
A Framework for Compositional Design and Analysis
of Systems

Arindam Chakrabarti

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-174

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-174.html

December 20, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This Technical Report comprises my Doctoral Dissertation and is based on
joint work with Prof Luca de Alfaro, Prof Dirk Beyer, Dr Patrice Godefroid,
Prof Thomas A. Henzinger, Prof Orna Kupferman, Prof Rupak Majumdar,
Dr Freddy Y. C. Mang, Prof Sanjit A. Seshia, and Prof Mari\"elle Stoelinga.
I am also deeply grateful to Prof Marcin Jurdzi{\'n}ski and Dr Nir Piterman
for many valuable suggestions, comments, insights, and enlightening
discussions. I am extremely grateful to my advisor Prof Tom Henzinger,
Prof Edward Lee, Prof George Necula, and Prof Jack Silver for extremely
useful feedback, advice, comments, and suggestions that made this
Dissertation possible.

A Framework for Compositional Design and Analysis of Systems

by

Arindam Chakrabarti

B. Tech. (Indian Institute of Technology Kharagpur) 2001
M.S. (University of California at Berkeley) 2005

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Thomas A. Henzinger, Co-Chair
Professor George C. Necula, Co-Chair

Professor Edward A. Lee
Professor Jack H. Silver

Fall 2007

The dissertation of Arindam Chakrabarti is approved.

Co-Chair Date

Co-Chair Date

Date

Date

University of California, Berkeley

Fall 2007

A Framework for Compositional Design and Analysis of Systems

Copyright c© 2007

by

Arindam Chakrabarti

Abstract

A Framework for Compositional Design and Analysis of Systems

by

Arindam Chakrabarti

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Thomas A. Henzinger, Co-Chair

Professor George C. Necula, Co-Chair

Complex system design today calls for compositional design and implementation.

However each component is designed with certain assumptions about the environment

it is meant to operate in, and delivering certain guarantees if those assumptions are

satisfied; numerous inter-component interaction errors are introduced in the manual

and error-prone integration process as there is little support in design environments for

machine-readably representing these assumptions and guarantees and automatically

checking consistency during integration.

Based on Interface Automata [54] we propose a framework for compositional de-

sign and analysis of systems: a set of domain-specific automata-theoretic type sys-

tems for compositional system specification and analysis by behavioral specification of

open systems. We focus on three different domains: component-based hardware sys-

tems communicating on bidirectional wires. concurrent distributed recursive message-

passing software systems, and embedded software system components operating in

1

resource-constrained environments. For these domains we present approaches to for-

mally represent the assumptions and conditional guarantees between interacting open

system components. Composition of such components produces new components with

the appropriate assumptions and guarantees. We check satisfaction of temporal logic

specifications by such components, and the substitutability of one component with

another in an arbitrary context. Using this framework one can analyze large systems

incrementally without needing extensive summary information to close the system at

each stage. Furthermore, we focus only on the inter-component interaction behavior

without dealing with the full implementation details of each component. Many of the

merits of automata-theoretic model-checking are combined with the compositionality

afforded by type-system based techniques. We also present an integer-based exten-

sion of the conventional boolean verification framework motivated by our interface

formalism for embedded software components.

Our algorithms for checking the behavioral compatibility of component interfaces

are available in our tool Chic [1], which can be used as a plug-in for the Java IDE

JBuilder [2] and the heterogenous modeling and design environment Ptolemy II [3].

Finally, we address the complementary problem of partitioning a large system

into meaningful coherent components by analyzing the interaction patterns between

its basic elements. We demonstrate the usefulness of our partitioning approach by

evaluating its efficacy in improving unit-test branch coverage for a large software

system implemented in C.

2

Professor Thomas A. Henzinger
Dissertation Committee Co-Chair

Professor George C. Necula
Dissertation Committee Co-Chair

3

To my dear father, Arya Kumar Chakrabarti, and my dear mother, Minati

Chakrabarti, with love and respect, as a token of gratitude for the innumerable

sacrifices they have always silently made for me throughout my life.

i

Contents

Contents ii

List of Figures v

Acknowledgements vii

1 Introduction 1

1.1 Compositional design of systems . 1

1.1.1 Compatibility and Composition 7

1.1.2 Refinement . 8

1.1.3 Specifications . 9

1.1.4 Application Domains . 10

1.2 Related Work . 14

1.2.1 Static approaches . 14

1.2.2 Dynamic approaches . 26

1.2.3 Design Patterns . 32

1.2.4 Software architecture specification 33

1.2.5 Game semantics for programming languages 36

1.3 Outline . 38

2 Synchronous and Bidirectional Component Interfaces 39

2.1 Introduction . 40

2.1.1 The graph view . 41

ii

2.1.2 The game view . 43

2.1.3 Synchronous interface models 44

2.2 Compatibility and Composition . 45

2.2.1 Moore interfaces . 45

2.2.2 Bidirectional Interfaces . 53

2.2.3 Properties of compatibility and composition 58

2.3 Refinement . 59

2.4 Compositional Verification . 63

3 An Interface Formalism for Web Services 68

3.1 Introduction . 69

3.2 Signature Interfaces . 72

3.2.1 Compatibility and Composition 74

3.2.2 Refinement . 75

3.3 Consistency Interfaces . 76

3.3.1 Compatibility and Composition 77

3.3.2 Refinement . 78

3.3.3 Specifications . 80

3.4 Protocol Interfaces . 83

3.4.1 Compatibility and Composition 89

3.4.2 Refinement . 90

3.4.3 Specifications . 97

3.5 Case Study . 119

4 Resource Interfaces 125

4.1 Introduction . 125

4.2 Preliminaries . 129

4.3 Resource Interfaces . 132

4.4 Algorithms . 138

4.5 Examples . 145

4.5.1 Distribution of resources in a Lego robot system 145

iii

4.5.2 Resource accounting for the PicoRadio network layer 148

5 A Natural Extension of Automata 152

5.1 Introduction . 153

5.2 The Integer-based Quantitative Setting 158

5.3 Quantitative-Bound Automata . 162

5.3.1 Specifying Quantitative Properties 162

5.3.2 Bound Functions for Automata 165

5.3.3 Quantitative-Bound Model Checking and Game Solving 167

5.4 The Quantitative-Bound µ-Calculus 170

5.5 Unbounded Quantitative Automata and their Expressiveness 176

5.6 Conclusion . 177

6 Function Interfaces and Software Partitioning 180

6.1 Introduction . 181

6.2 The Software Partitioning Problem 184

6.3 Interfaces . 186

6.4 Software Partitioning Algorithms . 188

6.4.1 Callee Popularity . 188

6.4.2 Shared Code . 193

6.5 Experimental Results . 197

6.6 Discussion and Other Related Work 203

6.7 Conclusion . 207

Bibliography 210

iv

List of Figures

1.1 Architecture of a compiler . 2

1.2 Online shopping supply chain management system 6

2.1 A counter modeled as a Moore interface. The guarded-command syn-
tax is derived from the one of reactive modules [17] and Mocha [20, 53];
input atoms describe the input assumptions, and the output atoms de-
scribe the output behavior. When more than one guard is true, the
command is selected nondeterministically. Input variables not men-
tioned by the command are updated nondeterministically. 46

2.2 A ±1 adder modeled as a Moore interface. 47

2.3 PCI and Token-ring Protocols 2.3(a) PCI Local Bus Structural Dia-
gram 2.3(b) PCI Master Interface 2.3(c) Composite interface for two
PCI Master Modules 2.3(d) Token Ring Network Configuration 2.3(e)
Token-ring NT Interface . 57

3.1 The supply chain management application 72

3.2 Proof rules for specification checking (part 1) 102

3.3 Proof rules for specification checking (part 2) 103

3.4 Proof rules for specification checking (part 3) 104

3.5 Proof rules for specification checking (part 4) 105

3.6 Proof rules for specification checking (part 5) 106

3.7 Proof rules for specification checking (part 6) 107

3.8 Proof rules for specification checking (part 7) 108

3.9 Proof rules for specification checking (part 8) 109

3.10 Proof rules for specification checking (part 9) 110

v

3.11 Proof rules for specification checking (part 10) 111

3.12 Proof rules for specification checking (part 11) 112

3.13 Proof rules for specification checking (part 12) 113

3.14 Proof rules for specification checking (part 13) 114

4.1 Games illustrating the four classes of resource interfaces. 135

4.2 A/G interfaces modeling a Lego robot. 148

5.1 System K . 161

6.1 The call-graph, and the partition created by sc7 196

6.2 The partition created by cp1i . 197

6.3 Coverage and incidences of false alarms 199

6.4 Overall branch coverage . 200

6.5 Number of false alarms . 201

6.6 Ratio of coverage to false alarm . 202

vi

Acknowledgements

First and foremost, I would like to thank my advisor, Professor Tom Henzinger, for the

incredibly immense amount of support, help, encouragement, and motivation I have

always received from him. I have been immensely lucky to have had the opportunity

to interact with him closely for the last six years and learn from him all that I know

about formal verification. It has been my immensely good fortune to have had the

opportunity to be in the wonderful research and learning environment in his research

group at Berkeley.

I shall always vividly remember the first meeting I had with him on Monday 6 Au-

gust 2001 when I first arrived at Berkeley, when I was wide-eyed and overwhelmed at

having just met him and some of the other world-famous computer scientists among

his collaborators (like Prof Orna Kupferman, Prof George Necula, Prof Alex Aiken,

Prof Luca de Alfaro, among others), some of whose famous papers I had read as

an undergraduate student in India, and he put me at ease in his characteristic en-

couraging and motivating manner. Since that day I first had the honor of meeting

him, he has been a constant inspiration and a perennial source of encouragement and

motivation, and has always been patient and available for discussions, even late into

the night, even when he was tired after a long day, or jet-lagged after a long flight,

and in spite of the tremendous constant time pressure that accompanies his position

as one of the foremost Computer Scientists on earth. He has been my role model

since I first interacted with him, and I have always fervently wished that a little bit

of some of his brilliant qualities might rub off on me. It has been my indescribably

good fortune to have gotten the opportunity to work with and learn from him, and

I hope someday I will be able to inculcate in myself a little fraction of some of his

brilliant qualities.

vii

I am also extremely grateful for the constant financial support he gave me through-

out my graduate studies: financial support for me; support to cover my registration

fees, non-resident tuition, and other University fees; support for me to attend numer-

ous conferences from which I gained so much exposure, experience, and breadth; and

after he left Berkeley to join EPFL Lausanne in Switzerland, support for me to visit

him multiple times in Lausanne to work with him. Due to his kind support I never

had to worry about financial support at any point of my graduate studies and was

able to focus all my time and energy on research.

My first experience of the truly fascinating intellectual stimulation provided in

some of the classrooms at Berkeley occurred shortly after I arrived at Berkeley, when

I took CS 263, the programming languages theory class taught by Prof George Nec-

ula. I had taken an advanced course on Theory of Programming Languages as an

undergraduate student at IIT Kharagpur the previous year. However the way Prof

Necula elucidated the core concepts of the subject made me look at everything in a

new light and with an incomparably deeper understanding. I had a similarly fascinat-

ing intellectual experience when I attended the lectures of Prof Alex Aiken and Prof

Henzinger respectively on implementation of programming languages, and on formal

verification, and algorithms. It was an immensely good fortune for me to take these

fabulous courses through which I discovered all that I know about program analysis,

theorem proving, type systems, and model checking, and the connections between

them.

I would also like to thank Prof Alex Aiken, Prof Ras Bodik, Prof George Necula,

Prof Koushik Sen, and Prof Sanjit Seshia, for having created and run, along with Prof

Henzinger, a very inspiring research environment in the Open Source Quality (OSQ)

viii

research group that I had the opportunity to be a part of. Attending the weekly OSQ

research meetings was an extremely valuable experience.

This dissertation is based on joint work with Prof Luca de Alfaro, Prof Dirk Beyer,

Dr Patrice Godefroid, Prof Thomas A. Henzinger, Prof Orna Kupferman, Prof Rupak

Majumdar, Dr Freddy Y. C. Mang, Prof Sanjit A. Seshia, and Prof Mariëlle Stoelinga.

It has been a great privilege for me to have gotten the opportunity to work with

and learn from such incredibly creative researchers and encouraging and inspiring

mentors. I would like to thank them for for being patient, available, encouraging,

and always helpful. I learnt a great deal from each of them and benefited beyond

measure in the course of working on research projects with them. There are no words

I have that can sufficiently express my gratitude for all the help I got from them and

all I learnt from them, but Thank you! I also benefited greatly from working with

and learning from Prof Marcin Jurdziński on a related research project [40] when I

arrived at Berkeley. I am also deeply grateful to Dr Nir Piterman for many valuable

suggestions, comments, insights, and enlightening discussions. Since I first met him

in December 2000 in Delhi, India at FSTTCS 2000, and later at EPFL Lausanne,

Switzerland, he has always been a great source of help, motivation, encouragement,

ideas and suggestions.

Chapter 2 of this dissertation is based on a paper [41] co-authored with Prof

Luca de Alfaro, Prof Tom Henzinger, and Dr Freddy Mang; presented at CAV 2002;

copyright held by Springer-Verlag Berlin Heidelberg1, 2002. Chapter 3 is based on a

paper [25] co-authored with Prof Dirk Beyer and Prof Tom Henzinger, presented at

WWW 2005, published by ACM2, copyright held by the International World Wide

Web Conference Committee (IW3C2), 2005; the EPFL Technical Report Number

1http://www.springerlink.com
2http://doi.acm.org/10.1145/1060745.1060770

ix

MTC-REPORT-2007-002 [26]3 co-authored with Prof Dirk Beyer and Prof Tom Hen-

zinger; and a paper [27] co-authored with Prof Dirk Beyer, Prof Tom Henzinger,

and Prof Sanjit Seshia; presented at ICWS 2007, copyright held by IEEE4, 2007.

Chapter 4 is based on a paper [42] co-authored with Prof Luca de Alfaro, Prof Tom

Henzinger, and Prof Mariëlle Stoelinga; presented at EMSOFT 2003; copyright held

by Springer-Verlag Berlin Heidelberg5, 2003. Chapter 5 is based on a paper [39] co-

authored with Krishnendu Chatterjee, Prof Tom Henzinger, Prof Orna Kupferman,

and Prof Rupak Majumdar; presented at CHARME 2005; published by Springer;

copyright held by IFIP International Federation for Information Processing6, 2005.

Chapter 6 is based on a paper [43] co-authored with Dr Patrice Godefroid; presented

at EMSOFT 2006; copyright held by ACM7, 2006; and Bell Laboratories Technical

Memorandum ITD-06-46767J [44], co-authored with Dr Patrice Godefroid.

I am extremely grateful to Prof Tom Henzinger, Prof Edward Lee, Prof George

Necula, and Prof Jack Silver, for having kindly been on my Qualifying Examination

and Dissertation Committees and having spared so much of their extremely valuable

and limited time over the past several years to give me extremely useful feedback,

advice, comments, and suggestions that made this Dissertation possible.

As I’ve mentioned before, I had the incredible good fortune of taking some truly

fascinating courses on computer science, electrical engineering, mathematics, and

management of technology at Berkeley. These amazing lectures on these varied top-

ics exposed me to new knowledge and ways of thinking I had never imagined and

opened up so many new doors and windows in my mind. I am immensely grateful

3A preliminary version of this Technical Report was presented at the First International Workshop
on Foundations of Interface Technologies (FIT), held on August 21, 2005, in San Francisco, CA.

4http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.32
5http://www.springerlink.com
6http://www.springerlink.com
7http://doi.acm.org/10.1145/1176887.1176925

x

to Prof Alex Aiken, Prof Tom Henzinger, Prof Edward Lee, Prof George Necula,

Prof Jack Silver, and Prof Alberto Sangiovanni-Vincentelli, for teaching me every-

thing I know about model theory, model-checking, theorem-proving, programming

language theory, design and implementation of programming languages, specification

and modeling of reactive real-time systems. and design of embedded systems. I ben-

efited beyond measure from attending amazingly insightful and thought-provoking

lectures on diverse topics such as algorithms, complexity, seminal works in computer

science, compiler optimizations, computer security, cryptography. computer architec-

ture, search engines, and combinatorial games, by Prof Elwyn Berlekamp, Prof Susan

L. Graham, Prof Marti Hearst, Prof John Kubiatowicz Prof Christos Papadimitriou,

Prof Satish Rao, Prof Luca Trevisan, and Prof David Wagner. I had the immensely

good fortune of attending some amazing classes on entrepreneurship in the high-

technology industry and management of technology taught by Prof Andrew Isaacs,

Prof Kurt Keutzer, Prof David Messerschmitt, Prof Reza Moazzami, and Prof Carl

Shapiro. I was also fortunate to attend incredibly interesting lectures by Prof Leo

Harrington, Dr Jean Paul Jacob, and Prof Umesh Vazirani, that broadened my hori-

zons. It was truly an amazing privilege for me to have gotten the benefit of attending

these fascinating courses taught by the best researchers and practitioners of each field,

at the number one University on this planet.

Before coming to Berkeley, as an undergraduate student of Computer Science and

Engineering at Indian Institute of Technology Kharagpur, I was extremely fortunate

to have had the opportunity to work with Prof Partha Pratim Chakrabarti and Prof

Pallab Dasgupta on branching-time temporal logics for property-specification and

model-checking for open hardware systems. I am deeply grateful for the help and

xi

guidance I received from them that helped me absorb the knowledge they led me to,

and that I continue to find extremely valuable.

As mentioned above, in addition to an incredibly immense amount of help in all

respects, my advisor Prof Henzinger provided me with constant financial support

throughout my graduate studies at Berkeley. In addition, during the 2002-2003 aca-

demic year my non-resident tuition was paid by the Earle C. Anthony Fund, through

the Graduate Division’s Fellowship Office. I am very grateful for this support.

During my graduate studies at Berkeley I had the immensely great fortune of

being selected for summer research internships at Microsoft Research in Redmond,

WA; NEC Laboratories America in Princeton, NJ; and Bell Laboratories in Lisle, IL.

During these internships I benefited immensely from being exposed to the fascinating

research projects being undertaken by these prestigious laboratories. It was a great

privilege for me to get these opportunities to interact a lot with and learn a great deal

from the incredibly inspiring mentors I had: Dr Thomas Ball, Dr Michael Benedikt,

Dr Glenn Bruns, Dr Robert DeLine, Dr Manuel Fähndrich, Dr Patrice Godefroid, Dr

Aarti Gupta, Dr Richard Hull, Dr Franjo Ivančić, Dr Nils Klarlund, Dr James Larus,

Dr K. Rustan M. Leino, Dr Sriram Rajamani, and Dr Jakob Rehof. I am deeply

grateful for the great deal of time and attention they kindly gave me from which I

benefited so much. I’m also very grateful for the financial support I received during

these internship appointments.

I learnt a great deal and benefited greatly from the opportunity I got to attend the

extremely prestigious 2004 Marktoberdorf Summer School on Engineering Theories

of Software Intensive Systems organized by the NATO Science Committee and the

Institut für Informatik, Technische Universität München, Germany, in July-August

2004. I am very grateful to my advisor Prof Tom Henzinger for kindly recommending

xii

me for selection at this extremely prestigious summer school, and to the Marktober-

dorf summer school organizers for kindly accepting me and kindly providing me with

financial support to attend this school. I benefited beyond measure from the incred-

ibly inspiring interactions I had with some of the other world-famous researchers,

Dr Thomas Ball, Prof Manfred Broy, Prof David Harel, Sir C. A. R. Hoare, Prof

Bertrand Meyer, Prof Jayadev Misra, Prof J Strother Moore, Prof Amir Pnueli, and

Prof Mooly Sagiv, who taught at this summer school.

I was very fortunate to get opportunities to interact with inspiring researchers like

Prof Rajeev Alur, Prof Rastislav Bodik, Prof Tevfik Bultan, Dr David Gay, Dr Monika

Henzinger, Prof Kim Larsen, Prof Jens Palsberg, and Dr Henny Sipma, from whom I

learnt so much. I would also like to thank Prof Samik Basu, Dr Fausto Bernardini, Dr

Marat Boshernitsan, Christopher Brooks, Prof Luca Carloni, Prof Hao Chen, Prof

Jeff Foster, Dr Sumit Gulwani. Dr Ben Horowitz, Prof Ranjit Jhala, Prof Marcin

Jurdziński, Dr Sri Kumar Kanajan, Prof Christoph Kirsch, Prof Farinaz Koushanfar,

Prof Viktor Kuncak, Prof Orna Kupferman, Prof Ben Liblit, Prof Rupak Majumdar,

Dr Freddy Mang, Dr Scott McPeak, Prof Marius Minea, Dr Stephen Neuendorffer, Dr

Jyotishman Pathak, Dr Claudio Pinello, Dr Nir Piterman, Dr Shaz Qadeer, Dr Sriram

Rajamani, Dr Andrey Rybalchenko, Dr Sriram Sankaranarayanan, Dr Marco Sanvido,

Dr Marco Sgroi, Prof Zhendong Su, Dr Grégoire Sutre, Dr Michael Theobald, Prof

Westley Weimer, Dr Yuhong Xiong, and Dr Liang-Jie Zhang, for many immensely

helpful discussions, and the valuable help and advice they have always given me

whenever I have needed their help.

I would also like to warmly thank Bor-Yuh Evan Chang, Sourav Chatterji, Adam

Chlipala, Jeremy Condit, Simon Goldsmith, Matt Harren, John Kodumal, David

Mandelin, Bill McCloskey, Vinayak Prabhu, Armando Solar-Lezama, AJ Shankar,

xiii

Manu Sridharan, Tachio Terauchi, and Daniel Wilkerson, for many fascinating dis-

cussions, and a lot of extremely valuable and helpful feedback, comments, and sug-

gestions on draft papers and practice talks.

I would like to thank my office-mates Krishnendu Chatterjee and Slobodan Matic

for many interesting discussions, and for having given me so much valuable feedback

on draft papers and practice talks. I am very grateful to Adam Cataldo, Satrajit Chat-

terjee, Elaine Cheong, Jike Chong, Abhijit Davare, Douglas Densmore, Shauki Elas-

saad, Arkadeb Ghosal, Animesh Kumar, Eleftherios Matsikoudis, Trevor Meyerowitz,

Alessandro Pinto, William Plishker, Vinayak Prabhu, N. R. Satish, Haiyang Zheng,

Wei Zheng, Rachel Zhou, and Qi Zhu, for many interesting discussions, and for hav-

ing been part of a fascinating and dynamic research environment at the Donald O.

Pederson Center that has always been an immense joy to work in.

When I first arrived in Berkeley in 2001 from the other side of the planet I was

extremely lucky to have friends like Antar Bandyopadhyay, Sourav Chatterji, Arkadeb

Ghosal, Rajarshi Gupta, Animesh Kumar, Rupak Majumdar, Arnab Nilim, Shivani

Saxena, and Rahul Shah, who helped me so much.

Apart from them, having friends like Chandana Achanta, Smita Agrawal, Karl

Batten-Bowman, Tathagata Basak, Bor-Yuh Evan Chang, Krishnendu Chatterjee,

Satrajit Chatterjee, Karl Chen, Mahendra Chhabra, Adam Chlipala, Abhishek Das,

Mohan Vamsi Dunga, Joy Dutta, Soumitra Ghosh, Tandra Ghose, Ajay Gulati, Anin-

dita Gupta, Sujoy Gupta, Sanjeev Kohli, Pooja Mishra, Sridhar Mubaraq Mishra,

Neelita Mopati, Ananya Nanda, Animesh Nandi, Rumana Rahman-Nilim, Amish

Patel, Rabin Patra, Biswo Nath Poudel, Vinayak Prabhu, Shariq Rizvi, Kaushik

Ravindran, Sourav Saha, N. R. Satish, Atul Singh, Afshan Shaikh, and Sameer Ver-

mani made my stay in Berkeley a most enjoyable and memorable experience.

xiv

I am also very grateful for the many other truly wonderful friends I have had the

delight of interacting with over the last six years, and whose friendship I will cherish

forever: Dan Barak, Ushnish Basu, Shankar Bhamidi, DeLynn Bettencourt, Kama-

lika Chaudhuri, Tim Chevalier, Jike Chong, Alex Elium, David Farris, Deboshmita

Ghosh, Eric Grismer, Gautam Gupta, Jana Van Greunen, Nili Ifergan, Jenny Ifft, Hi-

manshu Jain, Monica Jain, Susmit Jha, Ranjit Jhala, Sudeep Juvekar, Pankaj Kalra,

Nicole Kim, N. Vinay Krishnan, Manjunath Krishnapur, Shuchi Kulkarni, Shail Ku-

mar, Ruy Ley-Wild, Rhishikesh Limaye, Abhik Majumdar, Slobodan Matic, Diana

Michalek, Debananda Misra, Saayan Mitra, Marghoob Mohiyuddin, Irena Nadjakova,

Mayur Naik, Matt Parker, Anjana Mitra-Parker, Bipin Rajendran, Digvijay Rao-

rane, Joy Sarkar, Rabita Sarker, Sushil Shetty, Abhishek Somani, Lakshminarayan

Subramanian, Balmiki Sur, Sumana Sur, Mana Taghdiri, Muralidhar Talupur, Dar-

ren Thornton, Rahul Tandra, Ambuj Tewari, Varadarajan Vidya, Daniel Wilkerson,

Aleksandr Zaks, and John Zhu: thank you!

I am extremely grateful to the awesome staff members of the Department of

Electrical Engineering and Computer Sciences (EECS), and the Engineering Re-

search Support Organization (ERSO) at the University of California at Berkeley;

and the Models and Theory of Computation (MTC) Laboratory at École Polytech-

nique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, who helped me so much

and on so many occasions over the last six years: Mary Byrnes, Susan Gardner, Ruth

Gjerde, Charlotte Jones, Brad Krebs, Peggy Lau, Phil Loarie, Marvin Motley, La

Shana Porlaris, Fabien Salvi, Mary Margaret Sprinkle, Mary Stewart, and Sylvie

Vaucher: thanks a lot !

Finally, I would like to thank my dear father Arya Kumar Chakrabarti, my dear

mother Minati Chakrabarti, and my younger brother Arunava Chakrabarti, for having

xv

been there for me whenever I needed them, and for having been a constant source of

love, support, strength, and sustenance for me. Without them, I would be nothing.

xvi

Chapter 1

Introduction

1.1 Compositional design of systems

The complexity of hardware and software systems designed today calls for en-

hanced support for compositionality in the design and implementation process. For

instance, let us consider a top-level architect of a system s. The designer partitions a

complex design into high-level specifications si for components that are handed off to

individual teams for implementation. The partitioning process may be repeated hier-

archically. Each of these components make certain assumptions and guarantees about

the behavior of the components they interact with; they follow certain protocols for

such interactions; this information needs to be taken into account in the design and

implementation process for each component. Each of these open components needs

to be verified to meet its specifications. When the implementations ci are ready, it

needs to be checked that they are indeed consistent with the high-level component

specifications si that had been the starting point. Even if that is indeed the case, it

1

Back end

Gimple
Generic to

Generic
C to

Generic
C++ to

Generic
Java to

C AST

C++ AST

JAVA
AST

SSA

optimization

Gimple to
SSA

SSA
RTL

SSA to

RTL

RTL
optimization

generator
code

code
binary object

Front end

Figure 1.1. Architecture of a compiler

still needs to be verified that the combination c of the implementations ci is a valid

implementation of the original specification s for the entire system.

The formalism presented in [54, 55] provides a framework for expressing the re-

quirements a component imposes on its environment, and the guarantees it makes

if those requirements are met. This information is encapsulated in a formal model

known as the interface of the component. The interface exposes that and only that

information that the environment needs to know in order to interact successfully with

the component. It is not simply an abstraction of the component; it is a specifica-

tion that the environment of the component needs to satisfy in order to interact

successfully with it.

Example 1.1 (Designing a compiler) Figure 1.1 presents a high-level architec-

ture for the commonly-used GNU Compiler Collection (gcc)1. The compiler accepts

programs written in languages like C, C++, or Java (among others), and translates

them into binary object code [12].

1http://gcc.gnu.org/

2

At a high-level, the compiler consists of three parts: a “front end” that handles

the various kinds of inputs, a part in between that performs machine-independent

optimizations, and a “back end” that performs lower-level optimizations, some of

which are machine-dependent (i.e. depending on the target hardware architecture

the code is being compiled for), and finally generates machine code.

The “C AST”, “C++ AST”, and “Java AST” modules comprise data structures

and functionality to create, represent, and manipulate abstract syntax trees (ASTs)

for programs in these respective languages. These modules are also responsible for

detecting syntax and parse errors in the input code. The “C to Generic”, “C++ to

Generic”, and “Java to Generic” modules respectively comprise software to translate

ASTs for these respective languages into a unified generic AST representation that

can handle programs in all programming languages gcc takes as input. The “Generic

to Gimple” module translates ASTs in this generic super-language into a simplified

and structurally restricted AST format (called Gimple) that can still handle all input

programs, but is a lot simpler and therefore easier to handle. These modules together

comprise the “front end” of the compiler.

The next part of the compiler performs high-level machine-independent program

optimizations. The Gimple format is translated into Static Single Assignment (SSA)

form in which a new version of the variable name is generated for each time a vari-

able is written to. Using this format, the compiler makes one or more passes through

the SSA AST, performing optimizations such as constant folding, constant propa-

gation, algebraic simplifications, common sub-expression elimination, loop-invariant

code motion, partial redundancy elimination, etc. to perform computations that may

be completed at compile time, and remove redundant computations. Finally, the

code is translated from SSA form to Register Transfer Language (RTL) which can be

3

thought of as a machine-independent assembly language. Many low-level optimiza-

tions (e.g. register allocation, peephole optimizations, etc.) are then performed on

the RTL representation. Finally, the code in RTL form is passed along to the “code

generator” module which generates the best code it can for the specific hardware

configuration it is written for.

With about 1 million lines of code, gcc is an example of a pretty large piece of

software. Building systems this large (or larger, like the Microsoft Windows operating

system with reportedly over 50 million lines of code) is practically impossible with-

out a compositional approach. Modern object-oriented programming languages like

C++ and Java with features like data hiding, polymorphism, inheritance, etc., allow

developers to develop reasonably self-contained pieces of software that have very thin

interfaces (i.e. do not expose a lot of internal implementation details, but provide

guidance about how the component should be used) with the rest of the components

they interact with. However, there is no formal support available to manage the in-

formation represented by these thin interfaces. Every library of components (e.g. the

Java library2, the C++ Standard Template Library3, components like mySQL4, etc.)

therefore comes with a thick programmers’ manual written in an ambiguous informal

human language like English. The same is true for components of a large system like

gcc; there is an immense body of English-language material (design documents) a

programmer needs to read in order to successfully use the gcc components as a gcc

contributor. As systems evolve, these design documents get edited, and inaccura-

cies, ambiguities, and contradictions are introduced inadvertently. A formal language

2Java 2 Platform Standard Edition 5.0 Application Programming Interface (API) is available at
http://java.sun.com/j2se/1.5.0/docs/api/

3C++ Standard Template Library Programmer’s Guide: http://www.sgi.com/tech/stl/
4http://www.mysql.com/

4

that represents the interface information in machine-readable form can thus be very

helpful in improving developer productivity and improving software quality.

Conventional monolithic software verification and analysis approaches are very

poor in dealing with systems of such immensely large size as the gcc compiler men-

tioned above, due to the state-space explosion problem. Furthermore, as described in

the example below, there are situations, such as in the realm of web-services based

distributed software, where monolithic software verification is impossible to perform

simply because no one entity has access to the source or even binary code for the

entire system. For such situations, a compositional approach towards analysis, in

which small parts of the overall system are analyzed at a time, and the overall result

obtained by incrementally putting together the results of these individual smaller

analyses questions, is thus very useful. However, in order to be able to do that, the

analyses need to be able to deal with open systems. Conventional verification ap-

proaches have been extended to address this issue, but such approaches have usually

depended upon modeling the environment of an open system and thus converting it

into a closed system. This is a very labor-intensive solution. Instead, following the

framework presented by de Alfaro and Henzinger in [54], we provide approaches in

this dissertation to deal with verification questions for open systems without having

to explicitly model the environment.

Example 1.2 (Developing an online shopping solution) In Chapter 3 we

present in detail a formalism to represent and manipulate the behavior of distributed

concurrent message-passing programs interacting through the web services framework.

There, we shall be using a supply chain management solution for online shopping

shown in Figure 1.2. It shows a “Client” application (which could be the end-user’s

web-browser) interacting with a “Shop” service that sells items held in inventory in a

5

Figure 1.2. Online shopping supply chain management system

“Store”. Items are shipped to the user using a “Transport” service, and paid for by

the user using a “Bank”. Items are supplied to the “Store” by a “Supplier” when

inventory levels in the store run low.

Over the last decade the focus of the software development industry has shifted

from development of stand-alone applications developed in its totality by one or-

ganization or entity (e.g. the Windows operating system developed completely by

Microsoft Corporation, or the GNU/Linux system developed in its entirety by the

GNU open source community) to the development of large-scale distributed web-

based systems that are built from components developed, maintained, and run by

separate administrative/commercial entities.

Thus, the “Shop” service above may be provided by Amazon.com, the “Transport”

service by Federal Express, UPS, or USPS, and the “Bank” service by Bank of Amer-

ica. In such a situation, conventional monolithic software verification and analysis

approaches (approaches that are based on analyzing the entire source or binary code

for an application or system) are not applicable as no one entity has access to the

entire source or even binary code of such distributed component-based systems. The

approaches presented in the rest of this dissertation are geared towards addressing

problems in this type of scenarios as well.

6

1.1.1 Compatibility and Composition

Interfaces can be composed, and the composition is an interface that exposes only

that information that is relevant to the environment of the composite interface. For

example, let us consider two components A and B of a system S. Components A

and B interact with each other, and also with the other components that are part of

S. Component A is thus a part of the environment that B is intended to function

in, and vice versa. Thus, when A and B are combined, for each of them a part of

their respective environments become fixed. At this point, the composition operation

involves checking if the requirements that A imposes on its environment are indeed

compatible with the behavior of the part of A’s environment represented by B, and

vice versa. If the answer is yes, then it means that the composition of A and B is

usable in some context, namely with an environment that satisfies the remainder of

the combined environment requirements of A and B. Furthermore, the composite

interface now needs to expose only this latter information; the information regarding

environments requirements of A and B that have been mutually satisfied by each

other can be forgotten.

If a mismatch exists between the mutual assumptions and guarantees of A and

B, then there are two possibilities:

1. The environment of the composition of A and B may be able to take some

appropriate sequence of actions that removes the mismatch. This is analogous

to protocol conversion to allow interaction between two components that use

different protocols. In this case, the most general behavior the environment

must exhibit in order to remove the mismatch is computed and this gives the

7

most general (least restrictive) constraints imposed by the combination of A

and B on their environment in order to allow A and B to function.

2. There may be no appropriate sequence of actions the environment can take that

would remove the mismatch. Then the interfaces A and B are not compatible

and their composition is the empty interface. This means that the combination

of A and B is unusable in every context.

Formally, a “mismatch” is the violation of a safety property required of the com-

position of A and B together with the environment, and the problem is modeled

as a two-player game: the player System aims to reach error states that correspond

to exhibiting the “mismatch”, and the player Environment aims to make such error

states unreachable. The state space on which the game is played may or may not be

finite. The appropriate sequence of actions taken by the environment is the latter’s

strategy to win the game.

1.1.2 Refinement

Informally, the process of system design involves starting with an abstract system

description and progressively refining the system and component descriptions by rul-

ing out more and more behaviors until a description allowing exactly the desired set

of behaviors is obtained. The methodology of [54, 55] allows formal models of systems

and components that can be refined, and a refinement relation that can be checked

algorithmically. The refinement relation is a pre-order, i.e., it is reflexive (every in-

terface is a refinement of itself) and transitive (if interface A refines B and B refines

C then A refines C). Furthermore, the formalism ensures that a refinement A′ of a

component A can be safely substituted in place of A in any context; any mismatch

8

that did not occur when A was used in that context, would not occur if A′ is instead.

Equivalently, if two interfaces A and B are compatible, then any refinements A′ and

B′ of A and B respectively would also be compatible, and the composition of A′ and

B′ would be a refinement of that of A and B.

1.1.3 Specifications

Conventional software verification techniques such as model-checking only allow

verification of closed systems. However, while developing a large system, often one

wants to be able to find bugs earlier in the design cycle, before all the components

in the entire system have been completely implemented. To achieve this, we ask the

question: “given the system components we already have, is it possible to complete

implementing the rest of the system such that the undesirable behavior can be ruled

out?” In other words, if a bug exists in a open component c such that no strategy

exists for the environment of c to compensate for it and avoid the buggy behavior

being exhibited, then we conclude that the component c is defective; otherwise we

conclude that the component c is acceptable, and compute the behavioral constraints

the environment must satisfy in order to make the component c work correctly. This

two-player game approach – viewing the verification task as a game between two

players, the open system component that tries to exhibit buggy behavior, and the

environment (the rest of the system) it interacts with, that tries to prevent buggy

behavior from being exhibited – allows us to perform formal verification of such open

systems.

This formalism allows the designer to specify safety properties of interest for

an open system component, and formally verify that the component satisfies them.

Specification-checking for an open system is achieved by solving two-player reacha-

9

bility games as before. The formalism ensures that specifications are preserved by

refinement; in other words, any specification φ that is satisfied by an interface A is

also satisfied by any refinement A′ of A.

1.1.4 Application Domains

We investigated a number of application domains for interface-based design and

analysis of open system components.

Hardware component interfaces

We present two game-based system modeling frameworks obtained by extending

the Interface Automaton model [54]. While the Interface Automaton model provides

a set of states and transitions between them labeled with input, output, or internal

actions, our new model provides a richer framework involving sets of input and output

variables constrained by transition predicates. This allows more concise representa-

tion of complicated systems. Furthermore, while the input assumptions and output

guarantees allowed by the Interface Automaton model involve only the presence or

absence of individual input or output actions, the new model allows input assump-

tions and output guarantees involving arbitrary predicates on the input and output

variables.

The first model, Moore interfaces extends the standard transition relation-based

model for representing synchronous systems with a symmetrically-defined transition

relation for the inputs that specifies input transitions that are acceptable. The second

model, bidirectional interfaces is obtained by modifying the previous model to allow

10

each component to have bidirectional connections through which inputs and outputs

are exchanged between the components.

These interface models are useful for describing the input assumptions and output

behavior of hardware components communicating through boolean signals on uni- or

bi-directional wires. Composition and compatibility-checking are achieved through

solving two-player finite-state reachability games. Refinement-checking is achieved

through checking alternating simulation. Properties of the PCI Bus and Token Ring

protocols are verified in terms of compatibility- and refinement-checking in this for-

malism [41].

Recursive software components

We build on the finite state Interface Automaton model [54] to obtain a pushdown

model that can be used for representing method availability constraints (pre-conditions

and invariants that must be satisfied when a method is invoked) of single-threaded

recursive open software components. This framework thus allows for formal repre-

sentation of high-level inter-component interaction protocols (in terms of method-call

ordering patterns) for software components. Composition and compatibility-checking

is achieved through solving two-player reachability games on the configuration graph

of a push-down automaton. This approach is not discussed any further in this disser-

tation; further details can be found in [40, 38].

Distributed asynchronous systems

We present a formalism to describe the behavior of recursive and multi-threaded

distributed open components communicating with each other in the web-services

11

based application-development setting. In this scenario formal behavioral specifi-

cation techniques are of crucial importance as applications usually cross vendor, ad-

ministrative, or other boundaries across which neither binary nor source code can be

shared. Our formalism offers explicit constructs to model recursion and concurrency

(including dynamic thread creation) in ways that are natural in this programming

context. Algorithms are provided to check if two or more interfaces are compatible; if

a web service can be safely substituted in place of another in any arbitrary context;

and if a given web service satisfies a given temporal safety specification representing

a desired behavioral property [25, 26, 27].

Non-functional properties

The notion of incompatibility is modified; in contrast to the formalism in [54]

where a configuration is illegal if it corresponds to an interface producing an out-

put that a peer interface refuses to accept, in this formalism we consider finite-state

interfaces with integer labels representing instantaneous consumption (positive or

negative) of resources on states. Positive resource consumption may correspond to

buffer allocation; negative consumption may correspond to deallocation, for example.

A configuration is illegal if the node labels seen so far fail to satisfy a given pred-

icate. Two kinds of predicates are considered: node limit predicates correspond to

the instantaneous consumption being above a critical threshold; and path limit predi-

cates correspond to the cumulative consumption of the resource being above a critical

threshold. The formalism also allows the designer to specify liveness conditions such

as Büchi constraints.

Two kinds of problems are considered: the strategy synthesis problem corresponds

to discovering ways to use a system to keep the instantaneous or cumulative consump-

12

tion of a scarce resource under a given threshold; and the resource synthesis problem

corresponds to computing the minimal amount of a scarce resource that must be given

to the system such that such a strategy to use it may exist. Both problems can be

solved algorithmically in an efficient manner [42].

Quantitative Verification

We further generalize the above framework into a quantitative theory of verification

that generalizes the conventional boolean framework of µ-calculus model-checking.

Thus we have quantitative structures that are graphs with finitely many vertices, but

with every vertex labeled by a set of quantitative propositions, each taking an integer

value. A quantitative automaton maps an infinite path in a quantitative structure

to an integer. For practical examples, quantitative bound functions exist that allow

decidability of model-checking in this setting [39].

Software architecture extraction by analysis of information shared between

components

We apply static analysis to estimate the amount of information represented by the

interfaces between software components. In a C codebase, each elementary compo-

nent is a C function that communicates with other components by receiving calls and

arguments, calling functions and passing parameters, sharing globals, etc. We inves-

tigate techniques to automatically estimate the amount of information represented by

these inter-component communications. Components that share a lot of information

are considered more closely coupled than components that share little information.

We consider two kinds of communications: represented by control-flow and data-flow

respectively. These are captured by the control and data interfaces of C functions.

13

We show that using control interfaces alone, it is possible to partition the codebase

into meaningful units that may be tested effectively in isolation [44, 43].

1.2 Related Work

A large number of promising approaches have been proposed for automated sup-

port for software design, analysis, testing, and verification. Broadly, they may be

classified into approaches that work statically (at compile time), and approaches that

work dynamically (at run time).

1.2.1 Static approaches

Type systems

Type systems are a commonly used framework for compositional specification

and analysis of system behavior. A type is simply a set of values; e.g. the type int

used in the C Programming Language represents the set of all integer values that

can be represented in 32 or 64 bits (depending on the machine and architecture for

which the C compiler in question has been written). Similarly, the type boolean in

Java represents the set of values true and false. Since all data manipulated by a

program in a computer is stored as sequences of binary digits, the type associated

with a variable (the contents of a portion of memory) determines what operations

(addition, concatenation, negation, etc) make sense for, and are hence allowed on,

that data. Type-checking is a semantic analysis done by a compiler to make sure that

all operations occurring in the program are type-safe, i.e., they occur on data that

allows said operation. Languages can be weakly-typed or strongly-typed; weakly-

14

typed languages (e.g. C++, Perl5, JavaScript) allow large numbers of implicit type

conversions in which the compiler allow data of one type to be treated as another.

Strongly-typed languages (like Java) do not allow this and force greater discipline in

programming on the part of the developer. While there exist languages like assembly

language (and even high-level languages like some varieties of Forth6) that are un-

typed, the programming language community has been, over the last several decades,

steadily moving towards more and more strongly typed languages in recognition of

the fact that type systems help detect large classes of program errors at compile time.

In addition to the type-checking approach used by standard programming languages

like C, C++, or Java, there exist languages like ML, OCaml7, and Haskell8, which

allow type inference, in which the compiler frees the programmer from the chore of

having to manually declare the type of each variable used, and wherever possible

automatically guesses the types of various variables used in the program by analysing

the operations performed on them, and complains with error messages only when

it detects a true incompatibility. Most commonly-used programming languages like

C, C++, C#, or Java are statically typed: i.e. the compiler associates types with

variables and expressions used in the program at compile time. In contrast there also

exist dynamically typed languages like Ruby9, Lisp10, JavaScript, Python11, etc., in

which the compiler associates types with values at run time only, and no types are

associated with variables or expressions at compile time. While this allows greater

flexibility by letting the same variable to refer to values of different types at different

points of program execution, this approach also means that all type-mismatch errors

5http://www.perl.org/
6http://www.forth.org/
7http://caml.inria.fr/ocaml/
8http://www.haskell.org/
9http://www.ruby-lang.org

10http://www.lisp.org
11http://www.python.org/

15

can only be discovered at run time. Due to this drawback, dynamic typing is not

popular in mainstream programming languages used to develop extremely large and

complex systems.

Viewed in the context above, the work presented in this dissertation can be seen

as an extension of conventional type systems into representing richer information

(assumptions and guarantees about high-level behavior) about the behavior of more

diverse sets of program elements (such as components, or large portions of software,

as opposed to the behavior of just individual variables, structures, unions, or ob-

jects in conventional type systems). The concept of type safety is analogous to the

notion of interface compatibility presented in this dissertation. As in strongly-typed

languages that do not do type-inference (such as Java) and thereby require the devel-

oper to explicitly annotate variables with type declarations, in our approach there is

a similar overhead placed on the developer in the form of the requirement to provide

behavioral assumption and guarantee information by writing interface descriptions

for components. Furthermore, just as type-inference (as in ML, OCaml, or Haskell)

reduces this annotation overhead on the developer by automatically extracting large

parts of the type information that would otherwise have been asked of the developer,

our framework is similarly capable of being improved upon through automated inter-

face extraction that would similarly reduce the annotation overhead on the developer.

There has been very interesting work on this latter topic independently by Henzinger

et. al. [92] and Alur et. al. [21].

Type systems allow semantic analysis of open systems. A part of a program

(say a set of functions and variable declarations in a language like C or C++) can

be analysed by the compiler and checked for type mismatch errors just as well as

a complete system can. This is in contrast with conventional model-checking based

16

software verification techniques, which can only be used when the entire system de-

scription is available (or a partial specification is “closed” by adding stubs comprising

rudimentary definitions for the parts of the system that are unavailable; a painstak-

ing and burdensome process that often places an unacceptably high overhead on the

verification team). Compilers for type-inference based programming languages such

as OCaml, when used to separately compile OCaml program fragments, compute the

most general types for each variable based on the constraints generated from the type

information in the program fragments given. This is analogous to our composition

operation for interfaces, wherein we compute the most general environment behavior

allowed by the constraints generated from the behavioral assumption and guarantee

information in the interfaces for given system components.

An important concept in type theory is subtyping: a subtype is a data-type that

may be substituted in place of its supertype in any context where the supertype may

be used. For example, if a function takes a single argument that is required to be

an integer, it would be perfectly fine to invoke the function on an even integer. Any

operation permitted on an integer in general is also permitted on an even integer.

