
Composing and Validating Orthogonal Concerns and
Heterogeneous Models

Guang Yang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-166

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-166.html

December 19, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank the support from Gigascale System Research Center
and Center for Hybrid and Embedded Software Systems.

Composing and Validating Orthogonal Concerns and Heterogeneous
Models

by

Guang Yang

B.Eng. (Tsinghua University, Beijing, China) 1998
M.Eng. (Tsinghua University, Beijing, China) 2000

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alberto Sangiovanni-Vincentelli, Chair
Professor Jan Rabaey

Professor Lee Schruben

Fall 2007

The dissertation of Guang Yang is approved.

Chair Date

Date

Date

University of California, Berkeley

Fall 2007

Composing and Validating Orthogonal Concerns and Heterogeneous Models

Copyright c© 2007

by

Guang Yang

Abstract

Composing and Validating Orthogonal Concerns and Heterogeneous Models

by

Guang Yang

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

The ever growing number of features that need to be included in embedded system

designs to meet market requirements coupled with the continuous advances in im-

plementation architectures make system level design increasingly difficult. Existing

ad hoc design techniques are inadequate to yield designs that are correct-the-first-

time and robust with respect to manufacturing process and environment variations.

Raising abstraction level, reusing IPs, and exploiting correct-by-construction design

methods have been effective at coping with design complexity. Yet, design optimiza-

tion requires an overall methodology that takes into consideration the importance

of the correct choice of implementation platforms for the efficient execution of the

required functionality. The design space for the selection of implementation architec-

tures is very large. Its efficient exploration is essential. To do so, functionality has

to be clearly separated from architecture so that the association of functionality to a

number of architectures can be done quickly without the need of having a complete

implementation done. In addition, IP re-use requires attention for the communication

structures to choose to integrate them. To evaluate the quality of an association of

1

functionality to architecture, we need a way of computing the “cost” of this asso-

ciation. To do so, quantities such as timing, power and area have to be evaluated

efficiently and accurately. Further, when organizing a particular functionality with

concurrent behavior, or mapping it on an architecture that has resource limitation,

the issue of execution coordination arises. Last but not least, an efficient methodol-

ogy has to allow the use of different models and specifications for different parts of

the design and has to deal with legacy parts of the design.

A design environment, Metropolis[22], was developed to provide an effective so-

lution to the difficulties mentioned above. Its design philosophy is rooted in the

platform based design [38, 61, 63] methodology that attempts at addressing all the

points raised above and is based on a rigorous orthogonalization of concerns approach.

In this dissertation, I focus on some of the issues that the implementation of this

methodology needs resolving: namely, how to deal with orthogonal concerns when an

overall design has to be captured and analyzed, and how to manage the composition

of heterogeneous parts expressed in different styles (imperative vs. declarative), ab-

straction levels and description languages.

Orthogonal Concerns :

Function vs Architecture

Capability vs Cost

Concurrent Behavior vs Coordination

Heterogeneity:

Multiple Abstraction Levels

Imperative vs Declarative Specifications

Different Specification Languages

The difficulty in dealing with “composition” when verifying a system either with

simulation or formal methods is manifest. Each individual concern in the design de-

scription specifies only the aspect it is concerned with. It is necessary to find out how

this aspect is related to other aspects in the overall design by looking at other parts of

2

the description and their relations. An even harder task is to compose heterogeneous

models, because these models stay in isolated semantics islands. To connect these

islands, bridges must be built across different abstraction levels, different specification

languages, and different styles of specifications.

In this dissertation, I address the problem of how to efficiently compose and

validate orthogonal concerns and heterogeneous models.

To handle orthogonal concerns, I devised static and dynamic analysis techniques

to reduce run-time overhead in simulation, including an efficient simultaneous con-

straints handling technique, named event reduction, medium-centric constraint resolu-

tion, interleaving concurrent simulation, and quantity resolution speedup algorithms.

To deal with heterogeneous models, I proposed a Büchi Automaton based tech-

nique to enforce Linear Temporal Logic (LTL) constraints; I also developed a regular

expression-based communication semantics adaptation mechanism. As the backbone,

I built a communication and co-simulation infrastructure to integrate models written

in different languages and at different abstraction levels.

These ideas were experimented in the Metropolis design environment. I tested

my optimization techniques with industrial scale applications, such as a Picture-in-

Picture set top box design and a distributed automotive CAN bus system. Simulation

statistics showed the effectiveness and efficiency of the optimization techniques. In

contrast, in a náıve simulation, the performance penalty may be huge. Another

case study examined a simple dataflow model mapped on a dual-CPU architecture

scheduled under dozens of LTL constraints. The results showed the effectiveness

of the LTL constraints enforcement technique. The JPEG encoder mapped to a

heterogeneous dual-CPU architecture demonstrated the bridging of IPs written at

register transfer level and the transaction level, and in Verilog, Metropolis Meta-Model

and SystemC languages. By using adaptors, the communication and co-simulation

3

infrastructure glued the heterogeneous models and exhibited the correct behavior.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair

4

To mom and dad

i

Contents

Contents ii

List of Figures vi

List of Tables viii

Acknowledgements ix

1 Introduction 1

1.1 System Level Design . 1

1.2 The Metropolis Design Environment 4

1.3 Orthogonalization of Concerns . 7

1.3.1 Function versus Architecture 7

1.3.2 Capability versus Cost . 8

1.3.3 Concurrent Behavior versus Coordination 9

1.4 Heterogeneous Models . 10

1.4.1 Imperative vs Declarative Specifications 10

1.4.2 Abstraction Levels . 11

1.4.3 Specification Languages . 11

1.5 Challenges . 12

1.6 Contribution . 14

2 Orthogonalization of Concerns and Heterogeneities 16

2.1 Related Work . 16

2.1.1 Electronic System Level Design 16

ii

2.1.2 Orthogonalization of Concerns 19

2.1.3 Heterogeneities . 21

2.2 Metropolis Approach . 24

2.2.1 Basic Execution Semantics . 25

2.2.2 Orthogonal Concerns . 27

Function versus Architecture — Mapping with Simultaneity
Constraints . 28

Capability versus Cost — Quantity Annotation 30

Concurrent Behavior versus Coordination — Constraints and
Quantity Annotation 31

2.2.3 Heterogeneities . 33

Abstraction Levels . 33

Specification Languages . 34

Imperative vs Declarative Specifications 35

2.3 A case study . 37

3 Orthogonal Concern Composition and Validation 39

3.1 Function versus Architecture . 39

3.1.1 Simultaneity Constraints . 40

3.1.2 Optimization Techniques . 40

3.2 Capability versus Cost . 42

3.2.1 Modeling Cost with the Tagged Signal Model 42

3.2.2 Quantity Managers and Quantity Annotation 44

3.2.3 Optimization of Quantity Resolution 45

3.3 Concurrent Behavior versus Coordination 46

3.3.1 Exclusion Constraints . 46

3.3.2 Optimization Techniques for Exclusion Constraints 47

A Medium-Centric Approach 47

Named Event Reduction . 49

Interleaving Concurrent Simulation 51

3.3.3 General Scheduling . 58

Scheduling Modeling using Quantity Managers 58

A Power Management Example 60

iii

3.3.4 Optimization of the Quantity Resolution Algorithms 62

Speedup the Baseline Algorithm 62

Further Speedup on Quantity Resolution Algorithms 63

3.4 Case Studies . 66

3.4.1 Picture-in-Picture Set-top Box 66

PiP Behavior Simulation . 67

Mapped Behavior Simulation 68

3.4.2 Distributed Automotive CAN Architectures 70

Functional Model . 71

Performance Models: Local Physical Time 72

Scheduling: Global Logical Time and Priority-based Schedulers 73

Simulation Results . 74

4 Heterogeneous Model Composition and Validation 77

4.1 Composing Declarative and Imperative Specifications 78

4.1.1 Declarative LTL Constraints 78

Linear Temporal Logic (LTL) 78

LTL in the Design Flow . 79

4.1.2 Enforcing LTL Constraints in Simulation 81

Büchi Automaton . 82

Simulation Algorithm . 83

Safety Constraints versus Liveness Constraints 86

4.2 Bridging Abstraction Levels . 88

4.2.1 Abstraction Levels . 88

4.2.2 Communication Semantics Formalism 89

4.2.3 Communication Adaptor Specification 92

Event Definition . 93

Event Sequence . 94

Event Generation . 97

4.2.4 Extensions to the Adaptor Specification Language 98

4.2.5 Simulation Flow . 98

4.3 Co-Simulating Different Specification Languages 100

iv

4.4 Case Studies . 101

4.4.1 A Dataflow Model Mapped to an LTL Scheduled Dual-CPU
Architecture . 101

4.4.2 JPEG Encoder Mapped to a Dual-CPU Architecture 104

5 Conclusions and Future Work 109

5.1 Conclusions . 109

5.2 Future Work . 111

Bibliography 114

v

List of Figures

1.1 Design Gap and Verification Gap . 2

1.2 The Infrastructure of the Metropolis Design Environment 6

2.1 Constraints and their Usages . 23

2.2 The mmm Basic Execution Semantics 27

2.3 Summary of the Orthogonal Concerns 27

2.4 A Service Example in Communication 34

2.5 Block Diagram of the PiP Design . 38

3.1 The Optimization Algorithm for Simultaneity Constraints 41

3.2 The Performance/Cost Annotation Semantics 43

3.3 3-Phase Execution to Orthogonalize Behavior, Performance and
Scheduling . 60

3.4 Illustration of the Speedup Algorithm 63

3.5 Further Optimized Concerns Integration Algorithm 65

3.6 Block Diagram of the PiP Design . 67

3.7 CPUOS-Bus-Memory Architecture 69

3.8 Distributed Automotive CAN Architecture Model 71

3.9 Limited-By-Wire System . 74

3.10 End-to-End Latency for a Task Chain in a Distributed Automotive
CAN Architecture . 75

4.1 LTL Constraints Involvement in the Design Flow 81

4.2 A Sample Büchi Automaton . 83

4.3 Simulation Flow with LTL Enforcement 84

vi

4.4 A State Transition Graph and a Büchi Automaton 85

4.5 Minimum Step Heuristic . 87

4.6 Raising the Levels of Abstraction [62] 88

4.7 A Service in Communication . 90

4.8 Describing Communication Protocols 96

4.9 IP Composition and Co-Simulation Flow 99

4.10 Resource Scheduling and Function-Architecture Mapping 101

4.11 JPEG Encoder Block Diagram . 105

4.12 Design Component Classification . 105

4.13 SRAM Read Timing Diagram . 107

4.14 SRAM Read Adaptor Automaton . 107

vii

List of Tables

2.1 Metropolis Approaches to Separate and Relate Concerns 25

2.2 Simulation Performance Comparison 38

3.1 PiP Behavior Simulation Statistics 68

3.2 Simultaneity Constraints Handling Overhead 70

3.3 Simulation Statistics of Quantity Resolution 76

4.1 Formal Communication Semantics . 91

viii

Acknowledgements

First, I would like to thank my adviser, professor Alberto Sangiovanni-Vincentelli,

for his support, guidance and patience throughout the years. He never flooded me

with minor technical details about what I should and should not do. Instead, he

led me towards the most important and promising research directions with his great

vision. After I started the journey on the road, he has always been supportive from

all aspects; whenever I have questions or doubts, he has always been responsive. At

the time I was writing this dissertation, he spent tremendous efforts in reviewing the

draft and commenting on it, which helped finalize the document as it is now. Without

his help, I can not finish my PhD so smoothly.

I want to thank my dissertation committee members, professor Rabaey and profes-

sor Schruben, who have reviewed my dissertation. Besides that, their early feedbacks

during my qualification examination helped shaping my later research work as well.

Professor Keutzer chaired my qualification examination. He also helped me personally

at the beginning of my study at Berkeley. Thank you all very much.

I feel very lucky to be able to work in the vibrant research environment at Berkeley.

Many people helped me one way or another on my research work. I appreciate the

valuable discussions and collaborations with Dr. Felice Balarin, Dr. Luciano Lavagno,

Dr. Alex Kondratyev, Dr. Claudio Pinello and Dr. Yosinori Watanabe from Cadence

Berkeley Laboratories, and professor Harry Hsieh from University of California at

Riverside. Working closely with them not only sped up my research progress, but

also gave me an opportunity to learn a rigorous research attitude. My peer graduate

students, especially those who are working on the Metropolis project, were always

willing to provide me constructive feedback and help. They are, but not limited to,

Rong Chen, Xi Chen, Abhijit Davare, Douglas Densmore, Daniele Gasperini, Trevor

Meyerowitz, Roberto Passerone, Alessandro Pinto, Haibo Zeng, and Qi Zhu. A special

ix

thank goes to Haibo Zeng, who provides a very good case study from the automotive

domain. Besides the academic work, I also had a lot of fun with them in my social

life. Thank all my friends for letting me have such a happy time at Berkeley.

I want to thank my sister and my brother-in-law. It is them who have been

taking good care of the family. Thank mom and dad for being so patient with my

long time of education. Thank grandma for the spiritual support. I hope she is living

a happy life in heaven. Finally, thank my wife for her love and being very supportive

throughout my study.

x

xi

Chapter 1

Introduction

1.1 System Level Design

The semiconductor industry has been following the Moore’s law for more than

forty years. The manufacturing capability increased exponentially at a stunning speed

of two times every 18 months. However, at the same time, the ever growing feature

demands to meet the market requirements coupled with the continuous advances

in the implementation architectures impose increasing difficulties on system level

design. Existing design techniques are ad hoc and unable to insure correct-the-first-

time and robust designs. These result in the design capability lagging behind, and

form the so called design gap (See figure 1.1). Even worse than the insufficient design

capability, the verification capability is falling even farther behind, which leads to

the wider verification gap to the manufacturing capability. The reasons are the huge

verification space and the big challenge in handling emerging characteristics in new

design technologies such as model orthogonality and heterogeneity.

An immediate consequence of these gaps is a longer time-to-market. Although

companies keep on putting in more manpower in product development, it is not

1

Figure 1.1. Design Gap and Verification Gap

uncommon that new product release dates are pushed off from time to time. On the

other hand, the quality of the products still can not be guaranteed. Bugs are found

after the product goes on the market. The most famous one was the floating point

unit bug found in the Intel’s Pentium processor. All of these eat a big amount of a

company’s profit.

To deal with the inadequate design and verification capabilities, system designers

are adopting more rigorous design methodologies that favor higher levels of abstrac-

tion, reusing IPs, and correct-by-construction techniques. Yet, design optimization

requires an overall methodology that takes into consideration the importance of the

correct choice of implementation platforms for the efficient execution of the required

functionality. The design space for the selection of implementation architectures is

very large. Its efficient exploration is essential. To do so, functionality has to be clearly

separated from architecture so that the association of functionality to a number of

architectures can be done quickly without the need of having a complete implementa-

tion done. In addition, IP re-use requires attention for the communication structures

to choose to integrate them. To evaluate the quality of an association of functionality

to architecture, we need a way of computing the “cost” of this association. To do so,

quantities such as timing, power and area have to be evaluated efficiently and accu-

rately. Further, when organizing a particular functionality with concurrent behavior,

2

or mapping it on an architecture that has resource limitation, the issue of execution

coordination arises. Last but not least, an efficient methodology has to allow the use

of different models and specifications for different parts of the design and has to deal

with legacy parts of the design.

One prominent methodology called platform based design [61][38] was proposed to

offer all the capabilities required from above to cope with the design and verification

difficulties. In this methodology, orthogonalization of concerns [38] is a key charac-

teristic. By modeling orthogonal aspects of the system separately, the reusability of

these models is dramatically increased. In particular, this dissertation considers the

following pairs of orthogonal concerns in the platform based design methodology.

• Function versus Architecture

• Capability versus Cost

• Concurrent Behavior versus Coordination

Besides the extensive support for orthogonalization of concerns, it is also essential

for any efficient methodology to be able to deal with different models and different

specifications in a uniform way. This on one hand saves the huge efforts spent on

legacy designs by reusing them; on the other hand, it is becoming indispensable

as systems are intrinsically getting more heterogeneous. This dissertation primarily

focuses on the following modeling heterogeneities.

• Multiple Abstraction Levels

• Imperative versus Declarative Specifications

• Different Specification Languages

After stating the advantages of supporting orthogonalization of concerns and het-

erogeneous models, the disadvantages have to be considered as well. Since individual

3

orthogonal concern describes only the aspect it concerns with, the composition and

validation of orthogonal concerns brings an extra overhead in contrast to traditional

design approaches, where all concerns mingle together in order to form one monolithic

representation. If the overhead is too big, the inefficient composition of orthogonal

concerns may overshadow the potential benefits, therefore make platform based de-

sign infeasible. Even worse than the composition overhead of orthogonal concerns, a

bigger challenge is that for heterogeneous models, the composition algorithms them-

selves are not obvious due to the different semantics of the models. For instance, how

models written at different abstraction levels communicate with each other, and how

a system written in a mixture of imperative and declarative specifications behaves

are not trivial at all. Furthermore, as design methodologies evolve, more efficient do-

main specific modeling languages and tools are emerging. The co-existence of models

developed by different languages and tools exacerbates the compositionality of the

system.

To tackle these challenges, this dissertation proposes composition algorithms and

optimization techniques to boost validation efficiency. These proposals are experi-

mented in the Metropolis[22] design environment with several industrial scale case

studies, and the results show their effectiveness.

1.2 The Metropolis Design Environment

Metropolis[22] is an integrated electronic system design environment rooted in the

platform based design methodology. It provides an infrastructure based on a meta-

model with precise semantics that are general enough to support various models of

computation. This metamodel can capture the functionality, the architecture and the

mapping between the two at different abstraction levels. Metropolis also provides an

4

environment for complex electronic system designs that supports simulation, formal

analysis and synthesis.

The first design activity that Metropolis supports is the communication of design

intent and results. It focuses on the interaction among designers working at different

abstraction levels and among people working concurrently at the same abstraction

level. The metamodel includes declarative constraints that are written in formal

logics. They serve as either design requirements to be implemented or properties to

be checked against the system.

The second design activity that Metropolis carries out is analysis, which is done

primarily via simulation and formal verification. Describing the system at higher

abstraction levels accelerates the validation process. Successive design refinements

later bring the abstraction levels lower with more and more modeling details added.

Refinement verification can then check the equivalence of the models at different

abstraction levels [27].

The third design activity that Metropolis addresses is synthesis. This is done by

exploring the design space, which typically includes the choosing of the architectures,

the setting of the parameters of architectural components, and the mapping from the

functionality to the architecture. In both functionalities and architectures, various

abstraction levels are used to represent models with different amounts of implemen-

tation details. The closer it is to the final implementation, the more detailed the

models have to be.

Although it is true that for different application domains, different sets of em-

phasis and expertise are needed, Metropolis aims at providing a generic syntactic

and semantic modeling mechanism with analysis tools. This way, users can perform

essential design activities in Metropolis, and if necessary, still be able to extend the

design environment.

5

...ElaboratorElaborator

metamodel

compiler

Verification

tool

Verification

tool

Synthesis

tool

Synthesis

tool

front end

Meta model languagemetamodel language

Simulation

tool

Simulation

tool

...back end1

Abstract syntax treesAbstract syntax trees

back end 2 back end 4back end3

...

In
te
ra
c
ti
v
e

S
h
e
ll

Figure 1.2. The Infrastructure of the Metropolis Design Environment

Figure 1.2 shows the tool infrastructure of the Metropolis design environment. It

consists of three major parts: the metamodel compiler, a set of back-end tools, and

the interactive shell. The design capture is done by the metamodel language. The

compiler takes the design and parses it into an abstract syntax tree. From there,

various back-end tools can be invoked. Each back-end tool will take the abstract

syntax tree as the input and produce another form of output for different purposes.

For instance, the synthesis back-end tool may generate Verilog code that could be

further synthesized by commercial tools into hardware. The verification back-end tool

can generate Promela program that will be verified by SPIN [24]. It is possible for one

back end tool to invoke another back-end tool. For example, a very important back-

end tool, the elaborator, carries out many static analysis (optimization) tasks that I

will address in later chapters. So, the simulation back-end tool will call the elaborator

before generating SystemC code for optimization purpose. During the design exercise,

individual back-end tools can be invoked by command lines, or more efficiently, the

interactive shell can perform multiple operations according to a designer’s script files.

6

1.3 Orthogonalization of Concerns

Though there are attempts to formally define a “concern” [30][50], an intuitive

definition is “a specific interest in some topic pertaining to a particular system of

interest” [36]. For example, in embedded system designs, it is of great interest to

know what an object computes and how it transfers the computation result to another

object. We call such concerns computation and communication.

In reality, concerns come from design experiences and requirements for function-

ality, maintainability and evolution potential. Due to my research interests, I focus

on the concerns including function, architecture, capability, cost, concurrent behavior

and coordination. Viewed from different angles, they are usually grouped into the

following three pairs.

1.3.1 Function versus Architecture

Function refers to the intrinsic behavior of the system, which may consist of a series

of finer scale operations or a set of rules that shape the input/output relations. In

modern electronic system designs, function usually has underlying parallelism and is

captured by concurrent processes. Unlike function which represents the behavior that

the designers want the system to provide, the architecture represents a configuration

of resources that can implement certain functions. Neither of the two design aspects

predetermines or depends on the other, therefore they are orthogonal. Thanks to the

orthogonality, if the function can be represented as a separate model, it could be re-

used with many possible architectures. Similarly, if the architecture can be modeled

separately, it could be used to evaluate the implementation of many functions. When

exploring design space, a function is said to be mapped onto an architecture. At the

same time, constraints such as resource requirements can be applied and propagated

7

from the function to the architecture; since the architecture contains the performance

level at which the functionality can be implemented, the performance information

will be passed back from the architecture to the function.

