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Abstract

Practical Distributed Source Coding and Its Application to the Compression of

Encrypted Data

by

Daniel Hillel Schonberg

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Chair

Distributed source codes compress multiple data sources by leveraging the correlation be-

tween those sources, even without access to the realization of each source, through the use

of a joint decoder. Though distributed source coding has been a topic of research since

the 1970s (Slepian and Wolf, 1973), there has been little practical work. In this thesis, we

present a practical and flexible framework for distributed source coding and its applications.

Only recently, as applications have arisen, did practical work begin in earnest. The ap-

plications range from dense sensor networks to robust video coding for wireless transmission

to the compression of encrypted data. Unfortunately, most published work offering prac-

tical codes consider only a limited scenario. They focus on simple idealized data models,

and they assume a priori knowledge of the underlying joint statistics. These assumptions

are made to ease the description and analysis of their solutions. We argue though that a

full solution requires a construction flexible enough to be adapted to real-world distributed

source coding scenarios. This solution must be able to accommodate any source and un-

known statistics. In this thesis, we develop practical distributed source codes, applicable to

idealized sources and real world sources such as images and videos, that are rate adaptable

to all scenarios.

This thesis is broken into two halves. In the first half we discuss analytic considerations

for generating practical distributed source codes. We begin by assuming a priori knowledge

of the underlying source statistics, and then consider source coding with side information,

a special case of distributed source coding. As a basis for our solution, we develop codes
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for independent and identically distributed (i.i.d.) sources and then adapt the codes to

parallel sources. We then generalize this framework to a complete distributed source coding

construction, flexible enough for arbitrary scenarios and adaptable to important special

cases. Finally we conclude this half by eliminating our assumption of a priori knowledge

of the statistics. We discuss a protocol for rate adaptation, ensuring that our codes can

operate blind of the source statistics. Our protocol converges rapidly to the entropy-rate of

a stationary source.

In the second half of this thesis, we consider distributed source coding of real world

sources. As a motivating application, we consider the compression of encrypted images and

video. Since encryption masks the source, traditional compression algorithms are ineffec-

tive. However, through the use of distributed source-coding techniques, the compression of

encrypted data is possible. It is possible to reduce data size without requiring data be com-

pressed prior to encryption. We develop algorithms for the practical lossless compression of

encrypted data. Our methods leverage the statistical correlations of the source, even without

direct access to their instantiations. For video, we compare our performance to a state-of-

the-art motion-compensated lossless video encoder that requires unencrypted video as in-

put. It compresses each unencrypted frame of the “Foreman” test video sequence by 59% on

average. In comparison, our proof-of-concept implementation, working on encrypted data,

compresses the same sequence by 33%.

Professor Kannan Ramchandran
Dissertation Committee Chair
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Chapter 1

Introduction

The distributed source coding problem, i.e. removing source redundancy in networks, is

finding application in a growing variety of areas. Distributed source coding is an extension

of the traditional, single source and single destination source coding problem, i.e. removing

source redundancy for the purpose of efficient communication. Applications of distributed

source coding, for which no traditional source coding solution is sufficient, range from dense

sensor networks to robust video transmission for wireless multimedia applications [68], to

compression of encrypted data [38]. Though varied, each application could benefit from a

robust yet adaptable distributed source code construction.

The problem of lossless distributed compression of finite-alphabet sources goes back to

the seminal work of Slepian & Wolf in 1973 [78]. The Slepian-Wolf theorem states, somewhat

surprisingly, that there is theoretically no loss of performance due to the distributed nature

of the problem. They show that each source can be coded to its conditional entropy as long

as the sum rate is at least the joint entropy (defined via the Shannon entropy function).

The Slepian-Wolf rate region for two arbitrarily correlated sources x and y is bounded by

the following inequalities

Rx ≥ H(x |y), Ry ≥ H(y |x), and Rx + Ry ≥ H(x , y).

While the seminal information theory for the distributed source coding problem, studied

in the papers [78] and [89], characterized the associated fundamental compression bounds

for lossless and lossy compression, respectively, for asymptotically long block lengths, the

resulting analysis/coding prescriptions were initially limited to the case of independent

and identically distributed (i.i.d.) source and side-information correlation models. More
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Figure 1.1. A block diagram for the distributed source coding problem. The encoders act
separately on each source for joint recovery at a common receiver. There is theoretically
no loss of lossless sum rate compression performance due to the distributed nature of the
problem, as shown in Slepian and Wolf [78].

importantly, recent practical code construction methods for the distributed source coding

problem, starting from Pradhan & Ramchandran [64] to more recent1 state-of-the-art ex-

tensions [2, 94, 48, 14, 16, 79] have almost exclusively focused on a special case of the

distributed source coding problem. First, they focus on the i.i.d. source/side-information

correlation models and second, they assume an a priori knowledge of the Slepian-Wolf rate

constraints.

We argue that fully general distributed source codes are important for both the applica-

tions mentioned above and others yet to be developed. In the first half of this dissertation,

we provide a fully general and fully adaptable distributed source coding solution. We tackle

the two assumptions made in prior work in order.

We begin by developing distributed source codes for the problem of source coding with

side information to act as a basis for our work. Then, we generalize these source codes with

side information to parallel sources, important for the application of distributed source codes

to block stationary sources. We then build on this construction to offer a distributed source

coding solution that can account for (i) arbitrary correlations, (ii) the entire Slepian-Wolf

coding region corresponding to arbitrary rate combinations, and (iii) an arbitrary number

of sources. The construction presented is based on only a single linear block code, and is

adaptable to a wide range of distributed coding problems. Our scheme shows that fixed-

length codes can be used for both point-to-point (a departure from more common variable

length coding schemes applied to discrete sources) and Slepian-Wolf source coding. We

include LDPC codes in our constructions, since they represent a powerful state-of-the-art

class of capacity achieving codes. We describe how to incorporate LDPC codes into our
1See Section 5.1.1 for an extensive discussion on related work. Though the literature is extensive, they

have mostly focused on very limited cases of the distributed source coding problem.
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framework and how they are an important tool for building practical distributed source

codes.

For a fully adaptable framework for distributed source codes, we next eliminate the

assumption of a priori knowledge of the minimum rate constraint. Unfortunately, due

to the distributed nature of the problem, the distributed source encoders cannot analyze

sample data and determine the minimum rate is done in traditional source coding solutions.

To resolve this issue, we present a feedback-based scheme for, so-called, blind distributed

source coding, i.e. these codes operate without a priori knowledge of the source statistics.

We summarize our contributions in this first half of this thesis as follows.

• We contribute a fully general lossless distributed source coding construction. Our

construction is adaptable to arbitrary correlation structures, an arbitrary number of

sources, and can accommodate arbitrary rate choices.

• Our construction contributed gracefully degrades to special cases of the distributed

source coding problem, such as source coding with side information and entropy cod-

ing.

• We contribute analysis and design techniques for the application of our construction

to block stationary sources.

• To ensure our construction can be used in scenarios lacking foreknowledge of the

source statistics, we contribute a transmission scheme for our distributed source coding

construction that can operate blind of the source statistics. We both analyze this

scheme and demonstrate its performance.

Having developed a general framework for distributed source coding, in the second

half of this thesis we focus on the application of distributed source codes for compressing

encrypted data. We consider sources characterized by statistical redundancy, such as images

and video sequences, that have been encrypted uncompressed. Since encryption masks the

source, traditional data compression algorithms are rendered ineffective. However, as has

been shown previously, the compression of encrypted data is in fact possible through the

use of distributed source-coding techniques. This means that it is possible to reduce data

size without requiring that the data be compressed prior to encryption. Indeed, under some

reasonable conditions, neither security nor compression efficiency need be sacrificed when

compression is performed on the encrypted data (Johnson et al., 2004 [38]). Thus, in the

second half of this dissertation we develop distributed source codes for the practical lossless
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compression of encrypted data sources. We consider algorithms for a variety of sources,

ranging from i.i.d. to images to video sequences. Our methods are designed to leverage the

statistical correlations of the source, even without direct access to their instantiations.

We summarize our contributions in this second half as follows.

• We present a practical framework, based on our distributed source coding construction

of the first half of this thesis, for compressing a variety of sources. These sources range

from simple sources to images.

• We contribute an extension to the compression of encrypted data framework for com-

pressing encrypted video sequences.

• Incorporating the blind transmission scheme presented here, we give a fully automatic

system for compressing encrypted video.

This thesis is organized as follows. Chapter 2 is provided as background material for

the reader. We begin development of distributed source codes by providing a construction

for the source coding with side information problem in Chapter 3. We build on this con-

struction in Chapter 4, developing codes for parallel and non-stationary sources. Chapter 5

extends the construction of Chapter 3 to develop fully arbitrary distributed source codes.

In Chapter 6 we develop a blind transmission protocol so that our distributed source codes

can operate without a priori knowledge of the source statistics.

The second half of this thesis shifts focus to the problem of compressing encrypted

data. We describe the compression of encrypted data problem in Chapter 7, and provide

a framework for solving the problem for various types of encrypted sources, ranging from

simple sources to images. We extend these constructions to encrypted video sequences in

Chapter 8. Finally, we conclude this thesis in Chapter 9.

Notation:

For clarity, we specify the notation we use throughout this thesis here. We denote

random variables with a sans serif font, e.g. X , and their realizations with a Roman font,

e.g. X. We use subscripts and superscripts to indicate a vector, e.g. Xb
a = {Xi}b

i=a =

{Xa, Xa+1, . . . , Xb−1, Xb}. Note that a dropped subscript implies that the vector starts from

1, e.g. Xb = {Xi}b
i=1 = {X1, X2, . . . , Xb−1, Xb}. We use bold to indicate vectors matrices,

e.g. X. Note, we occasionally use subscripts as the index of several random vectors instead

of as an index into a random vector. For example, X1 has samples Xn
1,1 = {X1,1, X1,2, . . .} and

X2 has samples Xn
2,1 = {X2,1, X2,2, . . .}. The meanings in these cases is clear from context.
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The Hamming weight of the vector xn is denoted wtH(xn). We denote the bitwise

“exclusive-OR” (XOR) operation using the ⊕ operator. We use H(·) and I(·; ·) to represent

the Shannon Entropy function and the Shannon Mutual Information functions respectively.

Further, we use H2(·) to represent the binary entropy function.

Additionally, we use some standard notation for linear block channel codes. The (n, k)

block code C has generator matrix G, parity check matrix H, and parameter m , n− k.
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Chapter 2

Background

In this chapter, we provide background material to aid the reader of this dissertation.

We begin by describing two of the core problems of information theory; source coding (also

referred to as data compression) in Section 2.1 and channel coding in Section 2.2. Having

discussed channel coding in general, we then discuss a particular type of channel code known

as LDPC (Low-Density Parity-Check) codes in Section 2.3. We focus on graphical models

and the sum-product algorithm when discussing LDPC codes, important themes throughout

this thesis. Finally, we give background on the distributed source coding problem, a focus

of this thesis. Note that summaries of this material appear again interspersedly throughout

the text to aid the reader.

2.1 Traditional Source Coding

This section presents a brief overview of point to point source coding, the problem of

efficient communication of data from a single source to a single destination. We consider two

scenarios; lossless source coding and lossy source coding. The goal of lossless source coding

recover the original source exactly at the decoder. Lossy source coding aims to recover the

original source only to within some distortion constraint. Throughout this dissertation, we

focus primarily on lossless source coding and thus discus it first. We briefly discuss lossy

source coding in this section to offer the reader a better understanding. For a more complete

discussion of these topics, please refer to the standard text [19].

Consider the block diagram in Figure 2.1. Let xn be an i.i.d. sequence of n random
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Figure 2.1. A block diagram for single source and single destination source coding. The
encoder maps source symbols xn to a bitstream, which is then fed to the decoder. The
decoder reconstructs x̂n. The rate R is the number of bits transmitted per input symbol.

variables drawn from discrete alphabet X according to some distribution P (x). For rate R

(in bits per source symbol), the encoder map is as follows

f : X n → {1, 2, . . . , 2nR}.

The decoder performs the following mapping

g : {1, 2, . . . , 2nR} → X n.

For lossless source coding, the decoder aims to recover xn with high probability. Defining

P
(n)
e as the probability of decoding error, we mathematically describe the aim of the design

of the decoder

P (n)
e = P (g(f(xn)) 6= xn) → 0 as n →∞.

The set of possible codewords (f(1), f(2), . . . , f(2nR)) is referred to as the codebook.

We thus use R bits per source symbol to specify a codeword to the decoder. In order to

provide efficiency, we seek to define the mappings f(·) and g(·) such that we minimize R

while having the probability of error P
(n)
e → 0 as n →∞ still holds to be true. Information

theory provides that such mappings can be found for any R that satisfies the following

inequality

R ≥ H(x).

When some distortion in the reconstructed sequence x̂n is acceptable, we perform lossy

source coding. Given some distortion function, lossy source coding offers the minimal rate,

R, given distortion constraint, D. Information theory gives that form of the optimal tradeoff

between the minimum rate, R, and the distortion, D. The reader is referred to Cover and

Thomas [19] for further details.
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2.2 Channel Coding

In this section we consider another of the core problems of information theory, that of

channel coding. In channel coding, we seek to efficiently and reliably communicate a data

source over a noisy channel. For a more complete discussion of these topics please refer to

Cover and Thomas [19].

Encoder nnP(Y  |X  )
ChannelX

n n
Y

Decoder MM ^

Figure 2.2. A block diagram for channel coding. The source word M is mapped by the
encoder to xn. xn is then transmitted through the channel and received at the decoder as
yn. To ensure efficient and reliable communication, the goal is to design the mapping of M
to xn such that M̂ can be recovered to M from yn with high probability.

Figure 2.2 shows the basic block diagram of channel coding. The encoder is fed a

message, M, from the set of possible messages {1, 2, . . . ,M}. It then maps M to xn(M)

and transmits it through the channel. The decoder receives yn, distributed according to

the channel P (yn|xn). It then estimates M as M̂ through a decoding rule. An error occurs

whenever M̂ 6= M .

Formally, a discrete channel, denoted (X , P (y|x),Y), consists of finite input alphabet

X , finite output alphabet Y, and a set of probability mass functions P (y|x) indexed by

x. A (n,M) code C for channel (X , P (y|x),Y) consists of a set of messages, an encoding

function, and a decoding function. The set of messages is {1, 2, . . . ,M}. The encoding

function maps the input message to a codewords

xn : {1, 2, . . . ,M}→ X n.

The decoding function, g(·), determines from yn the value of xn most likely sent by the

encoder

g : Yn → {1, 2, . . . ,M}.

The maximum probability of error for any codeword of the (n,M) code is given here

P (n)
e = max

i
P (g(yn) 6= i|xn = xn(i)). (2.1)

The resulting rate R of the (n,M) is R = log2M/n bits per transmission. We would

like to design xn(·) and g(·) so as to maximize R while holding P
(n)
e → 0 as n → ∞ to
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be true. Information theory gives the maximum achievable rate R meeting the constraint

above, and defines this number as the channel capacity, C,

C = max
P (x)

I(x ; y).

Binary linear block codes are a particular sub-class of channel codes. Defining k =

log2M, an (n, k) linear block code C maps k input bits into n bits for transmission via

a linear transformation. We refer to the transform matrix, G, as the generator matrix.

We thus see that a codebook is defined as the range space of the matrix G. We further

define a matrix, H, called the parity check matrix. We define H as orthogonal to G and

thus H describes the null space of G. As a result, all valid codewords of C have a zero

product with the matrix H. The parity check matrix can thus be used to easily check if yn

is a codeword of C or not. In addition to the convenience of defining these codes in terms

of these matrices, linear codes are also comparatively easier to implement then generally

random codes. Further, linear codes are easier to analyze. Fortunately, as was shown

by Gallager [27], linear codes can achieve channel capacity for the channels of interest in

this dissertation (discrete memoryless channels with discrete input and output alphabets).

Gallager’s results means that linear codes offer no fundamental disadvantage.

2.3 Low-Density Parity-Check Codes and Graphical Models

In this section, we discuss a type of linear block channel code (Section 2.2) known as

Low-Density Parity-Check (LDPC) codes. They are a powerful class of codes that can

achieve rates within a small gap from capacity. Since they were originally developed by

Gallager [26], LDPC codes are also referred to as Gallager codes. They were rediscovered

by MacKay and Neal [52] and have since received considerable attention. In this section

we give a brief overview of LDPC codes, and we frame our discussion in terms of graphical

models.

