
Data-Centric Scientific Workflow Management
Systems

David T Liu

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-83

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-83.html

June 15, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Data-Centric Scientific Workflow Management Systems

by

David T. Liu

B.S. (University of California, Los Angeles) 2000
M.S. (University of California, Berkeley) 2004

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Dr. Michael J. Franklin, Chair
Dr. Katherine Yelick
Dr. Geoffrey Marcy

Spring 2007

iii

The dissertation of David T. Liu is approved.

Chair Date

Date

Date

University of California, Berkeley

Spring 2007

Data-Centric Scientific Workflow Management Systems

Copyright c© 2007

by

David T. Liu

Abstract

Data-Centric Scientific Workflow Management Systems

by

David T. Liu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Dr. Michael J. Franklin, Chair

Recent trends in science and technology augur a rapid increase in the number

of computations being employed by scientists. Accompanying increased volumes

are growing expectations for the tools that scientists use to handle their compu-

tations. These increased volumes and expectations present a new set of prob-

lems and opportunities in computation management. In this thesis, I propose

Data Centric Scientific Workflow Management Systems (DSWMSs) to address

these issues. DSWMSs supersede current approaches by leveraging a deeper un-

derstanding of the data manipulated by computations to provide new features

and improve usability and performance. Examples of such features include data

provenance, work sharing, and interactive computational steering.

In this thesis, I make several contributions towards realizing the concept of

a DSWMS. First, in conjunction with scientists from several scientific domains,

1

I propose a set of services that are not provided by current paradigms, but are

made possible in DSWMSs. Second, I define an abstract model, the Functional

Data Model with Relational Covers (FDM/RC), for representing scientific work-

loads and a language for defining and manipulating instances (schemas) of the

model. Third, I design and implement GridDB, a prototype DSWMS. GridDB is

deployed on a large cluster at Lawrence Livermore National Laboratories where

it runs science applications at real-world scales. The deployment uncovers a pair

of technical problems involving the provisioning of data provenance and memo-

ization (computational caching) so I also contribute solutions to these problems.

Dr. Michael J. Franklin
Dissertation Committee Chair

2

i

Contents

Contents ii

List of Figures v

List of Tables ix

Acknowledgements x

1 Introduction 1

1.1 The Need for Computation Management 3

1.2 Example: Astrophysics Image Processing 4

1.3 From Process-Centric to Data-Centric 6

1.4 Contributions . 15

1.5 Roadmap . 16

2 Background 18

2.1 The Scientific “Knowledge Supply Chain” 18

2.2 Technological Trends . 24

2.3 Workflows . 33

2.4 Chapter Summary . 38

3 GridDB: A Prototype DSWMS 39

ii

3.1 High-Energy Physics Example . 40

3.2 Job Processing With GridDB . 43

3.3 Data Model: FDM/RC . 49

3.4 GridDB Design . 59

3.5 ClustFind: A Complex Example 65

3.6 Performance Enhancements . 69

3.7 Validation . 71

3.8 Related Work . 75

3.9 Chapter Summary . 79

4 GridDB in a Realistic Environment 81

4.1 Deployment Environment and Application 82

4.2 Coarse-Grained Model Execution 88

4.3 Fine-Grained Model Execution . 100

4.4 Chapter Summary . 104

5 Data-Preservation 105

5.1 Introduction . 106

5.2 System Model . 109

5.3 Efficient File Transmission Using Hints 114

5.4 Evaluation of the Hinting Mechanism 125

5.5 DSWMS Parallelization . 135

5.6 Chapter Summary . 141

6 Flexible Memoization 143

6.1 Background and Motivation . 144

6.2 Mechanisms for Tunable Memoization 149

6.3 Performance Studies . 159

6.4 Related Work . 171

6.5 Chapter Summary and Future Work 172

iii

7 Concluding Remarks 174

Bibliography 176

A GridDB Language Specification 191

A.1 GridDB Declarative Language Grammar 193

iv

List of Figures

1.1 Example workflow. 4

1.2 The Role of a Data-Centric Scientific Workflow Management Sys-
tem (DSWMS) in High Performance Computing. GridDB is a
prototype DSWMS. 9

1.3 A function for the workflow of Figure 1.1. Specified during the
workflow definition phase. 10

2.1 Computation is infiltrating every stage of the Scientific “Knowl-
edge Supply Chain.” . 19

2.2 Exponential growth in computing power has been sustained over 6
decades, most recently by cluster computers. BlueGene/L, ASCI
White and ASCI Red are all cluster computers. From (1). 25

2.3 (a) An abstract workflow for the image processing workflow of
Chapter 1 (b) A concrete workflow created by instantiating the
abstract workflow of (a) with input set (X1, a1, c1, d1). 35

2.4 Workflows that exhibit fan-out and fan-in. (a) an abstract work-
flow. (b) a concrete workflow. 37

3.1 (a) HepEx abstract workflow (b) HepEx grid job. 41

3.2 Roles in Workflow Execution. 42

3.3 Example of Computational Steering. 44

3.4 GridDB’s simCompareMap corresponds to the process-centric
workflows of Figures 3.1(a) and 3.1(b) 47

3.5 Unfold/Fold in atomic functions 58

v

3.6 GridDB’s Architecture . 60

3.7 Internal data structures representing HepEx functions, entities,
and processes. Shaded fields are system-managed. Dashed ar-
rows indicate interesting tuples in our discussion of Computational
Steering (Sec. 3.6.1) . 62

3.8 autoview(gRn, fRn) . 65

3.9 (a) ClustFind divides sky objects into a square mesh of buckets
(b) getCores, the body of the top-level ClustFind map function.
(c) getCands, a composite subfunction used in getCores. 67

3.10 Experimental setup. 73

3.11 Validation 1, Computational Steering for HepEx. 74

3.12 Validation 2, Memoization in ClustFind 76

4.1 Deployment Scenario. 84

4.2 Coarse-grained SuperMACHO Image Processing Workflow 86

4.3 Fine-grained workflow. A refinement of MSC. 87

4.4 Linking Schemes in the previous and current implementation. . . 89

4.5 Run 1: Coarse-Grained Workflow with Deep Linking (128 compute
nodes) . 95

4.6 Examples of (a) Deep Linking and (b) Selective Deep Linking . . 97

4.7 Run 2: Coarse-Grained Workflow with Selective Deep Linking (256
nodes) . 99

4.8 Fine-grained model characteristics. 102

4.9 Run 3: Fine-Grained Model with Selective Deep Linking 103

5.1 Software components involved in cluster-based workflow execution,
as well as their mapping onto nodes. 110

5.2 (a) A two-process workflow and (b) it’s translation to a GridDB
augmented workflow during execution. 111

5.3 (a) Hints on an inter-program workspace represented. The hints
divide the workspace into regions, each associated with an access
mode. (b) The code for specifying the hints of (a). 117

vi

5.4 (a) The RESOLVE procedure used during Resolution. (b) The
GETTMODE subroutine used by RESOLVE to determine a node’s
transmission mode. 120

5.5 Resolution determines whether and how each node is transmit-
ted. The lower-case letter on the right of each node represents the
transmission mode: ”o” if the node’s transmission is omitted, ”l”
if it is transmitted by a link, and ”c” if it is transmitted by copying.122

5.6 The TRANSMIT procedure used during Transmission. 123

5.7 The transmission of a workspace from producer to consumer. . . . 124

5.8 Three models for transmitting the workspace between the wc and
fn programs. From (a) to (c), they are at increasingly finer levels of
granularity. Absolute values denote the cardinality of a collection
of trees. 127

5.9 (a) Number of files, directories and bytes copied and links created
to transmit the inter-program workspace between two programs,
wc and fn, for three different hint models. The table also shows
the number hints required to specify the model. (b) Performance
of transmission using each model across four file systems. The fine
model achieves 2 orders of magnitude speedup over the default
model irrespective of file system. 129

5.10 Reductions in numbers of files and directories (objects) copied and
bytes reduced by transmitting with a fine-grained model (vs. the
default model). Object reduction is between 96% and 99% and
byte reduction is more than 99% in all cases. Also, the number of
links used in transmitting the snapshot using the fine-grained model.131

5.11 GridDB’s workflow execution engine consists of three event pro-
cessing stages, Unfold, Run and Fold, connected by message queues.132

5.12 GridDB’s unfold (TP U
max) and fold (TP F

max) throughput on various
file systems. Units are in unfolds/sec and folds/sec, respectively.
OvhdN is the number of seconds required to process a job of N
processes. 134

5.13 A profile of where GridDB spends its time in fold and unfold. . . 137

5.14 Parallelization experiments. Reduction in overall latency vs. num-
ber of nodes per configuration. 140

5.15 The Shared nothing configuration achieves ideal scale-up. 141

vii

6.1 Submission of job requests to a cluster. 145

6.2 Memoization logic. 146

6.3 Gantt charts showing job processing with and without memoization.147

6.4 A two dimensional space of mechanisms for trading off overhead
and recall (or DSWMS and compute-node load). 150

6.5 A matrix contrasting the performance of the three basic ap-
proaches (NEMO, LEMO and TEMO) in three environments. . . 156

6.6 A matrix contrasting the performance of EIDX and DIDX in small
and large compute pools. 158

6.7 General simulation setup of studies I and II. 160

6.8 Performance of basic approaches on a large cluster. 162

6.9 Performance of basic approaches on a medium cluster. 163

6.10 Performance of basic approaches on a small cluster. 164

6.11 Cache hit rates when processing job the second job (J2) using
DIDX (always 0) and EIDX vs. DSWMS overhead 168

6.12 Runtimes for the first job (J1) for DIDX and EIDX as DSWMS
overhead is varied. 169

6.13 Ratio of the overall runtimes of DIDX and EIDX vs. DSWMS
overhead. 170

viii

List of Tables

3.1 LOCs for a java-based GridDB prototype. 72

4.1 Comparison of Algorithms with respect to linking requirements. . 98

ix

Acknowledgements

I would like to thank my research advisor Mike Franklin for helping me finish my

thesis. Mike is an unusually charming blend of manager, sage, and buddy. In my

time under his advisorship, I have learned skills that I had struggled with all my

life: how to write clearly; how to make progress on large, amorphous problems;

and how to overcome the fear of failure. Mike often persisted that I could meet

his high standards even as I insisted that I could not. More often than not, he

was right and those episodes have boosted my confidence.

In the course of my thesis, I have had many collaborators and mentors who

have all contributed to my success. Ghaleb Abdulla, my LLNL advisor, offered

sound guidance and support during my thesis. Kathy Yelick and Geoff Marcy,

members of my thesis committee, have provided profuse encouragement and pro-

ductive advice on my dissertation. Jim Gray has been a key role model. His work

is brilliant, but his most inspirational trait is his commitment to cultivating the

next-generation of scientists.

At Berkeley, I met an incredibly talented pool of individuals who were al-

ways eager to discuss ideas, and provide feedback and support. I would like to

thank Sirish Chandrasekaran, Mark Whitney, Matt Denny, and Shawn Jeffery

who helped me regroup during various times of “thesis crisis.” I am also grate-

ful towards UC Berkeley Database Group members, including Amol Deshpande,

Boon Thau Loo, Daisy Wang, David Chu, Megan Thomas, Mehul Shah, Ryan

Huebsch, Sailesh Krishnamurthy, Sam Madden, Shariq Rizvi, Tyson Condie, and

Yanlei Diao.

x

My family showed love, patience, and understanding during my time in grad-

uate school. These include my siblings and their spouses, Connie, Don, Ted and

Helen, and my mother, Anna. Their holiday schedules were always arranged to

accommodate my deadlines and their love and support always energized me. I

would also like to thank my late father, Allen, for inspiring me to pursue a Ph.D.

To me, a doctoral thesis is a long journey of independent thinking. Though I did

not realize it at the time, my decision to pursue a doctorate was a reflection of

my father, who spent his life as an independent thinker and philosopher.

Finally, I would like to thank my life-partner, Tina, who has shared my for-

tunes in graduate school. I often joke that most of my precious twenties were

donated towards the pursuit of science. Without much consultation, I committed

her to the same cause. Her encouragement, forbearance, and unique ability to

make me laugh has sustained me through my most challenging times. Without

Tina, I could not have completed my work, and I dedicate this thesis to her.

xi

Chapter 1

Introduction

In recent years, we have witnessed a trio of trends that have tightened the

relationship between computation and science. The first trend is an embrace of

computation by the scientific community. Scientists from many disciplines —

including astrophysics, high energy physics, chemistry, proteomics, genomics and

climatology — have proclaimed computation as an indispensable tool for scien-

tific discovery. The suitability of computation for science has been buttressed by

several high profile successes; for example, the detection of hundreds of extra-

solar planets (2; 3), simulation-based predictions of global warming, (4; 5), and

grassroots efforts to find extra-terrestrial life (6) and cures for elusive diseases

(7; 8; 9).

The second trend is the proliferation of clustered computer architectures. A

cluster computer is a large computer constructed from many small processing

components connected by high-speed interconnects. Especially successful in re-

cent years is the “beowulf” or “commodity cluster,” which is constructed from

1

inexpensive, mass-market components (10). While the clustered approach has

been used in other domains (?), it has dominated the domain of scientific com-

putation. Cluster computing has many advantags. At a basic level, it drives

continued improvement in the latency and throughput of scientific supercomput-

ers. More importantly, however, cluster computers have democratized the realm

of High Performance Computing (HPC). Today, even a modest band of scientists

with a small budget has access to HPC resources.

The third trend drawing scientists closer to computation is the increased pro-

duction of large data sets in digital format. Modern data collection apparatuses,

in the form of telescopes, particle colliders, gene arrays and sensor networks, log

large volumes of data directly onto magnetic disks (11). At the same time, scien-

tists augment their already-massive data archives with considerable amounts of

simulated data. Large nquantities of computational resources are required this

scientific data.

The end-result of the three trends described — the legitimization of computa-

tion in science, the democratization of HPC and the production of large scientific

datasets — is a broad and firm symbiosis between the scientist and her comput-

ing resources. Today’s scientist relies on computing resources to sense, generate,

transform, analyze and visualize scientific data. As the price of constructing and

maintaining clusters continues to plummet, the computing capacity available to

each scientist skyrockets.

2

1.1 The Need for Computation Management

While the affinity between scientist and computer marks progress, it also

creates problems. One key ramification of this relationship is a dramatic increase

in the number of computations being executed by scientists. This increase is the

result of a multidimensional expansion: not only are more scientists employing

computation, but each scientist writes more programs, composes them in more

combinations, shares them more easily, and runs them more often.

A second ramification is increased cooperation. Digitization creates many

possibilities for people to share effort, resources and results. In many domains,

scientists have formed large-scale, multi-disciplinary collaborations with unprece-

dented complexity, scope, and longevity. Examples of current-day collaborations

include the Grid Physics Network (GriPhyN) (12), the International Virtual Data

Grid Observatory (13), the Particle Physics Data Grid (14), and the European

Union DataGrid (15). These collaborations, with their improved economies-of-

scale, are actively pursuing a new generation of capabilities to make their scien-

tists more productive, their resources more efficient, and their discoveries more

reliable.

To address an increase in computation volume and the demand for new ca-

pabilities, a new kind of infrastructure focused on computation management

is required. As I argue in the next section, the current process-centric model

that most scientists use to execute their computational jobs will be insufficient.

Rather, a new data-centric infrastructure that assigns first-class importance to

data-awareness is required.

3

align

calibrate

detectObj

Y

Z

X

W
 aParams

cParams

dParams

Figure 1.1. Example workflow.

1.2 Example: Astrophysics Image Processing

To illustrate the problems of the status quo, this section introduces an exam-

ple. The example is a set of dependent programs, or a workflow, that is used to

perform image processing in astrophysics. A workflow such as this is required,

for example, to convert telescopic images into catalogs of objects amenable to

quantitative analysis. Similar workflows are found in other domains that also

employ image processing; for example, military agencies and meteorologists may

use a similar workflow to process satellite images to track military vehicles and

weather patterns.

A graphical representation of the workflow is shown in Figure 1.1. The work-

flow consists of three programs, align, calibrate and detectObj, which are

constrained by data dependencies. calibrate requires data created by align

and detectObj requires data created by calibrate. Collectively, the three pro-

grams convert images to structured data (performed by detectObj) after making

4

various adjustments to a picture’s coordinates (performed by align) and color

(performed by calibrate). Each of the programs takes a set of files (denoted by

circles) and command-line parameters (denoted by hexagons) as input and cre-

ates a set of files as output. The input and output files are located in a scratch

directory that is passed to the program. An astronomer’s typical job request will

execute the workflow on thousands of telescopic images. Each image may also be

processed a few times using different parameters for each workflow program. Since

there can be many images, with many different processing parameters and the

programs can be long-running, it is not uncommon for jobs to require thousands

of CPU hours. As such, jobs are typically executed on a cluster to exploit data

parallelism. Individual processes are often also parallelized across multiple nodes

using parallel programming (e.g., MPI or UPC) if they are too long-running.

In the current state-of-the-art, scientists express their computation jobs using

a process-centric approach, where a script (e.g. in perl) constructs command-

line strings that invoke the processes that make up the job. These command-

lines are submitted to a process-centric middleware system that then dispatches

the process onto a cluster node (or set of nodes in parallel computations) for

execution. Archetypal examples of such middleware include Condor (16) and

Globus(17). The process-submission interface in these systems is identical to

that provided by the unix operating system and therefore has a low learning

barrier.

An example script for the workflow of Figure 1.1 is provided in Listing 1.1.

Execution of the program align is carried out in lines 10-17 while the execution of

the programs calibrate and detectObj are carried out in lines 23-28 and 34-38,

5

respectively. Barriers at lines 20 and 31 ensure that instances of a program do not

execute prior to the completion of all executions of a program that provides input

data. For pedagogical purposes, the script shown only executes the workflow on

two images and the parameters to each program are not varied. In reality, these

scripts are usually more complicated.

1.3 From Process-Centric to Data-Centric

The fundamental shortcoming of the process-centric model is that the mid-

dleware used by scientists is not cognizant of the data read or written by the

processes that it executes. In this model, processes are specified by encoding

a program and its arguments in a string. The middleware extracts a program

name from the string (by convention, the first token in the string), instantiates a

process based on the program, and passes on the rest of the string to the process.

Since the string is not accompanied by metadata, the middleware does not have

the means to parse or understand it. Additionally, programs read and write files

to the file system. The locations of these files are unknown to and therefore not

recognized by the middleware.

Line 14 of Listing 1.1 contains an example of the process centric interface. In

it, the script calls the dispatch procedure, and passes it a string with the program

name and arguments. After receiving the string, the middleware system will

extract the program name align from it, but will not attempt to parse the rest

of the string, which includes runtime parameters (${aParm} and ${i}) and a path

to a working directory (${IMGS DIR}). By ignoring the data used and created by

6

1 #!/ usr /bin/perl

2

3 my $IMGS_DIR = "/ imgs ";

4 my $NUM_IMGS = 2;

5

6 # integrate modifications from [24]

7 my(@alignDoneFlags , @calibrateDoneFlags);

8

9 # execute the align program over all images

10 for (my$i =1; $i<$NUM_IMGS ; $i++) {

11 foreach my $aParm (" loose "){

12 # executes an align process on a cluster node and returns a flag variable

13 # that is set upon completion

14 my $doneFlag = dispatch (" align -param ${aParm } -workDir ${IMGS_DIR } -imgNum ${

i}") ;

15 push($doneFlag ,@alignDoneFlags);

16 }

17 }

18

19 # wait for all executions of align to complete

20 barrier (@alignDoneFlags);

21

22 # execute the calibrate program over all images

23 for (my$i =1; $i<$NUM_IMGS ; $i++) {

24 foreach my $cParm (" violet "){

25 my $doneFlag = dispatch (" calibrate -param ${cParm } - workDir ${IMGS_DIR } -

imgNum ${i}") ;

26 push($doneFlag , @calibrateDoneFlags);

27 }

28 }

29

30 # wait for all executions of calibrate to complete

31 barrier (@calibrateDoneFlags);

32

33 # execute the detectObj program over all images

34 for (my$i =1; $i<$NUM_IMGS ; $i++) {

35 foreach my $dParm ("flat "){

36 dispatch (" detectObj -param ${dParm } - workDir ${IMGS_DIR } - imgNum ${i}") ;

37 }

38 }

Listing 1.1. Perl script for the image processing workflow of Figure 1.1 over 2
images.

7

processes, process-centric middleware is severely limited in its potential. Before

enumerating these limitations, I introduce the alternative proposed in this thesis.

A Data-Centric Scientific Workflow Management System (DSWMS), like a

process-centric middleware system, mediates access to cluster resources. Unlike

process-centric middleware, however, the DSWMS possesses an awareness of the

data manipulated by processes. This awareness applies to data that is imported

into the system, as well as data created by programs that are executed by the

DSWMS. The awareness provides extra information on the location and structure

of data, which enables the DSWMS to provide features that are otherwise difficult

or impossible to provide in process-centric middleware. Examples of such features

are data provenance, work-sharing, and type-checking. Later in the section, I will

describe these features in detail. First, however, I will describe the environmental

context surrounding a DSWMS.

Figure 1.2 illustrates a DSWMS within its operating environment. A DSWMS

provides a veneer, or overlay, on top of existing process-centric middleware. The

programming model of a DSWMS is partitioned into two phases (which I term a

2-phase programming model). The first phase is workflow definition, where a user

provides information that empowers a DSWMS with data-centricity. This infor-

mation includes descriptions of program command-line formats and knowledge

that helps the DSWMS identify file system data created and used by programs.

Workflow definition produces functions, which are similar to programs in that

they transform data, but different in that their interfaces are explicitly described.

Functions can also be composed together to create composite functions, which

correspond to workflows.

8

process-centric middleware

High Performance Computing Resources

Internet
clusters

data-centric interface

(i.e. function evaluations)

Data Centric Scientific Workflow

Management System (e.g. GridDB)

Process submission interface

(i.e. command-line strings)

process-centric

client

data-centric client

clusters

Figure 1.2. The Role of a Data-Centric Scientific Workflow Management System
(DSWMS) in High Performance Computing. GridDB is a prototype DSWMS.

After the workflow definition phase, a user engages in the workflow execution

phase, where previously defined functions are evaluated. Workflow execution can

be carried out by a different user, resulting in an efficient division-of-labor. Work-

flow execution is expressed in a notation that explicitly distinguishes data from

program, allowing the DSWMS to catalog the evaluation’s input data. Evalua-

tions are translated into processes, which are executed on clusters managed by

process-centric middleware. Each process is executed in a sandboxed space in the

file system, allowing the DSWMS to distill and identify output files created by

the process. As such, the DSWMS is able to associate each function evaluation

with its input and output data.

To illustrate the data-centric interface and explain its advantages, we compare

the data-centric programming model with the process-centric programming model

9

i

m

g

P

r

o

c

align

calibrate

detectObj

Y

Z

X

W
 aParams
 cParams
 dParams

function imgProc: (W, aParams, cParams, dParams)
 (Z)

Figure 1.3. A function for the workflow of Figure 1.1. Specified during the
workflow definition phase.

using the example of Listing 1.1. Figure 1.3 illustrates a composite function

defined during workflow definition. The function imgProc transforms a 4-tuple

of data (W, aParams, cParams, dParams) into a singleton (Z) data item. Users

of the function are abstracted away from the internal functions (which correspond

to the image processing programs) and dataflow connections that implement the

function.

To execute workflows, a scientist simply submits the function evaluations of

Listing 1.2. With this notation, the DSWMS can easily parse out the function

(i.e., imgProc) and data (i.e., (‘img1’, ‘loose’, ‘blue’, ‘flat’) and (‘img2’,

‘loose’, ‘blue’, ‘flat’)). Each of the two function evaluations are translated

into three processes, resulting in a total of six processes identical to those created

10

1 compute imgProc (‘img1 ’, ‘loose ’, ‘blue ’, ‘flat ’);

2 compute imgProc (‘img2 ’, ‘loose ’, ‘blue ’, ‘flat ’);

Listing 1.2. GridDB workflow execution statements for executing the job
represented in Listing 1.1

by the script of Listing 1.1. The DSWMS provides users with an interface that is

much more compact (compare Listing 1.2 with Listing 1.1). More importantly,

however, the DSWMS is also able to provide a number of features that are difficult

or impossible when using the process-centric approach. These include:

• Data Provenance: The provenance, or lineage, of a data item is the his-

tory of its existence and evolution. Though other definitions are reasonable,

we define a datum’s provenance as the program that created the data, the

input data used by that program, and recursively, the provenance of the

input data. As a base-case, some data is imported into the system and not

created by a program. Data provenance is becoming increasingly impor-

tant as more scientists collaborate by using data that they themselves did

not generate. In such cases, a scientist must be able to peruse a datum’s

provenance in order to understand its meaning or evaluate its reliability.

Lacking data-awareness, process-centric middleware cannot properly cata-

log provenance or make it available for perusal.

• Interactive Monitoring and Steering: Scientific computation jobs are

often long-running, requiring days or weeks. The ability to interactively

monitor and steer these jobs can unveil important data faster (18), reduc-

ing the time to create meaningful results. A DSWMS provides users with

11

facilities to monitor partial results as they complete and prioritize other

partial results in the job.

• Modularity: The ability to create and reuse modular components will

be key to building and managing the complex software of future science.

By clearly separating workflow definition from evaluation, the 2-phase ap-

proach stipulates the creation of modules that can be reused in future work-

flow compositions. Because the modules’ interfaces are clearly described,

they can also be cataloged and queried. In contrast, the process-centric

approach intermingles composition with execution, complicating efforts to

reuse job specification scripts.

• Type Checking: Type-checking is an established technique for detecting

errors quickly. Equipped with an awareness of data, the DSWMS can iden-

tify bugs both during workflow definition (i.e. if two incompatible programs

are composed together) and execution (i.e. if a workflow is executed with

improper arguments). This is especially important because jobs are long-

running and can fail long after they have started but well before they have

completed, leading to frustration and a loss of productivity.

• Work Sharing: As computation volumes and user populations increase,

the ability to share redundant work amongst users becomes crucial. Luck-

ily, with increased standardization of scientific programs in collaborations,

such sharing opportunities will become increasingly common. By exploit-

ing data-awareness, the DSWMS is able to encode computations in a rep-

resentation that allows equivalence testing. When two computations are

12

equivalent, the work performed to satisfy one may also be used to satisfy

the other. Such overlapping computations may occur both in concurrent

and non-concurrent jobs (where result caching is used). This thesis gives

careful consideration to the latter case, also known as memoization, where

function evaluation results are cached so that future evaluation requests

may reuse them.

As stated earlier, a DSWMS derives its power from data-awareness, which is

provided by the 2-phase programming model. The 2-phase programming model

emulates traditional Database Management Systems (DBMSs), where users first

specify data schemas in a Data Definition Language (DDL) before issuing queries

in a Data Manipulation Language (DML). The schemas are put to good use, as

DBMSs can then provide a declarative interface, offer transactional semantics,

handle concurrency, perform error checking, and automatically optimize for per-

formance. Commercial DBMSs based on the 2-phase programming model have

been wildly successful, driving a multi-billion dollar industry. This thesis seeks

to apply the same model to the domain of computation management.

The 2-phase programming model is somewhat controversial in the scientific

computing domain because it has been rejected by scientists in the past (19). One

may anticipate that scientists would be reluctant to relinquish the lighter-weight

1-phase programming model represented by the process-centric approach. To

encourage adoption then, we incorporate three important evolutionary features

into our approach. First, the proposal integrates a ”pay-as-you-go” approach to

the definition phase. Rather then forcing modeling of all workflow and data to be

done at the finest granularity, the system supports coarse-grained schemas that

13

incur less human (and system) overhead at the cost of providing fewer features.

The features made available by coarse-grained models are made clear to users,

who can subsequently refine schemas to incrementally procure more benefits as

the need becomes apparent.

Second, our approach accommodates the use of legacy science codes. Sci-

entists have made considerable investment in legacy codes and our evolution-

ary approach encourages these assets to be leveraged within the new paradigm.

Perhaps more importantly, users can write new science codes in the same pro-

gramming models that they have written their legacy codes in. By co-opting

the programming models of the process-centric interface, we also inherit their

benefits.

Finally, we have gone to great lengths to ensure that our DSWMS system can

work on existing platforms. Infrastructural investments in operating systems, file

systems and batch schedulers are massive and platform standards are slow to

evolve. As a result, it is essential that our new paradigm coexists with existing

infrastructure. As an example, Chapter 5 shows an instance where we encounter

a deficiency in current file systems, but nevertheless propose an evolutionary

solution that works well with current file systems rather than relying on the

adoption of new ones.

In summary, while a 2-phase programming model is likely to encounter resis-

tance on the part of some scientists, our approach minimizes adoption costs by

supporting a pay-as-you-go migration path, accommodating legacy science codes

and programming models and ensuring efficient operation on currently deployed

software infrastructures.

14

1.4 Contributions

In this thesis, I make the following contributions:

• I propose the concept of a Data-Centric Scientific Workflow Management

System (DSWMS). My proposal includes a Data Definition Language

(DDL) and Data Manipulation Language(DML) for defining schemas and

interacting with the DWSMS in a declarative manner. I also propose a host

of DSWMS services that automate scientists’ tasks, provide new features,

and increase the efficiency of resource usage. My proposal has been devel-

oped jointly with partners in the scientific community and is the result of

iterative design.

• I make a pair of architectural contributions. First, I design a modular

software architecture for a DSWMS. The architecture integrates seamlessly

with incumbent software platforms (operating systems, file systems, batch

schedulers and databases) and scientific software packages. Second, I inte-

grate the DSWMS within various computing environments.

• To test my ideas, I implement a java-based prototype called GridDB. Fur-

thermore, I evaluate GridDB in a production environment at a world-class

supercomputing facility (Lawrence Livermore National Labs) featuring a

cluster with more than 1000 nodes. During this evaluation, I execute real

workloads drawn from the fields of high-energy physics, astrophysics and

biochemistry. The exercise reveals hidden challenges in efficiently imple-

menting two important services, data provenance and memoization.

15

• One problem that I encounter involves preserving data during workflow exe-

cution. Preservation of file system data is a prerequisite for data provenance

and memoization. Unfortunately, there is an intricate trade-off between

correctness and scalability with existing HPC file systems. Here, I shape a

solution that achieves scalability and correctness on current platforms by

employing a combination of user-hints and parallelization.

