
Posterior Decoding Methods for Optimization and
Accuracy Control of Multiple Alignments

Ariel Shaul Schwartz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-39

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-39.html

March 28, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Posterior Decoding Methods for Optimization and
Accuracy Control of Multiple Alignments

by

Ariel Shaul Schwartz

B.Sc. (Technion, Israel) 1999

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Lior Pachter, Chair
Professor Dan Klein

Professor Marti Hearst

Spring 2007

The dissertation of Ariel Shaul Schwartz is approved.

Chair Date

Date

Date

University of California, Berkeley

Spring 2007

Posterior Decoding Methods for Optimization and

Accuracy Control of Multiple Alignments

Copyright c© 2007

by

Ariel Shaul Schwartz

Abstract

Posterior Decoding Methods for Optimization and

Accuracy Control of Multiple Alignments

by

Ariel Shaul Schwartz

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Lior Pachter, Chair

Comparative genomics analyses, such as genome annotation, phylogenetic inference,

protein structure prediction and protein function prediction, rely heavily on multi-

ple sequence alignment (MSA), which is essentially a homology prediction problem

at the character level over multiple sequences. Alignments are also crucial in other

settings, including natural language processing, as seen in word alignment in ma-

chine translation, or in the problem of citation entity alignment that is introduced in

this dissertation. Fundamental as it is, MSA is a hard computational problem, and

producing accurate MSAs remains challenging.

In this thesis we develop new posterior decoding based methods for multiple align-

ments of discrete characters. We begin by discussing biological sequence alignment,

and describe a new alignment accuracy measure (AMA), which is based on a metric

for the space of alignments. In the case of pairwise sequence alignment, it is possible

to find an alignment that maximizes the expected AMA value using posterior decod-

ing. We then describe an extension of the pairwise alignment method to MSA using

1

a novel approach that is based on a poset representation of multiple alignments, and

an efficient online topological ordering algorithm. This leads to a sequence annealing

algorithm, which is an incremental method for building MSAs one match at a time.

The sequence annealing algorithm outperforms all existing algorithms on benchmark

test sets of protein sequence alignments. It simultaneously achieves high recall and

high precision, dramatically reducing the number of incorrectly aligned residues in

comparison to other programs. The method can adjust the recall/precision trade off,

and can reliably identify homologous regions among protein sequences. Finally, we

demonstrate that similar posterior decoding methods can be applied to the problem of

multiple word alignment of citation sentences (citances) in the bioscience literature.

We extend the definition of AMA to many-to-many word alignments, and develop a

posterior decoding algorithm for multiple citance alignment.

Professor Lior Pachter
Dissertation Committee Chair

2

To Abba.

i

Contents

Contents ii

List of Figures iv

List of Tables vii

Acknowledgments x

1 Introduction 1

2 Hidden Markov Models and posterior decoding 8

2.1 Hidden Markov Models . 8

2.2 HMM inference algorithms . 10

2.3 State and transition posterior decoding 12

2.4 Multiple sequence HMMs . 15

2.4.1 The alignment problem . 15

2.4.2 Multiple sequences . 16

2.5 Discussion . 18

3 Alignment Metric Accuracy 19

3.1 Metric based alignment accuracy . 23

3.2 AMA based alignments . 28

3.2.1 Maximal expected accuracy alignments 28

3.2.2 The AMAP algorithm . 29

3.3 Results . 33

3.3.1 Performance of existing programs on the SABmark datasets . 33

ii

3.3.2 Controls for multiple alignment experiments 35

3.3.3 Performance of the AMAP algorithm 44

3.4 Discussion . 48

4 Multiple Alignment by Sequence Annealing 50

4.1 Alignment posets . 53

4.2 Sequence annealing . 56

4.3 Results . 65

4.4 Summary and Future Directions . 72

5 Multiple Alignment of Citation Sentences 74

5.1 Citances . 75

5.2 Multiple citance alignments . 79

5.3 MCA utility and loss functions . 82

5.4 Probabilistic model for MCA . 92

5.4.1 Conditional random fields for word alignment 93

5.4.2 The posterior decoding algorithm for MCA 95

5.5 Data sets . 97

5.6 Feature engineering . 98

5.7 Results . 102

5.8 Discussion . 106

6 Conclusions 108

Bibliography 110

A Proof that the triangle-inequality holds for the Braun-Blanquet co-
efficient 116

iii

List of Figures

3.1 Example of a global pairwise alignment of DNA sequences. . 21

3.2 Example of a reference alignment and a predicted alignment
of two protein sequences. 28

3.3 Example of four different alignments of two unrelated protein
sequences. Light characters represent correctly aligned positions, and
dark characters represent incorrectly aligned positions. Since the two
sequences are unrelated all aligned positions are wrongly aligned, and
all gapped positions are correctly aligned. The fraction of characters
that are correctly aligned (light) represent an intuitive notion of accu-
racy. 30

3.4 Correlation between the AMA of CLUSTALW (as judged by
reference alignments in SABmark), and average similarity to
alignment produced by other programs. Each dot in the plot
corresponds to one CLUSTALW alignment in the SABmark Twilight-
FP and Superfamilies-FP datasets. The x coordinate represents the
average similarity (s) of the CLUSTALW alignment to the alignments
produced by three other programs (MUSCLE, ProbCons, T-Coffee).
The y coordinate represents the Alignment Metric Accuracy (AMA)
of the CLUSTALW alignment as judged by the reference SABmark
alignment. 37

3.5 Comparison of different rankings of the Superfamilies
dataset alignments. The accuracy of the metric-based ranking
[AMA(top(Msim

G , ψsim, u)); blue] is compared to that of an opti-
mal ranking [AMA(top(Msim

G , ψR, u)); red], and a random ranking
of the alignments that have been picked by the first part of the
alignment-control protocol [AMA(top(Msim

G , ψrand, u)); purple]. In
addition an optimal ranking of the best original alignments is shown
[AMA(top(Mmax

G , ψR, u)); green], as well as the similarity threshold
used at each filtration level [ψsim; orange]. 42

iv

4.1 Example of progressive alignment. (a) A guide tree is constructed
based on the sequence similarity of the four sequences. (b) The two
most similar sequences are aligned. (c) A second pair of sequences are
aligned according to the guide tree. (d) The two alignments are aligned
together to construct the final MSA. 52

4.2 Alignment posets. (a) A set of four sequences, an alignment poset
together with a linear extension, and a global multiple alignment. The
function from the set of sequence elements to the alignment poset that
specifies the multiple alignment is not shown, but is fully specified by
the diagram on the right. For example, the second element in the first
sequence is σ1

2 = G, and ϕ(σ1
2) corresponds to the fourth column of

the multiple alignment. (b) A different linear extension for the same
alignment poset results in a different (but equivalent) global multiple
alignment. (c) The null alignment of the same four sequences. 54

4.3 A general sequence annealing algorithm. 57

4.4 Online topological ordering and alignment posets. (a) During
the sequence annealing process, the next candidate merge operation of
columns 5 and 8 is drawn from the heap. (b) The new edge is added
to the poset, and the online topological ordering procedure updates
the current linear extension. (c) Since no cycle are found during the
online topological ordering procedure the two columns are merged. (d)
The next candidate edge connects columns 2 and 7. However, the
online topological ordering procedure locates a cycle, and the edge is
discarded. 59

4.5 The first step of the sequence annealing algorithm with weight
function w1

tgf on four protein sequences. (a) Starting from the
null alignment the first candidate column pair with weight of ≈ 10000
is fetched from the heap. (b) The two columns are merged, adding
δ ≈ 2 to the scoring function. Affected columns in the global multiple
alignment are rearranged based on the new liner extension. 63

4.6 Later steps in the sequence annealing of four protein se-
quences with weight function w1

tgf . (a) At temperature γ ≈ 52
different pairs of sequences are aligned at different parts of the multi-
ple alignment. (b) At temperature γ ≈ 2.5 all fully conserved columns
are aligned. (c) The final alignment. The sequence annealing process
stops at temperature γ ≈ 1.04 with total scoring function improve-
ment of 959.55 over the null alignment. Next candidate column pair
has weight < 1, which can only decrease the scoring function. 64

4.7 Comparison of the recall/precision trade-off of different align-
ment programs with AMAP on the SABmark datasets with
no false-positives (a) Results averaged over alignments. (b) Results
averaged over all positions. 69

v

4.8 Comparison of the recall/precision trade-off of different align-
ment programs with AMAP on the SABmark datasets with
false-positives (a) Results averaged over alignments. (b) Results av-
eraged over all positions. 70

5.1 Example of three unaligned citances. 81

5.2 Example of three normalized aligned citances. Homologous en-
tities are colored the same. Unaligned entities are black. 81

5.3 Calculation of different set-agreement functions on a pairwise
citance alignment. A predicted alignment of normalized citances
(filled squares) is compared to a reference alignment of the same ci-
tances (empty squares). For each word the Uset agreement scores is cal-
culated using six different set-agreement coefficients. 90

5.4 Recall/Precision curve of pairwise citance alignments com-
paring Viterbi to posterior decoding. 103

5.5 Recall/Precision curve of MCAs comparing CRF with poste-
rior decoding to normalized-edit-distance baseline. 105

vi

List of Tables

3.1 Performance of aligners on the SABmark benchmark
datasets. Entries show the average developer (fD), modeler (fM) and
alignment metric accuracy (AMA). Best results are shown in bold.
All numbers have been multiplied by 100. 34

3.2 Total distance (d) and average similarity (s) of different align-
ers on the SABmark dataset. Values below the diagonal show the
total distance (d) between alignments produced by different alignment
programs. Values above the diagonal show the average similarity (s)
between the different alignments. Distance values have been divided
by one million, and similarity values have been multiplied by 100. . . 35

3.3 AMA of alignments picked by the control protocol on the
SABmark datasets. The first four rows show the average AMA of
alignments produced by different alignment programs. The last three
rows show the average AMA of all alignments programs (Average),
of the best alignments for every group (Best), and of the alignments
picked by the control protocol (Picked). AMA values have been multi-
plied by 100. The Wilcoxon signed ranks test was used to measure the
statistical significance of the difference between the picked alignments
and the alignments produced by the four programs (P-values are shown
in parenthesis. Values > 0.05 are not statistically significant). 40

3.4 Statistical evaluation of the metric-based ranking protocol on
the SABmark datasets. For every dataset the number of groups
(L), the Pearson correlation (r) and the Spearman rank correlation (ρ)
are given. The following measures are calculated at different filtration
levels, as well as the means over all levels; the accuracy (average AMA
multiplied by a 100) of the metric-based and optimal rankings, the
percent improvement in AMA of the two rankings compared to the
full set, and the ratio between the percent improvement of the metric-
based ranking compared to the optimal ranking (improvement ratio).
. 43

vii

3.5 Performance of algorithm variants on the SABmark Twilight
Zone set. Entries show the fD, fM , and AMA scores of the Viterbi,
and AMAP alignments with different gap-factor (γ) values on the SAB-
mark Twilight Zone set, which includes 209 alignment groups. The first
three columns show the results using default transition probabilities,
and the last three columns show the results using transition probabili-
ties calculated for each group from the reference alignments. All scores
have been averaged over groups and multiplied by 100. 45

3.6 Performance of algorithm variants on the SABmark Super-
families set. Entries show the fD, fM , and AMA scores of the Viterbi,
and AMAP alignments with different gap-factor (γ) values on the SAB-
mark Superfamilies set, which includes 425 alignment groups. The first
three columns show the results using default transition probabilities,
and the last three columns show the results using transition probabili-
ties calculated for each group from the reference alignments. All scores
have been averaged over groups and multiplied by 100. 45

3.7 Performance of algorithm variants on simulated data. Entries
show the performance of the Viterbi algorithm (Vit), and the AMAP
algorithm with different settings of the gap-factor parameter (0, 1, and
2) using three accuracy measures (fD, fM , and AMA). The first three
columns show the configuration of the pair-HMM parameters ematch
(match emission probability), δ (gap initiation probability) and ε (gap
extension probability), except for the last row for which random un-
related sequences have been aligned. Best results for every parameter
configuration and measure are shown in bold. All numbers have been
multiplied by 100. 46

4.1 Comparison of protein alignment programs on the SABmark
datasets with no false positives. Entries show the average devel-
oper (fD), modeler (fM) and alignment metric accuracy (AMA) scores.
Best results are shown in bold. All numbers have been multiplied by
100. 67

4.2 Comparison of protein alignment programs on the SABmark
datasets with false positives. Entries show the average developer
(fD), modeler (fM) and alignment metric accuracy (AMA) scores.
Best results are shown in bold. All numbers have been multiplied
by 100. 68

viii

5.1 Comparison of different utility function as calculated on the
example in Figure 5.3. The first line shows the values of the six
different coefficients, in addition to recall and precision when using
pairs of indices as the basic set elements. The second line shows the
word-based values of the coefficients when averaged over all word in
Figure 5.3. 90

ix

Acknowledgements

First, I would like to thank my advisors Marti Hearst and Lior Pachter. Marti intro-

duced me to the field of computational biology through our work on an abbreviation

recognition algorithm for bioscience text, which is still being used by many people.

She has been a wonderful advisor, and supported me for most of my graduate studies.

We worked together on many successful text mining problems as part of the BioText

project. I thank Marti for encouraging me to explore other areas of computational

biology. Her many useful comments helped improve the quality of this dissertation.

This dissertation would not have been possible without Lior. He has kindly agreed to

take Gene Myers’ place as my co-advisor when Gene left Berkeley. Since then he has

been a constant inspiration, and his continuous guidance and support lead to most

of the research in this dissertation. In particular I thank Lior for always believing in

me, and pushing me to fulfill my potential.

I thank Dan Klein for serving on my dissertation committee, and for his useful

comments that helped improve my work. Thanks to Gene Myers’ for introducing me

to the field of comparative sequence analysis. Our earlier work on comparative gene

finding led later to the posterior decoding algorithms for alignments that are presented

here. I thank Bob Edgar and Michael Brudno for many enlightening discussions

during Gene’s group meetings, in one of which I first learned about posterior decoding

methods.

I thank the members of the BioText group. Special thanks are due to Preslav

(Presley) Nakov for many fruitful collaborations throughout the years. I thank Anna

Divoli for helping with the citance annotations, and for bringing her positive energy

to our group. Many thanks to Gaurav Bhalotia for many collaborations during my

first years at graduate school, but more importantly for being a true friend.

I thank Phil Blunsom and Trevor Cohn for sharing their CRF-based alignment

x

program with me, and Chuong (Tom) Do for making is alignment program ProbCons

available as open source.

I thank Mani Narayanan, Sourav Chatterji, Colin Dewey, Anat Caspi, Nick Bray,

and Sagi Snir for many useful discussion on alignments and other aspects of compar-

ative genomics.

I thank Hanoch for staying such a good friend in spite of the long geographical

distance, and my brother Haggai and his wife Michal for always being there for me.

Many thanks are due to my mother, who not only raised me to be who I am, but has

always kept helping out and supporting me. Most importantly, I thank my wife and

best friend Reut for always believing in me, and for joining me on this long journey.

Lastly, I thank my two wonderful children for being a true source of joy, and for

always helping to remind me what is most important in life.

xi

Chapter 1

Introduction

The alignment problem is to identify related characters among multiple sequences,

where the relationship may be evolutionary, semantic, or otherwise determined by

the origin of the sequence. In this work we study alignment for sequences of discrete

characters, motivated by the problem of identifying evolutionary related portions of

biological sequences, and semantically related entities of scientific text. By taking a

unified view of the alignment problem, we find that a common set of tools are useful

for these two distinct alignment applications. Our methods are therefore applicable

to a wide range of pairwise and multiple alignment problems that arise in different

fields of computer science.

Alignment is a fundamental tool in comparative analysis of structured sequen-

tial data. In particular, pairwise and multiple alignments are a core component of

many algorithms and systems in different fields of computer science such as compara-

tive genomics and statistical machine translation. A standard approach for analyzing

multiple sequences in such fields is to first align the sequences, and then use the align-

ment as an input to a higher level analysis tool, such as a program for comparative

1

functional annotation of genomics sequences, a phylogenetic analysis algorithm, or a

statistical machine translation program.

While the input alignments provide only an estimate of the true alignments and

can contain errors, in most cases such errors are not modeled in the higher level sys-

tems, and the input alignments are treated as essentially correct. The performance

of comparative analysis systems can be very sensitive to the quality of their input

alignments. It is therefore essential to optimize alignment quality, as well as control

and predict its accuracy. In this work we describe posterior decoding based meth-

ods for direct optimization and accuracy control of multiple alignments of biological

sequences, and citation sentences.

Improving the accuracy of alignments requires carefully defined accuracy mea-

sures. We first review the standard performance measures for binary classification

tasks. A binary classifier predicts, for every entity, if it belongs to the positive or neg-

ative class. For example, a spam email detection program should classify incoming

spam email messages as positives, and legitimate messages as negatives.

Given a set of input entities and a reference classification, the set of predicted

classifications can be partitioned into the following four subsets. True positives (TP)

are the entities that are correctly classified as positives (spam classified as spam). True

negatives (TN) are the entities that are correctly classified as negatives (non-spam

classified as non-spam). False positives (FP) are the entities that are incorrectly

classified as positives (non-spam classified as spam). False negatives (FN) are the

entities that are incorrectly classified as negatives (spam classified as non-spam).

Note that the positive class of the reference classification includes TP and FN, and

the negative class includes TN and FP, while the positive class of the predicted

classification includes TP and FP, and the negative class includes TN and FN.

The following performance measures are defined using the above sets. Sensitivity

2

or recall is defined as TP / (TP + FN), and is the proportion of correctly classified

entities out of the reference’s positive class (the likelihood that a spam message is

classified as spam). Positive prediction value (PPV) or precision is defined as TP

/ (TP + FP), and is the proportion of correctly classified entities out of the pre-

dicted positive class (the likelihood that a message classified as spam is in fact spam).

Specificity is defined as TN / (TN + FP), and is the proportion of correctly classified

entities out of the reference’s negative class. (the likelihood that a non-spam message

is classified as non-spam). Negative prediction value (NPV) is defined as TN / (TN

+ FN), and is measures the proportion of correctly classified entities out of the pre-

dicted negative class (the likelihood that a message classified as non-spam is in fact

non-spam). Accuracy is defined as (TP + TN) / (TP + TN + FP + FP), and is the

proportion of correctly classified entities out of all the entities (the likelihood that a

message is classified correctly as spam or non-spam). Since specificity is sometimes

confused with PPV we use the terms recall and precision rather than sensitivity and

PPV throughout this paper in order to avoid ambiguity.

There is an inherent trade-off between some of the different performance measures.

In particular, such trade-off exists between recall and precision, since predicting more

entities as positives can increase recall, but is likely to lead to lower precision, and vice

versa. In our spam detection example, tuning a spam-detection program to increase

recall might reduce precision since more non-spam emails are likely to be classified

as spam, while increasing precision might hurt recall since more spam message are

likely to be classified as non-spam. In general, it is useful to be able to control such a

trade-off. While for some applications a higher recall is preferred, other applications

might require better precision, and others might need a balance between the two.

For example, a spam detection program should typically have very high precision,

since it is better to mis-classify some spam messages as non-spam rather than classify

(potentially important) messages as spam. In other words, in this case the loss

3

associated with a FP error is much greater than the loss from a FN error. The loss

associated with each error can change with the task, and the preference of the user.

For example, in document retrieval tasks it is sometimes more important to achieve

high recall when the number of relevant documents is small.

The standard performance measures for binary classification cannot be applied di-

rectly to more complex learning problems such as alignments, since predicting align-

ments is not a binary classification task, and the standard positive and negative

classes are not well defined. One solution is to use a 0–1 loss function, which assess

a loss of one unit for every alignment that is not predicted to be exactly the same as

the reference alignment. The problem with such approach is that in most practical

cases almost any program is very unlikely to predict the exact same alignment as the

reference alignment. While some predicted alignments can be much more similar to

the reference alignment than others, the 0–1 loss function does not distinguish be-

tween them. Another alternative is to treat the alignment problem as a set of many

smaller binary classification tasks and then use standard performance measures such

as precision and recall. This is typically done by treating every potential pair of

positions as a single entity. The recall of a predicted alignment is then defined as

the proportion of pairs that are correctly aligned in the predicted alignment out of

all the pairs that are aligned in the reference alignment. The precision of a predicted

alignment is the proportion of pairs that are correctly aligned in the the predicted

alignment out of all the aligned pairs in that alignment.

While defining recall and precision of alignments is useful, there is a need for a

single accuracy measure that can give a balanced assessment of recall and precision.

In Chapter 3 we define a new accuracy measure for sequence alignment that is based

on a metric for the space of alignments. We term this measure alignment metric

accuracy (AMA) and show that it has several noted advantages over current alignment

performance measures. We also demonstrate that since AMA is based on a metric it

4

can be used to predict the accuracy of sequence alignments even when the reference

alignment is unknown. In Chapter 5 we extend the definition of AMA to multiple

alignment of citation sentences.

Viterbi decoding is the most widely used inference method in machine learning.

It finds the most likely explanation for the observed data given a probabilistic model,

which is equivalent to maximizing the expected 0–1 loss. While the 0–1 loss is typ-

ically not used to evaluate the performance of alignment algorithms for the reasons

stated above, most alignment algorithms use Viterbi decoding (or its non-probabilistic

equivalents) to produce their predicted alignments. This is not necessarily the best

strategy when there are many alternative alignments with similar probability. An

alternative is to find the alignment that maximizes the expected accuracy. This can

be done using posterior decoding methods instead of Viterbi. In Chapter 2 we intro-

duce the concept of posterior decoding and show how it can be applied on the most

common probabilistic model for sequential data—Hidden Markov Models (HMMs).

In Chapter 3 we show how posterior decoding can be applied to the problem of pair-

wise sequence alignment. In particular we show how given a probabilistic model for

pairwise alignment, the alignment with maximal expected AMA score can be found.

Additionally, we show that posterior decoding can enable direct control of the preci-

sion/recall trade-off using a single parameter. We demonstrate on simulated data and

benchmark datasets that the posterior decoding algorithm produces more accurate

alignments than Viterbi, and it can much better handle unalignable sequences. In

addition, we demonstrate the unique feature of our posterior decoding approach for

control of the recall/precision trade-off.

Multiple sequence alignment is a hard problem that cannot be solved directly.

Given a scoring function for multiple alignments, alignment algorithms utilize heuris-

tics for searching the space of alignments for a solution that maximizes the value of

that function. The most common heuristic is progressive alignment, which builds the

5

alignment along a guide tree. This approach has several limitations. In particular, it

tends to be very sensitive to errors that are introduces in the first step of the search

procedure. Posterior decoding provides an infrastructure for a much more refined ex-

ploration of the alignment space. In Chapter 4 we describe a new multiple sequence

alignment algorithm, which we call sequence annealing. Sequence annealing builds

multiple alignments using minimal steps in the alignment space. Unlike progressive

alignment, sequence annealing allows to first align positions that are more likely to

correctly align. It produces a range of alignments, from high precision to high recall

alignments. Sequence annealing is implemented efficiently using a poset representa-

tion of multiple alignment, and an online topological ordering algorithm. Results on

benchmark datasets demonstrate that sequence annealing performs better than exist-

ing state of the art alignment algorithms, and show how the recall/precision trade-off

can be controlled.

In Chapter 5 we extend the posterior decoding methods we have developed for

biological sequence alignment to a new problem—multiple alignment of citation sen-

tences. Citation sentences (citances) are a rich and relatively unexplored resource of

comparative data for text mining. Much like sequence analysis, higher level systems

will need an aligned input in order to utilize the citance resource. While sequence

alignment is a one-to-one alignment, citance alignment, is a many-to-many align-

ment. We show how AMA can be extended to support many-to-many alignments,

and show how other alternative utility functions compare with AMA. In the case of

citance alignment two parameters are required to control the recall/precision trade-

off. We develop a posterior decoding algorithm for multiple citance alignment, and

demonstrate its performance on a hand curated dataset.

The main contributions of this work are summarized in Chapter 6. In particular,

we show that the general framework that combines a careful definition of accuracy

together with posterior decoding methods for optimization and control of the expected

6

accuracy can be applied to other problems related to sequence and word alignment.

Additionally, we discuss several open research directions for extending the current

work.

7

Chapter 2

Hidden Markov Models and

posterior decoding

This chapter demonstrates the concept of posterior decoding on Hidden Markov

Model (HMM), which is the most widely used probabilistic model for structured se-

quential data. We first compare several decoding methods for single sequence HMMs,

and then describe multiple sequence HMMs and the alignment problem that is asso-

ciated with them.

2.1 Hidden Markov Models

Probabilistic models of structured sequential data, such as biological sequences

and sentences, need to model the dependencies between the labeling of different

positions. For many applications modeling such dependencies using a Markov as-

sumption is an acceptable approximation to the true dependencies. Hidden Markov

Models (HMMs) were first introduced by Baum and Petrie (1966), and later became

a very popular model for problems in speech recognition, biological sequences anal-

8

ysis, natural language processing, and almost any other field that requires modeling

sequential data (see Rabiner (1989) for a comprehensive review of HMMs). HMMs

and their various extensions model dependencies between contiguous positions with

a relatively simple model, but are not well suited for modeling long-distance effects,

such as symmetry effects in RNA folding problems. Despite their limitations HMMs

are probably the most commonly used generative models for sequential data.

Let σ , σ1σ2 · · ·σn be an observed string of length n. Following the notation of

Durbin et al. (1998) we define π , π1π2 · · ·πn to be a sequence of hidden states of

length n or a path. The HMM model is parameterized by the transition probabilities

akl, and the emission probabilities ek(b)

akl = P (πi = l|πi−1 = k) (2.1)

ek(b) = P (σi = b|πi = k). (2.2)

The joint probability of an observed string σ and a hidden path π is

P (σ, π) = a0π1

n∏
i=1

eπi
(σi)aπiπi+1

, (2.3)

where 0 is used to label both the begin and end states, and πn+1 = 0.

There are many extensions to the basic HMM model, of which we mention two.

The basic HMM model is also called 1st order HMM, because the hidden states form

a 1st order Markov chain. In an nth order HMM each state and emitted character

depend on the previous n states. An nth order HMM with K states can be represented

by a 1st order HMM with Kn states.

In many applications it is desirable to model the probability of staying in the

same state for a certain duration (length). In 1st order HMMs self transition proba-

bilities can be used, but they can only model geometric length distributions. When

a geometric distribution is inappropriate, more complex length distributions can be

modeled by introducing additional states with identical labels (Durbin et al., 1998).

9

Generalized HMMs model length distributions explicitly, in the expense of increased

time and space complexity.

