
Using GPUs to Accelerate the Bisection Algorithm for
Finding Eigenvalues of Symmetric Tridiagonal

Matrices

Vasily Volkov
James Demmel

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-179

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-179.html

December 29, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

We want to thank ATI and NVIDIA for the donated GPUs, Takahiro Katagiri
for providing his implementation of the Multi-section with Multiple
Eigenvalues method and Professor Sara McMains for the course on
general-purpose computation on the GPUs and being helpful with
equipment.

1

Using GPUs to Accelerate the Bisection Algorithm for Finding Eigenvalues
of Symmetric Tridiagonal Matrices

Vasily Volkov

Computer Science Division
University of California at Berkeley

James W. Demmel

Computer Science Division and Department of Mathematics
University of California at Berkeley

Abstract

Graphical Processing Units (GPUs) potentially promise wide-
spread and inexpensive high performance computation. However,
architectural limitations (only some operations and memory ac-
cess patterns can be performed quickly, partial support for IEEE
floating point arithmetic) make it necessary to change existing
algorithms to attain high performance and correctness. Here we
show how to make the bisection algorithm for eigenvalues of
symmetric tridiagonal matrices (sstebz from LAPACK) run
both fast and correctly on an ATI Radeon X1900 GPU. Our fast-
est algorithm takes up to 156! less time than Intel's Math Kernel
Library version of sstebz running on the CPU, but does so by
doing many redundant floating point operations compared to the
CPU version. We use an automatic tuning procedure analogous to
ATLAS or PHiPAC to decide the optimal redundancy. Correct-
ness despite partial IEEE floating point semantics required explic-
itly adding 0 in the inner loop. The problems and solutions dis-
cussed here are of interest on other GPU architectures.

1 Motivation and Objectives

Modern graphics processors (GPUs) are data parallel architectures
that can run general-purpose computations in single precision (so
far) at high computational rates. They are capable of achieving
110 GFLOPS in matrix-matrix multiplication [Segal and Peercy
2006] and show 30-40x speedups compared to the recent Intel
Xeon processors in computationally intensive applications such as
Black-Scholes option pricing [McCool et al. 2006] and gas dy-
namics solvers [Hagen et al. 2007]. It is tempting to exploit this
computational power in solving other common numerical prob-
lems.

In this work we consider an implementation of another widely
used linear algebra routine — the bisection algorithm for finding
the eigenvalues of symmetric tridiagonal matrices. A numerically
robust, vectorized implementation of this algorithm in single pre-
cision is available in LAPACK’s sstebz routine [Anderson et
al. 1999]. Our goal is to port the vectorized segments of the code
to the GPU. In order to increase the utilization of the parallel re-
sources, we use the Multi-section with Multiple Eigenvalues
method used previously by Katagiri et al. [2006].

For the purpose of this study we restrict our attention to find-
ing all eigenvalues of the matrix. The extension to finding a subset
of the eigenvalues as done in LAPACK’s sstebz routine, is
straightforward.

2 The Bisection Algorithm

2.1 Overview

A detailed description of the bisection algorithm can be found in
Demmel [1997] or Parlett [1980]. A thorough analysis of its cor-
rectness in finite-precision machine arithmetic is presented in
Demmel et al. [1995]. In the following we summarize the impor-
tant features of the algorithm and present two novel techniques to
ensure correctness in an unusual floating-point semantic.

Let T be an n ! n symmetric tridiagonal matrix with diagonals
a1, …, an and off-diagonals b1, …, bn–1. For the convenience of
presentation, let b0 = bn = 0. Then the algorithm Count(x) in Fig. 1
implements LDL

T decomposition of T – xI without pivoting and
counts the number of negative entries in the diagonal matrix D.
According to Sylvester’s inertia theorem it gives the number of
eigenvalues of T that are less than the real number x.

Now, suppose we are given a set of 4-tuples (li, ui, nli, nui) for
i = 1, …, EL so that nli = Count(li) < nui = Count(ui) and the union
of intervals [li, ui) contains all eigenvalues. Then nui – nli gives the
number of eigenvalues in the interval [li, ui). Computing nmi =
Count(mi) for mi = (li + ui)/2 equal to the midpoints produces new
tuples (li, mi, nli, nmi) and (mi, ui, nmi, nui) for half as wide inter-
vals. Intervals that contain no eigenvalues (nli = nui) are discarded
and the process is repeated until a sufficiently small enclosing
interval for each eigenvalue is found. The interval to start the
iterations is constructed using Gershgorin’s theorem.

The total work done in Count(x) to find k eigenvalues is
O(nk). This is usually much larger than O(k) work done in the rest
of the algorithm. This motivates the efforts in finding the more
efficient implementation of Count(x).

A trivial way to speedup Count(x) given parallel resources is
to evaluate values nmi = Count(mi) for i = 1, …, EL concurrently.
The utilization of parallel resources may be low unless EL is large
enough. A well-known technique to increase the utilization and
cut the running time of the bisection algorithm is to subdivide
each interval [li, ui) with multiple points mij = li + j(ui – li) / (ML +
1) for j = 1, …, ML [Lo et al. 1987; Simon 1989; Katagiri et al.
2006]. In this case Count(x) is evaluated at EL!ML points concur-
rently achieving better utilization of the parallel resources. ML = 1
corresponds to the bisection algorithm and ML ! 2 is called mul-
tisection. ML is chosen to balance the gain from achieving higher
utilization and the loss from introducing arithmetic redundancy by
using multiple points (ML = 1 minimizes the operation count).

