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Abstract

Predicting Protein Molecular Function

by

Barbara Elizabeth Engelhardt

Doctor of Philosophy in Computer Science

and the Designated Emphases in

Computational and Genomic Biology

and Communication, Computation, and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Chair

The number of known nucleotide sequences encoding proteins is growing at an ex-

traordinarily fast rate due to technologies developed in the last decade that enable

rapid sequence acquisition. Such rapid acquisition is a prelude to understanding the

molecular function and tertiary structure of these protein sequences, and from there

to an understanding of the role these proteins play in a particular organism. The

experimental technologies that enable us to understand molecular function have not

progressed as fast as those for sequencing. One role of computational biology is to

accurately predict protein molecular function based on the protein’s sequence alone.

Phylogenomics is a field of study that approaches the problem of protein molecular

function prediction from an evolutionary perspective. In particular, a phylogenomic

analysis transfers existing (but sparse) molecular function annotations to a query

protein based on a reconciled phylogeny, which explicitly represents the evolutionary

relationships of a set of related proteins. In my dissertation, I formalize the phyloge-

nomics methodology as a statistical graphical model of molecular function evolution.

Within this framework, we can predict protein molecular function from protein se-

quence alone. Molecular function evolution is represented as a simple continuous

1



time Markov chain, and the random variables at each node in the tree are a subset of

functional terms from the Gene Ontology. The model is encapsulated in a framework

called sifter (Statistical Inference of Function Through Evolutionary Relationships).

Sifter has performed well on a number of diverse protein families, as compared

to standard annotation transfer methods and other phylogenomics-based approaches.

Sifter has been applied to the complete genomes of 46 fungal species, and is able

to make molecular function predictions for a large percentage of the predicted pro-

teins in these genomes. Moreover, through these predictions we can explore some

genomic comparisons for fungi. Motivated by the high cost of characterization exper-

iments, active learning techniques have also been applied to sifter’s protein function

predictions, with good results.

Professor Michael I. Jordan, Chair Date
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Chapter 1

Introduction to Phylogenomics

1.1 The promise of phylogenomics

One of the most challenging problems of central importance in the post-genome era

is the prediction of protein molecular function. Challenging problems in computa-

tional biology such as this require the integration of an informed biological framework,

powerful bioinformatics tools, and high-quality experimental data. In recent years,

new insights into the diverse biological processes underlying the evolution of protein

function have provided a powerful framework for automating protein function predic-

tion. Phylogenomics [Eisen, 1998] formalizes how assumptions of molecular function

evolution can be exploited to improve function prediction and to dramatically re-

duce the systematic errors from pairwise annotation transfer methods, the standard

protocol for protein functional annotation [Sjölander, 2004; Brown and Sjolander,

2006]. This area at the intersection of phylogenetics and genomics includes method-

ological contributions from diverse backgrounds; it extends beyond the specific fo-

cus of this thesis, which is molecular function prediction, to include phylogenomic

approaches to reconstructing species evolution, predicting features of protein ter-
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Chapter 1. Introduction to Phylogenomics

tiary structure, inferring the cellular localization and biochemical pathways of extant

and ancestral genes, and, moreover, reconstructing the evolutionary mechanisms by

which novelty arose for each of these protein features [Thornton and LaSalle, 2000;

Delsuc et al., 2005]. In this introduction, we review the fundamental evolutionary

processes underlying protein family functional diversification and the computational

methods available for inferring these evolutionary events. We identify the challenges

for functional phylogenomics in order to motivate the main aim of this dissertation,

which is a statistical method for functional phylogenomics.

1.1.1 Annotation transfer

One standard approach to protein molecular function prediction employs annotation

transfer, assigning the function of a characterized protein to a query protein whose

function is unknown based on a significant score in database search. In this approach,

homologs to the query protein are identified by searching a sequence database (typ-

ically using a computationally efficient approach such as the Basic Local Alignment

Search Tool (BLAST) [Altschul et al., 1990]). If the scores of the top annotated

hits are significant, the implied homology, or evolutionary relationship, enables the

annotations to be transferred directly to the query protein. This protocol is broadly

used because it is straightforward to justify, implement, and run. Unfortunately,

it is known to be prone to systematic error. The fundamental assumptions of an-

notation transfer are that sequence similarity implies an evolutionary relationship,

and that evolution conserves function; biologists then infer that two proteins sharing

statistically significant sequence similarity share a common function.

Many factors confound this apparently straightforward methodology. The most

significant database hit may have a different function due to single point mutations,

gene duplication, or domain shuffling [Eisen, 1998; Bork and Koonin, 1998; Galperin
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Chapter 1. Introduction to Phylogenomics

and Koonin, 1998]. The most significant database hit may also be misannotated,

and transferring this incorrect annotation propagates the annotation errors [Brenner,

1999; Devos and Valencia, 2000]. Furthermore, sequence similarity may be due to

parallel evolution – evolution towards the same sequence from evolutionarily unrelated

proteins – rather than an evolutionary relationship, especially if the significance of

the hit is questionable. As many authors have pointed out (e.g., [Reeck et al., 1987]),

two proteins are either homologous, meaning related by a common ancestor, or they

are not. There is no single E-value cutoff to describe where homology ends and non-

homology begins. For a particular query protein, such a cutoff may not exist: a search

may rank non-homologs higher than homologs at certain places in the search results.

Furthermore, annotation transfer based on pairwise sequence similarity does not

take into account rate variation. If we assume that function generally evolves parsi-

moniously within a phylogeny (where we are defining parsimonious as each function

being active within all of the proteins descendant from a single common ancestor),

then the branching structure of a phylogeny is more relevant for annotation transfer

than path length within the phylogeny. But lineage-specific rate variation, which is

complex phenomenon prevalent across a wide range of protein families [Thomas et

al., 2006], means that the most similar sequences according to blast (i.e., those with

the shortest path length in the tree) are not necessarily most likely to share a com-

mon function. One such scenario is illustrated in Figure 1.1, where path length and

branching order from a query protein rank the remaining proteins differently because

the phylogeny exhibits lineage-specific rate variation. This problem grows worse as

more proteins are added to a tree. Specifically, additional proteins that are siblings

of protein B1 (in the figure) with a similar branch length will provide increasingly

strong support for the incorrect function transfer to the query protein. This means

that the blast most significant hits approach is systematically flawed and may yield

increasingly erroneous results as data increase. Use of a phylogeny explicitly incorpo-
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Chapter 1. Introduction to Phylogenomics

A1 B2

?

A2

B1

Figure 1.1: Sequence similarity does not directly reflect phylogeny. A phy-
logenetic tree shows where sequence similarity measures, such as blast fail to make
correct functional assignments. The proteins in this tree are either molecular function A
or B, with a duplication event indicated by a red square. We wish to predict the function
of the protein denoted by “?”. Its most significant blast hit will be B1, because the
path length in the phylogeny from the query protein is the shortest. Thus blast will
transfer annotation B to the unannotated protein. However, this conflicts with the most
likely molecular function scenario. It is more likely that the tree has only one functional
change, in which ancestral function B mutated to function A on the left-hand side of
the bifurcation. Thus A is a more likely annotation for the unannotated protein. The
phylogenomics approach reaches this conclusion naturally. Adapted from [Eisen, 1998].

rates the evolutionary history and minimizes problems due to rate variation, because

the branching structure is considered, instead of just branch lengths.

1.1.2 Phylogenomic analysis is designed to address these issues

Phylogenomic inference of molecular function is actually an annotation transfer pro-

tocol, but it avoids many of the errors of standard annotation transfer through the

explicit inclusion of an evolutionary model of functional evolution overlaid on a phylo-

genetic tree. Phylogenetic methods have long been preferred to pairwise comparison

methods for taxonomic data analysis (e.g., [Farris, 1982]) based on both theoretical
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Chapter 1. Introduction to Phylogenomics

and practical arguments. The phylogenomic protocol is the phylogenetic approach to

annotation transfer. Phylogenomics additionally relies on accurate orthology analysis,

which also benefits from a phylogenetic approach.

Phylogenomics allows biologists to exploit the variable evolutionary persistence

of different types of protein functional attributes to provide nuanced predictions

of protein function. We use the term evolutionary persistence to reflect the vari-

able endurance of protein attributes over different evolutionary distances. For in-

stance, the structure, or three-dimensional shape, of a protein is maintained over

long evolutionary distances between homologous proteins: two proteins can have

vanishingly low sequence identity and still have obviously similar three-dimensional

structures [Krissinel, 2007]. Basic chemical function is often maintained over long

evolutionary distances as well, such as the Nudix hydrolases [Bessman et al., 1996],

as are general mechanisms of enzyme catalysis [Glasner et al., 2007]. On the other

hand, the precise biochemical function of a protein can be significantly affected by

a small number of mutations. Mutations at an enzyme catalytic site can completely

disrupt function, while mutations at nearby binding pocket positions may modify

the substrate upon which the enzyme acts. As an example, in Halobacterium sali-

narium, bacteriorhodopsin (light-driven proton pumps) and halorhodopsin (chloride

ion pumps) are homologous; mutation of an aspartic acid to a threonine changes

this light-driven proton pump to a chloride ion pump [Sasaki et al., 1995]. Cellular

localization, like structure, has a long evolutionary persistence in the absence of do-

main shuffling [Chen and Rost, 2002]. Like molecular function, small evolutionary

changes can drastically impact particular localizations. For example, a protein that

is secreted from the cell may change to one that is cytoplasmic based on the presence

or absence of short signal peptides [Tagaya et al., 1997], and transmembrane local-

ization may change to localization in the Golgi apparatus after a small number of

residue changes [Wong et al., 1992]. Phylogenomics takes into account the variable

5



Chapter 1. Introduction to Phylogenomics

evolutionary persistence of different protein features to enable a more precise and

nuanced prediction of those features than a simple pairwise comparison of individual

proteins.

The basic procedure for a phylogenomic analysis of a protein superfamily, or a fam-

ily of proteins generated from a common ancestor by gene duplication and speciation

events, is as follows (as in Figure 1.2): Starting with a query sequence, homologous

sequences are gathered according to some criteria. A multiple sequence alignment

is constructed for these sequences and is used as the basis for estimating a protein

superfamily phylogeny. Reconciliation of the rooted superfamily tree and a trusted

phylogeny of the species is then used to localize gene duplication and speciation

events at the internal nodes of the superfamily phylogeny [Goodman et al., 1979;

Page, 1998]. These events enable identification of subtrees in the protein superfam-

ily phylogeny that correspond to orthologous proteins (proteins related by speciation

events). Molecular function annotations derived from an experiment are then overlaid

on the tree, highlighting functional shifts within the superfamily. The reconciled tree

including molecular function annotations can then be used as the basis of annotation

transfer. This introductory chapter will serve to motivate this general protocol. The

remainder of the dissertation will introduce a particular method for inferring molec-

ular function from a reconciled tree overlaid with molecular function annotations,

and show results and additional methods that can be used in conjunction with this

phylogenomic protocol.

1.2 Overview of protein superfamily evolution

The basic events in protein family evolution include single nucleic acid changes (in-

cluding mutation, insertion, and deletion), gene duplication and deletion, and domain

shuffling (including repetition, insertion, deletion, and exchange of protein domains).
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Step 6:  Infer function
MUTS_PASMU
MUTS_HAEIN
MUTS_CHLPN
MUTS_BACHD
MSH1_SCHPO
MSH7_ARATH
MSH6_DROME
MSH3_MOUSE
MSH3_HUMAN
MUTS_BORBU

Step 4:  Reconciled tree
MUTS_PASMU
MUTS_HAEIN
MUTS_CHLPN
MUTS_BACHD
MSH1_SCHPO
MSH7_ARATH
MSH6_DROME
MSH3_MOUSE
MSH3_HUMAN
MUTS_BORBU

Step 3:  Phylogenetic tree
MUTS_PASMU
MUTS_HAEIN
MUTS_CHLPN
MUTS_BACHD
MSH1_SCHPO
MSH7_ARATH
MSH6_DROME
MSH3_MOUSE
MSH3_HUMAN
MUTS_BORBU

Step 5:  Function overlay
MUTS_PASMU
MUTS_HAEIN
MUTS_CHLPN
MUTS_BACHD
MSH1_SCHPO
MSH7_ARATH
MSH6_DROME
MSH3_MOUSE
MSH3_HUMAN
MUTS_BORBU

Step 1:  Find homologs
>MUTS_BACHD

SSIKEVVLSPGWTEED

>MUTS_PASMU

ISPVELLYCEDFVDMA

>MUTS_HAEIN 

IAPVELLYCEEFNEMA

>MSH3_HUMAN

LQPVELLLPSALSEQK

Step 0:  Query protein
>MUTS_BACHD

SSIKEVVLSPGWTEED

Step 2:  Sequence alignment
SSIKEVVLSPGWTEED

ISPVELLYCEDFVDM-

IAPVELLYCEEFNEMA

LQPVELLLPSALSEQK

LAPSEVLSCNKFNKET

ISPREIVLDESLKSFT

VSPKEIIYETSGLSKG

BLAST
PSI-BLAST
Pfam

ClustalX
MUSCLE
HMMER

NJ
MP
ML

Manually
GeneTree
Forester

GOA DB
Experimental
Swiss-prot

Orthologs
Statistically

Figure 1.2: The basic pipeline for phylogenomic inference of molecular func-
tion. Beginning with a query protein sequence, the phylogenomic approach builds a
reconciled tree and overlays molecular function annotations to infer the function of the
query protein.

Speciation and gene duplication events are the two branching processes that generate

protein superfamilies in combination. A few terms developed elsewhere are helpful

in categorizing relationships within protein superfamilies, and we define and illus-

trate each of them in Figure 1.3. Proteins that are related by duplication events

at their most recent common ancestor are paralogs, whereas proteins related by spe-

ciation events at their most recent common ancestor are orthologs. Zmasek and

Eddy [Zmasek and Eddy, 2002] define additional terms based on analysis of a rooted,

strictly bifurcating tree. Ultra-paralogs are proteins in the same species that have only

duplication events on the internal nodes of their direct tree path. Super-orthologs are

two proteins in different species that have only speciation events on the internal

nodes of their direct tree path. Subtree-neighbors of order k are all descendants other

than the protein itself of the closest k ancestors of a protein (where k is generally

2). In general application, subtree-neighbors can be used as the basis of annotation

transfer across members of a clade, assuming consistent annotations. O’Brien and col-

leagues [O’Brien et al., 2005] further define inparalogs as proteins in the same species

that are most recently related through a duplication event within that species, and
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1_SHARK 1_FROG 1_CHICK 2_CHICK 3_RAT 3_HUMAN

Figure 1.3: Homology relationships defined. In this phylogeny, the red squares
represent duplication events, and the proteins are named by their copy number followed
by a species. Proteins 1 CHICK and 2 CHICK are paralogs, as are proteins 2 CHICK
and 3 HUMAN. Proteins 3 RAT and 3 HUMAN are orthologs, and so are proteins 3 RAT
and 1 FROG. Proteins 2 CHICK and 1 CHICK are the only ultra-paralogs in the fig-
ure. Proteins 3 RAT and 3 HUMAN are super-orthologs, as are proteins 1 SHARK and
1 FROG. Proteins 3 RAT and 3 HUMAN are subtree-neighbors of protein 2 CHICK, as
is protein 1 CHICK. Proteins 1 CHICK and 2 CHICK are inparalogs, and proteins 3 RAT
and 2 CHICK are outparalogs (as are proteins 3 HUMAN and 2 CHICK).

outparalogs as proteins in different species related via a duplication event at their most

recent common ancestor, that have more recently undergone a speciation event (and

perhaps additional duplication events). These definitions will help in the discussion

of orthology.

1.3 Gene duplication and orthology

The inference of orthology is of great interest in functional genomics due to the

assumption that orthologs are likely to share a common function. This has resulted in

the development of databases of predicted orthologs or orthologous groups of proteins

(e.g., COGs [Tatusov et al., 2000], TOGA [Lee et al., 2002], InParanoid [O’Brien
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et al., 2005]). Gene duplication provides a central evolutionary mechanism enabling

functional innovations in protein superfamilies. Following gene duplication, selective

pressures on the original copy of a gene can diminish; one or both of the proteins

may modify their molecular function, either as a result of neutral evolutionary drift

or selection. The mechanistic details of gene duplication, however, are quite complex

and poorly understood, and much recent research has attempted to extrapolate these

details from the examples of gene duplication events.

1.3.1 Evolution of molecular function

Sequence evolution, on one hand, is constrained by a protein’s role in the survival

and fitness of an organism, and on the other hand is subject to forces of evolutionary

change, including mutation, duplication, and deletion events. In order to understand

better this evolutionary dynamic, we briefly review the current literature on molecular

evolution as it relates to molecular function and evolutionary constraints. The terms

gene and protein (i.e., gene product) are used somewhat interchangeably, ignoring

some subtleties that do not broadly impact this discussion.

Although the rate of molecular evolution does not directly determine the rate

of molecular function evolution, the phylogenomic assumption that sequences and

molecular functions evolve at proportional rates will guide our discussion. In par-

ticular, although much work has been done on the rates of molecular evolution for

particular proteins (and many open questions still exist), much less work has been

done on the rates of molecular function evolution. Generally, we wish to identify

which characteristics of proteins (and the evolutionary history of these proteins) lead

to a faster rate of molecular function evolution. This will enable a model for the

approximate localization of functional mutations in the phylogenetic history of a set

of homologous proteins.
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1.3.1.1 Essentiality, dispensibility, and expression levels may correlate with a

slower rate of evolution

Researchers have attempted to find correlations between the evolutionary rate of

proteins (as a measure of how strong evolutionary constraints are on this protein)

and different features of the protein in vivo. One such feature is protein essentiality,

which describes whether or not a protein is critical to the survival and viability

of the organism. The knockout rate hypothesis negatively correlates the impact of

knockout on the fitness of the organism with rate of evolution [Wilson et al., 1977].

Eukaryotic genes that are essential to the viability of an organism appeared to be

more constrained by selection, and also appeared to arise farther back in evolutionary

time [Decottignies et al., 2003], as observed in a large-scale knockout study of genes

in S. pombe and S. cerevisiae. This general hypothesis was challenged in a study in

mouse and rats, which showed that sequence mutation rates were not correlated with

essentiality of the gene [Hurst and Smith, 1999].

More sophisticated studies have measured the impact of gene dispensibility on

mutation rates for that gene, where dispensibility is often measured by growth rates

of an organism with the particular gene deleted. The general idea is that, for genes

that are not essential to the organism’s survival but contribute to organismal fitness,

most mutations would be considered within the range of neutral. Thus, because they

have fewer selective constraints than essential genes, the rate of evolution should

be higher in genes that contribute less to the overall fitness of the organism. This

hypothesis is hard to test directly because the fitness of a particular protein to an

organism is difficult to quantify.

Hirsh and Fraser found a significant correlation between protein dispensibility

and evolutionary rate, and note in their results that gene essentiality has not been

definitively correlated with evolutionary rate (in their own measurements in yeast

10
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and in the previously cited mouse study [Hurst and Smith, 1999]) because the dis-

tinction between essential and non-essential genes was not precise enough [Hirsh

and Fraser, 2001]. In particular, when a gene knock-out results in a very slow

rate of organismal growth, the individual has such poor fitness that evolutionarily

the gene can be considered almost equivalent to essential. Yang and colleagues fol-

lowed this up with a similar experiment in yeast and C. albicans that found a weak

correlation between dispensibility and evolutionary rate, but noted that the corre-

lation disappeared when duplicate genes were not considered [Yang et al., 2003a].

They also hypothesize that structural constraints influence the rate of evolution

more than dispensibility. Wall and colleagues further corroborated these findings

in a study that found evidence for independent correlations between the rate of

molecular evolution and both gene dispensibility and expression levels [Wall et al.,

2005]. Although they argue based on their own findings that dispensibility is cor-

related with the rate of evolution, they cite two previous studies ( [Pal et al., 2003;

Rocha and Danchin, 2004]) that both conclude that the correlation between dispen-

sibility and the rate of evolution is not significant when expression level (or, as in the

second study, expression levels and molecular function type) is taken into account.

1.3.1.2 Pleiotropy constrains evolutionary rate

In 1930, Fisher proposed that pleiotropy constrains evolution [Fisher, 1930]. Pleiotropy

means that a single gene is responsible for multiple phenotypes. It could be that a

single gene has multiple molecular functions, is involved in multiple pathways, or

interacts with different proteins depending on tissue type.

Much more recent studies of the yeast protein interaction network have shown

correlations between the number of proteins interactions for a given protein and evo-

lutionary constraints. One such study found a correlation between number of protein

interactions with decreased viability of the organism after knockout [Jeong et al.,
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2001]. Another study showed that a protein that is more central in a genetic pathway

tends to be more critical and have a slower rate of evolution [Hahn et al., 2005].

Krylov introduced the propensity for gene loss (PGL) measure, which is computed by

comparing the phylogenetic profile to the species phylogeny, and showed that PGL is

more negatively correlated with gene essentiality (as measured by knockout analyses)

and number of interaction partners than the rate of sequence evolution [Krylov et al.,

2003].

Returning again to Fisher’s hypothesis, proteins involved in more protein-protein

interactions have been shown to have a slower evolutionary rate not because of their

essentiality to the organism, but because a larger proportion of amino acids in the

protein are involved in functional interactions, thus those amino acids will evolve

at a slower rate [Fraser et al., 2002]. A specific amino acid might be involved in

a functional interaction either directly, through involvement in direct bonds with

functional molecules, or indirectly, through their role in protein structural stability.

As the number of interactions of a particular protein grows, so does the number of

sites that are explicitly constrained.

1.3.1.3 Gene duplicability

The evolutionary role of gene duplication, beyond creating novel proteins, still re-

mains unclear. One alternative role might be as a compensating mechanism for gene

deletion. In yeast single-gene-deletion mutants, one study estimated that one quarter

of the deletions showed no phenotype because of compensation from a duplicated

gene in the genome [Gu, 2003]. Furthermore, as the sequence similarity between gene

duplicates decreases, their ability to compensate for a deleted copy decreases, pre-

sumably because the function diverges. The surprising result, though, is that even

evolutionarily distant gene duplicates (i.e., those that do not obviously have the same

molecular function) may compensate for a deleted gene.

12



Chapter 1. Introduction to Phylogenomics

One alternative way to explain these data is that critical genes are duplicated

at a much lower frequency. Gene duplicability is defined as the tendency of a gene

to duplicate and subsequently be fixed in that species. This hypothesis implies that

what appears to be gene compensation is actually just a correlation between non-

critical genes and duplications, and was supported in a set of yeast gene knockout

studies [He and Zhang, 2006]. This hypothesis came from two observations. First,

genes involved in large protein complexes have lower duplicability because changing

(e.g., doubling) the concentration of the molecules involved in the interactions may

detrimentally impact the functional products of the interaction network [Jeong et

al., 2001]. There is substantial evidence to suggest that proteins involved in more

interactions will be, on average, more critical to organism survival as measured by

knockout phenotype [Yang et al., 2003b].

A final study in this vein postulates that when genes that are more biologically

important duplicate, they are retained at a much higher rate than duplicates of genes

that are less biologically important in eukaryotes [Jordan, 2004]. This observation

comes from evidence that, despite an initial increase in evolutionary rate following a

duplication, the evolutionary rate of the retained duplicate genes dramatically slows,

possibly because of the high number of selective constraints on these more important

proteins.

This leaves us with a number of open questions about how gene duplication relates

to pleiotropy, biological importance, and evolutionary rate. Many details of these

correlations still remain to be resolved among the studies presented here in order to

understand better the details of how duplication contributes to functional diversity

in proteins. In many cases, it is not even clear how hypotheses can be tested given

our limited data and indirect observation of duplication.

13
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1.3.2 Gene duplication events

There are several scenarios of how gene duplication events lead to functional diver-

gence, illustrated in Figure 1.4. The majority of gene duplications result in nonfunc-

tionalization, where one copy of the gene acquires neutral mutations, converting it into

a pseudogene. Neofunctionalization, proposed by Ohno [Ohno, 1972], hypothesizes

that, after a duplication event, one copy of the gene maintains the original func-

tion, while the other acquires a novel, adaptive function through positive selection.

One example of neofunctionalization is the sensory-neuron-specific (SNSR) subclass

of G-protein coupled receptors (GPCRs), in which researchers have observed that

the ligand-binding residues underwent positive selection following gene duplication

resulting in functional divergence of the paralogs [Choi and Lahn, 2003].