1.3.2 Capability versus Cost

Within an architecture model there are two concerns that could be represented

separately: capability and cost (Most of the times, the cost reflects the performance

of the model. So, cost and performance will be used interchangeably throughout

this dissertation). Capability is the set of functionalities that an architecture can

implement. Cost measures how much an execution takes, such as latency, throughput,

power and energy. Performance could be modeled at any level of abstraction that

designers consider appropriate. Regardless of the levels of abstraction, the goal of

the performance models is to analyze the functionality accurately and quantitatively,

which, as a result, enables evaluation and optimization of the overall system function.

For example, in modeling a CPU that supports a particular instructions set, the

model should capture the functionality of each instruction such as addition or data

move, as well as the cost of the instruction such as the number of clock cycles it

takes to run. Since the same set of instructions can be realized by another CPU

which may exhibit different costs, the model for the instructions that are described

separately from their cost can be re-used. As can be seen, representing these two

aspects orthogonally gives more flexibility to reconfigure the architecture model and

increases the re-usability of the resulting models.

8

1.3.3 Concurrent Behavior versus Coordination

Concurrent behavior of a design is often captured by a set of concurrent objects,

where each object executes a sequential program and communicates with other ob-

jects. We call such an object a process. Usually, processes share some sort of resources

with other processes, for example, data or storages for communication purpose, or

time for synchronization purpose. These sharing demand the coordination among

multiple processes[71], which is often referred to as scheduling as well. Coordination

models can be specified separately from the concurrent behavior of the processes.

Coordination can be seen as a set of constraints that enforce a scheduling mecha-

nism among concurrent processes. It can be used to represent the intrinsic semantics

of a model of computations (MoC) adopted by the design. For instance, to repre-

sent a synchronous communication MoC, we need to impose the additional constraint

that events generated by the processes for the communication purpose are processed

concurrently, i.e., at the same logical time, and no computation occurs during com-

munication. In this case, scheduling the execution so that the MoC semantics are

preserved is tantamount to making the coordination required by the MoC explicit in

a modeling framework where concurrent processes are unconstrained. Coordination

is also relevant when we are using an implementation architecture that has limited

resources. Hence, the intrinsic flexibility of the concurrent behavior has to be re-

duced to reflect the resource constraints. If concurrent processes try to access the

same resource at the same time, a scheduler decides in which order the requests will

be granted. A generalization of the limited resources is that the execution of the

behavior on the implementation platform is constrained not to exceed a particular

budget on the quantity of interest, for example power. In this case, coordination may

force a particular execution among the possible ones to satisfy the constraints. To

sum up, coordination can be seen as a way of enforcing an order of execution of the

9

concurrent behavior to satisfy a set of constraints that may be due to the particular

model of computation, the limited resources of the implementation platform, or the

general quantitative constraints posed by the designer.

1.4 Heterogeneous Models

The heterogeneity of models is independent to their functionality. The freedom

here is to choose for instance the specification paradigms (imperative or declarative),

the abstraction levels or the specification languages. These choices affect the efficien-

cies of modeling and implementation significantly.

1.4.1 Imperative vs Declarative Specifications

Imperative specification versus declarative specification is one of the many classifi-

cations of programming paradigms. Traditional programming languages, like C/C++

and HDL, are all imperative. Designers define the behavior of the system by detailing

the executable algorithms of how to achieve it. On the contrary, designers can also

define the behavior of the system by listing its properties. Some logic programming

languages like Prolog and logic systems such as Boolean logic and Linear Temporal

Logic(LTL) belong to this category. In theory, both paradigms provide enough mod-

eling power to express the same behavior. However, their effectiveness for modeling

different concerns varies quite much. It is much more efficient to model a computa-

tion with imperative specifications than declarative constraints. On the other hand,

it is often convenient to specify the coordination, such as mutual exclusion, using

declarative constraints rather than imperative programs. Therefore, combining their

strength together, the mixture of declarative and imperative specifications is often

more powerful and convenient to describe various design aspects.

10

1.4.2 Abstraction Levels

It is necessary to represent systems at multiple levels of abstraction for different

purposes. In order to increase productivity, specification of the function and the

architecture of a system is often done at a high abstraction level, such as behavior

level or transaction level. At these levels, implementation details are abstracted away,

which enables quick system development and efficient design space exploration. Lower

abstraction levels, such as the register transfer level (RTL) or the gate level, are more

accurate in terms of obtaining timing information or power consumption. They are

usually used in evaluating a specific design late in the design cycle. Another very

important reason to consider multiple abstraction levels is the existence of legacy

IPs, whose reuse is believed to be a must to increase design productivity and shorten

time-to-market. Choosing the right abstraction level eliminates unnecessary design

efforts and serves better the design evaluation needs.

1.4.3 Specification Languages

Although, in theory, any specification language could be used to model any de-

sign, there are huge differences in their expressive power in describing certain models

of computation and models at different abstraction levels. For instance, C/C++ are

good for specifying behavioral level algorithms; Simulink for dataflow like behavioral

level models; SystemC for general behavior level and transaction level models; Ver-

ilog/VHDL for register transfer level and gate level models. Needless to say, to boost

design productivity, choosing the right language to describe a model is as important

as choosing the right abstraction level and the right orthogonal concerns. In addition,

like in the case of various abstraction levels, we should also recognize the existence

of the huge amount of legacy IPs written in different languages, which we can take

great advantage of.

11

1.5 Challenges

The biggest advantage of having design concerns orthogonalized is to increase the

reusability of the models, which further enables effective design space exploration.

While exploring different design alternatives, it is convenient not to change the over-

all model of the system but incorporate the effects of different design choices. With

the orthogonalization of concerns, exploring alternative options does not require

changing the entire model but only the parts that will be touched. For example, we

can explore different performance models for the same behavior or reuse the same per-

formance model for different behaviors. Since there is less information in one concern

than multiple intertwined concerns, synthesis regarding one concern is much easier.

Orthogonalization of concerns also makes formal analysis of individual concerns eas-

ier. For instance, we can check properties such as deadlock freedom by examining

the scheduling model. A good synthesis example is automatic performance model

generation[28].

While the benefits of orthogonalization of concerns are well recognized, a design

description made of orthogonal models could introduce significant overhead into the

design analysis. The reason is simple. Each individual part of the design description

specifies only the aspect it is concerned with. The analysis tool needs to find out how

this aspect is related to other aspects in the overall design by looking at other parts

of the description as well. This at best requires extra efforts, at worst not achievable

without major algorithmic enhancement.

For example, a design description of a particular implementation of the function

using a given architecture can consist of at least three parts: a functional model, an

architectural model, and a description of the correspondence between the two models.

The correspondence part is often called mapping, which specifies which part of the

behavior will be implemented by which part of the architecture and in what way.

12

If the architectural model is further separated due to its capability and cost, or if

the coordination of the concurrent behavior is separately specified in the functional

model, it requires more investigation of the models to understand what the specified

implementation really is. A simulator, the most typical kind of analysis tools, needs to

compose all these models and their relationship, and then generates a legal execution

trace for the design. The composition does affect the efficiency of the simulation as

compared to the approaches that do not keep the aspects of the design separated.

As to heterogeneous models, there are two main reasons to support them in system

level designs. One is to take the advantage of their complementary expressive power.

Different specification languages are designed to work the best for certain application

domains. For instance, hardware description languages Verilog and VHDL are pow-

erful to describe hardware modules; Simulink graphical language is good at capturing

dataflow-like systems; C and C++ are usually used to specify high level models.

Similarly, different abstraction levels are also appropriate for designing certain mod-

els. For instance, hardwares are usually designed at register transfer level (RTL),

while high level models may be written at transaction level or behavior level. Finally,

the imperative and declarative specification styles are expressive at computation and

coordination constraints respectively. The other reason to work with heterogeneous

models is to reuse the huge amount of intellectual properties (IPs) created under dif-

ferent circumstances by different parties, which is of extreme importance in today’s

electronic design industry.

However, composing and validating heterogeneous models impose a very big chal-

lenge. When integrating heterogeneous IPs, the communication between IPs may not

be well-defined or does not conform to the same protocol. Sometimes, even at the

same abstraction level, the granularities of the communication still do not match.

For instance, at the transaction level, a master device can have a single transaction

of a certain operation. However, a slave device may serve the same operation but

13

with a sequence of lower granularity transactions. In reality, unfortunately, there

does not exist a systematic way to handle the composition and validation of IPs writ-

ten at different abstraction levels, in different specification languages, or in different

specification styles.

1.6 Contribution

In this dissertation, I come up with static and dynamic analysis techniques for

composing and validating orthogonalized design descriptions to reduce the run-time

overhead in simulation. Instead of interpreting the native design description, my

tool generates SystemC code that captures the behavior specified by the original de-

scription. Static analysis is performed before code generation. Additional modules are

generated to manage the coordination among the original models, and they implement

the dynamic analysis to improve simulation efficiency. I demonstrate that simulating

the design plainly without any optimization does yield a significant penalty, while us-

ing my proposed techniques, the penalty is almost completely eliminated, thus remove

a serious objection to the use of the orthogonalization-of-concerns principle embodied

in platform-base design.

To compose heterogeneous models, I propose an automata based declarative con-

straints enforcement technique, which unifies the imperative and declarative descrip-

tions. With this technique, designers are free to choose either description style to

describe the system more efficiently without losing the analysis capability. Finally,

I propose a communication and co-simulation framework to compose IPs written at

different abstraction levels and in different programming languages.

To experiment the effectiveness of my techniques, I implemented and verified all

the proposed approaches in the design environment — Metropolis [22], which uses

14

layers on top of an imperative programming language to specify separately how the

orthogonally described models should be related. While the syntax and details of

these layers are specific to the Metropolis environment, they are representative of

other design environments that use imperative programming languages to describe

orthogonal and concurrent models interacting through multiple coordination mecha-

nisms.

15

Chapter 2

Orthogonalization of Concerns and

Heterogeneities

2.1 Related Work

2.1.1 Electronic System Level Design

To electronic system design, the focus is on how to explore design space by reusing

as many components as possible. There are several other system design tools that

have similar goals to that of Metropolis and that have addressed similar issues consid-

ered in this dissertation. In the current practice, design space exploration is done by

either physical prototypes, or hardware/software co-verification that combines pro-

cessor instruction set simulators with HDL simulators. Building models of those kinds

requires essentially all design details, so very few alternatives can be explored in a

reasonable time frame. In addition, simulation speed of HW/SW co-verification tools

is typically at least three orders of magnitude slower than real time, which prohibits

exercising realistic test cases. Recently, there have been several attempts at build-

16

ing system-level design environments that allow more efficient verification and design

space exploration. To compare to our approach, we analyze them in terms of the

trade-off between the strength and the flexibility of orthogonalization they allow, and

the efficiency of verification they achieve.

On one side of the spectrum is Rosetta [15] where many orthogonal design aspects

(called facets) can be described separately, and very rich interactions between facets

can be specified. The downside of this approach is that finding a simulation trace

consistent with all the facets and their interactions is very hard, if not impossible.

Therefore, Rosetta relies mostly on formal verification techniques that do not scale

well to complex designs today.

On the other side of the spectrum are system-level modeling languages and frame-

works like Ptolemy [2][23], SystemC [7][34], SpecC [31], and ForSyDe [60]. They all

include the notion of refinement, where architectural details are incrementally added

into a functional specification. To refine a functional specification to a level where

performance may be evaluated is expensive, and very little of it can be re-used for

building an alternative refinement. On the positive side, all of these systems pro-

vide efficient simulation. They allow some separation of orthogonal concerns, mostly

communication and computation, but they lack features that are necessary to orthog-

onalize function and architecture, and the ability to represent constraints explicitly,

such as the mapping between functional and architectural networks. Ptolemy project

defines dedicated directors (schedulers) for each model of computation. For SystemC,

there are attempts to separate performance models [42]. But it is tightly coupled with

other modeling aspects like communication channels.

Tools more similar to our approach include Spade [47] and Sesame [53], both of

which are developed within the Artemis project [54]. Both Spade and Sesame start

with functional specifications in the form of Kahn process networks [37]. The func-

17

tional specification is simulated. The trace generated by the simulation is then used

to drive the simulation of the architecture model, which annotates the trace with time

and other performance information parameters. Their main differences from our ap-

proach are the use of models of computation for the representation and manipulation

of the design. It is well known that Kahn process networks are insensitive to timing

of actions, as long as data dependency are respected. This strong property signifi-

cantly simplifies the problem since there is no need, because of this property of Kahn

process networks, of modeling the interaction from function to architecture, but the

price to be paid is the limited expressive power. Indeed, while Kahn process networks

express data flow very well, they have severe limitations in expressing control flow.

Spade and Sesame are targeted to multi-media systems, which are data flow domi-

nated. Metropolis is built to support general system designs and it cannot ignore the

control flow, so we have opted for more elaborate, bi-directional interactions between

functional and architectural specifications.

Bi-directional interaction between function and architecture is considered by

VCC [65], a commercial example of a system-level design environment. However,

in VCC, architecture can only be modeled as a network of elements, which are taken

from a small, predefined set of components. This restriction simplifies the problem, as

it limits the kind of interactions between two models, but it also limits expressiveness.

In addition, VCC lacks the ability of separating architectural capabilities from their

costs, and the ability to deal with declarative constraints.

The predecessor of VCC, the Polis system [18], is centered around a Co-design

Finite State Machine (CFSM) representation. For the synthesized software , a timing

estimator quickly annotates the program with parameters obtained from benchmark

programs, and reports code size and speed characteristics. This performance esti-

mation process is static. In Metropolis, the cost estimation mechanism, quantity

annotation and resolution, is a dynamic process, which could reflect more accurately

18

the execution of the actual systems. For scheduling, Polis generates an application-

specific OS consisting of a scheduler for each partitioned design. In Metropolis, quan-

tities have the same modeling power but with more flexibility in granularity and more

freedom to model arbitrary scheduling policies.

Prometheus [33] focuses on real time system scheduling. It specifies scheduling

policies with properties. This is clean and easy to do for simple scheduling policies,

but hard for more complex scheduling policies.

2.1.2 Orthogonalization of Concerns

In the programming language field, the idea of separation of concerns has been

explored quite extensively. The goals are to reduce design complexity, increase soft-

ware reusability and evolutionability, which are often referred to as “...ility” problems.

The orthogonal concerns that are of interests to the software/hardware systems are

abstracted by the general software concerns, but we can still see the similarities to

our ways of separating the concerns.

There are many approaches based more or less on Object-Oriented Programming

(OOP) to combat the “...ility” problems. OOP became the mainstream in software

application development from the 1990s. It emphasizes on modularity of the model

by encapsulating data and their manipulation functions with objects. Many modern

programming languages are rooted in the OOP philosophy, such as C++ and Java.

The modeling language we use in Metropolis, the Metropolis Meta-Model, is also

object-oriented. However, an analysis on the productivity of OOPs versus traditional

procedural languages [56] shows no significant difference. There is also a debate on

the performance issue of OOPs versus non-OOP counterparts, such as C++ and C.

Though no consensus has been reached, it is clear that some of the C++ features cause

19

compilation and runtime overhead, e.g. object construction/destruction, multiple

inheritance, virtual functions and virtual base classes, etc.

Aspect-Oriented Programming (AOP)[39] became prominent in the 1990s too. It

is the closest approach to our way of orthogonalizing concerns. With this approach,

the software functionality is first decomposed into separate aspects. Each aspect

handles a particular task, e.g. logging, monitoring, security checking. By defining

join-point, aspects could be inserted into another software component, which is called

aspect weaving. Based on AOP, there are a few variations. AspectJ[40] is a Java-based

AOP language developed at Xerox Palo Alto Research Center. It supports specifying

cross-cutting aspects for regular java classes. Hyperspace[52][69] was developed at

IBM T.J. Watson Research Center. Its programming language Hyper/J is also based

on Java. Comparing with AspectJ, it is more general in that it allows to compose

multiple (non)orthogonal concerns into hyperslices, and then form hyperslices into

hypermodule. The generality earns it the name of multi-dimensional separation of

concerns. Other than above two classical AOP approaches, there are several others

which focus on some particular concerns, such as Adaptive Programming (AP) [46],

Composition Filter (CF)[12] [13], etc. In AP, designers can specify the strategy to

traverse class structures and the adaptive methods performed at each class node.

Therefore, the behavior is separated from the class structure. CF is a more database

oriented solution. An object is encapsulated by input/output filters, which are quite

versatile to be able to model synchronization, coordination, real-time constraints,

etc. These filters are the key to separate different concerns. Unlike AOP sort of

approaches, Subject-Oriented Programming (SOP) [35] defines subjects as its building

blocks, which could affect multiple objects. SADES[57] is a mix-approach, which

combines CF, AP and AOP.

A recent enhancement in Java JDK 5.0, annotation, is very similar to the quantity

annotation concept in Metropolis. With this technique, designers can decorate Java

20

programs with additional information. The decoration process is orthogonal to the

regular program development. The annotated information will not directly affect the

semantics of the Java program, but they can be used later by other tools or libraries,

which can change the behavior of the running program. This mechanism can be used

to model various orthogonal concerns, e.g. classifying program functionalities, recon-

figuring the program, or even creating a performance model for the Java program,

etc.

In all the approaches described above, once the concerns are separated, they have

to be composed back together at some point. However, this is where problems come

up. Composition of separated concerns brings two levels of problems: feasibility

and efficiency. Since the separated concerns are developed obliviously, putting them

together must yield feasible and desirable behaviors. Thus, it is often necessary to

devise special handling, e.g. a dedicated cooperation protocol. The second level of

the problems is efficiency. Composed systems include special handling of orthogonal

concerns, which inevitably cause overhead e.g. running the cooperation protocol.

Without any optimization, this could kill the benefit gained from the separation of

concerns. [14], [35] and [59] all mention these two problems.

2.1.3 Heterogeneities

Among the heterogeneities, declarative constraints are the most powerful mod-

eling techniques yet the most difficult to handle. The existing declarative modeling

languages have slightly different flavors. One is focused on the constraints of variable

values used in imperative programs. Solutions to the variables are given by a con-

straint solver. Kaleidoscope [48] and ‘e’ language [10] are two examples. The second

category is constraint logic programming. The most well-known one is Prolog [1].

In this language, the constraints describing the inner logic of desired solutions are

21

given. The constraint logic programming interpreter can either check the satisfiabil-

ity of a particular solution or generate a valid solution based on the logics. The first

two categories are data-oriented. The third category is more about constraining the

event ordering, which is more interesting to us. In this category, Linear Temporal

Logic (LTL) [55] is a well studied representative, and we take it as the basis of our

declarative constraints specification language.

In terms of using LTL constraints in a specification language, Metropolis is not

the only one. Some assertion-based specification languages also do so. Among them,

the most notable ones are Accellera PSL [11], IBM Sugar 2.0 [67] and Synopsys

OpenVera [68]. In these languages, LTL constraints are used only to check the system

behavior either by simulation or formal verification. In simulation, the constraints

are used as assertions. Whenever something that violates the assertions occurs, the

simulator would report the violation. In formal verification, the constraints are used

as properties. The system is verified against the properties. The outcome would

be whether or not the system satisfies these properties. In both cases, constraints

do not affect the system behavior at all. In figure 2.1(a) and 2.1(b), the shaded

areas are the system behavior, which are determined by the system specification and

not influenced by the constraints. In 2.1(a), the system behavior intersects with the

constraints, therefore the lighter shaded area violates the constraints; in 2.1(b), all

system behavior is contained in the constraint space, therefore the system behavior

satisfies the constraints. In our work, however, LTL constraints could be used as part

of the system specification. Thus, the simulation tool will need to prune the behaviors

that violate the constraints and demonstrate only the satisfying system behavior as

shown in figure 2.1(c). In another word, the constraints are enforced by the simulator.

In integrating components across multiple abstraction levels and specification

languages, the MILAN project [17, 44] employs a model-based solution for hard-

ware/software co-design and co-simulation. Different simulators can be integrated

22

LTL

Constraints

Imperative

System Spec

(System

Behavior)

(a) Violate Constraints

LTL

Constraints

Imperative

System Spec

(System

Behavior)

(b) Satisfy Constraints

LTL

Constraints

Imperative

System Spec
System

Behavior

(c) Simulator Enforces Con-

straints

Figure 2.1. Constraints and their Usages

once different simulation models are interpreted into a common model supported

in MILAN. A lot of work has been done to solve communication gaps for hard-

ware/software co-simulation, mostly focusing on the register transfer level such as

instruction set simulators (ISS) and hardware description languages (HDL). They are

usually targeting some particular design languages or simulators, and the connec-

tions across different platforms are usually done manually [16, 70, 43]. Our approach

mainly focuses on unifying communication semantics between models at different

levels of abstraction. It is a generic co-design framework for heterogeneous design

components regardless of whether they are software, hardware, or a mixture of the

two.

Communication adapters between the transaction level models and register trans-

fer level models, which are called transactors, can be automatically generated from

interface specifications written in regular expressions [20]. This work is mainly target-

ing SystemC and Verilog co-simulation within a single environment such as Cadence

NCSim [5]. Using regular expressions to specify IP interfaces for the purpose of gen-

erating simulation monitors has also been studied and presented in [51]. Protocol

Compiler [64] is a design environment for designing and generating controllers in

HDLs from a graphical specification of communication protocols. Our work is tar-

geting a generic design framework that allows high level modeling with integration of

heterogenous design components.

23

The SPIRIT consortium [4] proposes an XML schema to represent IP interfaces

in a standard way. It is mainly focusing on RTL level IPs. The goal of SPIRIT is

to enable automatically packaging, reconfiguring and integrating IPs from different

sources. This work has a great value in the contemporary market, because RTL level

design methodologies are still dominating the design industry, and there exist a good

amount of legacy IPs written at RTL level. In the future, multiple abstraction levels

must be taken into account, and this is where our work complements SPIRIT.

