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Abstract. Lazy linear hybrid automata (LLHA) model the discrete
time behavior of control systems containing finite-precision sensors and
actuators interacting with their environment under bounded inertial de-
lays. In this paper, we present a symbolic technique for reachability anal-
ysis of lazy linear hybrid automata. The model permits only linear flow
constraints but the invariants and guards can be any computable func-
tion. We present an abstraction hierarchy for LLHA. Our verification
technique is based on bounded model checking and k-induction for reach-
ability analysis at different levels of the abstraction hierarchy within an
abstraction-refinement framework. The counterexamples obtained dur-
ing BMC are used to construct refinements in each iteration. Our tech-
nique is practical and compares favorably with state-of-the-art tools, as
demonstrated on examples that include the Air Traffic Alert and Colli-
sion Avoidance System (TCAS).

1 Introduction

A hybrid system is a dynamical system which exhibits both discrete and continu-
ous behavior. Hybrid automata [4] have proved to be useful mathematical struc-
tures for modeling systems comprising discrete transition systems interacting
with continuous dynamical systems. However, it is clear that in any implemen-
tation of a hybrid automaton, the state of the dynamical system reported to the
discrete controller are digitized with finite precision by sensors, and the output
signals of the controller transmitted to its actuators are also of finite precision.
Further, the controller can only observe continuous state variables at discrete
time points. Hence, it is somewhat unrealistic to assume that the controller can
interact with its environment continuously and with infinite precision.

The inherent discrete nature of a controller of a hybrid system has led to
recent efforts [15, 2, 3, 1] toward studying the discrete time behavior of hybrid
systems. A similar argument in favor of focusing on discrete time behavior is
presented by Henzinger and Kopke [11]. Lazy linear hybrid automata(LLHA) [2,
3] models the discrete time behavior of hybrid systems having finite precision
and bounded delays in actuation and sensing. Further, their definition of LLHA
allows nonlinear invariants, guards and resets. However, the discrete behavior in
this model depends on the sampling frequency of the controller as well as the
precision of variables, and hence, these representations are very large and any



enumerative analysis would not be feasible for systems of appreciable size and
complexity.

In this paper, we present a symbolic technique for reachability analysis of
lazy linear hybrid automata. We make the following novel contributions:

1. On the theoretical side, we present an abstraction hierarchy for LLHA that
can be used for reachability analysis within a counterexample-guided abstraction-
refinement framework.

2. We give an implementation of a symbolic model checker for LLHA based
on bounded model checking and k-induction that operates at any level of
abstraction.

3. We demonstrate the scalability of our methods in comparison to other state-
of-the-art tools on examples such as Automated Highway Control System
(AHS) and the Air Traffic Alert and Collision Avoidance System (TCAS).

2 Related Work

PHAver (Polyhedral Hybrid Automaton Verifyer) [10] is a tool for verifying
safety properties of hybrid systems. It uses on-the-fly over-approximation to
handle affine flows by iterative partitioning of the state space. It cannot handle
non-linear invariants or guards.

The discrete hybrid automata underlying the HYSDEL tool [15] is formed by
the connection of a finite state machine with a switched affine system through an
interface. Our work is similar to HYSDEL in its considering an inertial interface
between the digital and the continuous components of the hybrid system. Unlike
our symbolic approach, HYSDEL uses numerical simulation for analysis. Also,
our technique allows guards and invariants that use any computable function.

HSolver [16, 8] allows general constraints over variables as invariants and
guards. It uses interval arithmetic to check whether trajectories can move over
the boundaries in a rectangular grid. Our technique uses SAT-based decision
procedures for finite-precision arithmetic to do a symbolic analysis instead of an
enumerative analysis. Further, invariants and guards in LLHA can be constraints
over variables as well as over rates of the change of variables unlike the models
allowed in HSolver. We illustrate the utility of such invariants and guards with a
practical example of Air Traffic Alert and Collision Avoidance System (TCAS).

Another closely related tool is HybridSAL [19, 18], which constructs discrete
finite state abstractions for hybrid systems using predicate abstraction. The
tool uses decision procedures and the SAL explicit state model checker. Our
approach performs abstraction over the domain of variables, and uses symbolic
model checking based on bit-vector decision procedures.

The examples used in this paper have been well-studied; for details on pre-
vious case studies, we refer the reader to the relevant references on TCAS [14,
13] and AHS [9, 12].



3 Lazy Linear Hybrid Automata

Definition 1. A finite precision lazy linear hybrid automaton(LLHA) [3] is
a tuple (X,V, init, f low, inv, E, jump,Σ,D, ε, B, P ). The components of LLHA
are as follows:

– Variables : A finite ordered set X = {x1, x2, . . . , xn} of continuous variables.

– Control modes : A finite set V of control modes.

– Initial conditions : A labeling function init that assigns an initial condition
to each control mode v ∈ V . The initial condition is a predicate over the
variables in X.

– Flow conditions : A labeling function flow which assigns a flow condition to
each control mode v ∈ V . flow(v) is required to be a convex linear predicate
over the rate of change of variables, that is, Ẋ. Such a flow condition can be
made rectangular by simplification [4]. If rates of change Ẋ satisfy the flow
condition flow(s), then we write Ẋ |= flow(s).

– Invariant condition : A labeling function inv that assigns an invariant condi-
tion to each control mode v ∈ V . The invariant condition inv(v) is a convex
predicate over the variables in X ∪ Ẋ.

