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Abstract

A Kinetic Model for G protein-coupled Signal Transduction in Macrophage Cells

by

Patrick Joseph Flaherty

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

and the Designated Emphasis

in

Communication, Computation, and Statistics

and

Computational Biology

University of California, Berkeley

Professor Michael I. Jordan, Chair

Macrophage cells that are stimulated by two different ligands which bind to G protein-

coupled receptors (GPCRs) usually respond as if the stimulus effects are additive, but for a

minority of ligand combinations the response is synergistic. The G protein-coupled receptor

system integrates multiple, perhaps conflicting, signaling cues from the environment in order

to actuate cell morphology, gene expression, ion homeostasis and other physiological states.

We study, in detail, the effects of the two signaling molecules complement factor 5a (C5a)

and uridine diphosphate (UDP) on the intracellular second messenger calcium to elucidate
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principals that govern the mechanism of G protein-coupled signal transduction. We have

developed a formal hypothesis, in the form of a kinetic model, for the mechanism of action

of this GPCR signal transduction system using data obtained from RAW264.7 macrophage

cells. Bayesian statistical methods are employed to formally approach uncertainty and

tie the model to experimental data. The model is entertained as a tool in the design

of investigative experiments. The model accurately predicts a synergistic region in the

calcium peak height dose response that results when cells are simultaneous stimulated by

C5a and UDP. Though this model is not a complete representation of the G protein-coupled

signal transduction system and contains many approximations, it is consistent with our

experimental observations and is a useful substrate for further experimentation.

Finally, we address the problem of the design of robust experiments for the G

protein-coupled signal transduction model. Classical optimal experiment design methods

have not been widely adopted in practice for biological systems, in part because the resulting

designs can be very brittle if the nominal parameter estimates for the model are poor, and

in part because of computational constraints. We present a method for robust experiment

design based on a semidefinite programming relaxation. We present an application of this

method to the design of experiments for a complex calcium signal transduction pathway,

where we have found that the parameter estimates obtained from the robust design are

better than those obtained from an “optimal” design.

Professor Michael I. Jordan
Dissertation Committee Chair
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Chapter 1

Introduction

We have developed a formal hypothesis, in the form of a kinetic model, for the mechanism of

action of the G protein-coupled receptor (GPCR) signal transduction system in macrophage

immune cells. There are three main contributions of this work:

• a kinetic model for Gαq and Gαi coupled receptor pathways,

• the use of rigorous statistical methods to estimate uncertain parameters with hetero-

geneous data in a kinetic model,

• an experiment design method that uses a complex kinetic model and is robust to

uncertain parameter estimates.

The G protein-coupled receptor system integrates, filters and responds to multiple,

perhaps conflicting, signaling cues from the environment. Receptors in this superfamily

respond to diverse intercellular signals such as: light, neurotransmitters, odorants, amino

acids, hormones, nucleotides and chemokines (Kroeze et al., 2003). This receptor system
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accounts for 40-50% of modern medicinal drug targets (Filmore, 2004) but only 10% of the

known receptors are targeted by drugs (Kroeze et al., 2003). G protein-coupled receptors

and associated extracellular messengers include: β-adrenergic receptors for epinephrine,

rhodopsin receptors for photons, opioid receptors for endorphins and 5-hydroxytryptamine

receptors for serotonin (Goodman et al., 2006).

Because the G protein signal transduction system is complex and involves many

interacting species, we cannot at this time elucidate the entire mechanism of the system.

Instead we study, in detail, the effects of two signaling molecules (C5a and UDP) on the

intracellular second messenger calcium to elucidate underlying principals that govern the

mechanism of G protein-coupled signal transduction.

C5a is part of the complement system which is part of the innate immune system.

C5a, a 74 amino acid peptide whose precursor is produced in the liver, is activated at the

site of infection (Alberts, 2002, Chapter 25). It is a potent anaphylotoxin and a strong

chemoattractant for many immune system components including: neutrophils, basophils,

eosinophils, leukocytes, monocytes and macrophages (Allegretti et al., 2005). The comple-

ment system is thus named because it was first discovered to “complement” and augment

the opsonization activity of antibodies (Janeway and Travers, 1996, Chapter 2). Today, it

is recognized that the complement system components have three main functions: (1) to

aid opsonization, (2) as a chemoattractant for phagocytes such as macrophages and (3) as a

damaging agent to certain bacterial membranes. For macrophages, which express the C5a

receptor, the small peptide C5a functions both as a chemoattractant and as an opsonin to

target certain pathogens for phagocytosis.
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Extracellular nucleotides, such as UDP, function in autocrine and paracrine signal-

ing systems. Macrophage cells and their precursors, monocytes, express several receptors

that are specific to extracellular nucleotides, but the physiological role of the signal is not

entirely known. Warny et al. (2001) showed that the P2Y6 receptor, which is sensitive

to UDP, regulates the production and secretion of the chemokine interleukin 8 (IL-8) in

monocytes.

The C5a and P2Y receptor systems are expressed in macrophage cells and the

derivative cell line, RAW264.7, used in this study. Macrophage cell are a central component

of the adaptive and innate immune system in humans. These cells have a long life, reside in

tissue and are usually the first to encounter invasive pathogens (Alberts, 2002, Chapter 25).

Their primary role is to engulf by phagocytosis pathogens and recruit other phagocytic cells

such as neutrophils from the blood stream by secreting chemokines and cytokines. If the

pathogen is too large, phagocytes may also surround it and secrete their lysosomal products

by exocytosis.

To use the model as a predictive tool in the design of experiments, rigorous statisti-

cal methods are employed to approach uncertainty in the model and data. These statistical

methods allow us to build a bridge between scientific models and experimental data. Since

we have significant prior information about the system, we have chosen to use Bayesian

methods which allow use to naturally incorporate this information. The choice is a matter

of appropriateness for this problem. Each scientific problem is unique and requires careful

consideration of the application. At the end we obtain a posterior distribution for model

parameters and predictions. These distributions represent our posterior uncertainty in our
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model predictions and parameter values after observing experimental data.

The experimental design method presented here is a step towards a practical

method for using the complex kinetic model to inform the design of future experiments.

Locally optimal experiment design methods make use of the nonlinear differential equation

model by maximizing a function of the first derivatives of the model with respect to the

parameters. However, these parameter estimates are themselves uncertain which makes the

function to be optimized uncertain. We formulate and solve the problem efficiently using

semidefinite programming. This method is demonstrated on a simple chemical model and

a calcium signaling model.

The common thread through this dissertation is the formal application of sta-

tistical methods to complex uncertain biological systems. The model structure functions

as a formal hypothesis of the G protein-coupled receptor signal transduction mechanism.

That hypothesis is refined by incorporating experimental data, with proper accounting for

uncertainty, using Bayesian statistical methods. The refined model is used to predict the

outcome of novel experiments and experimental data are used to check the validity of the

model. If the model prediction and observed outcome differ significantly, the model may

be further revised. The process of prediction and revision is continued until a reasonably

complete understanding of the mechanism is obtained. This classical methodology is ap-

plied using modern statistical technology to a system and data set that are too complex

to reason about without these computational aids. The methods we have developed for

this task are demonstrated on a scientifically important system and are scalable to more

complex biological systems.
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Scientific ideas earn their validity not necessarily only because they are correct,

but because they are developed and tested in the right way. There is still much to be

learned about these systems and the story told here is not complete. However, we draw

useful scientific conclusions by properly applying rigorous methods. Therefore, the methods

and the answers to which they lead are complementary and necessarily presented together.
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Chapter 2

G protein-coupled Receptor Signal

Transduction Model

Receptors that couple to heterotrimeric GTP-binding regulatory proteins (G proteins) make

up a large superfamily of drug targets. Roughly half of all nonantibiotic prescription drugs

target this family of receptors (Goodman et al., 2006).

G protein-coupled receptors (GPCRs) are composed of seven α-helices that span

the plasma membrane. GPCRs contain an extracellular domain that is activated by an

agonist. The intracellular domain binds a guanine nucleotide associated heterotrimer made

up of α, β and γ subunits. As a signaling unit, the G protein complex effectively acts as a

heterodimer. The β and γ units are bound in-vivo and only dissociate in detergent. The

G protein subunits remain bound to the cytoplasmic side of the plasma membrane through

the pleckstrin homology (PH) domain of the β unit.

There is significant diversity in the G protein isoforms. One review reports that

there are 21 gene products known to encode α units, five that encode β units and 11 that
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encode γ units (Quitterer and Lohse, 1999). It has also been reported that the distribution

is 15, 5 and 10 respectively (Berg et al., 2002). These numbers are likely to change as more

is learned about the system. In theory there are approximately 1000 different combinations

of heterotrimers. It is unlikely that all combinations occur in nature (Berg et al., 2002).

It is thought that the α unit has specificity to the receptor and allows the cell to respond

to different stimulus while the βγ dimer confers membrane localization (Goodman et al.,

2006). Whether the βγ units are completely interchangeable among α units is still a matter

of debate (Krumins and Gilman, 2006).

The seven transmembrane spanning α-helix receptor changes conformation upon

binding a ligand. The bound receptor induces a conformational change in the associated G

protein heterotrimer which reduces the α subunit’s affinity for GDP and increases its affinity

for GTP resulting in an exchange of GDP for GTP. The α-GTP dissociates from the βγ

subunits and both can bind to and modify other proteins. The α subunit has intrinsic

GTPase activity which hydrolyzes the GTP nucleoside to GDP and Pi, inactivating the α

subunit. Other GTPase proteins such as phospholipase C β (PLCβ) and regulators of G

protein signaling (RGS) can accelerate the hydrolysis. The α-GDP has a high affinity for

βγ and the two subunits associate returning the complex to its initial state. A simplified

schematic of this switch is shown in Figure 2.1. The signaling “off” state is Gα-GDP and

the signaling “on” state is Gα-GTP. The hydrolysis step is relatively slow and takes seconds

to minutes (Berg et al., 2002; Bourne et al., 1991).

Adenylate cyclase and phospholipase C β are the main effectors for active G pro-

tein α-GTP and βγ subunits. Adenylate cyclase converts ATP into cyclic AMP (cAMP)
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βγ

GDP
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βγ

GTP

α

GTP
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βγ
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off
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Figure 2.1: G proteins act as molecular switches. The G protein signal transduction system
is turned “on” when an agonist is bound to an associated receptor and “off” by a timing
mechanism controlled by the rate of GTP hydrolysis.

and phospholipase C converts phosphatidyl inositol 4,5-biphosphate (PIP2) into inositol

1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 activates IP3-gated channels in the

endoplasmic reticulum (ER) to release calcium into the cytosol. Calcium and cAMP are two

important second messengers because they can bind to many other proteins and affect gene

transcription levels, protein phosphorylation states, protein localization and other cellular

processes. In this work, we have focused on the G protein signal transduction system from

agonist binding to calcium release.

Many G protein-coupled receptors become desensitized to a sustained agonist con-

centration. The receptor system appears to respond to a change in the relative amount of

agonist, not the absolute amount within a certain dynamic range. The primary mechanism

for adaptation appears to be covalent modification (e.g. phosphorylation or methylation).

G protein receptor kinases and other specific protein kinases phosphorylate serine or thre-

onine residues on receptor proteins that are bound to agonist, but not receptor proteins
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that are not bound to agonist. Phosphorylated receptors are usually targeted for recycling

in the lysosome by β-Arrestin. In the lysosome, the receptor and ligand are decoupled, the

receptor is returned to the cellular membrane and the ligand is returned to the extracellular

region (Lauffenburger and Linderman, 1993, section 5.4). Protein kinase C (PKC) phospho-

rylates and inactivates downstream proteins such as PLCβ and prevents them from being

activated by Gα-GTP or Gβγ. A second mechanism for adaptation is competitive binding

at the inositol tri-phosphate (IP3) receptor on the endoplasmic reticulum membrane. The

receptor acts as a channel for Ca2+ flux from the ER to the cytosol upon binding IP3, but

is inactivated if Ca2+ binds to the receptor. This mechanism was elegantly modeled as an

adaptation box module by Segel et al. (1986).

2.1 Model Structure

Models of cellular biochemical systems can broadly be classified as either phenomenological

or kinetic. Phenomenological models attempt to capture salient features in the data without

particular regard to the physical mechanisms which may give rise to those features. This

type of model is useful when the physical mechanism is unknown or too complicated to

realistically represent dynamically. Mendelian inheritance and the coin tossing probability

models are good examples of such phenomenological models. Kinetic models are useful in

other ways. By directly representing the physical laws that give rise to a phenomena we

can check the validity of our hypothesis and search for missing components in that hypoth-

esis - refining our model until it is both representative of the mechanism and adequately

fits the experimental evidence. Familiar kinetic models include those for billiard ball dy-
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namics based on Newtonian mechanics and Kirchoff’s current and voltage laws based on

Maxwell’s equations for conservation of charge. In practice most models are a mix of the

two philosophies, but lean more towards one.

We have opted for the latter methodology, a kinetic model, in this work. This

model is based on the law of mass action which can be derived from thermodynamic equi-

librium arguments (Nelson et al., 2004). We have primarily maintained this approach except

in some specific instances where too little mechanistic information is available. We judge

the utility of our model using quantitative and rigorous statistical analysis of the fit to

experimental data. In the end we judge our effort by the idea that “Not all models are

correct, but some are useful.” (Box et al., 1978).

2.1.1 Background

One of the first models for IP3-induced calcium release was proposed by Meyer and Stryer

(1988). In their model, calcium enhances its own release by positive feedback on PLC. Upon

exhausting the stores of calcium (e.g. the endoplasmic reticulum), they are replenished by

ATPase pumps and IP3 is hydrolyzed to restore PIP2. This model still serves as a core

for most modern models of the system as reviewed in (Lauffenburger and Linderman, 1993,

pp. 206).

The model by Keizer and De Young (1992) uses a mechanism of IP3 receptor adap-

tation by which calcium inhibits its own release. In their model, calcium also enhances its

own release, as in the Meyer and Stryer (1988) model, by enhancing the activity of PLC.

The model by Cuthbertson and Chay (1991) includes the effect of PKC on G protein sig-

naling. By including positive and negative feedback components, their model was shown
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to have dynamics that permit oscillations and pulses in the calcium concentration. The

Swillens and Mercan (1990) model includes IP4 (inositol 1,3,4,5-tetrakiphosphate) as an

inhibitor of calcium release.

Each of these models and others were justified and derived on the basis of dif-

ferent data in different cell types. In some very important experiments Harootunian et al.

(1991) tested the predictions made by several models in REF52 fibroblasts. They found

the model that included calcium enhancement of its own release through PLC and calcium

store depletion agreed with their experiments.

Three recent models have improved the quality of these initial models. Lukas

(2004a,b) used available literature data and new experimental results on the calcium re-

sponse to bradykinin stimulation. Their work compares the calcium response over a range of

doses predicted by the model to experimentally measured values and finds good agreement.

The Mishra and Bhalla (2002) model investigates the role of IP4 as a signal coincidence

detector in the GPCR pathway. The focus of this model is mainly on inositol phosphate

metabolism. Their work investigates the interesting question of model sensitivity, but does

not compare the model predictions to experimental data. The model by Lemon et al. (2003)

predicts the calcium response to UTP stimulation. The model is compared to some ex-

perimental data, but the final model involves several questionable linearizations and the

comparison to experimental data is limited.

None of the previously reviewed models addresses multiple ligand signals. Fur-

thermore, most analyses of the models address dynamical issues such as oscillations, but

neglect a careful and rigorous comparison of the model to data.
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2.1.2 Overview

Figure 2.2 shows the overall structure of our model. The two main motifs at work in this

model are: (1) combinatorial control and (2) multiple feedback regulation loops.

C5aR

P2YR

Gβγ

Gαq

Gαi

PLCβ4

PLCβ3

IP3

DAG

Ca2+

PKC

GRK2

Figure 2.2: Simplified schematic of GPCR signal transduction pathway for C5a and P2Y re-
ceptors. Upon specific ligand binding to the receptor, the G protein heterotrimer dissociates
to free Gα-GTP and Gβγ. Both are able to bind specific isoforms of PLCβ and catalyze
the synthesis of IP3 and DAG from PIP2. PLCβ acts as a GTPase for Gα-GTP and Gβγ
has a high affinity for Gα-GDP. IP3 binds to specific receptor-channels on the membrane of
the ER to release Ca2+ in to the cytosol. DAG and Ca2+ bind to and activate PKC which
phosphorylates and inactivates PLCβ. GRK is activated once it is phosphorylated by PKC
and is localized to the cellular membrane by Gβγ. GRK phosphorylates the C5a receptor
which inactivates it.

Combinatorial Control The molecular diversity in key signaling isoforms leads to a com-

binatorial control structure from receptor activation to calcium release. In our model, Gαq

activates both PLCβ3 and PLCβ4 which means that UDP signaling goes through both of

these isoforms. Gαi does not activate PLCβ, but Gβγ does activate PLCβ3. Both Gαq

and Gαi have a Gβγ subunit that can activate PLCβ3. Because specific Gα subunits ac-

tivate specific PLCβ isoforms, there is the capacity for the signaling network to integrate

co-incident signals such that specific ligand combinations yield unique calcium responses.
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Multiple Feedback Regulation Loops Calcium participates in processes that both en-

hance and inhibit its own release. Calcium enhances its own release by binding to the

EF-hand domain on PLCβ and is required for PLCβ to hydrolyze PIP2 into IP3 and DAG.

Calcium inhibits its own release by binding to and inactivating the IP3-gated channel in

the ER and by binding to PKC, which inactivates PLCβ. The dynamic change in calcium

concentration depends on the kinetic constants of these feedback reactions. In this model,

protein kinases PKC and GRK2 inhibit the production of IP3 when the cell is stimulated

with C5a. However, when the cell is stimulated with UDP, activated GRK2 is generated

even though the C5a receptor is inactive. This process precharges the GRK2-mediated

feedback inhibition for C5a in the model.

The details of the model, which are shown in a less simplified form in Figure 2.3,

are both important and informative. We have attempted to synthesize and represent experi-

mental information reported in scientific literature over approximately the past 20 years. In

many instances exact molecular concentrations or rate constants are unknown and we have

made informed guesses as to the true parameter values. In other cases, we have drastically

simplified the complexity of the system in order to focus on the mechanisms that are central

to our model. Population measurements on the calcium response are used to estimate the

posterior distribution of the parameters in the system.

Even with judicious simplifications, this model is still quite complex. We detail

the kinetic equations that form the substance of the reactions diagramed in Figure 2.3 in

the following sections.
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Figure 2.3: Detailed schematic of GPCR signal transduction pathway for C5a and P2Y
receptor systems. Small molecules including GTP, GDP ligands and Pi are colored blue.
Membrane bound proteins are colored light green. Protein kinases and RGS’s are colored
red. Gα subunits are orange. Gβγ subunits are colored dark green. Phospholipase isoforms
are colored maroon. Calcium ions are turquoise. Reaction occurring in the extracellu-
lar medium are colored turquoise. Feedback reaction arrows are colored red and forward
reactions are colored green.