As a particular type of linear block channel code, LDPC codes have advantageous

pseudo random structure and a near Maximum Likelihood1 (ML), low complexity, decod-

ing algorithm. Factor graphs [42] (a type of graphical model as in Figure 2.3) (with its

corresponding code in Table 2.1) are often used to visually represent LDPC codes. These
1ML decoding provides the best possible performance with regards to the probability of error as defined

in Equation (2.1). Unfortunately, ML decoding is known to be NP hard. It is thus impractical to implement
ML decoding for large block lengths, n.
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


1 1 0 0 0

1 1 1 0 0

0 1 1 0 1

0 0 1 1 1




Table 2.1. The parity check matrix corresponding to the graph shown in Figure 2.3. When-
ever the element in the ith row and jth column is 1, an edge connects constraint node i
with variable node j. A 0 in the corresponding position implies no edge connects the nodes.

bipartite graphs consist of circles used to represent variables and squares (though more

generally rectangles are used) used to represent constraints. For LDPC codes, we take the

circles to represent bits and the squares as even parity constraints (applied to the bits to

which they are connected).

(X3,4µ 4)( )Xν2,2 2

XXXXX1

f1 f f f

2 3 4 5

2 3 4

Figure 2.3. A sample factor graph. The five circles represent bits while the four squares
represent the parity constraints of the code. Connections between the two types of nodes
correspond to the parity check matrix given in Table 2.1. A labeling of the two types of
messages passed between nodes when running the sum-product algorithm is given.

Decoding of LDPC codes is achieved using the sum-product algorithm [26, 61, 42]. The

algorithm is an iterative inference algorithm that though exact on trees, is known to have

good (but sub-optimal) empirical performance on loopy graphs such as those of an LDPC

code. The algorithm is related to dynamic programming, and hence exact on trees. A loop

is a path through the graph that has both the same starting and end point but travels along

each of the edges in its path only once. The sum-product algorithm operates by iteratively

estimating the marginal distribution for each bit. The algorithm initializes with estimates
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of each marginal distribution (based on a priori or estimated statistics). In the first phase

of each iteration, each variable node combines the estimates available and sends them along

its edges (e.g., ν2,2 in Figure 2.3). In the second phase of each iteration, these estimates

are merged, according to the constraint, at each check node for each bit node (e.g., µ3,4

in Figure 2.3). The marginals are used to estimate the bits after each iteration, and the

set of estimates is checked against a stopping condition. If no stopping condition is met,

the algorithm is stopped after a fixed number of iterations. Further details of the decoding

algorithm are given in Section 2.3.1.

2.3.1 The Sum-Product Algorithm and LDPC codes

Though outlined above, in this section we specify the sum-product algorithm’s explicit

form. The following expressions are given in terms of the graph in Figure 2.3, but can be

naturally extended to more general cases. We begin by expressing the update equations in

their most general form for any graphical model. We then give the simplified form of the

update equations as they apply to LDPC codes in particular. A more complete discussion

of these topics can be found in Kschischang, Frey, & Loeliger [42].

Before specifying the update equations, we note that N (i) denotes all the nodes directly

connected to node i (i.e., the neighborhood of i) and N (i)\j denotes that same set less the

node j. Further note that these equations often omit scaling factors. It is straightforward

to scale the elements of a message so that they sum to 1, and are a proper distribution.

If each of the variables xi in Figure 2.3 are distributed over the alphabet X , then the

messages to and from the node for xi are of the following forms respectively

µj,i(xi), xi ∈ X , and

νi,j(xi), xi ∈ X .

The variable node update equation to calculate the outgoing message from xi to fj , νi,j

from the incoming messages is below

νi,j(xi) =
∏

t∈N (i)\j
µt,i(xi).

We consider the update equations for the constraint nodes. We denote the mathematical

form of the constraint as fj(xN (j)). For the even parity constraint, for example, f(x1 =

1, x2 = 1) = 1 because of the even parity sum while f(x1 = 1, x2 = 0) = 0 because of the

11



odd parity sum. We give the explicit form here

fj(xN (j)) =





1 if
⊕

i∈N (j) xi = 0

0 otherwise.

The check node update equation to calculate the outgoing message from fj to xi, µj,i is

given below

µj,i(xi) =
∑

xN (j)\i


fj(xN (j))

∏

s∈N (j)\i
(νs,j(xs))


 .

Finally, for the variable node xi to collect all the messages at a particular iteration into a

single estimate of its distribution, it uses the rule below, where ∝ means proportional to

within a scaling factor

P (xi) ∝
∑

j∈N (i)

µj,i(xi).

We can make several simplifications to these equations (as in Richardson & Ur-

banke [70]), since this thesis primarily consider binary codes. We use these simplified forms

throughout this thesis. Since we focus on binary alphabets, i.e. X = {0, 1}, the message

update rules can be also simplified. In particular, for some arbitrary distribution on xi with

p0 = P (x = 0) and p1 = P (x = 1), we represent this distribution as follows

τ = log
p0

p1
.

Given τ , recalling that p0 + p1 = 1, we can calculate p0 and p1. This assures us that no

information is lost in this representative form

p0 =
eτ

1 + eτ
, p1 =

1
1 + eτ

.

Using the simplified message forms, we rewrite νi,j(xi) and µj,i(xi) as νi,j and µj,i

respectively, no longer needing an index for multiple valuables. We give the resulting update

equations below. The variable node update equation is below

νi,j =
∑

t∈N (i)\j
µt,i.

Since we focus on even parity sums, the update equation for the constraints over binary

random variables is as follows

µj,i = log
1 +

∏
s∈N (j)\i tanh νs,j/2

1−∏
s∈N (j)\i tanh νs,j/2

.
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2.3.2 LDPC Code Design

In this section, we consider the issue of LDPC code design. We begin with a discussion

of how to specify a family of LDPC codes, and how to select a particular LDPC code from

the family. Then, we discuss techniques to design those families to have favorable properties.

We begin by describing degree distributions and how a pair of degree distributions specifies

a family of LDPC codes. We then briefly discuss degree distribution design via density

evolution and via EXIT charts.

...

...

Random Permutation

Figure 2.4. A graphical representation of a random irregular LDPC code. The degree of
each node is determined according to a degree distribution. Each edge is then randomly
connected to a variable node and a check node according to some random permutation.

As opposed to the specific code implied by the graph in Figure 2.3, we now consider

a more general approach to LDPC codes as shown in Figure 2.4. Each of variable node

and each check node has some number of edges emanating from it. We refer to number of

nodes emanating from a node as its degree. We then can say that a degree distribution

is the probability distribution on the number of edges emanating from the nodes. That

is, in generating a code, the degree of each node is determined by drawing it from the

degree distribution for that type of node. We denote the distribution over the variable and

check nodes with λ and ρ respectively. Note that if the density of degrees for every node

is constant across the variable nodes and is separately constant across all the check nodes,

the code is said to be regular. Otherwise, the code is said to be irregular.

For convenience, we write the degree distributions in terms of their generating function
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polynomials (λ(x), ρ(x)) of the following form

λ(x) =
dv,max∑

i=2

λix
i−1, ρ(x) =

dc,max∑

i=2

ρix
i−1.

In the above, λi and ρi represent the fraction of edges that are connected to nodes with

degree i, for the variable nodes and check nodes respectively. We define dv,max and dc,max

as the maximum variable and check degrees respectively. For these numbers to represent

distributions, the values of λi and ρi must sum to 1

dv,max∑

i=2

λi = 1,

dc,max∑

i=2

ρi = 1.

Since the number of edges emanating from the variable nodes must equal the number of

edges emanating from the check nodes, when we specify the degree distribution pair for a

code we also specify its channel coding rate

r(λ, ρ) = 1−
∫ 1
0 ρ(x) dx∫ 1
0 λ(x) dx

.

Here we have leveraged the convenience of representing the degree distributions with their

generating functions. In the following we will discuss techniques for the design of good

degree distributions.

When we specify a family of LDPC codes and draw a particular code, the question of

selecting a “good” code arises. Fortunately, due to the concentration theorem of Richardson

and Urbanke [70], we can be reasonably well assured that most codes in a “good” family

are also “good” codes. In practice, we often ensure the quality of a particular code by

“pruning” short loops. We search the code for the presence of short loops and remove (or

prune) one of the edges to remove the short loop. Though LDPC codes are loopy by their

very nature, in practice removal of length 4 short loops performs very well in practice [70].

Density Evolution

Density evolution, developed by Richardson and Urbanke [70], is an analysis tool to

determine the average performance of a family of LDPC codes. Density evolution is an it-

erative process that begins by fixing a particular family (degree distribution pair) of LDPC

codes and a parameterized channel model (discrete channels can always be parameterized).

In each iteration, density evolution determines whether decoding will on average succeed

or not on for a particular channel parameter. A binary search is then performed to deter-

mine the “worst” channel parameter over which the code can be expected to successfully
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decode. Knowing the “worst” channel a degree distribution pair can decode over gives a

way to evaluate the quality of a code. If we compare two families with equal rates, yet

one can decode over “worse” channel parameters then it is the better code. Techniques for

determining good code using density evolution is discussed in the papers [69, 15].

In this thesis, we do not use density evolution as a design tool. Instead, we use code

families found by the Communications Theory Lab (LTHC) at Ecole Polytechnique Fédérale

de Lausanne (EPFL) using density evolution and published online [4]. Since the corpus

is constantly being improved, better code families appear regularly. The specific degree

distributions used in this thesis can be found in Appendix A.

EXIT Charts

Extrinsic Information Transfer (EXIT) charts are another popular technique for LDPC

code design. An EXIT chart is constructed by treating the bit nodes and check nodes as

two separate decoders that feed their outputs to each other. The behavior of each of these

two component decoders is assessed by measuring a statistic of the input and output data.

In particular, we measure the average mutual information between the decoder estimates of

the codeword and the true codeword, denoted IA for the input and IE for the output. By

measuring this statistic on both the input and output of each of the component decoders, a

characterizing curve for the two decoders is generated. The particular shape of these curves

is dependent on the code’s degree distributions, and the channel parameters. A sample plot

of the curves for both the variable node decoder and the check node decoder are shown in

Figure 2.5. To represent the input-output relationship of these two decoders, the curves are

plotted on reflected axes. Readers are referred to the paper [7] for more detail about EXIT

charts.

It was shown in by Ashikhmin, Kramer, & ten Brink [7] that as long as the variable

node decoder curve lies above the check node decoder curve when plotted in the manner of

Figure 2.5, then successful decoding, asymptotic in block length, is assured. Decoding can

be modeled as following a path in the gap between the two curves. Thus if the two curves

intersect, the path is impeded and decoding fails. It was further shown that the area of the

gap between the two curves is proportional to the performance gap between the code and

capacity. Thus the problem of code design is reduced to that of finding degree distributions

pairs that minimize the gap between the two curves, conditioned on maintaining a positive

gap. By fixing a series of check node degree distributions, a good pair of degree distributions
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Figure 2.5. An example of a good code degree distribution pair for channel coding rate
R = 0.55, designed using EXIT charts. The tight fit of the two curves in the plot shows
that the code operates near to capacity. The dashed curve corresponds to the variable nodes
while the solid curve corresponds to the check nodes. Decoding operates by moving from
the left-hand side to the right-hand side of the graph, going through the gap between the
two curves. Since the gap between the two curves is positive, decoding will follow the path
between the curves successfully.

can be found with a short series of linear programs. In comparison to density evolution,

obtaining good degree distributions is far less computationally intensive, but the results are

unfortunately less accurate. As stated above, the specific degree distributions used in this

thesis can be found in Appendix A.

2.4 Distributed Source Coding

In this section we discuss an important extension of the traditional point to point source

coding problem discussed in Section 2.1. We reach this extension by considering a series of

smaller extensions. We begin by considering the point to point compression of two sources,

xn and yn, as shown in Figure 2.6. Here, the encoder is draws samples {(xi, yi)}n
i=1 in an

i.i.d. manner with distribution P (x, y). Standard source coding theory says that achievable
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rates are bounded by the following

R ≥ H(x , y).

Decoder

^ n
Y

X
^ n

n
Y

X
n

Encoder
R

Figure 2.6. An extension of the traditional single source and single destination source coding
problem to two sources, xn and yn. Here, the minimum rate according to information theory
is the joint entropy of the two sources, i.e. R ≥ H(x , y).

In order to extend this scenario to distributed source coding, we consider the case of

separate encoders for each source, xn and yn. Each encoder operates without access to the

other source. This scenario is illustrated in Figure 2.7. Using the techniques of Section 2.1,

we would expect that each source could only be compressed to its marginal entropy. The

anticipated region would be as follows

Rx ≥ H(x), Ry ≥ H(y).

EncoderX
n XR

n
Y Encoder

YR

Decoder

^ n
Y

X
^ n

Figure 2.7. The block diagram for the distributed source coding problem. Here, without
communication between the two, one encoder maps the source symbols xn to a bitstream
while the other maps yn to a separate bitstream. The decoder receives both bit streams
and reconstructs x̂n and ŷn. The minimum rate region for Rx and Ry is given in Equation
(2.2).

Surprisingly, the work of Slepian and Wolf [78] shows that the achievable rate region

is much larger. Specifically, their work shows that the region is bounded by the three

inequalities in Equation (2.2),

Rx ≥ H(x |y), Ry ≥ H(y |x), Rx + Ry ≥ H.(x , y) (2.2)
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The achievable rate region is shown graphically in Figure 2.8. Stated simply, the Slepian-

Wolf theorem shows that their is no theoretical loss in compression performance (with

respect to the sum-rate) between Figure 2.7 and Figure 2.6.

XR

YR

H(X|Y) H(X)

H(Y|X)

H(Y)

XR YR+ = H(X,Y)

Figure 2.8. A graphical representation of the Slepian-Wolf rate region as specified in Equa-
tion (2.2).

An important special case of distributed source coding is called source coding with side

information. Also referred to as corner point coding (since the operating point is one of the

corner points of the Slepian-Wolf rate region in Figure 2.8), a block diagram is shown in

Figure 2.9. In this figure, the source yn is sent directly to the decoder, but is unavailable

to the encoder2 of xn. The goal in this scenario is to leverage the availability of yn at the

decoder despite the encoder only having access to xn. From Equation (2.2), we see that the

achievable rate is as given here

Rx ≥ H(x |y).

Though not a focus of this thesis, lossy source coding with side information has been

studied extensively in the literature. Wyner and Ziv [89] establish the rate-distortion trade-

off for this scenario. They show that for Gaussian sources, the rate distortion bound for

source coding with side information is equivalent to the rate distortion bound for the sce-

nario when the side information is made available to the encoder as well as the decoder.

Generally, the achievable rate distortion tradeoff is diminished from the scenario of the

encoder having full access to the side information.
2We implicitly assume that yn has been transmitted losslessly to the decoder at rate H(y).
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Figure 2.9. A special case of distributed source coding referred to as source coding with side
information. Here, the correlated source yn is available at the decoder, but is unavailable at
the encoder. Using the Slepian-Wolf rate region of Equation (2.2), we see that the achievable
rate is bounded as Rx ≥ H(x |y).

The Slepian-Wolf theorem was essential for establishing the potential benefits of dis-

tributed source coding. Unfortunately, the Slepian-Wolf theorem is asymptotic and non-

constructive. In the chapters that follow, we discuss how to construct practical codes to

achieve the Slepian-Wolf bound.
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Chapter 3

A Practical Construction for

Source Coding With Side

Information

We begin our discussion of practical constructions for distributed source coding in this

chapter by focusing on the special case of source coding with side information. As discussed

in Section 2.4, source coding with side information is a special case of the general distributed

source coding problem. The codes developed in this chapter are able to leverage the corre-

lation between two sources even without direct access to the data itself. The development

of these codes is crucial to the development of codes for the fully general distributed source

coding problem, and will be used as a building block for the rest of the work in this thesis.

3.1 Introduction

Most proposed frameworks for source coding with side information to date consider only

a limited correlation structure. Such restricted structure is convenient for analysis, but is an

unrealistic assumption for scenarios of practical interest. A comprehensive solution requires
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a single framework flexible enough to operate on arbitrary correlation structures, including

the special case of no correlation1.

As discussed in Section 2.4, Slepian and Wolf [78] gave information theoretic bounds

on lossless compression of two correlated sources with a common decoder. The Slepian-

Wolf result is however asymptotic and non-constructive. We summarize here some of the

related literature towards a practical construction for source coding with side information.

A more complete discussion of practical efforts towards distributed source codes can be

found in Section 5.1.1. One early approach to practical codes is Wyner’s [90] formulation

of a linear coset code for source coding with side information (assuming binary sources

and symmetric correlation). Wyner’s work further establishes the relationship between

distributed source coding and channel coding. The late 1990s work of Zamir & Shamai [92]

shows the theoretical feasibility of a lattice code framework for a lossy version of this problem

(first considered by Wyner & Ziv [89] in the information theoretic setting). Following

that, Pradhan & Ramchandran [66] developed DISCUS, a framework for the Wyner-Ziv

problem and described practical codes and achievable error probabilities. Recently, a flurry

of work in the field provides practical constructions of various levels of sophistication for

the Slepian-Wolf problem [66, 80, 83, 30, 95, 34, 31, 32, 46, 49, 50, 76, 56, 54, 2]. However,

the constructions to date in the literature do not tackle the general source coding with

side information problem for arbitrary sources. While the scenarios considered in these

works are important operating regimes, they fail to cover the complete spectrum of diverse

real-world sources and application scenarios requiring more flexible operating points.