• A further problem that I encounter involves the provisioning of memoiza-

tion. I show that when one takes into account the overhead of indexing and

retrieval, memoization can result in a net performance loss in middleware-

scarce (the DSWMS is the middleware in this case) environments. In other

environments (i.e., middleware-rich), memoization may achieve a significant

performance improvement. I provide a solution that trades off the benefits

of memoization against its overheads in an incremental manner, achieving

superior performance across a wide range of environmental settings.

• Finally, I identify issues that have not been addressed by this thesis or

other research and suggest future directions to improve our understanding

of computation management.

1.5 Roadmap

The remainder of this thesis is organized as follows. Chapter 2 provides back-

ground information on how scientists currently carry out scientific processing as

well as how related systems and frameworks support scientific processing. The

16

main contributions described above are contained in Chapters 3 through 6. Chap-

ter 3 proposes the concept of a DSWMS, and describes the design and implemen-

tation of GridDB, our DSWMS prototype. Chapter 4 describes the deployment

of GridDB at Lawrence Livermore National Laboratories. Chapter 5 presents a

comprehensive solution for Data Preservation, a building block required for data

provenance and memoization. Chapter 6 addresses the issue of middleware over-

head when providing memoization. Finally, Chapter 7 offers closing remarks and

directions for future research.

17

Chapter 2

Background

This chapter presents background information that is pertinent to this the-

sis. The first section introduces a high-level model of the scientific knowledge

discovery process and argues that it is being transformed by computation. The

next section surveys recent trends in technology that are driving adoption by

scientists. The third section provides an overview of the workflow, which is an

important concept in computation management. I defer discussions of work re-

lated to specific techniques proposed in this thesis to subsequent chapters, where

they are juxtaposed against individual contributions.

2.1 The Scientific “Knowledge Supply Chain”

We start by describing the Knowledge Supply Chain (KSC), a high-level pro-

cess model for the creation and dissemination of scientific knowledge. The KSC

is illustrated in Figure 2.1 and consists of four stages:

18

Generation
 Reduction
 Analysis
 Dissemination

Knowledge Supply Chain

·
 ·

Figure 2.1. Computation is infiltrating every stage of the Scientific “Knowledge
Supply Chain.”

1. Generation: where data is collected or created.

2. Reduction: where data is transformed from low-level measurements into

higher-level, real-world object representations.

3. Analysis: where data is perused, mined, and visualized to extract mean-

ingful facts and validate hypotheses.

4. Dissemination: where conclusions and data are communicated across the

scientific community.

The linear representation shown in Figure 2.1 is an approximation. In actu-

ality, there is feedback amongst the stages. Separating the activities into these

four stages, however, is useful for analyzing the involved in knowledge-discovery.

Along these lines, we will now use the KSC to support the claim that scientists

have incorporated computer technology into every stage of knowledge discovery.

19

2.1.1 Generation

In the generation stage, scientists have adopted computation for two pur-

poses. First, there is widespread use of computer simulation as a means for

collecting experimental data. Simulations allow scientists to “act out” a phe-

nomenon virtually rather than recreate the physical conditions of its occurrence.

Simulations offer many advantages over traditional experiments. They enable a

faster, cheaper, safer and/or a safer vehicle for data collection. In some cases,

simulation has expanded the scope of collectable data. For example, simulations

of the global climate or galaxy or in the design of drugs, proteins, semiconduc-

tors, airplanes, and nuclear weapons all exhibit more than one of the mentioned

benefits. Simulations in fields such as these have increased both in number and

detail, resulting in an explosion in simulated data volumes.

There has also been a shift towards electronic data collection in traditional

experiments. Today, scientific apparatuses from many domains stream their data

directly onto digital storage devices. These devices include DNA arrays, particle

colliders, telescopes, and environmental sensor networks. Some apparatuses cre-

ate terabytes to petabytes of data per year. For example, the LSST telescope,

which will come online in 2012, will produce about 10 petabytes per year (20; 21).

We are also seeing an increase in the number of instruments in operation.

This is known as the “scale-out” effect: as experimental instruments become

commoditized and drop in cost, the number of instruments deployed increases,

often exponentially (22). The result is a second driving force behind the explo-

20

sion in experimental data. This trend mimics the scale-out effect of computer

hardware, which is embodied in the concept of a beowulf cluster(10).

2.1.2 Reduction

As the data produced during generation has turned digital, the ensuing re-

duction and analysis stages have followed suit. Scientific data created during

generation usually comes in the form of low-level readings or signals organized

in space and time. During reduction, these low-level readings are combined into

higher-level objects of interest. For example, a telescope counts the number of

electrons passing through a fixed area per wavelength and time-interval. An “im-

age” is essentially an array of such readings for a given time-interval. This data,

in its low-level form, is difficult to reason about. It must be transformed into

higher-level object representations; such as stars and galaxies. By further ag-

gregating data about stars and galaxies over time, one can then synthesize even

higher-level data objects such as representations of supernovae and gravitational

micro-lensing events 1. The process of transforming low-level measurements into

higher-level objects and events is reduction. As more scientific data becomes

represented digitally, scientists are using computer algorithms to reduce them.

Typical workflows are composed of programs for generating and reducing scien-

tific data. Section 2.3 further elaborates on these workflows.

1A gravitational microlensing event occurs when a massive object passes in front of a ra-
diating object and the gravitational field of the massive object magnifies the intensity of the
radiating object. One use of these events is in detecting planets that are otherwise undetectable.

21

2.1.3 Analysis

The reduction of scientific data into high-level objects leads to the third stage,

analysis. During this stage, scientists pose hypotheses and validate them over

their data (collections of high-level objects). As one example, an astronomer may

pose the hypothesis that “bright galaxies tend to have a low local extinction.”

To validate this hypothesis, he will examine his collection of galaxy objects,

correlating their brightness against their local extinction. The collection of

galaxy objects may be large and slow to examine manually. Often, a computer

is the only feasible means of performing such analyses. Therefore, similar to

the generation and reduction stages, scientists are relying heavily on computers

during the analysis stage. Simple analyses may take place on spreadsheets. More

complicated analyses may involve writing programs in languages such as Python,

C++ or Matlab.

In recent years, scientists have increasingly turned to databases for managing

and mining their datasets (19). Under the database paradigm, scientists trans-

form and retrieve datasets using Structured Query Language (SQL), a specialized

language for data manipulation. The scope of SQL is broad enough to answer

many scientists’ questions while the simplicity of the language allows questions

to be posed with little effort. In addition, databases provide scientists with au-

tomatic resource optimization, sparing the scientist of yet another chore. With

the advent of shared scientific archives available through the internet, many sci-

entists have disengaged themselves from tasks in the generation and reduction

stages, solely focusing their efforts on analysis (22). The Sloan Digital Sky Sur-

vey (SDSS) is a notable example of a large, publicly available scientific database.

22

SDSS offers large catalogs of astronomical objects to scientists over the world

wide web. The site has received over 170 million page hits and answered over 20

million queries over the last 5 years (23).

2.1.4 Dissemination

The fourth stage, dissemination, has also been revolutionized by digitization.

During the dissemination stage, scientists communicate their results to peers.

Results are then debated and evaluated and then reconciled and synthesized with

other results. Traditionally, dissemination has occurred in-person at meetings

and conferences, or in-print, in journals and conference proceedings. With the

advent of the world wide web, however, much dissemination now occurs online.

Online dissemination has many benefits: lower latency, searchability, automatic

citation-counting and reduced shelf-space requirements. Notable examples of

scientific publication archives include Citeseer (24), the ACM Digital Library

(25) and Google Scholar (26).

2.1.5 Summary and Implications

In this section, we have introduced the Knowledge Supply Chain (KSC), a

high-level model for the creation and dissemination of scientific knowledge. We

have also described how scientists have adopted computer technology in every

stage of the KSC. There exists a global complementarity across the 4 stages. As

the degree of technological adoption increases in one stage, adoption is encour-

aged or forced in other stages. To list a few examples: if data created during

23

generation is in digital format, a scientist will be compelled to reduce it with

a computer. Increased data volumes from the generation and reduction stages

call for computer-aided processing during analysis. In the opposing direction,

the availability of digital tools during analysis encourages the creation of digital

data in the generation and reduction stages. The existence of positive feedback

loops explains breadth of technology adoption and suggests sustained adoption

in the future. A ramification of this trend is an increase in computation volumes,

engendering a need for more and better computation management, as can be

provided by DSWMSs.

2.2 Technological Trends

Having described how computation is being incorporated into the scientific

process, I now turn to the individual technological trends that have spurred

scientists to adopt technology. I cluster the trends into three areas:

1. HPC Infrastructure: Trends in this area make more computations pos-

sible by improving the availability of required resources.

2. Parallel Programming Models: Trends in this area catalyze the creation

of scientific computations by making them easier to specify.

3. Analysis, Visualization, and Publication: Trends in this area increase

the yield of computations by facilitating the extraction and dissemination

of useful knowledge from computation-created data.

Each of the areas is addressed in turn.

24

Figure 2.2. Exponential growth in computing power has been sustained over
6 decades, most recently by cluster computers. BlueGene/L, ASCI White and
ASCI Red are all cluster computers. From (1).

2.2.1 HPC Infrastructure

We start with improvements in the performance cost of HPC infrastructure.

These improvements have inflated the potential for running large collections of

intensive computations. Infrastructural improvements are driven by the com-

moditization of hardware and software components. The end result of this com-

moditization is a move towards clustered architectures. Clustered architectures

have sustained exponential growth in computing into its sixth decade (Figure

2.2), increased the average throughput of individual clusters, and reduced the

cost of clusters.

A fundamental enabler of the clustered architecture is improved pricing of

hardware components. Prices for processing, storage and networking elements

have all fallen exponentially in the past few decades(27). As one example, the

price of storage plummets at the rate of 100 times per decade(28). Today, one

25

can purchase 1 terabyte of hard disk space for only $400 (29), or 1 petabyte for

only $400,000 (vs. about $40M 10 years ago).

A second enabler for clusters is a commoditization of software infrastruc-

ture. Such commoditization is largely due to the proliferation of the open-source

software (OSS) development model. The OSS paradigm allows software to be

installed for free, rather than for a licensing fee per machine. It has also allowed

scientists modify their software when they feel it is necessary and worthwhile.

In particular, the Linux operating system and associated utilities have been a

cornerstone of the cluster revolution. It is now the most widely used operating

system in scientific computing (30) and now runs more than 75% of the world’s

fastest 500 machines(1).

A new, but key, class of software is the batch scheduler (16; 31; 32; 33; 34).

A batch scheduler allows users to submit cluster jobs through a single node. The

software gives the illusion that the user has at her disposal a single, powerful

machine, while in actuality, the machine is composed of many small computing

systems. The seminal system in this category is Condor (16). Statistics show

that the number of hosts managed by Condor has doubled in each of the last

three years and now stands at over 100,000 (35; 36).

Even while the power of individual clusters has been growing quickly, com-

puter scientists have increased available computing even further through grid

computing. Grid computing middleware allows cluster owners to share their com-

puting resources with each other. Globus (17) is the archetypal instance in this

category. Globus allows users to enroll their clusters into computational grids

which allow seamless sharing of clusters across geographies and administrative

26

domains. For example, the Grid3 (37) project has federated 2800 CPUs from six

science projects over 22 sites into a massive grid.

Grid computing would not be possible without the deployment of long-haul

fiber optic networks. These deployments have tripled aggregate wide-area band-

width each year for the past ten years (38). There is about 60,000 times more

aggregate bandwidth now than a decade ago and the growth will continue for

the next few years. Improvements in bandwidth are responsible for nullifying the

barriers of geography.

Similar to grid computing, public computing has increased the amount of HPC

available to scientists. Public computing projects allow individual users to donate

spare computing cycles to run compute-intensive science applications. The first

and most prominent example of public computing is seti@home (6) while follow-

on projects such as folding@home (9) have also achieved impressive success. Most

recently, the software infrastructure behind seti@home has been generalized to

allow any scientific project to build a similar peer-to-peer network through the

Berkeley Open Infrastructure for Network Computing (BOINC) project. As of

January 2007, 37 science projects have adopted BOINC, harnessing 3000 CPU

years per day from 1.5 million hosts and 900,000 users (39).

2.2.2 Parallel Programming Models

The previous section discussed improvements in computing infrastructure,

the underlying resources of scientific computation. This section continues by de-

scribing improvements in programming models, which scientists use to express

27

programs that utilize those resources. Computer scientists have been working

to improve the productivity of scientific programmers by designing efficient pro-

gramming abstractions. The commissioning of the High Productivity Computing

Systems (HPCS) project by DARPA, NSF and DOE (40) is a strong indication

of a community focus on improving programmer productivity.

Several advancements in parallel programming models are making parallel

programming easier. First, standardization on the Message Passing Interface

(MPI) has streamlined the development of supporting tools and accumulation of

knowledge (41). MPI is a language standard that allows a scientific programmer

to control precisely when communication is incurred between processors. By

controlling processor communication at a fine-grain, programmers are able to

achieve high levels of performance from their HPC resources.

Unfortunately, MPI is based on primitive technologies that are two decades

old. The abstractions provided by MPI are rather low-level, involving the mar-

shaling of objects and transportation of bits and conceptually reflect hardware

components rather than logical concepts. The result is that MPI programs can

be difficult to program and make portable. To correct this shortcoming, there

has been a recent push to develop programming models that provide the benefit

of MPI — precise control over communication — but also provide higher-level

programming abstractions. The result of these efforts is a family of languages,

the Global Address Space (GAS) languages, which allow users to directly ref-

erence memory objects without having to marshall them or micro-manage their

transportation. Such languages merge the best features of message passing and

shared memory programming models. The shared memory model is an earlier

28

alternative to message-passing that is easy to use but is less scalable because it

does not allow fine-grained control of communication costs. The GAS program-

ming model has been integrated into several popular programming languages,

java (Titanium (42), C (Unified Parallel C (43)) and Fortran (Co-Array Fortran

(44)). While researchers are still optimizing implementations of these languages,

progress is steady and promising. For readers who are unfamiliar with these

languages, sample programs can be found in (41).

A third important development in parallel programming is the emergence of

domain-specific parallel languages that accelerate the expression of a restricted

set of programs. A recent example is the map-reduce scheme (45), which allows a

user to parallelize his program onto many machines, given that he can model his

program as map and reduce functions. Each function, map and reduce, processes

a set of (key,value) 2-tuples and produces another set of (key,value) 2-tuples.

The map function allows a user to emit one or more tuples from its input tuple-

set while the reduce function performs aggregation on all input tuples sharing

the same key. To obtain simpler programming, users of this paradigm give up

fine-grained communication and the ability to iterate over their datasets an in-

determinate number of times, which are otherwise available in languages such as

MPI.

The seminal instance of the map-reduce paradigm is the MapReduce system

at Google, Inc. (46). Google has used MapReduce to parallelize many of the

most intensive and important web engineering tasks, such as constructing graphs

of the web, calculating page rank, and measuring the popularity of different

pages. Google cites thousands of programs being written in the paradigm and

29

asserts that users with no parallel programming experience are able to write and

execute programs on thousands of machines within hours of being introduced

to the model. Since Google’s publication of MapReduce, other versions of the

paradigm have surfaced, including an open-source package called Hadoop (47).

Decades before the rise of the map reduce paradigm, a similar value proposi-

tion — large-scale parallelization through a simple programming interface — was

provided through parallel databases (48). In fact, the expressibility of the map-

reduce model is equivalent to that provided in relational databases 2. Map-reduce,

however, has provided an alternative that allows processing over file system data.

In contrast, parallel databases required that data be loaded into database-specific

storage managers. Loading the data has proven to be a significant impediment to

many scientific programmers (19). Beside the overheads of defining schemas the

data becomes inaccessible to widely used text-processing utilities such as grep.

By avoiding this loading, map-reduce has made simplified parallel programming

available to more users.

While there has been solid advancement in parallel programming models,

these developments will not substitute for the computation management infras-

tructure proposed in this thesis. The parallel programming models described here

aim to split long-running computations into a set of closely coupled computations

that are distributed over many CPUs but still collectively operate as one compu-

tation. Features in these programming models focus on the efficient exchange of

low-level in-memory data structures. Computation management is a higher level

2While map reduce is more expressive than the relational algebra, databases are almost
universally equipped with user-defined functions and aggregates, which allow them to match
map reduce in expressibility.

30

activity involving the specification and manipulation of many instances of the

programs, including those specified through parallel programming languages. As

such, the capabilities provided by the two different technologies are orthogonal to

one another. In fact, the adoption of better parallel programming models will en-

courage the creation of more computations and exacerbate need for computation

management, not relieve it.

2.2.3 Analysis, Visualization and Publication

A third category of trends concerns an increase the informational yield of

computational data, further encouraging the use of computation and heighten-

ing the need for computation management. Here, we focus on improvements in

complementary technologies that make the data created by HPC useful. Each of

these are trends in “downstream” technologies that are used in the analysis or

dissemination stages of the KSC.

The first trend in this category is the adoption of large, web-based scientific

databases. The seminal example of important scientific databases is the Sloan

Digital Sky Survey (SDSS) (49), a digital archive that has been made available

to scientists all around the world. The archive stores over 40 terabytes of astro-

nomical data and makes it available to the public. The site features the ability

to query data by clicking on images, writing ad hoc SQL, or accessing through

a web services interface. The site has shown tremendous success over the last

five years (23) and has even exhibited futuristic features such as “cooperative”

querying, where mistakes in a user’s queries can be automatically identified by

31

matching the query against similar, valid queries. It does not appear that there

are any trends that will prevent these databases from scaling into the petabyte

range within the next few years (50).

There has also been advancement in visualization technology(51; 52; 53; 54).

Recently cited as one of the 10 most important advances in scientific comput-

ing over the last two decades (55), visualization enables scientists to create “big

picture” views that are unavailable otherwise. Visual aids have evolved from

two-dimensional, black-and-white drawings to three-dimensional, multi-colored,

navigable renderings. In the process, they have increased the speed at which

people can extract and communicate discoveries from digital data. Visualiza-

tion has impacted a broad range of scientific disciplines, including aeropsace

engineering(56), bio- and chem-informatics (57; 58) and climatology (59; 60).

A third important area of progress is in the domain of Internet-based publi-

cation. First used simply as a means of making traditional publications available

on-demand, Internet-based publication is now enabling new features. For exam-

ple, the Signaling Gateway Portal from the Nature Publishing Group (61; 62)

is providing several features beyond searching and downloading. Through the

portal, scientists can drill down into the datasets behind a publication instead of

simply accepting a graph that represents one view of the available data. The abil-

ity to peruse supporting data allows scientists to repeat published experiments

and validate hypotheses more thoroughly. Other features include the automatic

clustering of related articles, and even automated interpretation of publication

contents (e.g. “Show me all published statements about the hedgehog gene and

also find opposing statements to each original statement”). Finally, these publica-

32

tions assimilate many of the positive attributes of traditional print publications;

for example, they are peer-reviewed, citable, and maintained indefinitely.

2.2.4 Summary

This section has examined a compilation of trends that collectively enable,

encourage, and/or force scientists to generate and use more computation in their

daily lives. First, there has been increased deployment of standardized HPC in-

frastructure. These improvements increase the availability of resources required

for running computations. Second, improvements in parallel programming have

eased the specification of high-performance parallel programs. Finally, advance-

ments in downstream technologies are helping scientists extract useful informa-

tion from the results of their computations. As I argued in Section 2.1, scientists

have demonstrated their satisfaction with the efforts of technologists by incor-

porating computing technologies into every aspect of their daily work. The two

macro-trends described in this and the previous section — increased adoption of

technology in the scientific process and sustained technological improvement —

conjointly explain the explosion in computation volumes and justify the creation

of a computation management infrastructure.

2.3 Workflows

In this section, we discuss the workflow, a concept that many emerging compu-

tation management systems are based on. We define a workflow as a composition

33

of dependent programs or processes (program executions). A workflow can be

represented with a directed acyclic graph (DAG). Nodes in the DAG represent

programs or processes while edges represent data dependencies. An edge from

node A to node B indicates that A produces data that is used by B.

It is useful to distinguish between concrete workflows and abstract workflows.

A concrete workflow is a composition of processes. A process is an instance of

a program, and can therefore be defined by a program and a set of inputs on

which the program is applied. The process can be submitted to an operating

system for execution using a system call equivalent to UNIX’s exec. Processes

may execute on one or multiple nodes, using a parallel execution framework such

as MPI or map-reduce. Inputs to the process consist of filesets (sets of files) that

are accessible to the program and command-line arguments that are passed to

the program.

In contrast to a concrete workflow, an abstract workflow is a set of dependent

programs (rather than processes). Abstract workflows are used to define concrete

workflows. By combining an abstract workflow with a set of inputs, one can define

a concrete workflow. Typically, an abstract workflow is applied to multiple input

instances to create a collection of concrete workflows. The concrete workflows

are then executed in a data-parallel fashion on a cluster. For example, both

the script of Listing 1.1 and the commands of Listing 1.2 conceptually create

collections of concrete workflows. Besides being used to instantiate concrete

workflows, abstract workflows can also be reused as components in other abstract

workflows. GridDB’s framework for module definition maximizes the potential

for such reuse.

34

align

calibrate

detectObj

Y

Z

X

W
 aParams

cParams

dParams

(a) abstract workflow

align

calibrate

detectObj

Y

1

Z

1

X

1

W

1

d

1

(b) concrete workflow

c
1

a

1

fileset

placeholder

command-line

parameters

placeholder

program

fileset

instance

command-line

parameters

instance

process

(program

instance)

Figure 2.3. (a) An abstract workflow for the image processing workflow of Chap-
ter 1 (b) A concrete workflow created by instantiating the abstract workflow of
(a) with input set (X1, a1, c1, d1).

Figure 2.3(a) depicts the abstract workflow of the image processing appli-

cation of Chapter 1. The abstract workflow uses as input one fileset (W)and

3 command-line inputs (a, c, and d) and produces as output three filesets (X,

Y , and Z). Placeholders for fileset data are denoted by circles while placehold-

ers for command-line inputs are denoted by hexagons. Figure 2.3(b) provides a

concrete workflow that is based on the abstract workflow of Figure 2.3(a). This

concrete workflow, when executed, applies the programs, align, calibrate, and

detectObj to input instances W1, a1, c1, and d1. After execution, filesets X1, Y1,

and Z1 are created.

Workflows are useful constructs because they enable modularity, and scientists

35

use modularity to cope with the complexity of scientific computation. To solve

their large problems, scientists divide and conquer their programs into smaller

modules that can be designed, developed, debugged and executed in a piecewise

fashion. Modularity has many other benefits. First, different modules may be

developed concurrently by different programmers who have specialized skill sets.

Modular designs are also amenable to incremental development, which is often

more efficient or convenient. Finally, modular designs are easier to extend, since

new components can be incorporated in a plug-and-play manner.

In contrast to the linear topologies of Figure 2.3, workflows often exhibit fan-

out and fan-in. Fan-out occurs when the output of a program is consumed by

more than one program or when a user applies an individual program over a data

object multiple times (by varying another input to the program). Fan-in occurs

when a workflow aggregates the data created by multiple processes. The fan-in

may occur in both abstract and concrete workflows.

Examples of fan-out and fan-in are shown in the DAGs of Figure 2.4. Figure

2.4(a) demonstrates fan-out and fan-in in an abstract workflow. This workflow

compares the results from two different versions of detectObj, detectObj1 and

detectObj2 . Fan-out occurs because two different programs detectObj1 and

detectObj2 are applied to fileset Y . Fan-in occurs because the program cmpObjs

reads both filesets Z1 and Z2.

Figure 2.4(b) demonstrates fan-out and fan-in in a concrete workflow. This

workflow executes the abstract workflow of Figure 2.3(a) on two sets of inputs (X1,

g1, c1, d1) and (X1, g1, c1, d2) and then concatenates them into the same fileset.

Since the two workflows’ executions have identical executions of programs align

36

align

calibrate

detectObj2

Y

Z2

X

W
 aParams

cParams

d2Params

(a) abstract workflow with

fan-out and fan-in

align

calibrate

detectObj

Y
1

X

1

W

1

d

2

c

1

a
1

detectObj1

d1Params

Z1

cmpObjs

coParams

A

(b) concrete workflow with

fan-out and fan-in

detectObj

d

1

union

A

1

Z

1
 Z

2

Figure 2.4. Workflows that exhibit fan-out and fan-in. (a) an abstract workflow.
(b) a concrete workflow.

and calibrate, those processes are shared between the two workflows. Where

they differ is in the execution of detectObj, where one uses parameter set d1

and the other uses parameter set d2. Fan-out occurs because the two processes

detectObj1 and detectObj2 are applied to the same fileset. Fan-in occurs in

this fileset because the union program takes both filesets as input to create the

final fileset.

The workflow model described in this section is similar to that of other work-

37

flow systems described in the literature. These other systems are described as

related works in Section 3.8.

2.4 Chapter Summary

This chapter has presented background information that is pertinent to the

rest of this thesis. This chapter was composed of three main sections. The first

section introduced the Knowledge Supply Chain (KSC), a high-level model of

the scientific knowledge discovery process. It also showed how every step in the

KSC has been transformed by computation. The second section continued with

a review of recent trends in technology. These trends are increasing the capacity,

ease-of-use, and informational value of computation. The confluence of these

trends has resulted in an increase in the volume of computations being used,

creating a need for computation management. The third section of this chapter

offered an overview the workflow, a fundamental abstraction for specifying and

representing computations.

38

Chapter 3

GridDB: A Prototype DSWMS

Having motivated the case for Data-Centric Scientific Workflow Management

Systems (DSWMSs), this chapter presents the design and implementation of a

DSWMS called GridDB. GridDB is based on two core principles: First, scientific

programs can be abstracted as typed functions, and program invocations as typed

function evaluations. Second, that while most scientific data is not relational in

nature, a key subset, including the inputs and outputs of scientific workflows,

have relational characteristics. This data can be manipulated with SQL and

can serve as an interface to the full data set. Using this principle, users can be

provided with: (1) a declarative, SQL-like interface to computation and (2) the

benefits of data-centric processing as outlined in Section 1.

Following these two principles, I developed a scientific workflow data model,

the Functional Data Model with Relational Covers (FDM/RC), and a data def-

inition language for creating FDM/RC schemas. I then developed a set of soft-

ware services that implement the data-centric GridDB model on top of existing

39

process-centric middleware. This chapter describes the FDM/RC model and its

implementation and also demonstrates its usefulness with two example workflows

taken from High Energy Physics and Astronomy. It also reports on experiments

that validate the model and implementation.

The remainder of this chapter is structured as follows. Section 3.1 introduces

a running example for the chapter. Section 3.2 describes the GridDB job man-

agement interface. Section 3.3 covers the FDM/RC data model. Section 3.4

presents the design and implementation of the GridDB prototype. Section 3.5

demonstrates GridDB’s modeling of a complex workflow. Section 3.6 describes

advanced performance-enhancing features. Sections 3.8 discusses Related Work

and Section 3.9 summarizes the chapter.

3.1 High-Energy Physics Example

In this section we introduce a workflow obtained from the ATLAS High-

Energy Physics experiment (63; 64). We refer to this workflow as HepEx (High

Energy Physics Example) and use it as a running example throughout the chap-

ter.

The ATLAS team wants to supplement a slow, but trusted detector simulation

with a faster, less-precise, one. To guarantee the soundness of the fast simulation,

however, the team must compare the responses of the new and old simulations

to various physics events. A workflow achieving these comparisons is shown

in Figure 3.1(a). It consists of three programs: an event generator, gen; the

fast simulation, atlfast; and the original, slower simulation, atlsim. gen is

40

imas = x

atlfast

gen

<pmas>

<pmas>
.atlfast
 <pmas>
.atlsim

<pmas>
.evts

imas = y

atlsim

(a)

...
p
m

a

s

=

1

0

1

101

101.atlfast
 101.atlsim

p
m

a

s

=

2

0

0

200

200.atlfast
 200.atlsim

...

pmas

diff

(b)

Figure 3.1. (a) HepEx abstract workflow (b) HepEx grid job.

called with an integer parameter, pmas, and creates a file, 〈pmas〉.evts that

digitally describes a particle’s decay into subparticles. 〈pmas〉.evts is then fed

into both atlfast and atlsim, each simulating a detector’s reaction to the

event, and creating a file which contains a value, imas. For atlfast to be

sound, the difference between pmas and imas must be roughly the same in

both simulations across a range of pmas values 1. All three programs are long-

running and compute-bound, and thus require parallelization on a cluster.

3.1.1 Roles of Scientists

Workflow execution often involves multiple users specializing in different

roles. We identify three roles that occur in both the process- and data-centric

paradigms. An individual scientist may play one or more of the roles within a

1The physics can be described as follows: pmas is the mass of a particle, while imas is the
sum of subparticles after the particle’s decay. pmas− imas is a loss of mass after decay, which
should be the same between the two simulations.

41

role
 activity

coder
 writes programs

modeler
 composes programs

analyst

executes and

analyzes results of

programs

Figure 3.2. Roles in Workflow Execution.

specific application. The three roles are as follows (summarized in Figure 3.2) :

coders, who write programs; modelers, who compose these programs into work-

flows; and analysts, who execute the workflows and analyze their results.

To deploy HepEx in the process-centric paradigm, coders write the three pro-

grams gen, atlfast, and atlsim, in an imperative language, and publish them

on the web. A modeler then composes the programs into an abstract workflow,

or AWF. Logically, the AWF , is a DAG of programs to be executed in a partial

order. Physically, the AWF is encoded as a script(65), in perl or some other

procedural language. Each program to be executed is represented with a process

specification (proc-spec) file, which contains a program, a command-line to ex-

ecute the program, and a set of input files (66; 67). The AWF script creates

these proc-spec files along with a precendence specification (prec-spec) file that

encodes the dependencies among the programs.

The analyst carries out the third and final step: data procurement. Existing

middleware systems are sufficient for providing a single-machine interface to a

cluster or grid(65). Thus, the analyst works as if he/she is submitting jobs on

a single (very powerful) machine and the middleware handles the execution and

42

management of the jobs across the distributed resources. The analyst creates a

job by executing another script that invokes the AWF script multiple times. For

example, to run HepEx for all pmas values from 101 to 200, the AWF script

would be invoked 100 times. Each invocation results in three processes being

submitted and scheduled. Figure 3.1(b) shows the HepEx job consisting of these

invocations.