An alternative theory, known as subfunctionalization, or the duplication-degeneration-

complementation (DDC) model, postulates that mutations accumulate via neutral

evolution in each copy of a gene, resulting in complementary functions [Force et

al., 1999; Lynch and Force, 2000]. Two subfunctionalization scenarios exist. In

the first scenario, specifically the DDC model, complementary functions are lost in

the duplicate genes. One example is the sex-linked α4 proteasome subunit genes in

Drosophila melanogaster, in which two copies of the gene, both expressed at different

times during spermatogenesis, are each missing different functional regions [Torger-

son and Singh, 2004]. In the second subfunctionalization scenario, a protein with a

general enzymatic function, possibly working on a large range of substrates, develops

complementary substrate specificity in the duplicate genes. In corn, phytochrome

genes were observed to have developed overlapping but differentiated functions due

to this type of subfunctionalization [Sheehan et al., 2007]. For more information on

this topic, many good reviews of gene duplication exist (e.g., [Roth et al., 2007;

Conrad and Antonarakis, 2007]). These scenarios all lead to the conclusion that

14



Chapter 1. Introduction to Phylogenomics

(A) Nonfunctionalization (B) Neofunctionalization (C) Subfunctionalization

Figure 1.4: Three different theories of functional diversification following a
gene duplication event. Nonfunctionalization, shown in (A), is the most biologically
common of the three events, in which a duplicated gene’s function is lost by neutral
mutations. Neofunctionalization, shown in (B), shows one copy evolving an independent
function. Subfunctionalization, shown in (C), shows the duplicated genes losing comple-
mentary functions.

changes in molecular function will often co-occur with duplication events when both

copies of the gene are retained as expressed proteins.

1.3.3 Evolutionary events modify domain architecture

Domain shuffling, illustrated in Figure 1.5, is another evolutionary mechanism for

functional mutation that played a significant role in the evolution of eukaryotic or-

ganisms [Liu and Grigoriev, 2004; Babushok et al., 2007]. Phylogenetic studies in

protein families with domain shuffling, such as the DNA-binding domain KilA-N

found in bacterial and eukaryotic DNA viruses [Iyer et al., 2002], show the extent

of rearrangement of homologous domains in these families and the impact on do-

main architecture and molecular function. In addition, there are two complementary

evolutionary mechanisms, gene fusion events, which fuse two separate genes or do-

mains, and gene fission events, which split a single gene into two genes, illustrated in

Figure 1.6.

The NitFhit protein in D. melanogaster and C. elegans, for example, is a histidine

triad homolog fused with a nitrilase homolog; evidence suggests that the two domains

may have fused because they both have nonessential functions and are involved in the

same signaling pathway [Semba et al., 2006]. Domain shuffling and gene fission/fusion

events generate proteins with a different domain structure than the original protein,
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(A) (B) (C)

Figure 1.5: Domain shuffling events. Four events result in changing protein domain
structure: exchange, repetition, insertion, and deletion (exchange is not shown here).
Panel (A) shows repetition leading to a different domain structure in the resulting protein.
Panel (B) shows a new (red) domain inserted between the two domains of the original
protein. Panel (C) displays the result of deletion of the blue domain. Although this
figure shows shuffling events respecting domain boundaries, this is often not the case;
furthermore, the resulting hybrid genes may be modified by subsequent gene fusion or
fission events. These four events in combination have the effect of producing the full
range of protein domain structures.

Figure 1.6: Gene fission/fusion events. The grey background represents the ex-
pressed protein boundaries. The up arrow represents a gene fusion event, where two
separate proteins are fused into a single gene product; the down arrow represents a gene
fission event, where a single protein with three domains is split into two separate proteins.

modifying the tertiary structure of the protein and often the molecular function,

sometimes fairly dramatically [Pasek et al., 2006]. Although it is clear that domain

shuffling and gene fusion/fission events play a role in the evolution of molecular func-

tion [Ashby and Houmard, 2006; Alm et al., 2006] and protein networks [Amoutzias

et al., 2004], most automated phylogenomic methods do not explicitly account for

these evolutionary mechanisms. Both domain shuffling and gene fission and fusion

result from recombination events [Kummerfeld et al., 2004].
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1.4 Fundamental assumptions of phylogenomic analy-

sis

Two assumptions about protein molecular function evolution are of critical impor-

tance for phylogenomic analysis. The first critical assumption is that molecular

function evolves in parallel with protein sequence. In other words, the phylogeny

reconstructed for a set of homologous molecules based on sequence information is a

satisfactory proxy for the evolution of molecular function and structure in those pro-

teins. The second critical assumption is that discrete changes in molecular function

most often co-occur with gene duplication events. These two assumptions allow us to

develop a model of molecular function evolution to generate experimentally testable

hypotheses.

The two assumptions should be examined carefully. The first assumption re-

quires (a) the availability of an accurate phylogenetic tree reconstruction for a pro-

tein superfamily, and (b) that the inferred branches of this phylogeny along which

the greatest change in protein sequence occurred are, in general, the same branches

along which the greatest change in protein molecular function occurred (taking into

account the locations of duplication events). We will defer examination of (a) un-

til the discussion of tree reconstruction methods; (b), however, is only a general

tendency, which is often violated for particular superfamilies. For example, sin-

gle nucleotide mutations may produce discrete changes in molecular function, ex-

plicitly violating this assumption, as in the case of the lactate dehydrogenase pro-

tein from T. vaginalis, evolved from a malate dehydrogenase, where a single amino

acid mutation is thought to be responsible for the functional change [Madern, 2002;

Wu et al., 1999]. Parallel functional evolution, or a single molecular function which

arises independently in different locations in the phylogeny (also a less common def-

inition of convergent evolution), although it violates an assumption of maximally
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parsimonious evolution, does not explicitly violate this assumption.

Although we are unaware of any genome-scale studies comparing the rate of func-

tional change after gene duplication versus after speciation events, one study found

that, for a particular functional type (i.e., defense genes), the function itself was more

determinant of a higher rate of evolution than the existence of a paralogous gene in

humans [Nembaware et al., 2002]. This might indicate that the factors contributing

to duplication of a protein (i.e., its duplicability), such as the molecular function and

the length of the protein, may more directly impact functional change than dupli-

cation itself. These hypotheses imply a modified phylogenomic methodology that

uses additional protein features that impact duplicability, including length of a pro-

tein sequence and the type of functions being inferred, to more accurately estimate

evolutionary persistence of function within a multigene phylogeny.

1.5 A simple phylogenomic analysis

We outline the basic steps involved in a phylogenomic analysis of a set of protein

sequences in Figure 1.2, given the basic assumptions outlined above. We assume

that the process is initiated with a query protein sequence of unknown function. We

motivate each step, and describe methods that may be used and how those methods

perform in practice. We focus on a few potential sources of noise or error that may

be relevant to a phylogenomic analysis, areas for improvement, and open research

questions.
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1.5.1 Step 1: Identify a set of homologous proteins

1.5.1.1 Motivation, definition, and methods

We would like to gather a set of proteins homologous to the query protein in order

to transfer a functional annotation according to the phylogenomic protocol. The

selection of sequences in the first step of a phylogenomic analysis has a significant

impact on the resulting functional inferences. There are three basic approaches to

this task: selecting sequences based on individual alignments of database hits to the

sequences of interest, selecting homologous sequences from databases that cluster

homologous proteins (including Pfam [Bateman et al., 2002], SCOP [Andreeva et

al., 2004], COG [Tatusov et al., 2000]), and selecting sequences found to have the

same domain architecture as the sequences of interest. Standard homolog clustering

methods (e.g., BLAST [Altschul et al., 1990] and PSI-BLAST [Altschul et al., 1997])

are optimized for the detection of local matches to a query sequence. PSI-BLAST

constructs a profile HMM from a multiple sequence alignment of sequences with

significant BLAST scores to detect remote homologs, but including non-homologs

(or partial homologs) accidentally can generalize the profile so that non-homologous

sequences are found using the profile. The homology databases often rely on these

sequence search methods (e.g,. COGs uses triangles of mutually-consistent, genome-

specific best hits from BLAST) for populating their clusters.

One might also restrict sequences to those that share a common domain ar-

chitecture with the query sequence, when these sequences include a broad enough

sampling of experimentally-annotated sequences with homology at functional regions

of interest. The programs FlowerPower and CDART are designed specifically to

cluster sequences having the same domain architecture [Krishnamurthy et al., 2007;

Geer et al., 2002]. FlowerPower is similar to PSI-BLAST [Altschul et al., 1997], but

instead of using a single profile to expand the existing cluster, FlowerPower uses a set
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of HMMs: a general HMM for the family as a whole, and a subfamily HMM (SHMM)

for each predicted subfamily. The Conserved Domain Architecture Retrieval Tool

(CDART) also performs searches for proteins with identical domain architecture [Geer

et al., 2002] using Reverse PSI-BLAST (RPS-BLAST) to search domain profiles built

from the Conserved Domain Database [Marchler-Bauer et al., 2002], with additional

processing to handle redundant or closely-related domains.

1.5.1.2 Limitations and considerations

In selecting homologs, investigators must strike a balance between a conservative

selection of close homologs and retrieval of more divergently related sequences. Re-

stricting the set to close homologs with common domain architecture can produce

good alignments and accurate tree topologies, but may result in insufficient informa-

tion for function inference due to the sparse nature of experimental data. Including

distant homologs and more diverse domain architecture can increase the available ex-

perimental data, but can lead to errors in alignment and tree topology, and result in

incorrect or overly general functional predictions. Functional inferences based on dis-

tant homologs must be made with caution, as estimation of evolutionary persistence

is difficult over long evolutionary distances.

1.5.2 Step 2: Align the sequences

1.5.2.1 Motivation, definition, and methods

The multiple sequence alignment (MSA) is the source of phylogenetic signal, and

so plays an important role in phylogenomic analysis. Numerous multiple sequence

alignment packages are available that are both computationally efficient and produce

high-quality alignments. These include MUSCLE [Edgar, 2004] and MAFFT [Katoh

et al., 2002] for large multigene families, and PROBCONS [Do et al., 2005] for smaller
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families. All have produced outstanding results on benchmark datasets comparing

sequence and structural alignments [Edgar and Batzoglou, 2006]. Alternatively, given

a hidden Markov model (HMM) profile for this particular protein or domain, HMM

alignment methods such as hmmalign [Eddy, 1998] can be used to quickly align the

sequences given the profile. Post-processing of the MSA may further improve the

signal, and includes alignment masking, deleting poorly-alignable sequences, using

three-dimensional structure to improve the alignment, or cropping an alignment to a

conserved core.

1.5.2.2 Limitations and considerations

There are dramatic differences between the characteristics of single-gene (ortholo-

gous) groups and groups of genes related by gene duplication (multi-gene families),

particularly when these groups span large taxonomic distances. The former often

have high sequence identity, and their phylogeny will resemble the species phylogeny.

The latter often contain divergent sequences with low sequence identity (e.g., some

pairs may not be more identifiably similar than two random sequences), regions where

the alignments are unreliable and the proteins may not even be structurally superpos-

able, or extreme variability in site- and lineage-specific mutation rates [Saier, 1996].

All of these protein superfamily features strain the core assumptions of multiple se-

quence alignment methods, which attempt to create a sequence of columns that are

each evolved from a common ancestor amino acid. This implies that, superposing the

three-dimensional structures from this family, each position of the superposed com-

plex is a single column of the alignment. When the structures cannot be superposed,

it is possible that these assumptions are violated.

To address this issue, masking is often employed. Alignment masking removes

columns in the multiple sequence alignment that appear to be uninformative. Of-

ten in masking, columns of a multiple sequence alignment are removed when, for
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example, greater than 75% of the column is gaps instead of informative characters.

However, this practice removes information that may be important in reconstructing

phylogenetic lineages. For instance, sequence motifs that uniquely identify family

subtypes may be targeted for masking prior to phylogenetic tree reconstruction, but

their functional importance and evolutionary signal to differentiate subtypes could be

exploited in phylogenetic tree reconstruction.

1.5.3 Step 3: Reconstruct a phylogeny

1.5.3.1 Motivation, definition, and methods

The choice of phylogenetic reconstruction method depends on the computational re-

sources available and the size of the dataset to be analyzed. Distance methods (e.g.,

UPGMA and neighbor-joining (NJ) [Felsenstein, 1989]) are widely used when com-

putational efficiency is an issue, as in construction of phylogenies for each protein

in a genome. Many different variants of the standard NJ protocol have been devel-

oped into programs and evaluated on a range of protein families [Hollich et al., 2005].

Character methods include maximum parsimony (MP), maximum likelihood (ML),

and Bayesian methods. MP methods are significantly slower to reconstruct than the

distance methods, and are often less accurate than standard distance methods using

a high-quality distance metric (e.g., [Atteson, 1997; Felsenstein, 1978]). It has been

noted that MP methods perform particularly poorly when there are long branches

in the phylogeny [Felsenstein, 1978]. ML methods are more accurate than both dis-

tance methods and MP methods on simulation studies [Kuhner and Felsenstein, 1994;

Tateno et al., 1994], but are also computationally slower than both. The computa-

tionally slowest algorithms for phylogeny reconstruction are the Bayesian methods,

and although they may confer a small performance advantage over ML methods, their

applicability is limited to very small families [Mar et al., 2005; Hall, 2005].
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The PHYLIP [Felsenstein, 1989] resource includes a compilation of numerous tools

for phylogenetic reconstruction. Other popular resources include PHYML [Guindon

and Gascuel, 2003], which is a recent maximum likelihood tree reconstruction method

designed for computational efficiency, PAUP∗ [Swofford, 2001], which includes MP,

ML, distance methods, and bootstrapping capabilities, and MrBayes [Huelsenbeck

and Ronquist, 2001], which takes a Bayesian approach to tree construction, perform-

ing a Markov chain Monte Carlo search through the space of possible phylogenies.

Rooting a phylogeny, or identifying the branch that contains the most recent com-

mon ancestor of each of the phylogeny leaves (which implicitly makes each branch

directed) is required to localize gene duplication events, but many phylogenetic tree

construction programs produce unrooted trees. Selecting outgroup sequences in a

phylogenetic reconstruction is standard practice for rooting species phylogenies, but

is often not possible in multi-gene families (i.e., genes from outgroup species may ap-

pear in multiple subtrees in the reconstructed phylogeny, or the root may be an ancient

duplication event making it difficult to identify an outgroup) [Felsenstein, 2003]. Mid-

point rooting places the root at the midpoint of the longest span in the tree and can be

applied to multi-gene families [Felsenstein, 2003]. This approach assumes a molecular

clock, which may not be a reasonable assumption in many protein superfamilies due to

the potential for lineage-specific rate variation following gene duplication. A related

method with the same assumption places the root to minimize the difference in path

lengths from the root to terminal nodes across the tree [Felsenstein, 2003]. Parsimony-

based rooting places the root of an unrooted gene tree so as to minimize the number

of gene duplications and gene losses in the tree [Berglund-Sonnhammer et al., 2006;

Thornton and LaSalle, 2000]. This is method appears to be more robust to lineage-

specific rate variation, but assumes that data being analyzed come from fully se-

quenced genomes. In contrast, mid-point rooting can be applied to phylogenomic

analysis of sequences retrieved from partially sequenced genomes.
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Another type of method that is often employed computes statistical measures of

subtree reliability. The measurement should reflect how evidence in the MSA supports

this particular evolutionary topology. Bootstrap analysis can be used to estimate the

support for subtrees [Felsenstein, 1985]. Measures based on the bootstrap, including

the approximately unbiased test [Shimodaira, 2002], are often more powerful (and

more easily implemented) than the standard bootstrap in evaluating overall phylogeny

confidence. There are many possible alternative probabilistic measures of subtree

reliability, including posterior probabilities based on Bayesian analysis [Huelsenbeck,

1995] or approximate likelihood ratio tests [Anisimova and Gascuel, 2006]. These

measures can be used to estimate overall tree reliability, and may be helpful to factor

into the final phylogenomics-based predictions, perhaps to down-weight predictions

based on an inaccurate subtree as in Orthostrapper [Storm and Sonnhammer, 2002]

and RIO [Zmasek and Eddy, 2002].

1.5.3.2 Limitations and considerations

The quality of phylogenetic tree reconstructions is commensurate with the quality

of the input multiple sequence alignment, where the problems caused by multigene

families have been studied in detail. In general, phylogenetic tree reconstruction

methods have been developed for reconstructing the evolutionary history of single-

gene families; while their accuracy in reconstructing single-gene family phylogenies

is approximately known (primarily through simulation studies, e.g., [Huelsenbeck,

1995]), their accuracy in reconstructing phylogenies of multi-gene families is not well

understood.

One assumption that is strained in multi-gene families is positional homology, i.e.,

that the characters in a multiple sequence alignment column descend from a single

ancestral character. Positional homology is a fundamental assumption in character

based phylogenetic tree reconstruction methods, which assumes that the characters in
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each column of an alignment evolved independently and identically distributed (IID).

However, structural studies have shown that, as two proteins diverge from a common

ancestor, their structures also diverge at a slower rate [Baker and Sali, 2001]. As evo-

lutionary distances increase, the sequence similarity can become extremely low, even

when the core structural elements are maintained. Constructing a reliable multiple

sequence alignment for such divergent sequences is difficult. The lack of structural

superposability across all positions in homologous proteins often violates the posi-

tional homology assumption for the multiple sequence alignments (e.g., insertions in

loop regions). Detailed comparisons of alignment methods applied to divergently re-

lated sequences have shown that no alignment methods produce high-accuracy results

when sequence identities fall below 30% [Baker and Sali, 2001]. These issues are not

problematic in the analysis of single-gene families, where sequence identity rarely falls

below 30% [Thompson et al., 1999].

Phylogenetic tree reconstruction is also sensitive to the specific region of align-

ment. When highly divergent sequences from multi-domain protein superfamilies

are aligned, phylogenetic signal can be non-uniform across the MSA. Estimating a

phylogeny from each region separately can produce different topologies, supporting

distinct predictions of function for members of the family. One example of this is

for large-subunit ribosomal DNA, where removing any portion of the alignment re-

sults in a modified (and incorrect) phylogenetic tree topology regardless of the tree

reconstruction method [Mugridge et al., 2000].

A consequence of the relative sparseness of genome sequencing in phylogenetic

reconstruction is that long branches (indicating a large evolutionary distance) may

be incorrectly placed. Long-branch attraction is a related problem: if there are

two or more rapidly evolving sequences, some phylogenetic reconstruction algorithms

will characterize them as siblings rather than as long branches from more distant

ancestors [Bergsten, 2005]. A more thorough sampling of taxa can sometimes alleviate
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A A ABB BC CC

Figure 1.7: Ambiguity in coarse branching order can influence phylogenomic
inference. Subtrees A, B and C represent orthologous groups, and are found consistently
across all trees estimated for these taxa. In this illustration, subtree A does not include
any sequence with experimentally determined function, but subtrees B and C have ex-
perimental data supporting distinct functions. If we use the subtree-neighbor approach
to infer function, in the first tree (from left), subtree A is predicted to have a function
similar to that of subtree B. In the middle subtree, it is not clear which function subtree A
has. In the subtree at right, subtree A is predicted to have a function similar to C. If only
one tree is included in the analysis, the ambiguity in tree topologies (and hence inferred
function) will not be taken into account.

these problems, but may not be possible.

A final issue for phylogenetic tree reconstruction methods, with implications to

phylogenomic inference, is ambiguity in coarse branching order. A single method

may produce trees with different coarse branching orders in different runs; this is

mostly because there is generally less evolutionary signal to estimate the branching

order near the root of the tree. These differences in tree topologies can result in

different predictions of function for subclades with no experimental functional evi-

dence, as illustrated in Figure 1.7. For a good review of these issues and detailed

recommendations see [Thornton and LaSalle, 2000].

1.5.4 Step 4: Identify duplication events

1.5.4.1 Motivation, definition, and methods

The most rigorous automated methods for localizing gene duplication events on a

tree reconcile the gene tree and a reference species tree [Goodman et al., 1979], such

as Forester [Zmasek and Eddy, 2001a] and GeneTree [Page, 1998], as illustrated in
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Figure 1.8. Approximate reconciliation, implemented in the program LOFT [van der

Heijden et al., 2007], examines the overlap of the species in the subtrees. In particular,

an internal node will be labeled as a speciation event when the sets of species at the

leaves of its (two) branches are disjoint. Although this method is quite heuristic, and

is equivalent to reconciliation with a completely unresolved species tree, it does not

rely on species tree accuracy.

While full phylogenetic tree reconstruction and species tree-gene tree reconcilia-

tion is the most accurate approach to orthology identification when a trusted species

tree is available, it is also computationally intensive. For this reason, some methods

use pairwise sequence comparisons to simply predict orthology relationships. InPara-

noid [Remm et al., 2001] and OrthoMCL [Li et al., 2003] use reciprocal best hits in

BLAST to predict orthologs. InParanoid clusters orthologs (excluding inparalogs)

using a rule-based approach. OrthoMCL identifies inparalogs by best reciprocal hits

within a species. OrthoMCL subsequently clusters the sequences into orthologous

groups using a random walk on a Markov transition matrix based on all-versus-all

BLAST scores.

Other methods to construct orthologous clusters work by symbolically marginal-

izing out all phylogenies so that errors in tree reconstruction and reconciliation have

less of an impact on ortholog determination. The result is, for each protein, a prob-

ability that it is orthologous to the query protein. For a large number of protein

sequences, enumerating all of the phylogenies is not computationally feasible. Two

types of approximations to this enumeration are the bootstrap approach, which sums

over a set of probable phylogenies and associated reconciliations, and Markov chain

Monte Carlo (MCMC) techniques, which use Bayesian sampling to marginalize over

the most likely phylogenies. Softparsmap uses a reconciliation method to explicitly

minimize the number of gene duplication and loss events implied by the maximum

(soft) parsimony tree tree [Berglund-Sonnhammer et al., 2006]. Two methods that
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take the bootstrap approach, Resampled Inference of Orthologs (RIO) [Zmasek and

Eddy, 2002] and Orthostrapper [Storm and Sonnhammer, 2002], are described in

detail below.

There are many programs that identify putative orthologs automatically, including

InParanoid [Remm et al., 2001], OrthoMCL [Li et al., 2003], Softparsmap [Berglund-

Sonnhammer et al., 2006], Forester [Zmasek and Eddy, 2001a], GeneTree [Page, 1998],

and LOFT [van der Heijden et al., 2007]. Although these methods are automatic,

they have a high false positive rate due to many confounding factors, including the

approximations employed, sensitivity to errors in the protein phylogeny (except for

InParanoid and OrthoMCL, because they do not use phylogeny), and the selected set

of homologs.

The methods that perform approximate reconciliation are fast relative to phylo-

genetic tree reconstruction methods. Due to the high rate of false positives, often

manually incorporating knowledge of large-scale duplication events in the history of

a collection of species (e.g., [Eisen and Hanawalt, 1999]) and identifying obvious re-

dundant genes in sequence databases improves the accuracy of the duplication events.

1.5.4.2 Limitations and considerations

Simple sequence similarity-based orthology inference is not expected to be as reliable

as inference based on full phylogenetic tree reconstruction [Searls, 2003]:

Tree reconciliation is the most reliable method for identifying orthologous

subgroups, despite dependencies on the inherently noisy processes of mul-

tiple sequence alignment and tree reconstruction. Joint analysis of a phy-

logenetic tree, experimental data, alignment and structure also provides a

framework for identifying the actual sequence and structural changes re-

sponsible for protein function mutations. Furthermore, orthologous clus-
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Figure 1.8: Gene tree/species tree reconciliation. On the left is a species tree
with four taxa colored to distinguish orthologous genes related by speciation events. Du-
plication events connect the three gene trees within the species tree. On the right is a
reconciled gene tree, showing the three different clades of orthologous proteins, connected
by duplication events (represented by purple squares). Species A has one protein in this
particular protein family, species B has three proteins, species C has two proteins, and
species D has three proteins. The gene tree for these homologous proteins is shown on the
right. Note that you need two duplication events to explain every repeat of the species
tree, as shown in purple squares in the gene tree, where the repeated species trees (some
with gene losses) are the red, green, and blue clades.
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ters should not be naively assumed to be functional equivalents. The bi-

ological complexities force us to consider functional mutation in a more

structured, probabilistic light.