– Control switches : A set E of edges (v, v′) from a source mode v ∈ V to a
target mode v′ ∈ V . A function update associates a variable assignment to
each control switch.

– Jump conditions : A labeling function jump that assigns a jump condition
to each control switch e ∈ E. A jump condition from the control mode i to
j, ψ(s,s′) is a predicate over the variables in X ∪ Ẋ.

– Delay parameters : D = {g, δg, h, δh} is the set of delay parameters such that
0 ≤ g ≤ g + δg < h ≤ h + δh ≤ P , where h denotes the sensing delay, g
denotes the actuation delay and P is the sampling interval of the controller.

– Precision : εi is the precision of measurement of variable xi.

– Range : Bi = [Bimin
, Bimax

] is the range of the variable xi.

The lazy semantics of hybrid automata [2, 3] means that if a control mode
switch took place at time Tk, then the delay in actuating a change in flow lies
between [Tk + g, Tk + g+ δg]. Similarly, a control decision made at time Tk+1 is
based on the values of variables read by the controller at some time in the interval
[Tk+h, Tk+h+δh]. The parameters δg and δh represent the bounded uncertainty
in actuation and sensing delay respectively. Since the sampling frequency of any
implementation of a hybrid automata is always finite, we focus on the discrete
time behavior of the hybrid automata.

The precision εi depends on the accuracy of the sensors measuring xi from
the continuous dynamical system. Guards and state invariants are evaluated on
the values of the xi variables rounded based on εi. The parameter B reflects the
range of values which can be taken by a state variable associated with a fixed
width register. Unlike the conventional definition of linear hybrid automata [11],
invariants and guards in LLHA can be any computable function.



Definition 2. A configuration of the hybrid automata, with n continuous vari-
ables, is a n+1-tuple, c = (s, x1, x2, . . . , xn) where s ∈ V is the control mode,
x1, x2, . . . , xn is the valuation of the continuous variables of the hybrid automata.

The semantics of a hybrid automaton describes its evolution in terms of
change in configuration. We use the notation c+ α to denote the configuration
in which continuous state variables are incremented by α. Also, we extend the
order relation on the continuous variables to configurations. If for each xi in c
and corresponding x′i in c′, if xi ≤ x

′
i, we write c ≤ c′.

We define a symbolic collection of configurations as a state of the hybrid
automaton and describe the hybrid automaton evolution in terms of change in
state. This definition is used in Section 5 to present the bounded model checking
algorithm.

Definition 3. A state of the hybrid automaton is a pair (v, φ) consisting of a
control mode v ∈ V and a predicate φ over the variables X. We identify that the
state of a hybrid automaton can change in two ways - flow or jump.

– flow: The changed state due to flow after time T is φT , defined as

φT = ∃Ẋ {(φ ∧ inv(s))[X ← X + ẊT ] ∧ Ẋ |= flow(s) ∧ inv(s)}. 1

– jump: If (s, φ) is state of a system, and (s, s′) is a control switch such that
φ |= jump(s, s′), then the state of the system can change to (s′, φ′) such that
if update(s,s′) was the update function over Y ⊆ X,

φ′ = (φ ∧ inv(s) ∧ ψ(s,s′))[Y ← update(s,s′)(Y )].

A state s2 = (v, φ2) is reachable from s1 = (u, φ1) if and only if there is a
sequence of flow or jump transitions from s1 to s2.

We now use these definitions to present a hierarchy of abstractions of lazy
linear hybrid automata.

4 Hierarchical Abstraction

We detail the theory underlying our hierarchical abstraction technique below.
Agrawal and Thiagarajan [2, 3] use two fundamental quantities in their anal-

ysis. The fundamental time interval is ∆ = G.C.D of {P, g, δg, h, δh}. The corre-

sponding abstraction quantum is Γ = G.C.D of
⋃

i

{εi/2, B
min
i , Bmax

i , V in
i , ẋi∆}.

The quantities ∆ and Γ also play a central role in what follows.

Abstraction. We begin with basic definitions on how abstraction is performed.
For ease of presentation, all variables are abstracted in the same way.

Definition 4. QΠ is a surjection from the continuous variables to integers us-
ing abstraction quantum Π = 2kΓ for some integer k. That is,
QΠ : R→ R, and QΠ(xi) = kiΠ iff xi = kiΠ+πi, where ki ∈ Z and 0 ≤ πi < Π.

1 Ẋ denotes
R T

0
Ẋ(t)dt/T , which satisfies the invariants because they are convex.



A configuration cd = (sd, xd
1, x

d
2, . . . , x

d
n) is a Π-abstraction of a concrete config-

uration c = (s, x1, x2, . . . , xn) iff sd = s and xd
i = QΠ(xi).

As before, an abstract transition has two components: flow and jump. The
flow is simply the evolution of the system in discrete time steps of duration ∆.
The definition of jump remains the same as for LLHA.

While performing the above abstraction on configurations/states, we must
ensure that state invariants and guards are also correspondingly abstracted. This
must be done in order to ensure that flow and jump transitions that are feasible
in the concrete LLHA continue to be feasible in the abstract transition system,
at the possible cost of introducing additional (spurious) behaviors.

The invariants or guards can be expressed as a boolean combination of
atomic predicates in negation normal form, where each predicate is of the form
f(x1, x2 . . . , xn) ≤ b where b ∈ Q.
If Φ is an invariant or guard, then Φ = fbool(c1, c2, . . . , cn) where the constraint
ci is fi ≤ bi,
where fbool represents a boolean combination of its parameters.