3.2 Job Processing With GridDB

In the previous section, we identified three roles involved in the deployment

of scientific processing applications. With GridDB, the job of the coder is not

changed significantly; rather than publishing to the web, the coder publishes

programs into a GridDB code repository available to other scientists. In contrast,

the modeler sees a major change: instead of encoding the AWF in a procedural

script, he expresses it in the GridDB data definition language (DDL), thereby

conveying workload information to GridDB, and allowing it to provide data-

centric services and interfaces. We describe the data model and DDL used by

the modeler in detail in Section 3.3. The analyst’s experience is also changed

dramatically. Here, we focus on the analyst ’s interactions using the GridDB data

manipulation language (DML).

43

pmas(GeV)

1
1

0

expedite

fImas, sImas

in this range

1
0

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

1
2

0

pmas

101

...

130

...

160

...

200

fImas

101

...

139

...

168

...

198

sImas

100

...

133

...

164

...

200

fImas

sImas
(
G

e
V

)

131

inputs vs. outputs

not yet

computed

Figure 3.3. Example of Computational Steering.

3.2.1 Motivating Example: Computational Steering

To illustrate the benefits of data-centric workflow execution, we describe how

Computational Steering can an analyst with provide increased flexibility and

power to the job execution process.

Recall that GridDB provides a relational interface to workflow execution; for

example, consider the table on the right-side of Figure 3.3. This table shows,

for each value of an input pmas, the output imas values from two simulations

(fImas and sImas). On the left-side of of the figure, we show a snapshot of

streaming partial results in the table’s corresponding scatter plot, which, at the

time shown, has been populated with 20 out of 200 data points.

The scatter plot indicates discrepancies between fImas and sImas in the

range where pmas is between 130 and 160, a phenomenon that needs investiga-

tion. Using the steering service, an analyst can prioritize data in this range simply

by selecting the data in this range (e.g., by dragging a mouse pointer between

the dashed lines) and prioritizing it with a GUI command. GridDB is capable

of expediting the computations that create the points of interest. Through this

44

graphical, data-centric interface, the user drives workflow execution. In contrast,

users of process-centric middleware usually run these jobs in batch, missing the

opportunity direct limited resources towards the most important resources.

By understanding data and workflow structure, GridDB is able to provide

many services that are unavailable in process-centric middleware. In the next

section, we explain GridDB’s modeling principles.

3.2.2 Functions and The Relational Cover

The data-centric GridDB model rests on two important principles: (1) the

use of functions to model programs and the existence of the relational cover.

As mentioned in Chapter 1, GridDB represents programs as functions in order

to explicitly document the data that programs manipulate. Abstract workflows,

which are logically compositions of programs,are then represented as compos-

ite functions. A functional representation does not require coders or modelers

to change to programs themselves, but rather, consists of wrapping programs

with functional definitions (as described in the following section). Functional

representations allow GridDB to transcend the process-centric approach, where

middleware is unaware of the data being manipulated by programs.

The relational cover is the subset of a workflow’s data that can be represented

as relations. As such, the relational cover can be described, and then manipulated

using the Structured Query Language (SQL). GridDB then exploits this fact to

provide users with a relational interface.

While most scientific data is not relational in nature, the inputs and outputs

45

to workflows can typically be represented as tables. For input data, consider data

procurement, as described in Section 3.1: a scientist typically uses nested-loops

in a script to enumerate a set of points within a multidimensional parameter

space and invoke an AWF for each point (as shown in Listing 1.1 of Chapter 1).

Each point in the input set can be represented as a tuple whose attributes are

the point’s dimensional values, a well-known technique in OLAP systems (68);

therefore, an input set can be represented as a tuple set, or relation.

The relational nature of outputs is observed through a different line of reason-

ing: scientists commonly manipulate workflow output with interactive analysis

tools such as fv in astronomy(69) and root or paw in high energy physics(70; 71).

Within these tools, scientists manipulate (with operations like projection and se-

lection) workflow data to generate multidimensional, multivariate graphs (72).

Such graphs, including scatter plots, time-series plots, histograms, and bar-charts,

are fundamentally visualizations of relations.

Figure 3.4 shows a HepEx model using these two principles2. In the figure,

the HepEx workflow is a represented as a function, simCompareMap , which is a

composition including three functions representing the workflow programs: genF,

atlfastF, and atlsimF. The input data is represented as a relation of tuples

containing pmas values, and the outputs are represented similarly.

2This model is created by DDL commands written by the modeler, as we describe in Section
3.3.

46

s

i

m

C

o

m

p

a

r

e

M

a

p

gID
 pmas

g00
 125

g99
 174

...
 ...

gRn

s99
 ...

...
 ...

s00
 128

sID
 sImas
sRn
fID
 fImas

f00
 123

f99
 ...

...
 ...

fRn

genF

evts

...

atlfastF
 atlsimF

the relational cover,

used as an interface

to the overall workflow

Figure 3.4. GridDB’s simCompareMap corresponds to the process-centric work-
flows of Figures 3.1(a) and 3.1(b)

3.2.3 Data Manipulation Language

Having discussed the main modeling principles of GridDB, we now describe

the data manipulation language provided for analyst interaction. With GridDB,

analysts first create their own computational “sandbox” during a workflow setup

phase. This sandbox consists of private copies of relations to be populated and

manipulated by GridDB. Next, the analyst specifies the workflow he/she wishes

to execute by connecting sandboxed relations to the inputs and outputs of a

GridDB-specified workflow function.

The DML required for setting up HepEx is shown in Listing 3.1. Line 1 creates

the sandbox relations. For example, gRn is declared with a type of set of g.

The next statement (Line 2) assigns the two-relation output of simCompareMap,

applied to gRn, to the output relations fRn and sRn. The modeler, at this point,

47

1 gRn :set(g); fRn :set(f); sRn:set(s);

2 (fRn ,sRn) = simCompareMap(gRn);

3 INSERT INTO gRn VALUES pmas = @ {101, . . . , 200} @;

4 SELECT * FROM autoview (gRn ,fRn ,sRn);

Listing 3.1. Analyst DML in HepEx

has already declared simCompareMap, with the signature: set(g) → set(f) ×

set(s), an action we show in Section 3.3.3.

With a sandbox and workflow established, data procurement proceeds as a

simple INSERT statement into the workflow’s input relation, gRn, as shown in Line

3. Insertion of values into the input relation triggers the issuance of proc-specs for

process execution. The work submitted is conceptually similar to the job depicted

in Figure 3.1(b). A readily apparent benefit of GridDB’s data procurement is that

INSERT’s are type-checked; for example, inserting a non-integral value, such as

110.5, would result in an immediate exception.

Scientific jobs commonly seek to discover relationships between different phys-

ical quantities. To support this task, GridDB automatically creates relational

views that map between inputs and outputs of functions. We call such views

automatic views. For example, GridDB can show the relationships between tu-

ples of gRn, fRn, and sRn in a view called autoview(gRn, fRn, sRn) (Line

4). Using this view, the analyst can see, for each value of pmas, what values of

fImas resulted. The implementation of autoviews is described in Section 3.4.1.

The autoview mechanism also plays in an important role in the provisioning of

Computational Steering, as is discussed further in Section 3.6.1.

48

3.2.4 DML Summary

To summarize, GridDB provides a SQL-like DML that allows users to ini-

tiate workflow execution by creating private copies of relations, mapping some

of those relations to workflow inputs and then inserting tuples containing input

parameters into those relations. The outputs of the workflow can also be manip-

ulated using the relational DML. The system can maintain automatic views that

record the mappings between inputs and outputs; these “autoviews” are useful

for analysis in their own right, and also play an important role in supporting

Computational Steering. By understanding the semantics of workflow and data,

GridDB is able to provide data-centric services unavailable in process-centric

middleware.

3.3 Data Model: FDM/RC

The previous section illustrated the analyst’s interface for job submission and

steering, given that a modeler has defined a schema. In this section, we describe a

data model for the schema and its the data model’s definition language. The data

model is called the Functional Data Model with Relational Covers(FDM/RC)

and has two main constructs, entities, and functions which map entities to other

entities. To take advantage of the relational cover, a subset of the entities are

modeled as relations.

49

3.3.1 Core Design Concepts

Before defining the data model, we discuss two concepts that shape the FD-

M/RC: (1) the inclusion of transparent and opaque data and (2) the need for

fold/unfold operations.

Opaque and Transparent Data

The FDM/RC models entities in three ways: transparent, opaque and

transparent-opaque. One major distinction of GridDB, compared with process-

centric middleware, is that it understands detailed semantics for some data, which

it treats as relations. Within the data model, these are transparent entities, since

GridDB can interact with their contents. By providing more information about

data, transparent modeling enables GridDB to provide richer services. For exam-

ple, the input, pmas, to program gen in Figure 3.1(a) is modeled as a transparent

entity: for example, as a tuple with one integer attribute, pmas. Knowing that

the input is a tuple with an integer attribute, GridDB can perform type-checking

on gen’s inputs.

On the other hand, there are times when a modeler wants GridDB to catalog a

file, but has neither the need for enhanced services. In these cases, GridDB allows

lighter weight modeling of these entities as opaque objects. As an example, con-

sider the output file of x.evt. The file is used to execute programs atlfast and

atlsim. GridDB must catalog and retrieve the file for later use, but analysts do

not need extra services. Therefore, the file is best modeled as an opaque entity.

Finally, there is opaque-transparent data, file data that is generated by pro-

50

grams, and therefore needs to be stored in its opaque form for later usage, but

also needs to be understood by GridDB to gain data-centric services. An ex-

ample is the output of atlfast; it is a file that needs to be stored, possibly for

later use (although not in this workflow), but it can also be represented as a

single-attribute tuple (attribute fImas of type int). As part of data analysis,

the user may want to execute SQL over a set of these entities.

Unfold/Fold

The second concept deals with GridDB’s other core abstraction: programs

behind functions, i.e. a user makes a function call instead of program invocation.

The unfold and fold operations define the “glue” between a program and its dual

function.

For this abstraction to be sound, function evaluations must be defined by a

program execution, a matter of two translations: (1) The function input argu-

ments must map to program inputs and (2) the program’s output files, upon

termination, must map to the function’s return values. These two mappings are

defined by the fold and unfold operations, respectively. In Section 3.3.3, we de-

scribe atomic functions, which encapsulate imperative programs and employ fold

and unfold operations.

3.3.2 Definition

Having described the core concepts of our data model, we now define it more

carefully. The FDM/RC has two constructs: entities and functions. An FDM

51

schema consists of a set entity-sets, T , and a set of functions, F , such that each

function, Fi ∈ F , is a mapping from entities to entities: Fi : X1 × . . . × Xm →

Y1 × . . . × Yn, Xi, Yi ∈ T , and can be the composition of other functions. Each

non-set type, τ = [τt, τo] ∈ T , can have a transparent component, τt, an opaque

component τo, or both3. τt is a tuple of scalar entities. Set-types, set(τ), can

be constructed from any type τ . The relational cover is the subset, R, of types,

T , that are of type set(τ), where τ has a transparent component. An FDM/RC

schema (T, R, F) consists of a type set, T ; a relational cover, R; and a function

set, F .

3.3.3 Data Definition Language

An FDM/RC schema, as we have just described, is defined by a data definition

language (DDL). In this section, we describe the main constructs and illustrate

them with HepEx’s data definition, when possible. A complete grammar can be

found in appendix A. The DDL for HepEx is shown in Listing 3.2.

Types

As suggested in Section 3.3.1, modelers can define three kinds of types: trans-

parent, opaque and transparent-opaque. All types, regardless of their kind, are

defined with the type keyword. We show declarations for all three HepEx types

below.

Transparent type declarations include a set of typed attributes and are pre-

3One of τt and τo can be null, but not both.

52

fixed with the keyword transparent. As an example, the following statement

defines a transparent type g, with an integer attribute pmas:

transparent type g = (pmas:int);

Opaque types do not specify attributes and therefore are easier to declare.

Opaque type declarations are prefixed with the keyword opaque. For example,

the following statement declares an opaque type evt :

opaque type evt;

Suppose an entity e is of an opaque type. It’s opaque component is accessed

as e.opq.

transparent-opaque type declarations are not prefixed, and contain a list of

attributes; for example, this statement declares a transparent-opaque type f,

which has one integer attribute imas:

type f = (imas:int);

A variable of type f also has an opaque component.

Finally, users can construct set types from any type. For example, this state-

ment creates a set of g entities:

type setG = set(g);

Because setG has type set(g), and g has a transparent component, setG

belongs in the relational cover.

53

Functions

There are four kinds of functions that can be defined in DDL: atomic, com-

posite, map and SQL.

Function interfaces, regardless of kind, are defined as typed lists of input and

output entities. The definition header of atomic function genF is:

atomic fun genF (params:g):(out:evt)

This declares genF as a function with an input params, output out, and type

signature g → evt. We proceed by describing body definitions for each kind of

function.

As mentioned in Section 3.3.1, atomic functions embody programs, and there-

fore determine GridDB’s interaction with process-centric middleware. The body

of atomic function definitions describe these interactions. Three items need to be

specified: (1) the program (using a unique program ID) that defines this func-

tion. (2) The unfold operation for transforming GridDB entities into program

inputs and (3) the fold operation for transforming program outputs to function

output entities. Three examples of atomic functions are genF, atlfastF, and

atlsimF(see their headers in Listing 3.2, Lines 12-14). Because the body of an

atomic function definition can be quite involved, we defer its discussion to Section

3.3.3.

Composite functions are used to express complex workflows, and then abstract

it — analogous to the encoding of abstract workflows in scripts. As an example,

a composite function simCompare composes the three atomic functions we have

just described. It is defined with:

54

fun simCompare(in:g):(fOut:f,sOut:s) = (atlfastF(genF(in)), atlsimF(genF(in));

This statement says that the first output, fOut, is the result of function

atlfastF applied to the result of function genF applied to input in. sOutxo,

the second return-value, is defined similarly. The larger function, simCompare,

now represents a workflow of programs. The composition is type-checked and

can be reused in other compositions.

Map functions, or maps, provide a declarative form of finite iteration. Given

a set of inputs, the map function repeatedly applies a particular function to each

input, creating a set of outputs. For a function, F , with a signature X1 × . . . ×

Xm → Y1× . . .×Yn, a map, FMap, with a signature: set(X1)× . . .× set(Xm) →

set(Y1) × . . . × set(Yn), can be created, which executes F for each combination

of its inputs, creating a combination of outputs.

As an example, the following statement creates a map function,

simCompareMap with the type signature set(g) → set(f) × set(s), given that

SimCompare has a signature g → f × s:

fun simCompareMap = map(simCompare);

We call SimCompare the body of simCompareMap. Maps serve as the front-line

for data procurement — analysts submit their input sets to a map, and receive

their output sets, being completely abstracted from the underlying hardware.

The benefit of transparent, relational data is that GridDB can now support

SQL functions within workflows. As an example, a workflow function which joins

two relations, holding transparent entities of r and s, with attributes a and b,

and returns only r tuples, can be defined as:

55

sql fun (R:set(r), S:set(s)):(ROut:set(r)) = sql(SELECT R.* FROM R,S WHERE

R.A = S.B);

In Section 3.5, we will show an SQL workflow function that simplifies a spatial

computation with a spatial “overlaps” query, as used in an actual astrophysics

application.

Fold/Unfold Revisited

Finally, we return to defining atomic functions and their fold and unfold

operations. Recall from Section 3.3.1 that the fold and unfold operations define

how data moves between GridDB and process-centric middleware.

Consider the body of function atlfastF, which translates into the execution

of the program atlfast:

atomic fun atlfastF(inEvt:evt):(outTuple:f) =

exec(

‘‘atlfast’’,

[(‘‘events’’,inEvt)],

[(/.atlfast$/, outTuple, ‘‘adapterX’’)]

)

The body is a call to a system-defined exec function, which submits a process

execution to process-centric middleware. exec has three arguments, the first of

which specifies the program (with a unique program ID) which this function

56

1 //opaque-only type definitions

2 opaque type evt;

3

4 //transparent -only type declarations

5 transparent type g = (pmas:int);

6

7 //both opaque and transparent types

8 type f = (fImas:int);

9 type s = (sImas:int);

10

11 //headers of atomic function definitions for genF, atlfastF, atlsimF

12 atomic fun genF(params:g):(out:evt) = ...;

13 atomic fun atlsim(evtsIn:evt):(outTuple:s) = ...;

14 atomic fun atlfastF(inEvt:evt):(outTuple:f) =

15 exec(‘‘atlfast ’’,

16 [(‘‘events’’,inEvt)],

17 [(/.atlfast\$/, outTuple , ‘‘adapterX ’’)]);

18

19 //composite function simCompare definition

20 fun simCompare(in:g):(fOut:f,sOut:s) =

21 (atlfast(gen(in)), atlsim(gen(in)));

22

23 //a map function for simCompare

24 fun simCompareMap = map(simCompare);

Listing 3.2. Abridged HepEx DDL

57

a

t
l
f

a
s

t

p
r

o

c
e

s
s

e

x
e

c
u

t
i

o
n

atlfast

outfile

GridDB: entities + functions

process-centric grid:

files + cmd-lines + pgms

tFile

adapterX
 101
 127

fID
 fImas
 opq

inEvt

-events tFile

atlfastF

fold

outTuple

atlfastF

function

invocation

Unfold
(out of GridDB,

into grid)

Fold
(into GridDB,

out of grid)

Figure 3.5. Unfold/Fold in atomic functions

maps to. The second and third arguments are lists that specify the unfold and

fold operations for each input or output entity.

The second argument is a list of pairs (only one here) which specifies how

arguments are unfolded. In this case, because inEvt is an opaque entity, the file

it represents is copied into the process’ working directory before execution, and

the name of the newly created file is appended to the command-line, with the tag

events. For example, atlfast would be called with the command-line atlfast

-events tFile, where tFile is the name of the temporary file (top of Figure

3.5).

The last argument to exec is also a list, this time of triples (only one here),

which specify fold operations for each output entity (bottom of Figure 3.5). In

this case, the first list item instructs GridDB to look in the working directory

after process termination, for a file that ends with .atlfast (or matches the

regular expression /.atlfast$/). The second item says that the opq component

58

of the output, outTuple, resolves to the newly created file. The third item speci-

fies an adapter program — a program that extracts the attributes of outTuple’s

transparent component into a format understandable by GridDB; for example,

comma-separated-value format. GridDB ingests the contents (in this case, fI-

mas) into the transparent component. The adapter program is also registered by

the coder and assigned a unique program ID.

3.4 GridDB Design

Having discussed GridDB’s programming interface, we now turn our discus-

sion to the design of GridDB, focusing on the query processing of analyst actions,

as embodied in DML statements. GridDB’s software architecture is shown in Fig-

ure 3.6. The GridDB overlay mediates interaction between a GridDB Client and

process-centric middleware. Four main modules implement GridDB logic: the

Request Manager receives and initializes queries; the Query Processor manages

query execution; the Scheduler dispatches processes to process-centric middle-

ware; and an RDBMS (we use PostgreSQL) stores and manipulates data and the

system catalog.

In the rest of this section, we describe how GridDB processes DML state-

ments. We do not discuss the processing of DDL statements, as they are straight-

forward updates to the system catalog.

59

process-centric

middleware

GridDB

Overlay

DML
 streaming tuples

GridDB

Client
 x

y

Query

Processor

Scheduler

proc-specs,files

Grid Resources

Request

Manager

RDBMS (PostgreSQL)

data, catalog

Figure 3.6. GridDB’s Architecture

3.4.1 Query Processing

Our implementation strategy is to translate GridDB DML to SQL, enabling

the use of an existing relational query processor for most processing. One conse-

quence of this strategy is that the main data structures must be stored in tables.

In this section, we take a bottom-up approach, first describing the tabular data

structures, and then describing the query translation process.

Tabular Data Structures

GridDB uses three kinds of tables; the first two store entities and functions.

The last stores processes, which are later outsourced to process-centric middle-

ware for execution. We describe these three in turn.

Entity Tables: Recall from Section 3.3.1 that non-set entities may have two

components: a transparent component, τt, which is a tuple of scalar values; and

an opaque component, τo, which is an opaque set of bits. Each entity also has

a unique system-assigned ID. Thus, an entity of type τ having an m-attribute

transparent component (τt) and an opaque component (τo) is represented as the

60

following tuple: (τID, τt.attr1, . . . , τt.attrm, τo). Entity-sets are represented as

tables of these tuples.

Function Memo Tables: Given an instance of its input entities, a function

call returns an instance of output entities. Function evaluations establish these

mappings, and can be remembered in function memo tables (73). A function,

F , with a signature X → Y , has an associated memo table, FMemo, with

the schema (FID, XID, Y ID). Each mapping tuple has an ID, FID, which is

used for process book-keeping (see below); and pointers to its domain and range

entities (XID and Y ID, respectively). Each domain entity can only map to one

range entity, stipulating that XID is a candidate key. This definition is easily

extended to functions with multiple inputs or outputs.

Process Table: Function evaluations are resolved through process execu-

tions. Process executions are stored in a table with the following attributes:

(PID, FID, funcName, priority, status). PID is a unique process ID; FID

points to the function evaluation this process resolves; priority is used for ex-

ecution order; and status is one of done, running, ready, or pending, where a

pending process cannot execute because another process that creates its inputs

is not done.

Query Processing: Translation to SQL

Having represented entities, functions and processes as tables in the RDBMS,

query processing proceeds predominantly as SQL execution.

In this section, we describe how analyst actions are processed and show, as

61

s

i

m

C

o

m

p

a

r

e

M

a

p

gID
 pmas

g1
 101

g3
 103

g2
 102
gRn

evts

eID
 opq

e1

e3

e2

fID
 fImas

f1
 101

f3

f2

fRn

opq
 sID
 sImas

s1
 102

s3

s2

sRn

opq

g3
 e3

g2
 e2

g1
 e1

gID
 eID
genFMemo

F3

F2

F1

FID

e3
 s3

e2
 s2

e1
 s1

eID
 sID

atlsimFMemo

F9

F8

F7

FID

e3
 f3

e2
 f2

e1
 f1

eID
 fID

atlfastFMemo

F6

F5

F4

FID

FID

Process table

Status
 Priority

F3

F2

F1
 done

ready

running

0

0

0
 2

F6

F5

F4
 done

pending

pending

0

0

0
 2

F9

F8

F7
 done

pending

pending

0

0

0

Function

genF

genF

genF

atlfastF

atlfastF

atlfastF

atlsimF

atlsimF

atlsimF

PID

P3

P2

P1

P6

P5

P4

P9

P8

P7

Figure 3.7. Internal data structures representing HepEx functions, entities, and
processes. Shaded fields are system-managed. Dashed arrows indicate interesting
tuples in our discussion of Computational Steering (Sec. 3.6.1)

an example, query processing for the HepEx use-case. Internal data structures

for HepEx are shown in Figure 3.7. The diagram is an enhanced version of the

analyst’s view (Figure 3.4).

Recall from Section 3.2, the three basic analyst actions: workflow setup cre-

ates sandbox entity-sets and connects them as inputs and outputs of a map; data

procurement submits inputs to the workflow, triggering a function evaluation to

create outputs. Finally, streaming partial results can be perused with automatic

views. We repeat the contents of listing 3.1 for convenience:

1: gRn:set(g); fRn:set(f); sRn:set(s);

2: (fRn,sRn) = simCompareMap(gRn);

62

3: INSERT INTO gRn VALUES pmas = {101, . . . , 200};

4: SELECT * FROM autoview(gRn,fRn);

Workflow Setup During workflow setup (Lines 1-2), tables are created for the

entity-sets and workflow functions. Workflow setup creates a table for each of

the four entity-sets (gRn, fRn, sRn, evts), as well as each of the three functions

(genFMemo, atlfastFMemo, atlsimMemo). evtsis a table for storing interme-

diate results, which are created by genF. It is not created by directly by the user,

but by GridDB while resolving the definition of simCompareMap. At this step,

GridDB also stores a workflow graph (represented by the solid arrows in the

figure) for the job.

Data procurement and Process Execution Data procurement is performed

with an INSERT statement (Line 3) into a map’s input entity-set variables. In

GridDB, INSERTs into entity-tables trigger function evaluations, if a workflow

graph indicates that the entity is input to a function. Function outputs are

appended to output entity tables. If these tables feed into another function,

function calls are recursively triggered. Calls can be resolved in two ways: a

function can be evaluated, or a memoized result can be retrieved. Evaluation

requires process execution.

Process execution is a three step procedure that uses the fold and unfold op-

erations described in Section 3.3.3. To summarize: first, the function’s input

entities are converted to files and a command-line string using the unfold op-

63

eration; second, the process (defined by program, input files and command-line

string) is executed on computational resources; and third, the fold operations

ingest the process’ output files into GridDB entities.

In the example of Figure 3.7, a data procurement INSERT into gRn has

cascaded into 9 function calls (F1-F9 in the three function tables) and the insert

of tuple stubs (placeholders for results) for the purpose of partial results. We

assume an absence of memoized results, so each function call requires evaluation

through a process (P1-P9 in the process table).

The process table snapshot of Figure 3.7 indicates the completion of three

processes (P1, P4, P7), whose results have been folded back into entity tables

(entities e1, f1, r1, respectively).

Automatic Views (Autoviews) A user may peruse data by querying an

autoview. Because each edge in a workflow graph is always associated with a

foreign key-primary key relationship, autoviews can be constructed from workflow

graphs. As long as a path exists between two entity-sets, an automatic view

between can be created by joining all function- and entity-tables on the path.

In Figure 3.8, we show autoview(gRn, fRn), which is automatically con-

structed by joining all tables on the path from gRn to fRn and projecting out

non-system attributes.

64

gID
 pmas

g1
 101

g3
 103

g2
 102

gRn
 evts

eID
 opq

e1

e3

e2

fID
 fImas

f1
 101

f3

f2

fRn

opq

g3
 e3

g2
 e2

g1
 e1

gID
 eID

genF

P3

P2

P1

PID

e3
 f3

e2
 f2

e1
 f1

eID
 fID

atlfastF

p6

p5

p4

pID

priority upgrade to 2

pmas

101

fImas

101

102

103

priority

n/a

0

0

 2

autoview(gRn, fRn)

projection(
pmas
,
fImas
)
autoview(gRn, fRn)
 query graph

partial result

Figure 3.8. autoview(gRn, fRn)

3.5 ClustFind: A Complex Example

Up until this point, we have demonstrated GridDB concepts using HepEx,

a rather simple use-case. In this section, we describe how GridDB handles a

complex astronomy application. First, we describe the application science and

general workflow. Next, we describe how the workflow can be modeled in the

FDM/RC. Finally, we show how the example benefits from memoization and

interactive query processing, advanced features that we describe in the following

section.

3.5.1 Finding Clusters of Galaxies

The Sloan Digital Sky Survey (SDSS) (74) is a 12 TB digital imaging survey

mapping 250,000,000 celestial objects with two orders of magnitudes greater sen-

sitivity than previous large sky surveys. ClustFind is a computationally-intense

65

SDSS application that detects galaxy clusters, the largest gravitation-bound ob-

jects in the universe. The application employs the MaxBCG cluster finding

algorithm (75), requiring 7000 CPU hours on a 500 MHz computer (76).

In this analysis, all survey objects are characterized by two coordinates,

ra and dec. All objects fit within a two-dimensional mesh of fields such that

each field holds objects in a particular square (Figure 3.9(a)). The goal is to

find, in each field, all cluster cores, each of which is the center-of-gravitation for a

cluster. To find the cores in a target field (e.g., F33, annotated with a ? in Figure

3.9(a)), the algorithm first finds all core candidates in the target, and all candi-

dates in the target’s “buffer,” or set of neighboring fields (in Figure 3.9(a), each

field in the buffer of F33 is annotated with a •). It then applies a core selection

algorithm, which selects cores from the target candidates based on interactions

with buffer candidates and other core candidates.

3.5.2 An FDM/RC Model for ClustFind

In this section, we describe the FDM/RC function, getCores, which, given

a target field entity, returns the target’s set of cores. getCores is shown as the

outermost function of Figure 3.9(b). The analysis would actually build a map

function using getCores as its body, in order to find cores for many targets.

getCores is a composite of five functions: getCands, on the right-side of the

diagram, creates A, a file of target candidates. The three left-most functions —

sqlBuffer, getCandsMap, and catCands— create D, a file of buffer candidates.

Finally, bcgCoalesce is the core selection algorithm; it takes in both buffer

66

F
11
 F
12
 F
13
 F
14
 F
15

F

21

F

22

F

23

F

24

F

25

F
31
 F
32
 F
33
 F
34
 F
35

F

41

F

42

F

43

F

44

F

45

F
51
 F
52
 F
53
 F
54
 F
55

ra

d
e

c

(a)

catCands

bcgCoalesce

g
e
t
C

o
r
e
s

target:

Field

sqlBuffer

getCands
getCandsMap

A:bcgF

C:set(bcgF)

D:bcgF

cores:set(Core)

allFlds:

set(Field)

B:set(Field)

(b)

brgLL

bcgLL

sqlBuffer

catBufferFiles

g
e
t
C

a
n
d
s

f:Field

H:Buffer

I:brgF

cands:bcgF

allFields:set(Field)

G:set(Field)

(c)

Figure 3.9. (a) ClustFind divides sky objects into a square mesh of buckets (b)
getCores, the body of the top-level ClustFind map function. (c) getCands, a
composite subfunction used in getCores.

candidates, D, and target candidates, A, returning a file of target cores, cores.

During the fold operation, cores is ingested as a set of Core entities (shown

at the bottom of Figure 3.9(b)). ClustFind analysis is carried out with a map

based on the getCores function we have just described, mapping each target

field to a set of cores.

This use-case illustrates three notable features not encountered in HepEx: (1)

it uses an SQL function, sqlBuffer. Given a target field (target) and the set of

all fields (allFields), sqlBuffer uses a spatial overlap query to compute the

target’s buffer fields, B. (2) it uses a nested map, getCandsMap, which iterates

over a dynamically created set of entities. This means that materialization of B

will create a new set of processes, each executing the contents of getCands to

map an element of B to an element of C. (3) getCores, as a whole, creates a

67

set of Core objects from one target, having a signature of the form α → set(β).