A more empirical justification for reconciliation methods was performed in a re-

cent study [Chen et al., 2007], in which pairwise comparison methods appeared to

have higher sensitivity in ortholog identification, but the reconciliation methods ap-

pear to have higher specificity. It is unclear whether their method of evaluation

(using latent class analysis) favors one type of method over another, and in particular

whether higher sensitivity actually indicates additional false positives. But, overall,

InParanoid and OrthoMCL appear to perform well. For application to phylogenomic

functional prediction, it may be advisable to favor specificity over sensitivity. The in-

cremental computational cost of tree reconciliation is trivial once a phylogenetic tree

has been constructed. At the same time, tree reconciliation-based ortholog identifi-

cation can be complicated by a number of confounding factors, such as the presence

of duplicate sequences in sequence databases or multiple isoforms of the same gene

(either within a population or due to splice variation), which incorrectly appear to be

inparalogs. Another problem with reconciliation methods is that they do not help to

identify paralogs when, after a speciation event and a subsequent duplication event,

the original orthologous gene is lost and its duplicate maintained [Tatusov et al.,

1997].

Ortholog identification in prokaryotes is complicated by the high frequency of

horizontal gene transfer (HGT) [Koonin et al., 2001], which creates an evolutionary

path that is not actually tree-like. The impact of HGT on phylogenomic analyses is an

incorrect phylogeny, leading to false positive identification of duplication events, and

resulting in poor functional predictions based on inaccurate reconciled trees. Some

methods (e.g., OrthoMCL) explicitly require the sequences to be from eukaryotic
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species to eliminate the difficulties caused by HGT, but this may be overly restrictive

depending on the composition of the multi-gene family.

Despite their relative accuracy, MCMC methods, such as the model of Arvestad

and colleagues [Arvestad et al., 2003], have not been applied in reconciling gene trees

and species trees as frequently as the more heuristic reconciliation methods because

of their computational cost: the methods are difficult to apply on families with more

than about 20 proteins. Nevertheless, these more rigorous methods are useful for

higher accuracy in phylogenomic methods for small protein superfamilies.

1.5.5 Step 5: Overlay molecular function annotations onto the

phylogeny

1.5.5.1 Motivation, definition, and methods

There are several publicly available general-purpose protein sequence databases with

information on protein molecular function, including UniProt [UniprotConsortium,

2007], InterPro [Mulder et al., 2007], and the Gene Ontology (GO) resource [Ash-

burner et al., 2000]. The GO annotation (GOA) database [Camon et al., 2004] pro-

vides molecular (biochemical) function, biological process and cellular localization

annotations for specific protein sequences. Each annotation in the GOA database

is accompanied by evidence codes specifying the origin of the annotation (e.g., IEA

indicates inferred from electronic annotation, and IDA indicates inferred from direct

assay) enabling biologists to distinguish between annotations based on experiment and

those based on automated annotation methods. The SwissProt resource [Apweiler et

al., 2004] contains high-quality, manually-curated annotations for many sequences,

but does not have a formal ontology. Specialized databases for model organisms are a

good source for high-quality data for these species; examples include The Arabidopsis

Information Resource (TAIR) [Garcia-Hernandez et al., 2002], WormBase [Schwarz
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et al., 2006], and FlyBase [Crosby et al., 2007].

1.5.5.2 Limitations and considerations

The two main problems with existing annotation databases are the lack of experimen-

tal data and the existence of annotation errors. The GOA database is relied upon as

a source of high-quality annotations, the GOA database reports that, as of October

13, 2007, less than 0.1% of the available annotations for UniProt proteins are de-

rived from a method other than IEA. Estimates of existing error rates in annotation

databases range from 8–40% [Brenner, 1999; Devos and Valencia, 2000], and experi-

mental evidence is not immune from error. Because of the complete dependence of the

phylogenomic protocol on accurate, experimentally-derived functional annotations as

an annotation transfer method, this step is a primary source of possible inaccuracies.

1.5.6 Step 6: Infer function for the query protein

1.5.6.1 Motivation, definition, and methods

When phylogenomics is performed manually, the molecular functions are generally

transferred within orthologous subtrees. Most automated programs mimic this method-

ology using a rule-based approach or a statistical method. The phylogenomic protocol

would ideally take into consideration the relative density of annotations, how specific

the functional terms are, and the evolutionary distance between the sequences when

estimating the evolutionary persistence of the available annotations.

1.5.6.2 Limitations and considerations

Transferring function annotations within orthologous clusters is a risky endeavor be-

cause of the possible errors in identifying the clusters. Neither databases of ortholo-

gous proteins, such as COG [Tatusov et al., 2000] or RoundUp [DeLuca et al., 2006],
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nor automated methods, such as Orthostrapper [Storm and Sonnhammer, 2002], take

into account the non-transitive relationship of orthology. These methods often set the

criterion for orthology low to account for this logical error, and thus the clusters in-

ferred by automated methods may contain paralogs or missing orthologs.

The annotation transfer protocol must be defined appropriately. If a subtree has

low bootstrap support, is it reasonable to transfer annotations within that subtree,

even if all sequences in the subtree are related by speciation events? Is it reasonable

to transfer all annotations within a particular cluster, regardless of the evolutionary

distance spanned by that cluster? If a cluster contains a few recent duplication

events (i.e., inparalogs), is it valid to transfer annotations within that cluster? If

a probabilistic method is employed, will all annotations above a certain cutoff be

transferred, or will only the annotation with the highest probability be transferred?

All of these decisions depend on the evolutionary persistence of a particular molecular

function, and whether the estimates of persistence are reasonable with respect to

possible errors or inaccuracies in the reconstructed evolutionary relationships.

1.6 When is a phylogenomic analysis reasonable and

effective?

Phylogenomic inference of protein molecular function is clearly only applicable under

certain conditions: homologs to a query sequence of interest can be identified, reliable

experimental functional annotations are available for at least some of these homologs,

and the evolutionary distance between the query and homologs is not so great that

the likelihood of functional divergence is high. In addition, standard approaches to

phylogenomic inference depend on reconciling a species tree and gene tree. If the

species of origin is not known (as in environmental sequence data [Yooseph et al.,
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2007]), or if the species tree is ambiguous or inaccurate, it may be difficult to localize

gene duplication events with sufficient accuracy.

Phylogenomic inference is complicated by parallel evolution and proteins with

multiple functions. Parallel evolution, or the independent evolution of a single molec-

ular function multiple times in a phylogeny, often complicates phylogenomic analysis.

Enzyme substrate specificity in a subset of the aminotransferase family [Muratore

et al., 2007] (as described in detail in Chapter 3) is an example of this type of in-

dependent appearance of a function. Similarly, moonlighting proteins, or proteins

that perform two or more different molecular functions under different conditions,

and multifunction proteins may produce apparently inconsistent annotations within

orthologous clades. These situations complicate, but do not preclude, phylogenomic

analyses.

1.7 Evaluating phylogenetic tree reconstruction meth-

ods

The standard approach used to assess the accuracy of phylogenetic tree reconstruc-

tion methods is the use of simulation studies (e.g., [Huelsenbeck, 1995]). While these

studies are useful, current simulation studies do not sufficiently evaluate the issues

that arise in protein superfamily evolution such as structural divergence, lack of posi-

tional homology, and site- and lineage-specific rate variation. Since the accuracy of a

phylogenetic tree topology is critical to phylogenomic analysis, and phylogenetic tree

reconstruction methods do not always agree in critical aspects of the predicted tree

topologies given the same input, some means of estimating the expected accuracy of

these alternative methods would be helpful. For single-gene families, phylogenetic

tree reconstruction methods are assessed in two ways: by way of simulation studies,
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and by comparison of gene trees to species trees. However, in protein superfamily

reconstruction the situation is more complicated. First, few simulation studies assess

the effect of alignment errors on tree topology, or assess the ability to reconstruct

phylogenies for sequences with diverged functions and structures. Direct analysis

of predicted phylogenies for real superfamilies is similarly challenging when duplica-

tion events are included, since the actual evolutionary history of a protein family is

unknowable.

Instead, we can use molecular function information to evaluate phylogeny recon-

struction. For superfamilies, instead of using fossil or morphological character data

to inform our reference tree topology, we can use experimental evidence of function

and structure associated with the members of a protein superfamily. Under the as-

sumption that evolution conserves function, a phylogenetic tree that is consistent

with these experimental data is more likely to correspond to the true evolutionary

history than one that is not. Of course, such analyses may sometimes be confounded

by parallel evolution, horizontal gene transfer and ambiguous or incorrect experimen-

tal data. However, such comparisons of superfamily phylogenies with experimental

data provide a direct measurement of the actual predictive power of phylogenetic

tree reconstruction methods in application to phylogenomic inference. This perfor-

mance measure is not without precedent; the OrthoMCL paper [Li et al., 2003], for

example, assesses their orthologous clusters based on how reliable the transferred

EC numbers are within those clusters. Furthermore, there are a number of gold-

standard datasets of protein superfamilies with experimentally validated functions

(e.g., the Structure-Function Linkage Database [Pegg et al., 2006]), that can be used

for explicit phylogenomic evaluation. Such analyses would be complementary to more

sophisticated simulation studies.
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1.8 Thesis outline

Phylogenomic methods for protein molecular function prediction show great promise

as a precise method to annotate protein molecular function when there is informa-

tion on the molecular function of homologous proteins. As more protein sequences

are added to databases and homology information improves, and more experimen-

tal evidence for molecular function is obtained, these methods will only improve in

reliability and performance.

The rest of this thesis proceeds as follows. Chapter 2 introduces a method for

phylogenomic analysis, sifter, and presents data regarding sifter’s performance

on a variety of protein families. Chapter 3 presents an additional method for use

in conjunction with sifter, namely an active learning method using a mutual in-

formation criterion, that iteratively selects the protein function to experimentally

characterize such that the amount of uncertainty regarding the functional predictions

of the remaining proteins in the family is maximally reduced. Results of this active

learner are also presented for a variety of protein families. Chapter 4 presents a study

of sifter’s performance on the annotation of 46 fully sequenced fungal genomes, in-

cluding data for particular families and more general data illustrating sifter’s overall

performance. The final chapter sums up the contributions of this work.
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Chapter 2

Sifter: Statistical Inference of

Function Through Evolutionary

Relationships

2.1 Overview

The main work of this thesis is to describe the Statistical Inference of Function

Through Evolutionary Relationships (sifter) method. Sifter uses a statistical

graphical model that applies principles from phylogenomics to automate precise pro-

tein function annotation [Engelhardt et al., 2005; Engelhardt et al., 2006]. We

describe the most recent version of sifter (version 1.2), which is applicable to

large and functionally diverse protein families because it includes a more general

model of protein function evolution and a fast method for approximate calcula-

tion of posterior probabilities. We validated sifter on three diverse protein fam-

ilies: the AMP/adenosine deaminases, the sulfotransferases, and the Nudix family.

Sifter version 1.2 performed comparably to sifter version 1.1 when applied to the
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AMP/adenosine deaminase family of proteins, with 93.9% accuracy on an experi-

mental data set (where blast achieved 66.7%). On the functionally diverse sulfo-

transferase protein family, sifter achieved 70.0% accuracy (where blast achieved

50.0%) on experimental data. The sulfotransferase family also showed that the ap-

proximate computation of posterior probabilities works reliably across the full range

of approximation granularities. On the exceptionally functionally diverse Nudix pro-

tein family, which was previously inaccessible to sifter because of the 66 possible

molecular functions, sifter achieved 47.4% accuracy (where blast achieved 34.0%)

on experimental data.

2.1.1 Protein function prediction

Automated protein function prediction is an exceptional challenge for computational

biologists because protein function is difficult to describe and represent, protein

databases are littered with annotation errors, and our understanding of how molecular

functions arise and mutate over evolutionary time is far from complete.

The sequences of over 107 proteins are known, and a diverse array of functional

descriptions have been attributed to these proteins, including 7466 molecular func-

tion terms from Gene Ontology [Ashburner et al., 2000]. However, fewer than 0.2%

of the annotations for UniProt proteins involved human curation in the Gene On-

tology Annotation (GOA) database [Apweiler et al., 2004; Camon et al., 2004], and

even fewer involved an experimental assay. Because biologists depend upon protein

function annotations for insight and analysis, automated methods have been used

to compensate for the relative dearth of experimental characterizations. Unfortu-

nately these methods are commonly assessed based on annotation quantity rather

than quality, resulting in a burgeoning of methods that increase the number of false

positive function predictions. These results contaminate protein analyses and pollute
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databases [Galperin and Koonin, 1998; Brenner, 1999].

A decade ago, when the protein sequence databases were small and mostly man-

ually curated, Eugene Koonin estimated that the majority of errors in protein func-

tion annotation are actually propagations of existing database errors [Koonin et al.,

1996]. That is, the protein to be annotated has the same function as that of the

matched database protein, but the protein in the database had been incorrectly de-

scribed. This problem could be managed in part by having every protein annotation

supported by traceable evidence. This would allow each protein annotation to be

associated with a degree of confidence and would allow propagation of corrections to

follow propagated errors. An important step in this direction is the GOA database,

which incorporates the GO evidence codes and provides functional information for

millions of proteins [Camon et al., 2004]. The task of incorporating all literature

evidence into the databases is immense and ongoing, but vital. Function prediction

methods that incorporate evidence codes and provide reliability measures would seem

less prone to error propagation.

Some automated methods have improved the quality of annotations by explicitly

sacrificing functional specificity, making predictions at intermediate nodes of GO

rather than at the leaves (e.g., GOtcha [Martin et al., 2004]). These approaches are

promising, though it remains to be seen whether the GO directed acyclic graph (DAG)

is a satisfactory representation for generalizing molecular function and evolutionarily

accessible functional variability. Our functional analysis of the Nudix protein family

illustrates that the GO term coverage and hierarchical structure is incomplete and

ineffective for some protein families.
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2.1.2 Phylogenomics review

Phylogenomics has been proposed as a powerful approach for meeting the chal-

lenges of protein function prediction, as discussed in the introduction [Eisen, 1998;

Brown and Sjolander, 2006]. The phylogenomic methods that we focus on in the

remainder of this thesis use a full reconciled phylogenetic history of a protein family

to make protein function predictions, rather than pairwise sequence comparisons as

for predictions obtained from blast. This protocol relies on the observation that

functional divergence often follows a gene duplication event, because protein redun-

dancy will allow mutation events that otherwise would have been selected against.

Duplication events are annotated at the internal nodes of a phylogenetic tree by rec-

onciling inconsistencies between the gene tree and the associated species tree, which

identifies the likely nodes in the gene tree of duplication events [Goodman et al., 1979;

Page, 1998].

2.1.2.1 Phylogenomics versus pairwise annotation transfer methods

The phylogenomic approach to protein function annotation has many advantages

over pairwise annotation transfer methods, a few of which were discussed in the

introduction. In general, a phylogeny suggests an evolutionarily-principled means of

integrating functional evidence, and in particular ways of specifying how accurate

each data point is believed to be with respect to the query protein. Since orthology

is not a transitive relationship, organizing groups of proteins in orthologous groups

based on this pairwise relationship does not guarantee that all of the members of

the group will be related by speciation events as opposed to gene duplication events.

Instead of pairwise comparisons, a tree is the natural structure to specify and explore

protein homology and functional relationships.
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2.1.2.2 Phylogenomic methods

While originally applied manually, phylogenetically-motivated protein function pre-

diction has now been deployed in automated methods. One such method, Orthos-

trapper [Storm and Sonnhammer, 2002], uses bootstrapping to identify statistically-

supported orthologous clusters of proteins, and transfers function annotations within

each of these clusters. The statistically-supported clusters tend to encompass a subset

of the sequences in a few large clusters, so often multiple annotations are transferred

within each large cluster. Further, as there is little experimental evidence for pro-

tein functions, Orthostrapper makes relatively few annotations when restricted to

experimental evidence, but those predictions it makes usually include the correct an-

notation. EnsEMBL now also uses a tree for more accurate function transfer among

orthologs [Hubbard et al., 2006].

The method presented in this thesis, sifter (Statistical Inference of Function

Through Evolutionary Relationships), is also based on phylogenomic principles, which

we formalize within a probabilistic framework [Engelhardt et al., 2005; Engelhardt et

al., 2006; Engelhardt et al., submitted]. Sifter uses a statistical model of molecular

function evolution to incorporate annotations throughout an evolutionary tree, mak-

ing predictions supported by posterior probabilities for every protein. Phylogenomics

is predicated on the explicit assumption that a phylogeny reconstructed from pro-

tein sequence represents also how molecular function evolved within those sequences.

Thus, we fix the tree structure to the phylogeny reconstructed from sequence data

and employ a conditional probability model describing molecular function evolution.

This statistical graphical model of molecular function evolution enables access to a

broad set of statistical tools for computation of posterior probabilities of the molecular

functions and parameter estimation.

Predictions from statistical graphical models are generally quite robust, which this
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problem requires. In particular, each protein family has sparse functional annotations

and noise in both the annotations and the reconstructed phylogeny, so the selected

model must be robust to the input data. The graphical model architecture is by nature

flexible in terms of integrating various data types from different sources in a natural

and coherent way. We currently represent molecular function in Gene Ontology terms,

enabling some understanding of how the terms are related through the directed acyclic

graph (DAG) structure organizing the terms hierarchically, although this is not a

requirement of the approach. We rely on the evidence codes in the GOA database as

an indication of the reliability the functional annotations.

The challenge of functionally diverse protein families

Protein families such as the Nudix family are a challenge for any molecular function

prediction method because of the large number of proteins, the enormous diversity

of molecular function in the family as a whole, and the sparsity of available experi-

mental characterizations. Figure 2.1 summarizes protein family size and functional

diversity in the Pfam protein family database [Bateman et al., 2002]. In Pfam re-

lease 20.0, there are 8164 protein families, 519 of which have more than 1000 member

proteins. We anticipate that these numbers will continue to grow, with a single re-

cent project roughly doubling the number of known peptides [Yooseph et al., 2007].

Although 5411 of the families have no experimental molecular function characteri-

zations from the GOA database, there are 1887 families with at least two different

molecular functions based on experimental evidence. Sifter could be applied to

each of these families, producing predictions for more than one candidate molecular

function. Of those families, 619 families (32.8%) have six or more different molecular

functions characterized within the family’s proteins. The sifter model nominally

has exponential computational complexity in the number of candidate proteins, so
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Figure 2.1: Numerous and diverse protein families in the Pfam Database.
Statistics from Pfam release 20.0 show large and functionally diverse protein families, mo-
tivating an approximate version of sifter. Panel (a) shows the proportion of the 8164
protein families in Pfam that have the specified number of protein members, where 67
families have over 5000 members. Panel (b) represents the proportion of proteins with
experimental annotations from the GOA database in each family within Pfam, including
5411 families with zero experimental annotations, and 388 families with more than 10%
of their members with experimental characterizations. Panel (c) illustrates the functional
diversity of the 1887 families with two or more different experimental function characteri-
zations. Note that almost a third of those families have six or more functions, and would
be computationally infeasible for sifter version 1.1.

most of these functionally diverse families are computationally infeasible for the pre-

vious version of sifter. This motivated the construction of a fast approximation of

sifter to analyze these functionally diverse families with phylogenomic methods for

more complete coverage of Pfam protein families. We predict that as the number of

proteins with experimental characterizations increases, so will the relative diversity of

the families (despite the experimental bias towards characterizing proteins with the

same molecular function as evolutionarily close, characterized proteins).

This most recent version of sifter uses a simple but effective approximation that

enables tractable computation of function predictions in functionally diverse families.

The approximation essentially truncates the number of molecular function combina-

tions that are considered during computation of the posterior probabilities. Despite
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the simplicity of the approach, prediction quality does not appear to degrade until the

lowest truncation is reached (and then only slightly), even for multifunction proteins.

We validated this approach on the previously studied AMP/adenosine deaminase

family of proteins, and then we applied it to two functionally diverse protein families,

the sulfotransferase family and the Nudix family, the latter of which was previously

computationally infeasible for sifter.

In this version of sifter, we designed the model of molecular function evolution

to be flexible enough to enable the encoding of prior biological knowledge and to

allow us to construct the transition rate matrix in a semantically meaningful way

from a smaller set of parameters that can be estimated from the data. The model for

evolution that fulfills these requirements is a generic continuous-time Markov chain.

This also simplifies the machinery required to compute posterior probabilities and to

estimate the model parameters.

2.2 The sifter method

Sifter incorporates data from many different sources to reconstruct a phylogeny

and compute posterior probabilities. Here we describe the data integration, then

we present the Markov chain model and the approximate computation of posterior

probabilities.

2.2.1 From database data to a tree

The data used by sifter currently comes from a number of different sources. We

extracted the families studied here from the Pfam database [Bateman et al., 2002],

and we used the manually-curated alignment found in Pfam for phylogeny recon-

struction. Trees were built using different methods depending on the family size as
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Evidence Code Full Name Probability

IDA Inferred by direct assay 0.9
TAS Traceable author statement 0.9
IMP Inferred by mutant phenotype 0.8
IGI Inferred from genetic interaction 0.8
IPI Inferred from physical interaction 0.8
ISS Inferred by sequence or structural similarity 0.4
RCA Inferred from reviewed computational analysis 0.4
IGC Inferred from genetic interaction 0.4
IEP Inferred from expression pattern 0.4
IC Inferred by curator 0.4
NR Not recorded 0.3
NAS Non-traceable author statement 0.3
ND No biological data available 0.3
IEA Inferred by electronic annotation 0.2

Table 2.1: The Gene Ontology evidence codes and corresponding sifter probabilities of
correctness. These probabilities were elicited from a domain expert.

described below. All trees were reconciled using the Forester v.1.92 program [Zmasek

and Eddy, 2001a]; the reference species tree is from the Pfam database. As input

evidence, we used all annotations in the GOA database [Camon et al., 2004] with

experimental evidence codes IDA, IMP, and TAS. Where we independently found

experimental characterizations in the literature, we labeled that annotation with a

Traceable Author Statement (TAS ) evidence code. The probability of correctness for

each of the evidence codes is shown in Table 2.1. These probabilities were elicited

from a domain expert (Professor Steven Brenner).

In the model, each protein i is associated with a Boolean random vector Xi, where

each Boolean random variable represents a candidate function that takes value 1 when

protein i has that particular molecular function and 0 if that function is not active in

protein i. The candidate terms and associated annotations from the GOA database

are identified and converted to the random vectors Xi in the tree associated with each
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protein i through the following process. We eliminate the molecular function term

dependencies and reduce the number of candidate functions by annotating the GO

DAG terms with experimental evidence codes for the entire family of proteins, and

first pruning all (possibly annotated) ancestors of annotated nodes, then pruning all

non-annotated nodes. This leaves a set of candidate functions that are neither ances-

tors nor descendants of each other, ensuring there are no deterministic dependencies

between them in terms of the semantic network. Then, for each protein with experi-

mental evidence, the annotations from the full GO DAG are propagated to the set of

descendant candidate functions by effectively marginalizing out the ancestor terms.

Annotations are propagated to the candidate terms by assuming that the probability

that children terms have a value 1, when a parent term has value 1 and the edges

between related terms are all “is a” edges, is 1
r|S| . In this equation, |S| is the size

of an arbitrary subset of children terms of the annotated term and r is the solution

to the equation
∑

S∈S
1

r|S| = 1, where S is the power set of all children terms of a

particular term. Note that we set the probability of the empty set to zero, effectively

assuming that if a protein has a particular function, it must also have at least one

of the function’s descendant terms related by “is a” edges. Marginalizing out all of

the non-candidate function terms eliminates all deterministic dependencies from the

random vector for each protein. The random vectors representing observations of

molecular function activity are set to the values from this computation for each leaf

protein with experimental evidence.

We then propagate the evidence throughout the phylogenetic tree to compute

posterior probabilities for all of the proteins in the tree. We do this by using a

Markov chain model representing how protein molecular function evolves to define

transition probabilities associated with the branches of the tree, and by applying

standard message passing techniques (e.g., [Felsenstein, 1989]) to compute posterior

probabilities at all nodes in the tree
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2.2.2 Markov chain model

The structure of the evolutionary model is given by the phylogenetic tree; we are

left to specify the conditional probabilities at each of the nodes in the tree. Sifter

employs a first-order Markov chain, which makes the Markov assumption that future

states are independent of past states given complete information about the present

state. In evolutionary terms, this means that predicting molecular function for a

protein based on only its immediate ancestor will be just as good as using all of

its ancestors. Similar assumptions have long been used to model the evolution of

molecular sequences (e.g., [Dayhoff et al., 1978; Henikoff and Henikoff, 1992]). Let

the number of candidate functions in the model be denoted M , and the number

of leaf proteins be denoted N . Our Markov chain has three sets of parameters.

Two parameters σspeciation and σduplication, as in earlier models, describe the scaling

of time after speciation versus duplication events; vector parameter α = {α1, ..., αM}

describes the rate for a single instantaneous time step of function i arising when none

of the candidate functions are observed in the ancestor protein; in matrix parameter

Φ = {φ11, φ12, ..., φMM}, the off-diagonal elements φij, i 6= j, describe the rate for

function i mutating to also perform function j, and the diagonal elements φii describe

the rate at which function i is lost.