Our work is concerned mainly with inference (or decoding) techniques, and not

much with parameter estimation. We therefore only briefly mention the standard

HMM parameter estimation techniques, and refer the reader to Durbin et al. (1998)

for their detailed descriptions. When labeled training data is available the HMM

parameters can be learned directly using maximum likelihood estimation (MLE) or

alternatively with maximum a posterior (MAP) estimation. When only unlabeled

or partially labeled data is available the Baum-Welch algorithm (Baum et al., 1970),

which is a special case of the expectation maximization (EM) algorithm (Dempster

et al., 1977), is typically used.

2.2 HMM inference algorithms

Given a sequence σ and a trained HMM model the goal of an inference algorithm is

to predict a path π with minimal (maximal) expected loss (utility). The loss or utility

functions can be defined differently for different types of tasks and user preferences,

but they should encode the cost associated with different types of errors.

The most widely used inference algorithm for HMMs (as well as other probabilistic

models) is the Viterbi algorithm (Viterbi, 1967). Viterbi is a dynamic programming

algorithm that finds the most likely path given a trained HMM and an input sequence.

π∗ = argmax
π

P (σ, π) = argmax
π

a0π1

n∏
i=1

eπi
(σi)aπiπi+1

. (2.4)

The main recursion equation of the Viterbi algorithm (omitting backtrace pointers,

and initialization and termination conditions) is

vl(i) = el(σi) max
k

(vk(i− 1)akl), (2.5)

10

where vl(i) is the probability of the most probable path ending in state l with obser-

vation σi. While Viterbi is typically viewed as a maximum likelihood algorithm, it

is important to realize which loss function’s expectation Viterbi is minimizing. Pre-

dicting the most likely path is equivalent to minimizing the 0–1 loss function, which

assigns a cost of 1 to any path that is not exactly the same as the true path. Given

the true path πt we define the 0–1 loss of a predicted path πp as

L0−1(π
t, πp) , 1{πt 6= πp}, (2.6)

where 1{·} is an indicator function that evaluates to 1 when the condition · is true,

and to 0 otherwise. Taking the expectation of L0−1 we get

EπtL0−1(π
t, πp) =

∑
πt

P (πt|σ)1{πt 6= πp}

= 1− P (πp|σ)

= 1− P (πp, σ)

P (σ)
. (2.7)

It is clear that π∗ minimizes the expression in Equation (2.7).

A simple modification of the Viterbi algorithm leads to the forward algorithm,

which calculates the total probability of a string σ marginalizing over all paths

P (σ) =
∑
π

P (σ, π) =
∑
π

a0π1

n∏
i=1

eπi
(σi)aπiπi+1

. (2.8)

In its main recursion the forward algorithm calculates the forward variables

αl(i) = P (σ1σ2 · · ·σi, πi = l) = el(σi)
∑
k

αk(i− 1)akl, (2.9)

where αl(i) is the probability of σ1 · · ·σi, requiring that πi = l. The Backward algo-

rithm is similar to the forward algorithm, but uses a backward recursion instead. It

calculates the following backward variables

βk(i) = P (σi+1 · · ·σn|πi = k) =
∑
l

aklel(σi+1)βl(i+ 1), (2.10)

11

where βk(i) is the probability of σi+1 · · ·σn given that πi = k. The marginal posterior

probability P (πi = k|σ)—that in the path that generated σ, σi was emitted from

state k—is computed using the forward and backward variables.

P (πi = k|σ) =
P (πi = k, σ)

P (σ)
=
∑
π|πi=k

P (π, σ)

P (σ)
=

αk(i)βk(i)∑
l αl(n)al0

. (2.11)

It is important to notice that P (πi = k|σ) is a marginalized over all possible paths,

and it equals to the probability mass of all paths that emit σi from state k.

2.3 State and transition posterior decoding

Posterior probabilities provide an alternative to the Viterbi algorithm. When

the probability of the most likely path is low, and when many different paths have

probability that is close to the best one, the Viterbi path is not very likely the correct

path. In such cases it is better to use a different loss function than the 0–1 loss, rather

than maximize the probability of predicting the entire path correctly. One alternative

is to define a loss function that is the sum of the 0–1 losses of individual states in the

predicted path. This is also called the Hamming loss (Hamming, 1950).

LHamming(π
t, πp) ,

∑
i

1{πti 6= πpi }. (2.12)

Minimizing the expected hamming loss leads to the following state posterior decoding

path (Durbin et al., 1998),

π̂ = {π̂i : π̂i = argmax
k

P (πi = k|σ)}. (2.13)

One of the problems with the state posterior decoding approach is that it ignores

the structure of the HMM model, and can produce illegal paths, i.e. paths that

include transitions between states k and l for which akl = 0. Even if this problem

is corrected by disallowing such transitions, the posterior decoding approach ignores

12

the dependencies between contiguous states, which are fundamental to HMM based

models.

We propose an extension to state posterior decoding. While Equation (2.11)

defines posterior probabilities over states, it is also possible to define posterior prob-

abilities over transitions between states,

γkl(i) = P (πi = k, πi+1 = l|σ)

=
αk(i)aklel(σi+1)βl(i+ 1)

P (σ)
, (2.14)

τkl(i) =
γkl(i)∑
j γkj(i)

= P (πi+1 = l|πi = k, σ)

=
αk(i)aklel(σi+1)βl(i+ 1)

P (πi = k, σ)

=
αk(i)aklel(σi+1)βl(i+ 1)

αk(i)βk(i)

=
aklel(σi+1)βl(i+ 1)

βk(i)
. (2.15)

γkl(i) is the joint posterior probability that σi is emitted from state k amd σi+1 is

emitted from state l. We term τkl(i) the transition posterior probability from state k

in position i to state l in position i+1 given σ. It is instructive to note that the state

posterior probabilities can be derived from the γ variables by marginalization

P (πi = k|σ) =
∑
l

γkl(i). (2.16)

Another important observation is that the transition posterior probabilities can

be used to find the most likely path π∗, which is typically found using the Viterbi

13

algorithm (2.4)

n∏
i=1

τπi−1πi
(i− 1) =

n∏
i=1

aπi−1πi
eπi

(σi)βπi
(i)

βπi−1
(i− 1)

=
βπn(n)

β0(0)

n∏
i=1

aπi−1πi
eπi

(σi)

=
aπn(0)

P (σ)

n∏
i=1

aπi−1πi
eπi

(σi)

=
P (σ, π)

P (σ)

= P (π|σ), (2.17)

π∗ = argmax
π

P (σ, π)

= argmax
π

P (π|σ)

= argmax
π

n∏
i=1

τπi−1πi
(i− 1). (2.18)

Equations (2.18) and (2.16) show that the γ variables alone can be used to find both

the most likely path π∗, and the state posterior decoding path π̂. They can also be

used to find the path π̈ that maximizes the expected number of correct transitions

π̈ = argmax
π

n∑
i=1

γπi−1πi
(i− 1). (2.19)

Although π̈ is likely a valid path, that is not guarantied. An additional constraint

can be added to (2.19) that will only allow using transitions with positive γ values.

Transition posterior probabilities can also be used to sample paths from the pos-

terior distribution. Starting from the begin state (0) pick a state π1 with probability

τ0π1(1). Continue to sample states in the path with probability τπi−1πi(i). The total

probability of the sampled path π is

n∏
i=1

τπi−1πi
(i− 1).

14

Sampling paths instead of predicting a single path is useful when more than one path

can be true, and it has been applied previously by Cawley and Pachter (2003) to the

problem of comparative prediction of alternative splicing of genes.

Finally, the main advantage of both state and transition posterior probabilities is

that they enable direct computation and optimization of many useful utility functions.

In Chapters 3, 4 and 5 we demonstrate how the expectations of several different utility

and loss functions can be optimized using posterior decoding methods.

2.4 Multiple sequence HMMs

So far we have discussed HMMs for single strings. It is possible to extend the

HMM framework to model multiple related strings. The natural extension of single

sequence HMMs are pair HMMs, which emit pairs of strings (Alexandersson et al.,

2005).

2.4.1 The alignment problem

When each state in a pair HMM emits a pair of characters then both resulting

strings have identical lengths. In such cases the pair HMM is completely equivalent to

the basic HMM, and all the algorithms we have described previously for HMMs can

be used without modification with pair HMMs. However, typically pair HMMs can

have semi-silent states, in which a character is emitted for one of the strings but not

the other. Semi-silent states lead to the alignment problem. Although the generative

model emits pairs of characters, we observe the output as two independent strings.

During inference, it is therefore required to first decide which pairs of characters

should be aligned before these pairs can be assigned to hidden states. It also means

that the total length of the hidden Markov chain is not known, unlike in basic HMMs.

15

An extension of the Viterbi algorithm to pair HMMs with semi-silent states results

in a dynamic programming algorithm that finds the most likely path π∗, which defines

an alignment and the path of hidden states. While the time complexity of the Viterbi

algorithm for single HMMs with K states and pair HMMs with no semi-silent states

is O(nK), it is O(nmK) in the case of a pair HMM for sequences of length n and

m. The alignment problem makes the inference problem quadratic instead of linear

in the total length of the observed sequences.

It is possible to combine the alignment and decoding in one algorithm. However,

when the number of states in the pair HMM is large and when the sequences are long

this solution might not be feasible in practice. An alternative approach is to first

align the two sequences using a simplified pair HMM, and then decode the path of

the more complex model assuming that the alignment is correct. This approach leads

to an algorithm of time complexity O(nm+ (n+m)K). We discuss algorithms that

improve pairwise alignment accuracy using posterior probabilities in Chapter 3.

2.4.2 Multiple sequences

Pair HMMs can be extended to multi HMMs, which emit multiple related strings.

The relationship between the sequences can be modeled using a tree, such as phy-

logenetic trees in the case of genomic sequences, and language trees in the case of

translation lexicons. The issues we have described for pair HMMs grow exponentially

with number of sequences in multi HMMs. The time complexity of aligning n se-

quences of maximum length l using a multi HMM is O(ln). Typically, the number

of states K also grows when modeling multiple sequences. In the general case of

a Cartesian product of HMMs the number of states in the resulting multi HMM is

O(Kn), where K is the number states in the single HMM.

Because of the complexity of the problem, multi HMMs almost always use an

16

existing multiple sequence alignment as their input. Several heuristics are typically

used to produce multiple sequence alignments. Progressive alignment algorithms first

align a pair of sequences, then align a third sequence to the pairwise alignment to

produce a three-way alignment, and so forth until all the sequences are aligned.

One problem with progressive alignment algorithms is that once a subset of se-

quences are aligned their sub-alignment is fixed, and cannot change with additional

evidence from the other sequences. Iterative refinement methods remove a subset of

sequences from an existing multiple sequence alignment, and realign the to the re-

maining aligned sequences. Both these and other heuristics have no guarantee on the

quality of the alignment they produce, however they have been used extensively in

practice to produce alignments that are then used to model more complex problems,

such as gene finding and phylogenetic tree construction. In Chapter 4 we show how

using posterior decoding methods helps to explore the space of multiple alignments

with much more refined steps.

Another way of solving the multiple sequence alignment problem is to avoid using

it in the first place. We propose to combine posterior probabilities calculated from

pair HMMs to combine evidence from all available sequences and then use them to

decode the state path in each sequence separately. As we have shown the γ variables

can be used to calculated π∗, π̂ or π̈. The way γ variables should be combined is still

an open problem. The simplest approach would be to take a weighted average of γ

values for every pair of states in every position

γσ
1

kl (i) =
∑
s

w(σs)γσ
1σs

kl (i). (2.20)

17

2.5 Discussion

Posterior decoding methods have several advantages over Viterbi decoding. Unlike

Viterbi, posterior decoding can be designed to minimize the expectation of a specific

loss function. In the next chapter we show how such loss (or utility) functions can be

defined in the case of pairwise sequence alignmet, and demonstrate the advantages of

posterior decoding over Viterbi.

18

Chapter 3

Alignment Metric Accuracy

Sequence alignment is probably the most basic sequence analysis task, yet it is

still being actively researched more than forty years after the definition of the edit

distance by Levenshtein (1966), and the introduction of the dynamic algorithm for

global alignment of Needleman and Wunsch (1970). This has to do with the fact that

while sequence alignment is a basic component of almost any comparative genomics

analysis, producing accurate alignments is a hard problem.

The tertiary (three dimensional) structures of molecules in living cells, such as

DNA, RNA, and proteins are essential for their function. While knowing the structure

of each molecule would greatly help understand how they interact and perform their

roles, obtaining these structures is still a very slow, expensive, and painstaking task.

On the other hand, obtaining the primary structures of these molecules, which can

be represented as sequences of characters, has become an almost trivial task. It

is therefore not surprising that the amount of data in sequence databases, such as

GeneBank, has been growing exponentially over the past two and a half decades.1

We focus our discussion on alignment of biological sequences; although align-

1http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

19

ments of other types of sequences are also important for problems such as spelling-

correction, and speech recognition. Moreover, while there are different types of

sequence-alignments, such as local alignments, whole-genome alignments, and align-

ments with repeats and rearrangements, we only consider the problem of global-

alignment. We defer the discussion on global multiple sequence alignment to the next

chapter, and concentrate on global pairwise alignment in this chapter.

Since all organisms on earth are part of the Tree of Life, any two organisms have

a common ancestor. Therefore, given two biological sequences, a valid and important

questions is—which pairs of positions in these two sequences are homologous, i.e.

originate from the same position in their common ancestral sequence? In essence, a

sequence alignment is an answer to the above question. It is important to remember

that while the question refers only to homologous positions, it implies that we also

want to know which positions are not homologous. Therefore, given two unrelated

sequences (i.e. sequences that were derived from completely distinct positions in the

common ancestor) a correct answer will be an alignment in which no two positions

are aligned.

More formally, we define pairwise alignment using the notation in Pachter and

Sturmfels (2005). An alignment of a pair of sequences σ1 , σ1
1σ

1
2 · · ·σ1

n and σ2 ,

σ2
1σ

2
2 · · ·σ2

m can be represented by an edit string h over the edit alphabet {H, I,D},

where H stands for homology, I for insertion, and D for deletion. Equivalently, if

An,m is the set of all alignments of a sequence of length n to a sequence of length

m, and h ∈ An,m, then h can be represented by a path in the alignment graph, or a

sequence of pairs of the form (σ1
i �σ2

j), (σ1
i �−), or (−�σ2

j) where the symbol � is used

to indicate the alignment of two characters. Figure 3.1 shows a pairwise alignment

of two DNA sequences ACGTAGC and ACCGAGACC. The edit string of the alignment in

the figure is HHIHIHHIDH.

20

AC-G-TA-GC

ACCGAGAC-C

Figure 3.1. Example of a global pairwise alignment of DNA sequences.

A recent survey on sequence alignment (Batzoglou, 2005) discusses a number of

important problems and challenges that need to be overcome in order to facilitate

large-scale comparative analysis of the multiple genomes currently being sequenced.

Among these, the following two problems are highlighted:

1. “As suggested (Miller, 2000), methods to evaluate alignment accuracy. This

goes at the core of the problem: which regions are alignable, and what is a

correct alignment?”

2. “A definition of alignability – at what point is it no longer possible to do mean-

ingful sequence alignment. Or rather, at what point can one conclude that two

sequences are no longer related?”

Furthermore, the development of “rigorous methods for evaluating the accuracy of an

alignment” and the need for “improved pairwise alignment with a statistical basis”

are singled out as the most pressing challenges for the alignment community. We

address some of these points in this chapter.

Sequence alignments are typically used in computational biology as an input to

higher level comparative analyses of the sequences, such as comparative annotation

of functional elements, like genes, and transcription factor binding sites; phylogenetic

and evolutionary analysis; and reconstruction of ancestral sequences. Such analyses

typically assume the input alignments are correct, without incorporating possible

alignment errors into their models. However, different alignment algorithms, or even

changing parameters of the same algorithms, can produce very different alignments,

especially when the input sequences are evolutionary distant. In this chapter we

21

discuss how the accuracy of pairwise sequence alignments can be optimized directly

using posterior decoding. We also show how the accuracy of alignments can be

estimated when the correct alignment is unknown.

In Section 3.1 we define an alignment metric, and a new accuracy measure, called

AMA, based on this metric. Next, we propose an algorithm which maximizes the ex-

pected AMA value given an underlying probabilistic model for mutation of sequences.

We term this alignment strategy AMAP. The algorithm is explained in detail in Sec-

tion 3.2, where we show that a single parameter we term gap-factor (γ) can be used to

adjust the recall/precision trade-off. A special case of AMAP, where we set γ = 0, is

the Maximal Expected Accuracy (MEA) alignment algorithm introduced in (Durbin

et al., 1998; Holmes and Durbin, 1998) and used in ProbCons (Do et al., 2005), and

Pecan (Paten, 2005).

In Section 3.3 we show how existing algorithms perform when judged using AMA,

and contrast this with the developer score, which is the standard measure used in most

papers (Do et al., 2005; Edgar, 2004; Sze et al., 2005). Since the developer score is a

measurement of recall of aligned pairs, and algorithms have traditionally been judged

by it, we find that existing algorithms are heavily biased in favor of recall, rather than

precision. We show that in extreme cases existing algorithms align large fractions of

completely unrelated sequences. We also see that multiple alignments produced by

different programs differ considerably from each other, even though they may appear

to perform similarly when judged only by the developer score.

In a different application of the alignment metric, we show that in the typical

case where reference alignments are not available for judging the success of multiple

alignment experiments, the metric can be used as a control by measuring the distances

between alignments predicted by different programs.

Finally, we analyze the performance of the new AMAP algorithm, using the SAB-

22

mark dataset (Van Walle et al., 2005) and simulated datasets, and show that AMAP

compares favorably to other programs.

3.1 Metric based alignment accuracy

Two commonly used alignment accuracy measures are the developer (fD) and the

modeler (fM) measures (Sauder et al., 2000). These measures correspond to evaluat-

ing the recall (number of correctly matched pairs divided by the number of matched

pairs in the reference alignment) and precision (number of correctly matched pairs

divided by the number of matched pairs in the predicted alignment) of matched pairs

in the predicted alignment respectively. These measures have several problems. First,

there is an inherent trade-off between recall and precision, and therefore maximizing

one measure typically reduces the other measure. Second, both measures do not ac-

count for gap columns. Blanchette et al. (2004) defined the agreement score, as the

fraction of pairwise columns in the predicted alignment that agree with the reference

alignment. While the agreement score is a single accuracy measure that does con-

sider gap columns, it is not symmetric, since the number of columns in the predicted

alignment can differ from the number of columns in the reference alignment.

We use the following notation to formally define the different alignment accuracy

measures. For h ∈ An,m let

• hH , {(i, j) : (σ1
i � σ2

j) ∈ h},

• hD , {i : (σ1
i � −) ∈ h},

• hI , {j : (− � σ2
j) ∈ h}.

Less formally, hH is the set of position pairs in σ1 and σ2 that are aligned ac-

cording to h, hD is the set of position in σ1 that are gapped, and hI is the set

23

of position in σ2 that are gapped. For example, for the alignment in Figure 3.1

hH = {(1, 1), (2, 2), (3, 4), (4, 6), (5, 7), (7, 9)}, hD = {6}, and hI = {3, 5, 8}. Note

that for any h ∈ An,m

|hH |+ |hD| = n and |hH |+ |hI | = m. (3.1)

Two alignments are equivalent if they align the same character pairs, while the order

of insertions and deletions between any two consecutive aligned pairs is redundant.

We therefore define:

∀hi, hj ∈ An,m hi ≡ hj if and only if hiH = hjH . (3.2)

Note that hiH = hjH if and only if hiI = hjI and hiD = hjD. We can therefore use the

following equivalent definition:

∀hi, hj ∈ An,m hi ≡ hj if and only if hiI = hjI and hiD = hjD. (3.3)

We say that two alignments are distinct if they are not equivalent. The number of

distinct alignments is in bijection with lattice paths from the origin (0, 0) to (m,n)

in the square grid:

Proposition 1. The number of distinct alignments in An,m is
(
n+m
m

)
.

Proof: Two equivalent alignments differ by definition only by the order of inser-

tions and deletions between adjacent homology states. Therefore, every alignment

has a canonical edit string, in which insertions always precede deletions between ad-

jacent homology states. In other words, a canonical edit string does not include the

substring ’DI’. There is a bijective mapping between canonical edit strings and lat-

tice paths from the the origin (0, 0 to (m,n) in the square grid. Let ’I’ represent a one

point move in the first dimension, and ’D’ a one point move in the second dimension.

Replacing every ’H’ with ’DI’ results in a path of length m+ n with m moves in the

first dimension and n moves in the second dimension, which is exactly a path from

24

(0, 0) to (m,n). In the other direction, every such path can be mapped to a unique

canonical edit string by replacing every ’DI’ with ’H’, since no ’DI’ substring exist

in the canonical edit string. Since every path is of length n+m, and every path can

be uniquely represented by the m positions with ′I ′ moves (or the n positions with

′D′ moves) there are
(
n+m
m

)
unique paths from (0, 0) to (m,n) and the same number

of distinct alignments in An,m.

Given a predicted alignment hp and a reference alignment hr, the developer (fD)

and modeler (fM) measures are defined:

f(hi, hj) ,
|hiH ∩ h

j
H |

|hiH |
(3.4)

fD(hr, hp) , f(hr, hp) =
|hrH ∩ h

p
H |

|hrH |
(3.5)

fM(hr, hp) , f(hp, hr) =
|hrH ∩ h

p
H |

|hpH |
(3.6)

Note that both measures do not explicitly use the I and D characters in hr and hp,

and are not well defined when hr or hp do not include any H characters.

What properties should an alignment accuracy measure satisfy? Generally, it

should assign higher accuracy values to alignments that are “closer” to the correct

alignment, and lower accuracy to alignments that are “farther” from the truth. If the

accuracy is to be used as a utility function that is optimized with posterior-decoding,

then it should decompose well over the basic elements for which posterior-probabilities

are available. We would like to formalize the notion of similarity and distance between

alignments. If hi and hj are two alignments and we denote their distance by d(hi, hj),

we would like to have:

d(hi, hj) ≥ 0 ∀hi, hj ∈ An,m, (3.7)

d(hi, hj) = 0 if and only if hi ≡ hj ∀hi, hj ∈ An,m, (3.8)

d(hi, hj) = d(hj, hi) ∀hi, hj ∈ An,m, (3.9)

d(hi, hj) + d(hj, hk) ≥ d(hi, hk) ∀hi, hj, hk ∈ An,m. (3.10)

25

The first condition specifies that the distance between two alignments should be non-

negative. The second condition requires that the distance should be 0 if, and only

if, the two alignments are equivalent. The third requirement specifies that the dis-

tance should be symmetric. For example, comparing a prediction with a reference

alignment should be the same as comparing the reference alignment to the predic-

tion. The fourth requirement ensures a certain consistency: the distance between two

predictions should be less than the sum of the distances from the predictions to a

reference alignment (the triangle inequality). In other words, an accuracy measure

should be based on a metric. Furthermore, the accuracy measure should account for

unalignable sequence. For example, if two sequences are unrelated, the true alignment

contains only gaps (regardless of order), and a good accuracy measure should reflect

that. Note that although metrics on the space of sequences have been constructed

(Spiro and Macura, 2004), a metric for alignment accuracy should be defined on the

space of sequence alignments, and should measure the distance between alignments

not sequences.

While the metric requirements are not satisfied by (3.4), they are satisfied by the

following:

d(hi, hj) , 2|hiH |+ |hiI |+ |hiD| − 2|hiH ∩ h
j
H | − |h

i
I ∩ h

j
I | − |h

i
D ∩ h

j
D|

= 2|hjH |+ |h
j
I |+ |h

j
D| − 2|hiH ∩ h

j
H | − |h

i
I ∩ h

j
I | − |h

i
D ∩ h

j
D|

= n+m− 2|hiH ∩ h
j
H | − |h

i
I ∩ h

j
I | − |h

i
D ∩ h

j
D|. (3.11)

Proposition 2. d(hi, hj) is a finite metric for An,m.

Proof: It is easy to see that d(hi, hj) satisfies requirements (3.7), (3.8), and (3.9).

We need to show that it satisfies the triangle inequality (3.10). Let
⋂
ij , 2|hiH∩h

j
H |+

|hiI ∩ h
j
I |+ |hiD ∩ h

j
D|, and

⋂
ijk , 2|hiH ∩ h

j
H ∩ hkH |+ |hiI ∩ h

j
I ∩ hkI |+ |hiD ∩ h

j
D ∩ hkD|.

Using the fact that
⋂
ik−

⋂
ijk ≥ 0 and

⋂
ij +

⋂
jk−

⋂
ijk ≤ n + m, we have that

26

d(hi, hj)+d(hj, hk)−d(hi, hk) = n+m−
⋂
ij −

⋂
jk +

⋂
ik = n+m−(

⋂
ij +

⋂
jk−

⋂
ijk)+⋂

ik−
⋂
ijk ≥ 0.

Example 3 (Metric for A2,2). By Proposition 1, there are six distinct alignments in

A2,2. The metric is:

HH HDI DIH IHD DHI DDII
HH 0 2 2 4 4 4
HDI 2 0 4 3 3 2
DIH 2 4 0 3 3 2
IHD 4 3 3 0 4 2
DHI 4 3 3 4 0 2
DDII 4 2 2 2 2 0

Intuitively, the distance between two alignments is the total number of characters

from both sequences that are aligned differently in the two alignments. Alternatively,

the quantity

s(hi, hj) , 1− d(hi, hj)

n+m
=

2|hiH ∩ h
j
H |+ |hiI ∩ h

j
I |+ |hiD ∩ h

j
D|

n+m
(3.12)

is a convenient similarity measure that can be interpreted as the fraction of characters

that are aligned the same in both alignments. We therefore define the Alignment

Metric Accuracy (AMA) of a predicted alignment hp given a reference alignment hr

to be s(hr, hp). The intuitive motivation for this accuracy measure is that it represents

the fraction of characters in σ1 and σ2 that are correctly aligned, either to another

character or to a gap.

Figure 3.2 shows a reference alignment and a predicted alignment of the same

two protein sequences. The fD score for the predicted alignment is 3/3 = 1, since all

three pairs of aligned positions from the reference alignment exist in the predicted

alignment; the fM score is 3/4 = 0.75, since out of four aligned pairs in the predicted

alignment only three exist in the reference alignment; the AMA score is 9/11 = 0.82,

since out of eleven positions in both sequences, nine are aligned the same.

27

Reference alignment Predicted alignment

EL-IGKPQ ELIGKPQ

SLK----Q SL--K-Q

Figure 3.2. Example of a reference alignment and a predicted alignment of
two protein sequences.

