) = min{k ∈ v2}Lk(ni) = tlevel(ni)+blevel(ni)  
    (node i is feasibly scheduled on processor k) 
    if (t == pe(ni))   
          do nothing 
    else  
           move node ni from processor pe(ni) to t 
           modify pseudo edges in T’ 
           propate tlevel of ni to its children  
     end 
     mark node ni as scheduled 
end – when all nodes are scheduled 
 

Table 11: Pseudo-code for the TASK algorithm. 

The complexity of the algorithm is 0(e + mn), where e is the number of edges in T, 

m is the number of nodes, and n is the number of processors. 

The initial allocation will be a greedy allocation that starts by allocating all entry 

nodes first. Then non-entry nodes whose’ parents have been allocated, are 

allocated. Each allocated is made so as to minimize the communication cost 

previously allocated nodes. When a single node is allocated the best allocation 

can be found by exhaustive search. The communication cost to already allocated 

nodes is found via the iterative deepening depth-first search algorithm [62]. 
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The basic TASK algorithm does not deal with multiple processes or contention. 

This paper proposes a modification to TASK, where the individual processes are 

combined to form a larger graph for TASK to map. When a process is allocated, 

first execute TASK on the individual process. Consider this as an initial 

allocation of all sub-tasks on the sensor network and mark all edges and nodes 

unvisited. Then perform TASK on the super-set of processes. Note, insert pseudo 

edges between sub-tasks allocated on the same processors, even if the two sub-

tasks do not belong to the same process. 

6.3.3 Genetic Search Algorithm Combined with a Bidding Market 
Protocol 

The third algorithm applies a genetic algorithm solution presented in [63]. The 

genetic algorithm finds the best heuristic mapping for a single process. The 

results of the genetic algorithm are combined with a market protocol algorithm. 

The market protocol manages contention between processes by allowing 

multiple processes to bid for a resource in a decentralized fashion.  

Each process has an agent that executes the genetic search algorithm on its 

behalf. The genetic portion of the algorithm is not decentralized. This is not a 

large drawback for the scheme, because the genetic algorithm is only centralized 

for an individual process, and it is still decentralized with respect to other 

processes that are being mapped simultaneously. The task allocation (bidding) is 

decentralized. The genetic search algorithm probabilistically searches and 
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evaluates a set of solutions. Thus, it not only provides the best heuristic solution, 

but also searches through others that may be nearly as good. When a process 

cannot obtain a resource from its best choice by bidding, the process will try its 

next best alternative, which is given by the genetic algorithm. 

The genetic algorithm works as follows: Choose a population size Np and a 

number of generations Ng. Then build the first chromosome according to task 

priority. A chromosome, in this context, is just an ordered list of sub-tasks. The 

task priority is given by the sum of communication costs in and out of the task. 

The first chromosome is then randomly perturbed until a population size of Np is 

reached. This is the first generation. To create the next generation, apply the 

mapping heuristic to generate a solution for each chromosome in the population. 

Save the mapping solution and cost. Calculate the cost and fitness of each 

chromosome, and apply crossover and mutation to the fittest chromosomes to 

form a new population. This occurs for Ng generations. When the algorithm 

terminates, the k best solutions can be obtained by taking the mapped solution 

for the k fittest chromosomes.  

The mapping heuristic in [63] considers only computation cost. Thus, the 

mapping heuristic used in this paper is adapted to consider communication cost. 

The mapping heuristic, given a chromosome x, is as follows: Allocate nodes in 

the priority order of the chromosome x. Each node is allocated to minimize the 

communication cost to those already allocated. As described for the Greedy 
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algorithm, the best allocation can be found by exhaustive search, where each 

processor is tried, and the communication cost (cheapest path to already allocate 

nodes) is found via the iterative deepening depth-first search algorithm. 

The fitness of each x chromosome is given: 

! 

f (x) =
(MaxCost " cos t(x))

t

(MaxCost " cos t( j))
t

j=1

Np

#
 

where MaxCost is the communication and computation cost of the worst 

chromosome’s mapping, and  cost(x) is the cost of chromosome x’s mapping. t is 

a fitness scaling parameter that balances convergence and diversity. In this case t 

is set to 3.  

After each step, chromosomes for the next generation are created via crossover 

and mutation. In [63] a one-point crossover is applied when the priority values 

immediately to the right of a randomly selected cross-site are swapped between 

two mating chromosomes. Mutation occurs when the priority of the site is 

randomly perturbed. Chromosomes are selected for crossover or mutation 

probabilistically according to their fitness value. The probability of a 

chromosome being selected is 

! 

f (x)

f ( j)
j=1

Np

"
.  This means that chromosomes with 

higher fitness values contribute more to the next generation. Crossover and 

mutation are done Nc and Nm times such that Nc + Nm = Np. In this case Nc = 2⋅Nm 
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which means that 2/3 of replications are crossovers and 1/3 are mutations. After 

nodes have selected their k best solutions, they bid on those solutions. The 

solution they bid on contains a bundle of resources. Thus, combinatorial auctions 

must be held to obtain the bundles of goods. A combinatorial auction allows 

bidders to submit a single bid for a bundle of items. Winner selection in 

combinatorial auctions is also NP-hard. The solutions to combinatorial problems 

are typically centralized and require bidders to submit bids for all combinations 

of items [64]. However, [65] proposes an iterative solution to the combinatorial 

auction, where the auctioneer will iteratively raise the price of a contended good. 

Iterative auctions are more vulnerable to bidder manipulation and collusion. 

However, for the purposes of this work, agents will not price anticipate or delay 

their bidding.  

At each iteration r, the price λrp of a contended good p is adjusted so that:  

! 

"p
r + 1

= max{0, "p
r

+ s dip
i=1

M

# $1}           

Where dip = 1 if process i bids on resource p and s is a step-size parameter. The 

agents who bid on behalf of a process determine their bids by taking the 

normalized difference in cost between the k best solutions. If an agent is bidding 

on solution i out of k, the bid value is 

! 

cos t( j +1) " cos t( j)

cos t( j)
j= i

k"1

# +1. During the 

iterative bidding process, agents may raise their bidding price by s at each step 
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(up to a maximum of d⋅s) if the contended resource appears in d of a process’s k 

best solutions.   

6.4 Simulation Setup 

The Omnet++ [54] network simulator was used for this work. For the lower 

layers, a standard fading channel was used with an Aloha MAC (both of these 

are provided by the mobility framework). At the network layer, geographic 

routing and addressing was used.  

The simulation consists of 400 nodes randomly placed in a 1000m x 800m 

rectangle. The nodes have a radio range of approximately 150m. The network is 

heterogeneous, featuring nodes with 3 amounts of availability: 99.9%, 95% and 

80% availability.  Processing power, dynamic memory and bandwidth are 

randomly assigned to nodes. In this model, bandwidth is assigned to individual 

nodes, and can be used either to send or receive. When two nodes are 

communicating at rate k the remaining bandwidth decreases by k.  This is just a 

high-level model and not meant to represent underlying medium access routines 

(TMDA, CDMA etc.). The nodes are also assigned to one of ten locations based 

on their coordinates within the square. 

When a node is available, it wakes up every unit of time and decides with 

probability 0.01 to instantiate a new process with a random lifetime. The time 

step, process lifetime and probability were adjusted so that on average there 
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were 20 tasks mapped on the network at a time. The simulations generated a 

total of 300 tasks to be mapped on the network. 

Tasks are also randomly generated. First the number of tasks is randomly 

selected from a uniform distribution of 4 to 14 tasks. Next, each task is randomly 

assigned memory, processing and availability constraints. Each task is assigned 

an availability that is uniformly selected between 50-90%. These tasks may not be 

assigned on nodes with availability less than their requirements. Then, the task’s 

connectivity is decided. On creation, a task communicates with any other 

previously existing task with probability 0.1. If tasks do communicate, the 

required bandwidth is randomly selected from a uniform distribution. Once this 

random assignment is complete, the tasks are divided into two groups: 

connected, and disconnected; and edges or random bandwidth are inserted until 

the disconnected group is empty. 

For the second algorithm, there is a periodic adjustment of all tasks every 30 time 

units. For the third algorithm, genetic search and bidding, agents receive bids 

asynchronously; an agent will wait at least 2 time units before allocating 

resources to a bidder. Once a resource has been allocated, it cannot be reallocated 

for another 10 time units. However, if an agent receives a higher bid for the 

resource after 10 time units, it is free to reallocate it to the next highest bidder. 

The algorithms were also modified to map processes incrementally. The mapper 

first scans the network to see if any sub-task in the process is already running on 
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the network (as part of another process). If a task is found, it is marked as 

allocated. These allocated tasks are “fixed points” in the allocation algorithms. 

Their only constraint is to then allocate the other tasks that communicate with 

the fixed tasks. 

In order to evaluate the performance of the algorithms, they were compared to 

the optimal algorithm. The optimal algorithm was implemented as an exhaustive 

search and took prohibitively long to simulate. Thus, in order to compare 

performance, the optimal algorithm was simulated on a smaller network of 80 

nodes with only 4 locations. For the optimal comparison, only three processes 

were created and mapped, one with 4 tasks, 9 tasks and 14 tasks respectively. 

