
Distributed Networked Sensing and Control Systems:
Robust Estimation and Real-time Control

Songhwai Oh

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-2

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-2.html

January 5, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Distributed Networked Sensing and Control Systems:
Robust Estimation and Real-time Control

by

Songhwai Oh

B.S. (University of California, Berkeley) 1995
M.S. (University of California, Berkeley) 2003

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Shankar Sastry, Chair
Professor Stuart Russell

Professor Bin Yu

Fall 2006

The dissertation of Songhwai Oh is approved:

Professor Shankar Sastry, Chair Date

Professor Stuart Russell Date

Professor Bin Yu Date

University of California, Berkeley

Fall 2006

Distributed Networked Sensing and Control Systems:
Robust Estimation and Real-time Control

Copyright c© 2006

by

Songhwai Oh

Abstract

Distributed Networked Sensing and Control Systems:

Robust Estimation and Real-time Control

by

Songhwai Oh

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Shankar Sastry, Chair

There is a growing interest in distributed networked sensing and control systems, such

as wireless sensor networks, networked control systems, distributed control systems, multi-

agent systems, and heterogeneous sensor networks. A distributed networked sensing and

control system consists of a number of autonomous agents. Information among these agents

is usually shared by wireless communication. However, each agent is resource-constrained,

e.g., it may have limited processing power, storage capacity, and communication band-

width. These constraints create measurement inconsistency and communication unrelia-

bility and they are the major obstacles in realizing an autonomous distributed networked

sensing and control system which is capable of real-time situation understanding and con-

trol.

In this thesis, we take an advantage of spatio-temporal correlation among the neighbor-

ing agents and develop robust real-time algorithms for situation understanding and control.

We also design and implement a real-time situation understanding and control system using

wireless sensor networks.

For this purpose, we use the mathematical frameworks of multi-target tracking and

pursuit evasion games. Multi-target tracking is a general framework which can be used

i

to describe many estimation and inference problems appearing in distributed networked

sensing and control systems. The pursuit evasion game is a mathematical framework for

many challenging control problems and it can be viewed as the worst-case control problem.

The thesis starts with the simplest distributed estimation problem in a sensor network.

After showing that the method cannot be applied to more general multi-target tracking

problems, we develop a general Bayesian framework for multi-target tracking problems.

The Bayesian framework allows a method which is robust against inconsistency in mea-

surements and missing measurements due to communication unreliability. Since the exact

computation of Bayesian estimates is a time-consuming task, we develop an approximate

method, called Markov chain Monte Carlo data association, to efficiently solve the data

association problems appearing in multi-target tracking problems.

Markov chain Monte Carlo data association is also used to improve the robustness of

the multi-target tracking methodology by compactly managing identities of multiple ob-

jects using the identity-mass-flow framework. We then develop a real-time hierarchical

control system with multiple layers of data fusion to solve the multi-target tracking and

pursuit evasion games using a distributed networked sensing and control system. This the-

sis presents the first demonstration of multi-target tracking using a wireless sensor network

without relying on classification.

We also present a general framework for modeling a distributed networked control

system consisting of multiple agents communicating over a lossy communication channel.

We describe exact and approximate filtering methods to estimate states of a distributed

networked control system. In addition, we describe how to find a communication control

which stabilizes a distributed networked control system.

Professor Shankar Sastry, Chair Date

ii

Acknowledgements

This thesis is made possible by all my teachers, colleagues, and friends and I would

like to thank them all.

First and foremost, I would like to thank my advisor, Professor Shankar Sastry, for

his guidance and encouragement. I have been always inspired by his enthusiasm toward

science and the depth and breath of his research. His interests, advices, and insightful

suggestions have helped me complete this thesis.

I also would like to thank Professor Stuart Russell. My research, including this thesis,

has benefited tremendously from many discussions with him. His expertise and ingenious

questions and suggestions have been inspirational and kept me motivated. I also would like

to thank Professor Bin Yu for being in my qualification exam and dissertation committees.

Her expertise and comments have helped me greatly in making this thesis.

During my graduate years in Berkeley, I have had a chance to work with many extraor-

dinary researchers. I thank them all. Luca Schenato helped me with applying my research

to many practical problems and I thank him for all the comments and discussions I had

with him. I also thank Inseok Hwang for giving me an opportunity to apply my work to

problems in aeronautics. I also would like to thank Phoebus Chen for his dedication in

research and letting me work with him. I also would like to thank Jin Kim for introducing

me to the multiple target tracking problem and many delightful discussions. I also would

like to thank Professor Pravin Varaiya, Professor Ruzena Bajcsy, and Professor Laurent El

Ghaoui for helping me with many aspects of my research.

I also would like to thank all my friends in the Robotics and Intelligent Machines Lab-

oratory, including Parvez Ahmmad, Alessandro Abate, Aaron Ames, Hoam Chung, Mike

Eklund, Christopher Geyer, Jianghai Hu, John Koo, Jongho Lee, Marci Meingast, Tanya

Roosta, Shawn Shaffert, David Shim, Bruno Sinopoli, Jonathan Sprinkle, Todd Templeton,

iii

and Bonnie Zhu. I would like to thank everyone who worked for the NEST project and

made the project and final experiment successful: Professor David Culler, Prabal Dutta,

Eric Fraser, Mike Howard, Jonathan Hui, Jaein Jeong, August Joki, Sukun Kim, Philip

Levis, Michael Manzo, Joseph Polastre, Travis Pynn, Peter Ray, Cory Sharp, Jay Taneja,

Gilman Tolle, Robert Szewczyk, and Kamin Whitehouse. I also would like to thank my

fellow graduate students in EECS at U.C. Berkeley. It was a great pleasure to work with so

many extraordinary individuals and I am looking forward to continue working with them

for many more years to come.

Lastly, but most importantly, I would like to thank my parents for their endless love and

encouragement.

iv

To my parents

v

CONTENTS

CONTENTS vi

1 INTRODUCTION 1

1.1 Sensor Networks . 1

1.2 Distributed Networked Sensing and Control Systems 4

1.3 Overview of the Thesis . 6

2 DISTRIBUTED TRACKING IN SENSOR NETWORKS 9

2.1 Problem Formulation . 10

2.2 Optimal Distributed Tracking Algorithm 12

2.3 Pruning . 16

2.4 Robustness . 19

2.5 Non-disjoint Sensing Regions . 22

2.6 Simulation Results on Multiple Object Tracking 23

2.7 Issues with Tracking Multiple Objects in Sensor Networks 25

2.8 Summary . 26

3 GENERAL MULTI-TARGET TRACKING PROBLEMS 28

3.1 Problem Formulation . 29

3.2 Probabilistic Model . 31

vi

4 MARKOV CHAIN MONTE CARLO DATA ASSOCIATION 37

4.1 Markov Chain Monte Carlo . 41

4.2 Single-scan MCMCDA . 44

4.2.1 Single-scan Bayesian Filter . 44

4.2.2 Single-scan MCMCDA Filter . 49

4.2.3 Analysis . 51

4.2.4 Simulation Results . 54

4.3 Multi-scan MCMCDA . 56

4.3.1 Multi-scan MCMCDA Algorithm 57

4.3.2 Online MCMCDA . 62

4.3.3 Simulation Results . 63

4.4 Summary . 74

5 DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT 75

5.1 A System Architecture of Distributed Multi-target Tracking and Identity

Management . 79

5.2 Data Association and Multi-target Tracking (DAMTT) 81

5.2.1 Mixing Matrix . 82

5.2.2 Local Information . 86

5.3 Distributed Multi-target Identity Management (DMIM) 86

5.3.1 Identity Management (IM) . 86

5.3.2 Identity and Track Fusion (ITF) 89

5.4 Simulation Results . 98

5.4.1 Two-sensor Scenario . 99

5.4.2 Seven-sensor Scenario . 102

5.5 Summary . 107

vii

6 LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS 110

6.1 Related Work in Target Tracking using Sensor Networks 113

6.2 Problem Formulation and Control System Architecture 115

6.2.1 Sensor Network and Sensor Models 117

6.2.2 Agent Dynamics and Coordination Objective 120

6.3 Control System Implementation . 124

6.3.1 Multi-sensor Fusion Module . 124

6.3.2 Multi-target Tracking and Multi-track Fusion Modules 130

6.3.3 Multi-agent Coordination Module 131

6.4 Simulation Results . 138

6.4.1 Sensing Range . 139

6.4.2 Sensor Localization Error . 141

6.4.3 Transmission Failures . 142

6.4.4 Communication Delays . 143

6.4.5 An Example of Surveillance with Sensor Networks 144

6.5 Experiments . 146

6.5.1 Platform . 148

6.5.2 Live Demonstration . 151

6.6 Summary . 153

7 DISTRIBUTED NETWORKED CONTROL SYSTEMS 157

7.1 Distributed Networked Control Systems with Lossy Links 159

7.2 Exact Kalman Filtering for DNCSs . 161

7.2.1 KF for Simple DNCS . 162

7.2.2 KF for General DNCS . 165

7.3 Approximate Kalman Filtering for DNCSs 166

7.3.1 Lower-bound KF for General DNCS 166

viii

7.3.2 Upper-bound KF for General DNCS 167

7.4 Convergence . 168

7.5 Simulation Results . 168

7.6 Stabilizing Communication Control . 171

7.7 Summary . 177

8 CONCLUSIONS 179

A PROOFS OF THEOREMS IN CHAPTER 2 183

A.1 Proof of Theorem 1 . 183

A.2 Proof of Theorem 2 . 185

A.3 Proof of Theorem 3 . 186

A.4 Proof of Corollary 2 . 189

B PROOFS OF THEOREMS IN CHAPTER 4 190

B.1 Proof of Theorem 5 . 190

B.2 Proof of Theorem 6 . 195

B.3 Proof of Theorem 7 . 198

C PROOFS OF THEOREMS IN CHAPTER 7 200

C.1 Proof of Theorem 9 . 200

C.2 Proof of Theorem 10 . 202

C.3 Proof of Theorem 11 . 202

BIBLIOGRAPHY 204

INDEX 217

ix

CHAPTER 1

INTRODUCTION

1.1 Sensor Networks

Recently, we have been witnessing dramatic advances in micro-electromechanical sen-

sors (MEMS), digital signal processing (DSP) capabilities, computing, and low-power

wireless radios which are revolutionizing our ability to build massively distributed, eas-

ily deployed, self-calibrating, disposable, wireless sensor networks [Estrin et al., 2002;

Akyidliz et al., 2002; Gharavi and Kumar, 2003]. Soon, the fabrication and commercial-

ization of inexpensive millimeter-scale autonomous electromechanical devices containing

a wide range of sensors, including acoustic, vibration, acceleration, pressure, tempera-

ture, humidity, magnetic, and biochemical sensors, will be readily available [Warnake et

al., 2002]. These potentially mobile devices, called “nodes”, are provided with their own

power supply [Roundy et al., 2004] and can communicate with neighboring sensor nodes

via low-power wireless communication to form a wireless ad-hoc sensor network with up to

100,000 nodes [Estrin et al., 2001; Culler et al., 2004]. Sensor networks can offer access to

an unprecedented quantity of information about our environment, bringing about a revolu-

tion in the amount of control an individual has over his environment. The ever-decreasing

1

CHAPTER 1. INTRODUCTION

cost of hardware and steady improvements in software will make sensor networks ubiq-

uitous in many aspects of our lives [TR, 2003]. Throughout this thesis, the term sensor

networks refers to the wireless sensor networks.

Applications

The applications of sensor networks include, but not limited to, environmental monitor-

ing [Szewczyk et al., 2004; Zhang et al., 2004], structural health monitoring [Pakzad et

al., 2005], healthcare [Lorincz et al., 2004], building comfort control [Kintner-Meyer and

Conant, 2005], traffic control [Nekovee, 2005], wildfire monitoring [Doolina and Sitara,

2005], manufacturing and plant automation [Willig et al., 2005], service robotics [LaMarca

et al., 2002], and surveillance systems [Brooks et al., 2004; Arora et al., 2004]. A sensor

network is an attractive solution for many applications due to its flexibility, wireless com-

munication capability, and the small size of each sensor node. Considering the fact that

the installation costs can represent 20% to 80% of the overall cost of data acquisition and

control systems [Kintner-Meyer and Conant, 2005], the cost reduced by using a wireless

sensor network alone will have a significant impact on every application.

Based on how sensor data is collected and used, applications of sensor networks can be

categorized as following:

1. Data collection: Unlike the traditional sensors, many of these small sensor nodes in

a sensor network can be placed near the source of interest, providing a dense set of

data. This makes a sensor network an ideal tool for collecting data for many sci-

entific studies. Examples include ZebraNet for monitoring the migration pattern of

zebras [Zhang et al., 2004], habitat monitoring on Great Duck Island and microcli-

mate monitoring of California redwood forests [Szewczyk et al., 2004].

2. Event detection: In data collection, a sensor network is solely used to collect sen-

sor data and an analysis of the collected data is done at a later time. But an event

2

CHAPTER 1. INTRODUCTION

detection system uses a sensor network to collect sensor data and detect abnormal

behaviors, such as structural health monitoring of bridges [Pakzad et al., 2005], vital

sign monitoring in health care [Lorincz et al., 2004], wildfire monitoring [Doolina

and Sitara, 2005], and surveillance systems [Brooks et al., 2004; Arora et al., 2004].

3. Real-time situation understanding and control: A real-time situation understanding

and control system is similar to an event detection system. But instead of simply re-

porting a detection of an abnormal behavior, a real-time situation understanding and

control system makes decisions within the system. Examples include manufacturing

and plant automation [Willig et al., 2005], traffic control [Nekovee, 2005], building

comfort control [Kintner-Meyer and Conant, 2005], service robotics [LaMarca et al.,

2002], and surveillance systems. It can be argued that the realization of real-time sit-

uation understanding and control systems using sensor networks will have a dramatic

societal impact on our lives.

Challenges

Each sensor node is resource-constrained. The limited supply of power and other con-

straints, such as manufacturing costs and limited package sizes, limit the capabilities of

each sensor node. For example, a typical sensor node has limited processing power, stor-

age capacity, and communication bandwidth. These constraints create measurement incon-

sistency, such as noise and false alarms, and communication unreliability, such as trans-

mission failures and delays. Hence, they are the major challenges in realizing a sensor

network system. The impact of these constraints is greater as we introduce more decision-

making capabilities into a sensor network. This is why there have been some successful

deployments of data collection systems and event detection systems while there has been

no real-time situation understanding and control system using a sensor network.

As we introduce more real-time decision-making capabilities into a sensor network, we

3

CHAPTER 1. INTRODUCTION

need to have a better understanding of the situation in real-time. Considering measure-

ment inconsistency and communication unreliability inherent in sensor networks, the task

of real-time situation understanding and decision-making seems to be an unreachable goal.

However, the abundant number of spatially spread sensors and a carefully designed sys-

tem based on robust real-time algorithms can make real-time situation understanding and

decision-making possible using sensor networks; and this is the goal of this thesis. The

main objectives of this thesis are

• development of robust real-time algorithms for situation understanding and control;

• design and implementation of a real-time situation understanding and control system

using wireless sensor networks; and

• evaluation of real-time situation understanding and control systems.

There are other challenges in developing sensor network system that are not addressed

in this thesis. On the hardware side, we need an inexpensive sensor node which operates

with low power consumption for a long-term deployment. On the software side, we need

reliable and robust communication protocols, time synchronization, and calibration of a

large-scale distributed system. Other challenges include security and privacy introduced

by using the wireless communication medium.

1.2 Distributed Networked Sensing and Control Systems

In this thesis, a wide range of distributed and networked systems are considered, such as

sensor networks, networked control systems, distributed control systems, and multi-agent

systems. The methodology developed in this thesis is currently applied to heterogeneous

sensor networks. A heterogeneous sensor network is a combination of high-bandwidth,

low-bandwidth, and mobile sensors. The high-bandwidth sensors include the image sensors

4

CHAPTER 1. INTRODUCTION

for in-depth situation awareness and recognition. In this thesis, we use the term distributed

networked sensing and control systems to refer all such systems.

Robust Estimation and Real-time Control

As mentioned earlier, the main objectives of this thesis are the evaluation and develop-

ment of a real-time situation understanding and control system. In order to formulate

real-time situation understanding problems in sensor networks, we need a sound mathe-

matical framework. For this purpose, we use the mathematical framework of multi-target

tracking throughout this thesis. Multi-target tracking is a general framework which can

be used to describe many estimation or inference problems appearing in sensor networks.

In multi-target tracking, there are many stochastic or random processes whose states are

stochastically updated. Based on noisy measurements from these processes, the goal of

multi-target tracking is to accurately estimate the states of all processes. In general, two

stochastic models are used in multi-target tracking: dynamic and measurement models. The

multi-target tracking problem includes single-target tracking and static process estimation

problems. Multi-target tracking enjoys the flexibility of allowing different measurement

models for different sensors and different dynamic models for different stochastic or ran-

dom processes. Since the general formulation of multi-target tracking does not assume a

constant number of processes, this is truly the general mathematical framework for estima-

tion and inference problems in sensor networks.

In order to overcome measurement inconsistency and communication unreliability of a

distributed networked sensing and control system, we need a robust estimation algorithm.

In this thesis, we formulate the estimation problem using the Bayesian framework based on

carefully designed prior models. The Bayesian framework allows a method which is robust

against inconsistency in measurements and missing measurements due to communication

unreliability. Since the exact computation of Bayesian estimates is a time-consuming task,

5

CHAPTER 1. INTRODUCTION

this thesis proposes an efficient and good approximation method.

Formulating a general mathematical model for real-time control systems is more chal-

lenging since a different control application requires a different control system. For this

reason, we use the framework of pursuit evasion games to model real-time situation under-

standing and control problems. The pursuit evasion game can be viewed as the worst-case

control problem since the pursuers must find the best controls to pursue evaders while the

equally capable evaders try to avoid the pursuers with their best efforts. One can argue that

the most control problems are easier than pursuit evasion games. Hence, if one can solve

the pursuit evasion games, she can also solve the other control problems.

Since each sensor node or agent communicates with one another using the wireless

communication channel, one must be able to quantify and evaluate the effect of commu-

nication loss in estimation and control. This problem is treated in the last chapter of this

thesis.

1.3 Overview of the Thesis

Chapter 2 describes a distributed tracking algorithm for sensor networks. We assume a net-

work of sparsely located binary sensors and the tracking problem is formulated as a hidden

state estimation problem in a hidden Markov model (HMM) over the finite state space of

sensors. An optimal distributed tracking algorithm is derived using the Viterbi algorithm.

Then we show provably good pruning strategies for scalability and the conditions under

which the algorithm is robust against false detections. Since the computation and storage

of track information are done in a completely distributed manner, the method is robust

against node failures and transmission failures. However, we find that the formulation can

not be easily extended to multi-target tracking problem. This chapter gives a motivation for

developing a general framework for multi-target tracking problems discussed in Chapter 3.

This chapter is based on [Oh and Sastry, 2005b].

6

CHAPTER 1. INTRODUCTION

In Chapter 3, we develop a general Bayesian framework for multi-target tracking prob-

lems. This framework handles uncertainties in identity, number of targets, track initiation

and termination times. As discussed earlier, the mathematical framework of multi-target

tracking is well-suited for inference problems in sensor networks. Based on this frame-

work, Chapter 4 develops an efficient algorithm for solving multi-target tracking problems.

Chapter 4 describes the Markov chain Monte Carlo data association (MCMCDA) method

for solving the data association problems appearing in multi-target tracking problems.

When the number of targets is fixed, the single-scan version of MCMCDA approximates

joint probabilistic data association (JPDA). Although the exact computation of association

probabilities in JPDA is NP-hard, we prove that the single-scan MCMCDA algorithm pro-

vides a fully polynomial randomized approximation scheme for JPDA. For general multi-

target tracking problems, in which unknown numbers of targets appear and disappear at

random times, we present a multi-scan MCMCDA algorithm that approximates the op-

timal Bayesian filter based on the general framework developed in Chapter 3. We also

present extensive simulation studies supporting the theoretical results and performance of

MCMCDA. MCMCDA is used as a building block of the surveillance system described in

Chapter 5 and Chapter 6. This chapter is based on [Oh et al., 2006b].

Chapter 5 considers the problem of tracking multiple targets and managing their identi-

ties in sensor networks and proposes a scalable distributed multi-target tracking and identity

management (DMTIM) algorithm that can track an unknown number of targets and manage

their identities efficiently in a distributed sensor network environment. A decision based

on a single set of tracks may be risky since tracks do not fully exhibit the uncertainty in the

identities of targets accumulated from continuous interactions among crossing or nearby

targets. DMTIM compactly manages identities of targets based on the identity-mass-flow

framework. This framework prevents exponential growth in computation and storage of

target-track association probabilities. Using identity and track fusion, DMTIM maintains

consistent identities and tracks among neighboring sensors. This chapter is based on [Oh

7

CHAPTER 1. INTRODUCTION

et al., 2006a].

In Chapter 6, the multi-target tracking algorithm developed in Chapter 4 is applied to

a real-time control system using sensor networks. In particular, we consider the problem

of pursuit evasion games (PEGs). The main challenge in developing a real-time control

system using sensor networks is the inconsistency in sensor measurements due to packet

loss, communication delay, and false detections. We address this challenge by developing

a real-time hierarchical control system, named LochNess, which decouples the estimation

of evader states from the control of pursuers via multiple layers of data fusion. The control

system LochNess is evaluated in simulation and successfully demonstrated using a large-

scale outdoor sensor network deployment. To the author’s best knowledge, it is the first

demonstration of multi-target tracking using a sensor network without relying on classifi-

cation. This chapter is based on [Oh et al., 2007].

Chapter 7 describes a distributed networked control system (DNCS) consisting of mul-

tiple agents communicating over a lossy communication channel, e.g., wireless channel.

First, we discuss the state estimation of a DNCS and propose approximate filtering algo-

rithms. While the time complexity of the exact method can be exponential in the number

of possible communication link configurations, the time complexity of an approximate

method is not dependent on the number of possible configurations. We also derive a con-

dition under which the stable state estimation is not possible for the general case with an

arbitrary number of lossy communication links. Lastly, the problem of finding a commu-

nication control which stabilizes a DNCS is considered. The stabilizing communication

control problem seeks the acceptable ranges of packet loss rates at which the overall sys-

tem is stable. Efficient algorithms based on convex optimization are developed for solving

the stabilizing communication control problem. This chapter is partially based on [Oh and

Sastry, 2006].

8

CHAPTER 2

DISTRIBUTED TRACKING IN SENSOR

NETWORKS

In this chapter, we take the minimalist approach and use the binary sensor model, in which

each sensor reports only a binary value indicating whether an object is present near the

sensor or not. The tracking problem in sensor networks is formulated as a hidden state

estimation problem in a hidden Markov model (HMM) over the finite state space of sen-

sors. Then an optimal distributed tracking algorithm is derived using the Viterbi algorithm

[Rabiner, 1989]. We then show provably good pruning strategies for scalability and the

conditions under which the algorithm is robust against false detections. The algorithm is

also extended to handle non-disjoint sensing regions and to track multiple moving objects.

Since the computation and storage of track information are done in a completely distributed

manner, the method is robust against node failures and transmission failures. In addition,

the use of binary sensors makes the proposed algorithm suitable for many sensor network

applications such as location-based services. The algorithm presented in this chapter is

well-suitable for indoor tracking problems where the movement of an object cannot be

easily modeled and sensor network self-localization is difficult.

9

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

Based on the fomulation developed in this chapter, we discuss issues with a completely

distributed algorithm for a general multi-target tracking problem in a sensor network. The

general multi-target tracking problem is rigorously fomulated in Chapter 3, an algorithm

for solving general multi-target tracking problems is given in Chapter 4, and a real-time

tracking system for sensor networks is described in Chapter 6.

2.1 Problem Formulation

Suppose there are N sensor nodes, s1, . . . , sN . We denote the sensing region of sensor

node si by Ci and assume that the sensing region of each sensor node is disjoint from the

sensing regions of other sensor nodes. A sensor node si is passage connected to a sensor

node sj if there is a path from the sensing region of si to the sensing region of sj such that

an object can traverse. A sensor node si is direct passage connected to a sensor node sj if si

is passage connected to sj and there is a path from si to sj which does not intersect sensing

regions of the remaining sensors. We assume that the passage connectivity (direct passage

connectivity) is symmetric, i.e., if si is passage connected (direct passage connected) to sj ,

then sj is passage connected (direct passage connected) to si. Note that when there is no

confusion, we will denote sensor si by its index i.

Definition 1. A passage connectivity graph of sensor nodes s1, . . . , sN is a graph G =

(V,E), where V = {1, . . . , N} and (u, v) ∈ E if and only if u and v are direct passage

connected.

Let G = (V,E) be the passage connectivity graph of sensor nodes s1, . . . , sN . An

example of a passage connectivity graph is shown in Figure 2.1. Notice that since u ∈ V

is direct passage connected to u, (u, u) ∈ E. Throughout this chapter, without loss of

generality, we assume that G is a connected graph, since, if G is disconnected, we can

consider each partition of G separately. Let Xt ∈ {1, . . . , N} be the location of an object

10

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

(a) (b)

Figure 2.1: (a) An example of indoor sensor network deployment (solid circles are
sensors). (b) The passage connectivity graph of the sensor network shown in (a).

on G at time t for t ∈ {1, . . . , T}, where T is the time horizon. An object appears at i ∈ V

with the initial state probability πi = P (X1 = i). If Xt = i, an object is located in Ci at

time t.

Let NBi = {j ∈ V : (i, j) ∈ E} be the neighborhood of i. We assume that the

evolution of an object on G is Markovian such that P (Xt+1 = j|Xt = i,Xt−1, . . . , X1) =

P (Xt+1 = j|Xt = i) := pij for all t. Let Pt = [pij] be the transition probability matrix.

For each i,
∑

j∈NBi
pij = 1 and pij = 0 for j 6∈ NBi. Notice that our framework can

handle more complex dynamics of a moving object by using a k-th order Markov chain,

for k ≥ 2. For each sensor node si, if an object is in Ci, it is detected with probability

ηi. Let Y i
t ∈ {0, 1} be the observation made by si at time t. When an object is in Ci at

time t, the object is detected, Y i
t = 1, with probability ηi, and the object is not detected,

Y i
t = 0, with probability 1 − ηi. For now we assume there are no false detections. We

show the robustness of our algorithm in the presence of false detections in Section 2.4.

The model parameters, π, Pt, and η, can be learned from historic data using Baum-Welch

method [Rabiner, 1989], hence, it is safe to assume that they are known in advance. We also

assume that node u can communicate with node v reliably in timely manner if (u, v) ∈ E.

11

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

Since the sensing regions are disjoint, we can assume that each sensor makes an in-

dependent observation at each time. Let Yt = (Y 1
t , . . . , Y

N
t)T , Y1:T = {Y1, . . . , YT} and

X1:T = {X1, . . . , XT}. The joint distribution is

P (X1:T , Y1:T) = P (X1)
T∏

t=2

P (Xt|Xt−1)
T∏

t=1

P (Yt|Xt), (2.1)

where

P (Yt|Xt) = (ηXt)
Y

Xt
t (1− ηXt)

1−Y
Xt
t . (2.2)

Now the tracking problem on a graph is to find the most probable trajectory of a moving

object on the graph given observations y1:T , i.e., finding the maximum a posteriori (MAP)

solution x∗1:T :

x∗1:T = arg max
x1:T

P (x1:T |y1:T)

= arg max
x1:T

P (y1:T |x1:T)P (x1:T)

P (y1:T)

= arg max
x1:T

P (y1:T |x1:T)P (x1:T)

= arg max
x1:T

P (x1:T , y1:T). (2.3)

The Bayes rule is used for the second equality and the normalization constant P (y1:T) is

dropped in the third equality since it does not change the maximization problem.

2.2 Optimal Distributed Tracking Algorithm

The most probable sequence of hidden states x∗1:T given observations y1:T can be efficiently

found by the Viterbi algorithm [Rabiner, 1989]. We first define

δt(i) = max
x1,...,xt−1

P (x1, . . . , xt−1, xt = i, y1:t), (2.4)

12

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

for i = 1, . . . , N and t = 1, . . . , T . δt(i) is the maximum probability of a single path

ending in state i at time t, given observations y1;t. Once we have all δT (i), we can trace

backward from the state which maximizes δT (i) to find the sequence x∗1:T . For more detail

about the Viterbi algorithm, see [Rabiner, 1989].

We compactly denote the event {xt = i} by zi
t. Notice that

δt(i) = max
x1:t−1

P (x1:t−1, z
i
t, y1:t)

= max
x1:t−1

P (zi
t|xt−1)P (yt|zi

t)P (x1:t−1, y1:t−1)

=

[
max
x1:t−1

P (zi
t|xt−1)P (x1:t−1, y1:t−1)

]
P (yt|zi

t)

=

[
max

j∈{1,...,N}
P (zi

t|z
j
t−1) max

x1:t−2

P (x1:t−2, z
j
t−1, y1:t−1)

]
P (yt|zi

t)

=

[
max
j∈NBi

P (zi
t|z

j
t−1)δt−1(j)

]
P (yt|zi

t), (2.5)

where the domain of the maximization is reduced from {1, . . . , N} to NBi in the last equal-

ity since P (zi
t|z

j
t−1) = 0 for j 6∈ NBi (i 6∈ NBj by symmetry). Hence, in order to compute

δt(i), we only need {δt−1(j) : j ∈ NBi} from the neighbors of si, transition probabilities

and the likelihood P (yt|zi
t).

Since P (yi
t = 1|zi

t) = ηi and P (yi
t = 0|zi

t) = 1− ηi, (2.5) can be further simplified as

δt(i) =

[
max
j∈NBi

P (zi
t|z

j
t−1)δt−1(j)

]
η

yi
t

i (1− ηi)
1−yi

t . (2.6)

Thus, we can compute δt(i) with only local information. The distributed implementation to

find the most probable trajectory of a moving object is composed of two steps: distributed

tracking and distributed backtracking.

Distributed tracking is described in Algorithm 1 and distributed backtracking is de-

scribed in Algorithm 2. In Algorithm 1, ψt(i) records the best previous location of an

object to be used by Algorithm 2. The tracking step of the algorithm is graphically il-

13

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

Algorithm 1 Distributed Tracking (node i at time t)
1: if t = 1 then
2: δ1(i) = πiη

yi
1

i (1− ηi)
1−yi

1

3: ψ1(i) = 0
4: transmit δ1(i) to NBi

5: else if t > 1 then
6: receive {δt−1(j) : j ∈ NBi}
7: δt(i) =

[
maxj∈NBi

P (zi
t|z

j
t−1)δt−1(j)

]
η

yi
t

i (1− ηi)
1−yi

t

8: ψt(i) = arg maxj∈NBi
P (zi

t|z
j
t−1)δt−1(j)

9: transmit δt(i) to NBi

10: end if

Algorithm 2 Distributed Backtracking (node i at time t)
1: if t = T then
2: φT (i) = δT (i)
3: transmit (φT (i), x∗T (i) = {i}) to ψT (i)
4: else if 1 ≤ t < T then
5: receive Di = {(φt+1(j), x

∗
t+1:T (j)) : j ∈ Ji}, where Ji = {j ∈ NBi : ψt+1(j) = i}

6: if Di 6= ∅ then
7: j = arg maxk∈Di

φt+1(k)
8: φt(i) = φt+1(j)
9: x∗t+1:T (i) = x∗t+1:T (j)

10: x∗t (i) = i
11: if t > 1 then
12: transmit (φt(i), x

∗
t:T (i)) to ψt(i)

13: else if t = 1 then
14: transmit x∗1:T (i) to sb

15: end if
16: end if
17: end if

lustrated in Figure 2.2. In Figure 2.2(a), node i receives δt−1 from its neighbors. After

computing δt(i) and ψt(i), node i transmits δt(i) to its neighbors (Figure 2.2(b)).

For distributed backtracking, we suppose that the sensor node sb requests a trajectory

of the moving object at time T . Since trajectory information ψt(i) is stored in a distributed

manner, we backtrack to recover the most probable trajectory by collecting vertices along

14

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

Figure 2.2: A graphical illustration of tracking. (a) Node i receives δt−1 from its
neighbors (line 6 of Algorithm 1). (b) Node i transmits δt(i) to its neighbors (line 4
and 9 of Algorithm 1).

Figure 2.3: A graphical illustration of backtracking. (a) Node i receives
(φt+1, x

∗
t+1:T) from its neighbors (line 5 of Algorithm 2). (b) Node i transmits

(φt(i), x
∗
t:T (i)) to ψt(i) (line 3 and 12 of Algorithm 2).

the path directed by ψt(i) as described in Algorithm 2. In Algorithm 2, the trajectory

x∗t:T (i) is simply concatenated at each step and a complete trajectory is available when the

backtracking is terminated. However, an alternative approach is to transmit x∗t to sb at each

t and transmit only φt(j) to ψt(i) so that the transmission packets are of the same size. The

backtracking step of the algorithm is graphically illustrated in Figure 2.3. In Figure 2.3(a),

node i receives (φt+1, x
∗
t+1:T) from its neighbors. After line 10 of Algorithm 2, node i

transmits (φt(i), x
∗
t:T (i)) to ψt(i) (Figure 2.3(b)).

Notice that in order to carry out calculations described in Algorithm 1 and Algorithm 2,

15

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

node i needs to know only πi, ηi, and Pt restricted to NBi and the remaining variables are

computed on the fly. Hence, the calculations required for tracking and backtracking can be

done in a completely distributed manner. The algorithm implements the Viterbi algorithm

[Rabiner, 1989] and finds the most probable trajectory x∗1:T . Since the computation and

storage of track information are done in a completely distributed manner, the method is

robust against node failures and transmission failures. If d is the maximum degree of the

graph G, the number of transmissions at each time is bounded above by dN and does not

depend on T . But the memory required to keep track information increases as T increases.

For a large graph, the number of sensors involved in tracking increases as T increases.

Hence, in order to bound the memory requirement and the number of sensors involved in

tracking and make the algorithm scalable, we need a method to prune away unlikely tracks.

For this purpose, we present provably good pruning strategies in Section 2.3.

2.3 Pruning

The main idea behind the pruning strategies discussed in this section is to prune a trajectory

hypothesis if the number of detections is low. Since pruning is performed, based solely on

local information, it is important to analyze the performance loss of the algorithm for the

chosen pruning strategy. We first present the updated tracking and backtracking steps and

then describe pruning strategies such that, for given ε > 0, the algorithm finds an optimal

trajectory x∗1:T with probability at least 1 − ε. An effect of pruning is shown in Figure 2.4

where the pruning strategy given in Theorem 1 is used.

Distributed tracking and backtracking with pruning are described in Algorithm 3 and

Algorithm 4, respectively. They are modifications of Algorithm 1 and Algorithm 2. In

Algorithm 3, a variable ϕt(i) is introduced to keep the number of detections along the path

directed by ψt(i). A track hypothesis is pruned away if g(t, ϕt(i)) = 1 and the choice of

g(t, ϕt(i)) is discussed below. δt(i) and ψt(i) are all initialized to zeros.

16

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

t = 100 t = 400 t = 700 t = 1000 t = 1200

Figure 2.4: An effect of pruning: an object moves horizontally along the center row
of 1000 × 1000 sensor grid (η = .7). A sensor node involved in tracking is painted
with darker color. (Top) Without pruning. (Bottom) With pruning (t0 = 100, s = 100
and ε = .05).

We describe two pruning strategies such that, for given ε > 0, the algorithm finds

an optimal trajectory x∗1:T with probability at least 1 − ε. Let Wt be the event that the

algorithm terminated at time t returns an incorrect solution, i.e., when a correct solution is

pruned away.

Theorem 1 (Finite Horizon). Let G be a passage connectivity graph of sensor nodes

s1, . . . , sN . Suppose that ηi > 0, for all i = 1, . . . , N , and let η = min ηi. For ε > 0

and T > 0, choose s ∈ N, such that T
ε

exp
(
−ηt0

2

)
< s ≤ T for some t0 ≥ 1, and choose

θt ≤ ηt
(
1−

√
2
ηt

log
(

T
sε

))
. If the following pruning strategy,

g(t, ϕt(i)) =

 1 if ϕt(i) < θt for t = ks ≥ t0, k ∈ N

0 otherwise,
(2.7)

is used, then P (WT) < ε.

Proof: See Appendix A.1.

17

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

Algorithm 3 Distributed Tracking with Pruning (node i at time t)
1: if t = 1 then
2: δ1(i) = πiη

yi
1

i (1− ηi)
1−yi

1

3: ψ1(i) = 0
4: ϕ1(i) = yi

1

5: transmit (δ1(i), ϕ1(i)) to NBi

6: else if t > 1 then
7: receive Di = {δt−1(j), ϕt−1(j) : j ∈ NBi}
8: if Di 6= ∅ then
9: δt(i) =

[
maxj∈NBi

P (zi
t|z

j
t−1)δt−1(j)

]
η

yi
t

i (1− ηi)
1−yi

t

10: ψt(i) = arg maxj∈NBi
P (zi

t|z
j
t−1)δt−1(j)

11: ϕt(i) = ϕt−1(ψt(i)) + yi
t

12: if g(t, ϕt(i)) = 0 then
13: transmit (δt(i), ϕt(i)) to NBi

14: end if
15: end if
16: end if

The following theorem shows an existence of a pruning strategy when T →∞.

Theorem 2 (Infinite Horizon). Let G be a passage connectivity graph of sensor nodes

s1, . . . , sN . Suppose that ηi > 0, for all i = 1, . . . , N , and let η = min ηi. For ε > 0,

choose s ∈ N, such that s > 2
η
log
(

1+ε
ε

)
, and choose θt ≤ ηt

(
1−

√
2
ηs

log
(

1+ε
ε

))
. If the

following pruning strategy

g(t, ϕt(i)) =

 1 if ϕt(i) < θt for t = ks ≥ s, k ∈ N

0 otherwise,
(2.8)

is used, then P (W∞) < ε.

Proof: See Appendix A.2.

18

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

Algorithm 4 Distributed Backtracking with Pruning (node i at time t)
1: if t = T then
2: φT (i) = δT (i)
3: if φT (i) > 0 then
4: transmit (φT (i), x∗T (i) = {i}) to ψT (i)
5: end if
6: else if 1 ≤ t < T then
7: receive Di = {(φt+1(j), x

∗
t+1:T (j)) : j ∈ Ji}, where Ji = {j ∈ NBi : ψt+1(j) = i}

8: if Di 6= ∅ then
9: j = arg maxk∈Di

φt+1(k)
10: φt(i) = φt+1(j)
11: x∗t+1:T (i) = x∗t+1:T (j)
12: x∗t (i) = i
13: if t > 1 then
14: transmit (φt(i), x

∗
t:T (i)) to ψt(i)

15: else if t = 1 then
16: transmit x∗1:T (i) to sb

17: end if
18: end if
19: end if

2.4 Robustness

In previous sections, we have assumed that there are no false detections in our observation

model. In this section, we study the robustness of the algorithm in the presence of false

detections. We assume that the algorithm is run without pruning so if a pruning strategy is

used, unless stated otherwise, the arguments here should be understood in a probabilistic

sense, i.e., given ε > 0 and a pruning strategy given in Section 2.3, the arguments hold with

probability larger than 1−ε. Let ξi be the false detection probability for the sensor si. Thus,

when an object is not in Ci at time t, the sensor si makes a false detection, Y i
t = 1, with

probability ξi and Y i
t = 0 with probability 1− ξi. We need to update the joint distribution

19

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

(2.1) as following to allow false detections.

P (X1:T , Y1:T) = P (X1)
T∏

t=2

P (Xt|Xt−1)
T∏

t=1

P (Yt|Xt), (2.9)

where

P (Yt|Xt) =
N∏

i=1

P (Y i
t |Xt)

= (ηXt)
Y

Xt
t (1− ηXt)

1−Y
Xt
t

∏
j 6=Xt

(ξj)
Y j

t (1− ξj)1−Y j
t . (2.10)

Unfortunately, we can no longer compute the likelihood P (Yt|Xt) with only local infor-

mation as shown in (2.2). We need observations from all sensors in order to compute the

likelihood and it is difficult to guarantee the optimality of any distributed algorithm. We

focus on the case, in which the detection probabilities and the false detection probabilities

are uniform, for its simplicity and show the optimality conditions for the algorithm given

in Section 2.2 in the presence of false detections.

Theorem 3. Let G be a passage connectivity graph of sensor nodes s1, . . . , sN . Suppose

that η = ηi ≥ .5 and ξ = ξi ≤ .5, for all i = 1, . . . , N and m = minP (x1:T) > 0. Let q1:T

be the solution computed by the algorithm given in Section 2.2 and let x∗1:T be the optimal

solution, an MAP estimate to (2.9) given y1:T . Then the following inequalities hold

P (q1:T , y1:T) ≤ P (x∗1:T , y1:T) ≤ αP (q1:T , y1:T), (2.11)

where α =
(

1−ξ
ξ

) log(P (q1:T)/m)

log(η/(1−η))
.

Proof: See Appendix A.3.

In Theorem 3, α ≥ 1 since ξ ≤ .5. To get a tighter bound, we want α to be as small

as possible. Notice that when P (q1:T) is small, α is small and we can be confident that the

20

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

estimate q1:T from the algorithm given in Section 2.2 is close to the MAP estimate x∗1:T . An

extreme case is when ξ = .5. Then α = 1 and q1:T = x∗1:T . However, (2.11) is the worst-

case bound. To increase the performance of the algorithm for an average case, we require

small ξ. Hence, we assume that ξ is fixed at some small value and discuss approaches to

make the worst-case bound tight.

Corollary 1. Let G be a passage connectivity graph of sensor nodes s1, . . . , sN . Suppose

that G is a regular graph with a uniform initial state distribution and uniform transition

probabilities. Then, under the conditions specified in Theorem 3, q1:T = x∗1:T .

Proof: G is a regular graph with a uniform initial state distribution and uniform

transition probabilities so we have a uniform prior. In particular, P (q1:T) = P (x∗1:T).

Hence, α = 1 and q1:T = x∗1:T .

Corollary 2. Assume the conditions specified in Theorem 3. For ε1 > 0, let

c = exp

(
log r log

(
1− ξ
ξ

)
/ log(1 + ε1)

)
, (2.12)

where r = maxP (x1:T)/minP (x1:T). If η ≥ c
1+c

, then P (q1:T , y1:T) ≤ P (x∗1:T , y1:T) ≤

(1 + ε1)P (q1:T , y1:T).

Proof: See Appendix A.4.

Hence, an ideal case is when r is small and η is big (as specified in Corollary 2). For

example, when r = 1000 and ξ = .45, it requires η ≥ .8808 for ε1 = 1 and η ≥ .7793

for ε1 = 2. But if r = 1000 and ξ = .3, we need η ≥ .9998 for ε1 = 1 and η ≥ .9952

for ε1 = 2. We note that, for binary sensors, the detection probability can be boosted to a

desired value by deploying multiple sensors over the same surveillance region.

21

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

(a) (b)

Figure 2.5: (a) An example of non-disjoint sensing regions. Sensor nodes are
shown in dots and disks around sensors represent sensing regions. (b) A partition
of sensing regions from the example shown in (a).

2.5 Non-disjoint Sensing Regions

Until now, we have assumed that the sensing regions of sensors are disjoint, leading to

independent observations. However, this assumption may not be satisfied in all cases. In

some cases, we may want to introduce more sensors to improve the detection probability.

In this section, we describe how to handle non-disjoint sensing regions.