Using parameters Φ and α, we can build the instantaneous transition rate matrix

Q for a Markov chain that describes the instantaneous rate of change in functional

activity from an ancestor to its descendant. For example, the matrix Q for two

candidate functions has on its rows (representing ancestor states) and columns (rep-

resenting descendant states) all of the possible combinations of two functions for the

parent and child proteins, namely {00, 01, 10, 11}. Call this power set S2, as above.

In this terminology, “01” (for example) means that the first candidate function is not

present (0) and the second candidate function is present (1) in a protein’s state.
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00 10 01 11

00 – α1 α2 0
10 φ11 – 0 φ12 + α2

01 φ22 0 – φ21 + α1

11 0 φ22 φ11 –

Table 2.2: Sifter rate transition matrix. This is the instantaneous transition rate
matrix used in sifter for M = 2. The rows represent different sets of functions for the
parent protein; the columns are child functions. Recall that αi is the rate of a function i
arising, φij is the rate of a protein with function i mutating to also have function j, and
φii is the rate of function i disappearing. The diagonal elements in this table are set such
that the rows sum to 0.

A full transition rate matrix Q, defined by variables Φ and α, is shown in Table 2.2

for M = 2, and is constructed analogously for M > 2 candidate functions. We

will motivate and discuss this particular transition rate matrix further below. For

a thorough discussion of continuous-time Markov chains as related to evolutionary

processes, see [Felsenstein, 2003], Chapter 13.

We constrain the rows of the matrix Φ to positive values that sum to at most

M . Similarly, we constrain the α parameters to the M simplex. These constraints

must be respected by the parameter estimation procedure. Furthermore, we constrain

these parameters away from zero so as to avoid creating sink states or unreachable

states in the Markov chain when estimating parameters (specifically, all parameters

are greater than 0.01). Because the Φ matrix and vector α are used to construct

the transition rate matrix Q, each non-zero, off-diagonal entry in matrix Q implicitly

has a finite upper bound and positive lower bound by way of the constraints on the

matrix Φ and the vector α.

The conditional probability of a child configuration given a parent configuration

is as follows, from the definition of a continuous time Markov chain:
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p(Xi = sj|Xπi
= sk, ti, Φ, σ) = {exp(tiσQ)}k,j.

In this equation, Xi is the random vector associated with protein i, Xπi
is the

random vector associated with protein i’s immediate ancestor, ti is the length of the

branch between Xi and Xπi
, j and k index the power set S, sj and sk ∈ S, and

exp is the matrix exponential function, exp(tQ) =
∑∞

k=0
(tQ)k

k!
. Element (k, j) of the

transition probability matrix exp(tiσQ) is the probability that an ancestor protein in

state k mutates to state j in the descendant protein within the time period ti (here,

the phylogenetic branch length, which must be non-negative).

As in earlier models [Engelhardt et al., 2005; Engelhardt et al., 2006], the joint

probability of the complete tree is:

p(X|Φ, σ) = p(Xroot)
∏

i∈tree

p(Xi|Xπi
, ti, Φ, σ).

The parameters of this model can be estimated using generalized expectation max-

imization (GEM) [Gelman et al., 2003]. In particular, the E-step is the computation

of the posterior probabilities for each random variable, using the standard message

passing algorithm as in Felsenstein’s maximum likelihood tree estimation [Felsenstein,

1989]. Because there is no simple analytical expression for the matrix exponential

function of this transition rate matrix Q, we compute these values numerically for a

given Q using the jLapack library [Blount and Chatterjee, 1998].

The M-step is implemented using projected gradient ascent [Bertsekas, 1999] for

each of the parameters σ, Φ, and α, derived from the gradient of the expected complete

log likelihood of the model with respect to each of the parameters. Each step of the

gradient ascent is scaled by step size ρ. The parameter constraints mentioned above

define the space onto which the gradient steps are projected. The Φ and α parameters

are projected via normalization onto an M + 1 sided cone defined by the M simplex
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on M dimensions, and the scale parameters are projected back to 0.01 when they fall

below that value. Because the parameter gradients are unbounded objective functions

in this optimization, the constraints are necessary to bound these functions during

parameter estimation.

In practice, we take a single projected gradient step for each iteration of GEM.

We stop EM iterations when the sum of the absolute value of the total change in

parameters is less than some cutoff c. In our experiments here, we set the step size ρ

of the gradient ascent to 0.01 and the cutoff c to 0.0015 but these will vary based on

the size of the family and the number of observations.

2.2.3 Transition rate matrix assumptions and alternatives

We designed the instantaneous transition rate matrix Q with the following semantics.

In a single instant, the probability of more than one functional change (i.e., loss or

gain of a single function) in a protein is zero. Hence those instantaneous transition

rates are set to zero. Of course, the probability of these transitions will be non-zero

when time t > 0 has passed, according to the definition of the matrix exponential.

Another way to see this is that the probability of multiple transitions (creating a path

between the states with more than one functional change) will be non-zero when some

finite period of time has passed. Furthermore, some states are the result of one of

multiple possible events. For example, if a parent protein in state 01 transitions to

state 11 in the child, the appearance of the function 1 could be a result of function 2

mutating into function 1 while retaining function 2 as well (φ21) or the spontaneous

appearance of function 1 (α1). For transitions that could result from one of a number

of events, the rates for each possible event are summed.

This approach thus takes into account the possibility of a single change in func-

tion over a finite time period. This models the impact of various changes in protein
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sequence that control and modify function. An additional domain may be added to a

protein in a single mutation event (i.e., a gene duplication or domain shuffling event),

conferring an additional molecular function. Mutations of individual nucleic acids

(coding for this protein or related proteins) or a change in environment may accu-

mulate to confer enzymatic activity specific to an additional substrate, or yield (over

time) a different chemical reaction entirely. All of these possibilities are implicitly

modeled by our particular choice of matrix Q.

Other evolutionary possibilities are not modeled by our choice of matrix Q. In

particular, we have assumed that the instantaneous rate of transition between states

with more than one difference, e.g., a 01 state and a 10 state, has probability zero.

Of course this does not reflect all biological possibilities. There are examples of

single nucleotide mutations, an event that would be considered instantaneous, that

change specificity from one substrate to another. We have chosen to allow this case

to be subsumed by the transition paths implemented by the matrix exponential, in

particular a function gain followed by a complementary function loss.

A more general modeling concern may be the simplification of describing a protein

performing a certain function as a binary variable. Alternatively, we could model this

using a continuous variable capturing the tendency of a particular enzyme to catalyze

a particular reaction, such as Kcat. It would be possible to use diffusion theory to

model this variable as a continuous one, but we have chosen not to go this route for

a number of reasons. The primary reason is one of data: there is simply not enough

data available for particular enzymes to model this robustly. A more subtle question

is whether this feature of a protein evolves in parallel with protein sequence, which

impacts the appropriateness of phylogenetic methods for this modified problem.
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2.2.4 Sifter’s approximate computation

The time complexity of computing the posterior probabilities for the sifter model

is linear in the number of proteins, but exponential in the number of candidate func-

tions. The exponential complexity is due to the set of 2M possible combinations of

candidate functions for each protein, resulting in a transition rate matrix with (2M)2

entries. Computing matrix exponentials explicitly for each branch in the tree (after

storing intermediate results) has a computational complexity of O(N((2M)2·3) (the 3

comes from computing the matrix exponential of a matrix of size (2M)2). Thus, when

M is large, the time to compute posterior probabilities is dominated by the exponen-

tial complexity in the number of candidate functions. In the case of the Nudix family,

where the number of candidate functions is 66, this complexity would make the com-

putation impossible. But most of the configurations under consideration, especially

states with many functions having value 1, have a near-zero probability of occurring.

Therefore, we implemented a simple but effective approximation that truncates the

possible sets of molecular functions under consideration.

The power set truncation approximation simply limits the total number of can-

didate functions with value 1 in the transition rate matrix power set to a value T .

This shrinks the transition rate matrix to only consider transitions between all states

with T or fewer functions with value 1. In the binary representation above, the sum

of the candidate functions with value 1 (i.e., present in the protein) cannot exceed a

fixed value T , thus reducing the number of elements in the power set to
∑T

i=1

(
M
i

)
.

In the Nudix family, setting T = 1, the power set has 67 elements (each single can-

didate term and the empty set), and 4489 elements in the associated transition rate

matrix Q, where the power set truncated at 2 has 4356 elements, and a Q matrix with

18, 974, 736 elements. In contrast, without truncation, the Nudix power set has ap-

proximately 7.38 ∗ 1019 elements, and the corresponding Q matrix has approximately
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5.44 ∗ 1039 elements. Computation time is reduced from infeasibly long to seconds,

as illustrated in the results section.

2.3 Results and discussion

We first compare the performance of sifter (version 1.2) on a previously studied fam-

ily (the AMP/adenosine deaminases) to the performance of sifter version 1.1 [En-

gelhardt et al., 2006]. We then present results on the sulfotransferase and Nudix

families to assess whether the model is able to predict molecular function accurately

for more functionally diverse protein families.

In these analyses, we define sifter accuracy as the percentage of experimentally

characterized proteins for which the functional term with the maximum posterior

probability is in the set of experimental characterizations. All experiments where

timing results were reported were run on Dell Precision 390 Workstation computers

with Intel Core2Duo 2.6 GHZ processors and 2 Gb RAM.

2.3.1 Comparative function annotation methods

Before presenting the results, we explain how we ran each of the function annota-

tion methods used for comparison. In general we ran these methods giving them

the benefit of the doubt, choosing parameter settings to to make the comparison

as fair as possible. Of the three methods involved in the comparison, blast and

GOtcha both transfer function annotations based on pairwise sequence comparisons;

Orthostrapper comes from a family of methods that rely on phylogenomic assump-

tions, transferring annotations between proteins that have pairwise orthology with

bootstrap significance.

The blast version 2.2.4 [Altschul et al., 1990] assessment was performed on the
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non-redundant (nr) set of proteins downloaded from the NCBI website on December

11, 2006. We ran blastp with an E-value cutoff of 0.01. For each query protein in

the selected families we searched the blast output with the most significant E-value

(probability of the alignment score based on an extreme value distribution for aligning

protein sequences at random) removing any exact matches from the same species to

ensure that the query protein did not receive its own database annotation (emulating

a leave-one-out type of experiment). We transferred the candidate functional term

associated with the most significant blast hit that had an annotation within the set

of candidate functions defined by sifter for a particular protein family. In other

words, if the top blast hit was not annotated, we found the next most significant

hit with a candidate function annotation to transfer. If there were multiple proteins

annotated with candidate functions that shared the same E-value, we transferred all

of the associated annotations. Historically, when researchers use blast for large-

scale protein molecular function annotation, either the most significant non-identity

hit or the most significant non-identity annotated hit is transferred to the query

protein, often leading to no prediction or an incorrect (or overly general) prediction.

Here we transfer annotation from the most significant hit with a candidate term

using a keyword extraction script. This process increases the overall accuracy of

the blast predictions and enables a comparative ROC-type analysis. This problem

requires a ROC-type analysis that allows for the possibility of multiple true positive

functional predictions and multiple true negative functional predictions, instead of

the usual binary classification. Specifically, the ROC-type analysis was performed by

determining true positive and false positive annotations for E-value cutoffs between

0 and 0.01.

We ran the first publicly available version of the GOtcha software [Martin et

al., 2004]. GOtcha predicts protein function using a statistical algorithm applied

to blast searches. The blast searches are performed on a manually-constructed
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database containing complete GO annotations of seven genomes, including GO evi-

dence codes. Because the annotation database is precompiled for fast querying, we

could not ensure that a query protein was not being annotated from its own annota-

tion in the database; thus our results for GOtcha are likely to be overly optimistic.

For one set of experiments (labeled GOtcha), we made predictions using annotations

with both experimental and electronic evidence codes. For another set of experiments

(labeled GOtcha-exp), we made predictions given only annotations with experimental

evidence codes. The output is a numerically ranked list of GO terms; we extracted

the ranked list of candidate functions from this complete set, breaking ties in favor

of the correct term. The ROC-type analysis was performed by determining true pos-

itive and false positive annotations for cutoff values between 100 and 0 (maximum

and minimum ranking scores, respectively).

We ran the Orthostrapper [Storm and Sonnhammer, 2002] version from February

6, 2002. We split the proteins in each family with experimental GO annotations into

proteins from eukaryotes and non-eukaryotes, which was used to determine orthology

or paralogy using an approximate gene tree/species tree reconciliation method. We

clustered the bootstrap analysis according to the cluster program in Orthostrapper,

using a bootstrap cutoff of 750 and then using a cutoff of 1, resulting in statisti-

cally significant clusters (Orthostrapper-750) and non-statistically significant clusters

(Orthostrapper-1). In each cluster, we transferred all experimental GO annotations

from member proteins onto the remaining proteins without experimental characteriza-

tions. If a protein was present in multiple clusters, it received annotations transferred

within all of those clusters. This method yields an unranked set of predictions for

each protein; multiple annotations were manually resolved in favor of the correct

one. We performed cross-validation for each protein by removing its annotations and

transferring the remaining annotations to make a prediction for the held-out protein.

The ROC-type analysis was performed by determining true positive and false positive
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annotations for all clusters generated by bootstrap cutoffs between 1000 and 0.

2.3.2 AMP/adenosine deaminase family

We applied sifter version 1.2 to the Pfam adenosine/AMP deaminase family (PF00962),

which contains 251 proteins in Pfam 18.0. Proteins in this family are responsible for

removing an amine group from the purine base of three possible substrates: adenine,

adenosine, and AMP. As shown in Figure 2.2, there are four candidate functions for

this family, three of which are deaminase activity with different substrates. Addi-

tionally, a subset of proteins within this family show growth factor activity, and are

commonly known as adenosine deaminase-related growth factors [Maier et al., 2005].

The GOA database contained experimental GO annotations for 13 proteins, a

literature search revealed experimental annotations for an additional 20 proteins,

including our experimental characterization of an adenosine deaminase protein in

Plasmodium falciparum [Engelhardt et al., 2005], resulting in 33 proteins with ex-

perimental annotations. A phylogeny for these 33 proteins, in Figure 2.2, shares the

branching structure with the reconstructed phylogeny in a previous study [Maier et

al., 2005] regarding the relative positions of the adenosine deaminases, adenine deam-

inases, AMP deaminases, and adenosine deaminase-related growth factors. Both this

phylogeny and the phylogeny for the full set of proteins was built using PAUP*

version 4.0b10 maximum parsimony with the BLOSUM50 matrix [Swofford, 2001;

Henikoff and Henikoff, 1992]. The alignments for both phylogenies were from the

Pfam alignment.

Besides being an important protein family in the study of human immunodefi-

ciency disease [Hirschhorn and Ellenbogen, 1986], this family is interesting in the

molecular function context because the active site residues are shared across all of

the different types of substrates (i.e., in all cases the site binds to an amine) [Ribard
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growth factor activity + adenosine deaminase

Gene Ontology Functions Terms for AMP/Adenosine Deaminases

Figure 2.2: Phylogeny of experimentally characterized AMP/adenosine
deaminase proteins. The phylogeny of the experimentally characterized set of pro-
teins from the AMP/adenosine deaminase family. We built the phylogeny by extracting
the protein sequences for the experimentally annotated proteins from Swiss-Prot/trembl,
aligning them to the A deaminase HMM profile using hmmalign [Eddy, 1998], and recon-
structing a phylogeny using PAUP* parsimony. The branching structure is the same as
that of the full tree used in the experiments at the top levels of the phylogeny. The colors
indicate experimentally characterized protein functions, as described explicitly in the key.
This tree was drawn using the ATV program [Zmasek and Eddy, 2001b] (as were all of
the remaining trees presented here).
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et al., 2003]; substrate specificity in this protein is modified by molecular changes in

areas not associated with amine binding. Thus a closer look at the active site will not

result in better discrimination of the protein substrate, only a general evolutionary

divergence. A similar situation is also observed in the protein structures of the Nudix

hydrolases.

We ran leave-one-out cross-validation on the experimental annotations, using the

full phylogeny of 251 proteins in this family. In general, cross-validation assesses

the ability of the method to generalize to unobserved data. Each iteration of cross-

validation involved estimating the model parameters using GEM after removing evi-

dence associated with one of the proteins in the model, simulating unobserved data.

We call the prediction correct when the function with the maximum posterior proba-

bility for the held-out protein, computed using the estimated parameters, is one of its

experimentally characterized functions. The starting values of the parameters were

φii = 0.5, φij = 1.0 for i 6= j, σspeciation = 0.5, σduplication = 0.8, and αi = 1.0.

Leave-one-out cross-validation on the experimental annotations yields 93.9% accu-

racy (31 out of 33 proteins with one of the associated experimental annotations having

the maximum posterior probability). Of the two proteins with incorrect sifter pre-

dictions, one protein (Q9NC65 LUTLO) with adenosine deaminase activity located

near the growth factor activity clade is incorrectly predicted to have growth factor

activity [Charlab et al., 2000], and one protein (ADD STRVG) with adenosine deam-

inase activity is incorrectly predicted to have adenine activity. It is hypothesized

that adenosine deaminase activity confers growth factor activity through the destruc-

tion of adenosine, which induces apoptosis in some types of cells [Maier et al., 2001],

so the experimental annotations for the proteins with only growth factor activity

annotations may be incomplete.
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2.3.2.1 Comparison of annotation methods

We ran blast, GOtcha, and Orthostrapper on the set of experimentally characterized

AMP/adenosine deaminase proteins. The comparison on the experimental annota-

tions show that blast and GOtcha-exp (i.e., GOtcha transferring only experimen-

tal annotations) achieve 66.7% accuracy (22 of 33), GOtcha (using all annotations)

achieves 87.9% accuracy (29 of 33), and Orthostrapper-1 [Storm and Sonnhammer,

2002] (bootstrap cutoff of 1, meaning only one out of 1000 bootstrap trees must la-

bel two proteins as orthologs to put them in an orthologous cluster) achieves 78.8%

accuracy (26 of 33). For GOtcha-exp, we broke ties in favor of the correct function

14 times over the 33 proteins.

The ROC-type analysis in Figure 2.3 is a better method for comparison in this

multifunction family. Our measure of accuracy only takes into account the molecular

function prediction with the highest posterior probability, and does not account for

other highly ranked molecular functions. Instead, the ROC-type analysis evaluates

true positives as compared with the percentage of false positives across all cutoff val-

ues, where a positive prediction is one that has a posterior probability above the cutoff.

This explicitly accounts for all of a protein’s experimentally characterized functions

in a multifunction protein family when measuring performance. In the figure, sifter

outperforms all of the methods on this family at all error rates except for a small

section where Orthostrapper-1 has slightly better performance. Within the area of

high specificity, which is often the most relevant area for quantifying performance on

biological sequence analysis, sifter’s performance advantage is striking.

2.3.2.2 Parameter estimation

We ran GEM to estimate the parameters for the AMP/adenosine deaminase family,

including all of the available experimental annotations. Examination of the parame-
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Figure 2.3: Functional annotation methods comparison on AMP/adenosine
deaminase family. A comparison of results for sifter and other annotations methods
on the AMP/adenosine deaminase family of proteins. This ROC-type analysis shows the
rate of false positives versus true positives as the acceptance cutoff varies from admitting
no annotations to admitting all annotations. Sifter performs well relative to the pairwise
annotation methods under this criterion. Note that the x-axis is on a log scale.
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ter estimates for this family gives no obvious insight into how the functions evolved,

and one should be wary of interpreting these estimated parameters in an evolutionary

light. In particular, the parameter governing the spontaneous appearance of growth

factor activity is estimated to be over 4 times lower than the corresponding parame-

ter for the other three functions (0.288 versus 1.233 for adenine, 1.204 for AMP, and

1.275 for adenosine). It appears that the growth factors share a novel sequence motif,

where two of the four conserved residues are also found in the adenosine and adenine

deaminase proteins [Maier et al., 2005]. This does not differentiate the evolutionary

appearance of growth factor activity from substrate evolution in this family. It is

possible that the parameter estimates imply that growth factor activity should not

be modeled as arising spontaneously, but instead be modeled as evolving from a par-

ticular deaminase activity (in this family, adenosine). The scale factors σspeciation and

σduplication did not provide any evolutionary insight, as they both converged quickly

to the boundary 0.01. On one hand, this suggests that the central role of gene dupli-

cation in phylogenomics may be overemphasized relative to the evolutionary history

of actual function mutations; on the other hand, the large number of false positive

gene duplication events in the reconciled trees produced through automated pipelines

appears to mitigate or altogether eliminate their signal.

2.3.2.3 Comparison with previous sifter

We compared the version of sifter presented here(version 1.2) with the previous ver-

sion of sifter (version 1.1) [Engelhardt et al., 2006] on the AMP/adenosine deami-

nase protein family. We computed the accuracy for leave-one-out cross-validation on

the deaminase protein family (running EM for each iteration, with no truncation),

where sifter version 1.1 had 93.9% accuracy (31 of 33) and sifter version 1.2 had

93.9% accuracy (31 of 33), missing the same two proteins. The performance of the

two methods are almost identical and show no relevant differences in the ROC-type
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analysis (Figure 2.4).
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Figure 2.4: ROC-type comparison of sifter version 1.1 and sifter version 1.2
on AMP/adenosine deaminase family. A comparison of sifter version 1.2 with
sifter version 1.1 on the AMP/adenosine deaminase family of proteins. The ROC-type
analysis shows the rate of false positives versus true positives as the acceptance cutoff
varies from admitting no annotations to admitting all annotations. The ROC-type curve
for sifter version 1.1, as described in [Engelhardt et al., 2006], is almost identical to
that of sifter version 1.2, as described here. Note that the x-axis is on a log scale.

In terms of computation speed, sifter version 1.1 averaged 296.2ms with 41.6ms

standard deviation for 10 iterations of exact computation on the deaminase family,

whereas sifter version 1.2 averaged 455.3ms with 55.3ms standard deviation for

identical 10 runs on the same computer. The maximization step for EM averaged

11.4ms for sifter version 1.1, and 13.8ms for sifter version 1.2. The comparative

results for this particular family show that the performance of the two models are of

similar magnitude.
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2.3.2.4 Power set truncation approximation results

We used the AMP/adenosine deaminase family to test the power set truncation ap-

proximation. We computed posterior probabilities based on the parameters previously

estimated with no truncation from the complete experimental data set, truncating

the number of possible functions associated with a single protein at 1, 2 and 3. Fig-

ure 2.5a shows the number of predictions at the leaf proteins that differed (regardless

of correctness) from the algorithm with no truncation (i.e., truncation level 4), for

each of the three possible levels of truncation. Figure 2.5b shows the mean difference

and variance in posterior probabilities for the leaf proteins at each level of truncation,

as compared to the posterior probabilities computed without truncation at the leaf

proteins. Figure 2.5c shows the average running time for all of the four possible levels

of truncation, with the number of rows and columns of the transition rate matrix

embedded in the bars. The impact on the posterior probabilities and corresponding

functional predictions for a fixed set of parameters at all but level 1 appears modest.

An alternative test of the truncation approximation is to run leave-one-out cross-

validation, estimating the parameters with the truncated algorithm at each iteration,

for each of the truncation levels. Truncation levels 4, 3 and 2 all achieved 93.9%

accuracy (31 of 33), whereas truncation level 1 achieved 90.9% accuracy (30 of 33),

missing the additional prediction for protein Q26642 SARPE (predicting adenosine

deaminase activity when it has only a growth factor activity experimental annotation).

The ROC-type analysis is illustrated in Figure 2.6. As with the results from the

previous analysis, the impact of the truncation on all but level 1 appears minimal.