Last, a regular topology is used as a control. In a regular topology it is possible to 

easily calculate the optimal allocation; all 800 nodes are placed on a grid, there 

are still 10 rectangular locations or regions, and the nodes all have the same 

computation, communication, and memory capabilities. The regular topology 

illustrates the differences between the algorithms and how close they come to the 

optimal. The two task descriptions, shown in Figure 10, are used. Figure 10 

shows the location constraints of the tasks as well as the communication rate 

between subtasks (labeled on the edges). Tasks A, B, and C are restricted to 

location 1 while tasks D and E are restricted to location 2. The two tasks in Figure 

10 differ only in the communication cost of two links. This was chosen to 

illustrate its impact on the mapping algorithms. Moreover, location 1 and 2 are 



Chapter 6 Task Allocation 

93 

adjacent to each other and the node capabilities are sized so that three tasks can 

fit onto a single node. The optimal solution is then to allocate tasks A, B, and C 

onto a single node that is within 1 hop from nodes in location 2, and to allocate 

tasks D and E on a node in location 2 that is one hop away from the node on 

which Tasks A, B, and C are allocated. 

  

Figure 10: Two task descriptions. 

The key to mapping these tasks efficiently is mapping tasks C and D on the 

border between location 1 and 2. The three algorithms map tasks differently. 

Take the greedy algorithm, for configuration 1, it will map tasks D and E first 
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because they have the largest communication link connecting them. These tasks 

can be mapped on any node in location 2 and are not guaranteed to be mapped 

near location 1. Therefore when task C is mapped it may incur additional cost to 

transport data to wherever E and D are. However, in configuration 2, the link 

between C and D is the largest and therefore tasks C and D are mapped first. The 

algorithm will place them one hop apart and the remaining tasks will be placed 

on the same nodes. For the second configuration the greedy algorithm will get 

the same result as the optimal algorithm. 

The TASK and genetic search algorithms map each task independently. For the 

TASK algorithm there is only one initial mapping. In configuration 1 task D is 

mapped first; and in configuration 2 task C is mapped first. The performance of 

the algorithm relies on the chance that a node close to the border of regions 1 and 

2 is chosen in for the initial task mapping. For the initial task that is mapped, all 

nodes in a region appear equal because there are no communication constraints. 

This is is also similar for the genetic algorithm, but it switches task mapping 

order and tries more combinations. Thus, it has a larger chance of picking a node 

close to the border for tasks C and D.    

6.5 Results 

The first results show the cost of mapping processes shown in Figure 10 onto the 

regular network. The genetic and bidding algorithm achieved the optimal 
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solution for configuration 1, and the greedy algorithm achieved the optimal 

solution for configuration 2. 

 Optimal Greedy Task Genetic + Bid 

Configuration 1 3 12 9 3 

Configuration 2 6 6 11 8 

Table 12:  Results of mapping two processes onto the regular grid network. 

The next set of results examines the performance of the allocation algorithms, 

comparing the resulting cost of the mapped processes.  Figure 11 shows the 

solution cost for each algorithm, including the optimal for the smaller simulation. 

In this case, genetic and bidding algorithm’s cost is about 30% lower than the 

greedy and TASK algorithms for the tasks that are mapped. The genetic search 

and bidding algorithm performs within 5% of the optimal algorithm. On the 

other hand, the greedy and the TASK algorithm have similar performance for the 

smaller tasks’ mapping. However, the TASK algorithm performs slightly better 

on the larger task’s mapping. Figure 12 shows the average mapped cost across all 

tasks for the different algorithms. The cost has been normalized so that the 

greedy cost is equal to one. The results in Figure 12 show a much smaller 

performance increase of the genetic and bidding algorithm over the 

greedy/TASK algorithms. Results show that the genetic algorithm produced 

only 6% better mapped cost than the greedy algorithm. The difference between 

the TASK and greedy algorithms are about the same; the task algorithm 

outperformed the greedy algorithm by a small margin.  
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Figure 11: Mapped costs for 3 processes vs. different algorithms including optimal 

exhaustive search. 

One explanation for the difference in performance of the genetic and bidding 

algorithm is when only three tasks were mapped, the tasks always obtained their 

first choice. However, in the larger experiment, on average 20 tasks were 

mapped onto the network simultaneously. Therefore, in the bidding stage, 

processes could not always obtain the resources that comprised their first 

choices, and had to settle for a less optimal mapping.  Figure 13 shows the 

percentage of times that nodes obtained their nth choices. 71% of times nodes 

were able to obtain their first choice. However, in 9% of cases nodes could only 

obtain their fourth choices. 
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Figure 12: Average mapped cost for tasks vs algorithm type. 

Further, Figure 12 shows the average mapped cost for the incremental version of 

the algorithms compared to the non-incremental cost. Contrary to intuition, the 

incremental mapped cost is lower than when each task is allocated 

independently of what is already on the network. The reason is that the mapping 

is resource constrained and sharing resources frees up more resources for 

subsequent mappings. These subsequent mappings are then more optimal. 
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Figure 13: Tasks' choice obtained in they genetic search + Bidding algorithm. 

Figure 14 also shows the mapped cost for different algorithms, however, the 

results are also categorized by process size, the number of tasks that a process 

contains. Results are normalized to the cost of the greedy algorithm for 4 tasks. 

For all algorithms, the cost increases monotonically with the number of tasks. For 

the greedy algorithm, the cost of mapping increases 4 times as the number of 

tasks go from 4 to 9 and then doubles when the number of tasks increase from 9 

to 14. Again the genetic and bidding algorithm outperforms the other two 

algorithms. However, the difference is less for small tasks because there are 

fewer degrees of freedom, so the additional searching and mapping yields fewer 

results 
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Figure 14: Average mapped cost for application sizes vs algorithm type. 

The TASK algorithm actually performs worse than the greedy algorithm for the 

extreme processes – those with a small or large number of tasks, but performs 

better for the average processes. This is most likely because it maps the node 

with the highest bandwidth by itself first. That node has high-bandwidth links to 

other nodes and if that node is mapped to a processor that cannot accommodate 

the other nodes the high bandwidth works against it. The greedy algorithm 

prevents this problem by mapping high bandwidth links (i.e. two tasks at a time) 

first, while the genetic search searches through multiple mapping orders to avoid 

this problem. 

The performance difference can also be seen by looking at the number of tasks 

that are mapped on the same processor. Figure 15 shows a histogram of tasks 

mapped together for processes containing 9 tasks. The histograms show on 

average how many times processors contained a single task, 2 tasks and 3+ tasks. 
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Note, on average, 4 tasks were mapped to a processor less than 0.01 times per 

mapping, and 5 tasks were never mapped to a single processor. 

 
Figure 15: 3 Histograms of the number of times tasks were mapped n to a processor. 

From Figure 15 it can be seen that it is more common to have tasks mapped 

alone, out of 9 tasks, an average of 5 are mapped alone across all algorithms. 

However, the genetic algorithm and bidding performs better than the other two 

because it has the lowest single task per processor and the highest 3+ tasks per 

processor.  On the other hand, the greedy algorithm has a higher rate of 

grouping tasks together than the TASK algorithm. The greedy algorithm tries to 

map tasks together more aggressively, however, the performance of the two 

algorithms was close, so it stands to reason that the greedy algorithm could not 

find a good mapping for the tasks it could not group together. 
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The next set of results show the complexity of the mapping algorithms. The 

complexity has been normalized so that the complexity of the non-incremental 

greedy algorithm is one. The complexity was calculated by summing the number 

of processors that the algorithm considered when placing each task. Figure 16 

shows the mapping complexity for each algorithm. As expected, the incremental 

algorithms have lower computation complexity than their corresponding non-

incremental versions. This is because some tasks are fixed and the problem 

effectively becomes smaller. The TASK algorithm incurred additional 

computation cost during its adjustment phase every 30 time units.  

 

Figure 16: Mapping complexity vs algorithm type. 

The greedy algorithm is the least complex, the TASK algorithm is about four 

times more complex and the genetic algorithm is 12 times more complex because 

it evaluates 9 mappings for each process (3 generations and a population size of 
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3). These ratios are the same for both the incremental and non-incremental 

algorithms respectively. The mapping complexity does not cost the sensor 

network energy in terms of communication cost, however, the 12 times overhead 

for the genetic algorithm only yields a 6% improvement in mapped cost.  

Figure 17 shows the initial mapping complexity for the three algorithms for 

different task sizes. The re-computation cost is not included per process because 

it is done for all tasks together. The computation complexity grows super-

linearly; the complexity difference to map a process with 14 tasks is about 10 

times more than to map one with 4 tasks. 

 

Figure 17: Mapping complexity for different task sizes vs algorithm type. 

 
Unlike the greedy algorithm, the TASK and genetic search algorithms incurred 

other overhead during the course of the simulation. The TASK algorithm did 
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adjustments every 30 time units. The genetic and bidding algorithm incurred 

additional costs due to the fact that processes’ agents had to bid on resources and 

had to re-bid if they did not obtain their first choice. Agents could also lose a 

resource that had been allocated to them, in which case they would have to re-

bid for other resources. Table 13 shows the number of processes that were moved 

from their original allocation during execution, the cost of moving the process, 

and the cost of any additional bids to obtain the new resources. 

Algorithm Proc moved Cost to move Cost of add bids  
Task 30 20 0 
Gen+Bid 10 10 102 

Table 13: Additional communication costs incurred during simulation. 

The cost to move the process was normalized to the cost that it would take on 

average to map a process. For the TASK algorithm, 30 processes were moved at a 

cost of normally allocating 20 processes. The cost to move a process is lower, 

because during the adjustment only a few tasks of a process are moved. For the 

genetic and bidding algorithm, the cost to move the process is equal to the cost of 

mapping a process from scratch. In terms of the total overhead added by moving 

tasks, bidding adds a 10% overhead (considering that mapping 200 processes 

would normally incur 200 in normalized cost) and TASK adds a 20% overhead.  

