
Latency and Connectivity Analysis Tools for Wireless
Mesh Networks

Phoebus Wei-Chih Chen
S. Shankar Sastry

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-87

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-87.html

June 29, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The authors would like to thank Songhwai Oh, Ian Tan, Kris Pister, and
David Tse for offering feedback on the ideas in this paper, and particularly
Kris Pister for providing more details about TSMP and 802.15.4 radios.

Latency and Connectivity
Analysis Tools for

Wireless Mesh Networks

Phoebus Chen and Shankar Sastry
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, California 94720

{phoebusc,sastry}@eecs.berkeley.edu

Abstract—There has been a recent rise in interest in building
networked control systems over a wireless network, whether
they be for robot navigation, multi-robot systems, or traditional
industrial automation. The wireless networks in these systems
must deliver packets between the controller and the actua-
tors/sensors reliably and with low latency. Furthermore, they
should be amenable to modeling and characterization so they
can be designed as part of a complete control system. Mesh
networks are particularly suited for control applications because
they provide greater reliability through path diversity.

This paper introduces tools for characterizing the end-to-
end connectivity of two points in a wireless mesh network as
a function of latency. In particular, we use tools derived from
Markov chain models to compare end-to-end connectivity in two
routing protocols running on the Data Link/MAC layer provided
by Dust Network’s Time Synchronized Mesh Protocol (TSMP):
Directed Staged Flooding (DSF) and Dust Network’s Unicast
Path Diversity (UPD). These models also allow us to calculate
the traffic load, the sensitivity of end-to-end connectivity to link
estimation error, and the robustness of the network to node
failure. The paper gives an example of how these tools can be
used to evaluate the feasibility of running control applications
over sensor networks.

1

Latency and Connectivity Analysis Tools for
Wireless Mesh Networks

I. INTRODUCTION

Wireless mesh networking has enabled a new generation
of pervasive devices with the potential to provide reliable
communication in environments with limited fixed infras-
tructure. Wireless sensor and actuator networks, sometimes
simply referred to as sensor networks, are one such class of
devices which can use mesh networking to connect sensors
and actuators that monitor our environment and control other
instruments [1]. Sensor networks enable a large variety of
applications including outdoor environmental monitoring for
scientific research, diagnosing civil structures for damage
under earthquakes, monitoring the sick and elderly for assisted
living at home, assisting firefighters navigating through a burn-
ing building, providing situational awareness to soldiers on a
battlefield, mapping out terrain and identifying moving objects
for robot navigation and surveillance, and sensing and control
of industrial automation equipment, among others. Feedback
control systems are among the hardest types of applications
for sensor networks because they place stringent requirements
on reliability and latency. These applications motivate the need
for tools to characterize wireless mesh networking on sensor
networks for control systems.

A. Control over Lossy Networks

The recent increased interest in using wireless networks for
industrial automation culminated in the formation of the ISA-
SP100 committee to set up an industrial wireless standard [2]
and the adaptation of the wired process automation protocol
HART to a wireless protocol, WirelessHART [3]. The current
version of both the ISA-SP100 and WirelessHART standards
plan to build on the PHY layer provided by the IEEE 802.15.4
standard [4] for low-power, ad-hoc, wireless, personal area
networks.

The key issues in using wireless communications for control
systems is reliability and latency. The designer of the control
system needs to know the probability of end-to-end delivery
of the packet, pnet, as a function of delay, td, to provide
performance guarantees on the controller. Many papers in the
area of Networked Control Systems study the impact of packet
loss on the stability of discrete-time estimators [5], [6], [7],
assuming that packets arriving after a deadline (the sampling
period) are lost. But despite using the moniker “network”, the
results of these papers are usually derived using a simple,
point-to-point communication channel with fixed delay. For
instance, in [6], Sinopoli et al. assume the packet loss in the
channel can be modeled by an i.i.d. Bernoulli random variable.

The goal of this paper is to model examples from two
classes of TDMA mesh networks for control systems, multi-
path routing with retransmissions and constrained flooding.

We wish to derive the function p
(td)
net relating the probability

of end-to-end delivery to delay for a packet in a wireless mesh
network providing communication for a control system so we
can use the existing theory in Networked Control Systems
to characterize the system’s stability and performance. The
paper focuses on TDMA networks because of the difficulty
modeling and providing probabilistic guarantees on latency for
networks using CSMA/CA contention protocols. It focuses on
mesh networks because multiple paths between a source and
destination are necessary for good end-to-end reliability.

B. Related Work on Multi-path Routing

Many of the standard routing protocols implemented in
TinyOS [8], [9], an open source operating system for sensor
networks, are single-path, many-to-one routing algorithms for
collecting data from the network. MultiHopRouter, MultiHo-
pLQI [10], MintRoute [11], and Drip and Drain [12] are all
variants on minimum weight path routing, where the weights
are some function of the link quality estimates and hop count.

To increase reliable end-to-end delivery of packets, many
routing schemes propose sending multiple copies of a packet
on multiple paths. These range from controlled, probabilistic
flooding schemes like ARRIVE [13] to schemes that code the
data over a set of packets and send them along disjoint or
braided (partially disjoint) paths such that only a subset of the
packets need to be received for reconstruction [14]. Multi-path
routing schemes are also distinguished by whether an end-to-
end path is selected at the source for a packet, such as the
braided and disjoint paths of [15], or whether the packet can
switch paths during transit, as in “true mesh” routing protocols
like Unicast Path Diversity1 on TSMP [16] and ARRIVE. The
protocols studied in this paper will be of the latter type.

Many of the multi-path routing papers use simulations to
demonstrate qualitative features of their routing schemes. For
instance, in [15], Ganesan et al. propose using the gradient-
based route discovery mechanism in Directed Diffusion [17]
to establish disjoint and braided paths between the source
and destination. Then, the paper uses simulations to evaluate
how patterned (geographically clustered) failures and isolated
(uniformly distributed) failures affect the resilience (probabil-
ity at least one alternate path is available given that at least
one node on the primary path has failed) of the network.
Similarly, [13] uses simulations to evaluate the resilience and
energy/reliability tradeoff of ARRIVE.

A small set of papers try to mathematically model and
analyze the benefits of multi-path routing, but they either
model at the level of paths or assume networks with a very

1The name Unicast Path Diversity is not explicitly mentioned in the
reference, but this is the name of the routing protocol that is described.

2

large number of nodes. In [14], Dulman et al. perform some
simple analysis to get the tradeoff between traffic and relia-
bility, but the analysis does not consider latency. Furthermore,
the calculations use the end-to-end connection probability of
disjoint paths, not individual link probabilities, and hence do
not account for varying path lengths or link probabilities. In
[18], Nasipuri et al. propose a multi-path extension to DSR
and the analysis focuses on finding the statistics of the time
between successive route discoveries. Again, the paper builds
on a path model with path lifetimes drawn from a distribution
instead of a link model with individual link probabilities. In
[19], the authors use a geometry-based argument on networks
with a very large number of nodes to argue that k-shortest path
routing algorithms only distribute the load evenly through a
network when it uses a very large number of paths.

This paper takes a different approach from the papers men-
tioned above, deriving link-probability-based analysis tools
applicable to networks of any size for two examples of mesh
routing protocols. In Sections II and III, we present the models
and analysis tools for Unicast Path Diversity and Directed
Staged Flooding, the two mesh routing protocols. This is
followed by a comparison of these two protocols in the context
of control systems in Section IV, and finally a discussion on
directions for future work in Section V.

II. UNICAST PATH DIVERSITY

Dust Networks, Inc. proposed Unicast Path Diversity (UPD)
over Time Synchronized Mesh Protocol (TSMP) [16] for
reliable networking in sensor networks. UPD was designed
for industrial automation, building automation, and security
and defense applications, where one may wish to close a
control loop around a sensor network. The algorithm exploits
frequency, time, and space diversity to achieve what they claim
is over 99.9% typical network reliability [20]. We use a general
Mesh TDMA Markov Chain (MTMC) model to analyze the
performance of UPD for incorporation into a control system.

A. Modeling Characteristics

UPD over TSMP (hereafter referred to simply as UPD)
is a network and MAC protocol that has several defining
characteristics [16]:

1) Mesh/Multi-Path Routing
2) Time Synchronized Communication
3) Frequency Hopping
4) Automatic Node Joining/Network Formation
5) Secure Message Transfer

This paper is not concerned with the authentication, encryp-
tion, and integrity check security mechanisms for packets, and
it defers modeling automatic network and routing schedule
formation for future work. As such, we model UPD as a
frequency-hopping TDMA scheme with multi-path routing.

UPD forms multiple, interleaved routing paths from many
nodes to one sink node (the network manager/base-station
node). That is, each node has multiple parents and the rout-
ing graph has no cycles. The links selected for routing are
bidirectional, and hence every transmission on a link can be

Fig. 1. Example of a UPD schedule with superframes and time slots. Here,
only 8 of the 16 frequency channels are used.

acknowledged. If a packet transmission is not acknowledged,
it is queued in the node for retransmission.

UPD uses time synchronization between the nodes so the
nodes can follow a TDMA routing schedule, ensuring that
there are no packet collisions as in CSMA MAC protocols.
Time is divided into time slots, and grouped into superframes
(See Figure 1). At each time slot, pairs of nodes are scheduled
for transmitting a packet on different frequencies. The super-
frame containing the schedule of transmissions is repeated over
time.

At different time slots within a superframe, a given pair of
nodes will try to communicate on different frequencies (fre-
quency hopping). While there is significant work in selecting
orthogonal frequency hopping schedules, such as Latin squares
[21], our model only uses frequency hopping to justify the
assumption that links are independent over retransmissions.

As mentioned in Section I-A, given these characteristics
of a mesh TDMA routing scheme, we wish to know the
probability of end-to-end connectivity, pnet, as a function of
delay, td. In addition, we wish to characterize the robustness
of the network to node removal and perturbation of link
probabilities. Robustness to node removal involves finding
the traffic distribution over the nodes in the network — i.e.
identifying hot spots in the network. Identifying hot spots
gives us a sense of how vulnerable the network is to the
compromise of an individual node, while knowledge of the
traffic distribution together with a model of node energy
consumption allows us to compute the lifetime of the network.
Robustness to link probability perturbation gives a sense of
the reliability of our analysis despite errors in link probability
estimation.