There are known alternative designs that were not considered
in the present work. Newton’s or Zeroin algorithm may improve
convergence of intervals that are found to contain only one eigen-
value. A vectorizable alternative to Count(x) such as considered
by Lo et al. [1987] may allow achieving high utilization with
lower arithmetic redundancy. Versions of Count(x) using ”paral-
lel-prefix” to parallelize evaluations for a single x were analyzed
by Ren [1996] and Mathias [1995] and found to be numerically
unstable, and will not be further considered here.

 function Count(x)
 Count = 0
 d = 1
 for i = 1 to n
 d = ai – x – b2

i–1/d
(*) if (d < 0) then Count = Count + 1
 endfor

Figure 1: The kernel of bisection algorithm. Function Count(x)
may be evaluated for an array of arguments concurrently.

2

pivmin
 if (|d| < pivmin) then d = –pivmin
 if (d < 0) then Count = Count + 1

SignBit Count = Count + SignBit(d)

IEEE
 (matrix is preprocessed by setting ai = ai + 0)
 if (d < 0) then Count = Count + 1

IEEE0
 d = d + 0
 if (d < 0) then Count = Count + 1

Figure 2: Possible modifications of Count(x) routine to handle
overflow. The lines are used instead of (*) in Fig. 1. The pivmin
version is used in LAPACK, SignBit version is used in ScaLA-

PACK [Blackford et al. 1997a], IEEE version is used in our CPU
code and IEEE0 version is used in our GPU code.

2.2 Handling Divisions by Zero and Overflow

At a finite number of points, such as x = a1, n ! 2, the algorithm in
Fig. 1 encounters a division by zero. Similarly, when run in ma-
chine arithmetic it may also encounter overflow. The designs of
the function Count(x) outlined below produce a consistent result
even at these points.

The pivmin version of Count(x) in Fig. 2 avoids divisions by
zero and overflow by initially scaling the matrix (not shown) so
that its largest entry is neither too close to the underflow or the
overflow threshold (in particular, so that no bi

2
 overflows), and by

moving the pivot d away from zero by a small threshold pivmin.
This threshold is trivially computed for every input matrix. This
algorithm produces a correct result in nearly every machine arith-
metic. It is considered in more detail in [Demmel et al. 1995; Ka-
han 1966].

The SignBit version in Fig. 2 may yield faster code if the ma-
chine arithmetic supports IEEE exception handling rules and they
do not incur high performance penalty [Demmel and Li 1994].
The SignBit(d) function returns 1 for negative values including –"
and –0; it returns 0 otherwise. Note that SignBit(d) differentiates
–0 and +0, unlike the floating point comparison d < 0 done ac-
cording to the IEEE standard [IEEE 1987, Ch. 5.7]. This variant
requires that bi

2 neither underflows nor overflows. Otherwise, a
NaN may be produced that makes the result incorrect (tiny bi may
be set to zero, splitting the matrix into independent subproblems).

If the machine arithmetic does not provide an inexpensive
way to compute SignBit(d), the function can be replaced by com-
parison with zero (d < 0) if every possibility for d = –0 is elimi-
nated [Demmel et al. 1995, Ch. 8]. If machine arithmetic never
produces –0 in addition, it is sufficient to preprocess all ai = –0
into 0 (IEEE version in Fig. 2). If this is not the case, e.g. if under-
flow in addition may result in –0, we may instead similarly proc-
ess the pivot d at every iteration as shown in the IEEE0 variant in
Fig. 2. Both IEEE and IEEE0 variants require that (–0) + 0 = 0
holds.

IEEE0 version also produces correct result when zero’s sign is
occasionally lost in computation.

2.3 Monotonicity of Count(x)

In exact arithmetic, Count(x) grows monotonically with x. This is
not necessarily true in finite precision arithmetic. It can be proven
that each of the overflow-safe versions of Count(x) in Fig. 2 is
monotonic if and only if the floating point arithmetic is monotonic
[Kahan 1966; Demmel et al. 1995], i.e. the result of operations x +
y, x – y and x / y monotonically depends on the arguments. We
note that the proof extends to the case where x / y is implemented
by x * (1 / y), and multiplication and reciprocation are both mono-
tonic. IEEE floating point semantics would guarantee monotonic-
ity.

Non-monotonic Count(x) makes the obvious implementation
of the algorithm incorrect. For example, some of the intervals may
be found to contain negative numbers of eigenvalues. It was

shown by Demmel et al. [1995] that the bisection algorithm can
be made correct in the absence of monotonicity by careful adjust-
ment of the return values of Count(x), so that at any point in the
algorithm the set of nonempty tuples (li, ui, nli, nui) maintained by
the algorithm satisfies 2 properties: (1) the intervals [li,ui) are
pairwise disjoint, and (2) for each interval Count(li) ! nli < nui !
Count(ui), i.e. the values of nli and nui may be "adjusted" from
their nominal values of Count(li) and Count(ui). It can be adapted
for the multisection algorithm as follows.

Let m1 ! m2 ! … ! mML be the multisection points subdividing
[l, u). For convenience, let m0 = l, mML+1 = u and nm0 = nl, nmML+1
= nu. Then the adjustment proceeds from k = 1 up to ML by set-
ting

nmk = max(nmk–1, min(Count(mk), nu)).

Now, 4-tuples (mi, mi+1, nmi, nmi+1) for i = 0, …, ML represent the
finer intervals. It is easy to see, that either nmi = nmi+1 and the
interval is discarded, or Count(mi) ! nmi < nmi+1 ! Count(mi+1).
This condition is sufficient for the algorithm to be correct, see
Chapter 7 in Demmel et al. [1995].

2.4 Heterogeneous Computing

Heterogeneous computing environments with different rounding
properties in different functional units present a hazard for correct
parallel execution of bisection [Blackford et al. 1997b; Demmel et
al. 1995]. However, if only function Count(x) is computed using
the heterogeneous parallel resources, this threat is easily coun-
tered.

Indeed, interleaving the values of Count(x) that are evaluated
on processors that use different floating point rounding rules, such
as the CPU and the GPU, may result in non-monotonic behavior,
even if values on each processor are monotonic. In that case the
adjustment procedure described in the Section 2.3 may be used to
enforce monotonicity. This resolves the problem completely.