The genetic and bidding algorithm adds additional overhead even if no tasks are 

moved, because processes do not always obtain their first choice. The process 

needs to resubmit bids for its second through fourth choices. The last column in 
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Table 13 shows the overhead for all additional bidding. This overhead is 

significant at 51% of the cost to map a task. Last, in the bidding and genetic 

algorithm, the process is not mapped immediately. On average it took 2.6 units 

of time for a process to be mapped. 

6.6 Discussion 

This chapter presented a formal problem definition for the file allocation 

problem. Three algorithms were presented and empirically compared. The 

algorithms mapped each task independently, or followed an incremental 

approach where sub-tasks were shared across processes. The incremental 

approach yielded a lower mapped cost for all algorithms because it freed up 

more resources in the network. The incremental approach also had lower 

computation complexity. Out of the three algorithms the genetic search and 

bidding algorithm performs the best. However, it only yielded a 6% performance 

increase while adding a 61% communication overhead and a 12x computation 

complexity increase. In addition, the bidding algorithm also introduces a delay 

before the process is mapped onto the network. Due to the excessive overhead of 

the bidding algorithm, it may not be appropriate in the sensor network context 

where low complexity is very important.  

The TASK algorithm performed only marginally better than the greedy 

algorithm (one percent) while still adding 20% communication overhead and 4x 
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complexity. Thus, for sensor networks the greedy algorithm was the best in 

terms of a performance vs. overhead tradeoff. 
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7 SNSP TinyOS Implementation 

This section outlines the implementation that was done on two mote platforms. 

The final goal of the implementation was to build a proof-of concept SNSP 

platform and take measurements to evaluate the performance of the content 

replication service and task allocation service. The remainder of this chapter is 

organized as follows: Sections 7.1 gives an introduction to the demo and the 

process of building it. Sections 7.2 through 7.4 give a more detailed overview of 

the network hardware, applications, persona and the gui. Section 7.6 presents 

measurements that were taken from the testbed and Section 7.7 concludes with a 

discussion. 

7.1 Creating the Implementation Scenario 

There are two important aspects of SNSP that the implementation must 

demonstrate: First the multi-platform aspect of SNSP showing applications that 
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are agnostic to the hardware platform and can communicate cross-platform. The 

second is the dynamic mapping and content replication outlined in chapters 5 

and 6. As such the implementation occurred in two phases. The first phase, a 

complete application with the requisite sensors and actuators, was implemented. 

It consisted of both Mica2 [66] and Telosb nodes [67]. Initially, all content was 

stored on the laptop that formed the bridge between the Telosb and Mica2 

networks. The implementation had no dynamic mapping. The initial applications 

on the testbed were fire alarm control and HVAC control (thermostat) with 

demand response [68]. Demand response (DR) is fully explained in Section 7.3.1. 

These applications also incorporated persona. Figure 20 shows a picture of the 

initial hardware used, while Figure 22 shows the application GUI, which 

demonstrates the active applications and the persona on the testbed. Details 

about the hardware and the GUI are discussed in Sections 7.2 and 7.5. 

Phase 1 was then augmented with the content management and replication 

algorithm, described in Section 5.3.2, and the greedy dynamic mapping scheme, 

described in Section 6.3.1. In order to make the mapped applications more 

interesting, several virtual sensors and actuators were added to the testbed. The 

node pretends it has a sensor or actuator attached to it and registers this 

information with the content repository service so it can be used by other 

applications. This allowed the testbed to support a wider variety of applications 

for mapping. 
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7.2 Testbed Setup 

7.2.1 Hardware 

The testbed consisted of 40 nodes, 31 Telosb nodes and 9 Mica2 nodes. The Mica2 

nodes are older generation nodes made by Crossbow. Figure 18 shows an image 

of the Mica2 mote. The Mica2 mote is typically powered by 2 AA batteries, and 

can tolerate a voltage range of 2.7-3.3V. There is also an external power 

connector. It has a 51 Hirose connector that connects to an expansion board (also 

made by crossbow). This expansion board allows one to connect sensors and 

actuators to the analog to digital (ADC) converter channels of the mote. The 

Mica2 has a 10-bit ADC that has 8 channels with 0-3V input. 

 
Figure 18: Annotated Mica2 mote (taken from [66]) 

The Mica2 uses the Chipcon CC1000 (see [69] for data sheets), FSK modulated 

radio and can come in three models according to their RF frequency band: the 

MPR400 (915 MHz), MPR410 (433 MHz), and MPR420 (315 MHz). The 915MHz 
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model was used in the testbed. The microcontroller is an Atmega128L micro-

controller. In order to program the Mica2, an additional board is required. For 

the testbed, the MIB510 Serial Interface Board [70] was used, which allows 

programming over the parallel port, as well as communication with the mote 

over the serial port during operation. The Mica2 has 128k bytes of program 

memory, 512Kb of external flash storage for data, and 4Kb of RAM. 

Telosb, the second platform that is used in the testbed is made by Moteiv [67]. 

Figure 19 shows a detailed view both the back and front sides of a Telosb node. 

The Telosb nodes use a 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless 

Transceiver (see [69] for features and usage). The node may be powered by two 

AA batteries in the operating range of 2.1 to 3.6V DC. The Telosb node has a USB 

port for programming or communication. Tmote Sky uses a USB controller from 

FTDI to communicate with the host computer.  In order to communicate with the 

mote, the FTDI drivers [71] must be installed on the host.  FTDI provides drivers 

for Windows, Linux, BSD, Macintosh, and Windows CE. The Telosb node also 

receives power from the USB port.  

The microcontroller is a Texas Instruments MSP430 F1611 microcontroller 

featuring 10kB of RAM, 48kB of flash, and 128B of information storage. The node 

has 1024kB of external flash to store data, 8 external ADC ports and 8 internal 

ADC ports.  The ADC internal ports may be used to read the internal thermistor 

or monitor the battery voltage. Tmote Sky has two expansion connectors, a 10-
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pin IDC header and a 6-pin IDC header, for connecting peripherals. The 

connectors provide digital input and output signals as well as and analog inputs.  

 
Figure 19: TelosB mote (taken from [67]) 

Figure 20 shows the components used in the first implementation of the testbed. 

The laptops are used as display, the TelosB and Mica2 nodes are either visible by 

themselves, or in enclosures connected to peripherals. The smart thermostat 
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(black box with two knobs in Figure 20) contains two Mica2 nodes that are 

connected to the rotating potentiometers via GPIO pins. The fan is turned on and 

off by another Mica2 node connected to a digital switch in the blue box. 

Figure 21 shows the expanded testbed of 30 Telosb motes on which the 

application mapping was tested. This time the nodes are all wired together with 

USB that provides power to them. All communication is wireless. It should also 

be noted that the nodes are all within one communication hop from each other. 

 
 
 

 
Figure 20: Testbed with HVAC control and DR that bridges Mica2 and TelosB nodes. 
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Figure 21: 31-Node testbed, powered via USB & batteries. 

7.2.2 Location and Connectivity 

While the nodes are all close to each other in the lab, the testbed is situated in a 

virtual house with 8 rooms. The layout of the house is reflected in the GUI, 

which is shown in Figure 22. The connectivity was artificially restricted so that 

only adjacent rooms could communicate with each other. This resulted in a 

maximum of four hops across the house. All addressing is done via location, 

based on the semantic locations that are outlined by the application. 

7.2.3 Sensors and actuators 

Several real and virtual sensors were used in the testbed. First, the Telosb’s built-

in temperature sensor is used to measure temperature. Sensirion AG 
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manufactures the sensor, more information can be found in the SHT1x datasheet 

available at [72]. Second, the comfort and desired temperature sensors, which 

comprise the smart thermostat, are rotating potentiometers that are attached to 

an ADC pin on the Mica2 nodes. Virtual sensors include: indoor motion sensor 

(achievable via light beams), door/window position sensors (achievable via 

magnetic contacts), a smoke detector, and a price signal detector. 

For the actuators, the HVAC can be switched on and off by a Mica2 mote. An 

electro mechanical switch connected to a GPIO pin controls the current to the 

fan. The switch takes 12V input and, in order to allow the 3V GPIO pin to switch 

it on and off, a transitor switch is placed in front of it. The second actuator is a 

board with three large LED’s, used to indicate the price electricity. These are 

simply connected to the node’s GPIO pins. The third actuator is a fire alarm, 

which consists of a buzzer connected to a node’s GPIO pins.  

7.2.4 Content Replication & Capacity 

As mentioned above, the probabilistic replication scheme was implemented. This 

scheme will replicate the content with probability 1/p on any read. On a write, 

all replicas are deleted with probability 1/√3p. In the implementation, the 

content replication service has a single cluster head that keeps track of where the 

data is replicated. This cluster head is located in the dining room of the house 

and is reachable by all nodes. Every node can store up to 10 content items locally. 

The content in the network is made up of the service descriptions that are 
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accessed when tasks are mapped onto the network. There is a total of 60 content 

items (determined by the services in the network).  

7.2.5 Task Allocation 

In the implementation, nodes in the network decide when to map applications. 

When a node decides to map an application onto the network, it must first query 

the content management service to find out where the other services are in the 

network. When the node receives the information it runs the greedy algorithm to 

decide where to place the tasks in the network.  