This pattern, where one entity maps to a set of entities, is actually quite common

and suggests the use of a nested relational model and query language(77). This

use-case suggests that extending the FDM/RC with nested types is an interesting

avenue for future exploration.

In Figure 3.9(c), we show getCands, a function used in getCores, and also

the basis of getCandsMap, which is also used in getCores. Given a target field, f ,

getCands returns a set of core candidates, cands. It is interesting to note that,

like getCores, a buffer calculation is needed to compute a field’s candidates —

resulting in the reuse of sqlBuffer in getCands. As an example, in computing

the candidates for F44, we compute its buffer, or the set of fields annotated with

a ◦ in Figure 3.9(a). Note that the bcgLL function within getCands is the

most expensive function to evaluate (76), making getCands the bottleneck in

getCores.

The use-case demonstrates two kinds of entity types (examples in paren-

theses): opaque (A), and transparent-opaque (target); set types (C); and all

four kinds of functions: atomic (bcgCoalesce) , composite (getCands), sql

(sqlBuffer) , map (getCandsMap). The atomic functions, which cause process

executions, are the solid boxes.

3.5.3 Memoization & Steering In ClustFind

Embedded in our description is this fact: getCands is called ten times per

field: twice in computing the field’s cores and once for computing the cores for

68

each of its eight neighbors. By modeling this workflow in a GridDB schema,

astronomers automatically gain the performance of memoization, without needing

to implement it.

Secondly, it is common for astronomers to point to a spot on an image map —

for instance, the using SkyServer interface(74) — and query for results from those

coordinates. As these requests translate to (ra, dec) coordinates, GridDB’s data-

driven steering service accomodates selective prioritization of interesting fields.

We describe the implementation of both of these advanced features in the next

section.

3.6 Performance Enhancements

GridDB’s model serves as a foundation for two other performance-enhancing

features: computational steering and memoization. We describe these two ser-

vices and how they apply to HepEx and ClustFind.

3.6.1 Computational Steering

Due to the conflict between the long-running nature of computation jobs and

the iterative nature of knowledge discovery, scientists have expressed a need for

computational steering (78), the ability to view and prioritize parts of a job while

it is running (63; 79).

In this section, we describe the steering of jobs through a relational interface.

We introduce steering with an example. Consider the autoview that was shown

69

at the top of Figure 3.8. The view presents the relation between pmas and

fImas values. The user has received one partial result, where pmas= 101. At this

point, the user may upgrade the priority of a particular tuple (with pmas= 103)

with an SQL UPDATE statement:

A: UPDATE autoview(gRn, fRn) SET PRIORITY = 2 WHERE pmas = 103

By defining a relational cover, GridDB allows prioritization of data, rather

than processes. The GridDB UPDATE statement is enhanced; one can update the

PRIORITY attribute of any view. This scheme is expressive: a set of views can

express, and therefore one may prioritize, any combination of cells in a relational

schema (the relational cover).

Next, we turn to how such a request affects query processing and process

scheduling, where GridDB borrows an technique from functional languages, that

of lazy evaluation (73). Any view tuple can always be traced back to entities of

the relational cover, using basic data lineage techniques (80). Each entity also

has a functional expression, which encodes all necessary and sufficient function

evaluations. Since function evaluations are associated with process execution,

GridDB can prioritize only the most relevant process executions, delaying other,

less-relevant computations.

As an example, consider the processing of the prioritization request in Figure

3.8. The only missing uncomputed attribute is fImas, which is derived from

from relational cover tuple f3. Figure 3.7 (see dashed arrows) shows that f3

is a result of function evaluation F6, which depends on the result function of

evaluation F3. The two processes for these evaluations are P3 and P6, which

70

are prioritized. Such lineage allows lazy evaluation of other irrelevant, possibly

function evaluation, such as any involving atlsimF.

In summary, the FDM/RC, with its functional representation of workflows

and relational cover, provides a data-centric, tabular interface for process priori-

tization.

3.6.2 Memoization

Recall from Section 3.4.1 that function evaluations are stored in memo ta-

bles. Using these tables, memoization is simple: if a function call with the same

entities has been previously evaluated and memoized, we can return the mem-

oized entities, rather than re-evaluating. This is possible if function calls, and

the programs which implement them, are deterministic. Scientific programs are

often deterministic, as repeatability is paramount to experimental science (81).

However, if required, our our modeling language could be extended to allow the

declaration of non-deterministic functions, which may not be memoized, as is

done with the VARIANT function modifier of PostgreSQL (82).

3.7 Validation

To demonstrate the effectiveness of steering and memoization, we conducted

validation experiments with our prototype GridDB implementation and the

small cluster testbed of Figure 3.10. We implemented a java-based prototype of

GridDB, consisting of almost 19K lines of code. Modular line counts are in Table.

71

Module(s) LOC Module(s) LOC

Rqst Mgr. & Q.P. 1495 Catalog Routines 756
Scheduler 529 Data Structures 7207
Client 7471 Utility Routines 1400

Total 18858

Table 3.1. LOCs for a java-based GridDB prototype.

3.1. The large size of the client is explained by its graphical interface, which we

implemented for a demonstration of the system (83). The system was built using

Condor (16) as its process-centric middleware; therefore, it allows access to a

cluster of machines. An alternative would be to use Globus, which would enable

it to leverage distributively-owned computing resources. The change should not

be conceptually different, as both are process-submission interfaces.

Measurements were conducted on a small cluster consisting of six nodes

(Figure 3.10). The GridDB client issued requests from a laptop while the

GridDB overlay, a “Condor Master” batch scheduler (16) and 4 worker nodes

each resided on one of 6 cluster nodes. All machines, with the exception of the

client, were Pentium 4, 1.3 GHz machines with 512 MB RAM, running Redhat

Linux 7.3. The client was run on an IBM Thinkpad Mobile Pentium 4, 1.7 GHz

with 512 MB RAM. The machines were connected by a 100 Mbit network. This

chapter presents simple validation on a small cluster. In the next chapter, we ex-

tend these results with a more realistic validation of GridDB on a large, industrial

cluster.

72

worker

worker

worker

GridDB

Client

Condor

master

D

M

L

t
u

p

 l
e

s

GridDB

f
i
l

e

s

p
r

o

c
-

s
p

e

c

s
,

f
i
l

e

s

worker

Figure 3.10. Experimental setup.

Validation 1: Computational Steering

In the first validation experiment, we show the benefits of steering by compar-

ing GridDB’s dynamic scheduler, which modifies its scheduling decisions based on

interactive data prioritizations, against two static schedulers: batch and pipelined.

In this experiment, an analyst performs the data procurement of Section 3.2, in-

serting 100 values of pmas into simCompareMap. 200 hundred seconds after

submission, we inject a steering request, prioritizing 25 as yet uncomputed f tu-

ples:

UPDATE autoview(gRn, fRn) SET PRIORITY = 2 WHERE 131 ≤pmas≤ 150

The batch scheduler evaluates all instances of each function consecutively,

applying genF to all pmas inputs, and then to atlsimF, and then atlfastF.

The pipelined scheduler processes one input at a time, starting with pmas=1,

and applying all three functions to it. Neither changes its schedule based on

priority updates. In contrast, the GridDB dynamic scheduler does change its

computation order as a user updates preferences.

In Figure 3.11, we plot the Number of Prioritized Data Points returned vs.

time. As can be seen in the plot, GridDB(dynamic) delivers all 20 interesting

73

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20

T
im

e(
s)

Number of Prioritized Data Points

Computational Steering

dynamic
pipelined

batch

Figure 3.11. Validation 1, Computational Steering for HepEx.

results within 1000s. In contrast, the static pipelined and batch schedulers require

2608s and 3677s, respectively. In this instance, GridDB cut “time-to-interesting-

result” by 60% and 72%, respectively.

The performance gains are due to the lazy evaluation of the expensive func-

tion, atlsimF, as well as the prioritization of interesting input points, two effects

explained in Section 3.6.1.

Validation 2: Memoization Speedup

We validated the GridDB memoization implementation by testing how well it

exploits ClustFind memoization opportunities (from Section 3.5). We observed

that when memoization is used, system throughput speeds up by 6.13 relative

74

to when it is absent. Note that process-centric middleware typically does not

provide a memoization service.

In these experiments, we used GridDB to drive cluster core search for square

meshes of varying size. The smallest, of size 5, is shown in Fig. 3.9(a). Each field

was of length 0.1×0.1 degrees. Recall from Section 3.5.3 that the GridDB mod-

eling of ClustFind analysis presents a prime opportunity for memoization, as

the most expensive functions are also repeated many times.

As shown in Fig. 3.12, an analysis using memoization (memo) out-performs an

analysis without memoization (noMemo) for meshes from sizes 6 to 19. Meshes

of size 5 have no memoization opportunities; we can only calculate one target

(each target requires a 5 by 5 buffer around it for computation). At mesh size

19 (361 fields), a memoized analysis requires 5041 seconds while one without

memoization requires 30894 seconds — a speedup of 6.13.

3.8 Related Work

In this section, we survey alternatives to GridDB’s data-centric approach to

supporting scientific workflows. The major alternatives fall into three categories:

process-centric middleware, non-data-centric workflow systems and traditional

database systems. As we will argue in this section, GridDB is the first system

to support a combination of three features. First, GridDB employs the use of

schemas and a 2-phase programming model (see Chapter 3) for representing fun-

damental characteristics of an incoming workload. Second, unlike most other

workflow systems, GridDB’s schema paradigm allows the modeling of data struc-

75

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12 14 16 18 20

Jo
b

C
om

pl
et

io
n

T
im

e(
s)

Mesh Size

Memoization

memo
noMemo

Figure 3.12. Validation 2, Memoization in ClustFind

tures in addition to workflow structures. GridDB exploits this added information

to improve user experience. Finally, GridDB is designed and implemented to sup-

port massively parallel computer architectures, as opposed to small-scale desktop

architectures.

The first category we discuss is process-centric middleware. This category of

software includes batch schedulers such as Condor (16), PBS (84), SLURM (31),

Torque (34) and cluster federation software such as Globus (17). These systems

provide a streamlined process submission interface, essentially allowing users to

submit processes to one machine, even though they will ultimately be dispatched

to any of a large number of nodes within a massively parallel computer (such as a

cluster). These systems often also provide traditional operating systems services

for massively parallel computers; for instance, the matching of work to resources,

or queuing services that help to avoid thrashing. Process-centric middleware

76

systems are a boon to scientists working on large computers. Without them, users

would have to manage each job and node separately. As the practice of submitting

large batches of computation becomes commonplace, however, the shortcomings

of process-centric middleware become apparent. In particular, their abstractions

— centered around “processes,” or program executions — are probably too low-

level for a scientist who is focused synthesizing large collections of processes.

This shortcoming has been partially remedied through the advent of work-

flow systems, which are often built on-top of process-centric middleware. Most

fundamentally, workflow systems allow scientists to structure collections of com-

putations by representing dependencies amongst computations. A collection of

computations and their dependencies can be represented through directed acyclic

graphs, which are synonomous with the term “workflow.” Equipped with these

representations, workflow systems can automatically enforce ordered execution

of processes. They can also provide many of the value-added services that we

mention in this chapter, including the tracking of lineage.

Workflow management systems for “grid computing” represent a vibrant sec-

tor of computer science research. For example, (85) offers a survey of more than

30 workflow systems, languages and tools. Some of the more well-known systems

include Chimera (76; 86), DAGMan (87), Ptolemy (88) and MyGrid (89). Rel-

ative to these systems, GridDB was the first system to advocate data-centricity,

an understanding of data structure within workflows in addition with workflow

structure. As shown earlier in this chapter, data-centricity gives GridDB addi-

tional information over workflow structure and allows it to further improve user

experience.

77

The final category of alternatives is the traditional Database Management Sys-

tem (DBMS). Traditional DBMS’s pioneered the use of a 2-phase programming

model for data management and therefore provide good features for querying

large collections of structured data. In fact, the techniques of traditional DBMS’s

have seen much recent success. On a small-scale, scientists have implemented

domain-specific lightweight database utilities that allow users to quickly analyze

small datasets using simple relational operations such as select and project. Ex-

amples of these systems include Fitsviewer (69) in Astronomy and Root (70) in

Physics. On a large-scale, the Sloan Digital Sky Survey (SDSS) has proven the

scalability and advantages of using DBMS’s to store, manage and serve large

scientific archives. SDSS has revolutionized the scientific process itself, enabling

scientists to “outsource” data collection and cleaning to another party and fo-

cus solely on data analysis. It has inspired many scientists to learn SQL, an

undertaking that many scientists were previously reluctant to commit to.

While traditionally DBMSs are well-suited for supporting the analysis task of

scientists, their ability to support earlier phases of processing: data generation

and transformation (recall the KSC of Chapter 2), are limited. In particular,

there is minimal support in existing implementations for running large collec-

tions of processes expressed in traditional procedural programming languages

(Fortran/C/C++/Java) on massively parallel computers. In addition, DBMSs

lack abstractions for representing workflows and therefore providing services sur-

rounding workflows.

One system, Zoo (90; 91), from the University of Wisconsin, is worthy of

special mention. Zoo, which is a Desktop Experiment Management Environment

78

is the only other system to our knowledge to incorporate both workflow and

database structure in its model for schemas. GridDB and Zoo bear many simi-

larities; for example, Zoo also provides a data model (Moose) and query language

(Fox) for representing and manipulating scientific worfklows and data (92). Also,

the notions of folding and unfolding file data are addressed through the Frog and

Turtle object-to-file mapping framework (93).

Unlike GridDB, however, Zoo was designed before the proliferation of com-

modity clusters and therefore was focused towards the desktop, rather than mas-

sively parallel architectures. Additionally, GridDB uses the simpler, relational

data model, as opposed to an object-oriented data model (92), as is used in Zoo.

We believe this simplicity to be an advantage and have argued in Section 3.2.2

why the model is sufficient for modeling an important subset of data, the inputs

and outputs. Finally, GridDB leverages its knowledge of both workflow and data

to provide computational steering services, which are unavailable in Zoo.

3.9 Chapter Summary

In this Chapter, I have presented GridDB, a DSWMS that provides a rela-

tional interface, and data-centric services for job submission and management.

GridDB exploits two key principles: first, imperative programs can be modeled

as typed-functions and second, that a key subset of data, the relational cover,

can be modeled as relations, and used as a window to the full data set. As such,

I have developed a data model (FDM/RC) and query language (a DDL and a

DML) for representing workflows and accessing their data through a relational

79

interface. I have demonstrated the use of GridDB in modeling High Energy

Physics and Astronomy use cases and have validated these ideas by measuring

a prototype implementation in a small cluster environment. The next chapter

experiments with the use of GridDB on a large cluster with hundreds of nodes.

80

Chapter 4

GridDB in a Realistic

Environment

The previous chapter described the design and implementation of GridDB,

a Data-Centric Scientific Workflow Management System (DSWMS). As part of

the GridDB project, I conducted a “test deployment” at Lawrence Livermore

National Laboratories (LLNL). This deployment was done in conjunction with

several astrophysicists at the lab. I had several goals in mind: to further verify as-

sumptions about science applications, to uncover gaps in language expressibility,

and to identify performance and scalability barriers encountered by GridDB. The

effort involved porting GridDB and several scientific codes onto a large cluster

and then executing workloads using GridDB. In this chapter, I focus on one repre-

sentative investigation within the test deployment. This particular investigation

reveals a fundamental conflict between correctness and scalability.

The conflict arises because scientific programs routinely behave in a way that

81

undermines data provenance and memoization. A naive solution to this prob-

lem involves issuing a large number of metadata operations upon a cluster’s

underlying file system. Such a solution encounters scalability barriers because

conventional file systems do not offer adequate metadata throughput. In the sec-

ond half of this chapter, I examine an alternative solution that reduces metadata

load. These reductions can be achieved with the help of user-provided hints. I

run a set of scalability experiments that indicate improvements when using the

alternative approach. The results motivate the ensuing chapter, which proposes

a comprehensive scheme to improve GridDB’s scalability.

The remainder of this chapter is organized as follows. Section 4.1 introduces

the environment and scientific application that we use, including two alterna-

tive workflow models for the application. The next two sections, 4.2 and 4.3,

recount our efforts in and lessons from executing the two workflows. Section 4.4

summarizes the chapter.

4.1 Deployment Environment and Application

We begin with a description of the science application and deployment envi-

ronment. While our overall evaluation involved applications from different do-

mains (including biology, biochemistry and national security), we focus here on

the SuperMACHO astrophysics application to illustrate our findings. The Super-

MACHO application analyzes data captured by a telescope at the Cerro Tololo

Inter-American Observatory(CTIO) in the mountains of Chile. The SuperMA-

CHO application had two characteristics that made it appealing as a testbed

82

application. First, collaboration scientists felt that data-centric services such as

data provenance, memoization, and computational steering were promising pro-

ductivity enhancements and so were interested in evaluating GridDB’s viability.

Secondly, the application has high resource demands, providing an opportunity

to test GridDB’s scalability. Processing a single night’s worth of telescope images

takes as much as 100 CPU days of compute power (using current CPU’s).

The SuperMACHO project seeks to discover and catalog Massive Compact

Halo Objects (MACHOs). MACHOs can be found by observing gravitational

microlensing events, where the MACHO under observation passes in front of a

luminous object, brightening it for a brief moment in time. These events can

be detected by characterizing the brightness of sky objects over time. To mea-

sure objects’ brightness, telescope images containing the objects are continually

captured and analyzed through an image processing workflow.

A graphical representation of the application is shown in Figure 4.1. Raw

images from the CTIO telescope are passed into the main SuperMACHO image

processing codes, shown within the shaded box. These image processing codes

analyze bitmapped images and extract objects, which are then loaded into a

database for further analysis. The image processing codes were written in a

combination of C and perl, spread across 5 separate packages. Each package

has, on average, 10,000 lines of code. Each image requires an average of 18,905

seconds to process and as many as 500 images are processed each night.

To obtain the necessary computational power, we executed these pipelines

on the Multiprogrammatic Capability Cluster (MCR), a large (11.2 Teraflop)

linux cluster with 1152 nodes, each with two 2.4 GHz Pentium 4 Xeon processors

83

...

...

.
.
.

.
.
.

MCR: a 1152 node

cluster at LLNL

SuperMACHO

Image

processing

workflow

CTIO

telescope

in Chile

into a

database

*

*

*

*

Celestial

Objects

raw image

files

object

catalogs

workflows

executed on

Figure 4.1. Deployment Scenario.

and 4 GB of memory. When we started our work in 2004, MCR was ranked as

the 11th fastest computer in the world. Since MCR was shared by many users

simultaneously, we were unable to run our pipelines on the entire cluster. The

maximum number of nodes that we could acquire at once was 296. Fortunately,

this allocation size was large enough for us to start identifying the scalability

issues that DSWMSs face.

84

4.1.1 Application Modeling

There are many options for modeling the workflow of a scientific applica-

tion. A key question that a modeler1 faces concerns the granularity at which a

workflow should be modeled. The advantages of finer-grained models include in-

creased availability of intermediate data products for memoization, finer-grained

provenance tracking and finer-grained control during computational steering. The

advantages of coarser-grained models include decreases in modeling burden and

middleware overhead. In this section, we describe two workflow models within

the SuperMACHO image processing pipeline. The first is a coarse-grained model

spanning the entire computation from images to objects. The second is a finer-

grained model covering the first half of the computation at a fine granularity.

The coarse-grained workflow is shown in Figure 4.2. The workflow consists

of two kinds of programs. First, the MSC program analyzes an input image and

creates 16 intermediate filesets (RedImg1,...,RedImg16) and one Calibration Im-

ages fileset. In addition to the telescope image, MSC requires a set of Reference

Images and command-line parameters (params) as input. Each RedImgn fileset

from MSC is then fed into a separate PHOTi (with i ∈ 1, ..., 16) program, re-

sulting in fan-out in the abstract workflow. Each PHOTi program also uses the

Calibration Images and outputs another fileset (SkyObjectsi) storing objects that

may be ingested into a database. In terms of computational requirements, each

MSC process requires an average of 569 seconds to execute while each PHOTi

process requires an average of 1146 seconds to execute. The average time to exe-

1Recall from the previous Chapter that the modeler is responsible for defining workflows.

85

MSC

Telescope

Image

RedImg

1

PHOT

1

SkyObjects
1

Reference

Images

Calibration

Images

RedImg
16

PHOT
16

SkyObjects
16

Calibration

Images

...

a
fileset

params
params

params

Figure 4.2. Coarse-grained SuperMACHO Image Processing Workflow

cute one workflow process is 1112 seconds (a weighted average over the 16 PHOT

processes and 1 MSC process).

Figure 4.3 depicts the fine-grained workflow, which is a refinement of the

MSC program in the coarse-grained workflow. As such, the workflow transforms

a telescope image into 16 RedImgn filesets, each suitable as an input into the

PHOT program. For experimental efficacy, the workflow does not include the

PHOT program. The workflow’s topology is a linear pipeline with 3 programs,

MSC1, MSC2 and MSC3. Each program takes in a set of reference images, a set

of parameters, and a “primary input.” The primary input is a fileset either exter-

nally provided by the user or created by an upstream workflow program. MSC1,

MSC2 and MSC3 require 369, 164 and 36 seconds to execute on a single image,

respectively (the sum of the three equals the runtime of MSC, cumulatively).

In contrast, relative to the coarse-grained workflow, the fine-grained workflow

has two characteristics that make it more challenging for GridDB to execute.

86

MSC

1

MSC

2

Telescope

Image

MSC

3

to

PHOT

Reference

imgs

Reference

imgs

Reference

imgs

params

params

params

Figure 4.3. Fine-grained workflow. A refinement of MSC.

First, the average runtime of a process within this workflow is only 190 seconds,

about 6 times shorter than the average runtime of a process in the coarse-grained

workflow. The shorter runtimes mean that a given set of compute-nodes can

execute processes at a higher throughput. Second, because workflow processing

involves the alternating use of GridDB and compute-node resources, faster exe-

cution by compute-nodes results in higher demands on GridDB, increasing the

likelihood that GridDB will become a bottleneck.

87

4.2 Coarse-Grained Model Execution

Having described two sample workflow models within the SuperMACHO ap-

plication, we continue now with our experiences executing the coarse-grained

workflow. This section starts by illustrating a fundamental problem to providing

data provenance and memoization: a program’s routine activity of writing out-

put files may change the directory structures that hold its input files. Changes to

these structures disrupt GridDB’s ability to provide data provenance and memo-

ization. A simple scheme to circumvent this problem is to use a deep linking file

transmission scheme, which preserves file data in the face of a modifying work-

flow program. Unfortunately, the deep linking scheme incurs high performance

penalties due to a strong reliance on file system metadata operations. Hence, we

propose a second transmission scheme, selective deep linking, which alleviates the

key performance bottleneck by reducing file system traffic. Experiments show

that selective deep linking improves performance significantly. The key result of

the section, that file system traffic management is key to providing scalable data

preservation, drives the work of Chapter 5.

4.2.1 Fileset Preservation

We start by motivating the need for preservation and a deep linking file trans-

mission scheme. In the GridDB implementation described in Chapter 3, file trans-

mission was performed through root-linking, which leaves file-based input data

vulnerable to modification. We illustrate the mechanism for these modifications

through an example (shown in Figure 4.4(a)).

88

F workdir

A

B

1

2

3

G workdir

A

B

1

2

3

F workdir

A

B

1

2

3

G workdir

A

B

4
 4

B
A
 B is a link to directory A

X
 Y
 Y is a link to file X

X
 Directory X

Y
 File Y

Legend

(a) Root-Linking

(original)

fast, but allows cannibalization

(b) Deep-Linking

(used by baseline)

still fast, but safeguards against

cannibalization

Creation of file 4

cannibalizes fileset B

Creation of file 4 SAFE

Figure 4.4. Linking Schemes in the previous and current implementation.

Consider the file system interaction between two workflow processes F and

G, where G uses file data that is generated by F. After F executes, G must be

given access to some of F’s output files. After F’s execution, its working directory

contains 2 directory trees, A and B. The roots of these trees are represented as

white boxes in the left cylinder of Figure 4.4(a). Directory A contains two files,

1 and 2 and directory B contains one file, 3. The 3 files are represented by clear

circles in the left cylinder. After the execution of F and before the execution

of G, the two filesets, embodied by the directory trees rooted at A and B, are

89

transmitted into the working directory of G. Using the root-linking transmission

scheme, each of the filesets are transmitted through a single link to the root of

the fileset. These links are represented by the dotted boxes in the cylinder on

the right, which feature arrows connecting the links to their targets. Using these

links, G may read all files under A and B.

A problem arises, however, if G needs to add a file to a path that is “covered

by” one of the input filesets; for example, a file with the path B/4. By adding this

file, G will change the composition of the fileset rooted at B. Before execution,

it contains only the file 3, but after execution, it will contain the files 3 and

4. The file 4 is represented with a black circle. Unlike ClustFind and HepEx

(the examples of the previous chapter), the workflow programs of SuperMACHO

modify their input filesets in this manner.

Cannibalizing an input fileset by adding files to it causes two problems. First,

as an input to process G, B is part of its provenance. By changing B, the prove-

nance of G has lost its fidelity. Second, a change in B undermines GridDB’s

ability to reuse it during memoization. If another process H reads the fileset un-

der B before G’s execution, it will be different than if H reads it after G’s execution.

Therefore, such modifications would render H’s execution non-deterministic.

To simultaneously preserve file data and accommodate this sort of modifying

behavior with workflow programs, one must make copies of modified objects. In

our example, if a copy of fileset B is made prior to G’s execution, F’s copy of B

remains unmodified after G’s execution. The simplest scheme for providing this

data preservation is just to copy the directory structures, in their entirety, from

the working directory of F to that of G. While such a scheme achieves correctness,

90

the performance and storage overheads would be too high due to the large size

of scientific filesets. For example, the filesets passed from MSC to PHOT can

contain gigabytes of data and intermediate filesets of this size are not uncommon

amongst scientific applications. Additionally, a typical job request may execute

a workflow hundreds of times, amplifying these overheads.

An alternative scheme called deep linking can avoid the overheads of copying

while still preserving input filesets. Deep linking transmits directories through

copies, but transmits files through links. As a result, file additions can be carried

out without modifying the contents of input filesets because they are made to a

separate copy of a directory. Files, while shared, are marked as read-only (using

chmod) to protect them against accidental modification by workflow programs.

Overheads are vastly reduced since files, which account for most of the bytes in

a fileset, are shared between working directories.

Figure 4.4(b) shows the application of deep linking to the previous example.

Directories A and B are copied from the working directory of F to G while files 1, 2

and 3 are transmitted through links and then marked as read-only. Now, as pro-

cess G adds the file 4 to directory B, the original copy of directory B (in F’s working

directory) remains unaltered. In the next section, we measure the scalability of a

GridDB server that executes workflows using a deep linking transmission scheme.

4.2.2 Deep Linking Experiments

To understand the scalability of GridDB, we conduct several trial runs on

MCR. In each run, GridDB (which runs on a single node) executes the coarse-

91

grained workflow on a set of cluster nodes ranging in size from 4 to 256. This

section shows representative results from one of the 128 node runs. In these

experiments, we observe that GridDB, using deep linking, could be a bottleneck

to execution. In particular, the cost of deep linking is prohibitive and impedes

GridDB’s ability to dispatch processes onto compute nodes quickly. As a result,

a scientist’s ability to speed up a computation by adding computation nodes to

her cluster is limited by GridDB. A profile of the run in this section suggests

avenues for improvement, which we pursue in later sections.

Setup

Because MCR is a shared facility, dedicated use of its nodes must be acquired

through a reservation system. To emulate a cluster containing n compute-nodes,

a block of n + 1 nodes is reserved. Within such a block, one node is designated

as a GridDB node and the remaining n as compute nodes. After securing a

reservation, a request to process numImages through the coarse-grained work-

flow is submitted. Each image is processed independently and in parallel with the

other images. Each process in each workflow goes through fold and unfold stages,

which are handled by GridDB, and also an execution stage, which is handled by

a compute-node. To exploit concurrency, GridDB processes as many as 16 folds

and unfolds at a time. Because reservations are short (10 hours) and difficult to

come by, and multiple experiments were conducted in each allocation to fully-

utilize them, expirations sometimes occurred before runs completed. Even so,

these truncated experiments offered enough concrete data to help characterize

system performance.

92

Throughout each run, the number of compute-nodes utilized is monitored.

Compute-node utilization is used as a gauge of GridDB’s performance. As de-

scribed in the previous chapter, each process within the workflow must be pro-

cessed by both GridDB (fold and unfold) and by a cluster node (exec). High

compute-node utilization is an indication that GridDB is performing well since it

is performing its processing fast enough to keep the compute nodes busy. Alter-

natively, if compute nodes are scarcely utilized, GridDB is causing a bottleneck

in workflow execution.

File system data is handled through a Panasus storage appliance with 20

shelves, 3 directors and 8 storage blades. Dedicated access to the file system is

not possible since it is shared by all of MCR’s nodes and cannot be reserved. To

minimize contention for storage resources, all of our experiments were carried out

between 6pm and 6am, when these resources were the least loaded. Because the

file system turns out to be the main bottleneck, our work in the next chapter

focuses on taking measurements in an environment where network and file system

resources are isolated from external interference.

Results

We continue by describing our sample run of GridDB executing the coarse-

grained workflow using deep linking. As previously mentioned, this run is ex-

ecuted on a cluster with 128 compute-nodes. The run’s job request consists of

256 images to be processed through the coarse-grained workflow. Recall that the

coarse-grained workflow contains MSC and PHOT processes and that each MSC

process requires an average of 569 seconds to execute while each PHOT process

93

requires an average of 1146 seconds. If the workload is carried out to completion,

GridDB would execute a total 256 MSC processes and 4096 (16∗256) PHOT pro-

cesses. In this run, GridDB in fact executes all 256 MSC processes but because

the cluster allocation expires before completion, it only executes 1200 PHOT

processes. Despite early termination, the results allow us to characterize system

performance while running both MSC and PHOT processes.