Suppose that G is a passage connectivity graph. For the simplicity of exposition, we

consider the case when the sensing regions of two sensors A and B are not disjoint (see

Figure 2.5(a)). However, the method can be applied to the case with more than two sensors.

Consider all disjoint segments of CA ∪ CB, i.e., CA\B = CA \ CB, CB\A = CB \ CA and

CA∩B = CA ∩ CB (see Figure 2.5(b)). Recall that CA is the sensing region of sensor

A. In this example, an extra vertex A ∩ B is added into G along with new edges from

A ∩ B (see Figure 2.5(b)). The sensor nodes A and B exchange observations and the

necessary computations at A ∩ B can be distributed between A and B. The additional

parameters of this updated graph can be learned from historic data using Baum-Welch

22

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

method as mentioned earlier. However, if the sensor model of each sensor node is known,

we can compute the sensor models of each disjoint segment. Let ηA and ηB be the detection

probabilities of sensorA and sensorB, respectively, and let ξA and ξB be the false detection

probabilities of sensor A and sensor B, respectively. Let YA and YB be the observations

made by sensor A and sensor B, respectively, and let X be the true position of the object.

Then the sensor models of disjoint segments can be computed as shown in Table 2.1. Now

tracking can be done as discussed in Section 2.2 and 2.3.

Table 2.1: Sensor model P (YA, YB|X) of disjoint segments in Figure 2.5(b)

YA = 0, YB = 0 YA = 0, YB = 1 YA = 1, YB = 0 YA = 1, YB = 1
X ∈ CA\B (1− ηA)(1− ξB) (1− ηA)ξB ηA(1− ξB) ηAξB
X ∈ CB\A (1− ξA)(1− ηB) (1− ξA)ηB ξA(1− ηB) ξAηB

X ∈ CA∩B (1− ηA)(1− ηB) (1− ηA)ηB ηA(1− ηB) ηAηB

2.6 Simulation Results on Multiple Object Tracking

Suppose there are K independently moving objects and assume that each sensor can iden-

tify one object from another. Let Y i
t be an observation made by sensor si at time t, which

takes a value from a power set of {1, . . . , K}. Then we can express the sensor model as,

for all k = 1, . . . , K and i = 1, . . . , N ,

P (Y i
t 3 k|Xk

t = i) = ηk
i (2.13)

P (Y i
t 63 k|Xk

t = i) = 1− ηk
i ,

where Xk
t ∈ {1, . . . , N} is the location of the object k at time t and ηk

i is the detection

probability at sensor i for object k. Then we can individually track each object using the

algorithm given in Section 2.2 and 2.3.

23

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

Figure 2.6: A toroidal grid

For simulation, we consider a toroidal grid passage connectivity graph G. An example

of a toroidal grid is shown in Figure 2.6. We assume there are two objects and they all

have the uniform initial state distribution while pii = .1 and pij = .9/|NBi \ {i}| for

j ∈ NBi \ {i}. The detection probabilities are randomly chosen from [.7, 1). However, we

consider the situation described in [Shin et al., 2003; Liu et al., 2004], in which a sensor

does not correctly classify an object when multiple objects are present in the same sensing

region. So when multiple objects are present in the same sensing region, we assume that

the corresponding sensor does not report detection. We approximate this situation by the

sensing model (2.13). Two scenarios are considered and they are shown in Figure 2.7(a) and

2.7(c). The estimated tracks are shown in Figure 2.7(b) and 2.7(d). The estimated tracks are

the same as the true trajectories when objects are detected while the estimated tracks follow

the path with maximum transition probabilities and minimum detection probabilities when

objects are not detected.

24

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

(a) (b)

(c) (d)

Figure 2.7: (a) Scenario 1 (10× 10 toroidal grid, trajectory of object 1 in solid line,
trajectory of object 2 in dashed line, observations from object 1 in circles, observa-
tions from object 2 in diamonds). (b) Estimated tracks for scenario 1 (trajectory of
object 1 in solid line, trajectory of object 2 in dashed line). (c) Scenario 2 (30 × 30
toroidal grid). (d) Estimated tracks for scenario 2.

2.7 Issues with Tracking Multiple Objects in Sensor Net-

works

As described in Section 2.4, in the presence of false alarms, the evaluation of the likelihood

(2.10) requires observations from all sensors. Hence, it is difficult to compute the exact

25

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

likelihood using only local information and there is no efficient distributed algorithm for

the exact likelihood computation. However, Section 2.4 shows that we can still find a

good estimate in some cases using only local information. In fact, this idea is extended

in Chapter 6 to approximately eliminate false detections when computing the likelihood of

binary detections. In summary, although we cannot efficiently compute the exact likelihood

using only local information, there are methods to minimize the effect of false alarms.

Now, let us consider the problem of tracking multiple objects. Although we show a

simulation study of tracking multiple objects in the previous section, we need an ability

to classify or identify an object. In general, this is an extremely difficult task and there

is always a positive probability of misclassification even with a high-end sensing system.

Hence, there is always uncertainty about the identity of an object. Because of this uncer-

tainty, measurements are correlated and one cannot derive a multi-target tracking algorithm

using only local information. Considering the possibility of false alarms and missing mea-

surements and uncertainty about the appearance and disappearance times of an object, the

problem gets even more complex. One can think of the multi-target tracking problem as a

sequential hypothesis testing of exponentially increasing hypotheses with time. Measure-

ments from neighboring sensors are not sufficient to initiate, maintain, disambiguate, and

terminate tracks of multiple objects in the presence of clutter; it requires measurements

from distant sensors. The method developed in this chapter cannot handle the general

multi-target tracking problems and we need a general framework to develop a more robust

tracking algorithm. This is the topic of Chapter 3.

2.8 Summary

In this chapter, we have described a novel tracking algorithm for sensor network. The

tracking problem is formulated as a hidden state estimation problem in a hidden Markov

model (HMM) over the finite state space of sensors. Then an optimal distributed tracking

26

CHAPTER 2. DISTRIBUTED TRACKING IN SENSOR NETWORKS

algorithm is derived using the Viterbi algorithm. The algorithm finds an optimal solution

in a fully distributed manner. Furthermore, the algorithm is based on the simple binary

sensors and does not depend on sensor network localization. We have described provably

good pruning strategies for scalability of the algorithm and showed the conditions under

which the algorithm is robust against false detections. We have also presented extensions of

the algorithm to handle non-disjoint sensing regions and to track multiple objects. Since the

computation and storage of track information are done in a completely distributed manner,

the method is robust against node failures and transmission failures.

27

CHAPTER 3

GENERAL MULTI-TARGET TRACKING

PROBLEMS

Multi-target tracking plays an important role in many areas of engineering such as surveil-

lance [Bar-Shalom and Fortmann, 1988], computer vision [Cox, 1993; Dellaert et al.,

2003], signal processing [Xie and Evans, 1991], network and computer security [Cybenko

et al., 2004], and sensor networks [Oh et al., 2007]. In the standard setup, some indistin-

guishable targets move continuously in a given region, typically independently according

to a known, Markovian process. Targets arise at random in space and time, persist for a

random length of time, and then cease to exist; the sequence of states that a target fol-

lows during its lifetime is called a track. The positions of moving targets are measured,

either at random intervals or, more typically, in periodic scans that measure the positions of

all targets simultaneously. The position measurements are noisy and occur with detection

probability less than one, and there is a noise background of spurious position reports, i.e.,

false alarms or clutter.

The essence of the multi-target tracking problem is to find tracks from the noisy mea-

surements. Now, if the sequence of measurements associated with each target is known,

28

CHAPTER 3. GENERAL MULTI-TARGET TRACKING PROBLEMS

multi-target tracking (at least under the assumption of independent motion) reduces to a set

of state estimation problems. Unfortunately, the association between measurements and

targets is unknown. The data association problem is to work out which measurements

were generated by which targets; more precisely, we require a partition of measurements

such that each element of a partition is a collection of measurements generated by a single

target or clutter [Sittler, 1964]. In the general case, uncertainty as to the correct association

is unavoidable.

This chapter develops a general framework for multi-target tracking problems in or-

der to handle uncertainties in identity, number of targets, track initiation and termination

times. The framework developed in this chapter is used in Chapter 4 to develop an effient

algorithm for solving multi-target tracking problems.

3.1 Problem Formulation

Let T ∈ Z+ be the duration of surveillance. Let K be the number of objects that appear

in the surveillance region R during the surveillance period. Each object k moves in R for

some duration [tki , t
k
f] ⊆ [1, T]. Notice that the exact values of K and {tki , tkf } are unknown.

Each object arises at a random position in R at tki , moves independently around R until

tkf and disappears. At each time, an existing target persists with probability 1 − pz and

disappears with probability pz. The number of objects arising at each time over R has a

Poisson distribution with a parameter λbV where λb is the birth rate of new objects per unit

time, per unit volume, and V is the volume of R. The initial position of a new object is

uniformly distributed overR.

Let F k : Rnx → Rnx be the discrete-time dynamics of the object k, where nx is the

dimension of the state variable, and let xk
t ∈ Rnx be the state of the object k at time t. The

29

CHAPTER 3. GENERAL MULTI-TARGET TRACKING PROBLEMS

object k moves according to

xk
t+1 = F k(xk

t) + wk
t , for t = tki , . . . , t

k
f − 1, (3.1)

where wk
t ∈ Rnx are white noise processes. The white noise process is included to model

non-rectilinear motions of targets. The noisy observation (or measurement1) of the state of

the object is measured with a detection probability pd. Notice that, with probability 1− pd,

the object is not detected and we call this a missing observation. There are also false alarms

and the number of false alarms has a Poisson distribution with a parameter λfV where λf

is the false alarm rate per unit time, per unit volume. Let nt be the number of observations

at time t, including both noisy observations and false alarms. Let yj
t ∈ Rny be the j th

observation at time t for j = 1, . . . , nt, where ny is the dimension of each observation

vector. Each object generates a unique observation at each sampling time if it is detected.

Let Hj : Rnx → Rny be the observation model. Then the observations are generated as

follows:

yj
t =

 Hj(xk
t) + vj

t if j th observation is from xk
t

ut otherwise,
(3.2)

where vj
t ∈ Rny are white noise processes and ut ∼ Unif(R) is a random process for false

alarms.

We assume that targets are indistinguishable in this thesis, but if observations include

target type or attribute information, the state variable can be extended to include target type

information. The parameters pz, pd, λb and λf have been widely used in many multi-target

tracking applications [Bar-Shalom and Fortmann, 1988; Kurien, 1990]. Our experimental

and simulation results show that our tracking algorithm is robust against changes in these

parameters in most cases. See Section 4.3.3.4 for simulation results on the robustness of

the algorithm against changes in λb.

1The terms observation and measurement are used interchangeably in this thesis.

30

CHAPTER 3. GENERAL MULTI-TARGET TRACKING PROBLEMS

The multi-target tracking problem is to estimate K, {tki , tkf } and {xk
t : tki ≤ t ≤ tkf }, for

k = 1, . . . , K, from observations.

3.2 Probabilistic Model

In order to compute Bayesian estimates to the multi-target tracking problem, we need to

first specify the probabilistic model of multi-target tracking. This section describes the

probabilistic model and derives a formula for computing the posterior (up to a normalizing

constant). If ω is the parameter of the probabilistic model of multi-target tracking with the

prior distribution P (ω), Y is a set of all measurements, and P (Y |ω) is the likelihood of Y

given ω, then the posterior P (ω|Y) can be represented in the following form using Bayes

rule:

P (ω|Y) =
P (Y |ω)P (ω)

P (Y)
. (3.3)

In our model, ω is an association event, i.e., a partition of measurements such that each

element of a partition is a collection of measurements generated by a single target or clutter

[Sittler, 1964]. Since, in general, there is no closed-form formula for computing P (Y),

one can only compute P (ω|Y) up to a normalizing constant, which requires computation

of P (Y |ω) and P (ω). For a fixed association event ω, P (Y |ω) can be compute by solving

a set of single-target tracking problems. Hence, we focus our attention to the derivation of

P (ω) in this section.

A special care is necessary when defining P (ω): P (ω) must be defined independently

from Y . Since ω can be defined based on the size of measurements, ω is first defined for

all possible measurement sizes. Let µ be a T -dimensional vector, i.e., µ = [µ1, . . . , µT]T,

representing the possible numbers of measurements from t = 1 to t = T , where µt ∈ Z =

{0, 1, 2, . . . ,M} and M < ∞ is some large number2. For each value of µ, define a set of

2The finiteness of M guarantees that P (ω) has a proper probability distribution. But it does not restrict our
model. Since the number of measurements per scan is always finite and M does not appear in computation

31

CHAPTER 3. GENERAL MULTI-TARGET TRACKING PROBLEMS

measurement indices Υµ
t = {(t, 1), (t, 2), . . . , (t, µt)} for µt > 0, where (t, i) is an index to

the ith measurement at time t, and Υµ
t = ∅ for µt = 0. Now let Υµ = ∪T

t=1Υ
µ
t be an index

set to a set of measurements whose size matches µ and the set {Υµ : µ ∈ ZT} contains all

possible index sets.

For each µ, let Ωµ be a collection of partitions of Υµ such that, for ω ∈ Ωµ, ω =

{τ0, τ1, . . . , τK}, where τ0 is a set of indices to false alarms and τk is a set of indices to

measurements from target k, for k = 1, . . . , K. More formally, ω ∈ Ωµ is defined as

following:

1. ω = {τ0, τ1, . . . , τK};

2.
⋃K

k=0 τk = Υµ and τi ∩ τj = ∅ for i 6= j;

3. τ0 is a set of indices to false alarms;

4. |τk ∩Υµ
t | ≤ 1 for k = 1, . . . , K and t = 1, . . . , T ; and

5. |τk| ≥ 2 for k = 1, . . . , K.

Here, K = K(ω) is the number of tracks for the given partition ω ∈ Ωµ and |S| denotes the

cardinality of the set S. We call τk a track when there is no confusion although the actual

track is the set of estimated states from the observations indexed by τk. (We assume there

is a deterministic function that returns a set of estimated states given a set of observations,

so no distinction is required.) The fourth requirement says that a track can have at most

one observation at each time, but, in the case of multiple sensors with overlapping sensing

regions, we can easily relax this requirement to allow multiple observations per track. A

track is assumed to contain at least two observations since we cannot distinguish a track

with a single observation from a false alarm, assuming λf > 0. For special cases, in which

pd = 1 or λf = 0, the definition of Ωµ can be adjusted accordingly.

of the posterior (3.10), we can always assume that M is some number larger than the maximum possible
number of measurements per scan.

32

CHAPTER 3. GENERAL MULTI-TARGET TRACKING PROBLEMS

Example 1. Let T = 5 and µ = [2, 2, 2, 2, 2]T; then

Υµ = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)}.

An example of ω ∈ Ωµ is ω = {τ0, τ1, τ2}, where

τ0 = {(3, 2)}

τ1 = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)}

τ2 = {(1, 2), (2, 2), (4, 2), (5, 2)}.

This example is shown in Figure 3.1.

Now let Ω̃ = {ω ∈ Ωµ : µ ∈ ZT}. Notice that µ = µ(ω) is a deterministic function of

ω ∈ Ω̃. In addition, we can compute the following numbers from ω ∈ Ω̃:

• et, the number of targets present at time t with e0 = 0;

• zt, the number of targets terminated at time t;

• at, the number of new targets at time t; and

• dt, the number of detected targets at time t.

Since these numbers are deterministic functions of ω ∈ Ω̃, we have

P (ω) = P (ω,N) = P (ω|N)P (N), (3.4)

where N = {µt, et, zt, at, dt : 1 ≤ t ≤ T}. Based on the target termination, target

33

CHAPTER 3. GENERAL MULTI-TARGET TRACKING PROBLEMS

detection, new target arrival, and false alarm models described in Section 3.1, we have

P (N) =
T∏

t=1

[(
et−1

zt

)
pzt

z (1− pz)
et−1−zt

(
et−1 − zt + at

dt

)
pdt

d (1− pd)
et−1−zt+at−dt

× (λbV)at

at!
exp(−λbV)

(λfV)µt−dt

(µt − dt)!
exp(−λfV)

]
. (3.5)

Since ω ∈ Ω̃ with the same N are indistinguishable, i.e., invariant under permutation of

target indices, they are exchangeable and we assign a uniform prior on them. Hence,

P (ω|N) ∝
T∏

t=1

[(
et−1

zt

)(
et−1 − zt + at

dt

)(
µt

dt

)(
dt

at

)
(dt − at)!

]−1

. (3.6)

Combining (3.5) and (3.6), the prior of ω ∈ Ω̃ can be simplified as

P (ω) ∝
T∏

t=1

1

µt!
pzt

z (1− pz)
et−1−ztpdt

d (1− pd)
et−1−zt+at−dt(λbV)at(λfV)µt−dt . (3.7)

We simplify (3.7) by letting ct = et−1 − zt be the number of targets from time t − 1 that

have not terminated at time t, gt = et−1− zt + at− dt be the number of undetected targets,

and ft = µt − dt be the number of false alarms. Then, the prior model (3.7) becomes

P (ω) ∝
T∏

t=1

1

µt!
pzt

z (1− pz)
ctpdt

d (1− pd)
gt(λbV)at(λfV)ft . (3.8)

Let Yt = {yj
t : j = 1, . . . , nt} be all measurements at time t and Y = {Yt : 1 ≤ t ≤ T}

be all measurements from t = 1 to t = T . Applying Bayes rule, the posterior of ω ∈ Ω̃

34

CHAPTER 3. GENERAL MULTI-TARGET TRACKING PROBLEMS

becomes:

P (ω|Y) ∝ P (Y |ω)P (ω)

∝ P (Y |ω)
T∏

t=1

1

µt!
pzt

z (1− pz)
ctpdt

d (1− pd)
gt(λbV)at(λfV)ft , (3.9)

where P (Y |ω) is the likelihood of observations Y given ω ∈ Ω̃.

It is important to notice that P (Y |ω) = 0 if µ(ω) 6= n(Y), where

n(Y) = [n1(Y), . . . , nT (Y)]T

denotes the number of measurements at each time in Y . Hence, we can restrict our atten-

tion to those ω ∈ Ω̃ with µ(ω) = n(Y). This crucial observation makes the numerous

computations based on (3.9) practical. The set of all possible associations is now defined

as Ω := Ωn(Y) = {ω ∈ Ω̃ : µ(ω) = n(Y)} and Ω is used instead of Ω̃ throughout this

thesis. Thus, it is convenient to view Ω as a collection of partitions of Y . An example of

one such partition is shown in Figure 3.1.

The posterior (3.9) can be further simplified as

P (ω|Y) ∝ P (Y |ω)
T∏

t=1

pzt
z (1− pz)

ctpdt
d (1− pd)

gt(λbV)at(λfV)ft , (3.10)

where the term
∏T

t=1 V
at+ft will be canceled out by the matching initial state and false

alarm densities in P (Y |ω). The likelihood P (Y |ω) can be computed based on the chosen

dynamic and measurement models. For example, the computation of P (Y |ω) for linear

dynamic and measurement models can be found in [Oh et al., 2004].

The posterior P (ω|Y) can be applied to both MAP and Bayesian approaches to solve

35

CHAPTER 3. GENERAL MULTI-TARGET TRACKING PROBLEMS

Figure 3.1: (a) An example of observations Y (each circle represents an observa-
tion and numbers represent observation times). (b) An example of a partition ω of
Y . This ω is also described in Example 1.

the multi-target tracking problem. In the MAP approach, we first seek for ω̂ such that

ω̂ = arg max
ω∈Ω

P (ω|Y). (3.11)

Then the states of the targets are estimated based on ω̂. In the Bayesian approach, we look

for Bayesian estimates of parameters. For instance, if we are interested in estimating the

state xk
t of target k, the Bayesian estimate of xk

t is (when the mean squared error is used as

a risk function):

x̂k
t =

∑
ω∈Ω

∫
xk

tP (xk
t |ω, Y)P (ω|Y)dxk

t . (3.12)

Notice that it considers the contribution of all ω when computing x̂k
t , whereas the MAP

approach uses only ω̂. It is important to note that when the number of targets is not fixed,

a unique labeling of each target is required to find x̂k
t under the Bayesian approach (see

Section 4.3.3.5 for an example). The method proposed in this thesis (Algorithm 7) can be

used to find both MAP and Bayesian estimates to the multi-target tracking problem.

36

CHAPTER 4

MARKOV CHAIN MONTE CARLO DATA

ASSOCIATION

Based on the general framework for multi-target tracking problems developed in Chap-

ter 3, this chapter develops an efficient algorithm for solving general multi-target tracking

problems. Multi-target tracking algorithms are often categorized according to the objective

function that they purport to optimize:

• Heuristic approaches typically involve no explicit objective function. For example,

the greedy nearest-neighbor filter (NNF) [Bar-Shalom and Fortmann, 1988] pro-

cesses the new measurements in some order and associates each with the target whose

predicted position is closest, thereby selecting a single association after each scan.

Although effective under benign conditions, the NNF gives order-dependent results

and breaks down under more difficult circumstances.

• Maximum a posteriori (MAP) approaches find the most probable association, given

the measurements made so far, and estimate tracks given this association.

• The Bayesian approaches generate optimal filtering predictions by summing over

37

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

all possible associations, weighted by their probabilities. Under certain distribu-

tional assumptions (e.g., linear–Gaussian models), the optimal Bayesian filter can be

shown to minimize the mean squared error in the track estimates. For this reason,

approaches that sum over multiple associations are sometimes called minimum mean

square error (MMSE) approaches.

MAP approaches and some heuristic approaches use the Bayesian formalism. However, we

distinguish them from the Bayesian approaches in which parameters are treated as random

variables, following the interpretation given in [Jordan, 2004]. In fact, MAP is considered

as a frequentist approach [Jordan, 2004].

Tracking algorithms can also be categorized by the way in which they process mea-

surements:

• Single-scan algorithms estimate the current states of targets based on their previously

computed tracks and the current scan of measurements.

• Multi-scan algorithms may revisit past scans when processing each new scan, and

can thereby revise previous association decisions in the light of new evidence.

MAP approaches include the well-known multiple hypothesis tracking (MHT) algo-

rithm [Reid, 1979]. MHT is a multi-scan tracking algorithm that maintains multiple hy-

potheses associating past measurements with targets. When a new set of measurements

arrives, a new set of hypotheses is formed from each previous hypothesis. The algorithm

returns a hypothesis with the highest posterior as a solution. MHT is categorized as a

“deferred logic” method [Poore, 1995] in which the decision about forming a new track

or removing an existing track is delayed until enough measurements are collected. MHT

is capable of initiating and terminating a varying number of tracks and is suitable for au-

tonomous surveillance applications. The main disadvantage of MHT in its pure form is

its computational complexity since the number of hypotheses grows exponentially over

38

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

time. Various heuristic methods have been developed to control this growth [Reid, 1979;

Kurien, 1990; Cox and Hingorani, 1996]; but these methods are applied at the expense

of sacrificing the MAP property. Other MAP approaches have been tried besides MHT,

including 0-1 integer programming [Morefield, 1971] and multidimensional assignment

[Poore, 1995]. As the latter reference shows, the underlying MAP data association prob-

lem is NP-hard, so we do not expect to find efficient, exact algorithms.

Exact Bayesian data association is even less tractable than the MAP computation. Sev-

eral “pseudo-Bayesian” methods have been proposed, of which the best-known is the joint

probabilistic data association (JPDA) filter [Bar-Shalom and Fortmann, 1988]. JPDA is a

suboptimal single-scan approximation to the optimal Bayesian filter; it can also be viewed

as an assumed-density filter in which the joint state estimate is always a single set of tracks

for a “known” set of targets. At each time step, instead of finding a single best associ-

ation between measurements and tracks, JPDA enumerates all possible associations and

computes association probabilities {βjk}, where βjk is the probability that j th measure-

ment extends the kth track. Given an association, the state of a target is estimated by a

filtering algorithm and this conditional state estimate is weighted by the association prob-

ability. Then the state of a target is estimated by summing over the weighted conditional

estimates. JPDA has proved very effective in cluttered environments compared with NNF

[Bar-Shalom and Fortmann, 1988]. The exact calculation of association probabilities {βjk}

in JPDA, which requires the summation over all association event probabilities, is NP-hard

[Collins and Uhlmann, 1992] since the related problem of finding the permanent of a ma-

trix is #P-complete [Valiant, 1979]. A #P-complete problem is computationally equivalent

to computing the number of accepting computations of a polynomial-time nondetermin-

istic Turing machine and #P contains NP [Jerrum and Sinclair, 1996]. Some heuristic

approaches to approximate JPDA include a “cheap” JPDA algorithm [Fitzgerald, 1990],

“suboptimal” JPDA [Roecker and Phillis, 1993] and “near-optimal” JPDA [Roecker, 1994].

In [Huang and Russell, 1997], a single-scan data association problem is considered and a

39

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

leave-one-out heuristic is developed to avoid the enumeration of all possible associations.

This chapter develops a real-time multi-target tracking method called Markov chain

Monte Carlo data association (MCMCDA). Unlike MHT and JPDA, MCMCDA is a true

approximation scheme for the optimal Bayesian filter; i.e., when run with unlimited re-

sources, it converges to the Bayesian solution. As the name suggests, MCMCDA uses

Markov chain Monte Carlo (MCMC) sampling instead of summing over all possible asso-

ciations. MCMC was first used to solve data association problems by Pasula et al. [Pasula et

al., 1999; Pasula, 2003], who showed it to be effective for multi-camera traffic surveillance

problems involving hundreds of vehicles. More recently, in [Cong et al., 2004], MCMC

was used to approximate the association probabilities in JPDA and was shown to outper-

form Fitzgerald’s cheap JPDA. MCMC has also been used for problems that are roughly

isomorphic to the data association problem, including state estimation in the switching

Kalman filter [Bergman and Doucet, 2000] and stereo correspondence in computer vision

[Dellaert et al., 2003]. MCMCDA goes beyond these contributions by incorporating miss-

ing measurements, false alarms and an ability to initiate and terminate tracks, so that the

algorithm can be applied to the full range of data association problems. In addition, MCM-

CDA is robust against the uncertainty in the number of targets.

This chapter has two main technical results. The first is a theorem showing that, when

the number of targets is fixed, single-scan MCMCDA is a fully polynomial randomized

approximation scheme for JPDA. More specifically, for any ε > 0 and any 0 < η < 0.5,

the algorithm finds “good estimates” with probability at least 1 − η in time complexity

O(ε−2 log η−1N(N logN + log(ε−1))), where N is the number of measurements per scan.

(The precise meaning of good estimates is defined in Section 4.2.3.) The theorem is based

on the seminal work of Jerrum and Sinclair [Jerrum and Sinclair, 1996], who designed an

MCMC algorithm for approximating the permanent of a matrix and developed new tech-

niques for analyzing its rate of convergence. As mentioned above, the relationship between

JPDA and computing the permanent was identified by Collins and Uhlmann [Collins and

40

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Uhlmann, 1992]; the connection to the polynomial-time approximation theorems of Jerrum

and Sinclair was first suggested by Pasula et al. [Pasula et al., 1999]. Although our proof

has the same structure as that of Jerrum and Sinclair, substantial technical work was re-

quired to complete the mapping from computing the permanent to solving JPDA, including

the usage of gating conditions that ensure appropriate lower bounds on individual associa-

tion probabilities. In addition, we also present simulation results supporting our theoretical

results.

Our second technical result is the complete specification of the transition structure for a

multi-scan version of MCMCDA that includes detection failure, false alarms, and track ini-

tiation and termination. We prove that the resulting algorithm converges to the full Bayesian

solution. We also provide the first extensive experimental investigation of MCMCDA’s

performance on classical data association problems. We demonstrate remarkably effective

real-time performance compared to MHT under extreme conditions, such as a large number

of targets in a dense environment, low detection probabilities, and high false alarm rates.

But first, we describe the Markov chain Monte Carlo (MCMC) method.

4.1 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) plays a significant role in many fields such as physics,

statistics, economics, finance, and engineering [Gilks et al., 1996; Beichl and Sullivan,

2000; Eraker, 2001]. The MCMC method includes algorithms such as Gibbs sampling

[Geman and Geman, 1984] and the Metropolis-Hastings algorithm [Metropolis et al., 1953;

Hastings, 1970]. Beichl and Sullivan described the Metropolis-Hastings algorithm as “the

most successful and influential of all the members of ... the Monte Carlo Method” [Beichl

and Sullivan, 2000]. MCMC techniques have been applied to complex probability distri-

bution integration problems, counting problems, and combinatorial optimization problems

[Beichl and Sullivan, 2000]. In some cases, MCMC is the only known general algorithm

41

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

that finds a good approximate solution to a complex problem in polynomial time [Jerrum

and Sinclair, 1996].

MCMC is a general method to generate samples from a distribution π on a space Ω by

constructing a Markov chainM with states ω ∈ Ω and stationary distribution π(ω). We

now describe an MCMC algorithm known as the Metropolis-Hastings algorithm. If we are

at state ω ∈ Ω, we propose ω′ ∈ Ω following the proposal distribution q(ω, ω′). The move

is accepted with an acceptance probability A(ω, ω′) where

A(ω, ω′) = min

(
1,
π(ω′)q(ω′, ω)

π(ω)q(ω, ω′)

)
, (4.1)

otherwise the sampler stays at ω. With this construction, the detailed balance condition is

satisfied, i.e., for all ω, ω′ ∈ Ω with ω′ 6= ω,

Q(ω, ω′) = π(ω)P (ω, ω′) = π(ω′)P (ω′, ω), (4.2)

where P (ω, ω′) = q(ω, ω′)A(ω, ω′) is the transition probability from ω to ω′.

A Markov chain is irreducible when every state is accessible from every other state. A

Markov chain is periodic if there exists at least one state to which the Markov chain returns

with a fixed time period greater than one. A Markov chain is aperiodic if no such state

exists. IfM is irreducible and aperiodic, thenM converges to its stationary distribution by

the ergodic theorem [Roberts, 1996]. Hence, for any bounded function f , the sample mean

f̂ = 1
T

∑T
t=1 f(ωt) converges to Eπf(ω) as T → ∞, where ωt is the state ofM at time

t and Eπf(ω) is the expected value of f(ω) with respect to measure π. Notice that (4.1)

requires only the ability to compute the ratio π(ω′)/π(ω), avoiding the need to normalize

π, and this is why MCMC, especially the Metropolis-Hastings algorithm, can be applied to

a wide range of applications.

An ergodic chainM on state space Ω converges to its stationary distribution asymptot-

42

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

ically. But a practical question is how fastM approaches stationarity. One way to measure

the rate of convergence ofM to stationarity is the “mixing time” of the Markov chain. Let

P be the transition probabilities ofM and let P t
ω(·) be the distribution of the state at time

t given thatM is started from the initial state ω ∈ Ω. If π is the stationary distribution of

M, then the total variation distance at time t with initial state ω is defined as

∆ω(t) = ‖P t
ω − π‖tv = max

S⊂Ω
|P t

ω(S)− π(S)| = 1

2

∑
y∈Ω

|P t
ω(y)− π(y)|. (4.3)

The rate of convergence ofM to stationarity can be measured by the mixing time

τω(ε) = min{t : ∆ω(s) ≤ ε for all s ≥ t}. (4.4)

After the mixing time τω(ε), P t
ω(·) for t ≥ τω(ε) is very close to the stationary distribution

π.

One approach to bound τω(ε) of a Markov chain with a complex structure is the canon-

ical path method [Jerrum and Sinclair, 1996]. We use the canonical path method to bound

τω(ε) of the Markov chain simulated by the MCMCDA algorithm given in Section 4.2. For

the remainder of this section, we describe the canonical path method.

For a finite, reversible and ergodic Markov chain M with state space Ω, consider an

undirected graph G = (V,E) where V = Ω and E = {(x, y) : Q(x, y) > 0} (recall the

definition of Q(·, ·) from (4.2)). So an edge (x, y) ∈ E indicates that the Markov chain

M can make a transition from x to y or from y to x in a single step. For each ordered

pair (x, y) ∈ Ω2, the canonical path γxy is a simple path1 from x to y in G. In terms

of M, the canonical path γxy is a sequence of legal transitions from x to y in M. Let

Γ = {γxy : x, y ∈ Ω} be the set of all canonical paths. Now the mixing time of the chain is

1A simple path in a graph is a path with no repeated vertices.

43

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

related to the maximum edge loading:

ρ̄ = ρ̄(Γ) = max
e

1

Q(e)

∑
γxy3e

π(x)π(y)|γxy|, (4.5)

where |γxy| denotes the length of the path γxy. If ρ̄ is not so big, i.e., no single edge is

overloaded, then the Markov chain can mix rapidly. The main result for the canonical path

method is as follows [Jerrum and Sinclair, 1996; Diaconis and Stroock, 1991]:

Theorem 4. Let M be a finite, reversible, ergodic Markov chain with loop probabilities

P (x, x) ≥ 1
2

for all states x. Let Γ be a set of canonical paths with maximum edge loading

ρ̄. Then the mixing time ofM satisfies τω(ε) ≤ ρ̄(log π(x)−1 + log ε−1), for any choice of

initial state ω.

4.2 Single-scan MCMCDA

In this section, we consider a special case of the multi-target tracking problem described in

Chapter 3, in which the number of targets is fixed and known, and propose the single-scan

MCMCDA. Then, we prove that the single-scan MCMCDA algorithm finds an approximate

solution to JPDA in polynomial time.

4.2.1 Single-scan Bayesian Filter

The single-scan Bayesian filter is a generalization of the JPDA filter [Bar-Shalom and

Fortmann, 1988] for the general dynamics and measurement models defined in Chapter 3.

JPDA has been traditionally used with the Kalman filter, assuming linear–Gaussian models,

i.e., linear dynamic and measurement models and white Gaussian noise processes [Bar-

Shalom and Fortmann, 1988]. Recently, JPDA has also been applied with a nonlinear

filtering algorithm such as particle filters [Schulz et al., 2001]. The single-scan MCMCDA

44

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

filter described in Section 4.2.2 is based on the single-scan Bayesian filter but differs from

the JPDA filter in that the association probabilities are approximated by MCMC. The de-

scription of the single-scan MCMCDA filter for linear–Gaussian models is given in [Oh

and Sastry, 2005a].

The single-scan Bayesian filter processes each measurement scan sequentially and com-

putes the posterior distribution of the current states of targets based on the current mea-

surements and the posterior distribution computed at the previous scan. The states of tar-

gets can be estimated from the posterior distribution. Since not all past measurements

are considered when computing the posterior distribution, the single-scan Bayesian filter,

including the JPDA filter, is suboptimal [Bar-Shalom and Fortmann, 1988]. In addition,

when the dynamics and measurement model are nonlinear or the noise processes are non-

Gaussian, the posterior distribution can be only approximated using techniques such as

linearization, unscented filtering [Julier and Uhlmann, 2004], interacting multiple models

[Blom and Bar-Shalom, 1988], or particle filters [de Freitas and Gordon, 2001]. Notice

that, for linear–Gaussian models such as those used in [Bar-Shalom and Fortmann, 1988;

Oh and Sastry, 2005a], the posterior is a Gaussian distribution which is completely de-

scribed by its mean and variance.

Now suppose that we have the posterior distribution P̂ (Xk
t−1|y1:t−1) computed from the

previous time t−1, for each target k, whereXk
t−1 is the state of target k at time t−1, y1:t−1 =

{y1, . . . , yt−1} is a set of measurements, and P̂ (X|y) is an approximation of the distribution

P (X|y). At time t, the following three steps show how the single-scan Bayesian filter

computes P̂ (Xk
t |y1:t) from the new measurements yt and the previous posterior distribution

P̂ (Xk
t−1|y1:t−1). In the following description of the single-scan Bayesian filter, we follow

the notations defined in Chapter 3, except that random variables are denoted by capital

letters.

45

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Step 1 (Prediction): For each k, compute the distribution

P̂ (Xk
t |y1:t−1) :=

∫
P (Xk

t |xk
t−1, y1:t−1)P̂ (xk

t−1|y1:t−1)dx
k
t−1

=

∫
P (Xk

t |xk
t−1)P̂ (xk

t−1|y1:t−1)dx
k
t−1, (4.6)

where the Markovian assumption is used in the second equality and P (Xk
t |xk

t−1) is deter-

mined by the noise process wk
t in (3.1).

Step 2 (Measurement Validation): For each k and j, compute the distribution

P̂ k(Y j
t |y1:t−1) :=

∫
P (Y j

t |xk
t , y1:t−1)P̂ (xk

t |y1:t−1)dx
k
t

=

∫
P (Y j

t |xk
t)P̂ (xk

t |y1:t−1)dx
k
t , (4.7)

where the second equality uses the fact the current observation is independent of previous

observations given the current state and P (Y j
t |xk

t) is determined by the noise process vj
t in

(3.2). Here, P̂ k(yj
t |y1:t−1) is the probability density of having observation yj

t given y1:t−1,

when yj
t is a measurement originated from target k. (Again, for linear–Gaussian models,

P̂ k(Y j
t |y1:t−1) is a Gaussian distribution and completely determined by its mean and vari-

ance.) As in JPDA, we validate measurements and use only validated measurements when

estimating states of targets. The measurement yj
t is validated for target k, if and only if

P̂ k(yj
t |y1:t−1) ≥ δk, (4.8)

where δk are appropriate thresholds. An example of validation is shown in Figure 4.1.

Step 3 (State Estimation): Let Ω be a set of all feasible (joint) association events at time

t. For notational convenience, the subscript t is dropped when there is no confusion. For

each ω ∈ Ω, ω = {(j, k)}, where (j, k) denotes an event that observation j is associated

with target k. An association event ω is feasible when (i) for each (j, k) ∈ ω, yj
t is validated

46

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Figure 4.1: (a) An example of measurement validation. For this 2D example,
P̂ k(Y j

t |y1:t−1) has a Gaussian distribution with mean ŷk for k = 1, 2, 3 (shown as
a solid triangle). Measurements {yj : j = 1, 2, . . . , 8} are shown as disks. A mea-
surement is validated for target k if it is inside the shaded region centered at ŷk.
(b) Measurement validation encoded as a bipartite graph G = (U, V,E). An edge
between yj ∈ U and k ∈ V indicates that measurement yj is validated for target k
and (yj, k) ∈ E. (The subscript t is omitted.)

for target k; (ii) an observation is associated with at most one target; and (iii) a target is

associated with at most one observation.

Let N = nt be the number of validated observations. We encode the feasible as-

sociation events in a bipartite graph. Let G = (U, V,E) be a bipartite graph, where

U = {yj
t : 1 ≤ j ≤ N} is a vertex set of validated observations, V = {k : 1 ≤ k ≤ K}

is a vertex set of target indices, and E = {(u, v) : u ∈ U, v ∈ V, P̂ v(u|y1:t−1) ≥ δv}. An

edge (u, v) ∈ E indicates that observation u is validated for target v according to (4.8). An

example of measurement validation encoded as a bipartite graph is shown in Figure 4.1(b).

A feasible association event is a matching in G, i.e., a subset M ⊂ E such that no two

edges in M share a vertex. The set of all feasible association events Ω can be represented

as Ω = M0(G)∪· · ·∪MK(G), where Mk(G) is a set of k-matchings in G. Some examples

of matchings or feasible association events are shown in Figure 4.2.

47

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Figure 4.2: Examples of matchings (feasible association events) based on the
measurement validation example given in Figure 4.1.

Now using the total probability theorem, we can compute the approximate distribution

as:

P̂ (Xk
t |y1:t) :=

∑
ω∈Ω

P̂ (Xk
t |ω, y1:t)P̂ (ω|y1:t) =

N∑
j=0

βjkP̂ (Xk
t |ωjk, y1:t), (4.9)

where ωjk denotes the event {ω 3 (j, k)}, ω0k denotes the event that no observation is

associated with target k, and βjk is an association probability, such that,

βjk = P̂ (ωjk|y1:t) =
∑

ω:(j,k)∈ω

P̂ (ω|y1:t). (4.10)

P̂ (Xk
t |ωjk, y1:t) in (4.9) can be easily computed by considering it as a single target es-

timation problem with a single observation. Hence, the computation of P̂ (Xk
t |y1:t) reduces

to the computation of βjk. The computation of βjk requires a summation over the posterior,

hence the enumeration of all association events. In JPDA, E(Xk
t |y1:t) is estimated in the

same manner as (4.9) and JPDA is a method for estimating expectations such as E(Xk
t |y1:t)

using the association probabilities {βjk} in the presence of identity uncertainty. As men-

tioned earlier, the exact calculation of {βjk} in JPDA is NP-hard [Collins and Uhlmann,

48

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

1992] and this is the major drawback of JPDA. In the following sections, we describe the

single-scan MCMCDA filter which approximates the association probabilities {βjk} and

prove that the running time of the algorithm is polynomial in the size of the problem.

4.2.2 Single-scan MCMCDA Filter

The single-scan MCMCDA filter shares the same filtering steps of the single-scan Bayesian

filter described in Section 4.2.1, except that the association probabilities {βjk} in (4.10) are

approximated using MCMC. Since the filtering steps are already described in Section 4.2.1,

we only describe how the single-scan MCMCDA filter approximates {βjk} in this section.

Based on the parametric false alarm model described in Section 3.1 and the derivation

similar to (3.8), for each ω ∈ Ω, the prior P (ω) can be written as

P (ω) ∝ (λfV)N−|ω|p
|ω|
d (1− pd)

K−|ω|. (4.11)

Then, the posterior of ω ∈ Ω can be written as

P (ω|y1:t)
(a)
=

1

Z0

P (ω|y1:t−1)P (yt|ω, y1:t−1)

(b)
=

1

Z0

P (ω)P (yt|ω, y1:t−1)

(c)
≈ 1

Z
P (ω)P̂ (yt|ω, y1:t−1)

(d)
=

1

Z
λ

N−|ω|
f p

|ω|
d (1− pd)

K−|ω|
∏

(u,v)∈ω

P̂ v(u|y1:t−1)

=: P̂ (ω|y1:t), (4.12)

where Z0 and Z are normalizing constants; Bayes rule is used in (a); (b) follows from

the fact that ω is independent of y1:t−1; (c) follows from the fact that P̂ (yt|ω, y1:t−1) is an

approximation of P (yt|ω, y1:t−1); and the prior (4.11) is used in (d) and V N−|ω| is canceled

49

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Algorithm 5 Single-scan MCMCDA

Input: G = (U, V,E), nmc, nbi, θ = {{P̂ v(u|y1:t−1)}, λf, pd, K,N}
Output: {β̂jk}

1: β̂jk = 0 for all j and k
2: choose ω0 randomly from Ω
3: for n = 1 to nmc do
4: ωn = Single-scan MCMCDA.single-step(G,ωn−1, θ) (see Algorithm 6)
5: if n > nbi then
6: for each (yj, k) ∈ ωn do
7: β̂jk = β̂jk + 1/(nmc − nbi)
8: end for
9: end if

10: end for

by the matching false alarm density in P̂ (yt|ω, y1:t−1).