In this chapter, we develop a practical and constructive framework for source coding

with side information. A block diagram is shown in Figure 3.1. This construction is a foun-

dation for our solution to the arbitrary distributed source coding problem (Chapter 5), the

compression of encrypted data (Chapter 7), and the work throughout this dissertation. We

provide our solution focusing on binary sources, though it is applicable to larger alphabets.

We relate the source coding with side information problem to channel coding and show how

to apply Low-Density Parity-Check codes to generate powerful codes for source coding with

side information. We provide simulation results that demonstrate how this construction

performs when applied to arbitrarily correlated binary random sources. Our algorithm is

powerful enough to approach the Slepian-Wolf bound.

This chapter is organized as follows. In section 3.2 we discuss a solution for source
1In the case of 2 sources with no correlation between them, the problem of distributed source coding

reduces to two separate traditional (single source, single destination) source coding problems.
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Figure 3.1. The source coding with side information problem. The encoder seeks to com-
press x given that y is available at the decoder but unavailable to itself.

coding with side information based on linear block codes. Then, in section 3.3, we present

again a short summary of LDPC codes, a powerful class of linear block codes. Section 3.4

addresses how LDPC codes can be adapted to our source coding with side information

solution and how the algorithm can be successful for arbitrary x , y correlations. Section 3.5

provides results and some related performance analysis. Finally, Section 3.6 concludes the

chapter and discuses some open problems.

3.2 Linear Block Codes for Source Codes With Side Infor-

mation

In this section, we discuss a code construction for source coding with side information.

We base this discussion on the work of Pradhan and Ramchandran [66]. For clarity, we

focus on binary alphabets. Extension to larger alphabets is largely straightforward, but is

not discussed here. We focus on compressing, x , given that side information, y , is available

at the decoder. We begin within a simple, yet illustrative example. This example is then

generalized to a framework for source coding with side information.

In information theoretic approaches, random binning (hashing) is a widely used tech-

nique [19] for compressing a data sequence. When binning, the space of length-n sequences

is broken up into 2nR bins, each of size 2n(1−R). Compression is achieved by sending bin in-

dices, using nR bits each. Random binning is used in the proof of the Slepian-Wolf theorem

(and entropy coding) [18, 19]. So long as the number of bins used satisfies the Slepian-Wolf

bounds, the sources can be recovered with high probability using a decoder operating on

“joint typicality” principles.
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Key to a practical solution for source coding with side information is to use structured

binning. Random binning is asymptotic, unstructured, and as such is intractable for prac-

tical implementation. Csiszár [20] showed that linear bins (codes) can be used. To leverage

practical structured codes, it is useful to view the two sources as related via a “virtual”

channel. In this channel, with input x and output y , z is seen as the noise pattern induced

by the “channel”

y = x ⊕ z . (3.1)

We have assumed an additive structure here as it is convenient and suffices for binary chan-

nels. In order to accommodate arbitrary joint distributions, we do not assume independence

between2 x and z .

We thus use a linear block code C for binning. The bin index, denoted sm, of a codeword

xn, is the word’s syndrome with respect to C’s parity check matrix

sx = xnHT
x . (3.2)

Thus, we encode xn to sx via matrix multiplication. An unfortunate result of this approach

is that it induces a source of error. To account for atypical source behavior, standard source

coders allow variable length codewords. By using fixed rate linear block codes, atypical

realizations of the source inevitably induces errors. Fortunately, as we consider larger block

lengths such sequences become unlikely.

3.2.1 Illustrative Example

As an example [66], let x and y be two uniform 3-bit sources. They are correlated such

that they differ in at most 1 of their 3 bits (i.e. wtH(x⊕y) ≤ 1). We calculate the following:

H(x) = H(y) = 3 bits, H(x |y) = H(y |x) = 2 bits, and H(x , y) = 5 bits.

With direct access to y , it is easy for the encoder to convey x to the decoder using only

2 bits. In this case the encoder determines which of the difference patterns between x and

y has occurred,

z ∈ {000, 001, 010, 100}. (3.3)

Since there are only 4 possible values for z , the encoder needs only 2 bits to specify which

of the 4 it is. The decoder can then reconstruct x by calculating x̂ = y ⊕ z.
2E.g. consider the binary non-symmetric channel; here the crossover probabilities are dependent upon

the channel input.
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When the encoder does not have access to y though, according to the Slepian-Wolf

theorem, the encoder still only needs 2 bits to transmit x . To achieve this, we note that

given any particular sequence y, there are only 4 possible values for x based on Equation

(3.3). To leverage this we create the following cosets such that for any given y only one of

the possible values of x lies in each set.




0 0 0

1 1 1



 ⇒ 00





0 0 1

1 1 0



 ⇒ 01





0 1 0

1 0 1



 ⇒ 10





0 1 1

1 0 0



 ⇒ 11.

(3.4)

To compress x to 2 bits, we need only specify which one of these 4 cosets it occurs in. With

knowledge of y and the coset, the decoder can uniquely determine the value of x.

To compress x to 2 bits, in effect we are using the (3, 1)-repetition code to define the

parity check matrix H in Equation (3.2)

H =


 1 0 1

0 1 1


 .

Key to the success of this code is that the (3, 1)-repetition code has a minimum distance

of 3. This minimum distance is sufficient to isolate all sequences with a 1 bit difference

(wtH(x⊕ y) ≤ 1) from any particular y. Thus knowledge of y and sx allows the decoder to

determine x exactly.

3.2.2 Block Codes For Source Coding With Side Information

In the example in Section 3.2.1, the (3, 1)-repetition code is successful because it is

strong enough to handle the channel of corresponding strength to the correlation model

considered. More generally, we need to use a linear block channel code strong enough to

reach the capacity of the corresponding correlation channel. In this section, we define the

code in terms of its generator matrix. As stated above, compression is achieved by finding

the syndrome of the source word with respect to the parity check matrix corresponding to

the generator matrix defined. Recall the correlation model of Equation (3.1).

As an example, we assume that z is independent of y , and that y is a sequence of

Bernoulli-(1/2) random variables while z is a sequence of Bernoulli-(Q) random variables.
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The Slepian-Wolf theorem says we can compress x to Rx = H(x |y) = H2(Q). The chan-

nel corresponding to this correlation structure is a binary symmetric channel (BSC) with

crossover parameter Q. Thus, a channel code designed for a BSC with parameter Q could

be used to successfully bin x for compression. We apply this principle in general to the

correlation structure of x and y .

For the rest of this section, we discuss a ML (Maximum Likelihood) decoding algorithm

for linear block codes applied to source coding with side information. We assume that the

code has been selected for the correlation as appropriate. Though the algorithm presented

here is impractical (due to the use of a ML decoder), an implementable (but sub-optimal)

algorithm is given in Section 3.4. We give pseudo-code for our decoding algorithm below.

In the first step of the pseudo code, we write the source as a function of the compression

code and the compressed value. We use the vector ux, to select which codeword is necessary

to satisfy these equations. We denote the closest codeword xn in Cx as uxGx.

In Step 1, s̄x represents a zero-padded version of the value sx. s̄x is the element in the

co-sets formed by Cx of minimum Hamming weight. To zero pad, insert zeros so that they

align with the systematic bits of the code3. For example, consider the code defined by the

(7, 4)-Hamming code in Equation (3.5). Since the third through sixth columns form the

systematic bits, zeros are inserted into the fourth and fifth positions.

If Gx =




1 1 1 0 0 0 1

1 1 0 1 0 0 0

1 0 0 0 1 0 1

0 1 0 0 0 1 1




and sx = [
︷︸︸︷
1 0

︷︸︸︷
1 ],

then s̄x = [
︷︸︸︷
1 0 0 0 0 0

︷︸︸︷
1 ].

(3.5)

In step 2, we decode the quantity [s̄x ⊕ yn] with respect to Gx to give ẑ and ux. Finally, in

step 3, combine yn and ẑn to recover x̂n.

Pseudo code for the decoding algorithm is provided here:

1. Expand sources equation: xn = uxGx ⊕ s̄x and yn = xn ⊕ zn = uxGx ⊕ s̄x ⊕ zn.

2. ML Decode ẑn = uxGx ⊕ [s̄x ⊕ yn].

3. Recover x̂n = yn ⊕ ẑn using knowledge of ẑn and yn.
3More generally, we need select any kx linearly independent columns of Gx since bit ordering does not

impact code performance in the memoryless case.
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This decoding prescription reinforces our insights that the Slepian-Wolf code design is

really a channel coding problem, since Step 2 requires a channel decoder4. We leverage this

insight to the design requirements of C. This code needs be from a “good” family of codes

(“good” if the probability of a decoding error goes to zeros as block length goes to infinity).

If the code used is bounded away from capacity, its application to distributed source coding

will be correspondingly bounded away from the Slepian-Wolf bound. Using random codes,

code design randomly generates Gx to bin xn. This constraints can be approached with

large block lengths and pseudo-random codes [20]. Though we do not prove that the block

codes construction here achieves the Slepian-Wolf limit, we demonstrate it via empirical

methods (Section 3.5).

3.3 Low-Density Parity-Check Codes

In this section, we highlight some of the background for LDPC (Low-Density Parity-

Check) codes. The reader is referred to Section 2.3 for further details. Low-Density Parity-

Check codes are a class of powerful linear block codes and thus a natural choice for our

distributed source coding framework. We use factor graphs [42] (as in Figure 2.3) to visually

represent LDPC codes. These bipartite graphs consist of circles used to represent bits and

squares used to represent constraints.

Xi Xi+1 Xi+2X1 Xn

fj+1fjf1 fm

νi,j

j+1,i+2µ

Figure 3.2. A sample factor graph. The circles represent bits while squares represent the
parity constraints of the code. A labeling of the two types of messages passed from node to
node in the decoding algorithm is given.

4A formal derivation of the Slepian-Wolf error exponent from the random coding error exponent is given
in Appendix B.
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Decoding of LDPC codes is achieved using the sum-product algorithm [26, 61, 42].

The algorithm is an iterative inference algorithm that though exact on trees, is known to

have good (but sub-optimal) empirical performance on loopy graphs such as those of an

LDPC code. The sum-product algorithm operates by iteratively estimating the marginal

distribution for each bit. In the first phase of each iteration, each variable node combines

the estimates available and sends them along its edges (e.g., νi,j in Figure 3.2). In the

second phase of each iteration, these estimates are merged, according to the constraint, at

each check node into for each bit node (e.g., µj+1,i+2 in Figure 3.2). The marginals are used

to estimate the bits after each iteration, if below a maximum number of iterations, the set

of estimates is checked against a stopping condition.

3.4 Practical Algorithm

In this section we combine the LDPC codes of Section 3.3 with the linear block coding

construction of Section 3.2. We first describe the graphical model for source coding with

side information. We then show how this model gracefully degrades to entropy coding.

Practical decoding is achieved via the sum-product algorithm over the resulting graph.

Since this graph is loopy, sum-product is sub-optimal but is empirically good. We assume

knowledge of the source statistics at the decoder. Discussion of blind operation is considered

in Chapter 6.

The graphical model for source coding with side information is shown in Figure 3.3.

The variables considered are the n bits of sources x and y (middle and bottom rows of

circles respectively), labeled xi and yi, and the mx bits of the compressed source x (top

row), labeled sxj . These variables are constrained by the LDPC codes used to compress

x (top row of squares), labeled fxj , plus the correlation between sources x and y (bottom

row), labeled fi. The correlation constraints between the sources x and y are distinct and

different from the parity constraints considered in Section 3.3.

This model reduces gracefully to an entropy code as a special case of source coding

with side information. Whenever side information is either not present or is uncorrelated

with the source, the problem reduces to single source and single destination source coding.

Fortunately, the graphical model of Figure 3.3 gracefully degrades to the graphical model

for entropy coding in Figure 3.4. In this graph, the variable nodes for the second source y

are removed. In this graph, the correlation constraints fi now represent source constraints.
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Figure 3.3. The factor graph for source coding with side information. Circles labeled xi or yi

represent source bits. Circles labeled sxj represent the compressed bits. Squares labeled fxj

represent the LDPC code applied to the source. Squares labeled fi represent the correlation
between bits xi and yi.
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Figure 3.4. The factor graph for entropy coding. Circles labeled xi represent source bits.
Circles labeled sxj represent the compressed bits. Squares labeled fxj represent the LDPC
code applied to the source. Squares labeled fi represent the source constraint on xi. This
model develops as a graceful degradation of the source model of Figure 3.3 in the absence
of correlated side information.

3.4.1 Application of Sum-Product Algorithm

We present the message update equations here. We first describe the update equations,

and then summarize with pseudo code. Throughout this section, take i ∈ {1, . . . , n} and
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j ∈ {1, . . . , mx}. The bits of sources x are labeled xi, the compressed bits are labeled sxj ,

the LDPC constrains are labeled fxj , and the correlation constraints are labeled fi. Since

we consider bits, messages are equal to the ratio of the two probabilities. We use µ and ν to

denote messages to and from variable nodes respectively (as in Figure 3.2) and subscripts

indicate the source and destination respectively. For example, the form of the message from

the check node fi to variable node xi is below

µfi,xi
= log P (xi = 0)/P (xi = 1).

Messages are initialized using P (x, y).

Since the compressed bits are known and are connected to only one other node, the

messages passed to them are insignificant. Their output messages are their observed value.

The messages passed to and from the LDPC constraint node fxj and the source bit xi are

in Equation (3.6) and are based on the formulas in Section 2.3.1. Here N (i) is the set of

nodes connected to node i and N (i)\j is N (i) less node j. These updates are similar to

those used for channel coding, modified to include the compressed bits;

µfxj ,xi
= (−1)sj log

1+
Q

xk∈N (fxj )\Xi
tanh νxk,fxj

/2

1−Qxk∈N (fxj )\Xi
tanh νxk,fxj

/2

and νxi,fxj
= µfi,xi +

∑
fxk

∈N (xi)\fxj
µfxk

,xi .
(3.6)

Finally we consider the correlation constraint updates in Equation (3.7). We ignore the

message sent to the variables yi since they are terminal nodes. The messages updates in

Equation (3.7) convert the likelihood of yi to the likelihood of xi based on the correlation

between the sources

µfi,xi = log
(2−P (xi=1|yi=0)−P (xi=1|yi=1))+(P (xi=1|yi=1)−P (xi=1|yi=0)) tanh νyi,fi

/2

(P (xi=1|yi=0)+P (xi=1|yi=1))+(P (xi=1|yi=0)−P (xi=1|yi=1)) tanh νyi,fi
/2 . (3.7)

We summarize the full algorithm with the pseudo code below.

1. Initialize messages.

xi nodes: νxi,fi = log P (xi = 0)/P (xi = 1),

and νxi,fxj
= log P (xi = 0)/P (xi = 1).

sxj nodes: νsxj ,fxj
= sxj .

yi nodes:

νyi,fi = log P (yi = 0)/P (yi = 1) =





+∞ if y = 0

−∞ if y = 1
.
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2. Update messages sent by constraint nodes.

fxj nodes:

µfxj ,xi
= (−1)sj log

1 +
∏

xk∈N (fxj )\Xi
tanh νxk,fxj

/2

1−∏
xk∈N (fxj )\Xi

tanh νxk,fxj
/2

.

fi nodes:

µfi,xi = log
(2−P (xi=1|yi=0)−P (xi=1|yi=1))+(P (xi=1|yi=1)−P (xi=1|yi=0)) tanh νyi,fi

/2

(P (xi=1|yi=0)+P (xi=1|yi=1))+(P (xi=1|yi=0)−P (xi=1|yi=1)) tanh νyi,fi
/2

.

3. Update messages sent by variable nodes.

xi nodes:

νxi,fxj
= µfi,xi +

∑

fxk
∈N (xi)\fxj

µfxk
,xi ,

and νxi,fi =
∑

fxk
∈N (xi)

µfxk
,xi

sxj nodes: Unchanged from Step 1.

yi nodes: Unchanged from Step 1.

4. Determine best estimate of xn.

x̂i =





0 if µfi,xi +
∑

fxk
∈N (xi)

µfxk
,xi ≥ 0

1 if otherwise
.

5. Check stopping condition.

If the maximum number of iterations is met, quit and return x̂.

Else if sx = x̂nHT
x , quit and return x̂.

Otherwise, return to Step 2.

In the following section, we give the results of simulations using this algorithm.