Compute-node utilization for this run is shown in Figure 4.5. The GridDB

scheduler runs all MSC processes before running any PHOT processes. As a

result, the utilization profile can be split into two separate stages based on what

type of process is executing at the time. During stage 1, between 0 and 5713

seconds, the compute nodes are mostly executing MSC processes. During stage

2, between 5714 and 14554 seconds, the compute nodes are mostly executing

PHOT processes. During stage 2, an average of 50.2 (39%) nodes are utilized

whereas during stage 1, only an average of 24.2 (18.9%) nodes are utilized. Over

the entire run, an average of only 40 nodes are utilized at any given time while a

maximum of 66 nodes are utilized.

These utilization rates are far from ideal. They suggest that if a scientist

executes this workflow through a single-node implementation of GridDB, it would

not be beneficial for her to employ a cluster of more 66 nodes because GridDB

cannot do its work fast enough to keep more than 66 nodes busy.

Through profiling this and other executions, the bottleneck was shown to

be GridDB’s dependence on the underlying file system. This was surprising,

considering that we only used industrial grade storage appliances (the only ones

available on MCR). Like most file systems, unfortunately, industrial appliances

94

RUN 1

coarse workflow, deep linking

(LINEAGE: ~\research\rr.xls#10.69_events)

0

16

32

48

64

80

96

112

128

0
 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000

time(s)

n
o

d
es

 u
ti

liz
ed

stage 1: (MSC)
 Stage 2: (PHOT)

Figure 4.5. Run 1: Coarse-Grained Workflow with Deep Linking (128 compute
nodes)

are optimized for streaming IO performance. Little attention is paid to increasing

metadata operation throughput, and metadata operation throughput is key to

performing deep links quickly.

Deep links require a large number of operations such as ln, stat, readdir,

mkdir and chmod. Profiling reveals that 99% of the time spent in the fold and

unfold stages are spent in these calls. The volume of system calls is large, 2715

for each MSC process and 1484 for each PHOT process. Given that as many as

16 processes were being handled concurrently, the storage appliances could not

perform adequately. The difference in call counts also explains why utilization

95

is lower in stage 1 than in stage 2. GridDB handles MSC processes in a slower

manner because of the larger number of metadata operations.

While this experiment shows results for one particular file system, experiments

on MCR’s other file systems (including a Lustre file system and a NetApp 960)

yield similar results. The next chapter reports on additional experiments run in

an isolated environment. The results of those experiments further corroborate

the file system as the primary bottleneck.

Given that GridDB’s poor performance can be traced to its strong dependence

on file system metadata calls, we turn our attention to reducing this dependence.

In the next section, we introduce an alternative transmission protocol that man-

ages to reduce metadata operation usage while still preserving filesets.

4.2.3 Efficient File Preservation

Our alternative approach, called Selective Deep Linking, is a more efficient

transmission scheme that is based on the simple observation that a fileset that

never has files added to it does not need to be deep linked. Rather, it is sufficient

to transmit these filesets with a single link to the root. Using this optimization,

metadata operations may be reduced substantially. A read-only directory tree

does not need to be traversed and its files do not need to be linked individually or

marked as read-only. To understand which filesets have files added to them and

which do not, GridDB may accept hints from the modeler. This chapter confines

itself to illustrating the basic concept of selective deep linking, deferring a full

specification of the modeler interface to the next chapter.

96

F workdir

A

B

1

2

3

G workdir

A

B

1

2

3

4

F workdir

A

1

2

G workdir

A

B

3

B

3

4

Creation of file 4

ALLOWED

Creation of file 4

ALLOWED

(a) Deep-Linking

always copy directories

and link files

(b) Selective Deep-Linking

link to read-only directories

deep link modificed directories

Figure 4.6. Examples of (a) Deep Linking and (b) Selective Deep Linking

Figure 4.6 juxtaposes the use of selective deep linking in our running example

(b) against deep linking (a). During workflow definition, a modeler states in the

function definition of program G that its input fileset, represented by the directory

tree under A, will not be modified while the fileset under directory B will have

files added to it. As such, the fileset under A is transmitted with a single link to

the root while the fileset under B is transmitted through a deep link. During the

execution of G, file B/4 can still be created without cannibalizing any inputs, but

the number of file system object creations is reduced from 3 links and 2 directory

creations to 2 links and 1 directory creation. Likewise, the number of metadata

operations used to perform the transmission is also reduced.

Selective deep linking achieves substantial metadata operation reductions in

the SuperMACHO coarse-grained workflow. File system operations for the two

97

Stage Deep Linking Selective Deep Linking

MSC 2715 173

PHOT 1484 142

Table 4.1. Comparison of Algorithms with respect to linking requirements.

workflow programs are shown in Table 4.1. Selective deep linking reduces file

system operations by an order of magnitude for both workflow programs. File

system operations counts are reduced from 2715 to 173 in MSC and from 1484

to 142 in PHOT.

4.2.4 Selective Deep Linking Experiments

We continue in this section by showing a sample run with GridDB executing

the coarse-grained workflow using selective deep linking. This run illustrates

that with selective deep linking, GridDB spares much of the file system overhead

incurred by deep linking and is able to support at least 4 times as many compute-

nodes as it can with ordinary deep linking.

The run presented here was performed on a cluster of 256 compute-nodes.

The workload request consists of 512 images to be processed through the coarse-

grained workflow. Note that this is twice as many nodes and twice as many images

as in the previous run. The workload request consists of 512 MSC processes and

8192 PHOT processes. In this case, the run was able to complete all 512 MSC

and 4396 PHOT processes before termination.

The compute-node utilization for this run is shown in Figure 4.7. Recall that

Stage 1 consists of MSC executions while Stage 2 consists of PHOT executions.

98

Figure 4.7. Run 2: Coarse-Grained Workflow with Selective Deep Linking (256
nodes)

During stage 1, between 0 and 2304 seconds, the compute nodes are mostly

executing MSC processes. During stage 2, between 2305 and 20510 seconds, the

compute nodes are mostly executing PHOT processes. Node utilization is near-

perfect in both stages. During stage 1, an average of 252.4 nodes (98.5%) are

utilized while in stage 2, an average of 254.2 nodes (99.3%) are utilized.

These utilization rates are near-optimal. Essentially, the experiments indi-

cate that a single-node implementation of GridDB, when operating with selective

linking, does not become a bottleneck with a cluster size of 256 nodes for this

application. Since compute nodes are nearly always utilized in this case, it is

likely that GridDB also performs well with even larger cluster sizes. We were

99

unable to test this hypothesis, however, because larger blocks of nodes were too

difficult to reserve.

4.2.5 Summary

In this section, we made several observations while executing a realistic science

application with the coarse-grained model on large clusters. First, we identified

the need for fileset preservation in order to support data provenance and mem-

oization. Second, we observed that a naive deep linking transmission scheme

caused a single-node implementation of GridDB to become a scalability bottle-

neck in large cluster settings. The bottleneck was traced to an over-zealous use

of file system metadata operations. Finally, we illustrated that a selective deep

linking transmission scheme, which uses metadata operations in a more judicious

manner, is able to substantially improve GridDB’s scalability. These results in-

dicate that the key to providing scalable fileset preservation is careful use of file

system metadata operations. In the next chapter, we act further on this obser-

vation by proposing a comprehensive framework that allows modelers to specify

hints.

4.3 Fine-Grained Model Execution

In the previous section, we showed that by using selective deep linking on a

workload based on the coarse-grained model, we are able to achieve near-perfect

utilization on a 256 node cluster. In this section, we “stress test” GridDB by

100

imposing a more challenging workload based on the fine-grained model. The

stress test shows that even with the benefits of selective deep linking, GridDB

may still be a bottleneck. Again, scalability issues are traced back to insufficient

file system metadata performance. The work in this section motivates our efforts

to parallelize file system metadata in the next chapter. We begin the discussion

by highlighting differences between the fine-grained and coarse-grained workflow.

We then present experimental results from a run of the fine-grained workflow on

a large cluster.

Figure 4.8 summarizes the characteristics of the fine-grained model. The

fine-grained model is more challenging to GridDB when compared to the coarse-

grained model. The increased challenge presents itself in two ways. First, the

component processes run for a shorter amount of time (369, 164 and 36 seconds),

an average of 190 seconds. This average is roughly 6 times less than the average

of 1110 seconds using the coarse-grained model. These shorter runtimes translate

into more frequent demands upon GridDB and increase its likelihood of being a

bottleneck. Second, the fine-grained model requires roughly three times as many

file system operations as the coarse-grained model per process during selective

deep linking transmission. The fine-grained modeled requires an average of 450

metadata operations relative to an average of 151 in the coarse-grained case.

4.3.1 Fine-Grained Model Experiment

As in previous sections, we present one representative experiment to illustrate

GridDB’s performance on the fine-grained workflow. The run presented executes

101

MSC
1

369s

310 FS Ops

MSC
2

164s

455 FS Ops

Stage 1

Stage 2

MSC

3

36s

585 FS Ops

Stage 3

Figure 4.8. Fine-grained model characteristics.

on a cluster with 256 compute-nodes. The workload request consists of 512 images

to be processed through the fine-grained workflow. Complete execution consists

of 512 processes on each of the three programs, MSC1, MSC2, and MSC3. Unlike

the previous runs, all 512 processes for each program are completed.

Compute-node utilization for this run is shown in Figure 4.9. Similar to

previous runs, this run can be split into stages; in this case, three (i.e., one for each

program). As shown in the Figure, node utilization rates depend heavily on the

processes being executed. Generally, the longer the time to execute the program

of a particular stage, the more nodes are utilized. In stage 1, an average of 226

nodes are utilized because of the long 369 second runtime of MSC1 processes. In

contrast, stage 3 node utilization averages just 22 nodes due to the short 36 second

runtime of MSC3 processes. In stage 2, where processes run for a moderate 164

seconds, we observe an intermediate utilization rate of 128 nodes. These results

again show that GridDB’s scalability could be a concern on more challenging,

but realistic, workloads.

102

RUN 3

fine workflow, selective deep linking

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

0
 500
 1000
 1500
 2000
 2500

time(s)

Stage 1a: (MSC

1

)

Stage 1b: (MSC

2

)

Stage 1c: (MSC

3

)

Figure 4.9. Run 3: Fine-Grained Model with Selective Deep Linking

As with previous runs, we profile GridDB to determine where most of its time

is spent. Like in those cases, the majority of execution time is spent performing

metadata system calls (85-99%, depending on the stage). The results in this

section demonstrate two points. First, GridDB’s performance must be managed

carefully if one is to fully exploit large clusters. Second, even with selective

deep linking, file system metadata performance continues to be a bottleneck. We

address these issues in the next section by parallelizing metadata requests across

multiple file systems to increase metadata throughput and ultimately, GridDB’s

throughput.

103

4.3.2 Behaviors of Other Scientific Workflows

In light of the observation that file creation behavior would complicate preser-

vation and therefore impact the scalability of GridDB, we profiled several other

workflows to affirm the finding. These included another workflow from Super-

MACHO, and two from proteomics (94) and biochemistry (95) projects. In these

applications, we observed the same pattern: the workflows add files to a common

workspace, and therefore destroy prior images of the workspace. We also discov-

ered, however, that programs sometimes also modify the files that they use as

input. For example, sometimes a program changes a file in place or overwrites

an unrelated file that happens to use the same name as an existing one. As a

result, a solution to providing preservation must copy files that face modification

in addition to directories.

4.4 Chapter Summary

In this chapter, I described experimental results from an evaluation of GridDB

on a testbed at Lawrence Livermore National Labs. The results were based

on runs of an astrophysics workflow over telescopic data using a large cluster.

During these runs, I identified a scalability bottleneck in GridDB that arises while

trying to preserve file data in the face of workflow program modifications. File

data preservation is essential to support data provenance and memoization. The

scalability bottleneck was traced back to limitations in the metadata capabilities

of underlying file systems. In the next chapter, I build upon these findings by

proposing a robust framework for providing preservation in a scalable manner.

104

Chapter 5

Data-Preservation

In the previous chapter, I explained why data-preservation is required to sup-

port both Data Provenance and Memoization and how program behavior, in

the form of file creations and modifications, can undermine the preservation of

data. In order to compensate, file system objects that face modification must be

selectively copied. Also, for more challenging workloads, even a system that se-

lectively copies modified objects may be insufficiently scalable. This chapter first

presents a framework for a DSWMS (such as GridDB) to receive and process hints

about program behavior from the modeler. Second, it examines various methods

of parallelizing data-preservation to boost scalability in the face of challenging

workloads. Finally, it includes a comprehensive performance study conducted on

a wide range of workloads and file systems.

105

5.1 Introduction

A DSWMS supporting data-preservation preserves, or makes recoverable at a

later time, data written and read during workflow execution. Data-preservation,

is required for supporting data provenance and memoization. The main chal-

lenge in supporting data-preservation is that workflow programs often alter the

files and directories that they use as input. In some cases, a workflow program

may explicitly modify files. More often, a program will add files to a directory

structure, implicitly modifying the directory’s composition. In the face of such

program behavior, a DSWMS must make a snapshot of files or directories that

face modification. A second requirement is that the DSWMS must do so with

good performance, and scale well as the number of workflows it is executing

grows.

To address these issues, we present a solution that is based on a combination

of user-provided hints to reduce the frequency of copying and parallelization to

increase copying throughput. The solution can be deployed on top of current file

systems and is able to scale almost arbitrarily. We also evaluate our approach

on real use-cases from astrophysics and run experiments on a cluster using four

different file systems.

As discussed in the previous chapter, a key requirement for preservation of

file-based data is the copying of file system objects that face modification from

a process that reads or has access to them. Therefore, before a program runs, a

snapshot of the disk space that it has access to must be taken. The naive approach

for a DSWMS to perform snapshotting is to make a copy of all of a program’s

106

inputs prior to execution. This solution, however, is generally too expensive for

two reasons. First, many scientific programs are data-intensive, reading or writing

many files, some of which can be very large (96). Second, scientists often work

in a pattern that generates “bursty” workloads, where a large volume of work is

requested over a short period of time. For instance, “parameter sweeps” apply an

analysis many times with different input conditions. As another example, large

datasets to be processed by workflows are often submitted in a batch. In such

scenarios, this “copy all” approach may overwhelm a DSWMS and the underlying

file system, slowing down workflow execution, and ultimately bogging down the

scientific discovery process.

One sensible approach to handling this problem is to employ a versioning,

or copy-on-write, file system (97; 98; 99; 100) for automatically detecting modi-

fication events, selectively copying file system objects on-demand and eliminat-

ing gratuitous copying. Unfortunately, systems currently in use at scientific-

computing facilities typically do not support this capability. Building a system

upon it goes against our core design philosophy of making DSWMS’s easy to

adopt. Versioning file systems suitable for scientific computation are not well

supported by vendors and it is unlikely that they will be made available to scien-

tific users in the near-term. Even if vendors began to produce them, underlying

infrastructure such as file systems are typically slow to evolve. Therefore, in

this chapter, we focus on providing users with a solution that is compatible with

current infrastructure, which consists of eager copy file systems.

Our approach involves implementing data-preservation in a way that portable,

but also efficient. It is two-pronged: first, we design a copy-reducing scheme that

107

employs user-hints to determine which files or directories face modification, and

therefore which files or directories require copying. We show that on an astro-

physics workflow, this mechanism can reduce preservation-induced overheads by

more than two orders of magnitude.

We also show, however, that the hinting mechanism alone is insufficient to

overcome the challenges of large jobs consisting of many simultaneous workflow

executions. To handle such jobs, we further apply several basic parallelization

techniques to the DSWMS. In conjunction with the hinting mechanism, our par-

allel DSWMS is able to achieve near-perfect scale-up, allowing overheads to be

reduced by adding more hardware. Together, the two techniques provide an effec-

tive framework for supporting data-preservation in a reasonably efficient manner.

Our conclusions are supported by real use-cases from astrophysics and ex-

periments on a variety of file systems. We use GridDB as a platform for our

work. While our evaluation is based on one particular system, we believe that

our solutions are relevant for any DSWMS that supports data-preservation.

While data provenance has recently gained momentum as an important fea-

ture in scientific workflow (89; 86; 101) and database (102; 103; 104) systems,

we are unaware of any work that has addressed the performance implications of

preserving file-based data. There are, however, a number of sensible alternatives

to performing data-preservation.

One can envision alternative approaches using either (a) versioning file sys-

tems (97; 98; 99; 100) (as mentioned earlier), (b) custom compilation, (c) I/O

library substitution (105) or (d) a version control system (106; 107). These

108

alternatives are disadvantageous because they are rarely supported by current

infrastructure (technique a), not generally applicable (techniques b and c), too

complicated (technique c) or inefficient (technique d). In contrast, our technique

of combining a hinting mechanism with parallelism provides a practical, efficient

and portable solution for supporting data-preservation on currently available in-

frastructure.

The remainder of this chapter is organized as follows: Section 5.2 reviews rel-

evant parts of our system and workflow model. Section 5.3 discusses the interface

for our hinting mechanism, as well as algorithms for processing user hints. Sec-

tion 5.4 contains experimental results demonstrating the effectiveness of hinting.

Section 5.5 describes our approach to parallelization. The chapter is concluded

in Section 5.6.

5.2 System Model

We start by reviewing background that is relevant to the work of this chapter.

This includes the software architecture, workflow model and DSWMS execution

flow.

5.2.1 Software Architecture

Figure 5.1 shows the DSWMS software components relevant to workflow ex-

ecution and how these software components are mapped onto hardware. Science

programs are executed in parallel on a large number of cluster nodes (represented

109

global file system

.
.
.

GridDB
database

science

program

science

program

Legend

software

cluster node

(hardware)

A
 B

A calls B

Figure 5.1. Software components involved in cluster-based workflow execution,
as well as their mapping onto nodes.

as rectangles in the figure). These science programs read and write data from and

to a global file system. The programs are launched by GridDB. GridDB makes

use of a database system to store and retrieve execution parameters, provenance

information and metadata about the science programs it is running. GridDB also

needs to interact directly with the file system in order to make file data available

to and ensure that it is not changed by science programs.

5.2.2 Workflows

The workflows that we focus on fit a well-defined, but generic, model. Work-

flows are partially ordered sets of programs, each of which transforms input data

into output data. Programs are written in a variety of programming models,

including shell/perl/python scripts and compiled languages. Program input is a

combination of files pre-staged in a program’s workspace directory and command-

line parameters submitted during invocation. Program output is the set of files in

a program’s workspace after execution. A process is an invocation of a program.

110

pgmH

pgmG

“-b 2”

“-a 1”

inter-program

“workspace”

on disk

Run
G

Run
H

Fold
G

Unfold
H

Fold
H

Unfold
G

(a) user-submitted workflow
 (b) augmented workflow

Figure 5.2. (a) A two-process workflow and (b) it’s translation to a GridDB
augmented workflow during execution.

It is defined by a program and concrete instances of each input. It creates a con-

crete instance of outputs. Figure 5.2(a) shows an example two-process workflow.

Intuitively, a set of workflow programs can be seen as a sequence of actors that

modify the state of a disk workspace. Each program in the workflow starts with

the workspace left by its predecessors and then adds to and modifies and deletes

files from it. The initial state of the workspace is the process’ input, and acts as

part of the provenance of the process’ output, the final state of the workspace.

If the initial workspace is modified, it loses its viability as provenance. Likewise,

it loses its ability to be reused as input to a future process, as required by smart

recomputation. As such, a DSWMS must find a way to preserve workspaces in

the face of process-induced changes.

111

5.2.3 Data-Preserving Transmission and Cataloging

Data-preserving transmission is the act of making input data available to a

process while simultaneously making sure it is not modified. It applies to both

command-line parameter data and file system data. Fundamentally, a DSWMS

can transmit data either by reference, by creating a pointer to the original, or by

value, by creating a copy of it and making it available. While transmitting by

reference is the faster and cheaper method, transmitting by value preserves data

in the face of change.

In GridDB, because parameter data is stored in the database, it must be seri-

alized into strings that are passed on the command-line. Serialization implicitly

creates a copy independent of the originals. Though this is a form of extraneous

copying (it is unclear that the program will modify the parameters) command-line

parameters are typically small. For instance, a flexibly parameterized program

with 1000 double precision parameters requires as little as 8 KB of copying; a

figure that is dwarfed by the size of file data, which is commonly in the gigabyte

range.

On the other hand, because file-based data is large, the naive approach of

indiscriminate copying (i.e. the “copy all” approach) will likely have a negative

impact on performance. More likely, a system needs a way of determining which

parts of a workspace must be copied, and which parts can be transmitted by

reference. In Section 5.3, we describe a mechanism for making this decision

based on user-provided hints.

In addition to data-preserving transmission, a second activity that GridDB

112

must carry out to make preserved data retrievable is the cataloging of provenance

information. GridDB uses a relational database to keep mappings of processes

to their programs, inputs and outputs. These mappings enable the answering

of provenance queries such as “what process created data item X?” and smart

recomputation queries such as “was program P run with input Y before?”

5.2.4 Workflow Execution Path

Having described data-preserving transmission and cataloging, we now ex-

plain how they fit within GridDB’s broader workflow execution framework. Data-

preserving transmission and cataloging are carried out in stages before and after

each process. In GridDB, the “before” stage is called unfold and the “after” stage

is called fold. Workflow execution in GridDB can be depicted by an ”augmented“

workflow that includes the overhead stages along with program execution stages.

Figure 5.2(b) shows an augmented workflow for the user-submitted workflow of

Figure 5.2(a). As suggested by the figure, the overhead stages extend the criti-

cal path of workflow execution. As such, care must be taken to minimize their

performance impact.

The unfold stage carries out two activities. First, input data is pulled from

the database and command-line strings are constructed. Second, input files are

transmitted into the process’ workspace. After unfold, execution of the program

occurs on a cluster node. Upon completion, the fold stage catalogs files created

by a process, which are sitting in its workspace, and marks them read-only. The

read-only marking ensures that the file data in the workspace is preserved. A

113

future process attempting to modify the data will be halted. As such, processes

must have personal copies of objects they want to modify.

Both the unfold and fold stages perform operations against a database and

a file system. These interactions involve the storage and retrieval of disk-based

information, and are likely bottlenecks to program execution. We extended the

performance studies of the previous chapter by repeating our experiments on a

small cluster on which we had exclusive access (described in Section 5.4 and 5.5).

These experiments confirm that if one uses naive “copy all” transmission, the

transmission of file data (during the unfold stage) consumes the lion’s share of

execution time1. As such, the next section outlines a mechanism to carry out file

transmission in a more efficient manner.

5.3 Efficient File Transmission Using Hints

In this section, we provide an alternative to naive transmission. Our mech-

anism, based on user-hints, exploits the fact that in many scientific workflows,

programs tend to modify only a portion of their initial workspace. Those parts of

the workspace that are unchanged can be shared between a producing program

and a consuming program through the use of linking. In this section, we first

describe a interface for specifying hints about which parts of a workspace change.

Afterwards, we describe how GridDB processes these hints to reduce copying.

1In our tests, file transmission accounted for more than 99% of total time spent in the fold
and unfold stages.

114

5.3.1 Hinting Interface

Hinting is performed by a modeler. As described in Chapter 3, a modeler

is a scientist who conveys the behavior of the program to GridDB through a

schema. In this chapter, we extend the definition of a schema, by incorporating

a file access model (or just model) to it. A model is a description of how files and

directories within a workspace are accessed by a program. A model consists of a

set of hints. A hint H is a pair (P, M) where P is a path that identifies a directory

or file relative to the workspace root and M is an access mode describing how

the consuming program uses objects (directories or files) under the tree.

We use a graph representation for directory trees, where files and directories

are nodes, and directory membership is represented by a directed edge. In such

a representation, a hint H is said to cover, or apply to, the node n represented

by path P. We also say that n is annotated with H. In cases where a node is not

annotated, it is covered by the hint of the nearest annotated ancestor. We call

the set of nodes covered by a hint its region.

Our hinting interface provides four access modes with varying degrees of per-

missiveness. As we discuss in the next section, the less permissive modes involve

less copying and thus are less expensive to support. The modes, in decreasing

order of permissiveness, are:

• Write (W): a program will modify or delete files and directories under write

regions.

• Add-only (A): a program will add files to directories, but may not modify

115

existing files in add-only regions. Essentially, the program is allowed modify

directories, since adding a file to a directory modifies it.

• Read-only (R): a program will only read files and directories in a read-only

region.

• No-Read(N): a program will not read files or directories in a no-read region.

Hints empower GridDB to perform data-preserving transmission with fewer

copies. As a simple example, suppose that a workspace consists of two directory

trees that are used by a program. One directory tree contains files that are

modified by the program while the other directory tree only contains files that

are read. While the first tree must be copied in order for the original to be

preserved, the second tree can be transmitted through a link without endangering

its preservation. By submitting hints that indicate W and R access modes for

the first and second trees, we can avoid copying the second directory.

Figure 5.3(a) shows an example workspace annotated with hints of each type.

We use this workspace as a running example of hint specification and processing.

Boxes denote directories, circles denote files and capital letters next to nodes

denote hints. The workspace is partitioned into five regions, each governed by a

particular access mode. A dotted line surrounds each region. As one example,

the R hint presides over the region containing •, b, n, e, m and t. The access

modes dictate what a consuming program can do in each region. For example,

the program may add files to directory f, but cannot modify file p, because these

nodes are contained in an add-only region. As a second example, the program

cannot read or write to directory c, because it is in a no-read region.

116

Program P{

 hints = {

 . : R;

 c : N;

 d : W;

 d/f : A;

 e/h : N;

 }

}

(a)

(b)

c

·

b

n

d

e

g

q

m

t

R

W
N

f

p

A
 h

N

Hints

Figure 5.3. (a) Hints on an inter-program workspace represented. The hints
divide the workspace into regions, each associated with an access mode. (b) The
code for specifying the hints of (a).

One disadvantage of this hinting mechanism is the burden that it places upon

the modeler. Though we maintain that the efforts of the modeler will frequently

be justified by sufficient performance gains (see Section 5.4), we recognize that

modeling is a burden that requires precious human time. To mitigate this impact,

we have developed multi-granularity modeling, which allows a modeler to reduce

the amount of effort she commits by sacrificing performance gains. The trade-off

lies in deciding on the granularity of her models. Finer-grained models provide

more program information, leading to more efficient transmission of workspaces

while coarser-grained models provide less information, but require less effort to

construct. The trade-off can be made by coalescing regions and annotating them

with the most permissive access mode required by any node in the region.

117

As an example, a modeler could omit the A hint on node f in the example

of Figure 5.3(a). Without this hint, all nodes under d — including f and p

— are covered by the W hint. As a consequence, nodes f and p are transmit-

ted to support write access, which is more permissive than the add-only access.

Because transmission permits more privileges than necessary, some performance

optimization opportunities will be lost. The advantage, however, is that the mod-

eler submits fewer hints. Besides needing to know less about the program, the

modeler also maintains a smaller model in the face of program changes.

As an extreme example of coarse-grained modeling, the modeler could con-

struct a model consisting of a single W hint on the workspace root. Such a model

would require the copying of all nodes, which is identical to the naive “copy all”

approach. This approach requires minimal effort on the part of the modeler,

but also results in the worst performance. In the absence of any hints, GridDB

automatically generates this model.

5.3.2 Hint Processing

Having discussed the hinting interface, we now discuss the procedure for pro-

cessing hints. During processing, our goal is to create a consumer workspace that

supports the access modes of a consumer program while minimizing the number

of file system objects copied and linked. Hint processing proceeds through two

phases. In the Resolution phase, a transmission mode — copy, link or omit —

is assigned to each node. In the Transmission phase, each node is transmitted

according to its transmission mode.

118

Resolution

The goal of Resolution is to determine the transmission mode of each node.

Resolution achieves this with a traversal of all nodes in the workspace. As we

will explain, a node’s transmission mode is determined by its access mode and

the transmission modes of its children. As such, determining the transmission

mode of a node is a three step process: (1) determine a node’s access mode,

(2) determine the transmission modes of its children and (3) resolve the node’s

transmission mode based on the results of (1) and (2). Figure 5.4(a) lists the

resolve procedure, which executes the three steps for a node n using a depth-first

traversal of its descendants. Step (1) is carried out by lines 2-3, step (2) by lines

5-7 and step (3) by line 9. The transmission modes of all nodes determined by

applying resolve to the workspace root. If the root node is not annotated with a

hint, GridDB automatically assigns it with an access mode of W. To institute this

default access mode, the algorithm is initialized with the following call resolve(“.”,

W).

The logic for determining a node’s transmission mode is encapsulated in the

getTMode subroutine of (b). The logic is rule-based — transmission modes are

assigned based on the values of a node’s access mode and its children’s trans-

mission modes. The three transmission modes, omit, link and copy, are denoted

by the letters, o, l and c, respectively. Intuitively, when n and all of its chil-

dren are not accessed, transmission is omitted. If n and its children are only

accessed in read-only mode, n is transmitted through linking. Otherwise, n must

be transmitted through copying.

119

Figure 5.4. (a) The RESOLVE procedure used during Resolution. (b) The
GETTMODE subroutine used by RESOLVE to determine a node’s transmission
mode.

The rules that determine when each of the three cases apply make up the body

of the getTMode subroutine. Transmission may be omitted when the access mode

of n is N and the transmission modes of all children are o (line 2). Transmission

may proceed through linking (lines 4-6) if the access mode of n implies that the

node will not be modified(N and R for directories and N, R or A for files) and

descendants are either not transmitted or transmitted through a link (the children

of n only have transmission modes of either o or l). In all of the remaining cases

(lines 9-12), copying is required. In these cases, n is being modified or some child

120

of n needs to be copied. If n is a file, it must have a transmission mode of W.

If n is a directory, it must have an access mode of A or W or one of its children

must have a transmission mode of c.

In some circumstances, copying of n will be required even if its access mode

is no-read or read-only. This occurs when at least one of n’s children needs to be

copied. While n itself will not face change, n must be copied because the original

version of n in the producer’s workspace does not provide an access path to the

copied children in the consumer’s workspace. The new copy of n provides this

access path.

Figure 5.5 shows the result of performing resolution on our running example.