CORBA [8] provides a middle layer of communication that enables interopera-

tion between objects from different operating systems, programming languages, and

networks. CORBA is mainly software oriented and is powerful enough to take care

of almost all sorts of information exchange between software objects and underlying

operating systems, however it might not be efficient to use directly in the embedded

system co-design. Therefore, I use a more generic communication mechanism, Unix

Inter-Process Communication (IPC), in our experiment. In this sense, it is similar to

the Field[58] project, which integrates software tools via message passing.

2.2 Metropolis Approach

Metropolis pushes orthogonalization of concerns to the limit. It is possible to

separate all kinds of orthogonal concerns presented in 1.3. For heterogeneities, it pro-

vides both imperative and declarative mechanisms to model separately orthogonal

design aspects and to relate them to form the integral behavior. It is also possible

to model the same functionality in different abstraction levels due to the flexibil-

ity of Metropolis modeling language. Integrating models from different abstraction

levels and co-simulating them are supported by our generic communication and co-

simulation framework. To better illustrate Metropolis’ way to separate and relate

concerns, I mix the imperative vs declarative specification styles with the orthogonal

24

Table 2.1. Metropolis Approaches to Separate and Relate Concerns
Function vs Architecture Capability vs Cost Concur. Beha. vs Coordination

Separate
Imperative or Separate imperative Separate capability model Coordination constructs or
Declarative or declarative models and quantity (cost) managers quantity managers or

for each part coordination by constraints

Relate
Imperative

Explicit communication Explicit communication Explicit communication
between functional and between capability model or dedicated constructs
architectural models and quantity managers

Declarative
LTL or built-in

LOC constraints LTL constraints
synchronization construct

concerns, which is shown in Table 2.1. Other types of heterogeneities will be described

later in the chapter.

2.2.1 Basic Execution Semantics

In order to understand the Metropolis approach of separating and composing

concerns, I need to introduce the basic execution semantics of Metropolis modeling

language, Metropolis Meta-Model (mmm). More modeling constructs will be intro-

duced later when talking about specific concerns. Throughout this section, I use a

two-producer-one-consumer example shown in figure 2.2 to illustrate the basic mmm

semantics.

Metropolis models a system with a network of concurrent processes and communi-

cation media. Only a process has its own thread and executes an imperative sequential

program. In the example, P0, P1 and C are three processes that are described by

the ‘process X’ in the middle box. The thread() function represents the concurrent

process. A medium provides interface functions that can be called by processes. In

the example, there are two interfaces, Read and Write, each of which includes two

functions. The medium M implements both interfaces by giving the implementation

of the interface functions. These functions can be called by a process through its

ports, whose types are also defined by interfaces. Therefore, a port can only call

those functions that belong to the interface defining the port type. For instance,

process P0 has a port W of type Write interface. Through port W, P0 can only call

25

functions write() and nSpace() implemented by medium M. I omit the dummy media

and connections to complete the R ports of P0 and P1, and the W port of C.

An execution of a process is abstracted by a sequence of events, which are owned

by the generating process and referring to the beginnings or ends of actions, such

as function calls or, more general, lines of code. So, an event is a three tuple

e :< process , action, begin/end >. The representation in the constraint block in the

middle of 2.2 reflects the event definition. For instance, beg(P0 ,M .write) refers to

the beginning of the function call write in the object M with the process P0 as the

owner. The top right figure shows one sequence of events for each processes. An

event can be annotated with tags [45]. Based on modeling needs, we can create tags

to encode any information, such as performance or scheduling. If for some reasons,

such as scheduling decisions, an event cannot be executed, we use a special event nop

to replace it, which means that the event owner can not execute the event but run

nop instead. For a system with multiple processes, we use event vectors to capture

the system state. The width of the event vector is equal to the number of processes

in the system. One element in the vector represents one event owned by one process.

The execution of a multi-process system is defined as a sequence of event vectors. For

more details about the mmm execution semantics, please refer to [19][49].

Both processes and media are described by imperative programs. On top of them,

we can add declarative constraints. In this example, we show a mutual exclusion

constraints written in Linear Temporal Logic between the two write() function calls

from the processes P0 and P1. It essentially says that once P0 begins to write into M,

P1 should not begin to write until P0 ends its writing, and vice versa. I will describe

more declarative constraints in section 4.1.1 later.

26

W

 ltl G(beg(P0, M.write) −> !beg(P1, M.write) U end(P0, M.write) &&
 beg(P1, M.write) −> !beg(P0, M.write) U end(P1, M.write)); }

medium S implements Read, Write {
 int n, space;
 int[] storage;
 int read(){...}; int nItems(){...};
 int write(){...}; int nSpace(){...};
}

interface Read extends Port {
 update int read();
 eval int nItems();
}
interface Write extends Port {
 update int write(int data);
 eval int nSpace();
}

event
vector

 x = R.read();

process X {

 port Write W;

 void thread(){
 while(true){

 z = foo(x);
 W.write(z);
 }
 }
}

 port Read R;

name P1
process X

name P0
process X

medium S
name M

name C
process X

Metropolis
Meta
Model

end

begin
of call

of call

. . .

P0 P1 C

eventR

R

W

W R

constraint {

Figure 2.2. The mmm Basic Execution Semantics

2.2.2 Orthogonal Concerns

Figure 2.3 summarizes all the orthogonal concerns within one design hierarchy. It

also shows the typical usages of different concerns in modeling a system. Each arrow

in the figure connects a pair of orthogonal concerns, which will be discussed in the

following.

Concurrent

Behavior

Coordination

/ Scheduling

Function

Capability

Cost/

Performance

Architecture

Mapping

Coordination Coordination

Annotation

Coordination

/ Scheduling

Concurrent

Behavior

Figure 2.3. Summary of the Orthogonal Concerns

27

Function versus Architecture — Mapping with Simultaneity Constraints

In Metropolis, we model a system architecture using the same constructs as we

use to model a system function, i.e. a network of processes and media. The networks

of processes and media form the natural separation of functions and architectures.

A legal execution of a network of processes is given by a sequence of event vectors,

where each vector includes one event instance from each process in the network. The

set of possible executions of the architectural network specifies the set of behaviors

that this architecture can support. For example, an architecture of a simple CPU

running a single task can be described as a network consisting of a single process that

successively but non-deterministically calls some methods, and each of the methods

specifies an instruction of the CPU. A mapping of the function to this architecture

represents a particular implementation of the function using the CPU’s instructions.

Therefore, one can realize the mapping by restricting the process in the architectural

network so that the order of calls to the methods reflects the sequence of instructions

anticipated by the function. This could be achieved in a traditional way, i.e. adding

hand-shaking protocols in both function and architecture. However, such imperative

way requires modification of both models, which is not only a big design overhead,

but also breaking the modularities thus impairing the reusability of the models. As

a better alternative, mapping can be modeled by specifying a simultaneity constraint

so that when the process in the functional network executes a particular instruction,

the process in the architectural network executes the corresponding method for the

instruction. This mechanism allows to model an implementation of the function

only by declaratively specifying constraints, without changing the actual programs

specified for the function and the architecture. In our experience, this makes it easy to

specify many different mappings for evaluating effective partitioning of the functional

descriptions with respect to the architecture.

28

Suppose that there exists a process b in the network of the system function, the

execution of a piece of the sequential program of b is given by a sequence of instances

of the events, say (b0, b1, . . . , bk). Suppose further that we wish to model that this

piece of code of the process b is implemented by (mapping to) a process a in the

architecture network, for which the execution of a results in a sequence of instances

of the events given by (a0, a1, . . . , al). This implementation or mapping relation can be

specified with two simultaneity constraints on the beginning and end of the sequences,

i.e. {b0, a0} and {bk, al}. Metropolis provides two ways to declare it. One is to use

general LTL formula saying that

ltl(G(b0 ⇔ a0 && bk ⇔ al))

The other is a special keyword synch. Because mapping is used so often in Metropolis,

synch is defined as a short hand for the above LTL formula. It is also useful for

performance optimization in simulation.

synch(b0, a0), synch(bk, al)

synch takes two events as its argument. Typically, these events correspond to block

boundaries defined by the syntax of the sequential programs, such as the begin-

ning/end of a function or a basic block. Then, the designers can refer to those events

easily using the syntactical constructs of the programs.

This mechanism introduces a synchronization layer on top of the two networks of

processes. The product of the two sets of legal executions is constrained by the simul-

taneity constraints specified at the synchronization layer. With this mechanism, the

designers can easily specify various function-architecture mappings, without modify-

ing the individual networks. For example, using the same architecture, designers can

map the function to different parts of the architecture, such as software components

or hardware components. Alternatively, designers can easily selects other architec-

29

tures and map the function onto them to explore different architectures. The cost we

need to pay for the mapping convenience is the handling of the extra mapping layer.

Capability versus Cost — Quantity Annotation

Metropolis models a design with a network of processes. Each process generates

a sequence of instances of events in the executed program. An instance of an event

may be annotated with tags, one tag is a value of a quantity. Metropolis provides

building blocks to define quantities. Quantities may model physical quantities such

as time or power, or logical quantities such as priorities. Using this annotation mech-

anism, one can decorate the behavior described by the imperative programs with

quantities that characterize effects observed in the behavior. A typical example is

performance/cost annotation, where values of a time or power quantity are attached

to instances of events. For example, suppose that a program defines the function

for modeling a single instruction implemented by a CPU and we want to model the

latency of the instruction when executed by this CPU in terms of its local time (for

example, clock cycles). This is done by first defining a quantity for the local time

and then annotating values of this quantity to the events for the beginning and the

end of the function. The annotation is made so that the value for an instance of

the end event is greater than that of the latest instance of the beginning event of

the function by the corresponding latency. Here, one can first specify a name to

refer to an event, and then specify which quantities are annotated to the instance of

the event, as well as properties of the annotated values in terms of the relations to

the values of quantities annotated to other event instances. This series of quantity

annotation can be made through the well-defined standard interface provided by a

modeling construct called quantitymanager . The annotation process is imperative.

The same task can be written in declarative constraints as well. In Metropolis, we

use so-called Logic of Constraints (LOC) to denote relationships between events and

30

quantities annotated to them. For the same latency example, we can simply use the

built-in LOC constraint latency to specify the time the instruction takes.

loc latency(LocalT ime, beginning event, end event, 5cycles)

For more details, please refer to [21][25].

We use this quantity annotation mechanism to describe architecture costs. Recall

that we model an architecture in terms of its capability and cost, as described in

1.3.2. The capability is modeled by imperative programs while the cost it bears

is specified by defining appropriate quantities and specifying annotations or LOC

constraints to relevant events. In this way, one can separate the two aspects of the

architecture descriptions while maintaining their correspondence unambiguously. In

general, we find this mechanism is very useful to realize modular descriptions of

individual components in a re-usable manner. Section 3.2.2 will explain more details

about quantity annotation.

Concurrent Behavior versus Coordination — Constraints and Quantity

Annotation

The constraint specification for coordination is particularly important because

the mmm execution semantics assumes no coordination among processes a priori; an

event vector may include event instances from different processes, which may lead to

data collision 1. It is therefore the responsibility of the users to specify appropriate

coordinations.

As in the case of quantity annotation, one can provide names to refer to events,

and can specify constraints in terms of the named events that any execution of the

1We use a programming style similar to SystemC [34] in order to isolate the portions of a program
that can cause data collision [22], i.e. access to shared programs is allowed only for interface functions
called through ports.

31

processes must satisfy. These constraints can be specified either declaratively or im-

peratively. The declarative specification (for example, LTL) imposes coordination

among the processes with no modification of the sequential programs. The specifica-

tion can be anywhere in the code, for example, in separate files, as long as the named

events used in the constraints can be referenced unambiguously. This is convenient

when the descriptions of processes may be used in various designs with different co-

ordination policy. Using our approach, the underlying sequential programs for the

individual processes can be reused unmodified. The mapping constraint (synch) is a

typical example.

Another imperative way to specify coordination on concurrent behavior is again

through quantity annotations. Similar to performance/cost annotations, event in-

stances can be annotated with tags. However, the meaning of the tags are now

changed from performance values to coordination decisions. The encoding of the tags

can be very flexible, therefore it allows to model various types of coordinations. After

the annotation, the models can interpret the coordination results and take actions

accordingly.

In certain situations, specifying coordination constraints imperatively as a part of

sequential programs seems more appropriate than declaratively. For example specify-

ing a particular coordination policy as a property of a program imperatively ensures

that this coordination policy is asserted no matter how the program is used. It is

quite common in descriptions of communication semantics that exclusion constraints

are specified for controlling accesses to shared resources. Due to this reason, mmm

provides a special keyword await for imperatively specifying exclusion constraints, in

addition to the declarative specification mechanism.

32

2.2.3 Heterogeneities

Abstraction Levels

The most important distinctions at different abstraction levels include the inter-

pretation of time and the granularity of the behaviors. In order to bridge the gaps

among the abstraction levels, we must find the common semantics to transform the

behaviors from different abstraction levels into it and then make them communicate

to each other. The common semantics we use in Metropolis is the events [72].

Regardless of the abstraction levels, any behavior can be abstracted into a se-

quence of events. Then, we abstract a sequence of events by a pair of representative

beginning and end events. This pair of events is defined as a service. In addition,

services could have arguments passed in at the beginning events and have results

returned back at the end events. Following this idea, communication semantics at

a certain abstraction level can always be transformed into a service. The commu-

nication between two design components can then be defined as one using services

provided by the other.

A design component provides services through its provided ports and utilizes ser-

vices through its required ports. Each port is associated with a service (which is

denoted by a pair of beginning and end events). To clearly demonstrate the commu-

nication semantics in terms of services, look at the example in figure 2.4. rb and re

represent a service associated with the required port; pb and pe represent a service as-

sociated with the provided port. IP1 through its required port communicates with IP2

through its provided port. For provided ports, there are two kinds of services defined,

active and passive. An active provided service runs in its own thread. The calling

of the active service requires the synchronization between the required service and

the provided service. This resembles one of the key concepts, function-architecture

33

mapping, embodied in the Metropolis design methodology [22]. A passive provided

service can only be initiated by a required service. Both the provided and the required

services run in the thread of the required service. It resembles a regular function call.

Note that for required ports, services are always active.

rb

re

pb

pe
Required Port Provided Port

IP1 IP2

Figure 2.4. A Service Example in Communication

Having defined the services based on events, it is obvious to see that communica-

tion semantics at different abstraction levels can then connect and talk to each other

if they share the same type of services.

Specification Languages

Although, in principle, it is possible to model any components in Metropolis,

the hardness in doing that would vary largely due to the models of computation and

abstraction levels. Therefore, it would be more valuable if designers can pick the most

effective language to model specific components, and then integrate them together.

Now, the problem is how to make them work together.

In bridging the abstraction level gaps, we define the notion of a service, and use it

as the common communication protocol. Here, for different programming languages,

we can apply the same trick. If we consider the implication of using different pro-

gramming languages, it reveals nothing but different definitions of events and event

ordering in the execution. As long as it follows some sort of operational semantics,

34

like in C/C++/SystemC/Matlab/HDLs, we can always abstract the execution of a

program as sequences of events. Therefore, the same abstraction mechanism from

events to services can be applied[72].

For instance, register transfer level and gate level design components are usually

described in HDLs such as Verilog or VHDL. Communication is done via hardware

signals, which correspond to physical wires and voltage transitions. One event occur-

ring on a wire may represent one service. In this case, a system reset service could be

triggered by an asynchronous reset signal. The single event can be split and made into

a generic service conforming to the definition in section 4.2.2. More often in HDLs, a

set of signals work altogether to perform a communication task. This usually occurs

when there is a communication protocol, such as memory access or bus transaction.

By identifying the beginning and end events, again a service can be built for the

complex communication protocol. In the C language, it is common to use functions

to modularize a piece of task. There is a natural correspondence between a function

and a service. The beginning and the end of the function can be regarded as the

beginning and the end of the service. But note that it is not restricted to functions

to form services. Any sequence of an execution can be a service.

Through services, different specification languages can understand the same com-

munication semantics. But the syntax are still different. To support both the syntax

and the semantics, I build a generic communication and co-simulation infrastructure,

which will be discussed in section 4.2.

Imperative vs Declarative Specifications

Imperative versus declarative specification is only one of the programming

paradigms, which include many other programming styles and methodologies, such as

object oriented programming, constraint programming, actor oriented programming,

35

etc. As described in the orthogonal concerns, for the same purpose, there could be

both imperative and declarative ways of specifying it. For instance, if two processes

are competing for a common resource, there must be some sort of coordination be-

tween them. In the traditional software domain, the common resource is usually

guarded by a semaphore. Each process must obtain the semaphore before accessing

the resource and release it after using it. Metropolis supports this mechanism nat-

urally with the communication primitives and the special construct await. This is

an imperative way of specifying coordinations, and has been widely used and well

understood by software developers. On the other hand, the same coordination could

be captured by declarative constraints. If written in LTL, it would look like

ltl(G((begin1 → !begin2 U end1) && (begin2 → !begin1 U end2)))

Metropolis supports declarative specification as well. It can be used to specify coor-

dination constraints. In addition, there are similar declarative constraints for perfor-

mance modeling.

Different programming paradigm is particularly suitable to capture different kinds

of characteristics. Imperative specification gives an executable model of the system,

by running which, the behavior of the system can be clearly observed. Since imper-

ative specification is similar to the way how people think about the operation of a

system , it is often utilized to describe step-by-step behaviors, such as computation

algorithms. In contrast, declarative constraints are especially expressive in describing

formal properties either in the same sequential behavior or across multiple ones. The

LTL mutual exclusion constraint is a good example.

36

2.3 A case study

It is easy to understand the difficulties of composing heterogeneous models. In

this section, I describe a real world case study to show case the challenges that come

with orthogonalization of concerns.

The case study is a picture-in-picture (PiP) set-top box application that was

developed by the Metropolis team. The system behavior was originally described

in C++ [41] as a set of concurrent programs communicating with FIFO channels

under the semantics of the Kahn process network [37], executed using the FIFO

communication library given in SystemC 2.0. Figure 2.5 shows the block diagram of

the system behavior. It takes a transport stream as the input, demultiplexes it into

two MPEG streams and sends them to two separate MPEG decoders. One MPEG

video is resized and merged with the other MPEG stream to produce a PiP video

stream at the output. The size of the inner window and the video quality can be

dynamically changed by the control signals from USRCONTROL. The rectangles in

the figure represent a hierarchical network of processes, made of approximately 60

processes with 200 communication channels.

The PiP application was re-modeled in the Metropolis design environment, where

a library of media was developed to implement the FIFO semantics and use it as the

communication channel. For the imperative body of each process in Metropolis, it

was copied from the code associated with the corresponding process in the original

description, where minor syntactic changes, such as the names of the interface func-

tions, were made. The overall description of this behavior consists of approximately

19,000 lines of code. This specification style and the kind of algorithms described

in the specification are commonly used in many other applications in multi-media

systems. The observation made on the experimental results shown in the following

are applicable in general to this class of systems.

37

USRCONTROL

JU
G

G
L

E
R

MPEG

MPEG

RESIZE

PES_PARSERTS_DEMUX

PIP

Figure 2.5. Block Diagram of the PiP Design

Table 2.2. Simulation Performance Comparison
Modeling Language Simulation Time (s) Cycles/Second1

Metropolis Meta-Model 7276 9.16K
Native SystemC2 22.7 2.94M

1:Based on 200MHz clock

2:From a product company

In this case study, there exist some of the orthogonal concerns, such as concurrent

behavior and coordination. With just the PiP function model itself, a significant over-

head caused by the orthogonalization of concerns was observed. Table 2.2 shows the

simulation statistics of the Metropolis model and the native C++(SystemC) model.

As can be seen, having the concerns separated results in more than 300 times slow

down. Later on, after adding a CPU-BUS-Memory architecture and mapping PiP

onto it, much more simulation overhead was introduced by the orthogonal concerns,

such as function and architecture, capability and cost.

38

Chapter 3

Orthogonal Concern Composition

and Validation

In this chapter, I consider the run-time overhead introduced to simulation be-

cause of the mechanisms used for separating and composing orthogonal concerns,

and present techniques to overcome this problem [74]. In general, these techniques

are applicable to any frameworks that consist of similar characteristics, but here I

use Metropolis as a reference environment since its principles are deeply rooted in the

orthogonalization of concerns philosophy.

3.1 Function versus Architecture

As described in 2.2.2, both function and architecture are modeled with imperative

specifications in similar fashions. They generate two traces of event vectors. The

mapping describes the correspondence between the two traces with the simultaneity

constraints between events. Note that, simultaneity constraints can be used in a

more general way than just the behavior and architecture mapping. Even within

39

a behavior or an architecture itself, simultaneity constraints can be used to achieve

certain coordination purposes.

3.1.1 Simultaneity Constraints

Using the same example from section 2.2.2, I want to map the behavior event

trace (b0, b1, . . . , bk) to the architecture event trace (a0, a1, . . . , al) by saying

synch(b0, a0) and synch(bk, al)

In demonstrating the mapping, a simulator needs to ensure the satisfaction of the

constraints in such a way that even if b0 is enabled, it is not executed unless a0 is also

enabled, and vice versa. In general, there is no limitation on the number of events

in behavior and architecture that are related by mapping. At run time, quickly

identifying events that need to be synchronized altogether, and deciding whether

those events are enabled or not become a performance critical task. This is especially

challenging due to the large number of the simultaneity constraints in practical designs

and the sporadic appearances of them all over the design. In a näıve implementation,

one needs to check all the simultaneity constraints every time an event becomes

enabled, resulting in the number of checks equals to the number of events times the

number of synch constraints.