3.5 Simulations and Results

In this section, we present simulation results. We measure the quality of a simulation

with its empirical probability of error, the proportion of bits decoded in error. Since out

scheme is asymptotically lossless, we make comparisons with the lossless bounds of Slepian-

Wolf despite our measured probabilities of error. Though we focus on BER (bit error rate),

we also consider SER (symbol error rate, a symbol error occurring whenever any one or

more bits of a block are in error). Bit Error Rate is a more appropriate measure for source

coding problems since each reconstructed bit is of use to the receiver. In channel coding
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P (x , y) y = 0 y = 1
x = 0 (1− γ)(1− α) (1− γ)α
x = 1 γβ γ(1− β)

Table 3.1. Structure of the joint distribution between x and y considered for Section 3.5.

for contrast, SER is the appropriate since not one source bit can be recovered reliably

when the symbol is in error. We observed that in our simulations empirical SER and BER

measures resulted in very similar behavior. We present both SER and BER results for our

first experiments, but omit them after this demonstration (Figures 3.5 and 3.6).

Each simulation consisted of selecting a particular code, source distribution, and rate

combination. Each empirical probability is generated by simulation of at least one million

bits, broken into blocks. We limited decoding to at most 50 iterations and used LDPC code

designs as described in Appendix A.

We consider arbitrary distributions over two correlated binary sources, parameterized

via 0 ≤ α, β, γ ≤ 1. The distribution considered is P (x = 0, y = 0) = (1 − γ)(1 − α),

P (x = 0, y = 1) = (1 − γ)α, P (x = 1, y = 0) = γβ, and P (x = 1, y = 1) = γ(1 − β). We

give a diagram of this in Table 3.5.

3.5.1 Compression With Side Information Results

We present simulation results of source coding with side information in this section. In

each simulation, we assume y is available perfectly at the decoder (and has been transmitted

at Ry = H(y)) and Rx = 0.5. In the following plots, we plot the minimum rate (conditional

entropy) on the horizontal axis and the resulting probability of error on the vertical axis. For

example, consider a block of n = 100, 000 bits from a source with (α, β, γ) = (0.1, 0.1, 0.5),

H(x) = H(y) = 1, and H(x |y) = 0.47. This example results in a plot point of (0.47, 4×10−3)

for the BER.

Initially, we restricted the joint distribution such that α = β and γ = 0.5. The results

consider a variety of block lengths; 103, 5× 103, 104, 2× 104, 5× 104, and 105. The results

are plotted in terms of BER in Figure 3.5 and SER in Figure 3.6 (the results for block

lengths 5 × 104 and 105 are omitted). The results improve for both BER and SER as the

number of bits used above the Slepian-Wolf minimum and as block length grows. Note that

for these two plots we give single standard deviation error bars. The error bars for the other

plots in this chapter are similar to those of the BER result plot of Figure 3.5.
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Figure 3.7 plots the results obtained after considering arbitrary joint distributions, for

a block length of 104. Points are grouped in terms of the marginal entropy of source x ,

and plotted in terms of the minimum rate. Performance improves as the gap from the

Slepian-Wolf bound grows, similar to the results presented in Figure 3.5.
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Figure 3.5. Source coding with side information simulation results for several block lengths
and varying the correlation parameter α(= β). Source x is compressed to rate 1/2 while
source y is available at the decoder. Each data point is the result of the simulation of at
least 106 bits. The results in this figure are plotted in terms of their bit error rate (BER).
In addition, we plot one standard deviation error bars. Similar error bars result for all BER
results in this chapter, but are omitted for clarity.

3.5.2 Compression of a Single Source

The results from compression of a single source are presented in Figure 3.8. The source

entropy is varied and tests are run for several block lengths; 103, 5×103, and 104. The results

similar to those obtained above for source coding with side information (see Figure 3.5).

Performance improves with growth in both the code rate used above entropy and with the

block length.
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Figure 3.6. Results of the same experiments as in Figure 3.5 plotted in terms of the symbol
error rates (SER). Each value is the result of the simulation of at least 103 symbols (blocks).
In addition, we plot one standard deviation error bars.
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Figure 3.7. Simulation results compressing source x to rate 1/2 while source y is available
at the decoder. The simulations are of source coding with side information results, as in
Figure 3.5. Each data point is the result of the simulation of at least 106 bits. The block
length is fixed to 10,000 and a more general correlation structure is considered. The type
of data point used indicates the marginal entropy of the source x .

3.6 Conclusions

This chapter has provided a practical solution for the problem of source coding with

side information. We began by providing a general linear block coding solution and then33
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Figure 3.8. Simulation results from entropy coding source x to rate 1/2. This plot considers
single source results for several block lengths and source statistics. Each data point is the
result of the simulation of at least 106 bits. Resulting coding performance is similar to that
obtained when source coding with side information as in Figure 3.5.

specialized to LDPC codes. The simulation results demonstrated the strength of this con-

struction. In the following chapters we build upon the construction presented here. In

the next chapter, we extend the construction presented here to source coding with side

information for block stationary sources.
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Chapter 4

Slepian-Wolf Coding for Parallel

Sources: Design and

Error-Exponent Analysis

In this chapter we extend the codes developed in the last chapter to parallel sources.

Most of the constructions proposed for distributed source coding are designed for indepen-

dent identically distributed random source models, which fail to capture the high degree

of correlation inherent in real-world sources like image and video signals. Motivated by its

success in the modeling of real-world sources, in this chapter we invoke a parallel source

model for the distributed source coding problem. The traditional way to deal with parallel

source models has been through the so-called water-filling prescription of using multiple

shorter codes, each matched to one of the source components. Our main contribution in

this chapter is the proposal of a single long-block-length distributed source code that takes

into account the parallel nature of the source. We first present an information-theoretic

analysis of the gains made possible by this approach by using the well-developed theory of

error exponents. More significantly, our study exposes a new code design problem which

we describe for an LDPC framework. We show simulation results to validate our design.
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4.1 Introduction

The distributed source coding problem (and the special case of source coding with side

information) is finding application in a growing variety of areas. As previously discussed,

these applications range from dense sensor networks to robust video transmission for wire-

less multimedia applications [68], to compression of encrypted data [38]. Unfortunately, the

analysis and coding prescriptions for distributed source coding has initially been limited

to the case of independent and identically distributed (i.i.d.) source and side-information

correlation models. More importantly, recent practical code construction methods for the

distributed source coding problem, starting from [64] to more recent state-of-the-art ex-

tensions [2, 94, 48, 14, 16, 79] (as discussed further in Chapter 5) have almost exclusively

focused on the i.i.d. source/side-information correlation models.

On the other hand, real-world image and video sources, that have been suggested as

promising application ground for distributed source coding, are characterized by a high

degree of correlation/memory, and thus differ significantly from i.i.d. models. As has been

witnessed in the success of block-based transform coding for contemporary image and video

compression standards [1, 17, 85], parallel/mixture source models better describe real world

sources. This motivated the work in [62], extending the above-mentioned information the-

oretic analysis to the case of colored source/side-information correlation models. Though

this work has implications for both lossy and lossless coding problems, in the interests of

clear explanations, in this chapter we consider only the lossless Slepian-Wolf coding of an

idealized source model.

Parallel sources have been examined in the context of Slepian-Wolf design before. In

particular, the standard approach to the design of Slepian-Wolf codes for a non-white source

is to transform it into a number of uncorrelated parallel sources, and then code these residual

sources independently. In this chapter we propose to code across such parallel sources,

which can result in significant gains when the number of samples of each source is relatively

small. To understand where the gains come from in this strategy, we turn to the underlying

information-theory of the problem.

As is already well-understood [90, 64], Slepian-Wolf code design is really a channel coding

problem (as is discussed in Section 3.2)1. Information theorists have also long understood

that independent coding across parallel channels is capacity-achieving. Thus, at first blush,
1A formal derivation of the Slepian-Wolf error exponent from the random coding error exponent is given

in Appendix B.
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one might think there is nothing to gain from coupling the code design across sources.

However, what is also well-understood from an information-theoretic perspective, is that

while not helping from a capacity perspective, achieving capacity with a low probability of

decoding error requires a long block-length. Thus, in applications where the block-lengths of

each of the parallel channels is small we can significantly reduce the probability of decoding

error by coding across the parallel channels because the resulting block-length is the sum

of the individual block-lengths. Alternately, we can achieve a target reliability at a higher

communication rate.

Because Slepian-Wolf coding is a channel coding problem, these ideas bear directly

on the design of Slepian-Wolf codes for parallel sources. In particular, in many media

applications, sources are very non-stationary. Therefore, the block-lengths of each of the

parallel sources can be quite short. Hence, when designing Slepian-Wolf codes for parallel

sources, each of which has a short block-length, we improve reliability by coding across the

sources. Or, alternately, we can achieve a target reliability at a lower encoding rate.

It is in this context that we propose a novel coding strategy - the main contribution of

this chapter, which offers a single long block-length code that accounts for the parallel nature

of the source/side-information correlation model. This approach exposes a new code design

problem, for which we present a practical solution for based on the Low-Density Parity-

Check code (LDPC) framework [26]. We focus on the source coding with side information

problem here, and build on the solution presented in Chapter 3.

This chapter is organized as follows. In Section 4.2, we present a error-exponent based

theoretical analysis that quantifies the performance gains of coding across parallel sources.

In Section 4.3, we present the new code design problem in the LDPC framework. In Sec-

tion 4.4 we provide experimental results to validate the proposed code design. Finally,

Section 4.5 offers conclusions and discusses some open problems.

4.2 Error Exponent Analysis

In this section we introduce the source coding problem as we consider it, and ana-

lyze its error exponent behavior. The source is composed of M parallel sources, each a

sequence of i.i.d. symbols distributed according to pxk,yk
for k = 1, 2, . . . M . We observe

nk samples of source k, giving a total block-length N =
∑

nk. The length-N vector

of source samples x = xN
1 is observed at the encoder, while the vector of side informa-
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tion samples y = yN
1 is observed at the decoder. Their joint distribution is given by

px,y(x,y) =
∏M

k=1

∏nk
l=1 pxk,yk

(xk,l, yk,l), where (xk,l, yk,l) is the lth symbol pair of source k.

In [28] Gallager bounds the error probability of maximum-likelihood decoding of a ran-

domly binned source x when side information y is observed at the decoder as

Pr[error] ≤ exp



−ρNR + log

∑
y

[∑
x

px,y(x,y)
1

1+ρ

]1+ρ


 . (4.1)

The bound holds for all 0 ≤ ρ ≤ 1. Substituting in the distribution for parallel sources, and

defining λk , nk/N to be the fraction of observed samples that are from source k gives

Pr[error] ≤ exp



−N sup

0≤ρ≤1


ρR−

∑

k

λk log


∑

y

(∑
x

pxk,yk
(x, y)

1
1+ρ

)1+ρ








 . (4.2)

To understand why coding across parallel sources helps, we now relate Equation (4.2)

to the error exponent achieved by the independent encoding of each source. In particular,

assume that source k is encoded at rate Rk. If the total number of bits available for source

coding is NR, the Rk are constrained so that
∑

k nkRk ≤ NR. We assume equality. Since

nk = λkN , the constraint gives
∑

k λkRk = R where R is the average Slepian-Wolf coding

rate. Substituting
∑

k λkRk for R in Equation (4.2) gives the following expression for coding

across the parallel sources

Pr[error] ≤ inf
0≤ρ≤1

M∏

k=1

exp



−λkN


ρRk − log


∑

y

(∑
x

pxk,yk
(x, y)

1
1+ρ

)1+ρ








 . (4.3)

This expression lets us understand why coding across parallel sources decreases the error

probability. Each of the M factors in Equation (4.3) is a bound on the error probability of

the respective parallel source if encoded independently. If encoded independently, we could

further optimize each bound separately over ρ. However, if the λk were fixed and we let

n grow, the overall probability of error would be limited by the worst-case source, giving

the following expression for the overall error resulting from separate coding of the parallel

sources

Pr[error] ≤ sup
k

inf
0 ≤ ρ ≤ 1,

Rk s.t.
P

k λkRk = R

exp



−λkN


ρRk−log


∑

y

(∑
x

pxk,yk
(x, y)

1
1+ρ

)1+ρ








 .

(4.4)

Contrasting Equation (4.3) with Equation (4.4), we see that while in the latter we can

optimize the ρ parameter for each source, in Equation (4.3) we gain from the longer block-

length. Indeed, Equation (4.3) strictly dominates Equation (4.4). This can be seen by letting
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k∗ be the (worst-case) source that maximizes Equation (4.4) with minimizing ρ = ρ∗, and

rate allocations R∗
k such that

∑
k λkR

∗
k = R. Substituting these values into Equation (4.3)

results in a lower bound on the probability of error. This is because each of the M factors

in Equation (4.3) must be strictly lower than one for all ρ, which is because each Rk must

be greater than the conditional entropy H(xk|yk), else Equation (4.4) would not have a

positive error exponent. Thus, as long as the rate is above the conditional entropy, the

error exponent is positive for all ρ (and hence for ρ∗ even though ρ∗ isn’t necessarily the

best ρ for source k 6= k∗).

To aid understanding of the comparison of the bounds in Equations (4.3) and (4.4),

consider the plot shown in Figure 4.1. For this plot, we consider the scenario of two sources

(M = 2) with N = 10, 000 and λ1 = λ2 = 0.5 (This scenario is also simulated in Section 4.4).

For the two sources we consider the following distributions

px1,y1(x, y) =





0.4530 if x = y

0.0470 if x 6= y
,

and

px2,y2(x, y) =





0.4363 if x = y

0.0637 if x 6= y
.

The bound of Equation (4.3) is plotted with a dashed line while the bound of Equation

(4.4) is plotted with a solid line. As can be seen in this figure, joint coding across parallel

sources offers a far better error bound.

4.3 LDPC Code Design

In this section we shift away from information theoretic analysis to the practical problem

of code design for parallel sources. In Section 4.2 we used Gallager’s error exponent analysis

for the Slepian-Wolf problem. In contrast, we now consider the code design problem using

channel code design techniques. The relationship of the Slepian-Wolf code design problem

to the channel coding problem has long been recognized [90], and Appendix B makes explicit

the relationship between the error exponents for these two problems.

Section 4.2 only makes consideration of two approaches (fully separate coding or joint

coding across sources). Practical code design raises other approaches. One such approach

would be to use the best available rate R code for coding across sources. In this section, we

consider a code design approach that leverages the parallel nature of the source for better
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Figure 4.1. A comparison of the bound presented in Equation (4.3) for joint coding versus
the bound presented in Equation (4.4) for separate coding. The details of the scenario
considered are discussed in the text. For each value of R, the values of R1 and R2 are
chosen to give the least upper bound on the probability of error. This demonstrates the
improved performance achievable with joint coding across parallel sources.

performance. Note, throughout the following we discuss the rate, R, of a code as its source

coding rate. Assuming binary random variables, R is related to the channel coding rate,

Rc as R = 1−Rc.

Although several types of codes can be used for source coding with side information,

we consider LDPC codes here. These codes are particularly suited to the application of

coding across parallel sources, due to their performance over large block lengths and the

natural adaptability of their decoding algorithm. Details on how to apply LDPC as linear

transformation codes (with transform matrices denoted H) to the Slepian-Wolf problem

can be found in Chapter 3.

We now give a brief overview of LDPC codes. See Section 2.3 for further discussion.

These codes are a class of graph-based capacity-approaching linear block codes. They can

be decoded using the iterative sum-product algorithm, an inference algorithm that is exact

on trees. Although not exact on “loopy” graphs (such as those that describe LDPC codes),

in practice decoding performance is very good. These codes are often defined in terms
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of their parity check matrix, and this matrix corresponds to a graphical representation.

An example of this is shown in Figure 4.2. Here the circles represent bits, are referred

to as variable nodes, and correspond to columns of the matrix. Squares represent parity

constraints, are referred to as check nodes, and correspond to rows of the matrix. Parallel

sources, and their varying likelihoods, can be naturally accommodated by grouping the bit

nodes from each source. In order to use LDPC codes for the practical coding strategies

listed above then, a method of designing LDPC codes for parallel sources is necessary.

0 0 1 1 1 1

1 1 0 1 0 1

1 1 1 0 1 0

H=

Figure 4.2. A sample LDPC graphical model representing the matrix at right. The circles
represent bits and correspond to matrix columns while the squares represent parity con-
straints and matrix rows. Elements of the matrix indicate edges between nodes. Whenever
the element in the ith row and jth column is 1, an edge connects constraint node i with
variable node j. A 0 in the corresponding position implies no edge connects the nodes.

4.3.1 EXIT Chart Based Code Design

One method of designing LDPC codes is the EXIT (Extrinsic Information Transfer)

chart method of Ashikhmin, Kramer, and ten Brink [7]. We give a brief overview of it here.