7.3 Applications 

There are 6 main applications that nodes can instantiate. A main application in 

this case means that nothing else is using it as a service. The main applications 

are: HVAC control (standard), HVAC control with DR, Home security, tracking 

children, localization, and fire system control. The interaction of HVAC control 

with DR is explained in Section 7.2.1, and Motetrack (a practical implementation 

of localization [44]) is explained in Section 7.2.2. There are 4 other complex 

services that these applications use. A complex service is one that uses other 

services. The four complex services are: Perimeter security (uses door/window 

sensors in different locations in the house), Internal security (uses some 

door/window sensors and internal motion detector), DR display (controls 
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aggregate of individual DR displays), and temperature aggregation (provides 

average temperature from a number of rooms).   

7.3.1 Demand Response and HVAC Control 

In electricity grids, demand response (DR) refers to mechanisms to manage the 

demand from customers in response to supply conditions. The goal of DR is to 

smooth out the energy usage curve so that resources are not underutilized 

during low times, and so that the peak usage does not spike so high that smaller, 

less efficient plants need to be brought online to fill excess demand. Today, 

typically only commercial and industrial users participate in DR, and user critical 

peak shedding is usually achieved by calling customers a day ahead of time, this 

is known as the day-ahead market. [73] explains the types of programs offered to 

large customers. 

However, the real potential of demand response is to bring it to all customers, 

including residential customers. A 2006 Carnegie Mellon study [74] looked at the 

importance of demand response for consumers for the Pennsylvania-New Jersey-

Maryland Regional Transmission authority. Results showed that even small 

shifts in peak demand would have a large effect on costs for additional peak 

capacity: a 1% shift in peak demand would result in savings of 3.9%, billions of 

dollars at the system level. An approximately 10% reduction in peak demand 

would result in systems savings up to $28 billion (this is just for Pennsylvania, 

New Jersey and Maryland). 
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Sensor network technology is promising to instrument the home so that real-time 

pricing may be offered to residential customers. The particular flavor of demand-

response implemented on the testbed is one where the residence receives a price 

signal every 15 minutes. The user indicates a comfort level of how much they are 

willing to pay to be comfortable. Based on the comfort level, the sensor network 

will adjust the heating and cooling in the house, in addition to turning on/off 

other appliances. In the testbed, the sensor network controls a fan, and will also 

turn on red, yellow, or green lights on appliances to indicate the price of 

electricity to users. The threshold at which red, which means expensive, is 

displayed depends on the comfort-level chosen by the user.  

7.3.2 Motetrack Localization 

Motetrack [44] is an RF localization algorithm developed by Harvard. There are 

two types of nodes in Motetrack, beacons and the target node. The target node 

must first be trained with the beacons before localization occurs. During the 

training phase, the target beacon is moved around the area where localization is 

to occur. At certain locations, it is given the coordinates and then collects a 

signature of all the beacons’ rf transmissions at the given coordinates. The target 

node in effect builds up a database of signatures at the different locations. After 

the training phase the node is ready to enter the localization phase. During this 

phase it tries to match the rf signature that it is currently receiving with ones in 

its database. The estimated position is a mixture of the locations. 
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The beacon nodes hop on a number of selected channels N and transmit a beacon 

every 100ms. The target node also hops on these channels with a frequency of N ⋅ 

100ms, where N is the number of channels. This ensures that the target node 

receives a message from every beacon on the target frequency. However, it also 

ensures that the nodes cannot participate in a normal network for other 

communication.  

In order to adapt motetrack to work with SNSP, the nodes have to return to the 

default channel to participate in the network. The beacon nodes are modified to 

stay on the default channel until they need to transmit a beacon. Beacon nodes 

then go to the specified channel, transmit the beacon and return to the default 

channel. They also provide a radio interface to SNSP. SNSP can use the radio 

interface to determine if the radio is busy (off the default channel) or not.  

The target node needs to hop to all the frequencies that the beacons are being 

transmitted on for a larger amount of time to receive all beacons. Because the 

radio’s frequency switching is rather slow (>10ms), the target node instead does 

50% duty cycling. This means that it stays on the default channel for N⋅100ms, 

and then hops to the first channel and receives beacons on it for N⋅100ms. It 

continues alternating between the default channel and the next beacon frequency 

so that it cycles through all N beacon frequency channels. The target node also 

exposes the radio interface to SNSP.  
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The modified motetrack along with SNSP was deployed at Telecom Italia’s lab in 

Berkeley. Measurements indicated an accuracy of ±2m in the office. With further 

smoothing of measurements (when in a room the estimates will be in that room 

90% of the time and 10% will be just outside) the accuracy could be improved. 

However, motetrack’s performance was good enough to identify most of the 

time whether the target was in one of the 7 offices, the conference room, the 

kitchen, or the cubicle area. 

7.4 Persona 

The implementation included persona: there is a homeowner and a fire 

department. In the implementation, a persona may have permissions and 

properties. The third persona aspect, preferences, is not included in the 

implementation. When a persona is present in a space, it registers with the 

content management and repository service. Currently the persona sets its 

permissions in the network. That is, it notifies both the content repository service 

and the corresponding service in the network of any access restrictions. When 

the content management and repository service is queried, it will return only the 

results that a persona may access, i.e. results of services that have not been 

restricted by another persona. Similarly, a service will only respond to a query 

from a persona that has authorization to query. All services start out without any 

authorization restrictions.  
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7.5 Testbed User Interface 

The User Interface is meant to visually demonstrate the activity in the network. 

The UI consists of a GUI that shows all the services registered with the content 

repository as well as the services that are active in the network. Figure 22 shows 

a screenshot of the GUI. The top area displays the names and locations of 

network services. The bottom portion shows the layout of the house. Services 

pop up at their locations when they activate. Services are displayed as boxes and 

personae are displayed as triangles. The boxes are color coordinated to show 

permissions. In Figure 22 the box in bedroom 1 is red, indicating that it may be 

accessed by only the fire department. In the first demonstration, all services 

appear in the lower portion of the GUI (on the house map) and complex services 

show a list of other services that they are using. In order to demonstrate dynamic 

mapping, the GUI was modified so that only the complex services appear when 

they are activated and disappear again as they are unmapped. 
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Figure 22: GUI showing the house, repository services, and applications that are 

mapped on the network. 

7.6 Experiment 

7.6.1 Setup  

The testbed for the content management and task allocation experiment consists 

of 31 TelosB nodes. Each node has an additional TinyOS module that wakes up 

at 10 second intervals and then decides with probability 0.01 to instantiate one of 

the applications. The module is provided with a list of 10 applications which it 
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can instantiate and it chooses one randomly. The applications are composed of a 

list of other services that communicate with each other. The module then queries 

to repository to find out where the requisite/equivalent services are. As its local 

middleware copy receives responses from the content management service it 

decides with probability 0.1 to cache a local copy. The node may store up to 10 

items locally. The module then sends activation messages to the services that it 

has decided to use in the network. 

The module also decides what the lifetime of the application is. The average 

application lifetime is 40 seconds. These time constants were chosen so that the 

experiment would map a reasonable number of applications in a short time. 

Once an application has exceeded its lifetime, the original module that mapped 

the application deactivates it, and each sub-service comprising the application. 

Further, the experiments were conducted with two network configurations. In 

the first configuration, the node capacity was assigned so that on average 2 tasks 

(a maximum of three tasks on nodes with larger capacity) could be mapped onto 

the same node. For the second configuration, an average of 3 tasks, and a 

maximum of four, could be mapped onto the same node. Note that the sub-tasks 

in the application all had the same CPU requirement. 

As mentioned above, there is 60 total content items in the network. The 

experiment ran for 85 minutes and in that time 517 applications were 

successfully mapped onto the test network. Results regarding the performance of 
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the content management and task allocations algorithms are collected every 8 

minutes. 

7.6.2 Results 

The first set of results show the performance of the file allocation algorithm.  

Table 14 shows the number of replicas in the network over time. The number of 

replicas increases linearly as nodes access data remotely. At the end of the 

experiment there are 186 replicas, which means that the network is roughly 2/3 

full.  As the number of replicas increase, nodes should find more information in 

their local caches.  

Time (min) Replicas 
8 32 

16 54 
24 72 
32 97 
40 119 
48 135 
56 149 
64 169 
72 178 
80 186 

Table 14: Number of replicas as a function of time 

The lower line in Figure 23 shows the proportion (between 0-1) of queries for 

which results were found in the node’s local cache. This proportion increases 

from 0.07 at the start to 0.44 at the end of the experiment. The cost of retrieving 

content depends on how many results are found locally. The higher graph in 

Figure 23 shows the average cost, in number of hops, to retrieve each content 
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item (note, when content is found locally it has a cost of 0). The cost to find 

results decreases from 1.7 hops to just under 0.9 hops.   

 

 

Figure 23: Cost per content access and the proportion of content found replicated on 

the actual node. 

The time to map a process also depends on how many results are found locally. 

This is because a remote result is found by first querying the cluster head, and 

then the storage location in the content repository. Both of these steps are time 

consuming. Figure 24 shows the average amount of time it takes to map a 

process in milliseconds. This time includes finding and activating the relevant 

services. There is a decrease in the amount of time required to map a process as 

the number of replicas increases. The decrease in mapping time is steeper at the 
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start, and then levels off. This is because there is a fixed amount of time to invoke 

applications that remains unchanged by content management and replication. 

 

Figure 24: Time to map a process in milliseconds. 

The next set of results was collected somewhat accidentally. During the course of 

one run, a microwave was turned on and off as students heated their lunches. 

The microwave causes RF interference with the 2.4 GHz ZigBee radios. Figure 25 

shows the effects of the interference on the time to map an application. The 

microwave was turned about 50 minutes into the simulation. The time to map 

increases drastically from 300ms to 700-900ms. This is because packets are lost 

due to interference and nodes must retransmit the packets. 
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Figure 25: Time to map with rf interference. 