To construct our model of mesh TDMA routing, we assume
knowledge of the routing schedule, the routing topology
(which can be derived from the routing schedule), and all
the link probabilities. Furthermore, we study single packet
transmission in the network and do not analyze the effects
of queuing. Further discussion on the implications of these
modeling assumptions can be found in the Section IV-D.

B. Mesh TDMA Markov Chain Model

Let us represent the routing topology as a graph G = (V, E),
and denote a node in the network as i ∈ V = 1, . . . , N , and
a link in the network as l ∈ E ⊂ {(i, j) | i, j ∈ V}, where

3

l = (i, j) represents a link transmitting from node i to node
j. Time t will be measured in units of time slots, and let T
denote the number of time slots in a superframe. The link
success probability for link l = (i, j) at time slot t is denoted
p
(t)
l , or p

(t)
ij . We set p

(t)
l = 0 when link l is not scheduled

to transmit at time t. Note that this allows for different link
probabilities when transmitting between a pair of nodes at
different frequencies on different time slots.

For a packet originating from a source node a routed to
a sink node b, we wish to compute p

(td)
net , the probability

the packet reaches b at or before time td has elapsed. A
derivation for the special case of routing along a single path
with retransmissions is given in Appendix A.

We can calculate p
(td)
net by noticing a Markov property of

the packet transmissions. Let l = (i, j) ∈ E , S
(t)
l denote the

event that a packet is at node i and is successfully transmitted
on link l at time t, and S̄

(t)
l denote the event that a packet is

at node i but link l fails at time t. Then for all t0 < t1, k ∈ E ,

S
(t0)
k ⊥⊥ S

(t1)
l | packet at i between t1 − 1 and t1 . (1)

So if k1, k2, . . . , kt−1 are links along a path with kt−1 = (h, i)
for some node h, then

P(S(t)
l |S(t−1)

kt−1
, S

(t−2)
kt−2

, . . . , S
(1)
k1

) = P(S(t)
l |S(t−1)

kt−1
) . (2)

Let us construct a time-varying, discrete-time Markov chain
to compute p

(td)
net for routing over TDMA mesh topologies.

Mesh TDMA Markov Chain Model Let the set of states
in the Markov chain be the nodes in the network, V . The
transition probability from state i to state j at time t is simply
p
(t)
ij , with p

(t)
ii = 1−

∑
j 6=i p

(t)
ij . Let P (t) = [p(t)

ij]T ∈ [0, 1]N×N

be the transition probability matrix for a time slot and P (T) =
P (T)P (T−1) . . . P (1) be the transition probability matrix for a
repeating superframe.2 Assume

P (T+h) = P (cT+h), ∀c, h ∈ Z+ (3)

meaning that the link probabilities in a time slot do not vary
over superframes.

A packet originating at node a is represented by p(0) = e[a],
where e[a] is an elementary vector with the a-th element equal
to 1 and all other elements equal to 0. Then,

p(td) = P (td) . . . P (2T+1) P (2T)P (2T−1) . . . P (T+1)︸ ︷︷ ︸
P (T)

P (T)P (T−1) . . . P (1)︸ ︷︷ ︸
P (T)

p(0) (4)

represents the probability distribution of the packet over the
nodes at time td.

The sink node b is an absorbing state in the Markov chain,
meaning there are no transitions out of that state (in our routing
schedule, a packet is never transmitted from the sink to another
node in the network). This means p

(td)
net = p(td)

b (the b-th
element of the vector p(td)), where p(td)

b is the probability
that the packet sent at time 1 reaches the sink by time td. A
good routing schedule would have p

(td)
net

td→∞−−−−→ 1, meaning

2[0, 1] denotes the closed interval between 0 and 1.

Fig. 2. Multi-path routing example corresponding to Equation 5.

the packet will eventually reach the sink. This condition is
satisfied when the MTMC model has only one recurrent class
consisting of the sink (See [22] for a discussion on recurrent
classes in Markov chains).

C. MTMC Examples and Discussion

An example of a small UPD routing schedule is given in
Figure 2, where pij is the link probability for link (i, j) and
p̄ij = 1− pij . In this example, the transmission schedule was
selected such that a node does not listen and transmit in the
same time slot. We get the transition probability matrices,

P (1) =


p̄12 0 0 0

p12 1 0 0

0 0 p̄34 0

0 0 p34 1

 P (2) =


p̄14 0 0 0

0 p̄23 0 0

0 p23 1 0

p14 0 0 1



P (3) =


p̄13 0 0 0

0 p̄24 0 0

p13 0 1 0

0 p24 0 1


p(0) =

[
1 0 0 0

]T
P (3) = P (3)P (2)P (1) (5)

The MTMC model is flexible enough to represent routing
topologies and schedules not used by UPD. For instance, UPD
avoids creating cycles in the routing graph, as one would want
from a good routing algorithm. The MTMC model, however,
can model routing cycles that may arise when the network
malfunctions. We can still calculate p

(td)
net , and we still have

p
(td)
net

td→∞−−−−→ 1 if no recurrent classes besides the sink are
added to the Markov chain. The MTMC model can also be
extended to represent mesh networks with multiple collection
points (ex. two internet gateways to a sensor network). In this
case, if we let B be the set of sinks, p

(td)
net =

∑
i∈B p(td)

i .
If we wish to model a network sending packets individually
addressed to different sink nodes, we would use a separate
MTMC model for each sink in the network. Of course, this still
assumes only one packet is in the network at any point in time,
since we do not model queuing. Finally, if we wish to model
schedules that never retransmit packets, we simply remove

4

the requirement in Definition II-B that p
(t)
ii = 1 −

∑
j 6=i p

(t)
ij ,

instead replacing it with p
(t)
ii = 0. To ensure that the transition

probability matrix P (t) is a column stochastic matrix, we add
a dummy state N + 1 to represent a packet being lost after
transmission. Now, P (t) = [p(t)

ij]T ∈ [0, 1]N+1×N+1, where
p
(t)
i(N+1) = 1−

∑
j 6=i p

(t)
ij , p

(t)
(N+1)i = 0 for all i 6= N + 1, and

p
(t)
(N+1)(N+1) = 1.
Also, recall that the definition of the MTMC model assumes

the link probabilities in a superframe do not vary with t. This
assumption is valid if the link probabilities vary on a slower
time scale than the time to transmit a packet. This means that
if we only look at p(cT), c ∈ Z+, the Markov chain at this
time scale is not time-varying. To accommodate schedules and
link probabilities that vary over time, we simply remove the
restriction imposed by Equation 3. This, however, means that
p(cT) 6= (P (T))cp(0) and we cannot directly use some of the
tools presented in Section II-D that depend on time-invariance
of the Markov chain.

D. MTMC Analysis

1) Network-wide Rate of Convergence for p
(td)
net : In the

previous section, we showed how to use the MTMC model to
calculate p

(td)
net for a packet transmitted from each node in the

network to the sink. We can also get the rate of convergence
of p

(td)
net to 1 for the entire network from P (T). This may be a

useful metric for designing routing schedules to optimize the
performance of the network.

If we renormalize time in units of T and look at the
network after each superframe of transmission, we claim that
the rate of convergence of p(t) as t → ∞, regardless of
p(0), is exponential with rate parameter ρ∗, the magnitude
of the largest eigenvalue of P (T) with absolute value strictly
less than 1. Thus, ρ∗ gives a sense of how the worse case
end-to-end connection probability in the network varies as a
function of delay. The key requirement is that we have a good
routing schedule where p

(td)
net

td→∞−−−−→ 1, meaning any packet
will eventually reach the sink. This is stated more precisely in
the following theorem, which is proved in Appendix B.

Theorem 2.1 (MTMC p
(td)
net converges exponentially to 1):

Let P (T) ∈ [0, 1]N×N be a column stochastic matrix with
limk→∞(P (T))kp = e[b] for all probability vectors p. Here,
e[b] is an elementary vector with the b-th element equal to 1
and all other elements equal to 0, meaning that the routing
topology has a unique sink node b which is the unique
recurrent state in the Markov chain. Then,

p
(td)
net ≥ 1− CkJ−1(ρ∗)k−J+1, k =

⌊
td
T

⌋
(6)

for some constant C dependent on the initial distribution p(0),
J ∈ Z+ the size of the largest Jordan block of P (T), and
ρ∗ = max{|λ| : λ is an eigenvalue of P (T) and |λ| < 1}.
In the special case where P (T) is a diagonalizable matrix, we
have J = 1 and Equation 6 becomes

p
(td)
net ≥ 1− C(ρ∗)k, k =

⌊
td
T

⌋
. (7)

Fig. 3. Illustration of how to create absorbing states in the Markov chain
to calculate the probability that a packet sent from node 1 to node 4 passes
through node 2 by time t, using the routing topology of Figure 2.

2) Traffic Distribution: In the MTMC model, p(t) repre-
sents the probability distribution of the packet at time t. To
identify hot spots in the network, it is more useful to compute
the probability that the packet visits a node i at or before time
t, p̃(t)

i . This can be done by making i an absorbing state in
the MTMC model and finding p(t)

i on the new model.
In other words, ∀t ∈ N,∀j ∈ V , let

P̃
(t)
ji = 0

P̃
(t)
ii = 1

P̃ (t)
mn = P (t)

mn ∀m,n ∈ V, n 6= i

(See Figure 3). The resulting model has two absorbing states, b

and i. α
(t)
i = p̃(t)

i = P̃ (t)P̃ (t−1) . . . P̃ (1)p(0) is the probability
that the packet visits node i in the original model at or before
time t, while α

(t)
b = p̃(t)

b is the probability that the packet
arrives at the sink through an alternate path disjoint with node
i.3

To find αi = limt→∞ p̃(t)
i , the probability the packet ever

visits node i, we solve a system of equations for the probability
that any state j 6= i is absorbed into state i, as mentioned in
[22].