Capital letters to the left of each node denote access modes. Those access modes

originally specified by user hints are underlined. Lower-case letters to the right

of each node denote transmission modes. Consider the processing of the root

node (•). First, its access mode is propagated to b and e, its two unannotated

children. Then, the transmission modes of each of its four children are determined

by applying resolve to each child. Nodes b, c, d and e resolve to transmission

modes of l, o, c and l, respectively. With the transmission modes of all children

determined, the transmission mode of the root node is then determined. Because

one of its children has a transmission mode of c, it is also assigned a transmission

mode of c. As an example of omission, node c receives a transmission mode of o

because it has an N access mode and does not have any children. As an example

of linking, node e has a transmission mode of l because it has an R access mode

and all of its children have either o or l access modes.

As the reader may have noticed, linking may indirectly transmit nodes with a

121

c

·

b

n

d
 e

g

q

m

t

R

W
N

f

p

A

h
N

Propagation of Hints and Resolution of

Transmission Modes

W

W

R

A

R

R

R

R
 l

o
l

c

c

c

c

c

l

l

o

l

l

Figure 5.5. Resolution determines whether and how each node is transmitted.
The lower-case letter on the right of each node represents the transmission mode:
”o” if the node’s transmission is omitted, ”l” if it is transmitted by a link, and
”c” if it is transmitted by copying.

“no-read” access mode. For example, while the leaf node h of Figure presv/6Fig

has an access mode of N, it is effectively transmitted by a link to its ancestor

e. That is, h’s access mode is implicitly escalated from N to R. GridDB auto-

matically performs this escalation in the interest of performance. It is cheaper

to transmit h along with all other nodes in the tree under e through a link than

it is to decompose e into subtrees that are transmitted differently. In the latter

case, we would need to create a copy of e, and transmit m through a link. By

transmitting the entire tree with one link, we save a directory copy. The disad-

vantage of such an optimization is that we lose the ability to prevent programs

from reading parts of a workspace.

Transmission

Having determined the transmission mode of each node, we can now transmit

the directory tree from producer to consumer. Transmission proceeds as another

122

Figure 5.6. The TRANSMIT procedure used during Transmission.

traversal from the root of the workspace. Transmission uses the transmit proce-

dure of Figure 5.6 and is carried out by executing it on the root of a workspace.

The body of the transmit procedure contains one rule to handle each trans-

mission mode. If n has an o transmission mode, we do nothing (lines 2-3). If n

has an l transmission mode, we create a link from n the consumer’s workspace

to n in the producer’s workspace (lines 4-5). If n has a c transmission mode,

we create a copy of n in the consumer’s workspace and then recursively apply

transmit to each child of n (lines 6-10). Recursively applying transmit is not

required when we omit transmission of a node or transmit through linking. In

the case of omission, none of the descendants of n are accessed, so none of n’s

children need to be transmitted. In the case of the linking, all of n’s children

123

Producer

Workspace

Consumer

Workspace

c

·

b

n

d
 e

g

q

m

t

f

p

h

l

o
l

c

c

c

c

c

l

l

o

l

l

·

b

n

d
 e

g

q

f

p

Figure 5.7. The transmission of a workspace from producer to consumer.

are automatically transmitted through a link to n, so none of them need to be

further processed.

Figure 5.7 illustrates the transmission of our running example. The left side

shows the producer’s workspace annotated with transmission modes while the

right side shows the consumer’s workspace. Transmission of all nodes proceeds

with a depth-first traversal from the root (•). The root, with a c transmission

mode, is copied into the consumer workspace. The “transmit” procedure is re-

cursively applied to each of its children. Of the root’s children, both b and e

are linked into the consumer workspace (dotted arrows denote links) while the

transmission of node c is omitted. Like the root, node d is transmitted with

copying, which results in the recursive application of transmit on its children.

124

5.4 Evaluation of the Hinting Mechanism

In this section, we present experiments that demonstrate the efficacy of our

hinting mechanism. First, we evaluate the hinting mechanism through a combi-

nation of analysis and benchmarking. Then, we measure the overall speed of a

GridDB server equipped with the mechanism.

5.4.1 Transmission Microbenchmark

Our first set of experiments illustrates the utility of the hint-based model

through analysis and measurement. In this experiment, we construct three mod-

els for the transmission of a typical program from a real astrophysics pipeline. We

analyze the number of file system objects copied if transmission were to proceed

by each model and also measure the performance of transmission on a variety of

file systems. From our experiments, we draw the following conclusions:

• Hints can dramatically reduce the number of file system objects and bytes

copied, effectively curtailing the overhead of data-preserving transmission.

• Highly effective models can be constructed with only a small number of

hints.

• Our hinting framework allows scientists to effectively make a trade-off be-

tween modeling effort and performance.

125

Platform and Use-Case

Our experiments were conducted on a 15-node cluster, which we will refer

to as Request. Each node in request contains 2 1.7 GHz Xeon processors and

2 GB of memory. Unlike the MCR cluster of the previous chapter, Request

allows us exclusive access to network and file system resources. The cluster

contains 4 network accessible storage devices: a BlueArc Titan Server, a Firewire

SCSI storage brick, a Nexsan ATABoy SCSI RAID device with 11 spindles and a

Seagate IDE drive managed by an ext3 file system. All file systems were accessed

through NFS. No other jobs were running on the cluster during our experiments.

Each data point reported is the average of 5 runs.

Our validation is based on the MSC image-processing pipeline of the Su-

perMacho astrophysics survey (108). The MSC pipeline consists of 8 programs

that help reduce telescopic images into catalogs of celestial objects. The mean

execution time for a program is 60 seconds on a Request cluster node and inter-

program workspaces, on average, consist of 830 files and directories and 315 MB.

To illustrate our benchmarks, we chose an average workspace, between two of

the programs, called wc and fn. At the end of the section, we show that similar

results were obtained for the other inter-program workspaces.

Hint Effectiveness on One Program

Our first results demonstrate the effectiveness of using hints to reduce trans-

mission costs. We compare the differences amongst three hinting models: the

default model (copy all) and two models that reduce copying by annotating

126

Figure 5.8. Three models for transmitting the workspace between the wc and fn
programs. From (a) to (c), they are at increasingly finer levels of granularity.
Absolute values denote the cardinality of a collection of trees.

workspace nodes with hints. To represent two different levels of effort by a mod-

eler, the two models differ in the granularity of their hints. The coarse-grained

model limits its annotations to nodes directly below the workspace root while the

fine-grained model does not limit locations where annotations are placed. The

three models, default, coarse and fine, are depicted schematically in Figure 5.8

They require only 0, 4 (three hints to annotate the three trees under S1 and 5

hints, respectively. The default model requires 0, rather than 1, hint because in

the absence of hints, GridDB assumes that the entire tree is writable (the most

general model).

Figure 5.8(a) shows the number of file system objects and bytes copied vs. the

127

number of objects linked for each model . As the models become more detailed

(from default to coarse to fine), the numbers of files, directories and bytes copied

decreases dramatically, while the number of links increases. Using the fine model

(vs. the default model), GridDB is able to eliminate 79% of directory copies and

reduce file copies from 812 to 2. The number of bytes copied falls accordingly,

from 294 MB down to 20 KB.

To understand how these reductions are achieved, we explain some details of

this use-case. In using the coarse model rather than the default model, GridDB

circumvents the copying of a large directory tree containing more than 700 files

and almost 300 MB of read-only data by marking it read-only (a member of the

objects in S2 in Figure 5.8(b)). The fine model makes its primary gains over the

coarse model by avoiding the copying of most of the remaining files, including a

large read-only image that consumes about 285 MB (a member of the objects in

S5 of Figure 5.8(c).

As the reader may have noticed, the exchange of links for object copies is

not one-to-one. This behavior is caused by the fact that changing an access

mode from write or add-only to read-only will replace the copying of all files and

directories under the tree with a single link. Figure 5.9(a) also shows that hinting

need not be a labor-intensive process. The coarse and fine models, each of which

greatly reduce objects copied, can be represented with only 4 and 5 overlapping

hints, respectively.

While our results show, quite decisively, that hinting reduces the number

of objects copied, we wanted to confirm that these reductions translated into

real performance gains. As such, we micro-benchmarked the time to perform

128

Figure 5.9. (a) Number of files, directories and bytes copied and links created
to transmit the inter-program workspace between two programs, wc and fn, for
three different hint models. The table also shows the number hints required to
specify the model. (b) Performance of transmission using each model across four
file systems. The fine model achieves 2 orders of magnitude speedup over the
default model irrespective of file system.

a transmission on each of Request’s four file systems. These micro-benchmarks

measure the speed of transmitting a workspace using a particular model within a

particular file system. The results are shown in Figure 5.9(b). The graph indicates

a clear correlation between model granularity and performance, irrespective of file

system. Transmitting with the default model requires from 19-67 seconds while

transmitting with the fine model requires less than 1/2 second on all file systems.

In each case, transmission is sped up by two orders of magnitude.

129

Hint Effectiveness on Other Programs

To generalize our results, we applied the same analysis to the transmission

of the other 6 snapshots inside the MSC pipeline. For each of the other pipeline

programs, we obtained results that were similar to those obtained for the wc-

fn snapshot. The table in Figure 5.10 lists the number of objects (files and

directories) and bytes copied using default and fine models. As shown, there is

a 96-99% reduction in number of objects and a 99+% decrease in bytes. In each

case, directory trees within an inter-program snapshot are transmitted through

linking, rather than copying. Fine models for each of the programs were expressed

in 4-6 hints. We did not run disk performance benchmarks for the other programs,

but we would expect similar performance characteristics based on the similarities

in numbers of files, directories and bytes copied.

One pattern that we observed across the workflow programs was a pattern

of “workspace augmentation” Each program tends to add files to the workspace

it uses as input. Transmitting a workflow with such a pattern results in a large

number of links for two reasons: (1) If files are being added to a workspace,

some path within the workspace is best annotated with an add-only (A) hint.

Such a hint means that all files under the path are transmitted with links. (2)

The number of files under the path may become large as the pipeline progresses,

particularly if many programs add files under the same path.

This pattern can be observed within our example. As indicated in Figure

5.10, the number of links required to transmit a workspace increases as we tra-

verse deeper into the pipeline. All programs are adding traces to a particular

130

Figure 5.10. Reductions in numbers of files and directories (objects) copied and
bytes reduced by transmitting with a fine-grained model (vs. the default model).
Object reduction is between 96% and 99% and byte reduction is more than 99%
in all cases. Also, the number of links used in transmitting the snapshot using
the fine-grained model.

sub-directory, which is annotated with an add-only access mode in each pro-

gram’s hint model. We looked at one other astrophysics pipeline (109) and a

protein clustering pipeline (110) and observed a similar pattern of workspace

augmentation. In section 5.4.2 we will show that due to the large number of link

creations caused by this pattern, GridDB’s bottleneck during the unfold stage is

still the file system despite successful efforts to reduce file system copying.

5.4.2 Overall Server Performance

In this section, we widen our investigation by assessing the overall perfor-

mance of a centralized GridDB server as it executes workflow processes in a

data-preserving manner. Our interest is to gauge the “overhead” latency induced

131

GridDB

Workflow

Execution

Engine

Unfold

Run

Cluster

Computer

Q

Fold
 Q

Q

Figure 5.11. GridDB’s workflow execution engine consists of three event process-
ing stages, Unfold, Run and Fold, connected by message queues.

by GridDB when it is asked to execute N process requests. We do this by mea-

suring the performance of the unfold (including transmission) and fold stages.

We continue to use the workspace between wc and fn as our use case. We can

summarize our results with these two points:

• With the assistance of hints, a centralized server can handle small jobs with

very low overheads.

• Our centralized server will be overwhelmed by large jobs (of 1000 requests).

Experimental Setup

GridDB is programmed as an event-driven server whose logic is divided into

stages connected by event queues. Stages are serviced by threads that dequeue

requests from a queue, execute a task over the request, and possibly enqueue a

request to an output queue. GridDB’s workflow execution engine consists of 3

stages: Unfold, Run and Fold (shown in Figure 5.11). Each stage is serviced by

a tunable number of threads, which we adjust to maximize throughput.

GridDB’s implementation is written in a combination of java and C. While

most of the code is java-based, many file system operations (e.g. symlink())

132

are not directly accessible through the java API. In these instances, we wrote

wrappers to make C system calls through the Java Native Interface (111). Both

java and C codes were compiled with optimizations enabled. Our experiments

were executed with Sun’s Java 1.4.2 JVM.

Our experimental setup is identical to that shown in Figure 5.11. A GridDB

server and associated database run on a cluster node while the global file system

runs on a separate node. Since our experiments were focused on characterizing

DSWMS performance, we did not need to run the science programs in every

experiment. Instead, we executed them once, stored images of their working

directories, and reused these images in our fold and unfold experiments. We

used PostgreSQL 7.4.3 as our database and varied the file system across different

experiments.

Metrics

We seek to measure the “performance penalty” of data-preservation, or the

time to run the fold and unfold overhead stages divided by the time to run a

process (the “run” stage). To obtain this metric, we benchmark our server’s

ability to process requests through the Unfold (U) and Fold (F) stages. The

metrics we use are:

• Maximum Stage Throughput (TP
[stage]
max): The maximum number of

requests per unit of time a server can process requests through a particular

stage. The maximum is empirically determined by varying the level of

multiprogramming within a server and measuring throughput.

133

Figure 5.12. GridDB’s unfold (TP U
max) and fold (TP F

max) throughput on various
file systems. Units are in unfolds/sec and folds/sec, respectively. OvhdN is the
number of seconds required to process a job of N processes.

• Job Overhead (OvhdN): The time required execute N workflow processes

through unfold, and then through fold: OvhdN = N/TP F
max + N/TP U

max

Results

Figure 5.12 shows the results of running GridDB on top of a variety of file

systems. Multiprogramming levels, or the number of requests processed simulta-

neously, were 6 when run on top of the bluearc and ext3 file systems and 10 when

run on top of the firewire and raid file systems. Unfold throughput (N/TP U
max)

ranges from 2.3 to 6.9 unfolds/second with a median of 5.7 while Fold throughput

(N/TP F
max) ranges from 8.7 to 10.2 with a median of 9.0. These throughput rates

are quite sufficient for the small jobs created by simple, or exploratory, analysis.

For example, a scientist may create a job of size 20 by sweeping through 10

values in one parameter dimension and 2 values in a second dimension. Based on

median throughputs of 5.7 for unfold and 9.0 for fold, unfolding all processes in

the job requires 3.5 seconds and folding all processes requires 2.2 seconds. Total

134

overhead would be 5.7 seconds. The fn program (the consumer program) runs

for 60 seconds, so the percentage overhead would be 9.5%, a reasonable penalty

for procuring data provenance and smart recomputation.

Unfortunately, because performance is sensitive to job size, the performance

will be much worse for users executing large jobs. For example, the LSST (112)

is a next-generation astrophysics survey that plans on processing thousands of

telescope images at a time using an image processing pipeline similar to MSC.

Part of their science mission is to alert other terrestrial telescopes of transient

celestial events so their time constraints are quite intensive. Suppose that we

wanted to satisfy the requirements of such collaboration. As the table in Figure

5.12 shows, processing a job of just 1000 requests with median unfold and fold

rates would require 286 seconds. Overhead for a one-minute program is almost

500%, which is not suitable for this application.

5.5 DSWMS Parallelization

To bridge the gap between the capabilities of a centralized system and the

demanding requirements of large jobs, we turn to parallelization schemes that

essentially trade-off additional hardware for additional performance. To better

understand how parallelism may help, we start by examining a profile of where

time is spent during fold and unfold in the centralized server.

135

5.5.1 Profiling

A profile of the fold and unfold stages is shown in Figure 5.13. The figures

suggest that, for the most part2, most of the time spent during both unfold (a

median of 62%) and fold (a median of 53%) were spent in the file system. For un-

fold, this is somewhat surprising, considering that the database issues 11 queries

per request to store and retrieve metadata and provenance information, and fine-

grained modeling had reduced file system time by two orders of magnitude in our

micro-benchmark. Closer scrutiny of the profile revealed that most file system

time (80-90%) is spent in creating links using the symlink() call. Most of these

links are caused by the fact that the program adds files to a directory, which

then needs to be transmitted in add-only mode. Transmitting a directory tree

in add-only mode requires one link for each file in the tree. This accounts for

47 out of the 53 links required to transmit the wc-fn snapshot. Unfortunately,

while links are cheaper than copies, they are still a bottleneck at the frequency

with which they are requested. In the wc-fn workspace, 53 are requested (near

the average of 49 in the table of Figure 5.10). Similar to the unfold stage, the

file system is the bottleneck in the fold stage. In the fold stage, file system time

is spent marking directory trees read-only with the chmod() system call.

Unfortunately, shifting from copying to linking does not relieve as much pres-

sure from the file system as we had hoped. The shift causes a disproportionate

reliance on metadata operations, which have traditionally been prioritized below

other features, such as fast I/O or seamless recovery.

2The exception is the bluearc device, which is a fast file system partially implemented with
hardware (113).

136

Figure 5.13. A profile of where GridDB spends its time in fold and unfold.

5.5.2 Parallelization Tests

The strong reliance of workflow execution on file system performance im-

plies that any parallelization scheme would not be useful without increasing the

amount of hardware carrying out file system functionality. In this section, we test

this hypothesis by measuring several schemes for parallelizing the DSWMS. The

configurations straddle trade-offs between centralizing or parallelizing the three

software components important to workflow execution: GridDB, the database

and the file system. The three configurations we examine are described below:

Shared-fs (sh-fs): In the shared-fs architecture, GridDB and the database

are parallelized across multiple cluster nodes. File system requests are centralized

on a single node. This scheme is congruent with the fact that many clusters

provide a globally accessible central file system. A centralized file system offers

benefits from economies of scale, such as decreased fragmentation and support for

sophisticated features such as disk striping. Additionally, a centralized file system

137

offers location transparency and simplified recovery. The principle disadvantage

is that the file system may become a bottleneck.

Shared-db (sh-db): The shared-db configuration is analogous to the shared-

fs scheme, except that the database is shared, and the file system is scaled along

with GridDB.

Shared-nothing (sh-no): The shared-nothing scheme bundles and scales

up all three components. While such a scheme should maximize scalability, file

system and database data are dispersed amongst the clusters nodes, complicating

system design and maintenance.

5.5.3 Experimental Description

In these experiments, we investigate the performance characteristics of the

various configurations. In each case, we scale-up the number of GridDB nodes,

along with the number of files systems (sh-db), the number of database systems

(sh-fs), or both (shared-nothing). The sh-fs approach was executed with all four

file systems. A sh-fs configuration with file system x is denoted sh-fs(x). A job

consisting of 128 * n requests was sent to the DSWMS, where n is the number

of GridDB servers process results. We measured the aggregate fold and unfold

throughput that each configuration could achieve.

138

5.5.4 Results

Figure 5.14 shows the results of our parallel experiments. The figure shows

the total time required to unfold and fold 1000 requests. The sh-fs configura-

tion using the ext3 (sh-fs (ext3)) file system is not shown because it performs

significantly worse than any of the shown configurations. The figure shows that

two shared-fs configuration, sh-fs(firewire) and sh-fs(raid), fail to scale beyond 4

nodes. Profiling the performance of these configurations shows failure to scale

during both unfold and fold. During unfold, file system linking is the bottle-

neck. During fold, permission modifications (chmod()) are the bottleneck. The

only sh-fs configuration that achieves scalability is the sh-fs(bluarc) configura-

tion. The bluarc is a hardware-assisted file system implementation. It is able to

speed up linking and permission modification fast enough so that the file system

is no longer the bottleneck. The sh-db configuration also scales well to 8 nodes.

While the sh-fs (bluarc) and sh-db configurations perform well, their scalabil-

ity tapers at 8 nodes. The sh-no configuration, on the other hand, scales perfectly.

With 1 shared nothing node, latency is 190 seconds. With 8 nodes, this time is

reduced to 23.6 seconds, or 1/8th of the latency with only 1 node. For a “typ-

ical” 120 second3 computation, the percentage overhead is reduced from 158%

down to 19.7% (a perfect 8 to 1 ratio). A comparison of the performance of the

shared nothing configuration against ideal scale-up Figure 5.15 shows perfection

and suggests that scale-up should continue as more nodes are added. The logical

end of such a progression is to process each request on its own DSWMS node. In

3This number is the result of analyzing traces of batch jobs submitted to LLNL’s MCR
cluster between 4/1/05 and 4/7/05.

139

Figure 5.14. Parallelization experiments. Reduction in overall latency vs. number
of nodes per configuration.

such a case, the total overhead would be equal to a small (δ), the time required

to run the unfold and fold stages for one request in isolation on a cluster node.

5.5.5 Summary of Results

In this section, we validated our approach using a typical workflow program

from a real astrophysics pipeline application. We demonstrated that our hinting

mechanism can dramatically improve the efficiency of data-preserving transmis-

sion while incurring only small and tunable overheads upon a modeler. We also

showed that a centralized GridDB server equipped with fine-grained hints can ex-

ecute jobs consisting of a small number of workflows with low overheads. Larger

140

Figure 5.15. The Shared nothing configuration achieves ideal scale-up.

jobs are handled with a combination of the hinting mechanism and GridDB par-

allelism.

5.6 Chapter Summary

In this chapter, I identified data-preservation as an important feature of

DSWMSs that can cause performance liabilities if naively implemented. I devised

a DSWMS-level solution for performing preservation efficiently through the help

of user hints. To efficiently handle large jobs, I introduced the use of parallelism

in the DSWMS. I showed that file system operations must be parallelized in order

to achieve speed-up. In particular, the shared nothing parallel implementation

achieved ideal scale-up. Ideal scale-up allows system operators to reduce preser-

141

vation overhead to almost arbitrarily low levels by allocating additional cluster

nodes to DSWMS tasks. The provided solution is a practical and portable means

of providing data-preservation on current cluster platforms.

142

Chapter 6

Flexible Memoization

In the previous chapters, I described the core architecture of GridDB and

argued that preservation was a core component needed for data provenance and

memoization. In this chapter, I shift the focus onto the the provisioning of a

memoization feature. As described in Chapter 1, memoization is the caching

of computation results so that future requests may be fulfilled by retrieving old

results rather than issuing new computations. Future scientific experiments, with

their large sizes and increased collaboration, will need computation sharing to

deal with their increased loads. Fortunately, because DSWMS’s are data-centric,

they are able to identify these sharing opportunities. In this chapter, I investigate

how a DSWMS may most effectively provide this memoization. In particular, I

observe that the memoization operator must be flexible to perform well in a

diverse array of environments and provide techniques to achieve this flexibility.

As I will show, in situations where compute resources (i.e., nodes that run

science code) are plentiful relative to DSWMS resources, it may be prudent to

143

forego memoization in order to avoid its overheads. There also exist circumstances

where it is better to operate memoization in a tempered form, where it is only

partially active. In this work, I propose a flexible memoization framework that

can operate along a spectrum of modes that trade-off overhead and retrieval

efficiency. Simulations show that such a framework is key to creating a robust

DSWMS that can behave well in the face of different environmental scenarios.

6.1 Background and Motivation

Figure 6.1 shows the overall system architecture. As usual, a user submits

his job requests to a cluster and receives results back in the form of filesets and

database objects. The cluster is partitioned into DSWMS and compute nodes,

which run the middleware and execute scientific programs, respectively. The

DSWMS itself can be characterized as two components, which handle the needs

of memoization and execution. The memoization logic determines whether each

evaluation may be satisfied through result retrieval or must be resolved through

a computation. If the evaluation must be computed, the evaluation is translated

into a process and dispatched onto a compute node using the execution logic.

This includes the unfold and fold steps described in the previous chapters.

Figure 6.2 contains a flow chart of the memoization logic, which is encap-

sulated in an operator. The operator first decomposes each job into a set of

evaluations, as depicted in the left side of the diagram. Then, the operator pro-

cesses each evaluation by searching the repository for an “equivalent” 1 evaluation

1We discuss different notions of equivalence in the next section.

144

C

L

U

S

T

E

R

client

DSWMS

nodes

Execution Logic

Request Stage

job

requests

compute nodes

results

Figure 6.1. Submission of job requests to a cluster.

(step S). If the memoization operation finds a match, the stored result is returned

to the user. If not, the evaluation is sent to the execution logic for execution on a

compute node (step X). After computation, the operator indexes newly created

results in a repository, where they can be used to satisfy future requests (step I).

At each step, the evaluation may wait in a queue until an appropriate resource

(DSWMS or compute node) becomes available.

Because computations are often long-running, the use of memoization to avoid

them may significantly accelerate job fulfillment. Unconditional use of memoiza-

tion, however, may actually be harmful. This is true for two reasons. First, the

cost of search is non-negligible. The search process may require the examination

145

Step S:

Search for
e
i

In respository

(DSWMS

node)

E
VALUATION

R
EPOSITORY

e

i

, e

j

, e

k

,...

match found

no

match

Job Stream:

J

0

:
e

1

, e

2

, e

3

,…,e

n

J

1

:
...

J

2

:...

Step X:

Execute evaluation
e
i

(compute node)

Step I:

Index e

i

 into repository

(DSWMS node)

Return result to user

Q

Q

Q

Figure 6.2. Memoization logic.

of very large datasets to determine whether or not evaluations are equivalent.

Second, because scientific jobs are bursty by nature — a job submission instantly

requests many evaluations — evaluations may be stalled in a DSWMS queue

while others are being processed. In a situation where compute node resources

are relatively plentiful, an evaluation search may create a bottleneck by prevent-

ing jobs from running on compute nodes.

We illustrate such an occurrence with a simple example. Consider a job of

n independent evaluations. The job runs on a cluster consisting of one DSWMS

node and enough compute nodes to run all evaluations in parallel. Assume that

the repository contains 50% of the evaluations requested by the job and that a

repository search requires ts time units while executing an evaluation requires tx

time units. The DSWMS processes one search request at a time.

Despite the fact that half of the job can be fulfilled through result retrieval,

146

.
.
.

Without Memoization

(completion time = t

x

)

With Memoization

(completion time = n t

s

 + t

x

)

X

X

X

X

X

X

X

.
.
.

S

S

S

S

S

S

S

X

X

X

X

e

1

e
2

e
3

e

4

e

5

e
6

e

7

.
.
.

time

E

v
a

l
u

a

t
i
o

n

e

1

e

2

e

3

e

4

e
5

e
6

e

7

.
.
.

time

E

v
a

l
u

a

t
i
o

n

Figure 6.3. Gantt charts showing job processing with and without memoization.

this is a scenario where the use of memoization will adversely affect the cluster’s

performance. Figure 6.3 displays two gantt charts representing job progress with

(on left) and without (on right) memoization. Each row represents the life-cycle

of one evaluation as it goes through the S and X steps. I steps are omitted from

this example without loss of generality.

In the presence of memoization, each evaluation engages in a search phase

where the DSWMS looks for a suitable repository match. These efforts are ap-

parently fruitful, as executions for 50% of the evaluations are averted. Because all

of the evaluation requests arrive at once and the DSWMS cannot process them si-

multaneously, however, most of the evaluations spend time in the DSWMS queue.

The result is that the last job completes at time n∗ ts + tx. Contrast this with the

cluster’s performance in the absence of memoization as shown on the right hand

side. Under this configuration, all n evaluations may be executed simultaneously,

so the job is completed by time tx, which is optimal. Despite being based on

an appealing philosophy of conservation, memoization actually produces nega-

tive consequences. Consider the negative impact of memoization when assigned

147

plausible values of n = 1000, ts = .25s and tx = 120s (based on Chapter 5). In

this case, operating without memoization requires 120 seconds while operating

with memoization requires 370 seconds — a tripling of completion time!

While this example shows potential pitfalls, the ultimate impact of memo-

ization depends on a combination of independent factors. One set of factors

can be neatly classified as the “supply and demand” of DSWMS and compute

resources. As the number of available compute nodes increases (i.e., compute

supply) or runtime of programs decreases (i.e., compute demand), memoization

becomes less favorable. As the availability of DSWMS resources (i.e., DSWMS

supply) increases — for instance, through DSWMS parallelization — or the de-

gree of data-centricity (i.e., DSWMS demand) decreases, memoization becomes

more favorable. Beyond these factors, a separate factor is the affinity between in-

flight jobs and the evaluation repository as reflected by the hit-rate of repository

lookups for a particular job. For this factor, higher affinity favors memoization.

With such a complex array of factors determining the favorability of memoiza-

tion, it is not surprising that there is a need for intermediate forms of memoization

that do not completely eliminate, but reduce, overheads, while still managing to

find some repository matches. Section 6.3 demonstrates that these intermediate

forms of memoization are key to performing well across a variety of environments.

Before presenting our memoization tuning mechanisms, we describe a view

of the memoization operator as a load-conversion utility. This view will simplify

the decision-making process by establishing the connection between memoization

policies and their impact on resources. In order to tune the operator successfully,

148

one must observe that reducing overhead (and reducing recall2) relieves load from

DSWMS resources, but increases load on the compute nodes. This is because

the overheads of memoization are incurred upon DSWMS resources while the

benefits of it are passed on to compute-node resources. Likewise, by increasing

memoization overheads, one is essentially increasing load on DSWMS resources

and reducing load on cluster nodes. Policy designers must acknowledge that

tuning the memoization operator impacts different resources, or risk making poor

choices. The danger is that one may unconditionally choose a memoization policy

that aims to maximize the recall/overhead ratio. Such a policy, however, ignores

the fact that the value of high recall diminishes in a DSWMS-bound environment

and increases in a compute-bound environment.

6.2 Mechanisms for Tunable Memoization

This section addresses the need for flexible memoization by proposing a bat-

tery of mechanisms for shifting load between DSWMS and compute resources.

Our mechanism design space consists of two dimensions, as shown in Figure 6.4.

Each dimension represents a spectrum between low overhead (DSWMS-relieving)

and high recall (compute-relieving). The first dimension balances overhead and

recall by choosing from one of three basic memoization approaches: no memoiza-

tion, light memoization, or thorough memoization (NEMO, LEMO, or TEMO).

If either of LEMO and TEMO are chosen, a second dimension concerning the rel-

ative prioritization of search and indexing (EIDX and DIDX) becomes relevant.

2Recall is the percentage of eligible repository matches that a memoization operator finds.

149

NEMO
 LEMO
 TEMO

delayed

indexing

eager

indexing

Basic Approach

Index Prioritization

Reduced Overhead

(middleware-relieving)

Improved Recall

(compute-relieving)

Figure 6.4. A two dimensional space of mechanisms for trading off overhead and
recall (or DSWMS and compute-node load).