AMA can easily be extended to multiple sequence alignments (MSA) by using the

sum-of-pairs approach. Let An1,n2,...,nk
be the space of all MSAs of k sequences of

lengths n1 to nk. Given two MSAs hi, hj ∈ An1,n2,...,nk
,

d(hi, hj) ,
k−1∑
s1=1

k∑
s2>s1

d(his1,s2 , h
j
s1,s2), (3.13)

where his1,s2 is the pairwise alignment of sequences s1, s2 as projected from the MSA

hi with all-gap columns removed. The similarity of two MSAs is defined to be

AMA(hr, hp) , s(hr, hp) = 1− d(hr, hp)

(k − 1)
∑k

i=1 ni
. (3.14)

Unlike standard sum-of-pairs scoring, our definition follows from the requirement that

our accuracy measure should be based on a metric, and the multiple AMA retains

the desirable properties of the pairwise AMA.

3.2 AMA based alignments

3.2.1 Maximal expected accuracy alignments

Given a probabilistic model for alignments, such as a pair-HMM, an alignment

of a pair of sequences is typically obtained by the Viterbi algorithm (Viterbi, 1967),

which finds the global alignment with highest probability. In the case of a pair-HMM

28

with three states, the Viterbi algorithm is equivalent to the standard Needleman-

Wunsch algorithm with affine gap scores (Durbin et al., 1998). In effect, the Viterbi

algorithm minimizes the expected 0-1 loss, or maximizes the expected number of

times that a predicted alignment is equivalent to the reference alignment (hp ≡ hr).

However, when the probability of the most likely alignment is low, there might be

many candidate alignments with similar probability. In such cases it might be more

desirable to predict alignments that are likely to align the most number of characters

correctly on average even if they are less likely to be identical to the correct alignment.

An alternative to Viterbi alignment is the optimal accuracy alignment (Holmes

and Durbin, 1998; Durbin et al., 1998), also called maximal expected accuracy (MEA)

alignment (Do et al., 2005), which maximizes the expected fD score. The MEA align-

ment is calculated using a dynamic programming algorithm that finds the alignment

hMEA that maximizes the expected number of correctly aligned character pairs:

hMEA , argmax
h∈An,m

∑
(i,j)∈hH

P (σ1
i3σ

2
j |σ1, σ2, θ), (3.15)

where P (σ1
i3σ

2
j |σ1, σ2, θ) is the posterior probability that σ1

i is homologous to σ2
j

given σ1, σ2 and the parameters of the model θ. In the case of a pair-HMM, these

posterior probabilities can be computed in O(nm) time using the forward-backward

algorithm (Durbin et al., 1998).

3.2.2 The AMAP algorithm

While the MEA algorithm maximizes the expected fD score it can perform very

poorly on the fM score when the reference alignment contains many unaligned char-

acters (gaps), since it tends to over-align characters. Figure 3.3 shows four predicted

alignments of two unrelated proteins. While the fD and fM scores are undefined in

such case, the AMA measure provides a qualitative assessment of the accuracy of each

29

Viterbi

d1i6aa -----ETMSGPLHIGLIPTVGPYLLPHIIPMLHQTFPKLEMYLHEAQTHQLLAQLDSGKLDAVILALVKESEAFIEVPLFDEPMLLAIYEDHPWANREAV 95
d1ocya RVVTQNEIDRTIPVGAIMMWAADSLP----------SDAWRFCHGGTVSASDCPLYASRIGTRYGGSSSNPGLPDMRGLFVRGSGRGSHLTNPNVNGNDQ 90

d1i6aa PMADLAGEKLLMLEDGHCLRDQAMGFCFEAGADEDTHFRATSLETLRNMVAAGSGITLLPALAVPPERKRDGVVYLPAIKPEPRRTIGLVYRPGSPLRSR 195
d1ocya FGKPRLGVGCTGGYVGEVQKQQMSYHKHAGGFGEYDDSGAFGNTRRSNFVGTRKGLDWDNRSYF----TNDGYEIDPASQRNSRYTLNRPELIGNETRPW 186

d1i6aa YEQLAEAIRARMDGHFD 212
d1ocya NISLNYIIKVK-----E 198

MEA, or AMAP with γ = 0

d1i6aa_ ETMSG-----PLHIGLIPTVGPYLLPHIIPML-HQ---TFPKLEMYLHEAQTHQLLAQLDSGKLDAVILALVKESEAFIEVPLFDEPMLLAIYEDHPWAN 91
d1ocya_ RVVTQNEIDRTIPVGAIMMWAADSLPSDAWRFCHGGTVSASDCPLYASRIGTRYGGSSSNPGLPDMRGL--------------FVRGSGRGSHLTNPNVN 86

d1i6aa_ REAVPMADLAGEKLLML--EDGH--CLRDQAMGFCFEAGA----DEDTHFRATSLETLRNMVAAGSGITLLPALAVPPERKRDGVVYLPAIKPEPRRTIG 183
d1ocya_ -----GNDQFGKPRLGVGCTGGYVGEVQKQQMSYHKHAGGFGEYDDSGAFGNT---RRSNFVGTRKGLDWDN----RSYFTNDGYEIDPASQRNSRYTLN 174

d1i6aa_ LVYRPGSPLRSRYEQLAEAIRARMDGHFD 212
d1ocya_ RPELIGNETRPWNISLNYIIKVK-----E 198

AMAP with γ = 1

d1i6aa_ ETMS-----GPLHIGLIPT--- 14
d1ocya_ RVVTQNEIDRTIPVGAIMMWAADSLPSDAWRFCHGGTVSASDCPLYASRIGTRYGGSSSNPGLPDMRGLFVRGSGRGSHLTNPNVNGNDQFGKPRLGVGC 100

d1i6aa_ -------VGPYLLPHIIPMLHQTFPKLEMYLHEAQTHQLLAQLDSGKLDAVILALVKESEAFIEVPLFDEPMLLAIYEDHPWANREAVPMADLAGEKLLM 107
d1ocya_ TGGYVGE--- 107

d1i6aa_ LEDGHCLRDQAMGFCFEAGA----DEDTHFRATSLETLRNMVAAGSGITL------LPALAVPPERKRDGVVYLPAIKPEPRRTIGLVYRPGSPLRSRYE 197
d1ocya_ ------VQKQQMSYHKHAGGFGEYDDSGAFGNTR---RSNFVGTRKGLDWDNRSYF----------TNDGYEIDPASQRNSRYTLNRPELIGNETRPWNI 188

d1i6aa_ QLAEAIRARMDGHFD 212
d1ocya_ SLNYIIKVK-----E 198

AMAP with γ = 8

d1i6aa_ -- 0
d1ocya_ RVVTQNEIDRTIPVGAIMMWAADSLPSDAWRFCHGGTVSASDCPLYASRIGTRYGGSSSNPGLPDMRGLFVRGSGRGSHLTNPNVNGNDQFGKPRLGVGC 100

d1i6aa_ ------------ETMSGPLHIGLIPTVGPYLLPHIIPMLHQTFPKLEMYLHEAQTHQLLAQLDSGKLDAVILALVKESEAFIEVPLFDEPMLLAIYEDHP 88
d1ocya_ TGGYVGEVQKQQ-- 112

d1i6aa_ WANREAVPMADLAGEKLLMLEDGHCLRDQAMGF---CFEAGADEDTHFRATSLETLRNMVAA 147
d1ocya_ ------------------------------MSYHKHAGGFGEYDDSGAFGNTRRSNFVGTRKGLDWDNRSYFTN-------------------------- 156

d1i6aa_ GSGITLLPALAVPPERKRDGVVYLPAIKPEPRRTIGLV-YRPGSPLRSRYEQLAEAIRA--RMDGHFD 212
d1ocya_ ------------------DGYEIDPASQRNSRYTLNRPE-LIGNETRPWNISLNYIIKVKE------- 198

Figure 3.3. Example of four different alignments of two unrelated protein
sequences. Light characters represent correctly aligned positions, and dark charac-
ters represent incorrectly aligned positions. Since the two sequences are unrelated all
aligned positions are wrongly aligned, and all gapped positions are correctly aligned.
The fraction of characters that are correctly aligned (light) represent an intuitive
notion of accuracy.

30

alignment. The first alignment is the Viterbi alignment, which incorrectly aligns all

but 24 positions, and achieves an AMA score of 24/410 = 0.059. The MEA alignment

is slightly better at 48/410 = 0.117; although it could be worse than Viterbi in other

cases. Note that the worst possible AMA score on this example is 14/410 = 0.034,

since the first sequence is longer than the second by 14 characters. It is clear that

both Viterbi and MEA suffer from the over-alignment phenomena, which can greatly

affect their accuracy when aligning unrelated sequences, or sequences that include

unrelated regions (a very common scenario). This is a major drawback of these pop-

ular procedures, since a user cannot distinguish between alignment columns that are

correct and those that are spurious, simply by inspecting the predicted alignment.

Maximizing the expected fM score can be done easily by only aligning the pair

of characters with highest posterior probability to be homologous. This will result in

an alignment with only one H character, n− 1 D characters, and m− 1 I characters,

which in most cases will result in a poor fD score. There is currently no alignment

algorithm that enables adjustment of the recall/precision trade-off (fD / fM trade-off).

However, we show that it is possible to maximize the expected AMA value using an

algorithm similar to the original MEA algorithm. By maximizing the expected AMA,

we avoid the problems of MEA alignment. In addition to maximizing the expected

AMA value, the new algorithm, which we call AMAP, has one free parameter, which

we term gap-factor,or γ, that controls the fD/fM trade-off.

Let P (σ1
i3 − |σ1, σ2, θ) , 1 −

∑m
j=1 P (σ1

i3σ
2
j |σ1, σ2, θ) be the posterior proba-

bility that σ1
i is not homologous to any character in σ2, and P (−3σ2

j |σ1, σ2, θ) ,

1 −
∑n

i=1 P (σ1
i3σ

2
j |σ1, σ2, θ) the posterior probability that σ2

j is not homologous to

any character in σ1. AMAP should find the alignment hAMA that maximizes the

expected AMA score, which is equivalent to the expected number of characters that

31

are correctly aligned to another character or to a gap:

hAMA , argmax
hp∈An,m

Eht

(
AMA(ht, hp)

)
= argmax

hp∈An,m

∑
ht∈An,m

P (ht|σ1, σ2, θ)
2|htH ∩ h

p
H |+ |htI ∩ h

p
I |+ |htD ∩ h

p
D|

n+m

= argmax
hp∈An,m

∑
ht∈An,m

P (ht|σ1, σ2, θ)

2
∑

(i,j)∈hp
H

1{(i, j) ∈ htH}+
∑
j∈hp

I

1{j ∈ htI}+
∑
i∈hp

D

1{i ∈ htD}


= argmax

hp∈An,m

2
∑

(i,j)∈hp
H

∑
ht∈An,m

P (ht|σ1, σ2, θ)1{(i, j) ∈ htH}+

∑
j∈hp

I

∑
ht∈An,m

P (ht|σ1, σ2, θ)1{j ∈ htI}+

∑
i∈hp

D

∑
ht∈An,m

P (ht|σ1, σ2, θ)1{i ∈ htD}

= argmax
hp∈An,m

2
∑

(i,j)∈hp
H

P (σ1
i3σ

2
j |σ1, σ2, θ)+

∑
j∈hp

I

P (−3σ2
j |σ1, σ2, θ) +

∑
i∈hp

D

P (σ1
i3− |σ1, σ2, θ). (3.16)

hAMA can be computed efficiently using a dynamic programming algorithm similar to

the Needleman-Wunsch, and MEA algorithms in time O(nm). The fact that the AMA

function decomposes well over the basic elements, for which posterior-probabilities are

easy to obtain, is instrumental for the computation in Equation (3.16). We will see in

Section 5.3 that this is not a trivial requirement. For example, the F1 measure does

not decompose well, and therefore it is not clear how to maximize its expected value

using posterior-decoding.

hAMA is the alignment with the maximal expected AMA score, which provides a

balanced assessment of recall and precision. However, there are cases when better

control of the recall/precision trade-off is desired. In particular, some sequence analy-

sis tasks like phylogenetic analysis can use partial alignments, and might benefit from

32

using alignments with higher precision, while tasks such as comparative functional

annotation, might require higher recall. Such control of recall and precision can be

achieved by addition of a single parameter γ to the calculation in Equation (3.16).

We term this parameter gap-factor since it adjusts the weight of the gap-posterior

probabilities with respect to the match-posterior probabilities.

hγ , argmax
hp∈An,m

∑
ht∈An,m

P (ht|σ1, σ2, θ)2|htH ∩ h
p
H |+ γ(|htI ∩ h

p
I |+ |h

t
D ∩ h

p
D|)

= argmax
hp∈An,m

2
∑

(i,j)∈hp
H

P (σ1
i3σ

2
j |σ1, σ2, θ)+

γ

∑
j∈hp

I

P (−3σ2
j |σ1, σ2, θ) +

∑
i∈hp

D

P (σ1
i3− |σ1, σ2, θ)

 . (3.17)

hγ is the alignment that maximizes the expected value of the utility function

Uγ(h
r, hp) , 2|hrH ∩h

p
H |+γ(|hrI ∩h

p
I |+ |hrD∩h

p
D|), where γ ∈ [0,∞) The neutral value

for γ is 1, in which the algorithm maximizes the expected AMA value, while when

γ = 0 the expression in (3.17) is equal to the expression in (3.15), and the algorithm

is identical to the original MEA algorithm, which maximized the expected fD score.

Setting γ to higher values than 1 results in better fM scores in the expense of lower

fD scores.

3.3 Results

3.3.1 Performance of existing programs on the SABmark

datasets

We begin by assessing the performance of existing programs on the SABmark

1.65 (Van Walle et al., 2005) datasets with the goal of comparing alignment metric

33

Twilight Superfamilies Twilight-FP Superfamilies-FP
Program fD fM AMA fD fM AMA fD fM AMA fD fM AMA
Align-m 21.6 23.6 51.7 49.2 45.6 56.9 17.8 6.4 81.5 44.8 16.8 77.5
CLUSTALW 25.6 14.7 24.9 54.0 38.1 43.8 20.4 2.4 35.5 50.9 7.4 37.0
MUSCLE 27.3 16.4 27.6 56.3 40.3 46.4 19.4 2.3 37.1 49.7 7.5 38.9
ProbCons 32.1 21.1 37.3 59.8 44.4 51.8 26.7 4.4 55.7 56.0 10.9 55.0
T-Coffee 29.4 19.6 35.6 58.4 43.7 50.9 26.5 4.2 54.1 57.0 11.0 54.4

Table 3.1. Performance of aligners on the SABmark benchmark datasets.
Entries show the average developer (fD), modeler (fM) and alignment metric accuracy
(AMA). Best results are shown in bold. All numbers have been multiplied by 100.

accuracy with previously used measures. SABmark includes two sets of pairwise

reference alignments with known structure from the ASTRAL (Brenner et al., 2000)

database. The Twilight Zone set contains 1740 sequences with less than 25% identity

divided into 209 groups based on SCOP folds (Murzin et al., 1995). The Superfamilies

set contains 3280 sequences with less than 50% identity divided into 425 groups.

Additionally, each dataset has a “false positives” version, which contains unrelated

sequences with the same degree of sequence similarity in addition to the related

sequences.

Table 3.1 shows the performance of a number of existing alignment programs

as measured by the developer, modeler, and AMA accuracy measures on the four

SABmark 1.65 datasets. Methods tested include Align-m 2.3 (Van Walle et al., 2005),

CLUSTALW 1.83 (Thompson et al., 1994), MUSCLE 3.52 (Edgar, 2004), ProbCons

1.1 (Do et al., 2005) and T-Coffee 2.49 (Notredame et al., 2000). The results highlight

the inherent recall/precision trade-off. While ProbCons and T-Coffee have the best

developer scores, Align-m has the best modeler scores. It is not clear which program

outperforms the others. Programs with higher recall tend to over-align unalignable

regions, which results in lower precision. We would like to answer the question, which

program produces alignments that are the closest to the reference alignments? This

is exactly the interpretation of the new AMA measure. Using this measure it is clear

34

Align-m CLUSTALW MUSCLE ProbCons T-Coffee Reference
Align-m 37.3 39.9 52.8 50.4 67.0
CLUSTALW 45.0 38.2 38.1 39.1 37.0
MUSCLE 43.8 49.4 43.2 42.3 39.2
ProbCons 32.0 48.7 47.1 52.0 51.1
T-Coffee 30.1 47.0 45.9 38.7 50.1
Reference 13.7 44.1 43.0 31.1 28.6

Table 3.2. Total distance (d) and average similarity (s) of different aligners
on the SABmark dataset. Values below the diagonal show the total distance
(d) between alignments produced by different alignment programs. Values above the
diagonal show the average similarity (s) between the different alignments. Distance
values have been divided by one million, and similarity values have been multiplied
by 100.

that Align-m is the most accurate alignment program among the ones tested on the

SABmark benchmark datasets.2

3.3.2 Controls for multiple alignment experiments

A recurring question has been how to judge the accuracy of alignments in the

absence of a reference. To demonstrate how AMA is useful for that, we compare

the total distance (d) and average similarity (s) between the alignments produced

by four alignment programs, and the reference alignments. Table 3.2 shows these

values averaged over the entire SABmark dataset. An interesting observation is that

there seem to be a correlation between the following two distances: (i) the distance

d(M v
l ,M

p
l) between any predicted alignment M v

l and the corresponding reference

alignment MR
l ; (ii) the average distance d(

∑
u|u 6=v d(M

v
l ,M

u
l)/(V − 1)) between the

predicted alignment M v
l and the other V − 1 alignments produced by the other pro-

grams for the same group of sequence {Mu
l |u 6= v}. To check for such correlation,

we calculated the Pearson correlation between AMA and the average similarity for

different datasets. Figure 3.4 shows the correlation between the accuracy (AMA) of

2Note that the SABmark benchmark dataset was compiled by the same authors as Align-m.

35

CLUSTALW alignments of the Twilight-FP and Superfamilies-FP datasets, and their

average similarity to any of the alignments produced by the other three programs. It

is evident that there is a strong correlation between the two values (Pearson corre-

lation of r = 0.87). We observed similar correlations for the other three alignment

programs (0.86, 0.49, 0.57 for MUSCLE, ProbCons, and T-Coffee correspondingly).

For the datasets without false-positives (Twilight and Superfamilies) the correlations

are even stronger (0.89, 0.86, 0.74, 0.78 for CLUSTALW, MUSCLE, ProbCons, and

T-Coffee correspondingly). Overall, when considering the four programs together the

correlation between AMA and the average similarity is 0.68 for the false-positive sets,

and 0.82 for the no-false-positive sets.

The strong correlation observed suggests that when a multiple alignment of a given

set of sequences is needed, one could select the best alignment out of several predicted

alignments produced by different programs, by comparing the average similarities of

the different alignments. This is an alternative to the standard practice of deferring

to a single alignment program that is predicted to be more accurate on average, based

on evaluations on benchmark datasets. For example, ProbCons, which has the best

average AMA score on the SABmark datasets compared to the other three programs

(Table 3.2), produces the most accurate alignment in only 54% of the cases. Moreover,

it is not clear that ProbCons produces the most accurate alignments on average when

a different set is considered. In addition to picking the best alignment out of a set of

predicted alignments the alignment metric can be used to rank alignments based on

their predicted accuracy, filtering out alignments of low quality.

We use the following definitions in the design of a metric-based protocol for rank-

ing and filtering of alignments. Let G , {G1,G2, . . . ,GL} be a dataset of L groups

of sequences, where Gl , {G1
l ,G2

l , . . . ,G
Kl
l } , {σ1, σ2, . . . , σKl}. Aligning each group

of sequences with V different alignment programs P , {P1,P2, . . . ,PV }, we get the

following set of V × L multiple alignments,

36

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average similarity to other alignments

A
M

A

r = 0.87

Figure 3.4. Correlation between the AMA of CLUSTALW (as judged by ref-
erence alignments in SABmark), and average similarity to alignment pro-
duced by other programs. Each dot in the plot corresponds to one CLUSTALW
alignment in the SABmark Twilight-FP and Superfamilies-FP datasets. The x co-
ordinate represents the average similarity (s) of the CLUSTALW alignment to the
alignments produced by three other programs (MUSCLE, ProbCons, T-Coffee). The
y coordinate represents the Alignment Metric Accuracy (AMA) of the CLUSTALW
alignment as judged by the reference SABmark alignment.

M(G,P) ,
{
M v

l ∈ A|G1
l |,|G

2
l |,...,|G

Kl
l ||v ∈ {1, 2, . . . , V }, l ∈ {1, 2, . . . , L}

}
. Given a ref-

erence set of multiple alignments
{
MR

l |l ∈ {1, 2, . . . , L}
}
, the accuracy (average

AMA) of any subset of alignmentsMs ⊆M(G,P) is defined as

AMA(Ms) ,

∑
Mv

l ∈Ms
AMA(M v

l)

|Ms|
=

∑
Mv

l ∈Ms
s(M v

l ,M
R
l)

|Ms|
. (3.18)

The average similarity of a multiple alignment M v
l to a set of multiple alignments is

defined to be

s (M v
l ,M(G,P)) ,

∑
Mv′

l |v′ 6=v s(M
v
l ,M

v′

l)

V − 1
. (3.19)

A ranking of a set of multiple alignments Ms is defined by a function ψ :Ms → R.

37

Given a ranking function it is natural to define the top u multiple alignments inMs.

top(Ms, ψ, u) ,

{
M v

l ∈Ms|
(
∀l′v′ M v′

l′ ∈ top(Ms, ψ, u) ∨ ψ(M v
l) > ψ(M v′

l′)
)

∧ |top(Ms, ψ, u)| = u

}
(3.20)

An optimal ranking of Ms is defined by ψR , AMA. The percent improvement of

ranking ψ using top u alignments, is defined as

I(Ms, ψ, u) ,
AMA(top(Ms, ψ, u))

AMA(Ms)
− 1. (3.21)

Comparing a given ranking ψ to the optimal ranking ψR using top u alignments is

done using the improvement ratio measure

IR(Ms, ψ, u) ,
I(Ms, ψ, u)

I(Ms, ψR, u)
. (3.22)

Finally, mean accuracy (AMA), mean percent improvement (I), and mean improve-

ment ratio (IR) are defined as

AMA(Ms, ψ) ,

∑|Ms|
u=1 AMA(top(Ms, ψ, u))

|Ms|
, (3.23)

I(Ms, ψ) ,
AMA(Ms, ψ)

AMA(Ms)
− 1, (3.24)

IR(Ms, ψ) ,
I(Ms, ψ)

I(Ms, ψR)
. (3.25)

A candidate alignment set (CAS) of a sequence group dataset G is a set of multiple

alignments that includes at most one alignment for every alignment group in the

dataset. A complete candidate alignment set (CCAS) is a CAS of size |G|. For

example, given M(G,P), one can define the CCAS MPv
G of G by selecting all the

alignments produced by program Pv. However, the subset of M(G,P) that is the

most accurate CCAS is obtained by selecting the most accurate alignment for every

group of sequences in G.

Mmax
G ,

⋃
Gl∈G

argmax
Pv∈P

AMA(M v
l). (3.26)

38

Computing Mmax
G directly requires to know the accuracy of any given alignment,

which is unknown in most practical cases.

We propose a two step protocol for using the alignment metric as a control for

alignment accuracy, when the correct alignment is not known. The input to the pro-

tocol is the alignment setM(G,P). G is a dataset that includes L groups of sequences

(several groups of homologous gene sequences, for example). For every group in G

there are V multiple alignments, generated by the alignment programs in P . The goal

of the first step of the protocol is to pick the most accurate multiple sequence align-

ment for every group of sequences in the dataset. More formally, the goal is to find a

CCAS that is a subset ofM(G,P) with accuracy as close as possible toMmax
G . Since

the reference alignments are not known, there is no way to directly compute Mmax
G .

Instead, the protocol utilizes the strong empirical correlation between AMA(M v
l) and

s (M v
l ,M(G,P)), which can be computed directly without a reference alignment. The

output of the first step of the protocol is the following CCAS:

Msim
G ,

⋃
Gl∈G

argmax
Pv∈P

s (M v
l ,M(G,P)) . (3.27)

Practically, Msim
G is constructed by repeating the following steps for every sequence

group Gl ∈ G:

1. Align the sequences in Gl with all alignment programs in P .

2. Compute the similarity s(M v
l ,M

v′

l) of each pair of alignments of Gl.

3. Pick the alignment with the maximal average similarity to all other alignments,

and add it toMsim
G .

In cases where a group of sequences is hard to align accurately, none of the candidate

alignments, including the alignment in Msim
G , might be of high enough quality. For

certain applications it is better to not produce any alignment in such cases, rather

39

Twilight Superfamilies Twilight-FP Superfamilies-FP Overall
CLUSTALW 24.9 (< 0.0001) 43.8 (< 0.0001) 35.5 (< 0.0001) 37.0 (< 0.0001) 37.0 (< 0.0001)
MUSCLE 27.6 (< 0.0001) 46.4 (< 0.0001) 37.1 (< 0.0001) 38.9 (< 0.0001) 39.2 (< 0.0001)
ProbCons 37.3 (0.0027) 51.8 (0.3190) 55.7 (0.0149) 55.0 (0.9200) 51.1 (0.3298)
T-Coffee 35.6 (0.1184) 50.9 (0.0022) 54.1 (< 0.0001) 54.4 (< 0.0001) 50.1 (< 0.0001)
Average 31.4 48.2 45.6 46.3 44.4
Picked (Msim

G) 36.1 51.5 56.9 55.2 51.1
Best (Mmax

G) 39.5 53.9 58.0 57.2 53.3

Table 3.3. AMA of alignments picked by the control protocol on the SAB-
mark datasets. The first four rows show the average AMA of alignments produced
by different alignment programs. The last three rows show the average AMA of all
alignments programs (Average), of the best alignments for every group (Best), and
of the alignments picked by the control protocol (Picked). AMA values have been
multiplied by 100. The Wilcoxon signed ranks test was used to measure the statis-
tical significance of the difference between the picked alignments and the alignments
produced by the four programs (P-values are shown in parenthesis. Values > 0.05 are
not statistically significant).

than use a low quality alignment. The second part of the protocol aims at ranking

alignments of different groups of sequences, discarding low quality alignments. This is

done by defining the ranking function ψsim(M v
l) , s (M v

l ,M(G,P)). It is then possi-

ble to increase the average accuracy of the alignment set, by filtering out alignments

that are not in top(Msim
G , ψsim, u), where u can be adjusted to control the number of

alignments that are used. We define filtration level to be u/L, which is the percent

of alignments that are in top(Msim
G , ψsim, u).