Theorem 2.2 (Absorption Probability Equations [22]): For
a given Markov chain, choose an absorbing state i. Then, the
probabilities αj of reaching state i starting from j are the
unique solution to the equations

αi = 1
αj = 0 for all absorbing j 6= i

αj =
N∑

k=1

pjkαk for all transient j (8)

3) Link Perturbation: We would like to know the sensitivity
of p

(td)
net to errors in link probability estimation. The way that

p
(td)
net varies with link probability pij is not always obvious. For

instance, there are situations where increasing the probability
of a link in the routing topology results in a decrease in p

(td)
net ,

as illustrated in the example of Figure 4.
In fact, we cannot get a bound on the range of p

(td)
net by

simply recomputing p
(td)
net using the endpoints on the range

of link probabilities p
(t)
ij + ε and p

(t)
ij − ε. To see this, let the

3The extra notation using α is for consistency with DSFMC and will be
used later in Section IV.

5

Fig. 4. Example where increasing the link probability p actually results in
lower p

(td)
net for all td.

actual link probability of a link at time slot t be p̂
(t)
ij = p

(t)
ij +δ,

where δ is unknown to the user but the user knows that p̂
(t)
ij

lies within ±ε of the estimate p
(t)
ij . We can write the actual

end-to-end transition probability matrix as

P̂ (T) = P (T) . . . P (t+1)(P (t) + δE(t))P (t−1) . . . P (1)

= P (T) + δ P (T) . . . P (t+1)E(t)P (t−1) . . . P (1)︸ ︷︷ ︸
F

(9)

where E(t) is a matrix with −1 at E
(t)
ii , 1 at E

(t)
ji , and 0s

elsewhere. Here, for simplicity, we assumed that a link is used
only once in a superframe. Define p̂(t) as the actual probability
distribution at time t. Then,

p̂(T) − p(T) = (P̂ (T) − P (T))p(0)

= δFp(0) (10)

and

p̂(2T) − p(2T) = (P̂ (2T) − P (2T))p(0)

= (δ(P (T)F + FP (T)) + δ2F 2)p(0)(11)

Note that in Equation 11, δ enters into the equation quadrat-
ically. Thus, because of retransmissions on links (manifested
by repeating superframes), it is not clear that p

(td)
net would

vary monotonically with the perturbation of the link. Thus,
we cannot use p

(t)
ij ± ε to bound p

(td)
net .

The alternative is to try bounding the distance of the eigen-
values λ̂ of P̂ (T) from the eigenvalues λ of P (T), a standard
problem in matrix perturbation analysis. In other words, if λ̂x

is an eigenvalue of P̂ (T) = P (T)+δF, δ ∈ (−ε,+ε), then there
is some eigenvalue λy of P (T) such that |λ̂x −λy| < C(F, ε),
where C(·, ·) is some function of F and ε. There are several
standard techniques to do this, some that require P (T) to be
diagonalizable or P (T) to be normal (A∗A = AA∗), which
may not always hold. These techniques are applicable on
a case by case basis. For more details, see [23]. Note that
the problem becomes more complicated if we consider the
estimation error of multiple links. Equation 9 will need to be
modified to incorporate multiple E(t), which may in turn result
in a large perturbation matrix F and a loose bound on the λ̂x.

III. DIRECTED STAGED FLOODING

To increase the reliability of multi-path routing on wireless
networks without increasing latency, it seems natural to try to
exploit the broadcast nature of the medium to transmit multiple

Fig. 5. Directed Staged Flooding example on a wide path topology containing
stages with a path width of 3. Discussed in more detail in Section III-B.

copies of a packet simultaneously in one transmission. At one
extreme, we flood the network and waste a lot of bandwidth
if each node always transmits to all its neighbors. But what
if a node multicasts a packet to a subset of its neighbors?
In effect, a packet will try multiple links in one transmission
instead of trying each link sequentially, potentially providing
better end-to-end connectivity with less latency. Here, instead
of retransmitting a packet after knowledge that the link failed
we are effectively “preemptively retransmitting” the packet on
multiple links.

We propose a simple constrained flooding scheme called
Directed Staged Flooding (DSF) for one-to-many and one-to-
one routing, focusing on the latter. We use a Directed Staged
Flooding Markov Chain (DSFMC) model to find p

(td)
net . As

with UPD, we build the model assuming we are provided
with a routing schedule and all the link probabilities. We
leave the development of an algorithm to construct such a
routing schedule for future work. The characteristics of DSF
are described in the next section.

A. Modeling Characteristics

In DSF we assume that, like UPD, the nodes follow a
TDMA routing schedule. During a transmission each node
transmits to a subset of its neighboring nodes. Furthermore,
we group the nodes along the end-to-end transmission path
such that a packet is modeled as being passed between groups
of nodes. Each group of nodes can be considered a stage in
the transmission path. Figure 5 illustrates this on a wide path
topology between a source and destination where the nodes
lie on a regular grid and each stage, except the first and last,
consists of 3 nodes. We define the path width at a stage as
the number of nodes in the stage.

DSF does not use acknowledgments to signal a node to
retransmit a packet on a failed link. This is because existing
MAC layers such as that in IEEE 802.15.4 [4] usually do
not support acknowledgments on broadcasts and multicasts. In
fact, IEEE 802.15.4 does not even have built-in mechanisms
to support multicast. Instead, multicast would need to be
implemented indirectly by adding another layer above the
MAC to filter out broadcasts that are not from a predefined
set of nodes. Clearly, it would be complicated to acknowledge
a packet in this scheme.

Because DSF does not retransmit packets, with careful
scheduling consecutive packets will not queue in the network
if there is only a single source transmitting to a single sink. In
the case of multiple flows (source and sink pairs), queuing may

6

still be necessary. In networks with multiple flows, we may still
be able to apply the single-source-single-sink model developed
in the following subsection to regions of the network where
separate flows do not overlap. Again, the implications of this
assumption is discussed in Section IV-D.

Our DSFMC model of DSF requires the sets of link trans-
missions between distinct pairs of stages to be independent.
Like UPD, DSF uses frequency hopping over time to help
justify this assumption. However, the model allows the link
transmissions between the same pair of stages to be correlated.
This mirrors reality because on any single multicast transmis-
sion, all the receiving nodes are listening on the same channel.

Also, in our DSFMC model we assume that all nodes in
one stage transmit their copy of the packet before the nodes
in the next stage transmit their copy of the packet. It is
conceivable that you can minimize the end-to-end latency of
a single packet by transmitting the packet in the next stage
immediately after the first successful reception. However, if a
source is generating a stream of packets, you cannot reduce the
average latency of the packets without adding a mechanism
to eliminate redundant transmissions. The analogy is that of a
water pipe — the rate at which you can take out all the water
in the pipe is limited by the rates at the ends of the pipe,
regardless of the design of the pipe in the middle. Designing
a clever mechanism to eliminate redundant transmissions so
as to decrease latency while keeping the same reliability is
beyond the scope of this paper.

Our model also assumes that the transmissions of nodes
within a stage will interfere with each other, so they must be
scheduled in separate time slots. We make this assumption
because most sensor network nodes have only one radio and
can only listen to one channel at a time. It is conceivable
that because of long and short links, the later stages can
consist of nodes so widely separated in space such that the
transmissions do not interfere with each other and can be
scheduled simultaneously. These types of routing schedules are
typically not ideal since this means that only a few nodes in the
next stage can hear any one transmission in the previous stage,
meaning they are not taking full advantage of the multicast
nature of the wireless medium. Therefore, they will not be
considered in our model.

In DSF routing schedules, a node can be shared between
multiple stages. One way to define stage membership is to put
a node in stage k if it has a path of length k to the source
node (See Figure 6). Like UPD, we assume that the links in
the routing topology for DSF do not form a cycle.

Complications arise when sharing nodes between stages
because unlike flooding, staged flooding puts the constraints
that a packet can only be transmitted from a node if it received
the packet prior to the time another node in its stage first
transmits. Consider the routing topology in Figure 6 and
assume that at time 1, node 2 has a copy of the packet
and node 3 does not. At time 2, assume node 2 broadcasts
the packet and node 3 receives it. Unlike the typical notion
of flooding, in staged flooding, node 3 cannot transmit the
packet at time 3 because it did not receive it at time 1, the
time slot at the beginning of stage 1. This idiosyncrasy is
necessary for the DSFMC model developed below to hold. To

Fig. 6. Directed staged flooding example corresponding to Equation 16.

enforce this condition, packets may carry with them a field
indicating during which stage they were last transmitted. Of
course, forcing a node to not transmit a packet on the next
scheduled time slot for staged flooding may result in a worse
p
(td)
net than flooding.
Sharing a node i between multiple stages k and k + 1 also

raises the issue of whether node i should erase a packet after
a transmission/multicast in stage k or retain the packet for
stage k + 1. Erasing the packet after one transmission would
allow for a simpler implementation and matches the behavior
of nodes not shared between stages. However, if we knew that
node i is part of stage k + 1 and is scheduled to transmit the
packet again, we can get a better p

(td)
net by retaining the packet.

This is akin to a “self-transmission” from node i to itself with
probability 1. We will assume the latter in our examples in
this paper.

The goals of our DSFMC model is the same as that of
the MTMC model: find the end-to-end connectivity of the
network p

(td)
net , identify hot spots, and find the robustness of

the calculations to link probability modeling uncertainty.

B. Directed Staged Flooding Markov Chain Model

As before, we represent the routing topology as a graph G =
(V, E) and denote a node in the network as i ∈ V = 1, . . . , N
and a link in the network as l ∈ E ⊂ {(i, j) | i, j ∈ V}, where
l = (i, j) represents a link transmitting from node i to node
j. Because each link is used only once when transmitting a
single packet, the link success probability for link l = (i, j)
is treated as being time-invariant and is denoted pl, or pij .

As mentioned earlier, one method of partitioning the nodes
into stages is to put a node in stage k if it has a path of length
k to the source node a. Note that given the adjacency matrix
A of a routing topology G, the number of walks from a node
i to a node j in G with length k is (Ak)ij , where a walk is
a path that is permitted to use vertices more than once [23].
However, the walks in G are paths because G is a directed
acyclic graph. Therefore, if (Ak)aj 6= 0, then node j belongs
to stage k. Of course, there are other methods to partition
nodes into stages. The choice of how to partition the nodes
strongly affects the choice of a transmission schedule.

The main difference of the DSFMC model from the MTMC
model lie in the definition of the states. Here, a state in the
Markov chain at a stage represents the set of nodes in the stage
that successfully received a copy of the packet. The transition
probabilities between the states depend on the joint probability
of successful link transmissions between stages.