Each predicate in the abstract invariant or guard can be abstracted using the
monotonicity of f with respect to each variable xi over the range [QΠ(xi), QΠ(xi+
Π)], that is, fxi

= δf
δxi

is of the same sign over the range of interest. In particu-
lar, all polynomials which are linear in each variable, are always monotonic with
respect to each variable.

In order to define abstract state invariants and guards, we first describe
how to construct abstract inequalities using the above observation about well-
behaved invariants and guards. Without loss of generality, let us assume that
f(x1, x2 . . . , xn) ≤ b be an inequality such that its partial derivatives with respect
to each variable is of the same sign over the range of interest [QΠ(xi), QΠ(xi +
Π)]. Its conservative abstraction is the relaxed inequality

c′i ≡ f(k1, k2 . . . , kn) ≤ b′

where b′ = QΠ(b+Π) and ki = QΠ(xi) if fxi
≥ 0

= QΠ(xi +Π) if fxi
< 0

This abstraction rounds up or down each variable to the nearest multiple ofΠ
depending on whether the function f decreases or increases with increase in the
variable. The constant b is always rounded up. All assignments to the variables
which satisfied the earlier constraint also satisfy the relaxed constraint. Hence,
this is an overapproximation of the original constraint. The intuition behind
the following definition of abstract guards and invariants is to relax the atomic
constraints so that if Φ(x1, x2, . . . , xn) denotes a state invariant or guard, then
the corresponding abstracted invariant or guard is Φa(k1, k2, . . . , kn) such that

∀x1, x2, . . . , xn [Φ(x1, x2, . . . , xn) =⇒ ∃k1, k2, . . . , kn Φ
a(k1, k2, . . . , kn)]

If Φ(x1, x2, . . . , xn) = fbool(f1 ≤ b1, . . . , fn ≤ bn) is the invariant or guard,
the abstract state invariant or guard is defined as
Φa(k1, k2, . . . , kn) = fbool(c

′
1, c

′
2, . . . , c

′
n)

where the relaxed inequalities c′i are obtained from fi ≤ bi as described above.



We illustrate the above technique for obtaining abstract invariants and guards
described above using an example. Let 267(x− 35)/x ≤ 150 be an invariant. It
abstraction when Γ is 1 and Π is 25 = 32, would be 8((k − 2)/k) ≤ 5. The
solutions for the invariant are x ≤ 32×267/117, that is, with Γ = 1, the feasible
values of x are x ≤ 80. Now, the solutions of the abstract invariant are k ≤ 6,
that is, the abstraction allows x < 32k = 192. Thus, this relaxation results into
an upper approximation of the behavior of the hybrid automaton.

As before, the abstract state (s2, φ
d
2) is reachable from (s1, φ

d
1) if there exists

a sequence of flow or jump transitions from (s1, φ
d
1) to (s2, φ

d
2) in the abstract

hybrid automata.
If Π is the quantum used for abstraction by the surjection Q, then the cor-

responding obtained transition system is called Π-transition system. It can be
noted that the Π-transition system obtained from an LLHA does not simulate
or bisimulate the LLHA in general. We examine this transition system for the
special case that Π = Γ and we will later augment this transition system to
construct an over-approximation of the LLHA for Π = 2kΓ , k ≥ 1.

Prior Results. It has been shown [3] that there is a bisimulation relation
between the Γ -transition system and the original LLHA. The results are sum-
marized in Theorem 1.

Theorem 1. [3] Let a configuration of hybrid automata be c = (s, x1, x2, . . . , xn)
and its Γ -abstract configuration be cd = (s,QΓ (x1), QΓ (x2), . . . , QΓ (xn)). A con-
figuration c′ is reachable from c iff QΓ (c′) = c′d where c′d is reachable from cd

in Γ -transition system.

Let xmax and xmin be the maximum and minimum values that can be at-
tained by any continuous variable. The state space size of the Γ -transition sys-
tem is O(22n(xmax−xmin

Γ )n), that is, exponential in the number of continuous
variables. This huge state space makes it impractical to do any enumerative
reachability analysis.

Our Results. We now define an over-approximation of an LLHA called the
k-abstraction (of the LLHA).

Definition 5. A k-abstraction (k ≥ 1) of a lazy linear hybrid automaton is an
augmentation of a Π-transition system of that automaton such that the following
additional conditions are satisfied:

– Π = 2kΓ .
– If ẋ = αΓ/∆ is a rate of change allowed by flow(s) for some location s in

the Π-abstract transition system, then the following two rates of change are
allowed in location s in the k-abstraction: b( α

2k )cΠ/∆ and d( α
2k )eΠ/∆.

The 0-abstraction is defined as the Γ -transition system.
Note that the rates are integral multiples of Γ/∆. The intuition behind the

second condition is to add behaviors to the abstraction so that even if the config-
uration has been “rounded down” in performing abstraction, it can still evolve



“far enough.” For example, if a variable could have a rate of change 35Γ/∆,
then the 3-abstraction allows rates of change d 3523 e(2

3Γ/∆) and b 3523 c(2
3Γ/∆),

that is, (40Γ/∆) and (32Γ/∆). We show in the following theorem that this leads
to overapproximation of the dynamics of LLHA as expected.

Lemma 1. Let a configuration of hybrid automata be c = (s, x1, x2, . . . , xn) and
its Π-abstraction be cd = (s, k1Π, k2Π, . . . , knΠ), where Πki = QΠ(xi). For all
configurations c′ reachable from c in time T = l∆ in the LLHA, there exists an
abstract configuration c′d reachable from cd in the Π-transition system such that
c′d and c′ are related as follows:

c′d ≤ QΠ(c′) ≤ c′d + lΠ

where QΠ(c′) = (s, k′1Π, k
′
2Π, . . . , k

′
nΠ) with Πk′i = QΠ(x′i) for all i.