The task allocation cost is only compared across the two elements, higher and 

lower CPU parameters, of the simulation. The task allocation performance 

cannot be compared to the simulations conducted in Chapter 6. This is because 

there are too many parameters in the test network that does not match those of 

the simulations in Chapter 6, e.g. locations, number of nodes per location, 

application structure with location constraints etc.  

In the case of lower CPU availability per node, the mapping cost was 9% higher. 

Figure 26 shows two histograms of how many times four, three, two and one 

task respectively were mapped onto a single node. We see that for the lower CPU 

case, many more tasks were mapped individually (average of 3). The number of 

times 2 and 3 tasks were mapped together is about the same. However, where 
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the higher CPU configuration wins, on average 0.23 times 4 sub-services were 

mapped together, resulting in lower cost. 

 

Figure 26: Histograms of the number of times tasks were mapped n to a node for the 

two network configurations. 

7.7 Discussion 

This section presented a proof-of-concept implementation. Results showed that 

the content management and replication algorithm helped reduce cost incurred 

to access content and the time of task allocation. Further, real-world results 

demonstrated that RF interference, in the form of a microwave, increases the 

mapping time substantially. 
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8 Conclusion 

 

8.1 Summary 

This dissertation presented SNSP, a distributed service-based operating system 

for sensor networks. SNSP is a full-fledged operating system with memory 

management, location transparency, and resource allocation. SNSP enables a 

user to create modular code through services. Services separate the content of the 

service from its implementation, and provide a clean set of functional 

abstractions that can be re-used. Further, SNSP dynamically maps applications 

onto the network at runtime to minimize communication cost between modules 

in the application and to fulfill application constraints such as availability, 

location and sensor/actuator requirements.  

SNSP’s architecture is comprised of two types of services: OS-level services and 

user-level services. OS-level services are 1) content management and replication, 
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2) task allocation, 3) resource discovery & repository, 4) resource utilization 

monitoring, 5) application migration, 6) fault detection and recovery, 7) security.  

They form the core of SNSP. User-level services are modular applications written 

by users that conform to the interface specified in Chapter 4. These services are 

application-layer functionality that can be reused across sensor networks. 

This dissertation also presented and compared two sets of algorithms to achieve 

content management & replication and task allocation respectively. These 

algorithms were evaluated through simulation. A proof-of-concept 

implementation was also done on a sensor network testbed.   

To summarize, the contributions of the thesis are: 

• Identified and designed the core set of services for a distributed operating 

system 

• Devised a programming model that allows users to create applications that 

are very flexible and can be run across different platforms. 

• Created an integrated development environment (IDE) using Eclipse that 

allows programmers create and compile their SNSP sensC and .serv code into 

tinyOS code. 

• Developed a novel file allocation algorithm that outperformed the two 

algorithms selected for comparison in terms of cost to access data. However, 

the algorithm’s replication cost (overhead) was higher, resulting in an overall 

higher cost. 
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• Developed two file allocation algorithms: 1) a greedy file allocation algorithm 

based on Prim’s minimum spanning algorithm, 2) a hybrid genetic search and 

combinatorial auction algorithm. These two algorithms were compared to the 

optimal allocation (exhaustive search) as well as a third existing algorithm. 

The hybrid algorithm outperformed the other two algorithms and came close 

to the optimal allocation. However, its cost was more than 10 times that of the 

greedy algorithm for only a 6% benefit.  

• Proof of concept implementation of SNSP on a sensor network testbed. File 

allocation time and data access cost measurements from the testbed 

demonstrated the effectiveness in file replication to reduce both time and cost 

of allocating tasks.  

8.2 Future Perspectives 

This dissertation has provided the basic SNSP framework and thoroughly 

investigated two of its basic services. Although the other services were outlined, 

a thorough treatment of them would provide a variety of continuing research 

directions. For example, the implementation of security in SNSP is not specified 

in this dissertation. A great deal of research can still be done on two aspects of 

the security 1) its distributed nature and 2) low-power and low-complexity 

requirements. A low-overhead mechanism for fault detection and recovery may 

provide another research direction.  
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Further, the implementation was done on TinyOS, which does not support 

dynamically loadable code modules. Therefore, code was not 

transported/interpreted in the network, but simply activated. For a full SNSP 

implementation, further research is needed into devising a very compact code 

representation to reduce the overhead when a task is mapped.  
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Appendix I 

HVAC_CONTROL Application 

HVAC_CONTROL.serv 

 
ModuleName:HVAC_CONTROL 
DataIn:10                      /* units are kb/s */ 
DataOut:2 
Memory: 2                      /* units are kbytes */ 
Processing: 
ResourceReq:          /* Can also be left blank */ 
FaultTolerance:detection       /* values are recoverable, detection, nothing */ 
 
Service:0 
Name:TEMPERATURE 
Scope:KITCHEN 
QueryPeriod:5                 /* query once every 5 seconds */ 
Name:TEMPERATURE 
Scope:LIVINGROOM 
QueryPeriod:8 
 
Service:1 
Name:COMFORT 
Scope:SP_SCOPE_ALL 
QueryPeriod:10 
 
Service:2 
Name:DESIRED_TEMP 
Scope:SP_SCOPE_ALL 
QueryPeriod:10 
 
Service:3 
Name:PRICE 
Scope:SP_SCOPE_ALL 
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QueryPeriod:10 
 
Service:4                       /* this one will be queried by the app */ 
Name:HVAC  
Scope:SP_SCOPE_ALL 
QueryPeriod:0 
 

HVAC_CONTROL.h 

/*  
 * Place the names of locations and services here 
 * Note, the spelling & capitalization must be the same as that used in the 
 * .serv file 
 */ 
enum { 
 
  KITCHEN = 1, 
  LIVINGROOM = 2, 
  DININGROOM = 3, 
  BEDROOM1 = 4, 
  BEDROOM2 = 5, 
  BEDROOM3 = 6, 
  MASTERBEDROOM = 7, 
  BATHROOM = 8, 
   
  TEMPERATURE = 9, 
  PRICE = 13,  
  HVAC = 14, 
  COMFORT = 15, 
  DESIRED_TEMP = 16, 
  DISPLAY = 18, 
  HVAC_CONTROL = 19, 
  TEMP_MARGIN = 2,         
  OFFSET_INCREMENT = 60,  
 
/* eg persona  
 * OWNER = 22, 
 */ 
  
 /* some predefined values */ 
  TIMEOUT = 2, 
  BRIDGE = 17, 
  OFF = 2, 
  ON = 1, 
  SENSOR = 10, 
  ACTUATOR = 20, 
  CONTROL_TRIES = 3, //how many times you try to respond before timeout 
  REPLY_TRIES = 3, 
  ACTIVATE = 2, 
  DEACTIVATE = 3, 
  GUI = 20, 
 
}; 
 
typedef struct serviceUsage { 
   nx_uint8_t name; 
   sp_scope_t scope;  
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   uint8_t invID; 
   uint16_t ticksSinceRecv; 
   uint8_t network; 
   uint8_t type; 
   uint8_t ack; 
   uint8_t isThere; 
   uint16_t timeout; 
} serviceUsage;  
 
int invokeService(uint8_t fn, char *args, uint16_t arg_len, uint8_t id); 
void serviceResult(uint8_t fn, char *payload, uint16_t payload_len, uint8_t 
id); 
void terminate (); 
void invoke(); 
int requestService(uint8_t servNum, uint8_t servName, uint8_t fn, char *args, 
uint16_t argLen); 
int serviceRespond(uint8_t fn, char *results, uint16_t resLen, uint8_t id); 
 

HVAC_CONTROL.c  

#include "table.h" 
 
/*  
 * Place all the variables to store results from services used  
 * eg uint16_t sensorSample1 
 * uint16_t sensorSample2 
 */ 
  
uint8_t  m_active; 
uint16_t m_price; 
uint16_t m_desired_comfort; 
uint16_t m_desired_temp; 
uint16_t m_temp; 
uint16_t m_switch_state; 
  
/*  
 * during execution these will be filled in and updated with the name & scope 
of the 
 * equivalent service that exist in the network - see bottom of file for 
 * a definition of the struct 
 */ 
serviceUsage services[NUM_SERVICES_USED]; 
 
/*  
 * fill in, it will be called on initialization  
 */ 
void invoke()  
{  
       //defaults 
       m_active = 0; 
       m_price = 10; 
       m_desired_comfort = 2; 
       m_desired_temp = 70; 
       m_temp = 75; 
       m_switch_state = OFF; 
} 
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/*  
 * fill this in - it will be called every second 
 * Use it to process results, query more services, actuate etc.  
 */  
void executeControl() 
{ 
    uint16_t temp_setpoint; 
    uint8_t servName, fn, servNum; 
    uint16_t argLen; 
    char *args[10]; 
    argLen = 0; 
     
    if (!m_active) { 
     return; 
    } 
     
    temp_setpoint = ((m_desired_temp * 100) + ((5-m_desired_comfort) * m_price 
* OFFSET_INCREMENT)) / 100; 
    servName = services[4].name; 
    fn = services[4].name; 
     
    if ((m_temp >= (temp_setpoint + TEMP_MARGIN))){ 
     args[0] = ON;   
    } else if ((m_temp < (temp_setpoint - TEMP_MARGIN)) ){ 
     args[0] = OFF; 
    } 
     
    argLen = 1; 
    servNum = 4; 
    requestService(servNum, servName, fn, args, argLen); 
} 
 