This concept of substitutivity or refinement takes a central place in our approach

towards compositional system design: we define precisely when an interface may be

substituted in place of another in an arbitrary context. This allows flexibility in the

design process; e.g. in a web-services based distributed computing scenario, it may

be possible to check if the behavior provided by one shipping service provider such

as Federal Express can be replaced with another, such as USPS, in any arbitrary

context.

Thus, our approach which combines the benefits of model-checking based ap-

proaches with the ability to handle open systems similarly to type systems, thus can

17

be seen as bridging the gap between these two complementary software verification

approaches.

1. Type qualifiers: This approach [73] allows augmentation of the built-in static

type system of a statically-typed programming language like C with more re-

fined static types using extra user-defined type qualifiers. For example, a qual-

ifier such as tainted can be used to mark untrusted data obtained by the

program from untrusted and adversarial users who may be trying to crash the

system. Then, the possible paths along which the untrusted data items can

propagate through the program can be tracked statically through the type-

inference and type-checking process. Then, calls to functions such as printf

can be checked for use of tainted data. This approach has been used to detect

format-string vulnerabilities in C programs [130]. In a fashion similar to type

inference mentioned above, qualifier inference is used to deduce a large fraction

of type qualifiers based on a few that the programmer needs to manually add

to start with; this substantially reduces the annotation overhead on the devel-

oper [73]. Possible bugs are uncovered in this scheme through type mismatches.

As discussed above, open systems can be type-checked in this approach, just

like the design and analysis framework presented in this dissertation. How-

ever, in contrast to our approach which works on high-level abstract system

descriptions, this approach works directly on qualifier-annotated source code in

a programming language like C.

Fundamentally, a type represents a set of assumptions and guarantees about

the operations permitted upon (or behavior exhibited by) a variable or a func-

tion. From this viewpoint, permitting user-defined type qualifiers is equivalent

to giving the user (the system designer and developer) the ability to extend the

18

base type system of the programming language being used, with support for ex-

pressing newer types of behavioral assumptions and guarantees that the system

designers and developers deem important for that particular system. Thus, this

approach may be viewed as a generalization of a conventional type system in the

same general direction of allowing greater ability to represent inter-component

assumptions and guarantees.

Our framework can be thought of as further generalizing this approach, as in

our case types are not forced to be static; the type of an object (as represented

by the set of operations allowed on that object) in our setting may change

over the execution of the program, similar to the approach taken in dynamic

typing. However, while dynamic-typing based type systems are not conducive to

detection of type errors before run time, our framework permits model-checking

based compile-time analysis of the run-time behavior of the program to detect

type mismatches before the program is actually run.

2. Type systems for memory safety: Regions [79], and linear types [100, 59, 68] are

two type-based methods proposed to allow compile-time guarantees of memory-

safety. These methods usually impose severe restrictions on the developer with

regard to how variables or objects of these types can be used. For example,

objects with linear types can be used exactly once; they cannot be duplicated.

Region-based memory management systems divide memory into regions; every

object, when allocated, is associated with a region. Unlike in languages like

C++, memory is not freed one object at a time; entire regions are deleted,

deallocating every object in it in one go. This forces greater discipline on the

part of the programmer with regard to management and deallocation of memory,

and allows languages with such memory management systems to guarantee

19

memory safety (usually dynamically). As expected, both of these techniques

are applicable to analysis of open systems.

Though the techniques concerned are completely different, there are fundamen-

tal similarities in motivation between these approaches towards managing ac-

cess to shared data, and our Resource Interfaces formalism for managing scarce

shared resources (more details about Resource Interfaces will be presented in

Chapter 4). Essentially, a linearly-typed object can be thought of as a resource

permitting a node limit of 1; i.e. permitting only one user to have access at

a time. There are also other application scenarios where access to scarce but

non-unique objects (e.g. database handles, of which there may be a small num-

ber, such as 50, but many more than just 1) need to be managed in a fully

programmatic and software setting, and the use of linear types (because they

insist on keeping the concurrent access limit (node limit) at 1) might be dif-

ficult. While reference-counting based dynamic solutions have been proposed

to address problems of this type, it seems an interesting future problem to in-

vestigate ways to combine the two dramatically different classes of techniques

used in the linear types literature with the model-checking based methods used

in Resource Interfaces in order to obtain better compile-time solutions to this

problem.

3. System-level types: The Ptolemy II [3] component-based system design environ-

ment uses system-level types [106] to characterize runtime interactions between

components. The components interact by calling methods implemented by other

components. The type of a component in this setting is an interface automaton

that restricts the sequences of method calls that are allowed by the component.

A call to a method m implemented by a component A is an input to the inter-

20

face automaton representing A; a call from A to a method m′ implemented by a

different component B is an output from the interface automaton representing

A. Type-checking different interacting components for compatibility involves

composing the interface automata representing the behavior of the components

concerned. Subtyping relationships between components correspond to refine-

ment relationships between the corresponding type automata. The components

are organized into a lattice reflecting their subtyping relationships; this allows

easier design of polymorphic components and simplifies type-checking in the

Ptolemy II system. In addition to these static checks, the Ptolemy II system

also supports enhanced debugging functionalities by implementing reflection

of component states and runtime type checking to find incompatibilities that

correspond to mismatches in inter-component interaction protocols in complex

systems with large numbers of components.

This work is closely connected to the work presented in the rest of this disser-

tation in the fundamental view of interfaces as behavioral types. While this

work demonstrates the practical applicability of an interface-automata based

behavioral type system for efficient support for compositional system design in

the Ptolemy II setting, in the rest of this dissertation we present other interface

formalisms that are useful in other domains, such as distributed asynchronous

services, or in the context of resource-constrained embedded software.

4. Session types for concurrent distributed protocols: Process calculi, such as π-

calculus, are often used to represent the behavior of concurrent distributed

programs. Such representations usually focus on the communication behavior

of the interacting components of the concurrent program, by describing the

sequences of messages sent over channels between the interacting peers. Mes-

21

sages can be given types, and channels can be restricted to be able to carry

messages of certain types only. Other extensions have been proposed in which

certain channels are allowed to carry messages of different types at different

points of program execution. Such a channel is then characterized by a ses-

sion type, which is a sequence of message types possibly including branching

choice points. Session types thus represent sets of sequences of types of mes-

sages that may be sent or received over the communication channel. Such a

formalism can be used to describe finite-state message exchange patterns for

distributed or local peers communicating with each other over communication

channels [122]. They have been used to describe distributed client-server inter-

action protocols such as POP3 [80] and SMTP [122]. Though the techniques

involved are completely different, this approach is similar to ours in that both

are intended to formally characterize the behavior of interacting open system

components, and reason about their compatibility in the presence of a helpful

environment. However, while this approach focuses on finite-state interaction

protocols, the approach presented in this dissertation allows representation and

analysis of unbounded-state interaction protocols [40, 38, 25, 26, 27]. More

details about an unbounded-state model for representing the behavior of dis-

tributed asynchronous services will be presented in Chapter 3.

5. Typestates: In contrast to the standard type system framework where an ob-

ject has the same type throughout the execution of the program, typestate sys-

tems [131] have been proposed as a generalization allowing the state of an object

to change over time as a result of program actions. As a result, a typestate sys-

tem is able to statically enforce various safety properties by making sure that

certain program operations are never allowed to happen on objects in certain

22

typestates. One common problem plaguing typestate systems is the aliasing

problem: if the same object is referred to using different references (aliases)

in different program operations, the typestate system is in general unable to

resolve all aliases of a given object to a canonical name, and is hence in general

unable to track the state of aliased objects precisely. Generalizing the stan-

dard typestate approach which assigns a single state to each object at every

execution point, other models allow each object to be a member of a subset of

a given set of typestate sets, thus allowing each object to be in any subset of

the set of all possible typestates at any point of time [104]. These generalized

approaches provide better solutions to the aliasing problem. However, while

these approaches are intended to work directly on source code, we focus on be-

havioral descriptions at a higher, more abstract level. This allows us to require

interface descriptions to be made in a language that is much simpler than a

general-purpose programming language, and thereby rule out the aliasing issue

by construction. In contrast to typestate systems that track system behavior

at a fine-grained per-variable basis, we focus on higher-level safety properties

at the inter-component interaction protocol level.

6. Behavioral subtyping: An interesting model-theoretic approach to formally de-

fine the notion of behavioral subtyping is presented in [108]. Our formalism is

consistent with this approach, and the notion of behavioral subtyping in this

setting is equivalent to our notion of substitutivity or refinement. While the ab-

stract model-theoretic definitions of [108] provide a unified domain-independent

definition for behavioral subtyping and take a completely abstract view of the

specific syntax and semantics of the target language (and thus do not attempt

to take advantage of any particular characteristics of any specific languages or

23

application domains in order to achieve efficient algorithms for checking be-

havioral sub-typing relationships in those specific languages), we approach the

issue of behavioral subtyping on a domain-by-domain basis, and have different

formalisms for different application domains (such as hardware components,

distributed asynchronous services, or resource-constrained embedded software),

and different algorithms that take advantage of the specific properties of the

latter.

Static analysis, theorem-proving, model-checking, and related techniques

An alternative approach towards program verification distinct from type-systems

based ones is a class of compile-time program analyses involving tracking the flow of

control and data and reasoning about the effects of program statements on tracked

data with various degrees of precision. This class of approaches include static analy-

sis, model checking, and theorem-proving based reasoning techniques. Static analyses

include syntactic checks for adherence for coding standards and best practices, anal-

ysis of the flow of control and data through the program (which may be done in

a flow-insensitive, flow-sensitive, or path-sensitive manner depending on the degree

of precision desired), points-to analysis (finding sets of objects or variables that a

pointer can point to at various points of the lifetime of the program), shape analysis

(discovery and verification of properties of dynamically-allocated linked data struc-

tures), etc. Others have proposed static-analysis based methods to allow developers

to check satisfaction of specific coding rules by their software codebase [66, 86]. In

contrast to the analyses above, this latter approach requires developers to provide

additional information in the form of the rules they want to be checked. Extended

static checking [60, 71] has been proposed to check safety properties statically using a

24

combination of static analysis and theorem-proving. In this approach, developers are

allowed to provide additional annotations describing information about their software

that they have access to while writing the program, but which do not form part of

the source code they write (e.g. beliefs in their mind about the behavior of their

software and relationships maintained among variables, objects, functions, methods,

and other program elements); such as pre-conditions assumed and post-conditions

guaranteed by various functions or methods, invariants maintained in various classes

in an object-oriented setting, etc. This additional information is written in machine-

readable annotations that the program checker reads and reasons about at compile

time using built-in theorem-provers. Like our approach presented in this dissertation,

these approaches are compositional and are able to gracefully handle open systems.

Also, in contrast with dynamic techniques that will be discussed below, in order to

be effective these approaches do not depend on the developer or the tester to provide

exhaustive test suites that cover enough execution paths. In contrast, our approach

focuses only on the inter-component behavior and is hence able to perform analysis of

protocol-level interaction errors between components while completely ignoring the

behavioral information completely internal to each component.

In contrast to static analysis, our approach is able to check temporal safety prop-

erty specifications. This benefit is not without cost; the price we pay in our approach

is the need for developer-provided interface descriptions for the components being

analyzed; annotations that are not needed by static analysis techniques that run di-

rectly on the component source code, and can be labor-intensive to generate manually.

Extended static checking depends upon developer-provided annotations as well.

Two different techniques for automated extraction of component interfaces from

source code have been proposed [92, 21] that can substantially mitigate the overhead

25

cost of this need for additional information. The first of these two techniques is based

on a variation of a previously-proposed interesting combination of static analysis,

model-checking, and theorem-proving to automatically extract boolean abstractions

of programs from source code and check safety properties [22, 23, 93, 91]. Though

this latter method was geared towards abstraction (and verification) of closed sys-

tems, interesting combinations of these same techniques has been used for automated

abstraction of interfaces for open systems [92]. The second approach for interface

synthesis uses symbolic model checking and learning finite automata [21]. For the

reason mentioned above, these two approaches for interface synthesis complement

the work on interface analysis (compatibility-checking, specification-checking, and

refinement-checking) presented in this dissertation.

1.2.2 Dynamic approaches

Software testing

This is the standard approach for software quality assurance that has been tradi-

tionally used in the software engineering industry for the last several decades. The

effectiveness of this approach depends on the software developer or testing engineer

to provide an exhaustive test-suite that covers all important program paths. This is a

very hard problem, as the number of execution paths in general grows exponentially

in program size (as the number of paths can double with each if-then-else element

in a linear sequence of if-then-else blocks that provide a series of bifurcation and

join points for control to flow through). Testing does not work in general on open

systems, e.g. if unimplemented functions or methods are called by the system under

test. So, stub functions need to be written to provide place-holder implementations

26

for such functions to close the system. A test harness needs to be written to exercise

all implemented functions. Our approach presented in this dissertation solves all the

above problems associated with testing: we can deal with open systems with unim-

plemented functions or methods, and the efficacy of our approach does not depend

on the exhaustiveness of the test suite provided. Furthermore, while testing large

systems is a very expensive problem due to the extremely large numbers of execution

paths therein, our approach is fully compositional and better suited for analysis of

component-based systems with large numbers of components. However, testing has

certain compelling benefits that are very hard to provide in a formal software verifica-

tion solution; e.g. since there are relatively few up-front costs one has to pay to start

testing software (apart from writing the test-cases one by one), it is often possible to

find some of the most shallow bugs (which can be quite numerous till pretty late in

the development cycle) at relatively low cost with testing, compared to using a formal

method that may require significantly more groundwork (e.g. interface descriptions

in our case) before the benefits start to obtain. Furthermore, testing is intuitively

simple and easily understood by even novice programmers, in contrast with formal

approaches which currently require somewhat greater sophistication on the part of

the user. For these reasons, our approach is certainly not intended to be a replace-

ment for testing; it is intended to be complementary to it. Testing is a time-tested

software quality technique which will keep its place in the software development pro-

cess for a long time to come for the reasons mentioned above. Hence, in Chapter 6 we

provide a method to partition large pieces of software to obtain smaller pieces which

can be tested separately to get better test coverage, without leading to too many

false alarms (possible behavioral mismatches that appear to be programming errors

when seen in the limited piecemeal testing context, but which later turn out to not

be errors after all when seen in the context of the entire system as a whole; such false

27

alarms can occur as a result of the incomplete behavioral information available during

piecemeal testing). This method is based on analyzing the patterns of information

sharing between different parts of the system under test.

The “Design by Contract” methodology

This is a promising dynamic approach to facilitate compositional software de-

sign and implementation proposed by Bertrand Meyer and supported by the Eiffel12

programming language developed by him and his collaborators. In this approach, a

system is developed by creating components that satisfy certain “contracts” made

with each other. These contracts restrict the behavior of the components. The con-

tracts are enforced at runtime. In Eiffel, methods are equipped with pre-conditions

and post-conditions, and classes are equipped with invariants. When a method is

invoked, all its pre-conditions must be true. When the method finishes execution,

all its post-conditions must be true. Class invariants are established by constructor

methods and must be maintained by all other methods. Eiffel is an object-oriented

language supporting inheritance. Pre-conditions can only be weakened by inheritance,

and post-conditions can only be strengthened. This ensures that the pre-conditions

of a method implemented by a class are satisfied whenever the pre-conditions of the

over-ridden method in the parent class are, and vice-versa for post-conditions. Eiffel

also supports assertions and loop invariants. Some of these features (e.g. assertions)

have been incorporated into other mainstream programming languages like C, C++,

C#, and Java. The contracts are enforced at runtime and their violations constitute

bugs. However, if a bug lies on an infrequently executed program path, then the

probability of discovering it using this approach would in general be very low, as the

12http://www.eiffel.com/

28

approach depends on the developer/tester to provide a good test-suite that covers

all important program paths [115]. Thus, while this approach vastly improves upon

testing, by allowing developers to express complex conditionals and invariants that

are maintained by their carefully crafted code, and makes it easier to discover bugs

introduced by subsequent changes that break those invariants, the approach remains

fundamentally vulnerable to the same inadequacies that characterize testing: in a

large program the number of execution paths (which grows exponentially with pro-

gram size) is too large and reaching one hundred percent code coverage (measured

in terms of any of the standard test coverage metrics: line coverage, branch cover-

age, or path coverage) is extremely hard and prohibitively expensive. Furthermore,

as in testing, and in contrast to our approach, runtime checking of contracts in the

Design-by-Contract/Eiffel approach requires that there be no calls to unimplemented

functions or methods.

The notion of behavioral “contracts” between interacting software system com-

ponents is fundamentally similar to the notion of characterizing open system com-

ponents with interfaces that capture the behavioral assumptions and guarantees be-

tween them. However, as mentioned above, the Eiffel approach is based on dynamic

checking of contract-satisfaction at run-time. In contrast, our approach is based on

compile-time model-checking to statically uncover behavioral interaction errors with-

out depending on a developer-provided test-suite for exhaustive dynamic analysis.

The Eiffel approach is also oriented towards expression of contracts at a very fine-

grained source-code-variable by source-code-variable level. In contrast, our approach

allows expression of behavioral “contracts” at a higher level of abstraction.

29

Dynamic analysis

In addition to the approaches mentioned above, several promising dynamic anal-

ysis techniques exist, some of which manage to mitigate to some extent the need

for developer-provided test-suites mentioned above. However, even those techniques

remain unable to handle open systems, particularly with regard to calls to unimple-

mented functions or methods, that the approach presented in this dissertation is able

to handle. We present a brief discussion of a few salient dynamic analysis techniques

as follows:

1. Race detection: This approach instruments source, or often, binary code to

monitor accesses to shared memory in multi-threaded programs to detect race

conditions [128]. As expected, this approach depends on availability of a good

test-suite that covers enough execution paths. Furthermore, this type of ap-

proaches cannot handle open systems with calls to unimplemented functions

or methods unless stub functions are written to close the system under analy-

sis. In Section 3.5 we present a case study involving using our formalism and

methodology for checking safety specifications for detection of a race condition

in a distributed web-services based application that uses the Amazon.com E-

Commerce Services (ECS) framework. It should be noted that our approach

presented therein, as in the rest of the dissertation, works at compile-time, in

contrast with the dynamic approach of [128]. Furthermore, while the approach

of [128] works directly on source or binary application code, our approach works

at the level of interface descriptions. The domain of application of these two

approaches are different; while the approach of [128] focuses on checking com-

plete programs in the monolithic setting, our approach presented in Chapter 3

is oriented towards verification of distributed applications in the web-services

30

setting where no one entity usually has access to the entire source of binary

code of the entire web-based application.

2. Invariant discovery: This approach uses a set of test inputs given by the user to

discover possible invariants [67]. Techniques of this kind can be combined with

the “Design By Contract” methodology presented above to reduce development-

overhead involved in manually extracting program invariants. Similarly, we

hypothesize that it may be possible to use techniques of this kind to automat-

ically extract, from component source-code, higher-level behavioral properties

that might be part of the component interface. Such an approach, if feasible,

could complement the methods mentioned above [92, 21]. However it should

be noted that currently in this approach there is no satisfactory solution to the

problem of dealing with calls to unimplemented function or method calls.

However, invariant-discovery using this approach requires the software developer

to provide a good set of inputs that will cover enough program paths. However

in conjunction with a promising new technique to automatically discover test

inputs that exercise new program paths as explained below, it can be used to

much greater advantage.

3. Concolic execution: As mentioned above, this approach uses a combination of

dynamic and static analyses and theorem-proving (“concrete and symbolic”)

to automatically discover new test inputs to exercise new program paths. Cov-

erage is usually low in the presence of complicated program operations that

the theorem-prover finds difficult to reason about. However, in a large class of

real-world programs the program logic is simple enough to permit automatic

test input generation using this method to achieve reasonably good coverage.

Furthermore, in conjunction with the invariant-discovery approaches mentioned

31

above it can be used to automatically discover interesting program invariants

without having access to an exhaustive test-suite.

1.2.3 Design Patterns

This [77] is an interesting approach towards codifying commonly-used program-

ming techniques. A design pattern is a template for a specific commonly-occurring

problem in software engineering. Design patterns have been classified into categories

based on the types of problems they address, such as creational, structural, behav-

ioral, or concurrency patterns. Of these, behavioral patterns and concurrency pat-

terns address the same general types of problems that are the target of our behavioral

specification formalism. However, our approach focuses on formal specifications of be-

havior, and algorithmic techniques for checking composition, compatibility, specifica-

tions, and refinement, whereas the focus of the Design Patterns community has so far

been on providing concepts that can be used by developers to efficiently communicate

the inter-component interaction schemes they use; the actual use of these patterns

requires human involvement throughout, and does not seem amenable to automation.

Moreover, the specific types of Design Patterns recommended [77] for common use are

simply guidelines that help establish a generic and dynamically reconfigurable inter-

object communication architecture in a completely domain-neutral, program-neutral

and functionality-neutral way; they do not deal with any particular behavioral details

that may occur in any specific program or application to deliver any specific function-

ality in any specific application domain. For example, the Chain of Responsibility

pattern recommends that developers avoid coupling a sender of requests to a specific

receiver by allowing the request to be passed along by a chain of possible receiving

objects until one of them handles it. The Visitor pattern is based on the idea that

32

descriptions of operations performed on complex data structures should be decoupled

from the descriptions of the data structures themselves. Design Patterns are thus

intended to codify best practices and rules of thumb that apply to practically all pro-

grams and therefore are necessarily concerned with behavior only at a very high-level

of abstraction where all program-specific domain-specific and application-specific de-

tails are abstracted away. In contrast, in this dissertation we provide domain-specific

formalisms to represent application-specific behavioral assumptions and guarantees

made by open system components about each other in order to implement specific

functionalities.

1.2.4 Software architecture specification

This [78, 13, 14, 47, 48] is an analogous approach towards codification of

commonly-used software architectures. These approaches have focused on finding

solutions to commonly-occurring software architecture problems involving protocols

for inter-component communication, global control structure, physical distribution,

scaling and performance, choice between design alternatives, etc. The scope of soft-

ware architecture issues is larger than that of the design pattern issues discussed

above. For example, in [78] the authors present some widely-used software architec-

tural elements such as the “pipes and filters” abstraction that allows components to

be implemented separately and decoupled from each other and combined in various

ways as long as the types of inputs and outputs exchanged on the pipes match up;

object-oriented design in which functionality and associated data are combined into

logical entities called objects or classes, and the details of the implementation are hid-

den to the maximal extent possible from users; event-based programming, in which

entities register with an event manager as receivers of various program events (such

33

as a mouse-click) and are “implicitly invoked” (by the event manager) when those

events occur, thereby freeing up the developer from the worry of having to constantly

keep her application software explicitly enabled to receive and appropriately handle

all possible events, allowing better compartmentalization of the functionality imple-

mented in separate components without mixing them up in an explicitly-implemented

unified event manager in the application code, and thereby allowing easier addition

of new components or removal of existing components from the system.

Our focus on formalizing inter-component behavioral assumptions and guarantees

causes us to address some of the same issues of modeling inter-component interaction

addressed by Garlan et. al. in formally defining and representing commonly-occurring

architectural elements (such as the commonly-used client-server architecture) [13, 14].

However, there are certain fundamental differences in the modeling approaches used.

Garlan et. al. use a model – with processes and events, named processes and recur-

sion, sequential and parallel composition, and internal and external choice – based on

Communicating Sequential Processes (CSP) [94]. While internal and external choices

allow explicit representation of responsibility for, and control of, action and reaction

on the component (internal choice) or the environment (external choice) and is in

this regard somewhat comparable (in a severely limited sense) to the player-specific

control information represented in two-player games (like what we use in our models

presented in this dissertation), that is where the similarity to two-player games ends

in the frameworks used in this work. In contrast, two-player games forms the funda-

mental basis of the models presented in this dissertation, and is the very reason that

allows us to perform verification tasks (such as specification-checking) on open system

components. Furthermore, in contrast to the work presented in this dissertation, the

work of Garlan et. al. [78, 13, 14, 47, 48] has focused on providing conceptual frame-

34

works and solution templates for commonly-occurring domain-neutral (but detailed

and expressive enough to allow representing application-specific issues, in contrast

to the Design Patterns methodology discussed above) architectural problems; not on

domain-specific formalisms to represent application-specific architectural decisions.

Thus, while the CSP-based model has certain broad similarities to, for example, the

protocol interfaces model we use to represent the behavior of distributed asynchronous

services in Chapter 3 (in certain respects, e.g. ignoring the differences regarding the

two-player game aspect), there are major differences (e.g. the two different kinds

of parallel composition allowed by our model, a domain-specific modeling decision)

motivated by the characteristics of the application domain.

These modeling differences notwithstanding, there are many commonalities in the

goals afforded by the formalism of Garlan et. al. and those afforded by ours: the

notion of compatibility (between ports and roles representing connectors and compo-

nents respectively in the former, and between component interfaces in the latter) is

analogous and central to both approaches. While the formalisms presented in this

dissertation focus on checking safety property specifications, this notion is analogous

and theoretically equivalent to the notion of deadlock-freedom in the work of Gar-

lan et. al. (since any given pair of a system description K and a safety property

p may be translated into a new system description K ′ that deadlocks if and only if

K can generate an execution trace that violates the safety property p). In addition

to checking compatibility and deadlock-freedom, Garlan et. al. have also investi-

gated other interesting (though completely orthogonal to the direction pursued by

us in the research presented this dissertation) applications of this same fundamental

component-and-connector architecture model, such as detection of integration mis-

35

matches and automated synthesis of glue code to handle such mismatches [112]; and

merging and differencing of architectural views [6].

1.2.5 Game semantics for programming languages

A lot of effort has been devoted by the programming language community on

providing a syntax-independent denotational semantics for a higher-order functional

programming language such as PCF (the Programming Language of Computable

Functions) [11, 98, 123]. For this purpose, Abramsky et. al. model a program

as a strategy for player P playing a game against an environment E [8, 7]. The

moves of players P and O correspond to exchanging input and output data from

the program to its context and vice versa. Functional and imperative programming

language constructs such as values, functions, higher-order functions, products, func-

tion composition, mutable store, control operators, nondeterminism, subtyping, etc.

are represented as strategies of player P against the player O. The two players are

assigned various strategies and the set of possible outcomes of the games they play

with each other defines the semantics of the language.

However, while the goal of the work by Abramsky et. al. is towards providing a

new formal mathematical model of computation for explicitly modeling modern pro-

gramming language concepts, in the compositional verification approach we present

in this dissertation we model component-based open systems as two-player games in a

similar way but for a different purpose. We model open systems as two-player games

between a player System and a player Environment to verify safety properties for

open systems with an optimistic view about the behavior of the environment, thus

allowing us to verify complex and large systems in a compositional fashion.

36

In our approach the Environment wins if certain safety properties are satisfied

while the game is played, and System wins if it can violate any of those safety prop-

erties. The winning strategies correspond to desired behavior of the environment

and thus represent conditions under which the system component may be used. As

mentioned before, we do this with the goal of representing and analyzing the behav-

ioral assumptions and guarantees to each other by system components in order to

enable compositional design of component-based systems. Thus, we are interested

in specific games and in being able to compute if any outcomes correspond to viola-

tions of our safety specifications. Also, we focus on specific application domains (like

hardware circuits, distributed web services, embedded software, etc) and construct

specific formalisms focused on taking advantage of domain-specific opportunities for

achieving easily-usable syntax, expressive semantics, and algorithmic optimizations.

In contrast, Abramsky et. al. in [8, 7] define the allowed strategies of the two players

but then are not concerned about the outcomes of any specific games that may occur

in specific practical problems. Furthermore, their goal is to capture the semantics

of an expressive programming language, independent of any simplifications or opti-

mizations afforded by any specific application domains where that language may be

used.

While Abramsky et. al. originally developed their framework with a different mo-

tivation as mentioned above, their approach is certainly amenable to being re-targeted

towards a compositional framework for specification-checking for open systems, and

they have done some interesting work towards that goal as well [10]. In contrast to the

approaches presented in this dissertation (e.g. the unbounded-state model of protocol

interfaces presented in Chapter 3) their work has focused on finite-state models. As

before, and in contrast to our approach, their methodology is domain-neutral and thus

37

does not take advantage of any particular characteristics of any specific application

domains.

1.3 Outline

The rest of this dissertation is organized as follows. In Chapters 2, 3, and 4 we

present three interface formalisms for three different application domains: hardware

systems, web-services based applications, and resource-constrained embedded soft-

ware platforms respectively. Chapter 5 consists of a quantitative verification frame-

work obtained as a generalization of the model presented in Chapter 4. In Chapter 6

we present a formalism that allows automated software partitioning based on the

heuristics that estimate the amount of information represented by control interfaces

of functions in a language like C.

38

Chapter 2

Synchronous and Bidirectional

Component Interfaces

We present interface models that describe both the input assumptions of a com-

ponent, and its output behavior. By enabling us to check that the input assumptions

of a component are met in a design, interface models provide a compatibility check for

component-based design. When refining a design into an implementation, interface

models require that the output behavior of a component satisfies the design speci-

fication only when the input assumptions of the specification are satisfied, yielding

greater flexibility in the choice of implementations. Technically, our interface models

are games between two players, Input and Output; the duality of the players accounts

for the dual roles of inputs and outputs in composition and refinement. We present

two interface models in detail, one for a simple synchronous form of interaction be-

tween components typical in hardware, and the other for more complex synchronous

interactions on bidirectional connections. As an example, we specify the interface of

a bidirectional bus, with the input assumption that at any time at most one compo-

39

nent has write access to the bus. For these interface models, we present algorithms

for compatibility and refinement checking, and we describe efficient symbolic imple-

mentations.

2.1 Introduction

One of the main applications of modeling formalisms is to capture designs. We

present interface models that are specifically geared to support the component-based

approach to design. Interface models describe both the inputs that can be accepted

by a component, and the outputs it can generate. As an interface constrains the

acceptable inputs, the underlying component fits into some design contexts (which

meet the constraints), but not into others. Interface models provide a means for

answering four questions that arise in component-based design: the well-formedness

question (can a component be used in some design, i.e., are the input constraints

satisfiable?), the verification question (does a component satisfy a given property in

all designs?), the compatibility question (do two components interact in compatible

ways in a design?), and the refinement question (can a component be substituted for

another one in every design context without violating compatibility?).

For each of the questions of well-formedness, verification, compatibility, and re-

finement, there are two basic choices for treating inputs and outputs. The graph view

quantifies inputs and outputs with the same polarity; the game view quantifies inputs

and outputs with opposite polarities. In the graph view, both inputs and outputs

can be seen as labels in a nondeterministic state transition graph; in the game view,

inputs and outputs are chosen by different players and the result of each combination

of choices determines the state transition. For example, the graph view is appropri-

40

ate for the verification question: does a component satisfy a given property for all

acceptable inputs and all possible outputs? On the other hand, the game view is

necessary for the well-formedness question [5, 61]: are there acceptable inputs for all

possible choices of outputs? We argue that also for compatibility and refinement, the

game view is the appropriate one.

2.1.1 The graph view

The graph view is taken by many process algebras (e.g., [94, 117]) and state-based

models (e.g., [111, 109, 45, 17]). These frameworks are aimed at verification. Indeed,

also refinement is typically viewed as a verification question: does a more detailed

description of a component generate only behaviors that are permitted by a more

abstract description? Refinement is usually defined as a form of trace containment or

simulation: when quantifying universally over both inputs and outputs, we say that

a component N refines a component M (written N �M) if, for all input and output

choices, the behaviors of N are a subset of those of M . In particular, N can only

produce outputs that are also produced by M , and N can only accept inputs that

are also accepted by M . This ensures that every language-theoretic property (such

as safety) that holds for M also holds for N . The graph view of refinement, however,

becomes problematic when we interpret refinement as substitutivity. The output

clause is still appropriate: by requiring that the output behavior of N is a subset of

that ofM , it ensures that if the outputs ofM can be accepted by the other components

of the design, so can those of N . The input clause instead is questionable: it states

that the implementation N should be able to accept a subset of the inputs accepted

by the specification M . This raises the possibility that, when N is substituted for

M in a design, N cannot accept some inputs from other components that could be

41

accepted by M . Hence, substitutivity of refinement does not hold in the graph view.

Indeed, in process algebras and the modeling language SMV [45], if N �M and M‖P

is deadlock-free, it is possible that N‖P deadlocks [9]. To remedy this situation,

some models, such as I/O automata [110] and reactive modules [17], require that

components be able to accept all possible inputs; this condition is known as input-

enabledness or receptivity. This requirement forces models to specify the outputs

generated in response to all possible inputs, including inputs that the designers know

cannot occur in the actual design. In turn, this creates further complications in

the study of refinement. It is natural to require that the output behavior of N is

a subset of that of M , when these output behaviors occur in response to inputs

that are possible in the design. Extending the requirement also to inputs that are

known not to occur is instead problematic: such outputs are often chosen arbitrarily,

with the goal of simplifying the models or their implementations (as in the case of

hardware optimizations that exploit “don’t care” information about inputs). Thus, in

input-enabled or receptive approaches, refinement is generally checked only between

closed systems, that have no input from the environment; open systems are first

closed by composing them with specifically-designed components that represent the

environment.

The graph view is also limited in its capability to analyze component compat-

ibility. If models specify explicitly which inputs can be accepted, and which ones

are illegal, then it is possible to ask the compatibility question generically: do illegal

inputs occur? If we quantify universally over both inputs and outputs, we obtain a

verification question: two components M and N are compatible if, once composed,

they accept all inputs. This is not a natural phrasing of the compatibility question:

it requires M‖N to accept all inputs, even though M and N could have illegal in-

42

puts. A more compositional definition is to call M and N compatible if there are

some input sequences that ensure that all illegal inputs of M and N are avoided,

and to label all other sequences as illegal for M‖N . This definition of compatibility

leads to a dual treatment of inputs (quantified existentially) and outputs (quantified

universally), and to the game view.

2.1.2 The game view

According to the game view, inputs and outputs play dual roles. In trace theory

[61], a trace model consists in two sets, of accepted and rejected traces, and games are

used to solve the realizability and compatibility questions. In the game semantics of

[8, 9] and the interface models of [54, 55], components are explicitly modeled as games

between two players, Input and Output. The moves of Input represent the inputs

that can be accepted, and the moves of Output the outputs that can be generated. To

model the fact that these sets can change in time, after the input and output moves

are chosen, the game moves to a new state, with possibly different sets of accepted

inputs and possible outputs.

In the study of compatibility, game-based approaches quantify inputs existentially,

and outputs universally. When two components M and N are composed, their com-

position may have illegal states, where one component emits outputs that are illegal

inputs for the other one. Yet, M and N are considered compatible as long as there is

some input behavior that ensures that, for all output behaviors, the illegal states are

avoided: in other words, M and N are compatible if there is some environment in

which they can be used correctly together. In turn, the input behaviors that ensure

compatibility constitute the legal behaviors for the composition M‖N : when com-

43

posing component models, both the possible output behaviors, and the legal input

behaviors, are composed.

The game view leads to an alternating view of refinement [19]: a more detailed

component N refines an abstract component M if all legal inputs of M are also legal

forN and if, whenM andN are subject to the same (legal) inputs, N generates output

behaviors that are a subset of those of M . This definition ensures that, whenever N �

M , we can substitute N for M in every design without creating any incompatibility:

in the game view, substitutivity of refinement holds. The alternating definition of

refinement also mirrors the contravariant definition of subtyping in programming

languages, which also supports substitutivity [118]. Indeed, the game framework can

be viewed as a generalization of type theory to behaviors.

2.1.3 Synchronous interface models

In this chapter, we adopt the game view to modeling, and we introduce two inter-

face models for synchronous components. We begin with the simple model of Moore

interfaces : in addition to the usual transition relation of a synchronous system, which

describes the update rules for the outputs, a Moore interface has a symmetrically-

defined transition relation for the inputs, which specifies which input transitions are

acceptable. Our second model, bidirectional interfaces, illustrate how game-based

models can be richer than their graph-based counterparts. Bidirectional connections

cannot be modeled in the input-enabled setting: there are always environments that

use such connections as input, and environments that use them as output, so that no

component can work in all environments. Bidirectional connections, however, can be

naturally modeled as a game between Input and Output players. As an example, we

encode the access protocol to the PCI bus, in which several components share access

44

to a multi-directional bus. By checking the compatibility of the component models,

we can ensure that no conflicts for bus access arise. We have implemented tools

for symbolic compatibility and refinement checking for both Moore and bidirectional

interfaces, and we discuss how the game-based algorithms can be implemented with

minor modifications to the usual symbolic machinery for graph-based algorithms, and

yield a similar efficiency.

Finally, interfaces enable us to encode the environment assumptions that are used

in assume-guarantee reasoning directly as input assumptions of the interface, rather

than as separate “environment” components. This leads to a verification rule for com-

positional refinement that combines, and generalizes, rules proposed in [17, 16]. The

rule illustrates how the essence of compositional verification consists in studying both

the implementation and the specification as constrained by their actual environments.

2.2 Compatibility and Composition

2.2.1 Moore interfaces

Moore interfaces model both the behavior of a system component, and the inter-

face between the component and its environment. The state of a module is described

by a set of state variables, partitioned into sets of input and output variables. The

input variables represent inputs to the module, and their value can be read, but not

changed, by the module; the output variables represent outputs of the module, and

their value can be changed (and read) by the module. The possible changes of out-

put variables are described by an output transition relation, while the legal changes

of input variables are described by an input transition relation. Hence, the output

45

interface Counter

output q0, q1: bool;

input cl: bool;

input atom

init

[] true -> cl :=nondet

update

[] true -> cl’:=nondet

endatom

output atom

init

[] true -> q0:=1; q1:=1;

update

[] cl -> q1’:=1; q0’:=1

[] ~cl & q1 & q0 -> q1’:=1; q0’:=0

[] ~cl & q1 & ~q0 -> q1’:=0; q0’:=1

[] ~cl & ~q1 & q0 -> q1’:=0; q0’:=0

[] ~cl & ~q1 & ~q0 -> q1’:=1; q0’:=1

endatom

end interface

Figure 2.1. A counter modeled as a Moore interface. The guarded-command syntax
is derived from the one of reactive modules [17] and Mocha [20, 53]; input atoms
describe the input assumptions, and the output atoms describe the output behavior.
When more than one guard is true, the command is selected nondeterministically.
Input variables not mentioned by the command are updated nondeterministically.

46

interface Adder

input q0, q1: bool; di: [0..7];

output do: [0..7];

input atom

init

[] true -> q0:=1

[] true -> q1:=1

update

[] true -> q0’:=1

[] true -> q1’:=1

endatom

output atom

init

[] true -> do:=nondet

update

[] q0 & q1 -> do’:=di’

[] ~q0 & q1 -> do’:=di’+1

[] q0 & ~q1 -> do’:=di’-1

endatom

end interface

Figure 2.2. A ±1 adder modeled as a Moore interface.

47

transition relation describes the module’s behavior, and the input transition relation

describes the input assumptions of the interface. Finally, a set of initial outputs spec-

ifies the initial condition of the module, and a set of initial inputs specifies the desired

initial condition of the environment.

Example 2.1 We illustrate the features of Moore interfaces by modeling a simple

example: a ±1 adder driven by a binary counter. (Figures 2.1 and 2.2). The

adder Adder has two control inputs q0 and q1, data inputs i7 · · · i0, and data outputs

o7 · · · o0. When q0 = q1 = 1, the adder leaves the input unchanged: the next value

of o7 · · · o0 is equal to i7 · · · i0. When q0 = 0 and q1 = 1, the next outputs are given

by [o′7 · · · o
′
0] = [i7 · · · i0] + 1 mod 28, where primed variables denote the values at the

next clock cycle, and [o′7 · · · o
′
0] is the integer encoded in binary by o′7 · · · o

′
0. Similarly,

when q1 = 0 and q0 = 1, we have [o′7 · · · o
′
0] = [i7 · · · i0] − 1 mod 28. The adder

is designed with the assumption that q1 and q0 are not both 0: hence, the input

transition relation of Adder states that q′0q
′
1 6= 00. In order to cycle between adding

0,+1,−1, the control inputs q0 and q1 are connected to the outputs q1 and q0 of a

two-bit count-to-zero counter Counter . The counter has only one input, cl : when

cl = 0, then q′1q
′
0 = 11; otherwise, [q′1q

′
0] = [q1q0] − 1 mod 4.

When the counter is connected to the adder, the joint system can take a transition

to a state where q1q0 = 00, violating the adder’s input assumptions. In spite of this,

the counter and the adder are compatible, since there is a way to use them together:

to avoid the incompatible transition, it suffices to assert cl = 0 early enough in the

count-to-zero cycle of the counter. To reflect this, when we compose Counter and

Adder , we synthesize for their composition Counter‖Adder a new input assumption,

that ensures that the input assumptions of both Counter and Adder are satisfied. To

determine the new input assumption, we solve a game between Input, which chooses

48

the next values of cl and i7 · · · i0, and Output, which chooses the next values of q0, q1,

and o7 · · · o0. The goal of Input is to avoid a transition to q1q0 = 00. At the states

where q1q0 = 01, Input can win if cl = 0, since at the next clock cycle we will have

q′1q
′
0 = 11; but Input cannot win if cl = 1. By choosing cl ′ = 0, Input can also win

from the states where q1q0 = 10. Finally, Input can always win from the states where

q1q0 = 11, for all cl ′. Thus, we associate with Counter‖Adder a new input assumption

encoded by the transition relation requiring that whenever q1q0 = 10, then cl ′ = 0.

The input requirement q1q0 6= 00 of the adder gives rise, in the composite system,

to the requirement that the reset-to-1 occurs early in the count-to-zero cycle of the

counter.

Given a set W of typed variables with finite domain, a state s over W is a function

that assigns to each x ∈ W a value s[[x]] of the appropriate type; we write S[W] for the

set of all states over W . We denote by W ′ = {x′ | x ∈ W} the set obtained by priming

each variable in W ; given a predicate ϕ on W , we denote by ϕ′ the predicate on W ′

obtained by replacing in ϕ every x ∈ W with x′ ∈ W ′. Given a state s ∈ S[W] and a

predicate ϕ on W , we write s |= ϕ if ϕ is satisfied under the variable interpretation

specified by s. Given two states s, s′ ∈ S[W] and a predicate ϕ on W ∪W ′, we write

(s, s′) |= ϕ if ϕ is satisfied by the interpretation that assigns to x ∈ W the value s[[x]],

and to x′ ∈ W ′ the value s′[[x]]. Moore interfaces are defined as follows.

Definition 2.1 (Moore interface) A Moore interface

M = 〈V i
M ,V

o
M , θ

i
M , θ

o
M , τ

i
M , τ

o
M〉 consists of the following components:

• A finite set V i
M of input variables, and a finite set Vo

M of output variables. The

two sets must be disjoint; we define VM = V i
M ∪ Vo

M .

49

• A satisfiable predicate θi
M on V i

M defining the legal initial values for the input

variables, and a satisfiable predicate θo
M on Vo

M defining the initial values for

the output variables.

• An input transition predicate τ i
M on VM ∪ (V i

M)′, specifying the legal updates

for the input variables, and an output transition predicate τ o
M on VM ∪ (Vo

M)′,

specifying how the module can update the values of the output variables. We

require that the formulas ∀VM .∃(V i
M)′.τ i

M and ∀VM .∃(Vo
M)′.τ o

M hold.

The above interfaces are called Moore because the next value of the output vari-

ables can depend on the current state, but not on the next value of the input variables,

as in Moore machines. The requirements on the input and output transition relations

ensure that the interface is non-blocking: from every state there is some legal in-

put and possible output. Given a Moore interface M = 〈V i
M ,V

o
M , θ

i
M , θ

o
M , τ

i
M , τ

o
M〉,

we let Traces(V i
M ,V

o
M , θ

i
M , θ

o
M , τ

i
M , τ

o
M) be the set of traces of M , consisting of all

the infinite sequences s0, s1, s2, . . . of states of S[VM] such that s0 |= θi
M ∧ θo

M , and

(sk, sk+1) |= τ i
M ∧ τ o

M for all k ≥ 0.

Composition of Moore interfaces. Two Moore interfaces M and N are com-

posable if Vo
M ∩ Vo

N = ∅. If M and N are composable, we merge them into a single

interface P as follows. We let Vo
P = Vo

M ∪ Vo
N and V i

P = (V i
M ∪ V i

N) \ Vo
P . The

output behavior of P is simply the joint output behavior of M and N , since each

interface is free to choose how to update its output variables: hence, θo
P = θo

M ∧ θo
N

and τ o
P = τ o

M ∧ τ o
N . On the other hand, we cannot simply adopt the symmetrical defi-

nition for the input assumptions. A syntactic reason is that θi
M ∧θi

N and τ i
M ∧τ i

N may

contain variables in (Vo
P)′. But a deeper reason is that we may need to strengthen

the input assumptions of P further, in order to ensure that the input assumptions

50

of M and N hold. If we can find such a further strengthening θi and τ i, then M

and N are said to be compatible, and P = M‖N with θi
P and τ i

P being the weakest

such strengthenings; otherwise, we say that M and N are incompatible, and M‖N is

undefined. Hence, informally, M and N are compatible if they can be used together

under some assumptions.

Definition 2.2 (Compatibility and composition of Moore interfaces) For

any two Moore interfacesM andN , we say thatM andN are composable if Vo
M∩Vo

N =

∅. IfM and N are composable, let Vo
P = Vo

M∪Vo
N , V i

P = (V i
M∪V i

N)\Vo
P , VP = Vo

P ∪V
i
P ,

θo
P = θo

M ∧ θo
N , and τ o

P = τ o
M ∧ τ o

N .

The interfaces M and N are compatible (written M ≀≀N) if they are composable,

and if there are predicates θi on V i
P and τ i on VP ∪ (V i

P)′ such that (i) θi is satisfiable;

(ii) ∀VP .∃(V i
P)′.τ i holds; (iii) for all s0, s1, s2, . . . ∈ Traces(V i

P ,V
o
P , θ

i, θo
P , τ

i, τ o
P) we

have s0 |= θi
M ∧ θi

N and, for all k ≥ 0, (sk, sk+1) |= τ i
M ∧ τ i

N .

The composition P = M‖N is defined if and only if M ≀≀N , in which case P is

obtained by taking for the input predicate θi
P and for the input transition relation τ i

P

the weakest predicates such that the above condition holds.

To compute M‖N , we consider a game between Input and Output. At each round

of the game, Output chooses new values for the output variables Vo
P according to τ o

P ;

simultaneously and independently, Input chooses (unconstrained) new values for the

input variables V i
P . The goal of Input is to ensure that the resulting behavior satisfies

θi
M ∧ θi

P at the initial state, and τ i
M ∧ τ i

N at all state transitions. If Input can win

the game, then M and N are compatible, and the most general strategy for Input

will give rise to θi
P and τ i

P ; otherwise, M and N are incompatible. The algorithm

for computing θi
P and τ i

P proceeds by computing iterative approximations to τ i
P , and

51

to the set C of states from which Input can win the game. We let C0 = t and, for

k ≥ 0:

τ̃k+1 = ∀(Vo
P)′.