Proof. For configuration c = (s, x1, x2, . . . , xn), let ẋ1, ẋ2 . . . , ẋn be the rates of

change of continuous variables satisfying flow(s) and ̂̇x1, ̂̇x2, . . . , x̂n be the rates
of change of continuous variables satisfying flow(ŝ) where ŝ is a predecessor
state of s, that is, (ŝ, s) ∈ E. Let c′ be a configuration reachable from c. In case
of change due to reset of variables at jump, the above lemma follows due to the
adjustment to guards and invariants. We prove the above lemma for the case
where the change is effected due to flow evolution.

Since, the relation ≤ for configurations is defined in terms of the ordering
of individual variable, we consider an arbitrary variable in the rest of the proof
below. If xi is the value of the variable in c and x′i is the value in c′ after time
T such that the flow rate switched after an actuation delay of t, then
x′i = xi + ̂̇xit+ ẋi(T − t)
Using the definition of Γ and ∆,
xi = (m2k + n)Γ + γi,
̂̇xi∆ = (2kp′ + q′)Γ ,
ẋi∆ = (2kp+ q)Γ ,
where 0 ≤ n < 2k, 0 ≤ γi < Γ , 0 ≤ q′ < 2k, 0 ≤ q < 2k.

So, x′i = (m2k + n)Γ + γi + (2kp′ + q′) Γ
∆ t+ (2kp+ q) Γ

∆ (l∆− t)

= (m2k + n)Γ + γi + (2k(p′ − p) + (q′ − q)) Γ
∆ t+ (2kp+ q)lΓ

Thus, x′i = (m+ pl)2kΓ + (n+ ql)Γ + γi + (2k(p′ − p) + (q′ − q)) Γ
∆ t.

Since 0 ≤ t < T in the above equation and 2kΓ = Π , x′i lies in the interval

– [(m+ pl)Π, (m+ (p′ + 1)l + 1)Π) if ẋi ≥ ̂̇xi

– [(m+ p′l)Π, (m+ (p+ 1)l + 1)Π) if ̂̇xi ≥ ẋi

So, QΠ(x′i) lies in the interval

– [(m+ pl)Π, (m+ (p′ + 1)l)Π ] if ẋi ≥ ̂̇xi

– [(m+ p′l)Π, (m+ (p+ 1)l)Π ] if ̂̇xi ≥ ẋi

The value of ith variable in any configuration c′d reachable from cd in the
Π-transition system, x′di lies in



– [(m+ p′l)Π, (m+ pl)Π ] if ẋi ≥ ̂̇xi

– [(m+ pl), (m+ p′l)] if ̂̇xi ≥ ẋi

Thus, for any x′i, there exists x′di such that x′di ≤ QΠ(x′i) ≤ x
′d
i +lΠ . Using the

same argument for each variable independently, the lemma immediately follows.
ut

Lemma 1 provides the intuition behind Definition 5. Note how the con-
struction of k-abstraction from Π-transition system uses the augmented flow
to eliminate the lΠ factor in the above lemma. The allowed increment of Π/∆
in flow values in k-abstraction can capture states reachable in T = l∆ upto
l∆ × Π/∆ = lΠ more than the states captured in Π-transition system. We
formally state this below.

Theorem 2. Let a configuration of hybrid automata be c = (s, x1, x2, . . . , xn)
and its abstraction be cd = (s,QΠ(x1), QΠ(x2), . . . , QΠ(xn)), where Π = 2kΓ .
If a configuration c′ is reachable from c and QΠ(c′) = c′d, then c′d is reachable
from cd in the k-abstraction.

Using reasoning exactly similar to the one used in Lemma 1, we can prove
the hierarchy of k-abstractions presented below.

Lemma 2. Let a configuration of k-abstraction be
c = (s,QΠ(x1), QΠ(x2), . . . , QΠ(xn)), where Π = 2kΓ .

Its abstraction in k̃-abstraction, where k̃ ≥ k

c̃ = (s,Q eΠ(x1), Q eΠ(x2), . . . , Q eΠ(xn)) where Π̃ = 2
ekΓ .

If a configuration c′ is reachable from c in k-abstraction, then

– QΠ′(c′) = c̃′ where Π ′ = 2
ek−kΓ

– c̃′ is reachable from c̃ in k̃-abstraction.

Proof. We use similar notations as in Lemma 1 and put ki = QΠ(xi) and

k̃i = Q eΠ(xi).

Let k̃ − k = d for some d > 0, then ki = (m2d + n)Π ,
̂̇
ki∆ = (2dp′ + q′)Π ,

k̇i∆ = (2dp+ q)Π and T = l∆, where 0 ≤ n < 2d, 0 ≤ q′ < 2d, 0 ≤ q < 2d.

Also, xi = ki2
k + αkΓ = k̃i2

ek + αekΓ , where 0 ≤ αk < 2k and 0 ≤ αek < 2
ek.

So, xi = (m2d + n)2kΓ + αkΓ (using ki = (m2d + n))

= m2
ekΓ + n2kΓ + αkΓ (k̃ = k + d)

Since n ≤ 2d − 1 and αk ≤ 2k − 1, so n2k + αk ≤ (2d − 1)2k + 2k − 1, that is,

n2k + αk ≤ 2
ek − 1 < 2

ek.