The MCMC data association (MCMCDA) algorithm is an MCMC algorithm whose

state space is the set of all feasible association events Ω and whose stationary distribu-

tion is the posterior P̂ (ω|y1:t) (4.12). The single-scan MCMCDA algorithm is shown in

Algorithm 5 along with its MCMC step described in Algorithm 6. The inputs to Algo-

rithm 5 are the graph G, the number of samples nmc, the number of burn-in samples nbi,

and θ. The input θ contains likelihoods {P̂ v(u|y1:t−1)} and model parameters λf, pd, K,

and N . Algorithm 5 computes the approximate association probabilities {β̂jk}, which can

be used in (4.9) to compute the approximate posterior distribution P̂ (Xk
t |y1:t). In Algo-

rithm 6, since we have a uniform proposal distribution, A(ω, ω′) = min
(
1, π(ω′)

π(ω)

)
, where

π(ω) = P̂ (ω|y1:t) from (4.12). Notice that, in line 2 of Algorithm 6, a self-loop transition

probability of 0.5 introduced to make the analysis easier (see p.18 of [Jerrum and Sinclair,

1993] for more detail). In practice, however, the self-loop transition probability in line 2

can be set to 0 for faster convergence.

50

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Algorithm 6 Single-scan MCMCDA.single-step
Input: G = (U, V,E), ω, θ
Output: ωnew

1: sample U from Unif[0, 1]
2: if U < 1

2
then

3: ω′ = ω
4: else
5: choose e = (u, v) ∈ E uniformly at random
6: if e ∈ ω then
7: ω′ = ω − e (deletion move)
8: else if both u and v are unmatched in ω then
9: ω′ = ω + e (addition move)

10: else if exactly one of u and v is matched in ω and e′ is the matching edge then
11: ω′ = ω + e− e′ (switch move)
12: else
13: ω′ = ω
14: end if
15: end if
16: ω = ω′ with probability A(ω, ω′)
17: ωnew = ω

4.2.3 Analysis

Let M be the Markov chain simulated by Algorithm 6. Since the self-loop probability

is nonzero, M is aperiodic. It can be easily seen that M is irreducible, i.e., all states

communicate, for example via the empty matching. In addition, the transitions described

in Algorithm 6 satisfy the detailed balance condition (4.2) soM is reversible. Hence, by

the ergodic theorem, the chain converges to its stationary distribution [Roberts, 1996].

Let us first take a look at the complexity of the problem. As noted earlier, the state space

of the Markov chainM is Ω = M0(G)∪ · · · ∪MK(G). For each k, |Mk(G)| ≤
(

K
k

)
N !

(N−k)!

with equality if the subgraph of G with the k chosen vertices in V is a complete bipartite

graph, i.e., all observations are validated for all k chosen targets. Hence, we can bound the

51

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Figure 4.3: Ω̄ as a function of the number of observations when K = 5

size of Ω as

|Ω| = |M0(G)|+ · · ·+ |MK(G)| ≤
K∑

k=0

(
K

k

)
N !

(N − k)!
=: Ω̄. (4.13)

Figure 4.3 shows this bound for K = 5 as a function of the number of observations.

Certainly, the size of the state space grows exponentially as the number of targets or the

number of observations increases, hence the exact calculation of JPDA by enumeration

is not feasible when the number of targets or the number of observations is large. (See

Section 4.2.4 for experimental results.)

We assume that each likelihood term can be bounded as L ≤ P̂ v(u|y1:t−1) ≤ L̄, for all

(u, v) ∈ E. The lower bound L = min δk is due to the measurement validation. In JPDA,

the measurement validation is used to reduce the number of feasible association events.

However, we later find that it is required to approximate the association probabilities in

polynomial time. The upper bound L̄ can be precomputed based on P̂ v(u|y1:t−1). Here, we

are making a reasonable assumption that P̂ v(u|y1:t−1) ≤ L̄ < ∞ for all (u, v) ∈ E. (An

example of L̄ for linear–Gaussian models can be found in [Oh and Sastry, 2005a].)

The following theorems show that the single-scan MCMCDA algorithm provides a

52

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

fully polynomial randomized approximation scheme for JPDA.

Theorem 5. Suppose that λf > 0 and 0 < pd < 1. Then the mixing time of the Markov

chainM is bounded by

τω(ε) ≤ 4R4K2N(m0(K,N) + log ε−1) (4.14)

for all ω ∈ Ω, where

R = max

{
1,

pdL̄

λf(1− pd)
,
λf(1− pd)

Lpd

}
,

m0(K,N) = K log
m1

m2

+ log
m3(K,N)

m4(K,N)
+

K+1∑
k=1

log k +
N∑

n=1

log n

with m1 = max{1, L̄}, m2 = min{1, L}, m3(K,N) = max0≤k≤K{λN−k
f pk

d(1− pd)
K−k},

and m4(K,N) = min0≤k≤K{λN−k
f pk

d(1− pd)
K−k}.

Proof: See Appendix B.1.

Remark 1. If 0.5 < pd < 1 and λf < 1−pd, then m3(K,N) = λN−K
f pK

d and m4(K,N) =

λN
f (1− pd)

K . So m3(K,N)/m4(K,N) =
(

pd
λf(1−pd)

)K

and K is the only remaining expo-

nent.

Remark 2. Let τ̄(ε) be the upper bound found in Theorem 5. τ̄(ε) is polynomial in K and

N . Ifm3(K,N)/m4(K,N) does not grow fast, e.g., Remark 1, τ̄(ε) = O(K2N(K logK+

N logN + log ε−1)). If K is fixed, τ̄(ε) = O(N(N logN + log ε−1)).

Let p(ω) be the distribution of the states ofM after simulating Algorithm 6 for at least

τ̄(ε) steps. Then the total variation distance satisfies ‖p − π‖tv ≤ ε. So we can sample

from p to estimate {βjk}. However, there is a small bias in our estimates since we are not

sampling directly from π. The following theorem gives an upper bound on the number of

samples needed for finding good estimates.

53

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Theorem 6. Let 0 < ε1, ε2 ≤ 1 and 0 < η < 0.5. Suppose that ‖p − π‖tv ≤ ε for

ε ≤ ε1ε2/8. Then, with a total of 504ε−2
1 ε−1

2 dlog η−1e samples from p, we can find estimates

β̂jk for βjk with probability at least 1− η, such that, for βjk ≥ ε2, β̂jk estimates βjk within

ratio 1+ε1, i.e., (1−ε1)βjk ≤ β̂jk ≤ (1+ε1)βjk, and, for βjk < ε2, |β̂jk−βjk| ≤ (1+ε1)ε2.

Proof: See Appendix B.2.

Remark 3. Following Remark 2, for fixedK, τ̄(ε) = O(N(N logN+log ε−1)). Combining

this fact with Theorem 6, the time complexity of the overall procedure is

ñmc = O(ε−2
1 ε−1

2 log η−1N(N logN + log(ε−1
1 ε−1

2))). (4.15)

Hence, with a total of ñmc samples, Algorithm 6 finds estimates β̂jk for βjk with probability

at least 1 − η, such that, for βjk ≥ ε2, β̂jk estimates βjk within ratio 1 + ε1, and, for

βjk < ε2, |β̂jk − βjk| ≤ (1 + ε1)ε2. We can simplify further by letting ε0 = ε1ε2. Then the

time complexity is O(ε−2
0 log η−1N(N logN + log(ε−1

0))).

4.2.4 Simulation Results

A simple case is chosen to demonstrate single-scan MCMCDA, in which there are five

predicted observations and 12 actual observations over a 4×4 two-dimensional region (see

Figure 4.4(a)). P̂ k(yj
t |y1:t−1) has a Gaussian distribution with zero mean and covariance

Bk = diag(0.5, 0.5) for all k. The other parameters used in this simulation are: λf = 0.5,

pd = 0.8, and δk = p((yj
t − ŷk)T(Bk)−1(yj

t − ŷk) = 4) for all k. Each predicted observation

has at least 10 validated measurements in this case.

The true values of {βjk} are computed using JPDA. In order to study the convergence

of the single-scan MCMCDA algorithm, we ran 100 independent runs with initial states

randomly chosen from Ω. For each run, two types of estimates are made at each MCMC

step: (type r = 1) β̂1
jk, which are computed after τ̄(ε) burn-in samples; and (type r = 2)

54

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

β̂2
jk, which are computed after 10, 000 burn-in samples. Let β̂r

jk(m,n) be the estimate made

at the nth MCMC step for themth run, for type r ∈ {1, 2}. τ̄(ε) is computed using ε1 = 0.1,

ε2 = 0.01, η = 0.05, and ε = ε1ε2/8. In this case, τ̄(ε) = 5.25 × 106 and βjk ≥ ε2

for all (j, k) pairs. The results are shown in Figure 4.4(b). The figure shows a pair of

envelopes, one for each type of estimate. The top curve of an envelope plots the maximum

approximation ratio

Rr
max(n) = max

m=1,...,100
max

jk

β̂r
jk(m,n)

βjk

(4.16)

and the bottom curve plots the minimum approximation ratio

Rr
min(n) = min

m=1,...,100
min

jk

β̂r
jk(m,n)

βjk

(4.17)

for r ∈ {1, 2}. The envelope for type r = 1 starts from n = τ̄(ε) and type r = 2 starts

from n = 10, 000.

A couple of observations can be made from Figure 4.4(b). Based on Theorem 6, it

requires at least ñmc = 1.5× 107 samples to make sure that the estimate using τ̄(ε) burn-in

samples approximates the true value with ratio less than ε1, i.e., the envelop (Rr
max(n), Rr

min(n))

is completely contained in (1 + ε1, 1 − ε1) for n > ñmc. But both estimates achieve the

approximation ratio of ε1 much faster than ñmc. As frequently observed in many practical

applications of MCMC, we observe that the algorithm requires a significantly smaller num-

ber of burn-in samples than what the theorem requires. This is a reasonable observation

since the theorem is based on the worst-case analysis. For this example, 10,000 burn-in

samples were enough, i.e., 500 times less than τ̄(ε). Lastly, in theory, we find good approx-

imations with probability at least 1 − η. But we observe that estimates from all 100 runs

are within the approximation ratio of ε1.

Next, we added one more predicted observation at [
√

2/2,
√

2/2]T to the previous ex-

ample. There are more than 5× 105 association events for this example and it was difficult

55

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

(a) (b)

Figure 4.4: (a) Predicted observations (crosses) and actual observations (dots).
(b) Maximum and minimum approximation ratios (Rr

max, R
r) for two types of esti-

mates (r ∈ {1, 2}) computed from 100 independent single-scan MCMCDA runs.
The approximation ratios for r = 1 start from τ̄(ε) = 5.25 × 106 and the approx-
imation ratios for r = 2 start from 10, 000. The dotted ε1-tube centered at 1 rep-
resents the goal approximation ratio ε1. If (Rr

max, R
r
min) is completely contained in

(1 + ε1, 1 − ε1), we have achieved our goal approximation ratio. Theoretically, it
requires at least ñmc = 1.5 × 107 samples to make sure (Rr

max(n), Rr
min(n)) is con-

tained in (1 + ε1, 1− ε1) for n > ñmc. But both estimates achieve the approximation
ratio of ε1 much faster than ñmc.

to compute the association probabilities using JPDA. But the single-scan MCMCDA algo-

rithm found good estimates with run-time compatible to the previous example.

4.3 Multi-scan MCMCDA

In this section, we present an algorithm for solving the multi-target tracking problem de-

scribed in Chapter 3. The algorithm is presented in Section 4.3.1 and its performance is

compared against MHT in Section 4.3.3.

56

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

4.3.1 Multi-scan MCMCDA Algorithm

The multi-scan MCMCDA algorithm is described in Algorithm 7. It is an MCMC algo-

rithm whose state space is Ω as defined in Section 3.2 and whose stationary distribution

is the posterior (3.10). The proposal distribution for MCMCDA consists of eight moves

grouped into five types as follows: (1) birth/death move pair; (2) split/merge move pair;

(3) extension/reduction move pair; (4) track update move; and (5) track switch move. (See

Figure 4.5.) We index each move by an integer such that m = 1 for a birth move, m = 2

for a death move and so on. The move m is chosen randomly from the distribution ξK(m)

where K is the number of tracks of the current partition ω. When there is no track, we

can only propose a birth move, so we set ξ0(m = 1) = 1 and 0 for all other moves.

When there is only a single target, we cannot propose a merge or track switch move, so

ξ1(m = 4) = ξ1(m = 8) = 0. For other values of K and m, we assume ξK(m) > 0.

The inputs for MCMCDA are the set of all observations Y , the number of samples nmc, the

initial state ωinit, and model parameters pz, pd, and λb. When we want to estimate EπX of

a bounded function X : Ω → Rn, MCMCDA can also take the function X as an input.

At each step of the algorithm, ω is the current state of the Markov chain. The acceptance

probability A(ω, ω′) is defined in (4.1) where π(ω) = P (ω|Y) from (3.10). The output

X̂ approximates the Bayesian posterior expectation EπX and ω̂ approximates the MAP

estimate arg maxP (ω|Y). The computation of ω̂ can be viewed as simulated annealing

[Kirkpatrick et al., 1983] at a constant temperature. Notice that MCMCDA can provide

both MAP and Bayesian solutions to the multi-target tracking problem.

An MCMC algorithm can be specialized and made more efficient by incorporating

domain-specific knowledge. In multi-target tracking, we can make two assumptions: (1)

the maximum directional speed of any target in R is less than some v̄; and (2) the number

of consecutive missing observations of any track is less than some d̄. The first assumption

is reasonable in a surveillance scenario since, in many cases, the maximum speed of a

57

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Algorithm 7 Multi-scan MCMCDA
Input: Y, nmc, ωinit, pz, pd, λb, X : Ω→ Rn

Output: ω̂, X̂
1: ω = ωinit; ω̂ = ωinit; X̂ = 0
2: for n = 1 to nmc do
3: propose ω′ based on ω (see sections 4.3.1.1 to 4.3.1.5)
4: sample u from Unif[0, 1]
5: ω = ω′ if u < A(ω, ω′)
6: ω̂ = ω if P (ω|Y)/P (ω̂|Y) > 1
7: X̂ = n

n+1
X̂ + 1

n+1
X(ω)

8: end for

vehicle is generally known based on the vehicle type and terrain conditions. The second

assumption is a user-defined parameter. Let pdt(s) = 1 − (1 − pd)
s be the probability that

an object is observed at least once out of s measurement times. Then, for given p̄dt, we set

d̄ ≥ log(1 − p̄dt)/ log(1 − pd) to detect a track with probability at least p̄dt. For example,

given pd = 0.7 and p̄dt = 0.99, a track is detected with probability larger than 0.99 for

d̄ ≥ 4. We will now assume that these two new conditions are added to the definition of Ω

so each element ω ∈ Ω satisfies these two additional assumptions.

The incorporation of the constraints v̄ and d̄ is carried out by devising a data structure,

which groups temporally separated observations based on distances with respect to the

constraints. This data structure is formally defined as following:

Ld(y
j
t) = {yk

t+d ∈ yt+d : ϕ(yj
t , y

k
t+d) ≤ d · v̄} (4.18)

for d = 1, . . . , d̄, j = 1, . . . , nt and t = 1, . . . , T − 1. Here ϕ : Rny × Rny → R is an

appropriate metric, e.g., for a Cartesian coordinate system, ϕ is induced by the Euclidean

norm. Ld is used in Algorithm 7 to propose a new state ω′ from the current state ω and

the parameter d allows missing observations. The use of this data structure makes the

algorithm more scalable since distant observations will be considered separately and makes

the computations of the proposal distribution easier. It is similar to the clustering technique

58

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Figure 4.5: Graphical illustration of MCMCDA moves (associations are indicated
by dotted lines and hollow circles are false alarms). Each move proposes a new
joint association event ω′ which is a modification of the current joint association
event ω. The birth move proposes ω′ by forming a new track from the set of false
alarms ((a) → (b)). The death move proposes ω′ by combining one of the existing
tracks into the set of false alarms ((b) → (a)). The split move splits a track from
ω into two tracks ((c) → (d)) while the merge move combines two tracks in ω into
a single track ((d) → (c)). The extension move extends an existing track in ω
((e)→ (f)) and the reduction move reduces an existing track in ω ((f)→ (e)). The
track update move chooses a track in ω and assigns different measurements from
the set of false alarms ((g) ↔ (h)). The track switch move chooses two track from
ω and switches some measurement-to-track associations ((i)↔ (j)).

used in MHT but Ld in MCMCDA is fixed for a given set of observations.

We now describe each move of the sampler in detail. First, let ζ(d) be a distribution

of a random variable d taking values from {1, 2, . . . , d̄}. We assume the current state of

the chain is ω = ω0 ∪ ω1 ∈ Ω, where ω0 = {τ0} and ω1 = {τ1, . . . , τK}. The proposed

partition is denoted by ω′ = ω′0 ∪ω′1 ∈ Ω. Note the abuse of notation below with indexing

of time, i.e., when we say τ(ti), ti means the time at which a target corresponding to the

track τ is observed i times.

59

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

4.3.1.1 Birth and Death Moves (Figure 4.5 , a↔ b)

For a birth move, we increase the number of tracks from K to K ′ = K + 1 and select t1

uniformly at random (u.a.r.) from {1, . . . , T − 1} as an appearance time of a new track.

Let τK′ be the track of this new object. Then we choose d1 from the distribution ζ . Let

L1
d1

= {yj
t1 : Ld1(y

j
t1) 6= ∅, y

j
t1 6∈ τk(t1), j = 1, . . . , nt1 , k = 1, . . . , K}. L1

d1
is a set of

observations at t1 such that, for any y ∈ L1
d1

, y does not belong to other tracks and Ld1(y)

is not empty. We choose τK′(t1) u.a.r. from L1
d1

. If L1
d1

is empty, the move is rejected

since the move is not reversible. Once the initial observation is chosen, we then choose

the subsequent observations for the track τK′ . For i = 2, 3, . . ., we choose di from ζ and

choose τK′(ti) u.a.r. from Ldi
(τK′(ti−1)) \ {τk(ti−1 + di) : k = 1, . . . , K} unless this set

is empty. But, for i = 3, 4, . . ., the process of adding observations to τK′ terminates with

probability γ, where 0 < γ < 1. If |τK′| ≤ 1, the move is rejected. We then propose this

modified partition where ω′1 = ω1 ∪ {τK′} and ω′0 = {τ0 \ τK′}. For a death move, we

simply choose k u.a.r. from {1, . . . , K} and delete the kth track and propose a new partition

where ω′1 = ω1 \ {τk} and ω′0 = {τ0 ∪ τk}.

4.3.1.2 Split and Merge Moves (Figure 4.5 , c↔ d)

For a split move, we select τs(tr) u.a.r. from {τk(ti) : |τk| ≥ 4, i = 2, . . . , |τk| − 2, k =

1, . . . , K}. Then we split the track τs into τs1 and τs2 such that τs1 = {τs(ti) : i = 1, . . . , r}

and τs2 = {τs(ti) : i = r + 1, . . . , |τs|}. The modified track partition becomes ω′1 =

(ω1 \ {τs})∪{τs1}∪ {τs2} and ω′0 = ω0. For a merge move, we consider the following set

of possible merge move pairs:

M = {(τk1(tf), τk2(t1)) : τk2(t1) ∈ Lt1−tf (τk1(tf)), f = |τk1| for k1 6= k2, 1 ≤ k1, k2 ≤ K}.

60

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

We select a pair (τs1(tf), τs2(t1)) u.a.r. fromM . The tracks are combined into a single track

τs = τs1 ∪ τs2 . Then we propose a new partition where ω′1 = (ω1 \ ({τs1} ∪ {τs2}))∪ {τs}

and ω′0 = ω0.

4.3.1.3 Extension and Reduction Moves (Figure 4.5 , e↔ f)

In a track extension move, we select a track τ u.a.r. from K available tracks in ω. We

reassign observations for τ after the disappearance time t|τ | as done in the track birth move.

For a track reduction move, we select a track τ u.a.r. from K available tracks in ω and r

u.a.r. from {2, . . . , |τ | − 1}. We shorten the track τ to {τ(t1), . . . , τ(tr)} by removing the

observations assigned to τ after the time tr+1.

4.3.1.4 Track Update Move (Figure 4.5 , g ↔ h)

In a track update move, we select a track τ u.a.r. from K available tracks in ω. Then we

pick r u.a.r. from {1, 2, . . . , |τ |} and reassign observations for τ after the time tr as done

in the track birth move.

4.3.1.5 Track Switch Move (Figure 4.5 , i↔ j)

For a track switch move, we select a pair of observations (τk1(tp), τk2(tq)) from two dif-

ferent tracks such that, τk1(tp+1) ∈ Ld(τk2(tq)) and τk2(tq+1) ∈ Ld′(τk1(tp)), where d =

tp+1 − tq, d′ = tq+1 − tp and 0 < d, d′ ≤ d̄. Then we let

τk1 = {τk1(t1), . . . , τk1(tp), τk2(tq+1), . . . , τk2(t|τk2
|)}

τk2 = {τk2(t1), . . . , τk2(tq), τk1(tp+1), . . . , τk1(t|τk1
|)}.

The main result of this section is that MCMCDA is an optimal Bayesian filter in the

limit. LetM be the Markov chain specified by Algorithm 7. Then we have:

61

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Theorem 7. Suppose that 0 < pz, pd < 1 and λb, λf > 0. If ζ(d) > 0, for all d ∈

{1, . . . , d̄}, then the Markov chainM is ergodic and X̂ → EπX as nmc →∞.

See Appendix B.3 for the proof of the theorem and see Section 4.3.3.5 for a numerical

demonstration of the theorem.

4.3.2 Online MCMCDA

The MCMCDA algorithm described in previous section is a batch algorithm and its compu-

tational complexity grows as more measurements are collected. Since recent measurements

are more relevant to the current states, good estimates of the current states can still be found

from recent measurements. Based on this idea, we propose an online MCMCDA algorithm

whose estimates are based on measurements from a window of time [tcurr−twin+1, . . . , tcurr],

where tcurr is the current time and twin is the size of a window. Hence, at all times, only a

finite number of measurements are kept by the algorithm. This online implementation of

MCMCDA shown in Algorithm 8 is suboptimal because it considers only a subset of past

measurements.

At each time step, we use the previous MAP estimate to initialize MCMCDA and run

MCMCDA on the measurements Yw(tcurr) = {yj
t : 1 ≤ j ≤ nt, tcurr − twin + 1 ≤ t ≤ tcurr}

belonging to the current window. At time tcurr +1, the measurements at time tcurr− twin +1

are removed from Yw and a set of newly arrived measurements Ynew(tcurr) is appended to

Yw(tcurr). Any delayed measurements are inserted into the appropriate slots. Then, we

initialize the Markov chain with the previously estimated tracks and execute Algorithm 7

on Yw(tcurr). The algorithm is summarized in Algorithm 8. The inputs for online MCMCDA

at time tcurr are the previous MAP estimate ω̂(tcurr − 1), the existing set of measurements

Yw(tcurr− 1), and the set of new measurements Ynew(tcurr). The other inputs are the same as

Algorithm 7. Other estimates such as state estimates can be computed using the functionX

or ω̂(tcurr). The simulation results using online MCMCDA can be found in Section 4.3.3.4.

62

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Algorithm 8 Online MCMCDA (at time tcurr)
Input: ω̂(tcurr − 1), Yw(tcurr − 1), Ynew(tcurr), nmc, pz, pd, λb, X : Ω→ Rn

Output: ω̂(tcurr), Yw(tcurr)
1: Yw(tcurr) = {yj

t ∈ Yw(tcurr − 1) : tcurr − twin + 1 ≤ t ≤ tcurr}
2: add new measurements Ynew(tcurr) into Yw(tcurr)
3: ωinit = {τ(t) ∈ ω̂(tcurr − 1) : tcurr − twin + 1 ≤ t ≤ tcurr}
4: ω̂(tcurr) = Multi-scan MCMCDA(Yw(tcurr), nmc, ωinit, pz, pd, λb, X) (see Algorithm 7)

4.3.3 Simulation Results

In this section, the performance of multi-scan MCMCDA is evaluated and compared against

MHT. We consider surveillance over a rectangular region on a plane, R = [0, 1000] ×

[0, 1000]. The state vector is x = [x, y, ẋ, ẏ]T where (x, y) is a position on R along the

usual x and y axes and (ẋ, ẏ) is a velocity vector. Linear dynamics and a linear measure-

ment model are used:

xk
t+1 = Axk

t +Gwk
t yj

t = Cxk
t + vj

t
(4.19)

where

A =

1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

 G =

T 2

s /2 0

0 T 2
s /2

Ts 0

0 Ts

 C =

1 0

0 1

0 0

0 0

T

,

and Ts is the sampling period, wk
t is a zero-mean Gaussian process with covariance Q =

diag(100, 100), and vj
t is a zero-mean Gaussian process with covarianceR = diag(100, 100).

The complexity of multi-target tracking problems can be measured by several metrics:

(1) the intensity of the false alarm rate λf; (2) the detection probability pd; and (3) the

density of tracks. The problem gets more challenging with increasing λf, decreasing pd,

63

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

and increasing density of tracks. The number of tracks itself may not make the problem

more difficult if they are scattered apart. The difficulty arises when there are many tracks

crossing and moving close to each other; this is when the ambiguity of data association is

greatest. Hence, we consider only situations in which tracks move very closely so we can

control the density of tracks by the number of tracks.

We study the performance of the MCMCDA algorithm against the greedy algorithm

and MHT by varying the parameters listed above. To make the comparison easier, we

take the MAP approach, in which the states of targets are estimated from ω̂ computed from

Algorithm 7. The greedy algorithm is a batch-mode, nearest-neighbor, multi-target tracking

algorithm. Initially, all observations are unmarked. Unmarked observations are considered

false alarms. The algorithm first picks two unmarked observations at different times to

estimate an initial state. Then it forms a candidate track by picking unmarked observations

which are the nearest to the predicted states for the subsequent time steps. The candidate

track is validated as a track and observations associated to the candidate track are marked

if the marginal of the candidate track exceeds a threshold. The process is repeated until

no more tracks can be found. For a more detailed description of the greedy algorithm, see

[Oh, 2003].

Based on our model described above and in Chapter 3, we have generated different

scenarios. In particular, in all cases, except for the online tracking case, half of the new

objects appear from the bottom left quadrant of R and the other half appear from the the

bottom right quadrant. (The actual initial positions are chosen randomly from a 200× 200

region in each quadrant.) They all move diagonally so that each group of tracks crosses

the other group in the middle of R. The targets also move very close to each other and

there are crossovers within each group. All targets are present from t = 1 to t = T .

An example of a scenario with 100 targets is shown in Figure 4.6. In order to measure

the density of tracks, the distance between every pair of targets at each time is computed

from a test case (K = 100) used in Section 4.3.3.1. Figure 4.7 shows two histograms

64

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Figure 4.6: A scenario used for the experiment in Section 4.3.3.1 (K = 100). A
solid line represents a trajectory of a target. A half of new objects appears from
the left bottom quadrant of R and the other half of new objects appears from the
the right bottom quadrant. The actual initial positions are chosen randomly from a
200× 200 region in each quadrant.

created from these pairwise distances. Figure 4.7(a) shows the median number of targets

at different distance ranges while Figure 4.7(b) shows the maximum number of targets at

different distance ranges. In this example, between t = 5 and t = 6, the median number

of neighboring targets with distance less than 20 is 7 and some targets have 14 neighboring

targets. For distance less than 100, the median number of neighboring targets is 46 and

some targets have 90 neighboring targets. Considering that the covariance matrices are

Q = diag(100, 100) and R = diag(100, 100), the distance of length 100 is about 3.5 times

the standard deviation of the joint noise process in two-dimension; hence, this is a highly

dense environment.

Since the number of targets is not fixed, it is difficult to compare algorithms using a

standard criterion such as the mean square error. Instead, we use a standard performance

measure, called F1, used in the information retrieval literature [van Rijsbergen, 1979; Yang

65

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

(a) Histogram of the median number of
targets at different distances

(b) Histogram of the maximum number
of targets at different distances

Figure 4.7: Histograms of the number of targets from the test case (K = 100) used
in Section 4.3.3.1 at different target-to-target distances at each simulation time
(t). Each simulation time (t) is shown in a different color. The height of each bar
represents the number of targets with distances belonging to the corresponding
range.

and Liu, 1999]. The F1 measure is defined in terms of recall and precision. Recall is the

ratio of correct associations made by an algorithm divided by the total number of correct

associations. Precision is the ratio of correct associations made by an algorithm divided

by the total number of associations made by the algorithm. The F1 measure is a harmonic

mean between recall (r) and precision (p) with an equal weight and defined as:

F1(r, p) =
2rp

r + p
. (4.20)

Recall and precision measure the effectiveness of an algorithm [van Rijsbergen, 1979]; the

higher the value of the F1 measure, the more effective the algorithm is.

Both MCMCDA and greedy algorithms are written in C++ with MATLAB interfaces.

We have used the C++ implementation of MHT [Cox,], which implements pruning, gating,

clustering, N -scan-back logic and k-best hypotheses. The parameters for MHT are fine-

66

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

tuned so that it gives similar performance to that of MCMCDA when there are 10 targets:

the maximum number of hypotheses in a group is 1,000, the maximum track tree depth is

5, and the maximum Mahalanobis distance is 11.8. All simulations are run on a PC with a

2.6-GHz Intel processor.

4.3.3.1 Number of Tracks

In this experiment, we vary K from 5 to 100. The other parameters are held fixed: R =

[0, 1000] × [0, 1000], T = 10, pd = 0.9, λfV = 1, d̄ = 1, v̄ = 100 unit lengths per unit

time. A uniform mass function is used for each ξk(·) and ζ(d) is computed based on pd.

For each value of K, we randomly generated 10 test cases. The initial state of MCMCDA

is calculated with the greedy algorithm and 50,000 samples are used in MCMCDA. For

each K, the average F1 measure and running time are computed from the 10 test cases (for

MCMCDA, we also average over 10 runs per test case). The average F1 measure computed

at different K is shown in Figure 4.8(a). The average running times of three algorithms are

shown in Figure 4.8(b) (the running time of MCMCDA includes the initialization step).

Although the maximum number of hypotheses of 1,000 per group is a large number, with

increasing numbers of tracks, the performance of MHT deteriorates due to pruning. But

both greedy and MCMCDA maintain good performance, although the greedy algorithm

detects fewer tracks for large K. However, we later find that the performance of the greedy

algorithm is poor against missing detections as shown in Section 4.3.3.3. Another striking

difference is that the running times of both greedy and MCMCDA are significantly less

than that of MHT.

4.3.3.2 False Alarms

Now the settings are the same as Section 4.3.3.1 but we vary the false alarm rates while

the number of tracks is fixed at K = 10. The false alarm rates are varied from λfV = 1

67

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

(a) F1 measure as a function of K (b) Average running time as a function of
K

(c) F1 measure as a function of λfV (d) F1 measure as a function of pd

Figure 4.8: Simulation results

to λfV = 100 with an increment of 10. For each value of λfV , we randomly generated 10

test cases and MCMCDA is run 10 times per test case. Again, 50,000 samples are used

for MCMCDA. The average F1 measures for the three algorithms at different false alarm

rates are given in Figure 4.8(c). The results show that MCMCDA performs well at high

false alarm rates. The greedy algorithm suffers because it finds too many spurious tracks

(poor precision) and MHT becomes hopelessly confused, finding no correct associations at

λfV ≥ 80.

68

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

4.3.3.3 Detection Probability

The detection probability pd is varied from 0.3 to 0.99 with an increment of 0.1, except

the last increment which is 0.09, while keeping the other parameters as the previous ex-

periments except K = 10, λfV = 1, and d̄ = 5. Now the tracks are not observed at

all times. For each value of pd, we randomly generated 10 test cases and MCMCDA is

run 10 times per test case. Again, 50,000 samples are used for MCMCDA. The average

F1 measures for three different algorithms at different detection probabilities are shown

in Figure 4.8(d). The overall performance of MCMCDA is comparable to that of MHT.

MHT performs better at high detection probability while MCMCDA performs better at low

detection probability. The greedy algorithm performed very poorly.

Although, in theory, MHT gives an optimal solution in the sense of MAP, it performs

poorly in practice when the detection probability is low or the false alarm rate is high. This

is due to the heuristics, such as pruning and N -scan-back techniques, that are required to

limit complexity. They work well when a few hypotheses carry most of the weight. When

the detection probability is low or the false alarm rate is high, however, there are many

hypotheses with appreciable weights and there is no small set of dominating hypotheses,

so MHT cannot perform well. A major advantage of the MCMCDA algorithm is that its

running time can be regulated by the number of samples and the number of observations

but the running time of MHT depends on the complexity of the problem instance, which is

not predictable in advance. In addition, the memory required by MCMCDA is significantly

less than the memory required by MHT, since MCMCDA is only required to store one

association event at a time.

4.3.3.4 Robustness Against the Uncertainty in the Number of Targets

Our probabilistic model assumes that the following parameters are known: detection prob-

ability pd, new target birth rate λb, termination probability pz, and false alarm rate λf. It is

69

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Figure 4.9: An example used in Section 4.3.3.4. The actual trajectories are shown
in solid lines and measurements are shown in dots. The surveillance duration is
T = 100 and there are 30 targets appearing and disappearing at random times.

reasonable to assume that the detection probability, termination probability and false alarm

rate are estimated reliably from historic data or from sensor models. However, we cannot

reliably estimate the new target birth rate λb since we do not know the number of targets

ahead of time. Ideally, we want a multi-target tracking algorithm to be robust against the

uncertainty in the number of targets, i.e., when λb is not known. In this section, we compare

online MCMCDA from Section 4.3.2 against MHT by varying λb.

An example of tracking multiple targets in a cluttered environment is used for demon-

stration (see Figure 4.9). For this example, the surveillance duration is T = 100 and there

are 30 targets appearing and disappearing at random times over the surveillance region

R = [0, 100] × [0, 100]. The size of the sliding window is twin = 10. The other param-

eters are: pd = 0.7, λf = 0.001, d̄ = 10, and v̄ = 3 unit lengths per unit time. The

linear model (4.19) is used, but with different covariance matrices Q = diag(0.04, 0.04)

and R = diag(0.04, 0.04).

Both online MCMCDA and MHT are applied to estimate tracks from this example us-

70

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Table 4.1: Comparison between Online MCMCDA and MHT at Different New Tar-
get Birth Rates

Algorithm λb Run-time Estimated Unnormalized
(per scan) Number of Tracks Log-posterior

Online MCMCDA 0.0005 0.41 sec 47 -10653.38
0.005 0.42 sec 72 -11037.72
0.05 0.46 sec 153 -11560.77

MHT 0.0005 0.62 sec 64 -10806.03
0.005 1.78 sec 107 -11226.27
0.05 6.72 sec 225 -12906.19

ing three different values of λb (0.0005, 0.005, and 0.05). The tracks estimated by online

MCMCDA and MHT are shown in Figure 4.10. The algorithm run-times, estimated num-

bers of tracks, and unnormalized log-posterior of estimated tracks are listed in Table 4.1.

For online MCMCDA, 5,000 MCMC samples are used at each scan. For different values

of λb, online MCMCDA took about the same length of time. But MHT required a signif-

icantly more computation time for smaller values of λb, i.e., when the algorithm expects

more targets than there are. Also notice that more spurious tracks are detected by MHT

and online MCMCDA achieved higher unnormalized log-posterior than MHT. This exam-

ple illustrates that online MCMCDA is more robust than MHT against the uncertainty in

the number of targets.

4.3.3.5 Convergence

An example is used to demonstrate the convergence of MCMCDA (Theorem 7). In order to

compute the exact estimates, we have chosen a simple example where there are four scans

(T = 4) and three measurements per scan. Hence, there are a total of 12 measurements.

But even for this simple case, there are over 45,000 partitions or association events, i.e.,

the size of Ω is over 45,000. We again used the dynamics and measurement model given

(4.19), whereQ = diag(4, 4) andR = diag(4, 4). The surveillance region isR = [0, 100]×

71

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

(a) Online MCMCDA,
λb = 0.0005

(b) Online MCMCDA,
λb = 0.005

(c) Online MCMCDA,
λb = 0.05

(d) MHT, λb = 0.0005 (e) MHT, λb = 0.005 (f) MHT, λb = 0.05

Figure 4.10: Tracks estimated by online MCMCDA (a)-(c) and by MHT (d)-(f) at
different values of λb. MHT detected more spurious tracks and required longer
running time than online MCMCDA. (See Table 4.1 for the comparison between
online MCMCDA and MHT.)

[0, 100]. The other parameters are: pd = 0.7, λf = 0.0013, λb = 9.38 × 10−4, d̄ = 4, and

v̄ = 100. All the measurements are shown in Figure 4.11(a) and they are

Y1 = {[7.81, 44.58]T, [9.46, 51.03]T, [7.92, 56.38]T}

Y2 = {[28.93, 45.22]T, [29.88, 48.16]T, [27.31, 52.41]T}

Y3 = {[51.30, 52.29]T, [51.91, 48.79]T, [52.04, 42.47]T}

Y4 = {[70.58, 52.10]T, [75.70, 45.07]T, [66.71, 41.21]T}.

72

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

(a) (b)

Figure 4.11: (a) All measurements from t = 1 to t = 4. (b) Average estimation
error as a function of the number of MCMC samples. The dotted line represents
the estimation error of X̂1 in estimating E(X1|B). The dashed line is for estimating
E(X2|B) and the solid line is for estimating E(X3|B).

Let A be an event such that there are 3 targets at time t = T and Xk be the state of

the kth target at time t = T . Let B be an event such that B ⊂ A and ‖X1‖ ≤ ‖X2‖ ≤

‖X3‖. Our objective is the computation of E(Xk|B) for k = 1, 2, 3. Here, B provides

a unique labeling described at the end of Section 3.2. E(Xk|B) are computed exactly

by enumeration. Let X̂k(n) be the estimate of E(Xk|B) made at the nth MCMC step of

Algorithm 7 after the first 100 burn-in samples. We ran 100 independent runs and computed

the average estimation error for each k and n. The average estimation error is shown as

a function of the number of samples in Figure 4.11(b). Although the size of the partition

space Ω is over 45,000, this is a simple case and, as one might expect, Figure 4.11(b)

shows rapid convergence of MCMCDA estimates toward the exact values. It is important to

notice that MCMCDA only keeps a single association event (the current state) and does not

enumerate all possible association events, hence, the memory requirement is significantly

less than other approaches.

73

CHAPTER 4. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

4.4 Summary

In this chapter, we have presented Markov chain Monte Carlo data association (MCM-

CDA) for solving data association problems arising in multi-target tracking in a cluttered

environment. For the case of a fixed number of targets, we have shown that a single-scan

MCMCDA algorithm provides a fully polynomial randomized approximation scheme for

the single-scan Bayesian filter such as JPDA, which is known to be NP-hard. For a large

problem, the exact calculation of JPDA by enumeration is not feasible but MCMCDA can

efficiently find an approximate solution. In practice, an approach which combines both

JPDA and MCMCDA takes advantages of both approaches. The combined approach can

use JPDA for cases with a small number of edges in the measurement validation graph but

use MCMCDA for cases with a large number of edges in the graph. The precise threshold-

ing number of edges needs to be determined based on the specific application and available

computing resource.

For the general multi-target tracking problem, in which an unknown number of targets

appears and disappears at random times, we have presented a multi-scan MCMCDA al-

gorithm that is capable of initiating and terminating an unknown number of tracks. The

MCMCDA algorithm is flexible and can easily incorporate any domain specific knowl-

edge to make it more efficient. Instead of enumerating the entire space of associations,

MCMCDA randomly samples the region where the posterior is concentrated. Our simula-

tion results show the remarkable performance of the MCMCDA algorithm under extreme

conditions such as a large number of targets in a dense environment, low detection prob-

abilities, and high false alarm rates. MCMCDA was also robust against the uncertainty

in the number of targets. We have also shown that the algorithm can be formulated as an

online, real-time algorithm with excellent performance. In Chapter 5 and 6, MCMCDA

has been successfully extended hierarchically to improve its scalability.

74

CHAPTER 5

DISTRIBUTED MULTI-TARGET

TRACKING AND IDENTITY

MANAGEMENT

This chapter extends MCMCDA developed in Chapter 4 to distributed tracking for sensor

networks. Our distributed tracking algorithm is inspired by the distributed tracking algo-

rithm based on MHT by Chong et al. [Chong et al., 1990]. In [Chong et al., 1990], the

tracking task is distributed and tracks are hierarchically merged. We follow the similar ap-

proach but our algorithm is based on a more computationally efficient multi-target tracking

algorithm.

The tracks estimated by a multi-target tracking algorithm are usually used by other

applications. These applications make decisions or reallocate resources based on the esti-

mated tracks, e.g., pursuer assignment and path planning in pursuit-evasion games [Schen-

ato et al., 2005]. But a decision based on a single set of tracks may be risky since tracks

do not fully exhibit the uncertainty in the identities of targets accumulated from continuous

interactions among crossing or nearby targets. For example, when two targets are mov-

75

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

ing close to each other, there can be multiple interpretations of the event. Figure 5.1(a)

shows measurements about positions of two targets over time. Figure 5.1(b) and 5.1(c)

shows two possible interpretations made from the measurements shown in Figure 5.1(a).

Clearly, there can be more than two interpretations due to measurement noise and identity

uncertainty but a multi-target tracking algorithm can only display a single interpretation

(usually the one with the highest likelihood or an interpretation with expected positions).

Since the number of possible interpretations grows exponentially as more measurements

are collected, we can not display all possible interpretations. In this chapter, we assume

that the communication medium is bandwidth-limited, hence, it is necessary to represent

the uncertainty about the identities in the most compact representation.

This issue can be addressed by the identity management [Shin et al., 2003; Hwang

et al., 2004b]. An identity is assigned to a target when it first appears; the identity belief

associated with a target at any future point in time is represented as a probability distribution

of the identity of the target over all existing identities. Thus, when two targets cross each

other, the uncertainty in this crossing is represented by changes in the identity beliefs.

However, the available identity management algorithms [Shin et al., 2003; Hwang et al.,

2004b] work for the cases in which the number of targets in a sensor network is known

and constant and their trajectories are available to local sensors. As a result, the existing

algorithms are applicable to limited situations and difficult to scale them for a large sensor

network. Hence, to handle general situations arising in a large-scale sensor network, a

scalable and autonomous approach is required and it demands a new identity management

system which can handle an unknown and time-varying number of targets.

Although target tracking and identity management are closely related, only the recent

work by Hwang et al. [Hwang et al., 2004a; Hwang et al., 2006] describes an algorithmic

framework for systematically tracking multiple maneuvering targets and maintaining their

identities from noisy measurements. The algorithm has been shown to perform well for

the case in which there is a single sensor (radar) and the number of targets are known and

76

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Figure 5.1: (a) Measurements about the positions of two targets (each circle rep-
resents a measurement and numbers represent measurement times); (b) One in-
terpretation made from measurements shown in (a) (a solid line represents a track
of a target); (c) Another interpretation.

constant. Thus, this algorithm cannot be used for sensor network applications in which

there are many sensors and the number of targets is varying over time. We extend the re-

sults in [Hwang et al., 2006] and propose a multi-target tracking and identity management

system which is scalable, autonomous and distributed. The system is based on three new

algorithms: multi-target tracking, identity management, and identity and track fusion algo-

rithms. The multi-target tracking algorithm is a hierarchical implementation of MCMCDA

described in Chapter 4 with a sliding window. MCMCDA is suitable for distributed sensor

networks since it can autonomously initiate and terminate tracks. Also, it has been shown

that MCMCDA is robust against packet losses and communication delays [Oh et al., 2005].