/*  
 * Fill this in if you want other components to use this service 
 * it will be called on the service in response to a requestService call 
 * and it should call serviceRespond to pass the result back to the callee 
 * @param fn function that will be called 
 * @param args - arguments to the function 
 * @param arg_len length of the arguments (not null terminated)  
 * @param id -identifies the request, should be passed back to serviceRespond 
 * 
 *@return int return 0 if the service successfully invoked, 1 otherwise 
 */ 
int invokeService(uint8_t fn, char *args, uint16_t arg_len, uint8_t id) 
{  
    if (fn == ACTIVATE) { 
     m_active = 1; 
    } else if (fn == DEACTIVATE) { 
     m_active = 0; 
    } 
    return 0; 
} 
 
/* 
 * Fill in to process the result of a service query/invoke service  
 * @param fn - function name that was called 
 * @param payload - results 
 * @param payload_len - length of results (they are not null terminated) 
 * @param id - request id that was returned in requestService 
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 */ 
void serviceResult(uint8_t fn, char *payload, uint16_t payload_len, uint8_t id) 
{ 
    /* since we specify query periods, the crs will automatically query these 
for us */ 
    if (id == services[0].invID) { 
     m_temp = payload[0]; 
    } else if (id == services[1].invID) { 
     m_desired_comfort = payload[0]; 
    } else if (id == services[2].invID) { 
     m_desired_temp = payload[0]; 
    } else if (id == services[3].invID) { 
     m_price = payload[0]; 
    } 
} 
 
/* called when the mapper is wrapping up the service  
 * clean up any last minute state 
 */ 
void terminate ()  
{ 
    return; 
} 
 
/*------------------STUBS-----------------------* 
 * Leave at the bottom of the file - will be filled in by SNSP */ 
 
/*  
 * This is a stub will send a service  query  
 * @param servNum is the equivalence class specified in the .serv file  
 * @param servName is the class that was found in the network  
 *        (that is equivalent from  - serviceUseage 
services[NUM_SERVICES_USED];) 
 * @param scope is the scope the service is in 
 * @param args is a void pointer to arguments to the service 
 * @param argLen is the length of args (not null terminated) 
 * 
 * @return int returns the id that will be used in serviceResult to pass result 
back 
 */ 
int requestService(uint8_t servNum, uint8_t servName, uint8_t fn, char *args, 
uint16_t argLen)  
{ 
} 
 
/*  
 * This is a stub 
 * @param results - pointer to results 
 * @param  
 * 
 * @return 0 if successful 1 if not 
 */ 
int serviceRespond(uint8_t fn, char *results, uint16_t resLen, uint8_t id) 
{ 
} 
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Resulting TinyOS Code  

Module 

 
generic module HVAC_CONTROLM(uint8_t m_serviceName,  uint16_t 
NUM_SERVICES_USED, uint16_t NUM_SERVICES_HANDLED,uint16_t NUM_SERVICES_EQUIV) { 
 provides { 
  interface App; 
  interface StdControl; 
 } uses { 
 
  interface SPInvocationAccess; 
  interface SNSP; 
  interface Leds; 
  interface Timer; 
 } 
} 
 
implementation { 
 
uint16_t control_tries; 
//specific variables 
int16_t timerval = 500; 
 
 
 
sp_scope_t m_scope;   //stores the location of this node         
uint8_t m_network;    //stores network type of this node ie TELOS/MICA etc                                        
uint8_t m_funName; 
uint8_t m_scopeInvID; 
uint8_t m_servInfoInvID; 
uint8_t m_timeSinceUpdate; 
uint8_t m_activated; 
uint8_t m_activatedScope; 
 
bool m_replyLock; 
bool m_sendLock; 
 
sp_container_handle_t m_register; 
sp_container_handle_t m_handle; 
 
//service call variables 
nx_uint8_t m_name;  
sp_scope_t m_destScope;  
uint8_t m_arg1; 
uint8_t m_arg2; 
uint8_t *m_arg3; 
uint16_t m_argLen; 
nx_uint8_t m_resName; 
nx_uint8_t m_resDestScope; 
nx_uint16_t m_res1; 
 
serviceUsage equivServices[NUM_SERVICES_USED][NUM_SERVICES_EQUIV]; 
pendingQuery servicePendingQueries[NUM_SERVICES_HANDLED];    
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void task queryScope(); 
void task registerService(); 
void task sendServiceInfo(); 
void task queryCRS(); 
void task executeControl();  
void task sendQueries(); 
uint8_t serviceCall(); 
 
int invokeService(uint8_t fn, char *args, uint16_t arg_len, uint8_t id); 
void serviceResult(uint8_t fn, char *payload, uint16_t payload_len, uint8_t 
id); 
void terminate (); 
void invoke(); 
int requestService(uint8_t servNum, uint8_t servName, uint8_t fn, char *args, 
uint16_t argLen); 
int serviceRespond(uint8_t fn, char *results, uint16_t resLen, uint8_t id); 
 
int8_t  m_active; 
uint16_t m_price; 
uint16_t m_desired_comfort; 
uint16_t m_desired_temp; 
uint16_t m_temp; 
uint16_t m_switch_state; 
  
serviceUsage services[NUM_SERVICES_USED]; 
 
 
void invoke()  
{  
       //defaults 
       m_active = 0; 
       m_price = 10; 
       m_desired_comfort = 2; 
       m_desired_temp = 70; 
       m_temp = 75; 
       m_switch_state = OFF; 
} 
 
void task executeControl() 
{ 
    uint16_t temp_setpoint; 
    uint8_t servName, fn, servNum; 
    uint16_t argLen; 
    char *args[10]; 
    argLen = 0; 
     
    if (!m_active) { 
     return; 
    } 
 
    temp_setpoint = ((m_desired_temp * 100) + ((5-m_desired_comfort) * m_price 
* OFFSET_INCREMENT)) / 100; 
    servName = services[4].name; 
    fn = services[4].name; 
     
    if ((m_temp >= (temp_setpoint + TEMP_MARGIN))){ 
     args[0] = ON;   
    } else if ((m_temp < (temp_setpoint - TEMP_MARGIN)) ){ 
     args[0] = OFF; 
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    } 
 
    argLen = 1; 
    servNum = 4; 
    requestService(servNum, servName, fn, args, argLen); 
} 
 
int invokeService(uint8_t fn, char *args, uint16_t arg_len, uint8_t id) 
{  
    if (fn == ACTIVATE) { 
     m_active = 1; 
    } else if (fn == DEACTIVATE) { 
     m_active = 0; 
    } 
    return 0; 
} 
 
void serviceResult(uint8_t fn, char *payload, uint16_t payload_len, uint8_t id) 
{ 
    if (id == services[0].invID) { 
     m_temp = payload[0]; 
    } else if (id == services[1].invID) { 
     m_desired_comfort = payload[0]; 
    } else if (id == services[2].invID) { 
     m_desired_temp = payload[0]; 
    } else if (id == services[3].invID) { 
     m_price = payload[0]; 
    } 
} 
 
void terminate ()  
{ 
    return; 
} 
 
 
 
 
 /* -----------------------------Init & Locks---------------------------*/ 
 
 command result_t StdControl.init() 
 { 
 uint16_t i = 0; 
       uint16_t j = 0; 
 m_scope = SP_EMPTY; 
 m_sendLock = 0; 
 m_replyLock = 0; 
 m_activated = 0; 
 m_activatedScope = 0; 
 
 for(i=0;i < NUM_SERVICES_USED; i++){ 
     services[i].isThere = 0; 
     services[i].name = 0; 
  for(j=0;j < NUM_SERVICES_EQUIV; j++){ 
      equivServices[i][j].isThere = 0; 
   equivServices[i][j].name = 0; 
  } 
 } 
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 for(i=0;i < NUM_SERVICES_HANDLED; i++){ 
     servicePendingQueries[i].name = 0; 
 } 
         
      equivServices[0][0].name=TEMPERATURE; 
      equivServices[0][0].scope=KITCHEN; 
      equivServices[0][0].timeout=5; 
      equivServices[0][1].name=TEMPERATURE; 
      equivServices[0][1].scope=LIVINGROOM; 
      equivServices[0][1].timeout=8; 
      equivServices[1][0].name=COMFORT; 
      equivServices[1][0].scope=SP_SCOPE_ALL; 
      equivServices[1][0].timeout=10; 
      equivServices[2][0].name=DESIRED_TEMP; 
      equivServices[2][0].scope=SP_SCOPE_ALL; 
      equivServices[2][0].timeout=10; 
      equivServices[3][0].name=PRICE; 
      equivServices[3][0].scope=SP_SCOPE_ALL; 
      equivServices[3][0].timeout=10; 
      equivServices[4][0].name=HVAC; 
      equivServices[4][0].scope=SP_SCOPE_ALL; 
      equivServices[4][0].timeout=0; 
 
 m_activated = 0; 
 m_timeSinceUpdate = TIMEOUT; 
       return SUCCESS; 
 } 
 
 command result_t StdControl.start() 
 {  
     call Timer.start(TIMER_REPEAT, timerval); 
     return SUCCESS; 
 } 
 
command result_t StdControl.stop() 
 { 
     call Timer.stop(); 
     return SUCCESS; 
 } 
 
 bool replyLock() 
 