3 The GPU Architecture

The target platform for our GPU implementation is the Radeon
X1900 XT that was released by ATI in January 2006. In this sec-
tion we briefly review its architectural features that are important
for understanding the GPU performance. Further details can be
found in vendor's technical publications [ATI 2005a; ATI 2005b;
ATI 2005c; Riguer 2006; Segal and Peercy 2006; AMD 2006].

3.1 Processing Units

The GPU has an array of processors that are operated in SIMD
lockstep mode. Multithreading is used to hide memory access
latency. The basic data format is a four-component vector of 32-
bit IEEE floating point numbers. There are three types of units
that are operating in parallel at 625 MHz clock rate — ALUs,
memory fetch units and flow control units.

There are 48 ALUs. Each ALU consists of a vector and a sca-
lar unit that are programmed separately. The vector unit executes
simple instructions on the first three components of the registers.
These instructions include multiply and add (MAD), dot products,
minimum or maximum of two values, taking fractional parts and
conditional assignments. The scalar unit may execute the same
instructions except the dot products on the fourth component of
the registers. In addition it can compute exponent, logarithm, sine,
cosine, 1 / x (RCP) and 1 / "x operations. Each arithmetic instruc-
tion may have an input and an output modifier. The input modifier
can be –x, |x| and –|x|. In addition, one of the inputs can be a re-
sult of a simple operation over two other inputs (called “presub-
tract”). This operation can be x + y, x – y, 1 – x and 1 – 2x. The
four components of the input registers can be arbitrarily shuffled
and swizzled. The output modifier allows multiplying the result of

3

the operation by factors of 2, 4, 8, 1/2, 1/4 and 1/8. Also, the out-
put value may be clamped to the range [0, 1]. Each unit can exe-
cute one instruction every clock cycle. The estimates of the theo-
retical peak performance based on this data are given in Table 1.

There are 16 memory fetch units, i.e. one per three ALUs.
GPUBench [Buck et al. 2004], which is a popular benchmarking
utility, shows that the cost of fetching a four-component vector is
12 ALU cycles if the data is in the cache, i.e. it takes one cycle for
a unit to fetch one 32-bit floating point number. It accounts to 40
GB/s. Fetch-4 extension allows quadrupling this rate to 160 GB/s.
Memory fetches that miss the cache are more expensive.

Flow control units allow implementing if-else statements by
executing both branches and masking off the non-participating
processors. Also they support loops that are repeated a constant
number of times. The constant is limited to the range [0, 255] and
can be changed only when a program is not running. A larger
number of iterations may be achieved using nested loops.

3.2 Floating Point Arithmetic

The ATI CTM guide [AMD 2006] gives the most detailed specifi-
cation of the GPU floating point arithmetic that we know. Still, it
is not exhaustive and even disagrees with our tests done in
DirectX 9.0.

Most arithmetic operations are “accurate to within one bit on
each input; transcendental functions have larger tolerances”, but
rounding rules are not specified. Hence, it is unclear if the arith-
metic is monotonic or not. We were able to determine that RCP
operation is monotonic by executing it for every possible input.
This is possible since it takes only one 32-bit argument, i.e. there
are fewer than 232 different inputs. Addition and multiplication are
likely to be monotonic as their most straightforward implementa-
tions are. In our tests we observed rounding towards zero in MAD
operation, which is monotonic.

The special values, such as ±!, ±0 and NaN are supported.
Though the ATI CTM guide claims that they are treated according
to the IEEE 754 standard in many operations including MAD and
RCP, we found that on the GPU 0*! = 0 and 0*NaN = 0, which
deviates from the standard. According to our experience handling
of the special IEEE values does not incur a performance penalty.
Denormalized numbers are accepted but are always flushed to
zero with the sign preserved. That means that underflow in addi-
tion may produce –0 that was verified by our tests. This behavior
also disagrees with the IEEE standard [IEEE 1987, Ch. 6.3].

The convention (–0) + 0 = +0 held in our tests.
It is unclear if the adder in the presubtract units implements

the same or different floating point semantics. It cannot be pro-

grammed explicitly in the high-level languages such as DirectX’s
HLSL.

The sign of zero may be lost when copying data between reg-
isters. The reason is the lack of a separate MOV operation, so that
another arithmetic operation must be used instead. If the assign-
ment is done using MAD, i.e. as y = 0 * 0 + x or y = 1 * x + 0, the
sign of zero is lost in the addition. A safer solution is y = MAX(x,
x). However the choice might not be under control when pro-
gramming in a high-level language.

To summarize, underflow in addition may result in –0 on this
particular GPU so that IEEE version of Count(x) may give incor-
rect values in corner cases. IEEE0 and pivmin versions are ex-
pected to be correct. Arithmetic is likely to be monotonic, but we
cannot say it is for sure.

4 Implementation

Our implementation is done in C++ following the FORTRAN
codes of the sstebz routine in LAPACK version 3.1 that is
available in the public domain. It was compiled using the Intel
C++ compiler version 9.1 with all optimizations for speed turned
on except the floating point arithmetic options. In order to ensure
sufficient IEEE compliance we used /fp:source and
/fp:except- compiler options.

The function Count(x) is implemented both on the CPU and
the GPU. In each iteration of the algorithm one of them is chosen
using a performance model as elaborated in Section 4.6. The re-
turn values of Count(x) are adjusted to handle non-monotonicity
following Section 2.3. There are two sources of non-
monotonicity: potentially non-monotonic GPU arithmetic and
mixing the results of Count(x) computed on the CPU and the
GPU.

4.1 The GPU Program

The GPU is programmed using DirectX 9.0. Three different ver-
sions of Count(x) are programmed in HLSL as shown in Fig. 3.
The HLSL program solves for four different values of x at once to
fit better to the GPU architecture.