2.2 Receptor Reactions

Table 2.1 shows the receptor-ligand binding reactions for C5a and UDP. The constant kf

is the effective forward reaction rate constant and kr is the reverse reaction rate constant

in the standard mass action kinetics formulation (Segel, 1991; Nelson et al., 2004).

Reaction kf (µM−1s−1) kr (s−1) References
UDP + P2Y ⇋ UDPC 13.20* 3.62*
C5a + C5aR ⇋ C5aC 92.41* 0.38*

Table 2.1: Receptor activation reaction rate constants.
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2.2.1 P2Y Receptor

The P2Y class of receptors bind to purine nucleotides. For example, the P2Y1 receptor

has affinity for ADP, the P2Y6 receptor is activated by UDP and the P2Y2 receptor is

activated by UTP (Siegel et al., 2006). At least 5 members of the P2Y family of receptors are

expressed in RAW264.7 cells as assayed by rtPCR and microarray experiments. Knockdown

(shRNAi) experiments for the P2Y6 show very little change in population calcium response

but a knockdown of P2Y2 does show a decrease in the response1. Assuming that the P2Y6

receptor is in fact a sensing component for UDP in this cell type, this evidence suggests

that more than one isoform of the P2Y receptor is involved in signaling upon binding UDP.

Rather than model each isoform separately, we has chosen to model a generic P2Y receptor

and acknowledge that more information is needed to disambiguate the contributions of

multiple receptor isoforms.

While we do not have much kinetic data for the P2Y6 receptor, the P2Y2 receptor

has been studied in detail. We use the information from this similar receptor to inform

our model parameter priors. Garrad et al. (1998) measured the EC50 for Ca2+ response to

UTP in 1321N1 cells to be 250nM. Lukas (2004a) reports the equilibrium binding constant

is Kd ≈ 5µM.

P2Y receptors have been shown to form hetromeric complexes (Yoshioka et al.,

2001). In particular P2Y2 and the adenosine receptor 1 were shown to coimmunoprecipi-

tate. While the implication for diversity of signal recognition is interesting, the functional

significance of this result for Ca2+ signaling is not clear and we have not modeled this

1http://www.signaling-gateway.org/data/fxm/query?type=class&classID=P2YR
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dynamic.

2.2.2 C5a Receptor

There is only one known isoform of the C5a receptor in RAW264.7 cells2. A directed shRNAi

knockdown of the receptor shows a decrease in signaling in population calcium assays. For

these reasons, we have modeled the concentration of C5a receptors assuming only one

isoform. It has been estimated that there are approximately 30,000 receptor molecules in

RAW cells3 The forward and reverse receptor-ligand binding rate constants are unknown and

we have estimated the prior values from similar receptors (Lauffenburger and Linderman,

1993).

Molecule Initial Concentration
(µM) (molecules)

C5aR 0.05 30,100
P2Y 0.1 60,200

Table 2.2: Receptor initial concentrations.

2.3 G Protein Reactions

The role of G proteins in signal transduction has been studied from a structural and mech-

anistic perspective (Bourne et al., 1991). The two main mechanisms of the switch is the

activation of Gα subunits by ligand-bound receptors and the GTPase activity of some ef-

fector proteins. These features yield a unidirectional molecular switch (see Figure 2.1) that

serves to integrate and amplify extracellular signals. The diversity of roles of Gβγ subunits

2http://www.signaling-gateway.org/data/fxm/query?type=class&classID=C5AR
3L. Jiang personal communication.
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in signal transduction is reviewed more recently in Clapham and Neer (1997). We have

represented this molecular switch as a system of mass-action kinetic equations described in

Table 2.3.

The first three rows of Table 2.3 describe the reactions involving Gαi and the ac-

tivated C5a receptor and the last three rows describe the reactions involving Gαq and

the activated P2Y receptor. Both Gα isoforms have intrinsic GTPase (GAP) activity

and the rate constant for the hydrolysis has been measured to be approximately 0.03-

0.06s−1(Ross and Wilkie, 2000). Gα subunits associate with Gβγ with high affinity when

bound to GDP and with low affinity when bound to GTP. We have modeled this dynamic

by selecting a fast rate constant for the reassociation of Gα-GDP with Gβγ; enforcing the

constraint that when Gα is bound to GTP it cannot reassociate with Gβγ (Berg et al.,

2002).

Reaction kf (uM−1s−1) References
C5aC + Gβγ-Gαi-GDP → C5aC + Gβγ + Gαi-GTP 0.0129*

Gαi-GTP → Gαi-GDP 0.022 (s−1)
Gαi-GDP + Gβγ → Gβγ-Gαi-GDP 7000

UDPC + Gβγ-Gαq-GDP → UDPC + Gβγ + Gαq-GTP 0.137*
Gαq-GTP → Gαq-GDP 0.022 (s−1)

Gαq-GDP + Gβγ → Gβγ-Gαq-GDP 7000

Table 2.3: G protein reaction rate constants.

It is a main assumption of this part of the model that there is a homogeneous pool

of Gβγ that binds to Gαq and Gαi unpreferentially. It is not clear from available literature

whether specific isoform combinations of the Gβγ dimer bind preferentially to specific Gα

isoforms (Casey and Gilman, 1988).

Though little is known about G protein binding order and cooperativity at the
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effector, some research has illuminated the concentration changes that occur for different G

protein subunits. Krumins and Gilman (2006) showed that if the Gαi subunit is decreased

in concentration, the Gαq concentration is increased to compensate. Further, it was shown

that Gβ subunits are required for the stability of α subunits in vivo (Krumins and Gilman,

2006).

Molecule Initial Concentration
(µM) (molecules)

Gβγ 7.14 4,300,000
Gαi 6.64 4,000,000
Gαq 0.50 300,000

Table 2.4: G protein initial concentrations.

The G protein initial concentrations are shown in Table 2.4. The Gαi and Gαq

amounts were measured4 in RAW264.7 cells and converted to µM concentrations assuming

a 1pl cell volume.

2.3.1 Gαi Activation

The C5a response couples through the Gαi protein. Gαi is activated by the 7 α-helix

transmembrane C5a receptor. Upon activation GDP is exchanged for GTP and the Gαi-

GTP dissociates from Gβγ. Two of the three known Gαi isoforms exist in RAW cells as

measured by antibody binding assay and rtPCR5. It is not yet clear which isoforms of

Gαi are activated by bound C5a receptors (Ali et al., 1999; Fudenberg, 1980). Knockdown

experiments on the Gαi2 isoform show the unexpected phenotype that the peak height of

the calcium response to C5a is increased over the control wild-type cell line. This result

4S. Mumby personal communication
5http://www.signaling-gateway.org/data/fxm/query?type=class&classID=GNAI.
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has been attributed to off-target and nonspecific effects in the shRNAi hairpin design and

subsequent lentiviral infection6.

2.3.2 Gαq Activation

The UDP response is not PTx-sensitive and the P2Y receptor class has been shown to

couple to Gαq isoform (Yoshioka et al., 2001). In these RAW264.7 macrophage cells, the

population calcium response to UDP is decreased in Gαq knockdown cell lines7. The Gαq

activation rate constant has been optimized from wild-type and knockdown data since the

in-vivo rates are unknown. The activation mechanism for Gαq is the same as Gαi with

different kinetic rates shown in Table 2.3.

2.4 Phosphoinositide Cascade Reactions

There are four known subfamilies of phosphoinositide-specific phospholipase C (PLC): β,

γ, δ and ǫ. Of these four, we are mainly interested in PLCβ of which there are four

known isozymes (numbered 1-4) because this subfamily has the greatest catalytic properties

for hydrolyzing PIP2 and is activated through the G protein pathway (Berg et al., 2002).

PLCγ is activated by tyrosine kinases, PLCδ is activated by Ca2+ and PLCǫ is activated

by Ras (Berridge et al., 2003). Several reviews of all four subfamilies with a discussion of

their regulation and effectors are available (Noh et al., 1995; Litosch, 2002; Rhee, 2001).

PLCβ contains five functional domains. At the amino terminus is a pleckstrin

homology (PH) domain that localizes the protein to the membrane. EF hand domains bind

6I. Fraser personal communication.
7http://www.signaling-gateway.org/data/fxm/query?type=class&classID=GNAQ



2.4 Phosphoinositide Cascade Reactions 20

calcium ions. A catalytic domain is in the center next to a C2 domain (phospholipase C do-

main 2) that binds to a phospholipid. Finally, at the carboxyl terminus, a G protein binding

domain lends PLCβ its specific activity only upon activation by a G protein (Berg et al.,

2002).

Activated phosphoinositide-specific PLC catalyzes the hydrolysis of phosphatidyli-

nositol 4,5-bisphosphate (PIP2) and generates inositol 1,4,5-triphosphate (IP3) and diacyl-

glycerol (DAG). IP3 binds to IP3-gated calcium channels on the membrane of the endo-

plasmic reticulum causing a net efflux of calcium into the cytosol. DAG binds to and acti-

vates protein kinase C (PKC) which is an important feedback mechanism (see section 2.6)

(Noh et al., 1995).

The C5a receptor activates the Gαi subfamily of G proteins. Activated Gαi inhibits

cAMP synthesis by adenylyl cyclase, but Gαi has not been shown to activate any isoforms

of PLCβ. Therefore, signal transduction driven by C5a is thought to be exclusively through

Gβγ stimulation of PLCβ. Gβγ activates PLCβ2/3 but not PLCβ4 (Sternweis and Smrcka,

1993; Jiang et al., 1994, 1996). It may activate PLCβ1 weakly. A partial ordering of

signaling efficiency by Gβγ is: PLCβ3 ≥ PLCβ2 ≥ PLCβ1 (Park et al., 1993a).

The P2Y receptor activates the Gαq subfamily of G proteins. Gαq activates all

4 isozymes of PLCβ. A partial ordering of PLCβ1-3 sensitivity to Gαq PLCβ3 ≥ PLCβ1

≫ PLCβ2 according to Smrcka and Sternweis (1993). According to Rhee (2001, p. 289)

the partial ordering is PLCβ1 ≥ PLCβ3 ≫ PLCβ2 and cites Smrcka and Sternweis (1993)

and Jhon et al. (1993) but actually derives the ordering from Jhon et al. (1993). Gαq

also activates PLCβ4, but it is not known to what degree relative to the other isozymes
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(Lee et al., 1994; Jiang et al., 1994). The basal activity of PLCβ4 is inhibited by ribonu-

cleotides, though not by ribonucleosides, including GTP-γ-S; a non-hydrolyzable GTP ana-

log (Lee et al., 1994). Since GTP-γ-S is used in the experiments to determine activity of

PLCβ this experimental technique cannot be used for PLCβ4 and an alternative experiment

has not yet been found.

These experimental observations generally match those obtained through shRNAi

perturbations. PLCβ2, PLCβ3 and PLCβ4 have been targeted using shRNAi. PLCβ1 is

not expressed in RAW264.7 cells as measured by rtPCR. The PLCβ3 knockdown resulted

in a decreased Ca2+ response to C5a and the PLCβ4 knockdown resulted in a decrease in

the Ca2+ response to UDP8.

While a great deal is known about the regulators and effectors of the various

isoforms of PLCβ, comparatively little is known about their molecular concentrations in

vivo because binding studies are much easier to accomplish in vitro. PLCβ2 and PLCβ3

are expressed in this cell line and those isoforms are both activated by Gαq and Gβγ. We

suppose that some PLCβ2 molecules are involved in the signal transduction cascade and

they respond similarly to PLCβ3 for these experiments (Wu et al., 1993; Park et al., 1993a).

So, we have selected a concentration for PLCβ3 to be roughly twice that of PLCβ4. We

have set the number of PLCβ4 molecules to be roughly 10-fold smaller than the number of

Gαq molecules so that all the PLCβ4 molecules are likely to find a Gαq rapidly when the

cell is stimulated by UDP. Table 2.5 shows the initial concentrations for the PLCβ isoforms

and associated phospholipids.

Calcium and magnesium are important activators of PLCβ. Many binding studies

8http://www.signaling-gateway.org/data/fxm/query?type=class&classID=PLCB
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Molecule Initial Concentration
(µM) (molecules)

PLCβ3 0.116 70,000
PLCβ4 0.066 40,000

PIP2 0.5 301,000
IP3 0.0018 1,083

DAG 0.001 602

Table 2.5: PLCβ initial concentrations.

involving PLCβ found that the affinity of PLCβ for G protein subunits changes as a func-

tion of the Mg2+ concentration (Clapham and Neer, 1997). While Mg2+ is an important

catalytic ion, it is not a central focus of our study and we have chosen to neglect its dy-

namics for this model. Calcium, however, is of central concern to our model. We use this

second-messenger to assay significant changes in G protein mediated signal transduction.

It has been shown in HEK-293 that Gαi-derived βγ subunits and Ca2+ are required for po-

tentiation of PLC-mediated signaling cells (Schmidt et al., 2000). The EF-binding domain

in PLCβ requires a calcium ion bound to confer activity to the protein. In this model, the

dissociation constant for the Ca2+ activation is set close to the physiological concentration

of cytosolic calcium (Kd ≈ 400nM). Otherwise, we would find that the reaction would not

matter in our model and it could be removed to make a more parsimonious model.

Smrcka and Sternweis (1993) suggested that there are separate sites on the PLCβ3

isoform that may independently bind Gβγ and Gαq-GTP. It is argued that the activity of

the enzyme is increased when both Gβγ and Gαq-GTP are bound. They observed that

Gαi concentration usually exceeds Gαq concentration in cells and this dual binding may

be a signal integration site. They suggest that when the Gαq pathway is stimulated the

concentration of Gβγ is not high enough to appreciably lead to dual occupancy of PLCβ3 by
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Gαq-GTP and Gβγ. But when the Gαi and Gαq pathway are stimulated, there is sufficient

levels of Gβγ and Gαq-GTP to cause PLCβ3 to be dually occupied and thus increase the

efficiency of PIP2 hydrolysis. PLCβ3 then operates as a coincident detection mechanism

for Gαi and Gαq pathway stimulation.

This hypothesis has not been implemented in our model. We consider that PLCβ3

can only be bound to Gβγ or Gαi-GTP but not both. This strong mutual exclusivity

assumption has allowed us to test the hypothesis of whether this is sufficient to explain Gαi

and Gαq pathway convergence effects in our data. This issue will be revisited in the section

on ligand synergy (section 3.7).

2.4.1 IP3 synthesis by Gαq activated PLCβ3

The dissociation constant for Gαq binding to PLCβ1 is 0.6nM (Park et al., 1993b) and the

dissociation constant for Gαq binding to PLCβ3 is approximately 40-60nM (Rhee, 2001;

Runnels and Scarlata, 1999). In this model, the Kd for PLCβ3 binding to Gαq-GTP is

approximately 2nM; between the measured PLCβ1 and PLCβ3 rates.

Reaction kf kr References

PLCβ3 + Ca2+
⇋ PLCβ3-Ca2+ 20 8 (Berg et al., 2002)

(Ryu et al., 1987)
(Meyer and Stryer, 1988)
(Ellis et al., 1998)

Gαq-GTP + PLCβ3-Ca2+
⇋ PLCβ3-Ca2+-Gαq-GTP 50 0.1 (Jiang et al., 1996)

(Rhee, 2001)
PLCβ3-Ca2+-Gαq-GTP +

PIP2 ⇋ PLCβ3-Ca2+-Gαq-GTP-PIP2 70.88* 1 (Jiang et al., 1996)
PLCβ3-Ca2+-Gαq-GTP-PIP2 → PLCβ3-Ca2+ +Gαq-GDP

+ IP3 + DAG 27.90* (Jiang et al., 1996)

Table 2.6: Gαq and PLCβ3 reaction rate constants.

It is known that PLCβ3 has independent binding sites for Gαq and Gβγ

(Zhu and Birnbaumer, 1996; Clapham and Neer, 1993). But it is not known to what extent
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the effects of simultaneous occupancy lead to changes in PLC activity. The C-terminus of

PLCβ3 binds Gαq and acts as a GAP (GTPase-activating protein). Removal of C-terminus

abolishes activation by Gαq and increases the activation by Gβγ (Banno et al., 1994). We

have assumed, in this model, that PLCβ3 may only be bound to Gβγ or Gαq, but not

both. This is an important assumption in our model, if the model is still able to explain

the calcium peak height synergy between C5a and UDP then we have a counter-example

showing that it is possible that simultaneous binding is not necessary for a synergistic

interaction.

2.4.2 IP3 synthesis by Gβγ activated PLCβ3

Gβγ is a weak activator of both PLCβ2 and PLCβ3 (Katz et al., 1992). Since neither C5a

nor UDP differentially regulate PLCβ2 and PLCβ3 we modeled these two isoforms as a

lump sum of PLCβ3. PLCβ3 is active when bound by Gβγ and a calcium ion. Since Gβγ

does not require a bound GTP to be active, it is not subject to the same molecular timing

mechanism as Gαq-GTP. We have assumed the affinity of free Gβγ for Gα-GDP is higher

than for PLCβ3 so that Gβγ preferentially reassociates with a Gα-GDP subunit. Park et al.

(1993b) measured the half-maximal concentration of Gβγ required to active PLCβ3 to be

25nM in the presence of 200nM free Ca2+. In this model we have taken Kd ≈ 500nM for

the reaction: Gβγ + PLCβ3-Ca2+ ⇋ Gβγ-PLCβ3-Ca2+. For simple monovalent binding

reactions, Kd is the concentration required to activate half of enzyme, but the measurement

in (Park et al., 1993b) is the fraction of PIP2 converted to IP3; and therefore does not

directly report the Kd of the enzyme activation.
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Reaction kf kr References

Gβγ + PLCβ3-Ca2+
⇋ PLCβ3-Ca2+-Gβγ 8.35 0.39 (Wu et al., 1993)

(Murthy et al., 1996)
(Jiang et al., 1996)
(Katz et al., 1992)

PLCβ3-Ca2+-Gβγ + PIP2 ⇋ PLCβ3-Ca2+-Gβγ-PIP2 165.83* 8 (Wu et al., 1993)
(Murthy et al., 1996)
(Jiang et al., 1996)
(Katz et al., 1992)

PLCβ3-Ca2+-Gβγ-PIP2 → PLCβ3-Ca2+-Gβγ + IP3 + DAG 5.42* (Wu et al., 1993)
(Murthy et al., 1996)
(Jiang et al., 1996)
(Katz et al., 1992)

Table 2.7: Gβγ and PLCβ3 reaction rate constants.

2.4.3 IP3 synthesis by Gαq activated PLCβ4

PLCβ4 was discovered relatively recently compared to other PLCβ isoforms. However, it is

important to the mechanism of this model because it was found that a PLCβ4 knockdown

cell line had a reduced response to UDP9. PLCβ4 is activated by Gαq, but is not responsive

to Gβγ (Lee et al., 1994). We have used the same kinetic constants as PLCβ3 for the Gαq

mediated activation of PLCβ4 due to the sparsity of information on this new isoform. The

relevant rate constants used in the model are shown in Table 2.8.