3.1.2 Optimization Techniques

I manage this complexity by using a combination of static and dynamic techniques

(see figure 3.1). In the static phase, I parse all the simultaneity constraints specified

by the keyword synch. By definition, these constraints form a set of equivalence

classes (EC) over the specified events, so that two events are in the same class if they

are constrained by the synch keyword. Let me denote the set of ECs by unique IDs

40

starting from 0. I compute this set statically, and annotate each of the events with

the identifier of the equivalence class it belongs to. The above three steps are carried

out by the elaborator back end tool. The simulation back end tool will then perform

the last step, which is taking the annotation results and generating extra code to

handle simultaneity constraints. In figure 3.1, the right column shows an example

run of the optimization algorithm on three simultaneity constraints.

Elaborate Constraints

Construct synch events

equivalence classes

Annotate equivalence

classes info to events

Generate simulation

code with the info

synch(e1, e2) synch(e1, e3)

synch(e4, e5)

e1, e2, e3
EC ID=0

e4, e5
EC ID=1

e1 ~ EC ID 0
e2 ~ EC ID 0
e3 ~ EC ID 0

e4 ~ EC ID 1
e5 ~ EC ID 1

ei: counter[EC ID] ++;

 while (counter[EC ID] != EC ID cardinality)

 wait;

proceed to ei

Figure 3.1. The Optimization Algorithm for Simultaneity Constraints

In the dynamic phase (during simulation), I use an array of counters to represent

the status of all the ECs. The EC ID is used to index the corresponding counter

in the array. Each counter counts the number of events in the corresponding EC

that are ready to execute. When I check for simultaneity constraints, I first compare

the counter value to the cardinality of the corresponding equivalence class that is

computed statically. If they are not equal, at least one of the events is not enabled,

which implies to disable the enabled events in this class all at once. The processes that

are about to execute the enabled events need to wait for the next resolution cycle. This

mechanism reduces the checking of a number of simultaneity constraints to a simple

value comparison, resulting in a significant reduction of simulation time. Note that,

besides simultaneity constraints, the events in the equivalent classes may be subject

to other constraints, e.g. exclusion constraints or more general scheduling constraints.

41

So, this mechanism not only speeds up the simultaneity constraints resolution, when

disabling unsatisfied ECs, it also helps reduce the resolution workload for other kinds

of constraints on the events in those ECs.

3.2 Capability versus Cost

3.2.1 Modeling Cost with the Tagged Signal Model

In 2.2.1, the basic execution semantics was described as the system execution

being captured by a sequence of event vectors. Besides the event instances generated

during the execution, additional information can be annotated to the event instances

thanks to the tagged signal model (TSM)[45]. More formally, in TSM, an annotated

event is a member of T × V , where T is a set of tags and V is a set of values. I take

the whole set of events in the system as V , and the whole set of tags as T . Tags

can be defined either to reflect system cost/performance or to represent a particular

scheduling decision. The key modeling philosophy is to keep the two different kinds

of tags separate, which results in the separation between the performance model

and the scheduling model. However, in this section, I focus on the tags that model

the system performance, which are computed based on formulas or pre-characterized

performance lookup tables [28].

Since tags are a generic way to decorate events, they can be used to model ar-

bitrary performance metrics. They could represent time or power. For example, to

model that a certain architectural service takes ∆ time units, the architecture will

need to request the difference between the physical time annotations of the start and

the finish of the service to be exactly ∆. Alternatively, if an event trace of one pro-

cess has a series of physical time annotations, by summing them up, I can get an

idea of the overall execution time of the process. This is exactly the goal of having

42

performance models, which is to evaluate the execution quality of a behavior model. I

should point it out that if there are multiple processes that request for the same type

of tags, there might be interferences among them. Very often, a type of scheduling

policy will have to be introduced. I will address that in the scheduling modeling

section 3.3.3.

Example:

process {

 …

L1: a=2;

Port.read();

 …

}

process 1 2 n

beg
in L

1

end L1

begin call

nop

Event Vector

(a) Event Vectors

...

1 2 n

nop

 i
quantity

manager

Behavior Model Performance Annotation

 i+1

 i+1'

...

 i+1

annotated

w/ requestw/ request

resolve()

stable() ?

postcond()

No

Yes

annotated

Phase 1 Phase 2

request(...)

(b) Two Phase Execution

Figure 3.2. The Performance/Cost Annotation Semantics

In order to orthogonalize the behavior and the performance models, the concept

of two phases during system execution is introduced. From the basic execution se-

mantics, an event vector (see figure 3.2(a)) captures a snapshot of the system at a

certain point. The progress of event vectors is put in one dedicated phase, phase 1

(see figure 3.2(b)). By itself, the behavior model runs in exactly the same manner

as described in basic execution semantics in 2.2.1. To annotate performance tags to

those events generated in phase 1, a separate phase 2 is created. In phase 1, once

the behavior moves from an event vector i to its next proposed event vector (i + 1)’

(prime denotes the tentative proposal), phase 1 will pause and pass (i + 1)’ to phase

2. Phase 2 is then invoked and annotates performance tags to some of the events in

the vector. After the annotation is done, phase 2 returns the annotated event vector

(i+1) back to phase 1. The alternative invocation of the two phases drives the entire

system execution forward.

43

In phase 2, for annotating tags to events, a special modeling construct called the

Quantity Manager is created. It gets such a name because performance tags, and later

on scheduling tags, are often abstracted by different quantities with certain axioms.

Therefore, performance annotation is also referred to as quantity annotation.

3.2.2 Quantity Managers and Quantity Annotation

In Metropolis, a special modeling construct, quantity manager, is provided for

annotating tags to events. One quantity manager is in charge of one type of tags. By

standardizing the interface of quantity managers, the reusability of quantity managers

in different models is maximized. The standard interface includes the following four

APIs and figure 3.2(b) illustrates the execution order of them.

1. request(event, reqClass) is called by a behavior model running in phase 1.

It sends a tag annotation request to a quantity manager. It can also pass on any state

information needed by the quantity manager by encapsulating them into the reqClass.

For instance, if the quantity annotation request is made for the execution time of

an arithmetic operation, then the type of the operation (addition, multiplication,

division, etc.) and the operands may need to be passed to the quantity manager in

order to get an accurate calculation.

2. resolve() provides the core quantity resolution algorithm, which computes

the right values for annotating the requesting events. For example, in a performance

model, it could be a formula calculation or a table lookup.

3. stable() tells whether or not the resolution algorithm has finalized its decision.

If not, resolve will be called again. This function will be used to determine the

termination of the resolution especially when multiple quantity managers interact

with each other.

44

4. postcond() annotates the results to the requesting events, after quantity

resolution algorithms finish and agree upon the values to be annotated.

Metropolis supports hierarchical models by packaging a group of objects into a

netlist. In the same netlist, multiple quantity managers may co-exist. In phase 2,

there has to be an order when calling the resolve, stable and postcond functions of

all the quantity managers. To specify that ordering, the same three functions are

also added into the netlist. The default behavior of the functions is to call the

same functions that belong to its child quantity managers and child netlists in an

arbitrary order. However, if designers want, they can override the default behavior

by giving their own implementation. When phase 2 starts, the successive function

calls will begin from the top-level netlist. This simple scheme has a disadvantage of

having many function calls whose sole purpose is to traverse the netlist hierarchy. To

improve simulation efficiency, I employ a call graph recording technique, i.e. the first

time quantities are resolved, I record the quantity managers that are called and their

order in a list. After that, the quantity managers are called according to this list,

eliminating unnecessary network hierarchy traversals. Note that during this process,

I respect any user defined traversal functions in the netlists.

3.2.3 Optimization of Quantity Resolution

As mentioned in 3.2.1, I first focus on the performance modeling using quantity

managers. However, quantity managers can also be used to model scheduling policies.

I will describe the optimization techniques for quantity resolution in section 3.3.4 after

introducing the scheduling modeling.

45

3.3 Concurrent Behavior versus Coordination

3.3.1 Exclusion Constraints

Let me quickly recapitulate the mmm communication semantics. In Metropolis,

processes communicate with each other by calling functions implemented in the com-

mon media. Specifically, a process is defined with ports, where the type of a port

is an interface that declares prototypes of functions. For example, the processes in

figure 2.2 define two ports, with types of Write and Read, respectively. Media im-

plement interfaces, and a medium can be connected to a port if it implements the

interface specified as the type (or sub-type) of the port. The communication is then

modeled by calling a member function of an interface through a port of that type.

As shown in figure 2.2, media can be connected from multiple processes in general.

Thus it is often necessary to impose exclusion constraints among these processes. For

example, if variables defined in the medium are accessed by both of the processes in

their write and read functions, then the mutual exclusion in accessing the variables

are necessary to avoid data race. To specify such mutual exclusion constraints, I can

use either declarative constraints or imperative specification. In this section I focus

on the imperative approach, discuss the potential overhead in simulation, and present

the techniques to cope with it. The declarative constraints approach and its handling

will be shown in section 4.1.

The keyword used in Metropolis for specifying an imperative mutual exclusion

constraint is called await. Its syntax is

await(guard; test list; set list) { critical section }

Each await statement consists of four pieces of information. guard is a boolean ex-

pression; test list and set list are port.interface pairs, which are similar to semaphores

used in traditional software development; critical section is the guarded operation.

46

The execution semantics of await is that if guard is true and no interface function de-

fined in test list are being executed by other processes, the critical section is enabled.

An enabled critical section can start running, while preventing other processes from

running any interface functions defined in set list until the critical section finishes. To

evaluate the guard and the test list, the semantics does not say exactly when, instead

it guarantees the satisfaction of both conditions when turning the critical section

enabled. This guarantee shifts the burden of checking whether the variables and

interfaces being accessed are simultaneously modified by other processes from design-

ers’ shoulders to mmm validation tools. It also has further implications on synthesis

tools, which is out of the scope of this dissertation and will be omitted.

3.3.2 Optimization Techniques for Exclusion Constraints

A Medium-Centric Approach

To ensure the semantics of await, processes need to be coordinated. Whenever a

process is about to execute an interface function, it must check with other processes

to see whether the interface function is being used by any test list or prevented by

any set list of other processes. If indeed any other processes use or prevent the

interface function, the process must stop and wait, otherwise, it can start executing

the interface function, bookmark the usage information, and then at the end of the

execution, update the interface usage information again. A process trying to execute

an await should check the guard condition and the test list by evaluating the interface

usage information stored in other processes. Before doing that, it has to be made

sure that all other process are not interfering with the checking operation. In my

simulation algorithm, I achieve that by pausing all processes at every event vector. If

the answer of the checking is true, the process can execute the critical section and set

the set list information. Upon finishing the critical section, it will release the set list.

47

This approach relies on the information updated by individual processes, and requires

each process to check the status of the other processes, which results in the quadratic

complexity in the number of the processes. I call this approach the process-centric

approach.

The process-centric approach is conservative, because it compares each pair of the

processes in the entire system, even though some of the pairs may be completely

unrelated. For example, if the whole set of processes is denoted by P . Then, the

total number of checks among them is

CP = |P| · (|P| − 1)/2

where |P| is the cardinality of the set of the processes in the system. If I can find out

the related processes sets P =
⋃

i Pi, where Pi may overlap on the boundaries, then

the total number of checks would be
∑

i |Pi| · (|Pi| − 1)/2. For industrial designs in

reality, |Pi| is usually much less than |P| and |Pi| tends to be close to each other. So,

if I assume that |P1| = |P2| = · · · = |Pk|, then the total number of checks would be

C⋃
i Pi

= k · |Pi| · (|P|i − 1)/2

It can be seen that the number of checks is reduced by |P|·(|P|−1)
k·|Pi|·(|Pi|−1)

times. In the PiP

case study I showed in 2.3, there are totally 60 processes and 200 media in the system.

If I take a rough estimation using point-to-point communication, i.e. each medium

connects only two processes, then 60·d
2

= 200 holds, where d is the average number of

processes that each process connects to. Therefore, d = 6.6, |Pi| = d + 1 = 7.6 for all

i, and k = 200
7.6

. Plug these into the formula, the reduction of the exclusion constraints

checking would be approximately 60·(60−1)
200/7.6·7.6·(7.6−1)

= 2.7 times by just figuring out the

related set of processes.

In 1.2, I show a set of Metropolis back-end tools. One most important back-end

tool, the elaborator, can analyze the system structure and extract the information

48

such as the structurally related sets of processes. However, since I judge the relation

between processes by looking at the communication media that connect them, I can

avoid using the elaborator to collect the structural information. Instead, I switch

the stand point of the simulation algorithm from processes to media. This gives me

the medium-centric approach, which further reduces the complexity from quadratic

to linear in the number of processes within the related set Pi.

In the medium-centric approach, since communication media represent the criti-

cal regions of mutual exclusion, I can store all the interface usage information there

and let all processes update the information during interface function calls or await

executions. When processes enter interface function calls, they need to register to

the media that these interfaces are being used; after they finish, they retract the

registration. For await’s, before entering a critical section, processes check the inter-

face usage information in the media; when entering a critical section, they need to

raise a flag indicating that all interfaces in the corresponding set list are prohibited;

after they finish, they fold the flag down. Having these interface status information

available, a process has to compare only once its need of an interface to the status

of the medium implementing it. In the process-centric approach, it has to check each

pair of processes’ status within the smaller related set. Thus, the time complexity

is reduced from quadratic to linear in the number of the processes. More precisely,

the reduction on the interface checks is now
|P〉|−1

2
times. Comparing to the process-

centric approach, as the average cardinality of the related process sets get larger, the

reduction on the times grows up linearly.

Named Event Reduction

In the basic mmm execution semantics, I introduced the definition of events and

event vectors. They are the fundamental measures of the progress of a system be-

49

havior. In optimization of simulation speed, however, it is not necessary to observe

all the events and stop and check every event vectors in the execution, because some

of the events are not concerned by any aspects of the system. For example, those

events with neither performance annotation nor any kind of constraints on them can

be ignored. Other events that are important to be observed are called named events.

They may be referred to by either an await statement or declarative coordination

constraints such as simultaneity constraints. For instance, the beginning of an inter-

face function call is a named event because it can be referred to in an await statement

by its test list or set list. Since named events need to expose themselves somehow,

the execution of named events incurs an overhead usually by updating their status,

checking other related constraints (like in await), or being checked by other events

etc.

Note that although in general named events should be treated in a special and

potentially costly way, under some circumstances they can be safely ignored without

violating the execution semantics. Named event reduction is a technique I propose to

recognize such events. The technique will regard a named event as a regular event

(therefore can be ignored) if the following conditions hold:

1. The event is not the beginning or the end of an interface function call; or if it

is, the interface function implemented by a medium does not appear in any of

the test list and set list of an await, which is inside the medium itself or in the

medium the processes connect to.

2. The event is not the beginning or the end of an await statement

3. The event is not the beginning or the end of a labeled statement or a labeled

block of statements, e.g.

label1 : i = 2 ;

label2{i = 2 ; j = 3 ; · · · }

50

4. The event does not have any declarative constraints associated to it

5. The event does not have any quantity annotations on it

The above conditions all together mean that the events are of no interest to

anybody. As a result, these events can be safely ignored without any observable

consequences, hence there is no simulation overhead for the additional bookkeeping

or any sort of condition checking. To identify such reducible named events, I apply

static analysis on the abstract syntax tree that represents the sequential program of

an object, such as a process or a medium; in addition, because the way a medium

is instantiated in the current design, e.g. the connections to other objects and con-

straints, also affects the reduction result, I need to analyze across the boundaries of

multiple objects. Finally, I keep only the reduced set of named events that would

have real impacts in the execution of the model. This optimization step is performed

by the elaborator back end.

Interleaving Concurrent Simulation

Metropolis execution semantics is based on true concurrency, where multiple pro-

cesses make progress altogether. This is in contrast to the interleaving concurrent

semantics employed in some other programming languages, such as SystemC [34],

where at any time there is at most one process that can make progress. Metropolis

uses true concurrency because, if the interleaving concurrency were assumed implic-

itly in a language, the designer would be required to ensure that semantic in the

implementation as well, otherwise certain properties that hold in the description of

the behavior may not hold in the implementation, which may cause unexpected mal-

functions in the implementation.

For example, suppose there is a variable in the behavioral description that is

accessed by multiple processes. When a process attempts to assign a value to the

51

variable, to avoid potential data collision, it is in general necessary to check whether

other processes are also accessing the variable or to block other processes from ac-

cessing it. Under the semantics of interleaving concurrency, however, this scheme

of check-and-block is not necessary because the fact that only one process makes

progress guarantees that no other process is accessing the variable 1. However, if

the descriptions of these processes are implemented by concurrent components in the

architecture that does not guarantee interleaving concurrency by default, one may

suddenly encounter data collision because multiple processes can indeed access the

variable simultaneously. This is problematic because it requires the designer either

to analyze potential data collision in the behavioral description, which is hard es-

pecially when the simulation does not reveal it due to the language semantics, or

to enforce interleaving concurrency globally in the entire implementation as in the

behavioral description, which could cause unnecessary overhead. Or even worse, if

this subtlety is ignored, it ends up specifying one thing in the behavioral description

while implementing another.

Under the true concurrency semantics, access control over multiple processes must

be explicitly specified in the description, thus requiring additional exclusion con-

straints. Note that when the description is transformed into a target language that

uses interleaving concurrency, e.g., for simulation purpose, some of these constraints

may become irrelevant, because they are always satisfied under the interleaving con-

currency semantics. This implies that

• some execution that is perfectly legal in the original Metropolis design may

never be observed using the target language;

• the constraints that become irrelevant may cause unnecessary overhead in the

1To be more precise, this guarantee holds when a variable access is an atomic action in the
language, which is the case for SystemC.

52

simulation of the target language, as it evaluates constraints that are always

true.

For the first issue, Metropolis includes tools that transform the design descriptions

into various other languages or mathematical models [22, 24], so that different kinds

of analysis can be carried out on the design. For the second issue, I in fact effectively

identify and eliminate the redundant constraints with a tool that generates SystemC

code from Metropolis, therefore increase the simulation efficiency.

Now, I present the optimization techniques when the target simulation language

uses interleaving concurrency semantics, such as SystemC. Under the interleaving

concurrency execution semantics, a process continues to run until it voluntarily yields

to others. At any time, a process can assume that it is the only process that is

currently running. The yield points are typically statements which block the process

from proceeding until certain conditions become true. This “single-running-process

assumption” allows to simplify the checking of mutual exclusion constraints in some

cases, and can be used to eliminate simulation overhead associated with some await

statements. To be more precise in this analysis, let me first present the following

definitions.

Definition:

1. In a sequence of events, if no named event exists, then the sequence of events

are called interleaving concurrent atomic or IC-atomic.

2. If the sequence of events in a critical section of an await statement is IC-atomic,

then the critical section is called IC-atomic.

3. If the sequence of events in a function is IC-atomic, then the function is called

IC-atomic.

53

The notion of IC-atomic means that there is no yield point during the execution of

a segment of code, where otherwise one needs to stop and check for certain conditions,

for example, quantity annotations or coordination constraints. Interestingly, when

the execution is carried out under the interleaving concurrency semantics, IC-atomic

property may be transitively propagated to make a segment of code IC-atomic even

though this was not the case originally. For instance, in a nested function call,

the inner function being IC-atomic may propagate and make the outer function

IC-atomic as well.

Lemma 1: In await(guard; test list; set list) {critical section}, if the critical

section is IC-atomic, then the await statement can be simplified to

await(guard; test list;) {critical section}

Proof:

Due to the semantics of await, when entering the critical section, guard must be

true, test list must include no interface functions that are executed by other processes,

and most importantly all interface functions in the set list will be locked by the current

process. Similarly, when leaving the critical section, all interface functions in the

set list will be released. Notice that checking the guard and the test list has no side

effects on the system state, while locking and releasing the set list do. However, the

state changes do not have direct influences on execution of the critical section. They

are just for coordinating with other processes.

Now, suppose the await is run by a process p, and generates a sequence of events

S = [(e1, locking set list), e2, ..., (en, releasing set list)]. For simplicity, the handling of

the set list is also listed in the event sequence. On the other hand, if the set list is

removed, it will generate an event sequence S ′ = [e′1, e
′
2, ..., e

′
m]. It needs to prove that

54

if the pre-condition of the two event sequences are the same, then the post-conditions

of the two event sequences are also the same, and n = m, ei = e′i, where i = 1, 2, ..., n.

First of all, because of the interleaving concurrency semantics, i.e. at any time

there is only one process running, as process p is executing the await, all other pro-

cesses are idle. Second, because the critical section is IC-atomic, process p will gen-

erate the event sequence S continuously without pausing at any event from e1(e
′
1)

to en(e′m). As the result of above two conditions, it can be concluded that while

executing the entire critical section, process p is the only process that may change

the system state.

So, if I use pre(e) and post(e) to represent the pre-condition and the post-condition

of event e, the following relations can be derived.

pre(e1) = pre(e′1) ⇒

e1 = e′1

post(e1) = post(e′1) + locking set list

Since locking and releasing set list are independent with the execution of the cur-

rent await, the critical section will generate the same event under the pre-conditions

pre(e′2) and pre(e′2) + locking set list. By induction,

pre(ei) = post(ei−1) and pre(e′i) = post(e′i−1)

pre(ei) = pre(e′i) + locking set list ⇒

ei = e′i

post(ei) = post(e′i) + locking set list

i = 2, 3, ..., k

Because of the exact matching of the event pairs, it must the case that n = m =

k + 1. For i = n, releasing the set list completely reverses the state change caused by

55

locking the same set list, therefore

pre(en) = pre(e′n) + locking set list ⇒

en = e′n

post(ei) = post(e′i) 2

Intuitively, Lemma 1 can be understood as the following. Because the

critical section is IC-atomic, once it starts, no other process will execute before it

finishes. Therefore, no processes will ever get an opportunity to check the usage of

interfaces in the set list, therefore removing it makes no difference.