It immediately follows that m2
ekΓ = k̃i = Q eΠ(xi) and n2k +αk = αek = Q eΠ(αek).

Similarly, p2
ekΓ = Q eΠ(ẋi) and p′2

ekΓ = Q eΠ( ̂̇xi).

The evolution for k-abstraction would be

k′i = ki +
̂̇
kit+ k̇i(T − t)



So, k′i = (m2d + n)Π + (2dp′ + q′)Π t
∆ + (2dp+ q)Π (l∆−t)

∆
= (m2d + n)Π + (2d(p′ − p) + (q′ − q))Π t

∆ + (2dp+ q)lΠ
= (m+ pl)2dΠ + (n+ ql)Π + (2d(p′ − p) + (q′ − q))Π t

∆ .

Since 0 ≤ t < T , k′i lies in the interval

– [(m+ pl)2dΠ, (m+ (p′ + 1)l + 1)2dΠ) if k̇i ≥
̂̇ki

– [(m+ p′l)2dΠ, (m+ (p+ 1)l + 1)2dΠ) if
̂̇
ki ≥ k̇i.

QΠ′(k′i) lies in

– [(m+ pl)Π̃,m+ (p′ + 1)lΠ̃] if k̇i ≥
̂̇
ki

– [(m+ p′l)Π̃,m+ (p+ 1)lΠ̃] if
̂̇
ki ≥ k̇i

Using m2
ekΓ = k̃i, p2

ekΓ =
˜̇
ki and p′2

ekΓ =
˜̇̂
ki obtained above QΠ′(k′i) lies in

– [(k̃i + ˜̇kil), k̃i + (
˜̇̂
ki + 1)l] if k̇i ≥

̂̇ki

– [(k̃i +
˜̇̂
kil), k̃i + ( ˜̇ki + 1)l] if ̂̇ki ≥ k̇i

Thus, QΠ′(k′i) = k̃i. Similar arguments for all the variables leads to the
lemma QΠ′(c′) = c̃′. ut

Definition 6. We define a partial order relation � between transition systems.
If all the states reachable from the initial states in a transition system T have
their corresponding abstract states reachable from the abstract initial states in
T ′, then T � T ′.

The hierarchy Theorem 3 follows from lemma 2 and Theorem 1.

Theorem 3. k-abstraction � k′-abstraction if 0 ≤ k < k′. Thus, k-abstractions,
where k ≥ 0, form an hierarchical abstractions of the lazy linear hybrid automata.
Further, 0-abstraction is the Γ -abstract transition system which bisimulates the
lazy linear hybrid automata.

The abstraction hierarchy presented above can be effective in practice in
containing the state space explosion problem with the Γ -abstraction; while the
latter is a finite bisimulation quotient of the lazy linear hybrid automata but has
a huge state space size of O(22n(xmax−xmin

Γ )n). Theorem 4 presents the relative
reduction in state space size with k.

Theorem 4. Let Sk be the state space size of k-abstraction and S ′
k of k′-abstraction

where k′ > k. Then S′
k/Sk = 2n(k′−k).

Theorem 3 provides a framework for use of progressive abstraction of lazy
linear hybrid automata to develop a sound and complete abstraction-refinement
paradigm for reachability analysis of LLHA. We demonstrate with our experi-
mental results that the progressive abstraction can yield a significant reduction
in model checking time.



5 Model Checking k-abstractions of LLHA

Our implementation of a symbolic verifier of LLHA is based on three techniques:
bounded model checking, “k-induction”, and an overall counterexample-guided
abstraction-refinement [7] framework. We describe each of these below.

Bounded model checking. We describe how the BMC formula is constructed,
starting with a useful definition.

Definition 7. A frame (F ) is a tuple (K, t1, t2, t, l) where K = (k1, k2 . . . kn)
represent the variables, t1 is the sensing delay, t2 is the actuation delay t2, t is
the time before transition to next frame, l denotes the control mode.

The initial state of the hybrid automata is the predicate Init(F0) ≡ (l =
vstart) ∧ φ0(K), where vstart denotes the initial control mode and φ0 the initial
predicate over continuous variables.

The transition T is defined as a predicate over the previous frame (Fm−1)
and the present frame (Fm). It is a disjunction of all possible state switches (Gij)
and flow evolutions (Ei).

T (Fm−1, Fm) ≡
∨

(i,j)∈E

Gij(Fm−1, Fm) ∨
∨

i∈V

Ei(Fm−1, Fm)

The switch predicates Gij and the time evolution predicates Ei are them-
selves defined in terms of three other quantities: Ii is a predicate that tests
satisfiability of state invariant invi at control mode i, predicate gij tests satis-
fiability of guard ψij , and ehi deals with time evolution in control mode i with
predecessor mode h.

Let us consider two functions - compensated for sensing delay (csd) and
compensated for actuation delay (cad). These map a set of valuations of the
continuous variables (K) to a set of possible corresponding valuations obtained
after compensating for sensing and actuation delay respectively.

csd(K, i, t1) =

{(k1 − k̇1t1, . . . , kn − k̇nt1)|(k̇1, k̇2, . . . k̇n) |= flow(i)}.

cad(K,h, i, t2, t) =

{(k1 + (k̇1h − k̇1i)t2 + k̇1it, . . . , kn + (k̇nh − k̇ni)t2 + k̇nit)|(k̇1h, k̇2h, . . . k̇nh) |= flow(h)

and (k̇1i, k̇2i, . . . k̇ni) |= flow(i)}.