Reaction kf kr References

PLCβ4 + Ca2+
⇋ PLCβ4-Ca2+ 20 8 (Berg et al., 2002)

(Ellis et al., 1998)
Gαq-GTP + PLCβ4-Ca2+

⇋ PLCβ4-Ca2+-Gαq-GTP 62.55 10.63 (Lee et al., 1994)
(Jiang et al., 1994)

PLCβ4-Ca2+-Gαq-GTP
+ PIP2 ⇋ PLCβ4-Ca2+-Gαq-GTP-PIP2 1238.79* 1 (Lee et al., 1994)

(Jiang et al., 1994)
PLCβ4-Ca2+-Gαq-GTP-PIP2 → PLCβ4-Ca2+ + Gαq-GDP

+ IP3 + DAG 22.85* (Lee et al., 1994)
(Jiang et al., 1994)

Table 2.8: Gαq and PLCβ4 reaction rate constants.

9http://www.signaling-gateway.org/data/fxm/query?type=target&afcsID=A001806
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2.5 IP3 Receptor Reactions

Our IP3 receptor model is adapted from Keizer and De Young (1992). This model assumes

the tetrameric IP3 receptor opens cooperatively upon binding four IP3 molecules and closes

upon binding one or more calcium ions. The Keizer and De Young (1992) model also as-

sumes that receptor affinity for calcium is increased upon binding to IP3. This provides a

rapid, threshold specific, negative feedback mechanism for calcium release. This mechanism

does not explain the reduction of cytosolic calcium concentration, only the termination of

its increase. The restoration of equilibrium is accomplished through specific ATPase pumps

(SERCA pumps) and Ca2+/Na2+ pumps. The model presented in Keizer and De Young

(1992) is simplified in that it does not explicitly account for the concentration of IP3 re-

ceptors in the cell; calcium release is proportional to the fraction active receptors. Since we

would like to simulate IP3 receptor knockdown experiments, we have modeled the recep-

tor concentration explicitly. We have assumed on the order of 10,000 tetrameric receptor

complexes per cell.

Molecule Initial Concentration
(µM) (molecules)

IP3R 0.0208 12,522
IP3R-IP3 0.00175 1,053

IP3R-IP3-Ca2+ 0.0023 1,384

IP3R-Ca2+ 0.0002 120

Table 2.9: IP3 receptor initial concentrations.

The kinetic diagram for one subunit of the tetrameric IP3 receptor can be repre-

sented as shown in Figure 2.4 (Keizer and De Young, 1992).

Table 2.10 shows the relevant rate constants for the IP3 receptor model module.
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IP3R

IP3R-IP3 IP3R-IP3-Ca

IP3R-Ca

k1fIP3 k1r

k2r

k4fIP3k4r

k3fCa

k3r

k2fCa

Figure 2.4: A kinetic diagram for one subunit of the tetrameric IP3 receptor.

Since this module is a cycle of reversible reactions, one of the rate constants is thermody-

namically constrained. We have taken kr4 to the the constrained rate constant.

Reaction kf kr References
IP3R + IP3 ⇋ IP3R-IP3 177.47 2.2 (Keizer and De Young, 1992)

IP3R-IP3 + Ca2+ ⇋ IP3R-IP3-Ca2+ 0.411 0.0434 (Keizer and De Young, 1992)

IP3R + Ca2+
⇋ IP3R-Ca2+ 0.9 0.806 (Keizer and De Young, 1992)

IP3R-Ca2+ + IP3 ⇋ IP3R-IP3-Ca2+ 20 0.029233 (Keizer and De Young, 1992)

Table 2.10: IP3 receptor reaction rate constants.

Thermodynamic Constraint Since the four reactions in Table 2.10 form a cycle of re-

versible reactions, one of the reaction rates must be constrained by the others according to

the second law of thermodynamics. Consider the system to be a Markov chain with states:

s0 , IP3R, s1 , IP3R · IP3, s2 , IP3R · IP3 · Ca2+, s3 , IP3R · Ca2+. The system

can be rewritten as

s0 + IP3 ⇋ s1 + Ca2+ ⇋ s2 ⇋ s3 + IP3 ⇋ s0 + Ca2+. (2.5.1)

The net chemical force or change in Gibbs free energy (∆G) for this reaction

must be zero since the reactants and products are the same at either end of the chain
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(Nelson et al., 2004). We define ∆G0 to be the standard free energy with all species con-

centrations standardized and converted to non-dimensional quantities by dividing by c0.

Generally, the reference concentration c0 , 1M, but we will make the definition c0 , 1µM

to match the concentration reference for our model. This is a common modification in

biochemical systems where the absolute concentration levels are much smaller than in bulk

chemical systems.

The change in free energy for the system is

∆G0 = ∆G0
1 + ∆G0

2 + ∆G0
3 + ∆G0

4 = 0 (2.5.2)

where the subscript on the standardized free energy terms refers to the reaction in the

corresponding row in Table 2.10.

The mass action rule can be written

exp

{

∆G0

kBT

}

= exp

{

∆G0
1 + ∆G0

2 + ∆G0
3 + ∆G0

4

kBT

}

(2.5.3)

=
Keq1Keq2

Keq3Keq4

=
k1r

k1f

k2r

k2f

k3f

k3r

k4f

k4r

= 1.

The constrained rate constant is then

k4r = k4f

(

k1r

k1f

)(

k2r

k2f

)(

k3f

k3r

)

. (2.5.4)

Calcium Flux Our model includes an outward leak of Ca2+ from the ER to the cytosol

because of the steep concentration gradient, and an ATPase Ca2+ pump (Carafoli, 1987).
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Part of the calcium flux equation is

d[Ca2+]

dt
= c2

(

v1[IP3R · IP3]4 + v8

) (

[Ca2+
ER]− [Ca2+]

)

−v4
[Ca2+]2

[Ca2+]2 + k2
4

− Vex[Ca2+]

Kex + [Ca2+]
+ a1 + · · · . (2.5.5)

The first term is the IP3-dependent flux. The flux of calcium through the IP3-

mediated channel is proportional to the number of open channels and the difference in Ca2+

concentration in the ER and the cytosol. An IP3-mediated channel is only considered open

when all four subunits are bound with IP3, but not Ca2+. The probability that one subunit

is bound is proportional to [IP3·IP3R] (Meyer et al., 1988). If each subunit is independent,

the probability that the channel is open is proportional to [IP3 · IP3R]4. The calcium flux

constant in the Keizer and De Young (1992) model is v1 = 800s−1. But, in that model,

v1 multiplies the ratio x4
1 =

(

[IP3R-IP3]
RTOT

)4
, where the denominator is the total amount of

IP3R in any state. To convert v1 to and equivalent flux rate for this model which multiplies

([IP3R-IP3])4 we must divide v1 by R4
TOT. This gives an equivalent flux rate constant of

v1 ≈ 2e9µM−4s−1 which is approximately within an order of magnitude of the value used

in this model, v1 = 1e8µM−4s−1.

The second term in equation (2.5.5) is for the ATPase-pump. The hill coefficient

in this Michaelis-Menten style approximation is two because two Ca2+ ions are pumped

out of the cytosol for every ATP consumed (Keizer and De Young, 1992). The third term

is used for the Ca2+/Na2+ exchanger and the last term models the calcium leak from

the extracellular medium into the cytosol due to a strong concentration gradient. These

mechanisms are discussed in the following sections and the initial concentrations for relevant

species are shown in Table 2.11. The rate constants are shown in Table A.2.
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Molecule Initial Concentration
(µM) (molecules)

Ca2+ 0.0786 47,317

Ca2+
ER 10.35 6,231,302

Buffer 0.5 270,600
Ca2+-Buffer 0.0505 30,400

Table 2.11: Calcium initial concentrations.

2.5.1 ATPase Pumps and Na2+/Ca2+ Exchangers

Four main pumping mechanisms that maintain the intracellular calcium concentration at

equilibrium (Berridge et al., 2003) are:

• Plasma membrane Ca2+-ATPase pumps (PMCA)

• Na2+/Ca2+ exchangers (NCX)

• Sarco(endo)plasmic reticulum ATPase pumps (SERCA)

• Mitochondrial uniporters.

Of these, we have modeled the SERCA pump and the NCX exchanger. The

SERCA pump plays a role in muscle contraction in the sarcoplasmic reticulum and in all

nucleated cells at the endoplasmic reticulum interface (Berridge et al., 1999). There are

several isoforms of the SERCA pump (1, 2a, 2b and 3). We have assumed that our cells

contain the 2b isoform of the pump because these pumps have been shown to be present

in all non-muscle cells and function as a “housekeeping” calcium pump (East, 2000). The

equilibrium concentration of calcium in most cells is approximately 100nM (Berridge et al.,

2003). We have chosen rate constants for these transporters such that the resting equilib-

rium Ca2+ concentration is 80nM.
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According to Berridge et al. (2003), the PMCA and SERCA pumps have lower

transport rates, but higher affinities which implies they respond to modest changes in Ca2+

concentration, but have a limited capacity. The NCX and mitochondrial uniporters have

much greater transport rates, but lower affinities and confer the ability of the cell to respond

over a greater dynamic range in Ca2+ concentration.

ATPase Pump The SERCA ATPase pump transports Ca2+ from the cytosol to the ER

using an energy driven process. Two Ca2+ ions are pumped out of the cytosol for every ATP

consumed, so the process has been approximated by a hill function (Keizer and De Young,

1992) with v4 = 20µMs−1 and hill coefficient k4 = 0.65µM. The flux term that adds into

Equation (2.5.5) is

v2
4

[Ca2+]2

k2
4 + [Ca2+]2

. (2.5.6)

The values in Keizer and De Young (1992) for this reaction is v4 = 0.5µMs−1 and

k4 = 0.09µM. The values for these rate constants in our model are within an order of

magnitude.

Na2+/Ca2+ Exchanger There is a low-affinity high capacity Na2+/Ca2+ exchanger that

is engaged when the cytosolic calcium concentration becomes unhealthy for the cell. Three

sodium ions are exchanged for one calcium ion. We have modeled this as a Michaelis-Menten

reaction with constants Kex = 0.25µM and Vex = 0.023µMs−1. The reported value of Km

for the exchanger is in the 2-5µM range (Carafoli, 1987).

Extracellular to cytosol leak The concentration of calcium in the extracellular medium is

physiologically and experimentally approximately 2-5mM. Because of this large concentra-
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tion gradient from the extracellular volume to the intracellular volume, we have included a

term for the leakage of calcium into the cell. We have considered this rate to be constant

because all of our experiments were done in the same extracellular conditions. Had we

the need to model different extracellular calcium concentrations, this term could be made

dependent on the difference between the intracellular concentration and the extracellular

concentration. The leak term in our model is a1 = 0.0055µMs−1.

2.5.2 Calcium Buffers

There are over 200 known calcium binding proteins (effectors or buffers) in the human

genome. Carafoli et al. (2001) has reported that at equilibrium 20µM of intracellular cal-

cium is complexed to proteins. The most obvious buffers include calmodulin and other

EF-hand proteins. Fura-2 proteins that we have used to measure the cytosolic calcium

concentration themselves act as a buffer for calcium. Cellular processes that may proceed

without the dye may be modified when the dye is introduced because of this buffering. This

complexity is outside the scope of this model so we have made approximations in modeling

buffering proteins. We assume a simple mass-action binding rule for buffering: Ca2+ + Buf

⇋ Ca2+-Buf with kinetic rate constants kf = 10µM−1s−1 and kr = 7s−1. These constants

give a relatively high, but still physiological Kd value of 0.7µM.

Volume Correction In this model all the differential equations have been written in µM

concentration referenced to the volume of the cell except for the ER calcium concentration

which is discussed in section 2.5. The ER calcium concentration requires a volume correction

when a Ca2+ ion flows from the ER into the cytosol through the IP3-gated channel because
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the ER is approximately 20% the volume of the cytosol. The volume correction constant is

c2 = 0.185 in this model (Alberts, 2002).

ER to cytosol leak Since the concentration of Ca2+ in the ER is higher than in the cytosol,

a mechanism for Ca2+ leak from the ER into the cytosol is included in the model, v8. We

have set v8 = 0.15s−1, which is the same value as in Keizer and De Young (1992).

Single or Multiple Stores There are two main competing theories regarding stored calcium

in the cell. One holds that the ER contains stores that are functionally or physically discrete

(Bootman et al., 1992). These stores have differing sensitivities to IP3 and release all of

their stored calcium in quantal amounts when the receptors have been activated beyond

their individual thresholds. The other theory holds that the ER is essentially one store of

calcium and through a process of Ca2+-mediated feedback inhibition, the receptor closes

thus leading to a quantal release (Segel et al., 1986).

Strong evidence in favor of both theories exist and the true story is likely to be

some combination of the two (Bootman et al., 1992). A more complete model would likely

include aspects of both theories as well as details regarding the spatial effects of nearby

channel openings. We have opted to use an ordinary differential equation framework to

model the system, so we are able to consider compartmental systems, but not the spatial

detail that is likely required for a more accurate representation of our understanding of

this aspect of the system. Our interest lies more in the details of cross-talk among GPCR

components, so we have chosen to more roughly model this aspect of the system and use

the Ca2+-mediated adaptation model.
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Mitochondrial Stores The role of mitochondria in calcium release has not been shown

to be significant in this cell type. It has been shown that the mitochondria are a store

for calcium and release their stored calcium in some cases, but this seems to occur only

under conditions of extreme distress for the cell. It has been reported that the Km for

the mitochonrial uniporter is 10µM (Carafoli, 1987). Since the experimental observations

for this system indicate the maximum ligand-induced intracellular calcium concentration is

approximately 300nM, we have chosen not to include mitochondrial stores in this model.

2.6 Feedback Reactions

We have modeled four mechanisms of Ca2+ dependent feedback:

• Ca2+ inactivation of IP3-gated Ca2+ channels.

• Covalent modification of PLCβ by PKC.

• Covalent modification of C5a receptor by GRK.

• PLCβ requires Ca2+ to hydrolyze PIP2.

The first form has already been discussed as part of the Keizer and De Young

(1992) model for the IP3 receptor in Section 2.5. A calcium ion bound to one or more

subunits of the tetrameric IP3 receptor will shut down the IP3-mediated channel. This

negative feedback mechanism is the fastest acting and closest to the calcium release - the

end point in our model of the signal transduction cascade.

Initial concentrations for the other three mechanisms of Ca2+-mediated feedback

are shown in Table 2.12. A discussion of each mechanism follows.
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Molecule Initial Concentration
(µM) (molecules)

RGSa 0.023 13,879
PKC 0.025 15,000
GRK 0.023 13,879

Table 2.12: Protein kinase and GTPase initial concentrations.

2.6.1 Protein Kinase C

Protein kinase C (PKC) is an immunological defense regulatory molecule found in both

mammals and plants (Spitaler and Cantrell, 2004). The conserved structure of PKC con-

tains two regulatory domains and two catalytic domains. The C1 regulatory domain binds

DAG and the C2 regulatory domain binds calcium. The C3 catalytic domain binds ATP

and the C4 regulatory domain confers substrate specificity (Newton, 1995).

PKC is localized to the plasma membrane by binding to DAG. The Kd of PKC for

Ca2+ is much greater than physiological calcium levels. However, upon binding DAG, the

affinity of the PKC-DAG complex for Ca2+ is at physiological levels. Taken together, these

observations indicate a cooperativity between DAG and Ca2+ to activate PKC (Berg et al.,

2002).

PKC has a substrate binding domain at the C-terminus and a pseudo-substrate at

the N-terminus. In the inactive state (not bound to DAG and Ca2+) the pseudo-substrate

is near the substrate binding domain. When DAG and Ca2+ are bound the conformation

changes and the substrate binding domain is free to bind other effector molecules such as

PLCβ or G protein-coupled receptors (Berg et al., 2002).
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2.6.2 Calcium and DAG are required for PKC activation

Ca2+ and DAG are required for PKC activation. Activated PKC phosphorylates ser-

ine/threonine residues on effector proteins (Berg et al., 2002). We have modeled the mecha-

nism of PKC activation as a thermodynamic cycle because both Ca2+ and DAG are required

for activation and the order of binding is not known. The parameter associated with the

reaction PKC-DAG + Ca2+ ← PKC-DAG-Ca2+ is thermodynamically constrained in this

model. We have chosen the rates in this thermodynamic cycle such that once DAG is bound,

the PKC-DAG complex has a higher affinity for Ca2+ than PKC alone (Shinomura et al.,

1991). Table 2.13 shows the kinetic rates selected for the mechanism of activation of PKC.

PKC

PKC-DAG PKC-DAG-Ca

PKC-Ca

k33fDAG k33r

k34r

k36fDAGk36r

k35fCa

k35r

k34fCa

Figure 2.5: A kinetic diagram for the activation of PKC by DAG and Ca2+.

The dissociation constant for the PKC-DAG complex binding Ca2+ has been mea-

sured to be 700nM and the dissociation constant for PKC binding Ca2+ has been measured

to be 3mM (Newton, 1995). The model parameter values for these rates are 600nM and

3mM respectively. It has been reported that Ca2+ bound to PKC has no effect on the

PKC’s affinity for a C1 domain ligand such as DAG (). However, setting the forward and

reverse rate constants for DAG binding to PKC and DAG binding to PKC-Ca2+ would

constrain the dissociation constant for PKC-DAG binding Ca2+ to be equal to the dissoci-
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ation constant for PKC binding Ca2+. But it has been observed that these values are very

different. This apparent measurement contradiction is resolved in our model by assuming

the dissociation constants for PKC binding DAG and PKC-Ca2+ binding DAG are different,

but both very small in absolute value. This choice causes an apparent equivalence between

the measured binding affinities while still allowing for different binding affinities for Ca2+.

Reaction kf kr References
PKC + DAG ⇋ PKC-DAG 100 0.05 (Ananthanarayanan et al., 2003)

(Shinomura et al., 1991)
PKC-DAG + Ca2+ ⇋ PKC-DAG-Ca2+ 10 6 (Ananthanarayanan et al., 2003)

(Shinomura et al., 1991)
PKC + Ca2+ ⇋ PKC-Ca2+ 0.01 30 (Ananthanarayanan et al., 2003)

(Shinomura et al., 1991)

PKC-Ca2+ + DAG ⇋ PKC-DAG-Ca2+ 1000 0.0001 (Ananthanarayanan et al., 2003)
(Shinomura et al., 1991)

Table 2.13: Protein kinase C activation thermodynamic cycle.

The thermodynamic constraint in this cycle is

k34r = k34f

(

k33f

k33r

)(

k35r

k35f

)(

k36r

k36f

)

. (2.6.1)

PKC phosphorylates PLCβ3/4 PLCβ isoforms are covalently modified by protein kinase

C (PKC) (Litosch, 2002; Yue et al., 2000). PKC inhibits the Gαq mediated activity of

PLCβ3 by phosphorylating the Ser1105 residue of PLCβ3. PKC also inhibits the Gβγ medi-

ated activity of PLCb3, but the mechanism is not related to the Ser1105 residue (Yue et al.,

2000).