Note that the elimination of the set list can further reduce the list of named

events that are kept track of. Because if an event is the beginning or end event

of an interface function that is included only in this set list, this event will be no

longer subject to any constraints. This further reduction of the named events can in

turn make more sections of the programs IC-atomic, which may further lead to the

elimination of set list’s of other await statements. A similar observation can be made

for test list.

Lemma 2: In await(guard; test list; set list) { critical section }, if all interface

functions in test list are IC-atomic, then the await statement could be simplified to

await(guard; ; set list) { critical section }

Proof:

Pick an arbitrary interface function f from the test list. Suppose a process p

calls f and generates the event sequence S = [(e1, p entering f)e2, ..., (en, p exiting f)].

Because f is IC-atomic, S will be generated continuously without pausing in between,

and only p may change the system state while executing f . Other processes can only

observe pre(S) and post(S). Neither one of them will ever exhibit the state change of

56

p-entering-f, because it is either before such a change can occur, or after the change

has been reverted. In another word, no process can ever see the executing of the

interface function f by any other processes.

The above conclusion is true for the process that is executing the await statement.

Therefore, checking the test list will always yield the same result, i.e. no interface

functions are being used. So, removing the test list from the await statement will not

make any difference. 2

Combining the two lemmas, it can be stated:

Theorem 1: For an await(guard; test list; set list) { critical section } if the

critical section is IC-atomic, and all interface functions in test list are IC-atomic,

then the await statement can be simplified to

await(guard; ;) { critical section }

A simplification of await statements can transitively reduce the named events, and

vice versa. Static analysis is used to implement this simplification and named-event

reduction recursively, until no further simplification is possible.

The simplification of await improves the efficiency of simulation in two aspects.

First, it is no longer necessary to check the usage of interface functions by the other

processes because the test list and set list are gone. Second, if the guard condition is

true, the execution can simply continue to the critical section, and thus can decrease

the number of context switches, which otherwise could be a source of significant

simulation overhead for a large number of processes.

The following theorem is a natural derivation of Lemma 1 about simplifying the

execution of interface functions.

Theorem 2: For a given interface function, and for all await statements whose

set list’s include the interface function, if the critical sections of the await statements

57

are all IC-atomic, then the interface function can always be executed without violat-

ing any exclusion constraints.

Indeed, Theorem 2 is a natural derivation of Lemma 1. If all the set list’s get

removed, then the interface function will no longer be subject to any exclusion con-

straints. Therefore, it can always execute without checking the exclusion constraints.

3.3.3 General Scheduling

Scheduling Modeling using Quantity Managers

Scheduling can be seen as a set of constraints that enforce a coordination mecha-

nism among concurrent processes. It can be used to represent the intrinsic semantics

of the model of computations (MoC) adopted by the design. For instance, to rep-

resent a synchronous communication MoC, it is necessary to impose the additional

constraint that events generated by the processes to communicate, are processed

concurrently, i.e., at the same logical time, and that no computation occurs during

communication. In this case, scheduling execution so that this constraint is satisfied

is tantamount to making the coordination required by the MoC explicit in a modeling

framework where concurrent processes are unconstrained. Scheduling is also relevant

when using an implementation architecture that has limited resources. Hence, the

intrinsic flexibility of the behavior has to be reduced to respect the resource con-

straints. If concurrent processes try to access the same resource at the same time,

scheduling decides in which order the requests are granted. Another scenario is when

the execution of the behavior on the implementation platform is constrained not to

exceed a particular budget on the quantity of interest, for example power. In this

case, scheduling may force a particular execution among the possible ones to satisfy

58

the constraints. In general, scheduling can be seen as a way of enforcing an execution

order of the behavior to satisfy a set of constraints that may be due to the particular

model of computation, or the limited resources of the implementation platform.

As described in 3.2.1, tags can be annotated to events either to reflect system per-

formance or to represent a particular scheduling result. Performance tags are pure an-

notation. They represent timing, power or other performance metrics. They are com-

puted based on formulas or pre-characterized performance lookup tables. Scheduling

tags will be interpreted as scheduling decisions, which will affect the execution of

events. In general, after resolving schedulings, an event will be annotated with either

run or don’t-run. If an event cannot run, a special event nop is used to replace it in

the event vector and postpone it to the next event vector.

In some cases, schedulings are based on the performance tags. For instance, first-

come-first-serve scheduling is based on the time tags of the requesting events. This

justifies the separation of the performance annotation and scheduling, though they

are both modeled with the same modeling constructs, Quantity Managers. In order

to achieve the separation, a third phase is added to the two-phase execution shown

in figure 3.2(b). In figure 3.3, behavior models in phase 1 execute event vector i

and generate the proposed next event vector (i + 1)’, and make requests if a process

needs an annotation or scheduling; in phase 2, performance numbers are annotated

to events; in phase 3, scheduling resolution is carried out and the results are attached

to event vector (i+1)’. The behavior models in phase 1 will then change some of the

events to nop, had they been scheduled not to run, and execute other events. Then,

the 3 phases iterate again.

59

...

1 2 n

nop

 i
quantity

manager

Behavior Model Performance Annotation

 i+1

 i+1'

...

 i+1

annotated

w/ requestw/ request

resolve()

stable() ?

postcond()

No

Yes

Scheduling Resolution

grantedNot

granted

annotated

w/ request

granted

quantity

manager

 i+1'

 i+1

w/ requestw/ request

resolve()

stable() ?

postcond()

No

Yes

Phase 1 Phase 2 Phase 3

request(...)

Figure 3.3. 3-Phase Execution to Orthogonalize Behavior, Performance and Schedul-
ing

A Power Management Example

Now, let me use a power management example to showcase the performance and

scheduling modeling and their separation. Then, I can introduce the optimization

algorithms to speed up the 3-phase execution.

Suppose I want to create a power management model for a portable electronic

system, like a PDA. Each component in the system consumes a certain amount of

power based on its execution status. To estimate the system power consumption, I

use a very crude model, i.e. the component is either on or off. When on, it consumes

a fixed amount of power, and it consumes zero power when off. Since the battery

has a limited power, it does not allow power consumption to be more than a given

threshold at any time. So, dynamic power management is required.

The first task is to identify what are performance models and what are scheduling

models. In this example, it is not hard to see that power consumption is a per-

formance model. It requires only the on/off status of the component to determine

its power consumption. The dynamic power management is a scheduling model. It

should observe all potential running components, get their power consumption needs,

and figure out which components should be taken off-line and which could run. Sup-

60

pose here I use a greedy algorithm to allow as many components as possible to run

concurrently.

From the behavior model side, whenever a component is turned on or off, it should

send an power consumption annotation request with its on/off status and a power

management scheduling request.

From the power consumption quantity manager side, when the request function

is invoked, it remembers the event and its on/off status. When the resolve function is

called (immediate stable afterwards), it checks a lookup table and attaches the power

consumption value to the event by the postcond function.

From the power management quantity manager side, it also collects all the events

being managed when its request function was called. Now, after each component gets

back the power consumption annotation from performance annotation phase, the

power scheduler will run its resolve function, which examines all the requests, figures

out the demand, and if it exceeds the battery power, disables the component with

the largest power consumption. Once the resolution is stable, the postcond function

will annotate those disabled events don’t-run, and others run.

When it comes back to phase 1, those events that are scheduled don’t-run will be

replaced by nops, and the remaining events continue to run.

In this example, it is easy to replace the crude power consumption model with

more accurate ones. It is also easy to change to any other scheduling policies other

than the greedy one. In a later case study in section 3.4.2, I will show another

example on “time”, which is the most important and often troublesome issue in

electronic system design. With these two, we hope to make it clear the advantages of

separation of performance and scheduling from behavior models, and the effectiveness

of the optimization algorithms described below.

61

3.3.4 Optimization of the Quantity Resolution Algorithms

Speedup the Baseline Algorithm

The 3-phase integration algorithm is straightforward, but it is too conservative and

therefore inefficient when there is no or few performance annotation and scheduling

requests. In practical systems, the number of processes is usually very large. However,

the number of performance annotation or scheduling requests at one step may be

quite small. Each invocation of the performance annotation and scheduling phase

will resolve a small number of requests or even no requests, which results in a big

waste of time. In addition, because the invocation itself requires context switching,

it brings in another source of execution overhead. So, the number of alternations

between phases should be kept as small as possible, which is equivalent to collecting

as many as possible performance annotation and scheduling requests before invoking

phases 2 and 3.

To increase the number of events with quantity annotation requests in each resolu-

tion round, I can shift the execution order of events. In the behavior model, whenever

a process proposes an event with a performance annotation or scheduling request, the

event would be either granted with an annotation, and therefore be executed, or it is

not granted, and is replaced by a nop. Without invoking phases 2 and 3, I can simply

replace those events requesting annotation with nops and hold the owner process on

those events. Because processes are independent, and event vectors are arbitrary in-

terleaving of events from each of the processes, holding an event for some steps does

not violate the execution semantics. Since other processes without any requests are

still running, there is a potential that those processes will generate more events with

quantity annotation requests. When the number of events with quantity annotation

requests exceeds a threshold, phases 2 and 3 can start.

62

In my implementation, I made the threshold adaptive. At the very beginning, the

threshold is equal to the total number of processes. After a long period of time, I

adjust the threshold to the number of processes that have made quantity annotation

requests. In the following run, if it takes too long to get one invocation of phases 2

and 3, I decrement the threshold; conversely, if the invocation happens too often, I

increment the threshold. The meaning of long and short is determined by the total

number of processes times constants. Figure 3.4 gives a graphical view of the speed

up algorithm. Phases 2 and 3 do not execute on tentative event vectors i’ and (i+1)’.

Once (i + 2)’ collects enough events with quantity annotation requests, it switches

to phases 2 and 3, and comes back to the behavior model with a scheduling. With

the speedup algorithm, I observe significant reduction in the number of invocations

of phases 2 and 3 compared to the baseline algorithm, where the number of runs of

all phases are equal.

1 2 n

nop

 i

Phase 1 Phase 2 & 3

 i+1

 i'

 i+2'

grantedNot

granted

switch exec

 i-1

nop

nop

 i+2nop

...

 i+1'

 i+2'

Not

granted

1 2 n...

nop

Figure 3.4. Illustration of the Speedup Algorithm

Further Speedup on Quantity Resolution Algorithms

With many case studies, I noticed that whenever a scheduling policy is based on

performance annotation results, it needs to get a global picture of the entire system.

For example, the global time scheduling policy aligns events in a non-decreasing

63

order based on their time annotation results. A power management scheduler needs

to collect the power consumption of all components in the system before it can take

any action. The requirement of getting a global view of the system is usually enforced

by a scheduling quantity manager. If it does not have all the information needed to

make a decision, it simply postpones its decision to the next event vector by replacing

all of the requesting events with nops. Knowing this fact, I can partially adjust the

performance and scheduling resolution phases to increase the execution efficiency.

To understand the algorithm, I present the following notations.

Ei = {ei,j|the j-th event (from process j) in the i-th event vector}

Pi = {ei,j|ei,j ∈ Ei and ei,j has performance annotation requests}

Si = {ei,j|ei,j ∈ Ei and ei,j has scheduling requests}

Di = Pi ∩ Si, events scheduled based on performance annotation results

Qx = {quantity managers that are in charge of x},

where x = {Pi \Di, Si \Di, Di}

The relationship among Ei, Pi, Si and Di is shown in figure 3.5(b). It is my observa-

tion and also assumption that Qx’s are disjoint.

Figure 3.5(a) shows the simulation algorithm. It starts with the behavior model

phase 1©. Once it proposes the i’th event vector, Ei \ Pi \ Si will be checked to see

whether there are any events without quantity requests that can execute. If so, bypass

phases 2 and 3, and let the behavior model proceed to the next event vector. This

is the same idea as presented in speeding up the baseline algorithm, i.e. collect more

events with quantity requests before invoking phases 2 and 3. If no events in Ei\Pi\Si

can run or Pi ∪ Si have enough requests, then start 2©, i.e. phase 2 on the events

Pi \Di(by running QPi\Di
), which are events having performance annotation requests

only, and phase 3 on the events Si \Di(by running QSi\Di
), which are events having

64

Check Ei \Pi \ Si

all nop or PiUSi
large enough?

Execute

Behavior Model

Execute

Phase2 on Pi \Di
Phase3 on Si \Di

all nop or Di
large enough

Execute

Phase2 and

Phase3 on Di

Yes

No

Yes

No

Hold PiUSi Hold Di

1

2

3

(a) Resolution Algorithm

Ei

Pi SiDi

Ei

Pi SiDi

(b) Set Relationship

Figure 3.5. Further Optimized Concerns Integration Algorithm

scheduling requests only. If the resolution result allows some events in them to run,

let them proceed and there is a hope to accumulate more events in Dj>i. If not, or

the number of events in Di is already large enough, start 3© of executing phase 2

and 3 on the event set Di(by running QDi
). Essentially, the postpone of resolving

events in Di gives it a higher probability to gather more events that will be scheduled

based on performance annotations. In another word, we try to grow Di until it has

a more global view(figure 3.5(b)). With this further optimization made, I found a

much smaller number of runs of 3© than the already reduced number of runs of 2©.

Note that the above algorithm is conservative, i.e. even if the scheduling model does

not require a global view, having it resolve more events in Di will not cause incorrect

behavior. On the other hand, if the algorithm is not smart enough to gain the real

global view, a less global Di will be rejected by the scheduler in phase 3 anyway,

therefore the algorithm will not cause any incorrect behavior.

65

3.4 Case Studies

The design models described in Metropolis can be transformed into many other

models using executable languages or mathematical models [22, 24], and therefore

it is possible to conduct simulation with a variety of languages. Since there are

many design models and IPs that are described in SystemC, I developed a tool that

generates SystemC code from a Metropolis design description, where the optimization

techniques presented in this chapter are all implemented. By using this tool I can

easily co-simulate models captured in Metropolis with third-party IPs written in

SystemC without going to the co-simulation framework.

3.4.1 Picture-in-Picture Set-top Box

The first design I used for the experiments is a picture-in-picture (PiP) set-top

box application developed by the Metropolis team. The system behavior was orig-

inally described in C++ [41] as a set of concurrent programs communicating with

FIFO channels under the semantics of the Kahn process network [37], executed using

the FIFO communication library given in SystemC 2.0. Figure 3.6 shows the block

diagram of the system behavior. It takes a transport stream as input, and then demul-

tiplexes it into two MPEG streams and sends them to two separate MPEG decoders.

One MPEG video is resized and merged with the other MPEG stream to produce a

PiP video stream at the output. The size of the inner window and the video quality

can be dynamically changed by the control signals from USRCONTROL. The rectan-

gles in the figure represent a hierarchical network of processes, made of approximately

60 processes with 200 communication channels. We re-modeled it in the Metropolis

design environment, where we developed a library of media that implements the FIFO

semantics and used that as the communication channel. For the imperative body of

each process in Metropolis, we copied the code associated with the corresponding pro-

66

USRCONTROL

JU
G

G
L

E
R

MPEG

MPEG

RESIZE

PES_PARSERTS_DEMUX

PIP

Figure 3.6. Block Diagram of the PiP Design

cess from the original description, where we made minor syntactic changes such as

the names of the interface functions. The overall description of this behavior consists

of approximately 19,000 lines of code. We notice that this specification style and the

kind of algorithms described in the specification are commonly used in many other ap-

plications in multi-media systems. The observation made on the experimental results

shown in this section are applicable in general to this class of systems.

PiP Behavior Simulation

When the original SystemC description was simulated, it took 22.7 seconds to

complete the job for the testbench video I used. I then applied my tool to the

Metropolis design description, generated SystemC code from this description, and

compared the simulation speed of the SystemC code to the original case. In this

comparison, I used the same SystemC simulation engine. Note that the SystemC

code was generated automatically from the Metropolis description, and therefore the

code for the FIFO channels came from the Metropolis library rather than from the

native SystemC library implementing the FIFO semantics. When experimenting my

optimization techniques presented in Section 3.3.1, I applied them one by one, so

that the simulation efficiency boost can be allocated to each technique. All the tests

were done on a Dell Precision 650 with 4Gb memory and two 3.06Ghz CPUs running

RedHat Linux 8.0. The benchmark input, a transport stream, plays for 1/3 second

of wall clock time (10 frames for each MPEG video).

67

Table 3.1. PiP Behavior Simulation Statistics
Optimization Techniques Simulation Time (sec) Cycle/Second** Overall Speedup Speedup by

Baseline* 7276 9.16K 1 -
MC 1797 37.1K 4 MC: 4

MC/NER 89.26 747K 80 NER: 20
MC/NER/ICSO 20.29 3.29M 359 ICSO: 4.5

MC:Medium-Centric Optimization

NER: Named Event Reduction

ICSO: Interleaving Concurrent Specific Optimization

*: Baseline simulator with no optimization techniques

**: Based on 200MHz clock frequency

Table 3.1 shows the simulation results. The first column lists the optimiza-

tion techniques I implemented in the simulators; the second column shows the

total simulation time; the third column reports another way of measuring sim-

ulation efficiency, i.e., how many clock cycles can be simulated in one second.

Suppose the clock frequency of PiP is 200MHz, then this number is derived by

200MHz × (1/3) ÷ (Simulation Time). The fourth column shows the cumula-

tive speedup compared with the baseline simulation. The last column gives the

speedup that individual optimization technique contributes. As shown in the table,

named event reduction gives the largest improvement. It speeds up simulation by 20

times. This is because our technique finds that a great amount of interface function

calls in communication media do not need to be treated as named events. Each of

the other two techniques, medium-centric optimization and interleaving concurrent

specific optimization, yields about a 4-times speed up.

Mapped Behavior Simulation

After the PiP behavior simulation, I took an architecture model shown in fig-

ure 3.7(a), and mapped the PiP behavior to the architecture. Figure 3.7(b) shows a

68

closer view of the architecture. In figure 3.7(b), the architecture is divided into two

parts. In the left part, there are models of tasks that run on the CPU (T1 to Tn),

CpuRtos, bus and memory. The CpuRtos, the bus, and the memory are of the type

“medium”, which implement interface functions modeling primitive services provided

by the components, such as read and write for the bus, or coarse models of the in-

structions supported by the CPU. Each task Ti is a process whose sequential program

non-deterministically calls the interface functions implemented in the CpuRtos.

The right-hand side of the figure models four quantities: Time models the global

time that is used for annotating the performance of the architecture; the others model

scheduling policies for the OS, bus, and the memory. At a level of abstraction where it

is not necessary to model detailed protocols between scheduled objects and arbiters,

It is found very convenient to use the quantity resolution mechanism to model arbiters

in the architecture, because only the core scheduling policies of the arbiters and none

of the interfaces need to be written. This simplifies the task of re-using or replacing

the scheduling policies in the architecture.

Bus
Arbitrator

Slave

Mem

Master

OS+CPU

(a) Block Diagram (b) Detailed View

Figure 3.7. CPUOS-Bus-Memory Architecture

I first simulated this architectural model by itself with two tasks where each task

finishes 1000 service calls. This model involves three levels of hierarchical networks.

69

Table 3.2. Simultaneity Constraints Handling Overhead
No. of Simultaneity Constraints Handling Overhead

8 2.9%
16 2.9%
32 3.4%
64 4.0%

We performed the run-time analysis on the hierarchy to eliminate unnecessary hierar-

chy traversals for calling the quantity resolution functions, thus improving simulation

efficiency. In the simulation of a round-robin scheduling policy for the CpuScheduler,

quantity resolution, time reduces from 8.0% to 5.7% of the total simulation time.

The 2.3% saving comes from the reduction of hierarchy traversals by 67% from 71181

times to 23729 times. Note that the quantity resolution speedup algorithms are not

put in force yet.

I then specified a mapping between the PiP behavioral model and this archi-

tectural model. Since there were more service needed, I created 130 tasks in the

architecture. However, the unmapped architecture tasks do not have negative effects

on the simulation result and performance. Table 3.2 shows the number of mapped

events groups and the percentage of simulation overhead in dealing with mapping.

The overhead increases very slightly while the number of synchronization groups in-

creases exponentially.

3.4.2 Distributed Automotive CAN Architectures

In this case study2, I consider the modeling and performance analysis of the widely

used distributed automotive Controller Area Network (CAN) architecture, which is

composed of several unsynchronized Electronic Control Units (ECU) communicating

through a CAN bus. Note that in this type of architecture the ECU nodes are

2The models in this case study were primarily developed by Haibo Zeng. I took the case study
and experimented from the composition and validation points of view.

70

naturally unsynchronized unless some clock synchronization protocol is added on top

of CAN protocol. Figure 3.8 shows an abstract model of the architecture done in

Metropolis. A more detailed model of this case study can be found in [75].

SW 1-1 SW 1-i1

Local Physical

Time 1

...

ECU6

OS Scheduler

1

CAN

Controller 1

Local

Buffer

SW 1-1 SW 1-i1

Local Physical

Time 1

...

ECU2

OS Scheduler

1

CAN

Controller 1

Local

Buffer

SW 1-1 SW 1-i1

Local Physical

Time 1

...

ECU1

OS Scheduler

1

CAN

Controller 1

Local

Buffer

Global

Logical Time

CAN Bus

Scheduler

CAN Bus

Medium

Figure 3.8. Distributed Automotive CAN Architecture Model

Functional Model

As in figure 3.8, several software tasks (SWs) are running on each ECU which are

activated periodically according to its local clock. In every run, each software task

consumes the data from the input channels, executes certain control algorithms, and

then produces the data to output channels. The input/output channels between the

software tasks are either local (i.e. the local buffer in an ECU) if the software tasks

are on the same ECU, or remote (i.e. the CAN bus shared by all ECUs) if they are

sitting on different ECUs. In the case of remote communication, on the producer side,

the software task writes data to the local buffer, and the CAN controller takes the

data and transmits it onto the CAN bus; on the consumer side, the CAN controller

reads the data from the CAN bus and update the local buffer such that the software

71

task can read the data from it afterwards. The CAN controller is modeled as a process

running concurrently with all the software tasks and OS services which run on the

CPU resource.