  { 
    if (m_replyLock) 
      return FALSE; 
    else { 
      m_replyLock = TRUE; 
      return TRUE; 
    } 
  } 
 
  bool releaseReplyLock() 
  { 
    bool oldLock = m_replyLock; 
    m_replyLock = FALSE; 
    return oldLock; 
  } 
 
  bool sendLock() 
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  { 
    if (m_sendLock) 
      return FALSE; 
    else { 
      m_sendLock = TRUE; 
      return TRUE; 
    } 
  } 
 
  bool releaseSendLock() 
  { 
    bool oldLock = m_sendLock; 
    m_sendLock = FALSE; 
    return oldLock; 
  } 
 
 /*---------------------Register, Query & serv Info update ----------------*/ 
int requestService(uint8_t servNum, uint8_t servName, uint8_t funName, char 
*args, uint16_t argLen)  
 { 
    uint8_t invID; 
    if(sendLock()){ 
        m_funName = funName; 
       if(services[servName].network != m_network){ 
           m_name = BRIDGE; 
           m_destScope = SP_SCOPE_ALL; 
           m_arg1 = services[servNum].name; 
           m_arg2 = services[servNum].scope; 
           m_arg3 = args; 
               
       } else { 
           m_name = services[servNum].name; 
           m_destScope = services[servNum].scope; 
           m_arg3 = args; 
           m_arg1 = m_arg2 = 0; 
       } 
 
       m_argLen = argLen; 
       invID = serviceCall(); 
       /* look up which service this corresponds to and replace invID */ 
       services[servNum].invID = invID; 
       return invID; 
    } else { 
       return 0; 
    } 
 
 } 
 
 
uint8_t serviceCall(){ 
      sp_container_handle_t handle; 
      uint8_t invID; 
      call SPInvocationAccess.newContainer(&handle, MSG_TYPE_INVOCATION,  
                                           m_name, m_serviceName, m_scope); 
      call SPInvocationAccess.setDestScope(handle, m_destScope); 
      call SPInvocationAccess.setPersonaScope(handle, m_activatedScope); 
      call SPInvocationAccess.setPersona(handle, m_activated); 
      call SPInvocationAccess.newFunction(&m_funName, handle); 
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      if(m_arg1 != 0){ 
             call SPInvocationAccess.newArgument(&m_name, SP_UINT8, 1,  
                            (uint8_t*)&m_arg1, handle);  
      } 
      if(m_arg2 != 0){ 
             call SPInvocationAccess.newArgument(&m_name, SP_UINT8, 1,  
                            (uint8_t*)&m_arg2, handle);  
      }                       
      if(m_arg3 != 0){ 
             call SPInvocationAccess.newArgument(&m_name, SP_CHAR_ARRAY, 
m_argLen,  
                                         m_arg3, handle);  
       }   
 
      call SPInvocationAccess.getInvocationID(handle, &invID);  
      call SNSP.issueRequest(handle); 
      releaseSendLock(); 
      return invID;  
 } 
 
void task queryScope() 
 { 
      nx_uint8_t name;   
      sp_scope_t temp; 
      temp = SP_SCOPE_ALL; 
      call SPInvocationAccess.newContainer(&m_register, MSG_TYPE_REGISTRATION, 
CRS, m_serviceName, m_scope); 
      call SPInvocationAccess.setDestScope(m_register, temp); 
      name = SP_SCOPE_ALL; 
      call SPInvocationAccess.newFunction(&name, m_register); 
      call SPInvocationAccess.getInvocationID(m_register, &m_scopeInvID); 
      call SNSP.issueRequest(m_register); 
  } 
  
void task registerService() 
  { 
      sp_scope_t temp; 
      temp = SP_SCOPE_ALL;         
      //register (register handle does not get destroyed) 
      call SPInvocationAccess.newContainer(&m_register, MSG_TYPE_REGISTRATION, 
CRS, m_serviceName, m_scope); 
      call SPInvocationAccess.setDestScope(m_register, temp); 
      call SNSP.spRegister(m_register);  
       
  } 
   
 
  void task sendServiceInfo(){ 
      nx_uint8_t name;   
 
      uint16_t I; 
      sp_container_handle_t handle;  
      nx_uint8_t bridge;  
      sp_scope_t temp;  
      bridge = BRIDGE; 
      temp = SP_SCOPE_ALL; 
      i = 0; 
      call SPInvocationAccess.newContainer(&handle, MSG_TYPE_INFO,  
                                           GUI, m_serviceName, m_scope); 
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      call SPInvocationAccess.setDestScope(handle, temp); 
      name = SP_SCOPE_ALL; 
      call SPInvocationAccess.newServiceInfo(&name,&m_activated, handle); 
      call SPInvocationAccess.newServiceInfo(&i,&i, handle); 
 
      if(m_activated){ 
      for(i=0;i < NUM_SERVICES_USED; i++){ 
         if(services[i].network == m_network){ 
             call SPInvocationAccess.newServiceInfo(&(services[i].scope),  
          &(services[i].name),handle); 
         } 
      } 
 
      call SPInvocationAccess.newServiceInfo(&temp, &bridge, handle); 
      for(i=0;i < NUM_SERVICES_USED; i++){ 
         if(services[i].network != m_network && services[i].network != 0){ 
             call SPInvocationAccess.newServiceInfo(&(services[i].scope),  
          &(services[i].name), handle); 
         } 
      } 
      } 
      call SNSP.issueRequest(handle); 
  } 
 
 
 /*-------------------------- Timer Actions ------------------------*/   
event result_t Timer.fired(){  
      //initialize 
      if(m_scope == SP_EMPTY){ 
         post queryScope();   
      } else { 
          
          //periodically keep CRS registration & service info alive 
          if(m_timeSinceUpdate >= TIMEOUT) m_timeSinceUpdate = 0; 
          if(m_timeSinceUpdate == 0) post registerService(); 
          if(m_timeSinceUpdate == 1) post queryCRS(); 
          if(m_timeSinceUpdate == 2) post sendServiceInfo(); 
          m_timeSinceUpdate++; 
          if(m_activated){ 
           if(m_timeSinceUpdate > 2 && m_timeSinceUpdate & 1) { 
           post sendQueries(); 
           post executeControl(); 
           } 
          } 
      } 
      return SUCCESS; 
 } 
 
void task queryCRS(){ 
      sp_scope_t temp; 
      sp_container_handle_t handle;  
 
       
 
      nx_uint8_t name; 
      temp = SP_SCOPE_ALL;    
      call SPInvocationAccess.newContainer(&handle, MSG_TYPE_INVOCATION, CRS, 
m_serviceName, m_scope); 
      call SPInvocationAccess.setDestScope(handle, temp); 
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      name = ALL; 
      call SPInvocationAccess.newFunction(&name, handle); 
      call SPInvocationAccess.getInvocationID(handle, &m_servInfoInvID); 
      call SNSP.issueRequest(handle); 
      return;       
  } 
 
  void task sendQueries(){ 
       uint16_t i = 0; 
       for(;i< NUM_SERVICES_USED; i++) { 
        if(services[i].type == SENSOR  
           && (services[i].timeout != 0 && services[i].ticksSinceRecv > 
services[i].timeout)  
           && services[i].network != 0){ //we have heard from them  
 
           //assume that bridge exists 
           if(sendLock()){ 
               if(services[i].network != m_network){ 
                   m_name = BRIDGE; 
                   m_destScope = SP_SCOPE_ALL; 
                   m_arg1 = services[i].name; 
                   m_arg2 = services[i].scope; 
                   m_arg3 = 0; 
                 
               } else { 
                   m_name = services[i].name; 
                   m_destScope = services[i].scope; 
                   m_arg1 = m_arg2;  
                   m_arg3 = 0; 
               } 
               serviceCall();  
           } 
        } 
        if(services[i].network != 0) { 
            services[i].ticksSinceRecv++; 
        }  
       } 
  } 
 
/*--------------------- (SENSE/ACTUATE) and result ------------------------*/ 
command sp_result_t App.invocateRequest(uint16_t requestID, 
sp_container_handle_t handle){ 
 
       nx_uint8_t name; 
       nx_uint8_t type; 
       nx_uint16_t len; 
       uint8_t invID; 
       sp_scope_t scope; 
       nx_uint8_t funName; 
       nx_uint8_t arg[128]; 
       uint16_t i = 0; 
       if(call SPInvocationAccess.getInvocationID(handle, &invID) != SP_SUCCESS 
|| 
          call SPInvocationAccess.getOriginatingService(handle, &name) != 
SP_SUCCESS || 
          call SPInvocationAccess.getScope(handle, &scope) != SP_SUCCESS || 
 
          call SPInvocationAccess.getMsgType(handle, &type) != SP_SUCCESS){ 
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          return SP_FAIL; 
 