Even at level 1 the results are comparable, and the quality of the results is superior

to traditional pairwise approaches such as blast.
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Figure 2.5: Truncation approximation performance in the AMP/adenosine
deaminase family. Impact of truncation levels on the deaminase family. Recall there
are four candidate functions for the AMP/adenosine deaminase family. Panel (a) shows
the number of differences in molecular function predictions for every protein at the leaves
of the phylogeny, truncating at each of the three possible levels for a maximum of 251
possible differences. This does not evaluate whether the predictions on the entire family
of proteins were correct or not, only that the predictions matched. Panel (b) shows the
mean L1 (absolute value) difference between the approximate posterior probabilities and
the exact posterior probabilities, including the standard deviation of that difference. This
figure also is for proteins at the leaves of the phylogeny, and includes bars for each of the
three possible levels of truncation as compared to exact computation. Panel (c) shows
the average time to compute posterior probabilities for all levels of truncation (including
no truncation), averaged over 10 runs. The numbers inside the bars in figure (c) indicate
the number of rows and columns of the matrix Q.
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Figure 2.6: Truncation approximation accuracy in the AMP/adenosine
deaminase family. Impact of truncation levels on cross-validation with expectation
maximization. This figure shows the results of the ROC-type analysis on sifter leave-
one-out cross-validation runs on the AMP/adenosine deaminase family of proteins. In the
figure the curves are labeled SIFTER-TN where N is the level of truncation (4 is exact
computation). Recall there are four candidate functions for the deaminase family. Levels
4, 3, and 2 all achieved the same accuracy (93.9%, or 31 out of 33), and level 1 achieved
90.9% accuracy (30 of 33) for leave-one-out cross-validation, where each run estimates
the model parameter using EM. Note that the x-axis is on a log scale.
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2.3.3 Sulfotransferase family

We applied sifter version 1.2 to the sulfotransferase family of enzymes (PF00685)

from Pfam release 20.0. We used 539 proteins in this family, 48 of which have exper-

imentally characterized molecular functions recorded in the GOA database. There

are nine different candidate functions in sifter, eight of which are sulfotransferases

acting on the specific compound involved in the enzymatic reaction, and the last of

which is the non-specific label nucleotide binding. Generally, these enzymes are re-

sponsible for the transfer of sulfate groups to specific compounds. Researchers have

shown their critical role in mediation of intercellular communication in multicellular

organisms [Bowman and Bertozzi, 1999]. Human sulfotransferases are extensively

studied because of their role in metabolizing steroids, hormones, and environmental

toxins [Allai-Hassani et al., 2007], and because they are biologically linked to ag-

ing [Feyzi et al., 1998], Alzheimer’s disease [Bongioanni et al., 1996], and neuronal

development and maintenance [Gibbs et al., 2006], and in the past ten years have

been studied as therapeutic targets. Plasmodium falciparum, the causative agent of

malaria, makes use of its own sulfotransferase proteins as cell-surface receptors to en-

ter into the host, thus these proteins are a target for malaria prevention drugs [Chai

et al., 2002]. Similarly, sulfotransferases in Mycobacterium tuberculosis are thought

to be possible virulence factors [Mougous et al., 2004], and thus are a potential target

for tuberculosis drugs or vaccines.

The phylogeny for this family, showing the 48 proteins with experimental func-

tional annotations from the GOA database, appears in Figure 2.7. This figure gives

us some insight into molecular function evolution in the sulfotransferase family. In-

terestingly, all of the proteins in this family with experimental annotations from the

GOA database are from vertebrate species. In general, these proteins are annotated

as acting principally on a single class of compounds, thus, at a general level, they
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appear to be single function proteins. Moreover, it appears in the phylogeny that

each different molecular function most likely arose from a single mutation event, so

there is no indicated parallel functional evolution in this family. Thus, this family

tests sifter’s ability to annotate a functionally diverse family, as opposed to its per-

formance on a family with significant parallel functional evolution or multifunction

proteins.

We see in Figure 2.7 that 18 of the 48 family members have only sulfotransferase

annotations, which is not specific enough to be included in our studies. More pre-

cisely, all members of this family will be annotated with the general sulfotransferase

function if we consider the sifter annotations implicitly propagated to this parent

term via the “is a” edges in the ontology, so we focus instead on the sulfotransferase

terms associated with specific compounds. Two of the remaining 30 proteins have

a nucleotide binding molecular function annotation, and the remaining 28 have one

of eight specific sulfotransferase functional annotations. Five of these specific sulfo-

transferase functions appear only once in the tree. Generally, there are three major

functional clades in the pruned phylogeny in Figure 2.7: the aryl sulfotransferases at

the top of the figure, the heparin-glucosamine 3-O-sulfotransferases in the lower half,

and the N-acelylglocosamine 6-O-sulfotransferases at the bottom of the figure. The

five singleton candidate functions within these clades necessarily have incorrect anno-

tations in leave-one-out cross-validation in this particular setup of the experiments,

as no similar experimental observation is available for transfer within the tree and

the model parameters do not facilitate function mutations to unobserved molecular

functions in the leave-one-out-type analyses.

We chose not to estimate parameters because the number of parameters for this

family, based on its functional diversity, is larger than the number of available ob-

servations, making estimation unproductive. Instead, the parameter values were

fixed to φii = 0.5, φij = 1.0 for i 6= j, σspeciation = 0.03, σduplication = 0.05, and
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GO:0003674 : molecular_function

  GO:0003824 : catalytic activity

    GO:0016740 : transferase activity

        GO:0016782 : transferase activity, transferring sulfur-containing groups

           GO:0008146 : sulfotransferase activity

              GO:0004062 : aryl sulfotransferase activity

             GO:0008459 : chondroitin 6-sulfotransferase activity
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            GO:0050698 : proteoglycan sulfotransferase activity

              GO:0050294 : steroid sulfotransferase activity

   GO:0000166 : nucleotide binding

Gene Ontology Function Terms for Sulfotransferases

Figure 2.7: Phylogeny of experimentally characterized sulfotransferase pro-
teins. The phylogeny of the experimentally characterized proteins found in the sulfo-
transferase family. We built this phylogeny by extracting the protein sequences for the
experimentally characterized proteins from Swiss-Prot/Trembl, aligning them using the
sulfotransferase HMM profile with hmmalign [Eddy, 1998], and reconstructing a phy-
logeny using PAUP* maximum parsimony [Swofford, 2001]. The 18 proteins with only
the general sulfotransferase annotation (colored pink in the phylogeny) were not included
in the results because their annotations were not specific.
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αi = 1.0. Leave-one-out cross-validation, using exact computation of posterior prob-

abilities (but not estimating parameters), yields 70.0% accuracy (21 of 30) when

considering the 30 proteins with experimental annotations more specific than sulfo-

transerases and those with nucleotide binding experimental annotations. The swiss-

prot identification numbers for the incorrectly annotated proteins from exact com-

putation are ST1E1 HUMAN, ST2B1 HUMAN, CHST1 HUMAN, CHST3 HUMAN,

CHST3 RAT, ST1A3 HUMAN, Q91W19 MOUSE, ST1A1 MOUSE, and

Q8BT67 MOUSE, which include the five proteins with unique annotations (the first

five on this list) as anticipated.

2.3.3.1 Power set truncation approximation results

We ran exact (non-truncated) leave-one-out cross-validation with a fixed set of pa-

rameters on the sulfotransferase family, and compared the performance with each of

the eight possible approximations, one at each level of truncation. Figure 2.8 shows

the non-truncated computation (labeled SIFTER-T9) versus three different levels of

truncation: 6, 2 and 1. The ROC-type curves for the omitted levels of truncation

were too similar to those of level 6 and non-truncated computation to be included.

The figure makes clear that the impact of the truncation is minimal at all but level

1, and even then the impact is small.

Alternatively, we can compare the accuracy of the leave-one-out cross-validation,

where non-truncated computation achieves 70.0% (21 of 30) accuracy. Levels 8

through 3 achieve the same level of accuracy as the non-truncated algorithm, missing

the same set of proteins, whereas levels 2 and 1 achieve 66.7% accuracy (20 of 30). At

level 1, sifter makes an incorrect prediction for the protein OST5 HUMAN, whereas

level 2, sifter predicts Q8BT67 MOUSE correctly, but makes incorrect predictions

for ST1B1 MOUSE and ST1C1 MOUSE.

Additionally, we measured the time associated with these computations. Fig-
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Figure 2.8: Sifter truncation approximation comparisons for the sulfotrans-
ferase family. A comparison of different levels of truncation in the sifter truncation
approximation for the sulfotransferase family of proteins. This ROC-type analysis shows
the rate of false positives versus true positives as the acceptance cutoff varies from admit-
ting no annotations to admitting all annotations. Sifter’s performance does not appear
to degrade meaningfully from exact computation until truncation reaches level 1, and even
then performance is still reasonable. Note that the x-axis is on a log scale.
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Figure 2.9: Sifter truncation approximation performance for the sulfotrans-
ferase family. Computation time for sifter versus the size of the transition rate matrix.
This graph illustrates how the time to compute posterior probabilities scales relative to
the size of the transition rate matrix Q. There is a 50–500 times speedup in going from
the complete matrix Q to a matrix truncated at T = 3 or T = 2 (where T indicates
the level of truncation), with no meaningful loss in accuracy (see previous figure). The
truncation level and (x, y) coordinates are included at each point for clarity.

ure 2.9 shows the tradeoff between the size of the transition rate matrix Q and the

time of computation. Each of the time points is the mean of the time for each of the

48 cross-validation runs at each level of truncation (including exact computation).

The truncation approximations improve the run time by a large margin – 500-fold in

the case of of truncation level 2 – with minimal degradation in results.

2.3.3.2 Comparison with blast

Blast achieves 50.0% accuracy (15 of 30) when run on the same subset of proteins in

this family, run as described for the AMP/adenosine deaminase family. A ROC-type
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Figure 2.10: Sifter-blast sulfotransferase comparison. A comparison of blast
and sifter for the sulfotransferase family of proteins. This ROC-type analysis shows the
rate of false positives versus true positives as the acceptance cutoff varies from admitting
no annotations to admitting all annotations. sifter consistently dominates blast-type
annotations under this criterion. Note that the x-axis is on a log scale.

analysis comparing the blast performance versus exact computation in sifter per-

formance is shown in Figure 2.10, where sifter performs much better than blast at

all levels of false positives. Blast made correct predictions for six proteins that were

missed by sifter, including ST1A3 HUMAN, ST1E1 HUMAN, Q8BT67 MOUSE,

ST2B1 HUMAN, CHST1 HUMAN, and CHST3 HUMAN, four of which are proteins

with unique function annotations. This opens the door to the possibility of using

blast output when the blast-predicted function is not in sifter’s set of candidate

molecular functions.

2.3.3.3 Non-experimental annotations

As discussed above, five proteins could not possible be correctly predicted by sifter

in the leave-one-out cross-validation, because they are the only protein with their par-
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ticular experimental annotation. We investigated whether including non-experimental

annotations might enable these to be predicted correctly in these experiments. In-

cluding non-experimental annotations as observations does not improve the results

dramatically. We ran leave-one-out cross-validation on the set of proteins with ex-

perimental annotations and electronic (i.e., IEA, with a probability of correctness set

to 0.2) annotations at truncation level 2, yielding 73.3% accuracy (22 of 30). This

experiment predicted proteins ST1A3 HUMAN and ST2B1 HUMAN correctly, and

CHST7 HUMAN incorrectly, as compared to the non-truncated experiments using

only experimental evidence. Although ideally including electronic annotations would

mitigate the problems associated with unique experimental annotations by including

some of the same electronic annotations, for this diverse protein family we did not

find this to be the case for all but one of the proteins with unique experimental an-

notations (ST2B1 HUMAN). This may be because, in certain families such as this

one, GO experimental evidence is often for a more specific term in the GO hierarchy

than the non-experimental evidence, thus there are still few or no examples of the

appropriately specific term.

2.3.4 Nudix family

The family of enzymes termed Nudix hydrolases (PF00293) includes members found

in all kingdoms: eukaryotes, bacteria, archaea, and viruses [McLennan, 2006; Koonin,

1993]. Characterized by the highly conserved 23 amino acid motif

GX5EX7REUXEEGU (where U is a hydrophobic residue and X is any amino

acid), Nudix hydrolases are so named because of their initially discovered activity

on nucleoside diphosphates linked to some other moiety named X; a number of non-

nucleoside substrates have since been identified [Koonin, 1993; Bessman et al., 1996].

Activity has been reported on coenzymes (such as CoA, FAD, and NADH), nucleotide
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sugars, dinucleoside and diphosphoinositol polyphosphates, capped RNA, and canon-

ical and oxidized (deoxy)ribonucleoside di- and triphosphates. These functions sug-

gest roles in nucleotide pool sanitation, the removal of toxic metabolic intermediates,

mRNA stability, and signaling [McLennan, 2006; Galperin et al., 2006]. While the

Nudix motif forms a loop-α helix-loop structure that provides a general scaffold for

coordinating cation binding and catalysis, residues that lie outside of the motif govern

substrate specificity [Koonin, 1993; Mildvan et al., 2005].

2.3.4.1 Family discussion

The Nudix family contains 3703 member proteins in Pfam release 20.0. We used

the alignment for this family from Pfam (which aligned the Nudix motif), and re-

constructed the phylogeny from the neighbor joining algorithm in PAUP* [Swofford,

2001] because of the large size of the family.

The Nudix family poses a particular problem because sequence diversity degrades

the alignment quality of these homologous proteins. The low-quality alignment in

turn degrades the quality of the tree reconstruction. A bootstrap analysis of the

alignment used to build the maximum parsimony phylogeny in Figure 2.11 for the

experimentally characterized proteins had an average bootstrap support of 38%, and

all of the clades with more than 95% bootstrap support are noted by purple circles

in the figure (there are only five such clades containing at most five proteins). This

overall lack of support indicates how little information is contained in the alignment

that is useful in reconstructing the sequence phylogeny. Attempts have been made

to perform structural alignments and use this as a scaffold, but these too suffer from

the family’s diversity [Ranatunga et al., 2004]. The impact on sifter is noise in the

tree reconstruction with some consistent errors in annotation. Furthermore, the tree

shows numerous examples of possible parallel functional evolution, and many of these

proteins have multiple functions. Nonetheless, even with an inaccurate tree, sifter’s
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phylogenomic approach performs well in comparison to a pairwise method (blast)

as shown below.

Our own manual literature search revealed 97 proteins with experimentally charac-

terized function (some the same as the GOA experimental annotations), meaning that

2.6% of the proteins in this family have experimental annotations. The phylogeny of

the subset of Nudix proteins with experimental evidence of molecular function is illus-

trated in Figure 2.11. There are 37 proteins in this family with experimentally-derived

annotations in the GOA database, but comparing those annotations against our own

literature search yielded a number of apparent mistakes in the GOA database, so we

used only the annotations from our literature search. We also found the set of GO

terms for this family incomplete, so we augmented the ontology with 98 additional

molecular function terms. Furthermore, we found some errors and inconsistencies in

the hierarchical structure, so we rearranged the hierarchy slightly for biochemical ac-

curacy (reorganized or renamed terms denoted with an asterisk in the figure). Each of

the added terms are found in the literature experimentally characterizing a member of

the Nudix family, and are descendant from the hydrolase activity term. The complete

reconstructed GO subgraph of functional terms is shown in Figure 2.12. We restricted

our search and GO augmentation to experimentally characterized hydrolases. Details

of this analysis will be provided elsewhere.

In Figure 2.11, the sequences were aligned using hmmalign [Eddy, 1998] with

the Nudix HMM profile from Pfam release 20.0. The phylogeny was built using

PAUP* maximum parsimony [Swofford, 2001]. This phylogeny is used for illustrative

purposes only, and was not actually used in sifter (instead, the full neighbor joining

phylogeny including all 3703 proteins was used in sifter). Function annotations

were assigned to each protein from the literature by contrasting different levels of

experimental evidence for a given hydrolase to prune the less specific substrates from

a larger list of assayed compounds.
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Figure 2.11: Phylogeny of experimentally characterized Nudix proteins. The
phylogeny of the experimentally characterized hydrolase proteins found in the Nudix family.
We built the phylogeny by extracting the protein sequences for experimentally character-
ized proteins from Swiss-Prot/trembl, aligning them to the Nudix HMM profile using
hmmalign [Eddy, 1998], and reconstructing a phylogeny using PAUP* maximum parsi-
mony [Swofford, 2001]. The colored numbers in brackets after the protein name represent
the functional terms associated with each protein, from Figure 2.12, determined from our
own literature search. The purple dots represent clades that have greater than 95% boot-
strap support, for a bootstrap analysis of a neighbor joining tree using the same alignment
in Phylip [Felsenstein, 1989] with 100 replicates.
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                    GO:4200000: adenosine 5'-tetraphosphatase activity (type 2)

                    GO:5200000: adenosine 5'-tetraphosphatase activity (type 3)

                GO:6200000 : adenosine 5'-pentaphosphatase activity

                    GO:7200000: adenosine 5'-pentaphosphatase activity (type 1)

                    GO:8200000: adenosine 5'-pentaphosphatase activity (type 2)

                    GO:9200000: adenosine 5'-pentaphosphatase activity (type 3)

                    GO:0300000: adenosine 5'-pentaphosphatase activity (type 4)

                GO:1300000: IDP-ribose diphosphatase activity

                GO:2300000: GDP-mannose diphosphatase activity

                GO:0008768 : UDP-sugar diphosphatase activity

                    GO:3300000 : UDP-glucose diphosphatase activity

                    GO:4300000 : UDP-galactose diphosphatase activity

                    GO:5300000: UDP-mannose diphosphatase activity

                GO:6300000 : general coenzyme A diphosphatase activity

                    GO:7300000 : coenzyme A diphosphatase activity

                    GO:8300000 : acetyl coenzyme A diphosphatase activity

                    GO:9300000 : succinyl coenzyme A diphosphatase activity

                    GO:0400000 : 3-hydroxymethylglutaryl coenzyme A diphosphatase activity

                    GO:1400000 : CoASSCoA diphosphatase activity

                    GO:2400000: 3'-dephospho-CoA diphosphatase activity

                    GO:3400000: CoA-glutathione diphosphatase activity

                GO:0017110 : nucleoside-diphosphate diphosphatase activity *

                    GO:0043262 : adenosine-diphosphatase activity

                    GO:0004382 : guanosine-diphosphatase activity

                    GO:0045134 : uridine-diphosphatase activity

                    GO:4400000 : dADP diphosphatase activity

                    GO:5400000 : dGDP diphosphatase activity

                    GO:6400000 : dCDP diphosphatase activity

                    GO:7400000 : dUDP diphosphatase activity

                    GO:8400000 : dTDP diphosphatase activity

                    GO:9400000 : CDP diphosphatase activity

                    GO:0500000 : TDP diphosphatase activity

                    GO:1500000 : 8-oxo-dGDP diphosphatase activity

                    GO:2500000 : 8-oxo-dADP diphosphatase activity

 

                
                GO:0017111 : nucleoside-triphosphatase activity

                    GO:0003924 : GTPase activity

                    GO:0050339 : thymidine-triphosphatase activity

                    GO:0016887 : ATPase activity

                    GO:0043273 : CTPase activity

                GO:0047429 : nucleoside-triphosphate diphosphatase activity

                    GO:0008828 : dATP pyrophosphohydrolase activity

                    GO:0047693 : ATP diphosphatase activity

                    GO:4500000 : 3'-amino-3'-dATP diphosphatase activity

                    GO:0047840 : dCTP diphosphatase activity

                    GO:5500000 : CTP diphosphatase activity

                    GO:6500000 : dGTP diphosphatase activity

                    GO:7500000 : GTP diphosphatase activity

                    GO:0004170 : dUTP diphosphatase activity

                    GO:8500000 : UTP diphosphatase activity

                    GO:9500000 : 5-methyl-UTP diphosphatase activity

                    GO:0600000 : dTTP diphosphatase activity

                    GO:0008413 : 8-oxo-7,8-dihydroguanine diphosphatase activity *

                    GO:1600000: 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate diphosphatase activity

                    GO:2600000 : 8-hydroxy-2'-deoxyadenosine 5'-triphosphate diphosphatase activity

                    GO:3600000: 2-hydroxy-2'-deoxyadenosine 5'-triphosphate diphosphatase activity

                    GO:4600000: 2-hydroxy-adenosine 5'-triphosphate diphosphatase activity

                GO:0004551 : dinucleoside polyphosphate hydrolase activity *

                    GO:0047884 : FAD diphosphatase activity

                    GO:5600000: P1-(5'-adenosyl)P3-(5'-guanosyl) triphosphatase activity

                    GO:1030000: Ap3(7-methyl)G hydrolase activity

                    GO:6600000: P1-(5'-adenosyl)P4-(5'-guanosyl) tetraphosphatase activity

                        GO:7600000: P1-(5'-adenosyl)P4-(5'-guanosyl) tetraphosphatase activity (type 1)

                        GO:8600000: P1-(5'-adenosyl)P4-(5'-guanosyl) tetraphosphatase activity (type 2)

                        GO:9600000: P1-(5'-adenosyl)P4-(5'-guanosyl) tetraphosphatase activity (type 3)

                    GO:0700000: P1-(5'-adenosyl)P4-(5'-cytidyl) tetraphosphatase activity

                        GO:1700000: P1-(5'-adenosyl)P4-(5'-cytidyl) tetraphosphatase activity (type 1)

                        GO:2700000: P1-(5'-adenosyl)P4-(5'-cytidyl) tetraphosphatase activity (type 2)

                        GO:3700000: P1-(5'-adenosyl)P4-(5'-cytidyl) tetraphosphatase activity (type 3)

                    GO:4700000: P1-(5'-adenosyl)P4-(5'-uridyl) tetraphosphatase activity

                        GO:5700000: P1-(5'-adenosyl)P4-(5'-uridyl) tetraphosphatase activity (type 1)

                        GO:6700000: P1-(5'-adenosyl)P4-(5'-uridyl) tetraphosphatase activity (type 2)

                        GO:7700000: P1-(5'-adenosyl)P4-(5'-uridyl) tetraphosphatase activity (type 3)

                    GO:8700000: P1-(5'-adenosyl)P6-(5'-guanosyl) hexaphosphatase activity

                    GO:9700000 : bis(5'-adenosyl)-diphosphatase activity

                    GO:0800000 : bis(5'-nucleosyl)-triphosphatase activity

                        GO:0047710 : bis(5'-adenosyl)-triphosphatase activity *

                        GO:1800000 : bis(5'-guanosyl)-triphosphatase activity

                    GO:0008796 : bis(5'-nucleosyl)-tetraphosphatase activity

                        GO:0004081 : bis(5'-nucleosyl)-tetraphosphatase (asymmetrical) activity

                        GO:0008803 : bis(5'-nucleosyl)-tetraphosphatase (symmetrical) activity

                    GO:2800000 : bis(5'-nucleosyl)-pentaphosphatase activity (type 1)

                        GO:3800000 : bis(5'-adenosyl)-pentaphosphatase activity (type 1)

                        GO:4800000 : bis(5'-guanosyl)-pentaphosphatase activity (type 1)

                    GO:5800000 : bis(5'-nucleosyl)-pentaphosphatase activity (type 2)

                        GO:6800000 : bis(5'-adenosyl)-pentaphosphatase activity (type 2)

                        GO:7800000 : bis(5'-guanosyl)-pentaphosphatase activity (type 2)

                    GO:88000000 : bis(5'-nucleosyl)-hexaphosphatase (asymmetrical) activity (type 1)

                        GO:9800000 : bis(5'-adenosyl)-hexaphosphatase (asymmetrical) activity (type 1)

                    GO:09000000 : bis(5'-nucleosyl)-hexaphosphatase (asymmetrical) activity (type 2)

                        GO:1900000 : bis(5'-adenosyl)-hexaphosphatase (asymmetrical) activity (type 2)

                    GO:29000000 : bis(5'-nucleosyl)-hexaphosphatase (symmetrical) activity

                        GO:3900000 : bis(5'-adenosyl)-hexaphosphatase (symmetrical) activity

                    GO:4900000: NAD diphosphatase activity

                        GO:0000210 NAD+ diphosphatase activity *

                        GO:5900000: NADH diphosphatase activity

                        GO:6900000: NADPH diphosphatase activity

                        GO:7900000: NADP diphosphatase activity

                        GO:8900000: NAADP diphosphatase activity

                        GO:9900000: deamino-NADH diphosphatase activity

                        GO:1010000: deamino-NAD+ diphosphatase activity

Figure 2.12: Functional terms for the Nudix hydrolases. Functional hydrolase
terms that have been positively experimentally characterized in proteins from the Nudix
family. This image captures the GO directed acyclic graph representing terms that are
descendants of hydrolase activity in the molecular function ontology (noting that this
particular subgraph is a strict tree, meaning that these nodes have only single parents).
The terms with GO numbers greater than 1, 000, 000 are ones that we have added to
complete the spectrum of molecular functions that are experimentally found among the
Nudix hydrolases. The terms with GO numbers less than 1, 000, 000 are existing GO
terms. Terms with an asterisk are existing GO terms for which we have either modified
the name to reflect the chemical function more appropriately or reclassified within the
hierarchy. The DAG can be read off from this image (here, a tree) by taking each
term with more indentation than the previous term to be an ancestor of that term. The
second column starts as an immediate ancestor of the pyrophosphatase activity term. The
coloring is used as a tool to cluster the terms visually into groups with related substrates
and corresponding related chemical activity.
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The 66 candidate functions and large family size (compared to the other families

studied here) produced a rich phylogeny with intriguing possibilities for further in-

vestigation. One observation is that many proteins with identical or similar functions

cluster tightly in certain areas in the tree, in particular nucleotide-sugar diphos-

phatase (pink terms), diphosphoinositol polyphosphate diphosphatase (aqua terms),

coenzyme A diphosphatase (gray terms), and diadenosine polyphosphate hydrolase

activities (forest green terms). NAD diphosphatase activities are interestingly split

into two clades, one of which is composed of proteins that are predominantly specific

only for NAD-related compounds, while the other is made up of hydrolases that are

also active on ADP-ribose and other dinucleoside polyphosphates. A grouping of

mostly ADP-ribose diphosphatases in the middle of the tree is unique in that it clus-

ters tightly, it is distant from other nucleotide sugar diphosphatases, and, moreover,

within this clade the eukaryotic and bacterial/viral hydrolases are in two distinct

groupings. In addition, most non-ADP-ribose diphosphatases cluster distantly from

ADP-ribose diphosphatases.