Directed Staged Flooding Markov Chain Model Let’s as-
sume we have a routing topology with K +1 stages 0, . . . ,K.

7

Fig. 7. Mapping of states to nodes that received a packet in the DSFMC
model. On the left is an example of a state σ(k) and on the right is the state
ω(k) where no packets have been received.

Each stage k has Nk nodes, and the set of 2Nk possible
states in stage k is represented by the set of numbers S(k) =
{0, . . . , 2Nk − 1}. Let K(k) be the set of nodes in stage k and
for each state σ(k) ∈ S(k), let R(k)

σ ⊂ K(k) be the set of nodes
that have received a copy of the packet and U (k)

σ = K(k)\R(k)
σ

be the set of nodes that have not received a copy of the packet
(See Figure 7). Let ω(k) denote the state where no nodes
received a copy of the packet in stage k.

Let R
(k)
σ denote the event that only the nodes in R(k)

σ

received a copy of the packet, S(i,j) denote the event a packet
was at node i and link (i, j) successfully transmitted the
packet, and S̄(i,j) denote the event that a packet was at node i
but link (i, j) failed.4 The conditional probability of the next
state X(k+1) being in state σ(k+1) given that the current state
X(k) is σ(k) can be expressed in terms of these events as

P(X(k+1) = σ(k+1)|X(k) = ω(k)) ={
1 : σ(k+1) = ω(k+1)

0 : otherwise

if σ(k) 6= ω(k)

P(X(k+1) = σ(k+1)|X(k) = σ(k)) =

P

 ⋂
u(k+1)∈U(k+1)

σ

 ⋂
r(k)∈R(k)

σ

S̄(r(k),u(k+1))

∩

⋂
r(k+1)∈R(k+1)

σ

 ⋂
r(k)∈R(k)

σ

S̄(r(k),r(k+1))


∣∣∣∣∣∣∣R(k)

σ

 (12)

where the overbar denotes taking the complement of an event.
The transition probability matrices between stage k and k +
1 are P (k+1) ∈ [0, 1]Nk+1×Nk , where the entry in position
(σ(k+1), σ(k)) of the matrix is P(X(k+1) = σ(k+1)|X(k) =
σ(k)).

The initial state X(0) is the state σ(0) corresponding to
R(0)

σ = {a}, where a is the node sending the initial packet.
Then, the probability distribution p(k) ∈ [0, 1]Nk of the state
at stage k is

p(k) = P (k) . . . P (2)P (1)︸ ︷︷ ︸
P (k)

p(0) (13)

4The event S(i,j) is empty (and occurs with probability 0) if link (i, j)
does not exist.

Equation 12 describes state transitions between stages in
terms of the success and failure of links incident on each
receiving node. The event that a node u(k+1) ∈ U (k+1)

σ does
not receive a copy of the packet is the intersection of the
events where all the incoming links from the nodes in the
previous stage with a copy of the packet fail. The event that
a node r(k+1) ∈ R(k+1)

σ receives a copy of the packet is
the complement of the intersection of the events that all the
incoming links from the nodes in the previous stage with a
copy of the packet fail. The event that stage k is in state σ(k)

and stage k + 1 is in state σ(k+1) is the intersection of all
these events.

In the special case where the links are independent, the
probability of the joint events can be factored into a product
of the probabilities of individual link transmissions:

P(X(k+1) = σ(k+1)|X(k) = ω(k)) ={
1 : σ(k+1) = ω(k+1)

0 : otherwise

if σ(k) 6= ω(k)

P(X(k+1) = σ(k+1)|X(k) = σ(k)) = ∏
u∈U(k+1)

σ

i∈R(k)
σ

(1− piu)

 ∏
r∈R(k+1)

σ

1−
∏

i∈R(k)
σ

(1− pir)


(14)

Note that the model is described in terms of stages, not
time. Assuming that the nodes of a stage transmit sequentially
on separate time slots, a stage k can be converted to a time t
measured in units of time slots by the equation t =

∑k−1
i=0 Ni.

Therefore, assuming that only the nodes in stage K−1 transmit
to the destination, if we let b be the state in stage K where
the destination receives a copy of the packet, we have

p
(td)
net =

{
0 : td ≤

∑K−2
i=0 Ni

p(K)
b : td ≥

∑K−1
i=0 Ni

(15)

and 0 ≤ p
(td)
net ≤ p(K)

b when
∑K−2

i=0 Ni < td <
∑K−1

i=0 Ni.
If stages besides K − 1 transmit to the destination, we

would need to modify the DSFMC model to calculate p
(td)
net .

We would need to add the destination node to all the stages
and add a “self-transmission” link of probability 1 to the
destination node before calculating the transition matrices P (k)

between each pair of consecutive stages.
Finally, note that except in the special case where there

exists a path through the network from the source to the
destination with end-to-end connectivity 1, p

(td)
net < 1 for all td.

All copies of a packet can be lost in the network because we
do not use acknowledgments and retransmissions to guarantee
a copy of the packet has been delivered.

C. DSFMC Examples and Discussion

As an example, let’s consider the stages with path width
3 in Figure 5. Assume the links are independent, that each
link has the same transmission success probability p, and let
p̄ = 1 − p. Then, the probability that a node in stage k + 1

8

Fig. 8. Markov chain states for the routing topology in Figure 5, excluding
the states for the source and the destination.

Fig. 9. Markov chain transition diagram for a stage of path width 3 in
the routing topology in Figure 5. Here, only the outgoing transitions and
associated transition probabilities from state 7 are shown.

receives a copy of the packet given the state of stage k is 1
minus the product of incoming link failure probabilities, as
shown in Figure 8. The transition probability between states
can be obtained by applying Equation 14. Figure 9 illustrates
the transitions out of state 7 (The full 8× 8 transition matrix
can be found in Appendix C).

Note that if the number of nodes in each stage vary,
the dimensions of the state probability distribution vector
p(k) ∈ [0, 1]2

Nk vary with time as the copies of the packet
are transmitted between stages. This is the case for stages
involving the the source and destination nodes of Figure 5.

In the example of Figure 6, not only do the dimensions of
the state probability distribution vector vary with time but also
some of the nodes are shared between stages. To represent
the state at each stage k, we first order the nodes in each
stage from smallest to largest node id and re-index them from
0, . . . , Nk − 1. Then, for each node with a new index n we
set in = 1 if the node has a copy of the packet and in = 0
otherwise. The state is then just σ(k) =

∑Nk−1
n=0 in2n. Assum-

ing the links are independent, the equations that describe the
DSFMC model are

P (1) =


1 p̄12p̄13

0 p12p̄13

0 p̄12p13

0 p12p13

 P (2) =


1 p̄23p̄24 0 0

0 p23p̄24 p̄34 p̄24p̄34

0 p̄23p24 0 0

0 p23p24 p34 (1−p̄24p̄34)



P (3) =


1 p̄34 0 0

0 p34 p̄45 p̄45

0 0 0 0

0 0 p45 p45

 P (4) =
[

1 p̄45 0 0

0 p45 1 1

]

p(0) =
[

1 0
]T

P (4) = P (4)P (3)P (2)P (1) (16)

where pij is indexed by the original node ids and again p̄ij =
1 − pij . As mentioned in Section III-A, we assume that if a
node i in stage k has a copy of the packet and node i is also
in stage k + 1, then node i will have a copy of the packet in
stage k + 1 with probability 1.

Note that the computational complexity of the DSFMC
model is exponential in the path width because the dimen-
sions of the transition probability matrix are exponential in
the number of nodes in each stage. This is typically not
a problem, because we would want the width of a stage
in real deployments to be small (less than 6) to conserve
bandwidth and prevent unnecessary flooding of the entire
network. If we were to disregard computational complexity
and allow the width of each stage to be unbounded, we could
model scheduled flooding over the network. Unlike the typical
flooding algorithm that may run on a CSMA MAC layer, we
would need to impose an order in which the nodes broadcast
to construct the model.

D. DSFMC Analysis

1) p
(td)
net for Wide Paths with Repeated Stages: Note that

because we developed the DSFMC model for one-to-one
routing, it does not make much sense to derive a rate of
convergence on p

(td)
net for the entire network. However, for the

purposes of choosing a network topology before deployment,
it is useful to get a grasp of how p

(td)
net scales as we extend the

length K of a wide path topology without having to calculate
p
(td)
net for each new network explicitly. We consider the case of

a wide path with repeated stages containing a constant number
of nodes Nstage per stage and the same transition probability
matrix P (k) = P between all stages, like the middle stages in
the example in Figure 5. For simplicity, the discussion below
will ignore the first stage containing the source and the last
stage containing the destination.

One approximate way of understanding the gain in end-to-
end connectivity and the cost in latency from using Directed
Staged Flooding on a wide path is to compare each stage of the
path to a node in a single path, and the links between stages
to a link on the single path. In the case where the links of
the wide path are independent with transmission probability
p, we actually transmit Nstage times to get the equivalent
of
∣∣{(i, j)|i ∈ K(k), j ∈ K(k+1)}

∣∣ retransmissions on a single
link path with probability p, assuming all the nodes in stage
k have a copy of the packet (U (k)

σ = ∅). In the case of the
example in Figure 5, we have a gain of 7 retransmissions for
a cost of 3 in latency, assuming U (k)

σ = ∅.

9

A better characterization of the tradeoff of end-to-end
connectivity with latency td (number of stages K) comes from
the eigenvalues of P . Assuming we do not have the special
case where there exists a path through the network with end-to-
end connectivity 1, the DSFMC model has a single recurrent
state ω, the state where no nodes received a copy of the packet.
This means that there is a unique stationary distribution e[ω]

for the Markov chain model, and p
(td)
net

K→∞−−−−→ 0. The rate of
decay of p

(td)
net is given by ρ∗, the magnitude of the largest

eigenvalue of P with absolute value strictly less than 1. This
is stated more precisely in the following theorem, which is
proved in Appendix B.

Theorem 3.1 (DSFMC p
(td)
net converges exponentially to 0):

Let P ∈ [0, 1]N×N be a column stochastic matrix and
limK→∞ PKp(0) = e[ω], where ω is the state where no
nodes received a copy of the packet. Then

p
(td)
net ≤ CKJ−1(ρ∗)K−J+1, td = KNstage (17)

for some constant C dependent on the initial distribution p(0),
J ∈ Z+ the size of the largest Jordan block of P , and ρ∗ =
max{|λ| : λ is an eigenvalue of P and |λ| < 1}.