For greater depth and explanations of the notation, see Section 2.3.2. The EXIT chart design

method focuses on developing degree distributions for LDPC codes that decode reliably,

asymptotically as block length goes to infinity. We use λ(x) for the degree distribution of

the bit nodes and ρ(x) for the check nodes.

The EXIT chart method operates by treating the bit nodes and check nodes as two

separate decoders that feed their outputs to one another. The behavior of each of these two

component decoders is modeled with a curve of the average mutual information between

the decoder estimates and the original data, denoted IA for the input and IE for the output,

is used. The shape of these curves are dependent upon the code’s degree distributions, and

the source correlation. A sample plot of the curves for both the variable node decoder and

the check node decoder are shown in Figures 4.3 and 4.4. To represent the input-output

relationship of these two decoders, the curves are plotted on reflected axes.
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It was shown [7] that as long as the variable node decoder curve lies above the check

node decoder curve when plotted in the manner of Figures 4.3 and 4.4, then successful

decoding, asymptotic in block length, is assured. Decoding operates a long a path between

the two curves. It was further shown that the area of the gap between the two curves is

proportional to the performance gap between the code and the Slepian-Wolf bound. Thus

design is reduced to finding degree distributions pairs that minimize the gap between the two

curves, conditioned on a positive gap. By fixing a series of check node degree distributions,

a good pair of degree distributions can be found with a series of linear programs.

We begin our parallel source code design by considering codes for two sources. Using

EXIT chart techniques, we can design LDPC matrices Hkk of dimension nkRk by nk for the

separate coding. Assuming 2 parallel sources (M = 2), we label the degree distributions

(λ1(x), ρ1(x)) and (λ2(x), ρ2(x)). We present EXIT charts for LDPC codes designed such,

one for rate2 R1 = 0.45 in Figure 4.3 and one for rate R2 = 0.55 in Figure 4.4. Here, the

gaps between the curves are minimal, showing that they are good codes.
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EXIT Chart For Channel Coding Rate R=0.55 Code

Curve for λ(x)
Curve for ρ(x)

Figure 4.3. One example of a code designed using EXIT charts for a rate R=0.45 source
code. The tight fit of the two curves shows that the degree distributions are good. The
dashed curve corresponds to the variable nodes while the solid curve corresponds to the
check nodes. Decoding operates by moving from the left-hand side to the right-hand side of
the graph, going through the gap between the two curves. Since the gap between the two
curves is positive, decoding will follow the path between the curves successfully.

2Note, as mentioned above, the rates here are the codes’ source coding rates. Assuming binary variables,
the rate R is related to the channel coding rate Rc as R = 1−Rc.
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Figure 4.4. A second example of a code using EXIT charts, as in Figure 4.3. This code is
a rate R=0.55 source code. Since the gap between the two curves is positive here as well,
decoding will follow the path between the curves successfully.

Using one framework to consider the separate coding of the two matrices, we have a

larger matrix partitioned in the form in Equation (4.5)

H =


 H11 0

0 H22


 . (4.5)

We extend to the joint coding solution by easing this restricted formulation. A more general

matrix structure is shown in Equation (4.6)

H =


 H11 H12

H21 H22


 . (4.6)

A first design approach for these off diagonal matrices would be to maintain the degree

distributions of the separate coding solution but extend them across the entire matrix. We

can examine this approach by studying the EXIT charts of Figures 4.3 and 4.4, shown on

a single plot in Figure 4.6. It is clear from these charts that the decoders associated with

H11, H22, and H21 (the curves for λ1(x) and ρ2(x)) would all result in successful decoders.

In contrast, H12 (the curves for λ2(x) and ρ1(x)) would result in a failed decoding, since

a positive gap between the two curves is not maintained. An alternate design method is

necessary.

Here, we propose a joint EXIT chart design strategy. In our approach we fix several
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ρ1(x) and ρ2(x) degree distributions and then minimize the gaps between the curves for

λ1(x) and λ2(x) while maintaining positive gaps throughout. This force all 4 curves to

closely follow each other, and as a result will induce ρ1(x) = ρ2(x). Considering an equal

share (λ1 = λ2 = 0.5) of the two sources considered in Figures 4.3 and 4.4, we present the

resulting EXIT chart in Figure 4.6. In the following, we consider performance results from

implementations of this solution.
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Figure 4.5. A comparison of the EXIT charts for separate coding of two sources. These
curves are taken from Figures 4.3 and 4.4. Note the intersection of the curves for λ2(x) and
ρ1(x) prevents the use of these curves for a joint code. Since the gap between these two
curves is not maintained, decoding will fail.

4.4 Simulation Results

In this section, we present simulation results of coding two parallel sources. For the

simulations, we consider a particular joint distribution3 such that yk,l = xk,l ⊕ zk,l where

xk,l and zk,l are independent and zk,l is distributed according to a Bernoulli-Qk. From the

Slepian-Wolf theorem, separately we could code each of the two sources at rates Rk =

H2(Qk) and code across both sources at rate R = λ1H2(Q1)+λ2H2(Q2). We set n1 = n2 =

5, 000 where z1,l has a Bernoulli-Q1 distribution and z2,l has a Bernoulli-Q2 distribution.

3For more general source models and code rates, techniques as presented in Chapter 5 should be used.
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Figure 4.6. A plot of the EXIT chart for the best possible degree distributions found for
coding over parallel sources. For these curves, we have considered one check node curve
(solid line) and matched both variable node curves (dashed lines) to it. Since the gap
between the variable node curves and the check node curve is always positive, decoding will
succeed.

In each of the following set of simulations, we operate by selecting a particular code (or

pair of codes for separate coding) and then vary both Q1 and Q2 over a range of values. In

total, we use 5, 000 (rate 0.5) bits to represent the compressed sequences in each case. For

separate coding, we use 2, 250 (rate 0.45) bits on the first source and 2, 750 (rate 0.55) on

the second source.

We simulated three scenarios of parallel source coding. The results for separate coding

are plotted in Figure 4.7, the results for coding across sources using solely a rate R = 0.5 code

are plotted in Figure 4.8, and results for a coding designed using the method of Section 4.3

are plotted in Figure 4.9. The degree distributions for the first two scenarios can be found
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in Appendix A. The degree distribution designed using the technique of Section 4.3 is here

λ1(x) =





0.1120154560x + 0.2582850885x2 + 0.0001468088x3

+0.0264927449x4 + 0.0003299464x5 + 0.0580453365x6

+0.0273602982x7 + 0.1744986414x8 + 0.0003597095x9

+0.0001281492x10 + 0.0000652846x11 + 0.0000417584x12

+0.0000298120x13 + 0.0000232059x14 + 0.0000190287x15

+0.0000163757x16 + 0.0000145926x17 + 0.0000132616x18

+0.0000123405x19 + 0.0000117698x20 + 0.0000113592x21

+0.0000111619x22 + 0.0000110523x23 + 0.0000111133x24

+0.0000113830x25 + 0.0000116269x26 + 0.0000121447x27

+0.0000127688x28 + 0.0000135517x29 + 0.0000146539x30

+0.0000160846x31 + 0.0000180324x32 + 0.0000205581x33

+0.0000242711x34 + 0.0000298491x35 + 0.0000391718x36

+0.0000579812x37 + 0.0001141510x38 + 0.3416494758x39

λ2(x) =





0.1192580551 + 0.3487206986x2 + 0.0000211693x3

+0.0000368451x4 + 0.0000448929x5 + 0.1599996270x6

+0.0010628532x7 + 0.1418750045x8 + 0.0002589765x9

+0.0001592179x10 + 0.0001008248x11 + 0.0000724090x12

+0.0000737363x13 + 0.0000923443x14 + 0.0001615279x15

+0.0015715951x16 + 0.0547919510x17 + 0.1702804060x18

+0.0008040490x19 + 0.0001965115x20 + 0.0000959664x21

+0.0000648864x22 + 0.0000470811x23 + 0.0000355826x24

+0.0000278140x25 + 0.0000223420x26 + 0.0000183836x27

+0.0000155004x28 + 0.0000132890x29 + 0.0000115733x30

+0.0000102124x31 + 0.0000091282x32 + 0.0000082153x33

+0.0000074589x34 + 0.0000068605x35 + 0.0000063400x36

+0.0000059279x37 + 0.0000055754x38 + 0.0000051674x39

ρ1(x) = ρ2(x) = 0.2x8 + 0.8x9.

In these plots, the horizontal axis shows the range of H2(Q1) and the vertical axis H2(Q2).

In these plots the probability of error ranges from low in the dark regions to high in the

light regions. As a sample point, consider the point H2(Q1 = 0.084) = 0.416 and H2(Q2 =

0.087) = 0.427. Here we measure P (error) = 10−1.5 in Figure 4.7, P (error) = 10−3.3

in Figure 4.8, and P (error) = 10−4.8 in Figure 4.9. As can be seen in these plots, when

each source is coded separately, the probability of error is large whenever either H2(Q1) or
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H2(Q2) are large. In comparison, when coding across the parallel sources, the probability

of error only gets large when H2(Q1) and H2(Q2) are large.
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Figure 4.7. log10(P (Error)) results of the simulations for separate coding. The first code
is designed with rate R1 = 0.45 (Figure 4.3) while the second code is designed with rate
R2 = 0.45 (Figure 4.4). The binary entropy ranges of Q1 and Q2 are shown on the horizontal
and vertical axes. Dark regions of the plot indicate low probability of error while light regions
indicate high probability of error. In these plot, the probability of error is high whenever
H2(Q1) or H2(Q2) are large
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Figure 4.8. log10(P (Error)) results of the simulations using a code designed for rate R =
0.5. The binary entropy ranges of Q1 and Q2 are shown on the horizontal and vertical axes
respectively. Dark regions of the plot indicate low probability of error while light regions
indicate high probability of error. Unlike the separate coding results shown in Figure 4.7,
the probability of error only gets large when H2(Q1) and H2(Q2) are large.
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Figure 4.9. log10(P (Error)) results of the simulations for the EXIT chart based design
method (Figure 4.6). The binary entropy ranges of Q1 and Q2 are shown on the horizontal
and vertical axes respectively. Dark regions of the plot indicate low probability of error while
light regions indicate high probability of error. Like the single code simulations shown in
Figure 4.8, the probability of error only gets large when H2(Q1) and H2(Q2) are large.

In order to aid in the comparison of these results, we use the plots of Figures 4.10

and 4.11. For these plots, we divide each of the plots of Figures 4.7, 4.8, and 4.9 into two

regions; decoding success where P (error) < 10−2 and decoding failure where P (error) ≥
10−2. The comparison between the regions for separate coding and the EXIT chart designed

joint code are shown in Figure 4.10 while the comparison with the EXIT chart designed

code and the rate R = 0.5 code are shown in Figure 4.11. In both of these plots, all decoding

succeeds in the lower left corner and fail in the upper right corner. The middle regions show

where the EXIT chart designed code results in a decoding success while the other regions

result in a decoding failure. The EXIT chart designed code gives us the best performance

in each case. Although the gain of the EXIT chart technique over the rate R = 0.5 is slim,

this is due to the relative closeness of the considered statistics and the limitation to only

two sources. These gains would gain in significance when these techniques are applied to

more general scenarios.

4.5 Conclusions & Open Problems

In this chapter, we have introduced the problem of Slepian-Wolf coding of parallel

sources and have presented a full analysis. We have presented an information theoretic
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Figure 4.10. Comparison of the results from Figures 4.7 and 4.9. The region of P (error) >
10−2 is considered a decoding failure while everywhere else is a success. In this plot, decoding
success is seen in the lower left corner and decoding failure in the upper right corner. The
middle region represent where the EXIT chart designed code succeeds and the separate
coding fails. This figure shows the advantage of joint compression.
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Figure 4.11. Comparison of the results from Figures 4.8 and 4.9. The regions of P (error) >
10−2 is considered a decoding failure while everywhere else is a success. As in Figure 4.10, in
this plot decoding success is seen in the lower left corner and decoding failure in the upper
right corner. The middle region represent where the EXIT chart designed code succeeds
and the simple rate R = 0.5 code fails. This figure shows the advantage of designing the
code for the parallel sources.
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view of the problem, showing the potential gains of coding across parallel sources. We have

considered the new code design problem raised by coding across parallel sources, and have

presented a coding theoretic design technique for the problem. Finally we have presented

practical results of LDPC codes using our scheme, built on the construction of Chapter 3,

demonstrating the performance gain over other coding strategies.

This work suggests many areas for future work. Consideration of the problem in the case

of continuous sources, particular as the problem relates to video is an important extension.

A further area of future work is the extension of this work to be blind to the source statistics,

requiring no knowledge of the source parameters. In particular, learning the boundaries of

each block presents a significant challenge.

Finally, an important necessary step is towards the development of more powerful code

design methods. One problem that arises with the EXIT chart based design method pre-

sented in this chapter is when there is a large skew in the statistics of the parallel sources.

In Section 4.3 the design rates were R1 = 0.45 and R2 = 0.55 giving a small skew (i.e., the

absolute difference) |R1 − R2| = 0.1. If we alter the design rates such that R1 = 0.05 and

R2 = 0.95 and |R1 − R2| = 0.9, the EXIT chart design method performs poorly. This is

due to the fact that the choice of the design rates induce a particular IEV
intersect value

(as can be seen in Figures 4.3 through 4.6). When there is a large difference in the design

rates, minimizing the gap between the curves becomes difficult. Very high degree variable

nodes are necessary, for which numerical accuracy concerns result in the failure of the EXIT

chart analysis.

A promising solution to this problem is to use density evolution [70]. As discussed in

Section 2.3.2, density evolution is a more accurate, though more computationally intensive,

design tool. Density evolution is more naturally able to consider the high degree nodes

required for a large design rate skew. Further, other coding techniques could be incorporated

into the density evolution technique. For example, consider that for a design rate such as

R2 = 0.95, since the source and the side information are nearly uncorrelated, it may be

beneficial to supply the decoder some values of the source uncompressed (not in the form

of a parity sum) in order to aid decoding. This technique, which we refer to as “doping,”

is discussed in much greater detail in Chapter 7. Due to its flexibility, the notion of doping

could be more naturally incorporated into density evolution than into EXIT charts.

In the following chapter, we return to consideration of stationary sources. We proceed

to develop codes for the arbitrary distributed source coding problem. Though we omit
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discussion of parallel sources in the following chapters, the techniques presented here can

be incorporated in a straightforward manner.
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Chapter 5

Symmetric Distributed Source

Coding

In this chapter, we build on the construction of Chapter 3 and propose a distributed

linear block code construction for the Slepian-Wolf problem. The proposed construction

is derived from a single code for attaining any point in the achievable rate region for ar-

bitrarily correlated discrete sources. Our prescription allows for any arbitrary memoryless

joint probability distribution (even with sources that are marginally compressible) over any

arbitrary number of distributed sources and allows for any arbitrary rate combination in

the Slepian-Wolf achievable region without source splitting or alphabet expansion. Since

our framework derives from a single code, codes for similar rate choices are also similar.

Our framework reduces effectively for the special cases of a single source and source coding

with side-information. In this chapter, we further describe how to incorporate Low-Density

Parity-Check (LDPC) codes in our framework to solve the general Slepian-Wolf problem

constructively, and present simulation results. We are able to achieve error rates below 10−4

with block lengths of 10, 000 while being within 0.30 bits per sample of a 1.15 bits per sam-

ple Slepian-Wolf bound (for a total of 1.45 bits per sample, 26.1% above the minimum rate

as specified by the Slepian-Wolf bound) for symmetric coding of two arbitrarily correlated

sources.
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5.1 Introduction

As discussed in previous chapters, the Slepian-Wolf result is asymptotic and non-

constructive. Quite a bit of work has been done to extend the work of Slepian and Wolf.

One early approach to practical codes is Wyner’s [90] formulation of a linear coset code

for the corner points1 (assuming binary sources and symmetric correlation). Wyner’s work

further establishes the relationship between distributed source coding and channel cod-

ing. The late 1990s work of Zamir & Shamai [92] shows the theoretical feasibility of

a lattice code framework for a lossy version of this problem (first considered by Wyner

& Ziv [89] in the information theoretic setting). Following that, Pradhan & Ramchan-

dran [66] developed DISCUS, a framework for the Wyner-Ziv problem and described prac-

tical codes and achievable error probabilities. Recently, a flurry of work in the field pro-

vides practical constructions of various levels of sophistication for the Slepian-Wolf prob-

lem [66, 64, 80, 83, 30, 95, 34, 96, 31, 32, 46, 49, 50, 43, 79, 76, 75, 56, 54, 2] (greater detail

on related work is provided below). However, the constructions to date in the literature

do not tackle the general Slepian-Wolf rate region for arbitrary sources. While these are

important operating regimes, they fail to cover the complete spectrum of diverse real-world

sources and application scenarios requiring more flexible operating points.