The above protocol has no mathematical guarantees, but our empirical results

show that it works in practice. Table 3.3 shows the average AMA scores of the four

alignment programs on the different SABmark datasets, as well as the average AMA

scores of the alignments picked by the first part of the protocol. The upper bound on

the AMA scores is given by AMA(Mmax
G). The statistical significance of the differ-

ence between the AMA score of the alignments picked by the protocol (AMA(Msim
G))

and the ones produced by each of the alignment programs (AMA(MPv
G)) is measured

using the Wilcoxon signed ranks test. Overall, the alignments picked by the protocol

are as accurate as the alignments produced by the most accurate program (Prob-

40

Cons), and are significantly more accurate than the other three programs. For the

Twilight-FP dataset the picked alignments are significantly more accurate than Prob-

Cons, while for the Twilight dataset the ProbCons alignment are significantly more

accurate the the picked alignments. There is no statistically significant difference in

accuracy between the ProbCons and picked alignments for the other sets. The picked

alignments are significantly more accurate than the other three programs on all sets,

except for T-Coffee alignments on the Twilight dataset. Overall, the protocol picks

44.6% of the T-Coffee alignments, 42.4% of the ProbCons alignments, 10% of the

MUSCLE alignments, and 3.6% of the CLUSTALW alignments.3 These results show

that the first part of the proposed protocol is able to pick alignments that are at

least as accurate as the best program, without prior knowledge of which program is

more accurate. This means that while different programs might perform differently

on different sets of sequences, one can pick the best alignments on average by using

the proposed protocol.

Figure 3.5 shows the result of applying the second part of the protocol on the

Superfamilies dataset. The protocol is able to rank the alignments relatively well. For

example, the accuracy increases from 0.515 to 0.641 when using top(Msim
G , ψsim, u),

where u is adjusted to use the top 50% alignments, while an optimal ranking (ψR)

increases the accuracy to 0.671 using the top 50% alignments in Msim
G or to 0.687

when using the top 50% alignments inMmax
G .

Table 3.4 summarizes the percent improvement in accuracy achieved at different

filtration levels (u/L) for the different datasets, as well as the mean percent improve-

ment over all filtration levels. To quantify the quality of the ranking procedure we

measured the Pearson correlation (r) between the average similarity value (ψsim),

and the average AMA score of the alignments above that threshold. Additionally, we

3Due to ties (more than one alignment with the highest average similarity to other alignments)
these percentages sum to slightly more than 100%.

41

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% of alignments used

A
ve

ra
ge

 A
M

A

ρ = 0.74
r = 0.98

Random ranking ofMsim
G

ψsim

Optimal ranking of Msim
G

Optimal ranking of Mmax
G

Metric based ranking ofMsim
G

Figure 3.5. Comparison of different rankings of the Superfamilies dataset
alignments. The accuracy of the metric-based ranking [AMA(top(Msim

G , ψsim, u));
blue] is compared to that of an optimal ranking [AMA(top(Msim

G , ψR, u)); red], and
a random ranking of the alignments that have been picked by the first part of the
alignment-control protocol [AMA(top(Msim

G , ψrand, u)); purple]. In addition an opti-
mal ranking of the best original alignments is shown [AMA(top(Mmax

G , ψR, u)); green],
as well as the similarity threshold used at each filtration level [ψsim; orange].

measured the Spearman rank correlation (ρ) between the average similarity and the

AMA score of each alignment. Both tests show a statistically significant correlation

(p-value < 0.05), however the ranking protocol is less powerful on the sets with false-

positives. For example, on the Superfamilies-FP set, the average accuracy increases

by only 12% when using the top 20% of the alignments, which is only 48% of the

improvement possible with an optimal ranking, while on the Superfamilies set, there

is a much more substantial improvement for the same filtering level (48%, which is

78% of the possible improvement). Generally, it seems that using the top 20% align-

42

% of alignments used Metric-based ranking (ψsim) Optimal ranking (ψR) Improvement
(u/L) accuracy % improvement (I) accuracy % improvement (I) ratio (IR)

Twilight [L = 209, r = 0.97, ρ = 0.39]

10% 51.3 42% 63.0 74% 57%
20% 48.9 35% 56.4 56% 63%
50% 40.6 12% 46.7 29% 43%
100% 36.1 0% 36.1 0% –
Means 42.8 18% 48.7 35% 53%

Superfamilies [L = 425, r = 0.98, ρ = 0.74]

10% 75.1 46% 84.5 64% 71%
20% 72.9 42% 78.9 53% 78%
50% 64.1 24% 67.1 30% 81%
100% 51.5 0% 51.5 0% –
Means 64.5 25% 68.5 33% 76%

Twilight-FP [L = 209, r = 0.95, ρ = 0.51]

10% 65.3 15% 74.3 31% 48%
20% 64.0 13% 71.1 25% 50%
50% 61.4 8% 65.4 15% 53%
100% 56.9 0% 56.9 0% –
Means 61.4 8% 66.0 16% 50%

Superfamilies-FP [L = 425, r = 0.81, ρ = 0.43]

10% 63.8 16% 72.5 31% 50%
20% 62.0 12% 69.5 26% 48%
50% 58.7 6% 63.8 16% 41%
100% 55.2 0% 55.2 0% –
Means 59.1 7% 64.5 17% 42%

Table 3.4. Statistical evaluation of the metric-based ranking protocol on
the SABmark datasets. For every dataset the number of groups (L), the Pearson
correlation (r) and the Spearman rank correlation (ρ) are given. The following mea-
sures are calculated at different filtration levels, as well as the means over all levels;
the accuracy (average AMA multiplied by a 100) of the metric-based and optimal
rankings, the percent improvement in AMA of the two rankings compared to the
full set, and the ratio between the percent improvement of the metric-based ranking
compared to the optimal ranking (improvement ratio).

ments results in a substantial improvement in absolute accuracy as well as a good

improvement ratio compared to the optimal ranking.

43

3.3.3 Performance of the AMAP algorithm

Next, we investigated using pairwise alignments whether the AMAP algorithm

can improve on the Viterbi and the Maximal Expected Accuracy (MEA) alignment

algorithms for maximizing the AMA.

We first evaluated the algorithms with the same default parameters used in Prob-

Cons (δ = 0.01993, ε = 0.79433, πmatch = 0.60803, and emission probabilities based

on the BLOSUM62 matrix). Table 3.5 shows the results of the Viterbi algorithm and

the AMAP algorithm with different gap-factor values on the SABmark Twilight Zone

set, and Table 3.6 show the results on the SABmark Superfamilies set.

The results on both sets show the expected correlation between the gap-factor

value and the fM score, and the negative correlation between the gap-factor value

and the fD score. This validates the prediction that the gap-factor can be used as a

tuning parameter for the recall/precision trade-off of matched characters.

When the gap-factor is set to 1 or higher the alignment accuracy is significantly

better than Viterbi alignments. When the original MEA algorithm (AMAP with

gap-factor set to 0) is used the alignment accuracy is almost identical to that of the

Viterbi algorithm. The most accurate alignments were achieved by setting the gap-

factor to values higher than 1 (40 in the Twilight Zone set and 16 in the Superfamilies

set). We suspected that this is due to the fact that the default pair-HMM parameters

underestimate the probability of insertion and deletions. To validate this hypothesis,

we calculated the “true” transition probabilities for each alignment group using the

reference alignments, and repeated the experiment.

The performance of the algorithms using the “correct” transition probabilities are

shown in the right hand columns of Tables 3.5 and 3.6. As expected, with the correct

parameters, the accuracy of the alignments achieved when the gap-factor is set to 1 are

44

Default transition probabilities
Algorithm fD fM AMA
Viterbi 27.2 16.3 28.0
γ = 0 29.6 17.7 29.0
γ = 1 28.1 19.7 37.4
γ = 2 25.8 22.8 45.2
γ = 4 22.4 27.6 51.5
γ = 8 18.9 33.1 54.8
γ = 16 15.9 38.9 56.4
γ = 24 14.3 43.3 56.7
γ = 32 13.1 46.1 56.8
γ = 40 12.4 48.0 56.8
γ = 56 11.3 51.5 56.7

“Correct” transition probabilities
Algorithm fD fM AMA
Viterbi 18.8 17.0 46.7
γ = 0 25.9 17.5 37.2
γ = 1 17.2 34.7 56.3
γ = 2 14.1 42.2 57.3
γ = 4 11.3 52.2 57.3
γ = 8 8.9 59.3 56.7
γ = 16 7.0 68.7 56.0
γ = 24 6.1 74.5 55.6
γ = 32 5.5 77.3 55.4
γ = 40 5.1 80.2 55.2
γ = 56 4.6 83.1 55.0

Table 3.5. Performance of algorithm variants on the SABmark Twilight
Zone set. Entries show the fD, fM , and AMA scores of the Viterbi, and AMAP
alignments with different gap-factor (γ) values on the SABmark Twilight Zone set,
which includes 209 alignment groups. The first three columns show the results using
default transition probabilities, and the last three columns show the results using
transition probabilities calculated for each group from the reference alignments. All
scores have been averaged over groups and multiplied by 100.

Default transition probabilities
Algorithm fD fM AMA
Viterbi 53.1 38.1 44.2
γ = 0 54.8 39.3 45.2
γ = 1 53.6 42.0 49.8
γ = 2 51.6 46.2 54.5
γ = 4 48.1 52.1 58.2
γ = 8 44.1 58.5 59.9
γ = 12 41.8 62.0 60.2
γ = 16 40.2 64.3 60.1

“Correct” transition probabilities
Algorithm fD fM AMA
Viterbi 46.8 41.3 53.3
γ = 0 52.4 40.1 49.2
γ = 1 45.4 56.1 60.5
γ = 2 41.8 63.4 61.5
γ = 4 37.9 70.9 61.2
γ = 8 34.1 75.9 60.0
γ = 12 31.9 78.4 59.2
γ = 16 30.5 79.9 58.6

Table 3.6. Performance of algorithm variants on the SABmark Superfam-
ilies set. Entries show the fD, fM , and AMA scores of the Viterbi, and AMAP
alignments with different gap-factor (γ) values on the SABmark Superfamilies set,
which includes 425 alignment groups. The first three columns show the results using
default transition probabilities, and the last three columns show the results using
transition probabilities calculated for each group from the reference alignments. All
scores have been averaged over groups and multiplied by 100.

very close to the best (γ = 2). Note that we did not modify the emission probabilities,

which might be the reason γ = 1 did not maximize the actual accuracy. These

results show that the AMAP algorithm significantly outperforms the Viterbi and

45

Parameters fD fM AMA
ematch δ ε 0 1 2 Vit 0 1 2 Vit 0 1 2 Vit

30 10.0 90 7.1 1.1 0.8 0.6 4.0 61.7 73.7 2.2 9.5 51.0 50.9 44.7
50 10.0 90 23.6 3.9 2.1 12.5 15.7 77.0 83.5 10.8 27.2 52.2 51.4 30.3
60 10.0 90 33.6 17.7 12.2 24.6 23.2 69.5 82.9 23.8 34.5 57.2 55.9 41.2
80 10.0 90 61.2 53.4 46.6 53.6 45.9 72.1 81.9 51.7 57.3 70.8 70.7 62.4
80 5.0 90 83.2 80.8 77.5 81.1 76.3 85.3 89.9 77.7 78.8 82.4 82.2 78.6
80 2.0 98 94.4 93.5 92.7 92.9 89.0 95.0 96.2 93.6 93.0 95.4 95.3 94.6
80 0.9 98 97.4 97.2 96.6 96.8 95.2 97.5 98.2 96.6 96.2 97.2 97.2 96.7
30 0.1 98 94.5 94.5 93.8 90.1 93.7 93.8 94.1 89.3 93.1 93.1 92.6 88.5
50 0.1 98 99.4 99.4 99.4 99.3 99.4 99.4 99.4 99.3 99.2 99.2 99.2 99.0
unrelated 100 100 100 100 0.0 0.0 0.0 0.0 72.2 96.8 98.4 94.3

Table 3.7. Performance of algorithm variants on simulated data. Entries
show the performance of the Viterbi algorithm (Vit), and the AMAP algorithm with
different settings of the gap-factor parameter (0, 1, and 2) using three accuracy mea-
sures (fD, fM , and AMA). The first three columns show the configuration of the
pair-HMM parameters ematch (match emission probability), δ (gap initiation proba-
bility) and ε (gap extension probability), except for the last row for which random
unrelated sequences have been aligned. Best results for every parameter configuration
and measure are shown in bold. All numbers have been multiplied by 100.

MEA algorithms (61.5 AMA compared to 53.3 and 49.2 AMA on the Superfamilies

dataset, and 57.3 AMA compared to 46.7 and 37.2 on the Twilight Zone dataset).

Moreover, with the adjusted parameters, the Viterbi algorithm outperforms the MEA

algorithm (γ = 0) on both datasets. This is due to the over-alignment problem of

the MEA algorithm, which uses the expected fD score as its objective function at the

expense of the fM and AMA scores. Note that the best AMA scores achieved with

the default transition probabilities are very close to those of the correct probabilities,

demonstrating that adjustment of the gap-factor parameter is able to compensate for

bad estimation of the parameters of the underlying probabilistic model.

In order to further analyze the performance of the AMAP algorithm compared

to the Viterbi and MEA algorithms, we also conducted simulation studies. Table 3.7

compares the performance of the Viterbi, MEA, and AMAP variants on different sets

of simulated pairs of related and unrelated DNA sequences.

46

Data was simulated using a pair-HMM to generate aligned pairs of nucleotide

sequences. The pair-HMM parameters included the transition probabilities δ (gap

initiation) and ε (gap extension). For simplicity we fixed the initial probability πmatch

of starting in a Match state to be 1 − 2δ. For the emission probabilities we used

a simple model that assigns equal probability (1
4
) to any nucleotide in the Insert or

Delete states, ematch

4
probability for a match in the Match state, and 1−ematch

12
prob-

ability for a mismatch in the Match state, where ematch is the probability to emit a

pair of identical characters in the Match state.

For every setting of the parameters we generated 10 reference alignments with

min(n,m) = 1000. An identical pair-HMM with the same parameters was then used

to compare the performance of the Viterbi algorithm and MEA algorithm with gap-

factor values of (0, 1, and 2). We treat every set of 10 alignments as one big alignment,

and calculate the accuracy (s(hp, hr)) of the predicted alignments, the fD, and fM

scores. In addition to the simulated reference alignment generated from the pair-

HMM, we also generated 10 pairs of unrelated random sequences of length 1000 each

with equal probability for every character. All algorithms have been evaluated on the

resulting reference alignments, which include no H characters, using the probabilities

0.8, 0.1, and 0.9 for the ematch, δ, and ε parameters respectively.

The simulation results demonstrate that the AMAP algorithm produces align-

ments that are more accurate than the Viterbi and MEA alignment algorithms on

both closely related and distant sequences. As expected the best fD scores are

achieved using the MEA algorithm (γ = 0), the best fM scores when γ = 2, and

the best AMA when γ = 1.

It is interesting to note that for distant sequences with larger gap initiation prob-

ability (δ), the Viterbi algorithm has better AMA score than the MEA algorithm

(γ = 0). This again emphasizes the main weakness of MEA, which tends to over-align

47

unalignable regions. This problem is even more pronounced when aligning unrelated

sequences. The MEA algorithm performs poorly compared to the AMAP algorithm

and even the Viterbi algorithm, achieving a mere 72.2 AMA scored compared to 96.8

and 94.8 respectively. This is due to the fact that the MEA algorithm wrongly aligns

2781 character pairs, compared to 157, 316, and 572 in the case of γ = 2, γ = 1, and

Viterbi alignment respectively.

3.4 Discussion

We have proposed a metric for alignment space, and shown how it can be used

both to judge the accuracy of alignments, and as the basis for an optimization criteria

for alignment. The importance of the metric lies in the fact that if two alignments

are far from each other, we can conclude that at least one of them is inaccurate.

This is a direct consequence of the triangle inequality. More importantly, we show

that when alignments made by widely used software programs are compared to each

other they are far apart, thus quantitatively confirming that multiple alignment is

a difficult problem. Although we see that the recall of many programs is high, i.e.,

many of the residues that should be aligned together are correctly aligned, it is also

the case that many residues are incorrectly aligned. This is particularly evident in

results from the Twilight-FP and Superfamilies-FP datasets that contain unrelated

sequences. If functional inferences are to be made from sequence alignments, it is

therefore important to control for precision, and not only recall. Our alignment algo-

rithm, AMAP, which maximizes the expected AMA, outperforms existing programs

on benchmark datasets.

Most existing multiple alignment benchmark datasets include only alignments of

“core blocks”, and it is therefore only possible to measure the recall of matches (fD),

and not their precision (fM) or the AMA. However, the fact that it is harder to

48

construct datasets that can measure the latter two does not mean that alignment

algorithms should maximize recall at the expense of precision. The AMAP algorithm

is the first to have direct control over the inherent recall/precision trade-off using the

gap-factor parameter. In many cases, such as when using MSA for phylogenetic tree

reconstruction, or for identification of remote homology, higher precision is preferred

over higher recall. In addition, as we have shown, tuning the gap-factor parameter

can in some cases compensate for poor parameter estimation of the underlying proba-

bilistic model (pair-HMM). Further work is needed to develop methods for automatic

adjustment of this parameter for a given dataset when the probabilistic parameters

do not fit the data very well, and a reference alignment is not available.

In the typical case where reference alignments are not available, our empirical ob-

servation that the distances between alignments correlate strongly with the accuracy

of the programs that generated them can be used to discard inaccurate alignments.

It is possible that more sophisticated strategies based on this principle could further

help in quantitatively assessing alignment reliability.

In the next chapter we investigate how the basic posterior decoding methods

we have developed for pairwise alignments can be extended to the task of multiple

sequence alignment.

49

Chapter 4

Multiple Alignment by Sequence

Annealing

In the previous chapter we developed posterior decoding methods for pairwise

sequence alignments. In this chapter we extend these methods to the problem of

multiple sequence alignment (MSA). We develop an algorithm, which we call sequence

annealing, and show that it outperforms existing state of the art methods for MSA.1

The multiple sequence alignment (MSA) problem is to find all homologous amino

acids, or nucleotides, among multiple sequences. This problem is similar in some

respects to the protein folding problem: each multiple alignment can be evaluated ac-

cording to the homology relationships it specifies in the same way that the Gibbs free

energy can be computed for a protein conformation. However the differences between

the problems reveal distinct fundamental hurdles that lead to very different computa-

tional problems. In protein folding the free energy of a conformation is derived from

a clear understanding of the underlying physics, whereas in multiple alignment, the

mechanisms of evolution are not well understood, leading to uncertainty over how

1This chapter is an extended version of Schwartz and Pachter (2007)

50

to evaluate multiple alignments. There is another fundamental difference: while the

space of protein conformations is infinite and difficult to explore completely, there

are natural “moves” in the space based on changing backbone torsion angles or side

chain conformations. The space of multiple alignments, while also difficult to ex-

plore completely, is discrete and finite. However it has been unclear how to perform

“small” steps in the space, making it difficult to accurately align single amino acids

or nucleotides. In this chapter we show that it is possible to efficiently explore the

space of multiple alignments using the smallest possible steps.

Unlike pairwise alignment, MSA is a computationally hard problem, since the

search space of possible alignments grows exponentially with the number of sequences,

and it has been proven to be NP-hard for many standard formulations of the prob-

lem (Wang and Jiang, 1994; Bonizzoni and Vedova, 2001; Just, 2001; Elias, 2006).

Existing programs for multiple sequence alignment are mostly based on the idea

of progressive alignment (Feng and Doolittle, 1987), which is widely used, both by

first generation programs such as CLUSTALW (Thompson et al., 1994) and T-Coffee

(Notredame et al., 2000), as well as more recent programs such as Align-m (Van Walle

et al., 2005), MUSCLE (Edgar, 2004) and ProbCons (Do et al., 2005). In terms of the

space of multiple alignments, we can think of progressive alignment as beginning with

the “null alignment” where no two sequences are aligned, and proceeding via large

steps to arrive at a complete alignment. Each step consists of aligning either a pair of

sequences to each other, or the alignment of two partial alignments of subsequences

to each other (Figure 4.1). This is a fundamental weakness of progressive alignment.

For example, at the very first step, two entire sequences are aligned, possibly incor-

rectly, because other informative sequences are not used. This has been addressed

by iterative refinement (Gotoh, 1996), which improves on progressive alignment by

iteratively realigning subsets of sequences, but still often fails to correct complex

alignment errors involving multiple sequences.

51

N G Y E
S Y Y S
– – – –
– – – –

–
–
E
S

–
–
L
L

–
–
P
–

–
–
K
K

–
–
G
–

–
–
I
–

–
–
Q
Q

N G Y E – –
– – – – S Y
– – – – – –
– – – – – –

–
Y
–
–

–
S
–
–

–
–
E
–

–
–
L
–

–
–
P
–

–
–
K
–

–
–
G
–

–
–
I
–

–
–
Q
–

–
–
–
S

–
–
–
L

–
–
–
K

–
–
–
Q

N G Y E
S Y Y S
– – – –
– – – –

–
–
E
–

–
–
L
–

–
–
P
–

–
–
K
–

–
–
G
–

–
–
I
–

–
–
Q
–

–
–
–
S

–
–
–
L

–
–
–
K

–
–
–
Q

–
–
E
S

–
–
L
L

E
S
–
–

Y
Y
K
K

G
Y
G
–

N
S
I
–

–
–
P
–

–
–
Q
Q

(a)

(d)

(c)

(b)

Figure 4.1. Example of progressive alignment. (a) A guide tree is constructed
based on the sequence similarity of the four sequences. (b) The two most similar
sequences are aligned. (c) A second pair of sequences are aligned according to the
guide tree. (d) The two alignments are aligned together to construct the final MSA.

Another approach to multiple sequence alignment was introduced by Morgenstern

et al. (1996) and pursued in a series of papers developing the DIALIGN program

(Morgenstern et al., 1998; Subramanian et al., 2005). The main idea was to address

the problems of progressive alignment by incrementally aligning matching segments

to each other, while preserving the consistency of the alignment. This segment-to-

segment alignment approach effectively reduced the size of the steps taken by progres-

52

sive alignment methods. A key ingredient was the careful formulation of the multiple

alignment problem via precise definitions of partial and global multiple alignments

(Morgenstern et al., 1999). We discuss these ideas in detail in Section 4.1.

In Section 4.2 we introduce the method of sequence annealing. We build align-

ments one match at a time, “annealing” positions that are more likely to be homolo-

gous, first. Using fast algorithms for online topological ordering (Katriel and Bodlaen-

der, 2006), we are able to rapidly construct a consistent global multiple alignment. We

remove the requirement of DIALIGN that alignment proceed by segment-to-segment

comparison, and allow for segments of size 1. This eliminates the need for many of

the heuristics incorporated in DIALIGN. In order to correctly align single residues,

we use the posterior-decoding methods for pairwise alignments we introduced in the

previous chapter.

In Section 4.3 we show that sequence annealing improves on all existing methods

for protein multiple sequence alignment. Not only is sequence annealing more accu-

rate, it is also very fast, even though it is based on performing very small steps in

multiple alignment space.

4.1 Alignment posets

We use the notation σai to denote the ith element of a sequence σa , σa1 , . . . , σ
a
n

of length n. By a set of sequence characters S , {σ1, . . . , σK} we mean the set

of n1 + n2 · · · + nK sequence characters that form the sequences σ1, σ2, . . . , σK of

lengths n1, n2, . . . , nK respectively. A partial global multiple alignment of sequence

characters S , {σ1, . . . , σK} is a partially ordered set P , {c1, . . . , cm} together with

a surjective function ϕ : S → P such that ϕ(σai) < ϕ(σaj) if i < j. The elements of P

correspond to columns of the multiple alignment, and the partial order specifies the

53

N G Y E
S Y Y S
E L I G K P
S L K Q

Q

– – N G Y E
– – S Y Y S
E L I G K –
S L – – – –

–
–
P
–

–
–
–
K

1 2 3 4 5 6 7 8

–
–
Q
Q
9

φ

1

2

8
3

4

5

6 7

9

– – – N G Y
– – – S Y Y
E L – I G K
S L K – – –

–
–
P
–

–
–
Q
Q

1 2 3 4 5 6 7 8

E
S
–
–
9

1

2

3
4

5

6

9 7

8

(a)

(c)

(b)

N G Y E – –
– – – – S Y
– – – – – –
– – – – – –

–
Y
–
–

–
S
–
–

–
–
E
–

–
–
L
–

–
–
P
–

–
–
K
–

–
–
G
–

–
–
I
–

–
–
Q
–

–
–
–
S

–
–
–
L

–
–
–
K

–
–
–
Q

Figure 4.2. Alignment posets. (a) A set of four sequences, an alignment poset
together with a linear extension, and a global multiple alignment. The function
from the set of sequence elements to the alignment poset that specifies the multiple
alignment is not shown, but is fully specified by the diagram on the right. For
example, the second element in the first sequence is σ1

2 = G, and ϕ(σ1
2) corresponds

to the fourth column of the multiple alignment. (b) A different linear extension for the
same alignment poset results in a different (but equivalent) global multiple alignment.
(c) The null alignment of the same four sequences.

54

order in which columns must appear. We call P an alignment poset, and note that

unless P is a total order, there are columns of the partial multiple alignment whose

order is unspecified. A linear extension of a partially ordered set P , {c1, . . . , cm}

is a permutation of the elements c1, . . . , cm such that whenever ci < cj, i < j. A

global multiple alignment is a partial global multiple alignment together with a linear

extension of the alignment poset P (Figure 4.2). Note that although different linear

extensions of the same alignment poset result in different global multiple alignments,

they are all equivalent, since they convey the same homology predictions, with the

only difference being order of gapped columns. We therefore claim that the goal

of a multiple sequence alignment algorithm is to find the optimal alignment poset,

while the specific global multiple alignment that is displayed to the user is simply

an artifact of the standard representation of multiple alignments in matrix form. A

similar representation using directed acyclic graphs instead of posets is used by the

Partial Order Alignment (POA) program (Lee et al., 2002), and has also been used

in the A-Bruijn alignment (ABA) program (Raphael et al., 2004).

There is an important (trivial) case of a partial multiple alignment. A null global

multiple alignment of K sequence S , {σ1, . . . , σK} of lengths n1, . . . , nK is a partial

global multiple alignment MNull where the alignment poset P has size
∑

k nk. Note

that in this case P must be a disjoint union of K chains (Figure 4.2(c)).

Let M be the set of all partial multiple alignments of a set of sequences S. A

scoring function for multiple alignments is a function f : M → R which assigns

a “score” to each partial multiple alignment. In what follows, we make use of the

AMA-based utility function (Uγ) we defined in Section 3.1 for pairs of sequences, by

defining the scoring function to be the expected utility (f , E(Uγ)). The scoring

function of a multiple alignment is defined to be the sum-of-pairs score for all of the

pairwise alignments.

55

4.2 Sequence annealing

The goal of global multiple alignment is to find argmaxM∈M(f(M)) where M

ranges over all partial multiple alignments and f is a scoring function. In principle,

f can be evaluated at every partial multiple alignment but this is not feasible in

practice, as the setM is large (Dress et al., 1998).