For identity management and fusion algorithms, distributed multi-target identity man-

agement (DMIM) is proposed. DMIM is a scalable, event-driven, query-based algorithm

for local maintenance of identity beliefs and the incorporation of identity information

from nearby sensors. Global identity estimates are generated in DMIM using identity fu-

sion, which is posed as an optimization problem such that the fused identity minimizes

a cost function that represents a performance criterion. The DMIM algorithm combines

local maintenance of identity beliefs with a query-based protocol for the transfer and fu-

sion of identity information between sensors. The algorithm is appropriate for distributed

sensor network scenarios, because it has the capability to reduce the uncertainty of the

77

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

global identity estimates by fusing local estimates of the identity of a target collected by

each sensor [Hwang et al., 2004b]. The identity-mass-flow framework is used to main-

tain a local estimate of identity for a fixed set of maneuvering targets [Shin et al., 2003;

Hwang et al., 2004b]. This framework prevents exponential growth in computation and

storage of target-track association probabilities. We develop a distributed version of this

centralized algorithm (DMIM) that allows an unknown, time-varying number of maneuver-

ing targets in a sensor network. The DMIM algorithm is scalable with respect to number of

targets, number of sensors, and can handle dynamic scenarios in which targets maneuver

into and through the sensor network. A key component of DMIM is the fusion of tracks and

identity beliefs between neighboring sensors. The tracks estimated by neighboring sensors

are hierarchically merged using MCMCDA to maintain local consistency. Identity fusion

in DMIM is based on principles of information theory. Information theoretic methods were

initially developed to understand data communication and storage limits [Shannon, 1948]

and have subsequently been applied to problems such as target localization [Wang et al.,

2004] and fault detection [Joshi et al., 2005]. The identity fusion algorithm incorporates

metrics from information theory as performance criteria when determining global belief

estimates. Specifically, Shannon information, Chernoff information, and sum of Kullback-

Leibler distances are used as cost functions. Minimizing these cost functions allow us to

find locally consistent identity beliefs. Because local estimates can be combined under

a query-based protocol, the identity fusion algorithm lends itself to a distributed sensor

network in which targets maneuver in and out of the sensing range of individual sensors.

In this chapter, a distributed air traffic control system is used as an example of sensor

networks. Although each air traffic controller is usually more capable than low-power sen-

sor nodes described in [Estrin et al., 2001; Culler et al., 2004], the efficiency of the system

described in this chapter makes the system applicable for a wide range of applications,

including low-power or heterogeneous sensor networks.

78

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Figure 5.2: A distributed multi-target tracking and identity management scenario
for a two-sensor network.

5.1 A System Architecture of Distributed Multi-target Track-

ing and Identity Management

The main focus of this chapter is the problem of tracking multiple targets and managing

their identities in sensor networks. Each sensor is assumed to have its own surveillance

region, and an ability to communicate with its neighboring sensors. A simple two-sensor

example is shown in Figure 5.2 in which the circles represent the surveillance regions of

the sensors. Each sensor is assumed to have the capability of tracking multiple targets and

managing the identities of targets within its surveillance region. The problem gets compli-

cated since the number of targets within the surveillance region of a sensor changes over

time. For example, some targets may come from the surveillance regions of neighboring

sensors, some targets may have not yet been registered into the identity management sys-

tem, and some targets may leave the surveillance region of the current sensor. For a large

network, a centralized approach to multi-target tracking and identity management is not

feasible and a scalable distributed approach is required.

This chapter proposes a scalable distributed multi-target tracking and identity manage-

ment (DMTIM) system that can track an unknown and time-varying number of maneu-

79

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

vering targets and manage their identities efficiently in a distributed sensor network. The

key highlights of DMTIM include modularity, the compact representation of identity and

tracks to reduce communication load, and event-driven mechanisms for identity and track

management.

The identity of a target is maintained by a belief vector. When there are K known

identities, the belief vector of the target at time t is b(t) ∈ [0, 1]K . The i-th element

bi(t) of b(t) represents the probability that the identity of the target is the i-th identity

and
∑K

i=1 b(t) = 1. For multiple targets, we have a belief matrix B(t) whose columns are

belief vectors of the targets. Thus, entry Bij(t) represents the probability that target j can

be identified as label (or name) i at time t.

The overall architecture of DMTIM is shown in Figure 5.3. DMTIM includes the Data

Association and Multi-target Tracking (DAMTT) module and the Distributed Multi-target

Identity Management (DMIM) module which contains the Identity Management (IM) and

Identity and Track Fusion (ITF) sub-modules. At each sensor, the DAMTT module esti-

mates the number of targets and tracks in its surveillance region using its local measure-

ments and computes a mixing matrix and local information which are used by the IM

module. A mixing matrix stores information about the interactions among targets while

local information contains identity information about a target. A mixing matrix and local

information are described in detail in Section 5.2. Upon receiving a mixing matrix and

local information, the IM module updates its belief matrix. Then the sensor transmits its

updated belief matrix and estimated tracks to its neighboring sensors using the Commu-

nication unit. In DMTIM, instead of sharing raw measurement data among neighboring

sensors, the neighboring sensors share identity information in the form of a belief matrix

and estimated tracks. As a result, we can reduce the overall communication load of the

network. When the updated belief matrices and estimated tracks from neighboring sensors

are available, the ITF module combines identity information and tracks, and maintains lo-

cal consistency among sensors. For example, if the same target is seen by sensor 1 and

80

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Figure 5.3: An architecture of a distributed multi-target tracking and identity man-
agement (DMTIM) system for a two-sensor example.

sensor 2, then the ITF module makes sure that sensor 1 and sensor 2 share the same infor-

mation about the target. The ITF module also combines multiple tracks of a same target

into a single track and add an entry for the identity of a new target into the belief matrix. In

following sections, the components of DMTIM are described in detail.

5.2 Data Association and Multi-target Tracking (DAMTT)

The Data Association and Multi-target Tracking (DAMTT) module of DMTIM takes in

sensor measurements and outputs a mixing matrix, state estimates, and local information.

The DAMTT module needs to be able to track an unknown number of targets in order to

distribute tracking tasks, since the number of targets in each sensor’s surveillance region

changes over time. This nonparametric estimation problem is efficiently solved by the

81

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

online MCMCDA algorithm (Algorithm 8). In this section, we describe the computations

of mixing matrices and local information.

5.2.1 Mixing Matrix

Suppose there areK targets andK identities in the surveillance region of the current sensor.

Then, the problem of managing identities of multiple targets is to match each target to its

identity over time. For this, we use the idea of the identity-mass-flow [Shin et al., 2003].

The idea of the identity-mass-flow is that an identity is treated as a unit mass assigned to

a target. These masses cannot be destroyed or created, and flow from a target into another

through a mixing matrix,M(t) at time t. A mixing matrix is aK×K matrix whose element

Mij(t) represents the probability that target i at time t − 1 has become target j at time t.

Thus, a mixing matrix stores information about the interactions among targets for a single

sampling period. It is a doubly stochastic matrix; that is, its column sums and row sums

are equal to 1.

Let K ′(t) be the number of targets estimated by the online MCMCDA at time t. We are

interested in computing a mixing matrix for the targets that are present both at time t−1 and

t. LetK be the number of targets present at time t−1 and t, i.e.,K = min(K ′(t−1), K ′(t))

and this excludes any disappeared targets or new targets. Without loss of generality, assume

that the firstK targets are present at time t−1 and t. Let x̂(t−1) = {x̂k(t−1) : 1 ≤ k ≤ K}

be the state estimates of targets at time t−1 and x̂(t) = {x̂k(t) : 1 ≤ k ≤ K} be the current

state estimates computed by online MCMCDA. The mixing matrix entry Mij(t) represents

the probability that the target with state x̂i(t− 1) at time t− 1 has become the target with

state x̂j(t) at time t. We use an algorithm similar to Algorithm 6 to estimate the mixing

matrix to reduce computation time. We first encode this target-to-target association event

in a bipartite graph. Let G = (U, V,E) be a bipartite graph, where U = {1, . . . , K} is a

set of target indices at time t − 1, V = {1, . . . , K} is a set of target indices at time t, and

82

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

E = {(i, j) : i ∈ U, j ∈ V, P (x̂j(t)|x̂i(t − 1)) > ε0} for some small ε0 > 0. A feasible

target-to-target association event φ is a matching in G, i.e., a subset E ′ ⊂ E such that

no two edges in E ′ share a vertex. Let Φ = {φ} be the set of all feasible target-to-target

association events. The posterior of φ given x̂(t) and x̂(t − 1) can be computed using the

Bayes rule:

P (φ|x̂(t), x̂(t− 1)) =
1

Z
P (x̂(t)|x̂(t− 1), φ)P (x̂(t− 1)|φ)P (φ) (5.1)

=
1

Z

 ∏
(i,j)∈φ

P
(
x̂j(t)|x̂i(t− 1)

)P (x̂(t− 1)|φ)P (φ),

where Z is a normalizing constant. We assume that matchings of the same size are equally

likely, hence, P (φ) ∝
(|E|
|φ|

)−1 ∝ |φ|!(|E|−|φ|)!, where |E| is the number of edges inE and

|φ| is the number of matches in φ. When computing a mixing matrix, we assume {x̂i(t−1)}

are fixed for the targets with known identities. So we simply set P (x̂(t− 1)|φ) = 1.

Under these assumptions, the posterior (5.1) reduces to

P (φ|x̂(t), x̂(t− 1)) =
1

Z ′

 ∏
(i,j)∈φ

P
(
x̂j(t)|x̂i(t− 1)

) |φ|!(|E| − |φ|)!, (5.2)

where Z ′ is another normalizing constant. Each P (x̂j(t)|x̂i(t− 1)) can be computed using

the target’s dynamic model, hence, the posterior (5.2) can be computed up to a normalizing

constant. Notice that P (x̂j(t)|x̂i(t − 1)) can be computed exactly for linear-Gaussian dy-

namic models and approximately for the cases when the dynamic model is nonlinear and/or

the noise processes are non-Gaussian using methods such as linearization, unscented filter-

ing [Julier and Uhlmann, 2004], interacting multiple model [Blom and Bar-Shalom, 1988],

and particle filters [de Freitas and Gordon, 2001]. Hence, our objective is to compute the

mixing matrix based on our estimates {P (x̂j(t)|x̂i(t− 1))}.

Let φij be the event that the target with state x̂i(t − 1) becomes the target with state

83

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

x̂j(t). Now the mixing probability Mij(t) can be computed as:

Mij(t) = P (φij|x̂(t), x̂(t− 1)) =
∑

φ∈Φ : (i,j)∈φ

P (φ|x̂(t), x̂(t− 1)) . (5.3)

The computation of Mij(t) requires a summation over the posteriors, hence the enu-

meration of all joint association events. The exact computation of a mixing matrix is

NP-hard. More generally, the exact computation of association probabilities in JPDA is

NP-hard [Collins and Uhlmann, 1992] since the related problem of finding the permanent

of a 0-1 matrix is #P-complete [Valiant, 1979]. Hence, for a large problem, i.e., when

the number of targets is large, we need to seek for an efficient approximation algorithm.

In the remainder of this section, we describe a polynomial-time approximation algorithm

based on MCMC, namely the Metropolis-Hastings algorithm. The algorithm for comput-

ing a mixing matrix is shown in Algorithm 9. The inputs to Algorithm 9 are the graph

G, state estimates x̂(t) and x̂(t − 1), an initial Markov chain state φinit which is chosen

randomly from Φ, the number of MCMC samples nmc, and the number of burn-in MCMC

samples nbi. The mixing matrix is estimated by the Monte Carlo integration of samples

after the burn-in period. For more information about burn-in samples and general MCMC

techniques, we refer readers to [Gilks et al., 1996]. Notice that we only need to com-

pute the ratio P (φ′|x̂(t), x̂(t − 1))/P (φ|x̂(t), x̂(t − 1)), avoiding the need to normalize

P (φ|x̂(t), x̂(t− 1)).

While heuristic approaches do not guarantee asymptotic optimality and may fail in

some situations, Algorithm 9 can approximate the mixing matrix M = [Mij] (the time

index is suppressed) in polynomial time with guaranteed error bounds.

Theorem 8. For any 0 < ε1, ε2 < 1 and 0 < η < .5, with time complexity

O(ε−4
0 ε−2

1 ε−1
2 log η−1K8(K log ε−1

0 + log(ε−1
1 ε−1

2))), (5.4)

84

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Algorithm 9 MCMC for Mixing Matrix Computation
Input: nbi, nmc, G = (U, V,E), x̂(t), x̂(t− 1), φinit

Output: M̂(t)
φ = φinit; M̂(t) = 0K×K

for n = 1 to nmc do
choose e = (u, v) ∈ E uniformly at random
if e ∈ φ then
φ′ = φ− e

else if both u and v are unmatched in φ then
φ′ = φ+ e

else if exactly one of u and v is matched in φ and e′ is the matching edge then
φ′ = φ+ e− e′

else
φ′ = φ

end if
φ = φ′ with probability min

(
1, P (φ′|x̂(t),x̂(t−1))

P (φ|x̂(t),x̂(t−1))

)
if n > nbi then

for each (i, j) ∈ φ do
M̂ij(t) = M̂ij(t) + 1;

end for
end if

end for
for each (i, j) ∈ {(i′, j′) : 1 ≤ i′, j′ ≤ K} do
M̂ij(t) = M̂ij(t)/(nmc − nbi);

end for

Algorithm 9 finds estimates M̂ij for Mij with probability at least 1 − η, such that, for

Mij ≥ ε2, M̂ij estimates Mij within ratio 1 + ε1, i.e., (1 − ε1)Mij ≤ M̂ij ≤ (1 + ε1)Mij ,

and, for Mij < ε2, |M̂ij −Mij| ≤ (1 + ε1)ε2.

Theorem 8 is a corollary of Theorem 5 and Theorem 6 after replacing the number of

measurements N in Theorem 5 with the number of targets K and letting R = |E|/ε0 and

m5(K,N) = O(K log ε−1
0).

85

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

5.2.2 Local Information

In some applications, identity information about a target (local information) could be ob-

tained from sensors which can measure its physical attributes or from the target’s dynamic

characteristics. When local information is available, we use local information to decrease

the uncertainty of the belief matrix measured by entropy. MCMCDA described in Sec-

tion 4.3 allows an efficient way to compute local information from both latest and past

measurements. Another benefit of MCMCDA is that local information can be computed

simultaneously while the number of targets and tracks of all targets are estimated. For

identity k, letNjk be the number of times the j-th latest measurement is associated with the

initial measurement identified by k after the initial nbi samples while running Algorithm 7,

where nbi is the number of initial burn-in samples and nbi < nmc. When Algorithm 7 ter-

minates, we compute γk = (γk
1 , . . . , γ

k
n(t))

T for identity k, where γk
j = Njk/(nmc − nbi).

Then we form local information from γk by resizing the vector according to the latest mea-

surements assigned in state estimates and normalizing the resized vector.

5.3 Distributed Multi-target Identity Management (DMIM)

5.3.1 Identity Management (IM)

The Identity Management (IM) module consists of Belief Matrix Update and Local Infor-

mation Incorporation. In the IM module, a mixing matrix and local information from the

DAMTT module are used to update the belief matrix.

5.3.1.1 Belief Matrix Update

The Belief Matrix Update block maintains identity information stored in a belief matrix

B(t) whose columns are belief vectors of the targets over time. The evolution of this belief

matrix is governed by a mixing matrix M(t), which stores interaction information for a

86

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Algorithm 10 Event-driven, query-based Belief Matrix Update

• For sensor i and target k

if target k leaves the surveillance region of sensor i. then
delete the corresponding column in the belief matrix.

end if
if a target enters the surveillance region of sensor i. then

send a query about the identity of target k.
if there is an answer “yes” and receive the belief vector of target k, then

augment the belief matrix with the belief vector received.
else

augment the belief matrix with a belief vector with a new identity assigned to the
target.

end if
end if

single time step. Then, the belief matrix is updated by [Shin et al., 2003]:

B(t) = B(t− 1)M(t) (5.5)

We can show that (5.5) keeps row and column sums of the belief matrix constant when the

numbers of targets and identities are the same. However, this is not the case for distributed

identity management since the number of the targets within the surveillance region of indi-

vidual sensors may change over time. There are two possible cases: a target leaves or enters

the surveillance region of a sensor. When a target leaves, we delete the corresponding col-

umn in the belief matrix managed by the sensor. When a target enters the surveillance

region of a sensor, there are two possible cases: (i) the target comes from the surveillance

region of another sensor, which may be queried, or (ii) the target comes from the outside

of the surveillance region of a sensor network. For these cases, we propose Algorithm 10,

a scalable, event-driven, query-based belief matrix update algorithm.

For distributed identity management, a belief matrix managed by each sensor may not

be a square matrix but might more likely be a skinny matrix which has more rows than

87

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

columns. The belief matrix may not be a doubly stochastic matrix whose row and column

sums are equal to one, but it should be a stochastic matrix with column sums equal to one.

Its row sums remain constant because an identity mass cannot be destroyed or created.

Since the evolution of the belief matrix is governed by (5.5), these characteristics of the

belief matrix are preserved over time.

5.3.1.2 Local Information Incorporation

When local information is available, we use local information to decrease the uncertainty

of the belief matrix measured by entropy. The entropy (Shannon information) of an L×K

belief matrix is defined as

H(B(t)) , −
L∑

i=1

K∑
j=1

Bij(t) logBij(t). (5.6)

Then, the problem is how to incorporate this information to the belief matrix. From the

idea of the identity-mass-flow and the characteristics of (5.5), we know that the belief ma-

trix should have the following properties: its column sums are equal to one and its row

sums remain constant. However, if we replace a column in the belief matrix with lo-

cal information, it is not guaranteed that the new belief matrix has the above properties.

For a nonnegative square matrix, the Sinkhorn algorithm [Sinkhorn, 1967] can be used to

scale a matrix to achieve specified row and column sums [Rothblum and Schneider, 1989;

Linial et al., 2000]; that is, we scale a new belief matrix so that its row and column

sums remain the same as those of the belief matrix before local information incorpo-

ration. However, since the belief matrix is, in general, a nonnegative rectangular ma-

trix, such iteration may not converge [Rothblum and Schneider, 1989; Linial et al., 2000;

Balakrishnan et al., 2004]. But the question whether a given matrix is almost scalable,

i.e., the matrix can be scaled within ε > 0, can be decided in polynomial time [Balakrish-

nan et al., 2004]. Thus, we can efficiently check whether the available local information

88

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Algorithm 11 Local Information Incorporation

• Given: local information (belief vector) of a target and a belief matrix B(t).

• Make a matrix B′(t) by replacing the column corresponding to the target in B(t)
with the local information.

• Operator S represents the matrix scaling process in [Balakrishnan et al., 2004].

if B′(t) is almost scalable then
Bnew(t) := S(B′(t))
if H(Bnew(t)) ≤ H(B(t)) then
B(t) := Bnew(t)

else
B(t) := B(t)

end if
else
B(t) := B(t)

end if

can be incorporated. Thus, local information can be incorporated when it makes the new

belief matrix almost scalable. Even though the new belief matrix is almost scalable, lo-

cal information incorporated may not necessarily decrease the uncertainty (entropy) of the

belief matrix. Therefore, local information is incorporated only when it reduces the uncer-

tainty of the belief matrix. The local information incorporation algorithm is described in

Algorithm 11.

5.3.2 Identity and Track Fusion (ITF)

For DMTIM, the identity and track fusion is crucial to compute the global information of

the system from information provided by local sensors. In this section, we explain how the

Identity and Track Fusion (ITF) module combines state estimates and belief vectors of the

same target from neighboring sensors.

89

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

5.3.2.1 Identity Fusion

We now consider the problem of combining two belief vectors of the same target from two

different sensors. Identity fusion can be formulated as an optimization problem such that

the fused identity is the one that minimizes a cost function which represents a performance

criterion. For optimization, we propose three different cost functions: Shannon informa-

tion, Chernoff information, and the sum of Kullback-Leibler distances. We then derive a

Bayesian identity fusion method and discuss the relationship between the Bayesian method

and the optimization algorithms.

Shannon information

The Shannon information is defined as

H(b′) =
n∑

i=1

−b′(i) log b′(i) (5.7)

where b′ ∈ [0, 1]n with
∑

i b
′(i) = 1. The Shannon information (also known as entropy) is a

measure of the uncertainty of a system. Thus, the minimization of the Shannon information

selects a belief vector that is most informative in the sense of minimum entropy. Suppose

b1 and b2 are belief vectors of target t computed by sensor 1 and sensor 2 respectively.

Since the most common data fusion algorithms compute a linear combination of two data,

we propose the following fusion strategy:

b′ = λb1 + (1− λ)b2 (5.8)

where λ ∈ [0, 1], bi ∈ [0, 1]n with
∑n

j=1 bi(j) = 1 for i ∈ {1, 2}, and
∑n

j=1 b
′(j) = 1.

Then, the problem of computing the fused belief vector becomes a problem of finding a

weight, λ, which minimizes the cost function in (5.7). If we use the fusion strategy in (5.8),

90

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

the Shannon information of the new fused belief vector is

H(b′) = H(λb1 + (1− λ)b2) ≥ λH(b1) + (1− λ)H(b2) (5.9)

From (5.9), we can see that the minimum is always achieved at either λ = 0 or λ = 1.

This means that a fused belief vector that has the minimum Shannon information is either

of the two given belief vectors, which is a hard choice. For some applications such as

identity management, the hard choice may not be desirable since it ignores one possibility

completely and thus might quickly lead to a wrong answer over time if not immediately.

Thus, we propose a soft decision method which has λ ∈ (0, 1) for almost all cases. Mo-

tivated by the fact that Shannon information minimization chooses a belief vector which

has the minimum entropy, we propose to use the inverse of the Shannon information of a

belief vector as a weight. Thus, we put large confidence on a belief vector which has small

Shannon information. Then, a new belief vector b′ = [b′(i)] is

b′(i) =
H(b1)

−1b1(i)

H(b1)−1 +H(b2)−1
+

H(b2)
−1b2(i)

H(b1)−1 +H(b2)−1
(5.10)

From (5.8) and (5.10), we get

λ =
H(b1)

−1

H(b1)−1 +H(b2)−1
=

H(b2)

H(b1) +H(b2)
(5.11)

When H(b1) = H(b2) = 0, we set λ = 1
2
. λ = 0 if H(b2) = 0 (no uncertainty in b2)

and λ = 1 when H(b1) = 0 (no uncertainty in b1). In these cases, the fused belief vector

computed by the proposed fusion algorithm is a belief vector which has no uncertainty. This

fusion algorithm is a soft decision method since the fused data is a convex combination of

the two given data with a larger weight on the data which has smaller entropy than the other.

From (5.9) and (5.11), the Shannon information of the new belief H(b′) has the property

91

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

that:

H(b′) ≥ 2H(b1)H(b1)

H(b1) +H(b2)
or 2H(b′)−1 ≤ H(b1)

−1 +H(b2)
−1 (5.12)

Inequality (5.12) tells us that the achievable minimum uncertainty of the fused belief vector

with the fusion strategy in (5.8) with (5.11) as a weight is under-bounded by uncertainties

of the given information. In other words, the maximum achievable certainty (inverse of

the Shannon information) is upper-bounded by the arithmetic mean of the inverse of the

Shannon information of the given belief vectors. If we use the fusion strategy in (5.8), we

can also derive the upper bound of the Shannon information of the new belief vector:

H(b′) ≤ λ2H(b1) + (1− λ)2H(b2)

+ λ(1− λ)(H(b1) +H(b2) +D(b1 ‖ b2) +D(b2 ‖ b1)) (5.13)

where D(p ‖ q) ,
∑

i p(i) log(p(i)
q(i)

) is the Kullback-Leibler distance [Cover and Thomas,

1991]. If we use λ in (5.11), then

H(b′) ≤ 2H(b1)H(b1)
H(b1) + H(b2)

+
H(b1)H(b2)[D(b1 ‖ b2) + D(b2 ‖ b1)]

(H(b1) + H(b2))2
(5.14)

Thus, we can analytically compute the upper and lower bounds of the Shannon informa-

tion of the new belief vector using the fusion strategy in (5.8) with (5.11). If we interpret

the error covariance matrix as an uncertainty measure of an estimate of a continuous ran-

dom variable, we find that (5.12) could be interpreted as an analogy of the Cramér-Rao

lower bound of the mean-squared error (error covariance) of any unbiased estimator in

the sense that the achievable minimum uncertainty has a lower bound. Thus, the Shan-

non information cost function would be useful when we have good knowledge about the

performance and/or fidelity of each sensor, since we can get a solution which has lower

entropy by weighing information that has smaller entropy more than the other. However, if

we do not have such knowledge, we may get a biased solution by consistently putting more

92

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

confidence on one piece of information (possibly the wrong one) than the other.

Chernoff information

The Chernoff information is defined as

C(b1, b2) = − min
0≤λ≤1

log(
n∑

i=1

b1(i)
λb2(i)

1−λ) (5.15)

If λ∗ minimizes (5.15), the new belief vector b′ (= [b′(i)] for i = {1, 2, · · · , n}) is

b′(i) =
b1(i)

λ∗b2(i)
1−λ∗∑n

j=1 b1(j)
λ∗b2(j)1−λ∗

(5.16)

The new belief vector in (5.16) satisfies [Cover and Thomas, 1991; Kapur and Kesavan,

1992]

D(b′ ‖ b1) = D(b′ ‖ b2) (5.17)

This fusion strategy is different from that in (5.8) which is a convex combination of the two

data. From (5.17), the minimization of the Chernoff information is equivalent to finding a

function that is in the middle of the two original functions, where the middle is defined in

terms of the Kullback-Leibler distance. In other words, Chernoff information minimization

could be interpreted as selecting a probability vector which is “equally close” in terms of

the Kullback-Leibler distance to the original probability vectors. This fusion algorithm

does not put more confidence on one than the other. Thus, this cost function could be

useful when we do not know the quality of information obtained from individual sensors;

by choosing the middle point of the two pieces of information, we could minimize the

bias over time. However, the fused belief vector computed by the Chernoff information

minimization algorithm may have larger entropy than that computed by the algorithm in

(5.8) with (5.11).

93

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Sum of the Kullback-Leibler distances

Since the Kullback-Leibler distance is not symmetric, we consider two possible optimiza-

tion problems:

minimize D(b′ ‖ b1) +D(b′ ‖ b2)

subject to
∑n

j=1 b
′(j) = 1

b′(j) ≥ 0

(5.18)

minimize D(b1 ‖ b′) +D(b2 ‖ b′)

subject to
∑n

j=1 b
′(j) = 1

b′(j) ≥ 0

(5.19)

where b′(j) is the j-th element of a vector b′. Let us first consider the optimization problem

in (5.18). The Lagrangian is given by

L(b′, λ) = D(b′ ‖ b1) +D(b′ ‖ b2) + λ(
n∑

j=1

b′(j)− 1) (5.20)

To get an optimal solution, we set the derivatives of L with respect to b′(i) and to λ to be

equal to zero. Then, we get a new belief vector:

b′(i) =

√
b1(i)b2(i)∑n

j=1

√
b1(j)b2(j)

(5.21)

From (5.21), we see that the fused data is a geometric mean of the given data. The fused

data is the same as that in (5.16) for Chernoff information minimization when λ∗ = 1
2
.

Thus, this data fusion strategy can be interpreted as a special case of the Chernoff informa-

tion minimization method.

94

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Now, let us consider the optimization problem in (5.19). The Lagrangian is given by

L(b′, λ) = D(b1 ‖ b′) +D(b2 ‖ b′) + λ(
n∑

j=1

b′(j)− 1) (5.22)

Similarly, we get an optimal solution:

b′(i) =
b1(i) + b2(i)∑n

j=1[b1(j) + b2(j)]
=
b1(i) + b2(i)

2
(5.23)

In this case, the fused data is the arithmetic mean of the given data. This fusion strategy is

the same as that in (5.8) when λ = 1
2
. Thus, from (5.9) and (5.13), we get the lower and

upper bounds of Shannon information of the new belief vector:

H(b′) ≥ H(b1)+H(b2)
2

H(b′) ≤ H(b1)+H(b2)
2

+ D(b1‖b2)+D(b2‖b1)
4

(5.24)

Therefore, the fusion algorithms obtained by solving the optimization problems in (5.18) or

(5.19) are to average the given data either geometrically or arithmetically. This is similar to

Chernoff information minimization and thus these fusion strategies would be useful when

we want to get unbiased fused data in situations where we do not have good a prior infor-

mation about a system. An example would be a case in which information from one sensor

is wrong due to failure of the sensor or the malicious intent of the sensor that is unknown a

priori. These information fusion strategies would be robust to this wrong information since

they do not put more confidence on one (possibly incorrect information) than the other, but

average them to compute a fused belief vector.

Bayesian approach

In this section, we derive a fused belief vector using a Bayesian approach. Suppose the

target’s identity θ ∈ {1, 2, · · · , N} and, without loss of generality, suppose there are

95

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

two sensors. Denote events X1 and X2 to be measurements at sensor 1 and sensor 2,

respectively. We are assumed to be given information b1(θ) , P (θ|X1) from sensor 1

and b2(θ) , P (θ|X2) from sensor 2 where P (·|·) is a conditional probability. Then, the

problem of identity fusion is to find the a posteriori probability P (θ|X1, X2). We assume

P (X1, X2|θ) = P (X1|θ)P (X2|θ) since given the identity of a target, the events that it

is observed by sensor 1 or sensor 2 are independent in distributed identity management.

Using the Bayes rule, we get

P (θ|X1, X2) =
P (X1|θ)P (X2|θ)P (θ)

P (X1, X2)
(5.25)

Since P (θ|Xi) = P (Xi|θ)P (θ)
P (Xi)

for i ∈ {1, 2}, we obtain

P (θ|X1, X2) =
b1(θ)b2(θ)

P (θ)

P (X1)P (X2)

P (X1, X2)
(5.26)

Therefore, a fused belief vector is

b′(θ̂) = arg max
θ
P (θ|X1, X2) =

b1(θ)b2(θ)

P (θ)
· 1
c

(5.27)

where c is a normalization constant. This is an interesting result because the fused data

does depend only on the given data (b1(θ), b2(θ)) and the a priori probability P (θ). Thus,

if we knew a priori information, we could compute the a posteriori probability (i.e., the

fused data). However, since we may not know the a priori probability for some applications

such as distributed identity management, we cannot compute the fused data from (5.27).

In order to compute the fused data for this case, we have to assume P (θ) either from the

characteristics of the systems or from that of applications. For example, if we assume the

a priori probability as a geometric mean of the given data due to lack of information about

a system (P (θ) =
√
b1(θ)b2(θ)), then we can get exactly the same result as that in (5.21)

96

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

which minimizes the sum of Kullback-Leibler distances to the original data in (5.18). Thus,

the a posteriori probability is the same as the a priori probability; that is, we cannot extract

any information from the given data. From Bayesian analysis, we can see that the data

fusion strategies such as Chernoff information minimization and the minimization of the

sum of Kullback-Leibler distances in (5.18) compute the solution in a similar form to the

solution produced by the Bayesian approach.

We consider the case in which good knowledge about the performance/fidelity of all

sensors is available; hence, the Shannon information method is used. For a comprehensive

comparison of identity fusion methods, see [Hwang et al., 2004b].

5.3.2.2 Track Fusion

Since each sensor maintains its own set of tracks, there can be multiple tracks from the

same target maintained by different sensors. In order to resolve this inconsistency, we

perform the multi-track fusion also described in Section 6.3.2.2 to combine tracks from

different sensors. Let ωi be the set of tracks maintained by sensor i and NBi be a set of

neighboring sensors around i, including i itself. Let Y ′
w = {τk(t) : τk ∈ ωj, 1 ≤ t ≤ T, 1 ≤

k ≤ |ωj|, j ∈ NBi} be a set of measurements of all identified targets. We form a set of

combined measurements Yw from Y ′
w by combining measurements made from overlapping

surveillance regions and keeping the remaining measurements1. We then form a new set

of tracks ωinit from {τ ∈ ωj : j ∈ NBi} while making sure that constraints defined in

Chapter 3 are satisfied. Then we run Algorithm 7 on the set of combined measurements Yw

with the initial state ωinit to find locally consistent tracks.

1In our current implementation, when multiple measurements from different sensors are in close proximity
(measured by the Mahalanobis distance using the measurement covariance matrix), their mean value is used in
Yw instead. In future implementation, we plan to allow multiple measurements over the overlapping regions
by relaxing constraints in Chapter 3.

97

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

5.4 Simulation Results

In this section, we present two sets of simulations to illustrate the features of the DMTIM

algorithm. There are stationary sensors, e.g., air traffic control radars, tracking multiple

aircraft through two-dimensional space. The sensing range of each sensor is assumed to be

circular with a radius of 10 km and a pair of sensors can communicate if they are within

the communication radius of 20 km. We first present a two-sensor scenario with three

aircraft and two sensors and describe the behavior of DMTIM in detail. Then we describe

an example with five aircraft and seven sensors to demonstrate a complete DMTIM system.

Moderate size examples are chosen for better illustration.

The nonlinear dynamics of maneuvering aircraft is modeled using interacting multi-

ple model [Blom and Bar-Shalom, 1988] with two linear kinematic models based on the

discrete-time linear dynamics (4.19):

(Model 1) Second-order kinematic model:

A(νk(t) = 1) =

1 δ 0 0

0 1 0 0

0 0 1 δ

0 0 0 1

 G(νk(t) = 1) =

δ2/2 0

δ 0

0 δ2/2

0 δ

and Q(νk

t = 1) = diag(0.1, 0.1), where νk(t) indexes the kinematic model of target k

operating at time t and δ is the sampling period. The state vector is x = (x1, ẋ1, x2, ẋ2)
T .

This model assumes that the variation in a velocity component is a discrete time white noise

acceleration [Lerro and Bar-Shalom, 1993].

98

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

(Model 2) Third-order kinematic model:

A(νk(t) = 2) =

1 δ δ2/2 0 0 0

0 1 δ 0 0 0

0 0 1 0 0 0

0 0 0 1 δ δ2/2

0 0 0 0 1 δ

0 0 0 0 0 1

G(νk(t) = 2) =

δ2/2 0

δ 0

1 0

0 δ2/2

0 δ

0 1

and Q(νk

t = 2) = diag(20, 20). The state vector is x = (x1, ẋ1, ẍ1, x2, ẋ2, ẍ2)
T . This is a

third-order kinematic model with accelerations modeled as a discrete time Wiener process

[Lerro and Bar-Shalom, 1993].

The measurement model given in (4.19) is used for both models whereR = diag(200, 200).

The other parameters are: pd = 0.98, λf = 1.0× 10−7, and δ = 5.

5.4.1 Two-sensor Scenario

A simple, yet illustrative, scenario with three aircraft is shown in Figure 5.4(a). The aircraft

labeled A and B are previously registered and aircraft labeled X is unknown to the identity

management system. The sensor on the left is denoted by sensor 1 and the sensor on the

right is denoted by sensor 2.

The DAMTT module of each sensor estimates the number of targets (Figure 5.4(b))

and estimates tracks of targets as shown in Figure 5.4(c) and 5.4(d). In Figure 5.4(b), the

events, in which the number of targets changes, are indicated by dotted vertical lines. The

belief vector for each target, i.e., a column of the belief matrix, computed by the Identity

Management (IM) module is shown in Figure 5.5(a) and 5.5(b). At time 1, sensor 1 knows

about target 1 and its belief vector is (b1A,1, b
1
B,1)

T = (0.8, 0.2)T , where bij,k is the probability

that target k of sensor i can be identified as label j, while sensor 2 knows about its target

99

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

(a) (b)

(c) (d)

Figure 5.4: (a) Aircraft trajectories for three-aircraft , superimposed with accumu-
lated measurements (dots). The sensor positions are marked by ?. (b) Estimated
number of targets by each sensor. (c) Tracks estimated by sensor 1. (d) Tracks
estimated by sensor 2. A track of a target is shown after its detection.

1 and its belief vector is (b2A,1, b
2
B,1)

T = (0.2, 0.8)T . At time 9, sensor 1 detects a new

target (target 2 of sensor 1) and assigns a new identity (X) since the target is unknown

to its neighboring sensors. The updated belief vectors are shown in Figure 5.5(a). At the

same time, sensor 2 detects a new target (target 2 of sensor 2) and its identity and state

estimate information is transferred from sensor 1, since its track is recognized as target 1

of sensor 1. The updated belief vectors are shown in Figure 5.5(b). At time 22, sensor 2

100

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

(a) (b)

(c) (d)

Figure 5.5: (a) Local belief vectors computed by sensor 1. (b) Local belief vectors
computed by sensor 2. (c) Fused belief vector between target 1 of sensor 1 and
target 2 of sensor 2 (d) Fused tracks. (The symbols ×, +, and � denote aircraft A,
aircraft B, and aircraft X, respectively).

detects a new target (target 3 of sensor 2) and its identity and state estimate information is

transferred from sensor 1, since its track is recognized as target 2 of sensor 1. At time 26,

target 2 of sensor 1 leaves the surveillance region of sensor 1 and information about target

2 is removed from sensor 1. At time 30, target 2 of sensor 2 leaves the surveillance region

of sensor 2 and information about target 2 is removed from sensor 2.

For illustration purpose, Figure 5.5(a) and 5.5(b) are showing the local belief vectors at

101

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

each sensor before Identity and Track Fusion (ITF). At time 21, aircraft A and aircraft X

cross one another and the uncertainty about identity is increased as shown in Figure 5.5(a).

For example, the belief that target 1 of sensor 1 can be identified with aircraft A is reduced

from 0.8 to 0.45. However, ITF can reduce this uncertainty by fusing the belief vector of

target 1 of sensor 1 and the belief vector of target 2 of sensor 2. We use Shannon infor-

mation for ITF since we are considering a cooperative situation and it has been shown that

Shannon information is superior against the other criteria in terms of cooperative efficiency

[Hwang et al., 2004b]. The fused belief vector is shown in Figure 5.5(c), in which the be-

lief vectors from time 9 to 29 are shown. When target 3 of sensor 2 appears at time 23, i.e.,

one time step after its detection, the identity uncertainty is reduced by ITF. For example,

the (fused) belief that target 1 of sensor 1 can be identified with aircraft A is increased from

0.45 to 0.64 as shown in the bottom plot of Figure 5.5(c). Lastly, the tracks estimated by

each sensor in a distributed manner are fused by ITF and the fused tracks are shown in

Figure 5.5(d).

5.4.2 Seven-sensor Scenario

There are seven air traffic control radars (ATC1 through ATC7) and five aircraft (T1 through

T5) as shown in Figure 5.6, which represents the state of the system at simulation time

t = 17. The left frame of Figure 5.6 shows the position and heading of each aircraft along

with sensing range (circle) of each sensor and measurements (dots). As the simulation time

progresses, the left frame of Figure 5.6 will show the estimated tracks and event logs. The

right frame of Figure 5.6 shows belief vectors of aircraft at each sensor. The order of belief

vector is dictated by the order the target is registered to the corresponding sensor. Out of

five targets, only three targets (T1, T2, and T3) are known to the system initially and the

targets T4 and T5 are unknown to the system. At time t = 1, targets T1, T2 and T3 are

registered to ATC1 and target T3 is registered to ATC2. The identities ID1, ID2 and ID3 are

102

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Figure 5.6: (Simulation time t = 16) The left frame shows the estimated tracks
and event logs. Circles and dots represent sensing ranges and measurements,
respectively. The gray-scale of aircraft corresponds the true identity based on the
gray-scale shown below Estimated Tracks. The right frame shows the belief vectors
maintained by each sensor. The gray-scale of each segment of the bar graph
represents an identity based on the gray-scale shown below Identity Management.
At t = 15, ATC3 also detects a new target and the target is labeled as A3-T1 and
identity ID4 is assigned to this target. At t = 16, ATC6 detects a new target and the
target is labeled as A6-T1 and identity ID5 is assigned to this target. At the same
time, ATC1 transfers T1 to ATC3.

associated to targets T1, T2 and T3, respectively. At t = 8, ATC1 terminates T3 since the

target moves away from the sensing region of ATC1. At t = 15, ATC3 detects a new target

and the target is labeled as A3-T1 and identity ID4 is assigned to this target. At t = 16,

ATC6 detects a new target and the target is labeled as A6-T1 and identity ID5 is assigned

to this target. At the same time, ATC1 transfers T1 to ATC3. See Figure 5.6. The snapshots

at t = 51 and t = 52 are shown in Figure 5.7 and Figure 5.8, respectively. The uncertainty

about the identities at t = 52 can be observed from the mixing of belief vectors.

103

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Figure 5.7: (Simulation time t = 51) At t = 23, ATC1 terminates T2 and ATC2
terminates T3 at t = 24. At t = 29, ATC1 terminates T1. At t = 30, ATC3 transfers
T1 to ATC4. At t = 37, ATC3 transfers A3-T1 to ATC4. At t = 41, ATC3 terminates
T1. At t = 43, ATC3 terminates A3-T1. At t = 44, ATC6 transfers A6-T1 to ATC4.
At t = 49, ATC4 transfers T2 to ATC6. At t = 50, ATC6 terminates A6-T1. Targets
T3 and A6-T1 move close to each other and the belief vectors of targets T3 and
A6-T1 are mixed in ATC4. At t = 51, ATC4 transfers T3 to ATC6.

At t = 80, the belief matrix of ATC7 is

BATC7(80) =

 0.2572 0.0514 0.0343 0.6571 0

0.4928 0.0986 0.0657 0.3429 0

T

(5.28)

where the rows 1 through 5 of the belief matrix BATC7(80) correspond to identities ID1

through ID5 and the first and second columns of the belief matrix correspond to targets

A3-T1 and T1, respectively.

At the same time, local information about target A3-T1 is obtained by ATC7 and target

A3-T1 is now thought to have belief [0.1 0 0 0.9 0]T . This local information is incorporated

104

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Figure 5.8: (Simulation time t = 52) At t = 52, targets T1 and A3-T1 move close
to each other and the belief vectors of targets T1 and A3-T1 are mixed.

according to Algorithm 11. First, a new matrix B′
ATC7(80) is formed by replacing the

column for target A3-T1 with local information, where

B′
ATC7(80) =

 0.1 0 0 0.9 0

0.4928 0.0986 0.0657 0.3429 0

T

(5.29)

Since B′
ATC7(80) is almost scalable, Algorithm 11 computes the scaled belief matrix:

Bnew
ATC7(80) =

 0.1879 0 0 0.8121 0

0.5621 0.15 0.1 0.1879 0

T

(5.30)

The scaled belief matrix Bnew
ATC7(80) decreases entropy from 2.9091 to 2.3602. Hence,

we assign BATC7(80) = Bnew
ATC7(80). See the updated belief matrix in Figure 5.10 and com-

pare it against Figure 5.9.

105

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Figure 5.9: (Simulation time t = 79) Before the belief matrix update by ATC7.

In order to evaluate the performance of DMTIM, we compared DMTIM against the

centralized version of the algorithm. In the centralized version, there is a single ATC at

[0, 0] with a larger sensing radius of 26 km. The same set of measurements are used except

those on the overlapping sensing regions. When there are multiple measurements made by

overlapping ATCs, a randomly chosen measurement is used by the centralized algorithm.