It is unclear what effect the order of binding Gαq or Gβγ and phosphorylation by

PKC has on the activity of PLCβ. We have assumed in this model that PLCβ3/4 must

be bound to only Ca2+ to be rendered inactive by phosphorylation. We have also assumed

that only active forms of PKC (bound to both DAG and Ca2+) are able to phosphorylate
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PLCβ. In this model, the rate constants for PKC-mediated inhibition are the same for

PLCβ3 and PLCβ4 as shown in Table 2.14.

Reaction kf kr References

PKC-DAG-Ca2+ + PLCβ3-Ca2+
⇋ PKC-DAG-Ca2+-PLCβ3-Ca2+ 830.44* 111

PKC-DAG-Ca2+-PLCβ3-Ca2+ → PKC-DAG-Ca2+ + PLCβ3p-Ca2+ 11.70* (s−1)

PKC-DAG-Ca2+ + PLCβ4-Ca2+
⇋ PKC-DAG-Ca2+-PLCβ4-Ca2+ 5.90* 11

PKC-DAG-Ca2+-PLCβ4-Ca2+ → PKC-DAG-Ca2+ + PLCβ4p-Ca2+ 0.93* (s−1)

Table 2.14: PLCβ phosphorylation by PKC rate constants.

2.6.3 G protein Receptor Kinase

There are two main classes of kinases that phosphorylate G protein-coupled receptor com-

plexes: PKC and G protein receptor kinase (GRK). The commonality among these signal

control molecules is that they inactivate the receptor through phosphorylation of serine or

threonine residues. PKC also covalently modifies PLCβ. The inactive receptors are targeted

for recycling through the lysosomes by β-arrestin (Lefkowitz, 1998).

Lefkowitz (1998) has suggested that PKC acts on the G protein-coupled receptor

itself, but it has also been shown that PKC acts at the level of PLCβ and is able to

completely abolish signaling through PLCβ (Yue et al., 2000). We have modeled GRK as

the only mechanism for direct receptor desensitization.

The G protein receptor kinase (GRK) family contains six isoforms (1-6). The most

extensively studied are the rhodopsin kinase (GRK1) and the βARK (GRK2). GRK2 is

the focus of our model because a change in the calcium response is observed for a GRK2

shRNAi knockdown line. GRK2 is activated and recruited to the plasma membrane when

bound to Gβγ and a membrane phosphatidyl biphosphate.
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GRK desensitizes active C5a receptors G protein-coupled receptors are phosphorylated

at serine / threonine residues by G protein-coupled receptor kinases (Shenoy and Lefkowitz,

2003). However, the assertion that GRK2 phosphorylates and desensitizes agonist-occupied

C5a receptors is controversial. There is evidence in fetal calf serum cells that this process

does not occur (Milcent et al., 1999). There is contradictory evidence in rat basophilic

leukemia cells that GRK2 or GRK3 does phosphorylate C5a receptors (Langkabel et al.,

1999). We have assumed in this model that GRK2 does phosphorylate and desensitize the

C5a receptor.

Table 2.15 shows the rate constants for GRK activation and desensitization of the

C5a receptor. It has been reported that the Km for GRK phosphorylation by active PKC

is 6nM, compared to the model value of Km = 120nM (Chuang et al., 1995).

Reaction kf kr References

PKC-DAG-Ca2+ + GRK ⇋ PKC-DAG-Ca2+-GRK 77.52* 10 (Chuang et al., 1995)
PKC-DAG-Ca2+-GRK → PKC-DAG-Ca2+ + GRKp 18.34* (s−1) (Chuang et al., 1995)

GRKp + Gβγ ⇋ GRKp-Gβγ 4.98* 0.05 (Penela et al., 2003)
(Daaka et al., 1997)

GRKp-Gβγ + C5aC ⇋ GRKp-Gβγ-C5aC 591.54 12.37
GRKp-Gβγ-C5aC → GRKp-Gβγ + C5aCp 199.31 (s−1)

Table 2.15: GRK activation and phosphorylation rate constants.

The GRK2 shRNAi knockdown cells show an increase in the peak height of the

calcium pulse10 when the cell is stimulated by C5a in some experiments. An increase in

calcium peak height does not occur for the knockdown cells when stimulated by UDP. Inac-

curate targeting of the shRNAi or off-target effects or other causes not directly attributable

to GRK2 mediated phosphorylation of C5aR may cause the shift in peak height observed.

However, in the absence of a convincing alternative hypothesis, we assume that GRK2

10http://www.signaling-gateway.org/data/fxm/query?type=target&afcsID=A001094
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phosphorylates the C5a receptor in this macrophage cell line.

2.6.4 Gβγ and PKC are required for GRK activation

Langkabel et al. (1999) has shown that C5a receptor phosphorylation is abolished when

rat basophilic leukemia cells are pretreated with a PKC inhibitor and the receptors become

hyperphosphorylated when GRK is overexpressed. A similar finding was achieved in human

mononuclear leukocytes (Chuang et al., 1995). Free Gβγ must also bind to GRK to make

it active (Lefkowitz, 1998).

This activation mechanism leaves open the questions of order and cooperativity

with respect to PKC and Gβγ. We have assumed in this model that PKC must first

phosphorylate GRK2 because PKC and GRK2 are found in the cytosol (Lefkowitz, 1998).

Once phosphorylated we assume GRK2 translocates to the membrane where it can bind to

a free Gβγ and become active. In our model, the Kd for Gβγ binding to GRK2 is small,

so there is opportunity for the Gβγ to become free again and reassociate with Gα-GDP.

Arrestin Agonist-bound receptors are internalized by β-arrestin (Shenoy and Lefkowitz,

2003). Phosphorylated receptors have a higher affinity for β-arrestins than unphosphory-

lated receptors (Lefkowitz, 1998). While important for the recovery of signaling capacity,

we have chosen not to model receptor internalization and recycling because the time frame

of our experimental measurements ∼ 3min is short compared to the time frame of receptor

recycling. We have taken the dephosphorylation time constant for the C5a receptor to be

kf = 0.001s−1 which causes makes the half time for receptor resensitization to be 16 min.



2.7 Dephosphorylation and Degradation Reactions 41

2.6.5 RGS is a GAP for Gαq-GTP and Gαi-GTP

Regulators of G protein signaling (RGS) control the ability of G protein subunits to signal

downstream effectors. The RGS exerts its GTPase activity by binding to a free Gα-GTP

molecule and hydrolyzing the GTP to GDP+Pi (Ross and Wilkie, 2000). Since knowledge

of the mechanisms of action of RGSs is so sparse, we have modeled these molecules as

constitutively active. When more definitive experimental knowledge of this system develops

we will be able to fill in the missing mechanistic details - especially regarding its regulation.

Reaction kf kr References
RGSa + Gαi-GTP ⇋ RGSa-Gαi-GTP 100 0.1

RGSa-Gαi-GTP → RGSa + Gαi-GDP 100 (s−1)
RGSa + Gαq-GTP ⇋ RGSa-Gαq-GTP 100 0.1 (Kehrl and Sinnarajah, 2002)

RGSa-Gαq-GTP → RGSa + Gαq-GDP 100 (s−1) (Kehrl and Sinnarajah, 2002)

Table 2.16: RGS reaction rate constants.

2.7 Dephosphorylation and Degradation Reactions

Receptors and PLCβ molecules that have been phosphorylated must return to their unphos-

phorylated states. We have assumed that the necessary phosphotases exist and operate by

a first order mechanism. An alternative approach is to fix a concentration of phosphotase

for each dephosphorylation reaction and assume Michaelis-Menten enzyme kinetics for the

reaction. However, this approach would require us to specify another molecular concentra-

tion and two more rate constants. Our current approach only requires one rate constant.

We have opted for the less accurate, but simplified approach at this stage of the model.
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2.7.1 C5aR and PLCβ3/4 dephosphorylation

An active C5a receptor that has been phosphorylate by GRK is returned to an unphos-

phorylated state with the C5a agonist decoupled. The true mechanism likely involving

β-arrestin but we have simplified our model and left out arrestin because of the short time

frame of the experimental measurements compared to the long time frame of receptor recy-

cling. The C5a receptor and PLCβ3/4 dephosphorylation mechanism is modeled by a first

order reaction.

As Table 2.17 shows, we have set the recovery rate for phosphorylated PLCβ to

be approximately 8 seconds and the recovery rate for C5aR to be approximately 16 min.

Reaction kf kr References

PLCβ3p-Ca2+ → PLCβ3-Ca2+ 0.12 (s−1)

PLCβ4p-Ca2+ → PLCβ3-Ca2+ 0.12 (s−1)
C5aCp → C5aR + C5a 0.001 (s−1)

Table 2.17: Resensitization reaction rate constants

2.7.2 DAG degradation and PIP2 synthesis

It is possible that PIP2 availability is a limiting factor in IP3 generation and thus Ca2+

signaling. The initial concentration of PIP2, in our model, is 0.5µM. In a cell with 1 pl vol-

ume, this amounts to approximately 300,000 molecules. Willars et al. (1998) measured the

absolute PIP2 basal level to be 1×108 per cell. They also estimated that 15,000 molecules

of PLCβ are required to achieve the maximum hydrolysis rate they measured in-vivo which

is within the same order of magnitude as the chosen model values in Table 2.5.

We have modeled the PIP2 replenishment pathway to be IP3 → IP4 → IP5 →
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PIP2. We do not find the effect of PIP2 depletion to be a significant cause for loss of Ca2+

signaling on the time scales of our experiments in our model. The endoplasmic reticulum

is depleted of calcium before PIP2 availability becomes a limiting factor.

We have included the conversion of IP3 to IP4 because some evidence has suggested

that IP4 also acts as a signaling molecule for Ca2+ release from the ER. The conversion of

IP5 to PIP2 as a first order reaction simply models the replenishment of PIP2 and IP3 or

IP4 could have been substituted for IP5 in this mechanism for the purposes of this model.

Table 2.18 shows the initial concentrations of these molecular species and Table 2.19 shows

the rate constants.

Molecule Initial Concentration
(µM) (molecules)

IP3Ka 0.00166 1000
IP4 0.1 60,200
IP5 0.1 60,200

Table 2.18: IP recycling initial concentrations.

Reaction Vmax/kf Km/kr References
DAG → ∅ 0.35 (s−1)

IP3 + IP3Ka 99K IP4 + IP3Ka 13.9 0.0557 (Xia and Yang, 2005)
IP4 99K IP5 100 1.4 (Berg et al., 2002)
IP5 → PIP2 0.008

Table 2.19: DAG degradation and PIP2 synthesis reaction rate constants.

This completes a detailed discussion of the model parameters, initial conditions

and the relevant literature. We conclude this section with an overview of the mechanism of

crosstalk that arises in the G-protein signal transduction pathway when these assumptions

are made.
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Chapter 3

Model and Data Analysis

In this analysis, we used 15 experiments spanning 9 doses of C5a and 14 experiments

spanning 11 doses of UDP on wild-type cells. We also measured the calcium response to

C5a and UDP in 5 different shRNAi knockdown cell lines. An experiment is a time series

of measurements of a particular well in a 96 well plate and each experiment consists of

multiple treatments. Most experiments have 3-4 samples per treatment. Table 3.1 shows

a summary of the training data used for statistical parameter estimation for this model.

The parameters that have been estimated using this data set are denoted with a star in

Section 2 and in Table A.2.

Knockdown Knockdown C5a UDP

Fraction(qRT-PCR) Fraction(western) dose exp’t sample dose exp’t sample
% % count count size count count size

Wild-type 9 15 58 11 14 53
GRK2 90± 7 40± 6 5 16 69 3 9 40
Gαi2 83± 5 73± 6 2 5 17 2 12 50
Gαq 70± 8 66± 23 1 3 13 2 4 19
PLCβ3 - 83± 15 1 3 12 1 3 12
PLCβ4 87± 6 - 1 4 16 2 8 39

Table 3.1: Data set used for parameter estimation.
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In the following sections we show a detailed comparison of this experimental data

set to model simulations. Since it is unreasonable to show all 96 experiments, we will select

representative experiments to demonstrate the quality of fit or use summary features such

as peak height where appropriate.

3.1 Experimental Protocol

Intracellular free calcium in cultured adherent RAW264.7 cells is measured in a 96-well

plate format using the fluorescent dye Fura-2 (Tsien, 1989; Grynkiewicz et al., 1985). The

Ca2+-sensitive fluorescent dye, Fura-2, permeates the cell membrane as an ester and is

hydrolyzed in the cell to its Ca2+-sensitive form. A FLEXstation scanning fluorometer is

used to measure fluorescence using a bottom read of a 96-well plate. Because scanning a

column is very rapid, sets of 8 wells in each column are effectively read simultaneously.

Each well is sampled approximately every 4 seconds.

For calibration purposes, the time series is divided into three stages. To calibrate a

baseline, fluorescence measurements are taken for 20-40 seconds before the ligand is added.

The Ca2+ response is monitored for 170 seconds after ligand addition. After 190 seconds

Fmin solution is added and at 320 seconds Fmax solution is added. The Fmin and Fmax

solutions are used to calibrate the concentration of Ca2+ using

[Ca2+] = KdQ
R−Rmin

Rmax −R
, (3.1.1)

where R , FL1/FL2 and Q , Fmin/Fmax. In this experimental protocol L1 ≈ 340nm is the

wavelength used to detect ion-bound Fura-2 and L2 ≈ 380nm is the wavelength for ion-free
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Fura-2. Kd is the dissociation constant for Fura-2 + Ca2+ ⇋ Fura-2 • Ca2+ 1.

It is common practice to subtract the baseline Ca2+ concentration from mea-

surements and report only the change in cytosolic Ca2+ concentration since the baseline

measurement depends on the amount of loading dye used and other experimental variations.

However, to compare our model predictions to the experimental data we require an estimate

of the baseline calcium concentrations. We have normalized the measurements to have an

average baseline concentration of 80nM in each time series. This concentration corresponds

to a generally agreed upon level from several investigators and literature.

3.2 Simulation Method

The system of ordinary differential equations was solved using the SUNDIALS Suite (v2.3.0)

(Hindmarsh et al., 2005). The software was configured to use backward differentiation for-

mulas (BDF) for the linear multistep method and Newton iterations because the system is

likely to be stiff. The Markov chain monte carlo algorithm was implemented in C because the

MATLAB implementation performed to slowly. In the future, it may prove advantageous

to use the parallel options in the SUNDIALS software to take advantage of a distributed

computing environment to improve the time required to solve the system.

3.3 Input Model

Because the ligand concentration at the cellular lipid membrane does not transition instan-

taneously from zero to some fixed positive concentration, we measured and modeled the

1AfCS protocol #PP00000211.
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expected ligand concentration as a function of time.

From the vantage point of an average cell, the concentration of ligand is at first

zero, then as the ligand molecules diffuse in the media the concentration asymptotes to

constant. We propose the following model for the ligand concentration at the cellular

interface as a function of time

y(t) =























a1(t−t0)
(t−t0)+a2

+ a3 if t > t0,

a3 if t ≤ t0.

(3.3.1)

The ligand introduction time is t0. The parameters of the model, {a1, a2, a3} were

fit using a Levenberg-Marquardt algorithm and a weighted least-squares cost function to 31

time points which are each an average of 96 experiments. The weights for each time point

are inversely proportional to the sample standard error at the time point.

The measurements were made by robotically adding 25µL of 400nM FITC solution

to wells containing 75µL of water leaving 100µM FITC solutions in each of the 96 wells

at 30 seconds. The time series was observed at ∼ 2 second intervals for 40 seconds. The

fluorescence measurement was approximately stable after 40 seconds.

Figure 3.1 shows the input model and data for the FITC calibration. It is clear

that a step function model for ligand concentration is not appropriate for this experimental

system. The ligand concentration is not expected to reach 95% of the asymptotic concen-

tration until 38.5s after t0. Since the time-scale of the calcium pulse is approximately 30s,

an accurate model of the ligand concentration as a function of time is significant component

of the model.
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Figure 3.1: The input model prediction (red) and experimental data (black). Ligand was
introduced at t0 = 30s.

3.4 Wild-type Data

Observations of the intracellular calcium concentration over time indicate that stimulation

of the cell by C5a or UDP leads to a pulse in calcium concentration. Figure 3.2 shows the

response of the wild-type cell to stimulation with C5a and UDP. The C5a response adapts,

but the UDP response has a sustained elevated calcium level that slowly decays.
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Figure 3.2: (left) Wild-type C5a 250nM calcium response. (right) Wild-type UDP 25µM
calcium response.

Figure 3.3 shows the peak height of the calcium pulse as a function of C5a or UDP
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dose. The dose response profile has the usual saturating characteristic, but the EC50 for

the two ligands are different. The peak height EC50 for C5a is approximately 0.6nM and

the EC50 for UDP is approximately 250nM. The UDP EC50 is in close agreement to that

for the P2Y2 receptor measured by Garrad et al. (1998).
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Figure 3.3: Calcium pulse peak height dose response to C5a and UDP. The 95% confidence
intervals are the measured confidence intervals based on a Gaussian error at the peak value.
(left) C5a peak height dose response. (right) UDP peak height dose response.

3.5 Knockdown Data

We have used five shRNAi knockdown cell lines and the wild-type cell line data to infer

20 parameter values in our model. In general it is inappropriate to use the same data for

inference and validation, but we keep in mind that we will only formally use the data for

inference and will use other experimental data for formal validation. Our test data does not

look “like” our training data because it is composed of different experiment - simultaneous

ligand stimulation.

The model predictions for the knockdown experiments include an estimation of

uncertainty. The upper and lower 99% confidence intervals for the the model predictions are
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based on the assumption that the uncertainty in knockdown fraction is well approximated

by a normal distribution with the standard error given in Table 3.1 for the western blot

data. These upper and lower confidence intervals are shown in each figure as UCI and LCI

respectively.

Krumins and Gilman (2006) observed a compensatory effect for Gα subunits and

Gβγ subunits. If the amount of Gα is reduced experimentally, the amount of Gβγ is reduced

by the cell to compensate. Accordingly, the model simulations for Gαi and Gαq knockdown

experiments also adjust the Gβγ concentration by an equal amount to ensure the following

initial condition equality is satisfied, [Gαi] + [Gαq] = [Gβγ].

3.5.1 GRK2 Knockdown

The G-protein receptor kinase is an important feedback protein that phosphorylates the

active C5a receptor, but not the active P2Y receptor in the model. The Ca2+ peak height

for C5a stimulated cells is higher in the GRK2 knockdown line compared to the wild-type

cells upon stimulation by C5a in some experiments.
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Figure 3.4: (left) GRK2 knockdown C5a 250nM calcium response. (right) GRK2 knock-
down UDP 25µM calcium response.
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Figure 3.4 shows the GRK2 knockdown cells stimulated by C5a and UDP. The

model predicts the calcium peak height for 250nM [C5a] stimulation of GRK2 knockdown

cells is 188nM compared to the 127nM for the wild-type cells. The model predicts the peak

height is higher than the actual experimental peak height, but the lower 99% confidence

interval based on the knockdown uncertainty shown in Table 3.1 fits the experimental data

well.