(
τ o
P → (τ i

M ∧ τ i
N ∧ C ′

k)

)
Ck+1 = Ck ∧ ∃(V i

P)′.τ̃k+1. (2.1)

Note that τ̃k+1 is a predicate on Vo
P ∪V i

P ∪ (V i
P)′. Hence, τ̃k+1 ensures that, regardless

of how Vo
P are chosen, from Ck+1 we have that (i) for one step, τ i

M and τ i
N are satisfied;

and (ii) the step leads to Ck. Thus, indicating by C∗ = limk→∞Ck and τ̃∗ = limk→∞ τ̃k

the fixpoints of (2.1) we have that C∗ represents the set of states from which Input

can win the game, and τ̃∗ represents the most liberal Input strategy for winning

the game. This suggests us to take τ i
P = τ̃∗. However, this is not always the weakest

choice, as required by Definition 2.2: a weaker choice is τ i
P = ¬C∗∨ τ̃∗, or equivalently

τ i
P = C∗ → τ̃∗. Contrary to τ i

P = τ̃∗, this weaker choice ensures that the interface P

is non-blocking. We remark that the choices τ i
P = τ̃∗ and τ i

P = C∗ → τ̃∗ differ only at

non-reachable states. Since the state-space of P is finite, by monotonicity of (2.1) we

can compute the fixpoint C∗ and τ̃∗ in a finite number of iterations. Finally, we define

the input initial condition of P by θi
P = ∀Vo.(θo

P → (θi
M ∧ θi

N ∧ C∗)). The following

algorithm summarizes these results.

Algorithm 2.1 Given two composable Moore interfaces M and N , let C0 = t, and

for k > 0, let the predicates Ck and τ̃k be as defined by (2.1). Let τ̃∗ = limk→∞ τ̃k and

C∗ = limk→∞Ck; the limits can be computed with a finite number of iterations, and

let θi
∗ = ∀Vo.

(
θo

P → (θi
M ∧ θi

N ∧ C∗)

)
. Then the interfaces M and N are compatible

iff θi
∗ is satisfiable; in this case their composition P = M‖N is given by

Vo
P = Vo

M ∪ Vo
N τ o

P = τ o
M ∧ τ o

N θo
P = θo

M ∧ θo
N

V i
P = (V i

M ∪ V i
N) \ Vo τ i

P = C∗ → τ̃∗ θi
P = θi

∗.

52

Implementation considerations. We have implemented composition and com-

patibility checking for Moore interfaces by extending the Mocha model checker [20]

to interfaces. To obtain an efficient implementation, we represent both the input

and the output transition relations using a conjunctively decomposed representation,

where a relation τ is represented by a list of BDDs τ1, τ2, . . . , τn such that τ = ∧n
i=1τi.

When computing P = M‖N , the list for τ o
P can be readily obtained by concatenating

the lists for τ o
M and τ o

N . Moreover, assume that τ o
P is represented as

∧n

i=1 τ
o
i , and

that τ i
M ∧ τ i

N is represented as
∧m

j=1 τ
o
j . Given Ck, from (2.1) we obtain the conjunc-

tive decomposition
∧m+1

j=1 τ̃k+1,j for τ̃k+1 by taking τ̃k+1,m+1 = ¬∃(Vo
P)′.(τ o

P ∧ ¬C ′
k)

and, for 1 ≤ j ≤ m, by taking τ̃k+1,j = ¬∃(Vo
P)′.(τ o

P ∧ ¬τ i
j). We also obtain

Ck+1 = ∃(V i
P)′.

∧m+1
j=1 τ̃k+1,j. All these operations can be performed using image com-

putation techniques. Once we reach k such that Ck ≡ Ck+1, the BDDs τ̃k,1, . . . , τ̃k,m+1

form a conjunctive decomposition for τ̃∗. Since the two transition relations τ̃∗ and

C∗ → τ̃∗ differ only for the behavior at non-reachable states, in our implementation

we take directly τ i
P = τ̃∗, obtaining again a conjunctive decomposition. With these

techniques, the size (number of BDD variables) of the interfaces that our tool is able

to check for compatibility, and compose, is roughly equivalent to the size of the models

that Mocha [20] can verify with respect to safety properties.

2.2.2 Bidirectional Interfaces

Bidirectional interfaces model components that have bidirectional connections.

To model bidirectionality we find it convenient to add to the Moore model a set Q

of locations. Informally, each location q ∈ Q partitions the interface variables into

inputs and outputs, and determines what values are legal for the inputs, and what

values can be assigned to the outputs. At each location q ∈ Q, a particular choice of

53

output and input values determines the successor location q′. The precise definition

is as follows.

Definition 2.3 (Bidirectional interfaces) A bidirectional interface M is a tuple

〈VM , QM , q̂M , v
o
M , φ

i
M , φ

o
M , ρM〉 consisting of the following components:

• A finite set VM of input or output (inout) variables.

• A finite set QM of locations, including an initial location q̂M ∈ QM .

• A function vo
M : QM → 2VM , that associates with all q ∈ QM the set vo

M(q) of

variables that are used as outputs at location q. For all q ∈ QM , we denote by

vi
M(q) = VM \ vo

M(q) the set of variables that are used as inputs.

• Two labelings φi
M and φo

M , which associate with each location q ∈ QM a pred-

icate φi
M(q) on vi

M(q), called the input assumption, and a predicate φo
M(q) on

vo
M(q), called the output guarantee. For all q ∈ QM , both φi

M(q) and φo
M(q)

should be satisfiable.

• A labeling ρM , which associates with each pair of locations q, r ∈ QM a predicate

ρM(q, r) on VM , called the transition guard. We require that for every location

q ∈ QM , (i) the disjunction
∨

r∈QM
ρM(q, r) is valid and (ii) ∀r, r′ ∈ QM , (r 6=

r′) ⇒ ¬(ρM(q, r) ∧ ρM(q, r′)). Condition (i) ensures that the interface is non-

blocking, and condition (ii) ensures determinism.

We let V i
M =

⋃
q∈QM

vi
M(q) and Vo

M =
⋃

q∈QM
vo

M(q) be the sets of all variables

that are ever used as inputs or outputs (note that we do not require V i
M ∩ Vo

M =

∅). We define the set Traces(〈VM , QM , q̂M , φ
i
M , φ

o
M , ρM〉) of bidirectional traces to

be the set of infinite sequences q0, s0, q1, s1, . . ., where q0 = q̂M , and for all k ≥ 0,

54

we have qk ∈ QM , sk ∈ S[VM], and sk |= (φi
M(qk) ∧ φo

M(qk) ∧ ρM(qk, qk+1)). For

q0, s0, q1, s1, . . . ∈ Traces(〈VM , QM , q̂M , φ
i
M , φ

o
M , ρM〉) and k ≥ 0, we say that qk is

reachable in 〈VM , QM , q̂M , φ
i
M , φ

o
M , ρM〉.

Composition of bidirectional interfaces is defined along the same lines as for Moore

interfaces. Local incompatibilities arise not only when one interface output values do

not satisfy the input assumptions of the other, but also when the same variable is

used as output by both interfaces. The formal definition follows.

Definition 2.4 (Composition of bidirectional interfaces)

Given two bidirectional interfaces M and N , let V⊗ = VM ∪ VN , Q⊗ = QM × QN ,

and q̂⊗ = (q̂M , q̂N). For all (p, q) ∈ QM ×QN , let φo
⊗(p, q) = φo

M(p) ∧ φo
M(q), and for

all (p′, q′) ∈ QM × QN , let ρ⊗((p, q), (p′, q′)) = ρM(p, p′) ∧ ρN(p, p′). The interfaces

M and N are compatible (written M ≀≀N) if there is a labeling ψ associating with all

(p, q) ∈ Q⊗ a predicate ψ(p, q) on V⊗ \ (Vo
M(p) ∪ Vo

N(q)) such that (i) ψ(p, q) is sat-

isfiable at all (p, q) ∈ Q⊗, and (ii) all traces (p0, q0), s0, (p1, q1), s1, (p2, q2), s2, . . . ∈

Traces(V⊗, Q⊗, q̂⊗, ψ, φ
o
⊗, ρ⊗) satisfy, for all k ≥ 0, the conditions (a) Vo

M(pk) ∩

Vo
N(qk) = ∅ and (b) sk |= φi

M(pk) ∧ φi
N(qk). The composition P = M‖N is de-

fined if and only if M and N are compatible; if they are, then P = M‖N is obtained

by taking for φi
P the weakest predicate ψ such that the above conditions (a) and (b)

on traces hold, by taking for QP the subset of locations of Q⊗ that are reachable

in 〈V⊗, Q⊗, q̂⊗,V
o
⊗, φ

i
P , φ

o
⊗, ρ⊗〉, by taking VP = V⊗ and q̂P = q̂⊗, and by taking for

Vo
P , φ

i
P , φ

o
P , and ρP the restrictions of Vo

⊗, φ
i
⊗, φ

o
⊗, and ρ⊗ to QP .

Algorithm 2.2 Given two bidirectional interfaces M and N , let V⊗ = VM ∪ VN ,

Q⊗ = QM ×QN , and q̂⊗ = (q̂M , q̂N). For all (p, q) ∈ QM ×QN , let φi
⊗(p, q) = φi

M(p)∧

φi
M(q), and for all (p′, q′) ∈ QM×QN , let ρ⊗((p, q), (p′, q′)) = ρM(p, p′)∧ρN(p, p′). The

55

input labeling φi
⊗(p, q) is computed by repeating the following steps, that progressively

strengthen the input assertions:

[Step 1] For all (p, q) ∈ QM × QN , if vo
M(p) ∩ vo

N(q) 6= ∅, then
initialize φi

⊗(p, q) to f; otherwise initialize φi
⊗(p, q) to the predicate

∀vo
⊗(p, q).(φo

⊗(p, q) → (φi
M(p) ∧ φi

N(q)).

[Step 2] For all (p, q) and (p′, q′) in QM × QN , if φi
⊗(p′, q′) is un-

satisfiable, then replace φi
⊗(p, q) with φi

⊗(p, q) ∧ ∀vo
⊗(p, q).(φo

⊗(p, q) →
¬ρ⊗((p, q), (p′, q′)).

Repeat [Step 2] until all input assumptions are replaced by equivalent
predicates, i.e., are not strengthened.

We have that M ≀≀N iff φi
⊗(q̂M , q̂N) is satisfiable. If M ≀≀N then their composition

P is defined by taking QP to be the subset of locations of Q⊗ that are reachable

in 〈V⊗, Q⊗, q̂⊗, v
o
⊗, φ

i
P , φ

o
⊗, ρ⊗〉, by taking VP = V⊗ and q̂P = q̂⊗, and by taking for

vo
P , φ

i
P , φ

o
P , and ρP the restrictions of vo

⊗, φ
i
⊗, φ

o
⊗, and ρ⊗ to QP .

We have developed and implemented symbolic algorithms for composition and

compatibility and refinement checking of bidirectional interfaces. The tool, written

in Java, is based on the CUDD Package used in JMocha [53]. In our implementation,

the locations are represented explicitly, while the input assumptions and output guar-

antees at each location are represented and manipulated symbolically. This hybrid

representation is well-suited to the modeling of bidirectional interfaces, where the set

of input and output variables depends on the location.

Example 2.2 (PCI Bus) We consider a PCI bus configuration with two PCI-

compliant master devices and a PCI arbiter as shown in Figure 2.3(a). Each PCI

master device has an gnt input and a req output to communicate with the arbiter,

and a set of shared (read-write) signals, the IRDY and the FRAME, which are used

56

req1

M1 M2

ARB
req2

FRAME

IRDY

gnt1 gnt2

(a)

OwnerReq

req1

req1

req1}
{FRAME, IRDY,

a:
g:

req1

{req1}

g:
a:

{req1}
Not_Own

a:
g:

req1

req1

req1

gnt1

gnt1

req1

gnt1

¬

⊤
⊤

⊤

∧

¬

¬

¬

⊤
⊤

∧¬

(b)

NO_NONO_R R_NO

R_R

O_O

R_O O_R

NO_O O_NO

pruned illegal state:

clash
output/outputtransitions

(c)

Areq1

Creq1

Cgive0
C

B

A

Breq0

Breq1
Areq0

Creq0

Cgive1

Bgive0

Bgive1

Agive0 Agive1

(d)

req1

req0

req0

req1

NT

RG

G

R

RR

T

g: give0

give0

a: give1

req1

g:
a: give1

req1

a: give1

g:
a: give1

give0

req0

a:
g:

give1

g:
req0

a:
g:

req1

give1
give0

give0

give0

give1 req0

req0

give0

req1

⊤
¬
∧

¬

¬
¬

¬

⊤
¬

¬

¬
¬

¬

¬ ∧

¬

∧

∧¬

¬

(e)

Figure 2.3. PCI and Token-ring Protocols 2.3(a) PCI Local Bus Structural Diagram
2.3(b) PCI Master Interface 2.3(c) Composite interface for two PCI Master Modules
2.3(d) Token Ring Network Configuration 2.3(e) Token-ring NT Interface

to communicate with target devices. The arbiter ensures that at most one master

device can write to the shared signals. Figure 2.3(b) shows a graphical description

of the interface representing a master device. The figure shows for each location,

the assumption (“a”), the guarantee (“g”), the set of inout variables that the in-

terface writes to, and guarded transitions between locations. Composing two such

interfaces we obtain the interface shown in Figure 2.3(c). Location Owner_Owner is

illegal because both components write the shared variables FRAME and IRDY. Input

assumptions of locations Req_Req, Owner_Req and Req_Owner are strengthened to

make the illegal location unreachable. Note that this propagates the PCI master’s

57

assumptions about its environment to an assumption on the behavior of the arbiter

(which is the environment of the composite module): the arbiter should never assert

gnt1 (gnt2) during or after asserting gnt2 (gnt1), until req2 (req1) is de-asserted

at least once.

2.2.3 Properties of compatibility and composition

If M and N are composable Moore interfaces, we define their product M ⊗N by

Vo
M⊗N = Vo

M ∪ Vo
N and V i

M⊗N = (V i
M ∪ V i

N) \ Vo
M⊗N , and by letting θo

M⊗N = θo
M ∧ θo

N ,

θi
M⊗N = θi

M ∧θi
N , τ o

M⊗N = τ o
M ∧τ o

N , and τ i
M⊗N = τ o

M ∧τ i
N . Intuitively, an environment

for a Moore interface M is an interface that drives all free inputs of M , ensuring that

all the input assumptions are met. Precisely, we say that a Moore interface N is an

environment for a Moore interface M if M and N are composable and closed (i.e.,

Vo
M ∩ Vo

N = ∅, and V i
M⊗N = ∅), and if the following conditions hold:

• Non-blocking: θi
M⊗N is satisfiable, and ∀Vo

M⊗N .(∃V
i
M⊗N)′.τ i

M⊗N holds.

• Legal: for all sequences s0, s1, s2, . . . of states in S[VM⊗N] with s0 |= θo
M⊗N and

(sk, sk+1) |= τ o
M⊗N for all k ≥ 0, we have also that s0 |= θi

M⊗N and (sk, sk+1) |=

τ i
M⊗N for all k ≥ 0.

Analogous definitions for product and environment can be given for bidirectional

interfaces. The following theorem states the main properties of compatibility and

composition of Moore interfaces; an analogous result holds for bidirectional interfaces.

Theorem 2.1 (Properties of compatibility and composition) The following

assertions hold:

58

1. Associativity: Given three Moore interfaces M , N , P , either (M‖N)‖P and

(M‖N)‖P are both undefined (due to non-composability or incompatibility), or

they are both defined, in which case they are equal.

2. Compatibility as existence of environment: Given two composable Moore inter-

faces M and N , we have that M ≀≀N iff there is an environment for M ⊗N .

3. Composition and input assumptions: Given two compatible Moore interfaces M

and N , and P composable with M‖N , we have that (M‖N)≀≀P iff there is an

environment for M ⊗N ⊗ P .

The second assertion makes precise our statement that two interfaces are com-

patible iff there is some environment in which they can work correctly together.

The third assertion states that composition does not unduly restrict the input as-

sumptions: checking compatibility with the composition M‖N amounts to checking

compatibility with M and N .

2.3 Refinement

The refinement relation aims at formalizing the relation between abstract and

concrete versions of the same component, or between an abstract component and

its implementation. In the input-enabled (or pessimistic) setting, refinement is usu-

ally defined as trace containment or simulation [116]: this ensures that the set of

output behaviors of the implementation is a subset of that of the abstract compo-

nent. However, such definitions are not be appropriate in a non-input-enabled setting

such as our interfaces: they would also require that the set of legal inputs of the

implementation is a subset of that of the abstract component — implying that the

59

implementation can be used in fewer environments than the abstract component was

designed for. For example, if we adopted the classical definition, then the component

Adder of Figure 2.1 would be refined by a component AdderOnly having the same

output transition relation, but that does not perform subtraction: precisely, with

the single input guard [] true -> q1’:=1. As this example points out, refinement

should be defined in a contravariant fashion: the implementation should accept more

inputs, and produce fewer outputs, than the specification [54, 55].

We define refinement as alternating simulation [19]: roughly, a component N

refines M (written N �M) if N can simulate all inputs of M , and if M can simulate

all outputs of N . Encoding the relation between the states of two Moore interfaces

M and N by a predicate R, we can state the definition of refinement as follows.

Definition 2.5 (Refinement of Moore interfaces) Given two Moore interfaces

M and N , we have that N � M if V i
N ⊆ V i

M and V i
M ∩ (Vo

M ∪ Vo
N) = ∅, and if there

is a predicate R on VM ∪ VN such that the following formulas are valid:

θi
M ∧ θo

N → ∃(Vo
M \ Vo

N).(θi
N ∧ θo

M ∧R)

R ∧ τ i
M ∧ τ o

N → ∃(Vo
M \ Vo

N)′.(τ i
N ∧ τ o

M ∧R′)

As for normal simulation, there is a unique largest refinement relation between

any two Moore interfaces. Hence, Definition 2.5 provides an iterative algorithm for

deciding refinement: let R0 = t, and for k ≥ 0, let

Rk+1 = Rk ∧ ∀(VM ∪ VN)′.

(
τ i
M ∧ τ o

N → ∃(Vo
M \ Vo

N)′.(τ i
N ∧ τ o

M ∧R′
k)

)
. (2.2)

Denoting with R∗ = limk→∞Rk the fixpoint (that again can be computed in a finite

number of iterations), we have that N � M if and only if (i) V i
N ⊆ V i

M and V i
M ∩

(Vo
M ∪ Vo

N) = ∅, and (ii) θi
M ∧ θo

N → ∃(Vo
M \ Vo

N).(θi
N ∧ θo

M ∧ R). In order to obtain

60

an efficient implementation, we can again take advantage for the computation of

(2.2) of list representations for the transition relations, and apply image-computation

techniques.

Refinement of bidirectional interfaces is defined similarly, except that the refine-

ment relation relates the locations of the two interfaces, rather than the states. The

definition is as follows.

Definition 2.6 (Refinement of bidirectional interfaces) Given two bidirec-

tional interfaces M and N , N refines M (N � M) iff there is a binary rela-

tion �⊆ QN × QM such that q̂N � q̂M , and such that for all q � p we have

(i) vi
N(q) ⊆ vi

M(q), (ii) vo
N(q) ⊇ vo

M(p), (iii) φi
M(p) → φi

N(q), (iv) φo
N(q) → φo

M(p),

(v) for all s ∈ S[vi
M(p)] and all t ∈ S[vo

N(q)], if s |= ρM(p, p′) and t |= ρN(q, q′), then

q′ � p′.

We can check whether N � M by adapting the classical iterative refinement

check [116]. We start with the total relation �0= QN × QM , and for k ≥ 0, we let

�k+1 be the subset of �k such that conditions (i)–(v) hold, with �k in place of � in

condition (v). Once we reach m ≥ 0 such that �m+1=�m, we have that N � M iff

q̂N � p̂N . Since bidirectional interfaces are deterministic we can reduce the refinement

checking problem to graph reachability on the product interface and hence N � M

can be decided in O(|QN | × |QM |) time.

Example 2.3 (Token Ring) The IEEE 802.5 (Token Ring) is a widely used de-

terministic LAN protocol. Figure 2.3(e) shows an interface modeling a node that

initially does not have the token. The same diagram with T as initial state would

represent a node that initially has the token. We call these two interfaces NT and

61

Algorithm 1 Refinement Check for Stateful Bidirectional Interfaces

Require: two stateful bidirectional interfaces F = (PF , QF , q̂F , oF , o
+
F , φF , ψF , δF)

and F ′ = (PF ′ , QF ′ , q̂F ′ , oF ′ , o+
F ′ , φF ′ , ψF ′ , δF ′)

1: Let ProdF,F ′ = F⊛F ′ = a directed graph G(VProd, EProd) where VProd = QF ×QF ′

and EProd ⊆ VProd × VProd such that e = (v1, v2) ∈ EProd iff v1 = (q1, q
′
1), v2 =

(q2, q
′
2) and ∃ valuations i ∈ [PF − o+

F (q1)], o
′ ∈ [oF ′(q′1] such that φF (q1)@i and

ψF ′(q′1)@o
′ and q2 = δF (q1, i ⊎ o

′) and q′2 = δF ′(q′1, i ⊎ o
′).

2: Let a state v = (q, q′) be an error state iff (oF ′(q′) + oF (q)) ∨ (o+
F ′(q′) * o+

F (q)) ∨

(PF ′ − o+
F ′(q′) * PF − o+

F (q)) ∨ (φF (q) ; φF ′(q′)) ∨ (ψF ′(q′) ; ψF (q)).

3: if any error state is reachable from (q̂F , q̂F ′) in G(VProd, EProd) then

4: F ′ does not refine F

5: else

6: F ′ refines F

T , respectively. The token ring components are connected in a cyclic network; each

pair of adjacent nodes communicate by req and gnt signals (Figure 2.3(d)). The

req signal flows clockwise, and is used to request the token; the signal give flows

counterclockwise, and is used to grant the token. The protocol fails if more than one

node has the token simultaneously: indeed, we can verify that two T interfaces are

not compatible, while an NT interface is compatible with a T interface. Moreover,

the protocol works for any number of participating nodes. To verify this, we check

two refinements: first, an open-ring configuration consisting entirely of NT nodes is a

refinement of the configuration consisting in just one NT node; second, an open-ring

configuration with any number of NT nodes and one T node is a refinement of a

configuration consisting in a single T node. Our implementation is able to perform

the above compatibility and refinement checks in a fraction of a second.

62

The notion of refinement, in addition to implementation, captures also substitu-

tivity: if N refines M , and M is compatible with the remainder P of the design, then

P is also compatible with N .

Theorem 2.2 (Substitutivity of refinement) Consider three bidirectional Moore

or bidirectional interfaces M,N,P , such that M ≀≀P , and N � M . If (Vo
N ∩ V i

P) ⊆

(Vo
M ∩ V i

P), then N ≀≀P and (N‖P) � (M‖P).

The result has a proviso: all the variables that are output by N and input by P

should also be output by M . If this were not the case, it would be possible for the

additional outputs of N to violate the input assumptions of P .

2.4 Compositional Verification

The goal of compositional methods is to prove that an implementation satisfies a

specification by reasoning separately on the various components of the implementa-

tion. When the components M and N of a design are implemented as M ′ and N ′, to

prove the correctness of the implementation it is necessary to prove the refinement

(M ′‖N) � (M‖N). The simplest approach to proving this refinement consists in

proving separately that M ′ � M and N ′ � N . Unfortunately, this approach sel-

dom works: usually, the implementation M ′ refines the specification M only when

it receives suitable inputs from an appropriate environment such as, hopefully, N ′;

similarly for N ′ and N . Various improvements to this basic rule have been proposed,

based on the idea of using an environment EM ′ to restrict the inputs to M ′, and

proving M ′‖EM ′ � M (and symmetrically for N ′). For instance, the following two

63

rules have been proposed:

M ′‖N �M ; N ′‖M � N

M ′‖N ′ �M‖N
(AG-SPEC)

M ′‖EM ′ �M ; N ′‖EN ′ � N

M ′‖N ′ �M‖N
(AG-IMPL)

In Rule (AG-SPEC), the environment for M ′ is the specification N [17, 90]; in

Rule (AG-IMPL), the environment EM ′ for M ′ describes N ′ and is either provided by

the user, or is obtained with approximate automatic methods [16]. Since interfaces

can represent input restrictions directly, instead of providing an environment EM ′ for

M ′, we can restrict the input assumptions of M ′ to reflect the inputs that can occur

in its actual environment N ′. Given two compatible interfaces M ′ and N ′, we call the

adaptation of M ′ to the environment N ′ a strengthening of the input assumptions of

M ′ that reflects the inputs that M ′ can receive from N ′ in M ′‖N ′.

Definition 2.7 (adaptation to environment) Given two compatible interfaces

M and N , an adaptation of M to N is any interface M̂ that differs from M only for

the input assumptions, and such that (i) M � M̂ , (ii) M̂ ≀≀N iff M ≀≀M , and (iii) if

M ≀≀N , then for all interfaces P , we have that (M̂‖N)≀≀P iff (M‖N)≀≀P .

Condition (i) ensures that the input invariants of M̂ do not weaken those of

M . Conditions (ii) and (iii) together require that M‖N‖P is defined iff M̂‖N‖P is

defined: hence, the input strengthening cannot rule out any input that M will receive

when in the environment of N . There are several ways of adapting an interface

M to its environment N . The following proposition describes a method for Moore

interfaces that is informed by the technique of [16] for the automated construction

of environments. Given a set V of variables, a predicate θ on V , and a predicate τ

on V ∪ V ′, define Reach(V , θ, τ) to be the fixpoint of the reachability computation

64

R0 = θ, and R′
k+1 = R′

k ∨ ∃V.(Rk ∧ τ), for k ≥ 0. The proposition strengthens the

input assumptions of M on the basis of both the output and the input behavior of

N .

Proposition 2.1 Given two Moore interfaces M and N , let U = VN \ VM , and let

M̂ be obtained from M by replacing θi
M with θi

M ∧ ∃U .θo
N , and by replacing τ i

M with

τ i
M ∧ ∃(U ∪ U ′).(Reach(VN , θ

o
N ∧ θi

N , τ
o
N ∧ τ i

N) ∧ τ o
N). Then, M̂ is an adaptation of M

to N .

The subtlety of the proposition lies in the fact that, to adapt M , we use a reacha-

bility predicate for N that is computed under the assumption that the input assump-

tions of N are respected, even though M itself may violate them. The correctness of

the proposition depends on the fact that, if M violates the input assumptions of N ,

then so does the adaptation M̂ , so that in Definition 2.7 it will be neither M ≀≀N nor

M̂ ≀≀N . The following theorem states that, in proving a compositional refinement, we

can adapt each interface to its environment. In the theorem, and in the discussion

below, we use the notation M [N] to denote an interface that is an adaptation of M

to N .

Theorem 2.3 (compositional refinement and adaptation) For all interfaces

M,N,M ′, N ′ such that (i) M ≀≀N , (ii) M ′ and N ′ are composable (but not necessarily

compatible), (iii) (Vo
M ′ ∩ V i

N) ⊆ (Vo
M ∩ V i

N), and (iv) (Vo
N ′ ∩ V i

M) ⊆ (Vo
N ∩ V i

M), the

following verification rule is valid:

M ′
[N ′] �M [N]; N ′

[M ′] � N [M]

M ′≀≀N ′ and M ′‖N ′ �M‖N
(AG-INTF)

The proviso over the variables is necessary to ensure that the compatibility of M

and N implies that of M ′ and N ′, once the refinement is proved. The theorem states

65

a circular assume-guarantee principle: in fact, as illustrated by Proposition 2.1, the

adaptation of M ′ on N ′ can be constructed using the fact that the input assumptions

of N ′ are respected, even though the compatibility of M ′ and N ′ is a conclusion of the

rule, rather than a premise. It is easy to see that rule (AG-INTF) generalizes (AG-

IMPL); to see that it also generalizes (AG-SPEC), note that rule (AG-SPEC) can

be restated as (M ′ � M [N];N ′ � N [M])/(M ′‖N ′ � M‖N). In fact, our alternating

notion of refinement requires the implementation to match the specification only when

the implementation is subject to the same inputs as the specification. Hence, if we

restrict the input assumptions of the specification (as in M [N]), we need to check

that the refinement holds only when the implementation M ′ is subject to similarly

restricted inputs: thus, checking the alternating refinementM ′ �M [N] corresponds to

checking the regular refinement M ′‖N �M (where M , N , and M ′ are interpreted as

regular modules, rather than interfaces). A symmetrical argument holds for the other

premise. Thus, Theorem 2.3 highlights how the essence of compositional refinement

checking lies in studying both implementation and specification components adapted

to their actual environment.

Acknowledgements

The work reported in this chapter was conducted jointly with Prof Luca de Al-

faro, Prof Thomas A. Henzinger, and Dr Freddy Y. C. Mang. This research was

funded by Prof Henzinger supported in part by the AFOSR grant F49620-00-1-0327,

the DARPA grant F33615-00-C-1693, the MARCO grant 98-DT-660, the NSF grant

CCR-9988172, the SRC grant 99-TJ-683.003, and the NSF CAREER award CCR-

66

0132780. This chapter is based on a paper [41] presented at CAV 2002, copyright

held by Springer-Verlag Berlin Heidelberg1, 2002.

1http://www.springerlink.com

67

Chapter 3

An Interface Formalism for Web

Services

Web application development using distributed components and web services

presents new software integration challenges, because solutions often cross vendor,

administrative, and other boundaries across which neither binary nor source code

can be shared. We present a methodology that addresses this problem through a for-

malism for specifying and manipulating behavioral interfaces of multi-threaded open

software components that communicate with each other through method calls. An

interface constrains both the implementation and the user of a web service to fulfill

certain assumptions that are specified by the interface. Our methodology consists

of three increasingly expressive classes of interfaces. Signature interfaces specify the

methods that can be invoked by the user, together with parameters. Consistency

interfaces add propositional constraints, enhancing signature interfaces with the abil-

ity to specify choice and causality. Protocol interfaces specify, in addition, temporal

ordering constraints on method invocations. We provide approaches to check if two

68

or more interfaces are compatible; if a web service can be safely substituted for another

one; and if a web service satisfies a specification that represents a desired behavioral

property.

3.1 Introduction

Component-based design for complex software systems has been an area of active

interest for some time. Building web applications using distributed components or

web services introduces special challenges. Conventional development of a software

product is often done by a single vendor; and each developer has access to the entire

source code or can use debugging tools on an executable built from all the software

that his own contribution needs to interact with. In contrast, a web application often

uses services offered by a number of different service providers, most of which do

not disclose even their executable binaries, leave alone the source code; and the web

application developer using these services has to rely solely on the disclosed documen-

tation, which is usually informal, ambiguous, and often self-contradictory. In such

a situation, interface formalisms provide a means for unambiguously describing and

manipulating constraints under which independently developed software components

can work properly together.

Static type systems used in programming languages constitute a simple interface

formalism to avoid composition errors: a function’s signature ensures, for example,

that the function is only called with the correct number of parameters and that the pa-

rameters are of the correct type. Richer interface formalisms for software components

have been proposed for communication protocols [54], timing requirements [57], and

resource usage [42]. In the spirit of these interface theories, we present a formalism for

69

web service interfaces which supports a two-player game view of multi-threaded open

software components. This view makes the formalism applicable to scenarios where

the details of the concrete implementation of a service, as well as the details of the

environment of the service, are not known at design and analysis time. However, an

interface constrains both the implementation and the environment of the service with

assumptions that are made by the designer of the service. This enables our approach

to be used early in the web software design cycle, and by service developers who do

not have access to the source or binary code of partner services that form part of

their environment. A preliminary version of our interfaces [25] did not support the

two-player view, permitting analysis only for closed systems, where the environment

is known.

In contrast to the formal verification of web service implementations [74, 75, 72,

120], we explicitly propose to specify and verify interfaces of web services, which has a

much better chance of succeeding in practice, because interfaces are usually less com-

plex than the corresponding implementations. Indeed, good interface design requires

that an interface exposes all information needed to use the service properly, but no

more. In this spirit, we present three interface description languages of successively

increasing expressiveness. Using these languages, we can automatically check if two

or more interfaces are compatible (i.e., if they satisfy each other’s assumptions), and

if one interface can be safely substituted for another one in every design. In addition

to this, we introduce specifications to describe desired propositional and temporal

properties of web services, and we provide means for checking whether an interface

satisfies them.

The first formalism, called signature interfaces, exposes only the names and types

of web methods provided by the service, and the names and types of web methods that

70

the interface expects to be provided by the environment. For example, a signature in-

terface may offer the web method ProcPay, with the two possible return values OK and

FAIL, and it may itself rely on certain other methods and return values. The second

formalism, called consistency interfaces, adds propositional constraints representing

choice and causality to signature interfaces; for example, it may prohibit having both

an invocation of ProcPay with return value FAIL and invocation of ShipItem with

return value OK in the same conversation. The third and richest formalism, called

protocol interfaces, adds temporal ordering constraints to consistency interfaces; for

example, it may disallow conversations where ShipItem is invoked with return value

OK before ProcPay is invoked with return value OK.

Example 3.1 (Supply chain management application) In the following sec-

tions, we use a simple example to illustrate the introduced interfaces. The sup-

ply chain management application consists of five web services: Shop, Store, Bank,

Transport, and Supplier. Figure 3.1 shows an architectural overview of the appli-

cation. Labeled arrows from one service to another indicate web method calls from

caller to callee. Shop supports the web method SellItem called by Client to start

the selling process, and ChkAvail which checks availability of items to be sold and is

called by Shop itself. Shop requires the web method ChkStore implemented by Store

to check whether desired items are in stock. It also requires ShipItem implemented

by Transport to ship items to the customer, and ProcPay implemented by Bank to

process credit card payments. Store requires GetOffer and Order implemented by

Supplier to get an offer for and order new items respectively.

71

Figure 3.1. The supply chain management application

3.2 Signature Interfaces

Let M and I be finite sets of web methods and instances, respectively. Instances

are associated with calls to web methods, and encode parameters passed to the web

method, return values from the web method, and other behavioral differences between

various calls to the web method; for instance, if the invocation was synchronous or

asynchronous, or in the latter case, if it will lead to a callback. A namespace is a set

N ⊆ M. Let A ⊆ M×I be the set of actions. The web method associated with an

action a is denoted as [a]. Given A ⊆ A, [A] denotes {[a] | a ∈ A}.

A signature S = (N ,J ,K,D) consists of a namespace N , a set J ⊆ A of actions

that are supported by S such that [J] ⊆ N , a set K ⊆ A of external actions that

are required by S such that [K] ∩ N = ∅, and a partial function D : J → 2A which

assigns to a supported action a a set of actions that can be (directly) invoked by a.

A signature S supports a web method m ∈ M if S supports an action a such that

[a] = m. An action a requires an action a′ in S if a′ ∈ D(a). A signature S requires

an action a′ if some action a requires a′ in S. A signature S = (N ,J ,K,D) is a

signature interface if D(a) ⊆ (N × I) ∪ K for all a ∈ J .

Intuitively, an element (〈m, i〉, D) of D says that when the web method m is

called and the caller assumes the instance i, the signature S = (N ,J ,K,D) pledges

72

to support this action, and itself relies on that the assumptions carried by the actions

a′ ∈ D are fulfilled (by either this signature, or by the environment, or by a refinement

of this signature). Thus, a signature interface relates the “guarantees” made (actions

supported) by the interface to the “assumptions” (actions assumed to be supported,

either by the interface itself or by the environment) under which they are made.

Example 3.2 (Signature interface) The signature interface for Shop uses the

following sets of web methods, instances, and actions:

M = { SellItem, ChkAvail, ChkStore, ProcPay, ShipItem, GetOffer, Order }

I = { SOLD, NOTFOUND, OK, FAIL, REC }

A = { 〈SellItem, SOLD〉, 〈SellItem, FAIL〉, 〈SellItem, NOTFOUND〉,

〈ChkAvail, OK〉, 〈ChkAvail, FAIL〉, 〈ChkStore, OK〉, 〈ChkStore, FAIL〉,

〈ProcPay, OK〉, 〈ProcPay, FAIL〉, 〈ShipItem, OK〉, 〈ShipItem, FAIL〉,

〈GetOffer, REC〉, 〈Order, OK〉 }

Now we can define a signature SShop consisting of the following components:

NShop = { SellItem, CheckAvail }

JShop = { 〈SellItem, SOLD〉, 〈SellItem, FAIL〉, 〈ChkAvail, OK〉, 〈ChkAvail, FAIL〉}

KShop = { 〈ChkStore, OK〉, 〈ChkStore, FAIL〉, 〈ProcPay, OK〉, 〈ProcPay, FAIL〉,

〈ShipItem, OK〉, 〈ShipItem, FAIL〉 }

DShop = {

73

〈SellItem, SOLD〉 7→ {〈ChkAvail, OK〉, 〈ProcPay, OK〉, 〈ShipItem, OK〉}

〈SellItem, FAIL〉 7→ {〈ChkAvail, OK〉, 〈ChkAvail, FAIL〉,

〈ProcPay, OK〉, 〈ProcPay, FAIL〉, 〈ShipItem, FAIL〉}

〈ChkAvail, OK〉 7→ {〈ChkStore, OK〉}

〈ChkAvail, FAIL〉 7→ {〈ChkStore, FAIL〉}

}

For instance, action 〈SellItem, SOLD〉 is supported by SShop, and actions

〈ChkAvail, OK〉, 〈ProcPay, OK〉 and 〈ShipItem, OK〉 are assumed to be supported

by the environment. The action 〈SellItem, NOTFOUND〉 is not supported, but belongs

to the namespace of the signature — it could be supported in a refinement of this

signature.

Signature SShop is a signature interface, because all actions it uses are from the

local namespace N or from the set of environment actions K.

3.2.1 Compatibility and Composition

Given two signature interfaces S1 = (N1,J1,K1,D1) and S2 = (N2,J2,K2,D2),

if N1 ∩ N2 = ∅, then S1 and S2 are compatible (denoted by comp(S1,S2)), and their

composition (denoted by (S1 ‖ S2)) is Sc = (Nc,Jc,Kc,Dc), where Nc = N1 ∪ N2,

and Jc = J1 ∪ J2, and Kc = (K1 ∪ K2) \ (Nc × I), and Dc = D1 ∪D2. The compo-

sition operation is commutative and associative. Compatibility and composition of

signature interfaces can be computed in O(n · log n) time, where n = max(|N1|, |N2|).

A signature interface S = (N ,J ,K,D) is closed if it requires only actions a with

[a] ∈ N . A signature interface is open if it is not closed. A signature interface

S = (N ,J ,K,D) is concrete if it supports all actions a with [a] ∈ N . A signature

74

is abstract if it is not concrete. Given a signature interface S = (N ,J ,K,D), an

environment for S is a concrete signature interface E that is compatible with S such

that the composition S ‖ E is closed. Note that S ‖ E is concrete if and only if S

is concrete, and E is not unique. Intuitively, each E represents a design context in

which S can be used.

3.2.2 Refinement

Given two signature interfaces S = (N ,J ,K,D) and S ′ = (N ′,J ′,K′,D′), we say

S ′ refines S (written S ′ 4 S) if (i) N ′ ⊆ N , (ii) J ′ ⊇ J , (iii) K′ ⊆ K, and (iv) for

every a ∈ J , if a requires a′ in S ′, then a requires a′ in S.

The first condition ensures that the refined signature interface does not try to

reserve additional names for itself. The second condition ensures that the refined sig-

nature interface guarantees to support every action that is supported by the abstract

one. The other two conditions ensure that the refined signature interface does not

assume additional actions to be supported by the environment. Given two signature

interfaces S and S ′, the question if S ′ 4 S can be decided in O(n · log n) time, where

n = max(|N |, |N ′|).

Note that the above definition leads to substitutivity of refinements: for signa-

ture interfaces S1, S
′
1 and S2, if comp(S1,S2) and S ′

1 4 S1, then comp(S ′
1,S2) and

S ′
1 ‖ S2 4 S1 ‖ S2. Intuitively, this means that in an overall design, an abstract

placeholder component can be safely replaced with a refined version of it, and the

overall design would not exhibit any incorrect behavior if it did not do so before.

75

3.3 Consistency Interfaces

A consistency interface C = (N ,J ,K,F) consists of a namespace N , a set J ⊆ A

of actions that are supported by C such that [J] ⊆ N , a set K ⊆ A of external actions

that are required by C such that [K] ∩ N = ∅, and a partial function F : A → B(A),

which assigns to a supported action a an expression from B(A), the set of expressions

over the set of actions A using the binary operators ⊓ and ⊔, and the constant ǫ.

Given a consistency interface C = (N ,J ,K,F), the underlying signature of C

(denoted by sig(C)) is (N ,J ,K,D), where D : A → 2A is defined as follows: for all

a ∈ J , D(a) = {a′ | a′ occurs in expression F(a)}. We require that the underlying

signature of a consistency interface is a signature interface.

Example 3.3 (Consistency interface) Now we model Shop as a consistency in-

terface CShop = (NShop,JShop,KShop,FShop) where NShop, and JShop, and KShop are as in

Example 3.2, and FShop is as follows:

FShop = {

〈SellItem, SOLD〉 7→ 〈ChkAvail, OK〉 ⊓ 〈ProcPay, OK〉 ⊓ 〈ShipItem, OK〉

〈SellItem, FAIL〉 7→ 〈ChkAvail, FAIL〉 ⊔

(〈ChkAvail, OK〉 ⊓ (〈ProcPay, FAIL〉 ⊔

(〈ProcPay, OK〉 ⊓ 〈ShipItem, FAIL〉)))

〈ChkAvail, OK〉 7→ 〈ChkStore, OK〉

〈ChkAvail, FAIL〉 7→ 〈ChkStore, FAIL〉

}

This consistency interface is a natural extension of the signature interface SShop; it

keeps different choices in the conversations separate.

For action 〈SellItem, SOLD〉, all three actions in the expression on the right hand

76

side occur together. For action 〈SellItem, FAIL〉, action 〈ChkAvail, FAIL〉 occurs

alone, or action 〈ChkAvail, OK〉 occurs together with either action 〈ProcPay, FAIL〉 or

both, actions 〈ProcPay, OK〉 and 〈ShipItem, FAIL〉. Notice that nothing is said about

the order of their occurrence. The actions for method ChkAvail result in calls to the

method ChkStore in Store.

The underlying signature of CShop is SShop from the example in the last section.

Our CShop is a consistency interface because its underlying signature is a signature

interface.

3.3.1 Compatibility and Composition

Given two consistency interfaces C1 = (N1,J1,K1,F1) and C2 = (N2,J2,K2,F2),

if the underlying signatures sig(C1) and sig(C2) are compatible, then C1 and C2 are

compatible (denoted by comp(C1, C2)), and their composition (denoted C1 ‖ C2) is Cc =

(Nc,Jc,Kc,Fc) where Nc = N1∪N2, and Jc = J1∪J2, and Kc = (K1∪K2)\(Nc×I),

and Fc = F1 ∪ F2. The composition operation is commutative and associative.

Compatibility and composition of consistency interfaces can be computed in O(n ·

log n) time, where n = max(|N1|, |N2|). Note that the operators sig and ‖ commute:

for all consistency interfaces C1 and C2, we have sig(C1 ‖ C2) = sig(C1) ‖ sig(C2).

A consistency interface C is closed (concrete) if sig(C) is closed (concrete). Given

a consistency interface C, an environment for C is a concrete consistency interface E

that is compatible with C, such that the composition C ‖ E is closed.

77

3.3.2 Refinement

A conversation of a consistency interface is a set of actions that are exhibited to-

gether in one execution of the system. Given a consistency interface C = (N ,J ,K,F),

the set of conversations represented by an expression from B(A) is defined by the func-

tion [[.]] : B(A) → 22A , which is defined as the least solution of the following system

of equations, where a ∈ A and ϕ1, ϕ2 ∈ B(A):

[[t]] = {{}}

[[a]] = {{a} ∪ y | y ∈ [[F(a)]]} if a ∈ J

[[a]] = {{a} ∪ y | y ⊆ (N × I) ∪ K} if a /∈ J but [a] ∈ N

[[a]] = {{a}} if [a] /∈ N

[[ϕ1⊔ϕ2]] = [[ϕ1]] ∪ [[ϕ2]]

[[ϕ1⊓ϕ2]] = {x ∪ y | x ∈ [[ϕ1]], y ∈ [[ϕ2]]}

Given two consistency interfaces C = (N ,J ,K,F) and C′ = (N ′,J ′,K′,F ′), we

say C′ refines C (written C′ 4 C) if

i) sig(C′) 4 sig(C), and

ii) for every a ∈ J , for all conversations x′ ∈ [[F ′(a)]], there exists a conversation

x ∈ [[F(a)]] such that x′ ⊆ x.

The definition above allows the refinement C′ to drop conversations, or actions

from a conversation, for actions supported by C. The refinement C′ is allowed to

support additional actions that C does not support, but it is not allowed to require

additional actions, and it is not allowed to introduce a new conversation x′ in C′ for

an action supported by C, such that x′ is not a fragment (subset) of a conversation x

of the same action in C. The refinement-checking problem for consistency interfaces

is in NP.

78

Theorem 3.1 Let C1, C
′
1 and C2 be three consistency interfaces such that C′

1 4 C1

and comp(C1, C2). Then comp(C′
1, C2) and C′

1 ‖ C2 4 C1 ‖ C2.

Proof.

i) Given C′
1 4 C1, we get, by definition of refinement for consistency interfaces,

sig(C′
1) 4 sig(C1). Then, by definition of refinement for signature interfaces,

N ′
1 ⊆ N1, where N ′

1 and N1 are the namespaces of signature interfaces sig(C′
1)

and sig(C1) respectively.

Now, given comp(C1, C2), we have, by definition of compatibility of consistency

interfaces, comp(sig(C1), sig(C2)). Then, by definition of compatibility for sig-

nature interfaces, we have N1 ∩ N2 = ∅, where N1 and N2 are the namespaces

of the signature interfaces sig(C1) and sig(C2) respectively.

From the above, we have N ′
1∩N2 = ∅, and thence, we get comp(sig(C′

1), sig(C2)),

and thus, we conclude comp(C′
1, C2).

ii) Let us assume that the required result does not hold. In other words, let

C′
1 4 C1, but (C′

1 ‖ C2) 64 (C1 ‖ C2). Note that by definitions of composition

for consistency interfaces, underlying signatures for consistency interfaces, and

refinement for signature interfaces, we have sig(C′
1 ‖ C2) 4 sig(C1 ‖ C2).

Thus, by definition of refinement for consistency interfaces, and by our assump-

tion (C′
1 ‖ C2) 64 (C1 ‖ C2), we conclude that there must be at least one action

a ∈ J1 ∪J2, where Ci = (Ni,Ji,Ki,Fi) for i ∈ {1, 2} and C′
1 = (N ′

1,J
′
1,K

′
1,F

′
1),

such that there exists a conversation y ∈ [[F ′(a)]], such that for all conversations

x ∈ [[F(a)]] we have y * x, where F ′ = F ′
1 ∪ F2 and F = F1 ∪ F2. To make

this happen, the only way is for an action supported by C′
1 but not by C1 to

invoke additional actions. However, since K′
1 ⊆ K1 by definition of refinement

79

for consistency interfaces (and for signature interfaces), and by the definition of

conversations represented by formulas from B(A) on consistency interfaces as

defined above, we see that this is not possible. Thus, a contradiction is reached,

and the required result follows.