The negative pivots in the GPU program are counted using
floating point numbers. This limits the counter and hence the di-
mension of the input matrix to 224 ! 16,000,000. It is a sufficiently
large number — it may take a few weeks to solve a problem of
such a size on a Pentium 4 processor.

The loop is naturally unrolled four times as the matrix entries
are fetched in four-component vectors. Unrolled four times more
it yields a perceivable speedup. In order to handle arbitrary matrix
dimensions, the matrix size is rounded up to the nearest multiple
of four introducing dummy entries at the tail. They are set to +!
for the diagonal and to 0 for the off-diagonal entries. That could
produce an error if run in IEEE-compliant arithmetic as it gives
bi

2/d = 0/0 = NaN for d = 0, but is correct on this GPU since it
implements 0*! = 0. The dummy entries produce d = +! so that
Count is not incremented. An analogous technique would work on
an IEEE-compliant platform.

The matrix is laid out into two 2D arrays (“textures”) and is
transferred to the GPU memory once per sstebz call. The itera-
tion through the entries is implemented in two nested loops, each
iterating through a horizontal or a vertical dimension of the arrays.
Fetch-4 extension is not enabled for these matrix structures, since
the program is computation-bound anyway (see Section 4.3).

4.2 Transferring Data and Running the Job

As the input and output data for each parallel run of Count(x) is
produced and processed in the main memory, we need to transfer
it to the GPU memory and back for each call to the routine.

Operation Type How Implemented
Theoretical
Peak Rate

1/A RCP 30 Gflop/s

A/B
RCP in the scalar pipe,
MAD in the vector pipe

30 Gflop/s

A*B MAD 120 Gflop/s

A+B MAD and presubtract 240 Gflop/s

A*B+C MAD 240 Gflop/s

(A+B)*C+C MAD and presubtract 360 Gflop/s

(1–2*A)*B+C MAD and presubtract 480 Gflop/s

((1–2*A)*B+C)/8
MAD, presubtract and

output modifier
600 Gflop/s

Table 1: Theoretical peaks for various arithmetic operations on
the Radeon X1900 XT (single precision only).

4

DirectX 9.0 has limited functionality for transferring data
from the GPU to the main memory. Arrays that accept the output
of the programs run on the GPUs (“render targets”) must be trans-
ferred entirely even if a small portion of them is needed. To avoid
a performance penalty due to these extra bandwidth requirements,
we create a number of render targets and choose the smallest that
fits the data. The width of every render target is 64 for the reasons
explained later. Heights are from 1 to 512, which allows handling
as large problems as n = 131,072. The spacing between heights
varies from 1 for small heights to 64 for larger for economical use
of the GPU memory. The GPU program is then executed for the
first H lines of the selected render target (by drawing an appropri-
ate triangle; all possible triangles are set in the GPU memory dur-
ing the initialization stage), i.e. for 64!4!H instances of Count(x).
H is chosen to be the smallest that satisfies 64!4!H ! EL!ML.

For storing an array of x (shifts) on the GPU we use a single
texture also of width 64, created with D3DUSAGE_DYNAMIC
flag. This flag allows updating the texture partially when transfer-
ring data to the GPU memory.

4.3 Performance of Count(x) on the GPU

Fig. 3(c) shows a simple PS 3.0 code similar to that produced by
the HLSL compiler. This code approximates the machine code
that is ultimately produced but not available when programming
in DirectX. Note, that the two if-statements in the pivmin version
in Fig. 2 do not require branches in the PS 3.0 code. Table 2

shows the theoretical estimates of the performance using the ar-
chitectural details presented in Section 3. We assume that the most
of the memory fetches hit cache and are completely overlapped
with computation, hence free. The number of floating point opera-
tions per iteration is 3 in each of the versions of Count(x).

The observed rates are shown in the same Table. They match
the predicted rates within 10%. The code achieved up to 82% of
the theoretical peak of the input bandwidth of 40 GB/s. Also, the
codes performed at nearly the same rates when memory fetches
have been removed from the inner loop and substituted with regis-
ter assignments that preserve the data dependence pattern. This
supports our assumption that the memory fetches do not incur
extra latency.

Theory Measured
Version Clocks

Gflop/s GB/s Gflop/s GB/s
IEEE 8 45 30 49 33
IEEE0 9 40 27 43 29
pivmin 10 36 24 38 25

Table 2: Predicted and observed computational rates and band-
widths for different GPU versions of Count(x).

Fig. 4 shows the running times of the three versions of the

Count(x) and data transfers. The DirectX Query mechanism was
used to wait until the GPU completes execution. The IEEE0 and
pivmin versions are correspondingly 15% and 30% slower than
the IEEE version that is similar to the results reported by Demmel
and Li [1994]. Upload time is negligible compared to the down-
load time (the amount of data transferred is nearly the same). At n
= 192 pictured in Figure the total time spent in the data transfer is
about the same as the time spent in computation. Computation
time grows linearly with n but the transfer time does not change.
So, at large n the time spent in transfer is not significant.

Note the stairs of period 64 that show that computational rate
is higher when H is a multiple of 64. The same applies to the
width of the rendered rectangle that motivated us choosing width
64 for the render targets. For example, computing 32!32, 64!32,
32!64 and 64!64 blocks of pixels take the same time. Also, the
slope in the graph for H = 1,…,32 is twice as large as for H =
64*k, k=1,2,…. This could mean that only half of the processors
are utilized when H " 32 and only a quarter are used when both
the height and the width are less or equal to 32. A possible model
for this behavior could be execution of threads in 64x64 tiles, each
tile split into four quadrants that are assigned to different proces-
sors. If the quadrant is empty, the processors it is assigned to are

 a = tex2D(matrix_a, pos);
 bb = tex2D(matrix_bb, pos);
 pos.x += increment;
(1) d = a.R – x – bb.R / d;
(4) Count += (d < 0) ? 1 : 0;
 d = a.G – x – bb.G / d;
 Count += (d < 0) ? 1 : 0;
 d = a.B – x – bb.B / d;
 Count += (d < 0) ? 1 : 0;
 d = a.A – x – bb.A / d;
 Count += (d < 0) ? 1 : 0;

(a) IEEE version in HLSL language.