The performance comparison between DMTIM and the centralized algorithm is made by

comparing belief vectors and state estimates from both algorithms. The relative estima-

tion errors in the position and belief vector estimations are shown in Figure 5.11. The

relative position estimation error is high when there is confusion or when the same targets

are detected by multiple sensors. The latter is due to the fact that a measurement from a

single target can be different for a different ATC. Since the norm of standard deviations of

position can be 20.77 when νk
t = 2 and 81.54 when νk

t = 2 (including both process and

measurement noises), the position estimates of DMTIM are close to the estimates of the

106

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

Figure 5.10: (Simulation time t = 80) The belief matrix is updated due to the local
information about target A3-T1 obtained by ATC7. See text for detail.

centralized algorithm. At t = 52 and t = 53, the relative position estimates are high for

all targets and this is when the relative belief vector estimation error increases. As shown

in Figure 5.11(b), the belief vector estimation error may increase over time, hence, it is

necessary to perform the local information incorporation to reduce the error as described

earlier. The centralized algorithm required more computation time than DMTIM since it

processes more measurements per each time. Hence, the centralized algorithm is not a

practical solution for a large-scale sensor network.

5.5 Summary

We have proposed a scalable distributed multi-target tracking and identity management

(DMTIM) algorithm that can track an unknown number of targets and manage their identi-

ties efficiently in a distributed sensor network environment. A decision based on a single set

107

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

(a) (b)

Figure 5.11: (a) Relative estimation error in the position of each target. (b) Relative
estimation error in belief vectors of each target. (From simulation time t = 45 to
t = 75.) For each target, the figures plot the maximum estimation error among all
ATCs at each simulation time. The estimation error at each ATC is computed by
calculating the vector norm of the difference between estimates made by the ATC
and the centralized algorithm.

of tracks can be risky due to the uncertainty in the identities of targets accumulated from

continuous interactions among crossing or nearby targets. DMTIM provides a scalable

and distributed solution to the multi-target tracking and identity management problem by

combining an efficient data association algorithm and identity management methods. The

novelty of the system architecture of DMTIM includes modularity, the compact represen-

tation of identity and tracks to reduce communication load, and event-driven mechanisms

for identity and track management.

DMTIM consists of data association, multi-target tracking, identity management, and

identity and track fusion. The data association and multi-target tracking problems are effi-

ciently solved by Markov chain Monte Carlo data association (MCMCDA). DMTIM effi-

ciently incorporates local information about the identity of a target to reduce the uncertainty

in the system and maintains local consistency among neighboring sensors via identity and

track fusion.

108

CHAPTER 5. DISTRIBUTED MULTI-TARGET TRACKING AND IDENTITY MANAGEMENT

In this chapter, the system is evaluated using simple measurement models. We are

currently applying more sophisticated measurement models to evaluate the performance of

the system. In particular, we are applying our method to the distributed camera network,

in which the measurements can be, but not limited to, position, color, texture, and shape.

Currently, the DAMTT module produces the mixing matrix for the IM module. But updated

identity information from the IM and ITF modules are not used in the DAMTT module. We

are currently developing methods to improve the performance of DAMTT by incorporating

updated identity information in DAMTT.

109

CHAPTER 6

LOCHNESS: A REAL-TIME CONTROL

SYSTEM FOR SENSOR NETWORKS

Wireless sensor networks are useful in applications that require locating and tracking mov-

ing targets and real-time dispatching of resources. Typical examples include search-and-

rescue operations, civil surveillance systems, inventory systems for moving parts in a

warehouse, and search-and-capture missions in military scenarios. The analysis and de-

sign of such applications are often reformulated within the framework of pursuit evasion

games (PEGs), a mathematical abstraction which addresses the problem of controlling a

swarm of autonomous agents in the pursuit of one or more evaders [Hespanha et al., 1999;

Vidal et al., 2002]. The locations of moving targets (evaders) are unknown and their de-

tection is typically accomplished by employing a network of cameras or by searching the

area using mobile vehicles (pursuers) with on-board high resolution sensors. However, net-

works of cameras are rather expensive and require complex image processing to properly

fuse their information. On the other hand, mobile pursuers with their on-board cameras

or ultrasonic sensors with a relatively small detection range can provide only local observ-

ability over the area of interest. Therefore, a time-consuming exploratory phase is required

110

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

(a) (b)

Figure 6.1: (a) Sensor visibility in PEGs without sensor network. (b) Sensor visibil-
ity in PEGs with sensor network. Dots correspond to sensor nodes, each provided
with a vehicle detection sensor. Courtesy of [Sinopoli et al., 2003].

[Thrun et al., 1998; Guibas et al., 1999]. This constraint makes the task of designing a co-

operative pursuit algorithm harder because partial observability results in suboptimal pur-

suit policies (see Figure 6.1(a)). An inexpensive way to improve the overall performance

of a PEG is to use wireless ad-hoc sensor networks [Sinopoli et al., 2003]. With sensor

networks, global observability of the field and long-distance communication are possible

(see Figure 6.1(b)). Global pursuit policies can then be used to efficiently find the optimal

solution regardless of the level of intelligence of the evaders. Also, with a sensor network,

the number of pursuers needed is a function exclusively of the number of evaders and not

the size of the field.

We consider the problem of pursuit evasion games (PEGs), where the objective of a

group of pursuers is to chase and capture a group of evaders in minimum time with the aid

of a sensor network. The evaders can either move randomly to model moving vehicles in

search-and-rescue and traffic control applications, or can adopt evasive maneuvers to model

search-and-capture missions in military scenarios.

While sensor networks provide global observability, they cannot provide high quality

111

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

measurements in a timely manner due to packet loss, communication delay, and false de-

tections. This has been the main challenge in developing a real-time control system using

sensor networks. We address this challenge by developing a real-time hierarchical control

system called LochNess (Large-scale “on-time” collaborative heterogeneous Networked

embedded systems). LochNess decouples the estimation of evader states from the control

of pursuers via multiple layers of data fusion. Although a sensor network generates noisy,

inconsistent, and bursty measurements, the multiple layers of data fusion convert raw sen-

sor measurements into fused measurements in a compact and consistent representation and

forward the fused measurements to the pursuers’ controllers in a timely manner.

In this chapter, we describe a real-time hierarchical control system LochNess for track-

ing and coordination using sensor networks and a demonstration of the system on a large-

scale sensor network deployment. In the development of LochNess, three new algorithms

developed:

• A multi-sensor fusion algorithm that combines noisy and inconsistent sensor mea-

surements locally. The algorithm produces coherent evader position reports and re-

duces the communication load on the network.

• A multi-target tracking algorithm that tracks an unknown number of targets (or evaders).

The algorithm is a hierarchical extension of the Markov chain Monte Carlo data as-

sociation (MCMCDA) [Oh et al., 2004] algorithm for sensor networks to add scal-

ability. MCMCDA is a true approximation scheme for the optimal Bayesian filter;

i.e., when run with unlimited resources, it converges to the Bayesian solution [Oh

et al., 2006b]. MCMCDA is computationally efficient and robust against measure-

ment noise and inconsistency (including packet loss and communication delay). In

addition, MCMCDA operates with no or incomplete classification information, mak-

ing it suitable for sensor networks. In fact, the performance of the algorithm can be

improved given additional measurements to help identify the targets.

112

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

• A multi-agent coordination algorithm that assigns one pursuer to one evader such

that the estimated time to capture the last evader is minimized based on the estimates

computed by the multi-target tracking algorithm.

Our control system LochNess was successfully demonstrated using a large-scale sen-

sor network. The system correctly found the number of evaders and their tracks and

coordinated the pursuers to capture the evaders. Only a handful of the tracking algo-

rithms in the literature that are designed for sensor networks have been demonstrated on

a real sensor network deployment. Of these demonstrations, the algorithms are usually

used to track a single target [Brooks et al., 2004; Sharp et al., 2005; Liu et al., 2003a;

Liu et al., 2003b] or track multiple targets using classification [Arora et al., 2004]. To

our knowledge, we present the first demonstration of multi-target tracking using a sensor

network without relying on classification.

6.1 Related Work in Target Tracking using Sensor Net-

works

One of the main applications of wireless ad-hoc sensor networks is surveillance. How-

ever, considering the resource constraints on each sensor node, the well known multi-target

tracking algorithms such as joint probabilistic data association (JPDA) filter [Bar-Shalom

and Fortmann, 1988] and multiple hypothesis tracker (MHT) [Reid, 1979; Chong et al.,

1990] are not feasible for sensor networks due to their exponential time and space com-

plexities. As a result, many new tracking algorithms have been developed recently.

Most of the algorithms developed for sensor networks are designed for single-target

tracking [Li et al., 2002; Arora et al., 2004; Brooks et al., 2004; Sharp et al., 2005;

Liu et al., 2003a; Zhao et al., 2003; Liu et al., 2003b; McErlean and Narayanan, 2002;

Aslam et al., 2003; Chen et al., 2003; Coates, 2004; Oh and Sastry, 2005b] and some of

113

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

these algorithms are applied to track multiple targets using classification [Li et al., 2002;

Arora et al., 2004; Oh and Sastry, 2005b] or heuristics, such as the nearest-neighbor filter

(NNF) [Brooks et al., 2004]. A few algorithms are designed for multi-target tracking [Shin

et al., 2003; Chu et al., 2004; Liu et al., 2004] where the complexity of the data association

problem inherent to multi-target tracking is avoided by classification [Shin et al., 2003;

Liu et al., 2004] or heuristics [Chu et al., 2004]. When tracking targets of a similar type or

when reliable classification information is not available, the classification-based tracking

algorithm behaves as the NNF. Considering the fact that the complexity of the data associ-

ation problem is NP-hard [Collins and Uhlmann, 1992; Poore, 1995], a heuristic approach

breaks down under difficult circumstances. Furthermore, the measurement inconsistencies

common in sensor networks, such as false alarms and missing measurements (due to miss-

ing detection or packet loss), are not fully addressed in many algorithms. On the contrary,

the multi-target tracking algorithm developed in this thesis is based on a rigorous proba-

bilistic model and based on a true approximation scheme for the optimal Bayesian filter.

Tracking algorithms for sensor networks can be categorized according to their compu-

tational structure: centralized [Arora et al., 2004; Sharp et al., 2005; Aslam et al., 2003],

hierarchical [Chen et al., 2003; Coates, 2004], or distributed [Li et al., 2002; Brooks et

al., 2004; Liu et al., 2003a; Zhao et al., 2003; Liu et al., 2003b; McErlean and Narayanan,

2002; Oh and Sastry, 2005b; Shin et al., 2003; Chu et al., 2004; Liu et al., 2004]. How-

ever, since each sensor has only local sensing capability and its measurements are noisy

and inconsistent, measurements from a single sensor and its neighboring sensors are not

sufficient to initiate, maintain, disambiguate, and terminate tracks of multiple targets in

the presence of clutter; it requires measurements from distant sensors. Considering the

communication load and delay when exchanging measurements between distant sensors, a

completely distributed approach to solve the multi-target tracking problem is not feasible

for real-time applications. On the other hand, a completely centralized approach is not

robust and scalable. In order to minimize the communication load and delay while being

114

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

robust and scalable, a hierarchical architecture is considered in this chapter.

6.2 Problem Formulation and Control System Architec-

ture

We consider the problem of pursuing multiple evaders over a region of interest (or the

surveillance region). Evaders (or targets) arise at random in space and time, persist for a

random length of time, and then cease to exist. When evaders appear, a group of pursuers

is required to detect, chase and capture the group of evaders in minimum time with the aid

of a sensor network. In order to solve this problem, we propose a hierarchical real-time

control system LochNess which is shown in Figure 6.2. LochNess is composed of seven

layers: the sensor network, the multi-sensor fusion (MSF) module, the multi-target track-

ing (MTT) modules, the multi-track fusion (MTF) module, the multi-agent coordination

(MAC) module, the path planner module, and the path follower modules.

Sensors are spread over the surveillance region and form an ad-hoc network. The sensor

network detects moving objects in the surveillance region and the MSF module converts

the sensor measurements into target position estimates (or reports) using spatial correlation.

We consider a hierarchical sensor network. In addition to regular sensor nodes (“Tier-1”

nodes), we assume the availability of “Tier-2” nodes which have long-distance wireless

links and more processing power. We assume that each Tier-2 node can communicate with

its neighboring Tier-2 nodes. Examples of a Tier-2 node include high-bandwidth sensor

nodes such as iMote and BTnode [Hill et al., 2004], gateway nodes such as Stargate, In-

trinsyc Cerfcube, and PC104 [Hill et al., 2004], and the Tier-2 nodes designed for our

experiment [Dutta et al., 2006]. Each Tier-1 node is assigned to its nearest Tier-2 node and

the Tier-1 nodes are grouped by Tier-2 nodes. We call the group of sensor nodes formed

around a Tier-2 node a “tracking group”. When a node detects a possible target, it listens

115

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

Figure 6.2: LochNess: a hierarchical real-time control system architecture using
sensor networks for multi-target tracking and multi-agent coordination.

to its neighbors for their measurements and fuses the measurements to forward to its Tier-2

node. Each Tier-2 node receives the fused measurements from its tracking group and the

MTT module in each Tier-2 node estimates the number of evaders, the positions and veloc-

ities of the evaders, and the estimation error bounds. Each Tier-2 node communicates with

its neighboring Tier-2 nodes when a target moves away from the region monitored by its

tracking group. Lastly, the tracks estimated by the Tier-2 nodes are combined hierarchically

by the MTF module at the base station.

The estimates computed by the MTF module are then used by the MAC module to

estimate the expected capture times of all pursuer-evader pairs. Based on these estimates,

116

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

the MAC module assigns one pursuer to one evader by solving the bottleneck assignment

problem [Burkard and Çela, 1998] such that the estimated time to capture the last evader

is minimized. Once the assignments are determined, the path planner module computes a

trajectory for each pursuer to capture its assigned evader in the least amount of time without

colliding into other pursuers. Then, the base station transmits each trajectory to the path

following controller of the corresponding pursuer. The path following controller modifies

the pursuer’s trajectory on the fly to avoid any obstacles sensed by the pursuer’s on-board

sensors. The path planning and path follower modules can be implemented using dynamic

programming [Nilim and Ghaoui, 2004] or model predictive control [Shim et al., 2003]. In

the chapter, we focus on MSF, MTT, MTF, and MAC modules and they are described in

Section 6.3. In the remainder of this section, we describe the sensor network model and the

problem formulations of multi-target tracking and multi-agent coordination.

6.2.1 Sensor Network and Sensor Models

In this section, we describe the sensing models – the signal-strength and binary sensor

models – and the sensor network model considered in this chapter. A signal-strength sensor

reports the range to a nearby target while a binary sensor reports only a binary value indi-

cating whether an object is detected near the reporting sensor. The signal-strength sensor

model is used for the development and analysis of our system while the binary sensor model

is used in our experiments. While the signal-strength sensors provide better accuracy, our

evaluation of the sensors developed for the experiments showed that the variability in the

signal strength of the sensor reading prohibited extraction of ranging information. How-

ever, we found that the sensors were still effective as binary sensors. We also found that

binary sensors were much less sensitive to time synchronization errors than signal-strength

sensors.

LetNs be the number of sensor nodes, including both Tier-1 and Tier-2 nodes, deployed

117

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

over the surveillance region R ⊂ R2. Let si ∈ R be the location of the i-th sensor node

and let S = {si : 1 ≤ i ≤ Ns}. Let Nss � Ns be the number of Tier-2 nodes and let ss
j ∈ S

be the position of the j-th Tier-2 node, for j = 1, . . . , Nss.

6.2.1.1 Signal-Strength Sensor Model

Let Rs ∈ R be the sensing range. If there is an object at x ∈ R, a sensor can detect the

presence of the object. Each sensor records the sensor’s signal strength,

zi =

β

1+γ‖si−x‖α + ws
i , if ‖si − x‖ ≤ Rs

ws
i , if ‖si − x‖ > Rs,

(6.1)

where α, β and γ are constants specific to the sensor type, and we assume that zi are

normalized such that ws
i has the standard Gaussian distribution. This signal-strength based

sensor model is a general model for many sensors available in sensor networks, such as

acoustic and magnetic sensors, and has been used frequently [Brooks et al., 2004; Liu et

al., 2003a; Liu et al., 2003b; Liu et al., 2004].

6.2.1.2 Binary Sensor Model

For each sensor i, let Ri be the sensing region of i. Ri can have an arbitrary shape but we

assume that it is known to the system. Let zi ∈ {0, 1} be the detection made by sensor i,

such that sensor i reports zi = 1 if it detects a moving object in Ri, and zi = 0 otherwise.

Let pi be the detection probability and qi be the false detection probability of sensor i.

6.2.1.3 Sensor Network Model

Let G = (S,E) be a communication graph such that (si, sj) ∈ E if and only if node i can

communicate directly to node j. Let g : {1, . . . , Ns} → {1, . . . , Nss} be the assignment of

each sensor to its nearest Tier-2 node such that g(i) = j if ‖si − ss
j‖ = mink=1,...,Nss ‖si −

118

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

ss
k‖. For a node i, if g(i) = j, the shortest path from si to ss

j in G is denoted by sp(i). We

assume that the length of sp(i), i.e., the number of communication links from node i to its

Tier-2 node, is smaller when the physical distance between node i and its Tier-2 node is

shorter. But if this is not the case, we can assign a node to the Tier-2 node with the fewest

communication links between them.

Local sensor measurements are fused by the MSF module described in Section 6.3.1.

Let ẑi be a fused measurement originated from node i. Node i transmits the fused measure-

ment ẑi to the Tier-2 node g(i) via the shortest path sp(i). A transmission along an edge

(si, sj) on the path fails independently with probability pte and the message never reaches

the Tier-2 node. Transmission failures along an edge (si, sj) may include failures from re-

transmissions from node i to node j. We can consider transmission failure as another form

of a missing observation. If k is the number of hops required to relay data from a sensor

node to its Tier-2 node, the probability of successful transmission decays exponentially as

k increases. To overcome this problem, we use k independent paths to relay data if the

reporting sensor node is k hops away from its Tier-2 node. The probability of successful

communication pcs from the reporting node i to its Tier-2 node g(i) can be computed as

pcs(pte, k) = 1 −
(
1− (1− pte)

k
)k, where k = |sp(i)| and |sp(i)| denotes the cardinality

of the set sp(i).

We assume each node has the same probability pde of delaying a message. If di is

the number of (additional) delays on a message originating from the sensor i, then di is

distributed as

p(di = d) =

(
|sp(i)|+ d− 1

d

)
(1− pde)

|sp(i)|(pde)
d. (6.2)

We are modeling the number of (additional) delays by the negative binomial distribution.

A negative binomial random variable represents the number of failures before reaching a

fixed number of successes from Bernoulli trials. In our case, it is the number of delays

before |sp(i)| successful delay-free transmissions.

119

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

If the network is heavily loaded, the independence assumptions on transmission failure

and communication delay may not hold. However, the model is realistic under moderate

conditions and we have chosen it for its simplicity.

6.2.2 Agent Dynamics and Coordination Objective

In a situation where multiple pursuers and evaders are present, several assignments are

possible and some criteria need to be chosen to optimize performance. In this work, we

focus on minimizing the time to capture all evaders. However, other criteria might be

possible, such as minimizing the pursuer’s energy consumption while guaranteeing capture

of all evaders or maximizing the number of captured evaders within a certain amount of

time. Since the evaders’ motions are not known, an exact time to capture a particular

evader is also not known. Therefore, we need to define a metric to estimate the time to

capture the evaders. Let us define the state vector of a vehicle as x = [x1, x2, ẋ1, ẋ2]
T ,

where (x1, x2) and (ẋ1, ẋ2) are the position and the velocity components of the vehicle

along the x and y axes, respectively. We denote by xp and xe the state of a pursuer and an

evader, respectively. We will use the following definition of time-to-capture:

Definition 2 (Time-to-capture). Let xe(t0) be the position and velocity vector of an evader

in a plane at time t0, and xp(t) be the position and velocity vector of a pursuer at the

current time t ≥ t0. We define the (constant speed) time-to-capture as the minimum time

Tc necessary for the pursuer to reach the evader with the same velocity, assuming that the

evader will keep moving at a constant velocity, i.e.,

Tc := min
[
T | xp(t+ T) = xe(t+ T)

]
, (6.3)

where xe
1,2(t+T) = xe

1,2(t0)+ (t+T − t0)ẋe
1,2(t0), ẋ

e
1,2(t+T) = ẋe

1,2(t0), and the pursuer

moves according to its dynamics.

120

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

This definition allows us to quantify the time-to-capture in an unambiguous way. Al-

though an evader can change trajectories over time, it is a more accurate estimate than, for

example, some metric based on the distance between an evader and a pursuer, since the

time-to-capture incorporates the dynamics of the pursuer.

Given Definition 2 and the constraints on the dynamics of the pursuer, it is possible to

calculate explicitly the time-to-capture Tc, as well as the optimal trajectory xe∗(t) for the

pursuers as shown in Section 6.3.3.

We assume the following dynamics for both pursuers and evaders:

x(t+ δ) = Aδx(t) +Gδu(t) (6.4)

η(t) = x(t) + v(t) (6.5)

where δ is the sampling interval, u = [u1, u2]
T is the control input vector, η(t) is the

estimated vehicle state provided by the MTF module, v(t) is the estimation error, and

Aδ =

1 0 δ 0

0 1 0 δ

0 0 1 0

0 0 0 1

 Gδ =

δ2

2
0

0 δ2

2

δ 0

0 δ

 ,

which correspond to the discretization of the dynamics of a decoupled planar double inte-

grator. Although this model appears simplistic for modeling complex motions, it is widely

used as a first approximation in path-planning [Lepetic et al., 2003; Saccon, 2005; Velenis

and Tsiotras, 2005]. Moreover, there exist methodologies to map such a simple dynamic

model into a more realistic model via consistent abstraction as shown in [Belta et al., 2005;

Tabuada and Pappas, 2005]. Finally, any possible mismatch between this model and the

true vehicle dynamics can be compensated for by the path-follower controller implemented

on the pursuer [Shim et al., 2003].

121

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

The observation vector η = [η1, η2, η̇1, η̇2]
T is interpreted as a measurement, although

in reality it is the output from the MTF module shown in Figure 6.2. The estimation error

vt = [v1, v2, v̇1, v̇2]
T can be modeled as a Gaussian noise with zero mean and covariance

Q or as an unknown but bounded error, i.e., |v1| < V1, |v2| < V2, |v̇1| < V̇1, |v̇2| < V̇2,

where V1, V2, V̇1 and V̇2 are positive scalars that are possibly time-varying. Both modeling

approaches are useful for different reasons. Using a Gaussian noise approximation allows

a closed-form optimal filter solution such as the well-known Kalman filter [Kailath et al.,

1999]. On the other hand using the unknown but bounded error model allows for the design

of a robust controller such as the robust minimum-time control of pursuers proposed in

Section 6.3.3.

We also assume that the control input to a pursuer is bounded, i.e.,

|up
1| ≤ Up, |up

2| ≤ Up (6.6)

where Up > 0. We consider two possible evader dynamics:

ue
1 ∼ N (0, qe), u

e
2 ∼ N (0, qe) (random motion) (6.7)

|ue
1| ≤ Ue, |ue

2| ≤ Ue (evasive motion), (6.8)

where N (0, qe) is a Gaussian distribution with zero mean and variance qe ∈ R+. Equa-

tion (6.7) is a standard model for the unknown motion of vehicles, where the variation in

a velocity component is a discrete-time white noise acceleration [Lerro and Bar-Shalom,

1993]. Equation (6.8) allows for evasive maneuvers but places bounds on the maximum

thrust. The multi-agent coordination scheme proposed in Section 6.3.3 is based on dynam-

ics (6.8) as pursuers choose their control actions to counteract the best possible evasive

maneuver of the evader being chased. However, in our simulations and experiments, we

test our control architecture using the dynamics (6.7) for evaders where we set qe = 2Ue.

122

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

Since the definition of the time-to-capture is related to relative distance and velocity

between the pursuer and the evader, we consider the state space error ξ = xp − xe which

evolves according to the following error dynamics:

ξ(t+ δ) = Aδξ(t) +Gδu
p(t)−Gδu

e(t)

ηξ(t) = ξ(t) + vξ(t)
(6.9)

where the pursuer thrust up(t) is the only controllable input, while the evader thrust ue(t)

acts as a random or unknown disturbance, and vξ(t) is the measurement error which takes

into account the uncertainties on the states of both the pursuer and the evader. According to

the definition above, an evader is captured if and only if ξ(t) = 0, and the time-to-capture

Tc corresponds to the time necessary to drive ξ(t) to zero assuming ue(t) = 0 for t ≥ t0.

However, this assumption is relaxed in Section 6.3.3.

According to the definition of time-to-capture above and the error dynamics (6.9), given

the positions and velocities of all the pursuers and evaders, it is possible to compute the

time-to-capture matrix C = [cij] ∈ RNp×Ne , where Np and Ne are the total number of

pursuers and evaders, respectively, and the entry cij of the matrix C corresponds to the

expected time-to-capture between pursuer i and evader j. When coordinating multiple

pursuers to chase multiple evaders, it is necessary to assign pursuers to evaders. Our objec-

tive is to select an assignment that minimizes the expected time-to-capture of all evaders,

which correspond to the global worst case time-to-capture. We focus on a scenario with the

same number of pursuers and evaders, i.e., Np = Ne. When there are more pursuers than

evaders, then only a subset of all the pursuers can be dispatched and the others are kept on

alert in case more evaders appear. Alternatively, more pursuers can be assigned to a single

evader. When there are more evaders than pursuers, one approach is to minimize the time

to capture the Np closest evaders. Obviously, many different coordination objectives can

be formulated as they are strongly application-dependent. We have chosen the definition of

123

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

global worst case time-to-capture as it enforces strong global coordination to achieve high

performance.

6.3 Control System Implementation

6.3.1 Multi-sensor Fusion Module

6.3.1.1 Signal-strength Sensor Model

Consider the signal-strength sensor model described in Section 6.2.1. Recall that zi is the

signal strength measured by node i. For each node i, if zi ≥ θ, where θ is a threshold set for

appropriate values of detection and false-positive probabilities, the node transmits zi to its

neighboring nodes, which are at most 2Rs away from si, and listens to incoming messages

from neighboring nodes within a 2Rs radius. We assume that the communication range

of each node is larger than 2Rs. For a node i, if zi is larger than all incoming messages,

zi1 , . . . , zik−1
, and zik = zi, then the position of an object is estimated by

ẑi =

∑k
j=1 zijsij∑k

j=1 zij

. (6.10)

The estimate ẑi corresponds to a center of mass of the node locations weighed by their mea-

sured signal strengths. Node i transmits ẑi to the Tier-2 node g(i). If zi is not the largest

compared to the incoming messages, node i simply continues sensing. Although each sen-

sor cannot give an accurate estimate of the object’s position, as more sensors collaborate,

the accuracy of the estimates improves as shown in Figure 6.3.

6.3.1.2 Binary Sensor Model

In order to obtain finer position reports from binary detections, we use spatial correlation

among detections from neighboring sensors. The idea behind the fusion algorithm is to

124

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

Figure 6.3: Single target position estimation error as a function of sensing range.
See Section 6.4.5 for the sensor network setup used in simulations (Monte Carlo
simulation of 1000 samples, unity corresponds to the separation between sensors).

compute the likelihood of detections assuming there is a single target. This is only an ap-

proximation since there can be more than one target. However, any inconsistencies caused

by this approximation are fixed by the tracking algorithm described in Section 6.3.2 using

spatio-temporal correlation.

Consider the binary sensor model described in Section 6.2.1. Let x be the position of

an object. For the purpose of illustration, suppose that there are two sensors, sensor 1 and

sensor 2, and R1 ∩ R2 6= ∅ (see Figure 6.4(a)). The overall sensing region R1 ∪ R2 can be

partitioned into a set of non-overlapping cells (or blocks) as shown in Figure 6.4(b). The

likelihoods can be computed as follows:

P (z1, z2|x ∈ S1) = pz1
1 (1− p1)

1−z1qz2
2 (1− q2)1−z2

P (z1, z2|x ∈ S2) = qz1
1 (1− q1)1−z1pz2

2 (1− p2)
1−z2

P (z1, z2|x ∈ S3) = pz1
1 (1− p1)

1−z1pz2
2 (1− p2)

1−z2 ,

(6.11)

125

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

(a) (b)

Figure 6.4: (a) Sensing regions of two sensors 1 and 2. Ri is the sensing region of
sensor i. (b) A partition of the overall sensing region R1 ∪ R2 into non-overlapping
cells S1, S2 and S3, where S1 = R1 \R2, S2 = R2 \R1 and S3 = R1 ∩R2.

where S1 = R1 \ R2, S2 = R2 \ R1 and S3 = R1 ∩ R2 (see Figure 6.4(b)). Hence, for

any deployment we can first partition the surveillance region into a set of non-overlapping

cells. Then, given detection data, we can compute the likelihood of each cell as shown in

the previous example.

An example of detections of two targets by a 10 × 10 sensor grid is shown in Fig-

ure 6.5(a). In this example, the sensing region is assumed to be a disk with radius of 7.62m

(10 ft). We have assumed pi = 0.7 and qi = 0.05 for all i. These parameters are esti-

mated from measurements made with the passive infrared (PIR) sensor of an actual sensor

node described in Section 6.5. From the detections shown in Figure 6.5(a), the likelihood

can be computed using equations similar to (6.11) for each non-overlapping cell (see Fig-

ure 6.5(b)). Notice that it is a time-consuming task to find all non-overlapping cells for

arbitrary sensing region shapes and sensor deployments. Hence, we quantized the surveil-

lance region and the likelihoods are computed for a finite number of points as shown in

Figure 6.5(b).

There are two parts in this likelihood computation: the detection part (terms involving

pi) and the false detection part (terms involving qi). Hereafter, we call the detection part of

the likelihood as the detection-likelihood and the false detection part of the likelihood as

the false-detection-likelihood. Notice that the computation of the false-detection-likelihood

126

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

requires measurements from all sensors. However, for a large wireless sensor network, it is

not feasible to exchange detection data with all other sensors. Instead, we use a threshold

test to avoid computing the false-detection-likelihood and distribute the likelihood compu-

tation. The detection-likelihood of a cell is computed if there are at least θd detections,

where θd is a user-defined threshold. Using θd = 3, the detection-likelihood of the detec-

tions from Figure 6.5(a) can be computed as shown in Figure 6.5(c). The computation of the

detection-likelihood can be done in a distributed manner. Assign a set of non-overlapping

cells to each sensor such that no two sensors share the same cell and each cell is assigned to

a sensor whose sensing region includes the cell. For each sensor i, let {Si1 , . . . , Sim(i)
} be a

set of non-overlapping cells, where m(i) is the number of cells assigned to sensor i. Then,

if sensor i reports a detection, it computes the likelihoods of each cell in {Si1 , . . . , Sim(i)
}

based on its own measurements and the measurements from neighboring sensors. A neigh-

boring sensor is a sensor whose sensing region intersects the sensing region of sensor i.

Notice that no measurement from a sensor means no detection.

Based on the detection-likelihoods, we compute target position reports by clustering.

Let S = {S1, . . . , Sm} be a set of cells whose detection-likelihoods are computed, i.e., the

number of detections for each Si is at least θd. First, randomly pick Sj from S and remove

Sj from S. Then cluster around Sj the remaining cells in S whose set-distance to Sj is less

than the sensing radius. The cells clustered with Sj are then removed from S. Now repeat

the procedure until S is empty. Let {Ck : 1 ≤ k ≤ Kcl} be the clusters formed by this

procedure, where Kcl is the total number of clusters. For each cluster Ck, its center of mass

is computed to obtain a a fused position report, i.e., an estimated position of a target. An

example of position reports is shown in Figure 6.5(c).

The multi-sensor fusion algorithm described above runs on two levels: Algorithm 12

on the Tier-1 nodes and Algorithm 13 on the Tier-2 node. Each Tier-1 node combines de-

tection data from itself and neighboring nodes using Algorithm 12 and computes detection-

likelihoods. The detection-likelihoods are forwarded to its Tier-2 node and the Tier-2 node

127

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

(a)

(b) (c)

Figure 6.5: (a) Detections of two targets by a 10 × 10 sensor grid (targets in ×,
detections in disks, and sensor positions in small dots). (b) Likelihood of detections
from Figure 6.5(a). (c) Detection-likelihood of detections from Figure 6.5(a) with
threshold θd = 3. Estimated positions of targets are shown in circles.

generates position reports from the detection-likelihoods using Algorithm 13. The posi-

tion reports are then used by the MTT module described in Section 6.3.2 to track multiple

targets.

128

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

Algorithm 12 Multi-sensor Fusion: Sensor i
Input: detections from sensor i and its neighbors
Output: detection-likelihoods

1: for each Sij , j = 1, . . . ,m(i) do
2: if number of detections for Sij ≥ θd then
3: compute detection-likelihood ẑi(j) of Sij

4: forward ẑi(j) to Tier-2 node g(i)
5: end if
6: end for

Algorithm 13 Multi-sensor Fusion: Tier-2 Node
Input: detection-likelihoods Z = {ẑi(j)} received from its tracking group
Output: position reports y

1: S = {Sij : ẑi(j) ∈ Z}
2: y = ∅
3: find clusters {Ck : 1 ≤ k ≤ Kcl} from S as described in the text
4: for each Ck, k = 1, . . . , Kcl do
5: compute the center of mass yk of Ck

6: y = y ∪ yk

7: end for

129

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

6.3.2 Multi-target Tracking and Multi-track Fusion Modules

6.3.2.1 Multi-target Tracking Module

At each Tier-2 node, we implement the online MCMCDA algorithm (Algorithm 8) with

a sliding window of size ws. At each time step, we use the previous estimate to initialize

MCMCDA and run MCMCDA on the observations belonging to the current window. Each

Tier-2 node maintains a set of observations Y = {yj(t) : 1 ≤ j ≤ n(t), tcurr − ws + 1 ≤

t ≤ tcurr}, where tcurr is the current time. Each yj(t) is either a fused measurement ẑi

from some signal-strength sensor i or an element of the fused position reports y from some

binary sensors. At time tcurr + 1, the observations at time tcurr − ws + 1 are removed from

Y and a new set of observations is appended to Y . Any delayed observations are inserted

into the appropriate slots. Then, each Tier-2 node initializes the Markov chain with the

previously estimated tracks and executes Algorithm 8 on Y . Once a target is found, the

next state of the target is predicted. If the predicted next state belongs to the surveillance

area of another Tier-2 node, the target’s track information is passed to the corresponding

Tier-2 node. These newly received tracks are then incorporated into the initial state of

MCMCDA for the next time step. Lastly, each Tier-2 node forwards its track information

to the base station.

6.3.2.2 Multi-track Fusion Module

Since each Tier-2 node maintains its own set of tracks, there can be multiple tracks from a

single target maintained by different Tier-2 nodes. To make the algorithm fully hierarchical

and scalable, the MTF module performs the track-level data association at the base station

to combine tracks from different Tier-2 nodes. Let ωj be the set of tracks maintained by

Tier-2 node j ∈ {1, . . . , Nss}. Let Yc = {τi(t) ∈ ωj : 1 ≤ t ≤ tcurr, 1 ≤ i ≤ |ωj|, 1 ≤

j ≤ Nss} be the combined observations only from the established tracks. We form a new

set of tracks ωinit from {τi ∈ ωj : 1 ≤ i ≤ |ωj|, 1 ≤ j ≤ Nss} while making sure that the

130

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

constraints defined in Chapter 3 are satisfied. Then, we run Algorithm 7 on this combined

observation set Yc with the initial state ωinit. An example in which the multi-track fusion

corrects mistakes made by Tier-2 nodes due to missing observations at the tracking group

boundaries is shown in Section 6.4.5. The algorithm is autonomous and shown to be robust

against packet loss, communication delay and sensor localization error (see Section 6.4).

6.3.3 Multi-agent Coordination Module

The time-to-capture is estimated using the abstract model of pursuer and evader dynam-

ics given in Section 6.2.2. Let us consider the error between the pursuer and the evader

ξ = [ξ1, ξ2, ξ̇1, ξ̇2]
T whose dynamics is given in (6.9). The time-to-capture problem is equiv-

alent to the following optimization problem:

minu
p
1(t),u

p
2(t) T

subject to

ξ(t+ δ) = Aδξ(t) +Gδu

p(t)

|up
1(t)| ≤ Up, |up

2(t)| ≤ Up

ξ(t+ T) = 0.

(6.12)

Recently, Gao et al. [Gao, 2004] solved the previous problem as an application of minimum-

time control for the discretized double integrator. An extension to minimum-time control

for the discretized triple integrator is also available [Zanasi and Morselli, 2003]. Despite its

simplicity and apparent efficacy, minimum-time control is rarely used in practice, since it is

highly sensitive to small measurement errors and external disturbances. Although, in prin-

ciple, minimum-time control gives the best performance, it needs to be modified to cope

with practical issues such as the quantization of inputs, measurement and process noise,

and modeling errors. We propose an approach that adds robustness while preserving the

optimality of minimum-time control.

Since the state error dynamics is decoupled along the x and y-axes, the solution of

131

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

the optimization problem (6.12) can be obtained by solving two independent minimum-

time problems along each axis. When δ → 0 in (6.9), the minimum-time control problem

restricted to one axis reduces to the well known minimum-time control problem of a double

integrator in continuous time, which can be found in many standard textbooks on optimal

control such as [Lee and Markus, 1967; Ryan, 1982]. The solution is given by a bang-bang

control law and can be written in state feedback form as follows:

up
1 =

−Up If 2Upξ̇1 > −ξ1|ξ1|

+Up If 2Upξ̇1 < −ξ1|ξ1|

−Up sign(ξ1) If 2Upξ̇1 = −ξ1|ξ1|

0 If ξ̇1 = ξ1 = 0.

(6.13)

The minimum time required to drive ξ1 to zero in the x-axis can be also written in terms of

the position and velocity error as follows:

Tc,1(ξ1, ξ̇1) =

−ξ̇1+
√

2ξ̇2
1−4Upξ1

Up
if 2Upξ̇1 ≥ −ξ1|ξ1|

ξ̇1+
√

2ξ̇2
1+4Upξ1

Up
otherwise.

(6.14)

Figure 6.6 shows the switching curve 2Upξ̇1 = −ξ1|ξ1| and the level curves of the time-to-

capture Tc for different values.

Similar equations can be written for the control up
2 along the y-axis. Therefore the

minimum time-to-capture is given by:

Tc = max(Tc,1, Tc,2) (6.15)

According to the previous analysis, given the state error ξ(t) at current time t, we can com-

pute the corresponding constant velocity time-to-capture Tc, the optimal input sequence

up∗(t′) and the optimal trajectory ξ∗(t′) for t′ ∈ [t, t+ Tc].

132

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

Figure 6.6: Optimal switching curve for the continuous minimum-time control of the
double integrator (thick solid line) and curves of constant time-to-capture (thin solid
lines) in the phase space (ξ1, ξ̇1). The hexagon represents the set of all possible
locations of the true error state (ξ1(t+ δ), ξ̇1(t+ δ)) at the next time step t+ δ given
measurement (η1, η̇1) and pursuer control input up

1 at time t.

However, the optimal input (6.13) is the solution when δ → 0 in (6.9) with no measure-

ment errors and no change in the evader’s trajectory. In order to add robustness to take into

account the quantization in the digital implementation, the measurement errors, and the

evasive maneuvers of the evader, we analyze how the time-to-capture can be affected by

these terms. Let us first rewrite the error dynamics given by (6.9) explicitly for the x-axis:

ξ1(t+ δ) = ξ1(t) + δ ξ̇1(t) + 1
2
δ2up

1(t) + 1
2
δ2ue

1(t)

ξ̇1(t+ δ) = ξ̇1(t) + δ up
1(t) + δue

1(t)

ηξ
1(t) = ξ1(t) + vξ

1(t)

η̇ξ
1(t) = ξ̇1(t) + v̇ξ

1(t)

133

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

If we substitute the last two equations into the first two we get:

ξ1(t+ δ) = ηξ
1(t) + δη̇ξ

1(t)+
1

2
δ2up

1(t)−K − v
ξ
1(t)−δv̇

ξ
1(t) +

1

2
δ2ue

1(t) (6.16)

ξ̇1(t+ δ) = η̇ξ
1(t) + δ up

1(t)− v̇
ξ
1(t) + δue

1(t) (6.17)

where (ηξ
1, η̇

ξ
1) are output estimates from the MTF module, up

1 is the controllable input, and

(ue
1, v

ξ
1, v̇

ξ
1) play the role of external disturbances. Our goal now is to choose up

1, i.e., the

thrust of the pursuer, in such a way as to minimize the time-to-capture under the worst

possible choice of (ue
1, v

ξ
1, v̇

ξ
1), which are not known in advance but are bounded. Figure

6.6 illustrates this approach graphically: the hexagon in the figure represents the possible

position of the true state error (ξ1, ξ̇1) at the next time step t + δ which accounts for all

possible evasive maneuvers of the evader, i.e., |ue
1| < Ue, and accounts for the estimation

errors on the position and velocity of the pursuer and the evader, i.e., |vξ
1| < V1, |v̇ξ

1| < V̇1,

for a given choice of up
1. Since the center of the hexagon (ηξ

1 + δη̇ξ
1 + 1

2
δ2up

1, η̇
ξ
1 + δup

1)

depends on the pursuer control up
1, one could try to choose up

1 in such a way that the largest

time-to-capture Tc,1 of the hexagon is minimized. This approach is common in the literature

for non-cooperative games [Basar and Olsder, 1995]. More formally, the feedback control

input will be chosen based on the following min-max optimization problem

up
1
∗
(t) = arg min

|up
1 |≤Up

 max
|vξ

1|≤V1,|v̇ξ
1|≤V̇1,

|ue
1|≤Ue

Tc,1
(
ξ1(t+δ), ξ̇1(t+δ)

) (6.18)

This is, in general, a nonlinear optimization problem. However, thanks to the specific

structure of the time-to-capture function Tc,1, it is possible to show that (6.18) is equivalent

134

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

to:

up
1
∗

= arg min
|up

1 |≤Up
max

(
Tc,1(ξ

+
1 , ξ̇

+
1), Tc,1(ξ

−
1 , ξ̇

−
1)
)

ξ±1 := ηξ
1 + δη̇ξ

1± V1±δV̇1 ±
1

2
δ2Ue +

1

2
δ2up

1

ξ̇±1 := η̇ξ
1± V̇1±δUe + δup

1, (6.19)

i.e., it is necessary to compute only the time-to-capture of the top right and the bottom left

corner of the hexagon in Figure 6.6 since all points inside the set always have smaller values

of Tc,1. Once the expected minimum time-to-capture control input up∗(t′), t′ ∈ [t, t+ Tc] is

computed, then the corresponding optimal trajectory for the pursuer xp∗(t′), t′ ∈ [t, t+ Tc]

can be easily obtained by substituting up∗(t′) into the pursuer dynamics (6.4). The robust

minimum-time path planning algorithm is summarized in Algorithm 14.

Algorithm 14 Robust Minimum-Time Path Planning
Input: xp(t), xe(t), and bounds V1, V2, V̇1, V̇2, Ue, Up

Output: optimal trajectory xp∗(t′), t′ ∈ [t, t+ Tc]
1: compute up∗(t′), t′ ∈ [t, t+ Tc] using (6.19)
2: compute xp∗(t′), t′ ∈ [t, t+ Tc] given up∗(t′) using (6.4)

Figure 6.7 shows the performance of the proposed robust minimum time-to-capture

control feedback for a scenario where the evader moves with random motion and the

evader’s position and velocity estimates are noisy. It is compared with the discrete-time

minimum-time controller proposed in [Zanasi and Morselli, 2003] and [Gao, 2004]. Our

controller feedback design outperforms the discrete-time minimum-time controller since

the latter one does not take into account process and measurement noises. Note how both

controllers do not direct pursuers toward the actual position of evader, but to the estimated

future location of the evader to minimize the time-to-capture.