3.3.3 Specifications

A specification ψ for a consistency interface is a formula a 6 S where a ∈ A

and S ⊆ A. Intuitively, a specification a 6 S states that the invocation of action

a must not lead to a conversation in which the actions in set S are all exhibited

together. Formally, a specification ψ = a 6 S is satisfied by a consistency interface

C = (N ,J ,K,F) (denoted C |= ψ) if S * x for all x ∈ [[F(a)]]. The specification

satisfaction problem for consistency interfaces is in co-NP. Given two compatible con-

sistency interfaces C1 and C2, and a specification ψ, the following holds: (C1 ‖ C2) |= ψ

implies C1 |= ψ and C2 |= ψ. The converse is not true.

Theorem 3.2 Given a consistency interface C = (N ,J ,K,F) and a specification

ψ = a 6 S, C |= ψ if and only if for all consistency interfaces C′ = (N ′,J ′,K′,F ′)

such that C′ 4 C, there exists an environment EC′ of C′, such that (C′ ‖ EC′) |= ψ.

Proof.

(⇒) Let us assume that the required result does not hold. Then, we have, given

C = (N ,J ,K,F) and a specification ψ = a 6 S, and that C |= ψ, and by

assumption, that there exists a consistency interface C′ = (N ′,J ′,K′,F ′) such

that C′ 4 C, but for all environments EC′ of C′, (C′ ‖ EC′) 6|= ψ. Now, we have

three cases:

80

a) a is outside namespace N : Then a belongs to the namespace of EC′ , and

hence the assumption cannot occur. A contradiction is reached, and hence

this subcase has to be rejected if our assumption has to be true.

b) a is in namespace N , but a /∈ J : Then [[F(a)]] in C is {{a} ∪ y | y ⊆

(N×I)∪K} by definition. Then, by definition of refinement of consistency

interfaces, it is not possible that there should exist a y ∈ [[F ′(a)]] in C′ such

that S ⊆ y but S * x for all x ∈ [[F(a)]] in C, which must hold, because

we are given C |= ψ. Thus, this subcase leads to a contradiction as well.

c) a ∈ J : In this subcase, by definition of refinement for consistency inter-

faces, we directly have that for all conversations y ∈ [[F ′(a)]], there exists a

conversation x ∈ [[F(a)]] such that y ⊆ x, which rules out the possibility of

existence of y such that S ⊆ y and for all x, S * x. Thus, the assumption

is not possible in this subcase either.

Since all possible subcases were considered, our assumption must be false, and

hence the required result follows.

(⇐) Given that for all consistency interfaces C′ such that C′ 4 C, there exist en-

vironments EC′ of C′ such that (C′ ‖ EC′) |= ψ, we reach, by reflexivity of the

refinement relation for consistency interfaces, that C has an environment EC

such that (C ‖ EC) |= ψ. Now, we observe that by definition of the semantics [[.]]

of formulas of B(A) over consistency interfaces, for all x ∈ [[F(a)]] there exists

y ∈ [[(F ∪ F e)(a)]] such that x ⊆ y, where EC = (N e,J e,Ke,F e). Further, we

observe from (C ∪ EC) |= ψ and by definition of specification satisfaction for

consistency interfaces, we must have S * y for all y ∈ [[(F ∪ F e)(a)]], where

ψ = a 6 S. Then, we reach S * y for all y ∈ [[F(a)]].

81

Now, from (C ‖ EC) |= ψ, we reach that either (S \ ((N ∪N e)×I)) * (K∪Ke),

or, for all b ∈ (N ∪ N e) × I such that b /∈ (J ∪ J e), there does not exist

actions c0, c1, c2, . . . , ck ∈ (J ∪ J e) such that a requires c0, and ci requires ci+1

for 0 ≤ i ≤ k − 1, and ck requires b in sig(C ‖ EC), where C = (N ,J ,K,F)

and EC = (N e,J e,Ke,F e). Now, S \ ((N ∪ N e) × I) = ∅, and hence the

first choice is not possible. Hence, we must have: for all b ∈ (N ∪ N e) × I

such that b /∈ (J ∪ J e), there does not exist actions c0, c1, c2, . . . , ck ∈ J such

that a requires c0, and ci requires ci+1 for 0 ≤ i ≤ k − 1, and ck requires b in

sig(C ‖ EC). Observing that b ∈ N ×I cannot satisfy b ∈ J e, we reach that for

all b ∈ N ×I such that b /∈ J , there does not exist actions c0, c1, c2, . . . , ck ∈ J

such that a requires c0, and ci requires ci+1 for 0 ≤ i ≤ k − 1, and ck requires

b in sig(C), which is the required second condition for specification satisfaction

for consistency interfaces.

From the above two paragraphs, we conclude that C |= ψ. Therefore the re-

quired result follows.

Corollary 3.1 Let C1, C
′
1 and C2 be three consistency interfaces such that C′

1 4 C1,

and comp(C1, C2). Let ψ be a specification such that (C1 ‖ C2) |= ψ. Then (C′
1 ‖ C2) |=

ψ.

Proof. Let us assume that the required result does not hold. Then, a must be

in the namespace of (C1 ‖ C2) and a must generate a conversation x in (C′
1 ‖ C2)

such that S ⊆ x, where spec = a 6 S. Then, by definition of refinenement for

consistency interfaces, since given C′
1 4 C1, and by Theorem 3.1, we reach that for

every conversation x generated by a in (C′
1 ‖ C2), there is a conversation y generated

82

by a in C1 ‖ C2), such that x ⊆ y. Then, we conclude that (C1 ‖ C2) 6|= ψ, which is a

contradiction. Hence, our original assumption must be wrong and thus, the required

result follows.

3.4 Protocol Interfaces

Let Terms be a set such that elements term ∈ Terms are given by the following

grammar (a ∈ A and A ⊆ A, |A| ≥ 2):

term :: ǫ | a | ⊓A | ⊞A

A protocol automaton H = (Q, δ) consists of a finite set of locations Q and a fi-

nite (nondeterministic) transition relation δ ⊆ Q × Terms × Q, consisting of tuples

(q, term, q′) of a source location q, a term term, and a successor location q′. A location

that does not occur as a source location in any transition is a return location.

A protocol interface P = (N ,J ,K,H,R) consists of a namespace N , a set J ⊆ A

of actions that are supported by P such that [J] ⊆ N , a set K ⊆ A of external actions

that are required by P such that [K] ∩N = ∅, a protocol automaton H, and a partial

function R : A → Q which assigns to a supported action a a location of H.

The execution semantics of a protocol interface can intuitively be understood as

follows. The interface maintains a set of current locations. When execution starts due

to the invocation of a supported action a, this set contains exactly one location R(a),

and execution ends when the set is empty. If a current location is q, the interface

chooses a transition of H with q as source location and executes the term of the

transition. Executing a term means: 1) for an ǫ-term, to proceed with the successor;

2) for a term of the form a, to execute the action a, and, after the execution of a is

83

completed, proceed with the successor; 3) for a term of the form ⊓A, to execute all

actions from the set A (in parallel), and, after the execution of all actions is completed,

proceed with the successor; and 4) for a term of the form ⊞A, to execute all actions

from set A (in parallel), and, after the execution of at least one of the actions is

completed, proceed with the successor. Executing an action a means adding the

location R(a) to the set of current locations. Proceeding with the successor means

the following: if the successor location of the transition is a return location, the

current execution is completed; otherwise the successor location of the transition is

added to the current locations.

Given a protocol interface P = (N ,J ,K,H,R), the underlying signature of P

(denoted sig(P)) is (N ,J ,K,D), where D is a partial function D : A → 2A such

that for all a ∈ J , D(a) = sigl(R(a)). The function sigl : Q → 2A that assigns a

set of actions to every location q, is defined as follows: sigl(q) =
⋃

i=0,1,...,k g(termi) ∪
⋃

i=0,1,...,k sigl(qi) for (q, term0, q0), (q, term1, q1), . . . , (q, termk, qk) ∈ δ. The func-

tion g : Terms → 2A is defined as g(ǫ) = ∅, and g(a) = {a}, and g(◦A) = A

with ◦ ∈ {⊓,⊞}, and a ∈ A, and A ⊆ A. We require that the underlying signature

of a protocol interface is a signature interface, and that starting with any location

of the automaton as current location, the execution of the protocol interface can be

completed.

Note that this model incorporates recursion, dynamic thread creation, and con-

currency, albeit with the simplifying assumption that the concurrent threads of exe-

cution do not communicate with each other except at points of calls and returns of

web method invocations. In particular, the threads of execution running in parallel

are not allowed to communicate with each other through shared variables, locks, etc.

This assumption is fulfilled in the web services context: threads invoked as a result

84

of web method invocations through the internet usually run on physically separated

remote servers (e.g. on amazon.com, bankofamerica.com, fedex.com, etc) and hence

cannot share information through shared variables.

This is a very different (and much more simple) concurrency model compared

to those typically used for verification and analysis of conventional concurrent soft-

ware [60, 71, 70, 128], where patterns of communication (e.g. through shared vari-

ables) between concurrent threads (usually running on the same physical machine)

is a primary issue of interest. Our model is thus not applicable in such a context.

However, note that, in particular, reachability is decidable in our model, while in

the conventional model for concurrent shared-memory software reachability is un-

decidable (since a model with at least two threads with their own separate stacks,

communicating with shared variables, is equivalent to a two-counter machine). In

other words, our model is constructed to take advantage of simplifying assumptions

about inter-thread communication that are fulfilled in the web services context and

allows us to obtain algorithmic solutions for problems that are undecidable (and hence

permitting of only heuristic and semi-algorithmic solutions) in the models used in the

conventional concurrent software verification and analysis context.

Example 3.4 (Protocol interface) Shop is represented by a protocol interface

PShop = (NShop,JShop,KShop,HShop,RShop) where NShop, and JShop, and KShop are as

in Example 3.2, and HShop and RShop are defined as follows. For readability, we de-

fine HShop and RShop by giving the transition relation δ of HShop as a sequence of tuples

(q, term, q′), and indicating the partial function R by writing an action a in front of

a transition with R(a) as source location (location q0 is a return location):

HShop and RShop :

85

〈SellItem, SOLD〉 7→ (q1, 〈ChkAvail, OK〉, q2), (q2, 〈ProcPay, OK〉, q3),

(q3, 〈ShipItem, OK〉, q0),

〈SellItem, FAIL〉 7→ (q4, 〈ChkAvail, FAIL〉, q0), (q4, 〈ChkAvail, OK〉, q5),

(q5, 〈ProcPay, FAIL〉, q0), (q5, 〈ProcPay, OK〉, q6),

(q6, 〈ShipItem, FAIL〉, q0),

〈ChkAvail, OK〉 7→ (q7, 〈ChkStore, OK〉, q0),

〈ChkAvail, FAIL〉 7→ (q8, 〈ChkStore, FAIL〉, q0)

This protocol interface is a natural extension of the consistency interface CShop; in

addition to what CShop does, PShop maintains the temporal order of actions.

It models that for action 〈SellItem, SOLD〉 the three actions occur in the given se-

quence in a conversation. When the action 〈SellItem, FAIL〉 is invoked, Shop checks

the availability of the item, nondeterministically assuming the outcome to be either

FAIL or OK. In the former case, the next location is q0, i.e., the sequence induced by

action 〈SellItem, FAIL〉 ends here. In the second case, (〈ChkAvail, OK〉), it proceeds

with payment processing in location q5, again nondeterministically assuming the out-

come to be FAIL or OK. In the former case the next location is q0, and in the latter

case it tries to ship the item (in location q6), with the expectation of failure.

The underlying signature of PShop is SShop from Example 3.2. Our PShop is a

protocol interface because its underlying signature is a signature interface and all its

executions can be terminated (by reaching a return location).

Example 3.5 (Concurrency) The following describes the protocol interface for

the Store web service:

86

〈ChkStore, OK〉 7→ (q1, ǫ, q0), (q1, 〈ChkStore, FAIL〉, q0),

〈ChkStore, FAIL〉 7→ (q2, 〈Supp1.GetOffer, REC〉 ⊓ 〈Supp2.GetOffer, REC〉, q3),

(q3, 〈Supp1.Order, OK〉, q0), (q3, 〈Supp2.Order, OK〉, q0)

Let us first consider action 〈ChkStore, FAIL〉. The interface models that two different

supplier web services are simultaneously asked to provide an offer. In this case,

the protocol interface expresses not only sequence, but also concurrency. After both

offers are received, the automaton switches to location q3, which models that the Store

web service orders the missing item from one of the two suppliers. After this, the

automaton switches to the return location q0, i.e., the conversation induced by action

〈ChkStore, FAIL〉 ends here. The conversation represented by action 〈ChkStore, OK〉

is either empty, or it contains the actions for ordering new items (for the case the stock

is below a certain threshold). This is modeled by making use of the nondeterministic

transition relation.

Example 3.6 (Calendar Management Service: Semantics) Let us con-

sider the protocol interface P of a simple calendar management web ser-

vice such that P = (N ,J ,K,H,R) where the set of supported actions

J = {〈OrganizeMeeting, OK〉, 〈AddEventToCalendari, OK〉}, and the set of re-

quired actions K = {〈Busy, OK〉, 〈SendConfirmationEmail, OK〉}. Then the partial

function R together with the transition relation δ of H are given as follows,

87

〈OrganizeMeeting, OK〉 7→ (q1, 〈SyncCalendars, OK〉, q2)

(q2, 〈Confirm, OK〉, q0)

〈SyncCalendars, OK〉 7→ (q3,⊓{〈AddEventToCalendar1, OK〉,

〈AddEventToCalendar2, OK〉, . . . ,

〈AddEventToCalendark, OK〉}, q0)

〈Confirm, OK〉 7→ (q4, 〈SendConfirmationEmail, OK〉, q0)

(q4, ǫ, q0)

〈AddEventToCalendari, OK〉 7→ (q5, ǫ, q0)

〈AddEventToCalendari, OK〉 7→ (q6, 〈Busy, OK〉, q0)

This protocol interface has the following semantics. The execution begins with the

invocation of action 〈OrganizeMeeting, OK〉, which leads to a number of parallel

invocations of 〈AddEventToCalendari, OK〉 (one for each desired participant in the

meeting being scheduled), sequentially followed by 〈SendConfirmationEmail, OK〉,

which can only be invoked after all parallel invocations of 〈AddEventToCalendari, OK〉

have completed their execution. In each invocation of the later action, the system

may find out that the participant concerned is busy (leading to the invocation of

〈Busy, OK〉) or not. After all parallel invocations have finished, the system nondeter-

ministically chooses to send a confirmation email to all participants noting that the

meeting has been scheduled, or not: the actual implementation could decide to send

the confirmation only if none of the 〈AddEventToCalendari, OK〉 actions led to the

invocation of 〈Busy, OK〉, i.e., all desired participants were indeed found to be free.

Now let us consider the following, slightly modified version P ′ of the calendar

management service:

88

〈OrganizeMeeting, OK〉 7→ (q1, 〈SyncCalendars, OK〉, q2)

(q2, 〈Confirm, OK〉, q0)

〈SyncCalendars, OK〉 7→ (q3,⊞{〈AddEventToCalendar1, OK〉,

〈AddEventToCalendar2, OK〉, . . . ,

〈AddEventToCalendark, OK〉}, q0)

〈Confirm, OK〉 7→ (q4, 〈SendConfirmationEmail, OK〉, q0)

(q4, ǫ, q0)

〈AddEventToCalendari, OK〉 7→ (q5, ǫ, q0)

〈AddEventToCalendari, OK〉 7→ (q6, 〈Busy, OK〉, q0)

This modified web service does not wait for the execution to complete on all

parallel invocations of 〈AddEventToCalendari, OK〉. As soon as the first participant’s

status (busy or not) can be obtained, the system is free to move forward and decide

whether to schedule the meeting or not.

3.4.1 Compatibility and Composition

Given two protocol interfaces P1 = (N1,J1,K1,H1,R1) and P2 =

(N2,J2,K2,H2,R2), if the underlying signatures sig(P1) and sig(P2) are compatible,

and Q1 ∩ Q2 = ∅, then P1 and P2 are compatible (denoted comp(P1,P2)), and their

composition (denoted P1 ‖ P2) is Pc = (Nc,Jc,Kc,Hc,Rc), where Nc = N1 ∪ N2,

and Jc = J1 ∪ J2, and Kc = (K1 ∪ K2) \ (Nc × I), and Hc = (Q1 ∪ Q2, δ1 ∪ δ2),

and Rc = R1 ∪ R2, where Qi and δi are the set of locations and the transition

relation of the automaton Hi for i ∈ {1, 2}. The composition operation is com-

mutative and associative. Compatibility and composition of protocol interfaces can

be computed in O(n2 · k2) time, where n = |Q1| + |Q2| and k = max(k1, k2), and

89

ki = maxq{|S| : S = {(q, term, q′) : (q, term, q′) ∈ δi}} are the corresponding maximal

nondeterministic branching factors.

A protocol interface P is closed (concrete) if sig(P) is closed (concrete). Given a

protocol interface P , an environment for P is a concrete protocol interface E that is

compatible with P , such that the composition P ‖ E is closed.

3.4.2 Refinement

Underlying Game Graph

Informally, a protocol interface represents a game being played between two play-

ers P1 and P2. The interface, together with un-implemented actions in its namespace,

collectively constitute the system, which plays against the environment by making

moves that change the state of the system and the environment. A scheduler (intro-

duced below) arbitrates when both the system and the environment have available

moves. Player P1 plays for the system and the scheduler, and player P2 plays for the

environment. The game is played over a state space consisting of an infinite set of

trees defined formally as follows.

Given a finite set of tree symbols T , a tree t over T is a partial function t : N∗ → T ,

where N∗ denotes the set of finite words over the set of natural numbers N, and the

domain dom(t) = {p ∈ N∗ | ∃(p, l) ∈ t} is prefix-closed. Each element from dom(t)

represents a node of tree t: the empty word ρ represents the root of the tree; and the set

of child nodes of node p in tree t is ch(t, p) = {p′ | ∃n ∈ N : p′ = p ·n ∧ p′ ∈ dom(t)},

where · is the concatenation operator for strings over N∗. Each node p of the tree

is named with the symbol t(p). The set of leaf nodes of a tree t is leaf (t) = {p ∈

dom(t) | ch(t, p) = ∅}. The set of all trees over a finite set T is denoted T (T).

90

The initial state of the game, and the winning condition will be defined later. The

transitions of the game graph are defined as follows.

Intuitively, locations in Q belong to the system, and represent control held by

an action supported by the interface. Four fresh locations q∀, q∃, q1, and q2 are

introduced. Location q∀ belonging to the system represents control held by an un-

implemented action that will be supported by a refinement of the service being an-

alyzed; the location q∃ belonging to the environment represents control held by an

action required by the interface but outside its namespace that will be supported by

the environment; locations q1 and q2 are return locations.

Informally, the set of transitions → of the game graph allows players P1 and P2

to change the current state of the game. Players P1 and P2 are allowed to move from

a given current state s only if s is a pair (t, r) where the tree t has at least one leaf

labeled with a location belonging to the system and the environment respectively,

and the second component r fulfils the required conditions as described below. Note

that if t is a tree with several leaves, not all leaves may necessarily be labeled with

locations belonging exclusively to either the system or the environment; then a sched-

uler arbitrates which of them should be allowed to move.1If only one of the system or

the environment actually has a leaf belonging to it in the tree t, then the scheduler

must choose the corresponding player to move next. Otherwise, from a game state

(t,∇), the scheduler chooses either the former or the latter to be allowed to make the

next move by choosing a move to (t,∀) or (t,∃) respectively. Note that the scheduler

is not allowed to modify the tree configuration. The second component r of a game

state (t, r) reflects the decision of the scheduler on whether the system or the envi-

1Note that the scheduler is a mathematical construct used for theoretical purposes only. We do

not require web service frameworks in practice to incorporate a scheduler to co-ordinate globally the
computation and communication activities of distributed web services.

91

ronment is allowed to move next: the system can move only from game states of the

form (t,∀), and the environment can move only from game states of the form (t,∃).

Intuitively, the environment needs to win the game against all possible schedulers.

Thus, we allow the scheduler and the system to conspire with each other against the

environment, which must play against the coalition. Thus, moves in → corresponding

to transitions originating from a state (t, r) for r ∈ {∀,∇} belong to player P1; and

those corresponding to transitions originating from a state (t,∃) belong to player P2.

Formally, given a protocol interface P = (N ,J ,K,H,R), the underlying game

graph of P is a labeled two-player game graph G = (S1, S2,L,→) (denoted by ugs(P))

where S1 = (T (Q•)× {∀,∇}) is the set of player-1 states at which player P1 chooses

the outgoing transition to the next state, and S2 = (T (Q•)×{∃}) is the set of player-2

states where player P2 chooses the next state, and L = 2A∪{ret} is the set of transition

labels, and → ⊆ S×L×S is the game transition relation; where the set of game states

S = S1 ∪ S2 is the set of pairs (t, r) with r being an element of the set R = {∃,∀,∇}

and t being a tree over the set of tree symbols Q• = {(q, •) | q ∈ Q∪{q∀, q∃, q1, q2}, • ∈

{⊞, ◦}}, with Q is the set of locations of protocol automaton H and q∀, q∃, q1, q2 are

fresh symbols not in Q, and the transitions between states are labeled with sets of

elements from A∪{ret}. We write (t, r)
A
→ (t′, r ′) for ((t, r), A, (t′, r ′)) ∈ →. Given

a protocol interface P the corresponding game transition relation is defined as follows.

In the following, for an action a the symbol qa is defined as follows: qa = R(a) if a

is supported (a ∈ J); qa = q∀ if a /∈ J but [a] ∈ N ; and qa = q∃ if [a] /∈ N . The

relation δ• used below is defined as δ• = δ ∪ δ∀ ∪ δ∃, where δ is the transition relation

92

of H, and

δ∀ = {(q∀, ǫ, q1)} ∪

{(q∀, a, q∀) | a ∈ A, such that [a] ∈ N or a ∈ K} ∪

{(q∀, ◦A, q∀) | ◦ ∈ {⊓,⊞}, A ⊆ A, s.t. for all a ∈ A, [a] ∈ N or a ∈ K}, and

δ∃ = {(q∃, ǫ, q2)} ∪

{(q∃, a, q∃) | a ∈ A} ∪

{(q∃, ◦A, q∃) | ◦ ∈ {⊓,⊞}, A ⊆ A}.

Informally, the relation δ∀ encodes the ability of an unimplemented action in the

interface’s namespace to invoke any action under the restrictions imposed on it by

the interface; and the relation δ∃ encodes the ability of the environment to invoke any

action. The relation → is defined as follows:

• Next-Mover: (t,∇)
ǫ
→ (t, r) where r = ∀ (or ∃) if there exists a node p such

that p ∈ leaf (t), and t(p) = (q, ◦), and q ∈ Q ∪ {q∀, q1} (or q ∈ {q∃, q2}).

• Epsilon: (t, r)
ǫ
→ (t′,∇) if there exists a node p such that p ∈ leaf (t), and

t(p) = (q, ◦), and r = ∀ (or ∃) if q ∈ Q ∪ {q∀, q1} (or q ∈ {q∃, q2}), and

(q, ǫ, q′) ∈ δ•, and t′ = (t \ {(p, (q, ◦))}) ∪ {(p, (q′, ◦))}.

• Call: (t, r)
{a}
→ (t′,∇) if there exists a node p such that p ∈ leaf (t), and t(p) =

(q, ◦), and r = ∀ (or ∃) if q ∈ Q ∪ {q∀, q1} (or q ∈ {q∃, q2}), and (q, a, q′) ∈ δ•,

and t′ = (t \ {(p, (q, ◦))}) ∪ {(p, (q′, ◦)), (p · 0, (qa, ◦))}.

• Fork: (t, r)
A
→ (t′,∇) if there exists a node p such that p ∈ leaf (t),

and t(p) = (q, ◦), and r = ∀ (or ∃) if q ∈ Q ∪ {q∀, q1} (or

q ∈ {q∃, q2}), and (q,⊓A, q′) ∈ δ•, and t′ = (t \ {(p, (q, ◦))}) ∪ {(p, (q′, ◦)),

(p · 0, (qa0
, ◦)), . . . , (p · k, (qak

, ◦))}, where A = {a0, . . . , ak}.

93

• Fork-Choice: (t, r)
A
→ (t′,∇) if there exists a node p such that

p ∈ leaf (t), and t(p) = (q, ◦), and r = ∀ (or ∃) if q ∈ Q ∪ {q∀, q1} (or

q ∈ {q∃, q2}), and (q,⊞A, q′) ∈ δ•, and t′ = (t \ {(p, (q, ◦))}) ∪ {(p, (q′,⊞)),

(p · 0, (qa0
, ◦)), . . . , (p · k, (qak

, ◦))}, where A = {a0, . . . , ak}.

• Return: (t, r)
{ret}
→ (t′,∇) if there exists a node p · n, n ∈ N, such that p · n ∈

leaf (t), and t(p ·n) = (q, ◦) and r = ∀ (or ∃) if q ∈ Q∪{q∀, q1} (or q ∈ {q∃, q2}),

such that q is a return location, t(p) = (q′, ◦), and t′ = t \ {(p · n, (q, ◦))}.

• Return & Remove Sibling Tree: (t, r)
{ret}
→ (t′,∇) if there exists a node p · n,

n ∈ N, such that p · n ∈ leaf (t), and t(p · n) = (q, ◦) and r = ∀ (or ∃) if

q ∈ Q∪{q∀, q1} (or q ∈ {q∃, q2}), such that q is a return location, t(p) = (q′′,⊞),

and t′ = (t \ {(p · p′, (q′, •)) | p′ ∈ N∗ ∧ (q′, •) ∈ Q•}) ∪ {(p, (q′′, ◦))}.

A run of the game structure is an alternating sequence of game states and sets of

actions s0, A1, s1, A2, s2, . . ., with ∀i ∈ {1, . . . n} : si−1
Ai→ si. A trace is the projection

of a run to its action sets; for a run s0, A1, s1, A2, s2, . . ., the corresponding trace

is A1, A2, The set of moves belonging to player Pi at a game state sj ∈ Si is

{s | sj
A
→ s, A ⊆ A ∪ {ret}}, where i ∈ {1, 2}. Move s of player Pi for i ∈ {1, 2}

at game state sj ∈ Si is labeled with A if sj
A
→ s. A strategy σi of a player Pi

for i ∈ {1, 2} is a function that maps every finite run s0, A1, s1, A2, s2, . . . , sk such

that sk ∈ Si to a move available to Pi at sk. The set of strategies of player Pi

for i ∈ {1, 2} is denoted Ψi. For a location q, a q-run is a run s0, A1, s1, . . . with

s0 = ({(ρ, (q, ◦))},∇), i.e., a run starting from a game state where the sole thread of

control rests at location q of the protocol automaton; a q-trace is a trace corresponding

to a q-run. For a given pair of strategies (σ1, σ2) and a location q, the outcome is a

q-run s0, A1, s1, A2, s2, . . ., such that for every prefix ri = s0, A1, s1, A2, . . . , si of the

94

run, if si ∈ Sj, we have σj(ri) = si+1, for i ∈ N and j ∈ {1, 2}. Given a protocol

interface P = (N ,J ,K,H,R) and an action a ∈ J , the initial state of the game

representing the invocation of a on P (denoted init(P , a)) is ({ρ 7→ (R(a), ◦)},∇).

Alternating Simulation

Given two two-player game graphs G ′ = (S ′
1, S

′
2,L,→

′) and G = (S1, S2,L,→) with

state spaces S ′ = S ′
1 ∪ S ′

2 and S = S1 ∪ S2 respectively, we say G ′ is in alternating

simulation with G if there exists a relation - ⊆ S ′ × S such that:

i) for every s1 ∈ S1, and s′1 ∈ S ′
1, if s′1 - s1, then for every player P1 move s′2

labeled with A and available at s′1 there exists a player P1 move s2 labeled with

A and available at s1, such that s′2 - s2, and

ii) for every s2 ∈ S2, and s′2 ∈ S ′
2, if s′2 - s2, then for every player P2 move s1

labeled with A and available at s2, there exists a player P2 move s′1 labeled with

A and available at s′2, such that s′1 - s1.

Given two protocol interfaces P = (N ,J ,K,H,R) and P ′ = (N ′,J ′,K′,H′,R′),

we say P ′ refines P (written P ′ 4 P), if:

i) sig(P ′) 4 sig(P), and

ii) for every action a ∈ A, if P supports a, then the two two-player game graphs

G ′ = ugs(P ′) and G = ugs(P) are such that there exists an alternating simula-

tion relation - with init(P ′, a) - init(P , a).

Theorem 3.3 Let P1, P ′
1 and P2 be three protocol interfaces such that P ′

1 4 P1

and comp(P1,P2). Then comp(P ′
1,P2) and (P ′

1 ‖ P2) 4 (P1 ‖ P2).

95

Proof.

i) Given P ′
1 4 P1, we get, by definition of refinement for protocol interfaces,

sig(P ′
1) 4 sig(P1). Then, by definition of refinement for signature interfaces,

N ′
1 ⊆ N1, where N ′

1 and N1 are the namespaces of signature interfaces sig(P ′
1)

and sig(P1) respectively.

Now, given comp(P1,P2), we have, by definition of compatibility of protocol

interfaces, comp(sig(P1), sig(P2)). Then, by definition of compatibility for sig-

nature interfaces, we have N1 ∩ N2 = ∅, where N1 and N2 are the namespaces

of the signature interfaces sig(P1) and sig(P2) respectively.

From the above, we have N ′
1 ∩ N2 = ∅, and thence, we get

comp(sig(P ′
1), sig(P2)), and thus, we conclude comp(P ′

1,P2).

ii) Let us assume that the required result does not hold. In other words, let

P ′
1 4 P1, but (P ′

1 ‖ P2) 64 (P1 ‖ P2). Note that by definitions of composition for

protocol interfaces, underlying signatures for protocol interfaces, and refinement

for signature interfaces, we have sig(P ′
1 ‖ P2) 4 sig(P1 ‖ P2). Thus, by

definition of refinement for protocol interfaces, and by our assumption (P ′
1 ‖

P2) 64 (P1 ‖ P2), we conclude that there must be at least one action a ∈ J1∪J2,

where Pi = (Ni,Ji,Ki,Hi,Ri) for i ∈ {1, 2} and P ′
1 = (N ′

1,J
′
1,K

′
1,H

′
1,R

′
1),

such that ugs(P ′
1 ‖ P2, a) is not in alternating simulation with ugs(P1 ‖ P2, a).

To make this happen, the only way is for an action supported by P ′
1 but not

by P1 to invoke additional actions. However, since K′
1 ⊆ K1 by definition

of refinement for protocol interfaces (and for signature interfaces), and by the

definition of the underlying game graphs for protocol interfaces as defined above,

96

we see that this is not possible. Thus, a contradiction is reached, and the

required result follows.

3.4.3 Specifications

A conversation of a protocol interface is a set of sequences of objects A, where each

A is a set of actions. A specification ψ for a protocol interface P = (N ,J ,K,H,R)

is a temporal safety property of the form ψ = a 6 ϕ, where ϕ is a temporal-logic

formula of the following form:

ϕ ::= φ ∧ (φ U ϕ) | φ

φ ::= t | f | b | ¬b | φ ∧ φ | φ ∨ φ

where a ∈ J and b ∈ A.

The temporal-logic formula φ U ϕ (read “φ until ϕ”) represents a temporal prop-

erty of conversations. Intuitively, a conversation satisfies a formula φ U ϕ if it satisfies

ϕ eventually, and satisfies φ at each step until then. A specification a 6 ϕ means that

the invocation of action a must not lead to a conversation satisfying ϕ. A specification

ψ for a protocol interface P is interpreted over traces generated by the underlying

game graph of P . Essentially, the specification is taken as the winning condition for

the game.

Formally, given a protocol interface P = (N ,J ,K,H,R), a location q of H sat-

isfies a temporal formula ϕ (written q |= ϕ) if for all strategies σ2 ∈ Ψ2 of player

P2, there exists a strategy σ1 ∈ Ψ1 of player P1, such that the outcome is a run

corresponding to a q-trace π = A1, A2, . . . of the underlying game graph ugs(P) such

that π |=t ϕ, where the satisfaction relation |=t between traces and temporal-logic

formulae is defined as follows. For the trace σ = A1, A2, . . . , Ak, we have σ |=t a

97

if a ∈ A1 and σ |=t ¬a otherwise; and σ |=t φ1 ∧ φ2 if σ |=t φ1 and σ |=t φ2; and

σ |=t φ1 ∨ φ2 if σ |=t φ1 or σ |=t φ2; and σ |=t t for all σ; and σ |=t f for no σ.

For a trace σ = A1, A2, . . . , Ak, we have σ |=t φ1 U (φ2 ∧ (φ3 U ϕ)) if either (1)

∧
A1∧(¬

∨
(A\A1)) ⇒ φ1 and σ′ |=t φ2 and σ′ |=t φ3 U ϕ where σ′ = A2, A3, . . . , Ak,

or (2) σ |=t φ2 and σ |=t φ3 U ϕ. A protocol interface P = (N ,J ,K,H,R) satisfies

a specification a 6 ϕ (written P |= ψ) if we have q 6|= ϕ where q = R(a),

Theorem 3.4 Given a protocol interface P = (N ,J ,K,H,R) and a specification

ψ = a 6 ϕ, we have P |= ψ if and only if for all concrete protocol interfaces

P ′ = (N ′,J ′,K′,H′,R′) such that P ′ 4 P, there exists an environment EP ′ of P ′,

such that (P ′ ‖ EP ′) |= ψ.

Proof.

(⇒) Let us assume that the required result does not hold. Then, we have, given

P = (N ,J ,K,H,R) and a specification ψ = a 6 ϕ, and that P |= ψ, and by

assumption, that there exists a protocol interface P ′ = (N ′,J ′,K′,H′,R′) such

that P ′ 4 P , but for all environments EP ′ of P ′, (P ′ ‖ EP ′) 6|= ψ. Now, we have

three cases:

a) a is outside namespace N : Then a belongs to the namespace of EP ′ , and

hence the assumption cannot occur. A contradiction is reached, and hence

this subcase has to be rejected if our assumption has to be true.

b) a is in namespace N , but a /∈ J : Then by definition of the underlying game

graph of P , we see that for every tuple (qa, term, q) ∈ δ′, we must have

(q∀, term, q∀) ∈ δ•,where δ• = δ∪δ∀∪δ∃ as defined before, and δ′ and δ are

the transition relations of the protocol automata H′ and H respectively.

98

Hence, if (P ′ ‖ EP ′) 6|= ψ, then a must generate a trace in (P ′ ‖ EP ′) that

violates the temporal formula ϕ. However, then by our above conclusion,

the same trace can be generated by a in P , and thus, we have P 6|= ψ, thus

reaching a contradiction.

c) a ∈ J : In this subcase, by definition of refinement for protocol interfaces,

we directly have that ugs(P ′, a) - ugs(P , a), which rules out the possibil-

ity of a generating a trace in P ′ that violates the temporal formula ϕ, since

we know that no such trace can be generated by a in P , given P |= ψ.

Thus, the assumption is not possible in this subcase either.

Since all possible subcases were considered, our assumption must be false, and

hence the required result follows.

(⇐) Given that for all protocol interfaces P ′ such that P ′ 4 P , there exist envi-

ronments EP ′ of P ′ such that (P ′ ‖ EP ′) |= ψ, we reach, by reflexivity of the

refinement relation for protocol interfaces, that P has an environment EP such

that (P ‖ EP) |= ψ. Now, from that, and from the definition of the underlying

game graph of P , we conclude that in that game graph there exist choices of

δ∃ for which every qa-trace generated does not satisfy the temporal formula ϕ.

From this, by definition of specification satisfactio for protocol interfaces, we

conclude P |= ψ.

Corollary 3.2 Let P1, P
′
1, and P2 be three protocol interfaces such that P ′

1 4 P1 and

comp(P1,P2). Let ψ be a specification such that (P1 ‖ P2) |= ψ. Then (P ′
1 ‖ P2) |= ψ.

While the formalism in [25] allowed specification-checking only for closed protocol

interfaces, the formalism as presented in this dissertation is based on [26] which

99

allows checking specifications for open protocol interfaces as well. The specification

language as presented in this dissertation is based on that from [27], which is an

enhanced version of the specification language used in [25, 26]. We are able to check

specifications in this language using Algorithm 2 which uses the set of proof rules

presented in Figures 3.2 through 3.14, where qa for an action a ∈ A is defined as

in Section 3.4.2. The rules are written taking into account the temporal logic for

specifications, the interleaving semantics of executions by parallel subtrees of the

overall system configuration at each stage, and the non-completing semantics of the

operator ⊞. For ease of presentation, we use the following abbreviations in the proof

rules. Let N2j+1,2k+1 with j ≤ k be the set of naturals {2j+1, 2j+1, . . . , 2k, 2k+1}.

Given a set of naturals M = N2j+1,2k+2 \ {2i | i ∈ N} where N is some subset of

N such that 2k + 2 /∈ N , then ϕ0
2j+1,2k+2 is an abbreviation for the formula φ2j+1 U

(φ2j+2 ∧ (φ2j+3 U (φ2j+4 ∧ . . . U (φ2k ∧ (φ2k+1 U φ2k+1))))) where φ2i = t for every

i ∈ N ; and N(ϕ0
2j+1,2k+2) denotes the set M . Given a set of naturals M = N2j+1,2k+1 \

{2i | i ∈ N} where N is some subset of N, then ϕ2j+1,2k+1 is an abbreviation for the

formula φ2j+1 U (φ2j+2 ∧ (φ2j+3 U (φ2j+4 ∧ . . . U (φ2k ∧ 2φ2k+1)))) where φ2i = t

for every i ∈ N ; and N(ϕ2j+1,2k+1) denotes the set M . Given a set of naturals

M = N2j+1,2k+1 \ {2i | i ∈ N} where N is some subset of N, then ϕ′
2j+1,2k+1 is an

abbreviation for the formula φ2j+1 U (φ2j+2 ∧ (φ2j+3 U (φ2j+4 ∧ . . . U (φ2k ∧ (φ2k+1 U

t))))) where φ2i = t for every i ∈ N ; and N(ϕ′
2j+1,2k+1) denotes the set M . The

formula (φ2j0+1 U (φ2j0+2 ∧ . . .∧ U (φ2j3 ∧ 2φ2j3+1))) is defined to be 2φ2j3+1 when

j0 = j3.

We demonstrate the practical usefulness of this specification formalism in Exam-

ple 3.7 and in Section 3.5.

Example 3.7 (Calendar Management Service: Specification Check-

100

ing) Let us consider the calendar management protocol interface P as defined

in Example 3.6, and the specification ψ = 〈OrganizeMeeting, OK〉 6 t U

(〈SendConfirmationEmail, OK〉 ∧ (t U 〈Busy, OK〉)). Intuitively, the specification

ψ represents the question “Is there an execution trace resulting from the invocation

of action 〈OrganizeMeeting, OK〉 on which at least one desired participant is found

to be busy after the email confirmation for the meeting had already been sent out?”

As expected, we find that P |= ψ, and P ′ 6|= ψ.

Proposition 3.1 (Correctness of specification checking) For a given protocol

interface P and a specification ψ = a 6 ϕ for P, procedure CheckSpec(P , a, ϕ)

(Algorithm 2) terminates and returns Yes if P satisfies ψ, and No otherwise.

Proof (sketch).

1: P satisfies the specification ψ: Then, the only way the Algorithm can return a

wrong answer (No) is if it manages to prove at least one temporal formula that

is not in fact fulfilled in the interface. Then, at least one of the proof rules must

be unsound. However, from the discussion accompanying the proof rules we

observe that every proof rule presented is sound, i.e.the conclusion of each rule

is satisfied if the premises hold. Therefore it is not possible for the algorithm

to return the answer No incorrectly.

2: P does not satisfy the specification ψ: Then, the only way the Algorithm can

return a wrong answer (YES) is it is fails to prove at least one temporal logic

formula that is in fact fulfilled by the interface. However, from the discussion

accompanying the proof rules we observe that the conclusion of each rule is

satisfied only if the premises hold. i.e. the proof rules are complete. It is

101

q |= t
(t1)

q |= φ U t
(t2)

q |= a

(q, a, q′) ∈ δ ∪ δ∀ ∨ ((q, ◦A, q′) ∈ δ ∧ a ∈ A),

◦ ∈ {⊓,⊞}.
(a)

q |= ¬a

(q, a, q′) and/or (q, ◦A, q′′) (such that a ∈ A)

is/are not the only one/two tuples of the form

(q, ?, ?) in δ, ◦ ∈ {⊓,⊞}.

(¬a)

q |= φ1 q |= φ2 U ϕ

q |= φ1 ∧ (φ2 U ϕ)
(∧1)

q |= φ1 q |= φ2

q |= φ1 ∧ φ2

(∧2)

q |= φ1

q |= φ1 ∨ φ2

(∨)

q′ |= ϕ

q |= ϕ
(q, ǫ, q′) ∈ δ. (ǫ U)

Figure 3.2. Proof rules for specification checking (part 1)

102

q |= φ1 U (φ2 ∧ (φ3 U (φ4 ∧ . . . U φ2k)))

((q, c, q′) ∈ δ ∪ δ∀ ∧

(c ∧ ¬
∨

(A \ {c})) ⇒
∧

1≤i≤k φ2i) ∨

((q, ◦A, q′) ∈ δ ∧

(
∧
A ∧ ¬

∨
(A \ A)) ⇒

∧
1≤i≤k φ2i),

◦ ∈ {⊓,⊞}.

(Reached U0)

qc |= (φ2j0+1 U (φ2j0+2 ∧ . . .∧ U (φ2k)))

q |= φ1 U (φ2 ∧ (φ3 U (φ4 ∧ . . . U φ2k)))

(q, c, q′) ∈ δ,

c ∧ ¬
∨

(A \ {c}) ⇒

(
∧

0≤i≤j0
φ2i) ∧ φ2j0+1,

0 ≤ j0 < k.

(Reached U+
1)

qa1
|= ϕ′

2j11+1,2j12+1

qa2
|= ϕ′

2j21+1,2j22+1

. . .

qal
|= ϕ0

2jl1+1,2jl2+2

. . .

qak
|= ϕ′

2jk1+1,2jk2+1

q |= ϕ0
1,2j1+2

(q, ◦A, q′) ∈ δ, A = {a1, a2, . . . , al, . . . , ak},
∧
A ∧ ¬

∨
(A \ A) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

◦ ∈ {⊓,⊞}, j0 ≤ ji1 ≤ ji2 ≤ j1 for all 1 ≤ i ≤ k,

such that N(ϕ′
2ji1+1,2ji2+1) ∩ N(ϕ′

2jm1+1,2jm2+1)

contains no even natural for all 1 ≤ i ≤ k,

1 ≤ m ≤ k, i 6= m, i 6= l,m 6= l, and

N(ϕ0
2jl1+1,2jl2+2) ∩ N(ϕ′

2ji1+1,2ji2+1) contains no

even natural for all 1 ≤ i ≤ k, i 6= l, and

⋃i6=l

1≤i≤k N(ϕ′
2ji1+1,2ji2+1) ∪ N(ϕ0

2jl1+1,2jl2+2) =

N2j0+1,2j1+2, (and jl2 = j1).

(Reached U+
2)

Figure 3.3. Proof rules for specification checking (part 2)

103

qa |= (φ2j0+1 U (φ2j0+2 ∧ . . .∧ U (φ2j3 ∧ 2φ2j3+1)))

q′ |= φ2j3+1 U . . . U φ2k

q |= φ1 U (φ2 ∧ (φ3 U (φ4 ∧ . . . U φ2k)))

a ∧ ¬
∨

(A \ a) ⇒

(
∧

0≤i≤j0
φ2i) ∧ φ2j0+1,

(q, a, q′) ∈ δ, 0 ≤ j0 ≤ j3 < k.

(Call U)

q′ |= φ2j0+1 U . . . U φ2k

q′ |= φ2j0+3 U . . . U φ2k

q′ |= φ2j0+5 U . . . U φ2k

. . .

q′ |= φ2k−3 U (φ2k−2 ∧ (φ2k−1 U φ2k))

q′ |= φ2k−1 U φ2k

q |= φ1 U (φ2 ∧ (φ3 U (φ4 ∧ . . . U φ2k)))

a ∧ ¬
∨

(A \ a) ⇒

(
∧

0≤i≤j0
φ2i) ∧ φ2j0+1,

(q, a, q′) ∈ δ, qa = q∃,

¬φ2j0+1 =⇒ φ2j0+2,

¬φ2j0+3 =⇒ φ2j0+4,

. . . ,

¬φ2k−3 =⇒ φ2k−2.

¬φ2k−1 =⇒ φ2k.

(Call U ∃)

Figure 3.4. Proof rules for specification checking (part 3)

104

qa1
|= ϕ2j11+1,2j12+1

qa2
|= ϕ2j21+1,2j22+1

. . .

qak
|= ϕ2jk1+1,2jk2+1

q′ |= ϕ0
2j1+1,2j2+2

q |= ϕ0
1,2j2+2

(
∧
A ∧ ¬

∨
(A \ A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

(q,⊓A, q′) ∈ δ, A = {a1, a2, . . . , ak},

j0 ≤ ji1 ≤ ji2 ≤ j1 for all 1 ≤ i ≤ k, such that

N(ϕ2ji1+1,2ji2+1) ∩ N(ϕ2jm1+1,2jm2+1) contains no

even natural for all 1 ≤ i ≤ k, 1 ≤ m ≤ k, i 6= m,

and
⋃

1≤i≤k N(ϕ2ji1+1,2ji2+1) = N2j0+1,2j1+1.

(Fork U)

Figure 3.5. Proof rules for specification checking (part 4)

therefore impossible for the algorithm to terminate failing to prove a temporal

logic formula necessary to prove in order to check satisfaction of the given ψ.

Thus it is not possible for the algorithm to return the answer Yes incorrectly.

From this and the above paragraph, the required result follows.

Note that we check specifications for open protocol interfaces, which contain calls

to unsupported actions, either in its own namespace, corresponding to actions that

are going to be supported in refined versions, or in the environment’s namespace,

corresponding to actions that will be supported only when the interface is composed

with the environment and additional functionality becomes available. In our case, the

game graph allows a variety of choices for behavior for unsupported environment or

refinement actions, and the actual behavior of the environment and of the refinement

is found by solving the game. In our framework, the environment is friendly, and

its goal while playing the game is to help the interface satisfy the specification. The

behavior of the system is constrained by the given code, and it has behavioral free-

105

qa11
|= ϕ2j111+1,2j112+1

qa12
|= ϕ2j121+1,2j122+1

. . .

qa1k
|= ϕ2j1k1+1,2j1k2+1

qa11
|= ϕ2j211+1,2j212+1

qa12
|= ϕ2j221+1,2j222+1

. . .

qa1k
|= ϕ2j2k1+1,2j2k2+1

. . .