We formalize a hill climbing approach to multiple alignment as follows: Let S be

a collection of K sequences of length n1, . . . , nK and let L ,
∑

i ni. A sequence an-

nealing for S with scoring function f is a nesting of partial global multiple alignments

ML ⊃ ML−1 · · · ⊃ Mr where the alignment poset Pi associated to Mi has |Pi| = i

for all i, PL is a null multiple alignment of S, and f(Mi−1) ≥ f(Mi). Note that each

multiple alignment Mi consists of a function ϕMi : S → P .

By definition, the sequence annealing process can only proceed by minimal steps

that reduce the number of columns in the (partial) alignment by one. This can

only be done by merging two existing columns c
Mi+1

k , c
Mi+1

l into cMi
k , such that ∀σaj ,

ϕMi(σaj) = cMi
k if ϕMi+1(σaj) = c

Mi+1

l , or = ϕMi+1(σaj) otherwise. The difficulty in

finding a sequence annealing is that not all pairs of columns can necessarily be merged

in a partial multiple alignment. However it is natural to consider the algorithm in

Figure 4.3. The algorithm starts with the null alignment, and proceeds by merging

columns until no legal merge operation that increases the scoring function exists.

The time complexity of the algorithm depends on (a) the number of iterations of

the main loop, (b) the time it takes to check the condition in line 3, and (c) the time

it takes to merge the two columns. The time for (a) is simply L− r + 1. (c) can be

done in O(K) time, since there are at most K−1 sequence elements that are affected

by each merge operation. The challenging step of the algorithm is (b).

In order to perform step (b) efficiently a weight w(cML
k , cML

l) is assigned to each

56

1: ML ←MNull

2: i← L

3: while ∃cMi
k , cMi

l such that

cMi
k and cMi

l can be merged to produce M ′ and

f(M ′) ≥ f(Mi) do

4: Mi−1 ←M ′

5: i← i− 1

6: end while

Figure 4.3. A general sequence annealing algorithm.

pair of columns in ML. Candidate pairs with positive weights are placed in a heap

in O(Lk log(Lk)) time.2 At every iteration of the algorithm the candidate pair (also

referred to as edge) p with the highest weight is drawn from the heap in O(1) time.

The weight of p is recalculated to account for merge operations that involved the

positions in p. If the new weight w′ is lower than the weight of the current top

candidate in the heap the edge is reinserted into the heap with the new weight w′

in O(log(Lk)) time, otherwise merge(p) is performed. If merge(p) fails because it

introduces a cycle into the poset then p is discarded and the next candidate pair is

considered.

The merge operation can be done efficiently using an online topological ordering

algorithm. Given a directed acyclic graph G, the topological ordering problem is to

find a function ord : V → N such that if i → j then ord(i) < ord(j). Directed

acyclic graphs are equivalent to partially ordered sets, and the topological ordering

problem is just the problem of finding a linear extension of the poset (the former

terminology is used in computer science, and the latter terminology in mathematics).

It is easy to see that the topological ordering problem is trivial (Tarjan, 1972). The

2Here we assume that the number of candidate pairs with positive weights per sequence position
is of the order O(K).

57

online topological ordering problem is the topological ordering problem where edges

appear one at a time. This problem was first considered in Alpern et al. (1990);

Marchetti-Spaccarnela et al. (1996). Significantly for our application, the problem

admits efficient algorithms. We omit a detailed complexity analysis and refer the

reader to Ajwani et al. (2006). In our implementation we adopted the algorithm

of Pearce and Kelly (2004), which has good time complexity and is relatively easy

to implement. The online topological ordering is used to quickly identify whether a

candidate pair is valid (does not introduce a cycle), and to update the linear extension

of the current global multiple alignment after each merge operation. Figure 4.4 shows

an example of a successful merge operation, followed by a failed merge.

The correctness of the algorithm requires that the weight function w(p) has the

property that merging a pair with positive weight will result in Mi−1 for which

f(Mi−1) ≥ f(Mi). Additionally, a good weight function should be correlated with

δ , f(Mi−1)−f(Mi), such that pairs that have a higher potential contribution to the

scoring function will be merged earlier in the sequence annealing process. Since w can

change after each merge operation, a naive algorithm will have to update the weights

for all the affected pairs after every such operation, and reinsert them to the heap with

the updated weights. To reduce the complexity of the algorithm we currently restrict

w to be independent of merge operations, or to have the property that the weight of

a pair can only be reduced after a merge operation. The second property enables a

rapid evaluation of w. Only when a pair pl is fetched from the top of the heap, its

weight w′(pl) is recalculated. Since w′(pl) ≤ w(pl), then w′(pl) = maxpk∈H{w′(pk)} if

and only if w′(pl) ≥ w(ph), where ph is next top candidate pair in the heap H.

In order to specify a weighting function w, we first need to define a utility function

for the global multiple alignment problem. Such a utility function should be derived

from the quality measures used to evaluate alignments. Like with pairwise align-

ments, the most widely used accuracy measure for multiple sequence alignment is the

58

1

2
8

3

4

5

6 7

9

1

2
5

3

4

6

7 8

9

1

2

3

4

6

7 8

9

1

2

3

4

6

7 8

9

X

(a)

(c)

(b)

(d)

Figure 4.4. Online topological ordering and alignment posets. (a) During the
sequence annealing process, the next candidate merge operation of columns 5 and
8 is drawn from the heap. (b) The new edge is added to the poset, and the online
topological ordering procedure updates the current linear extension. (c) Since no
cycle are found during the online topological ordering procedure the two columns are
merged. (d) The next candidate edge connects columns 2 and 7. However, the online
topological ordering procedure locates a cycle, and the edge is discarded.

59

developer score (fD) (Sauder et al., 2000), which is equivalent to the sum-of-pairs

score (SP) (Thompson et al., 1994). We have seen that using fD to derive the utility

function leads to the over alignment problem, in which many unrelated positions are

aligned without much support, resulting in low precision, especially when aligning

unrelated sequences, or sequences with unalignable regions. Moreover, since most

alignment programs are compared based on fD alone, programs that are considered

to be very accurate can actually produce poor alignments that do not distinguish

between related (homologous) and unrelated sequence-regions. To solve this problem

we extend the AMA measure and the Uγ utility function, which we developed for

pairwise alignment, to MSA using a sum-of-pairs scheme.

Defining a complete probabilistic model for MSA is infeasible for more than a few

sequences, since not only the search space is huge, the parameter space also grows

exponentially with the number of sequences. An alternative, is to use a pairwise

probabilistic model, like the pair-HMM we described in Section 2.4. Given such a

probabilistic model for pairwise alignments, it is possible to compute the pairwise

posterior probabilities for every pair of sequences in quadratic time with respect to

the number of sequences. The utility function is then defined as a sum of the pairwise

utility functions (Equation (4.1)).

Uγ(M
r,M) ,

∑
σa,σb|a 6=b

2
∑

{(j,k)|ϕM (σa
j)=ϕM (σb

k)}
1
{
ϕM

r

(σaj) = ϕM
r

(σbk)
}

γ

 ∑
{j|∀σb

kϕ
M (σa

j) 6=ϕM (σb
k)}

1
{
∀σbkϕM

r

(σaj) 6= ϕM
r

(σbk)
}

∑
{k|∀σa

j ϕ
M (σa

j) 6=ϕM (σb
k)}

1
{
∀σajϕM

r

(σaj) 6= ϕM
r

(σbk)
}
 , (4.1)

The gap-factor (γ) parameter serves the same role as in the pairwise alignment case,

which is to control the recall/precision trade-off. The objective of a MSA algorithm

60

is to maximize the scoring function (expected utility) using the pairwise posterior

probabilities (Equation (4.2)). However, a naive approach that optimizes each pair-

wise alignment separately, is bound to fail since the pairwise alignments are coupled

by the poset constraints.

fγ(M) , EMt

(
Uγ(M

t,M)
)

=
∑

σa,σb|a 6=b

2
∑

{(j,k)|ϕM (σa
j)=ϕM (σb

k)}
P (σaj3σ

b
k|σa, σb, θ) +

γ

 ∑
{j|∀σb

kϕ
M (σa

j) 6=ϕM (σb
k)}

P (σaj3− |σa, σb, θ) +

∑
{k|∀σa

j ϕ
M (σa

j) 6=ϕM (σb
k)}

P (−3σbk|σa, σb, θ)


 .

(4.2)

Good weight functions should be correlated with the change in the scoring func-

tion that results from a merge operation, δ , fγ(Mi−1) − fγ(Mi). When a pair of

columns (ck, cl) are merged, the match posterior probabilities of newly aligned pairs

contributes positively to the scoring function, while the gap posterior probabilities of

these positions are subtracted from the scoring function. More formally,

Let δmatch(ck, cl) , 2
∑

{σa
i ∈ϕ−1(ck)}

∑
{σb

j∈ϕ−1(cl)}
P (σai 3σ

b
j |σa, σb, θ),

and let δgap(ck, cl) ,
∑

{σa
i ∈ϕ−1(ck)}

∑
{σb

j∈ϕ−1(cl)}
P (σai 3− |σa, σb, θ) +

∑
{σa

i ∈ϕ−1(ck)}

∑
{σb

j∈ϕ−1(cl)}
P (−3σbj |σa, σb, θ),

then δ(ck, cl) , δmatch(ck, cl)− γδgap(ck, cl). (4.3)

We propose two weight functions that are derived from fγ(M). Both have a static

and a dynamic version. The static weights are computed once using the null align-

61

ment, and stay constant during the sequence annealing process, while the dynamic

weights are recomputed (rapidly) for each top candidate column pair (ck, cl):

wγmaxstep(ck, cl) ,


δ(ck,cl)

|ϕ−1(ck)||ϕ−1(cl)|
if ck 6= cl

−∞ otherwise
, (4.4)

and

wγtgf (ck, cl) ,


δmatch(ck,cl)
δgap(ck,cl)

− γ if ck 6= cl

−∞ otherwise
. (4.5)

The first weight function wγmaxstep assigns the highest weight to the pair of columns

pmax, for which the increase in the scoring function divided by the number of newly

matched pairs is maximal. It is easy to see that this weight function satisfies the

requirement that weights can only decrease following a merge operation, since it is

calculated by averaging over all newly matched residue pairs.

While wγmaxstep is a good hill-climbing heuristic, and is useful for finding a local

maxima of fγ at the final alignment Mr, it has no guarantees for the alignments

produced during the sequence annealing process. The second weight function wγtgf

addresses this issue. It is motivated by the empirical observation that when the op-

timal pairwise alignment is found using dynamic programming, 99.8% of the pairs

that are matched in alignments that use higher gap-factor values also appear in align-

ments that use lower gap-factor values. Sequence annealing with wtgf emulates the

process of slowly reducing the temperature (gap-factor in our analogy), allowing pairs

of columns whose weights become positive to align. Therefore at any step of the se-

quence annealing process the scoring function that is being optimized is ftemp(M),

where temp , wγtgf (pmax) + γ = δmatch(ck,cl)
δgap(ck,cl)

.

The following lemma shows that wγtgf can only decrease after a merge operation.

Lemma: If x1, . . . , xn and y1, . . . , yn are positive numbers then

max
k

xk
yk
≥
∑

k xk∑
k yk

.

62

(a)
γ = 9999.993163 δi = 0

P
i δi = 0

••
1vvc 1 VKCQSPPSISNGRHNGYEDFYTDGSVVTYSCNSGYSLIGNSGVLCSGGEWSDPPTCQIVKCPHPTISNGYLSSGFKRSYSYNDNVDFKCKYGYKLSGSSSSTCSP
1ghq_B 1 ---
1ckl_A 1 ---
1nwv_A 1 ---

•
1vvc 106 GNTWKPELPKCVR--
1ghq_B 1 -------------AISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGEKSLLCITKDKVDGTWDKPAPKCEYFNKYSSCPEPIVPGGYKIRGSTPYRHG
1ckl_A 1 ---
1nwv_A 1 ---

•
1vvc 119 ---
1ghq_B 93 DSVTFACKTNFSMNGNKSVWCQANNMWGPTRLPTCVS--
1ckl_A 1 -------------------------------------CEEPPTFEAMELIGKPKPYYEIGERVDYKCKKGYFYIPPLATHTICDRNHTWLPVSDDACYRETCPYI
1nwv_A 1 ---

1vvc 119 ---
1ghq_B 130 ---
1ckl_A 69 RDPLNGQAVPANGTYEFGYQMHFICNEGYYLIGEEILYCELKGSVAIWSGKPPICEKV---
1nwv_A 1 --FRSCEVPTRLNSASLKQPYITQNYFPVGTVVEYECRPGYRREPSLSP

1vvc 119 --
1ghq_B 130 --
1ckl_A 127 --
1nwv_A 48 KLTCLQNLKWSTAVEFCKKKSCPNPGEIRNGQIDVPGGILFGATISFSCNTGYKLFGSTSSFCLISGSSVQWSDPLPECREH

(b)
γ = 9999.993163 δi = 1.999798536

P
i δi = 1.999798536

••
1vvc 1 VKCQSPPSISNGRHNGYEDFYTDGSVVTYSCNSGYSLIGNSGVLCSGGEWSDPPTCQIVKCPHPTISNGYLSSGFKRSYSYNDNVDFKCKYGYKLSGSSSSTCSP
1ghq_B 1 ---
1ckl_A 1 ---
1nwv_A 1 ---

1vvc 106 GNTWKPELPKC--
1ghq_B 1 -----------AISCGSPPPILNGRISYYSTPIAVGTVIRYSCSGTFRLIGEKSLLCITKDKVDGTWDKPAPKCEYFNKYSSCPEPIVPGGYKIRGSTPYRHGDS
1ckl_A 1 ---
1nwv_A 1 ---

1vvc 117 ---------------------------------VR--
1ghq_B 95 VTFACKTNFSMNGNKSVWCQANNMWGPTRLPTCV-S---
1ckl_A 1 ------------------------------------CEEPPTFEAMELIGKPKPYYEIGERVDYKCKKGYFYIPPLATHTICDRNHTWLPVSDDACYRETCPYIR
1nwv_A 1 ---

1vvc 119 ---
1ghq_B 130 ---
1ckl_A 70 DPLNGQAVPANGTYEFGYQMHFICNEGYYLIGEEILYCELKGSVAIWSGKPPICEKV--
1nwv_A 1 ---FRSCEVPTRLNSASLKQPYITQNYFPVGTVVEYECRPGYRREPSLSPK

1vvc 119 ---
1ghq_B 130 ---
1ckl_A 127 ---
1nwv_A 49 LTCLQNLKWSTAVEFCKKKSCPNPGEIRNGQIDVPGGILFGATISFSCNTGYKLFGSTSSFCLISGSSVQWSDPLPECREH

Figure 4.5. The first step of the sequence annealing algorithm with weight
function w1

tgf on four protein sequences. (a) Starting from the null alignment
the first candidate column pair with weight of ≈ 10000 is fetched from the heap. (b)
The two columns are merged, adding δ ≈ 2 to the scoring function. Affected columns
in the global multiple alignment are rearranged based on the new liner extension.

Proof: We may assume without loss of generality that
∑

k xk =
∑

k yk = 1. If

xk < yk for all k, then
∑

k xk <
∑

k yk which is a contradiction.

Figures 4.5 and 4.6 demonstrate the behavior of the sequence annealing algorithm

with the w1
tgf weight function. Figure 4.5 shows the first step in a sequence annealing

63

(a)
γ = 52.3022995 δi = 1.894424796 Σiδi = 530.9656982

••
1vvc 1 -VKCQ-----SPPSISNGRHNGYEDFYTDG---------------------------------------SVVTYSCNSGYSLIGNSGVLCSGGEWSDPPTCQIVK
1ghq_B 1 AISCG-----SPPPILNGRISYYSTPIAVG---------------------------------------TVIRYSCSGTFRLIGEKSLLC---------------
1ckl_A 1 --------CEEP------------------PTFEAMELIGKPKPYY--------------------EIGERVDYKC-----------------------------
1nwv_A 1 -----FRSCE------------------------------------VPTRLNSASLKQPYITQNYFPVGTVVEYEC-----------------------------

1vvc 61 -------------------------CPHPTISNGYLSSGFKRSYSY---
1ghq_B 47 ITKDKVDGTWDKPAPKCEYFNKYSSCPEPIVPGGY-----------KIRGSTP--
1ckl_A 31 ---KKGYFYIPPLATHTICDRNHTWLPVSDDA------CYRETCPYIRDP-----
1nwv_A 36 ---RPGYRREPSLSPKLTCLQNLKW-------STAVEFCKKKSCP-----NPGEI

1vvc 82 --------------NDNVD----------------FKCKYGYKLSGSSS-----STCSPGNTWK--P------------ELP--KCVR---
1ghq_B 89 -----------YRHGDSVT----------------FACKTNFSMNGNKS-----VWCQANNMW--GPTRLP-------------TCVS---
1ckl_A 72 LNGQAVPANGTY-------E---------FGYQMHFICNEGYYLIGEEILYCEL----------K------GSVAIWSGKPPIC----EKV
1nwv_A 76 RNG-----------------QIDVPGGILFGATISFSCNTGYKLFGSTSSFCLI----------S------GSSVQWSDPLPEC----REH

(b)
γ = 2.474081516 δi = 2.024339676 Σiδi = 923.6841431

••
1vvc 1 -VKCQSPPSISNGRH---NGYED----------FYTDGSVVTYSCNSGYSLIGNSGVL--------CS-----GG----EWSDP-PT------C------QIVKC
1ghq_B 1 AISCGSPPPILNGRI---SYYST----------PIAVGTVIRYSCSGTFRLIGEKSLL--------CITKDKVDG----TWDKPAPK------CEYFNKY--SSC
1ckl_A 1 ---CEEPPTFEA---MELIG---KP------KPYYEIGERVDYKCKKGYFYI------PPLATHTIC--------DRNHTWL-----PVSDDAC------YRETC
1nwv_A 1 FRSCEVPTRLNS---ASL-------KQPYITQNYFPVGTVVEYECRPGYRRE------PSLSPKLTC--------LQNLKWS-----T-AVEFC------KKKSC

1vvc 62 PHPTI-----------SNGYLSSGFK-R-SYSYNDNVDFKCKYGYKLSGSSSSTCSPGN-----TWKP-ELPKCVR-
1ghq_B 73 PEPIV-----------PGGYKIRG--ST-PYRHGDSVTFACKTNFSMNGNKSVWCQANN-----MWGPTRLPTCVS-
1ckl_A 66 PYI--RDPLNGQAVPA----------N-GTYEFGYQMHFICNEGYYLIGEEILYCEL--KGSVAIWSG-KPPICEKV
1nwv_A 70 PNP--GEIRNGQ-IDVP-----------GGILFGATISFSCNTGYKLFGSTSSFCLI--SGSSVQWSD-PLPECREH

(c)
γ = 1.036149621 δi = 0.04467570782 Σiδi = 959.553772

1vvc 1 -VKCQSPPSISNGRHNGY-----EDFYTDGSVVTYSCNSGYSLIGNSG--VLCS-----GGEWSDP--PTCQ----IVKCPHPT---------ISNGYLSSGFKR
1ghq_B 1 AISCGSPPPILNGRISYY-----STPIAVGTVIRYSCSGTFRLIGEKS--LLCITKDKVDGTWDKPA-PKCEYFNKYSSCPEPI---------VPGGYKIRG-ST
1ckl_A 1 ---CEEPPTFEAMELIGK----PKPYYEIGERVDYKCKKGYFYIPPLATHTICDR----NHTWLPVSDDACY----RETCPYIRDPLNGQAVPA---------NG
1nwv_A 1 FRSCEVPTRLNSASLK--QPYITQNYFPVGTVVEYECRPGYRREPSLSPKLTCLQ----NLKWST-AVEFCK----KKSCPNPGEIRNGQ-IDVP---------G

1vvc 78 SYSYNDNVDFKCKYGYKLSGSSSSTCSPGN---TWKP-ELPKCVR-
1ghq_B 88 PYRHGDSVTFACKTNFSMNGNKSVWCQANN---MWGPTRLPTCVS-
1ckl_A 82 TYEFGYQMHFICNEGYYLIGEEILYCELKGSVAIWSG-KPPICEKV
1nwv_A 85 GILFGATISFSCNTGYKLFGSTSSFCLISGSSVQWSD-PLPECREH

Figure 4.6. Later steps in the sequence annealing of four protein sequences
with weight function w1

tgf . (a) At temperature γ ≈ 52 different pairs of sequences
are aligned at different parts of the multiple alignment. (b) At temperature γ ≈ 2.5 all
fully conserved columns are aligned. (c) The final alignment. The sequence annealing
process stops at temperature γ ≈ 1.04 with total scoring function improvement of
959.55 over the null alignment. Next candidate column pair has weight < 1, which
can only decrease the scoring function.

alignment of four protein sequences. Starting from the null alignment, the tempera-

ture (effective gap factor) is reduced until the first pair of columns “anneal” (merge).

Note how other columns rearrange in the global multiple alignment, based on the

new linear extension that is produced by the online topological ordering procedure.

Figure 4.6 (a) is a global multiple alignment of the same four sequences later in the

sequence annealing process (temperature γ ≈ 52). Unlike progressive alignment, with

64

the sequence annealing process different columns can align residues from different se-

quences. In this example there are columns that align residues from the first and

second sequences; third and fourth sequences; second and third sequences; first, sec-

ond and fourth sequences; and so forth. Another important property of the sequence

annealing process is that a valid global multiple alignment exists at every step of the

algorithm. The alignments in the earlier stages of the sequence annealing process

have very high expected precision with lower expected recall, while later alignments

increase the expected recall at the expense of expected precision. In Figure 4.6 (b)

all the fully conserved columns are aligned when the temperature is at γ ≈ 2.47, and

the overall gain in scoring function compared to the null alignment is Σiδi ≈ 923.68.

The sequence annealing process stops (Figure 4.6 (c)) when the top candidate column

pair requires a temperature smaller than the target gap-factor (1 in our example) to

get aligned, since at this point any additional merge operation can only reduce the

value of the scoring function. Note, that in our example there are still valid pairs of

columns that can be merged without introducing a cycle. when using a gap-factor of

0 the process stops only when no such column pairs exist. However, this results in

over-alignment and reduced AMA and fM scores.

4.3 Results

We implemented sequence annealing by extending our pairwise posterior decoding

alignment program, AMAP. The new program, AMAP 2.0, is abbreviated by AMAP

in this chapter 3.

The following variations of AMAP were tested:

3AMAP uses the ProbCons parameters with a single pair of gap states to generate pairwise
posterior probabilities. The latest version of ProbCons uses two additional gap states, which we do
not use in the current version of AMAP. We also slightly modified the initial state probabilities to
{πmatch,πinsert,πdelete} = {0.4,0.3,0.3}.

65

• AMAP - the program with its default settings. w = w1
tgf with dynamic weights.

• AMAPrec - adjusted to maximize recall. w = w0
maxstep with static weights, and

two rounds of consistency transformations. This version of the program is best

suited for comparison with existing multiple alignment programs that focus on

maximizing recall.

• AMAPprec - adjusted for better precision. w = w8
tgf with dynamic weights.

We compared the performance of AMAP with other alignment programs on the

SABmark 1.65 datasets (see Section 3.3.1). Programs tested include Align-m 2.3

(Van Walle et al., 2005), CLUSTALW 1.83 (Thompson et al., 1994), DIALIGN-T

0.2.1 (Subramanian et al., 2005), MUSCLE 3.52 (Edgar, 2004), ProbCons 1.1 (Do

et al., 2005) and T-Coffee 3.84 (Notredame et al., 2000). Our main results are:

• The recall of AMAPrec averaged over all positions in both SABmark datasets

(with and without false-positives) is higher than all tested programs, and is

achieved with the highest precision of all tested programs. Remarkably, the

precision of AMAPrec is almost 3 times higher than the closest competitors in

recall.

• Both AMAP and AMAPprec get better modeler and AMA scores than all other

programs, including Align-m, which is designed to optimize precision rather

than recall.

• The running time of AMAP is comparable to (and in some cases faster) than

that of DIALIGN-T, MUSCLE, ProbCons and T-Coffee. This was achieved

without any optimization for speed in the current prototype.

These results are detailed in Tables 4.1 and 4.2 that show the performance of all

the alignment programs we tested measured with the developer, modeler and AMA

66

Twilight Superfamilies Overall Overall Time
by alignment by alignment by alignment by position

Program fD fM AMA fD fM AMA fD fM AMA fD fM AMA Sec.

Align-m 21.6 23.6 51.7 49.2 45.6 56.9 40.1 38.3 55.2 35.2 45.4 56.6 12.7
CLUSTALW 25.6 14.7 24.9 54.0 38.1 43.8 44.7 30.4 37.6 33.6 19.5 28.2 0.4
DIALIGN-T 21.3 19.8 45.5 49.9 44.9 54.8 40.4 36.6 51.7 33.9 38.6 52.5 1.4
MUSCLE 27.3 16.4 27.6 56.3 40.3 46.4 46.8 32.4 40.2 37.5 22.5 31.7 2.1
ProbCons 32.1 21.1 37.4 59.8 44.4 51.8 50.7 36.7 47.0 43.0 34.3 47.0 4.5
T-Coffee 26.7 18.1 35.2 56.5 42.8 50.3 46.7 34.7 45.3 39.4 31.5 44.5 11.3
AMAPrec 30.9 22.4 40.9 58.8 45.3 53.3 49.6 37.8 49.2 43.3 39.1 51.9 2.4
AMAP 24.0 28.3 51.2 52.8 54.6 59.5 43.3 45.9 56.8 32.5 59.7 59.6 1.7
AMAPprec 14.5 41.5 56.5 38.7 69.4 60.2 30.7 60.2 59.0 20.7 78.1 58.9 1.4

Table 4.1. Comparison of protein alignment programs on the SABmark
datasets with no false positives. Entries show the average developer (fD), modeler
(fM) and alignment metric accuracy (AMA) scores. Best results are shown in bold.
All numbers have been multiplied by 100.

accuracy measures on the SABmark 1.65 datasets without and with false positives

respectively. The developer score (fD) measures recall and the modeler score (fM)

measures precision. The AMA measure, provides a balanced assessment of the overall

accuracy of an alignment.

It is important to note that all programs except for Align-m aim at maximizing

recall at the expense of precision. It is therefore not surprising that these programs

clearly have better fD scores than fM scores. On the other hand, AMAP enables

control of the recall/precision trade-off, and is able to achieve best results on both

measures. This is clear by examining Figure 4.7 which shows recall and precision of

AMAP at various stages of the sequence annealing on the SABmark dataset with no

false-positives. All the points on the AMAP curve were produced with AMAP, except

for the highest recall point, which was produced by AMAPrec. The figure depicts

one crucial difference between AMAP and all the other current alignment programs.