As introduced in Section 6.2.2, given the positions and velocities of all pursuers and

evaders and bounds on the measurement error and evader input, it is possible to compute

135

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

Figure 6.7: Trajectories of pursuers and evaders on the x-y plane. The feedback
control is based on noisy measurements (thin solid line) of the true evader positions
(thick solid line). The robust minimum time-to-capture feedback proposed in this
chapter (dot-solid line) is compared with the discrete-time minimum time-to-capture
feedback (dashed line) proposed in [Zanasi and Morselli, 2003].

the expected time-to-capture matrix C = [cij] ∈ RNp×Ne using the solution to the optimal

minimum-time control problem. The entry cij of the matrix C corresponds to the expected

time for pursuer i to capture evader j, Tc(i, j), that can be computed as described in (6.14)

and (6.15). As motivated in Section 6.2.2, we assume the same number of pursuers as the

number of evaders, i.e., Np = Ne = N .

An assignment can be represented as a matrix Φ = [φij] ∈ RN×N , where the entry φij

of the matrix Φ is equal to 1 if pursuer i is assigned to evader j, and equal to 0 otherwise.

The assignment problem can therefore be written formally as follows:

minφij∈{0,1} maxi,j=1,...,N(cij · φij)

subject to
∑N

i=1 φij = 1, ∀i∑N
j=1 φij = 1, ∀j.

(6.20)

136

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

As formulated in (6.20), the assignment problem is a combinatorial optimization problem.

The optimization problem given in (6.20) can be reformulated as a linear bottleneck

assignment problem and can be solved by any of the polynomial-time algorithms based

on network flow theory. Here we give a brief description of one algorithm and we direct

the interested reader to the survey [Burkard and Çela, 1998] for a detailed review of these

algorithms. For our implementation, we use a randomized threshold algorithm that alter-

nates between two phases. In the first phase, we list the cost elements cij in increasing

order and we choose a cost element c∗, i.e., a threshold. Then we construct the matrices

C̄(c∗) = [c̄ij] ∈ RN×N and CTutte(c
∗) ∈ R2N×2N as follows:

c̄ij =

 aij if cij > c∗

0 if cij ≤ c∗
, CTutte =

 0 C̄

−C̄ 0

 (6.21)

where aij’s are independent random numbers sampled from a uniform distribution in the

interval [0, 1], i.e., aij ∼ U([0, 1]). Using Tutte’s Theorem [Burkard and Çela, 1998], it is

possible to show that if det(CTutte(c
∗)) 6= 0, then there exists an assignment that achieves

c∗1. Therefore, we search for the smallest c∗min in the ordered list of costs cij which guaran-

tees an assignment. Once we find c∗min, we find the pursuer-evader pair corresponding to that

cost. Then, we remove its row and column from the cost matrix C and repeat the procedure

until all pursuers are assigned. The assignment algorithm is summarized in Algorithm 15.

It is important to note that an assignment based on the solution to the global opti-

mization problem described above is necessary for good performance. For example, let us

consider the greedy assignment algorithm. This algorithm looks for the smallest time-to-

capture entry in the matrix C, assigns the corresponding pursuer-evader pair, and removes

the corresponding row and column from the matrix C. The dimensions of the resulting

1In reality, since the algorithm is randomized, there is a small probability equal to (1/N)r that there exists
a feasible assignment if det(CTutte) = 0 for r random Tutte’s matrices CTutte. In the rare cases when this
event happens, the algorithm simply gives a feasible assignment with a higher cost to capture.

137

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

Algorithm 15 Pursuers-to-evaders Assignment
Input: xp

i , x
e
j, i, j = 1, . . . , N

Output: assignment (i→ j) for i = 1, . . . , N
1: compute matrix C = [cij], cij = Tc(i, j)
2: for n = 1 to N do
3: [i∗, j∗] = argminij

{
cij | det(CTutte(cij)) 6= 0

}
, using (6.21)

4: assign pursuer i∗ to evader j∗, i.e., (i∗ → j∗)
5: C ← {C | remove row i∗ and column j∗}
6: end for

matrix C become (N − 1)× (N − 1) and the algorithm repeats the same process until each

pursuer is assigned to an evader. This algorithm is very simple and can be implemented

in a fully distributed fashion. However, it is a suboptimal algorithm since there are cases

where the greedy assignment finds the worst solution. Consider the time-to-capture ma-

trix C =

 1 2

3 100

. The optimal assignment that minimizes the time-to-capture of all

evaders for this matrix is (1 → 2) and (2 → 1), which gives Tc,max = 3, where Tc,max is

the time-to-capture of all evaders. The greedy assignment would instead assign pursuer

1 to evader 1 and pursuer 2 to evader 2, with the time-to-capture of all evaders equal to

Tc,max = 100.

6.4 Simulation Results

For simulations below, we consider the surveillance over a rectangular region on a plane,

R = [0, 100]2. The state vector is x = [x1, x2, ẋ1, ẋ2]
T where (x1, x2) is a position in R

along the usual x and y axes and (ẋ1, ẋ2) is a velocity vector. The linear dynamics and

measurement models (4.19) are used, where Q = diag(.152, .152) and R is set according to

Figure 6.3). We assume a 100 × 100 sensor grid, in which the separation between sensors

is normalized to 1. So the unit length in simulation is the length of the sensor separation.

In all simulations, nmc = 1000, and ws = 10. For the sensor model, we use α = 2, γ = 1,

138

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

η = 2, and β = 3(1 + γRα
s).

Since the number of targets K is not fixed, it is difficult to measure the performance of

an algorithm using a standard criterion such as the mean square error. Hence, we use two

separate metrics to measure performance: the estimation error in the number of targets εK

and the estimation error in position εX . Let K∗(t) be the number of targets at time t and

K(t) be the estimated number of targets at time t. We define εK as

εK =
1∑
K∗(t)

T∑
t=1

|K(t)−K∗(t)|. (6.22)

The computation of εX is done when it makes sense. At any t, there can be at most

M(t) = min(K(t), K∗(t)) common tracks. We find M(t) matches between true tracks

and estimated tracks based on positions at t − 1, t, t + 1. For each match i, let x∗i (t) and

xi(t) be the position of the true track and the estimated track at time t, respectively. We

define εX as

ε2X =
1∑
M(t)

T∑
t=1

M(t)∑
i=1

‖xi(t)− x∗i (t)‖2. (6.23)

Both εK and εX are normalized with respect to the number of targets for easier comparison.

We first evaluate the effect of the sensing range and empirically find that there is an

optimal value at which the estimation error is minimized. Then we illustrate the robustness

of our algorithm against sensor localization error, transmission failures and communication

delays. We then give an example of surveillance with sensor networks and demonstrate how

the hierarchical MCMCDA algorithm works.

6.4.1 Sensing Range

When localizing a single target, we can minimize the localization error by allowing more

sensors to collaborate, which is equivalent to increasing Rs as shown in Figure 6.3. But

when there is more than one target, this is no longer true, since observations from dif-

139

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

(a) (b)

Figure 6.8: (a) Estimation error in K, εK , as a function of sensing range Rs. (b)
Estimation error in X, εX , as a function of sensing range Rs. (Unity corresponds to
the separation between sensors.)

ferent targets can collide, giving missing observations and observations away from tar-

get positions. Figure 6.8 shows the estimation errors εK and εX when 10 targets appear

and disappear at random times and T = 50. For slow-speed vehicles, |ẋ1|, |ẋ2| ∈ [0, 1];

|ẋ1|, |ẋ2| ∈ [1, 2] for medium-speed vehicles; and |ẋ1|, |ẋ2| ∈ [2, 5] for high-speed vehicles.

For each vehicle type, five different scenarios are used. When Rs = .5, the sensors do not

completely cover the surveillance regionR and do not detect targets at all times, hence the

estimation error is higher. But as we increase Rs beyond 1.0, estimation errors increase,

since there are more collisions among observations of different targets. The estimation er-

rors are low for high-speed vehicles since it is easier to disambiguate crossing targets. From

Figure 6.8, we find that Rs = 1.5 is a good range for all types of vehicles and it is used in

simulations below. Notice that when Rs = 1.5, for each sensor si, there are 28 neighboring

sensors which are at most 2Rs away from si. We can also interpret this result in terms of

sensor density for a fixed value of Rs. Hence, once the surveillance region is fully covered

by sensors, a further increase in density does not improve the estimation error.

140

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

(a) (b)

Figure 6.9: (a) Estimation error in K, εK , as a function of the localization error σ.
(b) Estimation error in X, εX , as a function of the localization error σ.

6.4.2 Sensor Localization Error

The localization of sensor nodes in an ad-hoc wireless sensor network, without expensive

hardware such as the global positioning system (GPS), is a challenging problem [White-

house et al., 2004]. Hence, an algorithm which utilizes sensor positions needs to be ro-

bust against the sensor localization error. Suppose that the true position of sensor node

i is s∗i and si = s∗i + wl
i, where wl

i are Gaussian noises with zero mean and covariance

Σ = diag(σ2, σ2). Figure 6.9 shows the estimation errors from tracking 10 targets as func-

tions of the sensor localization error σ. It shows that the algorithm is robust against the

sensor localization error and, for σ ≤ .5, the algorithm performs as if there is no sensor

localization error. This is remarkable since σ ≤ .5 corresponds to the case in which the

average localization error is .707 times the separation between sensors. Notice that εK is

always under .18, so the algorithm finds most tracks for all σ. But εX gets larger at high σ,

since the target position estimation was based on incorrect node positions. Considering the

fact that εX is computed from the norm of a vector in R2, εX is mostly due to the sensor

localization error.

141

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

(a) (b)

Figure 6.10: (a) Ratio between the number of lost packets and the number of total
packets. (b) Ratio between the number of delayed packets and the number of total
packets.

6.4.3 Transmission Failures

To assess the effects of transmission failures alone, we assume that there are no delayed

observations, no false alarms, and no missing detections. A single supernode is placed

at the center. As mentioned earlier, transmission failures are missing observations and

Figure 6.10 (left) shows the ratio between the number of lost packets and the number of

total packets as a function of the transmission failure rate pte. As pte increases, we lose more

packets and, at pte ≈ .9, we lose all packets. Figure 6.11 shows the estimation errors and

the algorithm performs well for pte ≤ .4. The estimation error εX is low at high pte since

most of packets are lost at high pte, making the data association problem easier. Notice

that when pte = .4 more than 50% of packets are lost. It shows that our algorithm is very

robust against transmission failures. Hence, for given pte, we can find the maximum radius

kmax of a tracking group, measured by the number of hops from a supernode, such that

pts(pte, kmax) ≥ .5, sustaining the performance of the algorithm. For example, if pte = .1,

kmax = 38, i.e., the most distant node can be 38 hops away from a supernode. But one must

consider the communication delays which increases with the number of hops.

142

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

(a) (b)

Figure 6.11: (a) Estimation error in K, εK , as a function of the transmission error
pte. (b) Estimation error in X, εX , as a function of the transmission error pte.

6.4.4 Communication Delays

As in the previous section, we assume that there are no transmission failures, no false

alarms, and no missing observations. Figure 6.10 (right) shows the ratio between the num-

ber of delayed packets and the number of total packets as a function of the communication

delay rate pde. As pde increases to 1, all packets are delayed. Since ws = 10, we do not

receive all the delayed packets and the ratio between the number of delayed packets that

are eventually received and the number of packets is shown in a dotted line in Figure 6.10

(right). The estimations errors are shown in Figure 6.12. It shows a good performance for

pde ≤ .6. At pde = .6, 90% of packets are delayed and 72% of packets have delays less than

ws.

In summary, there is no performance loss up to an average localization error of 0.7

times the separation between sensors, and the algorithm tolerates up to 50% lost-to-total

packet ratio and 90% delayed-to-total packet ratio.

143

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

(a) (b)

Figure 6.12: (a) Estimation error in K, εK , as a function of the communication
delay pde. (b) Estimation error in X, εX , as a function of the communication delay
pde.

6.4.5 An Example of Surveillance with Sensor Networks

Here, we give a simulation example of surveillance using sensor networks. The surveillance

regionR = [0, 100]2 was divided into four quadrants and sensors in each quadrant formed a

tracking group, where a Tier-2 node was placed at the center of each quadrant. The scenario

is shown in Figure 6.13(a). We assumed a 100 × 100 sensor grid, in which the separation

between sensors was normalized to 1. Thus, the unit length in simulation was the length

of the sensor separation. For MCMCDA, nmc = 1000 and ws = 10. The signal-strength

sensor model was used with parameters α = 2, γ = 1, θ = 2, and β = 3(1 + γRα
s). In

addition, pte = .3 and pde = .3. The surveillance duration was Ts = 100.

The state vector of a target is x = [x1, x2, ẋ1, ẋ2]
T as described in Section 6.2.2. The

simulation used the dynamic model in (6.4) and the evader control inputs were modeled by

the random motion (6.7) with qe = .152 and Q set according to Figure 6.3. Since the full

144

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

(a) (b)

(c) (d)

Figure 6.13: (a) Tracking scenario, where the numbers are target appearance and
disappearance times, the initial positions are marked by circles, and the stars are
the positions of Tier-2 nodes. (b) Accumulated observations received by Tier-2
nodes with delayed observations circled. (c) Tracks estimated locally by the MTT
modules at Tier-2 nodes, superimposed. (d) Tracks estimated by the MTF module.

state is not observable, the measurement model (6.5) was modified as follows:

y(t) = Dx(t) + v(t), where D =

 1 0 0 0

0 1 0 0

 (6.24)

145

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

and y is a fused measurement computed by the MSF module in Section 6.3.1.

Figure 6.13(b) shows the observations received by the Tier-2 nodes. There were a

total of 1174 observations and 603 of these observations were false alarms. A total of 319

packets out of 1174 packets were lost due to transmission failures and 449 packets out of

855 received packets were delayed. Figure 6.13(c) shows the tracks estimated locally by the

MTT modules on the Tier-2 nodes while Figure 6.13(d) shows the tracks estimated by the

MTF module using track-level data association. Figure 6.13(d) shows that the MTF module

corrected mistakes made by Tier-2 nodes due to missing observations at the tracking group

boundaries. The algorithm is written in C++ and MATLAB and run on PC with a 2.6-GHz

Intel Pentium 4 processor. It takes less than 0.06 seconds per Tier-2 node, per simulation

time step.

6.5 Experiments

Multi-target tracking and a pursuit evasion game using the control system LochNess were

demonstrated at the Defense Advanced Research Projects Agency (DARPA) Network Em-

bedded Systems Technology (NEST) final experiment on August 30, 2005. The experiment

was performed under warm sunny conditions on a large-scale, long-term, outdoor sensor

network testbed deployed on a short grass field at U.C. Berkeley’s Richmond Field Station

(see Figure 6.14). A total of 557 sensor nodes were deployed and 144 of these nodes were

allotted for the tracking and PEG experiments. However, six out of the 144 nodes used in

the experiment were not functioning on the day of the demo, reflecting the difficulties of

deploying large-scale, outdoor systems.

The 144 nodes used for the tracking and PEG experiments were deployed at approxi-

mately 5 meter spacing in a 12× 12 grid (see Figure 6.15). Each node was elevated using a

camera tripod to prevent the passive infrared (PIR) sensors from being obstructed by grass

and uneven terrain (see Figure 6.14(a)). The locations of the nodes were measured during

146

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

(a) (b)

Figure 6.14: Hardware for the sensor nodes. (a) Trio sensor node on a tripod. On
top is the microphone, buzzer, solar panel, and user and reset buttons. On the
sides are the windows for the passive infrared sensors. (b) A live picture from the
2 target PEG experiment. The targets are circled.

deployment using differential GPS and stored in a table at the base station for reference

and for generating Figure 6.15. However, in the experiments the system assumed the nodes

were placed exactly on a 5 meter spacing grid to highlight the robustness of the system with

respect to localization error.

The deployment of LochNess contained some modifications to the architecture de-

scribed in Section 6.2. Due to the time constraint, the Tier-2 nodes were not fully functional

on the day of the demo. Instead, we used a mote connected to a personal computer as the

Tier-2 node. Only one such Tier-2 node was necessary to maintain connectivity to all 144

nodes used for the tracking experiment. In the experiment, simulated pursuers were used

since it was difficult to navigate a ground robot in the field of tripods.

147

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

Figure 6.15: Sensor network deployment (not all deployed sensor nodes are
shown). The disks and circles represent the positions of the sensor nodes. The
network of 144 nodes used in the multi-target tracking and PEG experiments is
highlighted.

6.5.1 Platform

A new sensor network hardware platform called the Trio mote was designed by cite-

dutta:2006 for the outdoor testbed. The Trio mote is a combination of the designs of

the Telos B mote, eXtreme Scaling Mote (XSM) sensor board [Dutta et al., 2005], and

Prometheus solar charging board [Jiang et al., 2005], with improvements. Figure 6.16

shows the Trio node components and Figure 6.14(a) shows the assembled Trio node in a

waterproof enclosure sitting on a tripod.

The Telos B mote [Polastre et al., 2005] is the latest in a line of wireless sensor network

platforms developed by U.C. Berkeley for the NEST project. It features an 8MHz Texas

Instruments MSP430 microcontroller with 10kB of RAM and 48kB of program flash and a

148

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

(a) (b)

Figure 6.16: (a) Telos B. (b) Trio sensor board, based off the XSM sensor board
and Prometheus solar power circuitry. See [Dutta et al., 2006] for details.

250kbps, 2.4GHz, IEEE 802.15.4 standard compliant, Chipcon CC2420 radio. The Telos

B mote provides lower power operation than previous motes (5.1 µA sleep, 19 mA on) and

a radio range of up to 125 meters, making it the ideal platform for large-scale, long-term

deployments.

The Trio sensor board includes a microphone, a piezoelectric buzzer, x-y axis mag-

netometers, and four passive infrared (PIR) motion sensors. For the multi-target tracking

application, we found that the PIR sensors were the most effective at sensing human sub-

jects moving through the sensor field. The magnetometer sensor had limited range even

detecting targets with rare earth magnets and the acoustic sensor required complex signal

processing to pick out the various acoustic signatures of a moving target from background

noise. The PIR sensors provided an effective range of approximately 8 meters, with sen-

sitivity varying depending on weather conditions and time of day. The variability in the

signal strength of the PIR sensor reading prohibited extraction of ranging information from

the sensor, so the PIR sensors were used as binary detectors.

The software running on the sensor nodes are written in NesC [Gay et al., 2003] and

run on TinyOS [TinyOS, 2006], an event-driven operating system developed for wire-

less embedded sensor platforms. The core sensor node application is the DetectionEvent

149

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

Figure 6.17: Software services on the sensor network platform.

module, a multi-mode event generator for target detection and testing node availability.

The sensor node application relies on a composition of various TinyOS subsystems and

services that facilitate management and interaction with the network (see Figure 6.17).

The core network management services are Deluge for network reprogramming [Hui and

Culler, 2004] and Marionette for fast reconfiguration of parameters on the nodes [White-

house et al., 2006]. The DetectionEvent application relies on the Drip and Drain rout-

ing layer for dissemination of commands and collection of data [Tolle, 2005]. For more

details on the software architecture used in the outdoor testbed, see [Dutta et al., 2006;

Whitehouse et al., 2006].

The DetectionEvent module provides four modes of event generation from the node –

events generated periodically by a timer; events generated by pressing a button on the mote;

events generated by the raw PIR sensor value crossing a threshold; and events generated

by a three-stage filtering, adaptive threshold, and windowing detection algorithm for the

PIR sensor signal developed by the University of Virginia [Gu et al., 2005]. The timer

150

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

generated events were parsed and displayed at the base station to help visualize which

nodes in the network were alive. The three-stage PIR detection filter code was used during

the development cycle. While it had potential to be more robust to different environmental

conditions, during the day of the demo we reverted to the simple threshold PIR detector

because the simple threshold detector was easy to tune and performed well.

The algorithms for the MSF, MTT, MTF, and MAC modules are all written in MAT-

LAB and C++ and run on the base station in real-time. The same implementation of the

tracking algorithm and the robust minimum time controller used in the simulations shown

in Figure 6.13 and Figure 6.7 are used in the experiments. The data was timestamped at the

base station.

6.5.2 Live Demonstration

The multi-target tracking algorithm was demonstrated on one, two, and three human tar-

gets, with targets entering the field at different times. In all three experiments, the tracking

algorithm correctly estimated the number of targets and produced correct tracks. Further-

more, the algorithm correctly disambiguated crossing targets in the two and three target

experiments without classification labels on the targets, using the dynamic models and tar-

get trajectories before crossing to compute the tracks.

Figure 6.18 shows the multi-target tracking results with three targets walking through

the field. The three targets entered and exited the field around time 10 and 80, respectively.

During the experiment, the algorithm correctly rejected false alarms and compensated for

missing detections. There were many false alarms during the span of the experiments, as

can be seen from the false alarms before time 10 and after time 80 in Figure 6.19. Also,

though not shown in the figures, the algorithm dynamically corrected previous track hy-

potheses as it received more sensor readings. Figure 6.19 also gives a sense of the irregu-

larity of network traffic. The spike in traffic shortly after time 50 was approximately when

151

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

Figure 6.18: Estimated tracks of targets at time 70 from the experiment with three
people walking in the field. (upper left) Detection panel. Sensors are marked by
small dots and detections are shown in large disks. (lower left) Fusion panel shows
the fused likelihood. (right) Estimated Tracks and Pursuer-to-evader Assignment
panel shows the tracks estimated by the MTT module, estimated evader positions
(stars) and pursuer positions (squares).

two of the targets crossed. It shows that the multi-target tracking algorithm is robust against

missing measurements, false measurements, and the irregularity of network traffic.

In the last demonstration, two simulated pursuers were dispatched to chase two crossing

human targets. The pursuer-to-target assignment and the robust minimum time-to-capture

control law were computed in real-time, in tandem with the real-time tracking of the targets.

The simulated pursuers captured the human targets, as shown in Figure 6.20. In particular,

note that the MTT module is able to correctly disambiguate the presence of two targets

(right panel of Figure 6.20(a)) using past measurements, despite the fact that the MSF

152

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

Figure 6.19: Raster plot of the binary detection reports from the three target track-
ing demo. Dots represent detections from nodes that were successfully transmitted
to the base station.

module reports the detection of a single target (upper left panel of Figure 6.20(a)). A live

picture of this experiment is shown on the right of Figure 6.14.

6.6 Summary

This chapter described LochNess, a hierarchical real-time control system for sensor net-

works. LochNess is applied to pursuit evasion games, in which a group of evaders are

tracked using a sensor network and a group of pursuers are coordinated to capture the

evaders. Although sensor networks provide global observability, they cannot provide high

quality measurements in a timely manner due to packet loss, communication delay, and

false detections. These factors have been the main challenge to developing a real-time

control system using sensor networks.

153

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

We have proposed a possible solution for closing the loop around wireless ad-hoc sensor

networks. The hierarchical real-time control system LochNess decouples the estimation of

evader states from the control of pursuers by using multiple layers of data fusion, including

the multi-sensor fusion (MSF) module, the multi-target tracking (MTT) module, and the

multi-track fusion (MTF) module. While a sensor network generates noisy, inconsistent,

and bursty measurements, the three layers of data fusion convert raw sensor measurements

into fused measurements in a compact and consistent representation and forward the fused

measurements to the pursuers’ controllers in a timely manner.

In order to coordinate multiple pursuers, the multi-agent coordination (MAC) module

is developed. The assignments of pursuers to evaders are chosen such that the time to

capture all evaders is minimized. The controllers for the pursuers are based on minimum-

time control but were designed to account for the worst-case evader motions and to add

robustness to the quantization of inputs, measurement and process noises, and modeling

errors.

Simulation and experimental results have shown that LochNess is well suited for solv-

ing real-time control problems using sensor networks and that a sensor network is an at-

tractive solution for the surveillance of a large area.

In this work, we assumed a stationary hierarchy, i.e., the Tier-2 nodes and base station

are fixed. However, a stationary hierarchy is not robust against malicious attacks. In our

future work, we will address this issue by introducing redundancy, distributing the coordi-

nation tasks among Tier-2 nodes, and dynamically managing the hierarchy of the system.

Our immediate goal is to quantify the robustness of the system against false measurements

and packet loss and to identify the sensor network parameters such as maximum delay

rate, maximum packet loss rate, and maximum false detection rate, necessary for seamless

operation of the control system.

154

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

Acknowledgement

The experiments were made possible by contributions from David Culler, Prabal Dutta,

Eric Fraser, Mike Howard, Jonathan Hui, Jaein Jeong, August Joki, Sukun Kim, Philip

Levis, Michael Manzo, Joseph Polastre, Travis Pynn, Peter Ray, Tanya Roosta, Shawn

Schaffert, Cory Sharp, Bruno Sinopoli, Jay Taneja, Gilman Tolle, David Shim, Robert

Szewczyk, Kamin Whitehouse, and Bonnie Zhu.

155

CHAPTER 6. LOCHNESS: A REAL-TIME CONTROL SYSTEM FOR SENSOR NETWORKS

(a)

(b)

Figure 6.20: Estimated tracks of evaders and pursuer positions from the pursuit
evasion game experiment. (a) Before crossing. (b) After crossing.

156

CHAPTER 7

DISTRIBUTED NETWORKED CONTROL

SYSTEMS

With the recent developments in communication, computing, and control systems, a net-

worked control system (NCS) has received a fair amount of attention recently. In a general

sense, an NCS consists of spatially distributed multiple systems or agents equipped with

sensors, actuators, and computing and communication devices. The operation of each agent

is coordinated over a communication network. The examples of an NCS includes sensor

networks [Culler et al., 2004; Oh et al., 2007], networked autonomous mobile agents [Gro-

cholsky et al., 2004], e.g., a team of UAVs, and arrays of micro or micro-electromechanical

sensors (MEMS) devices.

Recently, different aspects of NCSs have been studied extensively. Sinopoli et al. [Si-

nopoli et al., 2004] showed the phase transition behavior of the Kalman filter when the

measurement packet loss is modeled by a Bernoulli random process and established the

relationship between the speed of dynamics and the packet loss rate for the stable estima-

tion of the system. Similar estimation problems are discussed in [Liu and Goldsmith, 2004;

Xu and Hespanha, 2005; Shi et al., 2005]. The control problems over an unreliable commu-

157

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

nication channel have been studied by many authors, including [Nilsson and Bernhardsson,

1997; Imer et al., 2004; Sinopoli et al., 2005]. The stability of NCSs has been also studied

in [Zhang et al., 2001; Liberzon, 2003].

There is a growing interest in consensus and coordination of networked systems in-

spired by the model by Vicsek et al. [Vicsek et al., 1995], in which a large number of

particles (or autonomous agents) move at a constant speed but with different headings. At

each discrete time, each particle updates its heading based on the average heading of its

neighboring particles. The analysis of the Vicsek model in different forms are reported in

[Jadbabaie et al., 2003; Blondel et al., 2005; Olfati-Saber and Murray, 2004]. This chapter

extends NCSs to model a distributed multi-agent system such as the Vicsek model.

In general, a single plant is assumed in an NCS and the links between the plant and

the estimator or controller is closed by a common (unreliable) communication channel.

This chapter extends this notion of NCSs by introducing a distributed networked control

system (DNCS) consisting of multiple agents communicating over a lossy communication

channel. The best examples of such system include ad-hoc wireless sensor networks and

a network of mobile agents. We first consider the estimation problem appears in DNCSs

and develop optimal linear filtering algorithms based on the Kalman filter. However, the

time complexity of the exact method can be exponential in the number of possible com-

munication link configurations. We address this issue by developing two approximate fil-

tering algorithms for estimating states of a DNCS. The approximate filtering algorithms

bound the state estimation error of the exact filtering algorithm and the time complexity

of approximate methods is not dependent on the number of possible communication link

configurations.

The stability of estimators under a lossy communication channel is studied in [Sinopoli

et al., 2004; Liu and Goldsmith, 2004]. However, the extension of the result to the general

case with an arbitrary number of lossy communication links is unknown. Although we do

not provide a definite answer for the general case, we derive a condition under which the

158

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

state error covariance can be unbounded for the general case.

This chapter also considers the problem of finding a communication control which sta-

bilizes a DNCS. This problem is called the stabilizing communication control problem and

its goal is to find the acceptable ranges of packet loss rates at which the overall system is

stable. We use the stability results for jump linear systems by Costa and Fragoso [Costa and

Fragoso, 1993] to derive a sufficient condition for the stability of a DNCS. We then develop

an efficient algorithm for checking the existence of stabilizing communication control us-

ing linear programming and discuss a method for solving the stabilizing communication

control problem using geometric programming, a convex optimization method [Boyd and

Vandenberghe, 2004; Boyd et al., 2005].

7.1 Distributed Networked Control Systems with Lossy

Links

Let us first consider a distributed control system consisting of N agents, in which there

is no communication loss. The discrete-time linear dynamic model of the agent j can be

described as following:

xj(k + 1) =
N∑

i=1

Aijxi(k) +Gjwj(k) (7.1)

where k ∈ Z+, xj(k) ∈ Rnx is the state of the agent j at time k, wj(k) ∈ Rnw is a white

noise process, Aij ∈ Rnx×nx , and Gj ∈ Rnx×nw . Hence, the state of the agent j is governed

by the previous states of all N agents. We can also consider Aijxi(k) as a control input

from the agent i to the agent j for i 6= j.

Now consider a distributed networked control system (DNCS), in which agents com-

municate with each other over a lossy communication channel, e.g., wireless channel. We

159

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

assume an erasure channel between a pair of agents. At each time k, a packet sent by the

agent i is correctly received by the agent j with probability pij . We form a communica-

tion matrix Pcom = [pij]. Let Zij(k) ∈ {0, 1} be a Bernoulli random variable, such that

Zij(k) = 1 if a packet sent by the agent i is correctly received by the agent j at time k,

otherwise, Zij(k) = 0. Since there is no communication loss within an agent, pii = 1 and

Zii(k) = 1 for all i and k. For each (i, j) pair, {Zij(k)} are i.i.d. (independent identically

distributed) random variables such that P (Zij(k) = 1) = pij for all k; and Zij(k) are in-

dependent from Zlm(k) for l 6= i or m 6= j. Then we can write the dynamic model of the

agent j under lossy links as following:

xj(k + 1) =
N∑

i=1

Zij(k)Aijxi(k) +Gjwj(k). (7.2)

Let x(k) = [x1(k)
T , . . . , xN(k)T]T and w(k) = [w1(k)

T , . . . , wN(k)T]T , where yT is

a transpose of y. Let Āij be a Nnx × Nnx block matrix. The entries of Āij are all zeroes

except the (i, j)-th block is Aij . For example, when N = 2

Ā12 =

 0nx A12

0nx 0nx

 , (7.3)

where 0nx is a nx × nx zero matrix. Then the discrete-time linear dynamic model of the

DNCS with lossy links can be represented as following:

x(k + 1) =

(
N∑

i=1

N∑
j=1

Zij(k)Āij

)
x(k) +Gw(k), (7.4)

where G is a block diagonal matrix of G1, . . . , GN .

For notational convenience, we introduce a new index n ∈ {1, . . . , N2} such that ij is

indexed by n = N(i − 1) + j. With this new index n, the dynamic model (7.4) can be

160

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

rewritten as

x(k + 1) =

(
N2∑
n=1

Zn(k)Ān

)
x(k) +Gw(k). (7.5)

By letting A(k) =
(∑N2

n=1 Zn(k)Ān

)
, we see that (7.5) is a time-varying linear dy-

namic model:

x(k + 1) = A(k)x(k) +Gw(k). (7.6)

Until now we have assumed that Ān is fixed for each n. We relax this assumption by

letting A(k) = A(Z(k)), where Z(k) = [Z1(k), . . . , ZN2(k)]T . This relaxed dynamical

system is

x(k + 1) = A(Z(k))x(k) +Gw(k). (7.7)

The dynamic model (7.7) or (7.5) is a special case of the linear hybrid model or a jump

linear system [Costa and Fragoso, 1993] since A(k) takes an element from a set of a finite

number of matrices. We will call the dynamic model (7.5) as the “simple” DNCS dynamic

model and (7.7) as the “general” DNCS dynamic model.

7.2 Exact Kalman Filtering for DNCSs

In this section, we describe recursive filtering algorithms for the dynamic models (7.5) and

(7.7) using the Kalman filter (KF). Since Z(k) is independent from Z(t) for t 6= k, we

derive optimal linear filters for both cases. Notice that we denote Z(k) by Z when there is

no confusion.

161

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

7.2.1 KF for Simple DNCS

Consider the simple DNCS dynamic model (7.5), where w(k) is a Gaussian noise with zero

mean and covariance Q, and the following measurement model:

y(k) = Cx(k) + v(k), (7.8)

where y(k) ∈ Rny is a measurement at time k, C ∈ Rny×Nnx , and v(k) is a Gaussian

noise with zero mean and covariance R. Hence, we are assuming that the measurements

are collected by a remote sensor or by a sensor in one of the agents. Notice that Z(k) is not

observed.

The following terms are defined to describe the modified Kalman filter.

x̂(k|k) := E [x(k)|yk] (7.9)

P (k|k) := E
[
e(k)e(k)T |yk

]
(7.10)

x̂(k + 1|k) := E [x(k + 1)|yk] (7.11)

P (k + 1|k) := E
[
e(k + 1|k)e(k + 1|k)T |yk

]
, (7.12)

where yk = {y(t) : 0 ≤ t ≤ k}, e(k|k) = x(k) − x̂(k|k), and e(k + 1|k) = x(k + 1) −

x̂(k + 1|k).

Suppose that we have estimates x̂(k|k) and P (k|k) from time k. At time k + 1, a

new measurement y(k + 1) is received and our goal is to estimate x̂(k + 1|k + 1) and

P (k + 1|k + 1) from x̂(k|k), P (k|k), and y(k + 1). First, we compute x̂(k + 1|k) and

162

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

P (k + 1|k).

x̂(k + 1|k) = E [x(k + 1)|yk]

= E

[(
N2∑
n=1

Zn(k)Ān

)
x(k) + w(k)|yk

]

=

(
N2∑
n=1

pnĀn

)
x̂(k|k)

= Âx̂(k|k), (7.13)

where pn = P (Zn(k) = 1) and Â =
∑N2

n=1 pnĀn. Let A(k) =
∑N2

n=1 Zn(k)Ān. Then

P (k + 1|k) = E
[
e(k + 1|k)e(k + 1|k)T |yk

]
= E[A(k)x(k)(A(k)x(k))T |yk]

− Âx̂(k|k)(Âx̂(k|k))T +GQGT (7.14)

Since E[Zn(k)Zn(k)] = pn and E[Zn(k)Zm(k)] = pnpm for m 6= n,

E[A(k)x(k)(A(k)x(k))T |yk] = E[
N2∑
n=1

N2∑
m=1

Zn(k)Zm(k)Ānx(k)x(k)
T ĀT

m|yk]

=
N2∑
n=1

N2∑
m=1

E[Zn(k)Zm(k)]ĀnE[x(k)x(k)T |yk]Ā
T
m

=
N2∑
n=1

pnĀnE[x(k)x(k)T |yk]Ā
T
n

+
N2∑
n=1

N2∑
m=1,m 6=n

pnpmĀnE[x(k)x(k)T |yk]Ā
T
m. (7.15)

163

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

On the other hand,

Âx̂(k|k)(Âx̂(k|k))T =
N2∑
n=1

N2∑
m=1

pnpmĀnx̂(k|k)x̂(k|k)T ĀT
m. (7.16)

Combining previous two results into the equation for P (k + 1|k), we get

P (k + 1|k) = GQGT +
N2∑
n=1

pnĀnE[x(k)x(k)T |yk]Ā
T
n

+
N2∑
n=1

N2∑
m=1,m 6=n

pnpmĀnE[x(k)x(k)T |yk]Ā
T
m

−
N2∑
n=1

N2∑
m=1

pnpmĀnx̂(k|k)x̂(k|k)T ĀT
m

= GQGT +
N2∑
n=1

pnĀnE[x(k)x(k)T |yk]Ā
T
n

−
N2∑
n=1

p2
nĀnE[x(k)x(k)T |yk]Ā

T
n +

N2∑
n=1

N2∑
m=1

pnpmĀnP (k|k)ĀT
m

= GQGT +
N2∑
n=1

pn(1− pn)ĀnE[x(k)x(k)T |yk]Ā
T
n

+
N2∑
n=1

N2∑
m=1

pnpmĀnP (k|k)ĀT
m. (7.17)

We can also write it as

P (k + 1|k) = GQGT + ÂP (k|k)ÂT

+
N2∑
n=1

pn(1− pn)Ān(P (k|k) + x̂(k|k)x̂(k|k)T)ĀT
n . (7.18)

Given x̂(k+ 1|k) and P (k+ 1|k), x̂(k+ 1|k+ 1) and P (k+ 1|k+ 1) are computed as

164

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

in the regular Kalman filter.

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)(y(k + 1)− Cx̂(k + 1|k)) (7.19)

P (k + 1|k + 1) = P (k + 1|k)−K(k + 1)CP (k + 1|k), (7.20)

where K(k + 1) = P (k + 1|k)CT (CP (k + 1|k)CT +R)−1.

7.2.2 KF for General DNCS

Now let us consider the general DNCS dynamic model (7.7) with the measurement model

described in (7.8). We have

x̂(k + 1|k) = E [x(k + 1)|yk]

= E [A(Z)x(k) +Gw(k)|yk]

= Âx̂(k|k), (7.21)

where

Â =
∑
z∈Z

pzA(z) (7.22)

is the expected value ofA(Z). Here, pz = P (Z = z), andZ is a set of all possible outcome

vectors for Z, i.e., Z is a set of all possible communication link configurations.

165

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

The prediction covariance can be computed as following.

P (k + 1|k) = E[e(k + 1|k)e(k + 1|k)T |yk]

= E[A(Z)x(k)x(k)TA(Z)T |yk]− Âx̂(k|k)x̂(k|k)T ÂT +GQGT

=
∑
z∈Z

pzA(z)E[x(k)x(k)T |yk]A(z)T − Âx̂(k|k)x̂(k|k)T ÂT +GQGT

= GQGT +
∑
z∈Z

pzA(z)P (k|k)A(z)T

+
∑
z∈Z

pzA(z)x̂(k|k)x̂(k|k)T (A(z)− Â)T . (7.23)

Lastly, x̂(k+ 1|k+ 1) and P (k+ 1|k+ 1) are computed as shown in (7.19) and (7.20).

7.3 Approximate Kalman Filtering for DNCSs

The exact KF proposed in Section 7.2.2 for the general DNCS is an optimal linear filter but

the time complexity of the algorithm can be exponential in N since the size of Z is O(2N2
)

in the worst case, i.e., when all agents can communicate with each other. In this section, we

describe two approximate Kalman filtering methods for the general DNCS dynamic model

(7.7) which is computationally efficient than the exact KF by avoiding the enumeration over

Z . Since the computation of P (k + 1|k) is the only time-consuming process, we propose

two filtering method which can bound P (k + 1|k). We use the notation A � 0 if A is a

positive definite matrix and A � 0 if A is a positive semidefinite matrix.

7.3.1 Lower-bound KF for General DNCS

The lower-bound KF (lb-KF) is the same as the exact KF described in Section 7.2.2, except

we approximate P (k + 1|k) by P (k + 1|k) and P (k|k) by P (k|k). The covariances are

166

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

updated as following:

P (k + 1|k) = ÂP (k|k)ÂT +GQGT (7.24)

P (k + 1|k + 1) = P (k + 1|k)−K(k + 1)CP (k + 1|k), (7.25)

where Â is the expected value of A(Z) and K(k+1) = P (k+1|k)CT (CP (k+1|k)CT +

R)−1. Notice that Â can be computed in advance and the lb-KF avoids the enumeration

over Z . The following theorem shows that the lb-KF maintains the state error covariance

which is upper-bounded by the state error covariance of the exact KF.

Theorem 9. If the lb-KF starts with an initial covariance P (0|0), such that P (0|0) �

P (0|0), then P (k|k) � P (k|k) for all k ≥ 0.

Proof: See Appendix C.1.

7.3.2 Upper-bound KF for General DNCS

Similar to the lb-KF, the upper-bound KF (ub-KF) approximates P (k+1|k) by P̄ (k+1|k)

and P (k|k) by P̄ (k|k). Let λmax = λmax(P̄ (k|k)) + λmax(x̂(k|k)x̂(k|k)T), where λmax(S)

denotes the maximum eigenvalue of S. The covariances are updated as following:

P̄ (k + 1|k) = λmaxE[A(Z)A(Z)T]− Âx̄(k|k)x̄(k|k)T ÂT +GQGT (7.26)

P̄ (k + 1|k + 1) = P̄ (k + 1|k)− K̄(k + 1)CP̄ (k + 1|k), (7.27)

where Â is the expected value of A(Z) and K̄(k+1) = P̄ (k+1|k)CT (CP̄ (k+1|k)CT +

R)−1. In the ub-KF, E[A(Z)A(Z)T] can be computed in advance but we need to compute

λmax at each step of the algorithm. But if the size of Z is large, it is more efficient than the

exact KF. (Notice that the computation of λmax requires a polynomial number of operations

in N while the size of Z can be exponential in N .) The following theorem shows that

167

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

the ub-KF maintains the state error covariance which is lower-bounded by the state error

covariance of the exact KF.

Theorem 10. If the ub-KF starts with an initial covarnace P̄ (0|0), such that P̄ (0|0) �

P (0|0), then P̄ (k|k) � P (k|k) for all k ≥ 0.

Proof: See Appendix C.2.

7.4 Convergence

Using the approximate Kalman filtering method, we can derive convergence conditions

for the state error covariance of the exact KF. Such condition is studied in [Sinopoli et al.,

2004], in which there is a lossy communication channel between the plant and the estimator,

and the result is extend to the case with two communication links in [Liu and Goldsmith,

2004]. However, the extension of the result to the general case withN communication links

is unknown. Although we do not provide a definite answer for the general case, it provides

a condition under which the state error covariance can be unbounded for the general case

with N communication links.

Theorem 11. If (E[A(Z)]T ,E[A(Z)]TCT) is not stabilizable, or equivalently,

(E[A(Z)], CE[A(Z)]) is not detectable, then there exists an initial covariance P (0|0) such

that P (k|k) diverges as k →∞.

Proof: See Appendix C.3.

7.5 Simulation Results

In simulation, we study the performance of the modified Kalman filtering algorithm shown

in Section 7.2.2 against the standard Kalman filter which assumes no communication errors.

Then we provide motivating examples showing the effectiveness of the lb-KF and ub-KF.

168

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

Figure 7.1: The mission of the multi-agent system is to visit sites of interests
(shown in squares) sequentially from site 1 to site 6 (starting from site 6). The
trajectory of the leader agent is shown in solid line. The control inputs to the leader
are computed using the robust minimum-time control described in Section 6.3.3.

Our simulation is based on a scenario inspired by the model by Vicsek et al. [Vicsek et

al., 1995]. Consider a general DNCS system (7.7) consisting of N = 5 agents. The state

vector of each agent is x = [x, y, ẋ, ẏ]T , where (x, y) and (ẋ, ẏ) are the position and the

velocity components of the vehicle along the x and y axes, respectively.

The agent 1 is a leader and its dynamics is modeled as

x1(k + 1) = A11x1(k) +B1u1(k) +G1w1(k), (7.28)

where u1(k) ∈ Rnu is a control input to the leader agent and B1 ∈ Rnx×nu .