. . .

qa11
|= ϕ2jn11+1,2jn12+1

qa12
|= ϕ2jn21+1,2jn22+1

. . .

qa1k
|= ϕ2jnk1+1,2jnk2+1

q′ |= ϕ0
2j1+1,2j2+2

q |= ϕ0
1,2j2+2

(
∧
A ∧ ¬

∨
(A \ A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

(q,⊓A, q′) ∈ δ,

A = {a11, a12, . . . , a1k, a21, a22, . . . , a2l},

qa2i
= q∃ for 1 ≤ i ≤ l, j0 ≤ jpi1 ≤ jpi2 ≤ j1 for all

1 ≤ p ≤ n, 1 ≤ i ≤ k, such that for all 1 ≤ p ≤ n,

N(ϕ2jpi1+1,2jpi2+1) ∩ N(ϕ2jpm1+1,2jpm2+1) contains no

even natural for all 1 ≤ i ≤ k, 1 ≤ m ≤ k, i 6= m,

and for all N ⊆ N2j0+1,2j1+1 such that

N = N2j0+1,2j1+1 \ {2q | q ∈M} where M ⊆ N,

there exists p such that 1 ≤ p ≤ n and

⋃
1≤i≤k N(ϕ2jpi1+1,2jpi2+1) = N,

and ¬φ2j0+1 =⇒ φ2j0+2,

¬φ2j0+3 =⇒ φ2j0+4,

. . . ,

¬φ2j1−3 =⇒ φ2j1−2.

¬φ2j1−1 =⇒ φ2j1 .

(Fork U ∃)

Figure 3.6. Proof rules for specification checking (part 5)

106

qa1
|= ϕ′

2j11+1,2j12+1

qa2
|= ϕ′

2j21+1,2j22+1

. . .

qal
|= ϕ2jl1+1,2jl2+1

. . .

qak
|= ϕ′

2jk1+1,2jk2+1

q′ |= ϕ0
2j1+1,2j2+2

q |= ϕ0
1,2j2+2

(
∧
A ∧ ¬

∨
(A \ A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

(q,⊞A, q′) ∈ δ, A = {a1, a2, . . . , al, . . . , ak},

j0 ≤ ji1 ≤ ji2 ≤ j1 for all 1 ≤ i ≤ k, such that

N(ϕ′
2ji1+1,2ji2+1) ∩ N(ϕ′

2jm1+1,2jm2+1) contains no

even natural for all 1 ≤ i ≤ k, 1 ≤ m ≤ k, i 6= m,

i 6= l,m 6= l, and N(ϕ2jl1+1,2jl2+1) ∩ N(ϕ′
2ji1+1,2ji2+1)

contains no even natural for all 1 ≤ i ≤ k, i 6= l,

and
⋃i6=l

1≤i≤k N(ϕ′
2ji1+1,2ji2+1) ∪ N(ϕ2jl1+1,2jl2+1) =

N2j0+1,2j1+1.

(Fork-Choice U)

Figure 3.7. Proof rules for specification checking (part 6)

107

qa11
|= ϕ′

2j11+1,2j12+1

qa12
|= ϕ′

2j21+1,2j22+1

. . .

qa1l
|= ϕ2jl1+1,2jl2+1

. . .

qa1k
|= ϕ′

2jk1+1,2jk2+1

q′ |= ϕ0
2j1+1,2j2+2

q |= ϕ0
1,2j2+2

(
∧
A ∧ ¬

∨
(A \ A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

(q,⊞A, q′) ∈ δ,

A = {a11, a12, . . . , a1l, . . . , a1k, a21, a22, . . . , a2q},

qa2i
= q∃ for all 1 ≤ i ≤ q, j0 ≤ ji1 ≤ ji2 ≤ j1

for all 1 ≤ i ≤ k, such that

N(ϕ′
2ji1+1,2ji2+1) ∩ N(ϕ′

2jm1+1,2jm2+1) contains no

even natural for all 1 ≤ i ≤ k, 1 ≤ m ≤ k, i 6= m,

i 6= l,m 6= l, and N(ϕ2jl1+1,2jl2+1) ∩ N(ϕ′
2ji1+1,2ji2+1)

contains no even natural for all 1 ≤ i ≤ k, i 6= l,

and
⋃i6=l

1≤i≤k N(ϕ′
2ji1+1,2ji2+1) ∪ N(ϕ2jl1+1,2jl2+1) =

N2j0+1,2j1+1.

(Fork-Choice U ∃1)

q′ |= ϕ0
2j0+1,2j2+2

q′ |= ϕ0
2j0+3,2j2+2

. . .

q′ |= ϕ0
2j2−1,2j2+2

q′ |= ϕ0
2j2+1,2j2+2

q |= ϕ0
1,2j2+2

(
∧
A ∧ ¬

∨
(A \ A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

(q,⊞A, q′) ∈ δ, A = {a1, a2, . . . , ak},

qai
= q∃ for all 1 ≤ i ≤ k, j0 ≤ j1, and

¬φ2j0+1 =⇒ φ2j0+2,

¬φ2j0+3 =⇒ φ2j0+4,

. . . ,

¬φ2j2−1 =⇒ φ2j2 .

¬φ2j2+1 =⇒ φ2j2+2.

(Fork-Choice U ∃2)

Figure 3.8. Proof rules for specification checking (part 7)

108

q |= φ1 U (φ2 ∧ . . . U (φ2j ∧ 2φ2j+1))

φ2i =
∧

a∈Ai
(¬a)

where Ai ⊆ A, 1 ≤ i ≤ j,

φ2j+1 =
∧

a∈A2j+1
(¬a)

where A2j+1 ⊆ A,

and q is a return location.

(Return 2)

q′ |= φ1 U (φ2 ∧ . . . U (φ2j ∧ 2φ2j+1))

q |= φ1 U (φ2 ∧ . . . U (φ2j ∧ 2φ2j+1))
(q, ǫ, q′) ∈ δ ∪ δ∀. (ǫ2)

qa |= φ2j0+1 U (φ2j0+2 ∧ . . . U (φ2j1 ∧ 2φ2j1+1))

q′ |= φ2j1+1 U (φ2j1+2 ∧ . . . U (φ2j2 ∧ 2φ2j2+1))

q |= φ1 U (φ2 ∧ . . . U (φ2j2 ∧ 2φ2j2+1))

(a ∧ ¬
∨

(A \ a)) ⇒

(
∧

0≤i≤j0
φ2i) ∧ φ2j0+1,

(q, a, q′) ∈ δ.

(Call 2)

q′ |= φ2j0+1 U (φ2j0+2 ∧ . . . U (φ2j2 ∧ 2φ2j2+1))

q′ |= φ2j0+3 U (φ2j0+4 ∧ . . . U (φ2j2 ∧ 2φ2j2+1))

. . .

q′ |= φ2j2−1 U (φ2j2 ∧ 2φ2j2+1))

q′ |= 2φ2j2+1))

q |= φ1 U (φ2 ∧ . . . U (φ2j2 ∧ 2φ2j2+1))

(a ∧ ¬
∨

(A \ a)) ⇒

(
∧

0≤i≤j0
φ2i) ∧ φ2j0+1,

(q, a, q′) ∈ δ, qa = q∃,

¬φ2j0+1 =⇒ φ2j0+2,

¬φ2j0+3 =⇒ φ2j0+4,

. . . ,

¬φ2j2−3 =⇒ φ2j2−2.

¬φ2j2−1 =⇒ φ2j2 .

(Call 2∃)

Figure 3.9. Proof rules for specification checking (part 8)

109

qa1
|= ϕ2j11+1,2j12+1

qa2
|= ϕ2j21+1,2j22+1

. . .

qak
|= ϕ2jk1+1,2jk2+1

q′ |= ϕ2j1+1,2j2+1

q |= ϕ1,2j2+1

(
∧
A ∧ ¬

∨
(A \ A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

(q,⊓A, q′) ∈ δ, A = {ai | 1 ≤ i ≤ k},

j0 ≤ ji1 ≤ ji2 ≤ j1 for all 1 ≤ i ≤ k, such that

N(ϕ2ji1+1,2ji2+1) ∩ N(ϕ2jm1+1,2jm2+1) contains no

even natural for all 1 ≤ i ≤ k, 1 ≤ m ≤ k, i 6= m,

and
⋃

1≤i≤k N(ϕ2ji1+1,2ji2+1) = N2j0+1,2j1+1.

(Fork 2)

Figure 3.10. Proof rules for specification checking (part 9)

dom only to the extent allowed by nondeterminism in the interface, which it uses to

attempt to violate the specification. The unsupported actions in the interface names-

pace, corresponding to actions that will be supported in refinement, play the game

attempting to make the interface violate the specification. If the environment has a

strategy to win the game, we say the interface satisfies the specification. This means

that, irrespective of behavioral nondeterminism, and how the unimplemented actions

in the interface namespace are later implemented, the interface can always be used

in a way that will ensure the desired property is satisfied. For instance, if vendor A

is using a service S with an interface I provided by vendor B, vendor A will receive

a guarantee that as long as it respects a protocol (given by the environment’s win-

ning strategy for the property desired by A on interface I), no matter what internal

refinements are made to the implementation of S by vendor B, the property desired

by A will continue to hold true.

The proof rules in Figure 3.2 encode the definitions for boolean operators, and

110

qa11
|= ϕ2j111+1,2j112+1

qa12
|= ϕ2j121+1,2j122+1

. . .

qa1k
|= ϕ2j1k1+1,2j1k2+1

qa11
|= ϕ2j211+1,2j212+1

qa12
|= ϕ2j221+1,2j222+1

. . .

qa1k
|= ϕ2j2k1+1,2j2k2+1

. . .

. . .

qa11
|= ϕ2jn11+1,2jn12+1

qa12
|= ϕ2jn21+1,2jn22+1

. . .

qa1k
|= ϕ2jnk1+1,2jnk2+1

q′ |= ϕ2j1+1,2j2+1

q |= ϕ1,2j2+1

(
∧
A ∧ ¬

∨
(A \ A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

(q,⊓A, q′) ∈ δ, A = {a11, a12, . . . , a1k, a21, a22, . . . , a2l},

qa2i
= q∃ for 1 ≤ i ≤ l, j0 ≤ jpi1 ≤ jpi2 ≤ j1 for all

1 ≤ p ≤ n, 1 ≤ i ≤ k, such that for all 1 ≤ p ≤ n,

N(ϕ2jpi1+1,2jpi2+1) ∩ N(ϕ2jpm1+1,2jpm2+1) contains no

even natural for all 1 ≤ i ≤ k, 1 ≤ m ≤ k, i 6= m,

and for all N ⊆ N2j0+1,2j1+1 such that

N = N2j0+1,2j1+1 \ {2q | q ∈M} where M ⊆ N,

there exists p such that 1 ≤ p ≤ n and

⋃
1≤i≤k N(ϕ2jpi1+1,2jpi2+1) = N, and

¬φ2j0+1 =⇒ φ2j0+2,

¬φ2j0+3 =⇒ φ2j0+4,

. . . ,

¬φ2j1−3 =⇒ φ2j1−2, and

¬φ2j1−1 =⇒ φ2j1 .

(Fork 2∃)

Figure 3.11. Proof rules for specification checking (part 10)

111

qa1
|= ϕ′

2j11+1,2j12+1

qa2
|= ϕ′

2j21+1,2j22+1

. . .

qal
|= ϕ2jl1+1,2jl2+1

. . .

qak
|= ϕ′

2jk1+1,2jk2+1

q′ |= ϕ2j1+1,2j2+1

q |= ϕ1,2j2+1

(
∧
A ∧ ¬

∨
(A \ A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

(q,⊞A, q′) ∈ δ, A = {a1, a2, . . . , al, . . . , ak},

0 ≤ j0 ≤ ji1 ≤ ji2 ≤ j1 ≤ j2for all 1 ≤ i ≤ k,

such that N(ϕ′
2ji1+1,2ji2+1) ∩ N(ϕ′

2jm1+1,2jm2+1)

contains no even natural for all 1 ≤ i ≤ k,

1 ≤ m ≤ k, i 6= m, i 6= l,m 6= l, and

N(ϕ2jl1+1,2jl2+1) ∩ N(ϕ′
2ji1+1,2ji2+1)contains no

even natural for all 1 ≤ i ≤ k, i 6= l, and

⋃i6=l

1≤i≤k N(ϕ′
2ji1+1,2ji2+1) ∪ N(ϕ2jl1+1,2jl2+1) =

N2j0+1,2j1+1.

(Fork-Choice 2)

Figure 3.12. Proof rules for specification checking (part 11)

112

qa11
|= ϕ′

2j11+1,2j12+1

qa12
|= ϕ′

2j21+1,2j22+1

. . .

qa1l
|= ϕ2jl1+1,2jl2+1

. . .

qa1k
|= ϕ′

2jk1+1,2jk2+1

q′ |= ϕ2j1+1,2j2+1

q |= ϕ1,2j2+1

(
∧
A ∧ ¬

∨
(A \ A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

(q,⊞A, q′) ∈ δ,

A = {a11, a12, . . . , a1l, . . . , a1k, a21, a22, . . . , a2q},

qa2i
= q∃ for all 1 ≤ i ≤ q,

0 ≤ j0 ≤ ji1 ≤ ji2 ≤ j1 ≤ j2 for all 1 ≤ i ≤ k,

such that N(ϕ′
2ji1+1,2ji2+1) ∩ N(ϕ′

2jm1+1,2jm2+1)

contains no even natural for all 1 ≤ i ≤ k,

1 ≤ m ≤ k, i 6= m, i 6= l,m 6= l, and

N(ϕ2jl1+1,2jl2+1) ∩ N(ϕ′
2ji1+1,2ji2+1)contains no

even natural for all 1 ≤ i ≤ k, i 6= l, and

⋃i6=l

1≤i≤k N(ϕ′
2ji1+1,2ji2+1) ∪ N(ϕ2jl1+1,2jl2+1) =

N2j0+1,2j1+1.

(Fork-Choice 2∃1)

Figure 3.13. Proof rules for specification checking (part 12)

113

q′ |= ϕ2j0+1,2j2+1

q′ |= ϕ2j0+3,2j2+1

q′ |= ϕ2j0+5,2j2+1

. . .

q′ |= ϕ2j2−1,2j2+1

q′ |= 2φ2j2+1

q |= ϕ1,2j2+1

(
∧
A ∧ ¬

∨
(A \ A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

(q,⊞A, q′) ∈ δ, A = {a1, a2, . . . , ak}, qai
= q∃ for all 1 ≤ i ≤ k.

0 ≤ j0 ≤ j2for all 1 ≤ i ≤ k,

and

¬φ2j0+1 =⇒ φ2j0+2,

¬φ2j0+3 =⇒ φ2j0+4,

. . . ,

¬φ2j2−3 =⇒ φ2j2−2. and

¬φ2j2−1 =⇒ φ2j2 .

(Fork-Choice 2∃2)

Figure 3.14. Proof rules for specification checking (part 13)

114

the silentness of ǫ-transitions. The remaining proof rules encode the strategies of

the two players to try to satisfy the temporal logic formulas used in specifications,

and the additional (helper) formulas introduced in our specification-checking scheme.

The semantics of the various sequential and parallel composition operators allowed

in protocol interfaces are captured in separate proof rules that apply when those

operators are concerned.

The proof rule labeled “Reached U0” in Figure 3.3 states that if the until-formula

is already satisfied in the process of an action or a set of actions being invoked, then

no further premises need to be satisfied in order to reach the conclusion. The next

rule (“Reached U+
1 ”) states that if a prefix of the until-formula is satisfied in the

process of the invocation of an action c, and the location qc from which execution

continues is such that qc satisfies the rest of the until formula starting from that

point, then the until-formula is satisfied by the location q that invoked the action

c. The next rule (“Reached U+
2 ”) handles the analogous case where a set of actions

are invoked in parallel using the ⊓ or ⊞ operators, and a prefix of the desired until-

formula is satisfied in the process of that invocation; in this case, we require the set of

actions invoked in parallel to be such that there is an execution-interleaving of their

resultant threads that satisfies the rest of the until-formula. Note that an action al is

chosen to complete the process of satisfying the desired until-formula; the remaining

actions are allowed to only satisfy a formula of the form x U t, i.e. they may exhibit

any arbitrary behavior after they have shown the desired behavior up to a certain

point (depending on the formula x). Note also that these proof rules do not apply to

the location q∃; the environment will never satisfy these temporal logic formulas as

far as these proof rules are concerned because there is nothing in the proof rules or

side-conditions to force it to do so.

115

The next two proof rules (“Call U” and “Call U ∃”) in Figure 3.4 involve the case

when a single action a is invoked satisfying a prefix of the desired until-formula, and

then the behavior resulting from the action invocation satisfies only a part of the rest

of the until-formula, requiring the location q′ (from which execution continues after

control returns from the execution of a) to satisfy the final part. In the first of these

two rules, which applies if the action a is not an action outside the interface namespace

and thus supported by the environment, the invocation of a satisfies a prefix of the

desired until-formula, the location qa satisfies the first part of the remainder, and the

location q′ satisfies the final part, as expected. The second rule applies when the action

a is supported by the environment. Then, after only a prefix of the desired until-

formula is satisfied in the process of invoking action a, the only way the environment

can be prevented from violating the rest of the until-formula (let’s denote it x) is by

the series of implications in the side-condition that make it impossible for the until-

formula to be violated by any finite trace. However, the environment cannot run for

ever as we require every action invocation to eventually terminate execution. The

environment however, can choose to satisfy any arbitrary prefix of the remainder x

of the until-formula, and the location q′ therefore should be able to carry on starting

from an arbitrary point in the remainder x.

The next proof rule (“Fork U”) in Figure 3.5 handles the case where a set of

actions are invoked in parallel (using the ⊓ operator) such that the invocation satisfies

a prefix of the desired until-formula, the execution of the parallel invocations can be

interleaved to satisfy a part of the remainder, and the location q′ (where control

arrives after the parallel execution is completed) can carry on to satisfy the rest of

the remainder. This proof rule can be applied when none of the actions invoked in

parallel are outside the interface namespace.

116

The next proof rule (“Fork U ∃”) in Figure 3.6 is a variation of the above rule that

applies when some (or all) of the actions are supported by the environment. Then,

since control is given to the environment at some point before the until-formula is sat-

isfied in its entirety, once again we need the series of implications in the side-condition

to make sure no finite trace the environment can generate can violate any part of the

remainder of the until-fomula that remains to be satisfied when the environment can

gain control. Then, we require that the non-environment actions (if any) that are

invoked should be able to be interleaved among themselves to satisfy any arbitrary

part of the remainder that need to be satisfied (because the environment may or may

not choose to satisfy some parts of that remainder when it gains control). Finally,

the final part of the remainder needs to be satisfied by the location q′. Note that the

enviroment actions must be given control (by the scheduler) at some point in order

to allow the execution of the parallel invocation to complete so that control may pass

to q′.

The next proof rule (“Fork-Choice U”) in Figure 3.7 applies to the case where

a number of non-environment actions are invoked in parallel (using the ⊞ operator)

such that the invocation satisfies a prefix of the desired until-formula, some prefixes

of the traces generated by the execution of the actions can be interleaved by the

scheduler to satisfy a part of the remainder such that at least one of the traces (the

one corresponding to action al) is used till completion (and the rest of the traces

are aborted at that point; a freedom available to the scheduler in case of parallel

executions done using the ⊞ operator, but not in case of parallel executions done

using the ⊓ operator); and the location q′ satisfies the rest of the remainder.

The next two proof rules (“Fork-Choice U ∃1” and “Fork-Choice U ∃2”) in Fig-

ure 3.8 are variations of the above rule to handle the cases where a number of actions

117

are invoked in parallel (using the ⊞ operator), and respectively at least some, or all,

of those actions are outside the interface namespace, supported by the environment.

In the former case, (apart from their use in instantaneously satisfying a prefix of the

desired until-formula) the environment actions are completely ignored; the scheduler

never needs to schedule any of them to execute at all, because the execution of these

environment actions would not help at all and would seek only to try to violate the

temporal logic formula that the interface seeks to satisfy. The scheduler is able to

avoid scheduling these environment actions because there are other actions in the

interface namespace one of which (the one corresponding to action al) runs to com-

pletion, allowing the execution of the rest (including the environment actions which

were never scheduled to execute at all) to be aborted. As in the previous rule, if

the behavior of those actions satisfies a prefix of the desired remainder of the until-

formula, and the location q′ is able to satisfy the final part, the desired conclusion

follows.

However, there may be cases in which the set of actions invoked in parallel (using

the ⊞ operator) are all environment actions. In that case the second rule (“Fork-

Choice U ∃2”) of Figure 3.8 applies. We need to let at least one of the environment

actions to completion. Thus, we need the series of implications in the side-condition

that ensures that the environment cannot generate any finite trace that violates the

desired remainder of the until-formula. Finally, q′ is ready to satisfy the desired

remainder starting from any arbitrary point in the specification the environment

chooses to return control.

The rest of the proof rules encode the strategies of the two players to try to

satisfy or violate respectively, the helper temporal logic formulas introduced in order

118

to define the previous proof rules. Exactly the same considerations apply in these

rules.

3.5 Case Study

We present the following case study on using our formalism to formally model a

web-based sales system P that is built using the Amazon.com E-Commerce Services

(ECS) platform.

The system has the set of web methods MLocal = {BeginTransaction,

ContinueTransaction, FindItems, BrowseNewItems, ProcessPayment, ShipItems}.

It uses the web methods provided by the Amazon.com ECS platform represented by

the set MAmazon = {ItemSearch, CartCreate, CartAdd, CartModify, CheckOut}. The

set of instances I = {s}∪ ASIN∪ CARTID∪ CATID is used to characterize web method

invocations, where s denotes successful completion of a web method invocation, ASIN

is the set of Amazon Standard Identification Numbers used to represent items for

sale, CARTID is the set of Cart Identifiers used by the Amazon.com ECS platform to

distinguish between the virtual shopping carts assigned to various online shopping

customers, and CATID is the set of Category Identifiers used by the ECS platform to

represent various categories of items, such as Books, Music, Movies, Garments, etc.

The set of actions A is given by A = (MLocal ∪MAmazon ∪ F)×I, where F is a set of

fresh symbols.

The web-based sales system P is now defined formally as a protocol interface

P = (N ,J ,K,H,R), where the partial function R : A → Q maps a supported

action to a location, which we denote below by writing an action in front of the

location that the action is mapped to, and the protocol automaton H = (Q, δ) is

119

represented by giving the transition relation δ of the automaton as a sequence of

triples (q, term, q′). Note that q0 is a return location.

P :

〈BeginTransaction, s〉 7→ (q1, 〈CartCreate, c〉, q2)

(q2, 〈ContinueTransaction, c〉, q0)

〈ContinueTransaction, c〉 7→ (q3,⊞{〈a, s〉, 〈b, s〉, 〈c, s〉, 〈d, s〉}, q0)

〈a, s〉 7→ (q4, 〈BrowseNewItems, c〉, q0)

〈b, s〉 7→ (q5, 〈CartModify, c〉, q0)

〈c, s〉 7→ (q6, 〈CheckOut, c〉, q0)

〈d, s〉 7→ (q7, 〈ContinueTransaction, c〉, q0)

〈BrowseNewItems, c〉 7→ (q8, 〈FindItems, s〉, q0)

〈BrowseNewItems, c〉 7→ (q9, 〈FindItems, s〉, q10)

(q10, 〈CartAdd, c〉, q0)

〈FindItems, s〉 7→ (q11,⊞{〈ItemSearch, c1〉, 〈ItemSearch, c2〉}, q0)

The execution begins with the invocation of the web method BeginTransaction,

which is implemented by the service using the web method CartCreate provided by

the Amazon ECS, which creates a new shopping cart and returns the cart identifier

c to the service P . The service P then allows the user (the customer, i.e., the person

using the service P to buy items online) to search for new items and optionally add

them to the shopping cart, modify the contents of the shopping cart, and check out.

The former three actions can be done in parallel: the user can open multiple browser

windows, through which multiple search, cart-add, and cart-modify transactions can

be run in parallel, all of which would be dealing with the multi-threaded shopping

cart object provided by the ECS platform. When the web method CheckOut is

invoked, Amazon.com atomically inspects the contents of the user’s cart, charges the

120

customer for the total price, and ships the items, completing the sale. Thus, note

that in particular, the user pays for exactly those items that get shipped.

Now, let us consider a modification of the system above to account for a change in

the business model of our web-based shop. Previously, the shop depended upon Ama-

zon.com to take care of billing the customer and shipping products. Now, to establish

a closer relationship with the customer, our web-based shop decides to implement

billing and shipping themselves in their own local check-out method LocalCheckOut

and helpers ComputePrice and ShipItems, and continue using the Amazon.com ECS

platform for only its product search services and shopping cart implementation.

The modified system is P ′ = (N ,J ′,K′,H′,R′) with the following additional

supported actions 〈LocalCheckOut, c〉, 〈ComputePrice, OK〉, and 〈ShipItems, OK〉,

and the modified partial function R′ is obtained from R by adding the mappings

indicated below, and the modified protocol automaton H′ obtained from H by re-

placing the invocation of 〈CheckOut, c〉 in H with that of 〈LocalCheckOut, c〉, and

adding to H the locations and transitions represented as follows:

〈LocalCheckOut, c〉 7→ (q12, 〈ComputePrice, OK〉, q13)

(q13, 〈ShipItems, OK〉, q0)

〈ComputePrice, OK〉 7→ (q14, ǫ, q0)

〈ShipItems, OK〉 7→ (q15, ǫ, q0)

This simple modification has indeed introduced a severe error in our application.

To appreciate this, let us consider the specification ψ = 〈BeginTransaction, s〉 6

(t U (〈ComputePrice, OK〉 ∧ (t U (〈CartAdd, c〉 ∨ 〈CartModify, c〉) ∧ (t U

〈ShipItems, OK〉))). Intuitively, this specification represents the question “Is an ex-

ecution starting with the invocation of 〈BeginTransaction, s〉 possible on which a

121

cart-add or cart-modify transaction is successfully completed after price computation

has been successfully invoked on the cart but before the items in the cart have been

shipped?” Note that P ′ 6|= ψ. Thus, it is possible for an execution trace to occur

(involving a race condition), in which the customer is able to make one or more cart-

add or cart-modify transaction(s) after the price has been computed, but before the

items in the shopping cart have been shipped. On such an execution trace, the cus-

tomer could pay for items that never get shipped, or vice versa; both cases involving

incorrect behavior.

We note that the problem can be resolved by getting rid of some of the parallelism

afforded by the original design. We modify the service above accordingly, and obtain

the following web-service interface P ′′ = (N ,J ′,K′,H′′,R′′), where the modified

partial function R′′ is obtained from R′ by adding the mappings indicated below,

and the modified protocol automaton H′′ obtained from H′ by replacing the locations

and transitions for 〈a, s〉, 〈b, s〉, 〈c, s〉, and 〈d, s〉 in H′ with the following:

〈a, s〉 7→ (q16, 〈BrowseNewItems, c〉, q17)

(q17, 〈ContinueTransaction, c〉, q0)

〈a, s〉 7→ (q18, 〈CartModify, c〉, q17)

〈a, s〉 7→ (q19, 〈LocalCheckOut, c〉, q0)

〈b, s〉 7→ (q20, ǫ, q0)

〈c, s〉 7→ (q21, ǫ, q0)

〈d, s〉 7→ (q22, ǫ, q0)

We note that P ′′ |= ψ. However, how would we know that the modified service

P ′′ can be safely substituted in place of the service P ′? To this end we can simply

check refinement by asking the question if P ′′ 4 P ′. The answer turns out to be Yes,

122

which means that the protocol interface P ′′ may be safely substituted in place of P ′

in any arbitrary context. In other words, we can infer that in the process of obtaining

P ′′ by fixing the bug in protocol interface P ′ we have not introduced any additional

(un-intended) behavior into P ′′ that could lead to new errors (violations of any safety

properties we may be interested in), as yet undiscovered. Thus, we conclude that the

final service is the desired result.

Acknowledgements

The work reported in this chapter was conducted jointly with Prof Dirk Beyer,

Prof Thomas A. Henzinger, and Prof Sanjit A. Seshia. This research was funded by

Prof Henzinger supported in part by the ONR grant N00014-02-1-0671, the NSF ITR

CHESS grant CCR-0225610, the NSF grant CCR-0234690, and by the Swiss National

Science Foundation. This chapter is based on a paper [25] presented at WWW 2005,

published by ACM2, copyright held by the International World Wide Web Conference

Committee (IW3C2), 2005; the EPFL Technical Report Number MTC-REPORT-

2007-002 [26]3 co-authored with Prof Dirk Beyer and Prof Tom Henzinger; and a

paper [27] presented at ICWS 2007, copyright held by IEEE4, 2007.

2http://doi.acm.org/10.1145/1060745.1060770
3A preliminary version of this Technical Report was presented at the First International Workshop

on Foundations of Interface Technologies (FIT), held on August 21, 2005, in San Francisco, CA.
4http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.32

123

Algorithm 2 CheckSpec(P , a, B, C)

Input: Protocol interface P = (N ,J ,K,H,R),

Action a ∈ A, and formula ϕ over actions in A

Output: Yes if P satisfies a 6 ϕ, No otherwise

Variables: Set of judgements S, boolean done

1: done := f

2: while (¬ done) do

3: done := t

4: for each location q of automaton H do

5: // Try to prove q |= φ.

6: if all premises of a rule for a consequent c of the form q |= φ are in S then

7: S := S ∪ c

8: done := f

9: // Try to prove q |= ϕi,j.

10: if all premises of a rule for a consequent of the form q |= ϕi,j are in S then

11: S := S ∪ c

12: done := f

13: // Try to prove q |= ϕ0
i,j.

14: if all premises of a rule for a consequent of the form q |= ϕ0
i,j are in S then

15: S := S ∪ c

16: done := f

end

17: if qa |= ϕ ∈ S then

18: return No

end

19: return Yes

124

Chapter 4

Resource Interfaces

4.1 Introduction

In component-based design, a central notion is that of interfaces : an interface

should capture those facts about a component that are necessary and sufficient for

determining if a collection of components fits together. The formal notion of inter-

face, then, depends on what “fitting together” means. In a simple case, an interface

exposes only type information about the component’s inputs and outputs, and “fit-

ting together” is determined by type checking. In a more ambitious case, an interface

may expose also temporal information about inputs and outputs. For example, the

temporal interface of a file server may specify that the open file method must be

called before the read file method is invoked. If a client, instead, calls read file

before open file, then an interface violation occurs. In [54], we argued that tempo-

ral interfaces are games. There are two players, Input and Output, and an objective,

namely, the absence of interface violations. Then, an interface is well-formed if the

corresponding component can be used in some environment; that is, player Input has

125

a strategy to achieve the objective. Moreover, two interfaces are compatible if the

corresponding components can be used together in some environment; that is, the

composition of the two games is well-formed, and specifies the composite interface.

Here, we develop the theory of interfaces as games further, by introducing inter-

faces that expose resource information. Consider, for example, components whose

power consumption varies. We model the interface of such a component as a control

flow graph whose states are labeled with integers, which represent the power consump-

tion while control is at that state. For instance, in the thread-based programming

model for robot motor control presented in Section 5, the power consumption of a

program region depends on how many motors and other devices are active. Now

suppose that we want to put together two threads, each of which consumes power,

but the overall amount of available peak power is limited to a fixed amount ∆. The

threads are controlled by a scheduler, which at all times determines the thread that

may progress. Then the two threads are ∆-compatible if the scheduler has a strategy

to let them progress in a way so that their combined power consumption never ex-

ceeds ∆. In more detail, the game is set up as follows: player Input is the scheduler,

and player Output is the composition of the two threads. At each round of the game,

player Input determines which thread may proceed, and player Output determines

the successor state in the control flow graph of the scheduled thread. In this game, in

order to avoid a safety violation (power consumption greater than ∆), player Input

may not let any thread progress. To rule out such trivial schedules, one may augment

the safety objective with a secondary, liveness objective, say, in the form of a Büchi

condition, which specifies that the scheduler must allow each thread to progress in-

finitely often. The resulting compatibility check, then, requires the solution of a Büchi

126

game: the two threads are ∆-compatible iff player Input has a strategy to satisfy the

Büchi condition without exceeding the power threshold ∆.

The basic idea of formalizing interfaces as such Büchi node limit games on integer-

labeled graphs has many applications besides power consumption. For example, ac-

cess to a mutex resource can be modeled by state labels 0 and 1, where 1 represents

usage of the resource. Then, if we choose ∆ = 1, two or more threads are ∆-

compatible if at any time at most one of the threads uses the resource. In Section 5,

we will also present an interface model for the clients of a wireless network, where each

state label represents the number of active messages at a node of the network, and

∆ represents the buffer size. In this example, the ∆-compatibility check synthesizes

not a scheduling strategy but a routing protocol that keeps the message buffers from

overflowing.

A wide variety of other formalisms for the modeling and analysis of resource

constraints have been proposed in the literature (e.g., [89, 107, 124, 135]). The essen-

tial difference between these papers and our work is that we pursue a compositional

approach, in which the models and analysis techniques are based on games. Once

resource interfaces are modeled as games on graphs with integer labels, in addition

to the boolean question of ∆-compatibility, for fixed ∆, we can also ask a correspond-

ing quantitative question about resource requirements: What is the minimal resource

level (peak power, buffer size, etc.) ∆ necessary for two or more given interfaces to

be compatible? To formalize the quantitative question, we need to define the value

of an outcome of the game, which is the infinite sequence of states that results from

playing the game for an infinite number of rounds. For Büchi node limit games, the

value of an outcome is the supremum of the power consumption over all states of

the outcome. The player Input (the scheduler) tries to minimize the value, while the

127

player Output (the thread set) tries to maximize. The quantitative question, then,

asks for the inf-sup of the value over all player Input and Output strategies.

The node limit interfaces, where an interface violation occurs if a power threshold

is exceeded at any one time, provide but one example of how the compatibility of

resource interfaces may be defined. We also present a second use of resource inter-

faces, where a violation occurs when an initially available amount ∆ of energy (given,

say, by the capacity of a battery) is exhausted. In this case, the value u of a finite

outcome is defined as the sum (rather than maximum) over all labels of the states of

the outcome, and player Input (the scheduler) wins if it can keep ∆− u nonnegative

forever, or until a certain task is achieved. Note that in this game, negative state

labels can be used to model a recharging of the energy source. Achieving a task might

be modeled again by a Büchi objective, but for variety’s sake, we use a quantitative

reward objective in our formalization of such path limit interfaces. For this purpose,

we label each state with a second number, which represents a reward, and the ob-

jective of player Input is to obtain a total accumulated reward of Λ. The boolean

∆-compatibility question, then, asks if Λ can be obtained from the composition of two

interfaces without exceeding the initial energy supply ∆. The corresponding quan-

titative resource-requirement question asks for the minimum initial energy supply ∆

necessary to achieve the fixed reward Λ. Dually, a similar algorithm can be used to

determine the maximal achievable reward Λ given a fixed initial energy supply ∆.

In particular, if every state offers reward 1, this asks for the maximum runtime of

a system (in number of state transitions) that a scheduler can achieve with a given

battery capacity.

In the following section we reviews the definitions needed for modeling temporal

(resourceless) interfaces as games and then in the following section we add resources

128

to these games: we introduce integer labels on states to model resource usage, and

we define boolean as well as quantitative objective functions on the outcomes of a

game. As examples, we define four specific resource-interface theories: node limit

games without and with Büchi objectives, and path limit games without and with

reward objectives. For these four theories, in the next section we present algorithms

for solving the boolean ∆-compatibility and the quantitative resource-requirement

questions. These interface theories are also used in the two case studies of the next

section, one on scheduling embedded threads for robot control, and the other on

routing messages across wireless networks.

4.2 Preliminaries

An interface is a system model that represents both the behavior of a component,

and the behavior the component expects from its environment [54]. An interface

communicates with its environment through input and output variables. The interface

consists of a set of states. Associated with each state is an input assumption, which

specifies the input values that the component is ready to accept from the environment,

and an output guarantee, which specifies the output values that the component can

generate. Once the input values are received and the output values are generated,

these values cause a transition to a new state. In this way, both input assumptions and

output guarantees can change dynamically. Formally, an assume-guarantee (A/G)

interface [55] is a tuple M = 〈V i, V o, Q, q̂, φi, φo, ρ〉 consisting of:

• Two finite sets V i and V o of boolean input and output variables. We require

that V i ∩ V o = ∅.

• A finite set Q of states, including an initial state q̂ ∈ Q.

129

• Two functions φi and φo which assign to each state q ∈ Q a satisfiable predicate

φi(q) on V i, called input assumption, and a satisfiable predicate φo(q) on V o,

called output guarantee.

• A function ρ which assigns to each pair q, q′ ∈ Q of states a predicate ρ(q, q′)

on V i ∪ V o, called the transition guard. We require that for every state q ∈

Q, we have (1) (φi(q) ∧ φo(q)) ⇒
∨

q′∈Q ρ(q, q
′) and (2)

∧
q′,q′′∈Q((ρ(q, q′) ∧

ρ(q, q′′)) ⇒ (q′ = q′′)). Condition (1) ensures nonblocking; condition (2) ensures

determinism.

We refer to the states of M as QM , etc. Given a set V of boolean variables, a valuation

v for V is a function that maps each variable x ∈ V to a boolean value v(x). A

valuation for V i (resp. V o) is called an input (resp. output) valuation. We write Vi

and Vo for the sets of input and output valuations.

Interfaces as games. An interface is best viewed as a game between two players,

Input and Output. The game GM = 〈Q, q̂, γi, γo, δ〉 associated with the interface M

is played on the set Q of states of the interface. At each state q ∈ Q, player Input

chooses an input valuation vi that satisfies the input assumption, and simultaneously

and independently, player Output chooses an output valuation vo that satisfies the

output guarantee; that is, at state q the moves available to player Input are γi(q) =

{v ∈ Vi | v |= φi(q)}, and the moves available to player Output are γo(q) = {v ∈

Vo | v |= φo(q)}. Then the game proceeds to the state q′ = δ(q, vi, vo), which is the

unique state in Q such that (vi ⊎ vo) |= ρ(q, q′). The result of the game is a run. A

run of M is an infinite sequence π = q0, (v
i
0, v

o
0), q1, (v

i
1, v

o
1), q2, . . . of alternating states

qk ∈ Q, input valuations vi
k ∈ Vi, and output valuations vo

k ∈ Vo, such that for all

k ≥ 0, we have (1) vi
k ∈ γi(qk) and vo

k ∈ γo(qk), and (2) qk+1 = δ(qk, v
i
k, v

o
k). The run

130

π is initialized if q0 = q̂. A run prefix is a finite prefix of a run which ends in a state.

Given a run prefix π, we write last(π) for the last state of π.

In a game, the players choose moves according to strategies. An input strategy is

a function that assigns to every run prefix π an input valuation in γi(last(π)), and an

output strategy is a function that assigns to every run prefix π an output valuation

in γo(last(π)). We write Σi and Σo for the sets of input and output strategies. Given

a state q ∈ Q, and a pair σi ∈ Σi and σo ∈ Σo of strategies, the outcome of the game

from q is the run out(q, σi, σo) = q0, (v
i
0, v

o
0), q1, (v

i
1, v

o
1), . . . such that (1) q0 = q and

(2) for all k ≥ 0, we have vi
k = σi(q0, . . . , qk) and vo

k = σo(q0, (v
i
0, v

o
0), q1, . . . , qk).

The size of the A/G interface M is taken to be the size of the associated game GM :

define |M | =
∑

q∈Q |γi(q)| · |γo(q)|. Since the interface M is specified by predicates

on boolean variables, the size |M | may be exponentially larger than the syntactic

description of M , which uses formulas for φi, φo.

Compatibility and composition. The basic principle is that two interfaces are

compatible if they can be made to work together correctly. When two interfaces are

composed, the outputs of one interface may be fed as inputs to the other interface.

Thus, the possibility arises that the output behavior of one interface violates the input

assumptions of the other. The two interfaces are called compatible if the environment

can ensure that no such I/O violations occur. The assurance that the environment

behaves in a way that avoids all I/O violations is, then, the input assumption of

the composite interface. Formally, given two A/G interfaces M and N , define V o =

V o
M ∪ V o

N and V i = (V i
M ∪ V i

N) \ V o. Let Q = QM × QN and q̂ = (q̂M , q̂N). For

all (p, q), (p′, q′) ∈ QM × QN , let φo(p, q) = (φo
M(p) ∧ φo

M(q)) and ρ((p, q), (p′, q′)) =

(ρM(p, p′)∧ρN(q, q′)). The interfaces M and N are compatible if (1) V o
M ∩V o

N = ∅ and

131

(2) there is a function ψi that assigns to all states (p, q) ∈ Q a satisfiable predicate

on V i such that:

For all initialized runs (p0, q0), (v
i
0, v

o
0), (p1, q1), (v

i
1, v

o
1), . . . of the A/G

interface 〈V i, V o, Q, q̂, ψi, φo, ρ〉 and all k ≥ 0, we have (vi
k ⊎ vo

k) |=
(φi

M(pk) ∧ φ
i
N(qk)). (†)

If M and N are compatible, then the composition M‖N = 〈V i, V o, Q, q̂, φi, φo, ρ〉 is

the A/G interface with the function φi that maps each state (p, q) ∈ Q to a satisfiable

predicate on V i such that for all functions ψi that satisfy the condition (†), and all

(p, q) ∈ Q, we have ψi(p, q) ⇒ φi(p, q); i.e., the input assumptions φi are the weakest

conditions on the environment of the composite interface M‖N which guarantee the

input assumptions of both components. Algorithms for checking compatibility and

computing the composition of A/G interfaces are given in [55]. These algorithms use

the game representation of interfaces.

4.3 Resource Interfaces

Let Z∞ = Z ∪ {±∞}. A resource algebra is a tuple A = 〈L,⊕,Θ〉 consisting of:

• A set L of resource labels, each signifying a level of consumption or production

for a set of resources.

• A binary composition operator ⊕: L2 → L on resource labels.

• A value function Θ: Lω → Z∞, which assigns an integer value (or infinity) to

every infinite sequence of resource labels.

A resource interface over A is a pair R = (M,λ) consisting of an A/G interface

M = 〈·, ·, Q, q̂, ·, ·, ·〉 and a labeling function λ: Q → L, which maps every state of

132

the interface to a resource label. The size of the resource interface is |R| = |M | +

∑
q∈Q |λ(q)|, where |ℓ| is the space required to represent the label ℓ ∈ L. The runs

of R are the runs of M , etc. Given a run π = q0, (v
i
0, v

o
0), q1, (v

i
1, v

o
1), . . ., we write

λ(π) = λ(q0), λ(q1), . . . for the induced infinite sequence of resource labels. Given

a state q ∈ Q, the value at q is the minimum value that player Input can achieve

for the outcome of the game from q, irrespective of the moves chosen by player

Output: val(q) = infσi∈Σi supσo∈Σo Θ(λ(out(q, σi, σo))). The state q is ∆-compliant,

for ∆ ∈ Z∞, if val(q) ≤ ∆. We write Qrc
∆ ⊆ Q for the set of ∆-compliant states. The

resource interface R is ∆-compliant if the initial state q̂ is ∆-compliant, and the value

of R is val(q̂).

Given two resource interfaces R = (MR, λR) and S = (MS, λS) over the same

resource algebra A, define λ: QR ×QS → L such that λ(p, q) = λR(p) ⊕ λS(q). The

resource interfaces R and S are ∆-compatible, for ∆ ∈ Z∞, if (1) the underlying A/G

interfaces MR and MS are compatible, and (2) the resource interface (MR‖MS, λ) over

A is ∆-compliant. Note that ∆-compatibility does not require that both component

interfaces R and S are ∆-compliant. Indeed, if R consumes a resource produced by S,

it may be the case that R is not ∆-compliant on its own, but is ∆-compliant when

composed with S. This shows that different applications call for different definitions

of composition for resource interfaces, and we refrain from a generic definition. We

use, however, the abbreviation R‖S = (MR‖MS, λ).

The class of resource interfaces over a resource algebra A is denoted R[A]. We

present four examples of resource algebras and the corresponding interfaces.

Pure node limit interfaces. The resource labels of a node limit interface specify,

for each state q, an amount λ(q) ∈ N of resource usage in q (say, power consumption).

133

When the states of two interfaces are composed, their resource usage is additive. The

number ∆ ≥ 0 provides an upper bound on the amount of resource available at every

state. A state q is ∆-compliant if player Input can ensure that, when starting from q,

the resource usage never exceeds ∆. The value at q is the minimum amount ∆ of

resource that must be available at all states for q to be ∆-compliant. Formally, the

pure node limit algebra At is the resource algebra with Lt = N and ⊕t = + and

Θt(n0, n1, . . .) = supk≥0 nk. The resource interfaces in R[At] are called pure node

limit interfaces. Throughout this chapter, we assume that all numbers, including the

state labels λ(q) of pure node limit interfaces as well as ∆, can be stored in space of

a fixed size. It follows that the size of a pure node limit interface R = (M,λ) is equal

to the size of the underlying A/G interface M .

Example 4.1 Figure 4.1(a) shows the game associated with a pure node limit

interface. For simplicity, the example is a turn-based game in which player Input

makes moves in circle states, and player Output makes moves in square states. The

numbers inside the states represent their resource labels. The solid arrows show the

moves available to the players, and the dashed arrows indicate the optimal strategies

for the two players. Note that at the initial state a, state e is a better choice than c

for player Input in spite of having a greater resource label. It is easy to see that the

value of the game (at a) is 15.

Büchi node limit interfaces. While pure node limit interfaces ensure the safe

usage of a resource with a node limit, they may allow some systems to never use the

resource by not doing anything useful. To rule out this possibility, we may augment

the pure node limit algebra with a generalized Büchi objective, which requires that

certain state labels be visited infinitely often. A state q, then, is ∆-compliant if player

134

5

9

99

59

15

2
19

5

B

HD

FA

E

G

C

(a)

5

9

99

59

15

2

5

B

HD

FA

E

G

C

19

(b)

5

9

99

59

15

19

B

HD

FA

E

G

C

−10

−9

(c)

5

9

99

59

15

19

B

HD

FA

E

G

C

−10

−9

(1) (1)

(d)

Figure 4.1. Games illustrating the four classes of resource interfaces.

Input can ensure that, when starting from q, the Büchi conditions are satisfied and

resource usage never exceeds ∆. The formal definition of Büchi conditions within a

resource algebra is somewhat technical. The Büchi node limit algebra Abt is defined

as follows, for a fixed set of labels L:

• Lbt consists of triples 〈n, α, β〉 ∈ N×2L×2L, where n ∈ N indicates the current

level of resource usage, α ⊆ L is a set of state labels that each need to be

135

repeated infinitely often, and β ⊆ L is the set of state labels that are satisfied

in the current state.