(2) d = (|d| < pivmin) ? –pivmin : d;
(3) d = d + 0;

(b) Extra lines used in other versions. Line (2) is used in the

pivmin version, line (3) — in IEEE0 version.

 (1) RCP r0.R, r0.R
 (1) RCP r0.G, r0.G
 (1) RCP r0.B, r0.B
 (1) RCP r0.A, r0.A
 (1) ADD r1, r3.R, -r2
 (1) MAD r0, r4.R, -r0, r1

 (2) ADD r1, r0_abs, -c0
 (2) CMP r0, r1, r0, -c0

 (3) ADD r0, r0, c1.R

 (4) CMP r1, r0, c1.R, c1.G
 (4) ADD r5, r5, r1

 r0: d
 r1: temp
 r2: x
 r3: a
 r4: bb
 r5: Count

 c0: pivmin
 c1: (0,1,0,0)

(c) A simple mapping to PS 3.0 language.

Figure 3: Count(x) expressed in HLSL and PS 3.0. The looping
and initialization logic is not shown. Variables d and x are four
component vectors, each component (R, G, B and A) stays for a
different instance of Count(x). Numbers to the left show how

HLSL and PS 3.0 codes are related to each other.

Figure 4: Running times of different GPU stages and versions of
Count(x) for n = 192. Upload is the transfer to the GPU memory,

and download is other way around. For height H, 256!H in-
stances of Count(x) are run.

5

idle. Similar behavior was observed by Bolz et al. [2003] on
NVIDIA’s hardware.

In our experience a similar program run in OpenGL has dem-
onstrated similar stairs with a period of 32. It might lead to the
conclusion, that this parameter (the “stair” width) is adjustable,
though the handle is not available to the programmer.

4.4 CPU Implementation of Count(x)

Similarly as it is done in LAPACK, we implemented both vector-
ized and non-vectorized versions of Count(x) on CPU. Both are
the IEEE version, that is the fastest and correct as the CPU arith-
metic is IEEE compliant (when using /fp:source compiler
option). As in the GPU codes, floating point numbers are used to
count the negative pivots. Fig. 5 shows the vectorized version of
the routine. According to the compiler messages, every line in the
loop body is compiled into SIMD instructions. The non-vectorized
version has inverse loop order (the compiler vectorizes only inner
loops). The non-vectorized version is run when size = EL*ML < 8.

The running time of this CPU version is labeled “naïve” in
Fig. 6. As one may see, its runtime does not increase monotoni-
cally, which means that increasing size by computing Count(x) at
a few extra points may decrease the runtime! Thus, if size ! 3
(mod 8) we add dummy points to increase size to the nearest mul-
tiple of 8. The new runtime is shown in the same Figure labelled
“dummies”. It is up to 3.2x faster according to the graph.

4.5 Testing Correctness of Count(x)

We constructed a 4!4 tridiagonal matrix, with eigenvalues suffi-
ciently distant from zero, that yields a negative denormalized
pivot in Count(x) at x = 0. If denormals are flushed to zero pre-
serving sign, it produces d = –0. We checked if this produces a
correct result in different implementations of Count(x). Note, that
as all eigenvalues are far from zero, roundoff error may not influ-
ence the value of Count(0), as the algorithm is backward stable
and the symmetric eigenvalue problem is well-conditioned.

Among the three GPU algorithms only the IEEE version has
failed, as was expected in Section 3.2. Both vectorized and non-
vectorized variants of CPU Count(x) produced correct results. On
other hand, the results of CPU Count(x) were incorrect when the
code was compiled using /fp:fast option, that allows achiev-
ing higher computational rates by waving strict IEEE 754 compli-
ance.

As only the IEEE0 and pivmin versions of the GPU Count(x)
are proven to be correct on this GPU and the IEEE0 version is
clearly faster than the alternative, only the IEEE0 routine was
used in GPU computations in the rest of the paper. IEEE and
pivmin versions may still be considered when computing on other
GPU models with different floating point conventions.

4.6 Tuning

There are two choices to be made in every iteration of the bisec-
tion algorithm — what version of Count(x) to use (the GPU or the
CPU one) and how large ML should be. The choice that results in
shortest running times of the bisection algorithm should be pre-
ferred. We consider all possible choices and choose the most effi-
cient in terms of the following definition:

efficiency =
log(ML +1)

Time
,

where Time is the running time of one iteration under the choice
of ML and version of Count(x). For example, splitting each inter-
val into 2 parts (ML = 1) in time T has the same efficiency as
splitting it into 8 parts (ML = 7) in time 3T. Finer subdivision
(higher ML) done in the same time, and faster computation at
same ML are considered more efficient. All decisions are made
offline and tabulated for use at runtime by the CPU.

The value of Time is estimated using the results of a thorough
benchmarking. The nonlinear stair-like behaviour of the GPU
code is captured in a table with an entry for each H. A linear de-
pendence on n is assumed (time = latency + n * bandwidth). Time
spent outside of the Count(x) is estimated as ! + "*EL + #*ML +
$*EL*ML. The coefficients are fit using weighted linear least
squares to minimize the relative error; the weights are set equal to
the measured time. The runtimes of the CPU version of Count(x)
are fit similarly, taking into account the zigzag pattern and intro-
duction of the dummy entries.