The dynamics of an agent i > 0 is

xi(k + 1) =
i+1∑

j=i−1

Aκ(j)i(Z)xκ(j)(k) +Giwi(k), (7.29)

169

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

where κ(j) = (j − 1 mod N) + 1. For κ(j) = i,

Aii(Z) =

1 0 δ 0

0 1 0 δ

0 0 1
S(i)

0

0 0 0 1
S(i)

 Gi =

δ
2

0

0 δ
2

δ 0

0 δ

 ,

where δ is the sampling interval. For κ(j) 6= i,

Aκ(j)i(Z) =

0 0 0 0

0 0 0 0

0 0 Zκ(j)i/S(i) 0

0 0 0 Zκ(j)i/S(i)

with S(i) =

∑i+1
j=i−1 Zκ(j)i. Hence, when the agent i communicates with its neighboring

agents κ(i − 1) and κ(i + 1), its new velocity is the average of its velocity and velocities

received from its neighboring agents. In addition, δ = 1 and Qi = diag(0.012, 0.012)

The mission of this multi-agent system is to visit sites of interests in minimum time

with a bounded control input. The mission scenario is shown in Figure 7.1 along with

the trajectory of the leader agent. The control inputs to the leader are computed using the

robust minimum-time control described in Section 6.3.3. The trajectories of all agents at

different times are shown in Figure 7.3.

We first study the performance gap between the modified KF against the standard KF

170

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

which does not assume communication losses. Let the communication matrix be

Pcom =

1 0 0 0 0

λ 1 λ 0 0

0 λ 1 λ 0

0 0 λ 1 λ

λ 0 0 λ 1

. (7.30)

The measurement model (7.8) is used where C is a 10× 20 matrix such that y(k) consists

of noisy position measurements of all agents and R = diag(0.12, . . . , 0.12). We varied λ

from 0.1 to 1.0 with a 0.1 increment. For each value of λ, 100 test cases are generated. For

each test case, we ran the modified KF and the standard KF and computed the mean square

error (MSE) of state estimates. The result is shown in Figure 7.2. The figure shows a clear

benefit of the modified KF when the communication loss uncertainty is higher. In addition,

the modified KF shows an excellent performance for all values of λ.

We now consider two cases: Case A and Case B. Case A is the model described above

with λ = 0.7. Case B is the same as Case A except C is a 6 × 20 matrix such that y(k)

consists of noisy position measurements of agent 1, 3, and 4. The positions of agents 2

and 5 are not observed in Case B. The results are shown in Table 7.1. The modified KF

performs well compared to the standard KF but it requires more computation time. The

approximate KFs perform better than the standard KF without much overhead in run-time.

Since a less number of states are observed in Case B, the state uncertainty is higher in

Case B and the ub-KF performs better than the lb-KF for Case B.

7.6 Stabilizing Communication Control

In this section, we consider the problem of finding a communication control which stabi-

lizes the general DNCS (7.7) for given {A(z) : z ∈ Z}, i.e., finding a communication

171

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

Figure 7.2: The average MSE as a function of λ in (7.30). For each value of λ, 100
test cases are used to compute the average MSE. As the value of λ decreases,
the performance gap between the modified KF and the standard KF increases.

matrix Pcom such that the general DNCS (7.7) is stable. For example, in wireless communi-

cation, one can control the transmission power to increase or decrease entries of Pcom. We

use the stability results for jump linear systems by Costa and Fragoso [Costa and Fragoso,

1993]. We use the notation A � 0 if A is a positive definite matrix and A � 0 if A is a

positive semidefinite matrix. The spectral radius of A is denoted by ρ(A).

Definition 3. The DNCS model (7.7) is mean square stable (MSS) if, for any initial condi-

tion x0 and second-order independent wide sense stationary random process {w(k)}, there

exist x∗ and P ∗ independent of x0 such that:

(a) ‖ E[x(k)]− x∗ ‖ → 0 as k →∞

(b) ‖ E[x(k)x(k)T]− P ∗ ‖ → 0 as k →∞.

Theorem 12 (Corollary 1 of [Costa and Fragoso, 1993]). The DNCS model (7.7) is MSS if

172

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

(a) k = 100 (b) k = 140

(c) k = 220 (d) k = 270

Figure 7.3: Trajectories of all agents at different times (leader in a solid line, fol-
lowers in dashed lines).

and only if there exists G � 0 such that

G−
∑
z=Z

pzA(z)TGA(z) � 0. (7.31)

173

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

Table 7.1: Comparison of different Kalman filters: standard KF, modified KF (Mod-
KF), lower-bound KF, and upper-bound KF

KF mod-KF lb-KF ub-KF
Case A MSE 0.303 0.283 0.292 0.352

Run-time 0.56s 11.69s 0.64s 0.81s
Case B MSE 0.696 0.542 0.748 0.512

Run-time 0.52s 11.69s 0.60s 0.87s

Theorem 13. The DNCS model (7.7) is MSS if

∑
z∈Z

pzρ(A(z)TA(z)) < 1. (7.32)

Proof: Fix α > 0 and let G = αIn where n = Nnx and In is a n× n identity matrix.

Clearly, G � 0.

G−
∑
z=Z

pzA(z)TGA(z) = αIn − α
∑
z=Z

pzA(z)TA(z)

� α

(
1−

∑
z=Z

pzρ(A(z)TA(z))

)
In

� 0,

since
∑

z=Z pzρ(A(z)TA(z)) < 1. Hence, by Theorem 12, (7.7) is MSS.

Using Theorem 13, one can easily check if there exists a stabilizing communication

control. Let ρ(z) = ρ(A(z)TA(z)) and consider the following linear programming (LP)

problem.

minimize c =
∑

z∈Z pzρ(z)

subject to
∑

z∈Z pz = 1

0 ≤ pz ≤ 1, z ∈ Z.

(7.33)

Notice that we can add restrictions on pz to reflect physical constraints in the DNCS. If

there exists a feasible solution with c < 1, we know for sure that there exists a stabilizing

174

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

communication control based on Theorem 13. However, it is important to note that Theo-

rem 13 is only a sufficient condition. Hence, when the LP (7.33) does not have a feasible

solution with c < 1, we can not say there is no communication control which stabilizes the

DNCS model (7.7).

Example 2. Consider a 2-agent DNCS system where

A11 =

 −.138 .414

.598 .219

 A12 =

 −.075 −.006

−.505 −.34

A21 =

 −.35 −.245

−.495 .049

 A22 =

 .185 −.137

−.298 −.653

 .
Note that Z1 = Z11 = 1, Z2 = Z12, Z3 = Z21, and Z4 = Z22 = 1. Let z1 = [1, 0, 0, 1]T ,

z2 = [1, 0, 1, 1]T , z3 = [1, 1, 0, 1]T , and z4 = [1, 1, 1, 1]T . Then Z = {z1, z2, z3, z4} and

ρ(z1) = 0.517, ρ(z2) = 1.038, ρ(z3) = 1.044, and ρ(z4) = 0.925. We also have constraints

on pz: 0 ≤ pz1 ≤ 0.6, 0.1 ≤ pz2 ≤ 0.5, 0.1 ≤ pz3 ≤ 0.5, and 0.1 ≤ pz4 ≤ 0.3. Since

not all ρ are less than 1, it is not clear that the DNCS system is MSS with the constraints

on pz. By solving the LP (7.33) for this problem, one finds that there is a feasible solution:

p∗ = [pz1 , pz2 , pz3 , pz4]
T = [0.6, 0.1, 0.1, 0.2]T with c = 0.704. Hence, the DNCS system is

MSS with p∗.

Now consider the same example as before except 1.5A22 is used instead of A22. Then

ρ(z1) = 1.164, ρ(z2) = 1.56, ρ(z3) = 1.558, and ρ(z4) = 1.531 and there is no feasible

solution to the LP (7.33) with c < 1 and the system is not MSS. The state evolutions of

these two systems are shown in Figure 7.4.

The LP (7.33) is an efficient way to check the existence of a stable communication

control. But it does not provide the solution in the form we want. We want to find the

communication matrix Pcom, not {pz}. For the notational convenience, we again use the

index n ∈ {1, . . . ,M = N2} described in Section 7.1, where ij is indexed by n = N(i −

175

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

(a) (b)

Figure 7.4: (a) The state evolution of the MSS system given in Example 2. (b) The
state evolution of the non-MSS system given in Example 2.

1) + j. Then

pz =
∏
i,j

p
zN(i−1)+j

ij (1− pij)
1−zN(i−1)+j =

M∏
n

pzn
n (1− pn)1−zn . (7.34)

The problem we want to solve is:

find {pn}

subject to
∑

z∈Z ρ(z)
∏M

n pzn
n (1− pn)1−zn < 1

0 ≤ pn ≤ 1, ∀n ∈ {1, . . . ,M}.

(7.35)

The problem (7.35) is a special case of signomial programming which is non-convex

and only a locally optimal solution can be computed efficiently [Boyd et al., 2005]. In-

stead of solving the problem (7.35) directly, we relax the problem and use geometric pro-

gramming (GP), which is a convex optimization problem [Boyd and Vandenberghe, 2004;

Boyd et al., 2005].

176

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

The relaxed GP is

max 1
ε

∏2M
m=1 qn

subject to
∑

z∈Z ρ(z)
∏M

n qzn

2(n−1)+1q
1−zn
2n + ε ≤ 1

q2(n−1)+1 + q2n ≤ 1, ∀n ∈ {1, . . . ,M}

0 ≤ qm ≤ 1, ∀m ∈ {1, . . . , 2M}

(7.36)

As in the LP (7.33), we can add restrictions on qn to reflect physical constraints in the

DNCS. Using the GP (7.36), we can find ranges of Pcom by running (7.36) multiple times

with different upper bounds on qm.

Example 3. Consider the DNCS system described in Example 2 but replaceA22 by 1.35A22.

When the upper bounds p12 ≤ 0.4 and p21 ≤ 0.4 are used, the GP finds q = [0.4, 0.6, 0.4, 0.6]T

and
∑

z∈Z pzρ(z) = 0.987. Since q1 + q2 = q3 + q4 = 1, this is a feasible communication

control. However, when the upper bounds p12 ≤ 1 and p21 ≤ 1 are used, the GP finds

q = [0.426, 0.571, 0.436, 0.562]T . But q1 + q2 6= 1 and q3 + q4 6= 1, hence, this is not a

feasible communication control.

7.7 Summary

In this chapter, we have described a distributed networked control system (DNCS) consist-

ing of multiple agents communicating over a lossy communication channel, e.g. wireless

channel. A DNCS is an extension of an NCS to model a distributed multi-agent system

such as the Vicsek model. Optimal linear filtering algorithms based on the Kalman filter

are developed to estimate the states of DNCSs. Due to the interaction among agents in

the DNCS dynamic model, the dynamics of each agent can show high nonlinearity. But

the filtering algorithm was able to estimate the states correctly using the knowledge of the

communication matrix.

177

CHAPTER 7. DISTRIBUTED NETWORKED CONTROL SYSTEMS

Then, we described efficient approximate filtering algorithms for estimating states of

a distributed networked control system (DNCS). While the time complexity of the exact

estimation method can be exponential in the number of possible communication link con-

figurations, the time complexity of an approximate method is not dependent on the number

of possible configurations. Using the approximate filtering method, we have also derived a

condition under which the stable state estimation is not possible for the general case with

an arbitrary number of lossy communication links. We still need a better approximation

method for the ub-KF. A better approximation method may enable us to find conditions

under which the stable state estimation is guaranteed for the general case.

In the last part of this chapter, the stabilizing communication control problem of a

DNCS is described, where one finds the acceptable ranges of packet loss rates at which

the overall system is stable. We developed algorithms based on convex optimization to

check the existence of stabilizing communication control and for solving the stabilizing

communication control problem.

We have assumed that the communication matrix is independent from other parameters.

In our future work, we will relax this assumption by making the matrix a function of the

states of the agents. This is a valid model for wireless communication, since the transmis-

sion power decreases with an increasing distance between a transmitter and a receiver. We

are currently extending the stabilizing communication control problem using the necessary

condition for stability.

178

CHAPTER 8

CONCLUSIONS

Distributed networked sensing and control systems such as sensor networks, networked

control systems, distributed control systems, multi-agent systems, and heterogeneous sen-

sor networks, is based on a collection of resource-constrained agents or nodes. The limited

supply of power and other constraints, such as manufacturing costs and limited package

sizes, limit the capabilities of each agent. These constraints create measurement inconsis-

tency, such as noise and false alarms, and communication unreliability, such as transmission

failures and delays. Hence, they are the major challenges in realizing a real-time situation

understanding and control system based on a distributed networked sensing and control

system.

In this thesis, two mathematical frameworks are utilized to address the challenges with

distributed networked sensing and control systems: multi-target tracking and pursuit eva-

sion games. Multi-target tracking is a general framework which can be used to describe

many estimation and inference problems appearing in distributed networked sensing and

control systems. The pursuit evasion game can be viewed as the worst-case control problem

since the pursuers must find the best controls to pursue evaders while the equally capable

evaders try to avoid the pursuers with their best efforts. Hence, if one can solve the pursuit

179

CHAPTER 8. CONCLUSIONS

evasion games, she can also solve the other control problems.

Based on a general Bayesian framework for multi-target tracking problems, we have

developed an efficient approximation method, called Markov chain Monte Carlo data asso-

ciation (MCMCDA), to efficiently solve the data association problems appearing in multi-

target tracking problems. MCMCDA is applied to manage identity of moving objects using

the identity-mass-flow framework and used in the development of a real-time hierarchical

control system, LochNess. LochNess decouples the estimation of evader states from the

control of pursuers via multiple layers of data fusion. We have shown a successful demon-

stration of LochNess using a large-scale outdoor sensor network. We believe the design

methodology used in LochNess can be extended to more sophisticated data acquisition and

control systems.

We have also presented a general framework for modeling a distributed networked con-

trol system consisting of multiple agents communicating over a lossy communication chan-

nel. We have described exact and approximate filtering methods to estimate states of a

distributed networked control system. We have also described the problem of finding a

communication control which stabilizes a distributed networked control system.

Future Work

The sensor network technology is no longer in the domain of researchers. There is a grow-

ing number of companies developing the sensor network technology and providing ser-

vices. The IEEE 802.15.4 standard for low-power digital radios and the protocol standard-

ization by the ZigBee Alliance have been the driving force toward the commercialization

of sensor networks. We will soon see a number of products based on the sensor network

technology in our daily lives.

However, the conventional sensor network research has focused largely on the low-

bandwidth sensors, such as temperature, acoustic, infrared, etc. As a result, we have

180

CHAPTER 8. CONCLUSIONS

limited applications of sensor networks. This limitation can be addressed by integrating

high-bandwidth sensors such as image sensors. The high-bandwidth sensors can provide

in-depth situation awareness and recognition. But the bandwidth limitation in sensor net-

works complicates this integration. The use of high-bandwidth sensors requires efficient

in-network processing techniques to reduce communication load. The methods developed

in this thesis are currently applied to develop algorithms for heterogeneous sensor networks

with low-bandwidth and high-bandwidth sensors. In particular, the identity management

technique developed in Chapter 5 is shown to be an efficient mechanism to integrate high-

bandwidth and low-bandwidth sensors due to its compact representation of identities. We

are also extending the Bayesian framework to a number of estimation problems in hetero-

geneous sensor networks.

The security is a major issue which must be addressed before the sensor network tech-

nology can be applied to a wide range of applications. It is the author’s view that the

security must be considered at every level of a system. It is essential to improve security

in hardware and software of sensor networks. But it is also required to develop secure

applications. In a large-scale distributed system, there is a close relationship between the

security of the system and the robustness of the system. If a system is robust, it will be able

to tolerate regional security bleaches. Hence, in a sense, the robust algorithms developed

in this thesis is already secure to some level of security bleaches. We will investigate the

relationship between the level of security and the robustness of a distributed system and

develop algorithms to improve security of the overall sensor network system.

In the most part of this thesis, we have assumed that sensor nodes are stationary. The

mobility of sensor networks can make the system more robust and accurate in decision

making. Mobile sensors can be used as active sensors in a highly cluttered environment,

e.g., detecting a suspicious activity in a crowd. In some situations, stationary sensors can

not collect enough information to make a reliable decision or inference due to occlusion.

The mobile sensors will be used in these cases to collect additional information required

181

CHAPTER 8. CONCLUSIONS

to make a reliable decision or inference. They can be also used to expand the coverage of

a sensor network by active sensing and improve connectivity of a sensor network by shar-

ing communication load of bottleneck nodes. However, the task of controlling a swarm

of mobile sensors is difficult and challenging. Chapter 7 described a simple framework

for distributed networked control systems and discussed the connection between commu-

nication and stability of the system. We will extend this result by finding the connection

between communication and the robustness of in-network estimation. We will also extend

our results in Chapter 6 and develop a distributed networked system of mobile and sta-

tionary sensors with real-time estimation and control capabilities, hence, closing the loop

around the heterogeneous sensor networks.

182

Appendix A

PROOFS OF THEOREMS IN CHAPTER 2

A.1 Proof of Theorem 1

We first need the following lemma to prove Theorem 1 and Theorem 2.

Lemma 1. Let Y1, . . . , Yt be independent random variables such that P (Yt = 1) = pt and

P (Yt = 0) = 1−pt, for arbitrary 0 < pt < 1. Let Zt be a Bernoulli process with parameter

p and, for all t, p ≤ pt. Let St
Y =

∑t
k=1 Yk and St

Z =
∑t

k=1 Zk. Then, for all t ∈ N and

d ≤ t,

P (St
Y < d) ≤ P (St

Z < d). (A.1)

Proof: We prove the claim by induction. For t = 1, (1 − p1) ≤ (1 − p). So

P (Y1 < 1) ≤ P (Z1 < 1). Now suppose that (A.1) is true for t. Then, for t + 1 and any

183

CHAPTER A. PROOFS OF THEOREMS IN CHAPTER 2

d ≤ t+ 1, we have, using the induction hypothesis,

P (St+1
Y < d) = P (St

Y + Yt+1 < d)

= P (St
Y + Yt+1 < d|Yt+1 = 0)P (Yt+1 = 0)

+ P (St
Y + Yt+1 < d|Yt+1 = 1)P (Yt+1 = 1)

= P (St
Y < d)P (Yt+1 = 0) + P (St

Y < d− 1)P (Yt+1 = 1)

≤ P (St
Z < d)P (Yt+1 = 0) + P (St

Z < d− 1)P (Yt+1 = 1)

= P (St
Z < d)− P (St

Z = d− 1)P (Yt+1 = 1)

≤ P (St
Z < d)− P (St

Z = d− 1)P (Zt+1 = 1)

= P (St
Z < d)P (Zt+1 = 0) + P (St

Z < d− 1)P (Zt+1 = 1)

= P (St+1
Z < d).

We now prove Theorem 1. Let Zt be a Bernoulli process with parameter η and let

St
Z =

∑t
k=1 Zk. Let Xt ∈ {1, . . . , N} be a Markov chain on G with the initial state

distribution and transition probabilities given in Section 2.1. Let Yt be an observation

made at time t. Yt = 1 with probability ηXt and Yt = 0 with probability (1 − ηXt). Let

St
Y =

∑t
k=1 Yk. Notice that, for all t, ηXt ≥ η. Given a track x1:t, the observations

are independent. By Lemma 1, for any t, P (St
Y < d|x1:t) ≤ P (St

Z < d) for d ≤ t.

Furthermore, the inequality holds for any x1:t. Hence,

P (St
Y < d) =

∑
x1:t

P (St
Y < d|x1:t)P (x1:t)

≤

(∑
x1:t

P (x1:t)

)
P (St

Z < d)

= P (St
Z < d).

184

CHAPTER A. PROOFS OF THEOREMS IN CHAPTER 2

Let δt =
√

2
ηt

log
(

T
sε

)
. δt < 1 for all t ≥ t0 since s > T

ε
exp

(
−ηt0

2

)
. Thus,

P (WT) ≤
T∑

t=1

∞∑
k=1

I(t = ks)P (St
Y < θt)

≤
T∑

t=1

∞∑
k=1

I(t = ks)P (St
Z < θt)

=

bT
s
c∑

k=1

P (Sks
Z < θks)

≤
bT

s
c∑

k=1

P (Sks
Z < (1− δks)ηks)

<

bT
s
c∑

k=1

exp

(
−ηksδ

2
ks

2

)

=

bT
s
c∑

k=1

exp

(
−ηks

2

2

ηks
log

(
T

sε

))

=

bT
s
c∑

k=1

ε · s
T
≤ ε · s

T
· T
s

= ε

where I is an indicator function and the Chernoff bound [Motwani and Raghavan, 1995] is

used in the fourth inequality.

A.2 Proof of Theorem 2

Let Zt be a Bernoulli process with parameter η and let St
Z =

∑t
k=1 Zk. Let St

Y =∑t
k=1 Y

Xk
k . Then, as in the proof of Theorem 1, P (St

Y < d) ≤ P (St
Z < d). Let

δ =
√

2
ηs

log
(

1+ε
ε

)
. Then δ < 1 by our choice of s. Thus,

185

CHAPTER A. PROOFS OF THEOREMS IN CHAPTER 2

P (W∞) ≤
∞∑

t=1

∞∑
k=1

I(t = ks)P (St
Y < θt)

≤
∞∑

t=1

∞∑
k=1

I(t = ks)P (St
Z < θt)

=
∞∑

k=1

P (Sks
Z < θks)

≤
∞∑

k=1

P (Sks
Z < (1− δ)ηks)

<
∞∑

k=1

exp

(
−ηksδ

2

2

)
=

∞∑
k=1

exp

(
−ηks

2

2

ηs
log

(
1 + ε

ε

))

=
∞∑

k=1

(
ε

1 + ε

)k

= ε,

where the Chernoff bound [Motwani and Raghavan, 1995] is used in the fourth inequality.

A.3 Proof of Theorem 3

To avoid confusion, let us denote the joint distribution without false detections (2.1) by

Q(X1:T , Y1:T) and the joint distribution with false detections (2.9) by P (X1:T , Y1:T). By

the optimality, for any feasible track x1:T , i.e., P (x1:T) > 0,

P (x∗1:T , y1:T) ≥ P (x1:T , y1:T)

Q(q1:T , y1:T) ≥ Q(x1:T , y1:T).

186

CHAPTER A. PROOFS OF THEOREMS IN CHAPTER 2

In particular, we have

P (x∗1:T , y1:T) ≥ P (q1:T , y1:T) (A.2)

Q(q1:T , y1:T) ≥ Q(x∗1:T , y1:T). (A.3)

From (A.2), we obtain the first inequality in (2.11). Now consider the following joint

distribution ratio

R :=
P (q1:T , y1:T)

P (x∗1:T , y1:T)

=
P (q1:T)

P (x∗1:T)

∏T
t=1 P (yt|qt)∏T
t=1 P (yt|x∗t)

=
P (q1:T)

∏T
t=1

[
ηy

qt
t (1− η)1−y

qt
t
∏

i6=qt
ξyi

t(1− ξ)1−yi
t

]
P (x∗1:T)

∏T
t=1

[
ηy

x∗t
t (1− η)1−y

x∗t
t

∏
i6=x∗t

ξyi
t(1− ξ)1−yi

t

]
=

P (q1:T)

P (x∗1:T)

∏T
t=1 η

y
qt
t (1− η)1−y

qt
t∏T

t=1 η
y

x∗t
t (1− η)1−y

x∗t
t

∏T
t=1 ξ

y
x∗t
t (1− ξ)1−y

x∗t
t∏T

t=1 ξ
y

qt
t (1− ξ)1−y

qt
t

.

Let Sq =
∑T

t=1 y
qt
t and Sx =

∑T
t=1 y

x∗t
t . Then

R =
P (q1:T)

P (x∗1:T)

ηSq(1− η)T−Sq

ηSx(1− η)T−Sx

ξSx(1− ξ)T−Sx

ξSq(1− ξ)T−Sq

=
P (q1:T)

P (x∗1:T)

(
η

1− η

)Sq−Sx
(

ξ

1− ξ

)Sx−Sq

(A.4)

=
Q(q1:T , y1:T)

Q(x∗1:T , y1:T)

(
ξ

1− ξ

)Sx−Sq

.

By (A.3), Q(q1:T ,y1:T)
Q(x∗1:T ,y1:T)

≥ 1. But by (A.2), P (q1:T ,y1:T)
P (x∗1:T ,y1:T)

≤ 1. Hence,
(

ξ
1−ξ

)Sx−Sq

≤ 1.

Since ξ ≤ .5,
(

ξ
1−ξ

)
≤ 1 and we must have Sx ≥ Sq. But Sq cannot be arbitrarily small.

Since Q(q1:T ,y1:T)
Q(x∗1:T ,y1:T)

≥ 1,

187

CHAPTER A. PROOFS OF THEOREMS IN CHAPTER 2

P (q1:T)

P (x∗1:T)

(
η

1− η

)Sq−Sx

≥ 1

Sq − Sx ≥
log
(

P (x∗1:T)

P (q1:T)

)
log
(

η
1−η

)
Sx ≤ Sq +

log
(

P (q1:T)
P (x∗1:T)

)
log
(

η
1−η

) .

Let b =
log(P (q1:T)/P (x∗1:T))

log(η/(1−η))
. Then, we can bound Sx as

Sq ≤ Sx ≤ Sq + b.

Notice that if P (q1:T) = P (x∗1:T), Sq ≥ Sx and we get an equality Sq = Sx. Hence,

α = 1 and q1:T = x∗1:T . On the other hand, we cannot have P (q1:T) < P (x∗1:T), since this

requires Sq > Sx, contradicting the optimality of x∗1:T . Now R takes the minimum value if

Sx = Sq + b. So

R ≥ P (q1:T)

P (x∗1:T)

(
η

1− η

)−b(
ξ

1− ξ

)b

=

(
ξ

1− ξ

)b

≥
(

ξ

1− ξ

) log(P (q1:T)/m)

log(η/(1−η))

=
1

α
.

Hence P (q1:T , y1:T)/P (x∗1:T , y1:T) ≥ 1
α

and we get the second inequality in (2.11).

188

CHAPTER A. PROOFS OF THEOREMS IN CHAPTER 2

A.4 Proof of Corollary 2

Since η ≥ c
1+c

, η
1−η
≥ c. So

α =

(
1− ξ
ξ

) log(P (q1:T)/m)

log(η/(1−η))

≤
(

1− ξ
ξ

) log r
log(η/(1−η))

≤
(

1− ξ
ξ

) log r
log c

=

(
1− ξ
ξ

) log(1+ε1)

log(1−ξ
ξ)

= 1 + ε1.

189

Appendix B

PROOFS OF THEOREMS IN CHAPTER 4

B.1 Proof of Theorem 5

To prove Theorem 5, we need the following lemmas.

Lemma 2. Let C =
pdL̄

λf(1−pd)
and D =

λf(1−pd)

Lpd
. For any ω0, ω1, ω2 ∈ Ω, if ω1 = ω0 − e0,

for some edge e0 ∈ ω0, and ω2 = ω1 − e1, for some edge e1 ∈ ω1, then:

π(ω0)/π(ω1) ≤ C

π(ω0)/π(ω2) ≤ C2
and

π(ω1)/π(ω0) ≤ D

π(ω2)/π(ω0) ≤ D2.

Proof: ω0 and ω1 are identical except that ω1 is missing the edge e0. So |ω0| = |ω1|+1.

If e0 = (u, v) and k = |ω0|,

π(ω0)/π(ω1) =
λN−k

f pk
d(1− pd)

K−k

λ
N−(k−1)
f pk−1

d (1− pd)K−(k−1)
P̂ v(u|y1:t−1)

=
pd

λf(1− pd)
P̂ v(u|y1:t−1)

≤ C.

190

CHAPTER B. PROOFS OF THEOREMS IN CHAPTER 4

On the other hand,

π(ω1)/π(ω0) =
λ

N−(k−1)
f pk−1

d (1− pd)
K−(k−1)

λN−k
f pk

d(1− pd)K−k

1

P̂ v(u|y1:t−1)

=
λf(1− pd)

pd

1

P̂ v(u|y1:t−1)
≤ D.

Since π(ω0)/π(ω2) = π(ω0)/π(ω1) × π(ω1)/π(ω2), by repeating the above argument

twice, we get π(ω0)/π(ω2) ≤ C2. Similarly, we have π(ω2)/π(ω0) ≤ D2.

Lemma 3. Let R = max{1, C,D}, where C and D are defined in Lemma 2. Then the

maximum edge loading of the Markov chainM is bounded as ρ̄ ≤ 4R4K2N .

Proof: For each pair of matchings X, Y in G, we define the canonical path γXY as in

[Jerrum and Sinclair, 1996]. Consider the symmetric difference X ⊕ Y , where X ⊕ Y =

(X − Y) ∪ (Y −X). X ⊕ Y is a disjoint collection of paths in G including closed cycles,

each of which has edges that belong to X and Y alternately. Suppose that we have fixed

some arbitrary ordering on all simple paths in G, and designate a “start vertex” to each of

the paths, which is arbitrary if the path is a closed cycle but must be an endpoint otherwise.

This gives a unique ordering P1, P2, . . . , Pm on the paths appearing inX⊕Y . The canonical

path from X to Y involves “unwinding” each of the Pi in turn as follows. We need to

consider two cases:

(i) Pi is not a cycle. Let Pi consist of the sequence (v0, v1, . . . , vl) of vertices with

the start vertex v0. If (v0, v1) ∈ Y , perform a sequence of switching moves replacing

(v2j+1, v2j+2) by (v2j, v2j+1) for j = 0, 1, . . ., and finish with an addition move if l is odd.

If (v0, v1) ∈ X , remove (v0, v1) and proceed as before for the reduced path (v1, . . . , vl).

(ii) Pi is a cycle. Let Pi consist of the sequence (v0, v1, . . . , v2l+1) of vertices, for l ≥ 1,

where v0 is the start vertex, and (v2j, v2j+1) ∈ X for j = 0, . . . , l, with remaining edges

belonging to Y . We first remove the edge (v0, v1). Now we are left with an open path O

191

CHAPTER B. PROOFS OF THEOREMS IN CHAPTER 4

with endpoints v0, v1, with the start vertex vk of O, for k ∈ {0, 1}. Then we unwind O as

in (i) above but treating v1−k as the start vertex to identify that it was a cycle.

Let t be an arbitrary edge in the Markov chainM, i.e., a transition from ω to ω′ 6= ω.

Let cp(t) = {(X, Y) : γXY 3 t} be the set of canonical paths that use t. We define a

function ηt : cp(t)→ Ω as in [Jerrum and Sinclair, 1996],

ηt(X, Y) =

X ⊕ Y ⊕ (ω ∪ ω′)− eXYt ,

if t is a switch move and the current path is a cycle;

X ⊕ Y ⊕ (ω ∪ ω′), otherwise,

where eXYt is the edge in X adjacent to the start vertex that was removed first in (ii) above.

ηt(X, Y) is always a matching in G and ηt is injective as shown in [Jerrum and Sinclair,

1996]. Notice that the bipartite graphG considered here is a subset of the graphs considered

in [Jerrum and Sinclair, 1996] so the arguments about ηt can be directly applied here.

Notice that

Q(t) = Q(ω, ω′) = π(ω)P (ω, ω′) =
1

2|E|
min{π(ω), π(ω′)}. (B.1)

Next, we bound π(X)π(Y) and we need to consider four cases:

(i) t is a deletion move. We have ω′ = ω− e and ηt(X, Y) = X ⊕ Y ⊕ (ω ∪ ω′). Since

ω ∪ ηt(X,Y) and X ∪ Y are identical when viewed as multisets,

π(X)π(Y) = π(ω)π(ηt(X,Y))

=
2|E|Q(t)

min{π(ω), π(ω′)}
π(ω)π(ηt(X, Y))

= 2|E|Q(t) max

{
1,
π(ω)

π(ω′)

}
π(ηt(X, Y))

≤ 2R|E|Q(t)π(ηt(X, Y)),

192

CHAPTER B. PROOFS OF THEOREMS IN CHAPTER 4

where we used the identity (B.1) in the second equality and Lemma 2 for the last inequality.

(ii) t is an addition move. We have ω′ = ω + e and ηt(X, Y) = X ⊕ Y ⊕ (ω ∪ ω′).

Since ω∪ηt(X, Y) and X ∪Y are identical when viewed as multisets, using the arguments

from (i),

π(X)π(Y) ≤ 2R|E|Q(t)π(ηt(X, Y)).

(iii) t is a switch move and the current path is a cycle. Suppose ω′ = ω + e − e′. Let

ω1 = ω+ e. Then ω′ = ω1− e′. Since π(ω)
π(ω′)

= π(ω1)
π(ω′)

π(ω)
π(ω1)

, by Lemma 2, π(ω)
π(ω′)

≤ CD ≤ R2.

Since ηt(X, Y) = X⊕Y ⊕ (ω∪ω′)− eXYt , the multisets ω∪ηt(X, Y) differs from X ∪Y

only in that e and eXYt are missing from it. Hence, by Lemma 2,

π(X)π(Y) ≤ C2π(ω)π(ηt(X,Y))

= 2C2|E|Q(t) max

{
1,
π(ω)

π(ω′)

}
π(ηt(X, Y))

≤ 2R4|E|Q(t)π(ηt(X, Y)).

(iv) t is a switch move and the current path is not a cycle. This case is similar to (iii)

but the multisets ω ∪ ηt(X, Y) differs from X ∪ Y only in that e is missing from it. Hence,

by Lemma 2,

π(X)π(Y) ≤ Cπ(ω)π(ηt(X, Y))

= 2C|E|Q(t) max

{
1,
π(ω)

π(ω′)

}
π(ηt(X, Y))

≤ 2R3|E|Q(t)π(ηt(X,Y)).

193

CHAPTER B. PROOFS OF THEOREMS IN CHAPTER 4

In summary, we have, in all cases, π(X)π(Y) ≤ 2R4|E|Q(t)π(ηt(X,Y)). Thus, for

any transition t,

1

Q(t)

∑
γXY 3t

π(X)π(Y)|γXY | ≤ 2R4|E|
∑

γXY 3t

π(ηt(X, Y))|γXY |

≤ 4R4K|E|
∑

γXY 3t

π(ηt(X, Y))

≤ 4R4K|E|

≤ 4R4K2N

where the second inequality follows from the fact that the length of any canonical path is

bounded by 2K, the third equality is due to the fact that ηt is injective and π is a probability

distribution, and the last inequality follows from |E| ≤ KN . Hence, ρ̄ ≤ 4R4K2N .

We now prove Theorem 5. M is a finite, reversible, ergodic Markov chain with loop

probabilities P (ω, ω) ≥ 1
2

for all states ω (see Section 4.2.2). Hence, by Theorem 4, we

have

τω(ε) ≤ ρ̄(log π(ω)−1 + log ε−1). (B.2)

The upper bound for ρ̄ is computed from Lemma 3. Now we just need to find the upper

bound for π(ω)−1. The normalizing constant in (4.12) is

Z =
∑
ω∈Ω

λN−|ω|
f p

|ω|
d (1− pd)

K−|ω|
∏

(u,v)∈ω

P̂ v(u|y1:t−1)

 . (B.3)

194

CHAPTER B. PROOFS OF THEOREMS IN CHAPTER 4

Hence,

Z ≤
∑
ω∈Ω

mK
1 m3(K,N)

= mK
1 m3(K,N)|Ω|

≤ mK
1 m3(K,N)

K∑
k=0

(
K

k

)
N !

(N − k)!

≤ mK
1 m3(K,N)(K + 1)!N !,

where the second inequality is by (4.13). Although this bound on Z is not tight, it will

serve our purpose. For any ω ∈ Ω, π(ω) ≥ 1
Z
mK

2 m4(K,N) so

1

π(ω)
≤ Z

mK
2 m4(K,N)

≤
(
m1

m2

)K
m3(K,N)

m4(K,N)
(K + 1)!N !.

Hence,

log
1

π(ω)
≤ log

((
m1

m2

)K
m3(K,N)

m4(K,N)
(K + 1)!N !

)
= m0(K,N).

Putting all together, we have, for all initial state ω ∈ Ω, τω(ε) ≤ 4R4K2N(m0(K,N)+

log ε−1).

B.2 Proof of Theorem 6

To prove Theorem 6, we apply the techniques developed to prove Lemma 3 in [Jerrum and

Sinclair, 1993] to our problem. Let βε2 = {(j, k) : βjk ≥ ε2}. For now, assume (j, k) ∈ βε2 ,

i.e., βjk ≥ ε2. Let Xjk(ω) = I((ŷk, yj) ∈ ω) where I is an indicator function. Notice that

195

CHAPTER B. PROOFS OF THEOREMS IN CHAPTER 4

Eπ(Xjk) = π(ωjk) = βjk, where ωjk = {ω ∈ Ω : (yj, k) ∈ ω}. Since ‖p − π‖tv ≤ ε and

ε ≤ ε1ε2/8,

|p(ωjk)− π(ωjk)| ≤ ε ≤ ε1π(ωjk)

8
(B.4)

Let β̄jk = 1
s

∑s
i=1Xjk(ωi) be the sample mean of s samples from p. Then E(β̄jk) =

p(ωjk) and Var(β̄jk) = 1
s
Varp(Xjk). By Chebyshev’s inequality,

P
(∣∣β̄jk − p(ωjk)

∣∣ > ε1
3
p(ωjk)

)
≤ 9

ε21s

Varp(Xjk)

p(ωjk)2
. (B.5)

Now if |β̄jk − p(ωjk)| ≤ ε1
3
p(ωjk), from (B.4),

|β̄jk − π(ωjk)| ≤ |β̄jk − p(ωjk)|+ |p(ωjk)− π(ωjk)|

≤ ε1
3
p(ωjk) +

ε1
8
π(ωjk)

≤ ε1
3

(
1 +

ε1
8

)
π(ωjk) +

ε1
8
π(ωjk)

≤ ε1
2
π(ωjk) (B.6)

and β̄jk estimates π(ωjk) within ratio 1 + ε1.

Now let us bound the difference between Varπ(Xjk) and Varp(Xjk). Notice that Varp(Xjk) =∑
ω∈Ω p(ω)Xjk(ω)2 − (EpXjk)

2 and Varπ(Xjk) =
∑

ω∈Ω π(ω)Xjk(ω)2 − (EπXjk)
2.

|Varp(Xjk)− Varπ(Xjk)| =

∣∣∣∣∣∑
ω∈Ω

Xjk(ω)2 (p(ω)− π(ω)) + (EπXjk)
2 − (EpXjk)

2

∣∣∣∣∣
≤

∣∣∣∣∣∑
ω∈Ω

Xjk(ω)2 (p(ω)− π(ω))

∣∣∣∣∣+ ∣∣(EπXjk)
2 − (EpXjk)

2
∣∣ .(B.7)

Since Xjk(ω) ≤ 1,∣∣∣∣∣∑
ω∈Ω

Xjk(ω)2 (p(ω)− π(ω))

∣∣∣∣∣ ≤
∣∣∣∣∣∑
ω∈Ω

p(ω)− π(ω)

∣∣∣∣∣ ≤ ε. (B.8)

196

CHAPTER B. PROOFS OF THEOREMS IN CHAPTER 4

On the other hand,

∣∣(EπXjk)
2 − (EpXjk)

2
∣∣ = |(EπXjk + EpXjk) (EπXjk − EpXjk)|

≤ 2 |EπXjk − EpXjk|

≤ 2

∣∣∣∣∣∑
ω∈Ω

π(ω)− p(ω)

∣∣∣∣∣ (B.9)

≤ 2ε. (B.10)

Using (B.8) and (B.9) in (B.7), we have

|Varp(Xjk)− Varπ(Xjk)| ≤ 3ε ≤ 3ε1π(ωjk)

8
, (B.11)

where the last inequality is due to the condition ε ≤ ε1ε2/8 and π(ωjk) ≥ ε2.

Since ε1 < 1 and Varπ(Xjk) ≤ π(ωjk), we find the following bound using (B.4) end

(B.11):
Varp(Xjk)

p(ωjk)2
≤

Varπ(Xjk) + 3
8
π(ωjk)(

7
8
π(ωjk)

)2 ≤ 2

π(ωjk)
. (B.12)

Hence, by choosing s = 72ε−2
1 ε−1

2 and using (B.5) and (B.12),

P
(
|β̄jk − p(ωjk)| >

ε1
3
p(ωjk)

)
≤ 1

4
, (B.13)

that is, β̄jk estimates π(ωjk) within ratio 1 + ε1 with probability at least 3/4.

To make the analysis easier, we assume a sampling technique which is slightly different

from Algorithm 5. We consider repeating the above experiment by an odd number t times,

independently. Let β̂jk be the median of the resulting t values of β̄jk. From above, the

197

CHAPTER B. PROOFS OF THEOREMS IN CHAPTER 4

probability that β̂jk fails to approximate βjk within ratio 1 + ε1 is at most

t∑
i=(t+1)/2

(
t

i

)(
1

4

)i(
3

4

)t−i

≤
(

1

4

)t/2(
3

4

)t/2 t∑
i=(t+1)/2

(
t

i

)

≤
(

3

16

)t/2

2t

=

(
3

4

)t/2

.

Now let t = 7dlog η−1e, then

(
3

4

)t/2

≤
(

3

4

)3.5dlog η−1e

≤ η3.5 log(4/3) ≤ η.

Hence, with a total of st = 504ε−2
1 ε−1

2 dlog η−1e samples, β̂jk estimates π(ωjk) within ratio

1 + ε1 with probability at least 1− η for βjk ≥ ε2.

Now consider βjk that are smaller than ε2. With probability at least 1 − η, for (j, k) ∈

βε2 , (1 − ε1)βjk ≤ β̂jk ≤ (1 + ε1)βjk. So if β̂jk ≥ (1 + ε1)ε2, we must have (j, k) ∈ βε2 .

Hence, β̂jk ≤ (1 + ε1)ε2 or |β̂jk − βjk| ≤ (1 + ε1)ε2 for βjk < ε2.

B.3 Proof of Theorem 7

Lemma 4. Suppose that 0 < pz, pd < 1 and λb, λf > 0. If ζ(d) > 0, for all d ∈ {1, . . . , d̄},

then the Markov chainM is irreducible.

Proof: The birth and death moves are sufficient to illustrate the irreducibility of the

chain. Since 0 < pz, pd < 1 and λb, λf > 0, P (ω|Y) > 0 for all ω ∈ Ω. Take an arbitrary

partition ω ∈ Ω, say ω = {τ0, τ1, . . . , τK}. Now consider the partition ω′ ∈ Ω, such that

ω′ = {τ ′0}, i.e., ω′ assigns all observations as false alarms. Since ω is arbitrary, the chain is

irreducible if the chain can move from ω′ to ω and from ω to ω′.

198

CHAPTER B. PROOFS OF THEOREMS IN CHAPTER 4

For the move from ω′ to ω, consider K consecutive birth moves: ω0 = ω′, ω1 = {{τ ′0 \

τ1}, τ1}, . . . , ωK = {{τ ′0 \ {∪K
i=1τi}}, τ1, . . . , τK} = ω. Since ω ∈ Ω, all tracks τk are

legal, i.e., τk satisfies the constraints described in Section 3.2 and, for i = 1, . . . , |τk| − 1,

τk(ti+1) ∈ Ld(τk(ti)) for 1 ≤ d = ti+1 − ti ≤ d̄. Thus, ωk ∈ Ω for all k. Because ζ(d) > 0

and all tracks τk are legal, the probability of proposing τk at ωk−1 by the birth move is

positive and q(ωk, ωk+1) > 0. For the move from ω to ω′, consider K consecutive death

moves: ωK = ω, ωK−1, . . . , ω0 = ω′. The probability of removing the track τk at ωk by the

death move is positive and q(ωk+1, ωk) > 0. Since P (ωk|Y) > 0 for all k, the chain can

move from ω′ to ω and from ω to ω′. Hence, the chain is irreducible.