Most2 existing distributed source coding works focus on achieving corner points, ar-

guing that arbitrary points can be achieved by using either source splitting [92, 87, 71]

or time sharing. As motivation for fully flexible individual rate choices, consider multiple

description coding (studied extensively in the literature [29, 81]). In Pradhan, Puri, &

Ramchandran [63, 67], connections between the best-known rate regions to date for the

general n-channel (n > 2) multiple description problem and the distributed compression

problem are identified. Due to multiple description coding’s non-ergodic nature, no corner

point based solutions are sufficient. Further, time-sharing has asymptotic disadvantages

(i.e., smaller error exponents [21]). Better error exponents can be achieved, with increased

complexity and requiring detailed knowledge of the source statistics, by using source split-

ting.

We argue that the fully general Slepian-Wolf problem can benefit from a holistic solu-

tion. The main contribution of this chapter is to provide such a solution. Specifically this
1As a reminder from Section 2.4, corner points are rate pairs that lie at vertex points of the Slepian-Wolf

rate region.
2The works [31, 96, 79, 35, 73, 74] all propose practical codes for achieving rates other than the corner

points. Their constructions all face a constraint wherein Rx +Ry ≥ 1, either implicit in their construction or
their correlation model considered. We consider scenarios and develop codes not subject to this constraint.
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implies (i) arbitrary correlations, (ii) the entire Slepian-Wolf coding region corresponding

to arbitrary rate combinations, and (iii) an arbitrary number of sources. The construction

presented in this chapter is based on only a single linear block code. This is in contrast to

existing solutions requiring unique codes be defined at each operating point, our solution

allows neighboring points in the Slepian-Wolf rate region to have similar solutions. Further,

our construction simplifies to the constructions of Chapter 3. We focus on LDPC codes

in this chapter, since they represent a powerful state-of-the-art class of capacity achieving

codes. We describe how to incorporate LDPC codes into our framework by building on the

construction of Chapter 3. We provide an efficient algorithm for decoding two sources with-

out loss of generality (assuming knowledge of the source statistics) based on a two-machine

framework3 with extensions to an arbitrary number of sources.

This chapter is organized as follows. Section 5.2 provides a description of the algebraic

solution for linear codes to solve the Slepian-Wolf problem. A brief summary of LDPC

codes is provided in Section 5.3 and the application of LDPC codes to the construction is

described in Sections 5.4 and 5.5. Section 5.6 presents results and Section 5.7 concludes the

chapter.

5.1.1 Related Work

The first reported use of syndromes for source coding was in 1969 [8]. This concept is

studied extensively in [59, 25, 39, 36, 5, 6]. As mentioned above, the work [90] considers

linear codes to achieve the Slepian-Wolf bound for the distributed compression of doubly

binary symmetric sources. Witsenhausen & Wyner [88] consider linear codes for source

coding with side information at the decoder. Alon & Orlitsky [60, 3] consider several con-

structive approaches for the Slepian-Wolf problem in a graph-theoretic setting. Csiszár [20]

shows that linear codes can achieve the Slepian-Wolf bound in the universal setting using

random coding arguments. Uyematsu [80] shows that the decoding complexity is polynomial

in block-length. Zamir, Shamai, and Erez [92] show that asymptotically linear codes can

achieve the optimal rate-distortion performance for the binary case under a Hamming dis-

tortion criterion and lattice codes for the jointly Gaussian case. Pradhan & Ramchandran

in [66, 64] develop a constructive framework for the Wyner-Ziv problem.

We can broadly classify the constructive approaches in the recent literature into three

categories: (a) LDPC codes-based, (b) Turbo codes-based and (c) Entropy codes-based. An
3The work of [96] proposes a similar architecture for joint source-channel coding with a limited correlation

model.
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article by Xiong, Liveris, and Cheng [91] provides an overview of several techniques from

these categories in the context of sensor networks.

LDPC codes-based approaches: Liveris, Xiong and Georghiades [47, 46, 45, 79] pre-

sented a variety of schemes for achieving optimal performance in distributed source coding.

Particular emphasis was placed on the corner points in the Slepian-Wolf rate region, but

allowing for multiple sources and some alphabets larger than binary. The work of Schon-

berg, Ramchandran, and Pradhan [76] focused on the corner points of the Slepian-Wolf

rate region, as well as suggesting an approach for classical single source entropy coding.

Caire, Shamai, and Verdu [12, 10, 13, 11] proposed a coding scheme wherein the encoder

does additional computation to improve performance and insure correct decoding for the

classical single-source compression problem. Sartipi and Fekri [73, 74], considered an al-

ternate method for applying LDPC codes to the Slepian-Wolf problem, but considered

only a limited source model. Coleman, Lee, Médard, and Effros [16] presented a scheme

for achieving arbitrary rate pairs based on source splitting. Gehrig and Dragotti present

Slepian-Wolf codes based on non-systematic linear codes. Zhong, Lou, and Garćıa-Fŕıas

present a framework based on related LDGM codes.

Turbo codes-based approaches: Garćıa-Fŕıas and Zhao [31, 32, 33, 94] proposed a

system using punctured turbo codes for the Slepian-Wolf problem. Aaron and Girod con-

sidered similar codes for the problem of source coding with side information [2]. Both the

teams of Mitran and Bajcsy [56, 55] and the team of Liveris, Xiong, and Georghiades [50]

made further contributions along these lines. Finally, considering the arbitrary Slepian-Wolf

problem, Li, Tu, and Blum [44] applied entropy codes to the turbo-code outputs in order

to achieve additional compression gains.

Entropy-codes based approaches: Koulgi, Tuncel, Ragunathan, and Rose [40, 41] and

Zhao and Effros [93] proposed several approaches for the Slepian-Wolf source coding problem

using methods which are inspired from the theory of entropy codes for the classical source

coding problem.

As stated above, none of these works fully considers a fully arbitrary scenario. In this

chapter a linear code based solution is provided focusing on arbitrary correlation models

for distributed source coding.
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5.2 Distributed Source Coding

In this section, we provide the intuition, framework, and operational details of an alge-

braic construction for distributed source coding. We focus on binary alphabets. Extension

to larger alphabets is largely straightforward, but is not discussed here. We focus first on

two sources, x and y and provide a simple example. Then we describe the code genera-

tion and decoding algorithm. Finally, we generalize this to a setting involving an arbitrary

number of sources. This section builds on the work of Section 3.2.

Recall from Section 3.2, we use a linear block code C for binning. The bin index, denoted

sx, of a codeword x, is the word’s syndrome with respect to Cx’s parity check matrix

sx = xHT
x .

Thus, we encode x to sx via matrix multiplication.

5.2.1 Illustrative Example

We now consider an example [64] to motivate our distributed source code construction.

This example is similar to the example in Section 3.2.1, but illustrates issues that arise in

general distributed source coding that do not arise in source coding with side information.

Let x and y be two uniform 7-bit sources. They are correlated such that they differ in at

most 1 of their 7 bits (i.e. wtH(x⊕ y) ≤ 1). We calculate the following: H(x) = H(y) = 7

bits, H(x |y) = H(y |x) = 3 bits, and H(x , y) = 10 bits.

To code at the rates (Rx, Ry) = (3, 7) bits, as in Chapter 3, we use the (7, 4)-Hamming

code. Source y sends its 7 bits uncompressed, while source x sends its 3 bit syndrome with

respect to the code (recall, sx = xHT
x ). Since the Hamming code has a minimum distance

of 3, knowledge of y7 and z7 allows the decoder to determine x7 exactly.

To code at rates (Rx, Ry) = (5, 5) bits, we will define the codes Cx and Cy to compress

each source respectively below. In order to show that a unique decoding is possible, consider

source pairs (x1, y1) and (x2, y2) that compress equivalently as below

x1HT
x = x2HT

x , and y1HT
y = y2HT

y .

Define e1 = x1 ⊕ y1 and e2 = x2 + y2. From the definition above, we bound the Hamming

weight of e1 and e2 as below

wtH(e1) ≤ 1, and wtH(e2) ≤ 1.
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Defining e3 = e1 ⊕ e2, we can write the following

x1 ⊕ x2 ∈ Cx, and x1 ⊕ x2 ⊕ e3 ∈ Cy.

We bound wtH(e3) ≤ 2. In order to allow unique decoding, we specify the generator

matrices of Cx and Cy (compressing with respect to the corresponding parity check matrices

for compression). We define Gx by the first two rows of the Hamming code’s generater

matrix and Gy with the other two rows;

Gx =


 0 1 1 1 0 0 0

1 0 1 0 1 0 0


 ,

and Gy =


 1 1 0 0 0 1 0

1 1 1 0 0 0 1


 .

Since these are sub-codes of the Hamming code, and Hamming codes have a minimum

distance of 3, only e3 = 0 satisfies the above constraints. In this case we have the following

x1 = x2, and y1 = y2.

This property insures that unique decoding is possible.

Key to this example is the partition of a generator matrix to develop codes for non-

corner points. By choosing the partition, codes for the entire rate region can be obtained

from a single code. The intuition of this example is extended more generally in the following.

5.2.2 Code Generation

We develop a general construction for two sources in this section. We focus first on

corner points and then generalize to arbitrary rate points. For a fixed block length we

construct codes by defining their generator matrices. Rates are lowered, to the Slepian-

Wolf bound, by adding rows to each generator matrix. Then, we alter our perspective to

show how the codes derive from a single code, as shown in Figure 5.1. Single code derivation

offers the advantage that codes for similar operating points are similar. In contrast, in [20],

a unique code is randomly generated for each and every rate pair considered.

Assume, without loss of generality, that H(x) ≤ H(y). Focusing on the corner point, our

goal is to construct generator matrices Gx and Gy containing n(1−H(x |y)) and n(1−H(y))

rows respectively for the point4 (Rx, Ry) = (H(x |y),H(y)).
4We ignore the issue of fractional numbers of rows. In practice, additional rate would be required to

round up. We further assume that each generator matrix is of full row rank. Thus the design rate and
actual rate of the codes are equal.
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We begin by considering a generator matrix Gc of size n(1−H(y))× n, which we use

to bin y . Set Gy = Gc to get Ry = H(y). Now construct Ga of size n(H(y) −H(x)) × n

linearly independent of Gc. Define Gx as below to get Rx = H(x)

Gx = [

n×n(1−H(y))︷︸︸︷
GT

c

n×n(H(y)−H(x))︷︸︸︷
GT

a ]T .

These matrices compress each source to its marginal entropy.

To do distributed source coding, we increased the size of Gx to reduce Rx to H(x |y)

bits/sample. We construct Gs with n(H(x)−H(x |y)) rows linearly independent of Gc and

Ga, and construct a larger Gx by stacking Gc, Ga and Gs as in Equation (5.1). Using Gx

and Gy to compress each source, we achieve (Rx, Ry) = (H(x |y),H(y))

Gx = [

n×n(1−H(y))︷︸︸︷
GT

c

n×n(H(y)−H(x))︷︸︸︷
GT

a

n×n(H(x)−H(x |y))︷︸︸︷
GT

s ]T . (5.1)

To generate these codes from a single code, consider another viewpoint. Above we view

each generator matrix as a stacks of smaller matrices. In contrast, consider the union of the

rows of the two matrices (trivially Gx above). We consider this union as a single code G.

From this code, Gx and Gy are obtained by selecting subsets of rows from G. This general

idea is illustrated in Figure 5.1. Note that the subsets must be chosen so as to satisfy the

Slepian-Wolf bounds.

To understand why it is necessary that some commonalities must exist between the two

generator matrices, consider codes so derived yet having no rows in common (Gc = 0 and

kx + ky = k). The rates induced by these codes are below

(Rx, Ry) = ((n− kx)/n, (n− ky)/n).

Knowing that a channel code’s generator matrix must satisfy k < n and combining the

above expressions gives Rx + Ry > 1. This restriction is a particular impediment when

arbitrary source distributions are considered. If H(x , y) < 1, then this restriction bounds

the achievable rate region away from the Slepian-Wolf bounds. Thus row sharing is essential

for a general solution.

To shift this solution away from a corner point and achieve arbitrary rate pairs, we alter

the distribution of rows to each matrix (as in Figure 5.1). We can view this as a partition of

Gs into Gsx and Gsy and assign the partitions to each respective source. When Gsy = Gs,

then (Rx, Ry) = (H(x),H(y |x)) bits/sample.
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Figure 5.1. The partition and distribution of a single code’s generator matrix for the codes
for compressing x and y . Gc is shared between both resulting codes to allow for arbitrary
rate point selection.

5.2.3 Decoder

We present here a decoding prescription for two sources operating at an arbitrary rate

pair based on two successive decodings. The algorithm presented naturally simplifies for

special cases such as source coding with side information and entropy coding, though these

cases are not discussed here. Referring to a decoding element as a single-machine decoder,

this algorithm is a successive two-machine algorithm. This algorithm recovers both sources

only after both decodings, since both encoders send “partial” information. No one tra-

ditional decoder can recover either source alone. Though the algorithm presented here

is impractical (due to the use of two ML decoders), an implementable (but sub-optimal)

simultaneous two-machine algorithm is given in Section 5.5.

Decoding focuses first on recovering z = x ⊕ y . It is reasonable to assume that x and y

are highly correlated, otherwise Slepian-Wolf coding gains could be nominal at best. We can

thus expect that z has low Hamming weight and is compressible. Once z is recovered, x and

y are then reconstructed by a second machine. Pseudo code for the successive two-machine

algorithm is presented below, where the partitions of G, Gx, and Gy from Figure 5.1 are

used.

In the first step of the pseudo code, as in Section 3.2.2, we write each source as a function

of the compression code and the compressed value. We use the variable u to select which

codeword is necessary to satisfy these equations. We denote the closest codeword x (y) in

Cx (Cy) as uxGx (uyGy). We further divide these equations into their component parts as
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follows

uxGx = [uc,x|ua,x|us,x][GT
c GT

a GT
sx]T = uc,xGc ⊕ ua,xGa ⊕ us,xGsx

and uyGy = [uc,y|us,y][GT
c GT

sy]
T = uc,yGc ⊕ us,yGsy.

In Step 1, s̄x (s̄y) represents a zero-padded version of the value sx (sy). s̄x (s̄y) is the

element in the co-sets formed by Cx (Cy) of minimum Hamming weight, as in Section 3.2.2.

We repeat the description of zero padding from Section 3.2.2 here. To zero pad, insert

zeros so that they align with the systematic bits of the code5. For example, consider a code

defined with the first two rows of the Hamming code Equation (5.2). Since the fourth and

fifth columns (emphasized) form the systematic bits, zeros are inserted into the fourth and

fifth positions.

If Gx =


 0 1 1 1 0 0 0

1 0 1 0 1 0 0


 and sx = [

︷ ︸︸ ︷
1 0 1

︷︸︸︷
0 1 ],

then s̄x = [
︷ ︸︸ ︷
1 0 1 0 0

︷︸︸︷
0 1 ].

(5.2)

Step 2 of the decoding combines s̄x and s̄y. The first machine runs in Step 3, the ML

decoding of s̄ with respect to G to give ẑ and u. Knowledge of u gives knowledge of us,y.

Insert us,y into the equation for y. With greater knowledge of y, in Step 4 we ML decode

us,yGsy ⊕ s̄y with respect to Gc to obtain ŷ and uc,y. Finally, combine ŷ and ẑ to recover

x̂ in Step 5.

Pseudo code for the decoding algorithm is provided here:

1. Expand sources equations: yn = uc,yGc ⊕ us,yGsy ⊕ s̄y and xn = uc,xGc ⊕ ua,xGa ⊕
us,xGsx⊕ s̄x.

2. Composite values: s̄ = s̄x ⊕ s̄y and u = [uc,x ⊕ uc,y|ua,x|us,x|us,y].

3. ML Decode6 ẑ = x⊕ y = uG⊕ s̄.

4. ML Decode ŷ = uc,yGc ⊕ [us,yGsy ⊕ s̄y] using knowledge of us,y.

5. Recover x̂ = ŷ ⊕ ẑ using knowledge of ẑ and ŷ.
5More generally, we need select any kx (ky) linearly independent columns of Gx (Gy) since bit ordering

does not impact code performance in the memoryless case.
6In this construction, care needs to be take to insure that the dimensions of G are sufficient for the

statistics of z . Note though, in cases of interest where significant correlation between the sources is present,
this will indeed be the case.
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This prescription gives insights on the design requirements of C (i.e., G and Gc). Each

of these codes needs be a “good” code (“good” if the probability of a decoding error goes

to zeros as block length goes to infinity). Using random codes, code design first randomly

generates Gc to act as an entropy coder for either source given their sum. Then random

code Gsy is generated to bin the bins induced by Gc. The resulting sub-bins need to be

strong enough for the statistics of the sum of the two sources. Though difficult in practice,

these constraints can be approached with large block lengths and pseudo-random codes [20].