6.2.1 Basic Approaches: NEMO, LEMO and TEMO

We start by exploring the trade-offs amongst the three basic approaches,

which differ in whether and how they identify matching evaluations during the

S step. Using NEMO, memoization is foregone altogether and all overheads are

spared. In contrast, LEMO and TEMO both employ memoization to exploit

retrieval opportunities, but extend the critical path of job fulfillment with search

and indexing overheads. TEMO distinguishes itself from LEMO by identifying a

larger set of memoization opportunities, though it also incurs a higher overheard.

The differences between TEMO and LEMO can be traced back to their method

of determining whether two entities or evaluations are equivalent.

Equivalence is core to finding reusable evaluations. Notions of equivalence

can be applied to both entities and evaluations. Loosely defined, two entities

are equivalent (xi = xj) if one may “safely” replace the other as a result to a

user or as an input into an evaluation. More specifically, two evaluations are

150

equivalent if they apply the same function to equivalent input entities. That is,

all users will consider entities xi and xj “the same” and all evaluations using xi as

input will produce equivalent output entities if xi were replaced by xj. Detecting

equivalence between entities presents a challenge because what may be considered

“the same” by one user could be consider different by another.

To address this challenge, we define physical equivalence, a restrictive form

of equivalence that is machine verifiable. Two entities are physically equivalent

if they have the same bit representation. Physical equivalence may be directly

tested, either by running diff between two filesets (in the case of opaque entities)

or by byte-wise comparing two tuples (in the case of transparent entities).

The notion of physical equivalence is sound3 because two entities will not be

deemed equivalent if they cannot be safely replaced with one-another. It is not

complete4, however, because two entities that may be safely interchanged may not

be bitwise equal. For example, if one entity is the compressed format of another

entity, a user may consider them to be the same but they will be physically

inequivalent. Because physical equivalence is machine verifiable, however, we

use it as our fundamental form of equivalence. We defer the adaptation of less

restrictive forms of equivalence to future researchers. With a well-defined notion

of physical equivalence between entities, we can also define equivalence between

evaluations. Two evaluations are physically equivalent if they apply the exact

same function to physically equivalent inputs. The results of these evaluations

will also be physically equivalent.

3Notion A is sound with respect to notion B if A → B. Here, notion A is
physicalEquiv(e1, e2) and notion B is sameToUsers(e1, e2)

4Notion A is complete with respect to notion B if B → A.

151

TEMO uses physical equivalence to determine whether a requested evalua-

tions may be fulfilled with an indexed evaluation. Testing for physical equivalence

may be expensive, as filesets used as input may require megabytes or gigabytes

of storage. As a result, comparing these evaluations may require seconds of com-

pute time. Requests may contain thousands of evaluations and repositories may

contain millions. Thus, to reduce the cost of physical equivalence, TEMO uses

checksums. When a newly computed evaluation is indexed, a checksum is cal-

culated over each of its inputs. Checksum comparison is then used as a cheap

method of dismissing negative matches during the search phase. If two checksums

match, the direct comparison proceeds to verify that two objects are really equiv-

alent. While checksumming may reduce the cost of physical equivalence testing,

it still requires that the entities be read at least once to compute the checksum

and again to do a direct match in the case of matching checksums. Input entities

may be very large and so an alternative, cheaper, method of equivalence testing

is desired.

LEMO addresses this need by using a cheaper, though less sensitive form

of equivalence called lineage equivalence. Intuitively, two entities are lineage

equivalent if they result from the same set of function evaluations applied to

the same set of imported entities (entities that were not created by a function

evaluation). Lineage equivalence is recursively defined: we say that xi and xj

are lineage equivalent (xi =l xj) if they refer the same entity or are the products

of lineage equivalent evaluations. Two evaluations are lineage equivalent if they

apply the same function to input functions that are lineage equivalent.

Checking the equivalence of two lineages is strictly less costly than checking

152

that two entities are physically equivalent. It is possible, however, that two

entities are physically equivalent, but were derived through distinct lineages. In

these cases, physical equivalence returns true whereas lineage equivalence returns

false. One common example of this scenario is when two separate versions of a

program yield the same result when applied to the same input. A second example

is when two evaluations of the same function differ only in an input that does

not impact the result. Because of such cases, lineage equivalence is a sufficient,

but not necessary, condition for physical equivalence (xi =l xj ⇒ xi = xj but

xi = xj¬ ⇒ xi =l xj).

We contrast the sensitivities of the two equivalences through an example. We

consider two scenarios where two related evaluations are requested in sequence.

In both scenarios, a DSWMS first receives and fulfills a request to process an

evaluation g(f(xi)). After fulfillment, the DSWMS’s repository stores an entity

Y , with lineage f(xi) and an entity Z, with lineage g(f(xi)).

In the first scenario, a follow-on request R is for evaluation g(f(xi)). In

this case, a DSWMS employing either physical or lineage equivalence is able to

establish equivalence between R and Z and thus, can reuse Z to satisfy R. Note

that R and Z are lineage equivalent because they both apply the function g to

entities with lineage f(xi).

In the second scenario, the follow-on request R′ is for g(f ′(xi)) where f ′ and

f are different functions that return physically equivalent results on input xi.

In other words, f ′(xi) and f(xi) are physically equivalent. Because they do not

apply the same function, however, they are not lineage equivalent. In such a

scenario, a DSWMS employing lineage equivalence will fail to find a repository

153

match for R′. Using physical equivalence, however, the DSWMS can establish

equivalence between the two functions.

Environmental Factors Up until now, we have described three basic ap-

proaches for providing memoization: NEMO, LEMO and TEMO. Here, we use an

example to illustrate how one must consider environmental factors when choos-

ing an approach. As we show, NEMO is favorable in compute node-rich envi-

ronments, TEMO is favorable in compute node-poor environments and LEMO is

favorable in intermediate environments.

Consider a scenario where a job of four independent evaluations (E1, ..., E4)

is submitted to a cluster consisting of one DSWMS node and a variable num-

ber of compute nodes. The DSWMS’s repository contains two of the job’s four

evaluations (E1 and E3). We assume that if the DSWMS uses the TEMO ap-

proach to memoization, it will discover both matches, while the LEMO approach

will only find one match. We range the number of compute nodes from two

(compute-scarce) to four (DSWMS-scarce) and contrast the performance of the

three approaches in these three environments.

A matrix matching each approach to each scenario is provided in Figure 6.5.

Each cell in the matrix contains a gantt chart profiling the execution of the four

jobs. Each row represents execution with a particular algorithm while each col-

umn represents execution within a particular environment. The winning approach

for each environment is contained in a shaded cell. As shown, the best choice

depends on the availability of compute resources. With four compute nodes (col-

154

umn one), all executions could be run in parallel so performing lookups will not

reduce latency. In this case, NEMO will be the best approach.

At the other end of the spectrum, when there are only two compute nodes (col-

umn three), compute resources are a bottleneck and the conservation of compute

resources by LEMO and TEMO is now profitable. In this case, the environ-

ment is so compute-scarce that the additional computations spared by TEMO

(vs LEMO) more than offset the additional search overhead.

Finally, in the intermediate case with three compute nodes (column two),

LEMO is the winner. While both LEMO and TEMO manage to reduce the

number of executions in a useful manner, the additional recall achieved by TEMO

is unnecessary while the additional overhead delays job completion.

As stated earlier, a second factor affecting the favorability of the different

approaches is the affinity between a job and the repository. In the presence of

poor affinity, we favor NEMO, as searches are likely to be wild-goose chases. If

a job and the repository have strong affinity, LEMO or TEMO are favorable.

If a large portion of repository matches are only detectable with TEMO, the

favorability will shift towards TEMO.

6.2.2 Index Prioritization: EIDX and DIDX

A second dimension along which one may configure a memoization operator

is to adjust the relative priorities of search and indexing tasks. As previously

discussed, DSWMS resources are responsible for both of these functions: search-

ing to determine whether or not an evaluation may be retrieved, and indexing

155

4
co

m
p

u
te

 n
o

d
es

(D

S
W

M
S

 s
ca

rc
e)

S

S

S

X

I

S

S

X

I

X

I

S

X

I

S

X

I

S

X

X

X

X

X

X

X

X

S

X

I

S

X

I

S

X

I

S

S

S

X

I

S

S

X

I

X

X

X

X

S

X

I

S

X

I

S

X

I

S

S

S

X

I

S

S

X

I

E
v
a
l
u
a
t
i
o
n

e

1

e

2

e

3

e

4

tim
e

3
co

m
p

u
te

 n
o

d
es

2

co
m

p
u

te
 n

o
d

es

(c
o

m
p

u
te

 s
ca

rc
e)

N
E
M
O

(
0

r
e
p
o
s
.

h
i
t
s
,

n
o

s
e
a
r
c
h

o
r

i
n
d
e
x

c
o
s
t
s
)

L
E
M
O

(
1

r
e
p
o
s
.

h
i
t
,

l
o
w

s
e
a
r
c
h

a
n
d

i
n
d
e
x

c
o
s
t
s
)

T
E
M
O

(
2

r
e
p
o
s
.

h
i
t
s
,

h
i

s
e
a
r
c
h

a
n
d

i
n
d
e
x

c
o
s
t
s
)

W
IN

N
IN

G

A
P

P
R

O
A

C
H

W
IN

N
IN

G

A
P

P
R

O
A

C
H

W
IN

N
IN

G

A
P

P
R

O
A

C
H

Figure 6.5. A matrix contrasting the performance of the three basic approaches
(NEMO, LEMO and TEMO) in three environments.

156

to make results available to future searches. Under heavy load, there may be

contention between the two functions and a DSWMS system will need to choose

which has priority. As we show, the comparative priority of index and search

tasks acts as a load shifting mechanism. In particular, processing search events

before indexing events (Delayed Indexing or DIDX) is a DSWMS-relieving mech-

anism while processing indexing events over search events (Eager Indexing or

EIDX) is a compute node-relieving mechanism.

We start by considering the positive impact of Eager Indexing on recall. The

fundamental role of indexing is to make the result of an evaluation retrievable

in the future. If a second request for the evaluation occurs before indexing of

the first request can be completed, the search will fail even though in principle

the results are available. Eager Indexing reduces the probability of these false

negatives by indexing evaluations earlier in time. In contrast, the use of delayed

indexing sacrifices timely indexing of evaluation in favor of timely search. Because

eager indexing improves recall, it is compute-relieving. Because delayed indexing

relieves a DSWMS of its responsibility to index promptly (at the expense of the

compute-nodes), it is DSWMS-relieving.

For example, consider a cluster that receives requests for two jobs J1 and J2

where J1 requests evaluations A and B and J2 requests evaluations A and C. The

performance of the cluster is examined under two environmental circumstances,

where the cluster has a large compute pool (2 nodes) and a small compute pool

(1 node). Gantt charts for the four combinations of the schemes and cluster sizes

are shown in Figure 6.6.

As shown in the left column, EIDX is able to exploit the fact that J2’s requests

157

small compute pool

(1 node)

large compute pool

(2 nodes)

E

a
g

e
r

I
n

d
e

x
i

n
g

(
i
n

d
e

x

p
r

i
o

r
i
t

i
z

e
d

o
v

e
r

s

e
a

r
c

h
)

D

e
l

a
y

e
d

I
n

d
e

x
i

n
g

(
s

e
a

r
c

h

p
r

i
o

r
i
t

i
z

e
d

o
v

e
r

i
n

d
e

x
)

X
S
 I

S

S

S

X

X

I

I

X
S
 I

S

S

S

X

X

I

I

X
 I

X
S
 I

S

S

S

X

X

I

I

X
S
 I

S

S

S

X

X

I

I

X
 I

E

v
a

l
u

a

t
i
o

n

time

J

1

J
2

B

A

A

C

Figure 6.6. A matrix contrasting the performance of EIDX and DIDX in small
and large compute pools.

for A can be fulfilled with the result created to satisfy J1’s request for A. It is able

to identify this opportunity because it indexes A before searching for it during

the processing of J2. In contrast, EIDX is not successful in the large cluster (right

column). While it still reduces load on the compute nodes, compute nodes are

no longer a scarce resource. By extending the amount of time required by the

DSWMS to dispatch its jobs (it interjects two indexing tasks between the search

tasks), EIDX has extended the critical path. On the other hand, DIDX fares

better with its strategy of dispatching executions before indexing results. The

additional compute resources more than offset the extraneous execution.

158

6.3 Performance Studies

In this section, we present simulations that demonstrate the importance of a

flexible memoization operator and provide guidance on configuring the operator.

Our simulations are run over a set of prototypical environmental and workload

scenarios. We present two sets of experiments, one investigating the trade-offs of

our three basic approaches, NEMO, LEMO and TEMO, and a second investigat-

ing the relative merits of eager and delayed indexing (EIDX and DIDX).

6.3.1 General Setup

We start by describing the setup used in both studies, as depicted in Figure

6.8. In each experiment, we submit 1 or 2 jobs to a cluster consisting of 1 DSWMS

node and n compute nodes. Each job consists of 1024 independent evaluations.

For simplicity (and without loss of generality), we assume that each evaluation

requires a fixed amount of time for search, execution and indexing. The job

sequence submitted to the cluster and the initial contents of the repository are

varied from experiment to experiment.

In each experiment, we initialize the repository with evaluations that match

anywhere from none to all of the evaluations requested by the jobs. We assume

that each evaluation requires 120 seconds, the median program execution time of

scientific programs in a survey we discussed in Chapter 5. We vary search and

index costs for LEMO- and TEMO-based operators from 0.125 to 2 seconds per

request. In each experiment, we set the search and index costs to be equal.

159

compute-facility

compute

nodes

(
n nodes
)

middleware

(
1 node
)

job J
1
 at time t
1
,

job J
2
 at time t
2
,

...

REPOSITORY

e

i

,e

j

,e

k

,...
 Archive initialized

Figure 6.7. General simulation setup of studies I and II.

6.3.2 Study I: NEMO, LEMO and TEMO

Our first study compares the performance of the three basic approaches as

the degree of compute-scarcity changes.

Experimental Setup

Our experimental setup for this study is a refinement of the general setup

described in Section 6.3.1. We simulate clusters of three different sizes: a small

cluster with 64 compute nodes, a medium cluster with 128 compute nodes and a

large cluster with 1024 compute nodes. We set search and index times equal to

0.25 sec/request when using LEMO and 1 sec/request when using TEMO. Hit

Rates for LEMO and TEMO range from 0 to 100% in 10% increments.

160

Results

The performance of the three approaches for large, medium and small clusters

is compared in Figures 6.8, 6.9, and 6.10, respectively. The three graphs indicate

that in large clusters, TEMO and LEMO under-perform NEMO, in small clusters,

TEMO and LEMO outperform NEMO, and results are mixed on medium clusters.

On the large cluster (Figure 6.8), memoization-based methods are an impediment

to speedy processing, even in the presence of high hit rates. In this case, the

additional step of searching the archive for past computations only serves to

delay the processing of uncached evaluations while the plenitude of compute

nodes obviates the benefits of retrieval. In this case, the use of LEMO increases

runtime by more than 3-fold while the use of TEMO increases runtimes by almost

10-fold, regardless of hit rate. Fortunes are reversed in the small cluster (Figure

6.10). In this case, either of LEMO and TEMO achieve significant speedups. For

example, at a 50% hit rate, both approaches cut runtimes by roughly half. At a

hit rate of 100%, LEMO is even able to cut runtimes down to nearly one-tenth

when compared to NEMO. In the case of the medium cluster (Figure 6.9), LEMO

supersedes NEMO only at hit rates of 30% or more while TEMO under-performs

NEMO regardless of hit rates. Altogether, the three scenarios demonstrate the

need for a versatile operator that can make a context-sensitive decision on the

use of memoization.

A second observation concerns the relative merits of TEMO and LEMO. As

shown in Figure 6.10, the improved hit rates achieved by TEMO can render it

superior to LEMO. As one example, suppose that TEMO can achieve a cache hit

rate 50% while LEMO can only achieve a hit rate of 10%. In this case, the use of

161

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.2 0.4 0.6 0.8 1

ru
nt

im
e

(s
ec

on
ds

)

hit rate

Large Cluster (1024 compute nodes)

LEMO
NEMO
TEMO

Figure 6.8. Performance of basic approaches on a large cluster.

TEMO improves performance over LEMO by 37% (LEMO requires 1806s while

TEMO requires 1136s).

As the reader may have noticed, there exists a “tipping point” in TEMO’s

performance curve at a hit rate of 0.5. This is the point at which the DSWMS be-

comes the bottleneck. Even though hit rates higher than 0.5 continue to decrease

the amount of work being performed by the cluster, the work reductions occur on

the compute nodes, which are not the bottleneck after the tipping point. As hit

rates increase, fewer evaluations require computation and compute nodes begin

going idle. The DSWMS does not benefit from the same workload reduction. As

hit rates increase, its workload remains the same. With a DSWMS processing

rate of 1 second per request, the cluster requires at least 1024 seconds to send all

requests through the DSWMS. As similar tipping point exists with LEMO-based

162

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.2 0.4 0.6 0.8 1

ru
nt

im
e

(s
ec

on
ds

)

hitrate

Medium Cluster (256 nodes)

LEMO
NEMO
TEMO

Figure 6.9. Performance of basic approaches on a medium cluster.

memoization. It is not until a hit rate of 0.9, however, that the tipping point is

encountered.

The fact that LEMO’s plateau comes at a higher hit rate than that of

TEMO has practical implications. In particular, when DSWMS resources are

constrained, it will be imprudent to opt for the higher hit rates of TEMO rather

than the lower overheads of LEMO. Consider our example with 64 nodes (Figure

D25.alpha). Suppose we had a choice of using LEMO to achieve a 80% hit rate

verses using TEMO to achieve a 100% hit rate. In this case, we would be wise to

choose LEMO in spite of its inferior hit rate. The runtime of LEMO at an 80%

hit rate (496s) is less than half the runtime of TEMO at a 100% hit rate (1024s).

Like other results in the section, this result shows that thoughtful consideration

of resource availability is key to maximizing performance.

In this study, we showed wide variations in the favorabilities of NEMO, LEMO

163

 0

 500

 1000

 1500

 2000

 2500

 0 0.2 0.4 0.6 0.8 1

ru
nt

im
e

(s
ec

on
ds

)

hit rate

Small Cluster (32 compute nodes)

LEMO
NEMO
TEMO

Figure 6.10. Performance of basic approaches on a small cluster.

and TEMO in small, medium and large clusters. Cluster size is but one example

of a broader class of environmental factors. Similar trends can be observed as

one varies any factor that affects the relative scarcities of DSWMS and compute

nodes. Recall from Section 6.1 that these other factors are: the availability of

DSWMS resources, the time and resource demands of evaluations and the degree

of data-centricity of evaluations.

6.3.3 Study II: EIDX and DIDX

Suppose that a policy designer has decided to use either of the two

memoization-employing approaches. She is then faced with the second decision

of whether to use Eager or Delayed Indexing (EIDX or DIDX). Our second study

provides guidance on how this choice should be made. Like the choice of a basic

164

approach of the previous section, this choice is also dependent on environmental

factors.

Fundamentally, EIDX will only be favorable over DIDX in situations where

there are two or more overlapping, concurrent jobs. First, in the absence of over-

lapping jobs, there will be no advantage to indexing (or memoization). The lack

of locality would render cache searches futile. In this case, DIDX will incur fewer

disruptions to a DSWMS’s job of dispatching evaluations onto compute nodes.

Second, if overlapping jobs do exist, but they are not concurrent, delayed indexing

will be sufficient for later jobs to take advantage of the work performed by earlier

jobs. Indexing does not need to occur with immediacy because overlapping jobs

that exploit the cache will not be issued until the current job is completed.

Though these conditions, that jobs must be both overlapping and concur-

rent, seem rather stringent, they should be frequently satisfied in future scientific

collaborations. First, because collaborations will involve thousands of scientists

executing workflows on shared clusters, concurrent jobs will be common. Sec-

ond, because scientists will often share computations and their parameters — in

order to conduct controlled experiments where most variables are fixed — their

aggregate workloads will exhibit a great deal of locality.

In the presence of concurrent, overlapping jobs, the relative favorability be-

tween EIDX and DIDX depends on the magnitude of DSWMS overheads. The

relationship is in fact non-trivial. As DSWMS overhead increases, it generates

two secondary effects that are diametrically opposed. One of these effects favors

eager indexing while the other favors delayed indexing. Ultimately, favorability

is decided by the reconciliation of these two effects.

165

The first effect concerns the occurrence of EIDX-favoring events. For EIDX

to supersede DIDX, there must exist instances where tasks for the search and

indexing of the same evaluation reside in the DSWMS queue simultaneously. In

these circumstances, EIDX will choose to index the evaluation before searching

for it, successfully resolving the evaluation through a cache hit. DIDX, on the

other hand, will prioritize the search over the index task, sacrificing the retrieval

opportunity. With all other factors held constant, higher DSWMS costs will slow

down the processing of search and indexing tasks (for both DIDX and EIDX),

increase the number of queued tasks, increase the potential for search/index “col-

lisions,” and increase the viability of EIDX. As DSWMS overheads decrease, on

the other hand, queue sizes diminish along with the possibility of such collisions

and the advantage of EIDX. By increasing the potential for search/index colli-

sions, the first effect increases the favorability of EIDX.

The second effect opposes the first: as DSWMS overheads increase, DSWMS

resource become scarcer. This second effect has a larger impact on EIDX than on

DIDX. Because EIDX processes indexing tasks before search tasks, its DSWMS

load is higher relative to delayed indexing. As DSWMS overhead increases, it

affects EIDX more than DIDX. At some point, DSWMS load increases so much

that DSWMS resources become a bottleneck and increases in DSWMS over-

head result in a commensurate increase in overall runtime. Because increases in

DSWMS overhead affect EIDX more than DIDX, this point will occur for EIDX

first. When it does occur, EIDX’s performance will degrade rapidly. Eventu-

ally, DIDX will also succumb to the same problems, but it occurs at a higher

level of DSWMS overhead. By increasing DSWMS-scarcity for EIDX faster than

166

for DIDX, the second effect increases the favorability of DIDX. The next set of

experiments illustrate the bipolar influence of DSWMS overhead.

Experimental Setup

In these experiments, we examine the performance of a cluster in fulfilling

two consecutive jobs that request the same set of evaluations. Other than the

fact that two jobs, rather one job is requested, our simulation parameters are

identical to the ”small cluster” in the first experiment from our first study. To

summarize, the cluster consists contains 64 compute nodes, each job consists of

1024 evaluations and each evaluation requires 120 seconds to execute. The arrival

time of the second job occurs after the first job, but early enough so that DIDX

cannot index any of the first job’s evaluations in time. Because EIDX prioritizes

indexing, it is able to index some or all of the evaluations before the DSWMS

begins processing the second job. Search and index overheads are equal to one

another and are ranged from 0.125 to 2 seconds.

Results

We illustrate the two effects of increased DSWMS overhead in Figures 6.11

and 6.12. Figure 6.13 shows the confluence of the two effects by comparing

the overall runtimes of EIDX and DIDX in a ratio. Figure 6.11 shows that

as DSWMS overheads increase, EIDX is able to achieve higher hit rates even

though the second job comes closely behind the first job. Figure 6.12 shows the

amount of time required to process the first job, and therefore the adverse effects

167

Cache hitrate of J2 vs. Middleware Overhead

0

0.2

0.4

0.6

0.8

1

1.2

0.
12

5

0.
25

0

0.
37

5

0.
50

0

0.
62

5

0.
75

0

0.
87

5

1.
00

0

1.
12

5

1.
25

0

1.
37

5

1.
50

0

1.
62

5

1.
75

0

1.
87

5

Middleware Ovhd (seconds)

h
it

ra
te

LEMO/TEMO with DIDX
 LEMO/TEMO with EIDX
DIDX with LEMO/TEMO (always 0)
 EIDX with LEMO/TEMO

Cache hit rate of J

2

 vs. DSWMS Overhead

DSWMS Overhead (seconds)

h

i
t

r

a

t
e

Figure 6.11. Cache hit rates when processing job the second job (J2) using DIDX
(always 0) and EIDX vs. DSWMS overhead

of increased DSWMS overhead. Up until 0.875 seconds, both EIDX and DIDX

show only slight increases in runtime. When overhead reaches 1 second, however,

there is a marked increase in runtime. At this point, the DSWMS becomes a

bottleneck, so increases in DSWMS overhead result in proportional increases in

overall runtime. While this measurement was taken on the first job only, the

processing of the second job exhibits similar characteristics.

The overall impact on DSWMS overheads on performance is illustrated in

Figure 6.13, which shows that the relative performance of EIDX initially increases,

peaks out with a DSWMS overhead of 0.625 seconds and then drops. The initial

increase is attributed to the higher hit rates as shown in Figure 1. The descent

is attributed to the second effect as shown in Figure 6.12.

While in this scenario, increased hit rates make EIDX the better choice up to

168

Runtime of J1

0

1000

2000

3000

4000

5000

0.
12

5

0.
25

0

0.
37

5

0.
50

0

0.
62

5

0.
75

0

0.
87

5

1.
00

0

1.
12

5

1.
25

0

1.
37

5

1.
50

0

1.
62

5

1.
75

0

1.
87

5

Middleware Ovhd(seconds)

R
u

n
ti

m
e

(s
ec

s)

LEMO/TEMO with DIDX
 LEMO/TEMO with EIDX

DSWMS Overhead (seconds)

Runtime of J

1

R

u

n

t
i

m

e

(
s

e

c
o

n

d

s
)

Figure 6.12. Runtimes for the first job (J1) for DIDX and EIDX as DSWMS
overhead is varied.

a DSWMS overhead of 10 seconds, this will not always be the case. The magni-

tudes of the two effects are dependent on environmental factors. As previously

mentioned, the hit rates of EIDX and DIDX depend on the timing of the second

job as well as affinity between the two jobs. The magnitude of the second effect

depends on compute-scarcity within the environment. In particular, environ-

ments with higher computational scarcity will have a delayed onset of the second

effect. For example, if we had only 32 nodes instead of the 64 in our experiment,

the tipping point where the EIDX-based DSWMS becomes a bottleneck would

be at 2 seconds instead of at 1 second.

169

RATIO: runtime(DIDX)/runtime(EIDX)

0

0.5

1

1.5

2

0.
12

5

0.
25

0

0.
37

5

0.
50

0

0.
62

5

0.
75

0

0.
87

5

1.
00

0

1.
12

5

1.
25

0

1.
37

5

1.
50

0

1.
62

5

1.
75

0

1.
87

5

Middleware Ovhd(seconds)

ra
ti

o

RATIO

DSWMS Overhead (seconds)

Figure 6.13. Ratio of the overall runtimes of DIDX and EIDX vs. DSWMS
overhead.

Summary of Experiments

In this section, we have presented results from two studies that demonstrate

the need for a flexible memoization operator and provide guidance on how the

memoization operator should be configured. In our first study, we showed that

in the presence of a large cluster, it will be best to use the NEMO approach.

In smaller clusters, one of the LEMO or TEMO approaches will be better. The

relative favorability between LEMO and TEMO will depend on the relative hit

rates of the two approaches, or the type of overlap between incoming jobs and

the repository. It will also depend upon the level of compute node scarcity in the

cluster.

In our second study, we compared the favorability of eager and delayed in-

170

dexing (EIDX and DIDX). We determined that EIDX would only be superior to

DIDX in the presence of co-existing, overlapping jobs. In addition, the DSWMS

overhead has a large impact on the relative favorabilities of EIDX and DIDX.

As DSWMS overhead increases, it generates two independent and diametrically

opposed effects whose summation determines favorability. We described the two

effects and the environmental factors that determine their magnitude.

6.4 Related Work

Having proposed and evaluated various mechanisms for flexible memoization,

I now describe related work. Several techniques proposed in the database man-

agement literature (114; 115; 116; 117) reduce the volume or priority of index

updates in order to mitigate load. Our delayed indexing (DIDX) mechanism is

based on similar foundations. These works, however, decide whether to delay in-

dexing based purely on the level of load the system is experiencing. In contrast,

our flexible memoization operator decides whether indexing should be delayed

based on many additional factors, including workload attributes and the relative

availability of different resource classes.

A number of frameworks have also been proposed for caching scientific data

in “computational grids” (118; 119; 120; 121; 122). These systems cache data

in order to conserve computation and communication resources. Unlike our pro-

posal, however, these systems do not allow cached entities to be retrieved by

functional expression. Rather, these systems index their data entities by unique

identifiers, which do not match the format of user requests. For example, our

171

memoization operator permits retrieval requests in the form of g(f(xi)) whereas

other scientific systems typically only allow the retrieval of xi.

The issue of data equivalence has been mentioned in the work of Cavanaugh

and Graham in (123). Like us, the authors identify notions for physical and

lineage equivalence. In their work, however, the authors are focused on collabo-

ration: equivalence is used to to reconcile different sets of data after they have

been created and analyzed. In contrast, we focus on runtime efficiency, using

equivalence to identify redundant work in real-time.

6.5 Chapter Summary and Future Work

In this chapter, I identified the need for a flexible memoization operator that

modulates its retrieval efforts in accordance with environmental conditions. The

chapter proposes a series of mechanisms that use varying degrees of DSWMS and

compute node resources depending on their supply and demand. In a pair of

simulation studies, I demonstrate a dire need for a flexible memoization operator

and show that each of the two design dimensions proposed is in fact helpful in

optimizing a cluster’s performance under different environmental conditions.

While this chapter provides comprehensive mechanisms for modulating mem-

oization, it does not to address the issue of policy; that is, when and how does

an administrator decide how the memoization operator should be configured?

One can foresee a full-range of approaches that vary in administration overhead,

ability to adapt, and system complexity. At one end, the memoization operator

may be configured statically when the DSWMS is initiated. Such an approach is

172

simple to implement and administer, but will not dynamically adapt to changing

conditions. A more flexible approach may be to configure each function individ-

ually, as each function may have different overheads and benefits with respect to

memoization. Also, we may allow changes to memoization policy during runtime

to confront environmental changes. To push further along these lines, we may

implement a fully adaptive approach that monitors and predicts environmental

conditions during runtime and automatically picks policies based on predictions.

This approach would be appealing to administrators, but would result in greater

implementation complexity. Because of these issues, memoization policy is an

interesting avenue for future exploration.