• 〈n, α, β〉 ⊕bt 〈n′, α′, β′〉 = 〈n+ n′, α ⊎ α′, β ⊎ β′〉.

• We distinguish two cases, depending on whether or not the generalized Büchi

objective is violated: Θbt(〈n0, α0, β0〉, 〈n1, α1, β1〉, . . .) = +∞ if there is an

ℓ ∈ α0 and a k ≥ 0 such that for all j ≥ k, we have ℓ 6∈ βj; otherwise,

Θbt(〈n0, α0, β0〉, 〈n1, α1, β1〉, . . .) = supk≥0 nk.

The resource interfaces in R[Abt] are called Büchi node limit interfaces. The number

of Büchi conditions of a Büchi node limit interface R = (M,λ) is |α̂|, where α̂ is the

second component of the label λ(q̂) for the initial state q̂ of M .

Example 4.2 Figure 4.1(b) shows a Büchi node limit game with a single Büchi

condition. The graph is the same as in Example 4.1. The states with double borders

are Büchi states, i.e., one of them needs to be repeated infinitely often. Note that the

optimal output strategy at e has changed, because c is a Büchi state but h is not.

This forces player Input to prefer at a state f over e in order to satisfy the Büchi

condition. The value of the game is now 19.

Pure path limit interfaces. The resource labels of an path limit interface specify,

for each state q, the amount of resource λ(q) ∈ Z that is produced (if λ(q) > 0) or

consumed (if λ(q) < 0) at q. When the states of two interfaces are composed, their

resource expenditures are added. The number ∆ ≥ 0 provides the initial amount of

the resource available. A state q is ∆-compliant if player Input can ensure that, when

starting from q, the system can run forever without the available resource dropping

below 0. The value at q is the minimum amount ∆ of initial resource necessary for q to

136

be ∆-compliant. Formally, the pure path limit algebra Ae is the resource algebra with

Le = Z and ⊕e = + and Θe(d0, d1, . . .) = − infk≥0

∑
0≤j≤k dj. The resource interfaces

in R[Ae] are called pure path limit interfaces. To characterize the complexity of the

algorithms, we let the maximal resource consumption of a pure path limit interface

R = (M,λ) be 1 if λ(q) ≥ 0 for all states q ∈ Q, and −minq∈Q λ(q) otherwise.

Example 4.3 Figure 4.1(c) shows a pure path limit game. Player Input has a

strategy to run forever when starting from the initial state a with 9 units of the

resource, but 8 is not enough initial resource; thus the game has the value 9.

Reward path limit interfaces. Some systems have the possibility of saving re-

source by doing nothing useful. To rule out this possibility, we may use a Büchi

objective as in the case of node limit interfaces. For variety’s sake, we provide a

different approach. We label each state q not only with an resource expenditure, but

also with a reward, which represents the amount of useful work performed by the

system when visiting q. A reward path limit algebra specifies a minimum acceptable

reward Λ. A state q, then, is ∆-compliant if player Input can ensure that, when

starting from q with resource ∆, the reward Λ can be obtained without the available

resource dropping below 0. For Λ ∈ N, the Λ-reward path limit algebra Are
Λ is defined

as follows:

• Lre = Z × N. The first component of each label represents a resource expendi-

ture; the second component represents a reward.

• 〈d, n〉 ⊕re 〈d′, n′〉 = 〈d+ d′, n+ n′〉.

• There are two cases: Θre
Λ (〈d0, n0〉, 〈d1, n1〉, . . .) = +∞ if

∑
j≥0 nj < Λ; other-

137

wise, let k∗ = mink≥0(
∑

0≤j≤k nj ≥ Λ) and define Θre
Λ (〈d0, n0〉, 〈d1, n1〉, . . .) =

− inf0≤k≤k∗

∑
0≤j≤k dj.

The resource interfaces in R[Are
Λ] are called Λ-reward path limit interfaces. The max-

imal resource consumption of a reward path limit interface is defined as for pure path

limit interfaces, with the proviso that only the first components of resource labels are

considered.

Example 4.4 Figure 4.1(d) shows a Λ-reward path limit game with Λ = 1. The

numbers in parentheses represent rewards; states that are not labeled with parenthe-

sized numbers have reward 0. The optimal choice of player Input at state a is e,

precisely the opposite of the pure path limit case. If player Output chooses g at e,

then the reward 1 is won, and player Input’s objective is accomplished. If player Out-

put instead chooses h at e, then 4 units of resource are gained in the cycle a,e,h,a.

By pumping this cycle, player Input can gain sufficient resource to eventually choose

the path a,c,d and win the reward 1. Hence the game has the value 5. Note that

this example shows that reward path limit games may not have memoryless winning

strategies.

4.4 Algorithms

Let A be a resource algebra. We are interested in the following questions:

Verification Given two resource interfaces R,S ∈ R[A], and ∆ ∈ Z∞, are R and S

∆-compatible?

Design Given two resource interfaces R,S ∈ R[A], for which values ∆ ∈ Z∞ are R

and S ∆-compatible?

138

To answer these questions, we first need to check the compatibility of the under-

lying A/G interfaces MR and MS. Then, for the qualitative verification question,

we need to check if the resource interface R‖S ∈ R[A] is ∆-compliant, and for the

quantitative design question, we need to compute the value of R‖S. Below, for

A ∈ {At , Abt , Ae , Are}, we provide algorithms for checking if a given resource inter-

face R ∈ R[A] is ∆-compliant, and for computing the value of R. We present the

algorithms in terms of the game representation GR = 〈Q, q̂, γi, γo, δ〉 of the interface.

The algorithms have been implemented in our tool Chic [1].

Pure node limit interfaces. For n ∈ N, let Q≤n = {q ∈ Q | λ(q) ≤ n}. For

∆ ≥ 0, a pure node limit interface R is ∆-compliant iff player Input can win a game

with the safety objective of staying forever in Q≤∆. Such safety games can be solved

as usual using a controllable predecessor operator CPre: 2Q → 2Q, defined for all

X ⊆ Q by CPre(X) = {q ∈ Q | ∃vi ∈ γi(q).∀vo ∈ γo(q). δ(q, vi, vo) ∈ X}. The set of

∆-compliant states can then be written as the limit Qrc
∆ = limk→∞Xk of the sequence

defined by X0 = Q and, for k ≥ 0, by Xk+1 = Q≤∆ ∩ CPre(Xk). This algorithm

can be written in µ-calculus notation as Qrc
∆ = νX. (Q≤∆ ∩CPre(X)), where ν is the

greatest fixpoint operator.

To compute the value of R, we propose the following algorithm. We introduce

two mappings lmax: 2Q → N and below: 2Q → 2Q. For X ⊆ Q, let lmax(X) =

max{λ(q) | q ∈ X} be the maximum label of a state in X, and let below(X) = {q ∈

X | λ(q) < lmax(X)} be the set of states with labels below the maximum. Then,

define X0 = Q and, for k ≥ 0, define Xk+1 = νX. (below(Xk) ∩ CPre(X)). For k ≥ 0

and q ∈ Xk \Xk+1, we have val(q) = lmax(Xk).

While it may appear that computing the fixpoint νX. (Q≤∆ ∩ CPre(X)) requires

139

quadratic time (computing CPre is linear in |R|, and we need at most |Q| iterations),

this can be accomplished in linear time. The trick is to use a refined version of the

algorithm, where each move pair 〈vi, vo〉 is considered at most once. First, we remove

from the fixpoint all states q′ such that λ(q′) > ∆. Whenever a state q′ ∈ Q is removed

from the fixpoint, we propagate the removal backward, removing for all q ∈ Q any

move pair 〈vi, vo〉 ∈ 〈γi(q), γo(q)〉 such that δ(q, vi, vo) = q′ and, whenever 〈vi, vo〉

is removed, removing also 〈vi, v̂o〉 for all v̂o ∈ γo(q). The state q is itself removed

if all its move pairs are removed. Once the removal propagation terminates, the

states that have not been removed are precisely the ∆-compliant states. In order to

implement efficiently the algorithm for computing the value of a node limit interface,

we compute Xk+1 from Xk by removing the states having the largest label, and then

back-propagating the removal. In order to compute below(Xk) efficiently for all k, we

construct a list of states sorted according to their label.

Theorem 4.1 Given a pure node limit interface R of size n, and ∆ ∈ Z∞, we can

check the ∆-compliance of R in time O(n), and we can compute the value of R in

time O(n · log n).

Büchi node limit interfaces. Given a Büchi node limit interface R, let λ(q̂) =

〈n̂, α̂, β̂〉, |α̂| = m, and α̂ = {α1, α2, . . . , αm}. Let Bi = {q ∈ Q | λ(q) = 〈nq, αq, βq〉

and αi ∈ βq} be the i-th set in the generalized Büchi objective, for 1 ≤ i ≤ m. We

can compute the set of ∆-compliant states of R by adapting the fixpoint algorithm

for solving Büchi games [64] as follows. Given two sets Z, T ⊆ Q of states, we

define Reach(Z, T) ⊆ Q as the set of states from which player Input can force the

game to T while staying in Z. Formally, define Reach(Z, T) = limk→∞Wk, where

W0 = ∅ and Wk+1 = Z ∩ (T ∪ CPre(Wk)) for k ≥ 0. Then, for Z ⊆ Q and 1 ≤

140

i ≤ m, we compute the sets Y i ⊆ Q as follows. Let i′ = (i mod m) + 1 be the

successor of i in the cyclic order 1, 2, . . . ,m, 1, . . . Let Y i
0 = Q, and for j ≥ 0, let

Y i
j+1 = Reach(Z,Bi ∩ CPre(Y i′

j)). Intuitively, the set Y i
j+1 consists of the states

from which Input can, while staying in Z, first reach Bi and then go to Y i′

j . For

1 ≤ i ≤ m, let the fixpoint be Y i = limj→∞ Y i
j : from Y i, Input can reach Bi while

staying in Z; moreover, once at Bi, Input can proceed to Y i′ . Hence, Input can visit

the sets B1, B2, . . . , Bm, B1, . . . cyclically, satisfying the generalized Büchi acceptance

condition. Denoting by GBüchi(Z,B1, . . . , Bm) = Y 1 ∪ Y 2 ∪ . . . ∪ Y m, we can write

the set of ∆-compliant states of the interface as Qrc
∆ = GBüchi(Q≤∆, B

1, . . . , Bm).

The algorithm for computing the value of a Büchi node limit interface can

be obtained by adapting the algorithm for ∆-compliance, similarly to the case

for pure node limit interfaces. Let X0 = Q, and for k ≥ 1, let Xk+1 =

GBüchi(below(Xk), B
1, . . . , Bm). Then, for a state q ∈ Xk \ Xk+1, we have val(q) =

lmax(Xk).

Since the set Reach(Z, T) can be computed in time O(m · |R|), using again a

backward propagation procedure, the computation of the set of ∆-compliant states

of the interface requires time O(m · |R|2), in line with the complexity for solving Büchi

games. The value of Büchi node limit games can also be computed in the same time.

In fact, Y i for iteration k + 1 (denoted Y i(k + 1)) can be obtained from Y i for k

(denoted Y i(k)) by Y i
0 (k + 1) = Y i(k) and, for j ≥ 0, by Y i

j+1(k + 1) = Reach(Xk ∩

Y i(k), Bi ∩ CPre(Y i′

j (k + 1))). We then have Y i(k + 1) = limj→∞ Y i
j (k + 1). Hence,

for 1 ≤ i ≤ m, the sets Y i(0), Y i(1), Y i(2), . . . can be computed by progressively

removing states. As each removal (which requires the computation of Reach) is linear-

time, the overall algorithm is quadratic. These considerations lead to the following

theorem.

141

Theorem 4.2 Given a Büchi node limit interface R of size n with m Büchi con-

ditions, and ∆ ∈ Z∞, we can check the ∆-compliance of R and compute its value in

time O(n2 ·m).

Pure path limit interfaces. Given a pure path limit interface R, the value at state

q ∈ Q is given by val(q) = infσi∈Σi supσo∈Σo{Θ(λ(out(q, σi, σo)))}. To compute this

value, we define an path limit predecessor operator EPre: (Q → Z∞) → (Q → Z∞),

defined for all f : Q→ Z∞ and q ∈ Q by

EPre(f)(q) = −λ(q) + max{0, min
vi∈γi(q)

max
vo∈γo(q)

f(δ(q, vi, vo))}.

Intuitively, EPre(f)(q) represents the minimum resource Input needs for performing

one step from q without exhausting the resource, and then continuing with path limit

requirement f . Consider the sequence of functions f0, f1, . . .: Q→ Z∞, where f0 is the

constant function such that f0(q) = −∞ for all q ∈ Q, and where fk+1 = EPre(fk) for

k ≥ 0. The functions in the sequence are pointwise increasing: for all q ∈ Q and k ≥ 0,

we have fk(q) ≤ fk+1(q). Hence the limit f∗ = limk→∞ fk (defined pointwise) always

exists. From the definition of EPre, it can be shown by induction that f∗(q) = val(q).

The problem is that the sequence f0, f1, . . . may not converge to f∗ in a finite number

of iterations. For example, if the game has a state q with λ(q) < 0 and whose only

transitions are self-loops, then f∗(q) = +∞, but the sequence f0(q), f1(q), . . . never

reaches +∞. To compute the limit in finitely many iterations, we need a stopping

criterion that allows us to distinguish between divergence to +∞ and convergence to

a finite value. The following lemma provides such a stopping criterion.

Lemma 4.1 For all states q of a pure path limit interface, either val(q) = +∞ or

val(q) ≤ −
∑

p∈Q min{0, λ(p)}.

142

This lemma is proved in a fashion similar to a theorem in [63], by relating the

value of the path limit interface to the value along a loop in the game. Let v+ =

−
∑

p∈Q min{0, λ(p)}. If fk(q) > v+ for some k ≥ 0, we know that f∗(q) = +∞.

This suggests the definition of a modified operator ETPre: (Q→ Z∞) → (Q→ Z∞),

defined for all f : Q→ Z∞ and q ∈ Q by

ETPre(f)(q) =

{
EPre(f)(q) if EPre(f)(q) ≤ v+,

+∞ otherwise.

We have f∗ = limk→∞ fk, where f0(q) = −∞ for all q ∈ Q, and fk+1 = ETPre(fk)

for k ≥ 0. Moreover, there is k ∈ N such that fk = fk+1, indicating that the limit

can be computed in finitely many iterations. Once f∗ has been computed, we have

val(q) = f∗(q) and Qrc
∆ = {q ∈ Q | f∗(q) ≤ ∆}.

Let ℓ be the maximal resource consumption of R. We have v+ ≤ |Q| · ℓ. Consider

now the sequence f0, f1, . . . converging to f∗: for all k ≥ 0, either fk+1 = fk (in which

case f∗ = fk and the computation terminates), or there must be q ∈ Q such that

fk(q) < fk+1(q). Thus, the limit is reached in at most v+ · |Q| ≤ |Q|2 · ℓ iterations.

Each iteration involves the evaluation of the ETPre operator, which requires time

linear in |R|. This leads to the following result.

Theorem 4.3 Given a pure path limit interface R of size n with maximal resource

consumption ℓ, and ∆ ∈ Z∞, we can check the ∆-compliance of R and compute its

value in time O(n3 · ℓ).

Reward path limit interfaces. Given a Λ-reward path limit interface R and

∆ ∈ Z, to compute Qrc
∆ and val, we use a dynamic programming approach reminiscent

of that used in the solution of shortest-path games [69]. We iterate over a set of reward

path-limit allocations E : Q → ({0, . . . ,Λ} → Z∞). Intuitively, for f ∈ E , q ∈ Q,

143

and r ∈ {0, . . . ,Λ}, the value f(q)(r) indicates the amount of resource necessary to

achieve reward r before running out of the resource. For e1, e2 ∈ Z, let Mxe(e1, e2) =

max{e1, e2} if max{e1, e2} ≤ v+, and Mxe(e1, e2) = +∞ otherwise. For r ∈ N, let

Mxr(r) = max{0, r}. For q ∈ Q, use λ(q) = 〈d(q), n(q)〉. We define an operator

ERPre: E → E on path-limit reward allocations by letting g = ERPre(f), where

g ∈ E is such that for all q ∈ Q we have g(q)(0) = 0, and for all r ∈ {0, . . . ,Λ − 1},

g(q)(r) = Mxe(−d(q),−d(q) + min
vi∈γi(q)

max
vo∈γo(q)

f(δ(q, vi, vo))(Mxr(r − n(q)))).

Intuitively, given an path-limit reward allocation f , a state q, and a reward r,

ERPre(f)(q)(r) represents the minimum resource to achieve reward r from state

q given that the next-state path-limit reward allocation is f . Let f0 ∈ E be de-

fined by f0(q)(r) = +∞, for q ∈ Q and r ∈ {0, . . . ,Λ}, and for k ≥ 0, let

fk+1 = ERPre(fk). The limit f∗ = limk→∞ fk (defined pointwise) exists; in fact,

for all q ∈ Q and r ∈ {0, . . . ,Λ}, we have fk+1(q)(r) ≤ fk(q)(r). For all q ∈ Q, we

then have val(q) = f∗(q)(Λ), and q ∈ Qrc
∆ if f∗(q)(Λ) ≤ ∆.

The complexity of this algorithm can be characterized as follows. For all q ∈ Q,

r ∈ {0, . . . ,Λ}, and f ∈ E , the path limit f(q)(r) can assume at most 1+v+ ≤ 1+ℓ·|Q|

values, where ℓ is the maximal resource consumption inR. Since each of these values is

monotonically decreasing, the limit f∗ is computed in at most O(|Q|2 ·ℓ ·Λ) iterations.

Each iteration has cost |R| · Λ.

Theorem 4.4 Given a Λ-reward path limit interface R of size n with maximal

resource consumption ℓ, and ∆ ∈ Z∞, we can check the ∆-compliance of R and

compute its value in time O(n3 · ℓ · Λ2).

144

4.5 Examples

We sketch two small case studies that illustrate how resource interfaces can be

used to analyze resource-constrained systems.

4.5.1 Distribution of resources in a Lego robot system

We use resource interfaces to analyze the schedulability of a Lego robot control

program comprising several parallel threads. In this setup, player Input is a “resource

broker” who distributes the resources among the threads. The system is compatible

if Input can ensure that all resource constraints are met.

The Lego robot. We have programmed a Lego robot that must execute various

commands received from a base station through infrared (ir) communication, as well

as recover from bumping into obstacles. Its software is organized in 5 parallel threads,

interacting via a central repository. The thread Scan Sensors (S) scans the values of

the sensors and puts these into the repository, Motion (M) executes the tasks from the

base station, Bump Recovery (B) is executed when the robot bumps into an object,

Telemetry (T) is responsible for communication with the base station and the Goal

Manager (G) manages the various goals. There are 3 mutex resources: the motor (m),

the ir sensor (s) and the central repository (c). Furthermore, energy is consumed by

the motor and ir sensor. We model each thread as a resource interface; our model is

open, as more threads can be added later.

Checking schedulability using pure node limit interfaces. First, we disregard

the energy consumption and consider the question whether all the mutex requirements

145

can be met. To this end, we model each thread i ∈ {S,M,B, T,G} as a node limit

interface (M i, λi) with node limit value ∆ = 1. The resource labeling λi = (λi
m, λ

i
c, λ

i
s)

is such that λi
R(q) indicates whether, in state q, thread i owns resource R. The

underlying A/G interface Mi has, for each resource R ∈ {m, c, s}, a boolean input

variable gri
R (abbreviated R in the figures) indicating whether Input grants R to i. We

also model a resource interface (ME, λE) for the environment, expressing that bumps

do not occur too often. This interface does not use any resources, i.e. λE
r (q) = 0

for all states q and all resources R. These resource interfaces are 1-compatible iff all

mutex requirements are met.1

Figure 4.2 presents the A/G interfaces for Motion and Goal Manager; the others

are modeled in a similar fashion. Also, rather than with ρ(p, q), we label the edges

ρ(p, q) ∧ φi(p) ∧ φo(q). The tread Motion in Figure 4.2(a) has one boolean output

variable finM, indicating whether it has finished a command from the base station.

Besides the input variables grM
m, grM

c and grM
s discussed above, Motion has an input

variable fr controlled by Scan Sensors that counts the steps since the last scanning of

the sensors. In the initial location M0, Motion waits for a command go from the Goal

Manager. Its input assumption is ¬m ∧ ¬c, indicating that Motion needs neither

the motor nor the repository. When receiving a command, Motion moves to the

location wait, where it tries to get hold of the motor and of the repository. Since

Motion needs fresh sensor values, it requires fr ≤ 2 to move on the next location;

otherwise it does not need either resource. In the locations go1, go2 and go3, Motion

executes the command. It needs the motor and repository in go1, and the motor

only in go2 and go3. If, in locations go1 or go2, the motor is retrieved from Motion

1Note that the resource compliance of (Büchi) node limit games with multiple resource labelings
can be checked along the same lines as the resource compliance of node limit games with single
resource labelings.

146

(input ¬m ∧ ¬c, typically if Bump Recovery needs the motor), the thread goes back

to location wait. When leaving location go3, Motion sets finM = t, indicating the

completion of a command. We let finM = f on all other transitions. The labeling

λM
r for r ∈ R is given by: λM

m(go1) = λM
m(go2) = λM

m(go3) = λM
c (go1). λ

M
r (q) = 0 in

all other cases. (Note that λi
R(q) is derivable from gri

R by considering edges leading

to q.) The interface for Goal Manager (Figure 4.2(b)) has output variables go and

snd through which it starts up the threads Motion and Telemetry in location G0 and

then waits for them to be finished. It does not use any resources.

Checking schedulability using Büchi node limit interfaces. The node limit

interfaces before express safety, but not liveness: the resource broker is not forced to

ever grant the motor to Motion or Telemetry, in which case they stay forever in the

locations wait or wait1 respectively. To enforce the progress of the threads, we add

a Büchi condition expressing that the locations G0 should be visited infinitely often.

Thus, each state is a state label and we define the location labeling of thread G by

κG(q) = (λG(q), {G0}, {q}) and for i ∈ {S,M,B, T,E} by κi(q) = (λi(q), ∅, ∅), where

λi is as before. Then all mutex requirements can be met, with the state G0 being

visited infinitely often, iff the resource interfaces are 1-compatible.

Analyzing energy consumption using reward path limit interfaces. Energy

is consumed by the motor and the ir sensor. We define the energy expense for thread

i at state q as λi
e(q) = 5λi

m(q)+2λi
s(q), expressing that the motor uses 5 energy units

and the ir sensor 2. Currently, the system will always run out of energy because it

is never recharged, but it is easy to add an interface for that. To prevent the system

from saving energy by doing nothing at all, we specify a reward. A naive attempt

would be to assign the reward to each location in each thread and sum the rewards

147

M0

m ∧ c ∧ fr ≤ 2

¬m ∧ ¬c

¬m ∧ ¬c ∧ fin
M

= t

¬m ∧ ¬c∧go m ∧ ¬cm ∧ ¬c

¬m ∧ ¬c
¬m ∧ ¬c ∧ fr > 2¬m ∧ ¬c ∧ ¬go

go2go1
wait go3

(a) Motion.

fin
M

G3

go ∧ snd

fin
M

∧ finT

finT

G2

fin
M
∧

¬finT

∧finT

G0 G1

¬fin
M

(b) Goal manager.

Figure 4.2. A/G interfaces modeling a Lego robot.

upon composition. However, suppose that the reward acquired per energy unit is

higher when executing Motion than when executing Telemetry. Then, the highest

reward is obtained by always executing Motion and never doing Telemetry. This

phenomenon is not a deficit of the theory, it is inherent when managing various goals.

Since the latter is exactly the task of the goal manager, we reward the completion

of a round of the goal manager. That is, we put λG
r (G0) = 1 and λi

r(q) = 0 in all

other cases. Then all mutex requirements can be met, while the system never runs

out of power, iff the node limit interfaces (as defined before) are 1-compatible and

their composition is 0-compliant as an path-limit reward interface.

4.5.2 Resource accounting for the PicoRadio network layer

The PicoRadio [50] project aims to create large-scale, self-organizing sensor net-

works using very low-power, battery-operated piconodes that communicate over wire-

less links. In these networks, it is not feasible to connect each node individually to

a power line or to periodically change its battery. Energy-aware routing [129] strate-

gies have been found necessary to optimize use of scarce energy resources.We show

how our methodology can be profitably applied to evaluate networks and synthesize

optimal routing algorithms.

148

A PicoRadio network. A piconet consists of a set of piconodes that can create,

store, or forward packets using multi-hop routing. The piconet topology describes the

position, maximal packet-creation rate, and packet-buffer capacity at each piconode,

and capacity of each link. Each packet has a destination, which is a node in the

network. A configuration of the network represents the number of packets of each

destination currently stored in the buffer of each piconode. A configuration that

assigns more packets to a node than its buffer size is not legal.The network moves

from one configuration to another in a round. We assume that a piconode always uses

its peak transmission capacity on an outgoing link as long as it has enough packets to

forward on that link. Wireless transmission costs energy. Each piconode starts with

an initial amount of energy, and can possibly gain energy by scavenging.

We are given a piconet with known topology and initial energy levels at each

piconode. We wish to find a routing algorithm that makes the network satisfy a

certain safety property, e.g., that buffer overflows do not occur (or that whenever a

node has a packet to forward, it has enough energy to do so). A piconet together

with such a property represents a concurrent finite-state safety game between player

Packet Generator, and player Router. Each legal configuration of the network is

represented by a game state; the state error represents all illegal configurations.

The guarded state transitions reflect the configuration changes the network undergoes

from round to round as the players concurrently make packet creation and routing

choices under the constraints imposed by the network topology. The state error has

a self-loop with guard t and no outgoing transitions. The initial state corresponds to

the network configuration that assigns 0 packets to each node. The winning condition

is derived from the property the network must satisfy. If player Router has a winning

strategy σ, a routing algorithm that makes the network satisfy the given property

149

under the constraints imposed by the topology exists and can be found from σ; else

no such routing algorithm exists. We present several examples.

Finding a routing strategy to prevent buffer overflows. Let λ(qc) = 0 for

each state qc that represents a legal configuration c, and let λ(error) = 1. If the

pure node limit interface thus constructed is ∆-compliant for ∆ = 0, then a routing

algorithm that prevents buffer overflow exists and can be synthesized from a winning

strategy for player Router.

Finding the optimal buffer size for a given topology. We wish to find out

the smallest buffer capacity (less than a given bound) each piconode must have so

that there exists a routing algorithm that prevents buffer overflows. Let λ(qc) =

maxi

∑
j cij for all nodes i and packet destinations j, where cij is the number of

packets with destination j in node i in configuration c. The value of the pure node

limit interface thus constructed gives the required smallest buffer size.

Checking if the network runs forever using path limit interfaces. We wish

to find if there exists a routing algorithm Af that enables a piconet to run forever,

assuming each piconode starts with energy e. Let esc be the energy scavenged by a

piconode in each round. Let λ(qc) = esc − maxi

∑
j(p · min(cij, li(ri(j)))), where qc,

i, j, and cij are as above, p is the energy spent to transmit a packet, li(x) is the

capacity of the link from node i to node x, and ri is the routing table at node i; and

λ(error) = −1. If the pure path limit interface thus constructed is ∆-compliant for

∆ = e, then Af exists and is given by the Router strategy.

150

Finding the minimum energy required to achieve a given lifetime. We wish

to find the minimum initial energy e such that there exists a routing algorithm Ar

that makes each piconode run for at least r rounds. Let λ(qc) = (ec, 1), where ec is

the energy label of configuration qc defined in the pure path limit interface above,

and 1 is a reward; and λ(error) = (−1, 0). For Λ = r, the value of the Λ-reward

path-limit interface thus constructed gives e, and the Router strategy gives Ar.

Acknowledgements

The work reported in this chapter was conducted jointly with Prof Luca de Al-

faro, Prof Thomas A. Henzinger, and Prof Mariëlle Stoelinga. This research was

funded by Prof Henzinger supported in part by the DARPA grant F33615-00-C-

1693, the MARCO grant 98-DT-660, the ONR grant N00014-02-1-0671, and the NSF

grants CCR-0085949, CCR-0132780, CCR-0234690, and CCR-9988172. This chapter

is based on a paper [42] presented at EMSOFT 2003, copyright held by Springer-

Verlag Berlin Heidelberg2, 2003.

2http://www.springerlink.com

151

Chapter 5

A Natural Extension of Automata

We define and study a quantitative generalization of the traditional boolean frame-

work of model-based specification and verification. In our setting, propositions have

integer values at states, and properties have integer values on traces. For example,

the value of a quantitative proposition at a state may represent power consumed at

the state, and the value of a quantitative property on a trace may represent energy

used along the trace. The value of a quantitative property at a state, then, is the

maximum (or minimum) value achievable over all possible traces from the state. In

this framework, model checking can be used to compute, for example, the minimum

battery capacity necessary for achieving a given objective, or the maximal achievable

lifetime of a system with a given initial battery capacity. In the case of open systems,

these problems require the solution of games with integer values.

Quantitative model checking and game solving is undecidable, except if bounds

on the computation can be found. Indeed, many interesting quantitative proper-

ties, like minimal necessary battery capacity and maximal achievable lifetime, can be

naturally specified by quantitative-bound automata, which are finite automata with

152

integer registers whose analysis is constrained by a bound function f that maps each

system K to an integer f(K). Along with the linear-time, automaton-based view of

quantitative verification, we present a corresponding branching-time view based on a

quantitative-bound µ-calculus, and we study the relationship, expressive power, and

complexity of both views.

5.1 Introduction

Traditional algorithmic methods for the verification of finite-state systems, with

a set P of boolean propositions, translate a system into a transition graph in which

each vertex corresponds to a state of the system and is labeled by the propositions

that hold in the state. A property of the system is specified by a temporal-logic

formula over P or by an automaton over the alphabet 2P . When the system is closed

(i.e., its behavior does not depend on the environment), verification is reduced to

model checking [46]; for open systems, verification requires game solving [18]. While

successful for verifying hardware designs [34] and communication protocols [95], this

approach cannot adequately handle infinite-state systems that arise, for example, in

general software verification. Much research has therefore focused on infinite-state

extensions, such as models whose vertices carry a finite, but unbounded amount of

information, e.g., a pushdown store, or integer-valued registers [99]. Much of the

reasoning about such systems, however, has still focused on boolean specifications

(such as “is the buffer size always bounded by 5?”) rather than answering quantitative

questions (e.g., “what is the maximal buffer size?”). Moreover, the main challenge

in most infinite-state formalisms has been to obtain decidability for checking boolean

properties, usually by limiting the expressive power of the models or properties.

153

In contrast, the solution of quantitative questions, such as system power require-

ments and system lifetime, has been considered on a property-by-property basis.

Often the solution consists, however, of two basic steps: first, a suitable system of

constraints is set up whose solution gives the intended quantitative answer (a “dy-

namic program”); and second, by considering the characteristics of the system (num-

ber of states or maximal initial battery power), a bound is provided on the number

of iterations required to solve the dynamic program. We systematize this ad-hoc

approach to answering quantitative questions about infinite-state systems in order to

make it accessible to design engineers. For this purpose, we extend the traditional

boolean verification framework to an integer-based framework, which due to its gen-

erality permits the modeling of a wide variety of quantitative aspects and properties

of systems [42, 31].1 In particular, we generalize traditional boolean specification

formalisms such as automata to the integer-based framework, so that an engineer can

express the desired quantitative properties in a natural way. These quantitative au-

tomata are then automatically translated into dynamic programs for model checking

and game solving. Finally, from parametric bounds given by the engineer, such as

bounds on the value of a quantity or on the number of automaton steps necessary

for computing a property, we automatically derive iteration bounds on solving the

corresponding dynamic program. In all the examples we study, such as maximal life-

time of a system with given initial battery capacity, our generic, systematic approach

matches the best known previous, property-specific algorithms.

Specifically, the models we consider, quantitative structures, are graphs with

1It should be noted that we use the term quantitative, as in quantitative verification, quantitative
property, or quantitative µ-calculus, simply as referring to “integer-based” rather than “boolean.”
This is not to be confused with some literature, where the term quantitative is used to refer to
“probabilistic” systems, and real values are obtained as results of evaluating boolean specifications
[29, 97, 113, 58].

154

finitely many vertices, but every vertex is labeled by a set of quantitative propositions,

each taking an integer value. For example, the label at each vertex may represent the

amount of power consumed when the vertex is visited, or it may represent a buffer

size, a time delay, a resource requirement, a reward, a cost, etc. The properties we

check are quantitative properties of infinite paths, each representing a run of the sys-

tem. For instance, we may ask for the peak power consumption along a path, or for

the lifetime of a battery along the path given a certain amount of initial battery power

(i.e., the number of transitions along the path until the initial battery power is used

up). Such properties can be specified by an extension of traditional automata. While

a traditional automaton maps infinite paths of a graph with boolean propositions (i.e.,

infinite words over the alphabet 2P) to “accept” or “reject”, we define quantitative

automata, which map each infinite path of a graph with quantitative propositions

(i.e., infinite words over the alphabet NP) to an integer. For example, if the propo-

sition p ∈ P describes the amount of power consumed when the current input letter

is read, then an automaton specifying battery lifetime, given initial power a ∈ N,

maps each word o1o2o3 . . . to the maximal k ≥ 0 for which
∑k

i=1 oi(p) is at most a. In

model checking, boolean properties of infinite paths can be interpreted either in an

existential or universal way, asking whether the property is true on some or all paths

from a given state. In quantitative verification, we ask for the maximal or minimal

value of a property over all paths from a state. For the battery lifetime property,

this amounts to computing the maximal or minimal achievable lifetime (note that

this corresponds to the battery lifetime in the cases that a scheduler resolves all non-

determinism in a friendly vs. an adversarial manner). In a game, where two players

(system components) decide which path is taken, boolean properties are interpreted

in an ∃∀ fashion (“does player 1 have a strategy so that for all player 2 strategies the

property is satisfied?”). Accordingly, we interpret quantitative properties in a max

155

min fashion (“what is the maximal value of the property that player 1 can achieve

no matter how player 2 plays?”).

Since quantitative automata subsume counter machines, model checking and game

solving are undecidable. However, unlike much previous work on infinite-state veri-

fication, we do not focus on defining decidable subclasses, but we note that in many

examples that arise from verification applications, it is often easy and natural to

give a bound function. This function specifies, for given system parameters (such

as number of states, maximal constants, etc.), a threshold when it is safe to con-

clude that the value of a quantitative property tends to infinity. Accordingly, we

specify a quantitative property as a quantitative-bound automaton, which is a pair

consisting of a quantitative automaton and a bound function. Note that bounds are

not constant but depend on the size of the structure over which a specification is

interpreted; they are functions. We consider value-bound functions, which constrain

the maximal value of an automaton register, and iteration-bound functions, which

constrain the maximal number of automaton transitions that need to be analyzed

in order to compute the value of the property specified by the automaton. Itera-

tion bounds directly give termination bounds for dynamic programs, and thus better

iteration bounds yield faster verification algorithms. In particular, for the battery

lifetime property, the generic dynamic-programming algorithms based on iteration

bounds are more efficient than the finite-state algorithms derived from value bounds,

and they match the best known algorithms that have been devised specifically for the

battery lifetime property [42]. Given a value-bound function f , we can always ob-

tain a corresponding iteration-bound function g: for quantitative automata with |Q|

control locations and k registers, and quantitative structures G, the iteration bound

g(G) = O(|Q| · |G| ·f(G)k) is sufficient and necessary. Moreover, for certain subclasses

156

of quantitative automata it is possible to derive better iteration bounds. For instance,

for monotonic quantitative-bound automata (without decreasing register values), we

derive iteration-bound functions that are linear with respect to given value-bound

functions.

The verification problems for properties specified by quantitative-bound automata

are finite-state, and therefore decidable. However, instead of reducing these problems

to boolean problems, we provide algorithms that are based on generic and natural,

integer-based dynamic programming formulations, where the bound function gives a

termination guarantee for the evaluation of the dynamic program. We expect these

algorithms to perform well in practice, as they (1) avoid artificial boolean encodings

of integers and (2) match, in all the examples we consider, the complexity of the best

known property-specific algorithms. The use of bound functions can be viewed as a

generalization of bounded model checking [30] from the boolean to the quantitative

case. In bounded model checking, the engineer provides a bound on the number of

execution steps of a system along with a property. However, the bound is usually

a constant independent of the structure, whereas our bound functions capture when

search can be terminated without losing information about the structure. Therefore,

in bounded model checking, only the structure diameter constitutes a bound function

in our sense, because smaller bounds may give counterexamples but not proofs. Of

course, as in bounded model checking, our approach could be used to quickly find

counterexamples for quantitative verification problems even if the bound function

gives values that are smaller than necessary for proof.

Quantitative automata specify dynamic programs. There is a second natural way

to specify iterative computation: through the µ-calculus [103]. In a quantitative ex-

tension of the µ-calculus, each formula induces a mapping from vertices to integers,

157

and bound functions naturally specify a bound on the number of iterations for evalu-

ating fixpoint expressions. More precisely, for a µ-formula ϕ, an iteration-bound func-

tion g specifies that if, during the iterative calculation of the value of a fixpoint expres-

sion in ϕ on a structure G, a stable value is not reached within g(G) iterations, then

the value is infinity. While quantitative extensions of the µ-calculus [97, 113, 58] have

been defined before, they were interpreted over probabilistic structures and gave no

iteration bounds. Finally, we give a translation from linear-time quantitative-bound

automata to the branching-time quantitative-bound µ-calculus. For the purpose of

game solving, as in the boolean case, the translation requires that the automaton

is deterministic. This gives us symbolic algorithms for the quantitative verification

of closed and open systems. Moreover, we show that the relationship [56] between

boolean µ-formulas over transition graphs and boolean µ-formulas over game graphs

carries over to the quantitative setting: a quantitative-bound µ-formula computes a

particular quantitative property over two-player game graphs iff the formula computes

the property over both existential and universal transition graphs (i.e., game graphs

where one of the two players has no choices). This shows that the same integer-based

symbolic iteration schemes can be used for verifying a quantitative property over both

closed and open systems, provided the single-step operation is modified appropriately;

this was previously known only for boolean structures, where the dynamic programs

are degenerate [56].

5.2 The Integer-based Quantitative Setting

Quantitative properties. Let P be a nonempty, finite set of quantitative proposi-

tions (propositions, for short). A quantitative observation (observation, for short) is

158

a function o: P → N mapping each proposition to a natural number (possibly 0).

Let O be the set of observations. A quantitative trace (trace, for short) is an infinite

sequence w ∈ Oω of observations. A quantitative property (property, for short) is a

function π: Oω → N ∪ {∞} mapping each trace to a natural number or to infinity.

Let Π denote the set of properties. These definitions generalize the boolean interpre-

tation [46], where observations are maps from propositions to {0, 1}, and properties

are maps from traces to {0, 1}. The following examples describe some quantitative

properties.

Example 5.1 (Response time) Let P = {p}. Given a ∈ N, the property rta:

Oω → N maps each trace w to rta(w) = sup{k | ∃w′ ∈ O∗, w′′ ∈ Oω such that w =

w′ · (p 7→ a)k · w′′}. Thus, rta(w) is the supremal number of consecutive observations

mapping the proposition p to the value a in the trace w. This may model the maximal

time between a request and a response. The supremum may be infinity. This happens

if w = w′ · (p 7→ a)ω, or if for all k ≥ 0, the trace w contains a subsequence with

at least k successive observations mapping p to a (for example, p may be mapped to

abaabaaabaaaab . . .).

Example 5.2 (Fair maximum) Let P = {p, q}. The property fm: Oω → N maps

each trace w to the supremal value of the proposition p on w if the proposition q

is nonzero infinitely often on w, and to 0 otherwise. The proposition q may model

a fairness condition on traces [42]. Formally, fm(o0o1o2 . . .) is sup{oj(p) | j ≥ 0} if

lim sup{oj(q) | j ≥ 0} 6= 0, and 0 otherwise. The supremum may be infinity.

Example 5.3 (Lifetime) Let P = {p, c}. Given a ∈ N, the property lta: Oω → N

maps each trace w = o0o1o2 . . . to lta(w) = sup{k |
∑k

j=0(−1)cj · oj(p) ≤ a}, where

cj = 0 if oj(c) = 0, and cj = 1 otherwise. Intuitively, if a zero (resp., nonzero) value

159

o(c) denotes resource consumption (resp., resource gain) in a single step of o(p) units,

then lta(w) is the supremal number of steps that can be executed without exhausting

the resource, given a initial units of the resource.

Example 5.4 (Peak running total) Let P = {p, c} as in the previous exam-

ple. The property prt: Oω → N maps each trace w = o0o1o2 . . . to prt(w) =

sup{
∑k

j=0(−1)cj · oj(p) | j ≥ 0}, where again cj = 0 if oj(c) = 0, and cj = 1

otherwise. Intuitively, if a resource is being consumed or gained over the trace w,

then prt(w) is the initial amount of the resource necessary so that the resource is

never exhausted.

Quantitative structures. A quantitative system (system, for short) is a tuple K =

(S, δ, s0, 〈·〉), where S is a finite set of states, δ ⊆ S × S is a total transition relation,

s0 ∈ S is an initial state, and 〈·〉: S → O is an observation function that maps each

state s to an observation 〈s〉. A two-player quantitative game structure (game, for

short) is a tuple G = (S, S1, S2, δ, s0, 〈·〉), where S, δ, s0, and 〈·〉 are as in systems,

and S1 ∪ S2 = S is a partition of the state space into player-1 states S1 and player-2

states S2. At player-1 states, the first player chooses a successor state; at player-2

states, the second player. Note that systems are special cases of games: if Si = S, for

i ∈ {1, 2}, then the game is called a player-i system. We use the term structure to

refer to both systems and games.

A trajectory of the structure G is an infinite sequence t = r0r1r2 . . . of states rj ∈ S

such that the first state r0 is the initial state s0 of G, and (rj, rj+1) ∈ δ for all j ≥ 0.

The trajectory t induces the infinite sequence 〈t〉 = 〈r0〉〈r1〉〈r2〉 . . . of observations.

A trace w ∈ Oω is generated by G if there is a trajectory t of G such that w = 〈t〉.

A player-i strategy, for i ∈ {1, 2}, is a function ξi: S∗ × Si → S that maps every

160

s1
2

s0
2

s2
1

s3
5

s4
2

s5
3

Figure 5.1. System K

nonempty, finite sequence of states to a successor of the last state in the sequence;

that is, (s, ξi(t, s)) ∈ δ for every state sequence t ∈ S∗ and state s ∈ Si. Intuitively,

ξi(t, s) indicates the choice taken by player i according to strategy ξi if the current

state of the game is s, and the history of the game is t. We write Ξi for the set of

player-i strategies. For two strategies ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2, the outcome tξ1,ξ2 of ξ1

and ξ2 is a trajectory of G, namely, tξ1,ξ2 = r0r1r2 . . . such that r0 = s0 and for all

j ≥ 0 and i ∈ {1, 2}, if rj ∈ Si, then rj+1 = ξi(r0r1 . . . rj−1, rj).

Consider the system K shown in Figure 5.1, with the initial state s0. Each state

si of K is labeled with the value 〈si〉(p) for a proposition p. Consider the property

rt2 from Example 5.1. For all traces w that correspond to trajectories of K of the

form (s0s1s2s3)
∗, we have rt2(w) = 2. For all traces w that correspond to trajectories

of the form (s0s1s4s5)
∗, we have rt2(w) = 3. Moreover, rt2(w) ≤ 3 for all traces w

generated by K. Now consider a game played on the same structure K, where the

state s1 is a player-2 state. Consider the property lt14 from Example 3, supposing

that 〈s〉(c) = 0 for all states s of K. The goal of player 2 is to maximize lifetime given

initially 14 units of the resource. Consider the strategy where player 2 chooses s4 at

the first visit to s1, and chooses s2 thereafter. This strategy generates a trace w along

which p is mapped to 2223 (2215)ω; hence lt14(w) = 7. Note that all memoryless (i.e.,

history-independent) strategies lead to smaller lifetimes.

161

5.3 Quantitative-Bound Automata

5.3.1 Specifying Quantitative Properties

Syntax. We specify properties using automata. Let O be a given finite set of

observations. Quantitative automata run over input traces in Oω. The configuration

of a quantitative automaton consists of a control location and an array of registers

with values in N. The transitions of quantitative automata are guarded by conditions

on the values of the registers and the input observation, and involve, in addition to

an update of the control location, also an update of the register values. A k-register

update function is a recursive function u: Nk ×O ⇀ Nk which may be partial. Let U

denote the set of update functions. A quantitative automaton (automaton, for short)

is a tuple A = 〈Q, k, q0, γ〉, where Q is a finite set of control locations, k ∈ N is a

number of registers, q0 ∈ Q is an initial location, and γ: Q → 2U×Q is a transition

function that maps each location q to a finite set γ(q) of pairs consisting of an update

function and a successor location. We require that the transition function γ defines a

total relation, namely, for each location q ∈ Q, each observation o ∈ O, and all register

values ~x ∈ Nk, there exists (u, q′) ∈ γ(q) such that u(~x, o) is defined. For technical

convenience, we furthermore assume that the automaton has a sink location qhalt ∈ Q:

if the current location is qhalt , then for all observations, the next location is qhalt and

the values of the registers remain unchanged; that is, γ(qhalt) = {(λ~x. λo. ~x, qhalt)}.

We write R for the array of registers, and R[i] ∈ N for the value of the i-th register,

for 0 ≤ i < k.

Semantics. A configuration of the automaton A is a tuple (q, v0, v1, . . . , vk−1) ∈

Q×Nk that specifies the current control location and the values of the registers. The

initial configuration of the automaton is cinit = (q0, 0, 0, . . . , 0), where all k registers

162

are initialized to 0. For an input o ∈ O, the configuration c′ = (q′, v′0, v
′
1, . . . , v

′
k−1) is

an o-successor of the configuration c = (q, v0, v1, . . . , vk−1), denoted by c
o
−→c′, if there

is a transition (u, q′) ∈ γ(q) such that u(v0, v1, . . . , vk−1, o) = (v′0, v
′
1, . . . , v

′
k−1). A run

of the automaton A over a trace o0o1o2 . . . ∈ Oω is an infinite sequence c0c1c2 . . . of

configurations such that c0 = cinit, and cj
oj

−→ cj+1 for all j ≥ 0. The value of the

run r = c0c1c2 . . . is defined as valA(r) = lim sup{R[0](cj) | j ≥ 0}, that is, the value

of r is the maximal value of the register R[0] which occurs infinitely often along r,

if this maximum is bounded; and otherwise the value is infinity. In other words,

valA(r) = ∞ iff for all k ≥ 0, the value of the register R[0] is infinitely often greater

than k.