Again, if P is diagonalizable, we get J = 1 and Equation 17
becomes

p
(td)
net ≤ C(ρ∗)K , td = KNstage . (18)

While this relation is an upper bound, ρ∗ is the dominant
decay rate for large K because all the eigenvectors of P
with eigenvalue magnitudes less than 1 decay exponentially
with K. Thus, one can use ρ∗ to compare wide paths with
repeated stages of different widths and quickly assess the
tradeoff between reliability and latency. Unfortunately, this
type of analysis cannot apply to paths where P (k) varies with
stage k.

2) Traffic Distribution: We can obtain the probability
that a copy of the packet is at a node i at time t di-
rectly from our model by translating t to k and looking at∑
{σ(k)|i∈R(k)

σ } P(p(k) = σ(k)). To get a sense of how robust
the network is to the failure/compromise of a node i, we can
just remove i from the routing graph and recalculate the end-
to-end connectivity p

(td)
net . Alternatively, in the same sense as

Section II-D2, we can also calculate the probability that a copy
of the packet visits a node i at or before time t, α

(t)
i . To do this

we remove all the outgoing edges of i, add a “self transmis-
sion” link of probability 1 from node i to itself over all time
slots, and compute α

(t)
i =

∑
{σ(k)|i∈R(k)

σ } P(p̃(k) = σ(k)),
where p̃(k) is the state probability distribution on the modified
routing schedule and topology.

3) Link Perturbation in Topology with Independent Links:
Let us consider a DSFMC model where the links are indepen-
dent. As before, we would like to know the sensitivity of p

(td)
net

to errors in estimating a link probability pl. Recall that unlike
UPD, there are no link retransmissions in DSF. As we will
see below, on routing schedules where nodes are not shared
between stages this implies that p

(td)
net is a linear function of the

single-link estimation error δ. Thus, we can compute bounds
on the actual end-to-end connectivity p̂

(td)
net using the maximum

and minimum possible values of the real link probability p̂l,
pl + ε and pl − ε respectively.

To show that p
(td)
net is a linear function of δ, note that

in Equation 14, the transition probability between states in
adjacent stages are a linear function of the individual link
probabilities (the probability associated with a link appears in
the expression once). This means that the transition matrices
P̂ (k) are a linear function of each link probability pl. Also,
each link probability pl appears in only one matrix P̂ (k)

because each link is used only once to transmit a packet. This
is because there are no retransmissions in the network and no
nodes are shared between stages, so no node will transmit
more than once when routing a single packet through the
network. As a result, P̂ (K) is also a linear function of pl.
Finally, p

(td)
net is a linear function of P̂ (K) and hence also a

linear function of pl, meaning it is a linear function of δ.
In fact, because wide path routing allows for multiple copies

of the packet in the network, packets do not get “trapped”
at a node like the example in Figure 4. This means p

(td)
net

increases with increasing pl for any link l. Another way to
see this is to realize that p

(td)
net for DSF is actually the sum

of the probabilities of a disjoint set of events, where each
event represents successful delivery of the packet along a
distinct path between the source and destination. Each of these
“path events” is the intersection of successful link transmission
events (and not any link failure events, as would be the case
if we had retransmissions). As a result, increasing a link
probability can only increase the probabilities of the path
events, which increases p

(td)
net .

IV. UPD AND DSF COMPARISONS

Qualitatively, the main difference between UPD and DSF is
the technique they use to provide reliable end-to-end packet
delivery. Both employ frequency diversity to get independent
links and get spatial diversity by establishing multiple paths
to the sink. However, UPD only retransmits the packet on link
failures while DSF uses multicasting and a fixed number of
“preemptive retransmissions” at each stage for reliability. We
would like to get a sense of the conditions under which one
type of routing is better than the other, and for qualitative
comparisons we use the example of routing on a wide path
grid, where the width of the path is the number of rows and
the length of the path is the number of columns. The metric
used in the comparisons is the end-to-end connectivity as a
function of latency, p

(td)
net , computed using the MTMC and

DSFMC models presented in the previous sections.
For a fair comparison, we choose a routing topology where

every node in one column of a grid (a stage in DSF) can
route to every other node in the next column with equal, in-
dependent link probabilities pl. To accommodate interference
assumptions of an isotropic/disk radio model and be able to
schedule the transmission of unique packets closely in time,
we would space the columns of the grid much further apart
than the rows of the grid. This topology makes the choice of
an optimal UPD routing schedule easier and minimizes the
“edge effects” of routing topologies like Figure 5, where the
nodes at the top and bottom of the grid transmit to fewer other

10

Fig. 11. End-to-end connectivity as a function of latency for varying link
probabilities using the routing schedules described in Figure 10.

nodes in the next column than the nodes in the middle of the
grid. The routing schedule for Directed Staged Flooding and
Unicast Path Diversity is described in Figure 10 for paths of
width 3.

Also, for all our plots, we assume that the time to send
an acknowledgment for UPD is negligible and can be sent
back in the same time slot as the original transmission. For
an 802.15.4 radio, the time for a minimal ACK packet is
(6+25Bytes/pkt)(8bits/Byte)

250kbps ≈ 0.99ms, where the packet has a
6 Byte PHY header and a 25 Byte MAC header. This is small
relative to a large data packet, which can be as large as 131
Bytes. Of course, if one wishes to reinterpret the results in the
figures in this section assuming that acknowledgments cause
the time slots for UPD to be larger than the time slots for DSF,
he would just scale the time on the UPD plots accordingly.

A. End-to-end Connectivity Comparisons

Figure 11 compares p
(td)
net of the two routing schemes under

a range of different link probabilities.5 UPD has the potential
to deliver packets from the source to the sink in a shorter
period of time, but the packet delivery time has a larger
variance. Note that for lower link probabilities, there is clearly
a range of arrival times where DSF provides better end-to-end
connectivity than UPD. However, because limt→∞ p

(td)
net = 1

for UPD and pnet for DSF is a fixed value strictly less than
1 after the last stage transmits (assuming pl 6= 1), UPD can
always provide better end-to-end connectivity at high latencies
td.

Naturally, in Figure 12 we see that a larger path length
tends to favor UPD over DSF. The range of arrival times
when DSF provides better end-to-end connectivity than UPD
becomes shorter, and the difference in pnet of the two schemes
at the time when the last stage in DSF finishes transmission is
smaller. The times at which pnet for UPD exceeds that of DSF
after the last stage transmits is given in Table I. Recall from
the discussion from Section III-D1 that as the number of stages
increases, the end-to-end connectivity under Directed Staged
Flooding approaches 0. However, even for a path width of 3,

5Note that in this and subsequent plots, we perform the DSFMC calculations
at the time granularity of time slots, not stages, unlike the description of
Equation 15 in Section III-B.

Fig. 12. End-to-end connectivity as a function of latency for varying path
lengths using the routing schedules described in Figure 10.

path length minimum td where UPD p
(td)
net DSF p

(td)
net

UPD p
(td)
net > DSF p

(td)
net

3 20 0.98292 0.98173
5 24 0.98666 0.98226
7 28 0.98747 0.98226
9 32 0.98886 0.98225

TABLE I
p
(td)
net CROSS OVER POINT FOR DSFMC AND MTMC GRAPHS IN

FIGURE 12.

the rate at which pnet approaches 0 is small, as seen by the
last column of Table I. To a rough approximation, an increase
in path length seems to linearly increase the delay in packet
delivery for the range of parameters considered in Table I.

Figure 13 shows how p
(td)
net for DSF increases with path

width, and plots p
(td)
net for UPD of different widths for compar-

ison. At first glance, the graphs are striking because it shows
that UPD on paths of width 3 always perform better than
UPD on paths of width 5. This is because our MTMC model
assumes that retransmissions between a pair of nodes are
independent whereas in reality they may be slightly correlated,
even if the retransmission is on a different frequency. As a
result, in the MTMC model retransmission to a node is just
as good as transmitting to another neighboring node when
computing p

(td)
net . What is captured in the MTMC model is the

extra time necessary to schedule transmissions to the sink from
a wider path, which results in a longer time for the packet to
reach the destination. Therefore, wider paths in the MTMC
model actually perform worse in our calculations. The same
argument also explains why in Figure 13 UPD on paths of
width 3 always performs better than DSF on paths of width
5. The benefits of using a wider path in UPD will be evident
when we consider the robustness of p

(td)
net to node compromise

or link probability estimation error.
When designing networks, we can increase the end-to-end

connectivity pnet by using UPD and waiting longer periods for
packets, or we can increase the number of paths from source
to destination when using DSF. Of course, we can increase the
number of paths and use UPD, but as Table II and Figure 13
show, there are ranges of latencies where DSF outperforms
UPD on the same routing topology. In the grid/wide path

11

Fig. 10. (left) UPD and (right) DSF schedules for routing on a grid of width 3, used in the calculations for the graphs in Section IV.

Fig. 13. End-to-end connectivity as a function of latency for varying path
widths using the routing schedules described in Figure 10, with magnification
of plot for pnet near 1.

routing topology with a path width of 5 UPD needs 45%
more latency than DSF to get better end-to-end connectivity.
Note that the difference in performance of DSF and UPD from
increasing path width are lessened if we were to consider a
routing topology where a node can only communicate to a
subset of the nodes in the next stage.

B. Robustness Comparisons

An even distribution of packet traffic over the nodes in the
network lessens the formation of “hot spots” in the network,
nodes whose undetected failure or compromise greatly impact
the end-to-end connectivity of the network. Using the tech-

path width minimum td where UPD p
(td)
net DSF p

(td)
net

UPD p
(td)
net > DSF p

(td)
net

3 28 0.98747 0.98226
4 40 0.99699 0.99672
5 58 0.99942 0.99936

TABLE II
p
(td)
net CROSS OVER POINT FOR DSFMC AND MTMC GRAPHS IN

FIGURE 13.