Performance Models: Local Physical Time

One important performance metric for the automotive systems is the end-to-end

latency. In a sequence of n tasks τi with edges (τi−1, τi) for each i = 2, ..., n, the

end-to-end latency is defined as the time between the change of the input data of

task τ1 and the completion of task τn. An edge (τi−1, τi) connects the output port

of task τi−1 to the input port of task τi, and thus the data produced by τi−1 will be

consumed by τi.

A notable problem in this type of unsynchronized architectures is the clock drift,

i.e. even slight variations in the timing chips on different ECUs will cause their

local times drift apart from each other. Thus even if the tasks running on different

ECUs are configured to have the same period, they may actually be activated under

different rates. This will cause a few other problems such as the jittering of end-to-end

latencies.

To get the end-to-end latency of a given task chain, it is necessary that the time

stamp for each event is correctly annotated. This requires that every operation re-

lated to time, like the task periodic activation events and their executions, is scaled

according to the local clock precision. For example, if the relative clock precision

on an ECU is 1.0e−6, the period of a task configured as period 10ms will actually

be activated every 10 × (1 + 1.0e−6)ms. This scaled time is modeled by using one

local physical time quantity manager for each ECU (see figure 3.8). Every request

of time from the tasks, including software tasks and CAN controller process, will be

adjusted and annotated according to the clock precision by the local physical time

72

quantity manager on the same ECU. Note that this is only the performance model of

the system, which does not affect the execution of any tasks.

Scheduling: Global Logical Time and Priority-based Schedulers

There is also another concept of time, which is used to align individual pieces

in a system along the same non-decreasing time line. This concept exists in almost

all popular simulation infrastructures. For example, in synchronous languages, the

logical time (clock ticks) denotes the global execution ordering; in analog simulators,

a unique real valued time flags the current position in simulation for all components,

etc. In the case study, this kind of global ordering is also critical to synchronize the

entire system and capture the correct behavior. One global logical time quantity

manager is used to schedule all the tasks on different ECUs, as shown in figure 3.8.

Based on the events’ time stamps scaled and annotated by local physical time quantity

manager on each ECU, the ones with the smallest time stamp will be scheduled to

run, otherwise they will be held till earlier events finish.

Besides the logical time scheduler, there are also other types of scheduling models

in the system. An operating system (OS) scheduler implements a priority-based

preemptive scheduling algorithm as specified in the OSEK specification for BCC1 type

tasks[9]. The software tasks on one ECU send out requests along with their priorities

to an OS scheduler. The scheduler then puts all the requests into the ready queue,

picks up the request with the highest priority, allows the corresponding software task

to run, and suspends all the other software tasks including the previously running

ones.

Another priority-based non-preemptive bus scheduler is used to model the collision

detection and arbitration mechanism in CAN protocol[3]. CAN is a multi-master

network, each data message is labeled with a unique identifier throughout the network

73

which also determines the priority of the message. When the CAN bus is idle, all the

CAN controllers with a message ready to be transmitted compete for access to the

bus at the same time by sending requests to the CAN bus scheduler. The request for

the highest priority message will be granted by the CAN bus scheduler. The winning

CAN controller continues transmission as if it were the only device on the bus, while

all the other CAN controllers will be kept waiting for the next bus idle cycle for

transmission.

Supervisory

Control

Module

Steer

Control

Suspension

Control

Brake

Control

Inertial

Sensor

Hand

Wheel

Sensor

Figure 3.9. Limited-By-Wire System

Simulation Results

In this case study, the baseline physical architecture consists of six ECUs, which

are connected by a high-speed CAN communication bus (figure 3.8). The application

running on the architecture is a limited-by-wire system (figure 3.9) that implements

a Supervisory Control layer over the Steering, Braking and Suspension subsystems.

Each of the four control modules and two CAN-based smart sensors runs on an

individual ECU. The end-to-end latency is analyzed for the task chain from the Hand-

wheel sensor via the Steering then to the Supervisory. All the tasks are configured to

be activated periodically every 10ms. The clock drift on each ECU is some random

value within the range of [0, 1e−6]. Figure 3.10 shows a simulation result of the

end-to-end latency in this distributed automotive system. As pointed out before,

the distributed and unsynchronized nature of the architecture causes not only the

74

large difference between the minimum and maximum latencies, from 4ms to 21ms

respectively, but also the jittering of the latency curve. Now, consider the latency

contributed by a task τi from the arrival of its input data to the produce of its output

data. In the worst case, the input data arrive right after the completion of some

instance of task τi (with negligible response time). The input data will be read by

the task on its next instance. In the best case, the input data arrive right before the

activation of the task, and are read immediately by the task on this instance. In case

that the input data arrival rate is slightly faster than the rate of the task, there will be

some moments at which the latency changes from the worst case to the best case, and

vice versa. So a lot of dynamics in the end-to-end latencies can be expected, which

is hard to get without running simulation with performance and scheduling models.

Full description of the modeling, simulation results and design space exploration of

this case study can be found in [75].

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000

Time(s)

E
n

d
-t

o
-e

n
d

 la
te

n
cy

(m
s)

Figure 3.10. End-to-End Latency for a Task Chain in a Distributed Automotive CAN
Architecture

To demonstrate the effectiveness and efficiency of the optimization algorithms de-

scribed in section 3.3.4, I summarize the simulation statistics for this case study in

table 3.3. The first row is the total number of event vectors with quantity annota-

tion requests including both performance annotation and scheduling requests. This

75

number equals to the number of switches from phase 1 to phases 2 and 3 without

any speed-up techniques. The second row is the number of switches after putting

in the baseline speed-up algorithms, which is equal to the number of execution of

2© in figure 3.5(a). As shown in the third column, 13.5 times of phase switching is

saved. The third row shows the number of execution of 3©, which is even smaller

than the number of runs of 2©, because of the postpone of resolving event set Di

presented in section 3.3.4. In total, only 4% of simulation time was spent on phases

2 and 3, which includes both the running of the quantity resolution algorithms and

the switching overhead. This is in contrast to more than 15% of total simulation time

without any optimization.

Quantity Resolution Algorithms Phase Switching Saving Time%

Baseline algorithm 97197 15%
Speedup the baseline algorithm 7160 13.5X

Further speedup algorithm 2794 2.6X 4%

Table 3.3. Simulation Statistics of Quantity Resolution

76

Chapter 4

Heterogeneous Model Composition

and Validation

A model may consist of orthogonal concerns. Independent to that, in describ-

ing the model, there are yet another set of free choices, such as at what abstraction

levels to write the specification, whether to specify the behavior with declarative

constraints or imperative programs, in what languages to describe the behavior, etc.

These choices increase the heterogeneities of the model, affect the effectiveness of

describing the model and the efficiency of implementing the model. Similar to or-

thogonal concerns, heterogeneities cause a big overhead in analyzing the design. Even

more challenging than the orthogonal concerns, because the heterogeneous models do

not naturally compose with each other, special handling techniques are indispens-

able. For example, how does a model written in C language and at transaction level

communicate with a model written in Verilog and at register transfer level? In this

chapter, we will address such challenges brought by heterogeneities.

77

4.1 Composing Declarative and Imperative Spec-

ifications

4.1.1 Declarative LTL Constraints

Linear Temporal Logic (LTL)

LTL[55] is defined over the executions of a system, i.e. linear sequences of state

transitions. At each state, a set of atomic propositions may hold. In general, an

atomic proposition could be anything that yields a true or false result. For example,

a comparison between a state variable with a number, a judgment about its next

state, etc. To leverage LTL effectively in the Metropolis environment, I take events

as atomic propositions1. LTL formulas are of the form expressed with temporal

operators

• F f : f must hold somewhere in the future

• G f : f must hold globally

• X f : f must hold at the next step

• f U g: f must always hold until g holds

or of the form expressed with regular boolean operators

• f , !f , f&&g, f ||g, f → g, f ⇔ g

where f and g are atomic propositions, or simpler LTL formulas.

1In theory, atomic propositions can include both events and boolean expressions over variables
that are defined in media and processes. In this dissertation work, I focus on the coordination aspect
of LTL constraints, therefore I restrict atomic propositions to events only.

78

I can use LTL to specify many meaningful constraints. For instance, in the ex-

ample shown in figure 2.2, I want the two producers P0 and P1 to write into the

medium M in a mutual exclusive manner. This can be done by adding the following

constraints, which says whenever P0 starts to write, P1 can not write until P0 finishes

its writing and vice versa.

G(beg(P0,M.write) →!beg(P1,M.write) U end(P0,M.write) &&

beg(P1,M.write) →!beg(P0,M.write) U end(P1,M.write))

Similarly, I can specify simultaneity constraints, e.g. in data flow model, two

processes P0 and P1 need to write to a common medium M simultaneously in order to

produce a single output. This property can be described by the following constraints,

which requires the beginning of the two write actions to occur simultaneously and

so as the two ends of the actions. Note that the simultaneity constraint I discussed

before is simply one syntactic sugar of LTL simultaneity constraints that is used very

often in mapping a behavior to an architecture.

G(beg(P0,M.write) ⇔ beg(P1, M.write) &&

end(P0,M.write) ⇔ end(P1,M.write))

I can use LTL constraints to specify many other interesting event orderings or

scheduling policies. These LTL constraints can then be added on top of an imperative

mmm specification to quickly tune the behavior.

LTL in the Design Flow

As shown above, LTL constraints can specify event scheduling and quickly tune

system behaviors [73]. In terms of modeling efforts, to specify mutual exclusion

between two operations, LTL constraint costs just two lines of code. Instead, if

79

I ensure mutual exclusion by specifying implementation details (usually imperative

code), e.g. checking, locking and releasing a semaphore, at least dozens of lines of code

are necessary. So, it increases design productivity to use LTL constraints to adjust

the system behavior. To support this design style, a special simulator is needed to

validate the system behavior. In the later stage of the design cycle, LTL constraints

can be refined into a concrete implementation. While the same simulator can be

used to verify the correctness of the implementation against the same set of LTL

constraints.

Figure 4.1 shows the overall design flow. In other existing design methodologies,

such as the RTL design methodology, all design details should be implemented before

I can evaluate the behavior of the system. In my case, this is not necessary. From

system specification, designers could partition the system into functional subsystems.

I can describe the same behavior either by operational mmm models, LTL formal

constraints or a mixture of the two. One typical partitioning is to specify computation

(core function) with imperative code; then, use LTL constraints for coordination or

scheduling. This is the case in the producer-consumer model in figure 2.2, where

the read/write functions are modeled with imperative code and the mutual exclusion

between them is modeled with LTL constraints.

After completing the system model, validation follows. In my methodology, I

do it by simulation. How to enforce LTL constraints during simulation becomes a

challenge. I discuss my solutions to it in later sections. Based on the simulation result,

the designer either goes back to modify the model or proceeds to implementation.

mmm supports design refinement. It can be done manually by designers, auto-

matically by software tools (synthesizer), or a combination of the two. For example,

the mutual exclusion constraint in figure 2.2 can be refined into semaphore-based

coordination or a more complex scheduling based on quantity annotation. At this

80

Partial Functionality Design

Simulation

(Checking LTL constraints)
Simulation

Synthesis/Manual Refinement

Done

System Specification

No Yes

No

Meet Specification?

Meet Specification?

Yes

Behavior Refinement by LTL

(Enforcing LTL constraints)

Figure 4.1. LTL Constraints Involvement in the Design Flow

stage, I can do formal refinement verification between the system prototype and the

refining system. However, due to its complexity, formal refinement verification is not

always economic. A realistic and much cheaper way is again to use simulation. In

my methodology, this gives an additional advantage, i.e. LTL constraints reuse. The

same set of LTL constraints can now be used to verify the implementation. Basically,

I migrate to assertion based verification in the sense that properties will be checked

on-the-fly during simulation. This part is fairly standard using Büchi Automaton

introduced below. Therefore, I will not address it in the dissertation.

4.1.2 Enforcing LTL Constraints in Simulation

Suppose a system is specified with the mixture of imperative mmm code and

declarative LTL constraints. Then, the task of the simulator is to exhibit the behavior

that:

1. can be generated by the imperative mmm code,

2. satisfies the LTL constraints.

81

To satisfy the first condition is not hard, because the imperative code can be executed

to generate a behavior. The efficiency issue is discussed in the previous chapter.

However, it is difficult to deal with LTL constraints in simulation, because they

specify only what the behavior should be, not how to realize it. If I can transform

the declarative constraints into imperative specification, then simulator can handle

them in an easier way.

Along this line, translating LTL constraints into a Büchi Automaton (BA) be-

comes a good candidate. BA itself defines an accepting language, but not a concrete

execution semantics. However, in the later discussion, I will show how to combine it

with the simulation algorithm to create an execution semantics. The LTL-to-Büchi-

Automata translation is not my focus, because it is a very well-studied topic in the

formal verification domain [32][66]. I just integrated an existing translation tool [32]

into the Metropolis simulator.

Büchi Automaton

Figure 4.2 shows a sample BA, which represents the LTL property that as soon as

process P triggers the request event, process C starts to serve and eventually finishes

serving. As the figure illustrates, BAs have finitely many states, some of which are

designated as initial states or accepting states. States are connected with transitions,

and transitions are labeled with enabling conditions. Since an LTL formula refers to

events, enabling conditions in the corresponding BAs are expressed in terms of these

events, and give a possible event scheduling. For instance, the enabling condition tb

on the transition from state S3 to S4 denotes that t should not occur, but b should

occur, while e is a don’t-care. A run of a BA is a sequence of states starting from the

initial state; between every two adjacent states, the enabling condition must hold.

Interestingly, in the BA generated for LTL constraints specified for a system, a run of

82

Accept

Init

Accept

S2

S3

S4

t

be

b

t

e tb

1

tbe

e

b

be

tb 1

te

LTL Constraint:

 G(t (X b && F e))

where

t = beg(P, P.request)

b = beg(C, C.serve)

e = end(C, C.serve)

Notations:

tbe = (!t) && b && e

Figure 4.2. A Sample Büchi Automaton

the BA coincides with a sequence of event vectors of the system, but only partially,

because there may exist other events which do not appear in LTL constraints at all,

e.g. events from unrelated processes. This correspondence suggests that when the BA

moves from the (i− 1)’th to the i-th state, the enabling conditions give a scheduling

of the i-th event vector. A run of a BA is accepting if it visits some accepting states

infinitely often. An infinite sequence of event vectors is accepted by the BA, if it

results in such an accepting run.

Without loss of generality, I assume that from every state of the BA there exists

a path to a final state. Indeed, a state from which there is no path to a final state

cannot appear in any accepting run, and it can be eliminated from the BA without

affecting the set of accepted sequences. However, under this assumption, there may

exist states of the BA such that some event vectors enable no transitions from that

state, which I want to prevent from happening with the heuristics described later.

Simulation Algorithm

After the BA is constructed for LTL constraints, the simulator needs to keep track

of two sets of states, the system states of all mmm processes and the BA states. In

a given system state, there may be several possible event vectors due to different

schedulings. The simulator needs to choose one of them, and moves the system to the

next state. In addition, the simulator must make sure that the chosen event vector

83

the next event vector

Choose the best transition

by checking BA

Eliminate transitions

disallowed by BA

Get possible transitions

due to system states

Initial state

*

*: Maximize the number of runnable events in the system
 Minimize the distance to an accepting state in BA

of both system and BA

Move forward till

Figure 4.3. Simulation Flow with LTL Enforcement

enables at least one transition in the BA if any event in the LTL constraints occurs

in the current event vector 2, and finally the simulator has to update the state of

the BA. If the BA happens to be non-deterministic, which is usually the case in my

implementation, the simulator needs to maintain a set of possible current states of

the BA. This technique is well-known as on-the-fly subset construction.

Figure 4.3 shows the high-level simulation flow. Simulation starts from the initial

states of the system and the BA. After the system moves to a new event vector, the

simulator checks the BA to eliminate illegal transitions, e.g. the transition with an

enabling condition tb is eliminated if b is not in the event vector, therefore b. In the

remaining legal transitions, compatible sets are chosen due to the system state and

the mmm semantics. At this point, there may still exist more than one transitions,

therefore, check the BA again to select the best choice.

Since LTL constraints enforcement is done at runtime, no global information is

available like in the formal verification problem. This brings in a valid question: which

choice is the best choice in terms of demonstrating the accepting behavior? This is

not always easy to decide. Ideally, I want to make a choice such that the execution

2The simulator should just check the BA when there are events in the current event vector that
also appears in the LTL constraints. If no such events present in the current event vector, no action
is needed on the BA side.

84

S

S2S1

a

b d

S0

b

B

B2B1

a

c d

B0

b

Figure 4.4. A State Transition Graph and a Büchi Automaton

trace can be extended into an accepting run of the BA, but making such a choice may

require significant look-ahead in both the system and the BA. For example, consider

the system in figure 4.4, and assume that S is the state transition graph of the system,

B is the BA representing LTL constraints, and all states of B are final. If S is in

state S0 and B is in state B0, the simulator may choose either a or b. By analyzing

B and the current state of S, there is no way to tell which is the right choice, and yet

by analyzing the entire S, it is easy to see that b is the right choice, because it can

be extended to bddd . . ., and a is the wrong choice because it cannot appear in any

behavior of S that satisfies the constraint. However, analyzing the state transition

graph of S based only on the operational code is prohibitively expensive. A similarly

expensive alternative is to implement backtracking in the simulation, so that the

simulator can backtrack into state S0 once it finds that S1 is a deadlock state.

Instead of implementing these expensive strategies, I have developed simple heuris-

tics that attempt to maximize the likelihood that a choice can be extended into an

accepting run. Based on my experiments, the heuristics work well on typical coordi-

nation constraints expressed by LTL.

The first heuristic is to maximize the number of events that could run, e.g. event

b in the tb transition can run, while t can not. This will prevent a process from

idling at a state and instead let the system proceed as quickly as possible, therefore

85

minimize the total simulation time. The second one is to minimize the distance to

the accepting states in a BA. This tries to lead the system to demonstrate accepting

behavior specified by LTL constraints. To realize the second heuristic, I came up with

the following minimum step heuristic. It consists of two separate phases.

• Before simulation, annotate each state in the BA with an integer number, which

indicates the minimum number of steps in which it can reach an accepting state.

This could be done by applying the strict-pre operation 3 from accepting states.

Figure 4.5 shows a sample annotation. Each shaded area is one set returned by

the strict-pre operation. They are annotated with the number of steps to the

accepting states.

• During simulation, whenever there are multiple choices, always choose the next

state in the BA which has the minimum step number. For instance, from state

S2 in figure 4.5, it is more preferable to going to state S3 with a minimum step

number 1 than to state S1 with a minimum step number 3. If on-the-fly subset

construction is needed, take the minimum minimum-step-numbers among all

the states in the subset.

Safety Constraints versus Liveness Constraints

It is well known that any property can be decomposed into so-called safety and

liveness properties. Intuitively, safety properties state that nothing bad ever happens.

The proof of their violation is a finite trace leading to a bad situation. Given a

property expressed by a BA B, its safety component can be expressed by BA B′

which differs from B only in final states: every state from which there is a path to

3Given a set of states S, strict-pre returns a set of states P , such that there is a transition from
each state in P to at least one state in S and P does not intersect S. Enabling conditions are ignored
in this process.

86

S3

Init

Accept

S1

S2S4

0

2

1

3

Figure 4.5. Minimum Step Heuristic

a final state in B is final in B′. Given my assumption from the previous section, i.e.

from every state there is a path to a final state, all states in B′ are final. To enforce

the safety component in simulation, I simply need to check that the event vector in

the system can be tuned, e.g. replace some of the events with nops, such that it

enables at least one transition in the BA. If no such event vector exists, I know the

safety constraint is violated, so the simulator reports an LTL constraint violation.

For liveness constraints, the accepting condition is different. It requires something

good to happen eventually. In a BA, this corresponds to visiting accepting states

infinitely often. Since it is impossible to run an infinite simulation, I can never report

a constraint violation as far as the BA is still running, even if it never visits an

accepting state. However, I can do better than that. I can guide the movement

of BA to accepting states even during finite simulations. This demonstrates closer

behavior to the liveness constraints. To achieve this goal, no extra effort is needed. I

can apply the same minimum step heuristic to liveness constraints. It then leads the

BA to accepting states in a greedy manner.

87

4.2 Bridging Abstraction Levels

4.2.1 Abstraction Levels

Abstraction levels are indicators of the extent of details that a design specifica-

tion contains. The amount of details affects design complexity, analysis accuracy and

specification efficiency. The higher the abstraction level, the less details in the speci-

fication, therefore the less complex to design, the less accurate but faster to analyze.

The lower the abstraction level, the more details in the specification, therefore the

more complex to design, the more accurate but slower to analyze. This complexity-

accuracy-efficiency trade off is leveraged by a system designer. As the demand for

the system functionality skyrockets, design complexity can no longer be handled ef-

fectively if it remains at low abstraction levels. Figure 4.6 shows the raising of the

abstraction levels from the 1970s.

Figure 4.6. Raising the Levels of Abstraction [62]

In the 2000s, IP integration becomes a more pressing problem. Large design com-

panies and EDA companies are paying increasing amount of attention to it. Several

new abstraction levels have been proposed, such as transaction level and algorithmic

88

level. At the same time, register transfer level (RTL) design methodology is still dom-

inating the industrial design activities. Considering also the huge amount of legacy

IPs at RTL level, the ability of co-designing at multiple abstraction levels becomes

critical in successful design practice.