3.5.2 Gαi Knockdown

The trimeric G-protein with a Gαi subunit is activated by the C5a receptor. Cell lines with

a Gαi knockdown respond poorly to C5a stimulation, but the effect on UDP stimulation is

minimal. Both the experimental data and the model simulation show a diminished pulse

for C5a and an unaffected pulse for UDP stimulation (Figure 3.5).
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Figure 3.5: (left) Gαi Knockdown C5a 100nM calcium response. (right) Gαi knockdown
UDP 25µM calcium response.
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3.5.3 Gαq Knockdown

Figure 3.6 shows the model and experimental data from a representative Gαq knockdown

experiment. Gαq is associated with the P2Y6 receptor which is activated by UDP. As

expected, the calcium response to UDP shows a diminished peak height. However, the

characteristic incomplete adaptation is still evident. The response to C5a is unchanged by

the knockdown.
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Figure 3.6: (left) Gαq knockdown C5a 100nM calcium response. (right)Gαq knockdown
UDP 25µM calcium response.

Though the model fits the experimental data well, the prediction confidence inter-

vals are large. This is due to the large uncertainty in the true knockdown of Gαq which,

from Table 3.1, is 66% ± 23%.

3.5.4 PLCβ3 Knockdown

Figure 3.7 shows a representative PLCβ3 knockdown experiment. PLCβ3 is activated by

both Gαq and Gβγ which means that it is activated upon stimulation by both UDP and

C5a in our model.
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Figure 3.7: (left) PLCβ3 knockdown C5a 100nM calcium response. (right) PLCβ3 knock-
down UDP 25µM calcium response.

The prediction confidence intervals are larger for the C5a response than for the

UDP response for two reasons. First, the C5a response is only mediated by PLCβ3, while

the UDP response is mediated by both PLCβ3 and PLCβ4. Second, the absolute magnitude

of cytosolic calcium is lower for the C5a response than for the UDP response, which makes

the relative size of the confidence intervals look bigger in side-by-side comparison.

3.5.5 PLCβ4 Knockdown

Figure 3.8 shows an example PLCβ4 knockdown experiment. PLCβ4 is only activated by

Gαq-GTP which is 10-fold less abundant than Gαi. The contribution of PLCβ4 to the

production of IP3 is not great in the model. The knockdown simulation does decrease the

calcium response from UDP, but only by a relatively small amount.

3.6 Toxins

Bacterial and synthetic toxins are important tools in the investigation of signal transduction

networks because the effect of toxins is different than the effect of knockdowns. If the
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Figure 3.8: (left) PLCβ4 knockdown C5a 20nM calcium response. (right) PLCβ4 knock-
down UDP 25µM calcium response.

reaction network is viewed as a connected graph, knockdowns remove nodes and toxins

remove edges. Table 3.2 shows the three toxins that are effective in perturbing the GPCR

systems we have modeled. The affected reaction in our model is shown beside the toxin.

In simulation, we have considered the effect of the toxin to be to reduce the kinetic rate

constant by 80%.

Toxin Affected Reaction
Pertussis (k105f) C5aC+Gβγ-Gαi-GDP → C5aC+Gβγ +Gαi-GTP
U-73122 (k15bf) PLCb4-Ca2+ +Gαq-GTP-PIP2 → PLCβ4-Ca2+ +Gαq-GDP+IP3+DAG

(k21bf) PLCβ3-Ca2+-Gβγ-PIP2 → PLCβ3-Ca2+-Gβγ +IP3+DAG
Calphostin-C (k33f) PKC+DAG → PKC-DAG

Table 3.2: Several toxins are used to probe the system. These toxins inhibit specific
reactions.

U-73122 and pertussis toxins inhibit IP3 synthesis, but Calphostin-C inhibits the

PKC-mediated feedback pathway. It is interesting to investigate the net effect on calcium

release when a Gαi, Gαq or PLCβ knockdown cell line, which inhibit IP3 synthesis, is com-

bined with a toxin that inhibits a negative feedback mechanism. We also explore the effect

of pertussis toxin and U73122 in combination with GRK2 knockdown cells to investigate

the net effect of a forward and feedback pathway perturbation.
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Pertussis Toxin Pertussis toxin (PTx) is an exotoxin secreted by the pathogenic Gram-

negative bacterium Bordetella pertussis. The toxin molecule consists of two subunits. The B

subunit binds the complex to the cellular membrane and the A subunit confers the biologi-

cal activity. Pertussis toxin ADP-ribosylates the Cys352 residue of Gαi (Finger and Koenig,

1996, chap. 31). This ADP-ribose causes the Gαi to have a lower affinity for GTP than

normal, effectively trapping the Gαi in the “off” state (Berg et al., 2002, pp. 419). This

toxin is an effective method for classification of ligand response as either PTx-sensitive or

PTx-insensitive, narrowing the set of possible α-units involved in the transduction mecha-

nism. Interacting pathways can be interrogated using multiple perturbations by pretreating

wild-type and knockdown cells with PTx. The model simulations for this experiment are

shown in Figure B.1 and Figure B.2.

U-73122 U-73122 is an aminosteroid that inhibits agonist-induced PLCβ activity

(Jin et al., 1994)(Biosciences, 2006, pp. 62). The model simulations for this experiment are

shown in Figure B.3 and Figure B.4.

Calphostin-C Calphostin-C (CPC), isolated from Cladosporium cladosporioides, is a spe-

cific inhibitor of PKC. It is 1000× more inhibitory to PKC than to other protein kinases

(Kobayashi et al., 1989; Tamaoki et al., 1990). It acts by competitively binding to the DAG

regulatory domain on PKC. DAG is then unable to bind and activate PKC (Biosciences,

2006, pp. 21).

Figure 3.10 shows the predicted response for five knockdown and the wild-type

cell lines when pretreated for 30 min with CPC and then stimulated with 100nM C5a. A
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Figure 3.9: 100nM C5a Calphostin-C Wild-type Response

full complement of simulation results are shown in Figure B.5 and Figure B.6.

3.7 Synergistic Interaction between C5a and UDP

Preliminary experiments shown in Figure 3.11 show that the simultaneous addition of both

ligands gives a higher peak height and faster decay than expected from a model in which

the contribution from the UDP and C5a stimulation is additive.

A test of the usefulness of a model is whether it is able to predict the outcome of a

novel experiment. Usually, a held-out data set that is similar to the training data set is used

for this purpose. However, we test this model on an experiment which subjects the cells

to both ligands (C5a & UDP) simultaneously for a variety of concentrations. Our training

data only includes single ligand stimulation experiments.

A “synergy ratio” is computed for each ligand dose pair. The numerator of the ratio

is the peak offset from baseline of the intracellular calcium concentration. The denominator

of the ratio is the sum of the peak offsets when the cell or model is only stimulated with
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Figure 3.10: Predicted response for cell lines pretreated with Calphostin-C (a PKC in-
hibitor) and stimulated with 100nM C5a.

one ligand. A ratio greater than one indicates that the peak height is greater than expected

from an additive combination of ligand effects; the combination is synergistic. According

to the model simulations there is a ridge of synergistic calcium release for a moderate dose

of UDP (shown in the upper-left panel of Figure 3.12).

In order to test this model prediction, an experiment design was constructed to

measure the synergy ratio at the points denoted as black open circles in the upper-left

panel of Figure 3.12. The results of these experiments for three fixed doses of C5a as a

function of UDP dose are shown in the remaining three panels. The model predictions for

the experiments with 90% prediction confidence intervals are shown in red with black error
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Figure 3.11: Observed C5a - UDP Synergy

bars. The filled black circles show the measured synergy ratio. While the model predictions

based on only the nominal parameter values shows a region of synergy, when the uncertainty

in the parameters and measurement error is taken into account, the model predicts that

the observed data will not reject the possibility that the experimentally measured ratio is

equal to or less than one by chance. Indeed, the spread in the experiment observations span

a synergy ratio of one in most cases. The model-based Monte Carlo confidence intervals

inform us in the design of experiments stage as to the expected value and the variance in

the experimental data. Without accounting for uncertainty, we may be misled to believe

that the experimental data rejects to possibility of a synergistic interaction between C5a

and UDP. Instead, our conclusion from these data must be that the data are consistent
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with the mechanism for GPCR signal transduction hypothesized by the model.

3.7.1 Crosstalk Mechanism

While the quantitative differences between the calcium response to C5a and UDP can be

attributed, at least in part, to the specificity of Gα isoforms and Gβγ for PLCβ isoforms, the

synergistic response is not obviously due to the same mechanism. The synergy mechanism

in our model cannot be due simultaneous binding of Gαq and Gβγ binding to PLCβ3

because we have explicitly assumed both cannot be bound to PLCβ3 simultaneously. The

flexibility of the model provides us the unique opportunity to perturb the system to analyze

the mechanism and then design targeted experiments to test the mechanism.

In our simulation studies, if the Gαq-PLCβ3-Ca2+ and Gαq-PLCβ4-Ca2+ binding

reactions are inhibited, the system still exhibits synergy indicating the crosstalk mechanism

is mediated by Gβγ. If binding reaction of Gβγ to phosphorylated GRK2 is removed, the

synergy is eliminated. Furthermore, if the GRK2-mediated phosphorylation of complexed

C5a receptors is removed, the double ligand response is additive. We deduce then that the

synergy mechanism also involves GRK2 phosphorylation of complexed C5a receptors.

A formal sensitivity analysis of the role of each reaction is possible in this model,

but is computationally intensive and less informative than a targeted probe of the model.

A manual exploration of the model structure allows us to observe the effects of each pertur-

bation at any model state. We are able to isolate and prune the exploration more efficiently

than an automated method at this time. An exhaustive exploration of model perturba-

tions would be computationally intensive because it would require and investigation of each

model state for each perturbation. Even then we may miss an important and unexpected



3.7 Synergistic Interaction between C5a and UDP 60

effect.

The concentration time series of active PKC, active GRK and phosphorylated C5a

receptor indicates that the amount of time required for the feedback signal to propagate

through and finally desensitize the C5a receptor is approximately the same whether the

system is stimulated by UDP and C5a or C5a alone. However, rate of change of the

concentration of PLCβ3 is much faster with UDP and C5a compared to C5a or UDP alone.

Furthermore, as a negative control, we have stimulated the model with a two fixed

doses of either C5a or UDP and then simulated the additive combination of those doses

to assess whether C5a or UDP can self-synergize. In all cases examined, C5a and UDP

were unable to self-synergize indicating that heterogenous receptor activation is necessary

for synergistic calcium release in this model. This observation implies that the mechanism

of synergy is dependent upon the differences between subsets of reactions for each receptor

system.

Since the system, even in the more simplified form of our model compared to the

real cell, is complex, a complete understanding of the mechanism will require further simpli-

fication. We have shown that the synergy in the model is mediated by Gβγ. We have also

shown that GRK feedback plays a role in the synergy mechanism. Finally, neither C5a nor

UDP can self-synergize in this model. No doubt a more detailed analysis with appropriate

simplified models of the proposed mechanisms will be required for a full understanding of

synergy. Nevertheless, as a tool to aid in reasoning and representing complex biological

systems and as a tool for the design of experiments, this model has proved useful.
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Figure 3.12: The model is used as a predictive tool to infer the expected effect of stimu-
lating the cell simultaneously with UDP and C5a which signal through the Gαq and Gαi

pathways respectively. Synergy is measured as the ratio of peak height offset from baseline
attained from simultaneous stimulation to the peak height offset calculated by the sum of
the responses to each ligand individually. The upper-right panel shows the expected syn-
ergy ratio as a function of UDP and C5a dose (truncated at 1.5). The simulations show a
ridge of synergy at a moderate UDP dose for most C5a doses. The black circles indicate
dose combinations points for which experiments were conducted to test the model. The re-
maining three panels show the synergy ratio as a function of UDP dose for three fixed C5a
doses indicated by the red lines in the upper-left panel. While the synergy ratio is expected
to be greater than one for a moderate dose of UDP, when parameter and measurement un-
certainty is taken into account the magnitude of the effect is not sufficient to conclude that
the experimental observations would be significantly different than one. The model-based
point estimates are shown as red squares and the actual experimental measurements are
shown as black dots. While the pattern of the experimental measurements fits the model
predictions, we find, as predicted, that the magnitude of the effect on the calcium peak
offset ratio in this cell type is not sufficient to conclude that synergy is present. Without
the prediction confidence intervals, we would be lead to wrongly expect a synergy ratio that
is significantly different than one.
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Chapter 4

Statistical Inference

Statistical inference is fundamentally about making decisions, on the basis of observed

data, about features of the physical system that gave rise to the data (Kendall et al., 1994).

In the case of hypothesis testing the features of the system may be the model and our

inferential objective is to reject inappropriate models. More often, however, the features

are the unknown parameters of the model. A model is asserted and statistical inference

methods are used to estimate the physical constants as they appear in the model.

As a statistical problem, the inference problem presented by the GPCR model

falls in the area of nonlinear regression problems. The model for us is a system of nonlinear

differential equations. The state of the system will be called s, the controllable conditions

of the system (e.g. knockdown fraction) will be called x and the measured data will be

called y. The model can be written

y(t) = g(x, θ, s0, t) + ε(x), ε ∼ N (0, σ(x, t)). (4.0.1)

We have explicitly written the model as a function of the initial conditions s0 and
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the parameters θ. For notational simplicity we will suppress some of these terms where

needed. Equation (4.0.1) is a statistical model which can now be used to bridge the divide

between a deterministic simulation model and experimental data. Because we have made

an assumption on the error term, we can write the likelihood of the experimental data under

this model as

f(y|θ) =

N
∏

n=1

Tn
∏

t=1

f(y|t, xn, θ) (4.0.2)

where a y is a sample containing Tn time points. The likelihood for one experiment and

one time point is the probability density function based on (4.0.1)

f(y|t, xn, θ) =
1

√

2πσ2(xn, t)
exp

{

−(y(t)− g(xn, θ, t))2

2σ2(xn, t)

}

.

But this is the likelihood of the data under the model. We really would like the

likelihood of the model given the data. Bayes rule allows us to reverse this conditioning

and compute the function we are interested in from the likelihood.

4.1 Bayesian Inference

In the Bayesian framework, the parameters of the model θ ∈ Θ are regarded as random

variables. Prior to observing data, the joint distribution over the parameters will be denoted

π(θ). After observing a sample, yn, we update our prior distribution and obtain the posterior

distribution p(θ|yn). Bayes Theorem links these two quantities

p(θ|yn) =
f(yn|θ)π(θ)

∫

Θ f(yn|θ)π(θ)dθ
. (4.1.1)
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Bayes theorem provides a direct method for parameter updating. As more data

is accumulated, the user need only update the posterior distribution and only carry that

along instead of all of the data. This property is very valuable in a situation such as this

where follow-up experiments are expected.

p(θ) p(θ|y1)

y1

p(θ|y1,y2)

y2

Figure 4.1: The posterior data is updated and becomes the new prior as new data is
accumulated.

In some cases, the posterior distribution can be computed analytically and infer-

ence is computationally simple. However, often the parameter space is complex or high-

dimensional (e.g. Θ = Θ1×Θ2×· · ·×Θn) and the resulting high dimensional integration in

the denominator is not trivial. This subject will be addressed in section 4.2. The remainder

of this section will deal with useful distributions derived from the posterior distribution.

4.1.1 Parameter Confidence Intervals

Estimating parameter confidence intervals is somewhat broader than obtaining point esti-

mates of parameters. The goal is to report a set, A, which contains the true value of the

parameter with high probability. In a sense, a point parameter estimate is a confidence

interval with measure zero.

Classical confidence intervals are statements about the probability that a random

interval covers the true parameter θ since the data is considered random and the parameter

is fixed but unknown (Casella and Berger, 2002). The classical confidence interval statement
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can be written

Eθ

(

1{θ∈[L(Y ),U(Y )]}
)

= Pθ(θ ∈ [L(Y ), U(Y )]) =

∫ U(Y )

L(Y )
f(X|θ)dX (4.1.2)

where the expectation is with respect to the data generating distribution F (y|θ).

The interpretation of (4.1.2) is important. It says that the interval [L(Y ), U(Y )],

which depends on the random variable representing the sample, Y, covers the true parameter

with a particular probability. Had we drawn a different sample, the intervals would be

different, but the fixed parameter would not change. The statement says that over repeated

draws of samples, we can expect that for example 90% of the intervals that we calculate

actually do contain the true parameter. In general (4.1.2) is impossible to compute since

it requires the true θ. However, in some cases, the intervals can be expressed in terms of

a quantity with a distribution that is independent of the parameter. In these cases, the

distribution is called a pivot and the interval can be found. Modern statistical techniques,

such as the bootstrap, have been developed to get around this problem.

The Bayesian setup allows us to make the statement, “The true value of the

parameter is inside the interval with 90% probability.” at the cost of more assumptions.

This is possible because the data is fixed (it has been observed) and the parameter (or our

belief of it) is random. To distinguish the two, very different, concepts the Bayesian form

is called a credible interval

E
(

1{θ∈A}|y
)

= P (θ ∈ A|y) =

∫

A
p(θ|y)dθ (4.1.3)

where p(θ|y) is the posterior density function. Notice that the averaging distribution
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in (4.1.2) is f(y|θ) and the averaging distribution in (4.1.3) is p(θ|y). Unlike pivots, Bayesian

credible sets can always be found and they are not necessarily convex.

4.1.2 Prediction Confidence Intervals

As more replicate data is collected it is reasonable that the parameter confidence intervals

should concentrate on the true parameter assuming the data can provide such information.

But because there is variability in the measurements, the confidence intervals on the model

prediction of an observed sample should concentrate to fixed, but non-empty interval.

Consider a newdata point Yn+1; written in upper case because it is an as yet

unobserved random variable. The distribution can be written

P (Yn+1|yn) =

∫

f(Yn+1|θ)p(θ|yn)dθ (4.1.4)

since Yn+1 is independent of Yn given θ.

Approximation by Maximum A-posteriori Estimate Rather than obtaining the entire

prediction distribution, we can settle for a point estimate. Equation (4.1.4) is then simplified

by replacing the integral by a max,

P (Yn+1|yn) ≈ max
θ

f(Yn+1|θ)p(θ|yn)

= f(Yn+1|θ̂MAP)p(θ̂MAP|yn). (4.1.5)

We have effectively collapsed the entire posterior distribution over the parameters

to a point mass at θ̂MAP. This approximation is common and very computationally efficient,
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but unsatisfying since we have disregarded the uncertainty in the parameter in the compu-

tation of our prediction. However, if the variation in the parameter is small or the prediction

does not change appreciably in the neighborhood of θ̂MAP then this approximation is useful.