5 Results

All results cited in this Section (and others) were obtained with
2.8 GHz Pentium 4 520 (Prescott) and ATI Radeon X1900 XT.
The following implementations were used in the tests:
• CPU-alone: multisection running Count(x) on the CPU only;
• GPU-alone: multisection running Count(x) on the GPU only;
• CPU-GPU: multisection running Count(x) both on the GPU

and CPU. This is our fastest code;
• CLAPACK: bisection routine sstebz in CLAPACK 3.0;
• MKL BZ: bisection routine sstebz in Intel MKL 9.0;
• MKL RF: ssterf routine in Intel MKL 9.0 that is QR

algorithm optimized for finding all eigenvalues only;
• MKL GR: sstegr routine in Intel MKL 9.0 that uses dqds

algorithm to find the eigenvalues only.
In routines that require specifying the absolute tolerance the value
2*sfmin was used, that is the finest acceptable for sstebz. sfmin
is the smallest value such that 1/sfmin does not overflow.

The following matrices were used in tests (i = 1…n, % = 2
–23

is the machine epsilon):
• uniform: ai = 1 + (i–1)/n, bi = 2/n;

 for(i = 0; i < size; i++)
 {
 d[i] = 1.0;
 Count[i] = 0.0;
 }
 for(j = 0; j < n; j++)
 for(i = 0; i < size; i++)
 {
 d[i] = a[j] – x[i] – bb[j] / d[i];
 Count[i] += d[i] < 0.0 ? 1.0 : 0.0;
 }

Figure 5: The vectorized CPU version of the Count(x) routine that
executes size instances of Count(x).

Figure 6: Running time of the CPU kernel for n = 65536.

6

Figure 8: Computational rates (Gflops/s) achieved by different

versions of sstebz and a mix of matrices.

Figure 9: Speedup gained in the GPU-alone version by using

multisection vs. bisection.

Figure 10: The comparison of the runtimes for the case of

(–1,2,–1) matrix.

Figure 7: Speedup of our CPU version of sstebz relative to the

version in Intel MKL 9.0.

• geometric: ai = (3!)(i–1)/(n–1), bi = ai+1/3;
• (–1,2,–1): ai = 2, bi = –1;
• glued: (–1,2,–1) matrix with bk = 3! when k = 0 (mod 25), n

is a multiple of 25;
• practical: a subset of matrices from Harwell-Boeing, Univer-

sity of Florida and George Fann collections reduced to tridi-
agonal form1.

Uniform and geometric matrices approximate uniform and geo-
metric distribution of eigenvalues respectively. The glued matrix
has eigenvalues strongly clustered around the eigenvalues of the
(–1,2,–1) matrix with n = 25.

Off-diagonals of the test matrices were always large enough
that the LAPACK sstebz routine does not break the problem
into smaller ones, which is not currently implemented in our ver-
sion. We also ensured that other algorithms used (such as dqds) do
not exhibit unusually fast convergence that happens when the
matrix is very close to diagonal. This explains the choice of en-
tries such as 3! above.

First we analyze the behavior of the CPU codes alone. Fig. 7
shows the speedup achieved in our CPU code relative to the MKL
version. It ranges from 4.2 to 7.8 for n > 50. The CLAPACK ver-
sion was from 5% faster to 25% slower than MKL version.

Fig. 8 shows the computational rates in CLAPACK, CPU-
alone and CPU-GPU versions. Only the floating point operations
in Count(x) algorithm were taken into account in this data.
CLAPACK performs at 76–182 Mflop/s and our CPU-alone ver-
sion is at 270–800 Mflop/s. CPU-GPU version shows up to 40
Gflop/s, which is up to 50 — 220 times higher than the peak rates
in the CPU-alone — CLAPACK versions respectively. However,
the CPU-GPU version did up to 7.6! more flops than the bisection
algorithm in CLAPACK and ML used was up to 85. For compari-
son, the largest optimal ML used in the CPU-only and GPU-only
versions was 8 and 1024 respectively.

To understand the importance of using multisection vs. bisec-
tion, we performed runs forcing ML = 1. Fig. 9 shows that GPU-
alone version is sped up by the factors of 5 to 6.6 for n < 100 by
using multisection. Speedups at large n are substantial only if the
eigenvalues are clustered — the speedup was about 4.2! for the
glued matrices. Speedup should also be substantial when finding
only a small subset of all eigenvalues, which is currently not im-
plemented. Speedup is less noticeable in the GPU-CPU version as
it runs on the CPU whenever the GPU multisection is too slow —
the speedup was only up to 2.0!.

Fig. 10 compares the runtimes of CPU-only, GPU-only and
CPU-GPU versions for the (–1,2,–1) matrix. The runtime of the

1 available at http://crd.lbl.gov/~osni/Codes/stetester/

CPU-GPU version is nearly the minimum of the runtimes of the
other two versions. The crossover between CPU-alone and GPU-
alone versions is at n ! 130. For n = 1000 the GPU-alone version
is ! 9.0! faster than the CPU-alone version.

Fig. 11 shows the percentage of time spent in Count(x) on the
CPU and on the GPU in the CPU-GPU version for (–1,2,–1) ma-
trix. At n = 121 the time spent in the GPU code jumps from 0% to
67% and time spent in the CPU code falls from 90% to 21%. 90%
and 99% of the time spent in the GPU codes are reached at n !
1400 and n ! 62000 respectively.

7

Figure 12: Speedup of our code run on Radeon X1900 XT vs. the
code in CUDA SDK 1.1 run on GeForce 8800 GTX.

Matrix CPU-only MKL BZ MKL RF MKL GR

practical 22 125 68 137
(–1,2–1) 38 130 38 89
uniform 45 156 37 89

geometric 31 107 21 52
glued 2.9 12.8 780 670

Table 3: Maximum slowdowns of different implementations rela-
tive to the CPU-GPU version.