Though we do not prove that the block codes construction here achieves the Slepian-Wolf

limit, we demonstrate it via empirical methods (Section 5.6).

5.2.4 Multiple Sources

We now extend the construction to L sources. As in Section 5.2.2, we begin by stacking

generator matrices and then shift to a single code viewpoint. We show that codes Ci

(i ∈ {1, 2, · · · , L}) can be derived from a single code C.

Since there is no inherent ordering of the sources, without loss of generality, we label

them {x1, . . . , xL} so that the following is true

H(x1|x2, . . . , xL) ≤ . . . ≤ H(xi|xi+1, . . . , xL) ≤ . . . ≤ H(xL).

We generate L codes to achieve the corner point below by recursive matrix definitions

(R1, R2, . . . , RL)

= (H(x1|x2, . . . , xL), . . . , H(xi|xi+1, . . . , xL), . . . ,H(xL)).

The recursion initializes defining matrix GL with n(1 − H(xL)) linearly independent

rows. The recursion defines the matrices from GL−1 to G1 in reverse order, setting Gi−1 =

[GT
i AT

i−1]
T . Ai−1 is full rank with n(H(xi|xi+1, . . . , xL)−H(xi−1|xi, . . . , xL)) rows linearly

independent of Gi. Thus Gi−1 is full rank. This recursion is illustrated in Figure 5.2.

We define a single code G as the union of the rows of the generator matrices,

{G1, . . . ,GL} (G = G1 above). Arbitrary points are achieved by modifying the assign-

ment of rows from G. The resulting codes achieve the Slepian-Wolf bound.

ML decoding (though impractical) for an arbitrary number of sources requires a succes-

sive L-machine algorithm. As above, the sources are only obtained after the final machine

is run. A practical (but suboptimal) simultaneous L-machine algorithm is described in

Section 5.5.
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Figure 5.2. Iterative generator matrix definition process for achieving a corner point for
the distributed compression of L sources. The process initializes with the L-th matrix on
the right-hand side and iterates until the left-most matrix is defined. After defining these
codes, arbitrary points can be achieved by moving rows between generator matrices.

5.3 Low-Density Parity-Check Codes

In this section, we highlight some of the background for LDPC (Low-Density Parity-

Check) codes. The reader is referred to Section 2.3 for further details. Low-Density Parity-

Check codes are a class of powerful linear block codes and thus a natural choice for our

distributed source coding framework. We use factor graphs [42] (as in Figure 2.3) to visually

represent LDPC codes. These bipartite graphs consist of circles used to represent bits and

squares used to represent constraints.

Decoding of LDPC codes is achieved using the sum-product algorithm [26, 61, 42].

The algorithm is an iterative inference algorithm that though exact on trees, is known to

have good (but sub-optimal) empirical performance on loopy graphs such as those of an

LDPC code. The sum-product algorithm operates by iteratively estimating the marginal

distribution for each bit. In the first phase of each iteration, each variable node combines

the estimates available and sends them along its edges (e.g., νi,j in Figure 5.3). In the

second phase of each iteration, these estimates are merged, according to the constraint, at

each check node into for each bit node (e.g., µj+1,i+2 in Figure 5.3). The marginals are used

to estimate the bits after each iteration, if below a maximum number of iterations, the set

of estimates is checked against a stopping condition.
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Figure 5.3. A sample factor graph. The circles represent bits while squares represent the
parity constraints of the code. A labeling of the two types of messages passed node to node
in the decoding algorithm is given.

5.4 Adaptation of Coding Solution to Parity Check Matrices

This section considers the generator matrix partitioning scheme of Section 5.2 in terms

of parity check matrices. Such a consideration is valuable for codes such as LDPC codes, de-

fined in terms of their parity check matrices. We develop the “column dropping” procedure,

analogous to the matrix partitioning technique above. Specific application of LDPC codes

for distributed source coding is given in Section 5.5. In the “column dropping” technique,

columns of the base parity check matrix (the “single” code) are zeroed (dropped from the

parity equations) and an extra row is added on to the parity check matrix. We develop the

technique using a generic systematic code, and then extend it to general codes.

Take G = [Ik|P] and H = [PT |Im] to be a systematic generator and parity check matrix

pair. We write out the partition of Figure 5.1 in this form in Equations (5.3) and (5.4)

G =




Ikc 0 0 0 Pc

0 Ika 0 0 Pa

0 0 Iksx 0 Psx

0 0 0 Iksy Psy




, (5.3)

and H =
[

PT
c PT

a PT
sx PT

sy Im

]
. (5.4)

Algebraically we determine expressions for Hx and Hy

Hx =


 PT

c PT
a PT

sx 0 Im

0 0 0 Iksy 0


 ,
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and Hy =




PT
c 0 0 PT

sy Im

0 Ika 0 0 0

0 0 Iksx 0 0


 .

Examine Hx to see the “column dropping” procedure. Compared to G, Gx has the

rows containing Psy removed. Comparing H to Hx, we see that Psy has been replaced by

0 while ksy additional rows have been added to Hx. In the new rows, all elements are zero

except Iksy which is below the 0 in place of Psy. We see that in the transition from H to

Hx, columns of H have been “dropped” into the added rows.

Since permuting the order of the bits of a code does not affect its performance over

memoryless channels, we can “drop” arbitrary sets of columns. This allows the extension

of this technique to an arbitrary number of sources since the columns need not be adjacent.

To consider non-systematic codes, consider an alternate interpretation of the “column

dropping” procedure. Examining the “column dropped” parity check matrices, we note

that a portion of the syndrome bits are exactly equal to some of the source bits. The

decoder thus knows the exact value of the bits of the “dropped columns.” The codes used

for each source are thus the main code with a portion of the original bits sent uncoded. We

will explore this idea in greater depth in Section 7.3.4. Consider the non-systematic parity

check matrix H = [Pc Pa Psx Psy P0]. We use the alternate perspective of the “column

dropping” procedure to write the corresponding Hx and Hy as follows

Hx =


 PT

c PT
a PT

sx PT
sy P0

0 0 0 Iksy 0


 ,

and Hy =




PT
c PT

a PT
sx PT

sy P0

0 Ika 0 0 0

0 0 Iksx 0 0


 .

5.5 Integration of LDPC Codes Into Distributed Coding

Construction

We now present a simultaneous multi-machine algorithm for use with LDPC codes. We

first describe the graphical model for coding two correlated sources, then generalize for

an arbitrary number of sources. Simultaneous decoding is achieved via the sum-product

algorithm over these graphs. Since these are graphs loopy, sum-product is sub-optimal but
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empirically good. We assume a priori knowledge of the source statistics. Chapter 6 presents

a method by which we can relax this assumption.

The general graphical model for distributed source coding of two sources is in Figure 5.4.

The variables considered are the n bits of sources x and y (middle top and bottom rows of

circles respectively), the mx bits of the compressed source x (top row), and the my bits of

the compressed source y (bottom row). These variables are constrained by the LDPC codes

used to compress x (top row of squares) and y (bottom row) plus the correlation between

sources x and y (middle row). The correlation constraints between the sources x and y are

distinct and different from the parity constraints considered in Section 5.3.
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Figure 5.4. Factor graph for distributed source coding. Circles labeled xi or yi represent
source bits. Circles labeled Sxj or Syj represent the compressed bits. Squares labeled fxj

or fyj represent the LDPC code applied to each source. Squares labeled fi represent the
correlation between bits xi and yi.

In order to adapt this graphical model to other problems, we consider the model as

several connected subgraphs. One subgraph, the “X operations”, is composed of the x

bit nodes, the code applied to x , and the compressed bits of x . The respective graph

elements for y form the “Y operations” subgraph. Finally, the correlation constraints form

a “correlation operations” graph. The abstracted graph is thus composed of the source

subgraphs connected via the correlations subgraph. We refer to the source subgraphs as
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“machines.” This abstracted factor graph is shown in Figure 5.5. Recall that we use

rectangles as well as squares to represent constraints in factor graphs.

To extend this graphical model to code L sources, we attach a machine for each source to

the graph. Each of the L machine is connected to the others via the correlations subgraph.

Using the sum-product algorithm over this graph gives the simultaneous multiple machine

algorithm.
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Source/Correlation Constraint

SX mx

SYmy

Figure 5.5. An abstracted version of the factor graph of Figure 5.4. Recall that we use
rectangles as well as squares to represent constraints. Here the graph is abstracted into the
operations on each source and the correlation interface between the two. This graph can
be extended to an arbitrary number of sources by interfacing additional sources with the
generalized correlation constraint.

We further consider two special cases; entropy coding and source coding with side

information. For entropy coding, remove the “Y operations” subgraph from Figure 5.4.

This effectively reduces it to the entropy coding graph in Figure 3.4. The correlation

constraints become source constraints due to the lack of side information. A source coding

with side information model is made by replacing the “Y operations” machine with just

the y bit nodes, as in Figure 3.3 in Chapter 3. Since the source y is uncompressed, the

interaction with the correlation nodes is straight forward. Note, the graphs of Figures 5.4

and 5.5 naturally simplify as appropriate for both of these special cases.

As in Section 5.2.3, the codes used in Figure 5.4 derive from a single code. Interpreting
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Section 5.4, we use the same code twice, and account for the additional uncoded bits in the

decoding algorithm. We achieve this by inserting certainty in the distribution estimates for

the “dropped column” bits.

As above, the single code must meet two design constraints. First, the overall code must

be strong enough for the statistics of the sum of the sources. Second, the reduced code (the

code resulting from consideration of the remaining columns) must be strong enough to

recover either source given their difference. In general, a nested LDPC design algorithm

could be used to first build the inner matrix and then the entire matrix.

5.5.1 Application of Sum-Product Algorithm

As the factor graph of Figure 5.5 is related to the factor graphs of Chapter 3, so are the

update equations used. We refer the reader to Section 3.4.1 to see the form of the update

equations. The only extension to the pseudo code given in that section is in the actions of

the “Y operations” nodes. Fortunately, these update equations simply mirror the form of

the “X operations” nodes. As an example, consider the message from correlation node fi

to yi. The message is of the following form

µfi,yi = log
(2−P (yi=1|xi=0)−P (yi=1|xi=1))+(P (yi=1|xi=1)−P (yi=1|xi=0)) tanh νxi,fi

/2

(P (yi=1|xi=0)+P (yi=1|xi=1))+(P (yi=1|xi=0)−P (yi=1|xi=1)) tanh νxi,fi
/2 . (5.5)

Alteration of the other update equations is similarly straightforward. In the following

section, we present results obtained from simulating this algorithm.

5.6 Simulations and Results

In this section, we present simulation results. We focus on simulations of the general

distributed source coding problem. For results considering the special cases mentioned

in this chapter, including entropy coding and source coding with side information, see

Section 3.5.

We measure the quality of a simulation with its empirical probability of error, the

proportion of bits decoded in error. Since out scheme is asymptotically lossless, we make

comparisons with the lossless bounds of Slepian-Wolf despite our measured probabilities

of error. We focus here on BER (bit error rate). For a discussion of SER (symbol error

rate) as a measure of simulation quality, please see Section 3.5. Each simulation consisted

of selecting a particular code, source distribution, and rate combination. Each empirical
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P (x , y) y = 0 y = 1
x = 0 (1− γ)(1− α) (1− γ)α
x = 1 γβ γ(1− β)

Table 5.1. Structure of the joint distribution between x and y considered for Section 5.6.

probability is generated by simulation of at least one million bits, broken into blocks. We

limited decoding to at most 50 iterations and used LDPC code designs as described in

Appendix A. We omit error bars in these plots for clarity. The resulting error bars are

similar to those obtained for the BER results from Section 3.5.

As in Section 3.5, we consider arbitrary distributions over two correlated binary sources,

parameterized via 0 ≤ α, β, γ ≤ 1. The distribution considered is P (x = 0, y = 0) = (1 −
γ)(1−α), P (x = 0, y = 1) = (1−γ)α, P (x = 1, y = 0) = γβ, and P (x = 1, y = 1) = γ(1−β).

We give a diagram of this in Table 5.6.

We now present results for compressing 104 bit blocks from two sources at arbitrary

rate combinations (Figure 5.4). To consider a range of arbitrary source distributions we

consider all 27 possible combinations that arise from fixing α ∈ {0.01, 0.05, 0.09} , β ∈
{0.005, 0.09, 0.15} , γ ∈ {0.1, 0.25, 0.5}. We use a base code of rate 0.5, from Appendix A.

For practical considerations, we omit the dual objective design as discussed in Section 5.4

in favor of simpler code design. We use the “column dropping” method of Section 5.4 for

generating the two codes from the base code. Empirical performance is good. We omit con-

sideration of the successive two-machine algorithm since we lack a practical implementation

of ML decoding for this block length.

For example, consider (α, β, γ) = (0.09, 0.005, 0.25). The resulting distribution is P (x =

0, y = 0) = 0.6825, P (x = 0, y = 1) = 0.0675, P (x = 1, y = 0) = 0.0013, and P (x = 1, y =

1) = 0.2487. This distribution has entropy properties H(x) = 0.8113 bits, H(x |y) = 0.2497

bits, H(y) = 0.9003 bits, H(y |x) = 0.3387 bits, and H(x , y) = 1.150 bits. We consider rate

combinations with a gap (from the Slepian-Wolf bound) ranging from 0.0 bits to 0.4 bits.

Resulting bit error rates are listed in Table 5.6. The rates used are listed atop each column

(Rx) and leftmost in each row (Ry).

More extensive results are plotted in Figure 5.6. The results of each (α, β, γ)-tuple

and each rate pair chosen in the previous example are considered. We plot the difference

between the sum rate and the joint entropy (Rx + Ry −H(x , y)) on the horizontal axis and
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P(bit error) (× 10−4)
Rx�Ry 0.60 0.70 0.80

0.55 4732.9 832.1 70.5
0.65 678.3 67.3 10.2
0.75 73.6 9.5 0.2

Table 5.2. Simulation results for several arbitrary rate combinations in the Slepian-Wolf
region for a block length of 10, 000. The BER×104 results are given for several rate combi-
nations. As the sum rate grows, the resulting error rates improve.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

10
−4

10
−3

10
−2

10
−1

Symmetric Decoding Simulations Over Arbitrary Distributions

R
x
 + R

y
 − H(X,Y) (bits)

O
bs

er
ve

d 
B

E
R

 a
t D

ec
od

er

Figure 5.6. Simulation results for several arbitrary rate combinations in the Slepian-Wolf
region for a block length of 10, 000. Each data point is the result of the simulation of at
least 106 bits. The BER results are plotted versus the difference between the sum rate and
the Slepian-Wolf bound. As the difference grows, resulting error rates improve.

the observed bit error rate on the vertical axis. As expected, performance improves as the

distance between the sum rate and the Slepian-Wolf bound grows.

5.7 Conclusions & Open Problems

In this chapter we presented a construction using linear codes for achieving the Slepian-

Wolf bound. This construction allows for arbitrary distributions, arbitrary rate pairs, an

arbitrary number of sources, and derives from a single code. We presented this construction

using either generator or parity check matrices, enabling application of a range of codes.
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Key to our scheme is the particular partition of a channel code to produce Slepian-Wolf

codes.

Further, we illustrated how to incorporate LDPC codes into the construction and how

a two-machine construction can be used to decode to arbitrary rate pairs. We described

how to generalize the two-machine construction to accommodate an arbitrary number of

sources for arbitrary rate combinations. Finally, we presented simulation results validating

the performance of the two-machine decoder.

This work suggests many areas for future work. As in Chapter 4, a particularly promis-

ing area of study is in code design. Application of density evolution [70] to the “column

dropping” procedure could better describe how to partition the single code to each source.

Another area of study is in the application of the algorithm presented here for larger alpha-

bets. Although extension to larger alphabets is straightforward, computational complexity

unfortunately also rises. Application of approximations to the algorithm presented here

could potentially provide faster performance.

Throughout this chapter and the previous chapters, we have assumed that the source

statistics are known a priori. In practical implementations these statistics may not actu-

ally be available. As a result, tn the following chapter, we describe a protocol for blind

distributed source coding.
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Chapter 6

A Protocol For Blind Distributed

Source Coding

6.1 Introduction

To this point, in Chapters 3 through 5, we have assumed that both the encoder and

decoder know the source statistics. With this knowledge, the system can determine ahead

of time at what rate to operate. In this chapter, we relax this assumption and present

a scheme that adapts its rate to that required by the source statistics. Since distributed

source encoders lack a manner by which to learn the joint source statistics, feedback is

necessary to gain the full compression gains. Our protocol relies on the availability of a

small amount of decoder-to-encoder feedback.