Approximation by Monte Carlo If we can take an independent sample of size M from

(4.1.1) then we can sample from the predictive posterior distribution to approximate (4.1.4).

We replace the true posterior distribution by “plugging-in” the empirical posterior distri-

bution to get the mixture distribution with finite mixing components,

P (Yn+1|yn) ≈
∫

f(Yn+1|θ)dPn,M (θ)

=
1

M

M
∑

i=1

f(Yn+1|θi), (4.1.6)

where Pn,M (θ|yn) =
∑M

i=1

1

M
δθi

is the empirical cdf and

δx ,























0 if θ < x,

1 if θ ≥ x.

If f(Yn+1|θ) is simple (which it is in our case since f(Yn+1|θ) ∼ N (µmod, σ), where

µmod is the model prediction and σ is the sample standard deviation of an observation from

(4.0.1)) the prediction distribution can be computed by Monte Carlo sampling the mixture

distribution (4.1.6).
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4.2 Markov Chain Monte Carlo

Analytical forms for Bayes estimates do not often exist except in special situations when

the prior is said to be conjugate to the likelihood, so they must be computed numerically

in many practical applications. The difficult component is often the normalization constant

in (4.1.1). The integral can be interpreted generally as the expected value of some function

g(·) where g = f(y|θ) is the likelihood function for the model in (4.1.1),

Eπ(g) =

∫

Θ
g(θ)π(θ)dθ.

Some classes of methods for computing this integral are:

• Gaussian-Hermite Quadrature

• Laplace Approximations

• Markov Chain Monte Carlo (MCMC).

Of these classes of methods, MCMC is by far the most general purpose and widely used in

practice.

4.2.1 Gauss-Hermite Quadrature

Numerical integration, as it is usually taught in calculus is also called quadrature. In general

an integral to be approximated can be written

I =

∫ b

a
f(x)dx. (4.2.1)
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The integral can be approximated by calculating f at a set of points {x1, . . . , xn}

and using a weighted combination of those function evaluations to approximate the integral,

I ≈ Î =

n
∑

i=1

wif(xi). (4.2.2)

This approximation algorithm separates into two components: (1) selecting design

points {x1, . . . , xn} and (2) selecting weights {w1, . . . , wn}. Simple quadrature approximates

an integral on an interval by selecting equal intervals for the design points and equal weights

(Kendall et al., 1994). The approximation in (4.2.2) becomes a sum of rectangles.

Gauss-Hermite quadrature handles the situation when the limits of integration are

(−∞,∞). The design points and weights are chosen such that the approximation is exact

if exp(x2/2)f(x) is a polynomial of order (2n− 1) or less (Kendall et al., 1994).

4.2.2 Laplace Approximation

The Laplace Approximation is useful if the quantity g(θ)π(θ) ≥ 0, ∀θ. Then it can be

written g(θ)π(θ) = exp{nh(θ)} where n can be taken to go to infinity (Casella and Berger,

2002).

h(θ) ≈ h(θ0) + (θ − θ0)h
′(θ0) +

(θ − θ0)
2

2
h′′(θ0) (4.2.3)

If θ0 is chosen to be at a maximum (e.g. θ̂MAP ) then the h′(θ0) = 0 and the

Laplace approximation becomes the normalization term from a Gaussian density function

∫

Θ
g(θ)π(θ)dθ ≈

∫

Θ
exp

{

n
(θ − θ0)

2

2
h′′(θ0)

}

dθ. (4.2.4)
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4.2.3 Markov Chain Monte Carlo

Twenty of the 84 parameters in the GPCR model were chosen to be estimated from data

based on relevance to the experimental data. Only those parameters that related to the

knockdown experiments in Table 3.1 were estimated and are denoted with a star in Ta-

ble A.2. We used data to estimate only the two forward rate constants in the enzymatic

mass-action equations because the forward and reverse rate constants for a given reaction

will be highly correlated in the posterior distribution making estimation by Markov chain

methods computationally expensive.

For each estimated parameter we constructed an independent Gaussian prior on

a log scale with a mean chosen based on literature data and a standard deviation of 0.25.

We found that this prior variance was sufficiently permissive for the exploration of the

parameter space while still constraining the rates to be physically reasonable.

The Metropolis-Hastings algorithm (Robert and Casella, 2004) was used to esti-

mate the posterior density of the parameters Pr(θ|y) where y is the observed data. Since the

posterior density of the parameters has significant correlation structure, three independent

chains were simulated from different initial parameter values. Each chain was simulated

for a burn-in period of 50,000 iterations and then a sample size of 29906 was taken with a

thinning factor of 10. To assess convergence of the posterior distribution estimate, we used

the Gelman-Rubin potential scale reduction factor (PSRF) (Gelman and Rubin, 1992). The

multivariate PSRF is 2.44 and 95% of the individual PSRFs were less than 1.5. A PSRF

value of one indicates that the distribution has converged.

The observed standard deviation, in (4.0.1), for each calcium measurement was
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Algorithm:Metropolis-Hastings

Initialize θ(0)

for i = 0 to M-1 do

Sample u ∼ Uniform[0, 1].

Sample θ∗ ∼ q(θ∗|θ(i)).

if u < A(x(i), x∗) = min
[

p(x∗)

p(x(i))
, 1
]

then

x(i+1) = x∗

else

x(i+1) = x(i)

end

end

Figure 4.2: Metropolis-Hastings Algorithm

estimated from 3-4 replicates on the same plate. By chance the replicate measurements for

some time points were nearly identical causing the standard deviation estimate to be close

to zero. Since the log of the likelihood for a Gaussian distribution contains the standard

deviation estimate in the denominator, a near-zero value will force the likelihood to be large

unless a parameter value is selected which causes the simulation value to be very close to the

measured value in the numerator. This effectively causes only a few terms in the likelihood

to have a disproportionate importance in the model fit. We implemented a common remedy

for this situation. A small constant factor (1nM) was added to the estimate of the standard

deviation to prevent this degeneracy in the solution.
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4.3 Posterior Density Analysis

Posterior prediction confidence intervals were constructed using the percentiles from the

predictive distribution approximated with 2000 Monte Carlo samples from Pr(Ynew|θ) at

each of 100 simple random samples from according to

Pr(Ynew|y) =

∫

Pr(Ynew|θ) Pr(θ|y)dθ ≈
100
∑

i=1

Pr(Ynew|θi) Pr(θi|y) (4.3.1)

where Pr(Ynew|θi) ∼ N (0, ŝ2) and ŝ2 is the pooled variance. The pooled variance is es-

timated by taking the average of the variances of all the time points in each for the 29

wild-type experiments. These average variances are weighted by the number of technical

replicates in each experiment and then averaged to yield the estimate of σ̂2 from (4.0.1).

Figure 4.3 shows prediction confidence intervals for two experiments on wild-type cells. The

predictive confidence intervals were computed using equation (4.1.6).

Figure 4.4 shows the posterior probability Pr(θ|y) for the three MCMC chains as

a function of the sample number. Figure 4.5 shows a comparison of the prior and posterior

densities. The posterior density has a smaller variance than the prior density indicating that

some information about the parameter has been gained from the calcium measurements.

The marginal samples from the three independent chains overlap considerably indicating

that the sampling algorithm has converged to the true posterior distribution.

Credible intervals based on the marginal densities are generally conservative. It

is possible a point can be inside the joint credible intervals constructed from say the 90%

marginal intervals, but not in the true joint interval. Even so, the marginal distribution of

the parameters are informative for assessing the improvement in parameter accuracy due
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Figure 4.3: Model simulations are compared to experimental data. The point estimate is
computed using the posterior parameter distribution estimated by Markov chain Monte
Carlo given the data from 96 experiments on C5a and UDP at various doses in combination
with 5 different shRNAi knockdown cell lines. The 95% HPD interval simulations are com-
puted using parameters from the component-wise 95% confidence intervals of the posterior
distribution on parameters. The 95% posterior predictive intervals are estimated by Monte
Carlo simulations including both parameter and measurement uncertainty. The measured
mean of four replicates is shown by a black dot and the error bar, computed as 1.96 times
the standard deviation, approximates the 95% confidence interval for the data assuming
normally distributed errors. (left) C5a at 250nM was introduced at 20s and the experimen-
tally observed pulse in cytosolic calcium concentration is shown. (right) The qualitative
shape of the calcium pulse for UDP is different than for C5a. The pulse does not com-
pletely adapt and return the prestimulated level. For both ligands, the model prediction
confidence intervals overlap the data error bars which indicate the model fit is consistent
with the data within the measurement uncertainty.

to observing data.

The 95% credible intervals for all the estimated parameters based on one of the

chains are in Table 4.3.
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Figure 4.4: The posterior probabilities of the sampled parameter vector is plotted as a func-
tion of the sample number for three independent MCMC chains. The posterior probabilities
are relatively stable and consistent between chains after a considerable burn-in period.
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Figure 4.5: (left) The prior and posterior density for the parameter in the reaction UDP
+ p2yr → UDPC. (right) Sample paths for the parameter from three independent MCMC
chains.



4.3 Posterior Density Analysis 75

Marginal Mean Lower 95% HPD Upper 95% HPD Model

k108f 12.79 8.09 18.46 13.20
k108r 3.51 2.07 5.00 3.61
k101f 110.47 32.33 197.76 92.41
k101r 0.50 0.043 0.98 0.37

k102bf 293.35 118.54 494.92 199.31
k105f 0.01 0.010 0.017 0.012
k109f 0.13 0.12 0.15 0.13
k15af 1424.34 764.53 2331.21 1238.78
k15bf 33.34 16.99 55.39 22.85
k19af 123.54 51.11 191.00 70.87
k19bf 32.01 16.42 56.67 27.89
k21af 163.77 149.73 179.55 165.83
k21bf 5.49 5.08 5.89 5.41
k24af 8.38 3.073 12.55 5.89
k24bf 0.65 0.22 1.02 0.93
k25af 662.20 513.98 819.13 830.44
k25bf 20.56 10.63 32.18 11.69787
k37f 5.14 3.96 6.93 4.98

k28af 184.86 49.53 349.19 77.52
k28bf 7.56 2.95 14.92 18.34

Table 4.1: Highest posterior density intervals for estimated parameters.
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Chapter 5

Experiment Design

We consider the general problem of statistical experiment design as it arises in the context

of the G protein-coupled receptor model. Experiments to measure rate constant parameters

are expensive, time-consuming and inaccurate for complex systems. So, it is valuable to

use cheap, but indirect or noisy measurements on calcium concentration to infer the values

of certain critical rate constants. We are interested in using the kinetic model to guide our

experimental design to infer the values of rate constants.

Suppose we have a nonlinear model y = f(x, θ) + ε, ε ∼ N (0, σ2) where x ∈ X

represents the controllable conditions of the experiment, y is the experimental measurement

and θ ∈ R
p are the parameters of the model. We consider a finite menu of available

experiments X ∈ {x1, . . . , xm} but in general X may be a countably infinite set. The

objecive of experiment design is to select the best set of n experiments from the menu (with

repeats) in the sense of some criterion of the estimate θ̂. We can relax this combinatorial

problem by instead optimizing the probability distribution over X . This distribution can
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then be multiplied by n and rounded appropriately to give an approximately optimal design

in the original sense (Boyd and Vandenberghe, 2003). Let ξ(dx) be a probability measure

over design points such that

ξ(x) =















x1, . . . , xm

w1, . . . , wm















(5.0.1)

when x is discrete.

We adopt a standard least-squares framework for parameter estimation. In the

nonlinear setting this is done by making a Taylor series expansion of the model about an

estimate θ0 (Seber and Wild, 2003).

f(x, θ) = f(x, θ0) + V (θ − θ0) + O(‖θ − θ0‖), (5.0.2)

where V is the Jacobian matrix of the model; the ith row of V is vT
i = ∂f(xi,θ)

∂θ

∣

∣

∣

θ0

.

The least-squares estimate of θ is θ̂ = θ0 +
(

V T WV
)−1

V T Wx (y − f(x, θ0)),

where W = diag(w). The covariance matrix for the parameter estimate is cov(θ̂|ξ) =

σ2
(

V T WV
)−1

, which is the inverse of the observed Fisher information matrix.

The aim of optimal experiment design methods is to minimize the covariance

matrix of the parameter estimate (Atkinson and Donev, 1992; Boyd and Vandenberghe,

2003; Box et al., 1978). There are two well-known difficulties that must be surmounted in

the case of nonlinear models (Box et al., 1978):

• The optimal design depends on an evaluation of the derivative of the model with

respect to the parameters at a particular parameter estimate. Given that our goal is

parameter estimation, this involves a certain circularity.
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• Simple optimal design procedures tend to concentrate experimental weight on only

a few design points (Silvey, 1980). Such designs are overly optimistic about the

appropriateness of the model, and provide little information about possible lack of fit

over a wider experimental range.

There have been three main responses to these problems: sequential experiment

design (Silvey, 1980), Bayesian methods (Lindley, 1956), and maximin approaches

(Pronzato and Walter, 1988).

In the sequential approach, a working parameter estimate is first used to construct

a tentative experiment design. Data are collected under that design and the parameter

estimate is updated. The procedure is iterated in stages. While heuristically reasonable,

this approach is often inapplicable in practice because of costs associated with experiment

set-up time.

In the Bayesian approach exemplified by (Lindley, 1956), a proper prior distribu-

tion is constructed for the parameters to be estimated. The objective function is the KL

divergence between the prior distribution and the expected posterior distribution; this KL

divergence is maximized (thereby maximizing the amount of expected information in the

experiment design). Sensitivity to priors is a serious concern, however, particularly in the

biological setting in which it can be quite difficult to choose priors for quantities such as

bulk rates for a complex process.

The maximin approach considers a bounded range for each parameter and finds

the optimal design for the worst case parameters in that range. The major difficulties

with this approach are computational, and its main applications have been to specialized
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problems (Silvey, 1980).

The approach that we present here is close in spirit to the maximin and the

bayesian approach. We view both of the problems discussed above as arguments for a

robust design. One which is insensitive to the linearization point and to model error. We

work within the framework of E-optimal design (see below) and consider perturbations to

the rank-one Fisher information matrix for each design point. An optimization with re-

spect to such perturbations yields a robust semidefinite program (Vandenberghe and Boyd,

1996; El Ghaoui et al., 1998; El Ghaoui and Lebret, 1997). In a special case, these rank-

one perturbations can be considered equivalent to a full-rank pertubation on the resultant

information matrix. A Bayesian design arises when that perturbation matrix is specified

a-priori (Chaloner and Verdinelli, 1995).

5.1 Locally Optimal Experiment Design

Most optimization methods minimize a scaler function of the decision variables subject to

constraints. The three most common scalar measures of the size of the parameter covariance

matrix in optimal experiment design are:

• D-optimal design: determinant of the covariance matrix.

• A-optimal design: trace of the covariance matrix.

• E-optimal design: maximum eigenvalue of the covariance matrix.
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We adopt the E-optimal design criterion, and formulate the design problem as

follows:

P0 : p∗0 = min
w

λmax





(

m
∑

i=1

wiviv
T
i

)−1


 s.t.

m
∑

i=1

wi = 1 (5.1.1)

wi ≥ 0,∀i,

where λmax[M ] is the maximum eigenvalue of a matrix M . The induced 2-norm is equivalent

to the spectral norm this problem can also be written as

P0 : p∗0 = min
w

∥

∥

∥

∥

∥

∥

(

m
∑

i=1

wiviv
T
i

)−1
∥

∥

∥

∥

∥

∥

2

s.t.
m
∑

i=1

wi = 1 (5.1.2)

wi ≥ 0,∀i.

This problem can be recast as the following semidefinite program

(Boyd and Vandenberghe, 2003):

P0 : p∗0 = max
w,s

s s.t.

m
∑

i=1

wiviv
T
i ≥ sIp (5.1.3)

m
∑

i=1

wi = 1, wi ≥ 0,∀i,

which forms the basis of the robust extension that we develop in the following section. Note

that the optimal value of the semidefinite program is the inverse of the original problem,

but the optimizer is the same.

5.2 Robust Experiment Design

The uncertain parameters appear in the experiment design optimization problem through

the Jacobian matrix, V . We consider additive unstructured perturbations on the Jaco-

bian in this problem. The uncertain observed Fisher information matrix is F (w,∆) =
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∑m
i=1 wi(viv

T
i −∆i), where ∆i is a p × p matrix for i = 1, . . . ,m. We consider a spectral

norm bound on the magnitude of the perturbations such that ‖blkdiag(∆1, . . . ,∆m)‖ ≤ ρ.

Incorporating the perturbations, the E-optimal experiment design problem with

uncertainty based on (5.1.3) can be cast as the following minimax problem:

Pρ : p∗ρ = maxw min∆ s

subject to
∑m

i=1 wi(viv
T
i + ∆i) ≥ sIp

∆ = blkdiag(∆1, . . . ,∆m), ‖∆‖ ≤ ρ

∑m
i=1 wi = 1, wi ≥ 0,∀i.

(5.2.1)

We will call equation (5.2.1) an E-robust experiment design.

To implement the program efficiently, we can recast the linear matrix inequality

in (5.2.1) in a linear fractional (LFT) representation:

F (w, s,∆) = F (w, s) + L∆R(w) + R(w)T ∆TLT ≥ 0,

where

F (w, s) =

m
∑

i=1

wiviv
T
i − sIp, R(w) = 1√

2
(w ⊗ Ip)

L =
−1√

2

(

1T
m ⊗ Ip

)

, ∆ = blkdiag(∆1, . . . ,∆m).

However, the constraints in (5.2.1) are not enough. Each ∆i can be chosen to

minimize the term in which it is involved independently of the others. This will simply

scale all of the viviT by the same constant and the optimizing w is unchanged.

A further constraint is ∆1 = · · · = ∆m. This forces each viv
T
i + ∆i to lie within a

norm bounded neighborhood of the same size and shape. With this constraint the robust
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SDP with structured uncertainty becomes a robust SDP with unstructured uncertainty.

Pρ : p∗ρ = maxw min‖∆‖≤ρ s

subject to
∑m

i=1 wiviv
T
i + ∆ ≥ sIp

∑m
i=1 wi = 1, wi ≥ 0,∀i.

(5.2.2)

Employing a special case of the S-procedure (El Ghaoui et al., 1998) the robust

SDP can be cast as a normal SDP

Pρ : p∗ρ = minw,τ −s

subject to









∑m
i=1 wiviv

T
i − sIp − 1

2τIp
ρ√
2
Ip

ρ√
2
Ip τIp









≥ 0

∑m
i=1 wi = 1, wi ≥ 0,∀i.