While every other program, produces a single point, the sequence annealing method

67

Twilight-FP Superfamilies-FP Overall Overall Time
by alignment by alignment by alignment by position

Program fD fM AMA fD fM AMA fD fM AMA fD fM AMA Sec.

Align-m 17.8 6.4 81.5 44.8 16.8 77.5 35.9 13.4 78.9 28.6 17.6 83.3 158.9
CLUSTALW 20.4 2.4 35.5 50.9 7.4 37.0 40.8 5.7 36.5 31.2 4.0 34.2 1.7
DIALIGN-T 17.0 4.5 74.1 46.7 14.0 71.5 36.9 10.9 72.4 30.2 13.5 78.5 5.7
MUSCLE 19.4 2.3 37.1 49.7 7.5 38.9 39.7 5.8 38.3 30.7 4.1 35.7 19.2
ProbCons 26.8 4.4 55.6 56.0 10.9 55.0 46.4 8.8 55.2 34.8 6.5 54.2 28.5
T-Coffee 13.0 2.3 56.5 42.5 9.3 56.6 32.8 7.0 56.6 26.7 6.6 62.6 61.2
AMAPrec 27.3 6.6 68.3 56.1 14.1 63.8 46.6 11.6 65.3 35.7 17.7 81.1 13.5
AMAP 19.2 9.8 84.4 46.4 27.0 84.2 37.4 21.4 84.2 27.4 30.1 88.5 11.2
AMAPprec 12.7 17.3 91.0 35.7 45.9 91.1 28.1 36.5 91.1 19.1 50.3 91.4 10.0

Table 4.2. Comparison of protein alignment programs on the SABmark
datasets with false positives. Entries show the average developer (fD), modeler
(fM) and alignment metric accuracy (AMA) scores. Best results are shown in bold.
All numbers have been multiplied by 100.

used in AMAP produces a series of alignments, starting alignments with high precision

and low recall, and ending at alignments with lower precision but higher recall. It

is clear that the AMAP line dominates all other programs, since for every alignment

produced by some other program, there is a point on the AMAP line that has better

recall and precision. The advantage of the sequence annealing approach is even

more pronounced when considering the sets with false-positives (Figure 4.8), since

the sequence annealing avoids fixing erroneous homology prediction at early stages

of the algorithm like progressive alignment, and therefore much better suited for

identifying un-alignable regions, leaving them unaligned at least until more evidence

is obtained from other sequences.

Although we disagree that alignment programs should be evaluated based on

recall alone, we will note that the fD scores of AMAPrec are comparable to ProbCons,

which is arguably the most accurate program in terms of recall. This is not surprising

since AMAP and ProbCons use similar posterior probabilities. While ProbCons has

68

(a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 0.1 0.2 0.3 0.4 0.5 0.6

Recall

Pr
ec

is
io

n

ProbCons DIALIGN-T T-Coffee MUSCLE CLUSTALW Align-m AMAP

(b)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Recall

Pr
ec

is
io

n

ProbCons DIALIGN-T T-Coffee MUSCLE CLUSTALW Align-m AMAP

Figure 4.7. Comparison of the recall/precision trade-off of different align-
ment programs with AMAP on the SABmark datasets with no false-
positives (a) Results averaged over alignments. (b) Results averaged over all po-
sitions.

69

(a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Recall

Pr
ec

is
io

n

ProbCons DIALIGN-T T-Coffee MUSCLE CLUSTALW Align-m AMAP

(b)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Recall

Pr
ec

is
io

n

ProbCons DIALIGN-T T-Coffee MUSCLE CLUSTALW Align-m AMAP

Figure 4.8. Comparison of the recall/precision trade-off of different align-
ment programs with AMAP on the SABmark datasets with false-positives
(a) Results averaged over alignments. (b) Results averaged over all positions.

70

slightly better recall than AMAPrec on the sets without false-positives when scores

are averaged over alignments, AMAPrec has a slightly better score when the scores

are averaged over all positions in all alignments together. This indicates that the

sequence annealing method finds better alignments when the total number of residues

in an alignment increases. The same trend is evident in the false-positives sets, in

which AMAPrec achieves better scores than ProbCons on all measures and datasets.

This is again due to the fact that the false-positives sets are larger and therefore the

alignments are less robust to errors made in early stages of the progressive alignment

procedure used in ProbCons. Even more striking is the fact that while both programs

achieve very similar fD scores, AMAPrec has much better fM and AMA scored than

ProbCons (81.1 AMA compared to 54.2 on the false-positive sets averaged over all

alignments), even though it is tuned to optimized recall alone. Again, this can be

explained by the fact that sequence annealing takes the smallest steps in the space

of multiple alignments, and fixes matches based on their overall contribution to the

scoring function score. In progressive alignment, once two sequences are chosen to

be aligned, their entire alignment is determined without regard to the fact that the

alignment of some residues may be unclear until later in the procedure.

Both AMAP and AMAPprec get better fM and AMA scores than all other pro-

grams, including Align-m, which is designed to optimize precision rather than recall.

AMAP achieves high precision while still producing respectable recall scores. On

most datasets, AMAPprec has better AMA scores than AMAP, despite the fact that

AMAP is tuned to optimize the AMA scores. This can be explained by the fact that

the parameters used to produce the posterior probabilities do not fit the SABmark

data very well, and probably under-estimate the gap probabilities.

AMAP compares favorably with most other programs in terms of running time, as

well. It takes only 13.5 seconds on average to align a group of sequences from the false-

positives sets with current version of AMAP, which is still a prototype that has not yet

71

been optimized for speed, compared to 19.2 seconds per query with MUSCLE, which

is known to be optimized for fast running time. In fact, most of AMAP’s running

time is spent on computing the posterior probabilities and not on the actual sequence

annealing. Using sequence annealing also enables AMAP to produce in one run of

the algorithm a range of multiple sequence alignments, ranging from alignments with

high precision to those with high recall, since at every point of the algorithm a valid

multiple sequence alignment can be produced from the current (partial) alignments.

This allows users to see how the alignment is being built, and decide which alignment

looks best for their purpose.

4.4 Summary and Future Directions

We have shown that sequence annealing is a practical alternative to progressive

alignment that can be used for multiple alignment of protein sequences. In addition

to being more accurate than existing methods, sequence annealing has the advantage

that the intermediate alignments produced during the annealing process are of use in

identifying reliable portions of the multiple alignment. They provide the user with

the ability to explore the trade-off between recall and precision.

Although we have only considered multiple alignment of protein sequences in this

chapter there is no reason to expect that the methods we have developed cannot

be applied to DNA multiple alignment. In the case of DNA, it may be necessary

to further develop the sequence annealing approach to allow for melting (in analogy

with simulated annealing algorithms). Indeed, by revisiting certain annealing steps,

it may be possible to avoid local maxima of the scoring function. Indeed, we do not,

at this time, have a clear understanding of the landscape of the scoring function we

have proposed. This is a promising direction for future research.

72

Sequence annealing can also be used for local multiple alignment. A partial local

multiple alignment of sequence characters S , {σ1, . . . , σK} is a partially ordered set

P , {c1, . . . , cm} together with a surjective function ϕ : S → P such that if x, y ∈ P

with x < y then if σai ∈ ϕ−1(x) and σaj ∈ ϕ−1(y), i < j. Note that the every partial

global multiple alignment is a partial local multiple alignment (but not vice versa). A

null local multiple alignment is the poset consisting of a disjoint union of singletons.

Sequences can be annealed with the added “move” of connecting components of the

alignment posets without collapsing elements.

In summary, sequence annealing opens up the possibility of exploring the space of

multiple alignments, and enables global optimization methods to be applied directly

to the multiple alignment problem.

73

Chapter 5

Multiple Alignment of Citation

Sentences

In the previous chapters we have shown how posterior-decoding methods can

be applied to the problem of multiple sequence alignment. In particular, posterior-

decoding methods can directly maximize the expected value of a specific utility func-

tion rather than minimizing the expected value of the standard 0–1 loss function

using Viterbi decoding. In addition, posterior-decoding enables direct control of the

recall/precision trade-off that is inherent in most machine-learning problems.

In this chapter we demonstrate how techniques similar to the ones we applied

to the MSA problem can be applied to a different but related problem—multiple

alignment of citation sentences at the word level.

74

5.1 Citances

In Nakov, Schwartz, and Hearst (2004) we first introduced the concept of citances.

This section summarizes the motivation for using citances in the biosciences domain

as we have described it in that publication.

The scientific literature of biomedicine, genomics, and other biosciences is a rich,

complex, and continually growing resource. With appropriate information extraction

and retrieval tools, bioscience researchers can use the contents of the literature to

further their research goals. In recent years the interest in automatic tools for infor-

mation extraction and retrieval from bioscience literature has increased considerably.

Evidence for that trend is the addition of the genomics track to the Text Retrieval

Conference (TREC)1, and the BioCreAtIvE (Critical Assessment of Information Ex-

traction systems in Biology) competition 2.

As part of the BioText project 3 we are interested in utilizing the large volume of

available bioscience text when designing information extraction and retrieval tools.

For example, instead of analyzing each document separately, multiple related docu-

ments can be analyzed together, thus increasing the accuracy of tools for tasks such

as entity recognition, relation extraction, synonym disambiguation, and automatic

summarization. So far, most of the Natural Language Processing (NLP) work in

the bioscience domain has been done on MEDLINE abstracts. However, full text is

becoming more available, providing new opportunities for automatic text processing.

One such opportunity lies in the text around citations in full text papers.

We suggest using the sentences that surround the citations to related work as

the data from which to build semantic interpretation models. We also introduce

1http://trec.nist.gov/
2http://www.mitre.org/public/biocreative/
3http://biotext.berkeley.edu/

75

a neologism, citances, to mean the sentence(s) surrounding the citation within a

document.

Citations are used in every scientific literature, but they are particularly abundant

in biosciences. Nearly every statement is backed up by at least one citation, and,

conversely, it is quite common for papers in the bioscience domain to be cited by 30–

100 other papers. The text around citations tends to state known biological facts with

reference to the original papers that discovered them. The cited facts are typically

stated in a more concise way in the citing papers than in the original papers. As

the same facts are repeatedly stated in different ways in different papers, statistical

models can be trained on existing citances to identify similar facts in unseen text.

Figure 5.1 shows an example of three different citances to the same target paper.

With the availability of full text articles, and the nature of citation in bioscience

literature, traditional citation analysis work can be greatly expanded. We believe

that citations have great potential to be a valuable resource in mining the bioscience

literature. In particular, we identify the following promising applications of citation

analysis:

• A source for unannotated comparable corpora. Comparable corpora,

which are typically generated from news articles on related events, are a useful

resource for the development of NLP tools for question answering (Lin and Pan-

tel, 2001) and summarization (Barzilay and Lee, 2003). Most domains outside

of news do not contain many articles discussing the same events, but bioscience

citances have some of the requisite characteristics in that they include redun-

dancies that enable identification of comparable sentences. In the case of news

articles, dates and named entities help link related sentences.

• Summarization of the target papers. The set of citances that refer to a

specific paper can be viewed as an indication of the important facts in the paper

76

as seen by the scientific community in that field. This is an excellent resource

for summarization. In fact, we believe that a paper that is cited enough times

can be summarized using only the citances pointing to it. Instead of showing

the user all the citances pointing to a paper (as is done in CiteSeer and in Nanba

et al. (2000)), we propose to first cluster related citances, and then display to

the user only a summary of each cluster. The facts expressed by each cluster

can be extracted and stored in a database in a normalized form. This could

facilitate answering advanced queries on facts, such as “retrieve all documents

that describe which genes upregulate gene G”.

• Synonym identification and disambiguation. Bioscience literature is rife

with abbreviations and synonyms. Citances referring to the same article may

enable synonyms to be identified and recorded. On the flip side, in many cases

the same terms have multiple meanings. Again, a collection of related citances

can help disambiguate these meanings, since in some of the citances an unam-

biguous form of the term might be present.

• Entity recognition and relation extraction. Citances in bioscience litera-

ture are more likely to state biological facts than arbitrarily chosen sentences

in an article. They also tend to be more concise, since the authors try to sum-

marize previous related work, which has already been described in detail in the

original paper. Language presents a myriad number of ways to express the same

or similar concepts. Citances provide us a way to build a model of many of the

different ways to express a relationship type R between entities of type A and

B. We can seed learning algorithms with several examples using concepts that

are semantically similar to A and similar to B, for which relation R is known

to hold. Then we can train a model to recognize this kind of relation for sit-

uations for which the relation is not known. Since the results may extend to

77

sentences that are not citances as well, citances-based corpora should provide a

good collection for building NLP tools for recognizing entities and relations in

unseen text.

• Targets for curation. We hypothesize that citances contain the most impor-

tant information expressed in the cited document, and therefore contain the

information that curators would want to make use of.

• Improved citation indexes for information retrieval. In addition to sup-

porting advance queries over facts as just described, citation indexes can be

improved by combining methods that use citances’ context (e.g. Mercer and

Marco, 2004) with methods that use citances’ content (e.g. Bradshaw, 2003).

For example, indexing terms can be taken from citances referring to a target

paper, weighting them both by their relative frequency and the type of citations

they appear in.

Several issues must be addressed in order to effectively use citances in various

applications.

• Text span. The span or scope of the text that should be included with the

citation must be determined. The appropriate span can be a phrase, a clause, a

sentence, or several sentences or their fragments. Furthermore, citations them-

selves must be parsed, as they can be shown as lists or groups (e.g., “[22-25]”).

• Identifying the different topics. The different reasons a given paper is cited

must be determined, and citances that cite a document for a similar reason

must be grouped together.

• Normalizing or paraphrasing citances. Once the citances with the same

meaning are grouped together, they will convey essentially the same informa-

tion in different ways, or express different subsets of the same information.

78

Thus it is important to be able to “normalize” or paraphrase the citances for

many applications, including indexing in a database or an IR system, docu-

ment summarization (Barzilay and McKeown, 2001; Barzilay and Lee, 2003),

learning synonyms (Grefenstette, 1992, 1994), building a model of the different

expressions of the same relationship for IE (Shinyama et al., 2002; Shinyama

and Sekine, 2003), extracting patterns for question answering (Lin and Pantel,

2001), and machine translation (Pang et al., 2003).

5.2 Multiple citance alignments

Most of the applications of citance analysis described in the previous section re-

quire the identification of equivalent entities across and within citances. For example,

when using citances to a target paper as an input to a summarization system, entities

that are semantically related in the context of the cited paper should be identified

as such to help in the identification of the main cited facts. The citances alignment

problem is partially analogous to the problem of multiple alignment of biological se-

quences. In both cases the goal is to align homologous entities that are derived from

the same ancestral entity. While in biology homology is well defined in the molecular

level, in the citances case it is defined in the semantic level, which is much more sub-

jective. Given a group of citances that cite the same target paper, we loosely define

semantic homology as a symmetric, transitive, and reflexive relation between two en-

tities (words or phrases) in the same or different citance that have similar semantics

in the context of the cited paper.

Figure 5.1 shows an example of three citances that cite the same target paper

(Falck et al., 2001). A multiple alignment of the entities in the same citances (af-

ter removal of stop-words) is shown in Figure 5.2. Homologous entities are colored

the same. This small example illustrates some of the main challenges of multiple ci-

79

tance alignment (MCA). While orthographic similarity can help to identify semantic

homology (e.g. phosphorylate and phosphorylation), it can also be misleading (e.g.

cell cycle and U3A cells). In addition, semantic homology might not include any

orthographic clues (e.g. genotoxic stress and DNA damage).

Unlike global MSA where each character can be aligned to at most one character

in every other sequence, in MCA each word can be aligned to any number of words

in other sentences. Another major difference between the two problems is the fact

that while the sequential ordering of characters must be maintained in MSA, this is

not the case for MCA. However, MCA retains the transitivity requirement of MSA

(i.e. that if σai 3σ
b
j and σbj3σ

c
k then σai 3σ

c
k).

Formally, we define MCA as follows. Let G , {C1, C2, . . . , CK} be a group of K

citances that cite the same target paper, where the ith citance is a sequence of words

Ci , Ci
1C

i
2 · · ·Ci

ni , and ci , {ci1, ci2, . . . , cini} is the set of word indices of Ci. A pairwise

citance alignment of Ci and Cj is an equivalence (symmetric, reflexive, and transitive)

relation ∼ij on the set ci ∪ cj. The expression cik ∼ij c
j
l means that according to the

pairwise alignment ∼ij word k in citance Ci and word l in citance Cj are aligned.

A multiple citance alignment (MCA) is an equivalence relation ∼,
(⋃

ij ∼ij
)+

on

the set
⋃
i c
i, which is the transitive closure of the union of all pairwise alignments of

citance pairs in G. Taking the transitive closure and not only the union of all pairwise

alignments ensures that the MCA is an equivalence relation as well.

Since ∼ is an equivalence relation, it includes also pairs of word-indices (cik, c
j
l)

from the same citances where i = j. For notation convenience we define the set

∼6=,∼ \
⋃
ikl {(cik, cil)}, which includes all indices pairs that align words from dif-

ferent citances. We also add the following notation for two special cases of MCAs.

∼null,
⋃
ik {(cik, cik)} is the null alignment where each word aligns only to itself.

∼all,
⋃
ij|i6=j c

i × cj is the complete alignment where all words align to all words.

80

Example of unaligned citances
“In response to genotoxic stress, Chk1 and Chk2 phosphorylate Cdc25A on N-terminal
sites and target it rapidly for ubiquitin-dependent degradation (Mailand et al, 2000, 2002;
Molinari et al, 2000; Falck et al, 2001; Shimuta et al, 2002; Busino et al, 2003), which is
thought to be central to the S and G2 cell cycle checkpoints (Bartek and Lukas, 2003;
Donzelli and Draetta, 2003).”

“Given that Chk1 promotes Cdc25A turnover in response to DNA damage in vivo
(Falck et al. 2001; Sorensen et al. 2003) and that Chk1 is required for Cdc25A
ubiquitination by SCFβ-TRCP in vitro, we explored the role of Cdc25A
phosphorylation in the ubiquitination process.”

“Since activated phosphorylated Chk2-T68 is involved in phosphorylation and
degradation of Cdc25A (Falck et al., 2001, Falck et al., 2002; Bartek and Lukas,
2003), we also examined the levels of Cdc25A in 2fTGH and U3A cells exposed to
γ-IR.”

Figure 5.1. Example of three unaligned citances.

Alignment after normalization

response genotoxic stress Chk1 Chk2 phosphorylate Cdc25A N terminal sites target
rapidly ubiquitin dependent degradation thought central S G2 cell cycle checkpoints

Given Chk1 promotes Cdc25A turnover response DNA damage vivo Chk1 required
Cdc25A ubiquitination SCF beta TRCP vitro explored role Cdc25A phosphorylation
ubiquitination process

activated phosphorylated Chk2 T68 involved phosphorylation degradation Cdc25A
examined levels Cdc25A 2fTGH U3A cells exposed gamma IR

Figure 5.2. Example of three normalized aligned citances. Homologous entities
are colored the same. Unaligned entities are black.

Note that | ∼null6= | = 0, and | ∼all6= | =
∑

i,j|i6=j n
inj = (

∑
i n

i)
2 −

∑
j (nj)

2
. Another

convenient notation is �,∼all6= \ ∼, which is a relation that includes all word indices

pairs (from different citances) that are not aligned.

81

An MCA ∼ defines a partition of the set of all word indices c ,
⋃
ik {cik}, which is

of size n , |c| =
∑

i n
i. Therefore, the number of distinct MCAs of G is the number

of partitions of a set of size n. This number is called the nth Bell number (Rota, 1964)

Bn ,
1

e

∞∑
k=0

kn

k!
. (5.1)

Asymptotically, Bn grows faster than an exponential but slower than a factorial. For

example B100 ≈ 10116. Obviously, enumerating all possible MCAs is impractical even

for small problems.

5.3 MCA utility and loss functions

Unlike the toy example in Figure 5.2, in most practical scenarios useful MCAs

include tens or hundreds of citances. Since it is impractical to manually construct an

MCA to every target paper of interest, we are interested in algorithms for producing

MCA automatically. For automatic MCAs to be useful as an input to further citance

analysis, they need to be accurate or “close” enough to the “true” MCAs or to manu-

ally created reference MCAs, which are assumed to be closer to the truth. Ultimately,

the success of an MCA algorithm should be judged by its effect on the success of the

citance analysis systems that use MCAs as their input. However, measuring this ef-

fect directly is very difficult, since the higher level tasks, such as summarization are

hard to evaluate objectively, and furthermore it is hard to quantify the contribution

of the MCA accuracy to the accuracy of the higher level system that uses it. A more

practical alternative is to measure the accuracy of MCAs directly using some accuracy

measure, under the simplifying assumption that there is a strong correlation between

the measured MCA accuracy and the performance of the higher level system.

Given a reference MCA ∼r and a two predicted MCAs ∼p1 and ∼p2, a utility

82

function assigns a higher value to the MCA that is closer to ∼r. Conversely, a loss

function assigns a higher value to the MCA that is farther from ∼r. In the following

discussion we will only consider utility and loss functions that assign values in the

range [0, 1], where for ∼p1=∼p2 the utility is 1 and the loss is 0. Therefore, for every

utility function U(·, ·) an equivalent loss function can be defined as L(·, ·) , 1−U(·, ·).

Given a utility (loss) function the goal of an MCA algorithm is to produce MCAs

that maximize (minimize) the expected value of that function.

We argue that a useful utility function should be correlated (or even identical) to

the accuracy measure used to evaluate the performance of an algorithm. In addition,

the utility function should be easily decomposable, to enable direct optimization

using posterior-decoding. Although any accuracy measure that is acceptable as a

single performance measure can be used to guide the design of the utility function,

metric-based accuracy measures have several noticeable advantages. First, a metric

formalizes the intuitive notion of distance. Hence, an accuracy measure which is based

on a metric follows the intuition that reducing the distance to the correct answer

should increase the accuracy of the predicted answer. Therefore, defining a metric

space for the objects of a given problem leads to a natural definition of accuracy.

Another advantage of using a metric-based accuracy measure is the ability to provide

bounds in the search space using the triangle inequality. For example, while searching

for the answer with the optimal (metric-based) expected utility, a step of length x can

only change the expected utility as well as the actual utility by ±x units. Examples

of more complex bounds using metric loss functions are described in Schlüter et al.

(2005) and Domingos (2000).

Using the requirements from a good utility function described above, it is possible

to judge existing utility functions and design new ones. There are numerous alterna-

tive loss functions that have been described before for related problems to MCA. We

83

will only consider a small number of similarity measures that are commonly used in

binary classification problems to compare two sets (predicted versus reference).

The 0–1 loss function is very simple, but is widely used as an objective function

for binary classification. In the context of MCA the 0–1 loss is defined as:

L0−1(∼r,∼p) ,

 0 if ∼r=∼p

1 otherwise
(5.2)

The main problem with the 0–1 loss function is that it is too strict. While it

works well for many binary classification problems, it is not as well suited for more

complex problems, such as MCA, where it is very difficult to achieve perfect agreement

between the reference alignment and the predicted alignment. The 0–1 loss does not

distinguish between different types of errors. Intuitively, the loss of a predicted MCA

that is closer to the reference MCA should be smaller than the loss of a predicted

MCA that is very different from the reference.

A standard loss-function used in a closely related problem to MCA, namely pair-

wise word alignment for machine translation (Brown et al., 1990), is the Alignment

Error Rate (AER) (Och and Ney, 2003). AER is defined for reference alignments that

include both “Possible” and “Sure” word-indices pairs. When all pairs are “Sure”

pairs the Dice coefficient (Dice, 1945) between ∼p6= and ∼r6=, and the F1-measure of

word-indices pairs are the equivalent utility functions to the the AER loss function.

UDice(∼r,∼p) ,
2| ∼r6= ∩ ∼

p
6= |

| ∼r6= |+ | ∼
p
6= |

(5.3)

In a recent paper, Fraser and Marcu (2006) show that AER has only moderate cor-

relation to the final translation quality even without the “Possible” pairs. Moreover,

1−Dice is not a metric, since it does not obey the triangle inequality (Gower and Leg-

endre, 1986). To see that, consider the following example; let x = {1}, y = {2, 3}, z =

{1, 2, 3}, then 1−Dice(x, z) + 1−Dice(y, z) = 2/4 + 1/5 < 1−Dice(x, y) = 1.

84

A similar utility function is based on the Jaccard coefficient (Jaccard, 1901),

which, unlike Dice, has an equivalent loss function that is a metric (Lecandowsky and

Winter, 1971).

UJaccard(∼r,∼p) ,
| ∼r6= ∩ ∼

p
6= |

| ∼r6= ∪ ∼
p
6= |

(5.4)

The main problem with using the Jaccard coefficient (as well as Dice) as the

utility function for MCA is that UJaccard does not decompose well over the word-

indices pairs. Any change in the predicted MCA ∼p affects both the numerator and

the denominator in Equation (5.4). It is therefore difficult to directly maximize the

expected utility using posterior decoding given the posterior probabilities for every

candidate aligned word indices pair P (cik ∼ cjl).

E∼t(UJaccard(∼t,∼p)) =
∑
∼t

P (∼t) UJaccard(∼t,∼p)

=
∑
∼t

P (∼t)
∑

cikc
j
l |i6=j

1{cik ∼t c
j
l ∨ cik ∼p c

j
l }∑

cikc
j
l |i6=j

1{cik ∼t c
j
l ∧ cik ∼p c

j
l }

(5.5)

As can be seen in Equation (5.5), there is no simple way to avoid enumerating all

possible MCAs (Bn; see Equation (5.1)) using the posterior probabilities, which is

impractical.

Another loss function that is based on a metric is the Hamming loss (Hamming,

1950), which is defined as

LHamming(∼r,∼p) ,
| ∼p6= \ ∼r6= |+ | �p \ �r |

| ∼all6= |
. (5.6)

The Hamming loss is simply the fraction of word indices pairs that are differ-

ent (aligned in one MCA and not the other) between the predicted MCA and the

reference MCA. Unlike the Dice and Jaccard based utility functions, the Hamming

loss decomposes well over the word indices pairs, since its denominator is a constant.

85

Therefore the expected loss can be computed directly given the posterior probabilities

of word indices pairs.