A few particular proteins are worth noting. DIPP ASFB7 is the only diphos-

phoinositol polyphosphate diphosphatase that does not cluster with other proteins

of the same function, but instead is closely aligned with another viral hydrolase

demonstrating quite different functions (Y06L BPT4). Another protein of note is

Q9RVP7 DEIRA, a nucleoside diphosphate diphosphatase that is closely related to

three nucleoside triphosphate diphosphatases, perhaps pointing to a similar catalytic

mechanism for these four proteins.

There are 66 candidate functions for this family, so choosing a candidate func-

tion at random would yield on average about 1.5% accuracy for the single function

proteins. Because there is a prohibitively large number of candidate functions for

sifter with no truncation, we computed posterior probabilities approximately with

truncation at one, yielding 67 possible functions (including none). Truncating at two,
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as a comparison, yields 4356 possible functions or function pairs, and takes on the

order of a week of time to compute posterior probabilities.

2.3.4.2 Results of cross-validation with sifter

We ran leave-one-out cross-validation on this family and computed the accuracy of

sifter on the held-out protein with experimental evidence using a fixed set of pa-

rameters. Because of the size of the tree and the number of candidate terms, we did

not attempt to estimate the large number of parameters for this family; instead, the

parameters were set to the following: σduplication = 0.05, σspeciation = 0.03, α = 1.0 and

φij = 1.0 for i 6= j and φii = 0.5. Although these parameter settings are arbitrary

and use little biological information other than crude intuition, they satisfy all of the

parameter constraints mentioned in the Methods section. We set the truncation level

to T = 1 for all of the Nudix experiments. Sifter achieves 47.4% accuracy (46 out

of 97 proteins annotated correctly) in this experiment.

With truncation at one, the 66 candidate functions have a matrix of size 67 by 67.

The average time for computing posteriors on these machines was 146.78 seconds with

a standard deviation of 0.62 second, as averaged over the 97 computations involved

in the leave-one-out cross-validation.

2.3.4.3 Functional diversity in the Nudix family

The large functional diversity in this protein family is the main reason for difficulty in

inferring molecular function. In this family, our data include five proteins (Q4U4W6,

Q53738, Q81EE8, P32056, and O35013) with single, unique functions (i.e., they are

the only protein in the tree to have that experimental annotation). In the case of

protein O35013, it is labeled with four functions that are all unique to this family.

From the perspective of the functional terms, as shown in Figure 2.13, most of them
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Figure 2.13: Functional diversity in Nudix family. Diversity of molecular functions
in the Nudix family. This histogram illustrates the number of occurrences of each of the 66
different candidate functional terms in the 97 experimentally characterized proteins. Many
of them occur only once; ADP-ribose diphosphatase occurs 26 times. This histogram
represents the available characterizations and should not be used to interpret the relative
counts of the functions in the entire family, as these counts may be skewed significantly
by protein choice, assay difficulty, etc.

occur experimentally in this family once or twice, with the single extreme example

of ADP-ribose diphosphatase activity occurring experimentally in 26 proteins in the

family. The small number of proteins with common functional activity indicates

that methods that predict molecular function via annotation transfer will encounter

difficulty.

2.3.4.4 Generalizing functions

We wanted to examine the tradeoff between predicting molecular function at a more

general level of the GO hierarchy and sensitivity. Within a family, we can selectively

generalize some of the functional terms to improve our sensitivity when, for exam-

ple, there exist characterization assays that provide a general screen for particular

types of hydrolases. Although developing a method to automatically determine the
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appropriate level of generalization is beyond the scope of this thesis, we manually gen-

eralized these functions to examine the impact on sifter’s performance. Specifically,

we generalized all of the terms in Figure 2.12 that are not colored blue, representing

each set of non-blue terms by a single term. Viewed the blue terms as being already

generalized, as they do not group according to biochemistry in a natural way and

also occur closer to the root of the hierarchy relative to the set of terms we chose to

generalize. After generalization there were 15 candidate molecular functions, 10 of

which are generalized terms and the rest of which are original (blue) functional terms.

We ran leave-one-out cross-validation at truncation level 1, achieving 78.4% ac-

curacy (76 of 97). Because the generalization reduced the diversity of this family

extensively, we also ran leave-one-out cross-validation at truncation level 2, and it

also achieved 78.4% accuracy (76 of 97). The ROC-type analysis for this experiment

is shown in Figure 2.14, where sifter predicts 69.2% annotations correctly at 99%

specificity. These experiments tell us that, when a biologist does not require a pre-

diction to be as specific as the set of candidate functions, they may choose to trade

term specificity for higher prediction accuracy.

2.3.4.5 Comparison with blast

We ran the Nudix sequences with experimental evidence through blast [Altschul

et al., 1990] on the non-redundant (nr) database with E-value cutoff 0.01. As in

the two families discussed earlier, the blast output files were filtered through a

keyword extraction script to convert the functional annotations from nr into GO

terms (including our augmentations specific to the Nudix hydrolases), removing hits

that were identical in species and sequence to the query sequence. This is the analog

of a leave-one-out cross-validation experiment performed in sifter. Blast uses

all the proteins in the nr database with textual annotations describing any of the

candidate functions, as opposed to sifter, which uses Pfam Nudix family member
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Figure 2.14: Sifter-blast Nudix comparison. A comparison of blast and sifter
for the Nudix family of proteins. The sifter-C line is the evaluation of sifter on the
Nudix family using the 15 generalized Nudix hydrolase terms as experimental annotations.
This ROC-type analysis shows the rate of false positives versus true positives as the
acceptance cutoff varies from admitting no annotations to admitting all annotations.
sifter consistently dominates blast-type annotations under this criterion. Note that
the x-axis is on a log scale.
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proteins with experimentally verified annotations found in the GOA database. We

included all functional terms associated with the set of annotated proteins that share

the most significant E-value, and consider a protein’s blast annotation correct if one

of the functions is in the set of experimental annotations for that particular protein.

Blast correctly annotated 33 of the 97 proteins at the level of the experimental

characterizations, achieving 34.0% accuracy.

A more thorough comparison can be made between sifter and blast for the

Nudix family using a ROC-type analysis, as in Figure 2.14. In the figure, which

uses the results from sifter leave-one-out cross-validation and the blast output

described above, we see that sifter outperforms blast at all levels of false positives.

The sifter curve shows that, although functional diversity inhibits performance

within this family, sifter still performs well, especially at low levels of false positives.

While overall accuracy appears fairly high for blast, the ROC-type analysis shows

a general weakness of the blast results. Specifically, blast only identifies 23.3% of

correct terms in the entire set of protein hits with E-value less than 0.01. In other

words, including all predicted terms at any E-value (not just the most significant),

only 23.3% of the Nudix terms show up at all in this set of blast predicted terms.

This percentage is lower than the total number of correctly annotated proteins be-

cause 48 of the proteins have multiple functional terms that have been experimentally

characterized. Although 34.0% of proteins had at least one of these terms correctly

predicted, only 23.3% of the total set of terms was associated with the appropriate

proteins, even at E-value cutoff of 0.01. At 99% specificity, approximately 2.4% of

annotations are correct in blast, whereas for sifter, at 99% specificity, 24.4% of

the annotations are correct.
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2.3.4.6 Evaluating the value of observations

To evaluate sifter’s sensitivity to data sampling, we left out multiple characterized

proteins’ annotations at each round of cross-validation. Specifically, we ran 2-, 3-,

5-, 10− and 20-fold cross-validation on this data set. In this type of cross-validation

experiment, the data are randomly split into K disjoint sets (or folds), and the exper-

iment is performed K times, leaving out one of the K subsets on each iteration during

the posterior probability computation, and testing the accuracy of predictions on the

held-out set. For 2-fold cross-validation, in which one half of the experimental anno-

tations are removed at random for each run, sifter achieves 36.2% accuracy (35.1 of

97), as averaged over ten runs. For 20-fold cross-validation, in which approximately 5

of the experimental annotations are removed at random for each run, sifter achieves

46.1% accuracy (44.7 out of 97), as averaged over ten runs. As expected, as more

evidence becomes available to sifter, the annotations improve up to a certain point,

as shown in Figure 2.15. At 20-fold cross-validation, the accuracy is slightly less than

leave-one-out cross-validation, quantifying the value of four additional observations

out of the 97 total.

2.4 Basic sifter conclusions

We built the sifter methodology to work on large and functionally diverse protein

families through a simple graphical model. We use a continuous time Markov chain

and reduce the exponential time complexity through a straightforward but effective

truncation of possible function combinations within each protein. Sifter version

1.2 accuracy is comparable to sifter version 1.1, as shown on the AMP/adenosine

deaminase protein family. The truncation approximation has excellent performance

up to and including the final level of truncation on the AMP/adenosine deaminase
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Figure 2.15: Value of observations in sifter. Number of correct annotations for
sifter on the Nudix family of proteins across different numbers of folds. The x-axis of
this figure represents five different partitions for cross-validation, from 2-fold to 20-fold
cross-validation. The y-axis represents the average number of proteins for which sifter
correctly predicted the function for each of the different cross-validation tests. The bars
shown are the standard deviation for each partition. The dotted line at y = 46 represents
the performance of leave-one-out cross-validation. All of the different partitions were run
ten times.
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family and the sulfotransferases. The sulfotransferases provide a good example of

sifter’s performance on a functionally diverse family of proteins that do not have

any confounding evolutionary traits such as multifunction proteins or obvious parallel

evolution. The new gold-standard data set for the Nudix family of proteins was built

from a manual literature search. Sifter performed well as compared to blast on

the Nudix family, which is an exceptionally difficult family for function prediction

methods.
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Chapter 3

Choosing which Protein to

Characterize

3.1 Introduction

The momentum behind automated methods for protein function annotation is pri-

marily motivated by the costly, open-ended problem of experimentally characterizing

protein molecular function. While DNA sequencing has become inexpensive and ac-

curate, and finding protein structures is a well-defined (although costly) problem,

experimentally characterizing protein molecular function requires some idea of the

molecular function of a particular protein in order to select the appropriate assay, and

even then the number of possible protein molecular functions is enormous. Proteins

will sometimes perform multiple functions in vivo; examples include multidomain

proteins such as heat shock protein 90 (HSP90) [Scheibel et al., 1998], moonlighting

proteins as in the aldolase proteins [Sriram et al., 2005], or enzymes active on mul-

tiple substrates, such as many proteins in the Nudix family [Bessman et al., 1996].

Thus identifying one type of molecular function does not rule out the possibility that
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the protein has other functions with greater relative activity and that the identi-

fied function is not biologically relevant. It is possible that what we do not know

about a protein family could be more important than what we do know; a recent pa-

per suggested that single-gene disorders with Mendelian inheritance, including some

metabolic disorders, may be due to mutations in moonlighting proteins for which we

do not know the additional molecular functions of the responsible protein, and thus

that protein would not be considered in the set of candidate genes [Sriram et al.,

2005]. We already use automated methods to perform molecular function annotation

for biochemists on a large scale; how can automated methods help biochemists se-

lect which protein to characterize and which of the costly functional characterization

experiments to perform (or not to perform)?

Experimental design (and the subfield of active learning) is a class of methods

designed to answer this question. Designing a biological experiment requires defining

all of the experimental variables, then selecting values for each of those variables. The

experimental variables may include, for example, which proteins to characterize, the

concentration of a particular substrate in a functional characterization experiment,

or the duration of the measurements. Here we are concerned with selecting the

minimal number of experiments that characterize a single protein with a specific

molecular function activity such that the confidence of the functional predictions for

the remaining unannotated proteins is maximized.

3.1.1 Active learning

Active learning is a subfield of experimental design in which an active learner interacts

with the world to collect additional information in order to improve a supervised

classification method. The framework of an active learning problem is as follows. An

active learner is able to query the world and receive a response before outputting
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its predictions. The active learner is responsible for selecting the query. The learner

cannot impact the response to the query. There are two general methods for selecting

the query: choosing to query the data with the most uncertain classification given

the current model and parameters, and choosing to query the data that appear to be

most informative with respect to a gain function.

Historically, many different algorithms and intuitions have been developed to de-

cide how the query should be chosen. Query by Committee [Seung et al., 1992;

Freund et al., 1997] puts a prior distribution over the classification hypotheses, and

samples a set of classifiers from that distribution. Then the learner chooses to query

one of the data points on which the classifiers maximally disagree. Uncertainty sam-

pling [Lewis and Catlett, 1994] queries the data point that the current classifier is

most uncertain about. This method is relatively easy to implement in many of the

common classifiers, such as support vector machines where the point with the most

uncertainty is the point closest to the margin.

Choosing an optimal query in the information-theoretic sense was formalized in

the early 1990’s [MacKay, 1992]. Three different query selection criteria were devel-

oped in this paper based on information theory for the purpose of maximizing the

expected informativeness of the query responses. MacKay also noted a general draw-

back of active learning (and model-based methods more generally): the hypothesis

space must be correct, or at least approximately correct, in order for these meth-

ods to effectively measure the value of the information. The first criterion that he

presents selects the query where the classification has the highest variance given a

set of observations. The second criterion selects a query in an area of interest that

indirectly minimizes the mean marginal entropy of that particular class. The third

criterion chooses queries such that the Gaussian distributions representing two dif-

ferent classes will tend to have maximally separated means and maximally different

variances. The change in entropy of the parameters is used to validate each of these
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approaches. None of these criteria directly address the goal of our active learner,

which is that each query should, on average, maximally reduce the uncertainty about

the functional predictions of the unobserved random variables.

Sequential design, which is a possible implementation of the active learning meth-

ods above, assumes that the model parameters are not known exactly and that mul-

tiple queries are possible [Pronzato, 2000]. The active learner makes a single query

at a time, where each query is chosen based on the current data set and the current

parameters, under the assumption that this may be the final query. In a single iter-

ation, a data point is selected to query, the single query is performed, and the model

parameters are updated based on the query response. This is repeated until no more

queries are allowed.

We will use sequential experimental design methods to determine which molecular

function assay to perform on which protein among a set of homologous proteins to

maximize the value of that experimental outcome. The value of a particular assay

is measured using mutual information, or the reduction in uncertainty for all of the

remaining proteins’ functions given the possible outcomes for the subsequent experi-

ment. We attempt to find, at each iteration of active learning, the single experiment

that maximizes the mutual information for a protein family, so as to be maximally

confident in the sifter predictions for the unannotated proteins in the protein family

using a minimal number of experimental assays.

3.2 Mutual information

The amount of information associated with a particular protein functional character-

ization given a set of observations can be described as the reduction in uncertainty

about the remaining, unobserved random variables. Mutual information quantifies

the dependence of two random variables X and Y , or how much knowing the value
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of one variable reduces our uncertainty about the value of the other variable:

I(X; Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log2

p(x, y)

p(x)p(y)
.

From this equation, when X and Y are independent then p(x, y) = p(x)p(y), and

the value is zero. However, when they are the same event, and knowing X eliminates

uncertainty about Y , then p(x, y) = p(x) = p(y) and the mutual information function

reaches its maximum value at the entropy of X (or, equivalently, Y ).

Given the sifter model of how molecular function evolves in a protein phylogeny,

we can select the assay that maximizes the mutual information within the tree. In

particular, if we let X be the available experimental evidence, Y be a molecular

function for a specific protein we might assay, and Φ be the model parameters, we

must compute p(X|Φ), p(Y |Φ) (the prior probability of Y ), and p(X, Y |Φ). If we note

that p(X, Y |Φ) = p(Y |X, Φ)p(X|Φ) using the chain rule, the two equations on the

right hand side are just the posterior probability of Y and the probability of X, which

we can compute explicitly using our model. Thus, the computation of the mutual

information is trivial: given the posterior and the prior probabilities of all of the leaf

variables and the probability of the given set of protein functional observations, we

can explicitly compute the mutual information for each possible experiment.

3.3 Evaluation techniques

Because of the prohibitively large cost of performing the actual molecular function

characterizations, and the expertise involved in designing the assays and perform-

ing the experiments, we evaluated these methods using computational techniques.

For each protein family used in validation, we initialized the data set to include one

experimental observation (either IDA, IMP, or TAS ) for each candidate function as-
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sociated with that family. These observations were chosen at random from the set

of possible experimental annotations. We computed posterior probabilities, condi-

tioning on these M observations, and then ranked all of the possible experiments

as observations based on an experimental design criterion. The highest ranking ex-

periment with an actual experimental characterization was selected for inclusion in

the set of observations, ensuring that a single characterization was not selected more

than once (although a protein with more than one experimental observation would

eventually have all of the experiments selected). At each iteration of the sequential

experiment, we recorded the posterior probabilities of the proteins with unobserved

experimental annotations. The experimental design criterion in our validation was

mutual information criterion described above.

We also ran the same procedure where, at each iteration, we included an obser-

vation at random. In our experiments on a set of protein families, we compare the

mutual information criterion against random inclusion, to determine which criterion

reduces uncertainty maximally, while relying on the fewest experiments. We run each

of these active learners 100 times for each family with random seed observations, to

quantitatively compare the two active learning criteria.

3.4 Results on the AMP/adenosine deaminase family

Because of our previous work with this family and the relatively large set of experi-

mental functional annotations available in our gold-standard data set [Engelhardt et

al., 2006], this family provides a baseline for the comparison of the mutual information

criterion and random inclusion.

Figure 3.1 shows one feature for comparing the two types of active learners. In

particular, at each cycle of the sequential active learner, as a single new observation

is added to the set of observations for sifter, we computed the average posterior
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Figure 3.1: The average posterior probability of the correct functional annotations that
have not been added as an observation in sifter’s computation of the posterior prob-
ability on the AMP/adenosine deaminase gold-standard data set. This plot shows the
average posterior probability of the correct, held-out functional annotations for the active
learner selecting observations to add at random (solid lines) and for the active learner
selecting observations to add using mutual information criterion (dotted lines), including
the error bars for each representing the standard deviation.

probability of the held-out correct experimental functional annotations. The scenario

depicted in the figure illustrates the power of the active learner using the mutual

information criterion. It shows that, after including four additional functional char-

acterizations, the average posterior probability of the held-out functional annotations

is 0.860, whereas, including functional annotations at random, it takes 28 functional

characterizations to reach an average posterior probability of 0.857 and 29 charac-

terizations to reach an average of 0.866. In other words, with just four additional

experiments selected using the mutual information criterion, we are equally certain

about the remaining functional predictions in the tree as if we had randomly func-

tionally characterized 28 additional proteins. This succinctly illustrates the power of

active learning to select proteins to characterize.
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3.5 Results on the sulfotransferase family

The sulfotransferase family is functionally diverse, and this particular family con-

strains the active learner significantly. Specifically, since there are nine candidate

functions in all across this family, and five of those nine functions occur experimen-

tally in only one protein in the family, those five proteins will always be among the

set that are included a priori to the active learner as described in the experiment

setup. Thus, the set of proteins for characterization is much smaller relative to the

number of characterized proteins in the sulfotransferases than in the other families

described here.

The results on this family are shown in Figure 3.2, which compares the posterior

probabilities of the correct, held-out annotations after each iteration of the sequential

active learner for the mutual information criterion versus random inclusion. Unlike

the AMP/adenosine deaminase family, these results do not suggest that the active

learner has chosen appropriate experiments for this family. The active learner us-

ing mutual information criterion is at most 0.05 greater than the average posterior

probability using random inclusion, and the largest difference in the averages is 0.21

(at the second to last iteration), where using random inclusion generates the higher

of the two average posterior probabilities. The standard deviations are comparable

throughout the experiment. The active learner using mutual information criterion

initially performs worse than random inclusion, and towards the final iterations again

performs worse than random inclusion. This may be a result of insufficient positive

experimental annotations relative to the functional diversity of this family. The five

proteins with unique molecular function annotations reduce the average posterior

probability overall, and selecting the queries to identify the remaining four functions

correctly may require more (or different) observations than are currently available

in this family. Thus this experiment may not reach the point where the mutual
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Figure 3.2: The average posterior probability of the correct functional annotations that
have not been added as an observation in sifter’s computation of the posterior proba-
bility on the sulfotransferase functional data set. This plot shows the average posterior
probability of the correct, held-out functional annotations for the active learner selecting
observations to add at random (solid lines) and for the active learner selecting observa-
tions to add using mutual information criterion (dotted lines), including the error bars for
each representing the standard deviation.

information criterion shows much advantage over random inclusion.

3.6 Results on the aminotransferase family

The aminotransferase protein family (PF00155) is a member of the pyridoxal 5’-

phosphate- (PLP-) dependent aminotransferase superfamily, responsible for convert-

ing an amino acid into its α-keto acid. This particular family is grouped accord-

ing to specificity to two different amino acid substrates, aspartate aminotransferases

(AATases) and tyrosine aminotransferases (TATases). Substrate specificity is actually

defined as a preference for a particular substrate, meaning that the relative activity

of a protein on one substrate is greater than the activity of that protein on another

substrate, although in vivo it may actually act on both (or neither) of the substrates.

In this particular family, the ratio of activities for the two substrates was, overall,

much closer to one than many enzyme families (i.e., the actual substrate preference
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in vivo was, in a few cases, not obvious) [Muratore et al., 2007]. Furthermore, this

family exhibits quite a few instances of observed parallel evolution, meaning that the

preferred substrate mutates independently at more than one branch in the phylogeny

for this family. We can observe this in the phylogeny of a subset of aminotransferases

(Figure 3.3).

This family provides a different experiment than the previous two, because a

subset of proteins in this family were selected to functionally characterize in order

to maximally diversify the proteins that had functional information throughout the

family [Muratore et al., 2007]. This selection was performed in a different way, with a

different goal, and from a different starting point than the sifter active learner, but

it does provide an alternative comparison to the random approach. For completeness

and consistency, we first present basic sifter results on this family, then we discuss

the application of active learning to this family.

3.6.1 Sifter results for the aminotransferase family

Sifter was applied to this aminotransferase Iα family of proteins. We reconstructed

a phylogenetic tree from the SATCHMO [Edgar and Sjolander, 2003] alignment of

the family using PAUP* maximum parsimony [Swofford, 2001] and identified possible

duplication events in the evolutionary history by reconciling the resulting tree using

the Forester v.1.92 program [Zmasek and Eddy, 2001a] with a reference species tree

from Pfam release 20.0 [Bateman et al., 2002] for a subset of the aminotransferase

superfamily PF00155 (specifically, the aminotransferase Iα family). We ran sifter

including the set of functional characterizations in the gold-standard dataset created

by Kathryn Muratore [Muratore et al., 2007], as represented in the phylogeny in

figure 3.3.

We ran sifter on the phylogenetic tree for the aminotransferase Iα family. Using
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Figure 3.3: The phylogeny for the aminotransferase family, showing our gold-standard
functional annotations for this family. The proteins with functional annotations found
from a literature search and also experimentally characterized earlier [Muratore et al.,
2007] are colored based on a preference for one of two substrates, aspartate and tyrosine.
Note that there appears to have been many more than one change of substrate preference
in this tree.
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the default parameter values for sifter, described in Chapter 2, sifter achieves

73.7% accuracy (14 of 19 correct predictions). The figure shows that there may be at

least four (or possibly more) locations in the phylogeny where the substrate specificity

changed independently from aspartate to tyrosine. However, the annotations are not

dense enough, nor are the methods for gene tree/species tree reconciliation accurate

enough, to attempt to co-localize duplication events with branches where substrate

specificity may have changed. Although parallel evolution does not preclude the use of

phylogenomic analysis, it does indicate that, for these sequences, molecular function

does not consistently evolve in parallel with protein sequence; in other words, small

changes in sequence do not always correspond to small changes in molecular function,

and large changes in sequence do not always correspond to large changes in function.