Matrix
CPU-
only

CPU-
GPU

MKL
BZ

MKL
RF

MKL
GR

practical 1.31 1.28 1.31 38 148
(–1,2,–1) 1.01 1.01 1.00 24 28
uniform 1.00 1.00 1.00 630 260

geometric 1.23 1.25 1.24 112 79
glued 1.00 1.00 1.00 57 109
Table 4: Worst absolute errors observed in tests. Absolute er-
ror is defined as (maxi |!i

computed – !i
true|) / (! maxi |!i

true|).

Figure 11: The breakdown of the runtime of CPU-GPU version for
(–1,2, –1) matrix. The time cited for Count(x) on the GPU includes

transferring data between the GPU and the main memories.

The runtimes and accuracy achieved in tests with different
matrices and algorithms are shown in Fig. 13–15 and Tables 3–4.
The CPU-GPU version was up to 156" faster than MKL BZ ver-
sion and up to 45" faster than CPU-only version. Alternative ei-
gensolvers were also substantially outperformed: for practical
matrices the CPU-GPU version was up to 68" faster than MKL
RF and up to 137" faster than MKL GR.

!i
true in Table 4 was found using LAPACK dstebz routine

in the Intel MKL that is the double precision implementation of
the bisection algorithm. According to the table, the MKL RF and
MKL GR solvers showed substantially lower accuracy than the
implementations of the bisection algorithm. All implementations
of the bisection algorithms have shown similar absolute accuracy.
The relative error defined as maxi (|!i

computed – !i
true| / |! !i

true|) for
geometric matrices was also small — 1.49, 1.97 and 1.33 for
CPU-only, CPU-GPU and MKL BZ implementations correspond-
ingly. This shows that the GPU-based solver has high relative
accuracy that is expected in some special cases, see [Barlow and
Demmel 1990].

We found that Count(x) in CPU-alone and GPU-alone ver-
sions was always monotonic in the tests, but CPU-GPU version
did produce non-monotonic values, requiring the correction dis-
cussed in Sections 2.3 and 2.4.

We also tried running Count(x) concurrently on the GPU and
the CPU but found that this does not yield substantial benefits as
the GPU usually outperforms the CPU by at least an order of
magnitude.

6 Comparison with Previous Work

NVIDIA CUDA 1.1 SDK contains another implementation of
bisection algorithm that is optimized for NVIDIA’s GPUs [Lessig
2007]. This implementation suffers from many overflow problems
in data structures that leads to failures or crashed when 512 # n #
1024, and failures with geometric matrices with n > 1024 that
yield severely imbalanced interval trees. Also, it has a non-
practical stopping criterion and is correct only if GPU arithmetic
is monotonic, that is not clear given the detailed vendor’s pro-
gramming guide [NVIDIA 2007].

However, we managed to successfully run this code with uni-
form matrices and stopping criterion aligned with that in
LAPACK as done in our implementation. Running it on GeForce
8800 GTX, which is a newer and faster GPU than was used in our
work, it performed up to more than 2 times slower than our code
run on Radeon X1900 XT and Pentium 4, see Fig. 12. For exam-
ple, our code runs in 1.0s for n=40000 vs. 2.5s for the NVIDIA’s
code.

NVIDIA’s implementation runs entirely on the GPU. This re-
quired a significant programming effort that is described in [Les-
sig 2007], as the rest of the algorithm beyond Count(x) is not em-
barrassingly parallel. In our opinion, there is little motivation for
this complicated and error-prone design, since Count(x) dominates
the cost for sufficiently large problems, say, takes 90% of time for
n > 100 as in Fig. 11. On other hand, if the problem is small, it is
faster to solve it entirely on the CPU, see Fig. 10. Another argu-
ment for putting the entire algorithm on the GPU is to avoid the
communication overhead at each call to Count(x). But as it was
shown in Section 4.3 this overhead is not substantial when run on
Radeon X1900 for sufficiently large matrices. It may even be less
substantial with newer GPUs as they have an order or magnitude
higher bandwidths in the CPU-to-GPU transfers.

As the GPU usually comes with a CPU (and in the future may
come on the same die, as is discussed today by both Intel and
AMD), we advocate departing from the trend of moving entire
algorithms to the GPU to considering instead the CPU-GPU tan-
dem as the target platform. Many existing parallel algorithms
spend small fraction of the work in codes that do not expose sub-
stantial parallelism. Offloading this work to the GPU may be both
painful and unprofitable.

7 Conclusion

We have produced a numerically correct implementation of the
bisection algorithm for the GPU that substantially outperforms the
bisection and other algorithms run on the CPU. Automatic tuning
was one of the key components of our high performance design.
We took advantage of the partial compliance of the GPU arithme-
tic with the IEEE 754 standard to reduce the runtime about 15%.

8

Also, we showed that a higher degree of IEEE 754 compliance
could win an additional 15% assuming no performance penalty for
greater compliance. Trivial improvement would raise the func-
tionality of our implementation to the full functionality of
LAPACK’s sstebz, such as finding only a subset of eigenvalues
and splitting the matrix into blocks for better performance when
off-diagonal elements are small. Future work includes porting a
tridiagonal eigenvector solver, such as the MRRR algorithm
[Dhillon and Parlett 2003] or the inverse iteration algorithm. Us-
ing the GPU in the reduction to tridiagonal form promises
speedup in the dense symmetric eigenproblems — these algo-
rithms are rich in BLAS2 and BLAS3 operations such as matrix
multiply, which is known to run faster on the GPU.

Acknowledgements

We want to thank ATI and NVIDIA for the donated GPUs, Taka-
hiro Katagiri for providing his implementation of the Multi-
section with Multiple Eigenvalues method and Professor Sara
McMains for the course on general-purpose computation on the
GPUs and being helpful with equipment.

References

AMD 2006. ATI CTM Guide, version 1.01.

ATI 2005a. Radeon X1000 Family Technology Overview, ATI
Technology White Paper.