Fig. 14. The width 3 routing topology used for studying traffic distribution
and sensitivity to link estimation error. Figure 15 studies the traffic distribution
of nodes in the middle stage K (stage 4) of the path, circled in red. Figures 16
and 17 study sensitivity to link estimation error on the link in the center of
the middle stage, highlighted by bold/darker print.

niques described in Sections II-D2 and III-D2, we compute
the traffic distribution α on a group of nodes K in our grid
routing topology that cut the routing graph between the source
and destination, as depicted in Figure 14. In UPD, because
there is one copy of the packet in the network and none of
the nodes in K route the packet to each other,

∑
i∈K αi = 1.

This is not true in DSF because there are multiple copies of
the packet in the network.

We expect wider paths to distribute the traffic more evenly

12

path width DSF ∆pnet

3 1.5942e-05
4 1.1627e-07
5 1.0757e-09

TABLE III
∆pnet AFTER THE LAST STAGE TRANSMITS IN DSF, CORRESPONDING TO

THE RIGHT GRAPH IN FIGURE 16.

among the nodes in K. However, traffic distribution in UPD
is highly dependent on the schedule and link probabilities.
For instance if the link probabilities in the network are lower,
you expect that UPD would have to try more links to reach
the destination and thus spread the traffic through the network
more evenly. Even with the simple, regular schedule show in
Figure 10 on topologies of width 5 with a fairly low link
probability pl = 0.8, we see in Figure 15 that UPD does
not distribute the packets completely evenly over the nodes
in K. On the other hand, DSF tends to spread copies of the
packet over the nodes in K better than UPD for all path widths
because it multicasts the packets.

In the same sense, we expect DSF to be more robust than
UPD to link estimation error because it multicasts packets
and thus tends to spread packets over more paths. Despite the
argument in Section II-D3 that in general we cannot simply
substitute perturbed link probabilities to calculate the effect
of link perturbation on end-to-end connectivity in UPD, we
find that for the simple, regular routing schedule exemplified
in the left diagram of Figure 10, substituting single link
perturbations provides rather predictable effects on the end-to-
end connectivity. This is shown on the left graph in Figure 16
for perturbations on the link identified in Figure 14 (This is
the single link that we perturb for the studies in this section,
which is typical of other links in the middle of the path
because of the regular structure of our schedule and topology).
Comparing this with the right graph of Figure 16 confirms that
DSF is orders of magnitude less sensitive to link perturbation
than UPD. Of course, because limt→∞ p

(td)
net = 1, the end-

to-end connectivity of UPD on routing schedules with one
sink will eventually be less sensitive than that of DSF. In our
example, it takes 46 time slots before the change in UPD end-
to-end connectivity from a link perturbation of ε = 0.1 is
less than that of DSF (∆p

(46)
net = 2.4778× 10−6 for UPD and

∆p
(46)
net = 4.9071× 10−6 for DSF).

If we look at grid topologies with larger width, we see from
Figure 17 that p

(td)
net for both UPD and DSF are much less

sensitive to link perturbations. In fact, we see from Table III
that in our routing examples the sensitivity to single link
estimation errors from DSF drops by four orders of magnitude
when we move from topologies of width 3 to width 5.

C. Other Considerations

To make fair comparisons between the performance of
UPD and DSF, one needs to select optimal, or close to
optimal schedules for both routing algorithms. Scheduling for
UPD may be particularly tricky, and choosing an inefficient
UPD schedule can result in a significantly worse p

(td)
net . Some

examples illustrating this can be found in Appendix D.

Another point of comparison mostly ignored in our discus-
sion is the power consumption of UPD and DSF, particularly
in sensor networks where nodes can be scheduled to sleep
(go into low power mode). In UPD, if a pair of nodes is
scheduled to communicate but the receiver does not hear the
preamble of a packet at the beginning of a time slot, the
receiver can assume that the transmitter does not have a packet
and go to sleep for the remainder of the time slot, saving
power. Receivers in DSF can do the same but because there
are multiple copies of a packet in the network, there are less
opportunities to sleep. This can be a problem particularly for
current generation IEEE 802.15.4 radios such as the CC2420,
where the current drawn by the receiver is actually higher than
the current drawn by the transmitter [24].

Finally, the traffic distribution calculations are also useful
for selecting good routing schedules for UPD. How to cal-
culate the traffic distribution to compare schedules is subtle
because the traffic distribution for UPD also depends on when
(which time slot in the superframe) the packet is ready for
transmission from the source. In reality, the period at which
packets are generated from a source may not match the length
of the superframe, and packets may be ready for transmission
mid-frame. Take the example of the UPD routing schedule in
Figure 10, and for the sake of argument assume pl = 1 (or very
close to 1). If the packet is transmitted from the source on time
slot 1, then it will traverse through the nodes on the upper half
of the grid. But if the packet is transmitted on time slot 3, then
it will traverse through the lower half of the grid. We can take
advantage of this to spread consecutive packets along different
paths so that in reality, where there is queuing in the network,
packets are less likely to queue at a node midway between
the source and the destination. Depending on the application,
it may be more important to select schedules that are less
likely to queue packets in the network, even if it means that
for any individual packet the probability distribution of paths
it takes to reach the destination is spread less evenly over the
nodes in the network.

D. Communication Tradeoffs for Control Systems
If we wish to use UPD or DSF for control systems, we

need to establish a routing topology from the controller to
the sensors and actuators, and a routing topology from the
sensors and actuators back to the controller. For UPD, this
means establishing two routing graphs, one many-to-one graph
rooted at the controller for collecting observations from the
sensors and one one-to-one graph rooted near the actuators
(assuming they are together) and receiving commands from the
controller. Because there are now two routing topologies on the
same network, the transmissions for the two topologies must
be scheduled jointly, which may result in higher latencies.
Joint scheduling is necessary to prevent two links from being
scheduled on the same channel and time slot. This is of
concern if the paths in the two topologies are not disjoint and
we assume that each node has one radio and can only listen to
one neighbor at a time. This problem gets worse if we wish to
have multiple control loops over the same wireless network.

As mentioned in Sections III-A and II-A, we do not model
queuing in the network in our MTMC and DSFMC models. In

13

Fig. 15. Traffic distribution of nodes in the middle stage K (See Figure 14) of routing topologies of varying widths. Note that due to errors in rounding, the
probabilities for the middle stages in MTMC may not add exactly to 1. These graphs use the routing schedules described in Figure 10.

Fig. 16. Change in end-to-end connectivity as a function of latency for link perturbations of varying magnitude ε. The MTMC graph is magnified for easier
comparison with the DSFMC graph over the time range of interest. These graphs uses the routing schedules described in Figure 10.

Fig. 17. Change in end-to-end connectivity as a function of latency for link perturbations on routing topologies with different widths. These graphs uses the
routing schedules described in Figure 10.

DSF, the transmission schedule is deterministic because there
are no retransmissions, and with proper scheduling the packets
should not queue in the network. In UPD routing, a packet
may queue at a node when a link fails and the packet needs
to be retransmitted. This implies that for the MTMC model
to hold, we would need to limit the packet rate and choose
a routing schedule that is more likely to spread consecutive
packets on different paths in the network, taking the lengths
and transmission probabilities of the paths into consideration
so they do not queue when the paths merge before reaching
the destination.

In Section I-A we mentioned that when designing a control
application, it may be reasonable to impose a delivery deadline

and drop the packet if it takes too long to arrive. In UPD
routing, if a packet arrives at a node that has a queued old
packet, we can either combine the data in the two packets
into one packet or we can drop the older packet and send
only the newer packet. The implications of these two schemes
is studied in [5].

Using the graphs in Figure 11 and some simple calculations,
we can check the feasibility of running a control application
on an 802.15.4 wireless network running UPD or DSF using
the routing schedules in Figure 10. Assume we have a width
3 path from the controller to the actuators, and a width 3
path from the sensors back to the controller, and all the links
have a transmission success probability pl = 0.8. Then after

14

24 time slots we can get end-to-end transmission probability
pnet > 0.95 between the controller and actuators and between
the sensors and controller, both of which are separated by
8 hops. In Dust Network’s TSMP 1.0, there are 32 slots
a second, which corresponds to ≈ 1.5 seconds round trip
time. This round trip time can be decreased in future versions
of TSMP because the theoretical limit of an 802.15.4 radio
is 250kbps

(6+25+10Bytes/pkt)(8bits/Byte) ≈ 762pkts/sec (10 byte
payload, 25 byte MAC header and CRC, 6 byte PHY header),
resulting in a round trip time of ≈ 63ms. Therefore, the
types of control applications that we can hope to run on
wireless sensor networks spanning 8 hops would have to
tolerate round trip latencies on the order of magnitude of tenths
of a second under optimal conditions, and seconds if we use
current routing algorithms.

V. CONCLUSIONS

In this paper, we developed Markov chain models for UPD
and DSF routing algorithms that allow us to obtain the end-
to-end connectivity of the network as a function of latency,
determine the sensitivity of end-to-end connectivity to link
probability estimation errors, and determine the robustness
of the network to node failure. These models can be very
useful for planning a new network deployment given the link
probability estimates in the new environment. They can also
help guide the selection of routing algorithms and the tuning
of their parameters. In the case of UPD, the MTMC model can
help in the design of algorithms for selecting routing schedules
that optimize for end-to-end connectivity as a function of
latency. As seen in Section IV, the choice of routing schedules
can vastly affect the performance of the network. In the case of
DSF on a wide path, the DSFMC model can help determine the
best path width and length for meeting the design constraints.

In order to construct these models for existing networks,
the user must have full knowledge of the estimated link
probabilities and routing schedule in the network. One pos-
sibility is to have a network periodically route back the
routing schedule and link probability estimates of all the links
in the network, as is done by Dust Network’s SmartMesh
network manager. Ideally, the time scale over which the link
probabilities change is much larger than the time scale for
sending a packet through the network with high probability. In
some industrial environments, the average channel coherence
time was observed to be approximately 0.1 seconds [25], but
a more careful study needs to be done on the time scales and
the magnitudes over which the link probabilities fluctuate.

Once a user uses the models to characterize the robustness
of the network, they can identify regions of the network
that may need the addition of more nodes to help distribute
traffic and provide redundancy. In wireless networked control
systems, if we can calculate p

(td)
net of the network in real-time,

we can tune the controller/switch controllers based on the
conditions of the network. For instance, in manufacturing we
can use an aggressive controller for higher yield when the
wireless network is good and a less aggressive controller that
does not compromise safety and the quality of the products
when the network is bad. We will study in detail the issues

of running controllers over mesh wireless networks in an
upcoming paper.