E∼t(LHamming(∼t,∼p))

=
∑
∼t

P (∼t) LHamming(∼t,∼p)

=
∑
∼t

P (∼t)
∑

cikc
j
l |i6=j

1
{
(cik ∼t c

j
l ∧ cik �p cjl) ∨ (cik �t cjl ∧ cik ∼p c

j
l)
}∑

cikc
j
l |i6=j

1

=

∑
cikc

j
l |i6=j

∑
∼t P (∼t)1

{
(cik ∼t c

j
l ∧ cik �p cjl) ∨ (cik �t cjl ∧ cik ∼p c

j
l)
}

| ∼all6= |

=

∑
cikc

j
l |i6=j

E∼t

(
1
{
(cik ∼t c

j
l ∧ cik �p cjl) ∨ (cik �t cjl ∧ cik ∼p c

j
l)
})

| ∼all6= |

=

∑
cikc

j
l |i6=j

P (cik ∼t c
j
l)1{cik �p cjl }+

(
1− P (cik ∼t c

j
l)
)
1{cik ∼p c

j
l }

| ∼all6= |
(5.7)

The main drawback of the Hamming loss is that it gives equal weight to false

positives and false negatives. Since in large MCAs the majority of word indices pairs

are likely to be negative, minimizing the expected Hamming loss can lead to very

sparse (or even the null) predicted alignments. To mitigate this effect Lacoste-Julien

et al. (2006) proposed to use a weighted Hamming loss (for pairwise word alignments),

which assigns a higher weight to false negatives4.

LwHamming(∼r,∼p) ,
w+| ∼p6= \ ∼r6= |+ w−| �p \ � |

w+| ∼p6= |+ w−| �p |
. (5.8)

The expected weighted Hamming loss can be computed directly using posterior

probabilities as well. However, it is not a metric, since it is not symmetric. More

importantly, the weighted Hamming loss suffers from a limitation shared by all pre-

4The loss function in Lacoste-Julien et al. (2006) was not normalized. We present here a nor-
malized version of the weight Hamming loss function to be consistent with our requirement that all
utility and loss functions range between zero and one. However, note that the normalization might
reduce the desired effect of the weights.

86

vious utility (loss) functions we have discussed. Since all the utility functions are

defined over the set of word-pair indices ∼all6= they over-emphasize the contribution

of words-indices that are part of large equivalence classes in the reference MCA ∼r.

Large equivalence classes occur when the words that belong to the same semantic ho-

mology class are common in the citances of G, and when the homology class includes

multi-word phrases rather than single words. For example, a phrase of length l that

appears in k citances is represented by l2(k2 − k) word indices pairs, and therefore

its affect on the utility function grows quadratically with the number of occurrences

and with its length, while a linear growth seems to be a more reasonable choice. This

problem is significant also for pairwise alignments, since misaligning a multi-word

phrase of length l still incurs a quadratic loss, while misaligning l single words incurs

a linear loss.

In order to devise a solution to the over-representation of large classes, let us

revisit the alignment metric accuracy (AMA), the utility function for MSA. When

we first described it in Section 3.1 we emphasized the fact that AMA is based on

a metric unlike the other accuracy measures for MSA. However, another important

distinction is that the basic elements of AMA are the individual character position

indices, and not the pairs of indices. This difference is subtle in the case of MSA

since it is a one-to-one alignment, where every position in one sequence can align to

at most one position in every other sequence. Using individual positions as the basic

elements leads to the consideration of unaligned positions, which are ignored when

only pairs of positions are considered. 1 - AMA for pairwise sequence alignments can

be viewed as a Hamming loss over character positions, where the loss is the number

of character positions in both sequences that are aligned differently.

Using the insight from the definition of AMA for MSA, we would like to define

a utility function for MCA that uses word indices as its basic elements rather than

word indices pairs. This should solve the over-representation problem, since each

87

word position is treated equally whether it is part of a large equivalence class or

not. However, applying AMA directly to MCA would not yield the desired result,

because MCA is a many-to-many alignment. Using a strict Hamming loss over word

indices, a word position that aligns to multiple word positions in another citance will

be rewarded only if it aligns to all these word positions correctly, while a good utility

function for MCA should give partial credit to word positions that align to some of

the correct word positions while penalizing for aligning to wrong word positions.

To help define such a utility function we define the following. Let mij
h (cjl) , {cik ∈

ci|cik ∼ cjl } be the set of all word positions in citance Ci that align to word position l

in citance Cj according to MCA ∼. We can then define the following utility function

for the MCA ∼p of the citance group G given a reference MCA ∼r:

UAMA(∼r,∼p) ,

∑
ijl|i6=j Uset agreement

(
mij
∼r(c

j
l),m

ij
∼p(c

j
l)
)

n(K − 1)
, (5.9)

where n is the number of word indices in G, K , |G| is the number of citances in

the group, and Uset agreement is any utility function for agreement between sets that

assigns values in the range [0, 1]. Uset agreement can be viewed as a “score” assigned to

each word position based on the agreement between the two alignments with regards

to the other word positions that align to it. Using a 0–1 loss as the set agreement

score is equivalent to the original AMA.

Any of the utility functions we have discussed earlier, such as Dice, Jaccard and

Hamming can be used as Uset agreement. However, only metric-based utility functions

will result in a metric-based UAMA utility function. It is easy to see that 1 − UAMA

satisfies all the requirements of a metric, i.e. it is non-negative, equals to zero if and

only if ∼r=∼p, symmetric, and obeys the triangle inequality, since if the triangle

inequality holds for Uset agreement, it must hold for a sum of Uset agreement values. The

Dice coefficient is not based on a metric, while the Hamming and weighted Hamming

loss functions have similar problems to those we have discussed earlier. Since Jaccard

88

is based on a metric it can be a good candidate to be used as the set agreement

function, and unlike when it is defined on word indices pairs, when it is defined as a

score for each word position computing its expected value is much more feasible.

UJaccard
(
mij
∼r(c

j
l),m

ij
∼p(c

j
l)
)

,


1 if mij

∼r(c
j
l) = ∅

and mij
∼p(c

j
l) = ∅

|mij
∼r (cjl)∩m

ij
∼p (cjl)|

|mij
∼r (cjl)∪m

ij
∼p (cjl)|

otherwise

(5.10)

The distance measure based on the Jaccard coefficient can be viewed as a nor-

malized edit-distance between two sets when the only allowed moves are insertion

and deletions of elements from the sets. Comparing sets A and B the edit distance

between the two sets is |A ∪ B| − |A ∩ B|, since starting from A we can remove all

the elements that are not in B to get to the intersection (|A \B| steps) and then add

the elements that are in B but not in A (|B \A| steps). An alternative is to consider

an edit-distance that allows substitutions. In this case the distance between the sets

is max{|A|, |B|} − |A ∩ B|. Assuming A is the smaller set, we can replace all the

elements that are in A but not in B with elements from B, and then add the rest

of the elements that are still missing from B. Overall we used |B| − |A ∩ B| moves.

Converting to a normalized similarity measure leads to a utility function based on

the Braun-Blanquet coefficient (Braun-Blanquet, 1932).

UBraun−Blanquet
(
mij
∼r(c

j
l),m

ij
∼p(c

j
l)
)

,


1 if mij

∼r(c
j
l) = ∅

and mij
∼p(c

j
l) = ∅

|mij
∼r (cjl)∩m

ij
∼p (cjl)|

max{|mij
∼r (cjl)|,|m

ij
∼p (cjl)|}

otherwise

(5.11)

Caillez and Kuntz (1996) showed that the Braun-Blanquet coefficient is based

on a metric as part of a more complex proof on a family of similarity coefficients.

89

0-1 wHamming Hamming Dice Jaccard Braun-Blanquet
1 1 1 1 1 1 given
0 81/91 9/10 2/3 1/2 1/2 chk1
1 1 1 1 1 1 promotes
1 1 1 1 1 1 cdc25a
1 1 1 1 1 1 turnover
1 1 1 1 1 1 response
0 61/73 7/10 2/5 1/4 1/3 dna
0 81/91 9/10 2/3 1/2 1/2 damage
1 1 1 1 1 1 vivo
0 81/91 9/10 2/3 1/2 1/2 chk1

re
sp

on
se

ge
no

to
xi

c

st
re

ss

ch
k1

ch
k2

ph
os

ph
or

yl
at

e

cd
c2

5a

n te
rm

in
al

dn
a

Braun-Blanquet 1 1/2 1/2 1 0 1 1 1 0 0
Jaccard 1 1/2 1/2 1 0 1 1 1 0 0
Dice 1 2/3 2/3 1 0 1 1 1 0 0
Hamming 1 9/10 9/10 1 0 1 1 1 0 0

Reference alignment wHamming 1 81/91 81/91 1 0 1 1 1 0 0
Predicted alignment 0-1 1 0 0 1 0 1 1 1 0 0

Figure 5.3. Calculation of different set-agreement functions on a pairwise
citance alignment. A predicted alignment of normalized citances (filled squares)
is compared to a reference alignment of the same citances (empty squares). For each
word the Uset agreement scores is calculated using six different set-agreement coeffi-
cients.

Function Type Recall Precision 0–1 Dice Jaccard Hamming wHamming Braun-Blanquet
Word indices pairs 0.556 0.714 0 0.625 0.455 0.940 0.955 0.556
AMA (word-based) 0.550 0.737 0.688 0.810 0.814 0.692

Table 5.1. Comparison of different utility function as calculated on the ex-
ample in Figure 5.3. The first line shows the values of the six different coefficients,
in addition to recall and precision when using pairs of indices as the basic set ele-
ments. The second line shows the word-based values of the coefficients when averaged
over all word in Figure 5.3.

We provide an alternative direct proof in Appendix A. There is another important

observation about the Braun-Blanquet coefficient—it can be viewed as the minimum

of recall and precision. The following inequalities hold between Dice, Jaccard, and

Braun-Blanquet coefficients: UDice(A,B) ≥ UBraun−Blanquet ≥ UJaccard.

Figure 5.3 demonstrates the calculation of set-agreement functions on a simple

example of a pairwise citance alignment. The 0–1 and Hamming loss functions were

replaced by their corresponding utility functions (1−L). For the weighted Hamming

utility functions w− was set to 10 times w+. Note that the different coefficients differ

90

only for words for which there is partial agreement between the two alignments. For

example, the predicted alignment of the word ’dna’ in the vertical citance is scored

2/5, 1/4, and 1/3 by the Dice, Jaccard, and Braun-Blanquet coefficients, while the

word ’dna’ in the horizontal citance is scored 0 by all coefficients. Table 5.1 compares

the values of the different utility functions on the example in Figure 5.3 when used

directly on word indices pairs (first line), or averaged over words using the UAMA

utility of Equation (5.9).

The expected value of the AMA utility function can be approximated using the

posterior probabilities of word indices pairs.

E∼t

(
UAMA(∼t,∼p)

)
=

=
∑
∼t

P (∼t) 1

n(K − 1)

∑
ijl|i6=j

Uset agreement
(
mij
∼t(c

j
l),m

ij
∼p(c

j
l)
)

=
1

n(K − 1)

∑
ijl|i6=j

∑
∼t

P (∼t)Uset agreement
(
mij
∼t(c

j
l),m

ij
∼p(c

j
l)
)

=
1

n(K − 1)

∑
ijl|i6=j

E∼tUset agreement
(
mij
∼t(c

j
l),m

ij
∼p(c

j
l)
)

=
1

n(K − 1)

∑
ijl|i6=j

Emij

∼t (c
j
l)
Uset agreement

(
mij
∼t(c

j
l),m

ij
∼p(c

j
l)
)

=
1

n(K − 1)

∑
ijl|i6=j

∑
ci∗∈P(ci)

P (mij
∼t(c

j
l) = ci∗)Uset agreement

(
ci∗,m

ij
∼p(c

j
l)
)

≈ 1

n(K − 1)

∑
ijl|i6=j

∑
ci∗∈P(ci)

∏
cik

(
P (cik ∼t c

j
l)1{c

i
k ∈ ci∗}+ (1− P (cik ∼t c

j
l))1{c

i
k /∈ ci∗}

)
Uset agreement

(
ci∗,m

ij
∼p(c

j
l)
)

(5.12)

The expression P(ci) in Equation (5.12) is the power-set (set of all subsets) of

ci, which means that the summation
∑

ci∗∈P(ci) ranges over 2n
i
possible combinations

of word positions in citance Ci, which word position cjl can align to. This can slow

down the computation of the expected value of the AMA utility function when Ci is

91

long. In practice, it is possible to approximate this summation by considering only

combinations that include word positions that are likely to align to cjl (P (cik ∼t c
j
l) >

Const).

The last step in Equation (5.12) is based on the assumption that P (mij
∼t(c

j
l) = ci∗)

can be approximated by
∏

cik

(
P (cik ∼t c

j
l)1{cik ∈ ci∗}+ (1− P (cik ∼t c

j
l))1{cik /∈ ci∗}

)
using an independence assumption.

5.4 Probabilistic model for MCA

So far we have assumed that the pairwise posterior probabilities P (cik ∼ cjl |Ci, Cj)

are given or can be computed using an arbitrary probabilistic model. However, unlike

biological sequences for which pair-HMMs are a natural choice for modeling evolu-

tionary process between two sequences, there is no simple generative model that

can be used for modeling pairwise citance alignment. Most of the work on pairwise

alignment of sentences at the word level has been done in the statistical machine

translation (SMT) community. Och and Ney (2003) present an overview and com-

parison of the most common models used for SMT word alignments. Out of the

models they describe, the HMM models are the most expressive models that can com-

pute posterior probabilities using the forward-backward algorithm. However, unlike

sequence-alignments there are no ordering constraints in word-alignments, and the

alignments are many-to-many as opposed to one-to-one. Therefore, the SMT HMM

models cannot be based on pair-HMMs, which generate two sentences simultaneously.

Rather, they are directional models that model the probability of generating a tar-

get sentence given a source sentence. In other words they only model one-to-many

alignments, recovering the many-to-many alignments in a preprocessing step. There-

fore, SMT HMMs can only compute the posterior probabilities P (cik ; cjl |Ci, Cj)

and P (cjl ; cik|Ci, Cj), where the relation ; represents the (directional) event that

92

a source word is translated into a target word. Nevertheless, recently such posterior

probabilities have been used in SMT word alignment system, as an alternative to

Viterbi decoding and helped to improve the performance of such systems (Matusov

et al., 2004; Liang et al., 2006).

Generative models like HMMs have several limitations. First, they require rela-

tively large training data, which is difficult to attain in case of SMT word alignment,

and even more so in the case of MCA. Second, generative models explicitly model the

inter-dependence of different features, which reduces the ability to incorporate mul-

tiple arbitrary features into the model. Since orthographic similarity is not a strong

enough indication for semantic homology in MCA, we would like to be able to incor-

porate into a single model multiple inter-dependent features, including orthographic,

contextual, ontological, and lexical features.

Recently, several authors have described discriminative SMT alignment models

(Moore, 2005; Lacoste-Julien et al., 2006; Blunsom and Cohn, 2006). However, to the

best of our knowledge only the model of Blunsom and Cohn (2006), which is based on

a Conditional Random Field (CRF) (Lafferty et al., 2001), can compute word indices

pairs’ directional posterior probabilities, like those computed by the HMM models.

Therefore, we decided to adopt the CRF-based model to the MCA problem.

5.4.1 Conditional random fields for word alignment

The model of Blunsom and Cohn (2006) is based on a linear chain CRF, which

can be viewed as the undirected version of an HMM. The CRF models a one-to-

many pairwise alignment, in which every source word can get aligned to zero or one

target words, but every word in the target sentence can be the target of multiple

source words. CRFs define a conditional distribution over a latent labeling sequence

given observation sequence(s). In the case of CRF for word alignment the observed

93

sequences are the source and target sentences (citances), and the latent labeling

sequence is the mapping of source words to target word-indices. Given a source citance

Ci of length ni, and a target citance Cj of length nj, the one-to-many alignment of Ci

to Cj is the relation ;. Since this is a one-to-many alignment, ; can be represented

by a vector a of length ni. The CRF models the probability of the alignment a

conditioned on Ci and Cj as follows:

PΛ(a|Ci, Cj) =
exp (

∑
t

∑
k λkfk(t, at−1, at, C

i, Cj))

ZΛ(Ci, Cj)
, (5.13)

where f , {fk} are the model’s features, Λ , {λk} are the feature’s weights, and

ZΛ(Ci, Cj) is the partition (normalization) function which is defined as:

ZΛ(Ci, Cj) ,
∑
a

exp

(∑
t

∑
k

λkfk(t, at−1, at, C
i, Cj)

)
. (5.14)

Parameters are estimated from fully observed data (manually aligned citances)

using a maximum a posteriori estimate. The parameter estimation procedure is

described in more details in the original paper. Blunsom and Cohn (2006) used

Viterbi decoding to find an alignment of two sentences given a trained CRF model,

a∗ , argmaxa PΛ(a|Ci, Cj). However, the posterior probabilities of the labels at each

position can be calculated as well using the forward-backward algorithm:

PΛ(cil ; cjk|C
i, Cj) = PΛ(al = cjk|C

i, Cj) =
αl(c

j
k|Ci, Cj)βl(c

j
k|Ci, Cj)

ZΛ(Ci, Cj)
(5.15)

where αl and βl are the forward and backward vectors that are computed with the

forward-backward algorithm (Lafferty et al., 2001). Using this procedure the direc-

tional pairwise posterior probabilities of every pair of word indices from any pair

of citances in both directions can be computed in time O ((K2 −K) maxni {(ni)2}),

where K is the number of citances in the MCA.

94

5.4.2 The posterior decoding algorithm for MCA

Following our discussion from Section 5.3 we base our MCA utility functions on

the AMA utility function with the Braun-Blanquet set agreement coefficient. As

with the MSA case a family of utility functions can be defined to enable control of

the recall/precision trade-off. Unlike MSA, in the case of MCA two free parameters

are needed, in order to have better control of the trade-off using posterior-decoding.

In addition to a gap-factor that controls the threshold at which unaligned words

start to get aligned, a match-factor is added to enable control of the number of

words-positions each word aligns to.

Uµ,γ(∼r,∼p) ,

1
n(K−1)

∑
ijl|i6=j

(
µ|m

ij
∼p (cjl)| |mij

∼r (cjl)∩m
ij
∼p (cjl)|

max{|mij
∼r (cjl)|,|m

ij
∼p (cjl)|,1}

+ γ1{mij
∼r(c

j
l) = mij

∼p(c
j
l) = ∅}

)
,

(5.16)

where γ ∈ [0,∞) is a gap-factor, and µ ∈ (0,∞) is a match factor. The neutral

value for both parameters is 1, since by setting both parameters to 1, Equation (5.16)

recovers the calculation in Equation (5.9) with the Braun-Blanquet set agreement

function. Increasing γ results in increased utility to sparser MCAs, while reducing

γ increases the utility of denser alignments. However, in the case of MCA the gap-

factor only affects the first aligned word position, but it cannot affect the number

of word positions each word is aligned to. The match-factor adds this functionality

by rewarding MCAs that align words to multiple word positions when µ > 1, and

penalizing such MCAs when µ < 1.

Given a group of K citances G and a trained CRF model, the goal of the MCA

algorithm is to find the MCA ∼∗, argmax∼p E∼tUµ,γ(∼t,∼p) that maximizes the

expected utility. Since searching the space of possible MCAs exhaustively is infeasible,

we resort to a simple heuristic for predicting an MCA. Instead of searching for a global

optimum, the predicted MCA is defined as the equivalence (symmetric transitive)

95

closure of the union of multiple local optima. For each target word position cjl and

every source citance Ci the combination of source word positions ci◦ that maximize

the expected set-agreement score of cjl is added to the predicted MCA.

;p,⋃
ijl|i6=j{c

j
l } × argmaxci◦∈P(ci)Emij

∼t (c
j
l)

(
µ|c

i
◦| |mij

∼t (c
j
l)∩c

i
◦|

max{|mij

∼t (c
j
l)|,|c

i
◦|,1} + γ1{mij

∼t(c
j
l) = ci◦ = ∅}

)
=⋃
ijl|i6=j{c

j
l } × argmaxci◦∈P(ci)∑

ci∗∈P(ci) P (mij
∼t(c

j
l) = ci∗)

(
µ|c

i
◦| |ci∗∩ci◦|

max{|ci∗|,|ci◦|,1} + γ1{ci∗ = ci◦ = ∅}
)

≈⋃
ijl|i6=j{c

j
l } × argmaxci◦∈P(ci)∑

ci∗∈P(ci)(∏
cik

(
PΛ(cik ; cjl |Ci, Cj)1{cik ∈ ci∗}+

(1− PΛ(cik ; cjl |Ci, Cj))1{cik /∈ ci∗}
))(

µ|c
i
◦| |ci∗∩ci◦|

max{|ci∗|,|ci◦|,1} + γ1{mij
∼t(c

j
l) = ci◦ = ∅}

)
(5.17)

∼p,
(
;p ∪(;p)−1

)+
(5.18)

Note that although the directional posterior probabilities are used to generate the

predicted MCA, the result is a many-to-many alignment, since the union is done over

all pairs of sequences in both directions. The calculation in Equation (5.17) can be

computationally intensive in practice, as it requires |P(ci)|2 = 22ni
operations for each

word position cjl and citance Ci. This can be overcome by restricting the combinations

of source word positions (ci∗ and ci◦) to include only the the top MAX SOURCES

source words with a minimum posterior probability of MIN PROB to align to cjl

(PΛ(cik ; cjl |Ci, Cj) ≥ MIN PROB). In our implementation we set MAX SOURCES

96

to 8 and MIN PROB to 0.01. Additionally, the probabilities of each combination

ci∗ can be calculated only once, since it is independent of ci◦. This reduces the total

computational complexity of calculating ∼p to O (216(K2 −K) maxni {ni}).

5.5 Data sets

One of the limitations of CRFs and other discriminative models is that they are

typically required to be trained on labeled data. Additionally a development set is

required for feature selection. Lastly, a held out test set is used for a formal evaluation

of the final system’s performance. Unlike MSA there has been no previous work done

on the problem of MCA, thus there are no publicly available datasets that can be

used to develop and evaluate a MCA algorithms. We therefore took upon us the task

of creating the first datasets of manually-annotated reference MCAs.

We created two larger MCAs to be used as the development and test set, and

four smaller MCAs for our training set. All six target papers where selected from the

annotation reference of the Molecular Interaction Map (MIM) (Aladjem et al., 2004) of

DNA replication.5 We decided to restrict the domain of the target papers to molecular

interactions, due to the limited size of our date sets, and the limited resources we

had for manual annotation. However, it is important to note that this domain is

very actively researched in the biosciences text mining community (Hirschman et al.,

2002).

For each target paper we downloaded the full text of papers citing it that were

available in HTML format. The link structure of the cited references in the HTML

documents allowed us to automatically extract citances to a given target paper. For

our purpose we define a citance to be the full sentence that contains a citation to

5http://discover.nci.nih.gov/mim/

97

the target paper. Each citance was then tokenized, and normalized by removing all

stop-words from a predefined list. For the development set we used 51 citances that

cite a single target paper. The test set included 45 citances of a second target paper.

To increase the feature diversity in the training set we used 4 different target papers

with 40 citances (10 each).

The six groups of citances were manually annotated by Dr. Anna Divoli. Within

each group of citances words or phrases that share semantic similarity were annotated

with identical identifiers. Using the manually annotated citance groups pairwise word

alignments were generated for every source-target pair of citances from every group.

That resulted in a training, development, and test sets of 180, 1275, and 990 pairwise

alignments respectively. Alignments that were used for development and testing were

generated as many-to-many alignments. However, using many-to-many alignments

is not suitable for the training the one-to-many CRF alignment model. When a

given source word cik aligns to multiple words in the target citance the CRF model

arbitrarily treats only one target word as a true-positive, while incorrectly treating

the other target words as true-negatives. To alleviate this problem we replaced in such

cases all true-positive target words except the first with ’*’, thus making them real

true-negative for the purpose of training. This solution does not solve the inherent

limitation of the CRF’s one-to-many modeling of a many-to-many alignment, but

it prevents learning wrong weights for good features that arbitrarily apply to true-

positives that are treated as true-negative by the CRF.

5.6 Feature engineering

The CRF alignment model can combine multiple overlapping features. We evalu-

ated the effectiveness of different features by training models on the training set and

evaluating their performance on the development set. We considered variations of

98

features that were part of the original system of Blunsom and Cohn (2006), and also

designed new features that are specific to the problem of MCA, and the bioscience

domain.

Orthographic features

We used the following orthographic features from the original system;

• indicator for exact string similarity of source-target words,

• indicator for every possible source-target pair of length 3 word prefixes,

• indicator for exact string match of length 3 prefixes,

• indicator for exact string match of length 3 suffixes,

• absolute difference in word lengths,

• indicator that both words are shorter than 4 characters.

In addition, the following orthographic features were added;

• indicator that both words include capital letters,

• normalized edit-similarity of the two words (1− edit distance(cik,c
j
l)

max{|cik|,|c
j
l |}

).

Due to the small size of our training set we tried to remove features that are too

specific and could lead to over-fitting, and unnecessary features that did not improve

the performance on the development set. These features include;

• indicator for every possible source-target words,

• indicator for every possible source-target pair of length 3 word suffixes,

99

• prefix-suffix and suffice match,

• prefix match of lengths 4 and 5,

• un-normalized edit-distance.

Markov features

We used the following Markov features from the original system;

• absolute jump width (abs(at − at−1 − 1), which measures the distance between

the target words of adjacent source words,

• positive jump width (max{at − at−1 − 1, 0}),

• negative jump width (max{at−1 + 1− at, 0}),

• indicator for transition from null aligned source-word to non-null aligned source-

word,

• indicator for transition from non-null aligned source-word to null aligned source-

word,

• indicator for transition from null aligned source-word to null aligned source-

word.

In addition we added the following Markov features in order to model the tendency

of certain words to be part of longer phrases;

• indicator for every source-word string that is true when it aligns to the same

target-word as the previous source-word,

• indicator for every source-word string that is true when it aligns to the same

target-word as the next source-word,

100

• indicator for transition from non-null aligned source-word to non-null aligned

source-word.

A general (not word specific) indicator for aligning a source-word to the same target-

word as the previous source-word was evaluated but was not included in the final

system.

Sentence position

We included the relative sentence position feature from the original system, which

is defined as abs(at

|cj | −
t
ci

). Although it was not expected to be relevant for MCA,

since the citances are not expected to align along the diagonal, this feature slightly

improved the performance of the development set.

Null

An indicator function for leaving a source-word unaligned was retained from the

original system. This is an essential feature since without it the CRF tends to over-

align words, and produces meaningless posterior probabilities.

Ontological features

Orthographic and positional features alone do not cover all cases of semantic ho-

mology. We therefore included features that are based on domain specific ontologies.

Using an automated script we mapped specific words and phrases in every citance

to MeSH6 terms, Gene identifiers from Entrez Gene,7 UniProt,8 and OMIM.9 We

6http://www.nlm.nih.gov/mesh/
7http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
8http://www.pir.uniprot.org/
9http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

101

then added features indicating when the source and target words are annotated with

the same MeSH term or the same gene identifier. We tried numerous features that

compare MeSH terms based on their distance in the ontology, and other features that

indicate whether a word is part of a longer term. However, all these feature were not

selected for the final system.