The specific amino acids that are responsible for determining substrate specificity in

this family of proteins is discussed further elsewhere [Muratore et al., 2007].

3.6.2 Mutual information criterion versus random inclusion

The comparison between using mutual information to select experiments and per-

forming experiments at random is striking for this particular family. This is because

a single protein, O84642 CHLTR, is always added last when the active learner with

mutual information criterion was used, so the variance of the posterior probabilities

for both the correct and the incorrect annotations are small (zero for the single re-

maining positive annotation from O84642 CHLTR) relative to the variance of the

average posterior probabilities for random inclusion for both the correct and incor-

rect substrates. These comparisons are shown in Figures 3.4 and 3.5. Figure 3.4

shows that the average posterior probability of the set of correct, unobserved anno-

tations when the experiments are added using mutual information is overall higher

than adding experiments at random, despite the large amount of parallel evolution
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Figure 3.4: The average posterior probability of the correct functional annotations that
have not been added as an observation in sifter’s computation of the posterior proba-
bility. This plot shows the average posterior probability of the correct, held-out functional
annotations for the active learner selecting observations to add at random (solid lines)
and for the active learner selecting observations to add using mutual information criterion
(dotted lines), including the error bars for each representing the standard deviation.

in this family. Figure 3.5 shows that, while the average posterior probabilities of the

incorrect annotations for the random addition of experiments declines steadily, the

same for the addition of experiments using mutual information criterion plateaus and

then drops below the average for the random criterion after approximately half of

the correct annotations are added. The variance of the posterior probabilities for the

incorrect annotations is, except for the first position, smaller for the mutual informa-

tion criterion than for random inclusion, reflecting an induced ordering of proteins

using the mutual information criterion.

3.6.3 Prioritizing the proteins

To determine how each protein, on average, impacted the mutual information for the

unobserved proteins, we found the average position (out of 17, since two proteins are

added to the initial set of observations) that each protein was added to the set of
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Figure 3.5: The average posterior probability of incorrect functional annotations. This
plot shows the average posterior probability of the set of incorrect functional annotations
for the active learner selecting observations to add at random (solid lines) and for the
active learner selecting observations to add using mutual information criterion (dotted
lines), including the error bars for each representing the standard deviation.

observations. In computing the average, we did not include the runs for which the

protein was added to the initial observations.

The results for the aminotransferase family are dramatic as compared to the

average position of inclusion, shown in Figure 3.6. Where the dotted line shows

the average position of a protein in this rank order (using random inclusion, ev-

ery protein’s average position of inclusion was very close to the average, results not

shown), there are four proteins above the average (including their standard devia-

tions), indicating less informative proteins, and eight proteins below the line, indi-

cating more informative proteins. In particular, the four proteins above the average

are O84642 CHLTR, O96142 PLAF7, PHHC PSEAE, and AATM CHICK, where

O84642 CHLTR is particularly interesting as it was added last in every case. The

eight proteins that are below the average line are Q964E9 GIALA, TYRB ECOLI,

AATC YEAST, AAT ECOLI, Q9KM75 VIBCH, Q964F1 9TRYP, AAT1 ARATH,

AAT PSEAE.
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Figure 3.6: The average position of inclusion for each of the 19 aminotransferase proteins.
The dotted line shows the average position of inclusion, and each protein has its average
with standard deviation error bars for the 100 runs of the mutual information active learner.
If a protein is included earlier, this is indicative of the protein being informative for the
tree as a whole; if a protein is included later, this is indicative of the protein being less
informative.

If we look at where each of these proteins occur in reference to each other in the

aminotransferase phylogeny, we see that there are clusters of proteins whose particular

observations are considered more or less informative. In particular, the two proteins

with the least informative annotations are near each other in the phylogeny in terms of

the number of branch traversals, namely O8642 CHLTR and O96142 PLAF7. These

two proteins both have the same substrate preference (aspartate). On the other

hand, two of the proteins with the most informative annotations, Q964E9 GIALA and

AATC YEAST, are also close together phylogenetically but have conflicting substrate

preferences.

We can compare these “rankings” with rankings for a subset of these proteins

through another method for finding a set of proteins to characterize [Muratore et al.,

2007], shown in Table 3.1. The Muratore scores compute the sequence similarity of

this protein to other proteins in different subclades of the phylogeny. The higher the

score, the greater the sequence distance, and thus the more informative the protein
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Protein Name Muratore Score sifter Position

Q964E9 GIALA 17 2.4
Q964F1 9TYRP 15 2.5
Q9KM75 VIBCH 14 5.1
AAT1 ARATH 15 6.2
AATM YEAST 21 8.6
AATC CAEEL 10 10.0
Q96F0 9TRYP 21 11.7
O96142 PLAF7 25 15.1
O84642 CHLTR 31 16

Table 3.1: A comparison of the Muratore scores as compared to the average position of
entry in the sifter active learning analysis. In this table, the proteins are ranked by
sifter score. The scores have the reverse significance; in particular, for the Muratore
scores, the higher the score, the more informative a protein should be relative to the
available annotations, whereas for the sifter average position of entry, the lower the
average position, the more informative the protein’s particular annotation is.

is predicted to be. But the method assumes that both substrates are to be tested

rather than ranking a single experiment, whereas the sifter active learner ranks

the specific substrate experiment for the protein in question. To be clear, the mu-

tual information criterion includes both the possibility of a positive and a negative

experimental outcome, weighted by the probability of each given the current set of

observed annotations. But we do not include negative experiments in the set of pos-

sible experiments for the active learner because currently sifter cannot incorporate

the negative results of these experiments as observations in the posterior probability

computation. If sifter could incorporate negative annotations as observations, we

would have included the available negative characterizations in the set of possible

queries for the active learner ([Muratore et al., 2007] report most of these negative

results).

Of note in the comparison is, first, that the protein O84642 CHLTR has both the

highest score in the Muratore scores and the latest position of entry in the sifter
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active learner, making the most informative and the least informative protein in this

subset for the methods respectively. Using Spearman’s rank correlation test, we get

ρ = −0.59 which is not below the 0.05 level of significance (at −0.68) for the anti-

correlation of these two measures. Thus, the two measures appear anti-correlated,

but not at a significant level. The sifter active learner would also have to evaluate

the expected value of the negative experiment for each protein to compare the two

relative rankings more directly.

3.7 Experimental design discussion

Each of the families above shows a different quality of the active learner using mutual

information criterion, and using these results, we may extrapolate on other, less well

studied families how the active learner might perform, and more generally, the number

of protein characterizations required for confident electronic prediction of functions

for the remainder of the family.

The deaminase example is a straightforward example of the benefit of active

learning. With only four additional, well-chosen experiments, we have equivalent

confidence for functional predictions across the whole family as with 28 additional

experiments at random. Although this family has proteins with multiple functions,

this does not appear to be a limitation for the active learner.

Since sifter does not perform well in families with parallel evolution and min-

imal experimental evidence supporting the particular substrate preference in each

functional clade, we do not expect active learning with sifter to perform particu-

larly well on these families. As in the aminotransferase family, it appears that a fairly

small set of characterizations will create equivalent confidence in the annotations for

the remainder of the tree, although the confidence was not monotonically increasing.

This is intuitive, as the locations of each of the mutations must be defined by at
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least two different functional annotations, so characterizations of new functions in a

particular region of the tree may add uncertainty to those regions temporarily. What

this family does tell us, though, is that the choice of which proteins and functions to

characterize is important, and some proteins are simply not important to characterize

in high-confidence portions of the phylogeny (or equivalently because we are already

so confident in the outcome of the proposed experiment).

For both the aminotransferase family and the sulfotransferase family, which has

the largest functional diversity of the protein families used in validation, it is possible

that this data set still lacks sufficient numbers of characterized proteins to find the

benefit of the mutual information criterion over the random inclusion. In particular,

perhaps it will take twice as many characterizations as are currently available to

sufficiently define the locations of the functional mutations in these trees because of

the parallel evolution. Since we have a limited set of annotations, we do not (and,

in practice, will not) know when we have evidence for every instance of change of

substrate preference in the tree, although we can attempt to estimate when are at a

plateau in the uncertainty of the unobserved random variables.

Overall, using sifter’s active learner with a mutual information criterion appears

to work well in protein families with some functional diversity and possibly with mul-

tifunction proteins. Families with high functional diversity or parallel evolution may

benefit less from a sequential active learning approach because of the large number

of functional characterizations required to confidently predict molecular function for

the unannotated proteins in the family. It is hard to quantify the benefit of active

learning in such families using the small gold-standard data sets that are currently

available.
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3.8 Conclusions

In this work, we developed a sequential active learner using a mutual information

criterion to select the next protein to functionally characterize (along with the spe-

cific function to characterize). We evaluated this method on three different protein

families, the AMP/adenosine deaminase family, the sulfotransferase family, and the

aminotransferase family, finding that in the AMP/adenosine deaminase family and the

aminotransferase family, and less so in the sulfotransferase families, the active learner

using mutual information criterion selects a small number of protein functional ex-

periments required to reach the same level of functional prediction confidence relative

to selecting these protein functional experiments at random.
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Fungal Genomes

4.1 Introduction

Fungal organisms may account for as much as 25% of the world’s biomass [Gess-

ner, 1997], and are important to study for a number of reasons. Fungi play a large

role in our ecosystem, where they are responsible for decomposing and recycling vas-

cular plants. Some species of fungi are either plant or animal pathogens. These

include the rice blast fungus Magnaporthe grisea and human pathogens, which come

from the genera Aspergillius, Candida, and Histoplasma. The human pathogens

often infect immuno-compromised humans to cause serious diseases, but may also

infect healthy individuals and are responsible for less serious diseases such as ath-

lete’s food or ringworm. Fungi are also useful for humans in a number of ways,

namely in food and alcohol production through Baker’s yeast, soy sauce produc-

tion through Aspergillius oryzae, and the production of antibiotics. There are cur-

rently 46 fully sequenced fungal genomes, and more than 50 in progress. These

represent a small fraction of the hypothesized number of existing fungal species,

estimated to be somewhere between 712, 000 and 9.9 million [Hawksworth, 2004;
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Schmit and Mueller, 2007].

Fungal species are interesting for scientists for a number of more technical reasons.

Their genomes encode approximately 10, 000 genes each, which makes them less than

half of the size of the human genome. However, because they are eukaryotes, although

they are structurally much simpler organisms (sometimes not multicellular), their cells

look crudely similar to human cells in terms of the organelles and basic functionality.

Because of this, the set of proteins critical to fungal organisms overlaps broadly with

the set of proteins critical to animals. The species tree is fairly well understood,

despite the sparse sampling of fungal species [James and et al, 2006; Fitzpatrick et

al., 2006]. One problem with reconstructing this tree using sparsely sampled species

is that fungal species evolution is full of examples of convergent or parallel evolution,

including at least four different times when the flagella were lost [James and et al,

2006], so morphological data does not guide the reconstruction.

4.2 Methods

The genomes from 46 different fungal species had been sequenced as of June 2006.

Gene finding was performed in each of these genomes using a number of different

methods, including GeneWise [Birney et al., 2004], FgenesH+ [Salamov and Solovyev,

2000], and GLEAN [Mackey et al., 2007]; for more specific details of their training and

application, see [Stajich, 2006]. This resulted in 427, 324 protein sequences from the

different fungal genomes. We searched each of the resulting genes for Pfam domains

using hmmsearch [Eddy, 1998] for the Pfam-A domains available in Pfam version

20.0 [Bateman et al., 2002]. We aligned the set of fungal genomes corresponding to

each Pfam domain by performing a hidden Markov model (HMM) alignment using

hmmalign based on the Pfam-A HMM profile for that domain [Eddy, 1998]. We

reconstructed phylogenies for each of the domains with PAUP* [Swofford, 2001], using
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maximum parsimony with a BLOSUM50 matrix [Henikoff and Henikoff, 1992] when

the size of the alignment file was less than 10000 kb, and neighbor joining when the

size of the file exceeded that cutoff. We reconciled the trees against the species tree

shown in Figure 4.1 using Forester version 1.92 [Zmasek and Eddy, 2001a]. Domains

with fewer than four protein sequences from the 46 fungal genomes were eliminated.

This resulted in 2800 phylogenies representing as many different sets of homologous

protein domains within the fungal genomes.

Of the original set of proteins from the 46 fungal genomes, there were 236, 854 pro-

teins that contained at least one Pfam-A domain and a family with greater than four

members. We gathered molecular function annotations for each of the Pfam-A do-

mains from the Gene Ontology Annotation (GOA) database in the following way. We

ran blast version 2.2.4 [Altschul et al., 1990] for each of the fungal proteins against

the swiss-prot and trembl fasta files, downloaded September 23, 2006 [Apweiler

et al., 2004], with an E -value cutoff of 1e − 100. We looked for exact hits in order

to match the swiss-prot identifiers to the proteins in our set of fungal genomes.

In particular, we selected a protein’s exact swiss-prot or trembl hit as the most

significant hit from either database with E -value less than 1e − 110 and identical

species. These identifiers enabled us to extract the molecular function annotations

from the GOA database downloaded September 24, 2006 [Camon et al., 2004].

4.2.1 Application of sifter

We applied sifter to each of these functionally annotated phylogenies. In particu-

lar, we computed posterior probabilities for all members of every tree, conditioned on

the available evidence in the tree. We used both experimentally- and electronically-

derived annotations as observations because of the sparsity of the experimental anno-

tations. Trees with neither experimental nor electronic annotations were eliminated,
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Figure 4.1: The set of fungal species with complete genomes sequences used in this
study. The actual branch lengths were not estimated, and gene-species tree reconciliation
does not use branch lengths. This tree was derived from tree reconstruction methods
based on concatenating the sequences of 42 genes common to the set of fungal species,
and then correcting for an instance of long branch attraction in the Aspergillus clade, as
originally in [Fitzpatrick et al., 2006]. We compared this tree to those found in two other
sources [Stajich, 2006; James and et al, 2006] to build this consensus tree and to correctly
insert the species in this study that were not in the original phylogeny.
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as a sifter analysis of these families would be meaningless, leaving 2389 of the

2800 protein families for analysis, including 23 families with only a single candidate

function (or 10 families if we only consider electronic annotations). We generated

parameters for each of the families using the following defaults: the scale parameters

σspeciation = 0.05, σduplication = 0.03, the α parameters were all set to 1.0, and the

Φ matrix had 0.5 on the diagonal, and 1.0 off-diagonal. The sifter runs were per-

formed exactly for all proteins with fewer than nine functions; otherwise they were

truncated at 2 for 9 to 19 candidate functions and at 1 for 20 or more candidate

functions.

We ran sifter twice for each family. The first run included only experimental

evidence for that particular family (i.e., including evidence with IDA, IMP, and TAS

evidence codes), if available. The second run included all available evidence. Of the

the 2389 families run on sifter, 552 had experimental evidence associated with one or

more proteins, and 1837 had electronic evidence associated with one or more proteins.

This yielded three possible types of experiments. The first type of experiment was

on a protein family with both electronic and experimental evidence for which we

predicted function given only the experimental evidence. The second type was on a

protein family with both electronic and experimental evidence for which we predicted

molecular function given both the electronic and experimental evidence. The third

type was on a protein family with only electronic evidence for which we predicted

molecular function given only the electronic evidence (i.e., there was no experimental

evidence available). We report results for each type of experiment.

4.2.2 Limitations to methods

We see two limitations to the analysis performed here. For the less-well studied

genomes, gene-finding is the primary source of the protein sequences as opposed to
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any evidence of transcription or translation. The resulting hypothesized proteins

will often differ from the actual expressed proteins in an insertion or deletion of

multiple sequential amino acids. This is also true, to a lesser extent, for proteins from

better-studied organisms hypothesized using espressed sequence tags, which identify

transcribed, spliced nucleotide sequences. Thus, the blast searches for proteins with

Gene Ontology (GO) annotations were not exact (i.e., requiring an E-value of 0.0),

but instead used a low E-value (1e−110) cutoff. Since blast (as its name implies) is

a local alignment tool, a sequence with an insertion or deletion of multiple, sequential

base pairs relative to the query sequence will have a more significant E-value than a

sequence with multiple, nonsequential mismatches. A second limitation is that the

the families were built using Pfam-A release 20.0, where we used the profile HMMs

for each of the Pfam-A domains to search for domains in each species’ set of non-

redundant hypothetical proteins. The implication of this is twofold: first, we will have

missed identifying protein families that do not appear in Pfam-A or do not co-occur

with a Pfam-A domain. Second, each family’s proteins were identified by domain

similarity, which is not always a guarantee of global homology.

4.3 Results

4.3.1 Fungal species

The collection of 46 fungal species used in this phylogenomic analysis is shown in

Figure 4.1. The phylogeny of the species represents the best current understanding

of the evolution of these species, despite such a sparse sampling of the species [Fitz-

patrick et al., 2006]. There are a few interesting clades in this tree that deserve a

brief mention.

First, the fungal species in the clade labeled CUG are interesting in that they
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use the codon CUG (i.e., CTG in DNA) to code for serine rather than leucine, as

is the universal code in most other organisms [Laplazaa et al., 2006; Ohama et al.,

1993]. This clade is interesting in that this particular characteristic appears to have

evolved a single time in this tree, unlike many other fungal characteristics, such as

sexual reproduction, multicellularity, and existence of a flagella. A second clade of

note is the one labeled WGD in the figure, which includes species that are thought

to have undergone a whole genome duplication (WGD) event [Kellis et al., 2004;

Fitzpatrick et al., 2006] at the branch with the label.

Table 4.1 summarizes the set of fungal species used in this study, including the

number of genes identified by gene finding methods and subsequently used in this

study.

The average percentage of genes with a Pfam domain for the 46 fungal genomes

is 57.0%, the highest percentage is Schizosaccharomyces pombe with 75.0% and the

lowest percentage is 31.3% in Laccaria bicolor. After running these families through

the sifter pipeline, which filters out families with fewer than four members and

with no GOA database annotations, the average percentage of genes in a genome

with results drops slightly.

4.3.2 A diverse set of protein families

We first investigated some of the properties of this landscape of protein families within

the 46 fungal genome data set.

Of the 2800 phylogenies built, there were 2389 Pfam fungal families that had ev-

idence from the GOA database and so were run on sifter. Of those families, the

largest one was MFS 1 (Major Facilitator Superfamily) with 8729 member proteins,

which is one of two types of transporter proteins that occur in all known organisms

(the other being the ATP-Binding Cassette (ABC) superfamily, which has 1946 mem-
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Species name Genes Genes in Pfam20 Predictions

Aspergillus fumigatus 9923 6077 8353
Ashbya gossypii 4726 3300 4306
Aspergillus nidulans 10701 6111 8820
Aspergillus niger 11200 7180 10604
Aspergillus oryzae 12075 7122 10464
Aspergillus terreus 11197 7066 10382
Botrytis cinerea 16448 5832 7676
Candida albicans 11128 7285 9795
Candida dubliniensis 6027 3960 5213
Candida glabrata 5272 3583 4731
Chaetomium globosum 11124 5642 7787
Candida guilliermondii 5920 3656 5024
Coccidioides immitis 10457 4778 6411
Candida lusitaniae 5941 3365 4513
Cryptococcus neoformans var grubii H99 7179 4371 5791
Cryptococcus neoformans var neoformans JEC21 6594 4334 5548
Cryptococcus gattii R265 6663 4017 5382
Cryptococcus gattii WM276 7196 4332 5382
Candida tropicalis 6258 3936 5076
Debaryomyces hansenii 6896 4230 5473
Fusarium graminearum 11640 6992 9535
Fusarium verticillioides 14179 7753 10896
Histoplasma capsulatum 9349 3908 4997
Kluyveromyces lactis 5331 3533 4620
Laccaria bicolor 20614 6454 8188
Magnaporthe grisea 12841 5848 8005
Neurospora crassa 9826 4938 6649
Nectria haematococca 16237 9731 13903
Podospora anserina 10443 4735 6368
Phanerochaete chrysosporium 12720 5462 7243
Pichia stipitis 5841 3551 4750
Rhizopus oryzae 17467 7874 10713
Saccharomyces bayanus 5490 2961 3929
Saccharomyces castellii 5706 2941 3858
Saccharomyces cerevisiae 5695 4127 5505
Saccharomyces kluyveri 5762 3305 4154
Saccharomyces kudriavzevii 6039 3553 4388
Saccharomyces mikatae 5702 3658 4747
Stagonospora nodorum 16597 6797 8928
Saccharomyces paradoxus 5512 3824 5069
Schizosaccharomyces pombe 5004 3751 4942
Sclerotinia sclerotiorum 14522 5711 7706
Trichoderma reesei 9997 5943 7926
Ustilago maydis 6522 4071 5548
Uncinocarpus reesii 8697 4632 6114
Yarrowia lipolytica 6666 4254 5659

Table 4.1: The 46 fungal species in the sifter study. Note that the number of predictions
is slightly higher than the number of proteins in all of the fungal families, as the predictions
count each prediction for each protein once (and for every family that a protein is a member
of it receives a prediction), whereas the proteins in the families count proteins in multiple
families only once.
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bers in this data set). The average number of proteins in a fungal family was 165.3,

with a standard deviation of 416.5, reflecting the enormous variability in size of these

families. The total number of proteins in these families was 302, 683, or 236, 854 if we

do not count proteins multiple times that appear in more than one family. There are

slightly more internal nodes of the reconstructed phylogenies reconciled against the

species tree shown above that are predicted to be associated with speciation events

(52.6%), as compared to the number of internal nodes that are predicted to be asso-

ciated with duplication events (48.4%). This is considerably more duplication events

than one might expect, illustrating the large number of false positives associated with

approximate tree reconciliation based on possibly erroneous trees.

On average, 35.3% of the proteins within a family had a matching sequence in

swiss-prot or trembl. Of those with database matches, on average 77.3% had

annotations in the GOA database (meaning that 27.0% of the proteins in a family

on average had at least one annotation from the GOA database). The somewhat

astounding figure is the average number of annotations for an annotated protein from

the GOA database was 3.5. This implies a “rich get richer” scheme within the GOA

database (or perhaps biology in general) where a protein with a functional annotation

appears more likely to accumulate additional (possibly redundant) annotations as

compared to unannotated proteins. For experimental annotations from GOA, there

are only 5336 experimental annotations in proteins in these families, meaning that the

average number of experimental annotations for an annotated protein is 0.065. The

average number of experimental annotations from the GOA database over the fungal

families run on sifter is 1.7%. Of the 2389 families run on sifter, 23 have a single

candidate function (when we include both experimental and electronic annotations),

and 552 have experimental annotations for at least one of the member proteins.
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4.3.3 Sifter results

A few general observations about sifter’s performance on these families will be men-

tioned. Then prediction results for the fungal species overall and individual families

are discussed.

4.3.3.1 Timing

By far the most time-intensive step of the phylogenomic analysis was the phylogenetic

tree reconstruction; this step would not have been as computationally intensive if we

had chosen to use neighbor-joining trees at a much lower family size threshold. We

computed the time for the sifter runs, given the reconciled phylogeny for a family

and the associated GOA database annotations. When run on Dell Precision 390

Workstation computers with Intel Core2Duo 2.6 GHZ processors and 2 Gb RAM,

the entire set of sifter runs took under seven hours. This could have been sped up

considerably if we had truncated the computation of posterior probabilities in families

with more than five candidate functions, as the majority of time was spent on the

exact computations of families with five to eight candidate functions. As expected,

the largest amount of time was spent on the families with greater functional diversity.

As a whole, the 1837 families with only electronic annotations from the GOA

database took approximately 59.2 minutes, and the 552 families with experimental

annotations from the GOA database took 47.8 minutes, whereas the same 552 fam-

ilies, including both electronic and experimental annotations, took 4 hours and 25.5

minutes. The average number of candidate functions is 9.4 in the families with both

electronic and experimental annotations whereas the average number of candidate

functions in the families with only electronic annotations is 3.7 and the average num-

ber of candidate functions in the families using only experimental annotations is 3.5,

which explains why the average run time per experiment is over ten times higher from
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the families using only electronic annotations to the families using both electronic and

experimental annotations.

4.3.3.2 Identical versus consistent predictions

We can assess the accuracy of sifter using two different types of agreement between

annotations and predictions, both represented using GO terms. We call a functional

prediction identical or correct when it agrees exactly with the annotation term for

that protein. We call a prediction consistent when it is a descendant of the GO di-

rected acyclic graph (DAG) of the protein’s functional annotation. In other words,

a prediction is consistent with an annotation when the annotation is a more general

descriptor of the predicted functional term, since the annotation does not rule out the

possibility that the more specific term is a function of this protein. Because sifter

gathers the set of candidate functions from the most specific annotations available,

and predictions are from the set of candidate functions, we do not see sifter predic-

tions that are ancestors of the functional annotations. Because of time limitations,

we did not run leave-one-out cross-validation methods, but simply computed identi-

cal and consistent predictions relative to the annotations that were input to sifter.