An automaton is monotonic if along every run, the value of each register can-

not decrease. An automaton is deterministic if for every configuration c and input

o ∈ O, there is exactly one o-successor of c. While a deterministic automaton has

a single run over every input trace, in general an automaton may have several runs

over a given trace, each with a possibly different value. According to the nonde-

terministic (or existential) interpretation of automata, the value of an automaton

A over a trace w, denoted valnondet
A (w), is the supremal value of all runs of A over

w. Formally, valnondet
A (w) = sup{valA(r) | r is a run of A with 〈r〉 = w}. An al-

ternative is the universal interpretation of automata, where the value of A over a

trace w, denoted valuniv
A (w), is the infimal value of all runs of A over w; that is,

valuniv
A (w) = inf{valA(w, r) | r is a run of A with 〈r〉 = w}. Note that a determinis-

tic automaton A can be viewed as both a nondeterministic and a universal automaton.

The (nondeterministic) automaton A specifies (or computes) the property π ∈ Π if for

all traces w ∈ Oω, we have valnondet
A (w) = π(w). This definition captures traditional

163

Büchi automata as a special case: keep one register R[0], which is set to 1 whenever

the automaton visits a Büchi accepting control location, and set to 0 otherwise.

Model checking and game solving. Let K be a quantitative system. For a quan-

titative automaton A, the max-value of K with respect to A, denoted valmax
A (K),

is the supremal value of all traces generated by K, where we choose the non-

deterministic (rather than the universal) interpretation of automata. Formally,

valmax
A (K) = sup{valnondet

A (w) | w is a trace generated by K}. The min-value of K

with respect to A, denoted valmin
A (K), is the infimal value of all traces generated

by K; that is, valmin
A (K) = inf{valnondet

A (w) | w is a trace generated by K}. Now

consider a game G. The value of a strategy pair ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2 with respect to

a deterministic automaton A is the value valA(ξ1, ξ2) = valA(tξ1,ξ2) of A over the out-

come of the strategies ξ1 and ξ2. The game-value of G with respect to a deterministic

automaton A, denoted valmaxmin
A (G), is defined as supξ1∈Ξ1

infξ2∈Ξ2
valA(ξ1, ξ2). This

is the supremal value of A that player-1 can achieve against all player-2 strategies.

The symmetric definition is omitted for brevity.

Given a system K and an automaton A, the quantitative model-checking problem

(model checking, for short) is to determine valmax
A (K) and valmin

A (K). Given a game

G and a deterministic automaton A, the quantitative game-solving problem (game

solving, for short) is to determine valmaxmin
A (G). Since registers can contain arbitrary

natural numbers, we can encode 2-counter machines as monotonic automata, and

hence the model-checking and game-solving problems are undecidable.

164

5.3.2 Bound Functions for Automata

Quantitative-bound automata. In order to solve model-checking problems and

games, we equip quantitative automata with bound functions. A quantitative-bound

automaton (QBA) (A, f) consists of a quantitative automaton A and a recursive

function f : G → N, where G is the set of quantitative structures (systems and

games). To compute a property on a structure G, a QBA works with a bound

f(G) that depends on G. The motivation is that for many properties, the designer

can provide a bound on the maximal value of the automaton registers, or on the

number of automaton transitions that need to be executed in order to compute the

value of the property if the value is finite. We thus have two interpretations of the

bound function f : the value-bound interpretation, where f(G) is a bound on the

register values, and the iteration-bound interpretation, where f(G) is a bound on the

automaton transitions.

We define the value of a QBA over a trace generated by a structure for the two

possible interpretations. Given a QBA (A, f), a structure G, and a trace w generated

by G, let r be a run of the automaton A over w. The value of r = c0c1c2 . . . over w for

the value-bound interpretation, denoted valvbound(A,f)(r), is defined as follows: if there

are an index j ∈ N and a register R[i], for 0 ≤ i < k, such that R[i](cj) > f(G), then

valvbound(A,f)(r) = ∞; otherwise valvbound(A,f)(r) = valA(r). Intuitively, the value-

bound interpretation maps every trace that causes some register to exceed the value

bound at some point, to ∞. The value of the run r over w for the iteration-bound

interpretation, denoted val ibound(A,f)(r), is defined as follows: if for all 0 ≤ i < k,

we have max{R[i](cj) | f(G) ≤ j ≤ 2 · f(G)} = max{R[i](cj) | 2 · f(G) ≤ j ≤

3 · f(G)}, then val ibound(A,f)(r) = max{R[0](cj) | f(G) ≤ j ≤ 2 · f(G)}; otherwise

val ibound(A,f)(r) = ∞. Intuitively, the iteration-bound interpretation checks if the

165

maximal values of all registers stabilize within the iteration bound, and maps a trace

to ∞ if some maximal register value does not stabilize.

Given a QBA (A, f), a system K, a game G, a trace generated by K or G, and

two interpretations bound ∈ {vbound, ibound}, we define the values valnondet
bound(A,f)(w),

valmax
bound(A,f)(K), valmin

bound(A,f)(K), and valmaxmin
bound(A,f)(G) analogous to the corresponding

definitions in Section 5.3.1 using valbound(A,f)(r) instead of valA(r). The QBA (A, f)

specifies (or computes) the property π on a structure G if for all traces w generated

by G, we have valnondet
bound(A,f)(w) = π(w). The following examples illustrate the idea.2

Example 5.5 (Fair maximum) The following QBA (A, f) specifies the property

fm from Example 5.2 on all structures G. There are two registers. The register R[1]

keeps track of the maximal value of proposition p seen so far. Whenever proposition

q has a nonzero value, the value of R[1] is copied to R[0]; otherwise R[0] is set to

zero. If q has a nonzero value infinitely often, then the maximal value of p occurs

infinitely often in R[0]; otherwise from some point on, R[0] contains the value 0. The

bound function f is defined as follows: if G contains the maximal value ∆ for p, then

f(G) = ∆ is a suitable value-bound function; if G has N states, then f(G) = N is a

suitable iteration-bound function.

Example 5.6 (Lifetime) The property lta from Example 5.3 can be computed on

all structures G by the following QBA (A, f). Let A = 〈{q0, qhalt}, 2, q0, γ〉, where

for all inputs o ∈ O, we have γ(q0) = {(o(c) 6= 0 ∧ R′[0] = R[0] + 1 ∧ R′[1] =

R[1] − o(p), q0), (o(c) = 0 ∧ R[1] + o(p) ≤ a ∧ R′[0] = R[0] + 1 ∧ R′[1] = R[1] +

o(p), q0), (o(c) = 0 ∧ R[1] + o(p) > a ∧ R′[0] = R[0] ∧ R′[1] = R[1], qhalt)}. In register

2In the examples, we write update functions as relations u(~x, o, ~x′), where unprimed variables
denote the values of variables before the update, and primed variables denote the values after the
update.

166

R[0] the automaton stores the number of transitions already taken, and in R[1] it

tracks the amount of the resource used so far; it continues to make transitions as long

as it has a sufficient amount of the resource. If G contains N states and the maximal

value ∆ for p, then f(G) = a + (N + 1) · ∆ is a suitable value-bound function, and

f(G) = N · a+N · (N + 1) · ∆ is a suitable iteration-bound function.

5.3.3 Quantitative-Bound Model Checking and Game Solv-

ing

Given a system K and a QBA (A, f), the quantitative-bound model-checking

problem is to determine valmbound(A,f)(K), where bound ∈ {vbound, ibound} and

m ∈ {max,min}. Similarly, given a game G and a deterministic QBA (A, f), the

problem of solving quantitative-bound games is to determine valmaxmin
bound(A,f)(G), for

bound ∈ {vbound, ibound}. Quantitative-bound model checking and game solv-

ing are decidable. In the case of value bounds, the state space is bounded by

O(|G| · |Q| · (f(G) + 2)k), where |Q| is the size of the automaton with k registers, |G|

is the size of the structure, and f is the value-bound function. Let G be a structure

such that for all propositions p ∈ P and states s ∈ S, we have 〈s〉(p) ≤ ∆. Let C0 be

the maximal constant that appears syntactically in the description of the automaton

A, and let C1 = f(G). Call B = max{∆, C0, C1} the oblivion bound for the QBA

(A, f) and structure G. Let g(G) = |G| · |Q| · (B + 2)k, where A has k registers.

Then valmvbound(A,f)(G) = valmibound(A,g)(G), for m ∈ {max,min,maxmin}. Thus, we

can derive an iteration bound from a value bound.

Formally, the decision problem QBA-VMC (resp., QBA-VGS) takes as input a sys-

temK (resp., gameG), a QBA (A, f), the oblivion bound B, and a value a ∈ N∪{∞},

167

and returns “Yes” if valmax
vbound(A,f)(K) ≥ a (resp., valmaxmin

vbound(A,f)(G) ≥ a). The decision

problems QBA-IMC and QBA-IGS are defined analogously using valmax
ibound(A,f)(K)

and valmaxmin
ibound(A,f)(G). We give the oblivion bound as an input to the problems, be-

cause the value of f(G) can be unboundedly larger than the descriptions of f and G.

We assume that updates take unit time.

Theorem 5.1 (1) QBA-VMC is PSPACE-complete and QBA-IMC is EXPTIME-

complete. (2) QBA-VGS and QBA-IGS are EXPTIME-complete. (3) Let |G| be

the size of the structure and |Q| the automaton size for (A, f) and G. Let S =

|Q| · |G| · (f(G) + 2)k). QBA-VMC and QBA-VGS can be solved in time O(S) and

O(S2) respectively. QBA-IMC and QBA-IGS can be solved in time O(|Q| · |G| ·f(G)).

Note that these complexity results reflect the sizes of the state space in which the

solution lies. In practice, however, the reachable state space can be much smaller.

Hence, on-the-fly state space exploration can be used instead of constructing the

entire state space a priori. The following examples show that our approach, while

being generic and capturing several interesting quantitative verification problems [42]

as special cases, still remains amenable to efficient analysis.

Example 5.7 (Fair maximum) Consider the deterministic QBA (A, f) with value-

bound function f from Example 5.5, which computes the property fm from Exam-

ple 5.2. This property is exactly the winning condition for the “threshold Büchi

games” described in [42]. For a game G, the state space with the value bound has

size O(|G| · |Q| · ∆), where ∆ is the maximal value of proposition p in G. This is

exponential in |G|. However, the iteration bound for this problem is |G|, and this

gives an O(|G|2) algorithm, which is the same complexity as the algorithm of [42].3

3However, computing an iteration-bound function automatically using the optimal value-bound
function would lead to a suboptimal iteration-bound function g(G) = |G| · |Q| · ∆.

168

Example 5.8 (Peak running total) The property prt from Example 5.4 is exactly

the winning condition for the “energy games” of [42]. This property can be computed

by a deterministic QBA with two registers and value-bound function f(G) = |G| ·∆,

where ∆ is the maximal value of p in G. A game-solving algorithm based on value

bounds would require time O(|G|6 · ∆4), whereas an algorithm designed specifically

to solve this game [42] runs in time O(|G|3 ·∆). However, even for this problem, our

generic approach, using the optimal iteration-bound function h(G) = |G|2 ·∆ achieves

the best known complexity of O(|G|3 · ∆).

In the special case of monotonic automata, efficient iteration bounds can be au-

tomatically derived from value bounds. Consider a structure G with N states and a

monotonic QBA (A, f) with value-bound function f , location set Q, and k registers.

Since the value of each register only increases, within |Q| · k ·N · f(G) steps of every

run of A over a trace generated by G, either an automaton configuration repeats, or

there is a register such that the value of the register has crossed the threshold f(G).

Thus valmax
vbound(A,f)(G) is achieved by a run within |Q| · k · N · f(G) steps. Since we

only require the monotonicity of the registers in the limit, this observation can be

generalized to reversal-bounded automata [136], where a bounded number of switches

between increasing and decreasing modes of the registers are allowed.

Proposition 5.1 Let A be a monotonic automaton with location set Q and k reg-

isters, let f : G → N be a recursive function, and let g(G) = |Q| · k · N · f(G)

for all structures G with N states. Then valmvbound(A,f)(G) = valmibound(A,g)(G) for all

structures G and m ∈ {max,min,maxmin}.

As with the other components of a quantitative automaton, the designer has to

provide the bound function f . Unfortunately, the task of providing a good value or

169

iteration bound function f , that is, an f that satisfies valmA (G) = valmbound(A,f)(G) for

all structures G, cannot be automated.

Proposition 5.2 There is a class of update functions involving only increment

operations and equality testing on registers, such that the following two problems are

undecidable: (1) given an automaton A, determine if there is a recursive function f

such that valmax
A (K) = valmax

vbound(A,f)(K) for all systems K; (2) given a QBA (A, f),

determine if valmax
A (K) = valmax

vbound(A,f)(K) for all systems K.

5.4 The Quantitative-Bound µ-Calculus

We now provide an alternative formalism for defining quantitative properties: a

fixpoint calculus. Our integer-based µ-calculus generalizes the classical µ-calculus

[103], and provides an alternative set of iterative algorithms for model checking and

game solving.

Unbounded formulas. Let P be a set of propositions, let X be a set of variables, and

let F be a set of recursive functions from N×N to N. We require that max,min ∈ F .

The formulas of the quantitative µ-calculus4 are defined as

ϕ ::= k | p | X | upd(ϕ, ϕ) | pre(ϕ) | µ[(X,ϕ), . . . , (X,ϕ)] | ν[(X,ϕ), . . . , (X,ϕ)],

where k ranges over the constants in N ∪ {∞}, p over the propositions in P , X

over the variables in X , and upd over the functions in F . If pre ranges over

the set {Epre,Apre} of existential and universal next-time operators, we obtain

the system calculus ; if pre ranges over the set {Cpre1,Cpre2} of player-1 and

4This is different from the µ-calculi over probabilistic systems defined by [97, 58, 113].

170

player-2 controllable next-time operators, we obtain the game calculus. Each least-

fixpoint subformula µ[(X1, ϕ1), . . . , (Xm, ϕm)] and each greatest-fixpoint subformula

ν[(X1, ϕ1), . . . , (Xm, ϕm)] binds a set {X1, . . . , Xm} of variables. A formula ϕ is closed

if all occurrences of variables in ϕ are bound.

The formulas of the quantitative µ-calculus are interpreted over quantitative struc-

tures (systems or games). Consider a game G = (S, S1, S2, δ, s0, 〈·〉). A quantitative

valuation (valuation, for short) is a function θ: S → N ∪ {∞} that maps each state

s to a natural number or infinity. We write Θ for the set of valuations. The se-

mantics [[ϕ]] of a closed formula ϕ over the structure G is a valuation in Θ, which

is defined as follows. An environment E: X → Θ maps each variable to a valua-

tion. Given an environment E, we write E[X := θ] for the environment that maps

X to θ, and maps each Y ∈ X \ {X} to E(Y). Each update function upd ∈ F

defines a transformer [upd]: Θ × Θ → Θ that maps a pair of valuations to the val-

uation obtained by the point-wise application of upd . Each next-time operator pre

defines a transformer [pre]: Θ → Θ that maps valuations to valuations. Specifi-

cally, [Epre](θ)(s) = max{θ(s′) | (s, s′) ∈ δ}; [Apre](θ)(s) = min{θ(s′) | (s, s′) ∈ δ};

[Cpre1](θ)(s) = [Epre](θ)(s) if s ∈ S1, and [Cpre1](θ)(s) = [Apre](θ)(s) if s ∈ S2;

[Cpre2](θ)(s) = [Apre](θ)(s) if s ∈ S1, and [Cpre2](θ)(s) = [Epre](θ)(s) if s ∈ S2. For

an environment E, the semantics [[ϕ]]E of a (not necessarily closed) formula ϕ over G

is defined inductively:

[[k]]E(s) = k; [[p]]E(s) = 〈s〉(p); [[X]]E(s) = E(X)(s);

[[upd(ϕ1, ϕ2)]]E(s) = [upd]([[ϕ1]]E, [[ϕ2]]E)(s);

[[pre(ϕ)]]E(s) = [pre]([[ϕ]]E)(s);

[[µ[(X1, ϕ1), . . . , (Xm, ϕm)]]]E(s) = lim sup{Eµ
j (X1)(s) | j ≥ 0};

[[ν[(X1, ϕ1), . . . , (Xm, ϕm)]]]E(s) = lim sup{Eν
j (X1)(s) | j ≥ 0}.

171

The environment Eµ
j is defined inductively by Eµ

0(Xi) = (λs. 0) and Eµ
j+1(Xi) = [[ϕi]]Eµ

j

for all 1 ≤ i ≤ m; and Eµ
j (Y) = E(Y) for all Y ∈ X \ {X1, . . . , Xm} and j ≥ 0. The

environment Eν
j is defined like Eµ

j except that Eν
0(Xi) = (λs.∞) for all 1 ≤ i ≤ m. For

monotone boolean formulas, the limsup semantics coincides with the usual fixpoint

semantics of the µ-calculus [103]. For a closed formula ϕ, we define [[ϕ]] as [[ϕ]]E, for

an arbitrary environment E. Given a structure G, the closed formula ϕ specifies the

valuation [[ϕ]](G) = [[ϕ]](s0), where s0 is the initial state of G.

Bound functions. A quantitative-bound µ-formula (QBF) (ϕ, f) consists of a quan-

titative µ-formula ϕ and a recursive function f : G → N that provides a bound f(G)

on the number of iterations necessary for evaluating µ and ν subformulas on any given

structure G. The semantics [[(ϕ, f)]]E of a QBF (ϕ, f) over a structure G is defined

like the semantics of the unbounded formula ϕ except that each fixpoint subformula

is computed by unrolling the fixpoint only O(f(G)) times. Formally, a variable X is

f(G)-stable at a state s with respect to a sequence {Ej | j ≥ 0} of environments if

max{Ej(X)(s) | f(G) ≤ j ≤ 2 ·f(G)} = max{Ej(X)(s) | 2 ·f(G) ≤ j ≤ 3 ·f(G)}. We

define [[µ[(X1, ϕ1), . . . , (Xm, ϕm)], f]](s) to be max{Eµ
j (X1)(s) | f(G) ≤ j ≤ 2·f(G)} if

all variablesXi, for 1 ≤ i ≤ m, are f(G)-stable with respect to {Eµ
j | j ≥ 0}; otherwise

[[µ[(X1, ϕ1), . . . , (Xm, ϕm)], f]](s) = ∞. The semantics [[ν[(X1, ϕ1), . . . , (Xm, ϕm)], f]]

of greatest-fixpoint subformulas is defined analogously, using the sequence {Eν
j | j ≥

0} of environments instead. A QBF formula (ϕ, f) defines an iterative algorithm for

computing the valuation [[(ϕ, f)]](G) for any given structure G. Assuming updates

take unit time, we can compute [[(ϕ, f)]](G) in O(f(G)ℓ) time, where ℓ is the alterna-

tion depth of ϕ (i.e., the maximal number of alternations between occurrences of µ

and ν operators; for a precise definition see [65]).

We now give examples for which a QBF (ϕ, f) can be found to specify the same

172

property as the unbounded formula ϕ over all structures; that is, [[(ϕ, f)]](G) = [[ϕ]](G)

for all structures G. We use addition, subtraction, and comparison as update func-

tions in F , and we use the natural numbers 0 and 1 to encode booleans. For instance,

we write ϕ1 = ϕ2 for min(ϕ1 ≤ ϕ2, ϕ2 ≤ ϕ1), and ¬ϕ1 for 1 − ϕ. The case formula

case{(ψ1, ϕ1), . . . , (ψn, ϕn)} stands for max(min(ψ1, ϕ1), . . . ,min(ψn, ϕn)), where the

n-ary max operator is obtained by repeated application of the binary max operator.

In order to relate the branching-time framework of the quantitative µ-calculus to

the linear-time framework of quantitative properties (and quantitative automata),

we say that the closed QBF (ϕ, f) computes the property π if for all structures

G, [[(ϕ, f)]](G) = sup{π(w) | w is a trace generated by G}. In this way, linear and

branching time are related existentially (through sup rather than inf); hence we use

only the Epre operator to compute properties. Alternately, we could define a univer-

sal semantics where [[(ϕ′, f)]](G) = inf{π(w) | w is a trace generated by G}, and the

Apre operator is used.

Example 5.9 (Fair maximum) Recall the property fm from Exam-

ple 5.2. The property fm is computed over all structures G by the QBF

(ϕ, f) with ϕ = µ[(X,min{max{p,X,min{Epre(X), Z}}, Z})], where Z =

ν[(X,µ[(Y,Epre(max{min{q,X}, Y })])], and f(G) = N , where N is the number

of states of G. Since the longest simple path in G has length at most N − 1, every

fixpoint is found in N iterations or less.

Example 5.10 (Lifetime) Over all structures G with N states, the property lta

from Example 5.3 is computed by the QBF (ϕ, f) with ϕ = µ[(X, case{((c = 0)∧ (p+

Epre(Y) ≤ a), X + 1), (c 6= 0, X + 1), (1, X)}), (Y, case{(((c = 0) ∧ (p + Epre(Y) ≤

a)), p+ Epre(Y)), (c 6= 0,Epre(Y) − a), (1, Y)})] and f(G) = N · a+N · (N + 1) · ∆,

where ∆ is the maximal value of the proposition p in G. If a fixpoint is not reached in

173

N ·a+N ·(N+1)·∆ iterations, then there is a reachable cycle Γ in G with nonpositive

resource consumption, and repeated traversal of Γ ensures an infinite lifetime.

Example 5.11 (Peak running total) Over all structures G with N states and

maximal value ∆ for the proposition p, the property prt from Example 5.4 is com-

puted by the QBF (ϕ, f) with ϕ = (µ[(X, case{(c = 0, p + max{0,Epre(X)}), (c 6=

0,max{0,Epre(X)}−p)})], f) and f(G) = N ·∆. If a fixpoint is not reached in N ·∆

iterations, then there is no reachable cycle with nonpositive resource consumption,

and it is not possible to traverse G forever starting with a finite amount of resources.

From automata bounds to µ-calculus bounds. We establish the connection

between properties specified by quantitative automata (a linear-time formalism) and

those computed by the quantitative µ-calculus (a branching-time formalism). We

show that every deterministic QBA can be converted to a QBF that computes the

same property over all systems. This provides an alternative algorithm for quan-

titative model checking. We then show that the construction is robust [56], and

hence, the resulting QBF can also be used for game solving. To formalize this, we

define a quantitative µ-calculus over traces, extending the boolean linear-time µ-

calculus [133]. The quantitative-bound trace formulas (QBTs) are identical to the

quantitative-bound µ-formulas, except that they contain the single next-time opera-

tor Pre. A QBT is interpreted over the traces w generated by a given structure G.

To define [[(ϕ, f)]](w) formally, we view the trace w = o0o1o2 . . . as an infinite-state

system without branching, analogous to the boolean definition in [56]. However, even

though w is infinite-state, the evaluation of every fixpoint subformula in ϕ is bounded

by f(G), which is finite.

174

Consider a structure K, a game G, and a QBT (ϕ, f). The system value

valmax
(ϕ,f)(K) (resp., valmin

(ϕ,f)(K)) is the supremal (resp., infimal) value of the formula

(ϕ, f) over all traces generated by K. Formally, valmax
(ϕ,f)(K) = sup{[[(ϕ, f)]](w) |

w is a trace generated by K}, and valmin
(ϕ,f)(K) is the inf of the same set. For strate-

gies ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2, define val (ϕ,f)(ξ1, ξ2) = [[(ϕ, f)]](〈tξ1,ξ2〉). The game value

valmaxmin
(ϕ,f) (G) = supξ1∈Ξ1

infξ2∈Ξ2
val (ϕ,f)(ξ1, ξ2) is the supremal value that player 1 can

achieve against all player-2 strategies. The following two theorems generalize the

results of [56] from boolean to quantitative verification: Theorem 5.2 establishes the

connection between deterministic QBAs and QBTs; Theorem 5.3 presents a necessary

and sufficient criterion, called robustness, when a QBT can be used for game solving.

Moreover, the QBT constructed in Theorem 5.2 is robust. Given a QBT (ϕ, f), let

(ϕ[Epre], f) (resp., (ϕ[Apre], f)) be the QBF that results by replacing all occurrences

of the next-time operator Pre with Epre (resp., Apre).

Theorem 5.2 Every deterministic QBA (A, f) can be translated into a QBT (ϕ, g)

such that for all systems K, both valmax
(A,f)(K) = valmax

(ϕ,g)(K) = [[(ϕ[Epre], g)]](K) and

valmin
(A,f)(K) = valmin

(ϕ,g)(K) = [[(ϕ[Apre], g)]](K).

Theorem 5.3 Given a QBT (ϕ, f), the following two conditions, called robust-

ness, are equivalent. (1) For all systems K, both valmax
(ϕ,f)(K) = [[(ϕ[Epre], f)]](K)

and valmin
(ϕ,f)(K) = [[(ϕ[Apre], f)]](K). (2) For all games G, valmax min

(ϕ,f) (G) =

[[(ϕ[Cpre1], f)]](G).

Theorem 5.2 is proved using a standard (boolean) construction of a fixpoint for-

mula from an automaton [51]. Theorem 5.3 follows from the existence of finite-

memory optimal strategies for QBTs.

175

5.5 Unbounded Quantitative Automata and their

Expressiveness

By a simple counting argument, there are properties that cannot be computed by

quantitative automata. We now give some finer classification of the expressiveness of

various subclasses. We denote the class of automata with update functions restricted

to only linear combinations of the registers and input as affine quantitative automata.

All our examples fall into the class of affine quantitative automata. The bound

k on the number of registers naturally induces an expressiveness hierarchy in the

class of affine quantitative automata. Let ΠD
k (respectively, ΠN

k) denote the set of

properties that can be computed by deterministic (respectively, nondeterministic)

affine quantitative automata with k registers. Also there are properties that can be

expressed by deterministic affine quantitative automata but cannot be expressed by

quantitative-bound automata.

Theorem 5.4 (Expressiveness hierarchy) (1) ΠD
k (ΠD

k+1 and ΠN
k (ΠN

k+1,

(2) ΠD
k (ΠN

k , and (3) ΠN
2 *

⋃
k∈N

ΠD
k . (4) There exists a property P ∈

⋃
k ΠD

k

such that there is no quantitative-bound automaton (A, f) with Π(A, f) = P.

Example 5.12 shows that infinite-memory strategies may be required to achieve

the value for games with quantitative objectives. This fact is in contrast to boolean

properties, where games with objectives given by ω-automata admit finite-memory

determinacy.

Example 5.12 (Maximum over non-regular traces) We show that it is not nec-

essary that the value of a system is achieved over traces of the form u · vω. This is in

176

contrast with Büchi automata on infinite traces where if the language accepted by a

Büchi automaton is not empty, then it accepts a trace of the form u · vω. Consider

the automaton A = 〈{q0, q1, qhalt}, 2, q0, δ〉, where for all x ∈ O, we have:

• δ(q0, x) = {(q1∧x 6= 1∧R′[0] := 1, R′[1] := 0), (qhalt∧x = 1∧R′[0] := 0∧R′[1] :=

0)}.

• δ(q1, x) = {(q1, x = 1 ∧ R′[1] := R[1] + 1), (q1, x 6= 1 ∧ R[1] = R[0] ∧ R′[0] :=

R[0] + 1 ∧R′[1] := 0), (qhalt , x 6= 1 ∧R′[1] 6= R[0] ∧R′[1] := 0)}.

The automaton checks whether the next sequence of successive 1’s in the input is

of length R[0]. If yes, it increments R[0] by 1 and continues. Otherwise, it resets

the register R[1] to 0 and halts. The property f that the automaton specifies can

be described as follows: given a trace w ∈ (0 + 1)ω we have f(w) = max{i | w ∈

0+ 1 0+ 1 1 0+1 1 1 0 . . . 0+1i 0 (0 + 1)ω}. It is easy to see that the maximum will be

achieved over traces of the form 0+ 1 0+ 1 1 0+ 1 1 1 0+ . . . which is not regular.

Theorem 5.5 (Nonexistence of finite-memory strategies) Given an affine

quantitative automaton A and a game G, the strategy ξ̂ such that infξ2∈Ξ2
valA(ξ̂, ξ2) =

valmaxmin(A,G) may require infinite memory.

5.6 Conclusion

We generalized the boolean verification framework of transition systems, traces,

languages, automata, games, and µ-calculus to a quantitative, integer-based setting.

Our framework allows the natural expression of properties about quantitative re-

sources such as power and buffer size. The integer-based verification problems reduce

177

to dynamic programming, that is, the iterative evaluation of a set of integer con-

straints over a finite state space. While these problems are in general undecidable,

we showed that for many properties of practical interest, a bound function can be

specified, which guarantees the finite convergence of the iterative computation. The

novelty of bound functions is that they assign different bounds to different systems,

rather than a fixed bound for a given property. We showed that the resulting generic

algorithms match the best-known property-specific algorithms. In other words, we

shifted the burden in the verification of a quantitative property from the task of

designing an algorithm and proving its termination to the often simpler task of pro-

viding a quantitative automaton together with a value or iteration bound. In the

final two sections, section, we showed that many but not all properties of the boolean

verification framework, e.g. the close correspondence between model-checking and

game-solving, carry over to the quantitative case. For example, the close correspon-

dence between model-checking and game-solving carries over for quantitative-bound

properties, but not for unbounded quantitative properties, because in the latter case

optimal strategies may require infinite memory.

Acknowledgements

The work reported in this chapter was conducted jointly with Krishnendu Chatter-

jee, Prof Thomas A. Henzinger, Prof Orna Kupferman, and Prof Rupak Majumdar.

This research was funded by Prof Henzinger supported in part by the ONR grant

N00014-02-1-0671, the AFOSR MURI grant F49620-00-1-0327, the NSF ITR CHESS

grant CCR-0225610, and the NSF grants CCR-0234690, and CCR-0427202. This

178

chapter is based on a paper [39] presented at CHARME 2005, published by Springer;

copyright held by IFIP International Federation for Information Processing5, 2005.

5http://www.springerlink.com

179

Chapter 6

Function Interfaces and Software

Partitioning

A key problem for effective unit testing is the difficulty of partitioning large soft-

ware systems into appropriate units that can be tested in isolation. We present an

approach that identifies control and data inter-dependencies between software com-

ponents using static program analysis, and divides the source code into units where

highly-intertwined components are grouped together. Those units can then be tested

in isolation using automated test generation techniques and tools, such as dynamic

software model checkers. We discuss preliminary experimental results showing that

automatic software partitioning can significantly increase test coverage without gen-

erating too many false alarms caused by unrealistic inputs being injected at interfaces

between units.

180

6.1 Introduction

Today, testing is the primary way to check the correctness of software. Correct-

ness is even more important to determine in the case of embedded software, where

reliability and security are often key features. Billions of dollars are spent every year

on testing in the software industry as a whole as testing usually accounts for about

50% of the cost of software development [119]. Yet software failures are numerous

and their cost to the world’s economy can also be counted in billions of dollars [125].

An approach (among others) that has potential to significantly improve on the

current state of the art consists of automatically generating test inputs from a static or

dynamic program analysis in order to force program executions towards specific code

statements. Automated test generation from program analysis is an old idea (e.g., [101,

119, 102, 62]), which arguably has had a limited practical impact so far, perhaps due

to the lack of usable, industrial-strength tools implementing this approach. Recently,

there has been a renewed interest for automated test generation (e.g., [32, 28, 134,

49, 83, 37]). This renewed interest can perhaps be attributed to recent progress

on software model checking, efficient theorem proving, static analysis and symbolic

execution technology, as well as recent successes in engineering more practically-usable

static-analysis tools (e.g., [36, 86]) and the increasing computational power available

on modern computers.

A new idea in this area is Directed Automated Random Testing (DART) [83],

which fully automates software testing by combining three main techniques: (1) au-

tomated extraction of the interface of a program with its external environment using

static source-code parsing; (2) automatic generation of a test driver for this interface

that performs random testing to simulate the most general environment the program

181

can operate in; and (3) dynamic analysis of how the program behaves under random

testing and automatic generation of new test inputs that direct the execution along al-

ternative program paths. DART can detect standard errors such as program crashes,

assertion violations, and non-termination, and can also be used in conjunction with

complementary run-time checking tools for detecting memory allocation problems

(e.g., [88, 121, 105, 4]). During testing (Step 3), DART performs a directed search,

a variant of dynamic test generation (e.g., [102, 85]). Starting with a random input,

a DART-instrumented program calculates during each execution an input vector for

the next execution. This vector contains values that are the solution of symbolic con-

straints gathered from predicates in branch statements during the previous execution.

The new input vector attempts to force the execution of the program through a new

path. By repeating this process, a directed search attempts to force the program to

sweep through all its feasible execution paths, in a style similar to systematic testing

and dynamic software model checking [81].

When applied to large programs, a directed search is typically incomplete due

to combinatorial explosion and because of the presence of complex program state-

ments or external function calls for which no symbolic constraint can be generated.

It is worth emphasizing that these two limitations – scalability and limited symbolic-

reasoning capabilities – are inherent to all automated test-generation techniques and

tools, whether static (e.g., [32, 28, 134, 49]) or dynamic (e.g., [83, 37]). This ex-

plains why automated test generation typically cannot achieve 100% code coverage in

practice, independently of how code coverage is defined (e.g., coverage of all program

statements, branches, paths, etc.).

An idea to alleviate these limitations is to partition a large program into several

smaller units that are then tested in isolation to search for program bugs such as

182

crashes and assertion violations. As an extreme, every function in a program could

be tested one-by-one in isolation using automated test generation. While this testing

strategy can dramatically increase code coverage, automated test generation will also

typically generate lots of unrealistic inputs which in turn will trigger many unrealistic

behaviors and spurious bugs, i.e., false alarms. This is because function testing ignores

all the dependencies (preconditions implied by the possible calling contexts) between

functions.

In this chapter, we investigate how to partition a program into a set of units such

that testing those units in isolation maximizes overall code coverage while minimizing

the number of false alarms. We propose a two-step heuristic approach to this problem.

First, we perform a light-weight static source-code analysis to identify the interface

of every function in a program. Second, we divide the program into units where

highly-intertwined functions are grouped together, hence hiding complex interfaces

inside units. We have developed a prototype tool implementing these ideas for the

C programming language. We present results of experiments performed on oSIP,

an open-source implementation of the Session Initiation Protocol embedded in many

IP phones. Those experiments show that automatic software partitioning using the

above simple strategy can significantly increase test coverage without generating too

many false alarms.

The rest of this chapter is organized as follows. We start in Section 6.2 with

some background definitions and assumptions, and define the software partitioning

problem in this context. The two steps of our approach to the partitioning problem

are then discussed in Sections 6.3 and 6.4, on interfaces and partitioning algorithms

respectively. The partitioning algorithms of Section 6.4 have been implemented in a

prototype tool for partitioning C programs, and results of experiments are presented

183

in Section 6.5. Other related work is discussed in Section 6.6 and we conclude in

Section 6.7.

6.2 The Software Partitioning Problem

A program P is defined as a set of functions F associated with a given function

main ∈ F which is always executed first when running the program. A call graph G

over a set of functions F is a graph G = (V,E) with a set of vertices V = F and a set

of edges E ⊆ V × V such that (f, g) ∈ E if there is a call to function g in function f .

By transitive closure, we say that a function f calls a function g in a call graph G if

there is a sequence σ = s0, s1, . . . , sk such that s0 = f , and sk = g, and (si, si+1) ∈ E

for i ∈ {0, 1, . . . , k− 1}; the path from f to g is the sequence σ, and its length is k. A

function f directly calls a function g in G if there is a path from f to g of length 1 in

G.

A path σ = s0, s1, . . . , sk from f to g lies in a set S if si ∈ S for all i ∈ {0, 1, . . . , k}.

A set of functions S is convex with respect to a function f ∈ S if for every function g

in S called by f , there is a path from f to g that lies in S. Given a set S of functions,

a function f ∈ S is called an entry point of S if every function g ∈ S is called by f ,

and S is convex with respect to f . A unit u = (S, f) is a set of functions S with an

entry point f .

Given a call graph G over a set of functions F , a partition P of G is a set of units

P = {(S0, f0), (S1, f1), . . . , (Sk, fk)} such that
⋃
{Si | 0 ≤ i ≤ k} = F , and Si∩Sj = ∅

for all 0 ≤ i, j ≤ k such that i 6= j. We assume that the pair (F , main) is a unit, i.e.,

main is an entry point of F . Trivially, for any function f , ({f}, f) is always a unit.

In order to test program P , automated test generation techniques and tools can

184

be applied to generate inputs at the program interface in order to drive its exe-

cution along as many program statements/branches/paths as possible. However,

testing large programs is difficult because of the limited reasoning capabilities of au-

tomated test generation techniques and expensive because of the prohibitive number

of statements, branches and paths in large programs. Consequently, viewing the en-

tire program P as a single unit usually leads to poor code coverage (as will be shown

experimentally later) if P is large and non-trivial. Let us call this form of testing

monolithic testing.

On the other hand, automated test generation can also be applied to all the

individual functions f ∈ F of P , one by one. This strategy can dramatically increase

code coverage but automated test generation will typically generate lots of unrealistic

inputs which in turn will trigger many unrealistic behaviors and hence many false

alarms. Indeed, such a piecemeal testing ignores all the dependencies (preconditions

implied by the possible calling contexts) between functions. For instance, a function f

taking as input argument a pointer to a data structure may assume that this pointer

is always non-null. While this assumption may be true whenever f is called by some

function in F , piecemeal testing may very well provide a null value for this argument

when calling f , which may lead to a crash if the pointer is dereferenced inside f . We

call such a spurious error a false alarm.

We define the software partitioning problem as follows:

how to partition a given program P satisfying the above assumptions into
a set of units such that testing those units in isolation maximizes code
coverage while minimizing the number of false alarms?

Our definition is intentionally general to accommodate various specific ways to mea-

sure code coverage or identify/define false alarms.

185

In this chapter, we present a two-step heuristic approach to the software partition-

ing problem. First, we propose to perform a light-weight static source-code analysis

to identify the interface of every function in a program P , which enables the definition

and measurement of the complexity of those interfaces. Second, we discuss several

clustering algorithms which group together functions whose joint interface is complex,

hence hiding that interface inside the resulting unit. The result is a partition of the

program P where highly intertwined functions are grouped together in units.

The two steps of our approach are discussed in the next two sections.

6.3 Interfaces

In principle, the interface of a function describes all possible avenues of exchange

of information between the function and its environment: arguments, return values,

shared variables, and calls to other functions. The interface of a unit is defined as

the interface of the composition of the functions in that unit.

In practice, the precise interface of functions described in full-fledged program-

ming languages like C or C++ can be hard to determine statically due to unknown

control flow (e.g., in the presence of function pointers), unbounded data structures,

side-effects through global variables, etc. We therefore use approximate interface

representations.

Control interfaces track control dependencies across function and unit boundaries.

Given a program P defined by a set F of functions, the boolean control interface C

of a unit u = (S, fS) of P is a tuple (S,O, I) where O : S × (F \ S) is a relation

mapping every function f ∈ S to the functions g ∈ F \ S that are directly called by

186

f , and I : (F \S)×S is a relation mapping every function g ∈ F \S to the functions

f ∈ S directly called by g.

By extension, given a program P defined by a set F of functions, the weighted

control interface Cw of a unit u = (S, fS) of P is a tuple (S,Ow, Iw) where Ow :

S× ((F \S)×N) is a relation mapping every function f ∈ S to the pairs (g, n) where

g ∈ F \ S is a function directly called by f , and n is the number of calls to g in the

code describing f , and Iw : (F \ S) × (S × N) is a relation mapping every function

g ∈ F \ S to the pairs (f, n) where f ∈ S is a function directly called by g and n is

the number of calls to f in the code describing g.

Two boolean (weighted) control interfaces C1 = (S1,O1, I1) and C2 = (S2,O2, I2)

are compatible (denoted comp(C1, C2)) if S1 ∩ S2 = ∅. Given two compatible boolean

control interfaces C1 = (S1,O1, I1) and C2 = (S2,O2, I2), their composition (denoted

C1 ‖ C2) is the boolean control interface Cc = (Sc,Oc, Ic) where Sc = S1 ∪ S2, Oc =

{(f, g) ∈ O1 ∪ O2|g ∈ F \ (S1 ∪ S2)} and Ic = {(f, g) ∈ I1 ∪ I2|f ∈ F \ (S1 ∪ S2)}

(calls from S1 and S2 to each other are hidden by the composition). Similarly, the

composition of two compatible weighted control interfaces is defined as the weighted

control interface Cc = (Sc,Oc, Ic) where Sc = S1 ∪S2, Oc = {(f, (g, n)) ∈ O1 ∪O2|g ∈

F \ (S1 ∪ S2)} and Ic = {(f, (g, n)) ∈ I1 ∪ I2|f ∈ F \ (S1 ∪ S2)}.

Richer interface representations can be defined by also taking into account other

features of a function that are externally visible, such as the number of input ar-

guments, the type of input arguments and return values for incoming or outgoing

function calls, the sequencing of external calls made by a function (flow-sensitive

interface representation), etc.

For simplicity, we consider in this work partitioning algorithms that make use of

187

information exposed by control interfaces only. Whether richer interface representa-

tions can lead to significantly better software partitioning is left for future work.

6.4 Software Partitioning Algorithms

In this section, we present partitioning algorithms that exploit the definitions of

interfaces of the previous section in order to group together functions (atomic compo-

nents) that share interfaces of complexity higher than a given threshold. Two notions

of interface complexity are implicitly considered here: popularity and collaboration.

6.4.1 Callee Popularity

If a function f is called by many different caller functions, then it is likely that

any specific calling context in which f is called is not particularly important. For

instance, functions used to store or access values in data structures like lists or hash

tables are likely to be called by several different functions. In contrast, functions

performing sub-tasks specific to a given function may be called only once or only by

that function. In the latter case, the caller and the callee are more likely to obey tacit

rules when communicating with each other, and breaking the interface between them

by placing these functions in different units may be risky. Thus, the more popular

a function is, the more likely it is to have generic and loose relationships with each

of its callers, and the less likely it is that they share overly intricate and detailed

assumptions and guarantees about each other’s behavior.

In what follows, let the popularity of a function f be the number of functions g

that call f . (The popularity of a function could also be defined as the number of

188

Algorithm 3 PartitionCP(S)

Input: A set of control interfaces of a set S of functions

Output: A partition of S into a set U of units

Variables: WeightedGraph G

1: G := PopularityGraph(S)

2: while (¬ IsEmpty(G)) do

3: c := ChooseCPCutoff(G)

4: G′ := FilterPopularEdges(G, c)

5: while (¬ IsEmpty(G′)) do

6: t := TopLevel(G′)

7: u := Reachable(G′, t)

8: if (|u| > 1 or G′ = G) then

9: add u as a new unit in U

10: G := RemoveNodes(G, u)

end if

11: G′ := RemoveNodes(G′, u)

end while

end while

syntactic calls to that function; we consider here the former, simpler definition in

order to determine if it is already sufficient to obtain interesting results.)

Formalizing the above intuition, our first algorithm generates a partition of units

in which functions f and g are more likely to be assigned to the same unit if f calls g

and g is not very popular. Given the set of control interfaces of a set S of functions, the

algorithm starts by invoking the PopularityGraph subroutine to compute a weighted

directed graph G = (V,E) with the set of nodes V = S, where the directed edges in E

189

denote calls between functions in S, and each edge weight is set to the popularity of

the callee (i.e., the popularity of the function corresponding to the destination node

of the edge).

Next, as long as the popularity graph G = (V,E) is not empty, the algorithm

proceeds with the following steps. Given a cutoff policy, it chooses a maximum

popularity cutoff c by invoking the subroutine ChooseCPCutoff, and (temporarily)

removes edges above that threshold by calling the subroutine FilterPopularEdges.

The resulting subgraph G′ is traversed top-down (or top-down in some spanning tree

in case the subgraph is strongly connected). This traversal is performed by repeatedly

invoking the subroutine TopLevel which returns a top level node in G′ = (V ′, E ′): a

node v in V ′ is said to be a top level node if no other node u exists in V ′ such that

(u, v) ∈ E ′. Note that a (nonempty) directed graph has no top level node if and

only if every node is part of some strongly connected component; in that case the

subroutine TopLevel returns an arbitrary v ∈ V ′. For each top level node t, the set

of reachable nodes in G′ from t is computed by invoking the subroutine Reachable. If

this set of nodes is non-trivial (i.e., larger than one node), this set of nodes is defined

as a unit. Nodes that would form trivial units (consisting of only themselves) are not

allocated at this stage, but will be allocated at some subsequent iteration of the outer

while loop with a possibly different (higher) popularity cutoff. Nodes corresponding

to functions allocated to units are removed from G and from the subgraph G′ using

the RemoveNodes subroutine. When the inner while loop exits, a new iteration of

the outer while loop may begin, and the entire process described above is repeated

until all the functions have been allocated to some unit, at which point the outer

while loop exits, and the algorithm terminates. At that point, every function in S

has been allocated to exactly one unit in the resulting set U of units.

190

Algorithm 3 uses the following subroutines:

1. The subroutine PopularityGraph takes as input a set of (boolean) control inter-

faces of a set of functions S, and returns a weighted directed graph G = (V,E).

The graph is such that there is a vertex vf ∈ V for each function f ∈ S, and

there is an edge (vf , vg) ∈ E with weight w for each call from f to g in S, where

w is the popularity of g.

2. The subroutine IsEmpty takes as input a graph G = (V,E) and returns t if

V = ∅, and f otherwise.

3. The subroutine ChooseCPCutoff takes as input a weighted directed graph G

and returns a value c based on the cutoff policy. A cutoff policy is an exter-

nal parameter to the algorithm. We considered and experimented with two

types of cutoff policies in conjunction with this algorithm: policy cpn makes

ChooseCPCutoff return the value n on the first invocation and the maximum

weight in G on subsequent invocations, while policy cpi makes ChooseCPCutoff

return the smallest weight in G.

4. The subroutine FilterPopularEdges takes as inputs a weighted directed graph

G = (V,E) and a value c. It returns a weighted directed graph G′ = (V,E ′)

such that E ′ ⊆ E, and for all e ∈ E of weight w, we have e ∈ E ′ if and only if

w ≤ c.

5. The subroutine TopLevel takes as input a (nonempty) weighted directed graph

G′ = (V ′, E ′) and returns any node v′ such that there is no v ∈ V ′ such that

(v, v′) ∈ E ′. If such a node v′ does not exist (i.e., every node in G′ is part of

some strongly connected component), then TopLevel(G′) returns any v′ ∈ V ′.

191

6. The subroutine Reachable takes as inputs a graph G = (V,E) and a node t ∈ V ,

and returns the set of nodes V ′ ⊆ V reachable from t in G.

7. The subroutine RemoveNodes takes a graph G = (V,E) and a set u ⊆ V and

returns a graph G′ = (V ′, E ′) such that V ′ = V \u, and (V ′, E ′) is the subgraph

of G induced by V ′.