4.2.2 Communication Semantics Formalism

To bridge different abstraction levels is essentially to adapt the differences between

the communication semantics of different abstraction levels. This is also true when

considering different programming languages. For example, in SystemC transaction

level models, communication is done via port-interface calls; in Verilog RTL mod-

els, signals can be sent across modules to achieve communication. To unify them, it

needs to find a common semantics domain among all abstraction levels and across

all programming languages. Again, I chose tagged signal model (TSM)[45], where

an event is a member of T × V , with T being a set of tags and V being a set of

values. In Metropolis, V is a three tuple < process , action, begin/end > representing

the whole set of events. To accommodate other systems, I simply use location to

denote the < action, begin/end > pair. In the contents of bridging abstraction levels,

I take T as an ordering. Depending on abstraction levels, T means differently, such

as an event ordering at the behavior level, or the exact timing at the register transfer

level. Regardless of the abstraction levels, a model can be abstracted by a sequence of

events. I abstract further one sequence of events by a pair of representative beginning

and end events, which is defined as a service. Following this idea, I can transform one

communication need into one service. The communication between two design com-

ponents written at different abstraction levels can then be defined as one component

using services provided by the other [72, 26].

A design component provides services through its provided ports and utilizes ser-

89

vices through its required ports. Each port is associated with a service. To demon-

strate clearly the communication semantics in terms of services, see figure 4.7 and

Table 4.1. In figure 4.7, events rb and re represent a service associated with the

required port; events pb and pe represent a service associated with the provided port.

For provided ports, there are two kinds of services, active and passive, determined

by whether it runs in its own thread or not. An active provided service runs in its

own thread. The calling of the active service requires the synchronization between

the required service and the provided service. This is the same concept as the si-

multaneity constraints, which are often used for function-architecture mappings. A

passive provided service can only be initiated by a required service, and runs in the

thread of the owner process of the required service. Note that for required ports, ser-

vices are always active. Table 4.1 captures the ordering relations among the events,

which are the key of the formal communication semantics. Intuitively, it says that

active provided service and active required service should execute simultaneously.

While passive provided service should be invoked by active required service and upon

finishing, return to active required service.

rb

re

pb

pe
Required Port Provided Port

IP1 IP2

Figure 4.7. A Service in Communication

For design components at different levels of abstraction, according to the classifica-

tion of their communication semantics, I can abstract their communication interfaces

90

Table 4.1. Formal Communication Semantics
event =< ordering , location >

Communication
Active Provided Passive Provided

pb =< tpb , IP2 , lpb > pb =< tpb , p, lpb >

Semantics
pe =< tpe , IP2 , lpe > pe =< tpe , p, lpe >

tpb ≤ tpe tpb ≤ tpe
Active Required

trb = tpb ≤ tre = tpe
trb ≤ tpb ≤ tpe ≤ trerb =< trb , IP1 , lrb >

re =< tre , IP1 , lre >
p = IP1trb ≤ tre

or protocols to a common higher level semantics with services denoted by a beginning

event eb =< tb , vb > and an end event ee =< te , ve >, where tb ≤ te .

1. Register Transfer Level: Usually, register transfer level design components

are described in HDLs such as Verilog or VHDL. Their communication is done via

signals, which correspond to physical wires and voltage transitions. There are two

cases when abstracting signals into a service.

(1). One event or one signal occurring on a wire corresponds to a service. For

example, a system reset service could be triggered by an asynchronous reset sig-

nal. In this case, I split the single reset event e ′ =< t , v > into two separate events

e ′b =< t , v > and e ′e =< t+∆, v >, where ∆ is a positive infinitesimal, i.e. infinitely

small but positive real number. This is the same trick played by Verilog/VHDL sim-

ulators. In this case, it actually implies that e ′e occurs infinitesimally close but after

e ′b .

(2). A set of signals work altogether to perform a communication task. This

usually occurs when there is a communication protocol, such as a memory access or

a bus transaction. During an entire communication session, the set of signals will

generate and receive a sequence of events < e1 , e2 , ..., en >, whose time tags satisfy

t1 ≤ t2 ≤ ... ≤ tn . Depending on the protocol or the designer, the sequence of events

can be abstracted to a service with a beginning event ei and an end events ej , where

1 ≤ i ≤ j ≤ n, and ti = tb , tj = te .

91

2. Transaction Level: In a transaction level model, services are usually modeled

as function calls. A function call generates a sequence of events < e1 , e2 , ..., en >,

where e1 and en are the beginning and the end of the function call respectively.

Naturally, the function call is represented by these two events, i.e. ei = e1 and ej = en .

Therefore, the tag relation is t1 = tb and tn = te .

3. Behavior Level: Behavior level models usually dictate the algorithm to solve

a problem without detailing its correspondence to lower level data or timing. It is

very likely that a service is just a portion of the system behavior. For instance, in a

sequential JPEG encoding algorithm specification, I want to extract the portion that

does discrete cosine transformation (DCT). To do that, designers need to extract the

beginning and the end events (locations in the code) that represent the DCT from the

entire sequence of events generated by the system. After the extraction, it becomes

exactly the same case as in the transaction level case.

4. Arbitrary Mixture of Abstraction Levels: The definition of services is pow-

erful enough to capture arbitrary combinations of abstraction levels. For example, a

few transactions at a lower granularity might correspond to a single transaction at a

higher granularity, or a set of services can be combined to form another higher level

service. In these cases, the formalism is the same as in the previous two cases, where

the beginning and the end events are extracted and used to present the new service.

4.2.3 Communication Adaptor Specification

Based on the formalism of the communication semantics at different abstraction

levels, I can transform the interfaces of heterogeneous models into common services,

therefore enabling inter-communication across multiple abstraction levels and later

on different programming languages. In transforming a communication protocol into

92

a service, there are several issues that I need to take care of: event definition, event

sequence, and event generation.

Event Definition

For different abstraction levels and programming languages, I choose events to be

the common semantics domain. In some cases, when I look at the native execution

semantics of a language, I may need to tune the definition of an event to make it a

better fit for that language. For instance, in HDLs, if the signal has multiple bits, I

may extend the event definition to allow a particular bit change to be considered an

event, or a combination of bit changes to be considered an event. Based on needs,

similar extensions can be made for other languages.

I gave the definition of a Metropolis event in 2.2.1, which is essentially an observ-

able entity in the execution. However, this is not enough to describe all the activities

in a behavior. To capture data explicitly, I expand the definition of events by adding

the following data related events,

• Data exchange event

em : Dc ↔ Ds

where Dc is the data in the communication protocol being abstracted and Ds is

the data in the scope of beginning or end event of a service4. The data exchange

is represented by and triggering an event em .

• Data change event

e(v)

where v is a data variable. Any change of the variable v results in an event.

4The scope of an event includes all variables visible at the location of the event. This is the same
concept as in typical programming languages.

93

This is especially suitable for HDLs, where signals play an important role in

communication.

Generally speaking, the above extensions might not be enough for arbitrary lan-

guages. However, in this dissertation, I focus on languages such as mmm, C, C++,

SystemC, and HDLs. Under this assumption, the extensions are expressive enough.

For example, C and C++ communicate via function calls or shared variables, which

can be captured by the two extensions respectively. SystemC communicates through

interface ports, which are similar to function calls. SystemC also supports hardware

signal level communication like in HDLs. Events flowing on signals contain not only

time stamps, but also the new value of the signal, i.e. e(v), where v ∈ {0 , 1 ,DC}. I

use DC and ? interchangeably to denote a don’t-care value.

Event Sequence

When abstracting a sequence of events to a service, especially when there exists a

complex communication protocol, the event order needs to be specified. This is the

template for the IP integration infrastructure to identify the execution or invocation

of the service, therefore, the service can be correctly relayed to the corresponding

design component. To specify the event order, I chose to use regular expressions,

because

1. It is the most well-known technique for specifying sequences that most designers

are familiar with;

2. it can be extended to more expressive formalisms with little efforts [51, 29, 6]

to specify communication interfaces at various abstraction levels. The details

of its expressiveness will be discussed in 4.2.4.

94

The alphabet of the regular expression is the entire event set. Depending on the

abstraction levels and/or programming languages, the alphabet can include events

and various extensions. For illustration purposes, I take RTL models written in Ver-

ilog and transaction level models written in SystemC/mmm as an example. In such a

setting, the alphabet of the regular expression is Σ= {B,E} ∪ {e} ∪ {e(v)} ∪ {em},
where {B,E} are special events to be mapped respectively to the beginning and the

end events of services (each service should have a distinct pair of B and E events);

{e} are the events generated by the mmm or SystemC models ; {e(v)} are RTL events

on value changes; and {em} are the data exchange events.

Now, the communication protocols among heterogeneous models can be described

by regular expressions on the alphabet. This is done by specifying the event ordering

in the communication protocol, which includes three different aspects.

1. Event Order

The ordering of the events describes the skeleton of the communication protocol.

For example, in the simplest hand-shaking protocol, I have req, ack and go

signals. Suppose I use value one to denote the low-to-high transition event of

the signals. Then I can use the expression {req(1), ack(1), go(1)} to specify the

hand-shaking protocol. If for some reasons, the protocol requires two rounds of

req − ack, then the expression could be changed to {(req(1), ack(1))2, go(1)}.

While describing the protocol, I do not want to have any assumption on the us-

age of the communication protocol specification. For instance, figure 4.8 shows

the sample communication protocol between a CPU model and an I/O model.

When specifying the protocol, I focus only on the communication in the middle

without assuming the direction of a signal. This way, the specification can be

tailored by adding data mapping and event generation to generate communica-

tion adaptors for either the CPU model or the I/O model.

95

I/OCPU

Communication Protocol

req

go

ack

out

in

output service (input)
CPU

Adaptor

o
u
t

g
o in a
c
k

I/O

Adaptor

re
q

o
u
t

g
o in a
c
k

re
q

Figure 4.8. Describing Communication Protocols

2. Service Mapping

In the protocol specification, I also want to decide how the event sequence should

correspond to a service represented by a beginning and an end events. This is

where the B and E events come in. Designers could insert B into the regu-

lar expression where they think the service should begin once the prefix of the

event sequence has been detected. Similarly, E is inserted as the end of the ser-

vice. For the hand-shaking example, it may be {(req(1), ack(1))2,B, go(1),E}
or {req(1), ack(1),B, req(1), ack(1), go(1),E}.

3. Data Mapping

Besides events, another very important ingredient of a service is the datum. Let

us modify the hand-shaking protocol and let it send a datum out and receive a

processed datum in after the go event occurs. On the service side, the service has

corresponding variables input and output. If I look at the protocol as a function

call, out and input are the function argument; in and output are the return

value. The communication protocol now becomes {req(1), ack(1),B, out ↔

96

input, go(1), in ↔ output,E}. Note that naturally the data transfer for a service

should happen right after event B and right before event E, but this is not a

hard requirement. Designers can insert data mapping anywhere needed in the

regular expression.

Event Generation

In the regular expression describing the event ordering, I did not distinguish the

directions of the events. What I specify for the communication protocol is applicable

to all communicating components. However, this distinction of signal directions is

actually very important to detect and generate correctly events for an individual com-

ponent. For example, in the hand-shaking example, for the CPU model, req(1) and

go(1) are output events. ack(1) is an input event; for the I/O model, the input/output

relations reverse. Remember my goal is to generate automatically adaptors for IPs.

The input/output relation is reversed for the adaptors as for the IPs. So, the adaptor

to handle the hand-shaking initiator (CPU) has the input events req(1), go(1) and

the output event ack(1); while the adaptor to handle the hand-shaking receiver has

the output events req(1), go(1) and the input event ack(1).

When running the communication adaptor between heterogeneous IPs, the adap-

tor receives all the input events and detect event sequence due to regular expressions.

At the same time, adaptors will generate output events at the ‘right’ time based on

the regular expression.

B and E are the representative of a service. They and the adapted model are on

the two sides of the same adaptor. B and E can be output events if the corresponding

service is invoked by the model on the other side of the adaptor (e.g. the CPU invokes

the service through the CPU adaptor). In this case, the other model uses this service.

Conversely, B and E can also be input events if the service is already run by another

97

model (e.g. the I/O receives the service call through the I/O adaptor). In this case,

the adaptor will translate the service to the event sequence that is compatible with

the model on the other side of the adaptor.

When there are data associated with a service, they are also either input or output.

For instance, in the hand-shaking protocol, there is a data mapping out ↔ input. If

the CPU model initiates the service, the data mapping should be interpreted as

assigning out to input, or out → input. On the contrary, if the I/O initiates the

service, it means out ← input.

4.2.4 Extensions to the Adaptor Specification Language

It is not my primary goal to extend regular expressions such that it is expressive

enough to describe any communication protocols. There is existing work along that

line. For instance, in [51], two extensions are found helpful to express protocols with

state storage and pipelining. PSL also extends the regular expression in a similar way

plus the more versatile sequence expressions. [20] extends the PSL version of regular

expressions with data support and better sequence repetition support. In theory, any

of the above extensions could be chosen to specify communication protocols. Based

on the communication semantics defined previously, I build a communication and co-

simulation infrastructure for system level modeling and integration of heterogeneous

design components and IP blocks. My infrastructure is not biasing one specification

formalism over another and general enough to support them equally.

4.2.5 Simulation Flow

Figure 4.9 shows the simulation flow that supports the IP composition and co-

simulation infrastructure. The bold boxes are provided by designers. The dotted

98

boxes are generated by tools. Designers specify the communication protocols using

regular expressions. They are then transformed into communication adaptors. IP

blocks and the communication adaptors form the new IPs that can communicate

at the service level. The co-simulation engine is the most important component

in the simulation infrastructure. It is in charge of the event coordination between

design components, including the service level communication relations (connections)

among IP blocks, the mapping relations and declarative constraints, which have been

discussed in the previous chapter.

Adaptors

Commnication
Relation

IP BlocksRegular Expression−based
Comm Protocol Description

IP Blocks with Service InterfacesMapping Relation

Constraints EngineCo−Simulation

Communication

Figure 4.9. IP Composition and Co-Simulation Flow

The generation of a communication adaptor from a standard regular expression is

done via an equivalent finite automaton. The algorithm to generate the automata is

rather straightforward and can be found in any introductory computing theory books.

In the generated finite automaton, a state represents a particular prefix matching;

edges are labeled with events. If the events are inputs to the adaptor, on observing

such events, the automaton transfers from the current state to the next state; if the

events are data mappings or need to be generated, the adaptor will assign the data or

trigger the event, and then transfer to the next state. If the events to be triggered are

either B or E, the corresponding service will be called. Among all the states, an initial

99

state is always the place from which event sequence matching starts; accepting states

indicate the successful matching of regular expressions or successful communication

adaptations.

4.3 Co-Simulating Different Specification Lan-

guages

IP blocks can be specified in any design language in addition to abstraction levels.

Therefore, each communication adaptor associated with a design component or an

IP block needs to include two parts, a language dependent part that can directly

communicate with the IP block and a language independent part that has a common

service level interface and can be coordinated by the co-simulation engine.

Since the generated finite automaton needs to handle signals from the original IP

block, I put it in the language dependent part of the adaptor. For each supported

design language, a different code generation back-end will be required. In my exper-

iment, I have implemented my co-simulation engine and the language independent

part of an adaptor using standard C++. Between the two parts of an adaptor, the

communication is implemented with the UNIX Inter-Process Communication (IPC)

library. For example, in the case of Verilog, Programming Language Interface (PLI)

is used to access the IPC at the operating system level from the Verilog part of

the adaptor. VHDL, Matlab, and Metropolis all have such standard interfaces that

can talk with the operating system. I believe that there is no technical difficulty

in using any other languages or platforms for implementation. For inter-platform

co-simulation, TCP/IP sockets may be used in the underlying co-simulation engine,

however, simulation performance might become a concern.

100

4.4 Case Studies

4.4.1 A Dataflow Model Mapped to an LTL Scheduled Dual-

CPU Architecture

In this section, I will show an example using LTL constraints to enforce scheduling

policies. The example follows the function-architecture mapping principle in the

platform-based design methodology. Figure 4.10 shows the function model at the top

and the abstract architecture model at the bottom.

In the functional model, two source processes (S1 and S2) write data into two

independent channels modeled by media. A separate process (Join) reads data items

from both channels, processes them, and then sends the result to another process

(Sink) through another channel.

S2

SwTask1

S1

Join Sink

SwTask2 SwTask3 SwTask4

CPU1 CPU2

BUS

Mem

LTL Constraints

Round-Robin

LTL Constraints

Round-Robin

LTL Constraints

Mutual Exclusion

channel2
channel3

chan
nel1

LTL Constraints Function-Architecture Mapping

Figure 4.10. Resource Scheduling and Function-Architecture Mapping

101

In the abstract architecture model, there are two CPU units, one memory unit,

and they are all connected to one bus unit. A CPU unit can be shared among several

software tasks that may request services from it. When more than one service requests

are issued to a CPU, arbitration is needed. In this example, I use LTL constraints to

describe a round-robin scheduling policy as shown below. It says that if one SwTask

executes a CPU operation, it cannot execute again, until the other SwTask executes

once. These constraints are used for both CPUs.

G(ST1 → (F (!ST1) U ST2) &&

ST2 → (F (!ST2) U ST1))

where

ST1 = beg(SwTask1, SwTask1.exec)

ST2 = beg(SwTask2, SwTask2.exec)

Once a SwTask is executing on a CPU, it can further access the bus. Because

there are two CPUs, I again arbitrate their accesses to the bus with LTL constraints

of mutual exclusion, i.e. if one SwTask starts a bus access, other bus accesses must

wait until that one finishes its bus access.

G(C1 Bus B → ((!C2 Bus B) U C1 Bus E) &&

C2 Bus B → ((!C1 Bus B) U C2 Bus E))

where

C1 Bus B = beg(SwTaskX , CPU1.BusAccess)

C1 Bus E = end(SwTaskX , CPU1.BusAccess), X = {1, 2}

C2 Bus B = beg(SwTaskY , CPU2.BusAccess)

C2 Bus E = end(SwTaskY , CPU2.BusAccess), Y = {3, 4}

102

For the first two sets of LTL constraints, implementing them with operational code

can be done. To do that, additional scheduling objects and additional communications

among objects must be created. In the early stage of system development, I usually do

not want to spend that effort because they may be discarded after further evaluation.

In contrast, writing simple scheduling constraints with LTL is a concise and much

cheaper way to achieve the same goal. That is exactly the strength of using LTL

constraints in our design methodology.

Having completed the function model and the architecture model, mapping be-

tween them is added at yet another layer above them. Again, if I want to implement

the mapping mechanism with the imperative mmm language, the two models have

to be changed in order to insert synchronization signals and hand-shaking protocols.

This harms model reusability by breaking model encapsulation. As a consequence, ex-

ploring a large design space is an almost impossible task. Now, with LTL constraints,

I can solve these problems 5. On top of both models, mapping constraints can be

specified in LTL. They substitute the synchronization signals and hand-shaking pro-

tocols in the first approach. Furthermore, nothing in the two models needs to be

changed. For the mapping between S1 and SwTask1, I define the following LTL con-

straints. Similar LTL constraints are also written for other three mappings shown in

the figure.

G(beg(S1, S1.write) ↔ beg(SwTask1, SwTask1.exec) &&

end(S1, S1.write) ↔ end(SwTask1, SwTask1.exec))

After specifying the operational models and LTL constraints, simulation is per-

formed to validate the design and to find out in terms of system performance how well

the function will be implemented by the architecture under this particular mapping.

All the LTL constraints are ANDed together to generate a single BA. Profiling result

5The simultaneity constraint presented in 3.1.1 is a shorthand for an LTL simultaneity constraint.
They have exactly the same semantics.

103

shows that 9% of the total simulation time is spent on enforcing the LTL constraints.

Then, I refine the LTL constraints for scheduling resources in the architecture with

quantity managers, a synthesis step towards final implementation. Interested readers

can refer to [22]. Once I have the refined imperative models, simulation is performed

again to verify it. This time, LTL constraints for mapping are still used to enforce

the synchronization between function and architecture, but Round-Robin constraints

and mutual exclusion constraints can be combined to generate another BA that mon-

itors the system states and checks whether or not the imperative quantity resolution

results violate any of the constraints.

4.4.2 JPEG Encoder Mapped to a Dual-CPU Architecture

I use a JPEG encoder case study to illustrate the effectiveness of my approach

for the IP integration and the co-simulation infrastructure. In figure 4.11, the upper

portion shows the high level functional model of a JPEG encoder. It consists of

three main blocks, a discrete cosine transformer (DCT), a quantitizer and a Huffman

encoder. These blocks are written in mmm. The lower portion is an abstract dual-

processor architecture. The two processors connect to the bus. Each processor also

has a local SRAM module. Another SDRAM memory module is connected to the bus,

through which the two processors can communicate with each other. The processors

and the bus are transaction level models specified in SystemC, and the memory

modules are IP blocks specified in Verilog at the register transfer level.

In this case study, I apply a particular mapping between the function and the

architecture. Because the architecture has two processors, I partition the function

into two stages and let each stage run on a separate processor. This way I get a

two-stage pipelined JPEG encoder. Due to the estimated work loads of the function

blocks, I group the quantitizer and the Huffman encoder together and let them share

104

CPU CPU

DCT

Verilog
Object

SystemC
Object

mmm
Object

Adaptor

Mapping

Regular
Comm.

SRAM SRAM

Huffman

Fu
nc

tio
n

A
rc

hi
te

ct
ur

e

Quant

B U S

SDRAM

Figure 4.11. JPEG Encoder Block Diagram

one processor. The DCT block uses the other. Note that mapping is a very flexible

and efficient design exploration step in my system level design methodology. There

are mechanisms in Metropolis to map two separate services onto a single service.

Designers can even specify the scheduling of the two services using either imperative

schedulers or declarative constraints. Then, the co-simulation engine is able to take

the scheduling into account.