(5.2.3)

If ρ = 0 we recover (5.1.3). Using the Schur complement the first constraint in

(5.2.3) can be further simplified to

m
∑

i=1

wiviv
T
i − ρIp ≥ sIp, (5.2.4)

which makes the regularization of the optimization problem (5.1.3) explicit. The uncertainty

bound, ρ, serves as a weighting parameter for a regularization term. Finally, the original

objective criterion can be rewritten minw λmax

[

(

V T WV − ρIp

)−1
]

which is no harder to

solve than an eigenvalue problem. However, equation (5.2.1) is much more general than

this simplification and the general form will be used to intrduce other convex constraints

that provide better designs.
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5.3 Application to G protein-coupled Receptor Model

We demonstrate the robust experiment design on two models of biological systems. The

first model is the Michaelis-Menten model of a simple enzyme reaction system. This model,

derived from mass-action kinetics, is a fundamental building block of many mechanistic

models of biological systems. The second example is a model of a complex calcium signal

transduction pathway in macrophage immune cells. In this example we consider RNAi

knockdowns at a variety of ligand doses for the estimation of receptor level parameters.

5.3.1 Michaelis-Menten Reaction Model

The Michaelis-Menten model is a common approximation to an enzyme-substrate reac-

tion (Segel and Slemrod, 1989). The basic chemical reaction that leads to this model is

E + S
k+1−−⇀↽−−
k−1

C
k2−→ E + P , where E is the enzyme concentration, S is the substrate concen-

tration and P is the product concentration. We employ mass action kinetics to develop a

differential equation model for this reaction system (Segel and Slemrod, 1989). The veloc-

ity of the reaction is defined to be the rate of product formation, V0 = ∂P
∂t

∣

∣

t0
. The initial

velocity of the reaction is

V0 ≈
θ1x

θ2 + x
, (5.3.1)

where

θ1 = k+2E0, θ2 =
k−1 + k+2

k+1
. (5.3.2)

We have taken the controllable factor, x, in this system to be the initial substrate

concentration S0. The parameter θ1 is the saturating velocity and θ2 is the initial substrate



5.3 Application to G protein-coupled Receptor Model 84

concentration at which product is formed at one-half the maximal velocity. In this example

θ1 = 2 and θ2 = 2 are the total enzyme and initial substrate concentrations. We consider

six initial substrate concentrations as the menu of experiments, X =
{

1
8 , 1, 2, 4, 8, 16

}

.

Figure 5.1 shows the robust experiment design weights as a function of the un-

certainty parameter with the Jacobian computed at the true parameter values. When ρ is

small, the experimental weight is concentrated on only two design points. As ρ→ ρmax the

design converges to a uniform distribution over the entire menu of design points. In a sense,

this uniform allocation of experimental energy is most robust to parameter uncertainty.

Intermediate values of ρ yield an allocation of design points that reflects a tradeoff between

robustness and nominal optimality.
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Figure 5.1: Michaelis-Menten model experiment design weights as a function of ρ.

For moderate values of ρ we gain significantly in terms of robustness to errors in

viv
T
i , at a moderate cost to maximal value of the minimum eigenvalues of the parameter
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estimate covariance matrix. Figure 5.2 shows the efficiency of the experiment design as

a function of ρ and the prior estimate θ02 used to compute the Jacobian matrix. The

E-efficiency of a design is defined to be

efficiency ,
λmax

[

cov
(

θ̂|θ, ξ0

)]

λmax

[

cov
(

θ̂|θ0, ξρ

)] . (5.3.3)

If the Jacobian is computed at the correct point in parameter space the optimal

design achieves maximal efficiency. As the distance between θ0 and θ grows the efficiency of

the optimal design decreases rapidly. If the estimate, θ02, is eight instead of the true value,

two, the efficiency of the optimal design at θ0 is 36% of the optimal design at θ. However,

at the cost of a decrease in efficiency for parameter estimates close to the true parameter

value we guarantee the efficiency is better for points further from the true parameters with

a robust design. For example, for ρ = 0.001 the robust design is less efficient for the range

0 < θ02 < 7, but is more efficient for 7 < θ02 < 16.

5.3.2 Calcium Signal Transduction Model

When certain small molecule ligands such as the anaphylatoxin C5a are introduced into

the environment of an immune cell a complex chain of chemical reactions leads to the

transduction of the extracellular ligand concentration information and a transient increase

in the intracellular calcium concentration. This chain of reactions can be mathematically

modeled using the principles of mass-action kinetics and nonlinear ordinary differential

equations. We consider specifically the model presented in (Lemon et al., 2003) which was

developed for the P2Y2 receptor, modifying the model for our data on the C5a receptor.
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Figure 5.2: Efficiency of robust designs as a function of ρ and perturbations in the prior
parameter estimate θ02.

The menu of available experiments is indexed by one of two different cell lines

in combination with different ligand doses. The cell lines are: wild-type and a GRK2

knockdown line. GRK2 is a protein that represses signaling in the G-protein receptor

complex. When its concentration is decreased with interfering RNA the repression of the

signal due to GRK2 is reduced. There are 17 experiments on the menu and we choose to

do 100 experiments allocated according the experiment design. For each experiment we

are able measure the transient calcium spike peak height using a fluorescent calcium dye.

We are concerned with estimating three C5A receptor parameters: K1, kp, kdeg which are

detailed in (Lemon et al., 2003). We have selected the initial parameter estimates based on

a least-squares fit to a separate data set of 67 experiments on a wild-type cell line with a

ligand concentration of 250nM. We have estimated, from experimental data, the mean and

variance for all of the experiments in our menu. Observations are simulated from these data
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to obtain the least-squares parameter estimate for the optimal, robust (ρ = 1.5×10−6) and

uniform experiment designs.

Figure 5.3 shows the model fits with associated 95% confidence bands for the

wild-type and knockdown cell lines for the parameter estimates from the three experiment

designs. A separate validation data set is generated uniformly across the design menu.

Compared to the optimal design, the parameter estimates based on the robust design provide

a better fit across the whole dose range for both cell types as measured by mean-squared

residual error.
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Figure 5.3: Model predictions based on the least squares parameter estimate using data
observed from the optimal, robust and uniform design. The predicted peak height curve
(black line) based on the robust design data is shifted to the left compared to the peak
height curve based on the optimal design data and matches the validation sample (shown
as blue dots) more accurately.

Note also that the measured response at high ligand concentration is better fit
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with parameters estimated from the robust design. Near 1µM of C5a concentration the

peak height is predicted to decrease slightly in the wild-type cell line, but plateaus for the

GRK2 knockdown cell line. This matches the biochemical understanding that GRK2 acts

as a repressor of signaling.

5.4 Discussion

The methodology of optimal experiment design leads to efficient algorithms for the construc-

tion of designs in general nonlinear situations (Atkinson, 1996). However, these variance-

minimizing designs fail to account for uncertainty in the nominal parameter estimate and the

model. We present a methodology, based on recent advances in semidefinite programming,

that retains the advantages of the general purpose algorithm while explicitly incorporating

uncertainty.

We demonstrated this robust experiment design method on two example systems.

In the Michaelis-Menten model, we showed that the E-optimal design is recovered for ρ = 0

and the uniform design is recovered as ρ→ ρmax. It was also shown that the robust design

is more efficient than the optimal for large perturbations of the nominal parameter estimate

away from the true parameter.

The second example, of a calcium signal transduction model, is a more realistic

case of the need for experiment design in high-throughput biological research. The model

captures some of the important kinetics of the system, but is far from complete. We

require a reasonably accurate model to make further predictions about the system and

drive a set of experiments to estimate critical parameters of the model more accurately. The
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resulting robust design spreads some experiments across the menu, but also concentrates

on experiments that will help minimize the variance of the parameter estimates.

These robust experiment designs were obtained using SeDuMi 1.05 (Sturm, 1999).

The design for the calcium signal transduction model takes approximately one second on a

2GHz processor, which is less time than required to compute the Jacobian matrix for the

model.

Research in machine learning has led to significant advances in computationally-

efficient data analysis methods, allowing increasingly complex models to be fit to biological

data. Challenges in experimental design are the flip side of this coin—for complex models

to be useful in closing the loop in biological research it is essential to begin to focus on the

development of computationally-efficient experimental design methods.
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Chapter 6

Conclusion

The model presented is a hypothesis of the mechanism of signal integration by the Gαi and

Gαq-coupled receptor systems which involves calcium-dependent feedback and combinato-

rial activation. It has been suggested that a synergistic release of calcium is caused by G

units specific to the C5a receptor simultaneously bind to PLCβ3 with Gαq units from the

UDP receptor and cause the activity of PLCβ3 to be greater than with either G protein

subunit bound alone (Werry et al., 2003). However, the mechanism hypothesized in this

model does not require simultaneous binding and produces a synergistic interaction between

C5a and UDP.

Intracellular calcium concentration measurements on wild-type and genetically

perturbed cell lines with a variety of ligand doses is used in a Bayesian framework to esti-

mate the posterior distribution over a set of biochemical parameters. Prediction confidence

intervals for the model simulations were estimated and used to assess the consistency of the

model with validation experiments. The synergistic interaction between C5a and UDP is
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shown to be consistent with the model when the prediction confidence intervals are taken

into account.

The calcium measurements using in this study are done on populations of

RAW264.7 cells. However, it is single cells that respond to the ligand, not populations

of cells. The measurement process effectively averages over all the single cell responses to

produce the population measurements that we observe. We may find that the ecological

correlation is present in the data. It will be interesting to show whether the population

measurements do reflect events at the single cell level.

While we have attempted to capture the state of understanding in the literature

regarding the mechanism for GPCR signal integration, naturally some mechanisms repre-

sented in the model are controversial or incompletely understood. The model representation

of the hypothetical mechanism does not afford us the opportunity to be vague about such

components and we have made specific assertions in those areas. For instance, the mecha-

nism of IP3-mediated calcium release is still under debate (Berridge et al., 1999). In other

areas of the model, we have constructed mechanisms that are simplified versions of the

more complex reality which permit us and others the opportunity to extend the model

as more experiments testing those areas become available (e.g. Ca2+ store replenishment

and PIP2 regeneration). Despite these usual qualifications, we have demonstrated a novel

two-receptor GPCR model which represents a feasible mechanism for signal integration

from multiple GPCR systems, used Bayesian methods to construct confidence intervals on

model predictions and used the model to design novel experiments which were shown to be

consistent with the model predictions.
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The statistical methods employed here are readily applicable to other mechanistic

and phenomenological models to inform parameter values and assess the consistency of the

model with novel experimental data. Further, this initial model is a substrate for many

extensions. The second messenger cAMP is known to interact with Ca2+ and contribute

to signal transduction complexity but was not included in this model. Many other ligand

combinations have been shown to interact synergistically and experiments on those ligand

pairs will be a valuable test for the combinatorial activation/calcium-dependent feedback

mechanism hypothesized by this model.

The experiment design methodology presented in the last chapter fits well within

formal application of statistical methods to complex uncertain biological systems. Parame-

ter estimates, while improved by the posterior analysis, is still uncertain even after observing

experimental data. The natural next question is: “What experiments can be done to gain

the most information about the uncertain parameters.” A solution of this experiment de-

sign question is presented in the form of a semidefinite program which is computationally

efficient.
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Appendix A

Model Implementation

A.1 Model Equations

d[C5aR] = −k101f [C5a][C5aR] + k101r[C5aC] + k104f [C5aCp]

d[C5aC] = −k101r[C5aC] + k101f [C5a][C5aR]− k102af [GRKp •Gβγ][C5aC]

+k102ar[GRKp •Gβγ • C5aC]

d[GRKp •Gβγ] = −k102af [GRKp •Gβγ][C5aC] + k102ar [GRKp •Gβγ • C5aC]

+k102bf [GRKp •Gβγ • C5aC] − k37r[GRKp •Gβγ] + k37f [GRKp][Gβγ]

d[GRKp •Gβγ • C5aC] = −k102ar[GRKp •Gβγ • C5aC] + k102af [GRKp •Gβγ][C5aC]

−k102bf [GRKp •Gβγ • C5aC]

d[C5aCp] = +k102bf [GRKp •Gbg • C5aC] − k104f [C5aCp]

d[P2YR] = −k108f [UDP][P2YR] + k108r[UDPC]

d[UDPC] = −k108r[UDPC] + k108f [UDP][P2YR]− k109f [UDPC][Gβγ •GαqGDP]

+k109f [UDPC][Gβγ •GαqGDP]

d[Gβγ •GαiGDP] = −k105f [C5aC][Gβγ •GαiGDP] + k11f [GαiGDP][Gβγ]

d[Gβγ] = +k105f [C5aC][Gβγ •GαiGDP] + k109f [UDPC][Gβγ •GαqGDP]

−k11f [GαiGDP][Gβγ]− k113f [GαqGDP][Gβγ]− k20f [Gβγ][PLCβ3 • Ca2+]

+k20r[PLCβ3 • Ca2+ •Gβγ]− k37f [GRKp][Gβγ] + k37r[GRKp •Gβγ]

d[GαiGTP] = +k105f [C5aC][Gβγ •GαiGDP]− k106f [GαiGTP]− k9af [RGSa][GαiGTP]
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+k9ar[RGSa •GαiGTP]

d[GαiGDP] = +k106f [GαiGTP] + k9bf [RGSa •GαiGTP]− k11f [GαiGDP][Gβγ]

d[Gβγ •GαqGDP] = −k109f [UDPC][Gβγ •GαqGDP] + k113f [GαqGDP][Gβγ]

d[GαqGTP] = +k109f [UDPC][Gβγ •GαqGDP]− k110f [GαqGTP]

−k111af [RGSa][GαqGTP] + k111ar[RGSa •GαqGTP]

−k13f [PLCβ4 • Ca2+][GαqGTP] + k13r[PLCβ4 • Ca2+ •GαqGTP]

−k17f [PLCβ3 • Ca2+][GαqGTP] + k17r[PLCβ3 • Ca2+ •GαqGTP]

d[GαqGDP] = +k110f [GαqGTP] + k111bf [RGSa •GαqGTP]− k113f [GαqGDP][Gβγ]

+k15bf [PLCβ4 • Ca2+ •GαqGTP • PIP2]

+k19bf [PLCβ3 • Ca •GαqGTP • PIP2]

d[RGSa] = −k9af [RGSa][GαiGTP] + k9ar[RGSa •GαiGTP] + k9bf [RGSa •GαiGTP]

−k111af [RGSa][GαqGTP] + k111ar[RGSa •GαqGTP]

+k111bf [RGSa •GαqGTP]

d[RGSa •GαiGTP] = −k9ar[RGSa •GαiGTP] + k9af [RGSa][GαiGTP]

−k9bf [RGSa •GαiGTP]

d[RGSa •GαqGTP] = −k111ar[RGSa •GαqGTP] + k111af [RGSa][GαqGTP]

−k111bf [RGSa •GαqGTP]

d[PLCβ4] = −k12f [PLCβ4][Ca2+] + k12r[PLCβ4 • Ca2+]

d[Ca2+] = −k12f [PLCβ4][Ca2+] + k12r[PLCβ4 • Ca2+]− k16f [PLCβ3][Ca2+]

+k16r[PLCβ3 • Ca2+]− k2f [IP3R • IP3][Ca2+] + k2r[IP3R • IP3 • Ca2+]

−k3f [IP3R][Ca2+] + k3r[IP3R • Ca2+]− k6f [Ca2+][Buf]

+k6r[Ca2+ • Buf]− k34f [PKC •DAG][Ca2+]] + k34r[PKC •DAG • Ca2+]

−k35f [PKC][Ca2+] + k35r[PKC • Ca2+] + c2

−(v1[IP3R • IP3]4 + v8)([Ca2+
ER]− [Ca2+])− v4

[Ca2+]2

[Ca2+]2+k2
4

+a1 − Vex
[Ca2+]

Kex+[Ca2+ ]

d[PLCβ4 • Ca2+] = −k12r[PLCβ4 • Ca2+] + k12f [PLCβ4][Ca2+]

−k13f [PLCβ4 • Ca2+][GαqGTP]

+k13r[PLCβ4 • Ca2+ •GαqGTP]

+k15bf [PLCβ4 • Ca2+ •GαqGTP • PIP2]

−k24af [PKC •DAG • Ca2+][PLCβ4 • Ca2+]

+k24ar[PKC •DAG • Ca2+ • PLCβ4 • Ca2+] + k115f [PLCβ4 • Ca2+
p ]

d[PLCβ4 • Ca2+ •GαqGTP] = −k13r[PLCβ4 • Ca2+ •GαqGTP] + k13f [PLCβ4 • Ca2+][GαqGTP]
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−k15af [PLCβ4 • Ca2+ •GαqGTP][PIP2]

+k15ar[PLCβ4 •Ca2+ •GαqGTP • PIP2]

d[PIP2] = −k15af [PLCβ4 • Ca2+ •GαqGTP][PIP2]

+k15ar[PLCβ4 •Ca2+ •GαqGTP • PIP2]

−k19af [PLCβ3 • Ca2+ •GαqGTP][PIP2]

+k19ar[PLCβ3 •Ca2+ •GαqGTP • PIP2]

−k21af [PLCβ3 • Ca2+ •Gβγ][PIP2]

+k21ar[PLCβ3 •Ca2+ •Gβγ • PIP2] + k55f [IP5]

d[PLCβ4 • Ca2+

•GαqGTP • PIP2] = −k15ar[PLCβ4 •Ca2+ •GαqGTP • PIP2]

+k15af [PLCβ4 • Ca2+ •GαqGTP][PIP2]

−k15bf [PLCβ4 • Ca2+ •GαqGTP • PIP2]

d[IP3] = +k15bf [PLCβ4 • Ca2+ •GαqGTP • PIP2]

+k19bf [PLCβ3 • Ca2+ •GαqGTP • PIP2]

+k21bf [PLCβ3 • Ca2+ •Gβγ • PIP2]

−k1f [IP3R][IP3] + k1r[IP3R • IP3]

−k4f [IP3R • Ca2+][IP3] + k4r[IP3R • IP3 • Ca2+]− Vqssk
[IP3Ka][IP3]
Kqssk+[IP3]

d[DAG] = +k15bf [PLCβ4 • Ca2+ •GαqGTP • PIP2]

+k19bf [PLCβ3 • Ca2+ •GαqGTP • PIP2]

+k21bf [PLCβ3 • Ca2+ •Gβγ • PIP2]

−k33f [PKC][DAG] + k33r[PKC •DAG]− k36f [PKC • Ca2+][DAG]

+k36r[PKC •DAG • Ca2+]− k49f [DAG]

d[PLCβ3] = −k16f [PLCβ3][Ca2+] + k16r[PLCβ3 • Ca2+]

d[PLCβ3 • Ca2+] = −k16r[PLCβ3 • Ca2+] + k16f [PLCβ3][Ca2+]

−k17f [PLCβ3 • Ca2+][GαqGTP] + k17r[PLCβ3 • Ca2+ •GαqGTP]

+k19bf [PLCβ3 • Ca2+ •GαqGTP • PIP2]

−k20f [Gβγ][PLCβ3 • Ca2+] + k20r[PLCβ3 • Ca2+ •Gβγ]

−k25af [PKC •DAG • Ca2+][PLCβ3 • Ca2+]