ACKNOWLEDGMENT

The authors would like to thank Songhwai Oh, Ian Tan,
Kris Pister, and David Tse for offering feedback on the ideas
in this paper, and particularly Kris Pister for providing more
details about TSMP and 802.15.4 radios.

REFERENCES

[1] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks,”
in IEEE Computer, Special Issue in Sensor Networks, August 2004.

[2] Industrial Standards and Automation Committee, “ISA-SP100 wireless
systems for automation,” http://www.isa.org, 2007.

[3] HART Communication Foundation, WirelessHART Data Sheet,
http://www.hartcomm2.org/hart protocol/wireless hart/wirelesshart datasheet.pdf,
2007, datasheet.

[4] Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks
(LR-WPANs), LAN/MAN Standards Committee of the IEEE Computer
Society, 3 Park Avenue, New York, NY 10016-5997, USA, October
2003, 802.15.4 Standard.

[5] L. Schenato, “Optimal estimation in networked control systems subject
to random delay and packet loss,” in Proc. of the 45th IEEE Conference
on Decision and Control, December 2006.

[6] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan,
and S. Sastry, “Kalman filtering with intermittent observations,” IEEE
Transactions on Automatic Control, September 2004.

[7] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, pp.
138–162, 2007.

[8] W. Weber, J. Rabaey, and E. Aarts, Eds., Ambient Intelligence. Springer-
Verlag, 2005, ch. TinyOS: An Operating System for Sensor Networks.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” in ASPLOS-IX,
Cambridge, MA, USA, November 2000.

[10] TinyOS 1.x Documentation, Multihop Routing,
http://www.tinyos.net/tinyos-1.x/doc/multihop/multihop routing.html,
2003.

[11] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of
reliable multihop routing in sensor networks,” in SenSys, November 5-7
2003.

[12] G. Tolle, “A network management system for wireless sensor networks,”
Master’s thesis, Univ. of California, Berkeley, 2005.

[13] C. Karlof, Y. Li, and J. Polastre, “ARRIVE: Algorithm for robust routing
in volatile environments,” University of California at Berkeley, Tech.
Rep. UCB/CSD-03-1233, May 2002.

[14] S. Dulman, T. Nieberg, J. Wu, and P. Havinga, “Trade-off between traffic
overhead and reliability in multipath routing for wireless sensor net-
works,” in Proceedings of the Wireless Communications and Networking
Conference, 2003.

[15] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-resilient,
energy-efficient multipath routing in wireless sensor networks,” SIGMO-
BILE Mob. Comput. Commun. Rev., vol. 5, no. 4, pp. 11–25, 2001.

[16] Dust Networks, Inc., “Technical overview of
time synchronized mesh protocol (TSMP),”
http://www.dustnetworks.com/docs/TSMP Whitepaper.pdf, 2006.

[17] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A
scalable and robust communication paradigm for sensor networks,” in
Proc. of 6th Annual International Conference on Mobile Computing and
Networks, August 2000.

[18] A. Nasipuri, R. Castañeda, and S. R. Das, “Performance of multipath
routing for on-demand protocols in mobile ad hoc networks,” Mob. Netw.
Appl., vol. 6, no. 4, pp. 339–349, 2001.

[19] Y. Ganjali and A. Keshavarzian, “Load balancing in ad hoc networks:
Single-path routing vs. multi-path routing,” in INFOCOM, 23rd Annual
Joint Conference of the IEEE Computer and Communications Societies,
vol. 2, 2004, pp. 1120–1125.

[20] Dust Networks, Inc., SmartMesh-XT M2030 Product Specification,
http://www.dustnetworks.com/docs/M2030.pdf, 2006, datasheet.

[21] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
New York: Cambridge University Press, 2005.

15

[22] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probability. Bel-
mont, Massachusetts: Athena Scientific, 2002.

[23] R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge
University Press, 1999.

[24] Chipcon Products from Texas Instruments, 2.4 GHz IEEE 802.15.4 /
ZigBee-ready RF Transceiver, http://www.ti.com/lit/gpn/cc2420, March
2007, datasheet, Revision B.

[25] D. Sexton, M. Mahony, M. Lapinski, and J. Werb, “Radio channel
quality in industrial wireless sensor networks,” in Proceedings of the
ISA/IEEE Sensors for Industry Conference (SIcon), February 2005.

[26] H. M. Taylor and S. Karlin, An Introduction to Stochastic Modeling,
3rd ed. Academic Press, 1998.

[27] W. J. Stewart, Introduction to the Numerical Solutions of Markov Chains.
Princeton, New Jersey: Princeton University Press, 1994.

[28] J. S. Rosenthal, “Convergence rates of Markov chains,” SIAM Review,
vol. 37, no. 3, pp. 387–405, 1995.

APPENDIX A
END-TO-END CONNECTIVITY FOR SINGLE PATH WITH

RETRANSMISSIONS

Let us consider only a single path between a and b with
links l1, l2, . . . , lK . Let S

(t)
k denote the event that a packet is

at node i and is successfully transmitted on link lk = (i, j)
at time t and S̄

(t)
k denote the event that a packet is at node i

but link lk fails at time t. Then, p
(td)
net is just the sum of the

probability of a series of disjoint events:

p
(td)
net =

P(S(1)
1 ∩ S

(2)
2 ∩ . . . ∩ S

(K)
K) +

P(S̄(1)
1 ∩ S

(2)
1 ∩ S

(3)
2 ∩ . . . ∩ S

(K+1)
K) +

P(S(1)
1 ∩ S̄

(2)
2 ∩ S

(3)
2 ∩ S

(4)
2 . . . ∩ S

(K+1)
K) + . . . +

P(S̄(1)
1 ∩ S̄

(2)
1 ∩ S

(3)
1 ∩ S

(4)
2 ∩ . . . ∩ S

(K+2)
K) +

P(S̄(1)
1 ∩ S

(2)
1 ∩ S̄

(3)
2 ∩ (

K⋂
k=2

S
(k+2)
k)) + . . . (19)

In the special case where all the link probabilities on a
length K path are equal to p, we see that

P(
K⋂

k=1

S
(k)
k) = pK

P(S̄(1)
1 ∩ (

K⋂
k=1

S
(k+1)
k)) = (1− p)pK

... (20)

In effect, if we let r = td −K, we want the probability that
there are i = 0, . . . , r link failures over td independent trials.
This is given by the cumulative distribution function of the
negative binomial distribution [26], and we get a closed form
expression for p

(td)
net

p
(td)
net = pK

r∑
i=0

(
K+i−1

i

)
(1− p)i . (21)

APPENDIX B
PROOFS OF THEOREMS 2.1 AND 3.1

The proofs of Theorems 2.1 and 3.1 rely heavily on the
following theorem:

Theorem B.1 (ρ∗ determines convergence rate of p(t)):
Let P ∈ [0, 1]N×N be a column stochastic matrix (meaning all
the entries in the matrix are nonnegative and all the columns
sum to 1) with limk→∞ P kp = e[b] for all probability vectors
p ∈ [0, 1]N ,

∑
i pi = 1. Here, e[b] is an elementary vector

with the b-th element equal to 1 and all other elements equal to
0. Let ρ∗ = max{|λ| : λ is an eigenvalue of P and |λ| < 1}.
Then,∥∥∥P kp− e[b]

∥∥∥
1
≤ CkJ−1(ρ∗)k−J+1, ∀k ∈ Z+ (22)

where C is a constant dependent on p, and J ∈ Z+ is the
size of the largest Jordan block of P .
The proof of this theorem is given later in Appendix B-C.

A. Proof of Theorem 2.1

Proof:

∥∥∥(P (T))kp(0) − e[b]
∥∥∥

1
=

∑
j 6=b

∣∣∣p(Tk)
j

∣∣∣
+

∣∣∣p(Tk)
b − 1

∣∣∣
(a)
=

∑
j 6=b

∣∣∣p(Tk)
j

∣∣∣+
∣∣∣∣∣∣−
∑
j 6=b

p(Tk)
j

∣∣∣∣∣∣
(b)
= 2

∑
j 6=b

p(Tk)
j

where step (a) uses the relationship p(td)
b = 1 −

∑
j 6=b p(td)

j

and step (b) uses the fact that the p(Tk)
j are nonnegative.

By applying Theorem B.1 to P (T) we see that∥∥∥(P (T))kp(0) − e[b]
∥∥∥

1
≤ CkJ−1(ρ∗)k−J+1, ∀k ∈ Z+ .

If we let k = b td

T c, we can combine the steps above to get

p
(td)
net = p(td)

b

(c)

≥ p(Tk)
b = 1−

∑
j 6=b

p(Tk)
j

= 1− 1
2

∥∥∥(P (T))kp(0) − e[b]
∥∥∥

1

≥ 1− 1
2
CkJ−1(ρ∗)k−J+1

where step (c) comes from the fact that b is an absorbing state
in the Markov chain.

To summarize,

p
(td)
net ≥ 1− CkJ−1(ρ∗)k−J+1, k =

⌊
td
T

⌋
(23)

for some constant C dependent on the initial distribution p(0)

and J ∈ Z+ the size of the largest Jordan block of P (T).
Therefore, p

(td)
net converges to 1 exponentially with a rate ρ∗.

B. Proof of Theorem 3.1

The steps in this proof are similar to the steps in the proof
of Theorem 2.1.

16

Proof:

∥∥∥PKp(0) − e[ω]
∥∥∥

1
=

∑
j 6=ω

∣∣∣p(K)
j

∣∣∣
+

∣∣∣p(K)
ω − 1

∣∣∣
=

∑
j 6=ω

∣∣∣p(K)
j

∣∣∣+
∣∣∣∣∣∣−
∑
j 6=ω

p(K)
j

∣∣∣∣∣∣
= 2

∑
j 6=ω

p(K)
j

By applying Theorem B.1 to P we see that∥∥∥PKp(0) − e[ω]
∥∥∥

1
≤ CKJ−1(ρ∗)K−J+1, ∀K ∈ Z+ .