Let the current frame be Fm = (Km, tm1 , t
m
2 , t

m, lm) and the previous frame
be Fm−1 = (Km−1, tm−1

1 , tm−1
2 , tm−1, lm−1).

Ii(Fm) ≡ (i = lm) ∧ ∃K′[K′ ∈ csd(Km, lm, tm1 ) ∧ invi(K
′)]

ehi(Fm−1, Fm) ≡ (i = lm−1 ∧ i = lm) ∧Km ∈ cad(Km−1, h, i, tm−1
2 , tm)



gij(Fm−1, Fm) ≡ (i = lm−1 ∧ j = lm)∧∃K′[K′ ∈ csd(Km−1, lm−1, tm−1
1 )∧ψij(K

′)]

The switch and evolution predicates can now be defined as follows:

Gij(Fm−1, Fm) ≡ Ii(Fm−1) ∧ Ij(Fm) ∧ gij(Fm−1, Fm) ∧ [Km = updateij(K
m−1)]

Ei(Fm−1, Fm) ≡ Ii(Fm−1) ∧ Ii(Fm) ∧ [
_

h∈pred(i)

ehi(Fm−1, Fm)]

where pred(i) denotes the set of predecessor locations of i.

This completes the definition of the transition predicate.

Let the state to be checked for reachability be (sr, φr). If reachability analysis
is used to check safety properties, then (Sr, φr) would be the error state violating
the safety property, Then, the predicate reach(F ) ≡ (l = sr ∧φr(K)) represents
the error state, that is the target state for reachability analysis.

If d is the number of steps to which we want to check the k-abstraction for
reachability of (sr, φr), we need to check for the satisfiability of

BMCd ≡ Init(F0) ∧
d̂

n=1

(T (Fn−1, Fn)) ∧ reach(Fn).

If BMCd is satisfied, then the target state (sr, φr(K)) is reachable in k-abstraction
and the frames F0, F1, . . . , Fd gives a trace from the start state to the target state.

Further, it is sufficient to do BMC for p steps to prove that a target state
is not reachable where p is the diameter of the transition system. If BMCp is
unsatisfiable, then the target state can not be reached in the transition system.
Since the number of reachable states of the transition system provides an over-
estimate of the diameter, it is sufficient (though unrealistic) to do BMC for
number of steps equal to the state space size of the k-abstraction.

Induction. We now describe an induction procedure to guarantee the unreach-
ability of a state in a model. This can be used to prove the satisfaction of a
safety property which can be expressed as a reachability query.

If N steps of BMC are found to be not satisfiable, that is, BMCN is unsat-
isfiable, then we test the satisfiability of

¬reach(F0) ∧

N+1∧

k=1

(T (Fk−1, Fk)) ∧ reach(FN+1).

If the above is unsatisfiable, no further bounded model checking is required
and all the states of the model are guaranteed to satisfy the property. Based on
this, we present below a BMC algorithm along with use of induction to check
for safety properties in a LLHA. We define the following predicates to be used
in the algorithm.

N j(Fj) ≡ Init(F0)∧

j∧

k=1

T (Fk−1, Fk) and Sj+1(Fj+1) ≡ ¬reach(F0)∧

j+1∧

k=1

T (Fk−1, Fk)
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Fig. 1. Symbolic reachability analysis based on BMC and induction

If at any step of the BMC, we find that N j(Fj) is not satisfiable, it means
that there does not exist a path of length j or more, and hence we can terminate
with the output that the model satisfies the safety property.

The bounded model checking predicate and the induction step predicate are
BMCj ≡ N j(Fj) ∧ reach(Fj) and INDj ≡ Sj+1(Fj+1) ∧ reach(Fj+1)

The sub-routine INDBMC is presented in Figure 1. The technique is sound
and complete due to the results of the preceding section; we present a detailed
discussion of the abstraction-refinement framework in the next section.

6 Counterexample guided refinement of k-abstractions

We now describe an automated CEGAR [7, 6] technique presented in Figure 2
which exploits the abstraction hierarchy presented in section 4. An initial coarse
abstraction can be arbitrary chosen as k0-abstraction depending on the size of
the state space.

In case the target state is not reachable in k0-abstraction, the target state
is also not reachable in the LLHA by Theorem 2. In case the target state is
reachable in LLHA, then BMC will yield a path p0 from the initial state to the
target state in the k0-abstraction. This needs to be validated with respect to
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Fig. 2. Reachability analysis of LLHA using iterative refinement

the 0-abstraction. If the abstract path p0 found in k0-abstraction is present in
0-abstraction, then the target state is reachable in the LLHA too. If it is not
present in 0-abstraction, then we select a more finer refinement ki-abstraction
which refutes the abstract spurious path. The same technique is repeated for
progressively finer abstractions until the target states is shown to be unreachable
or a valid path to the target sate is found.

The key components of this technique are counter-example validation tech-
nique and automated refinement step. The path obtained at any iteration is a
satisfying assignment to BMCj , it can be validated on 0-abstraction by doing
a BMC on BMCj to identify the first spurious transition. If BMCj has a sat-
isfying assignment for 0-abstraction too, then the path is valid. The hierarchy
of abstractions allows the use of binary search to find the smallest value of l
such that the l-abstraction refutes the path identified in the coarser abstraction.
The complete technique for reachability analysis of LLHA based on iterative
refinement and bounded model checking is presented as a flowchart in Figure 2.