173

Chapter 7

Concluding Remarks

In recent years, we have seen an increased coupling between scientists and

computer technology. This couple has created an explosion in computation vol-

umes and lead to increased user needs and expectations for their tools. These

trends give rise to a new set of problems and opportunities in computation man-

agement. In this dissertation I have proposed the concept of a Data-Centric

Scientific Workflow Management System (DSWMS) to address these needs. The

DSWMS is an intermediary software layer that provides a declarative interface,

improved performance and a host of features that will make next-generation sci-

entists more productive. The DSWMS exploits“data-awareness” to supersede

current-generation “process-centric” middleware.

I have defined the vision of a DSWMS and accomplished several milestones

towards its realization. My contributions include the selection of a feature set,

the definition of a data model and language, and the implementation of a pro-

totype called GridDB. In addition, I have uncovered several technical problems

174

by evaluating GridDB in a large-scale environment. These problems have been

addressed in the chapters of this thesis. Finally, I have verified the expressibil-

ity of the FDM/RC model on tens of scientific workflows, 6 of which have been

described in detail as use-cases in this thesis.

This thesis represents an initial approach to realizing DSWMSs, there are also

areas where future improvement can be made. With data-centricity, DSWMSs

are empowered with additional workload information, which is only partially

exploited in this work. This additional information can be used to provide even

more power to users. As one example, a DSWMS can use data-centricity for

enhanced cost estimation and resource allocation. In particular, the DSWMS

can, through repeated observation, associate parameter values of computations

with execution characteristics such as runtime or memory usage. These estimates

will be better than those obtainable through process-centric middleware and can

be reported to users to help them plan their schedules or can be used by the

DSWMS to utilize resources more effectively.

In the future, the data-centric approach to computation management will be

required if science projects are to achieve their goals. As the core idea behind

the wildly successful multi-billion dollar database management industry, the 2-

phase programming model I advocate has a promising track record. Additionally,

the evolutionary philosophies that we advocate — incremental adoption, inter-

operability with current programming models, and compatibility with existing

infrastructure — should facilitate adoption. With their increased potential for

automation and efficiency, DSWMSs will be a core tool in the future search for

world-changing discoveries.

175

Bibliography

[1] Top 500 Supercomputers. http://top500.org/.

[2] Marcy G, Butler P, Fischer D, Vogt S, Henry G, et al. California & Carnegie

Planet Search. http://exoplanets.org/.

[3] Marcy GW, Butler RP (1998) Detection of extrasolar giant planets. Annual

Review of Astronomy and Astrophysics 36:57–97. doi:10.1146/annurev.

astro.36.1.57.

[4] Cox P, Betts R, Jones C, Spall S, Totterdall I (2000) Acceleration of global

warming due to carbon-cycle feedbacks in a coupled climate model. Nature

408:184–187.

[5] Climate Simulation at Sandia National Laboratories.

http://www.cs.sandia.gov/capabilities/ClimateSimulation.

[6] Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D (2002)

Seti@home: An experiment in public-resource computing. Commun ACM

45:56–61. doi:http://doi.acm.org/10.1145/581571.581573.

176

[7] (2007). FightAIDS@Home Project: A joint effort of Entropia and Scripps

Research Institute. http://www.fightAIDSatHome.org.

[8] (2007). Rosetta@Home: Protein Folding, Design and Docking.

http://boinc.bakerlab.org/rosetta/.

[9] (2007). Folding@Home: Distributed Computing.

http://folding.stanford.edu/.

[10] Sterling T, Savarese D, Becker DJ, Dorband JE, Ranawake UA, et al. (1995)

BEOWULF: A Parallel Workstation for Scientific Computation. In: Pro-

ceedings of the 24th International Conference on Parallel Processing.

[11] Gray J, Compton M (2005) A call to arms. ACM Queue 3:30.

[12] (2003). Grid physics network (griphyn) white paper.

[13] Paul Avery ea (2001). ivdgl itr proposal: An international virtual-data grid

laboratory for data intensive science. http://www.phys.ufl.edu/~avery/

ivdgl/itr2001/proposal_all.pdf. ”Proposal 0122557”.

[14] Livny M, Mount R, Newman H, Pordes R (2001). Particle physics

data grid collaboratory pilot. http://www.ppdg.net/docs/SciDAC/PPDG_

overview.pdf.

[15] (2000) Data Management in an International Data Grid Project.

[16] Litzkow M, Livny M, Mutka M (1988) Condor - a hunter of idle worksta-

tions. In: Proceedings of the 8th International Conference of Distributed

Computing Systems.

177

[17] Foster I, Kesselman C (1997) Globus: A metacomputing infrastructure

toolkit. The International Journal of Supercomputer Applications and High

Performance Computing 11:115–128.

[18] Hellerstein JM, Avnur R, Raman V (2000) Informix under control: Online

query processing. In: Data Mining and Knowledge Discovery 4(4). pp.

281–314.

[19] Gray J, Liu DT, Nieto-Santisteban M, Szalay A, DeWitt DJ, et al. (2005)

Scientific Data Management in the Coming Decade. In: SIGMOD Record.

[20] (2007). Lsst press release: Google joins large synoptic survey telescope

project. http://www.lsst.org/News/docs/google.pdf.

[21] (2007). Large synoptic survey telescope (lsst) home page. http://www.

lsst.org/.

[22] Gray J, Szalay A (2006) 2020 computing: Science in an exponential world.

Nature doi:10.1038/440413a.

[23] Vik Singh and Jim Gray and Ani R Thakar and Alexander S Szalay and

Jordan Raddick and Bill Boroski and Svetlana Lebedeva and Brian Yanny

(2006) MSR-TR-2006-190: SkyServer Traffic Report The First Five Years.

Technical report, Microsoft Research.

[24] Bollacker K, Lawrence S, Giles CL (1998) CiteSeer: An autonomous web

agent for automatic retrieval and identification of interesting publications.

In: Sycara KP, Wooldridge M, editors, Proceedings of the Second Inter-

178

national Conference on Autonomous Agents. New York: ACM Press, pp.

116–123. URL citeseer.ist.psu.edu/bollacker98citeseer.html.

[25] (2007). ACM Digital Library. http://portal.acm.org.

[26] (2007). Google Scholar. http://scholar.google.com.

[27] Asanovic K, Bodik R, Catanzaro BC, Gebis JJ, Husbands P, et al. (2006)

The landscape of parallel computing research: A view from berkeley. Tech-

nical Report UCB/EECS-2006-183, EECS Department, University of Cali-

fornia, Berkeley. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/

2006/EECS-2006-183%.html.

[28] Gray J, Shenoy P (2000) Rules of Thumb in Data Engineering. In: ICDE.

[29] Gray J (2007) Presentation: Tape is Dead, Disk is Tape, Flash is Disk,

RAM Locality is King. In: CIDR. http://research.microsoft.com/

~Gray/talks/Flash_is_Good.ppt.

[30] Erich Strohmaier, Jack J Dongarra, Hans W Meuer, Horst D Simon (2005)

Recent Trends in the Marketplace of High Performance Computing. Cy-

bertechnology Watch Quarterly 1.

[31] Jette, M, Grondona, M (2002) SLURM: Simple Linux Utility for Re-

source Management, User’s Manual. http://www.llnl.gov/LCdocs/

slurm/slurm.pdf.

[32] Capit N, Costa GD, Georgiou Y, Huard G, n CM, et al. (2005) A batch

scheduler with high level components. In: Cluster computing and Grid 2005

(CCGrid05). URL http://oar.imag.fr/papers/oar_ccgrid05.pdf.

179

[33] GNU Free Software Foundation GNU Queue Manual. http://www.gnu.

org/software/queue/.

[34] TORQUE Resource Manager. http://www.clusterresources.com/

pages/products/torque-resource-manager%.php.

[35] Thain D, Tannenbaum T, Livny M (2006) How to measure a large open-

source distributed system: Research articles. Concurr Comput : Pract

Exper 18:1989–2019. doi:http://dx.doi.org/10.1002/cpe.v18:15.

[36] Condor World Map. http://www.cs.wisc.edu/condor/map/.

[37] Foster I, Gieraltowski J, Gose S, Maltsev N, May E, et al. (2004) The

grid2003 production grid: Principles and practice. In: HPDC ’04: Pro-

ceedings of the 13th IEEE International Symposium on High Performance

Distributed Computing (HPDC’04). Washington, DC, USA: IEEE Com-

puter Society, pp. 236–245. doi:http://dx.doi.org/10.1109/HPDC.2004.36.

[38] George Gilder (1997) Telecosm. Simon & Schuster.

[39] BOINC Statistics on 1/16/07. http://boinc.netsoft-online.com/.

[40] (2007). High productivity computing systems project. http://www.

highproductivity.org/.

[41] Yelick K, Demmel J, Simon H, Culler D, Bailey D, et al. (2004). Com-

puter Science 267: Parallel Processing Lecture Notes, Lecture 1: Overview

of Parallel Computing. http://www.cs.berkeley.edu/ yelick/cs267-

sp04/lectures/01/lect01-intro.pdf.

180

[42] Yelick K, Semenzato L, Pike G, Miyamoto C, Liblit B, et al. (1998) Ti-

tanium: A high-performance Java dialect. In: ACM, editor, ACM 1998

Workshop on Java for High-Performance Network Computing. New York,

NY 10036, USA: ACM Press.

[43] El-Ghazawi T, Carlson W, Sterling T, Yelick K (2003) UPC: Distributed

Shared-Memory Programming. Wiley-Interscience.

[44] Numrich R, Reid J (1998). Co-array fortran for parallel programming.

[45] Introduction to Parallel Programming and MapReduce. http://code.

google.com/edu/parallel/mapreduce-tutorial.html.

[46] Dean J, Ghemawat S Mapreduce: Simplified data processing on large clus-

ters. pp. 137–150.

[47] Hadoop: A distributed computing platform. http://lucene.apache.org/

hadoop/.

[48] DeWitt D, Gray J (1992) Parallel Database Systems: The Future of High

Performance Database Systems. Commun ACM 35:85–98. doi:http://doi.

acm.org/10.1145/129888.129894.

[49] Szalay AS, Kunszt PZ, Thakar A, Gray J, Slutz D, et al. (2000) Design-

ing and mining multi-terabyte astronomy archives: the Sloan Digital Sky

Survey. pp. 451–462.

[50] Szalay AS, Gray J, Vandenberg J. Petabyte scale data mining: Dream or

reality?

181

[51] Upson C, Thomas Faulhaber J, Kamins D, Laidlaw DH, Schlegel D, et al.

(1989) The application visualization system: A computational environment

for scientific visualization. IEEE Comput Graph Appl 9:30–42. doi:http:

//dx.doi.org/10.1109/38.31462.

[52] Nielson GM, Hagen H, Müller H, editors (1997) Scientific Visualization,

Overviews, Methodologies, and Techniques, Dagstuhl, Germany, May 1994.

IEEE Computer Society.

[53] Wong PC, Bergeron RD (1994) 30 years of multidimensional multivariate

visualization. In: Nielson et al. (52), pp. 3–33.

[54] McCormick BH (1988) Visualization in scientific computing. SIGBIO Newsl

10:15–21. doi:http://doi.acm.org/10.1145/43965.43966.

[55] Simon H (2006). Presentation: Progress in Supercomputing: The Top

Three Breakthroughs of the Last 20 Years and the Top Three Challenges for

the Next 20 Years. http://computing.ornl.gov/presentations/simon.

pdf.

[56] Bryson S, Levit C (1992) The virtual wind tunnel. IEEE Comput Graph

Appl 12:25–34. doi:http://dx.doi.org/10.1109/38.144824.

[57] Lee JP, Ahlberg C, Carr D, Grinstein G, Kinney J, et al. (2001) Visual-

ization for bio- and chem-informatics: are you being served? In: VIS ’01:

Proceedings of the conference on Visualization ’01. Washington, DC, USA:

IEEE Computer Society, pp. 515–518.

182

[58] Ingrid Remy and Stephen W Michnick (1997) Visualization of Biochemical

Networks in Living Cells. In: Proceedings of the National Academy of

Sciences.

[59] Max N, Crawfis R, Williams D (1993) Visualization for climate modeling.

IEEE Comput Graph Appl 13:34–40. doi:http://dx.doi.org/10.1109/38.

219448.

[60] Gordin DN, Edelson DC, Gomez LM (1996) Scientific visualization as an

interpretive and expressive medium. In: ICLS ’96: Proceedings of the 1996

international conference on Learning sciences. International Society of the

Learning Sciences, pp. 409–414.

[61] The Signaling Gateway. http://www.signaling-gateway.org/.

[62] Timo Hannay. Berkeley Database Seminar: Database Publishing at Nature.

http://db.cs.berkeley.edu/dblunch-fa2005/timo.ppt.

[63] Carminati, F, et al (2003) Hepcal ii: Common use cases for a hep com-

mon application layer for analysis. Technical report, LHC Grid Computing

Project.

[64] (2003). Personal communication with Craig Tull.

[65] Condor-G and DAGMan Hands-On Lab. http://www.cs.wisc.edu/

condor/tutorials/miron-condor-g-dagman-tutorial.%html.

[66] Condor Manual. Chapter 2.6: Submitting a Job to Condor.

183

[67] globus-job-submit man page. http://www.globus.org/v1.1/

programs/globus-job-submit.html. Accessed 11/19/03.

[68] Zhao Y, Deshpande PM, Naughton JF (1997) An array-based algorithm

for simultaneous multidimensional aggregates. In: Proceedings of the 1997

ACM SIGMOD international conference on Management of data. ACM

Press, pp. 159–170. doi:http://doi.acm.org/10.1145/253260.253288.

[69] fv: The Interactive FITS File Editor. http://heasarc.gsfc.nasa.gov/

docs/software/ftools/fv/. Accessed 10/28/03.

[70] Brun R, Buncic N, Fine V, Goto M, Rademakers F, et al. (1997) ROOT

- An Interactive Object Oriented Framework and its application to NA49

data analysis. In: Proceedings of Computing in High Energy Physics.

[71] PAW: Physics Analysis Workstation. http://wwwasd.web.cern.ch/

wwwasd/paw/. Accessed 10/28/03.

[72] Wong P, Bergeron R (1997). 30 years of multidimensional multivariate

visualization.

[73] John Hughes (1985) Lazy memo-functions. Functional Programming Lan-

guages and Computer Architecture :129–146.

[74] Sloan digital sky survey. http://www.sdss.org/.

[75] Annis, J, Kent S, Castender F, Eisenstein D, et al. (2000) MaxBCG Tech-

nique for Finding Galaxy Clusters in SDSS Data . In: AAS 195th Meeting.

184

[76] Annis J, Zhao Y, Voeckler J, Wilde M, Kent S, et al. (2002) Applying

chimera virtual data concepts to cluster finding in the sloan sky survey. In:

Supercomputing.

[77] Serge Abiteboul and Richard Hull and Victor Vianu (1995) Foundations of

Databases: The Logical Level, Addison-Wesley Longman Publishing Co.,

Inc., chapter Chapter 20: Complex Values.

[78] Raman V, Raman B, Hellerstein JM (1999) Online dynamic reordering for

interactive data processing. In: The VLDB Journal. pp. 709–720.

[79] Olson D, Perl J. PPDG-19: Grid Service Requirements for Interactive

Analysis. http://www.ppdg.net/pa/ppdg-pa/idat/papers/analysis_

use-cases-grid-reqs%.pdf. Access 11/21/03.

[80] Cui Y, Widom J, Wiener JL (2000) Tracing the lineage of view data in a

warehousing environment. ACM Transactions on Database Systems 25:179–

227.

[81] (1998) Handbook of Mathematics and Computational Science. Springer

Verlag.

[82] Wensel S (1988) Postgres reference manual. Technical Report UCB/ERL

M88/20, EECS Department, University of California, Berkeley. URL http:

//www.eecs.berkeley.edu/Pubs/TechRpts/1988/1022.html.

[83] David T Liu and Michael J Franklin and Devesh Parekh (2003) Demo.

GridDB: A Relational Interface to the Grid. In: SIGMOD.

185

[84] A Bayucash and R L Henderson and C Lesiak and B Mashn and T Proerr

and D Tweten (1999) Portable batch system: External reference specifica-

tion. Technical report, MRJ Technology Solutions.

[85] Scientific Workflows Survey. http://www.extreme.indiana.edu/

swf-survey/.

[86] Zhao Y, Voeckler J, Wilde M, Foster I (2002) Chimera: A virtual data

system for representing, querying, and automating data derivation. In:

14th Conference on Scientific and Statistical Data Management.

[87] Dagman home page. http://www.cs.wisc.edu/condor/dagman/. Ac-

cessed 10/25/03.

[88] Buck J, Ha S, Lee EA, Messerschmitt DG (1994) Ptolemy: A framework for

simulating and prototyping heterogenous systems. Int Journal in Computer

Simulation 4.

[89] (2005) Contextualised Workflow Execution in MyGrid. In: EGC. pp. 444–

453.

[90] Ioannidis YE, Livny M, Ailamaki A, Narayanan A, Therber A (1997) Zoo:

a desktop experiment management environment. In: Proceedings of the 22

nd Conference on Very Large Data Bases (VLDB), 1996. pp. 580–583.

[91] Ailamaki A, Ioannidis YE, Livny M (1998) Scientific workflow management

by database management. In: Statistical and Scientific Database Manage-

ment. pp. 190–199.

186

[92] Wiener JL, Ioannidis YE (1993) A moose and a fox can aid scientists with

data management problems. In: Workshop on Database Programming

Languages. pp. 376–398.

[93] Anjur V, Ioannidis YE, Livny M (1996) FROG and TURTLE: Visual

bridges between files and object-oriented data. In: Proceedings of the

Eighth International Conference on Scientific and Statistical Database

Management. Stockholm, Sweden: IEEE, pp. 76–85.

[94] (2005). Personal communication with Bonnie Fitzpatrick.

[95] (2005). Personal communication with Xiao Wen.

[96] May JM (2001) Parallel I/O for high performance computing. San Fran-

cisco, CA, USA: Morgan Kaufmann Publishers Inc.

[97] Muniswamy-Reddy KK, Wright CP, Himmer A, Zadok E (2004) A versatile

and user-oriented versioning file system. In: FAST ’04: Proceedings of the

3rd USENIX Conference on File and Storage Technologies. Berkeley, CA,

USA: USENIX Association, pp. 115–128.

[98] Muniswamy-Reddy K (2003) Versionfs: A Versatile and User-Oriented Ver-

sioning File System. Master’s thesis, Stony Brook University. Technical

Report FSL-03-03, www.fsl.cs.sunysb.edu/docs/versionfs-msthesis/

versionfs.pdf.

[99] Peterson Z, Burns R (2005) Ext3cow: a time-shifting file system for regu-

latory compliance. Trans Storage 1:190–212.

187

[100] CORNELL B, DINDA P, AND F (2004). Wayback: A user-level versioning

file system for linux.

[101] Liu D, Franklin M (2004). Griddb: A data-centric overlay for scientific

grids.

[102] Buneman P, Khanna S, Tan WC (2001) Why and where: A characterization

of data provenance. In: ICDT. pp. 316–330.

[103] Cui Y (2002) Lineage tracing in data warehouses. Ph.D. thesis. Adviser-

Jennifer Widom.

[104] Widom J (2005) Trio: A system for integrated management of data, accu-

racy and lineage. In: CIDR. pp. 262–276.

[105] Program Library HOWTO. http://www.tldp.org/HOWTO/

Program-Library-HOWTO/shared-libraries.html.

[106] CVS Home Page. http://www.nongnu.org/cvs/.

[107] Michael Pilato (2004) Version Control With Subversion. Sebastopol, CA,

USA: O’Reilly & Associates, Inc.

[108] SuperMACHO, A Next Generation Microlensing Survey of the LMC. http:

//www.ctio.noao.edu/supermacho.

[109] Nikolaev S, Cook KH, Stubbs CW, Smith RC, Rest A, et al. (2003) Object-

Based Photometry Pipeline for SuperMACHO Project. In: Bulletin of the

American Astronomical Society. pp. 1389–+.

188

[110] Zemla A (2003) Lga: a method for finding 3d similarities in protein struc-

tures. Nucleic Acids Research 31:3370–3374.

[111] Liang S (1999) Java(TM) Native Interface: Programmer’s Guide and Spec-

ification. Prentice Hall PTR.

[112] (Accessed 2/2005). LSST Project Site. http://www.lsst.org/.

[113] BlueArc’s Titan Architecture White Paper. http://www.bluearc.com/

html/library/downloads/ba_arch_wp.pdf.

[114] Colby LS, Griffin T, Libkin L, Mumick IS, Trickey H (1996) Algorithms for

deferred view maintenance. pp. 469–480. URL citeseer.ist.psu.edu/

18364.html.

[115] Chandrasekaran S (2005). Query processing over live and archived data

streams.

[116] Stonebraker M (1989) The case for partial indexes. SIGMOD Rec 18:4–11.

doi:http://doi.acm.org/10.1145/74120.74121.

[117] Seshadri P, Swami AN (1995) Generalized partial indexes. In: ICDE. pp.

420–427. URL citeseer.ist.psu.edu/seshadri95generalized.html.

[118] Baru C, Moore R, Rajasekar A, Wan M (1998). The sdsc storage resource

broker. URL citeseer.ist.psu.edu/baru98sdsc.html.

[119] Chervenak AL, Palavalli N, Bharathi S, Kesselman C, Schwartzkopf R

(2004) Performance and scalability of a replica location service. hpdc

189

00:182–191. doi:http://doi.ieeecomputersociety.org/10.1109/HPDC.2004.

27.

[120] Singh G, Bharathi S, Chervenak A, Deelman E, Kesselman C, et al. (2003)

A metadata catalog service for data intensive applications. sc 00:33. doi:

http://doi.ieeecomputersociety.org/10.1109/SC.2003.10020.

[121] d’Orazio L, Jouanot F, Labbé C, Roncancio C (2005) Building

adaptable cache services. In: MGC ’05: Proceedings of the 3rd interna-

tional workshop on Middleware for grid computing. New York, NY, USA:

ACM Press, pp. 1–6. doi:http://doi.acm.org/10.1145/1101499.1101502.

[122] Cardenas Y, Pierson JM, Brunie L (2005) Uniform distributed cache service

for grid computing. In: IEEE, editor, In 16th DEXA: In 2th International

Workshop on Grid and Peer-to-Peer Computing Impacts on Large Scale

Hereogeneous Distributed Database Systems. IEEE Computer Society, pp.

351–355. URL http://liris.cnrs.fr/publis/?id=1958.

[123] Cavanaugh R, Graham G Apples and apple-shaped oranges: Equivalence

of data returned on subsequent queries with provenance information. In:

Workshop on Data Provenance, 2002.

[124] Liu DT, Franklin MJ (2004) The design of griddb: A data-centric overlay

for the scientific grid. In: VLDB. pp. 600–611.

190

Appendix A

GridDB Language Specification

In this section, we describe a context-free grammar that defines GridDB’s

declarative language. The grammar is listed in full in Section A.1 and is decom-

posed into four sections. Section 0 provides a top-level description of the lan-

guage, specifying that statements can either be Data Definition Language (DDL)

statements or Data Manipulation Language (DML) statements (<ddlStmt> and

<dmlStmt> in the <stmt> rule). Section 1 defines DDL statements while Section

2 defines DML statements. Section 3 provides auxiliary rules to describe tokens

and lists of tokens. Next, we elaborate on Sections 1 and 2, which describe the

key ways in which a user interactis with the language.

The top-level rule in section 1 is that which defines <ddlStmt>.

This rule states that DDL statements can either be type declarations

(<typeDeclaration>) or function declarations (<functionDeclaration>). The

syntax for specifying types — opaque, transparent and opaque-transparent — is

defined in section 1A, starting with the <typeDeclaration> rule. The syntax for

191

specifycing functions — atomic, composite, and maps — is described in section

1B.

The top-level rule in section 2 is that which defines <dmlStmt>. This

expands into one of 6 rules, defining statements for each of the 6 types of

DML statements: container variable declarations (<containerDecl>), container

variable bindings (<containerBindingStmt>), data procurement statements

(<dataProcurementStmt>), data viewing statements (<dataViewingStmt>),

data provenance queries (<dataProvenanceStmt>) and computational steering

statements (<compSteeringStmt>). These statements are further defined in sec-

tions 2A through 2F.

Finally, we note the use a shorthand notation for representing ”list produc-

tion” rules. We use this shorthand because list productions occur frequently. The

shorthand rule is:

<Y> ::= <<X> <DELIM>>+

and represents:

<Y> ::= <X> | <X> <DELIM> <Y>

For example, the following rule:

<stmtList> ::= <<stmt> ;>+

is equivalent to:

<stmtList> ::= <stmt> | <stmt>; <stmtList>

192

A.1 GridDB Declarative Language Grammar

//

// SXN 0: Top-Level

<GridDBStmt> ::= <statementList>

<stmtList> ::= <<stmt> ;>+

<stmt> ::= <ddlStmt> | <dmlStmt>

//

// SXN 1: Data Definition Language

<ddlStmt> ::= <typeDeclaration> | <functionDeclaration>;

//

// SXN 1A: Types

<typeDeclaration> ::= <opaqueType> | <transaparentType> | <opaqueTransparentType>

<opaqueType> ::= opaque type <typeName>;

<typeName> ::= IDENTIFIER

<transaparentType> ::= transparent type <typeName> = (<typeBody>)

<typeBody> ::= <attrList>

<attrList> ::= <<attrDefn> ,>+

<attrDefn> ::= <attrName> : <attrType>

<opaqueTransparentType> ::= type <typeName> = (<typeBody>)

//

// SXN 1B: FUNCTIONS

<functionDeclaration> ::= <atomicFunction> | <compositeFunction> |

<mapFunction>

<atomicFunction> ::= atomic <functionHeader> = <atomicFunctionBody>

<functionHeader> ::= fun <functionName>(<formalInputArgList>)

: (<formalOutputArgList>)

<functionName> ::= <IDENTIFIER>

<formalInputList> ::= <<formalArg>,>+

<formalOutputList> ::= <<formalArg>,>+

<formalArg> ::= <formalArgName> : <type>

<formalArgName> ::= <name>

<name> ::= <IDENTIFIER>

<type> ::= <IDENTIFIER>

<atomicFunctionBody> ::=

exec(programSpec = <programSpec> ,

unfoldSpec = <unfoldSpec> ,

193

foldSpec = <foldSpec>);

<programSpec> ::= (<codeModule> , <driverProgram>)

<codeModule> ::= <STRING_LITERAL>

<driverProgram> ::= <STRING_LITERAL>

<unfoldSpec> ::= (<tagSpecList>)

<tagSpecList> ::= <<tagSpec> ,>+

<tagSpec> ::= (STRING_LITERAL , <qualifiedAttr>)

<qualifiedName> ::= <<name> . >? <name>

<foldSpec> ::= (<outSpecList>)

<outSpecList> ::= <<outSpec>,>+

<outSpec> ::= (<transparentFoldSpec> | <opaqueFoldSpec>)

<transparentFoldSpec> ::= <formalArgName> , <fileSetPath>, <adapter>

<fileSetPath> ::= <REGEX>

<adapter> ::= <STRING_LITERAL>

<opaqueFoldSpec> :: = <formalArgName> , <fileSetPath>

<compositeFunction> ::= <functionHeader> = <compositeBody>

<compositeBody> ::= (< <compStatementList> ; >+)

<compStatementList> ::= <compStatement>

<compStatement> ::= <nameDeclaration> | <varBinding>

<nameDeclaration> ::= <intermediateVar> : <type>

<intermediateVar> ::= <name>

<varBinding> ::= (<varList>) = <expr>

<varList> ::= <<name>,>+

<expr> ::= <qualifiedName> | <functionName>(<exprList>)

<exprList> ::= <<name>,>*

<mapFunction> ::= map(<functionName>,<attrPosnList>)

<attrPosnList> ::= { <numList> }

<numList> ::= <<NUMBER>,>*

//

// SXN 2: DATA MANIPULATION LANGUAGE

<dmlStmt> ::= <containerDecl> |

<containerBindingStmt> |

<dataProcurementStmt> |

<dataViewingStmt> |

<dataProvenanceStmt> |

<compSteeringStmt>

//

// SXN 2A: CONTAINER DECLARATIONS

194

<containerDecl> ::= <containerName> : <type>

<containerName> ::= <name>

//

// SXN 2B: CONTAINER BINDING

<containerBindingStmt> ::= <outputContainers> = <functionName>

(<inputContainers>)

<outputContainers> ::= <containerList>

<inputContainers> ::= <containerList>

<containerList> ::= <<containerName>,>+

//

// SXN 2C: Data Procurement

<dataProcurementStmt> ::= INSERT INTO <container> VALUES <tupleSet> |

<valueSet>

<valueSet> ::= <containerName> = { <valueList> }

<valueList> ::= <numberList> | <stringLiteralList>

//

// SXN 2D: Viewing Data

<dataViewingStmt> ::= SELECT <columnList>

FROM <fromList>

WHERE <predicate>

<fromList> ::= <<fromAtom>,>+

<fromAtom> ::= <container> | autoview(<containerList>)

<columnList> ::= <<attrHandle>,>+

<attrHandle> ::= <containerName>.<attrName>

<predicate> ::= <predicateAtom> | <predicate> <binaryLogicalOp> |

NOT <predicate>

<binaryLogicalOp> ::= AND | OR

<predicateAtom> ::= <attrHandle> <OP> <VALUE>

<OP> ::= < | > | = | <= | >= | <>

//

// SXN 2E: Data Provenance

<dataProvenanceStmt> ::= provenance <entID>

<entID> ::= <NUMBER>

//

// SXN 2F: Computation Steering

195

<compSteeringStmt> ::= UPDATE <fromAtom> SET PRIORITY = NUMBER WHERE

<predicate>

//

// SXN 3: AUXILIARY

<IDENTIFIER> ::= [a-zA-Z][a-zA-Z0-9]*

<STRING_LITERAL> ::= " [a-zA-Z0-9]* "

<REGEX> ::= / [a-zA-Z0-9/+*?()]+ /

<NUMBER> ::= [0-9]+

<numberList> ::= <<NUMBER>, >+

<stringLiteralList> ::= <<STRING_LITERAL>, >+

<VALUE> ::= <STRING_LITERAL> | <NUMBER>

196