       } 
       
       for(i = 0; i < NUM_SERVICES_USED; i++){ 
          //found an empty slot 
          if(servicePendingQueries[i].name == 0){ 
           break; 
          } 
       } 
 
       if(i == NUM_SERVICES_HANDLED) return SP_FAIL; 
       if(funName == ACTIVATE){ 
            m_activated = name; 
     m_activatedScope = scope; 
     invoke(); 
       }  
 
       if(funName == DEACTIVATE){ 
     terminate(); 
       }  
  
       servicePendingQueries[i].invID = invID;  
       servicePendingQueries[i].ticksSinceReply = 2; //will reply next 
       servicePendingQueries[i].name = name; 
       servicePendingQueries[i].scope = scope; 
       servicePendingQueries[i].funName = funName; 
       servicePendingQueries[i].replyFrequency = 2;             
        
        if (call SPInvocationAccess.getArgument(&name, handle, 0, 
                                  &type, arg, &len)!= SP_SUCCESS){ 
          servicePendingQueries[i].name = 0; 
          return SP_FAIL; 
       } 
 
       call SPInvocationAccess.freeContainer(handle); 
       return invokeService(funName, (char *)arg, len, invID);  
   } 
 
int serviceRespond(uint8_t fn, char *results, uint16_t resLen, uint8_t id) 
{ 
    uint16_t i; 
    sp_container_handle_t handle = 0; 
    if (!replyLock()) { 
         return 1; 
    } 
 
    for(i = 0;i < NUM_SERVICES_HANDLED; i++){ 
        if(servicePendingQueries[i].invID == id && 
servicePendingQueries[i].name != 0){ 
 
      
           if(call SPInvocationAccess.newContainer(&handle, MSG_TYPE_REPLY | 
MSG_TYPE_INVOCATION,  
                 servicePendingQueries[i].name, m_serviceName, m_scope) != 
SP_SUCCESS ||  
               call SPInvocationAccess.setDestScope(handle, 
servicePendingQueries[i].scope)  
               != SP_SUCCESS || 
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               call SPInvocationAccess.setInvocationID(handle, 
servicePendingQueries[i].invID)  
               != SP_SUCCESS || 
               call 
SPInvocationAccess.newFunction(&(servicePendingQueries[i].funName), handle)  
               != SP_SUCCESS || 
            call 
SPInvocationAccess.newResult(&(servicePendingQueries[i].funName), 
SP_CHAR_ARRAY,  
               resLen, results, handle) != SP_SUCCESS || signal 
App.requestResponse(0, handle) != SP_SUCCESS){   
                    if(handle != 0) call 
SPInvocationAccess.freeContainer(handle); 
                    return 1;        
            } 
            //reply just once in the control function 
            releaseReplyLock(); 
     servicePendingQueries[i].name = 0; 
     return 0;     
 } 
    } 
} 
 
event sp_result_t SNSP.requestResult(uint16_t requestID, sp_container_handle_t 
handle) 
 
  {  
       uint8_t invID; 
       nx_uint8_t name; 
       uint8_t val; 
       uint8_t longVal[128]; 
       uint8_t type; 
       uint8_t len; 
       uint16_t i = 0; 
       uint16_t num = 0; 
       uint8_t numByte = 0; 
       uint16_t k, j, tempj, tempk; 
       tempj = tempk = 0; 
       call SPInvocationAccess.getInvocationID(handle, &invID); 
       if(call SPInvocationAccess.getOriginatingService(handle, &name) != 
SP_SUCCESS) 
                return SP_FAIL; 
       if(invID == m_scopeInvID && name == CRS){ 
           name = SP_SCOPE;  
           if(call SPInvocationAccess.getResult(&name, handle, 0, &type,  
                         (uint8_t*)&val, &len) != SP_SUCCESS) 
           { 
                dbg(DBG_TEMP, "PROB in getting query result\n");              
           }  
 
           m_scope = val; 
           name = NETWORK;   
         if(call SPInvocationAccess.getResult(&name, handle, 0, &type,  
                         (uint8_t*)&val, &len) != SP_SUCCESS) 
           { 
              dbg(DBG_TEMP, "Prob in getting query results \n");              
 
           }  
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           m_network = val; 
 
           m_scopeInvID = 0xff; 
         }   else if(name == CRS && invID == m_servInfoInvID){ 
                name = ALL; 
           if(call SPInvocationAccess.getNumberResults(&name, &numByte, 
handle)  
 
              != SP_SUCCESS){ 
              dbg(DBG_TEMP, "PROB in getting query result\n");  
           } 
           num = numByte & 0x00ff; 
  
           for(i = 0; i< NUM_SERVICES_USED; i++){ 
               services[i].network = 0; 
           } 
           services[4].network = 1; 
           i = 0; 
           while(i < num){ 
                  if(call SPInvocationAccess.getResult(&name, handle, i, &type,  
                         &val, &len) != SP_SUCCESS) 
                { 
      goto end; 
                }  
                for(k=0;k < NUM_SERVICES_USED; k++){ 
         for(j=0;j < NUM_SERVICES_EQUIV; j++){ 
      if (equivServices[k][j].name == val) { 
         tempk = k; 
         tempj = j; 
         break; 
 
      } 
      } 
         } 
                 
                if(call SPInvocationAccess.getResult(&name, handle, i+1, &type,  
                             &val, &len) != SP_SUCCESS) 
                { 
      goto end; 
                } 
 
                equivServices[tempk][tempj].network = val; 
                equivServices[tempk][tempj].isThere = 1; 
 
                /* copy the first choice over */ 
                for(j=0;j < NUM_SERVICES_EQUIV; j++){ 
 
       if (equivServices[tempk][j].isThere) { 
        services[tempk].name = equivServices[tempk][j].name;           
                        services[tempk].scope = equivServices[tempk][j].scope;         
                        services[tempk].invID = equivServices[tempk][j].invID;          
                        services[tempk].ticksSinceRecv = 
equivServices[tempk][j].ticksSinceRecv; 
                        services[tempk].network = 
equivServices[tempk][j].network;        
                        services[tempk].type = equivServices[tempk][j].type;           
                        services[tempk].ack = equivServices[tempk][j].ack;            
                        services[tempk].isThere = 
equivServices[tempk][j].isThere;        
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                        services[tempk].timeout = 
equivServices[tempk][j].timeout;        
   break; 
       }    
  } 
            } 
            i +=2; 
 } else { 
 
         if(name == BRIDGE){ 
              call SPInvocationAccess.getFunctionName(&name, 0, handle); 
          } 
                if(call SPInvocationAccess.getResult(&name, handle, 0, &type,  
                        longVal, &len) != SP_SUCCESS) 
                { 
                goto end;    
                }  
 
         serviceResult(name, longVal, len, invID);                          
 } 
end: 
       call SPInvocationAccess.freeContainer(handle); 
       return SP_SUCCESS; 
  } 
 
  command sp_result_t App.status(){ return SP_SUCCESS;}                                                                      
 
  command sp_result_t App.registrationInfo(sp_container_handle_t handle){              
        return SP_SUCCESS; 
  }     
 
} 
 
 
 
 

 

Configuration 

includes SNSP; 
includes App; 
 
configuration HVAC_CONTROL { 
} 
 
implementation { 
components Main, LedsC, TimerC, new SNSPC(SP_SCOPE_ALL, TELOS) as mySNSP,  new 
HVAC_CONTROLM(HVAC_CONTROL, 5, 4, 2), SPInvocationAccessM, RandomLFSR, ADCC;  
  
 Main.StdControl -> SPInvocationAccessM;   
 Main.StdControl -> mySNSP; 
 Main.StdControl -> TimerC; 
 Main.StdControl -> HVAC_CONTROLM;  
 
 mySNSP.App[0]   -> HVAC_CONTROLM; 
 
 HVAC_CONTROLM.SNSP                -> mySNSP.SNSP[0]; 
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 HVAC_CONTROLM.Timer               -> TimerC.Timer[unique("Timer")]; 
 HVAC_CONTROLM.SPInvocationAccess  -> SPInvocationAccessM.SPInvocationAccess; 
 
HVAC_CONTROLM.Leds                -> LedsC; 
 
SPInvocationAccessM.Random              -> RandomLFSR;   
} 
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Appendix II 

Eclipse Plugin 

SNSP Eclipse plugin allows one to create a new project of type SNSP. The new 

project must have a name, which will be the application or service name. When a 

new SNSP project is created, four files are attached to the project. The first file is 

a README that explains how to write an SNSP application. The second file is a 

.c file containing stubs that must be completed. The third file is a .h file that 

contains a mapping of semantic names to numbers (names for locations and 

services). The fourth file is the .serv file. These files are explained in detail in 

Section 4.3.1 below and the .serv file is explained in section 4.2 above. The 

application writer can edit these files and fill in the functionality of the 

application. Once they are done, there are two compile options, one compiles 

their regular c code to check for syntax errors. The other compiles the c code they 

have written into TinyOS code and places it in a tinyos/ sub-directory.  This code 

can then be further cross-compiled for a mote platform and loaded onto a mote 

using the TinyOS Eclipse plugin. 
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SNSP eclipse module comes in a tar file format. The tar file is downloaded with 

an unpack script. The user must run the unpack script at the command line. The 

unpack script takes one argument, which is the name of the service that the user 

wishes to create. The unpack script creates another tar file with the service name 

in the same directory. This file must be imported into the eclipse workspace.  

 

Figure 27: Importing an SNSP project into Eclipse. 

Figure 27 demonstrates what eclipse looks like when it first opens, and when the 

file->new item has been selected from the menu. The user must then select to 

import “Existing Projects into Workspace” and a file browser will appear from 
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which they can choose the tar file created by the unpack script. Figure 28 shows 

how to switch between compilation targets. In order to switch, the user must 

right-click on the project in the right task bar, and the window in Figure 28 will 

appear. There is then two choices: compile, or the given project name. Compile 

will compile the c code in the .c and .h files. The project name option will build 

the TinyOS code. 

 
Figure 28: Choosing a target to compile. 

Figure 29 shows the result of a C compilation that had an error. The bottom 

window has details about what the error was. The eclipse editor can also be seen 
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in Figure 29 as well as the project browsing toolbar on the right that lists all open 

files within the project.  

 

Figure 29: An open SNSP project, with an open file and a C compilation error. 

Figure 30 shows the result of compiling the project into TinyOS code with 

eclipse. In the right-hand toolbar the TinyOS files are visible in the tinyOS folder. 

The bottom toolbar also displays a message of either success or an error message 

if the build failed. 
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Figure 30: Compiling SNSP code with Eclipse. 

 