ATI 2005b. Radeon X1800 Memory Controller, ATI Technology
White Paper.

ATI 2005c. Radeon X1800 Shader Architecture, ATI Technology
White Paper.

ANDERSON, E., BAI, Z., BISCHOF, C., DEMMEL, J., DONGARRA, J.,
DU CROZ, J., GREENBAUM, A., HAMMARLING, S., MCKENNEY,
A., OSTROUCHOV, S., AND SORENSEN, D. 1999. LAPACK Users’
Guide, SIAM.

BARLOW, J., AND DEMMEL, J. 1990. Computing accurate eigensys-
tems of scaled diagonally dominant matrices, SIAM Journal on
Numerical Analysis 27, 3, 762–791. (Also LAPACK Working
Note #7).

BLACKFORD, L. S., CHOI, J., CLEARY, A, D’AZEVADO, E.,
DEMMEL, J., DHILLON, I., DONGARRA, J., HAMMARLING, S.,
HENRY, G., PETITET, A., STANLEY, K., WALKER, D., AND

WHALEY, R. 1997a. ScaLAPACK Users’ Guide, SIAM.

BLACKFORD, L. S., CLEARY, A, DEMMEL, J., DHILLON, I.,
DONGARRA, J., HAMMARLING, S., PETITET, A., REN, H.,
STANLEY, K., AND WHALEY, R. 1997b. Practical experience in
the numerical dangers of heterogeneous computing, ACM
Transactions on Mathematical Software 23, 2, 133–147. (See
also LAPACK Working Note #112)

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER, P. 2003.
Sparse matrix solvers on the GPU: conjugate gradients and
multigrid, ACM Transactions on Graphics 22, 3, 917–924.

BUCK, I., FATAHALIAN, K., AND HANRAHAN, P. 2004. GPUBench:
evaluating GPU performance for numerical and scientific ap-
plications, ACM Workshop on General Purpose Computing on
Graphics Processors (GP

2
).

DEMMEL, J. W. 1997. Applied Numerical Linear Algebra, SIAM.

DEMMEL, J. W., DHILLON, I., AND REN, H. 1995. On the correct-
ness of some bisection-like parallel algorithms in floating point
arithmetic, Electronic Transactions on Numerical Analysis 3,
116–149. (Also LAPACK Working Note #70).

DEMMEL, J. W., AND LI, X. 1994. Faster numerical algorithms via
exception handling, IEEE Transactions on Computers 43, 8,
983–992.

DHILLON, I., AND PARLETT, B. N. 2003. Orthogonal eigenvectors
and relative gaps, SIAM Journal on Matrix Analysis and Appli-
cations 25, 3, 858–899.

HAGEN, T. R., HENRIKSEN, M. O., HJELMERVIK, J. M., AND LIE,
K.-A. 2007. How to solve systems of conservation laws numeri-
cally using the graphics processor as a high-performance com-
putational engine, In Geometrical Modeling, Numerical Simula-
tion and Optimization: Industrial Mathematics at SINTEF, Eds.,
Hasle, G., Lie, K.-A., and Quak, E., Springer Verlag, 211–264.

IEEE 1987. IEEE standard 754-1985 for binary floating-point
arithmetic, SIGPLAN 22, 2, 9–25.

KAHAN, W. 1966. Accurate Eigenvalues of a Symmetric Tri-
Diagonal Matrix, Technical Report CS41, Computer Science
Department, Stanford University, July 22, 1966 (with revisions
to June 1968).

KATAGIRI, T., VÖMEL, C., AND DEMMEL, J. W. 2006. Automatic
performance tuning for the multi-section with multiple eigen-
values method for the symmetric eigenproblem, In PARA'06,
Umea, Sweden, June, 2006.

LESSIG, C. 2007. Eigenvalue Computation with CUDA, NVIDIA
CUDA SDK 1.1.

LO, S.-S., PHILIPPE, B., AND SAMEH, A. 1987. A multiprocessor
algorithm for the symmetric tridiagonal eigenvalue problem,
SIAM Journal on Scientific and Statistical Computing 8, 2, 155–
165.

MATHIAS, R. 1995. The instability of parallel prefix matrix multi-
plication, SIAM Journal of Scientific Computing 16, 4, 956–973.

MCCOOL, M., WADLEIGH, K., HENDERSON, B., AND LIN, H.-Y.
2006. Performance Evaluation of GPUs Using the RapidMind
Development Platform, October 26, 2006.

NVIDIA 2007. NVIDIA CUDA Compute Unified Device Architec-
ture Programming Guide, version 1.1.

PARLETT, B. N. 1980. The Symmetric Eigenvalue Problem, Pren-
tice-Hall.

REN, H. 1996. On the Error Analysis and Implementation of Some
Eigenvalue Decomposition and Singular Value Decomposition
Algorithms, PhD Thesis in Applied Mathematics, University of
California at Berkeley (see also LAPACK Working Note #115).

RIGUER, G. 2006. The Radeon X1000 Series Programming Guide,
Radeon SDK, March 2006.

SEGAL, M., AND PEERCY, M. 2006. A performance-oriented data
parallel virtual machine for GPUs, ACM SIGGRAPH 2006
Sketches.

SIMON, H. D. 1989. Bisection is not optimal on vector processors,
SIAM Journal on Scientific and Statistical Computing 10, 1,
205–209.

9

Figure 13: Practical matrices: runtimes of different implementations and slowdowns relative to the CPU-GPU version.

Figure 14: (–1,2,–1) matrices: runtimes of different implementations and their slowdowns relative to the CPU-GPU version. Uniform and
geometric matrices yield similar curves.

10

Figure 15: Glued matrices: runtimes of different implementations and their slowdowns relative to the CPU-GPU version. The benefits of

using the GPU are small due to small inherent parallelism in the problem. Bisection algorithms run in linear time due to strongly clustered
eigenvalues.