Theorem 6.1 For a call graph G over a set of functions S and given a set of control

interfaces of S, the algorithm PartitionCP(S) creates a partition of G.

Proof. We prove (i) that the algorithm terminates, and (ii) that when it has termi-

nated, (a) every function in S is allocated to some unit u generated by the algorithm,

and (b) that no function f ∈ S is allocated to two units u and u′ generated by it.

The subroutine ChooseCPCutoff, for all cutoff policies, eventually returns the

maximum weight in G. Thus, the condition G = G′ in the if condition in the inner

while loop is satisfied eventually. From that point onwards, at least one vertex is

removed from the graphs G and G′ in each iteration of the inner while loop. Since

the graph G′ is finite, the inner while loop must eventually exit when G′ becomes

empty. Also, since the graph G is finite, the outer while loop must eventually exit

when G becomes empty. Thus, the algorithm terminates.

Since every function in S is a vertex in the popularity graph G, and since the

outer loop runs until the graph G is empty (has no more vertices), and since a vertex

is removed from G only if it is allocated to a generated unit, it follows that every

function in S is allocated to some unit. For the part (ii)(b), we observe that, when

a function f is allocated to a unit u (in line 9 of the algorithm), it is next removed

from both G and G′, and thus cannot be allocated to more than one unit.

192

6.4.2 Shared Code

If two functions f and g call many of the same functions, then it is likely that the

higher-level operations they perform are functionally more related than with other

functions that call a completely disjoint set of sub-functions. Therefore, functions

that share a lot of sub-functions should perhaps be grouped in a same unit.

This intuition is formalized by our second partitioning algorithm, which generates

a partition of units in which functions f and g are more likely to be assigned to the

same unit if they have a relatively high degree of collaboration, where the degree of

collaboration is the number of common functions called by both f and g.

Given a set of control interfaces of a set S of functions, the algorithm first

creates a weighted undirected collaboration graph W = (V,E) with V = S, and

E = (S × S) \ {(f, f) | f ∈ S} (intuitively, there is an edge between any two dis-

tinct functions), and each edge weight is set to the number of sub-functions shared

between the two functions the edge connect. Since an approach based on a single

cutoff classifying inter-function collaboration into a boolean “high” or “low” is too

coarse-grained, we instead propose a more general algorithm based on multiple col-

laboration thresholds. Given a collaboration classification policy (embodied by the

NumberOfCollaborationClasses subroutine) denoting the number c of collaboration

classes, the algorithm invokes the CollaborationThresholds subroutine to compute a

set of c collaboration thresholds representing a sequence of minimum collaboration

levels the algorithm will run through in descending order in subsequent iterations of

the outer while loop, and edges representing collaboration levels below the minimum

currently chosen will be (temporarily) removed by the FilterLightEdges subroutine

invoked soon afterwards in the outer while loop. The outer while loop runs as long

193

as the current collaboration graph W is not empty. At the beginning of each itera-

tion, the maximum value t in the current list L of collaboration thresholds is found,

and passed to the FilterLightEdges subroutine which returns a subgraph W ′ of the

collaboration graph W in which only edges with weights higher than or equal to t

remain. As long as the subgraph W ′ is not empty, the inner while loop runs. It

invokes the ConnectedComponent subroutine on W ′ to find a group of nodes u in W ′

that are all reachable from each other. If a group of cardinality greater than 1 is

found, or if no edges had been filtered out of W to get W ′ in this current iteration,

the newly discovered group of nodes u is allocated as a new unit, and the nodes in u

are removed from both W and W ′ using the RemoveNodes subroutine. Otherwise, the

nodes in u are not yet allocated as an unit, and are removed from W ′ but not from W ;

indeed, nodes in u will be allocated during subsequent iterations of the outer while

loop with lower values of the collaboration threshold. When W ′ becomes empty, the

inner while loop terminates, the current collaboration threshold t that was used is

discarded from L, and the next iteration of the outer while loop continues with the

next lower value in L as the new current collaboration threshold. Eventually, when

W is empty, the outer while loop terminates, and the algorithm terminates. At that

point, every function in S has been allocated to exactly one unit in the resulting set

U of units.

Algorithm 4 uses the following subroutines:

1. The subroutine CollaborationGraph takes as input a set of (boolean) control

interfaces of a set of functions S and creates a weighted undirected graph W =

(V,E). The graph is such that there is a vertex vf ∈ V for each function f in

S, and an edge (vf , vg) ∈ E of weight w for every pair of functions f and g in

S such that w is the degree of collaboration between f and g.

194

2. The subroutine NumberOfCollaborationClasses takes as input a collaboration

graph and returns a positive integer c based on the collaboration classification

policy; the policy scn forces the subroutine to always return the value n.

3. The subroutine CollaborationThresholds takes as inputs a collaboration graph

W and an integer c, and returns a sequence of c distinct non-negative integers

starting from 0 and dividing equally the interval between 0 and the maximum

weight in W .

4. The subroutine FilterLightEdges takes a weighted undirected graph W = (V,E)

and returns a graph W ′ = (V,E ′) such that E ′ ⊆ E, and for all edges e ∈ E of

weight w we have e ∈ E ′ if and only if w ≥ c.

5. The subroutines IsEmpty and RemoveNodes are defined as before.

6. The subroutine ConnectedComponent takes as input a weighted undirected

graph W ′ = (V,E) and returns a set u ⊆ V of nodes. The set u is such that

every pair of nodes v1, v2 ∈ u are connected in W ′, and for all nodes v3 ∈ V , if

v3 /∈ u, then for all v1 ∈ u, v1 and v3 are not connected.

Theorem 6.2 For a call graph G over a set of functions S and given a set of control

interfaces of S, the algorithm PartitionSC(S) creates a partition of G.

Proof. We prove (i) that the algorithm terminates, and (ii) that when it has termi-

nated, (a) every function in S is allocated to some unit u generated by the algorithm,

and (b) that no function f ∈ S is allocated to two units u and u′ generated by it.

The subroutine CollaborationThresholds returns a list of integers in which the last

element is the maximum weight in the collaboration graph W . Since one element

195

Figure 6.1. The call-graph, and the partition created by sc7

from that list is discarded when the inner while loop exits, and since the inner while

loop is guaranteed to exit (since it removes at least one vertex from the finite graph

W ′ in each iteration and exits when W ′ has no more vertices), the last element of the

list L is eventually assigned to t (in line 5). Thus, the condition W ′ = W in the if

condition in the inner while loop is satisfied eventually. From that point onwards, at

least one vertex is removed from the graphs W and W ′ in each iteration of the inner

while loop. Since the graph W is finite, the outer while loop must eventually exit

when W becomes empty. Thus, the algorithm terminates.

Since every function in S is a vertex in the collaboration graph W , and since

the outer loop runs until the graph W is empty, and since a vertex is removed form

W only if it is allocated to a generated unit, it follows that every function in S is

allocated to some unit. For the part (ii)(b), whenever a function f is allocated to a

unit u (in line 10 of the algorithm), it is next removed from both W and W ′, and

thus cannot be reallocated later to another unit.

Figure 6.1 shows a small fragment of the osip call-graph, chosen for simplicity.

196

Figure 6.2. The partition created by cp1i

The shaded boxes show the partition created by running sc7 on the graph. On the

same graph, running cp1i partitions the functions as shown by Figure 6.2. Note

that each of the functions in the big fragment have 1 or 0 callers, whereas oscmp,

osnpy, and ocace are more generic, having multiple callers. Running cp3 partitions

the functions into two groups: {osnpy} and the rest; osnpy is the only function with

more than three callers.

6.5 Experimental Results

We have implemented the algorithms presented in the previous section in a

prototype tool for partitioning programs written in C. In order to evaluate the

effectiveness of these algorithms, we applied our tool to a large1 software ap-

plication: oSIP, an open-source implementation of the Session Initiation Proto-

col. SIP is a telephony protocol for call-establishment of multi-media sessions

over IP networks (including “Voice-over-IP”). oSIP is a C library available at

1From a unit testing and verification point of view.

197

http://www.gnu.org/software/osip/osip.html. The oSIP library (version 2.2.1)

consists of about 30,000 lines of C code. Two typical applications are SIP clients

(such as softphones to make calls over the internet from a PC) and servers (to route

internet calls). SIP messages are transmitted as ASCII strings and a large part of the

oSIP code is dedicated to parsing SIP messages.

Our experimental setup was as follows. We considered as our program P a part of

the oSIP parser consisting of the function osip message parse and of all the other

oSIP functions called (directly or indirectly) by it. The resulting program consists

of 55 functions, which are described by several thousands lines of C code.2 The

call graph of this program is actually acyclic, which we believe is fairly common.

(Note that our partitioning algorithms are not customized to take advantage of this

property.) It is worth observing that the “popularity” (as defined earlier) distribution

in this program is far from uniform: about half the functions (25 out of 55) are very

unpopular, being called by only 1 or 2 callers, about 20 have around 5 callers each,

and the remaining 8 are very popular, with 20 or more callers.

We used an extension of the DART implementation described in [83] to perform

all our testing experiments. For each unit, the inputs controlled by DART were the

arguments of the unique toplevel function of that unit, and DART was limited to

running a maximum of 1,000 executions (tests) for testing each unit. In other words,

if DART did not find any error within 1,000 runs while testing a unit, testing would

then move on to the next unit, and so on. Since the oSIP code does not contain

assertions, the search performed by DART was limited to finding segmentation faults

(crashes). Whenever DART triggered such an error, the testing of the corresponding

unit was stopped. Because of the large number of errors generated by all these

2The C files containing all these functions represent a total of 10,500 lines of code.

198

sml
cp3

big r6 r11 r16 r21 r26 r31 r36 r41 r46 r51
cp1i sc7

 10 20 30 40 0

 80

false
none

Number of units

 0

 20

 40

 60

 50 60

C
ov

er
ag

e
pe

rc
en

t

 100

Figure 6.3. Coverage and incidences of false alarms

experiments (see below), we could not visually inspect each of those; we therefore

assumed that the overall program could not crash on any of its inputs and hence

that all the errors found by DART were spurious, i.e., false alarms. Thus, in this

experimental setup, at most one false alarm can be reported per unit. Coverage is

defined as branch coverage. Test coverage while testing a specific unit is defined and

measured with respect to the code (branches) of that unit only.

We performed experiments with partitions generated by several partitioning al-

gorithms: the symbol cp1i denotes the partition generated by both the partitioning

algorithm that uses “callee popularity” iteratively or with a cutoff of 1, as both

partitioning algorithms happened to generate the same partition for the oSIP code

considered here; cp3 represents the partition generated by “callee popularity” with a

cutoff of 3; and sc7 denotes the partition generated by the “shared code” partitioning

algorithm with a policy value of 7. The above parameter values were chosen arbitrar-

199

big
r6

r11

r16

cp3

r21
r26

cp1i

r31

r36
r41

r46

r51

sml

sc7

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

C
ov

er
ag

e
pe

rc
en

t

Number of units

Figure 6.4. Overall branch coverage

ily. To calibrate our results, we also performed experiments with the extreme partition

consisting of a single unit containing all the functions, denoted by big, and with the

other extreme partition where each unit consists of a single function, denoted by sml.

Finally, we also performed experiments with a set of randomly generated partitions,

each denoted by rn where n is the number of units of the corresponding partition.

Our experimental results are shown in a series of figures. Figure 6.3 shows for

each partition, the coverage obtained for each unit in the partition, and whether a

false alarm was reported for that unit. A (blue) × mark indicates no false alarm was

reported (i.e., the unit could be successfully tested 1,000 times with different inputs),

while a (black) + mark indicates that DART reported a false alarm (i.e., found a way

to crash the unit within a 1,000 runs). (Thus, for n units, there are n marks on the

corresponding column, but some of these are superposed and not distinguishable.) All

those experiments took about one day of runtime on a Pentium III 800Mhz processor

running Linux. Note the low coverage of 1% in big; this indicates that monolithic

200

big

r6 r11

r16

cp3

r21 r26

cp1i

r31 r36

r41
r46

r51

sml

sc7

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60

F
al

se
 A

la
rm

 C
ou

nt

Number of units

Figure 6.5. Number of false alarms

testing is severely ineffective. Also from this figure (and subsequent figures), it can

be seen that the increase in coverage in the units of partitions to the right (which

contain more units) is not free of cost since it also yields more false alarms.

For each partition considered, Figure 6.4 shows the overall branch coverage ob-

tained after testing all the units in the corresponding partition. As is clear from

Figure 6.4, the branch coverage in a partition tends to increase as the number of

units in the partition rises and the average size of each unit in the partition gets

smaller. At the extremes, coverage rises from about 1% in big to about 27% in sml.

These perhaps seemingly low coverage numbers can be explained as follows: the

total number of program branches is large (1,162), not all the branches are executable

in general or in our specific experimental setup –for instance, we do not inject errors

for calls to malloc, free, etc. so branches that are executed in case of errors to

calls to these functions are not executable–, testing of a unit stops as soon as an

error is found or after 1,000 tests have been run, and finally, whenever DART cannot

201

r6

r11

r16

cp3

r21
r26

cp1i

r31

r36

r41

r46

r51

sml

sc7

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20 25 30 35 40 45 50 55

C
ov

er
ag

e/
F

al
se

 A
la

rm
 C

ou
nt

Number of units

Figure 6.6. Ratio of coverage to false alarm

reason symbolically about some input constraint, it reduces to random testing [83]

and random testing is known to usually yield very low code coverage [126, 83].

Note that the increase from big to sml is not monotonic: there are peaks cor-

responding to each of our partitioning algorithms cp3, cp1i and sc7. Thus, even

though overall coverage rises as the number of units in the partition increases, our

partitioning algorithms are able to select the units cleverly enough to raise the inter-

unit cohesion sufficiently to consistently beat the overall coverage obtained by random

partitions with similar numbers of units.

From Figure 6.4 it is clear that coverage on the whole rises as the number of units

in a partition increases, and that sml is the best partition with respect to coverage.

However, this higher coverage is obtained at the cost of an increased number of false

alarms, as can be seen from Figure 6.5, which gives the absolute number of false

alarms found for each partition.

We thus have a tension between two competing objectives: maximizing overall test

202

coverage while minimizing the number of false alarms. In order to evaluate how the

different partitioning algorithms satisfy these two competing objectives, Figure 6.6

shows the ratio of the overall coverage obtained with a partition divided by the number

of false alarms reported for the partition. (The value of this ratio is undefined for

big as it has zero false alarms; however, big is not a serious contender for the title

of best partitioning scheme as it leads to very low code coverage.) Observe that

cp3, cp1i, and sc7 each correspond to clear peaks in the graph, although of steadily

decreasing magnitude, indicating that cp3 is the best suited partitioning scheme

among those considered for the specific code under analysis. These peaks mean that

all three algorithms clearly beat neighboring random partitions, even though these

three algorithms exploit only simple control interface definitions ignoring all data

dependencies. Whether using more elaborate interface definitions like those discussed

in Section 6.3 can significantly improve those results is left for future work.

6.6 Discussion and Other Related Work

Interfaces are defined in the previous sections as syntactic notions, which are com-

putable via static analysis, and the complexity of interfaces is then used as a heuristic

measure of how intertwined functions are. However, an ideal software partitioning

algorithm would cut apart a function f calling another function g only if any input of

g is valid, i.e., does not trigger a false alarm. For instance, if function g takes as input

a boolean value, it is very likely that both 0 and 1 are valid inputs. In contrast, if g

takes as argument a pointer or a complex data structure, its inputs are likely to be

constrained (e.g., g may assume that an input pointer is non-null, or that the elements

of its input array are sorted): g assumes that all its inputs satisfy a precondition.

203

Unfortunately, inferring preconditions automatically from program analysis

(dubbed the constraint inference problem in [82]) is obviously as hard as program

verification itself. Another strategy would be to perform piecemeal testing (see Sec-

tion 6.2), then hide interfaces where false alarms were generated, and repeat the

process until all false alarms have been eliminated. This strategy looks problematic

in practice because it would require the user to examine all the errors generated to

determine whether they are spurious or not, the number of iterations before reach-

ing the optimum could be large, and the partition resulting from this process may

often end up being the entire system, that is, no partition at all. Another imprac-

tical solution would be to generate and evaluate all possible partitions to determine

which one is best. All these practical considerations explain why we seek in this work

easily-computable syntactic heuristics that can generate an almost optimal partition

at a cheap cost.

In spirit, our work is closest to work on automatically decomposing hardware com-

binatorial and sequential circuits into smaller pieces for compositional circuit synthe-

sis, optimization, layout and automatic test-pattern generation (e.g., [87, 52, 127]).

Circuit topology has also been exploited for defining heuristics for BDD variable

orderings and for finding upper bounds on the sizes of BDD representations of combi-

natorial circuits (e.g., [24, 114]). However, the components, interfaces and clustering

algorithms used for hardware decomposition are fairly different from those discussed

in this chapter. Indeed, a digital hardware component is always finite state and its

interface to the rest of the world is simply a set of pins (booleans). In contrast,

defining exactly what the interface of a software component (say a C program) is

already challenging (the flow of control between functions can be hard to determine,

functions may take unbounded data structures as inputs, side-effects through global

204

variables are possible and sometimes hard to predict, etc.), and program verification

for Turing-expressive languages is in general undecidable due to their possibly infinite

state spaces.

Our work is also related to metrics for defining software complexity, such as func-

tion points (e.g., [76]) among others, and to work on software architecture reconstruc-

tion (e.g., [132]) that aim to facilitate the understanding of legacy code for reuse and

refactoring purposes. Work on code reuse usually consider more sophisticated notions

of “components” and “interfaces”, which are often obtained through a combination of

static, dynamic and manual analyses, but do not attempt to automatically partition

code for facilitating a subsequent more precise automated program analysis.

Software partitioning for effective unit testing is related to compositional veri-

fication, which has been extensively discussed in the context of the verification of

concurrent reactive systems in particular (e.g., see [84, 33, 55]). Compositional ver-

ification requires the user to identify components that can be verified in isolation

and whose abstractions are then checked together. To the best of our knowledge,

we are not aware of any work on heuristics for automatic software partitioning with

the goal of compositional verification. The software partitioning heuristics presented

in this work could also be used for suggesting good candidates of units suitable for

compositional verification. However, it is worth emphasizing that the focus of this

work has been (so far) the decomposition of sequential programs described by a set of

functions, whose behaviors are typically more amenable to compositional reasoning

than those of concurrent reactive systems, where compositional analysis (testing or

verification) is arguably more challenging.

Algorithms for inter-procedural static analysis (e.g., [96, 36, 86]) and pushdown

model checking (e.g., [35, 15]) are also compositional, in the sense that they can be

205

viewed as analyzing individual functions in isolation, summarizing the results of these

analyses, and then using those summaries to perform a global analysis across func-

tion boundaries. In contrast, the software partitioning techniques we describe in this

chapter are more light-weight since they provide only heuristics based on an analysis

of function interfaces only (not the full function code), and since no summarization

of unit testing nor any global analysis is performed. Software partitioning could ac-

tually be used to first decompose a very large program into units, which could then

be analyzed individually using a more precise inter-procedural static analysis (since

a single unit may contain more than one function). However, evaluating the effec-

tiveness of a partitioning scheme when used in conjunction with static analysis tools

(including static software model checkers like SLAM [23] or BLAST [93], for instance)

would have to be done differently than in this chapter since (1) static analysis usually

performs a for-all path analysis and hence does not measure code coverage as is done

during testing, and (2) static analysis reports (typically many) false alarms due to

abstraction and the imprecision that it always introduces, in addition to false alarms

simply due to missing environment assumptions as with testing. Another interesting

problem for future work (first suggested in [82]) is how to perform automatic dynamic

test generation compositionally using a summarization process similar to what is done

in inter-procedural static analysis.

Finally note that, although we used a DART implementation to perform the

experiments reported in the previous section, the software partitioning problem and

the techniques that we proposed to address it are independent of any particular

automated test generation framework. We refer the reader to [83, 82] for a detailed

discussion on other automated test generation techniques and tools.

206

6.7 Conclusion

We studied in this chapter how to automatically partition a large software program

into smaller units that can be tested in isolation using automated test generation

techniques without generating (too many) false alarms due to unrealistic inputs being

injected at unit interfaces exposed by the partitioning. We proposed an approach that

identifies control and data inter-dependencies between program functions using static

analysis, and divides the source code into units where highly-intertwined functions

are grouped together. We presented several partitioning algorithms based on this

idea.

Preliminary experiments show that, perhaps surprisingly, even partitioning algo-

rithms exploiting only simple control dependencies can already significantly increase

test coverage without generating too many false alarms. These experiments also seem

to validate the intuition behind these algorithms, namely that grouping together

highly-intertwined functions in the same unit improves the effectiveness of testing,

since those algorithms are able to consistently beat random partitions with similar

numbers of units for our benchmark.

More experiments are needed to confirm these observations. Also we do not claim

that our specific partitioning algorithms are the best possible: we have only shown

that there exist some simple partitioning algorithms that can beat random partitions,

but other partitioning algorithms (and parameter values) should be experimented

with. Whether using more elaborate interface definitions like those discussed in Sec-

tion 6.3 can improve those results is also left to be investigated.

Still, we believe our preliminary results are an encouraging first step towards

defining light-weight heuristics to partition large software applications into smaller

207

units that are amenable to (otherwise intractable) more precise analyses, such as

dynamic software model checking.

Acknowledgements

The work reported in this chapter was conducted jointly with Dr. Patrice Gode-

froid at Bell Laboratories, Lisle, IL. We thank Dr. Nils Klarlund for helpful comments

on preliminary ideas that led to this work. This work was funded by Dr Godefroid

supported in part by NSF CCR-0341658. This chapter is based on a paper [43]

presented at EMSOFT 2006, copyright held by ACM3, 2006; and Bell Laboratories

Technical Memorandum ITD-06-46767J [44], co-authored with Dr Patrice Godefroid.

3http://doi.acm.org/10.1145/1176887.1176925

208

Algorithm 4 PartitionSC(S)

Input: A set of control interfaces of a set S of functions

Output: A partition of S into a set U of units

Variables: WeightedGraph W

1: W := CollaborationGraph(S)

2: c := NumberOfCollaborationClasses(G)

3: L := CollaborationThresholds(G, c)

4: while (¬ IsEmpty(W)) do

5: t := max(L)

6: W ′ := FilterLightEdges(W, t)

7: while (¬IsEmpty(W ′)) do

8: u := ConnectedComponent(W ′)

9: if (|u| > 1 or W ′ = W) then

10: add u as a new unit in U

11: W := RemoveNodes(W,u)

end if

12: W ′ := RemoveNodes(W ′, u)

end while

13: L := L \ {t}

end while

209

Bibliography

[1] Chic: Checker for interface compatibility. http://www.eecs.berkeley.edu/
∼tah/Chic.

[2] JBuilder. http://www.codegear.com/products/jbuilder.

[3] Ptolemy II: Heterogenous modeling and design. http://ptolemy.berkeley.
edu/ptolemyII/.

[4] Valgrind. http://valgrind.org/.

[5] Martin Abadi, Leslie Lamport, and Pierre Wolper. Realizable and unrealizable
specifications of reactive systems. In Proceedings of the 16th International Col-
loquium on Automata, Languages and Programming (ICALP ’89), volume 372
of Lecture Notes In Computer Science, pages 1–17. Springer-Verlag, 1989.

[6] Marwan Abi-Antoun, Jonathan Aldrich, Nagi Nahas, Bradley Schmerl, and
David Garlan. Differencing and Merging of Architectural Views. In Proceedings
of the 21st IEEE International Conference on Automated Software Engineering
(ASE’06), pages 47–58. IEEE Computer Society, 2006.

[7] Samson Abramsky. Game Semantics for Programming Languages (Abstract). In
Proceedings of the 22nd International Symposium on Mathematical Foundations
of Computer Science (MFCS ’97), volume 1295 of Lecture Notes in Computer
Science, pages 3–4. Springer-Verlag, 1997.

[8] Samson Abramsky. Games in the semantics of programming languages. In
Proceedings of the 11th Amsterdam Colloquium, pages 1–6. ILLC, Dept. of Phi-
losophy, University of Amsterdam, 1997.

[9] Samson Abramsky, Simon J. Gay, and Rajagopal Nagarajan. A type-theoretic
approach to deadlock-freedom of asynchronous systems. In Proceedings of the
Third International Symposium on Theoretical Aspects of Computer Software
(TACS ’97), volume 1281 of Lecture Notes in Computer Science, pages 295–320.
Springer-Verlag, 1997.

210

[10] Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, and C.-H. Luke Ong.
Applying Game Semantics to Compositional Software Modeling and Verifica-
tion. In Proceedings of the 10th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS ’04), volume 2988
of Lecture Notes in Computer Science, pages 421–435. Springer-Verlag, 2004.

[11] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full Abstrac-
tion for PCF. Information and Computation, 163(2):409–470, 2000.

[12] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison Wesley, 1986.

[13] Robert B. Allen and David Garlan. Formalizing architectural conection. In
Proceedings of the 16th IEEE International Conference on Software Engineering
(ICSE ’94), pages 71–80, New York, 1994. IEEE Computer Society Press.

[14] Robert B. Allen and David Garlan. A Formal Basis for Architectural Connec-
tion. ACM Transactions on Software Engineering and Methodology, 6:213–249,
1997.

[15] Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid,
Thomas W. Reps, and Mihalis Yannakakis. Analysis of recursive state machines.
ACM Transactions on Programming Languages and Systems (TOPLAS),
27(4):786–818, July 2005.

[16] Rajeev Alur, Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang.
Automating modular verification. In Proceedings of the 10th International Con-
ference on Concurrency Theory (CONCUR ’99), volume 1664 of Lecture Notes
in Computer Science, pages 82–97. Springer-Verlag, 1999.

[17] Rajeev Alur and Thomas A. Henzinger. Reactive Modules. Formal Methods in
System Design, pages 7–48, 1999.

[18] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time
temporal logic. Journal of the ACM, 49:672–713, 2002.

[19] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi.
Alternating Refinement Relations. In Proceedings of the 9th International Con-
ference on Concurrency Theory (CONCUR ’98), volume 1466 of Lecture Notes
in Computer Science, pages 163–178. Springer-Verlag, 1998.

[20] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sri-
ram K. Rajamani, and Serdar Tasiran. Mocha: Modularity in Model Checking.
In Proceedings of the 10th International Conference on Computer-Aided Veri-
fication (CAV ’98), volume 1427 of Lecture Notes in Computer Science, pages
521–525. Springer-Verlag, 1998.

211

[21] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. Synthe-
sis of Interface Specifications for Java Classes. In Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’05), pages 98–109, New York, NY, USA, 2005. ACM.

[22] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal
safety properties of interfaces. In Proceedings of the 8th International SPIN
Workshop on Model Checking of Software (SPIN ’01), volume 2057 of Lecture
Notes in Computer Science, pages 103–122. Springer-Verlag, 2001.

[23] Thomas Ball and Sriram K. Rajamani. The SLAM toolkit. In Proceedings of the
13th International Conference on Computer-Aided Verification (CAV ’01), vol-
ume 2102 of Lecture Notes in Computer Science, pages 260–264, Paris, France,
July 2001. Springer-Verlag.

[24] C. Leonard Berman. Circuit Width, Register Allocation and Ordered Binary
Decision Diagrams. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 10(8):1059–1066, August 1991.

[25] Dirk Beyer, Arindam Chakrabarti, and Thomas A. Henzinger. Web Service
Interfaces. In Proceedings of the 14th International World Wide Web Conference
(WWW ’05), pages 148–159. ACM, 2005.

[26] Dirk Beyer, Arindam Chakrabarti, and Thomas A. Henzinger. An Interface For-
malism for Web Services. Technical Report MTC-REPORT-2007-002, School
of Computer and Communication Sciences (IC), Ecole Polytechnique Fédérale
de Lausanne (EPFL), December 2007.

[27] Dirk Beyer, Arindam Chakrabarti, Thomas A. Henzinger, and Sanjit A. Seshia.
An Application of Web-Service Interfaces. In Proceedings of the 2007 IEEE
International Conference on Web Services (ICWS ’07), pages 831–838. IEEE
Computer Society, 2007.

[28] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak
Majumdar. Generating Tests from Counterexamples. In Proceedings of the 26th
International Conference on Software Engineering (ICSE ’04). IEEE Computer
Society, 2004.

[29] Andrea Bianco and Luca de Alfaro. Model Checking of Probabilistic and Non-
deterministic Systems. In Proceedings of the 15th International Conference on
Foundations of Software Technology and Theoretical Computer Science, volume
1026 of Lecture Notes in Computer Science, pages 499–513. Springer-Verlag,
1995.

212

[30] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Sym-
bolic model checking without bdds. In Proceedings of the 5th International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS ’99), volume 1579 of Lecture Notes in Computer Science, pages
193–207. Springer-Verlag, 1999.

[31] Patricia Bouyer, Antoine Petit, and Denis Thérien. An algebraic approach to
data languages and timed languages. Information & Computation, 182:137–162,
2003.

[32] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: auto-
mated Testing Based on Java Predicates. In Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’02), pages
123–133. ACM Press, July 2002.

[33] Tevfik Bultan, Jeffrey Fischer, and Richard Gerber. Compositional Veri-
fication by Model Checking for Counter-Examples. In Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’96), pages 224–238. ACM Press, 1996.

[34] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. Symbolic Model Checking: 1020 States and Beyond. Information
and Computation, 98(2):142–170, 1992.

[35] Olaf Burkart and Bernhard Steffen. Model Checking for Context-Free Pro-
cesses. In Proceedings of the 3rd International Conference on Concurrency
Theory (CONCUR ’92), volume 630 of Lecture Notes in Computer Science,
pages 123–137. Springer-Verlag, 1992.

[36] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer
for finding dynamic programming errors. Software - Practice and Experience
(SPE), 30(7):775–802, 2000.

[37] Cristian Cadar and Dawson R. Engler. Execution Generated Test Cases: How
to Make Systems Code Crash Itself. In Proceedings of the 12th International
SPIN Workshop on Model Checking of Software (SPIN ’05), volume 3639 of
Lecture Notes in Computer Science, pages 2–23. Springer-Verlag, 2005.

[38] Arindam Chakrabarti. Interface Compatibility Checking for Software Modules.
M.S. Report, University of California at Berkeley, Berkeley, CA, December 2005.

[39] Arindam Chakrabarti, Krishnendu Chatterjee, Thomas A. Henzinger, Orna
Kupferman, and Rupak Majumdar. Verifying quantitative properties using
bound functions. In Proceedings of the 13th IFIP WG 10.5 Advanced Research
Working Conference on Correct Hardware Design and Verification Methods

213

(CHARME ’05), volume 3725 of Lecture Notes in Computer Science, pages
50–64. Springer-Verlag, 2005.

[40] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, Marcin Jur-
dziński, and Freddy Y. C. Mang. Interface compatibility checking for software
modules. In Proceedings of the 14th International Conference on Computer
Aided Verification (CAV ’02), volume 2404 of Lecture Notes in Computer Sci-
ence, pages 428–441. Springer-Verlag, 2002.

[41] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C.
Mang. Synchronous and Bidirectional Component Interfaces. In Proceedings of
the 14th International Conference on Computer-Aided Verification (CAV ’02),
volume 2404 of Lecture Notes in Computer Science, pages 414–427. Springer-
Verlag, 2002.

[42] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle
Stoelinga. Resource Interfaces. In Proceedings of the Third International Con-
ference on Embedded Software (EMSOFT ’03), volume 2855 of Lecture Notes
in Computer Science, pages 117–133. Springer-Verlag, 2003.

[43] Arindam Chakrabarti and Patrice Godefroid. Software Partitioning for Effective
Automated Unit Testing. In Proceedings of the 6th ACM & IEEE International
Conference on Embedded Software (EMSOFT ’06), pages 262–271. ACM Press,
2006.

[44] Arindam Chakrabarti and Patrice Godefroid. Software Partitioning for Effective
Compositional Testing and Dynamic Model Checking. Technical Report ITD-
06-46767J, Bell Laboratories, January 2006.

[45] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen. Symbolic
model checking. In CAV 96: Proc. of 8th Conf. on Computer Aided Verification,
volume 1102 of Lect. Notes in Comp. Sci., pages 419–422. Springer-Verlag, 1996.

[46] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999.

[47] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, and Judith Stafford. Documenting Software Architectures:
Views and Beyond. Addison-Wesley, 2002.

[48] Paul C. Clements, David Garlan, Reed Little, Robert L. Nord, and Judith A.
Stafford. Documenting Software Architectures: Views and Beyond. In ICSE,
pages 740–741, 2003.

214

[49] Christoph Csallner and Yannis Smaragdakis. Check’n Crash: Combining Static
Checking and Testing. In Proceedings of the 27th International Conference on
Software Engineering (ICSE ’05), pages 422–431. ACM Press, 2005.

[50] Julio Leao da Silva Jr., J. Shamberger, M. Josie Ammer, C. Guo, Suet-Fei Li,
Rahul C. Shah, Tim Tuan, Michael Sheets, Jan M. Rabaey, Borivoje Nikolic,
Alberto L. Sangiovanni-Vincentelli, and Paul K. Wright. Design Methodology
for Picoradio Networks. In Proceedings of the Conference on Design Automation
and Test in Europe (DATE ’01), pages 314–323. IEEE Computer Society Press,
2001.

[51] Mads Dam. CTL∗ and ECTL∗ as Fragments of the Modal µ-calculus. Theoret-
ical Computer Science, 126:77–96, 1994.

[52] S. R. Das, Wen-Ben Jone, A. R. Nayak, and I. Choi. On Testing of Sequen-
tial Machines Using Circuit Decomposition and Stochastic Modeling. IEEE
Transactions on Systems, Man, and Cybernetics, 25(3):489–504, March 1995.

[53] Luca de Alfaro, Rajeev Alur, Radu Grosu, Thomas A. Henzinger, M. Kang,
Rupak Majumdar, Freddy Y. C. Mang, Christoph Meyer-Kirsch, and Bow-
Yaw Wang. Mocha: A Model Checking Tool that Exploits Design Structure.
In Proceedings of the 23rd International Conference on Software Engineering
(ICSE ’01), 2001.

[54] Luca de Alfaro and Thomas A. Henzinger. Interface Automata. In Proceed-
ings of 8th European Software Engineering Conference and 9th ACM SIGSOFT
Symposium on Foundations of Software Engineering (ESEC/FSE ’01), pages
109–120. ACM Press, 2001.

[55] Luca de Alfaro and Thomas A. Henzinger. Interface Theories for Component-
Based Design. In Proceedings of the First International Workshop on Embedded
Software (EMSOFT ’01), volume 2211 of Lecture Notes in Computer Science,
pages 148–165. Springer-Verlag, 2001.

[56] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. From Verification
to Control: Dynamic Programs for Omega-regular Objectives. In Proceedings
of the 16th Annual Symposium on Logic in Computer Science (LICS ’01), pages
279–290. IEEE Computer Society Press, 2001.

[57] Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Timed Inter-
faces. In Proceedings of the 2nd International Workshop on Embedded Software
(EMSOFT ’02), volume 2491 of Lecture Notes in Computer Science, pages 108–
122. Springer-Verlag, 2002.

[58] Luca de Alfaro and Rupak Majumdar. Quantitative solution of concurrent
games. Journal of Computer & Systems Sciences, 68:374–397, 2004.

215

[59] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-
level software. In PLDI, pages 59–69, 2001.

[60] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Ex-
tended static checking. Technical Report 159, Compaq Systems Research Cen-
ter, Palo Alto, CA, 1998.

[61] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. MIT Press, 1988.

[62] J. Edvardsson. A survey on automatic test data generation. In Proceedings
of the 2nd Conference on Computer Science and Engineering, pages 21–28,
Linköping, October 1999.

[63] A. Ehrenfeucht and J. Mychielski. Positional strategies for mean payoff games.
International Journal of Game Theory, 8:109–113, 1979.

[64] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In Proc. 32nd IEEE Symp. Found. of Comp. Sci., pages
368–377. IEEE Computer Society Press, 1991.

[65] E.A. Emerson and C. Lei. Efficient model checking in fragments of the propo-
sitional µ-calculus. In Proceedings of the First Annual Symposium on Logic in
Computer Science, pages 267–278. IEEE Computer Society Press, 1986.

[66] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In OSDI 00: Oper-
ating System Design and Implementation. Usenix Association, 2000.

[67] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-
namically discovering likely program invariants to support program evolution.
IEEE Trans. Software Eng., 27(2):99–123, 2001.

[68] Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear
types for imperative programming. In PLDI, pages 13–24, 2002.

[69] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag,
1997.

[70] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. Thread-modular ver-
ification for shared-memory programs. In Proceedings of the 11th European
Symposium on Programming (ESOP ’02), volume 2305 of Lecture Notes in
Computer Science, pages 262–277. Springer, 2002.

216

[71] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for Java. In
PLDI 02: Programming Language Design and Implementation, pages 234–245.
ACM, 2002.

[72] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Compatibility
Verification for Web Service Choreography. In Proc. ICWS, pages 738–741.
IEEE, 2004.

[73] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type
qualifiers. In PLDI, pages 192–203, 1999.

[74] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of Interacting BPEL Web
Services. In Proc. WWW, pages 621–630. ACM, 2004.

[75] Xiang Fu, Tevfik Bultan, and Jianwen Su. WSAT: A Tool for Formal Analysis
of Web Services. In Proc. CAV, LNCS 3114, pages 510–514. Springer, 2004.

[76] S. Furey. Why we should use function points. IEEE Software, 14(2), 1997.

[77] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[78] David Garlan and Mary Shaw. An introduction to software architecture. Tech-
nical Report CMU-CS-94-166, Carnegie Mellon University, January 1994.

[79] David Gay and Alexander Aiken. Language support for regions. In PLDI, pages
70–80, 2001.

[80] Simon J. Gay and Malcolm Hole. Types and subtypes for client-server interac-
tions. In ESOP ’99: Proceedings of the 8th European Symposium on Program-
ming Languages and Systems, pages 74–90, London, UK, 1999. Springer-Verlag.

[81] P. Godefroid. Model checking for programming languages using VeriSoft. In
Proceedings of the 24th ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 174–186, Paris, January 1997. ACM Press.

[82] P. Godefroid and N. Klarlund. Software model checking: Searching for compu-
tations in the abstract or the concrete (invited paper). In Proceedings of 5th
International Conference on Integrated Formal Methods (IFM), volume 3771 of
Lect. Notes in Comp. Sci., pages 20–32, Eindhoven, November 2005. Springer-
Verlag.

[83] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random
testing. In Proceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation (PLDI), pages 213–223, Chicago, June
2005. ACM Press.

217

[84] O. Grumberg and D.E. Long. Model checking and modular verification. ACM
Trans. on Programming Languages and Systems (TOPLAS), 16(3):843–871,
1994.

[85] N. Gupta, A. P. Mathur, and M. L. Soffa. Generating test data for branch cov-
erage. In Proceedings of the 15th IEEE International Conference on Automated
Software Engineering (ASE), pages 219–227, Grenoble, September 2000. IEEE
Computer Society Press.

[86] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson R. Engler. A System
and Language for Building System-Specific, Static Analyses. In Proceedings of
the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation (PLDI), pages 69–82, Berlin, June 2002. ACM Press.

[87] S. Hassoun and C. McCreary. Regularity extraction via clan-based structural
circuit decomposition. In Proceedings of the 1999 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 414–419, San Jose,
November 1999. ACM Press.

[88] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access
errors. In Proceedings of the USENIX Winter 1992 Technical Conference, pages
125–138, Berkeley, January 1992.

[89] M. Hennessy and J. Riely. Information flow vs resource access in the asyn-
chronous pi-calculus (extended abstract). In U. Montanari, J. Rolim, and
E. Welzl, editors, Automata, Languages and Programming, 27th International
Colloquium, volume 1853 of Lect. Notes in Comp. Sci., pages 415–427, Geneva,
Switzerland, 9–15 July 2000. Springer-Verlag.

[90] T.A. Henzinger, S. Qadeer, S.K. Rajamani, and S. Tasiran. An assume-
guarantee rule for checking simulation. In G. Gopalakrishnan and P. Windley,
editors, FMCAD 98: Formal Methods in Computer-aided Design, Lecture Notes
in Computer Science 1522, pages 421–432. Springer-Verlag, 1998.

[91] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The blast software
verification system. In SPIN, pages 25–26, 2005.

[92] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Permissive Inter-
faces. In ESEC/SIGSOFT FSE-13: Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 31–40, New York,
NY, USA, 2005. ACM.

[93] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
Lazy abstraction. In Proceedings of the 29th Annual Symposium on Principles of

218

Programming Languages (POPL), pages 58–70, Portland, January 2002. ACM
Press.

[94] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[95] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
1991.

[96] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis.
In Proceedings of the 3rd ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE), pages 104–115, New York, October 1995. ACM
Press.

[97] M. Huth and M. Kwiatkowska. Quantitative analysis and model checking. In
LICS, pages 111–122. IEEE, 1997.

[98] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and III.
Information and Computation, 163(2):285–408, 2000.

[99] O. H. Ibarra, J. Su, Z. Dang, T. Bultan, and R. A. Kemmerer. Counter
machines: Decidable properties and applications to verification problems. In
MFCS, LNCS 1893, pages 426–435. Springer, 2000.

[100] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. ACM Trans.
Program. Lang. Syst., 27(2):264–313, 2005.

[101] J. C. King. Symbolic execution and program testing. Journal of the ACM,
19(7):385–394, 1976.

[102] B. Korel. A dynamic approach of test data generation. In IEEE Conference
on Software Maintenance, pages 311–317, San Diego, November 1990. IEEE
Computer Society Press.

[103] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Sci-
ence, 27(3):333–354, 1983.

[104] Patrick Lam, Viktor Kuncak, and Martin C. Rinard. Generalized types-
tate checking using set interfaces and pluggable analyses. SIGPLAN Notices,
39(3):46–55, 2004.

[105] E. Larson and T. Austin. High coverage detection of input-related security
faults. In Proceedings of 12th USENIX Security Symposium, Washington D.C.,
August 2003.

[106] Edward A. Lee and Yuhong Xiong. System-level types for component-based
design. In EMSOFT, pages 237–253, 2001.

219

[107] Insup Lee, Anna Philippou, and Oleg Sokolsky. Process algebraic modeling and
analysis of power-aware real-time systems. Computing and Control Engineering
Journal, 13(4):180–188, 2002.

[108] Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping.
ACM Trans. Program. Lang. Syst., 16(6):1811–1841, 1994.

[109] N.A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

[110] N.A. Lynch and M. Tuttle. Hierarcical correctness proofs for distributed al-
gorithms. In Proc. of 6th ACM Symp. Princ. of Dist. Comp., pages 137–151,
1987.

[111] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, New York, 1991.

[112] David Garlan Massimo Tivoli. Adaptor Synthesis for Protocol-Enhanced Com-
ponent Based Architectures. In Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA ’05), pages 276–277, 2005.

[113] A. McIver and C. Morgan. Games, probability, and the quantitative µ-calculus
qµ. In LPAR 02: Logic Programming and Automated Reasoning, volume 2514
of Lecture Notes in Computer Science, pages 292–310. Springer-Verlag, 2002.

[114] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[115] Bertrand Meyer. Design by Contract: The Eiffel Method. In Proceedings of
the 26th International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS ’98), page 446. IEEE Computer Society, 1998.

[116] R. Milner. An algebraic definition of simulation between programs. In Proc. of
Second Int. Joint Conf. on Artificial Intelligence, pages 481–489. The British
Computer Society, 1971.

[117] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[118] J.C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[119] G. J. Myers. The Art of Software Testing. Wiley, 1979.

[120] Srini Narayanan and Sheila A. McIlraith. Simulation, Verification and Au-
tomated Composition of Web Services. In Proc. WWW, pages 77–88. ACM,
2002.

[121] G. C. Necula, S. McPeak, and W. Weimer. Ccured: Type-safe retrofitting of
legacy code. In Proceedings of the 29th ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 128–139, Portland, January 2002. ACM
Press.

220

[122] Matthias Neubauer and Peter Thiemann. An implementation of session types.
In PADL, pages 56–70, 2004.

[123] Hanno Nickau. Hereditarily Sequential Functionals. In LFCS ’94: Proceedings
of the Third International Symposium on Logical Foundations of Computer Sci-
ence, pages 253–264, London, UK, 1994. Springer-Verlag.

[124] M. Núñez and I. Rodŕıgez. Pamr: A process algebra for the management
of resources in concurrent systems. In Myungchul Kim, Byoungmoon Chin,
Sungwon Kang, and Danhyung Lee, editors, Proc. FORTE’01, volume 22 of
IFIP Conference Proceedings. Kluwer Academic Publishers, 2001.

[125] National Institute of Standards and Planning Report 02-3 Technology. The
economic impacts of inadequate infrastructure for software testing. May 2002.

[126] J. Offutt and J. Hayes. A semantic model of program faults. In Proceedings
of the 1996 ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), pages 195–200, San Diego, January 1996. ACM Press.

[127] M. R. Prasad, P. Chong, and K. Keutzer. Why is ATPG easy ? In Proceedings
of the 36th Design Automation Conference (DAC), pages 22–28, New Orleans,
June 1999. ACM Press.

[128] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas E. Anderson. Eraser: a Dynamic Data Race Detector for Multithreaded
Programs. ACM Transactions on Computer Systems, 15(4):391–411, November
1997.

[129] R. Shah and J. M. Rabaey. Energy aware routing for low energy ad hoc sensor
networks. In Proceedings of the IEEE Wireless Communications and Network-
ing Conference (WCNC), pages 812–817. IEEE Communications Society Press,
2002.

[130] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting
format string vulnerabilities with type qualifiers. In SSYM’01: Proceedings
of the 10th USENIX Security Symposium, Berkeley, CA, USA, 2001. USENIX
Association.

[131] R. E. Strom and S. Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Trans. Softw. Eng., 12(1):157–171, 1986.

[132] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva. Sym-
phony: View-driven software architecture reconstruction. In Proceedings of the
4th IEEE/IFIP Working Conference on Software Architecture (WICSA), Oslo,
June 2004. IEEE Computer Society Press.

221

[133] M.Y. Vardi. A temporal fixpoint calculus. In Proceedings of the 15th Annual
Symposium on Principles of Programming Languages, pages 250–259. ACM
Press, 1988.

[134] W. Visser, C. Pasareanu, and S. Khurshid. Test input generation with java
pathfinder. In Proceedings of the 2004 ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (ISSTA), Boston, July 2004. ACM
Press.

[135] David Walker, Karl Crary, and Greg Morrisett. Typed memory management via
static capabilities. ACM Transactions on Programming Languages and Systems,
22(4):701–771, 2000.

[136] Guoyan Xie, Zhe Dang, Oscar H. Ibarra, and Pierluigi San Pietro. Dense
Counter Machines and Verification Problems. In Proceedings of the 15th Inter-
national Conference on Computer-Aided Verification (CAV ’03), volume 2725
of Lecture Notes in Computer Science, pages 93–105. Springer-Verlag, 2003.

222