+k25ar[PKC •DAG • Ca2+ • PLCβ3 • Ca2+] + k117f [PLCβ3 • Ca2+
p ]

d[PLCβ3 • Ca2+ •GαqGTP] = −k17r[PLCβ3 • Ca2+ •GαqGTP] + k17f [PLCβ3 • Ca2+][GαqGTP]

−k19af [PLCβ3 • Ca2+ •GαqGTP][PIP2]

+k19ar[PLCβ3 •Ca2+ •GαqGTP • PIP2]
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d[PLCβ3 • Ca2+•

GαqGTP • PIP2] = −k19ar[PLCβ3 •Ca2+ •GαqGTP • PIP2]

+k19af [PLCβ3 • Ca2+ •GαqGTP][PIP2]

−k19bf [PLCβ3 • Ca2+ •GαqGTP • PIP2]

d[PLCβ3 • Ca2+ •Gβγ] = −k20r[PLCβ3 • Ca2+ •Gβγ] + k20f [Gβγ][PLCβ3 • Ca2+]

−k21af [PLCβ3 • Ca2+ •Gβγ][PIP2] + k21ar[PLCβ3 • Ca2+ •Gβγ • PIP2]

+k21bf [PLCβ3 • Ca2+ •Gβγ • PIP2]

d[PLCβ3 • Ca2+ •Gβγ • PIP2] = −k21ar[PLCβ3 •Ca2+ •Gβγ • PIP2] + k21af [PLCβ3 • Ca2+ •Gβγ][PIP2]

−k21bf [PLCβ3 • Ca2+ •Gβγ • PIP2]

d[PKC •DAG • Ca2+] = −k24af [PKC •DAG • Ca2+][PLCβ4 • Ca2+]

+k24ar[PKC •DAG • Ca2+ • PLCβ4 • Ca2+]

+k24bf [PKC •DAG • Ca2+ • PLCβ4 • Ca2+]

−k25af [PKC •DAG • Ca2+][PLCβ3 • Ca2+]

+k25ar[PKC •DAG • Ca2+ • PLCβ3 • Ca2+]

+k25bf [PKC •DAG • Ca2+ • PLCβ3 • Ca2+]

−k34r[PKC •DAG • Ca2+]

+k34f [PKC •DAG][Ca2+]

−k36r[PKC •DAG • Ca2+]

+k36f [PKC • Ca2+][DAG]

−k28af [PKC •DAG • Ca2+][GRK]

+k28ar[PKC •DAG • Ca2+ •GRK]

+k28bf [PKC •DAG • Ca2+ •GRK]

d[PKC •DAG•

Ca2+ • PLCβ4 • Ca2+] = −k24ar[PKC •DAG • Ca2+ • PLCβ4 • Ca2+]

+k24af [PKC •DAG • Ca2+][PLCβ4 • Ca2+]

−k24bf [PKC •DAG • Ca2+ • PLCβ4 • Ca2+]

d[PLCβ4 • Ca2+
p ] = +k24bf [PKC •DAG • Ca2+ • PLCβ4 • Ca2+]

−k115f [PLCβ4 • Ca2+ • p]

d[PKC •DAG•

Ca2+ • PLCβ3 • Ca2+] = −k25ar[PKC •DAG • Ca2+ • PLCβ3 • Ca2+]

+k25af [PKC •DAG • Ca2+][PLCβ3 • Ca2+]

−k25bf [PKC •DAG • Ca2+ • PLCβ3 • Ca2+]
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d[PLCβ3 • Ca2+
p ] = +k25bf [PKC •DAG • Ca2+ • PLCβ3 • Ca2+]

−k117f [PLCβ3 • Ca2+ • p]

d[IP3R] = −k1f [IP3R][IP3]

+k1r[IP3R • IP3]− k3f [IP3R][Ca2+]

+k3r[IP3R • Ca2+]

d[IP3R • IP3] = −k1r[IP3R • IP3]

+k1f [IP3R][IP3]− k2f [IP3R • IP3][Ca2+]

+k2r[IP3R • IP3 • Ca2+]

d[IP3R • IP3 • Ca2+] = −k2r[IP3R • IP3 • Ca2+]

+k2f [IP3R • IP3][Ca2+]− k4r[IP3R • IP3 • Ca2+]

+k4f [IP3R • Ca2+][IP3]

d[IP3R • Ca2+] = −k3r[IP3R • Ca2+]

+k3f [IP3R][Ca2+]− k4f [IP3R • Ca2+][IP3]

+k4r[IP3R • IP3 • Ca2+]

d[Buf] = −k6f [Ca2+][Buf] + k6r[Ca2+ • Buf]

d[Ca2+ • Buf] = −k6r[Ca2+ • Buf] + k6f [Ca2+][Buf]

d[Ca2+
ER] = −(v1[IP3R • IP3]4 + v8)([Ca2+

ER]− [Ca2+])

+(1/c2)v4
[Ca2+]2

[Ca2+]2+k2
4

d[PKC] = −k33f [PKC][DAG] + k33r[PKC •DAG]

−k35f [PKC][Ca2+] + k35r[PKC • Ca2+]

d[PKC •DAG] = −k33r[PKC •DAG]

+k33f [PKC][DAG]− k34f [PKC •DAG][Ca2+]

+k34r[PKC •DAG • Ca2+]

d[PKC • Ca2+] = −k35r[PKC • Ca2+]

+k35f [PKC][Ca2+]− k36f [PKC • Ca2+][DAG]

+k36r[PKC •DAG • Ca2+]

d[GRKp] = −k37f [GRKp][Gβγ] + k37r[GRKp •Gβγ]

+k28bf [PKC •DAG • Ca2+ •GRK]

d[GRK] = −k28af [PKC •DAG • Ca2+][GRK] + k28ar[PKC •DAG • Ca2+ •GRK]

d[PKC •DAG • Ca2+ •GRK] = −k28ar[PKC •DAG • Ca2+ •GRK] + k28af [PKC •DAG • Ca2+][GRK]

−k28bf [PKC •DAG • Ca2+ •GRK]

d[DAGd] = +k49f [DAG]
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d[IP3Ka] = 0

d[IP4] = +Vqssk50
[IP3Ka][IP3]

Kqssk50+[IP3]
−Vmaxk54

[IP4]
Kmk54+[IP4]

d[IP5] = +Vmaxk54
[IP4]

Kmk54+[IP4]
− k55f [IP5]

Table A.1: Model Equations
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A.2 Model Parameters

Constant Prior MAP Unit Description

k108f* 1.628 13.20 µM−1 s−1 UDP + p2yr → UDPC

k108r* 0.165 3.62 s−1 UDP + p2yr ← UDPC

k101f* 12.14 92.41 µM−1 s−1 c5a + c5aR → c5aC

k101r* 0.0378 0.376 s−1 c5a + c5aR ← c5aC

k102af 591.5 591.5 µM−1s−1 GRKp-Gβγ + c5aC → GRKp-Gβγ-c5aC

k102ar 12.37 12.37 s−1 GRKp-Gβγ + c5aC ← GRKp-Gβγ-c5aC

k102bf* 123.3 199.3 s−1 GRKp-Gβγ-c5aC → GRKp-Gβγ + c5aCp

k104f 0.0001 0.0001 s−1 c5aCp → c5aR + c5a

k105f* 0.0946 0.0129 µM−1 s−1 c5aC + Gβγ-Gαi-GDP → c5aC + Gβγ + Gαi-GTP

k106f 0.022 0.022 s−1 Gαi-GTP → Gαi-GDP

k109f* 0.269 0.137 µM−1 s−1 UDPC + Gβγ-Gαq-GDP → UDPC + Gβγ + Gαq-GTP

k110f 0.022 0.022 s−1 Gαq-GTP → Gαq-GDP

k11f 7000 7000 µM−1 s−1 Gαi-GDP + Gβγ → Gβγ-Gαi-GDP

k113f 7000 7000 µM−1 s−1 Gαq-GDP + Gβγ → Gβγ-Gαq-GDP

k9af 100 100 µM−1 s−1 RGSa + Gαi-GTP → RGSa-Gαi-GTP

k9ar 0.1 0.1 s−1 RGSa + Gαi-GTP ← RGSa-Gαi-GTP

k9bf 100 100 s−1 RGSa-Gαi-GTP → RGSa + Gαi-GDP

k111af 100 100 µM−1 s−1 RGSa + Gαq-GTP → RGSa-Gαq-GTP

k111ar 0.1 0.1 s−1 RGSa + Gαq-GTP ← RGSa-Gαq-GTP

k111bf 100 100 s−1 RGSa-Gαq-GTP → RGSa + Gαq-GDP

k12f 20 20 µM−1 s−1 PLCβ4 + Ca → PLCβ4-Ca2+

k12r 8 8 s−1 PLCβ4 + Ca2+ ← PLCβ4-Ca2+

k13f 62.55 62.55 µM−1 s−1 PLCβ4-Ca2+ + Gαq-GTP → PLCβ4-Ca2+-Gαq-GTP

k13r 10.63 10.63 s−1 PLCβ4-Ca2+ + Gαq-GTP ← PLCβ4-Ca2+-Gαq-GTP

k15af* 100 1238.7 µM−1 s−1 PLCβ4-Ca2+-Gαq-GTP + PIP2 →

PLCβ4-Ca2+-Gαq-GTP-PIP2

k15ar 1 1 s−1 PLCβ4-Ca2+-Gαq-GTP + PIP2 ←

PLCβ4-Ca2+-Gαq-GTP-PIP2
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Constant Prior MAP Unit Description

k15bf* 3 22.85 s−1 PLCβ4-Ca2+-Gαq-GTP-PIP2 →

PLCβ4-Ca2+ + Gαq-GDP + IP3 + DAG

k16f 20 20 µM−1 s−1 PLCβ3 + Ca2+ → PLCβ3-Ca2+

k16r 8 8 s−1 PLCβ3 + Ca2+ ← PLCβ3-Ca2+

k17f 50 50 µM−1 s−1 PLCβ3-Ca2+ + Gαq-GTP → PLCβ3-Ca2+-Gαq-GTP

k17r 0.1 0.1 s−1 PLCβ3-Ca2+ + Gαq-GTP ← PLCβ3-Ca2+-Gαq-GTP

k19af* 100 70.88 µM−1 s−1 PLCβ3-Ca2+-Gαq-GTP + PIP2 →

PLCβ3-Ca2+-Gαq-GTP-PIP2

k19ar 1 1 s−1 PLCβ3-Ca2+-Gαq-GTP + PIP2 ←

PLCβ3-Ca2+-Gαq-GTP-PIP2

k19bf* 3 27.90 s−1 PLCβ3-Ca2+-Gαq-GTP-PIP2 →

PLCβ3-Ca2+ + Gαq-GDP + IP3 + DAG

k20f 8.35 8.35 µM−1 s−1 Gβγ + PLCβ3-Ca2+ → PLCβ3-Ca2+-Gβγ

k20r 0.388 0.388 s−1 Gβγ + PLCβ3-Ca2+ ← PLCβ3-Ca2+-Gβγ

k21af* 80 165.83 µM−1 s−1 PLCβ3-Ca2+-Gβγ + PIP2 → PLCβ3-Ca2+-Gβγ-PIP2

k21ar 8 8 s−1 PLCβ3-Ca2+-Gβγ + PIP2 ← PLCβ3-Ca2+-Gβγ-PIP2

k21bf* 1 0.931 s−1 PLCβ3-Ca2+-Gβγ-PIP2 →

PLCβ3-Ca2+-Gβγ + IP3 + DAG

k24af* 10 5.42 µM−1 s−1 PKC-DAG-Ca2+ + PLCβ4-Ca2+ →

PKC-DAG-Ca2+-PLCβ4-Ca2+

k24ar 11 11 s−1 PKC-DAG-Ca2+ + PLCβ4-Ca2+ ←

PKC-DAG-Ca2+-PLCβ4-Ca2+

k24bf* 1 0.93 s−1 PKC-DAG-Ca2+-PLCβ4-Ca2+ →

PKC-DAG-Ca2+ + PLCβ4-Ca2+ p

k25af* 110 830.44 µM−1 s−1 PKC-DAG-Ca2+ + PLCβ3-Ca2+ →

PKC-DAG-Ca2+-PLCβ3-Ca2+

k25ar 11 11 s−1 PKC-DAG-Ca2+ + PLCβ3-Ca2+ ←

PKC-DAG-Ca2+-PLCβ3-Ca2+

k25bf* 1 11.69 s−1 PKC-DAG-Ca2+-PLCβ3-Ca2+ →

PKC-DAG-Ca2+ + PLCβ3-Ca2+ p

k115f 0.12 0.12 s−1 PLCβ4-Ca2+ p → PLCβ4-Ca2+
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Constant Prior MAP Unit Description

k117f 0.12 0.12 s−1 PLCβ3-Ca2+ p → PLCβ3-Ca2+

k1f 177.47 177.47 µM−1 s−1 IP3R + IP3 → IP3R-IP3

k1r 2.2 2.2 s−1 IP3R + IP3 ← IP3R-IP3

k2f 0.411 0.411 µM−1 s−1 IP3R-IP3 + Ca2+ → IP3R-IP3-Ca2+

k2r 0.0434 0.0434 s−1 IP3R-IP3 + Ca2+ ← IP3R-IP3-Ca2+

k3f 0.9 0.9 µM−1 s−1 IP3R + Ca2+ → IP3R-Ca2+

k3r 0.806 0.806 s−1 IP3R + Ca2+ ← IP3R-Ca2+

k4f 20 20 µM−1 s−1 IP3R-Ca2+ + IP3 → IP3R-IP3-Ca2+

k4r 0.029 0.029 s−1 IP3R-Ca2+ + IP3 ← IP3R-IP3-Ca2+ (thermcycle)

k6f 10 10 µM−1 s−1 Ca2+ + Buf → CaBuf

k6r 7 7 s−1 Ca2+ + Buf ← CaBuf

k33f 100 100 µM−1 s−1 PKC + DAG → PKC-DAG

k33r 0.05 0.05 s−1 PKC + DAG ← PKC-DAG

k34f 10 10 µM−1 s−1 PKC-DAG + Ca2+ → PKC-DAG-Ca2+

k34r 6 6 s−1 PKC-DAG + Ca2+ ← PKC-DAG-Ca2+ (thermcycle)

k35f 0.01 0.01 µM−1 s−1 PKC + Ca2+ → PKC-Ca2+

k35r 0.01 0.01 s−1 PKC + Ca2+ ← PKC-Ca2+

k36f 1000 1000 µM−1 s−1 PKC-Ca2+ + DAG → PKC-DAG-Ca2+

k36r 0.0001 0.0001 s−1 PKC-Ca2+ + DAG ← PKC-DAG-Ca2+

k37f* 1 4.98 µM−1 s−1 GRKp + Gβγ → GRKp-Gβγ

k37r 0.05 0.05 s−1 GRKp + Gβγ ← GRKp-Gβγ

k28af* 158.49 77.52 µM−1 s−1 PKC-DAG-Ca2+ + GRK → PKC-DAG-Ca2+-GRK

k28ar 10 10 s−1 PKC-DAG-Ca2+ + GRK ← PKC-DAG-Ca2+-GRK

k28bf* 10 18.35 s−1 PKC-DAG-Ca2+-GRK → PKC-DAG-Ca2+ + GRKp

k49f 0.35 0.35 s−1 DAG → DAG-d

Vqssk50 13.9 13.9 s−1 IP3 + IP3K-a → IP4 + IP3K-a (Vmax)

Kqssk50 0.0557 0.0557 µM IP3 + IP3K-a → IP4 + IP3K-a (Km)

Vmaxk54 100 100 µMs−1 IP4 → IP5

Kmk54 1.4 1.4 µM IP4 → IP5

k55f 0.008 0.008 s−1 IP5 → PIP2

c2 0.185 0.185 none ratio of ER volume/cell: de young
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Constant Prior MAP Unit Description

v1 1× 108 1× 108 s−1 Ca2+ channel flux constant

v8 0.15 0.15 s−1 leak flux constant

v4 20 20 µMs−1 maximum Ca2+ uptake rate

k4 0.65 0.65 µM activation constant of pump

a1 0.0055 0.0055 s−1 Ca2+ leak into the cell from outside

Kex 0.25 0.25 µM Na/Ca2+ exchange activation const

Vex 0.023 0.023 µMs−1 maximum Ca2+ exchange rate

Table A.2: Model Parameters
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A.3 Initial State Values

Name Initial Value (µM) Molecules Description

C5aR 5.00E-02 30100 C5a receptor concentration

p2yr 1.00E-01 60200 P2YX receptor concentration

Gβγ 7.14E+00 430000 Gbg concentration

Gαi GDP 6.64E+00 4000000 Gai concentration

Gαq GDP 4.98E-01 30000 Gaq concentration

PLCβ3 1.16E-01 70000 PLCb3 concentration

PLCβ4 6.64E-02 40000 PLCb4 concentration

PIP2 5.00E-01 301000 Phosphoinositol (1,4,5) phosphate

IP3 1.80E-03 1084 Free IP3 concentration

DAG 1.00E-03 602 Free DAG concentration

IP3R 2.08E-02 12492 IP3 receptor concentration

IP3R-IP3 1.75E-03 1054

IP3R-IP3-Ca 2.30E-03 1385

IP3R-Ca 2.00E-04 120

Ca2+ 7.86E-02 47317 Cytosolic Calcium concentration

Ca2+
ER 1.04E+01 6231302 IP3 sensitive stored calcium concentration

PKC 2.49E-02 15000 Protein Kinase C

GRK 2.31E-02 13880 GRK concentration

RGSa 2.31E-02 13880 Regulator of G protein Signaling

Buf 4.50E-01 270599

Ca2+-Buf 5.05E-02 30401

IP3Ka 1.66E-03 1000

IP4 1.00E-01 60200

IP5 1.00E-01 60200

Table A.3: Initial State Values
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Appendix B

Supplementary Simulations

B.1 Toxin Response

B.1.1 Pertussis Toxin

B.1.2 U-73122 Toxin

B.1.3 Calphostin-C Toxin
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Figure B.1: These simulations show the effect of pretreatment with pertussis toxin on
wild-type and knockdown cell lines in the model when stimulated by 250nM C5a.
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Figure B.2: These simulations show the effect of pretreatment with pertussis toxin on
wild-type and knockdown cell lines in the model when stimulated by 25µM UDP.
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Figure B.3: These simulations show the effect of pretreatment with U-73122 toxin on
wild-type and knockdown cell lines in the model when stimulated by 250nM C5a.
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Figure B.4: These simulations show the effect of pretreatment with U-73122 toxin on
wild-type and knockdown cell lines in the model when stimulated by 25µM UDP.
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Figure B.5: These simulations show the effect of pretreatment with Calphostin-C toxin on
wild-type and knockdown cell lines in the model when stimulated by 250nM C5a.
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Figure B.6: These simulations show the effect of pretreatment with Calphostin-C toxin on
wild-type and knockdown cell lines in the model when stimulated by 25µM UDP.
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