In the rest of the section, we describe these two key components in more
detail. The validation of counterexample obtained on ki-abstraction is done by
using BMC on the 0-abstraction. We also describe a binary search based re-
finement technique which exploits the linear hierarchy of abstractions to find
the coarsest abstraction that refutes the spurious path. This ensures that the
increase in state space at every step of iterative refinement is minimal and is
sufficient to refute the spurious paths to the target state. The problem of finding
the coarsest refinement to refute an abstract path is NP-hard [7]. Hence, the re-
finement technique presented below is only a best effort technique and does not
guarantee that the state space requirement at every iteration step is minimum.
This technique only ensures that the ki-abstraction selected at every iteration is
the coarsest of possible k-abstractions.

Using BMC to validate an abstract path: If j steps of BMC were needed
to obtain a counterexample in k-abstraction, then the satisfying assignment to
BMCj is the path from initial state to the target state. This can be validated
with respect to the concrete LLHA by checking the satisfiability of BMC j ≡

Init(F0) ∧

j∧

k=1

T (Fk−1, Fk) ∧ reach(Fj) where the frames Fi have continuous

variables discretized using Γ . This checks the presence of the abstract path in
the 0-abstraction. This check is performed in an incremental manner so that we
can locate the minimum value of j ′ such that N j′

(Fj′ ) can not be satisfied. This
corresponds to finding the first abstract transition in the abstract state which
is spurious. In case no such j ′ exists and BMCj is satisfiable in 0-abstraction
too, then the path is valid and the corresponding assignment can be given as an
evidence of reachability of the target state.

Binary search based automated refinement : In case, the abstract path is found
to be spurious, we need to consider a suitable refinement for the next iteration
which refutes this spurious path. The present abstraction ki contains the spuri-
ous path but the 0-abstraction does not contain any path corresponding to the
spurious path. Since we know that there is a linear hierarchy of k-abstractions,
we can use binary search between 0 and ki to find the smallest value of l such
that l-abstraction refutes the counterexample.

This will need only log(ki) iterations and will yield the smallest k-abstraction
which refutes the spurious path. This can be used in the next iteration of bounded
model checking based reachability analysis.

BMC using iterative refinement : The complete technique for reachability
analysis of LLHA based on iterative refinement and bounded model checking
is presented as a flowchart in Figure 2.

The soundness of this technique is ensured by Theorem 2 and 1. Since, we
start with some initial k0-abstraction and every step involves a progress in re-
finement, we take at most k0 iterations before terminating.

Theorem 5. The iterative abstraction refinement technique presented in Figure
2 is sound and complete.



At any iteration if we conclude that the target state is never reached by
doing reachability analysis at some ki-abstraction, Theorem 2 guarantees that
our conclusion is correct. If the path found in some k-abstraction is found to be
present in the 0-abstraction, we conclude that the target state is reachable in
LLHA. The correctness of this conclusion is ensured byh Theorem 1.

In every iteration, we either terminate concluding either way or we refine
the abstraction to some finer k-abstraction from k′-abstraction (k′ < k) in the
abstraction hierarchy established in Theorem 3. Since, we start with some finite
k0 as our initial k0-abstraction and every step involves a progress in refinement,
we take at most k0 iterations before terminating.

7 Experiments and Results

In this section, we present the results of experiments on two case studies. All ex-
periments were performed on a workstation with Intel Xeon 3.06 GHz processors
and 4GB RAM.2

Automated Highway Control System: AHS (Figure 3) is an arbiter
which ensures that there is no collision between cars running on a highway
by imposing legal speed ranges. AHS monitors the distance between cars and
switches to recovery mode from cruise mode if there is a possibility of collision.
The legal speeds of cars are then altered to bring the system back to cruise mode.
If there is a collision between the cars then the AHS reaches error mode. We
need to check whether error mode is reachable. This example has being widely
used in literature [9, 12]. We use the description by Jha et al [12] and extend it
to handle inertial delays. We take note of the following features of this example:

1. All constraints in this example are linear and hence, Phaver can be used for
its reachability analysis.

2. The number of locations as well as variables increase linearly with the num-
ber of cars. Thus, we use the number of cars as a parameter to scale the
example.

A set of legal parameter values is: (All distance measures are in km, time is
in hr and all speeds are in km/hr)
α = .002, α′ = .0005, a = 10, rl = 20, b = 30, c = 40, d = 50, e = 60, ru = 70, f =
100
Precision of distance (ε) is 10−5, delay factor g = 1e − 3, h = 5e − 4, the
uncertainties for delay are δg = 5e − 4, δh = 5e − 5 and the sampling is done
with a period of .01. Corresponding to this the required quantization factors are
∆ = 5e− 5 and Γ = 5e− 5.

Thus, safety property to be verified was that the control mode is never the
“error” mode. This model was built in UCLID to employ our technique and was
also analyzed using Phaver to allow us to compare time and space performance.

2 A complete set of UCLID, Phaver or HSolver modules as well as data pertaining to
run-time and memory requirements can be obtained from the first author’s webpage.
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ẋ3 = 0

Fig. 3. Automated Highway Control System with 4 vehicles

In order to compare our results , we exploit the parametric nature of the
example of AHS. We vary the number of cars to observe the variance in perfor-
mance of our technique and Phaver, as the size of the model changes. We point
out certain key observations made during this comparison.

1. Phaver takes more than 10 hours to analyze a model in which there are 15
cars.

2. The growth in time as well as space requirement for Phaver is exponential.
3. Our technique takes less than 2 minutes to analyze a model which has 150

cars.
4. The growth in time for our technique is sub-exponential.
5. The SAT solving time was observed to be less than 1 seconds for number of

cars from 4 to 150. The major component of run time was the model-building
time.