Therefore, the most appropriate measures of accuracy in these experiments are those

that were trained using only experimental evidence and tested on the held-out elec-

tronic evidence.

While the average percentage of identical predictions for the runs including both

experimental and electronic annotations was 56.3%, the average percentage of consis-

tent predictions for the same set of runs was 90.9%. Similarly, the average percentage

of identical predictions for the runs including only experimental annotations was

20.1%, whereas the average percentage of consistent predictions for those runs was

80.1%. The set of experiments for the families with only electronic annotations yielded

66.1% predictions identical and 96.4% predictions consistent with the electronic an-
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notations. A more detailed account of these data appears in Figure 4.2, which shows,

for each family, an overall histogram of identical and consistent predictions for all

three types of experiments.

There are many more non-identical annotations than inconsistent annotations for

all types of experiments. The reason for this is clear: the annotations in the GO

DAG occur at many possible levels of the hierarchy. If we are only predicting func-

tional terms at the most specific level of the hierarchy, then counting only exact term

matches as identical means that predictions that are consistent with the current an-

notation (but not identical) are considered wrong. This seems like an inappropriate

measure, and GO is designed specifically to enable more sophisticated measures of

consistency. For the experiments including both experimental and electronic annota-

tions, it is possible that as many as 34.6% of the annotated proteins in this data set on

average were annotated at a less specific level than the sifter candidate functions,

assuming that this reason alone accounts for the difference between the identical and

consistent accuracy.

There are three basic sources of error, causing either non-identical or inconsistent

predictions. The first is an error of omission, meaning that proteins with a particular

molecular function have neither electronic nor experimental evidence in the GOA

database. Second is an annotation error in the GOA database, where the functional

annotation associated with a protein is incorrect. The third is an error in sifter’s

predictions. Each of the three experiments has some combination of these sources

of error, and it would be useful to determine what percentage each source of error

contributed to the non-identical or inconsistent predictions.

For all three types of experiments, the non-identical predictions signify places

where the GOA annotation disagrees with the sifter prediction. This could be due

to errors of omission. Biologically, this may happen for multifunction proteins, as

in the AMP/adenosine deaminase family from Chapter 2, or moonlighting proteins.
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Individual Fungal Families
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Figure 4.2: Six graphs showing the percentage of correct or consistent predictions for
the three types of experiments. The percentage correct or consistent is colored black,
whereas the percentage incorrect or inconsistent is colored grey. The bars do not reflect
protein family size. Panel (A) shows the percentage of identical predictions for the experi-
ments using only experimental annotations. Panel (B) shows the percentage of consistent
predictions for the experiments using only experimental annotations. Panel (C) shows
the percentage of identical predictions for the experiments using both experimental and
electronic annotations. Panel (D) shows the percentage of consistent predictions for the
experiments using both experimental and electronic annotations. Panel (E) shows the
percentage of identical predictions for the experiments using the electronic annotations,
for families without any experimental predictions. Panel (F) shows the percentage of con-
sistent predictions for the experimental using electronic annotations, for families without
any experimental predictions. Note in the final two that there is an interesting plateau
around 0.5.
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Another reason for non-identical predictions in this experiment is because of an error

in sifter’s predictions, perhaps because the evolutionary persistence of a function

may be different than predicted by sifter. This is unfortunately a problem with the

phylogenomic method more generally. Parallel evolution will often manifest as a short

evolutionary persistence of a particular function, possibly at multiple locations in the

tree. Incorrect alignments and incorrect phylogenies may also manifest similarly.

Non-identical and inconsistent annotations may also be due to errors in the GOA

database annotations. A manual phylogenomic analysis performed on those families

may determine which source of error is responsible for the inaccuracies.

The experiments including only experimental annotations have higher rates of

non-identity and inconsistency because the predictions based on experimental anno-

tations were held-out from sifter’s prediction. For these situations, it would also be

desirable to determine which source of error the inconsistency or non-identity stems

from.

4.3.3.3 Experimental annotations use more specific terms than electronic an-

notations

Using GO enables us to examine how specific or how general the terms used in an-

notations and subsequent predictions are. In particular, the root of the GO directed

acyclic graph (at level 0, which is the term molecular function) is the most general

term in the hierarchy, and as we traverse to subsequent levels in the hierarchy, the

terms become more and more specific, for example, including substrate or cofactor

information. The specificity of sifter’s predictions in the fungal protein families

reflects the specificity of different types of annotations in Pfam release 20.0. The

histograms representing the average depth of the candidate functions across the set

of fungal protein families is shown in Figure 4.3. The average level in the GO DAG

of the candidate functions derived from experimental predictions is 6.52, whereas the
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Figure 4.3: Histogram of average level of candidate functions for sifter runs with ex-
perimental annotations and experimental and electronic annotations. This figure shows
the normalized histograms of the three different sifter experiment’s candidate functions
overlaid on top of each other. The histogram at the front (the yellow histogram, repre-
senting experiments with only electronic annotations) was made transparent so that the
red and blue bars could be visible at the same time, appearing orange or green. The
experiments using only experimental annotations dominate the histogram at average level
six and larger.

average level in the GO DAG of the candidate functions derived from experimental

and electronic predictions is 5.92, implying that experimentally validated functional

annotations may be on average more specific than electronic annotations. In addition,

there are 326 families in which the predictions from the set of experimental annota-

tions are more specific than the predictions from all of the annotations, whereas there

are 184 families in which the reverse is true. In the remaining 42 families, the two

sets are at identical levels in the GO DAG.

If we consider the families for which the average level of the candidate functions

from the experimental annotations indicates more specific terms than the average

level of the candidate functions derived from both the experimental and electronic
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annotations, this appears to occur because the experimental annotations are, in gen-

eral, more specific than the electronic annotations. The glycotransferase-34 family

includes this scenario; when only using experimental annotations, there are two leaves

at level six of the GO DAG (alpha-1,6-mannosyltransferase activity and alpha-1,2-

galactosyltransferase activity), and these annotation only occur in the proteins as

experimental annotations. When the family is run with both experimental and elec-

tronic annotations, however, there are five candidate functions: the two functions

from the experimental annotations, and three additional functions from the elec-

tronic annotations (heme binding at level four, iron ion binding at level six, and

monooxygenase activity at level four). The reverse situation, where the average level

of the candidate functions from the experimental annotations indicates more general

predictions than is indicated from the average level of the candidate functions from

both the experimental and electronic annotations, most often occurs as a result of

omission, specifically when there were no experimental characterizations of a particu-

lar function within a family. There are many examples of this in this data set, as more

than two-thirds of the families with annotations lacked any experimental annotations.

4.3.3.4 Overall functional diversity

We examine the diversity of functional predictions for each of the species in this fun-

gal data set. For each protein in each family, we computed the fraction of sifter

predictions descending from each of the molecular function terms at the most general

level (the children of the node molecular function) of the GO DAG. We computed

these figures for the experiments using both experimental and electronic annotations

(Figure 4.4) and the experiments using electronic annotations with no available exper-

imental annotations (Figure 4.5; the experiments using only experimental annotations

give similar fractions to the experiments using both experimental and electronic, and

are not shown).
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GO:0005488 -- Binding

GO:0003824 -- Catalytic activity

GO:0030234 -- Enzyme regulator activity
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Figure 4.4: Overall functional prediction diversity for the fungal species. This figure
shows the fraction of proteins found in each species that have sifter predictions in one
of eight general molecular function categories. The names of each species are the first
three letters of their genus concatenated with the first two letters of their species (e.g.,
Aspergillus fumigatus becomes ASPFU), with a few exceptions, including S. cerevisiae,
which is abbreviated YEAST, and Aspergillus nidulans, which is abbreviated EMENI, both
by swiss-prot convention.

The proportions from the sifter predictions using only electronic annotations

show a slightly higher proportion of catalytic activity predictions relative to binding

predictions, possibly reflecting the experimental bias that it is easier to show binding

experimentally than many of the other functional classes.

The similarity between the fractions of each general molecular function for the

proteins species does not trivially appear to correspond to the evolutionary similarity,

with a few obvious exceptions. The fractions for Candida albicans and Candida

dubliniensis, which have a recent common ancestor, appear very similar. In contrast,

Laccaria bicolor, which appears to have a relatively large fraction of binding proteins,

does not share this trait with Phanerochaete chrysosporium, the species most closely
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Figure 4.5: Overall functional prediction diversity for the fungal species for the set of
protein families that only have electronic evidence. This figure shows the fraction of pro-
teins found in each species that have sifter predictions in one of eight general molecular
function categories. The names of each species are the first three letters of their genus con-
catenated with the first two letters of their species (e.g., Aspergillus fumigatus becomes
ASPFU), with a few exceptions, including S. cerevisiae, which is abbreviated YEAST, and
Aspergillus nidulans, which is abbreviated EMENI, both by swiss-prot convention.
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related to it in this particular data set, although this could be an artifact due to the

low number of genes found in L. bicolor or possibly a long branch length between

them. Whether this lack of correspondence is an actual biological phenomenon, or

whether it is a result of sifter errors or problems in gene finding, needs further

investigation.

4.3.4 Specific families

We examined four specific families in this data set, two large and two small, to

illustrate the power of function prediction using phylogenomic analysis. For each

family, we describe the molecular functions within the family and the species that

appear to have over- or under-represented numbers of proteins in these families to

try to determine why duplications or deletions may have occurred in these organisms

for this particular domain type. We also describe our literature reviews for these

particular families and mention conclusions that may be drawn from our phylogenomic

analyses of these families.

4.3.4.1 Tyrosine protein kinase family

The tyrosine protein kinase domain (Pkinase Tyr, PF07714) has has 4772 members in

this fungal data set and 24 candidate proteins (using only experimental data). There

are two major clades in the protein kinase phylogeny, defined by their substrate speci-

ficity: one clade contains proteins that are serine/threonine specific, and the other

contains proteins that are tyrosine-specific [Hanks et al., 1988]. It is thought that

tyrosine specificity is a more recent development, around the same time as multicel-

lular organisms developed, and is important in cell-cell communication [Hanks et al.,

1988].

The two organisms that appear to have an over-representation of tyrosine protein
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kinase domains are both pathogens. The average species has approximately 104

proteins with this domain in its genome. Candida albicans is a diploid fungus and a

human parasite, causing thrush and, in immunocompromised patients, Candidiasis.

C. albicans has 173 proteins with this domain in its genome. While normally a

unicellular organism, C. albicans will change phenotype to become a multicellular

organism (using both tyrosine protein kinase proteins [Cassola et al., 2004] and SIR2

proteins [Perez-Martin et al., 1999], also over-represented in the C. albicans lineage)

in response to environmental factors [Cassola et al., 2004]. A recent study showed that

doubling the concentration of tyrosine protein kinase proteins reduces the growth rate

of cells by two-fold [Cassola et al., 2004], which does not explain why this apparently

toxic protein recently appears to have had a large number of duplications in this

organism.

No additional information was found on the role of tyrosine protein kinase proteins

in the multicellular plant (and opportunistic human) pathogen Rhizopus oryzae, or

any indications for why there appears to be an overrepresentation (244 copies) of the

tyrosine protein kinase domain in this organism.

In the sifter analysis of this family, it appears that the fraction of proteins with

predictions for each of the candidate functions was in general similar to the fractions

of proteins specific to both R. oryzae and C. albicans with predictions for each of

the candidate functions. A possible exception is that the percentage of proteins with

protein histidine kinase activity predictions was slightly lower in both of these species

than in the family as a whole. R. oryzae had 5.3% and C. albicans had 4.6% of their

proteins predicted to have protein histidine kinase activity, as compared to the overall

family that had 10.5% of proteins predicted to have protein histidine kinase activity.

Overall, we can conclude that the recent duplications in both of these families do not

appear to have occurred in a specific functional clade.
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4.3.4.2 Major facilitator superfamily

Major Facilitator Superfamily (MFS) domain (MFS 1, PF) has 8729 members in

this fungal data set and 31 candidate molecular functions using only experimental

evidence in sifter. MFS proteins and the ABC transporters are the two types of

transporters that occur in almost all organisms.

MFS proteins have the function of transporting potentially toxic substances out

of the cell, but also for pathogenic species such as some of the fungal species in this

set, these proteins can also facilitate the transport of toxins into the host cells.

The average number of proteins with this domain in a fungal genome in this data

set is 190. It appears that there is significant over-representation of this domain in

two clades of the fungal tree. Specifically, MFS appears to be over-represented in

the three species Aspergillus niger (471), Aspergillus terreus (442), and Aspergillus

oryzae (517), all forming a single clade. MFS is also over-represented in a second

clade with three species: Nectria haematococca (674), Fusarium verticillioides (482),

and Fusarium graminearum (379). Furthermore, this domain appears to be slightly

under-represented in two species, Laccaria bicolor (121) and Rhizopus oryzae (125),

but it is possible that this could be false negatives during the gene finding step.

The large amount of redundancy of MFS and related ABC and multi-drug resis-

tance (MDR) protein domains has been documented in the Aspergillus genera, and

is thought to be a cause of its development of resistance to a drug used for these

human pathogens, triazoles, as these proteins have been found to reduce the overall

intracellular accumulation of the drug [Ferreira et al., 2005].

In the sifter predictions for the MFS proteins in two of the three of these As-

pergillus species, it appears that there is a slight overabundance of predictions for

spermine transmembrane transporter proteins (13.9% in A. oryzae and 16.6% in A.

niger versus 10.0% in the family as a whole). In fungal organisms, spermine trans-
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membrane transporters generally inhibit cell growth by excreting polyamines, which

are charged molecules that are necessary for different reactions in the cell, but are

cytotoxic in high concentrations [Tachihara et al., 2005]. A number of studies have

found that proteins with this function also play a role in salt ion transportation [Porat

et al., 2005]. In general, though, it appears that the recent duplications were found

in many places in the phylogeny, and not in one specific clade.

The garden pea pathogen N. haematococca and the corn pathogen F. verticillioides

are both well-studied pathogens, for which a great deal of information about how they

infect their host is known. Although MFS proteins have been studied specifically in

F. verticillioides [Lopez-Errasquin et al., 2006], it is still not clear why this particular

set of pathogens has duplicated the MFS domain so frequently. One possible thought

is that a specific feature of these plant pathogens is that they are only pathogenic on

a very limited set of specific host plants [Straney et al., 2002], thus it is possible that

they have duplicated the proteins required to transport the pathogens to the host in

order to evolutionarily discover the optimal way to infect the host.

In the sifter predictions for the MFS proteins in these two species, it appears

that there is no difference in the proportion of function predictions relative to the

proportions for the MFS family as a whole. The largest difference is in spermine

transmembrane transporters, which is predicted for 6.8% of the N. haematococca

proteins and 7.2% for the F. verticillioides proteins, as compared to 10.0% for the

full set of fungal species. In other words, it appears that the recent duplications were

found across the phylogeny, and not in clades with specific molecular functions.

4.3.4.3 Spermine/spermidine synthase

Phylogenomic analysis of the spermine/spermidine synthase family explores some

questions about whether these particular functions are essential to the fungal or-

ganisms. In this anaylsis, we are assuming that both the reconciled phylogeny and
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the sifter predictions are correct. Spermine/spermidine synthase proteins are used

in the cell to synthesize spermine and spermidine. In particular, polyamines such

as spermidine are required for cell growth, and spermidine synthases are the pro-

teins responsible for spermidine synthesis. There are two experimental annotations

in this tree, both for proteins found in S. cerevisiae, and one of which is spermine

synthase activity (GO:0016768), the other of which is spermidine synthase activity

(GO:0004677). The phylogeny is shown in Figure 4.6, with the portions of the tree

that sifter predicts as spermine synthase and spermidine synthase colored appro-

priately.

The phylogeny for this family shows that the two recent duplications of this partic-

ular protein domain in C. albicans may have occurred in the two different functional

clades of this family phylogeny. It also appears that the duplication events may have

happened very recently, as the sequence similarity of both sets of inparalogs is high.

Because we performed an analysis on the set of nonredundant proteins for each of

these species, though, we can be confident that these are not, in fact, the same protein

in different strains of C. albicans.

There are a number of papers on whether or not these particular proteins are

essential for the organisms. It appears that spermine synthase is not essential in S.

cerevisiae [Hamasaki-Katagiri et al., 1998], but spermidine synthase is essential for

growth in both S. cerevisiae [Hamasaki-Katagiri et al., 1997] and S. pombe [Chat-

topadhyay et al., 2002]. The latter of these papers also indicates that the sifter

prediction for SPEE SCHPO is correctly spermidine synthase. This is interesting in

terms of the phylogeny; since it appears that there are the same number of inparalogs

(i.e., recent duplication events) in this tree in the essential spermidine clade (one in-

paralog, the C. albicans proteins) as compared to the spermine clade (one inparalog,

the C. albicans proteins), it may be possible that there is no dosage requirement for

the particular protein, as it appears that redundancy of the essential protein is al-
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Figure 4.6: Spermine/spermidine synthase tree, with sifter’s predictions overlaid. The
red stars indicate the locations of the two proteins with experimental evidence; the arrows
point to the proteins from species discussed in the text.
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lowed. Three possible reasons that the spermine synthase clade may be much smaller

than the spermidine synthase clade is that either the spermine synthases were lost at

a much higher rate, the spermine synthases underwent a functional mutation, or the

spermidine synthases were allowed to duplicate more easily. Since the small number

of spermine synthases appear to be almost entirely self-contained within a clade of

the species tree, it is possible that there were actually only a few gene losses in this

clade following the original gene duplication and subsequent functional mutation from

a spermidine synthase protein to a spermine synthase protein.

This may be an example of gene duplicability being positively correlated or uncor-

related with essentiality in this particular protein family, in contrast to some recent

studies that see a negative correlation between gene essentiality and duplicability

across a wide range of protein families (e.g., [He and Zhang, 2006]). Another in-

teresting follow-up experiment would be to test whether the subset of faster-evolving

spermidine synthase proteins, as indicated by longer branch lengths, are non-essential

in their associated species or have a distinct molecular function, both of which may

be indicated by their apparent faster rate of mutation.

4.3.4.4 Glycotransferase-34

Phylogenomic analysis of the glycotransferase 34 protein family gives some insight

into recent duplication events in this tree. Glycotransferase 34 proteins are involved

in a key post-translational modification required for protein secretion. This family

is interesting to study for two reasons. First, while different functional subtypes

have been identified, few members have experimentally determined function. Second,

the fungal organism Schizosaccharomyces pombe (which has a comparatively small

genome size) has seven proteins in its genome with a glycotransferase domain, whereas

most other fungal organisms have many fewer proteins with this domain. In addition

to the sifter analysis, we performed a blast analysis to briefly compare the two
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methods and attempt to confirm sifter’s predictions.

Inspection of annotations retrieved from the GOA database shows that four pro-

teins in this tree contain experimentally supported functions (MNN10 YEAST,

MNN11 YEAST, GMA12 SCHPO, and GMH3 SCHPO); these annotations were con-

firmed through examination of associated literature references. We ran sifter on

the resulting reconciled tree using the set of experimental annotations; the recon-

ciled phylogeny and the sifter predictions are all illustrated in Figure 4.7. In this

figure we see that the S. pombe sequences are denoted with red stars: our phy-

logenomic analysis gives us the additional information that, of the seven S. pombe

glycotransferase 34 proteins, five are predicted to be in the smaller clade containing

alpha-1,2-galactosyltransferases, and are the result of three recent duplication events

(inparalogs).

For a second functional analysis, we applied blast to the collection of sequences

generated from the HMM search to perform pairwise annotation transfer for each

of the members of this family. On the set of 48 proteins in the family that are

contained in the UniProt database, blast failed to annotate three UniProt proteins,

Q4HU91 GIBZE, Q6C434 YARLI, and Q5BGV8 EMENI (no mannosyltransferase or

galactosyltransferase annotations for any proteins in the NR data set with an E-value

less than or equal to 0.01). The annotations derived from blast (including the three

unannotated proteins) differed from the sifter predictions for eleven proteins out of

the 48 UniProt proteins, or 23%, with one obvious clustering on the phylogeny of these

inconsistent predictions (the clade containing the UniProt proteins Q0U0N0 PHANO,

Q4HU91 GIBZE, and Q6C434 YARLI, all three of which are either not predicted by

blast or have inconsistent predictions between blast and sifter).

The phylogenomic analysis shed light on the important role of galactotransferase

proteins in S. pombe. One way in which S. pombe differs from S. cerevisiae is in

that its glycoproteins contain both D-mannose and D-galactose, whereas S. cerevisiae
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Figure 4.7: Glycotransferase-34 tree, with sifter’s predictions overlaid. The red stars
indicate the S. pombe proteins in this family.
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glycoproteins contain only D-mannose. Thus, in order for protein glycosylation to

occur in S. pombe, protein galactosylation must be performed at various locations

in the cell. To facilitate this task, it appears that S. pombe duplicated additional

galactotransferases that localize to different areas of the cell and have distinct but

overlapping galactosylation functions [Yoko-o et al., 1998].

4.4 Conclusion

The sifter method was applied to perform phylogenomic analyses on all of the

protein families found in 46 fully-sequenced fungal genomes, resulting in 2389 protein

families run on sifter. We described the overall information gained from the sifter

predictions for these genomes. We present four specific examples of phylogenomic

analyses of individual protein families, illustrating the broad power of phylogenomic

analyses and phylogenomic functional prediction on a genomic scale.
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Thesis Conclusion

The goal of this thesis is to introduce a statistical method for protein molecular

function prediction, including motivating the model itself, presenting applications of

this method including a large-scale comparative genomic application, and describing

an extension to the basic model that enables active learning. In the Introduction, we

review the current literature on how and why molecular function evolves in proteins.

This review describes and motivates the phylogenomic methodology upon which we

develop the actual statistical method in Chapter 2.

In Chapter 2, we describe how we generate the input data from a database of func-

tional annotations and protein families, and we discuss the fundamentals of the model

and the semantics of the model parameters. We show how results from this method,

statistical inference of function through evolutionary relationships (sifter), com-

pare with the most frequently used method for protein function annotation, blast,

and two other function annotation methods, GOtcha and Orthostrapper. We show

the result of applying sifter to three protein families, the AMP/adenosine deam-

inase family, the sulfotransferase family, and the Nudix family, of which the latter

two are functionally diverse. For each of these three protein families, we assembled
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a gold-standard set of functional annotations derived from experimental methods

from a manual literature search. We present data to validate the truncation ap-

proximation for computing the posterior probability predictions on two families, the

AMP/adenosine deaminase family and the sulfotransferase family.

In Chapter 3, we motivate the development of an experimental design method to

extend sifter in terms of the actual cost of performing manual experiments. We

describe our simple, information theoretic metric for sequentially selecting a protein

to characterize that will maximally reduce prediction uncertainty for the unannotated

proteins in the family. We show the results of applying the experimental design to

three families with gold-standard molecular function annotation data sets, including

the AMP/adenosine deaminase family, the sulfotransferase family, and the amino-

transferase family. For the aminotransferase family, presented for the first time here,

we also include basic sifter results, and we compare our sequential selection of pro-

teins with the selection of proteins via an alterative method, and it appears that the

two method produce slightly anti-correlated results. Based on good results for the

AMP/adenosine deaminase family and the sulfotransferase family, and inconclusive

results for the aminotransferase family, we find that this type of active learning ap-

pears to work well in cases where the general phylogenomic technique works well.

Specifically, the experimental design appears to work well for single- and multifunc-

tion protein families of increasing functional diversity, but has similar difficulty as the

general phylogenomic method with sparse annotation data when there is extensive

parallel evolution in the family, as in the aminotransferases.

Chapter 4 describes a large-scale application of the sifter method to 46 fully-

sequenced fungal genomes. The main purpose of this exercise was to determine

whether sifter could be applied to genome-wide data sets. Sifter was applied

to this large data set and we describe the overall information gained from the brief

comparative genomic analysis of these genomes. We further present four examples of
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phylogenomic analyses on specific functional domains within this data set, illustrating

the broad power of phylogenomic analyses and also indicating the value of functional

prediction using phylogenomic analyses on a genome-wide scale.

In conclusion, this simple statistical model of the phylogenomic methodology is

effective and robust for molecular function prediction on both individual protein fam-

ilies and genome-wide data sets, and can be used to guide selection of proteins to

functionally characterize.
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