From Lemma 4, M is irreducible. M is aperiodic since there is always a positive

probability of staying at the current state in the track update move. Now the transitions

described in Algorithm 7 satisfy the detailed balance condition since it uses the Metropolis-

Hastings kernel (4.1). Hence, by the ergodic theorem [Roberts, 1996], the chain converges

to its stationary distribution π(ω) almost surely and X̂ → EπX as nmc →∞.

199

Appendix C

PROOFS OF THEOREMS IN CHAPTER 7

C.1 Proof of Theorem 9

Lemma 5. If P (k|k) � P (k|k), then P (k + 1|k) � P (k + 1|k).

Proof: Using (7.23), we have

P (k + 1|k)− P (k + 1|k) = E[A(Z)P (k|k)A(Z)T] + E[A(Z)x̂(k|k)x̂(k|k)TA(Z)T]

− Âx̂(k|k)x̂(k|k)T ÂT − ÂP (k|k)ÂT

= P1 + P2, (C.1)

where P1 = E[A(Z)P (k|k)A(Z)T]−ÂP (k|k)ÂT and P2 = E[A(Z)x̂(k|k)x̂(k|k)TA(Z)]−

Âx̂(k|k)x̂(k|k)T ÂT .

If P1 � 0 and P2 � 0, then P (k + 1|k)− P (k + 1|k) � 0 and it completes the proof.

P1 = E[A(Z)P (k|k)A(Z)T]− ÂP (k|k)ÂT − ÂP (k|k)ÂT + ÂP (k|k)ÂT

= E[A(Z)P (k|k)A(Z)T]− ÂP (k|k)ÂT + Â(P (k|k)− P (k|k))ÂT . (C.2)

200

CHAPTER C. PROOFS OF THEOREMS IN CHAPTER 7

Since P (k|k) is a symmetric matrix, P (k|k) can be decomposed into P (k|k) = U1D1U
T
1 ,

where U1 is a unitary matrix and D1 is a diagonal matrix. Hence,

P1 = E[(A(Z)U1D
1/2
1)(A(Z)U1D

1/2
1)T]− E[A(Z)U1D

1/2
1]E[A(Z)U1D

1/2
1]T

+ Â(P (k|k)− P (k|k))ÂT

= Cov[A(Z)U1D
1/2
1] + Â(P (k|k)− P (k|k))ÂT , (C.3)

where Cov[H] denotes the covariance matrix of H . Since a covariance matrix is positive

definite and P (k|k)− P (k|k) � 0 by assumption, P1 � 0. P2 is a covariance matrix since

x̂(k|k)x̂(k|k)T is symmetric, hence P2 � 0.

Lemma 6. If P (k + 1|k) � P (k + 1|k), then P (k + 1|k + 1) � P (k + 1|k + 1).

Proof: Applying the matrix inversion lemma to (7.20), we have

P (k + 1|k + 1) =
(
P (k + 1|k)−1 + CTR−1C

)−1
. (C.4)

Let P = P (k + 1|k) and P = P (k + 1|k). Then

P � P

P−1 � P−1

P−1 + CTR−1C � P−1 + CTR−1C(
P−1 + CTR−1C

)−1 �
(
P−1 + CTR−1C

)−1

P (k + 1|k + 1) � P (k + 1|k + 1).

Now assume that the lb-KF starts with an initial covariance P (0|0), such that P (0|0) �

P (0|0). Then, using Lemma 5, Lemma 6, and the induction hypothesis, we see that

201

CHAPTER C. PROOFS OF THEOREMS IN CHAPTER 7

P (k|k) � P (k|k) for all k ≥ 0.

C.2 Proof of Theorem 10

Lemma 7. If P̄ (k|k) � P (k|k), then P̄ (k + 1|k) � P (k + 1|k).

Proof: Let M = x̂(k|k)x̂(k|k)T and I be an identity matrix. Then using (7.23),

P̄ (k|k)− P (k|k) = λmaxE[A(Z)A(Z)T]− E[A(Z)P (k|k)A(Z)T]− E[A(Z)MA(Z)T]

= E[A(Z)(λmax(P̄ (k|k))I − P (k|k))A(Z)T]

+ E[A(Z)(λmax(M)I −M)A(Z)T]. (C.5)

Since P̄ (k|k) � P (k|k) and λmax(S)I − S � 0 for any symmetric matrix S, we have

P̄ (k|k)− P (k|k) � 0.

Using Lemma 7, Lemma 6, and the induction hypothesis, we obtain the theorem.

C.3 Proof of Theorem 11

Let us consider the lb-KF. Let P k = P (k|k), ψ = GQGT , Â = E[A], and

F = −(CÂP kÂ
TCT + CψCT +R)−1(Cψ + CÂP kÂ

T). (C.6)

Then, based on the Riccati difference equation [Mosca, 1995], we can express P k+1 as

P k+1 = ÂP kÂ
T + ψ − F T

(
CÂP kÂ

TCT + CψCT +R
)
F

= (ÂT + ÂTCTF)TP k(Â
T + ÂTCTF)

+ F T (CψCT +R)F + ψCTF + F TCψ + ψ. (C.7)

202

CHAPTER C. PROOFS OF THEOREMS IN CHAPTER 7

Hence, if (ÂT + ÂTCTF) is not a stability matrix, for some P 0 � P (0|0), P k diverges

as k → ∞. Since the state error covariance of the lb-KF diverges and P (k|k) � P (k|k)

for all k ≥ 0 (Theorem 9), P (k|k) diverges as k →∞.

203

BIBLIOGRAPHY

[Akyidliz et al., 2002] I.F. Akyidliz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A
survey on sensor networks. IEEE Communications Magazine, 40(8):102–116, August
2002.

[Arora et al., 2004] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Aru-
mugam, M. Nesterenko, A. Vora, and M. Miyashita. A line in the sand: A wireless
sensor network for target detection, classification, and tracking. Computer Networks,
46(5):605–634, Dec. 2004.

[Aslam et al., 2003] J. Aslam, Z. Butler, V. Crespi, G. Cybenko, and D. Rus. Tracking
a moving object with a binary sensor network. In ACM International Conference on
Embedded Networked Sensor Systems, 2003.

[Balakrishnan et al., 2004] H. Balakrishnan, I. Hwang, and C. Tomlin. Polynomial ap-
proximation algorithms for belief matrix maintenance in identity management. In Proc.
of the 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas, De-
cember 2004.

[Bar-Shalom and Fortmann, 1988] Y. Bar-Shalom and T.E. Fortmann. Tracking and Data
Association. Academic Press, San Diego, CA, 1988.

[Basar and Olsder, 1995] T. Basar and G.J. Olsder. Dynamic Noncooperative Game The-
ory. Academic Press, London and San Diego, second edition, 1995.

[Beichl and Sullivan, 2000] I. Beichl and F. Sullivan. The Metropolis algorithm. Comput-
ing in Science and Engineering, 2(1):65–69, 2000.

[Belta et al., 2005] C. Belta, V. Isler, and G.J. Pappas. Discrete abstractions for robot mo-
tion planning and control in polygonal environments. IEEE Transactions on Robotics,
21(5):864–874, October 2005.

204

BIBLIOGRAPHY

[Bergman and Doucet, 2000] N. Bergman and A. Doucet. Markov chain Monte Carlo
data association for target tracking. In Proc. of the IEEE Int. Conference on Acous-
tics, Speech, and Signal Processing, Istanbul, Turkey, June 2000.

[Blom and Bar-Shalom, 1988] H.A.P. Blom and Y. Bar-Shalom. The interacting multi-
ple model algorithm for systems with markovian switching coefficients. IEEE Trans.
Automatic Control, 33:780–783, 1988.

[Blondel et al., 2005] V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis.
Convergence in multiagent coordination, consensus, and flocking. In Proc. of the 44th
IEEE Conference on Decision and Control, Seville, Spain, Dec. 2005.

[Boyd and Vandenberghe, 2004] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[Boyd et al., 2005] S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on
geometric programming. Technical report, Stanford University EE Technical Report,
2005.

[Brooks et al., 2004] Richard R. Brooks, David Friedlander, John Koch, and Shashi
Phoha. Tracking multiple targets with self-organizing distributed ground sensors. J.
Parallel Distrib. Comput., 64:874–884, 2004.

[Burkard and Çela, 1998] R.E. Burkard and R. Çela. Linear assignment problem and ex-
tensions. Technical Report 127, Karl-Franzens University of Graz, Graz, Austria, 1998.

[Chen et al., 2003] W.P. Chen, J.C. Hou, and L. Sha. Dynamic clustering for acoustic
target tracking in wireless sensor networks. In Proc. of the 11th IEEE International
Conference on Network Protocols, November 2003.

[Chong et al., 1990] C.Y. Chong, S. Mori, and K.C. Chang. Distributed multitarget multi-
sensor tracking. In Y. Bar-Shalom, editor, Multitarget-Multisensor Tracking: Advanced
Applications, pages 247–295. Artech House: Norwood, MA, 1990.

[Chu et al., 2004] M. Chu, S.K. Mitter, and F. Zhao. Distributed multiple target track-
ing and data association in ad hoc sensor networks. In Proc. of the 6th International
Conference on Information Fusion, July 2004.

[Coates, 2004] Mark Coates. Distributed particle filters for sensor networks. In Proc. of
the 3nd workshop on Information Processing in Sensor Networks, April 2004.

[Collins and Uhlmann, 1992] J.B. Collins and J.K. Uhlmann. Efficient gating in data as-
sociation with multivariate distributed states. IEEE Trans. Aerospace and Electronic
Systems, 28(3):909–916, July 1992.

205

BIBLIOGRAPHY

[Cong et al., 2004] S. Cong, L. Hong, and D. Wicker. Markov-chain Monte-Carlo ap-
proach for association probability evaluation. IEE Proceedings of Control, Theory and
Applications, 151(2):185–193, March 2004.

[Costa and Fragoso, 1993] O.L.V. Costa and M.D. Fragoso. Stability results for discrete-
time linear systems with Markovian jumping parameters. Journal of Mathematical Anal-
ysis and Applications, 179:154–178, 1993.

[Cover and Thomas, 1991] T.M. Cover and J.A. Thomas. Elements of Information Theory.
Wiley-Interscience, New York, 1991.

[Cox,] I.J. Cox. Multiple hypothesis tracking code. http://www.ee.ucl.ac.uk/ ˜icox/.

[Cox and Hingorani, 1996] I.J. Cox and S.L. Hingorani. An efficient implementation of
Reid’s multiple hypothesis tracking algorithm and its evaluation for the purpose of visual
tracking. IEEE Trans. Pattern Analysis and Machine Intelligence, 18(2):138–150, 1996.

[Cox, 1993] I.J. Cox. A review of statistical data association techniques for motion corre-
spondence. International Journal of Computer Vision, 10(1):53–66, 1993.

[Culler et al., 2004] David Culler, Deborah Estrin, and Mani Srivastava. Overview of sen-
sor networks. IEEE Computer, Special Issue in Sensor Networks, Aug. 2004.

[Cybenko et al., 2004] G. Cybenko, V.H. Berk, V. Crespi, R.S. Gray, and G. Jiang. An
overview of process query systems. In Proc. of SPIE Vol. 5403 Sensors, and Command,
Control, Communications, and Intelligence (C3I) Technologies for Homeland Security
and Homeland Defense III, Orlando, FL, April 2004.

[de Freitas and Gordon, 2001] A. Doucet J.F.G. de Freitas and N.J. Gordon, editors. Se-
quential Monte Carlo Methods In Practice. Springer Verlag, New York, 2001.

[Dellaert et al., 2003] F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun. EM, MCMC, and
chain flipping for structure from motion with unknown correspondence. Machine Learn-
ing, 50:45–71, 2003.

[Diaconis and Stroock, 1991] P. Diaconis and D. Stroock. Geometric bounds for eigenval-
ues of Markov chains. Annals of Applied Probability, 1:36–61, 1991.

[Doolina and Sitara, 2005] David M. Doolina and Nicholas Sitara. Wireless sensors for
wildfire monitoring. In Proc. of the SPIE Symposium on Smart Structures and Materi-
als: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace
Systems., volume 5765, pages 477–484, May 2005.

206

BIBLIOGRAPHY

[Dutta et al., 2005] Prabal Dutta, Mike Grimmer, Anish Arora, Steve Bibyk, and David
Culler. Design of a wireless sensor network platform for detecting rare, random, and
ephemeral events. In Proc. of the Fourth International Conference on Information Pro-
cessing in Sensor Networks, April 2005.

[Dutta et al., 2006] Prabal Dutta, Jonathan Hui, Jaein Jeong, Sukun Kim, Cory Sharp, Jay
Taneja, Gilman Tolle, Kamin Whitehouse, and David Culler. Trio: Enabling sustainable
and scalable outdoor wireless sensor network deployments. In Proc. of the International
Conference on Information Processing in Sensor Networks: Special track on Platform
Tools and Design Methods for Network Embedded Sensors, 2006.

[Eraker, 2001] Bjørn Eraker. MCMC analysis of diffusion models with application to fi-
nance. J. Bus. Econom. Statist., 19(2):177–191, 2001.

[Estrin et al., 2001] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the
world with wireless sensor networks. In International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2001), Salt Lake City, UT, May 2001.

[Estrin et al., 2002] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the phys-
ical world with pervasive networks. IEEE Pervasive Computing, 1(1):59–69, January
2002.

[Fitzgerald, 1990] R.J. Fitzgerald. Development of practical PDA logic for multipltarget
tracking by microprocessor. In Y. Bar-Shalom, editor, Multitarget-Multisensor Tracking:
Advanced Applications. Artech House: Norwood, MA, 1990.

[Gao, 2004] Z. Gao. On discrete time optimal control: A closed-form solution. In Pro-
ceeding of the 2004 American Control Conference (ACC), pages 52–58, Boston, Mas-
sachusetts, U.S.A., June 2004.

[Gay et al., 2003] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesc language: a holistic approach to networked embedded systems. In Proc. of the
ACM SIGPLAN 2003 Conference on Programming Language Design and Implementa-
tion, pages 1–11, June 2003.

[Geman and Geman, 1984] S. Geman and D. Geman. Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images. IEEE Trans. Pattern Analysis and
Machine Intelligence, 6:721–741, 1984.

[Gharavi and Kumar, 2003] Hamid Gharavi and Srikanta P. Kumar, editors. Sensor net-
works and applications, volume 91. Proceedings of the IEEE, Special Issue, August
2003.

207

BIBLIOGRAPHY

[Gilks et al., 1996] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, editors. Markov
Chain Monte Carlo in Practice. Interdisciplinary Statistics Series. Chapman and Hall,
1996.

[Grocholsky et al., 2004] B. Grocholsky, V. Kumar, and H.F Durrant-Whyte. Anonymous
cooperation in robotic sensor networks. In Proc. of the AAAI-04 Workshop on Sensor
Networks, 2004.

[Gu et al., 2005] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, T. He, A. Tirumala, Q. Cao,
J. Stankovic, T. Abdelzaher, and B. Krogh. Lightweight detection and classification for
wireless sensor networks in realistic environments. In SenSys, November 2005.

[Guibas et al., 1999] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani.
A visibility-based pursuit-evasion problem. International Journal of Computational Ge-
ometry and Applications, 9(4/5):471–493, 1999.

[Hastings, 1970] W.K. Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57:97–109, 1970.

[Hespanha et al., 1999] J.P. Hespanha, H.J. Kim, and S.S. Sastry. Multiple-agent prob-
abilistic pursuit-evasion games. In IEEE Int. Conf. on Decision and Control, pages
2432–2437, 1999.

[Hill et al., 2004] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. The platforms en-
abling wireless sensor networks. Communications of the ACM, 47(6):41–46, 2004.

[Huang and Russell, 1997] Timothy Huang and Stuart J. Russell. Object identification in
a Bayesian context. In Proc. of the International Joint Conference on Artificial Intelli-
gence, Nagoya, Japan, Aug. 1997.

[Hui and Culler, 2004] Jonathan Hui and David Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In Proc. of the 2nd Interna-
tional Conference on Embedded Networked Sensor Systems, 2004.

[Hwang et al., 2004a] I. Hwang, H. Balakrishnan, K. Roy, and C. Tomlin. Multiple-target
tracking and identity management algorithm in clutter, with application to aircraft track-
ing. In Proceedings of the American Control Conference, Boston, MA, June 2004.

[Hwang et al., 2004b] I. Hwang, K. Roy, H. Balakrishnan, and C. Tomlin. A distributed
multiple-target identity management algorithm in sensor networks. In Proc. of the 43rd
IEEE Conference on Decision and Control, Paradise Island, Bahamas, December 2004.

208

BIBLIOGRAPHY

[Hwang et al., 2006] I. Hwang, H. Balakrishnan, K. Roy, and C. Tomlin. Multiple-target
tracking and identity management with application to aircraft tracking. AIAA Journal of
Guidance, Control and Dynamics, 2006. in review.

[Imer et al., 2004] O.C. Imer, S. Yuksel, and T. Basar. Optimal control of dynamical sys-
tems over unreliable communication links. In Proc. of the NOLCOS, Stutgart, Germany,
2004.

[Jadbabaie et al., 2003] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automatic
Control, 48(6):988–1001, 2003.

[Jerrum and Sinclair, 1993] M. Jerrum and A. Sinclair. Polynomial-time approximation
algorithms for the Ising model. SIAM Journal on Computing, 22:1087–1116, 1993.

[Jerrum and Sinclair, 1996] M. Jerrum and A. Sinclair. The Markov chain Monte Carlo
method: An approach to approximate counting and integration. In Dorit Hochbaum,
editor, Approximations for NP-hard Problems. PWS Publishing, Boston, MA, 1996.

[Jiang et al., 2005] Xiaofan Jiang, Joseph Polastre, and David Culler. Perpetual environ-
mentally powered sensor networks. In Proc. of the Fourth International Conference on
Information Processing in Sensor Networks, April 2005.

[Jordan, 2004] M.I. Jordan. An Introduction to Probabilistic Graphical Models. in prepa-
ration, 2004.

[Joshi et al., 2005] A.A. Joshi, P. Deignan, P.H. Meckl, G.B. King, and K. Jennings. Infor-
mation theoretic fault detection. In Proceedings of the American Control Conference,
Portland, OR, June 2005.

[Julier and Uhlmann, 2004] S.J. Julier and J.K. Uhlmann. Unscented filtering and nonlin-
ear estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[Kailath et al., 1999] T. Kailath, A.H. Sayed, and B. Hassibi. State Space Estimation.
Prentice-Hall, 1999.

[Kapur and Kesavan, 1992] J.N. Kapur and H.K. Kesavan. Entropy Optimization Princi-
ples with Application. Academic Press, Inc., 1992.

[Kintner-Meyer and Conant, 2005] M. Kintner-Meyer and R. Conant. Opportunities of
wireless sensors and controls for building operation. Energy Engineering Journal,
102(5):27–48, 2005.

209

BIBLIOGRAPHY

[Kirkpatrick et al., 1983] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[Kurien, 1990] Thomas Kurien. Issues in the design of practical multitarget tracking algo-
rithms. In Y. Bar-Shalom, editor, Multitarget-Multisensor Tracking: Advanced Applica-
tions. Artech House, Norwood, MA, 1990.

[LaMarca et al., 2002] Anthony LaMarca, Waylon Brunette, David Koizumi, Matthew
Lease, Stefan B. Sigurdsson, Kevin Sikorski, Dieter Fox, and Gaetano Borriello. Mak-
ing sensor networks practical with robots. In Pervasive ’02: Proceedings of the First
International Conference on Pervasive Computing, pages 152–166, London, UK, 2002.

[Lee and Markus, 1967] E.B. Lee and L. Markus. Foundations of optimal control theory.
Wiley, New York, 1967.

[Lepetic et al., 2003] M. Lepetic, G. Klancar, I. Skrjanc, D. Matko, and B. Potocnic. Time
optimal path planning considering acceleration limits. Robotics and Autonomous Sys-
tems, 45:199–210, 2003.

[Lerro and Bar-Shalom, 1993] D. Lerro and Y. Bar-Shalom. Interacting multiple model
tracking with target amplitude feature. IEEE Trans. Aerospace and Electronic Systems,
29:494–509, 1993.

[Li et al., 2002] D. Li, K. Wong, Yu Hen Hu, and A. Sayeed. Detection, classification and
tracking of targets. IEEE Signal Processing Magazine, 17-29, March 2002.

[Liberzon, 2003] D. Liberzon. On stabilization of linear systems with limited information.
IEEE Trans. Automatic Control, 48(2):304–307, 2003.

[Linial et al., 2000] N. Linial, A. Samorodnitsky, and A. Wigderson. A deterministic
strongly polynomial algorithm for matrix scaling and approximate permanents. Combi-
natorica, 20:545–568, 2000.

[Liu and Goldsmith, 2004] Xiangheng Liu and Andrea Goldsmith. Kalman filtering with
partial observation losses. In Proc. of the 43rd IEEE Conference on Decision and Con-
trol, Paradise Island, Bahamas, Dec. 2004.

[Liu et al., 2003a] J.J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao. Distributed group
management for track initiation and maintenance in target localization applications. In
Proc. of the 2nd workshop on Information Processing in Sensor Networks, April 2003.

[Liu et al., 2003b] J.J. Liu, J. Reich, and F. Zhao. Collaborative in-network processing for
target tracking. J. of Applied Signal Processing, April 2003.

210

BIBLIOGRAPHY

[Liu et al., 2004] J.J. Liu, J. Liu, M. Chu, J.E. Reich, and F. Zhao. Distributed state rep-
resentation for tracking problems in sensor networks. In Proc. of the 3nd workshop on
Information Processing in Sensor Networks, April 2004.

[Lorincz et al., 2004] Konrad Lorincz, David Malan, Thaddeus R.F. Fulford-Jones, Alan
Nawoj, Antony Clavel, Victor Shnayder, Geoff Mainland, Steve Moulton, and Matt
Welsh. Sensor networks for emergency response: Challenges and opportunities. IEEE
Pervasive Computing, Special Issue on Pervasive Computing for First Response, Oct-
Dec 2004.

[McErlean and Narayanan, 2002] D. McErlean and S. Narayanan. Distributed detection
and tracking in sensor networks. In Proc. of the 36th Asilomar Conference on Signal,
System and Computers, November 2002.

[Metropolis et al., 1953] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller,
and E. Teller. Equation of state calculation by fast computing machines. Journal of
Chemical Physics, 21:1087–1092, 1953.

[Morefield, 1971] C. L. Morefield. Application of 0-1 integer programming to multitarget
tracking problems. IEEE Trans. Automatic Control, 22(3):302–312, June 1971.

[Mosca, 1995] Edoardo Mosca, editor. Optimal, Predictive, Adaptive Control. Prentice-
Hall, New Jersey, 1995.

[Motwani and Raghavan, 1995] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, New York, 1995.

[Nekovee, 2005] M. Nekovee. Ad hoc sensor networks on the road: the promises and
challenges of vehicular ad hoc networks. In Workshop on Ubiquitous Computing and
e-Research, Edinburgh, UK, May 2005.

[Nilim and Ghaoui, 2004] A. Nilim and L. El Ghaoui. Algorithms for air traffic flow man-
agement under stochastic environments. In Proc. of American Control Conference,
2004.

[Nilsson and Bernhardsson, 1997] J. Nilsson and B. Bernhardsson. LQG control over a
Markov communication network. In Proc. of the 36th IEEE Conference on Decision
and Control, Dec. 1997.

[Oh and Sastry, 2005a] Songhwai Oh and Shankar Sastry. A polynomial-time approxima-
tion algorithm for joint probabilistic data association. In Proc. of the American Control
Conference, Portland, OR, June 2005.

211

BIBLIOGRAPHY

[Oh and Sastry, 2005b] Songhwai Oh and Shankar Sastry. Tracking on a graph. In Proc.
of the Fourth International Conference on Information Processing in Sensor Networks,
Los Angeles, CA, April 2005.

[Oh and Sastry, 2006] Songhwai Oh and Shankar Sastry. Distributed networked control
system with lossy links: State estimation and stabilizing communication control. In
Proc. of the 45th IEEE Conference on Decision and Control, San Diego, CA, Dec. 2006.

[Oh et al., 2004] Songhwai Oh, Stuart Russell, and Shankar Sastry. Markov chain Monte
Carlo data association for general multiple-target tracking problems. In Proc. of the 43rd
IEEE Conference on Decision and Control, Paradise Island, Bahamas, Dec. 2004.

[Oh et al., 2005] Songhwai Oh, Luca Schenato, and Shankar Sastry. A hierarchical
multiple-target tracking algorithm for sensor networks. In Proc. of the International
Conference on Robotics and Automation, Barcelona, Spain, April 2005.

[Oh et al., 2006a] Songhwai Oh, Inseok Hwang, and Shankar Sastry. Distributed multi-
target tracking and identity management. Journal of Guidance, Control, and Dynamics,
2006. accepted.

[Oh et al., 2006b] Songhwai Oh, Stuart Russell, and Shankar Sastry. Markov chain Monte
Carlo data association for multi-target tracking. IEEE Trans. Automatic Control, 2006.
submitted.

[Oh et al., 2007] Songhwai Oh, Luca Schenato, Phoebus Chen, and Shankar Sastry. Track-
ing and coordination of multiple agents using sensor networks: system design, algo-
rithms and experiments. Proceedings of the IEEE, 2007. to appear.

[Oh, 2003] Songhwai Oh. Multiple target tracking for surveillance. Technical Report
UCB/ERL MO3/54, Univ. of California, Berkeley, 2003.

[Olfati-Saber and Murray, 2004] R. Olfati-Saber and R. M. Murray. Consensus problems
in networks of agents with switching topology and time-delays. IEEE Trans. Automatic
Control, 49(9):1520–1533, 2004.

[Pakzad et al., 2005] Shamim N. Pakzad, Sukun Kim, Gregory L. Fenves, Steven D.
Glaser, David E. Culler, and James W. Demmel. Multi-purpose wireless accelerome-
ters for civil infrastructure monitoring. In Proc. of the 5th International Workshop on
Structural Health Monitoring, Stanford, CA, September 2005.

[Pasula et al., 1999] Hanna Pasula, Stuart J. Russell, Michael Ostland, and Yaacov Ritov.
Tracking many objects with many sensors. In Proc. of the International Joint Conference
on Artificial Intelligence, Stockholm, 1999.

212

BIBLIOGRAPHY

[Pasula, 2003] Hanna Pasula. Identity Uncertainty. Univ. of California, Berkeley, CA,
Ph.D. Thesis, Computer Science Division, 2003.

[Polastre et al., 2005] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: En-
abling ultra-low power wireless research. In Proc. of the Fourth International Confer-
ence on Information Processing in Sensor Networks, April 2005.

[Poore, 1995] A.B. Poore. Multidimensional assignment and multitarget tracking. Parti-
tioning Data Sets. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 19:169–196, 1995.

[Rabiner, 1989] L.R. Rabiner. A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77(2):257–285, 1989.

[Reid, 1979] D.B. Reid. An algorithm for tracking multiple targets. IEEE Trans. Automatic
Control, 24(6):843–854, December 1979.

[Roberts, 1996] G.O. Roberts. Markov chain concepts related to sampling algorithms. In
W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, editors, Markov Chain Monte Carlo
in Practice, Interdisciplinary Statistics Series. Chapman and Hall, 1996.

[Roecker and Phillis, 1993] J.A. Roecker and G.L. Phillis. Suboptimal joint probabilistic
data association. IEEE Trans. Aerospace and Electronic Systems, AES-29, 2:510–517,
April 1993.

[Roecker, 1994] J.A. Roecker. A class of near optimal JPDA algorithms. IEEE Trans.
Aerospace and Electronic Systems, AES-30, 2:504–510, April 1994.

[Rothblum and Schneider, 1989] U.G. Rothblum and H. Schneider. Scaling of matrices
which have prescribed row sums and column sums via optimization. Linear Algebra
and Its Applications, 114/115:737–764, 1989.

[Roundy et al., 2004] S. Roundy, D. Steingart, L. Frchette, P.K. Wright, and J. Rabaey.
Power sources for wireless networks. In Proc. 1st European Workshop on Wireless
Sensor Networks (EWSN ’04), pages 1–17, Berlin, Germany, January 2004.

[Ryan, 1982] E.P. Ryan. Optimal relay and saturation control synthesys. Peter Peregrinus
Ltd., London, 1982.

[Saccon, 2005] A. Saccon. Minimum time maneuver for nonholonomic car with accelera-
tion constraints: Preliminary results. In 13th Mediterranean Conference on Control and
Automation (MED), Limassol, Cyprus, 2005.

213

BIBLIOGRAPHY

[Schenato et al., 2005] Luca Schenato, Songhwai Oh, and Shankar Sastry. Swarm coordi-
nation for pursuit evasion games using sensor networks. In Proc. of the International
Conference on Robotics and Automation, Barcelona, Spain, 2005.

[Schulz et al., 2001] D. Schulz, W. Burgard, D. Fox, and A.B. Cremers. Tracking multiple
moving targets with a mobile robot using particle filters and statistical data association.
In Proc. of the IEEE International Conference on Robotics and Automation, 2001.

[Shannon, 1948] C.E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:623–656, October 1948.

[Sharp et al., 2005] Cory Sharp, Shawn Schaffert, Alec Woo, Naveen Sastry, Chris Karlof,
Shankar Sastry, and David Culler. Design and implementation of a sensor network
system for vehicle tracking and autonomous interception. In Proc. of the 2nd European
Workshop on Wireless Sensor Networks, pages 93–107, January 2005.

[Shi et al., 2005] Ling Shi, Michael Epstein, Abhishek Tiwari, and Richard M. Murray.
Estimation with information loss: Asymptotic analysis and error bounds. In Proc. of the
44th IEEE Conference on Decision and Control, Seville, Spain, Dec. 2005.

[Shim et al., 2003] D.H. Shim, H.J. Kim, and S.S. Sastry. Decentralized reflective model
predictive control of multiple flying robots in dynamic environment. In Proc. of IEEE
Conf. on Decision and Control, Las Vegas, 2003.

[Shin et al., 2003] J. Shin, L. Guibas, and F. Zhao. A distributed algorithm for managing
multi-target identities in wireless ad-hoc sensor networks. In Proc. of the 2nd workshop
on Information Processing in Sensor Networks, April 2003.

[Sinkhorn, 1967] R. Sinkhorn. Diagonal equivalence to matrices with prescribed row and
column sums. American Mathematical Monthly, 74:402–405, 1967.

[Sinopoli et al., 2003] B. Sinopoli, C. Sharp, S. Schaffert, L. Schenato, and S. Sastry. Dis-
tributed control applications within sensor networks. IEEE Proceedings Special Issue
on Distributed Sensor Networks, November 2003.

[Sinopoli et al., 2004] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan,
and S. Sastry. Kalman filtering with intermittent observations. IEEE Trans. Automatic
Control, 49(9):1453–1464, 2004.

[Sinopoli et al., 2005] Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kamesh-
war Poolla, and Shankar Sastry. Optimal control with unreliable communication: the
tcp case. In Proc. of the American Control Conference, Portland, OR, June 2005.

214

BIBLIOGRAPHY

[Sittler, 1964] R.W. Sittler. An optimal data association problem on surveillance theory.
IEEE Trans. Military Electronics, MIL-8:125–139, April 1964.

[Szewczyk et al., 2004] Robert Szewczyk, Eric Osterweil, Joseph Polastre, Michael
Hamilton, Alan M. Mainwaring, and Deborah Estrin. Habitat monitoring with sensor
networks. Communication of the ACM, 47(6):34–40, 2004.

[Tabuada and Pappas, 2005] P. Tabuada and G.J. Pappas. Hierarchical trajectory refine-
ment for a class of nonlinear systems. Automatica, 41(4):701–708, April 2005.

[Thrun et al., 1998] S Thrun, W. Burgard, and D. Fox. A probabilistic approach to concur-
rent mapping and localization for mobile robots. Machine Learning and Autonomous
Robots (joint issue), 31(5):1–25, 1998.

[TinyOS, 2006] TinyOS. http://www.tinyos.net/, 2006.

[Tolle, 2005] Gilman Tolle. A network management system for wireless sensor networks.
Master’s thesis, Univ. of California, Berkeley, 2005.

[TR, 2003] 10 emerging tecnology that will change the world. Technology Review,
106(1):33–49, February 2003.

[Valiant, 1979] L.G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189–201, 1979.

[van Rijsbergen, 1979] C.J. van Rijsbergen. Information Retrieval. Butterworths, London,
1979.

[Velenis and Tsiotras, 2005] E. Velenis and P. Tsiotras. Optimal velocity profile generation
for given acceleration limits: Receding horizon implementation. In American Control
Conference (ACC05), pages 2147–2152, Portland, OR, USA, June 2005.

[Vicsek et al., 1995] T. Vicsek, A. Czirok, E. Ben Jacob, I. Cohen, and O. Schochet. Novel
type of phase transitions in a system of self-driven particles. Physical Review Letters,
75(6):1226–1229, 1995.

[Vidal et al., 2002] R. Vidal, O. Shakernia, J. Kim, D. Shim, and S. Sastry. Probabilis-
tic pursuit-evasion games: Theory, implementation and experimental evaluation. IEEE
Transactions on Robotics and Automation, 18(5):662–669, October 2002.

[Wang et al., 2004] H. Wang, K. Yao, G. Pottie, and D. Estrin. Entropy-based sensor se-
lection heuristic for target localization. In Proc. of the 3nd workshop on Information
Processing in Sensor Networks, April 2004.

215

BIBLIOGRAPHY

[Warnake et al., 2002] B.A. Warnake, M.D. Scott, B.S. Leibowitz, L. Zhou, C.L. Bellew,
J.A. Chediak, J.M. Kahn, and B.E. Boserand K.S.J. Pister. An autonomous 16mm3

solar-powered node for distributed wireless sensor networks. In IEEE International
Conference on Sensors 2002, pages 1510–1515, Orlando, FL, USA, June 2002.

[Whitehouse et al., 2004] Kamin Whitehouse, Fred Jiang, Alec Woo, Chris Karlof, and
David Culler. Sensor field localization: a deployment and empirical analysis. Technical
Report UCB//CSD-04-1349, Univ. of California, Berkeley, April 9 2004.

[Whitehouse et al., 2006] Kamin Whitehouse, Gilman Tolle, Jay Taneja, Cory Sharp,
Sukun Kim, Jaein Jeong, Jonathan Hui, Prabal Dutta, and David Culler. Marionette:
Providing an interactive environment for wireless debugging and development. In Proc.
of the International Conference on Information Processing in Sensor Networks: Special
track on Platform Tools and Design Methods for Network Embedded Sensors, 2006.

[Willig et al., 2005] A. Willig, K. Matheus, and A.Wolisz. Wireless technology in indus-
trial networks. Proceedings of the IEEE, 93(6):1130–1151, June 2005.

[Xie and Evans, 1991] X. Xie and R.J. Evans. Multiple target tracking and multiple fre-
quency line tracking using hidden Markov models. IEEE Trans. Signal Processing,
pages 2659–2676, 1991.

[Xu and Hespanha, 2005] Yonggang Xu and Joao Hespanha. Estimation under uncon-
trolled and controlled communications in networked control systems. In Proc. of the
44th IEEE Conference on Decision and Control, Seville, Spain, Dec. 2005.

[Yang and Liu, 1999] Yiming Yang and Xin Liu. A re-examination of text categorization
methods. In Proc. of the ACM SIGIR Conference on Research and Development in
Information Retrieval, 1999.

[Zanasi and Morselli, 2003] R. Zanasi and R. Morselli. Discrete minimum time tracking
problem for a chain of three integrators with bounded input. Automatica, 39:1643–1649,
2003.

[Zhang et al., 2001] W. Zhang, M.S. Branicky, and S.M. Phillips. Stability of networked
control systems. IEEE Control Systems Magazine, 21(1):84–96, 2001.

[Zhang et al., 2004] P. Zhang, C. Sadler, S. Lyon, and M. Martonosi. Hardware design
experiences in zebranet. In In Proc. of the ACM Conference on Embedded Networked
Sensor Systems, November 2004.

[Zhao et al., 2003] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich. Collaborative signal and
information processing: An information directed approach. Proceedings of the IEEE,
91(8):1999–1209, Aug. 2003.

216

INDEX

F1 measure, 66
#P-complete, 39

signal-strength sensor model, 124

aperiodic, 42
association events, 46
association probability, 39, 49
association event, 31

Baum-Welch method, 11, 23
Bayesian, 37
belief matrix, 80, 87
belief vector, 80
binary sensor model, 118, 125
BTnode, 115

canonical path method, 43
Chernoff information, 93
communication graph, 118

DAMTT, see Data Association and Multi-
target Tracking

DARPA, 146
data association, 114
Data Association and Multi-target Tracking,

80, 81, 86
data association, 29
deferred logic, 38
detection-likelihood, 126
direct passage connected, 10
distributed multi-target identity management,

77, 80

distributed multi-target tracking and identity
management, 79

distributed networked control system, 159
distributed networked sensing and control sys-

tems, 5
DMIM, see distributed multi-target identity

management
DMTIM, see distributed multi-target track-

ing and identity management
DNCS, see distributed networked control sys-

tem

entropy, 88
ergodic theorem, 42
eXtreme Scaling Mote, 148

false-detection-likelihood, 126
frequentist, 38
fully polynomial randomized approximation

scheme, 53

general DNCS dynamic model, 161
geometric programming, 176
Gibbs sampling, 41
global observability, 111

hidden Markov model, 9
HMM, see hidden Markov model

Identity and Track Fusion, 80, 89
Identity Management, 80, 86
identity management, 76
identity-mass-flow, 78, 82, 88

217

INDEX

IM, see Identity Management
iMote, 115
interacting multiple models, 45
Intrinsyc Cerfcube, 115
irreducible, 42
ITF, see Identity and Track Fusion

joint probabilistic data association, 39, 44,
46, 48, 113

JPDA, see joint probabilistic data associa-
tion

k-matching, 47
Kalman filter, 161
Kullback-Leibler distance, 94

linear bottleneck assignment, 137
linear programming, 174
linear–Gaussian models, 44
LochNess, 112, 115

MAC, see multi-agent coordination
MAP, see maximum a posteriori
Markov chain Monte Carlo, 40, 41
Markov chain Monte Carlo data association,

40, 44, 57, 75, 112
matching, 47, 83
maximum a posteriori, 12, 37
maximum edge loading, 44
MCMC, see Markov chain Monte Carlo
MCMCDA, see Markov chain Monte Carlo

data association
mean square stable, 172
measurement validation, 46
MEMS, see micro-electromechanical sensors
Metropolis-Hastings, 41
MHT, see multiple hypothesis tracking
micro-electromechanical sensors, 1, 157
minimum mean square error, 38
minimum-time control, 131
mixing matrix, 82

mixing time, 43, 53
MMSE, see minimum mean square error
MSF, see multi-sensor fusion module
MSS, see mean square stable
MTF, see multi-track fusion module
MTT, see multi-target tracking module
multi-agent coordination, 115
multi-scan, 38
multi-scan MCMCDA, 57, 58
multi-sensor fusion module, 115, 119
multi-target tracking module, 115, 128
multi-target tracking problem, 28
multi-track fusion module, 115, 121, 130,

134
multiple hypothesis tracking, 38, 56, 64, 75,

113

NCS, see networked control system
nearest-neighbor filter, 37, 39, 114
negative binomial, 119
NesC, 149
NEST, see Network Embedded Systems Tech-

nology
Network Embedded Systems Technology, 146
networked control system, 157
NNF, see nearest-neighbor filter
NP-hard, 39

online MCMCDA, 62, 63, 82, 130
optimal Bayesian filter, 40

particle filters, 44, 45
passage connected, 10
passage connectivity graph, 10
passive infrared, 146, 149
path follower, 115
path planner, 115
PC104, 115
PEG, see pursuit evasion game
periodic, 42
PIR, see passive infrared

218

INDEX

precision, 66
proposal distribution, 42
pursuit evasion game, 6, 110, 146

recall, 66
robust minimum time-to-capture control, 135

scan, 28
sensor network, 1
Shannon information, 88, 90
signal-strength sensor model, 118
simple DNCS dynamic model, 161
simple path, 43
single-scan, 38, 44
single-scan Bayesian filter, 44
single-scan MCMCDA, 50
single-scan MCMCDA filter, 49
Sinkhorn algorithm, 88
stabilizing communication control, 171
Stargate, 115

Telos B mote, 148
Tier-1 node, 115, 127
Tier-2 node, 115, 127, 130
time-to-capture, 120, 123, 131, 133
TinyOS, 149
total variation distance, 43
track, 28
Trio mote, 148

u.a.r., see uniformly at random
uniformly at random, 60

Viterbi algorithm, 9, 12

219

	Contents
	Introduction
	Sensor Networks
	Distributed Networked Sensing and Control Systems
	Overview of the Thesis

	Distributed Tracking in Sensor Networks
	Problem Formulation
	Optimal Distributed Tracking Algorithm
	Pruning
	Robustness
	Non-disjoint Sensing Regions
	Simulation Results on Multiple Object Tracking
	Issues with Tracking Multiple Objects in Sensor Networks
	Summary

	General Multi-target Tracking Problems
	Problem Formulation
	Probabilistic Model

	Markov Chain Monte Carlo Data Association
	Markov Chain Monte Carlo
	Single-scan MCMCDA
	Single-scan Bayesian Filter
	Single-scan MCMCDA Filter
	Analysis
	Simulation Results

	Multi-scan MCMCDA
	Multi-scan MCMCDA Algorithm
	Online MCMCDA
	Simulation Results

	Summary

	Distributed Multi-target Tracking and Identity Management
	A System Architecture of Distributed Multi-target Tracking and Identity Management
	Data Association and Multi-target Tracking (DAMTT)
	Mixing Matrix
	Local Information

	Distributed Multi-target Identity Management (DMIM)
	Identity Management (IM)
	Identity and Track Fusion (ITF)

	Simulation Results
	Two-sensor Scenario
	Seven-sensor Scenario

	Summary

	Lochness: A Real-time Control System for Sensor Networks
	Related Work in Target Tracking using Sensor Networks
	Problem Formulation and Control System Architecture
	Sensor Network and Sensor Models
	Agent Dynamics and Coordination Objective

	Control System Implementation
	Multi-sensor Fusion Module
	Multi-target Tracking and Multi-track Fusion Modules
	Multi-agent Coordination Module

	Simulation Results
	Sensing Range
	Sensor Localization Error
	Transmission Failures
	Communication Delays
	An Example of Surveillance with Sensor Networks

	Experiments
	Platform
	Live Demonstration

	Summary

	Distributed Networked Control Systems
	Distributed Networked Control Systems with Lossy Links
	Exact Kalman Filtering for DNCSs
	KF for Simple DNCS
	KF for General DNCS

	Approximate Kalman Filtering for DNCSs
	Lower-bound KF for General DNCS
	Upper-bound KF for General DNCS

	Convergence
	Simulation Results
	Stabilizing Communication Control
	Summary

	Conclusions
	Proofs of Theorems in Chapter 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Corollary 2

	Proofs of Theorems in Chapter 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	Proofs of Theorems in Chapter 7
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11

	Bibliography
	Index