In addition to biological ontologies we added a feature for semantic word similarity

between the source and target words, based on the Lin (1998) WordNet similarity

measure.

5.7 Results

We modified the CRF alignment system of Blunsom and Cohn (2006) to support

MCA, by incorporating the posterior decoding algorithm from Section 5.4.2 into the

existing system. The CRF model was trained using the features that were selected

using the development set, on a dataset that included the training and development

MCAs. All the performance results in this section are reported on the test set, which

includes 990 pairs of citances (45 × 44/2), with a total of 34188 words (8547 × 44).

On average, 20% of the source-words are aligned to at least one other target-word in

a given reference pairwise alignment. Since the union of all the pairwise alignments

results in only a single test MCA, it is hard to make strong arguments about the

performance of the system in general. Therefore, we concentrate our discussion on

general trends, and do not claim that the specific performance numbers we report here

are statistically significant. It is interesting to note that the SMT community has been

evaluating performance of word-alignment systems on an even smaller dataset of 447

pairs of (non-overlapping) sentences (Mihalcea and Pedersen, 2003).

We first analyze the performance of the system on pairwise citance alignments.

102

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8

Recall

Pr
ec

is
io

n

Viterbi_Intersection Viterbi_Union Posterior decoding

Figure 5.4. Recall/Precision curve of pairwise citance alignments comparing
Viterbi to posterior decoding.

Instead of taking the equivalence closure of ;p we take only the symmetric closure.

The result is 990 many-to-many pairwise alignments. In order to evaluate the effec-

tiveness of the posterior-decoding algorithm we generate the Viterbi alignments using

the same CRF model. The Viterbi many-to-many pairwise alignments are then gen-

erated by combining equivalent pairs of one-to-many alignments using three different

standard symmetrization methods for word-alignment—union, intersection, and the

refined method of Och and Ney (2003).

Figure 5.4 shows the recall/precision trade-off of the pairwise posterior-decoding

and Viterbi alignments. The curve for the posterior-decoding alignments was pro-

duced by varying the gap and match factors. For the Viterbi alignments only three

results could be generated (one for each symmetrization method). However, since

the refined method produced a very similar result to the union, only the union is

displayed in the figure. The important observation is that while posterior-decoding

103

enables refined control over the recall/precision trade-off, the Viterbi decoding gen-

erates only three alignments, which cover only a small fraction of the curve at its

high precision range. The union of Viterbi alignments achieves 0.531 recall at 0.913

precision, which is similar result to the 0.540 recall at 0.909 precision achieved us-

ing posterior-decoding with gap-factor and match-factor set to 1. However, unlike

Viterbi, posterior-decoding produces alignments with much higher recall levels, by

increasing the match-factor and decreasing the gap-factor. For example setting the

gap-factor to 0.1 and match-factor to 1.2 results in alignments with 0.636 recall at

0.517 precision, and setting them to 0.05 and 1.5 results in 0.742 recall at 0.198 pre-

cision. Generally, the gap and match factor affect the accuracy of the alignments

as expected. In particular, the alignments with the best AMA (0.889) and the best

F1-measure (0.678) are generated when the gap match factor are set to their natural

values (1,1), which theoretically should maximize the expected AMA.

The performance of the pairwise alignments validates that the underlying prob-

abilistic model behaves as theoretically expected. However the union of all pair-

wise alignments is not a valid MCA. For evaluating the MCA posterior decod-

ing algorithm we compared it to baseline MCAs. The baseline MCAs are con-

structed by using only the normalized-edit-distance
edit distance(cik,c

j
l)

max{|cik|,|c
j
l |}

, and defining

cik ;δ cjl if and only if normalized edit distance(cik, c
j
l) ≤ δ, where δ is a distance

threshold. The final baseline MCA is constructed by taking the equivalence closure

of all pairwise alignments, ∼δ,
(
;δ ∪(;δ)−1)

)+
. The δ parameter can be used to

control the recall/precision trade-off, since increasing it adds more position-pairs to

the alignment, thus increasing recall, while decreasing it increases precision.

Figures 5.5 compares the performance of the CRF posterior-decoding MCAs with

the baseline MCAs. The different MCAs were produced by varying the gap and match

factors in the case of the posterior-decoding, and δ for the baseline MCAs. The CRF

curve clearly dominates the baseline curve. However, they do overlap in range between

104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Pr
ec

is
io

n

CRF Baseline

Figure 5.5. Recall/Precision curve of MCAs comparing CRF with posterior
decoding to normalized-edit-distance baseline.

0.52 and 0.55 recall (0.84 and 0.90 precision). This is probably a range in which for

this particular MCA the orthographic similarity is the most dominant feature. While

the baseline curve drops sharply after that range, the posterior-decoding curve keeps

improving recall up to 0.636 at 0.748 precision, before there is a major drop in pre-

cision. The additional recall is due to the ability of the CRF model to incorporate

multiple overlapping features. In particular, the domain-specific features are impor-

tant for aligning words and phrases that have little or no orthographic similarity. At

the other end of the overlap range, the posterior-decoding achieves better precision

than the baseline for the same recall levels. For example, the posterior decoding gets

0.381 recall at 0.982 precision compared with 0.346 at 0.937 for the baseline.

Unlike the pairwise alignment case, the neutral settings of the gap and match

factors did not result in the best AMA score. This is due to the equivalence closure

105

heuristic that results in MCAs that are too dense, since a single link between two

equivalence classes causes them to merge. The best AMA score (0.886) is obtained by

reducing the gap-factor to 0.5 and match-factor to 0.45, in order to compensate for

the effect of the equivalence closure heuristic. For comparison, the best F1-measure

(0.690) is achieved by setting the gap and match factors to 0.75.

5.8 Discussion

The main purpose of this chapter was to investigate how the posterior-decoding

methods that we have developed for MSA can be applied to related, but different do-

mains. We made a first attempt at defining the problem of MCA, which is motivated

by recent work in biosciences text mining. By looking at a new problem, we were free

to select our accuracy measures and utility functions. We explored the pros and cons

of different utility functions, and were able to modify the AMA for one-to-one MSAs

to apply to the many-to-many MCAs. The main design principle was that the utility

function should decompose well over the basic elements for which we can compute

posterior probabilities.

Since the sequence-annealing algorithm for MSA cannot be applied directly to

MCA, we showed how to derive a posterior-decoding algorithm that aims at maxi-

mizing the expected utility. Adding a gap and match factor to the utility function

enabled to control the recall/precision trade-off using posterior-decoding.

Another advantage of optimizing the expected utility with posterior-decoding

methods is that they are decoupled from the probabilistic model that generate the

posterior probabilities. Therefore, we were able to use CRFs instead of HMMs in the

case of MCA with little change to the posterior decoding algorithm.

Our experiments were limited by the size of the training and test labeled data.

106

However, the results support the theoretical predictions, and demonstrate the advan-

tage of posterior-decoding over Viterbi decoding.

Since citances are still a relatively unexplored resource, it is still unclear whether

the formulation we presented here for citance alignment is the most useful for appli-

cations that use citances for comparative analysis of bioscience text. Unlike biological

sequence alignment, citance alignments are much more subjective since they depend

on a loose definition of semantic homology between entities. Even the definition of the

basic entities can vary, since in many cases noun-compounds and other multi-word

entities seem to be a more natural choice for basic elements of semantic homology and

alignment. However, automatic segmentation and entity recognition are still difficult

tasks in the bioscience text domain.

107

Chapter 6

Conclusions

In this work we have explored methods for optimization and control of alignment

accuracy. A combination of posterior decoding methods and careful definition of

accuracy measures and utility functions for multiple sequence alignment and citance

alignment lead to improved overall alignment accuracy, and enables direct control of

the recall/precision trade-off.

Although our work focused on multiple alignments, methods similar to the ones we

have developed can be applied to other problems in related areas, such as biological

network alignment, phylogeny reconstruction, comparative gene fining, alignment for

statistical machine translation, and alignment of HTML pages.

Our proposed framework includes the following components: (i) definition of util-

ity functions that decompose well over the basic elements of the problem. Although

not a necessary requirement, deriving utility functions from metrics has many ad-

vantages over non-metric based functions; (ii) a tuning parameter for control of the

recall/precision trade-off; (iii) a probabilistic model that enables efficient computa-

tion of marginal posterior probabilities; (iv) a posterior decoding algorithm that uses

the posterior probabilities in order to maximize the expected utility.

108

There are many directions in which the current work can be extended. One

direction for future research includes enhancing the utility functions that are being

optimized. For example, different sequence elements can get different weights based

on their predefined class. In the case of biological sequence alignment, positions that

correspond to loop regions in the secondary and tertiary structure of a protein can

get lower weight in a utility function without invalidating the metric properties of

that function. Similarly, in the case of word alignment, different part-of-speech tags,

or entity types can be assigned different weights.

Another extension includes setting the pairwise model parameters differently for

different pairs of sequences. In particular, when comparing biological sequences with

varying evolutionary distances, one might try to adjust the model’s parameters for

every pairwise posterior probabilities computation, based on the evolutionary distance

of the compared sequences.

Improved methods for exploring the solution space can be developed. For example,

when aligning nucleotide sequences, a simple hill climbing procedure might get stuck

in a local minima and could benefit from the addition of simulated annealing steps.

The search in solution space can also benefit from bounds that can be developed using

the metric properties of the utility functions.

Posterior decoding techniques have many advantages over the more common max-

imum likelihood inference algorithms. In cases when the correct solution is trivial

both methods find it. However, in more challenging situations where many plausi-

ble solutions exist, posterior decoding methods are more flexible, and can be used

to maximize expectations of utility functions that are much more useful than the

standard 0–1 loss function.

109

Bibliography

Ajwani, D., Friedrich, T., and Meyer, U., 2006. An o(n2.75) algorithm for online topological
ordering. arXiv:cs.DS/0602073 .

Aladjem, M. I., Pasa, S., Parodi, S., Weinstein, J. N., Pommier, Y., and Kohn, K. W.,
2004. Molecular Interaction Maps–A Diagrammatic Graphical Language for Bioregula-
tory Networks. Sci. STKE 2004, pe8–.

Alexandersson, M., Bray, N., and Pachter, L., 2005. Pair hidden Markov models. In
Jorde, L. B., Little, P., Dunn, M., and Subramanian, S., eds., Encyclopedia of Genetics,
Genomics, Proteomics and Bioinformatics.

Alpern, B., Hoover, R., Rosen, B. K., Sweeney, P. F., and Zadeck, F. K., 1990. Incremental
evaluation of computational circuits. In Proceedings 1st Annual ACM-SIAM Symposium
on Discrete Algorithms, 32–42.

Barzilay, R. and Lee, L., 2003. Learning to paraphrase: An unsupervised approach using
multiple-sequence alignment. In Proceedings of HLT-NAACL., 16–23.

Barzilay, R. and McKeown, K., 2001. Extracting paraphrases from a parallel corpus. In
Proceedings of ACL., 50–57.

Batzoglou, S., 2005. The many faces of sequence alignment. Brief. Bioinform. 6, 6–22.

Baum, L. E. and Petrie, T., 1966. Statistical inference for probabilistic functions of finite
state markov chains. Ann.Math.Stat. 37, 1554–1563.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N., 1970. A maximization technique occur-
ring in the statistical analysis of probabilistic functions of markov chains. The Annals of
Mathematical Statistics 41, 164–171.

Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit, A. F. A., Roskin, K. M.,
Baertsch, R., Rosenbloom, K., Clawson, H., Green, E. D., Haussler, D., and Miller, W.,
2004. Aligning multiple genome sequences with the threaded blockset aligner. Genome
Research 14, 708–715.

Blunsom, P. and Cohn, T., 2006. Discriminative word alignment with conditional random
fields. In Proceedings of the 21st International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for Computational Linguistics, 65–72.
Association for Computational Linguistics, Sydney, Australia.

110

Bonizzoni, P. and Vedova, G. D., 2001. The complexity of multiple sequence alignment with
SP-score that is a metric. Theoretical Computer Science 259, 63–79.

Bradshaw, S., 2003. Reference directed indexing: Redeeming relevance for subject search
in citation indexes. In Proceedings of the 7th European Conference on Research and
Advanced Technology for Digital Libraries.

Braun-Blanquet, J., 1932. Plant sociology: the study of plant communities. McGraw-Hill,
New York.

Brenner, S. E., Koehl, P., and Levitt, M., 2000. The ASTRAL compendium for protein
structure and sequence analysis. Nucl. Acids Res. 28, 254–256.

Brown, P. F., Cocke, J., Della Pietra, S. A., Della Pietra, V. J., Jelinek, F., Lafferty, J. D.,
Mercer, R. L., and Roossin, P. S., 1990. A statistical approach to machine translation.
Computational Linguistics 16, 79–85.

Caillez, F. and Kuntz, P., 1996. A contribution to the study of the metric and euclidean
structures of dissimilarities. Psychometrika 61, 241–253.

Cawley, S. L. and Pachter, L., 2003. HMM sampling and applications to gene finding and
alternative splicing. Bioinformatics 19, ii36–41.

Dempster, A. P., Laird, N. M., and Rubin, D. B., 1977. Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39, 1–38.

Dice, L. R., 1945. Ecology 26, 297–302.

Do, C. B., Mahabhashyam, M. S. P., Brudno, M., and Batzoglou, S., 2005. ProbCons:
Probabilistic consistency-based multiple sequence alignment. Genome Res. 15, 330–340.

Domingos, P., 2000. A unified bias-variance decomposition and its applications. In Proceed-
ings of the Seventeenth International Conference on Machine Learning, 231–238. Morgan
Kaufmann, Stanford, CA.

Dress, A., Morgenstern, B., and Stoye, J., 1998. The number of standard and of effective
multiple alignments. Appl. Math. Lett. 11, 43–49.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G., 1998. Biological sequence analysis.
Probablistic models of proteins and nucleic acids. Cambridge University Press.

Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucl. Acids Res. 32, 1792–1797.

Elias, I., 2006. Settling the intractability of multiple alignment. Journal of Computational
Biology 13, 1323–1339.

Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J., and Lukas, J., 2001. The ATM-Chk2-
Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410,
842–847.

111

Feng, D. F. and Doolittle, R. F., 1987. Progressive alignment of amino acid sequences as a
prerequisite to correct phylogenetic trees. J. Mol. Evol. 25, 351–360.

Fraser, A. and Marcu, D., 2006. Measuring word alignment quality for statistical machine
translation. Technical Report ISI-TR-616, ISI/University of Southern California.

Gotoh, O., 1996. Significant improvement in accuracy of multiple protein sequence align-
ments by iterative refinement as assessed by reference to structural alignments. J. Mol.
Biol. 264, 823–838.

Gower, J. C. and Legendre, P., 1986. Metric and euclidean properties of dissimilarity
coefficients. Journal of Classification 3, 5–48.

Grefenstette, G., 1992. Sextant: Exploring unexplored contexts for semantic extraction
from syntactic analysis. In Proceedings of ACL, 324–326.

Grefenstette, G., 1994. Explorations in Automatic Thesaurus Discovery. Kluwer Academic
Publishers.

Hamming, R. W., 1950. Error detecting and error correcting codes. Bell Systems Technical
Journal 29, 147–160.

Hirschman, L., Park, J. C., Tsujii, J., Wong, L., and Wu, C. H., 2002. Accomplishments
and challenges in literature data mining for biology. Bioinformatics 18, 1553–1561.

Holmes, I. and Durbin, R., 1998. Dynamic programming alignment accuracy. J. Comp.
Biol. 5, 493–504.

Jaccard, P., 1901. Bulletin del la Société Vaudoisedes Sciences Naturelles 37, 241–272.

Just, W., 2001. Computational complexity of multiple sequence alignment with sp-score.
Journal of Computational Biology 8, 615–623.

Katriel, I. and Bodlaender, H. L., 2006. Online topological ordering. ACM Transactions on
Algorithms in press.

Lacoste-Julien, S., Taskar, B., Klein, D., and Jordan, M. I., 2006. Word alignment via
quadratic assignment. In Proceedings of the Human Language Technology Conference of
the NAACL, Main Conference, 112–119. Association for Computational Linguistics, New
York City, USA.

Lafferty, J., McCallum, A., and Pereira, F., 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. 18th International Conf. on
Machine Learning, 282–289. Morgan Kaufmann, San Francisco, CA.

Lecandowsky, M. and Winter, D., 1971. Distance between sets. Nature 234, 34–35.

Lee, C., Grasso, C., and Sharlow, M. F., 2002. Multiple sequence alignment using partial
order graphs. Bioinformatics 18, 452–464.

Levenshtein, V. I., 1966. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics - Doklady 10, 707–710. Translated from Doklady Akademii
Nauk SSSR, Vol. 163 No. 4 pp. 845-848, August 1965.

112

Liang, P., Taskar, B., and Klein, D., 2006. Alignment by agreement. In Proceedings of
the Human Language Technology Conference of the NAACL, Main Conference, 104–111.
Association for Computational Linguistics, New York City, USA.

Lin, D., 1998. An information-theoretic definition of similarity. In Proc. 15th International
Conf. on Machine Learning, 296–304. Morgan Kaufmann, San Francisco, CA.

Lin, D. and Pantel, P., 2001. Discovery of inference rules for question answering. Natural
Language Engineering 7(4), 343–360.

Marchetti-Spaccarnela, A., Nanni, U., and Rohnert, H., 1996. Maintaining a topological
order under edge insertions. Information Processing Letters 59, 53–58.

Matusov, E., Zens, R., and Ney, H., 2004. Symmetric word alignments for statistical
machine translation. In COLING ’04: Proceedings of the 20th international conference on
Computational Linguistics, 219. Association for Computational Linguistics, Morristown,
NJ, USA.

Mercer, R. E. and Marco, C. D., 2004. A design methodology for a biomedical literature
indexing tool using the rhetoric of science. In BioLink workshop in conjunction with
NAACL/HLT, 77–84.

Mihalcea, R. and Pedersen, T., 2003. An evaluation exercise for word alignment. In Mi-
halcea, R. and Pedersen, T., eds., HLT-NAACL 2003 Workshop: Building and Using
Parallel Texts: Data Driven Machine Translation and Beyond, 1–10. Association for
Computational Linguistics, Edmonton, Alberta, Canada.

Miller, W., 2000. comparison of genomic sequences: Solved and unsolved problems. Bioin-
formatics 17, 391–397.

Moore, R. C., 2005. A discriminative framework for bilingual word alignment. In
HLT/EMNLP, 81–88.

Morgenstern, B., Dress, A., and Werner, T., 1996. Multiple DNA and protein sequence
alignment based on segment-to-segment comparison. PNAS 93, 12098–12103.

Morgenstern, B., Frech, K., Dress, A., and Werner, T., 1998. DIALIGN: Finding local
similarities by multiple sequence alignment. Bioinformatics 14, 290–294.

Morgenstern, B., Stoye, J., and Dress, A., 1999. Consistent equivalence relations: a set-
theoretical framework for multiple sequence alignment. Technical Report Materialien und
Preprints 133, University of Bielefeld.

Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C., 1995. SCOP: a structural
classification of proteins database for the investigation of sequences and structures. J.
Mol. Biol. 247, 536.

Nakov, P. I., Schwartz, A. S., and Hearst, M. A., 2004. Citances: Citation sentences for
semantic analysis of bioscience text. In SIGIR’04 Workshop on Search and Discovery in
Bioinformatics.

113

Nanba, H., Kando, N., and Okumura, M., 2000. Classification of research papers using cita-
tion links and citation types: Towards automatic review article generation. In American
Society for Information Science SIG Classification Research Workshop: Classification for
User Support and Learning, 117–134.

Needleman, S. B. and Wunsch, C. D., 1970. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48,
443–453.

Notredame, C., Higgins, D., and Heringa, J., 2000. T-Coffee: A novel method for multiple
sequence alignments. J. Mol. Biol. 302, 205–217.

Och, F. J. and Ney, H., 2003. A systematic comparison of various statistical alignment
models. Computational Linguistics 29, 19–51.

Pachter, L. and Sturmfels, B., eds., 2005. Algebraic Statistics for Computational Biology.
Cambridge University Press.

Pang, B., Knight, K., and Marcu, D., 2003. Syntax-based alignment of multiple translations:
Extracting paraphrases and generating new sentences. In Proceedings of HLT-NAACL,
181–188.

Paten, B., 2005. Http://www.ebi.ac.uk/∼bjp/pecan/.

Pearce, D. J. and Kelly, P. H. J., 2004. A dynamic algorithm for topologically sorting
directed acyclic graphs. In Proceedings of the Workshop on Efficient and experimental
Algorithms, Lecture Notes in Computer Science, volume 3059, 383–398. Springer-Verlag.

Rabiner, L., 1989. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 77, 257–286.

Raphael, B., Zhi, D., Tang, H., and Pevzner, P., 2004. A novel method for multiple align-
ment of sequences with repeated and shuffled elements. Genome Res. 14, 2336–2346.

Rota, G.-C., 1964. The number of partitions of a set. The American Mathematical Monthly
71, 498–504.

Sauder, J. M., Arthur, J. W., and Dunbrack, R. L., 2000. Large-scale comparison of protein
sequence alignment algorithms with structure alignments. Proteins 40, 6–22.

Schlüter, R., Scharrenbach, T., Steinbiss, V., and Ney, H., 2005. Bayes risk minimiza-
tion using metric loss functions. In Proceedings of the European Conference on Speech
Communication and Technology, Interspeech, 1449–1452. Portugal.

Schwartz, A. S. and Pachter, L., 2007. Multiple alignment by sequence annealing. Bioin-
formatics 23, e24–29.

Shinyama, Y. and Sekine, S., 2003. Paraphrase acquisition for information extraction. In
Proceedings of Second International Workshop on Paraphrasing (IWP2003).

Shinyama, Y., Sekine, S., Sudo, K., and Grishman, R., 2002. Automatic paraphrase acqui-
sition from news articles. In Proceedings of HLT, 40–46.

114

Spiro, P. A. and Macura, N., 2004. A local alignment metric for accelerating biosequence
database search. Journal of Computational Biology 11, 61–82.

Subramanian, A. R., Weyer-Menkhoff, J., Kaufmann, B., and Morgenstern, B., 2005.
DIALIGN-T: An improved algorithm for segment-based multiple alignment. BMC Bioin-
formatics 6, 66.

Sze, S.-H., Lu, Y., and Yang, Q., 2005. A polynomial time solvable formulation of multiple
sequence alignment. Lecture Notes in Computer Science 3500, 204–216.

Tarjan, R. E., 1972. Depth first search and linear graph algorithms. SIAM Journal on
Computing 1, 146–160.

Thompson, J. D., Higgins, D. G., and Gibseon, T. J., 1994. CLUSTALW: improving
the sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680.

Van Walle, I., Lasters, I., and Wyns, L., 2005. SABmark–a benchmark for sequence align-
ment that covers the entire known fold space. Bioinformatics 21, 1267–1268.

Viterbi, A. J., 1967. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory IT-13, 260–269.

Wang, L. and Jiang, T., 1994. On the complexity of multiple sequence alignment. Journal
of Computational Biology 1, 337–348.

115

Appendix A

Proof that the triangle-inequality
holds for the Braun-Blanquet
coefficient

Let A,B, and C be three sets. The distance d between sets as derived from the
Braun-Blanquet coefficient is

d(A,B) = 1− |A ∩B|
max{|A|, |B|, 1}

− 1 {A = ∅ ∧B = ∅} (A.1)

Without loss of generality let |A| ≥ |B| ≥ |C| > 0.1 We need to prove:

(i) d(A,B) + d(B,C)− d(A,C) ≥ 0.

(ii) d(A,B) + d(A,C)− d(B,C) ≥ 0.

(iii) d(B,C) + d(A,C)− d(A,B) ≥ 0.

1All cases are trivial when one or more of the sets is empty. We therefore assume non-empty sets.

116

Proof of (i)

d(A,B) + d(B,C)− d(A,C) =

1 +
|A ∩ C| − |A ∩B|

|A|
− |B ∩ C|

|B|
=

1 +

≥0︷ ︸︸ ︷
|A ∩ C| − |A ∩ C ∩B| −|A ∩B|+ |A ∩ C ∩B|

|A|
− |B ∩ C|

|B|
≥

1−

≥0︷ ︸︸ ︷
|A ∩B| − |A ∩ C ∩B|

|A|︸︷︷︸
≥|B|

− |B ∩ C|
|B|

≥

1− |A ∩B|+ |B ∩ C| − |A ∩ C ∩B|
|B|

≥

1− B

B
= 0.

Proof of (ii)

d(A,B) + d(A,C)− d(B,C) =

1− |A ∩B|+ |A ∩ C|
|A|

+
|B ∩ C|
|B|︸︷︷︸
≤|A|

≥

1− |A ∩B|+ |A ∩ C| − |B ∩ C|
|A|

≥

1− |A ∩B|+ |A ∩ C| − |A ∩B ∩ C|
|A|

≥

1− |A|
|A|

= 0.

117

Proof of (iii)

d(B,C) + d(A,C)− d(A,B) =

1 +
|A ∩B| − |A ∩ C|

|A|
− |B ∩ C|

|B|
=

1 +

≥0︷ ︸︸ ︷
|A ∩B| − |A ∩B ∩ C| −|A ∩ C|+ |A ∩B ∩ C|

|A|
− |B ∩ C|

|B|
≥

1−

≥0︷ ︸︸ ︷
|A ∩ C| − |A ∩B ∩ C|

|A|︸︷︷︸
≥|C|

− |B ∩ C|
|B|︸︷︷︸
≥|C|

≥

1− |A ∩ C|+ |B ∩ C| − |A ∩B ∩ C|
|C|

≥

1− |C|
|C|

= 0.

118

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Hidden Markov Models and posterior decoding
	Hidden Markov Models
	HMM inference algorithms
	State and transition posterior decoding
	Multiple sequence HMMs
	The alignment problem
	Multiple sequences

	Discussion

	Alignment Metric Accuracy
	Metric based alignment accuracy
	AMA based alignments
	Maximal expected accuracy alignments
	The AMAP algorithm

	Results
	Performance of existing programs on the SABmark datasets
	Controls for multiple alignment experiments
	Performance of the AMAP algorithm

	Discussion

	Multiple Alignment by Sequence Annealing
	Alignment posets
	Sequence annealing
	Results
	Summary and Future Directions

	Multiple Alignment of Citation Sentences
	Citances
	Multiple citance alignments
	MCA utility and loss functions
	Probabilistic model for MCA
	Conditional random fields for word alignment
	The posterior decoding algorithm for MCA

	Data sets
	Feature engineering
	Results
	Discussion

	Conclusions
	Bibliography
	Proof that the triangle-inequality holds for the Braun-Blanquet coefficient