Langs
SystemCVerilog

RTL

DCT, Quant, Huffman

Metropolis MetaModel

Mapping

Comm.
Regular

Trans.L

Behav.L

SDRAM, SRAM

BUS, CPU

Abs.
Levels

Figure 4.12. Design Component Classification

In this example, there exist multiple abstraction levels, multiple design languages,

both regular communications and mappings. The detailed classification and interac-

tion are summarized in figure 4.12. In order to make design components talk across

abstraction levels, adaptors are generated based on the communication protocol de-

105

scription and inserted between abstraction levels. The transaction level CPU and

BUS models act as masters which initiate the read and write transactions. The

SRAM and SDRAM models are slaves serving the transactions. Figure 4.13 shows

the SRAM timing diagram for a read operation. The following regular expression

captures this protocol, which can be used to adapt to a read service with addr as the

address argument and data as the memory data returned.

{ B, data read(1), clk(1),m addr ↔ addr , clk(1)+,

data ready(1), clk(1),m data ↔ data, clk(1),E }

The generated automaton is shown in Figure 4.14. The events on the edges

without boxes will be observed by the adapter. As soon as an event is observed,

the automaton transfers to the next state. If there are events in boxes on outgoing

edges from a state, the automaton takes that transition immediately and generate

the events accordingly. This could result in either generating new regular events or

passing mapped data. The automaton realization is language dependent. In this

case, it is translated into a standard Verilog FSM. The code size is linear in the

number of states in the automaton. Memory write service, and SDRAM read/write

services are similar to the SRAM read service. For the other kind of communication,

mapping between function blocks and CPUs, the adaptation is much easier than

memory read/write services. This is because the CPUs are written in transaction

levels. Their operations are abstracted with read, write and execute services. On

the function blocks side, I also extract the same set of operations by chopping the

behaviors into corresponding pieces. This way the mapping becomes one-to-one on

the beginning and the end events of the services.

Upon finishing the communication adaptation, I run co-simulation on the function-

architecture model. The simulation outputs the correct JPEG image converted from

a raw image. The CPU running DCT takes 208910 cycles; however, the other CPU

106

clk

data_ready

m_data

data_read

m_addr

Figure 4.13. SRAM Read Timing Diagram

addrm_addr

m_data data

clk(1)data_read(1)B

clk(1)

E clk(1)

data_ready(1)clk(1)

clk(1)

Figure 4.14. SRAM Read Adaptor Automaton

running both the Quantitizer and the Huffman encoder takes only 17408 cycles. The

numbers show the imbalance of the two pipeline stages, which suggests a better func-

tion partition, e.g. moving more workload over from the CPU running the DCT to

the CPU running the Quantitizer and the Huffman encoder. Based on this informa-

tion, I go down into details of DCT, which consists of smaller blocks of Pre-process,

DCT1, Transpose1, DCT2 and Transpose2. I then remap DCT2 and Transpose2 to

the other CPU. The new simulation result justifies the adjusted mapping, where the

CPU running Pre-process, DCT1 and Transpose1 takes 103199 cycles; the other CPU

takes 117222 cycles. This kind of exploration is exactly what I want to achieve by

the design space exploration, and it is not possible without the co-simulation across

multiple abstraction levels and specification languages.

In this case study, I demonstrated bridging between different abstraction levels,

such as register transfer level and transaction level, and transaction level and behavior

107

level. I also showed that the co-simulation between heterogeneous design components

in Verilog, SystemC, and Metropolis Meta-Model can be done. Different kinds of

communication mechanisms are unified with my formal semantics based on services

and are shown to work correctly in the co-simulation infrastructure.

108

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Orthogonalization of concerns has been proposed to deal with the increasing com-

plexity in system level designs. Keeping different concerns of the design in separate

models maximizes design reuse, allows more efficient design space exploration, and

makes verification and synthesis easier for an individual concern. However, each of the

concerns does have an effect on the dynamic execution of the model. The challenges

here are how to compose the different models to yield a correct execution and how to

compose them to achieve efficient simulation. An even bigger challenge arises when

composing heterogeneous models. Because of their inherit semantics gaps, various

adaptation among them has to be done.

In this dissertation, I focus on those orthogonal concerns and heterogeneities that

are of most interest to the electronic system design industry. The orthogonal concerns

define the behavior of the system, including its functionality, the implementation

architecture, the performance (or the cost), and the coordination (or the scheduling) of

concurrent behavior. Heterogeneities are introduced by the choices made by designers

109

to describe a system, such as the abstraction levels, the imperative or declarative

specification styles, and the specification languages.

Orthogonal concerns are easier to compose. The real challenge is how to make

the composition and validation efficient. I proposed several techniques to minimize

overhead. The efficient simultaneity constraints handling transforms the inefficient

runtime constraint resolution into more efficient compile time information analysis.

The analysis result is then used to generate efficient simulation code. The named

event reduction technique and the medium centric constraint resolution minimize the

number of checkpoints (events that need to be resolved) and the resolution work load

at each checkpoint. Interleaving concurrent simulation leverages the special execution

semantics of the underline simulation kernel, which makes some of the modeling con-

structs redundant, therefore gets them optimized away. To achieve efficient simulation

of integrated behavior, performance and coordination models, I created an algorithm

for speeding up the baseline 3-phase execution. In addition, I took into account the

nature of the scheduling algorithms that are based on performance annotation, and

gave a more aggressive but still conservative speed-up algorithm.

I implemented and tested those techniques in the Metropolis environment, which

is based on the orthogonalization of concerns principle. However, I should also point it

out that these techniques are not limited to Metropolis at all. They could be applied

to any system that takes separation of concerns as a pillar of its design methodology.

I experimented my optimization techniques with industrial scale applications, such

as the Picture-in-Picture set top box design and the distributed automotive CAN

bus system. The simulation statistics show the effectiveness and the efficiency of my

speed-up algorithms.

More fundamental than the efficiency issue of composing orthogonal concerns,

heterogeneous models can not be directly composed to yield the correct behavior

110

of the system because of their semantics gaps. To deal with the mixture of im-

perative descriptions and declarative LTL constraints, I proposed a Büchi automata

based technology to enforce LTL constraints during simulation. This technology first

translates LTL constraints into Büchi automata, and then keeps track of both the

imperative system and the Büchi automata during the simulation. The information

stored in the Büchi automata provides valuable insights to guide the selection of the

simulation traces. For composing heterogeneous IPs written at various abstraction

levels and in different programming languages, I presented a unified communication

and co-simulation infrastructure, which is based on a standard high level communica-

tion semantics formalism that enables easy communication and synchronization across

IPs. The communication and co-simulation is achieved by plugging in communication

adaptors, which can be described by regular expressions with a few extensions.

Experiments were performed in the Metropolis environment together with the

Cadence Verilog-XL simulator and OSCI SystemC. One case study examined a sim-

ple dataflow model mapped on a dual-CPU architecture scheduled by dozens of LTL

constraints. The results showed the effectiveness of the LTL constraints enforcement

technology. Another case study demonstrated the bridging of IPs written at RTL level

and transaction level, in Verilog, mmm and SystemC. By using adaptors, the com-

munication and co-simulation infrastructure glued the heterogeneous design together

and showed the correct behavior.

5.2 Future Work

Simulation has been the main method to validate system behaviors. It is going to

be so at least in the near future. System level design issues are becoming increasingly

important. The methodologies to handle design complexity, such as orthogonalization

111

of concerns, pose a significant challenge. How to keep high simulation capability and

efficiency is another big challenge.

In this dissertation, I showed some attempts to address the challenges. By no

means, they can be complete. Some of the techniques I presented could be further

strengthened.

1. Enforcing LTL Constraints

The LTL constraint enforcement algorithm is based on heuristics. It is not 100%

guaranteed to work for all cases. If necessary, some sort of simulation roll-back

has to be introduced. To improve the quality of the heuristics, similar work

on synthesis of reactive systems from declarative specifications can be lever-

aged. Automata based approaches can also be used but with higher complexity.

Leveraging the techniques used in this field but restricting the complexity by

not doing traditional automata computation is a promising approach.

2. Built-in LOC Constraints

Logic of Constraints (LOC) is used in Metropolis to specify quantitative con-

straints. For general LOC constraints, I can only check the satisfiability a

posteriori. Enforcing them imposes a big challenge, because it is hard to even

understand the semantics of a general LOC constraint. However, I may ex-

tend the scope of built-in LOC constraints to make them a middle layer. By

doing that, I hope I can get good reconciliation between expressiveness of the

constraints and the ability to enforce them in simulation.

3. Simulation coverage

A classical question and a very important issue for simulation based verification

is how credible the simulation result is. To answer that, I need to be able to

assess the percentage of the verification space that the simulation has covered.

112

How to define the space and how to improve space coverage become more inter-

esting when heterogeneous IPs exist at either high abstraction levels or multiple

levels of abstractions.

4. Formal Verification

Formal verification is a future research direction for co-design infrastructures

for heterogeneous IP blocks. Traditionally, to verify a hardware module, all the

combination and possible values of input signals need to be exhaustively checked

if there are no other external constraints. Once I have a standard communi-

cation mechanism, automatically generated adaptors not only bridge different

abstraction levels, but also become a kind of communication constraints for the

given IP modules, and can be used to simplify their verification.

113

Bibliography

[1] ISO prolog standard.

[2] Ptolemy II. http://www.ptolemy.eecs.berkeley.edu.

[3] Road vehicles - Interchange of digital information - Controller area network
(CAN) for high-speed communication - ISO 11898.

[4] The SPIRIT Consortium homepage. http://www.spiritconsortium.org.

[5] NC Sim. http://www.cadence.com/datasheets/affirma nc sim.html, 2003.

[6] Property Specification Language. http://www.eda.org/vfv, 2003.

[7] The Open SystemC Initiative homepage. http://www.systemc.org, Mar. 2003.

[8] CORBA homepage. http://www.corba.org, 2005.

[9] OSEK/VDX steering commitee. OSEK/VDX operating system specification ver-
sion 2.2.3, Feb. 2005.

[10] IEEE Standard for the Functional Verification Language ‘e’. IEEE, 2006.

[11] Accellera. http://www.accellera.org.

[12] M. Aksit, L. Bergmans, and S. Vural. An object-oriented language-database
integration model: The composition-filters approach. European Conference on
Object-Oriented Programming (ECOOP), Utrecht, The Netherlands, pages 372–
396, June/July 1992.

[13] M. Aksit, B. Tekinerdogan, and L. Bergmans. Achieving adaptability through
separation and composition of concerns. Special Issues in Object-Oriented Pro-
gramming, pages 12–23, 1996.

[14] J. Aldrich. Challenge problems for separation of concerns. Proceedings of the
OOPSLA 2000 Workshop on Advanced Separation of Concerns, October 2000.

[15] P. Alexander and C. Kong. Rosetta: semantic support for model-centered
systems-level design. Computer, 34(11):64–70, Nov. 2001.

114

[16] A. Amory, F. Moraes, L. Oliveira, N. Calazans, and F. Hessel. A heteroge-
neous and distributed co-simulation environment. In Proceedings of the 15 th
Symposium on Integrated Circuits and Systems Design (SBCCI 02), 2002.

[17] A. Bakshi, V. Prasanna, and A. Ledeczi. MILAN: A model based integrated
simulation framework for design of embedded systems. In Proceedings of Work-
shop on Languages, Compilers, and Tools for Embedded Systems (LCTES 2001),
June 2001.

[18] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tab-
bara. Hardware-software co-design of embedded systems: the Polis approach.
Kluwer Academic Publishers, Boston; Dordrecht, 1997.

[19] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, M. Sgroi, and
Y. Watanabe. Modeling and designing heterogenous systems. In J. Cortadella,
A. Yakovlev, and G. Rozenberg, editors, Concurrency and Hardware Design,
pages 228–273. Springer, 2002. LNCS2549.

[20] F. Balarin and R. Passerone. Functional Verification Methodology Based on
Formal Interface Specification and Transactor Generation. Design Automation
and Test in Europe, 2006.

[21] F. Balarin, Y. Watanabe, J. Burch, L. Lavagno, R. Passerone, and
A. Sangiovanni-Vincentelli. Constraints specification at higher levels of abstrac-
tion. In Proceedings of International Workshop on High Level Design Validation
and Test, Nov. 2001.

[22] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: An Integrated Electronic System De-
sign Environment. IEEE Computer, 36(4):45– 52, Apr. 2003.

[23] J. Buck, S. Ha, E. Lee, and D. Masserschmitt. Ptolemy: a framework for simulat-
ing and prototyping heterogen eous systems. Interntional Journal of Computer
Simulation, special issue on Simulation Software Development, January 1990.

[24] X. Chen, F. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Formal verification
of embedded system designs at multiple levels of abstraction. In Proceedings of
International Workshop on High Level Design Validation and Test, pages 125–
130, Oct. 2002.

[25] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Verifying loc based functional
and performance constraints. IEEE International High-Level Design Validation
and Test Workshop, pages 83–88, Nov. 2003.

[26] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto, A. Sangiovanni-Vincentelli,
G. Yang, H. Zeng, and Q. Zhu. A next-generation design framework for platform-
based design. In Conference on Using Hardware Design and Verification Lan-
guages (DVCon), February 2007.

115

[27] D. Densmore, S. Rekhi, and A. L. Sangiovanni-Vincentelli. Microarchitecture
development via metropolis successive platform refinement. Design Automation
and Test in Europe, pages 346–351, 2004.

[28] D. Densmore, A. Sangiovanni-Vincentelli, and A. Donlin. FPGA Architecture
Characterization For System Level Performance Analysis. Design Automation
and Test in Europe, 2006.

[29] C. Eisner and D. Fisman. Sugar 2.0 proposal presented to the accellera formal
verification technical committee. Mar. 2002.

[30] E. Ernst. Separation of concerns. In Proceedings of Software Engineering Prop-
erties of Languages for Aspect Technologies, SPLAT 2003, in assoc. with AOSD
2003, page 6 pages, 2003.

[31] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao. SpecC: specification
language and methodology. Kluwer Academic Publishers, 2000.

[32] P. Gastin and D. Oddoux. Fast LTL to Buchi Automata Translation. Computer
Aided Verification, 2001.

[33] G. Goessler. Prometheus - a compositional modeling tool for real-time systems.
Workshop on Real-Time Tools, 2001.

[34] T. Grotker, S. Liao, G. Martin, and S. Swan. System design with SystemC.
Kluwer Academic Publishers, 2002.

[35] W. Harrison and H. Ossher. Subject-oriented programming: a critique of pure
objects. Proceedings of the 8th annual conference on Object-oriented program-
ming, systems, languages and applications, pages 411–428, 1993.

[36] R. Hilliard. Aspects, concerns, subjects, views, ... Proceedings of the OOPSLA’99
Workshop on Multi-Dimensional Separation of Concerns.

[37] G. Kahn. The semantics of a simple language for parallel programming. In
Proceedings of the IFIP Congress 74, pages 471–475. North-Holland, 1974.

[38] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli.
System level design: orthogonalization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Design, 19(12):1523–1543, Dec. 2000.

[39] G. Kiczales, J. Lamping, and et al. Aspect-oriented programming. Proceedings
of ECOOP, LNCS 1241, 1997.

[40] I. Kiselev. Aspect-Oriented Programming with AspectJ. Sams, Indianapolis, IN,
USA, 2002.

[41] E. d. Kock, G. Essink, W. Smits, P. v. d. Wolf, J. Brunel, W. Kruijtzer, P. Liev-
erse, and K. Vissers. Yapi: application modeling for signal processing systems.
In Proceedings of the 37th Design Automation Conference, June 2000.

116

[42] T. Kogel, M. Doerper, and et al. Virtual architecture mapping: A systemc based
methodology for architectural exploration of system-on-chip designs. Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pages
138–148, 2004.

[43] C. Kreiner, C. Steger, and R. Weiss. A hardware/software cosimulation envi-
ronment for DSP applications. In Proceedings of 25th Euromicro Conference
(EUROMICRO ’99), 1999.

[44] A. Ledeczi, J. Davis, S. Neema, B. Eames, G. Nordstrom, V. Prasanna,
C. Raghavendra, A. Bakshi, S. Mohanty, V. Mathur, and M. Singh. Overview of
the model-based integrated simulation framework. Technical Report ISIS-01-201,
Vanderbilt University, Jan. 2001.

[45] A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 17(12):1217–29, Dec 1998.

[46] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented programming with
adaptive methods. Communications of the ACM, 44(10):39–41, 2001.

[47] P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers. A methodology
for architecture exploration of heterogeneous signal processing systems. In Pro-
ceedings of the IEEE Workshop on Signal Processing Systems, SiPS 99, pages
181–190. IEEE Press, 1999.

[48] G. Lopez, B. N. Freeman-Benson, and A. Borning. Implementing constraint
imperative programming languages: The kaleidospace’93 virtual machine. In
Conference on Object-Oriented, pages 259–271, 1994.

[49] Metropolis Project Team. The metropolis meta model - version 0.4. Technical
Report UCB/ERL M04/38, EECS Department, University of California, Berke-
ley, 2004.

[50] H. Mili, A. Elkharraz, and H. Mcheick. Understanding separation of concerns.
In Proceedings of the 3rd International Conference on Aspect-Oriented Software
Development, AOSD 2004, Lancaster, UK, March 22-24, 2004, pages 75–84.

[51] M. T. Oliveira and A. J. Hu. High-level specification and automatic generation of
IP interface monitors. In Proceedings of the 39th Design Automation Conference,
2002.

[52] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hyper-
space approach. In Proceedings of the Symposium on Software Architectures and
Component Technology: The State of the Art in Software Development. Kluwer,
2000.

117

[53] A. Pimentel and C. Erbas. An IDF-based trace transformation method for com-
munication refinement. In Proceedings of the 40th conference on Design automa-
tion conference, Anaheim, CA, USA, pages 402–407. ACM Press, June 2003.

[54] A. Pimentel, L. Hertzbetger, P. Lieverse, P. van der Wolf, and E. Deprettere.
Exploring embedded-systems architectures with Artemis. Computer, 34(11):57–
63, Nov. 2001.

[55] A. Pnueli. The temporal logic of programs. Proceedings of the 18th IEEE Sym-
posium on Foundation of Computer Science, pages 46–57, 1977.

[56] T. E. Potok, M. Vouk, and A. Rindos. Productivity analysis of object-oriented
software developed in a commercial environment. In Software — Practice and
Experience, volume 29, pages 833–847, 1999.

[57] A. Rashid. A hybrid approach to separation of concerns: The story of SADES.
3rd International Conference on MetaLevel Architectures and Separation of Con-
cerns (Reflection), Lecture Notes in Computer Science, (2192):231–249, 2001.

[58] S. P. Reiss. Connecting tools using message passing in the field environment.
IEEE Software, 7(4):57–66, July 1990.

[59] M. Robillard and G. Murphy. An exploration of a lightweight means of concern
separation. Position Paper for Aspects and Dimensions of Concern Workshop
(ECOOP), 2000.

[60] I. Sander and A. Jantsch. System modeling and transformational design refine-
ment in ForSyDe. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 23(1):17–32, Jan. 2004.

[61] A. Sangiovanni-Vincentelli. Defining Platform-Based Design. EEDesign, Febru-
ary 2002.

[62] A. Sangiovanni-Vincentelli. The Tides of EDA. IEEE Design and Test of Com-
puters, 20(6):59–75, Nov/Dec 2003.

[63] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and software
design methodology for embedded systems. IEEE Design and Test of Computers,
pages 23–33, November-December 2001.

[64] A. Seawright, U. Holtmann, W. Meyer, B. Pangrle, R. Verbrugghe, and J. Buck.
A system for compiling and debugging structured data processing controllers. In
Proceedings of the European Design Automation Conference, 1996.

[65] S. Solden. Architectural services modeling for performance in HW-SW co-design.
In Proceedings of the Workshop on Synthesis And System Integration of MIxed
Technologies SASIMI2001, Nara, Japan, October 18-19, 2001, pages 72–77, 2001.

118

[66] F. Somenzi and R. Bloem. Efficient buchi automata from LTL formulae. In
Computer Aided Verification, pages 248–263, 2000.

[67] Sugar, IBM. http://www.haifa.il.ibm.com/projects/verification/sugar.

[68] I. Synopsys. OpenVera assertions white paper. http://www.open-vera.com, 2002.

[69] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N degrees of sep-
aration: multi-dimensional separation of concerns. In ICSE ’99: Proceedings of
the 21st international conference on Software engineering, pages 107–119, Los
Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[70] C. Valderrama, F. Nacabal, P. Paulin, and A. Jerraya. Automatic generation
of interfaces for distributed C-VHDL cosimulation of embedded systems: an
industrial experience. In Proceedings of Seventh IEEE International Workshop
on Rapid System Prototyping (RSP’96), 1996.

[71] M. Wermelinger, J. Fiadeiro, L. Andrade, G. Koutsoukos, and J. Gouveia. Sep-
aration of core concerns: Computation, coordination, and configuration. Pro-
ceedings of OOPSLA 2001 Workshop on Advanced Separation of Concerns in
Object-Oriented Systems, Tampa Bay, FL, pages 14–18, October 2001.

[72] G. Yang, X. Chen, F. Balarin, H. Hsieh, and A. Sangiovanni-Vincentelli. Commu-
nication and co-simulation infrastructure for heterogeneous system integration.
In Design Automation and Test in Europe 2006, Mar. 2006.

[73] G. Yang, H. Hsieh, X. Chen, F. Balarin, and A. Sangiovanni-Vincentelli. Con-
straints assisted modeling and validation in metropolis framework. In Asilomar
Conference on Signal, Systems and Computers, October 2006.

[74] G. Yang, Y. Watanabe, F. Balarin, and A. Sangiovanni-Vincentelli. Separation
of concerns: Overhead in modeling and efficient simulation techniques. In Fourth
ACM International Conference on Embedded Software (EMSOFT’04), Septem-
ber 2004.

[75] H. Zeng, A. Davare, A. Sangiovanni-Vincentelli, and et al. Design space explo-
ration of automotive platforms in metropolis. SAE World Congress, 2006.

119