Figure 4 and Table 1 compare the runtime of our technique and that of
Phaver on this example for different number of cars. It shows that our approach
is more scalable than Phaver and hence, can handle AHS with realistic number
of cars. We did not need to use any k-abstraction to obtain our results.

Conclusion from Figure 4: The plot shows that a very reasonable discretiza-
tion based on delay and sampling frequency can make the problem of reachability
much easier to resolve. The subexponential nature of run-time for our technique
upto 15 cars in this plot (the same nature was observed till 150 cars) reflects
an order of magnitude decrease in the run-time requirement from the super-
exponential run-time of Phaver.



Number of cars UCLID total run-time UCLID SAT-time Phaver run-time Phaver memory

4 4.626 0.094 0.20 1424
5 5.685 0.118 0.31 5012
6 6.805 0.150 0.51 5528
7 8.100 0.172 0.92 6332
8 9.170 0.197 1.63 7512
9 10.639 0.225 3.57 9860

10 11.655 0.256 8.17 12608
11 12.990 0.297 27.96 20460
12 14.027 0.332 121.15 32724
13 15.071 0.371 655.36 56280
14 16.707 0.400 4520.35 103372

Table 1. Table comparing results with Phaver (time is in seconds, memory is in KB)
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Further, the bulk of the run-time taken by our technique is used up in building
the model. The time taken to solve the corresponding SAT problems for BMC
and Induction are a very small percentage of total run time. For 150 cars, the
total run time is nearly 120 seconds, but the SAT solving time is of the order of
just 1 second.

Air Traffic Alert and Collision Avoidance System: TCAS is a predic-
tive warning system used for avoiding collision of aircrafts using a sequence of
preventive and corrective resolution advisories. The model for TCAS resolution
used here is similar to the one used by Pappas et al [14]. We make the following
changes to the model to make it more realistic.

1. The TCAS specification [5] uses expected time to collision for detecting colli-
sion threats and not distance between aircrafts used in Pappas et al example



[14]. The max in the constraint avoids division by zero. The k/xr term en-
sures that slow approaches are avoided by triggering threat if xr is small.
This makes the problem harder since these invariants are non-linear. Hence,
LHA tools like Phaver can not be used for this example.

2. We allow the input for speed of aircrafts to be an interval. It is realistic to
expect the speed of aircrafts to be in a range rather than assuming them to
be a constant input.

3. We also allow inertial delays in actuation and sensing.

COMMON DYNAMICS

    RIGHT

CRUISE
LEFT

STRAIGHT
d/(v2 × sin(∆φ)) ≤ t

∧

(xr − k/xr)/max(ε, ẋr) ≤ tnear
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∧
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∨
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∧

d/(v1 × sin(∆φ)) ≥ t

d/(v2 × sin(∆φ)) ≥ t

∨
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∧
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x′
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ṫ = −1

d/(v1 × sin(∆φ)) ≤ t

Fig. 5. Air Traffic Alert and Collision Avoidance System

The parameters used in the experiment were taken from the specifications
in TCAS 2, Version 7 documentation [20] and TCAS-201 simulator [17] speci-
fications. The time-zone considered for advisory is 30− 120 seconds (tnear and
tfar, respectively). The distance d is taken to be 15 nautical miles (that is, 27.78
kms.). The range of speed for aircraft is allowed to range between 100 knots to
510 knots (nearly 200 km/hr to 1000 km/hr). It may be noted that the maximum
speed of Airbus 380 is Mach 0.88 (nearly 505 knots). The LLHA parameters used
in our example are 128µs ≤ g, h ≤ 256µs and ε = 2−15 nautical miles [17].

Table 2 shows the run-times of our model checker on the TCAS example with
different values of k. Most of the run-time is spent in SAT solving (MiniSat).

Phaver cannot handle this example due to non-linear invariants and guards;
HSolver [8] cannot either as the invariants and guards involve flow rates. We ran
HSolver on a simplified model given by Pappas et al [14] but it did not finish
after an hour.



k Runtime (sec) for different angles

∆φ = 30◦ ∆φ = 45◦ ∆φ = 60◦

0 400.50 181.47 177.49
2 300.01 732.24 253.96
4 904.76 136.39 544.97
8 117.25 101.01 55.45
16 27.45 18.21 17.64

Table 2. Runtimes of our model checker for TCAS with varying angles.

Conclusion from Figure 6: In this plot, we illustrate how the run-time varies
for different levels of abstraction. The x-axis represents the value of k in the k-
abstraction. We considered different levels of abstraction for the TCAS example
with different set of parameters (changing the deviation angle). There is an initial
increase in runtime due to addition of extra flows which increase the size of the
SAT instance generated by BMC and induction techniques. The different flows
are represented using disjunction and hence, the resulting SAT instance increases
with increase in possible flows. But there is also a gain due to decrease in the
number of bits required to represent each variable as the level of abstraction
increases. For larger values of k, this decrease in bit-vector encoding offsets the
increase in size due to more possible flows. Thus, the SAT instances for larger
abstractions are easier to solve and take less time as shown by Figure 6.
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8 Future Work

A next step would be extending this technique to handle non-linear flows. We
would also like to extend it to hybrid systems with flow dependence between
the variables. It would also be interesting to explore a combination of predicate
abstraction based techniques with our method to be able to analyze even larger
examples.
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