Letting td = KNstage and combining the steps above, we
get

p
(td)
net = 1− p(K)

ω =
∑
j 6=ω

p(K)
j

=
1
2

∥∥∥PKp(0) − e[ω]
∥∥∥

1

≤ 1
2
CKJ−1(ρ∗)K−J+1

To summarize,

p
(td)
net ≤ CKJ−1(ρ∗)K−J+1, td = KNstage (24)

for some constant C dependent on the initial distribution p(0)

and J ∈ Z+ the size of the largest Jordan block of P .
Therefore, p

(td)
net converges to 0 exponentially with a rate ρ∗.

C. Proof of Theorem B.1

1) Statement of Theorems and Lemmas Used in Proof:
First, we state some theorems and definitions used in the
proof, with the notation modified from their original sources
to stay consistent with the notation used throughout this paper.
Theorems B.2 and B.3 are not used explicitly in the proof, but
are stated for the reader to better grasp Theorem B.4.

Theorem B.2 (Theorem 5.6.9 from [23]): If ‖·‖ is any ma-
trix norm and if A ∈ CN×N , then ρ(A) ≤ ‖A‖, where
ρ(A) , max{|λ| : λ is an eigenvalue of A} is the spectral
radius of A.

Theorem B.3 (Spectral Radius of a Stochastic Matrix):
The spectral radius (magnitude of the maximum eigenvalue)
of a column stochastic matrix P is 1.

Proof: A proof of this can be be found in [27], and is
reproduced here.

Since P is a column stochastic matrix,
∑N

i=1 Pij = 1 for
all j. This means

‖P‖1 , max
j

N∑
i=1

|Pij | = max
j

N∑
i=1

Pij = 1

where ‖ · ‖1 is the maximum column sum norm, and the first
equality holds because Pij ≥ 0 for all i and j. Combining this
with Theorem B.2, we see that ρ(P) ≤ 1.

Periodic Markov Chains, from [22] A Markov chain is pe-
riodic if its states can be grouped in d > 1 disjoint subsets
S1, . . . , Sd so that

if i ∈ Sk and pij > 0,

then
{

j ∈ Sk+1, if k = 1, . . . , d− 1
j ∈ S1, if k = d

.

A Markov chain is aperiodic if it is not periodic.

Decomposable Markov Chains, from [28] A Markov chain
is decomposable if the state space S contains two non-empty
disjoint subsets S1 and S2 which are closed, i.e. such that the
probability that i ∈ S1 transitions to another node in S1 is 1
and the probability that j ∈ S2 transitions to another node in
S2 is 1.

For the theorem below from Rosenthal, let λ0 = 1 (the
trivial eigenvalue of P) and ρ∗ = max1≤j≤n−1 |λj |, the
largest absolute value of the nontrivial eigenvalues of P .
From the theorem, we can also say that ρ∗ = max{|λ| :
λ is an eigenvalue of P and |λ| < 1}, which is used in the
statement of the theorems of this paper. Other papers often
refer to ρ∗ as the second largest eigenvalue of the transition
probability matrix.

Theorem B.4 (Fact 4 from [28]): A finite Markov chain
satisfies ρ∗ < 1 if and only if it is both indecomposable and
aperiodic.

For the theorem below from Rosenthal, let the total vari-
ation distance between probability measures v1 and v2 be
defined as ‖v1 − v2‖var , supA⊂S |v1(A) − v2(A)|. Then,
if S is finite, ‖v1 − v2‖var = 1

2

∑
i∈S |v1(i)− v2(i)|.

Theorem B.5 (Part of Fact 3 from [28]): Suppose P satis-
fies ρ∗ < 1 and the state space S is finite. Then, there is
a unique stationary distribution π on S and, given an initial
distribution p(0) and point i ∈ S, there is a constant Ci > 0
such that

|p(k)
i − πi| ≤ Cik

J−1(ρ∗)k−J+1

where J is the size of the largest Jordan block of P . It follows
immediately that

‖p(k) − π‖|var ≤ CkJ−1(ρ∗)k−J+1 (25)

where C = 1
2

∑
Ci. In particular, if P is diagonalizable (so

that J = 1) then

‖p(k)
i − πi‖var ≤

n−1∑
m=1

|amvm(i)||λm|k

≤

(
n−1∑
m=1

|amvm(i)|

)
(ρ∗)k

where v0, . . . ,vn−1 are a basis of right eigenvectors corre-
sponding to λ0, . . . , λn−1 respectively, and where am are the
(unique) complex coefficients satisfying

p(0) = a0v0 + a1v1 + . . . + an−1vn−1 .

Here, vm(i) denotes the i-th coordinate of the vector vm.

17

For finite S, we can relate the 1-norm to the total variation
distance by

‖v1 − v2‖var =
1
2

∑
i

|v1(i)− v2(i)| =
1
2
‖v1 − v2‖1 .

(26)
This means that Equation 25 can be restated as

‖p(k) − π‖|1 ≤ CkJ−1(ρ∗)k−J+1 (27)

where C =
∑

Ci.
2) Proof of Theorem B.1:

Proof: A column stochastic matrix P ∈ [0, 1]N×N

with limk→∞ P kp = e[b] for all probability vectors p ∈
[0, 1]N ,

∑
i pi = 1, describes the transition probability ma-

trix for a Markov chain that is both indecomposable and
aperiodic. The Markov chain is not decomposable because
a decomposable Markov chain has more than one stationary
distribution, whereas the Markov chain described by P has
a unique stationary distribution e[b]. For instance, a decom-
posable Markov chain would have a stationary probability
distribution with nonzero entries over only the states in S1, and
another stationary probability distribution with nonzero entries
over only the states in S2. The Markov chain described by
P is aperiodic because all probability distributions converge
to a unique stationary distribution, meaning that there is no
distribution that transitions in a periodic manner over time.

Since the Markov chain described by P is both inde-
composable and aperiodic, we can apply Theorem B.4 and
Theorem B.5 to get the desired result, where p(k) corresponds
to P kp and π corresponds to e[b].

3) Discussion: The proof of Theorem B.1 appears to rely
heavily on the assumption limk→∞ P kp = e[b] for all proba-
bility vectors p ∈ [0, 1]N ,

∑
i pi = 1. For the MTMC model,

this corresponds to modeling a routing topology with a unique
sink/destination node where all packets are eventually routed
to this sink. If we wish to apply this theorem to mesh networks
with multiple collection points, as mentioned in Section II-C,
we need to make some simple modifications to the Markov
chain model.

First, we would combine the states i ∈ B representing the
collection/destination nodes into one state iB in the MTMC
model. The transition probabilities to this new state iB would
be piiB =

∑
j∈B pij while the transition probabilities piBj out

of iB would be

piBj =
{

1 : j = iB
0 : j 6= iB

meaning iB is a recurrent state. We can now apply Theo-
rem B.1 to this new Markov chain model to show that the
model converges to iB at rate ρ∗. This means that the packet
will eventually reach one of the collection/destination nodes
at rate ρ∗, although the packet arrival probability distribution
over the nodes in B may depend on which node originally sent
the packet.

APPENDIX C
FULL SIZED TRANSITION MATRIX FOR FIGURE 5

The 8× 8 matrix is broken up into two “lines” so it fits in
one column at a larger font size and can be easily read.



1 p̄2 p̄3 p̄5 p̄2 . . .
0 pp̄ pp̄2 (1− p̄2)p̄3 0 . . .
0 pp̄ pp̄2 (1− p̄2)p̄3 pp̄ . . .
0 p2 p2p̄ (1− p̄2)2p̄ 0 . . .
0 0 pp̄2 pp̄4 pp̄ . . .
0 0 p2p̄ p(1− p̄2)p̄2 0 . . .
0 0 p2p̄ p(1− p̄2)p̄2 p2 . . .
0 0 p3 p(1− p̄2)2 0 . . .

. . . p̄4 p̄5 p̄7

. . . pp̄3 pp̄4 (1− p̄2)p̄5

. . . (1− p̄2)p̄2 (1− p̄2)p̄3 (1− p̄3)p̄4

. . . p(1− p̄2)p̄ p(1− p̄2)p̄2 (1− p̄2)(1− p̄3)p̄2

. . . pp̄3 (1− p̄2)p̄3 (1− p̄2)p̄5

. . . p2p̄2 p(1− p̄2)p̄2 (1− p̄2)2p̄3

. . . p(1− p̄2)p̄ (1− p̄2)2p̄ (1− p̄2)(1− p̄3)p̄2

. . . p2(1− p̄2) p(1− p̄2)2 (1− p̄2)2(1− p̄3)


(28)

APPENDIX D
COMPARISON OF UPD WITH DIFFERENT SCHEDULES

The left graph of Figure 19 shows that the end-to-end
connectivity function p

(td)
net can differ significantly even for

seemingly small changes in the routing schedule. Consider
the packed routing schedule in the left diagram of Figure 18,
which is “efficient” in the sense that all nodes except for the
nodes next to the source and sink transmit or receive at every
time slot. Then consider the unpacked schedule in the right
diagram of Figure 18, which is not efficient in this sense
because on every odd time slot, one node in each column is not
transmitting or receiving. This “inefficiency” is enough that to
reach or exceed some values of pnet, the unpacked schedule
requires as much as one extra superframe (6 time slots) of
latency as the packed schedule. The difference in performance
may be even greater if we change the order of the time slots
in a superframe, as illustrated on the left graph Figure 19 by
the scrambled unpacked schedule described in the caption of
Figure 18. Of course, the performance of one routing schedule
with respect to another depends on the link probabilities in the
network. For instance, at extremely low link probabilities such
as pl = 0.2 the scrambled unpacked schedule has performance
close to that of the unpacked schedule, as shown on the right
graph of Figure 19 (and in fact at certain times is slightly
better, though it is hard to see on the graph).

18

Fig. 18. Different UPD schedules on paths of width 3: (left) packed schedule, where all nodes except those neighboring the source and destination transmit or
receive at each time slot; (right) unpacked schedule, where some nodes are idle at each time slot. The scrambled unpacked schedule is the unpacked schedule
with the time slots permuted by (1, 3, 5, 2, 4, 6).

Fig. 19. End-to-end connectivity function p
(td)
net varies greatly depending on the choice of UPD routing schedules. The routing schedules are depicted in

Figure 18.