Consider the following example of two distributed sources. The first source, x , is i.i.d.

with a Bernoulli-(1/2) distribution. We define the second source, y , such that for every time

instance they are exactly equal, i.e. xi = yi. If the encoders know this correlation prior to

encoding, then only one encoder needs to be active at a time. In this case, we could easily

the achieve the Slepian-Wolf bound of Rx + Ry = 1. Without knowledge of the correlation

between x and y , each encoder can only apply traditional source coding techniques. Since

the marginal entropy of each source if H(x) = H(y) = 1, in this case the sum rate achieved

is Rx+Ry = 2. Without feedback, there is no way for the encoders to learn of the correlation

between the x and y . This example demonstrates the value of feedback, since the encoders

could quickly be informed of a more efficient transmission scheme.
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Our approach is motivated by the ideas developed in Draper [23]. As we demonstrate,

the protocol quickly converges to the rate the encoder would use if it had access to the

source statistics. Although our analysis is for source coding with side information for binary

sources with a binary symmetric correlation, we explain how to extend this algorithm to

other scenarios. We demonstrate such an extension here and in Chapter 8.

This chapter is organized as follows. In Section 6.2 we specify our blind distributed

compression protocol and describe the source scenario we analyze it on. We then analyze

our blind transmission protocol using error exponents in Section 6.3. Then, in Section 6.4 we

discuss how to implement our protocol in practice, and give simulation results in Section 6.5.

We finally conclude this chapter in Section 6.6.

6.2 Protocol

For this analysis, the source model is as follows. The sources xi and yi are sequences of

i.i.d. Bernoulli-(1/2) binary random variables, while zi is a sequence of i.i.d. Bernoulli-(Q)

binary random variable independent of xi. We relate these variables as follows

yi = xi ⊕ zi. (6.1)

We consider encoding xi and presume that yi is available losslessly at the decoder. As

described in Slepian & Wolf [78], by using Slepian-Wolf codes, one need only transmit at a

rate equal to H(x |y) = H(z ⊕ y |y) = H(z) = H2(Q). Thus if Q is known, the encoder can

compress the source as much as if it had observed both sources, x and y .

ENCODER DECODER X̂

Q
k

^ACK/NAK,

R
k

XY

Z

Figure 6.1. A block diagram for blind source coding with side information. For the analysis,
we assume the simple correlation structure for xi and yi as shown here. During each cycle,
the source is transmitted at rate Rk over the forward channel. The decoder feeds back an
acknowledgment and an estimate of the parameter Q̂k.

We allow the compression system a reverse channel through which estimates of Q can be
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fed back to the encoder. At time k the encoder maintains a state variable, Q̂k, corresponding

to its current estimate of the joint statistics of xi and yi, and a rate-margin design parameter

εk > 0. We set Q̂0 = 0.5. The system works as follows:

1. The encoder divides the sequence xi into block of length lk, indexed by k = 1, 2, . . . .

We use nk =
∑k

j=1 lj to denote the cumulative block-length. The k-th block corre-

sponds to symbols xnk
nk−1+1. By choosing the cumulative block-length to double every

transmission, i.e., nk = 2nk−1, the error analysis simplifies somewhat. We assume

this choice for the duration of the analysis.

2. At step k, the encoder encodes xnk
nk−1+1 using a rate-Rk Slepian-Wolf code, where Rk

depends on the estimate Q̂k and margin εk as

Rk(Q̂k−1, εk) =





max[H2(Q̂k−1 + εk),H2(Q̂k−1 − εk)], if εk < |Q̂k−1 − 0.5|,
1, else,

(6.2)

i.e., the rate used is H2(Q̂k−1) plus a margin. The various cases in Equation (6.2)

come into play depending on whether Q̂k−1 is greater than or less than one-half, or

within the margin εk of one-half.1

3. The decoder attempts to decode. If it can, it sends an acknowledgment to the trans-

mitter, along with the updated estimate Q̂k. The estimate Q̂k is simply the proportion

of 1s (or 0s) observed in zi thus far (i.e., the Hamming weight of xi ⊕ yi). The feed-

back following the kth block can therefore be accomplished with 1+log2 lk bits. If the

decoder cannot decode reliably, it sends a “NAK”, i.e., a request for retransmission.

It holds off sending the updated estimate until it receives the retransmission.2

4. If the encoder receives an acknowledgment, it moves onto the next block, using the

updated estimate of Q. If the encoder receives a request for retransmission, it sends

the sequence xnk
nk−1+1 uncompressed.3

If ck is the transmission rate (in bits per symbol) of block k, we want to minimize the

expected transmission rate, E [ck], of the scheme. E [ck] equals the expected rate E [Rk] of

1If we used the more standard choice, i.e., H(Q̂k−1) + εk, we could avoid the multiplicity of cases of
Equation (6.2). However, by expressing the margin in the current manner, our analysis simplifies, resulting
in some nice close-form error expressions. Note that we can choose to add the margin directly to Q̂ only
because we focus on binary sources.

2We assume the code has perfect error-detection capabilities.
3More efficient hybrid-ARQ-type retransmission strategies can be used. But, this strategy simplifies the

error analysis, and only leads to a marginal loss in efficiency.
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the Slepian-Wolf code plus the probability of a decoding error times ln 2 (1 bit/symbol or

ln 2 nats/symbol to account for its uncompressed retransmission). We use ek to denote the

event of a decoding error on block k. Ideally, we minimize the following cost,

E [ck] = Pr[ek] ln 2 + E [Rk] . (6.3)

With some abuse of notation we use Rk both to represent the rate-determination function,

as in Equation (6.2) and the resulting rate, as in Equation (6.3). We choose to express the

rate in nats to simplify notation in subsequent analysis.

6.3 Analysis

In this section we show that choosing εk = K(Q)/
√

lk (for some function K(·)) minimizes

the cost Equation (6.3). For some constants φ1, φ2, and φ3, we will develop a bound for

E [ck] of the following form

E [ck] ≤ H2(Q) + φ1εk + φ2 exp
{−φ3ε

2
k

}
.

By choosing εk of the form εk = K(Q)/
√

lk, we obtain the fastest asymptotic behavior of

this bound. As one would expect, the form of εk should be chosen dependent on Q. However,

Q is unknown, so in practice we would pick the constant as K(Q̂k−1). The dependence on
√

lk is also somewhat intuitive. The standard deviation in the best estimate of Q drops as

1/
√

nk−1 = 1/
√

lk.

Without loss of generality, in this analysis we assume that Q+εk < 0.5. In Section 6.3.1

we first bound the first term of Equation (6.3), the probability of a decoding error. In

Section 6.3.2 we bound the second term, the expected rate used during the Slepian-Wolf

transmission. In Section 6.3.3 we put the results together to choose εk.

6.3.1 Probability of Decoding Error

We assume that the scheme uses Slepian-Wolf codes that succeed as long as the entropy

rate of the kth block is below the transmission rate, i.e., H(xnk
nk−1+1)/lk < Rk. We use

standard large deviation techniques following the results of [22] to bound the probability of
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decoding error on the kth block.

Pr[ek] = Pr[H(xnk
nk−1+1)/lk > Rk] (6.4)

=
∑

P

∑

xnk−1∈TP

p(xnk−1) Pr[H(xnk
nk−1+1)/lk > Rk] (6.5)

=
∑

P

∑

xnk−1∈TP

p(xnk−1)
∑

P̃ s.t.

H(P̃ ) > Rk(P, εk)

∑

x
nk
nk−1+1∈P̃

p(xnk
nk−1+1). (6.6)

In Equation (6.4) the rate Rk is random, depending on the empirical distribution of the first

nk−1 source symbols and the margin εk via Equation (6.2). In Equation (6.5) we use P to

denote this empirical distribution and TP to indicate the corresponding typical set. Since

Q̂k−1 = P , plugging P into Equation (6.2) gives the, now non-random, rate used Rk(P, εk).

We continue as

Pr[ek] ≤
∑

P

∑

P̃ s.t.

H(P̃ ) > H(P + εk)

exp{−nk−1D(P‖Q)− lkD(P̃‖Q)} (6.7)

≤
∑

P

∑

P̃

exp{−lk min
P, P̃ s.t.

H(P̃ ) ≥ H(P + εk)

[D(P‖Q) + D(P̃‖Q)]} (6.8)

≤ (lk + 1)2 exp{−lk[D(P ∗‖Q) + D(P ∗ + εk‖Q)]} (6.9)

In Equation (6.7) we use p(xnk−1) = exp{−nk−1[H(P )+D(P‖Q)]} for all sequences xnk−1 ∈
TP , and |TP | ≤ exp{nk−1H(P )}, see [22]. In Equation (6.8) we use lk = nk−1, and the

minimization is over all distributions, not just those that are types. In Equation (6.9) P ∗ is

the minimizing distribution (P = P ∗ and P̃ = P ∗ + εk). After minimization the exponent

does not depend on P or P̃ . We sum over all binary types of length lk, of which there are

lk + 1.

The error exponent of the probability of decoding error depends on the unknown distri-

bution Q. We study this exponent to determine a good choice for εk. To do this, we solve

for P ∗ assuming a fixed εk.

d

dP
[D(P‖Q) + D(P + εk‖Q)]

=
d

dP

[
P ln

P

Q
+ (1− P ) ln

1− P

1−Q
+ (P + εk) ln

P + εk

Q
+ (1− P − εk) ln

1− P − εk

1−Q

]

= ln
[

P (P + εk)(1−Q)2

(1− P )(1− P − εk)Q2

]
. (6.10)
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Setting Equation (6.10) equal to zero, and solving for P using the quadratic equation gives

P ∗ = −εk

2
−

2Q2 −
√

ε2k(1− 2Q)2 + 4Q2(1−Q)2

2(1− 2Q)
. (6.11)

For any choice of εk, and any source distribution Q, this value of P ∗ determines the dominant

source of decoding error. Using Equation (6.11) in Equation (6.9) yields a bound on the

decoding error for this protocol. Note that because D(P‖Q) is convex in its arguments,

P ∗ ≤ Q ≤ P ∗ + εk.

The error exponent D(P ∗‖Q) + D(P ∗ + εk‖Q) has a particularly simple form when εk

is small. We define P ∗ = Q − ε̄ and P ∗ + εk = Q + ¯̄ε, where εk = ε̄ + ¯̄ε. By the convexity

property just discussed ε̄, ¯̄ε > 0. With these definitions, we approximate the error exponent

when εk is small.

D(P ∗‖Q) + D(P ∗ + εk‖Q) = D(Q− ε̄‖Q) + D(Q + ¯̄ε‖Q)

= (Q− ε̄) ln
[
1− ε̄

Q

]
+ (1−Q + ε̄) ln

[
1 +

ε̄

1−Q

]

+ (Q + ¯̄ε) ln
[
1 +

¯̄ε
Q

]
+ (1−Q− ¯̄ε) ln

[
1− ¯̄ε

1−Q

]

' ε̄2 + ¯̄ε2

2Q(1−Q)
+

(ε̄3 − ¯̄ε3)(1− 2Q)
2Q2(1−Q)2

(6.12)

≥ ε2k
4Q(1−Q)

≥ ε2k (6.13)

In Equation (6.12) we use ln[1 + x] ' x− x2/2. Writing ε̄2 + ¯̄ε2 = (ε̄ + ¯̄ε)2 − 2ε̄¯̄ε = ε2k − 2ε̄¯̄ε,

one can see that Equation (6.12) is minimized under the constraint for small εk by selecting

ε̄ = ¯̄ε = εk/2. Choosing Q = 0.5 lower-bounds the quadratic approximation of the error

exponent.

In Figure 6.2 we plot the error exponent and quadratic approximation to it for Q = 0.05

and Q = 0.3. The approximation Equation (6.13) is quite good, even for large values of εk.

For Q = 0.3, one can barely distinguish the quadratic approximation to the full solution.

The lowest curve in Figure 6.2 is the lower-bound to the quadratic approximation with

Q = 0.5.
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Figure 6.2. Error exponents and quadratic approximations for Q = 0.05 and Q = 0.3. Note,
for Q = 0.3, the approximation is so close to the error exponent that the lines are on top
of each other. This demonstrates that the quadratic approximation is quite good.

6.3.2 Bounding the Expected Slepian-Wolf Rate

In order to minimize the cost Equation (6.3) we must also take into account the second

term of Equation (6.3), E [Rk].

E [Rk] ≤ Pr[H(xnk−1) ≤ H(Q + γ)]H(Q + γ + εk) + Pr[H(xnk−1) > H(Q + γ)] ln 2 (6.14)

≤ H(Q + γ + εk) + ln 2
∑

P s.t.

H(P ) > H(Q + γ + εk)

∑

xnk−1∈TP

p(xnk−1) (6.15)

≤ H(Q + γ + εk) + ln 2
∑

P s.t.

H(P ) > H(Q + γ)

exp{−nk−1D(P‖Q)}

≤ H(Q + γ + εk) + ln 2(lk + 1) exp {−lkD(Q + γ‖Q)} (6.16)

In Equation (6.14) we split the expected rate into two events. The first is a high-probability

event that occurs when the realized entropy is below the source entropy plus a margin γ.

The second is a low-probability event that occurs when the realized entropy is large. In the

former case, the code rate is upper bounded by H(Q+γ + εk), while in the latter it is upper
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bounded by ln 2. In Equation (6.15) we upper bound the probability of the high-probability

event by one, and analyze the low-probability event using techniques similar to those used

in Section 6.3.1. As in that section, we also examine the small-γ region which gives,

D(Q + γ‖Q) ' γ2

2Q(1−Q)
. (6.17)

6.3.3 Optimizing the Rate Margin

We can now understand how εk should be chosen. It is easiest to see this in the small-

εk region. Indeed, the small-εk region is of great interest as we want to be as efficient as

possible for large data files.

Noting that probability of Pr[ek] in Equation (6.4) and Pr[H(xnk−1) > H(Q + γ)] in

Equation (6.14) can both be upper bounded by one, then substituting Equation (6.9),

Equation (6.11), Equation (6.16), and Equation (6.17) into Equation (6.3) gives

E [ck] = E [Rk] + ln 2 Pr[ek] (6.18)

≤ H(Q + γ + εk)

+ ln 2 min
[
1, (lk + 1) exp

{
−lk

γ2

2Q(1−Q)

}]

+ ln 2 min
[
1, (lk + 1)2 exp

{
−lk

ε2k
4Q(1−Q)

}]
. (6.19)

To give the best bound, we want to pick γ as small as possible in Equation (6.18). Picking

γ = εk/
√

2 balances the exponents. We combine the exponential terms and use a Taylor

series expansion of the entropy around Q to simplify the bound of Equation (6.18), giving:

E [ck] ≤ H(Q) +
1 +

√
2√

2
ln

[
1−Q

Q

]
εk + 2 ln 2 min

[
1, (lk + 1)2 exp

{
−lk

ε2k
4Q(1−Q)

}]
.

(6.20)

In Equation (6.20), the second term is linear in εk, so we want to pick εk as small as possible.

However, the third term constraints this choice. The margin εk must go to zero slower than

1/
√

lk, else the polynomial in lk that pre-multiplies the exponent will dominate4. Thus, the

algorithm presented here will quickly converge to the case of an encoder aware of the source

statistics.
4Note that to study the trade-off for small Q, one must use a better approximation to the entropy function

than the quadratic one we used. For example ck −H(Q) should always be less than one bit.
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6.4 Practical Considerations

In this section, we discuss the practical impact of two assumptions made in Sections 6.2

and 6.3. We first consider aspects of the protocol induced by the specific source structure

and correlation model. Second, we then consider the idealized codes used. Relaxation of

these assumptions is necessary for any implementation of the protocol presented here.

Though Sections 6.2 and 6.3 consider two sources with a specific correlation structure,

we would like to consider more generalized source structures. For example, we would like

a blind algorithm for arbitrary correlation structures over an arbitrary number of sources.

Fortunately, the protocol presented can be naturally adapted to such sources just by mod-

ifying the contents of the feedback.

ENCODER

ENCODER

DECODER

Ŷ

X̂R
x,k

R
y,k

R
x,k+1

ACK/NAK,

R
y,k+1

ACK/NAK,

X

Y

X

Y

Figure 6.3. A block diagram for adaptation of our blind distributed source coding algorithm
to the general distributed source coding problem. During each cycle, the source is trans-
mitted at rate Rk over the forward channel. The decoder feeds back an acknowledgment
and a rate request, Rk+1, for the next cycle.

In the protocol presented in Section 6.2, the feedback consists of the acknowledgment

and the estimate of the source parameter, Q̂k. In our description of the protocol, there is

no specific reason the encoder needs this detailed information. We modify our proposed

protocol by altering the feedback to provide rate requests, Rk+1, instead of summary statis-

tics. This structure can be adapted to arbitrary correlation structures and for an arbitrary

number of sources. A block diagram for the 2 source scenario considered in Chapter 5 is
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given in Figure 6.3. Since the accuracy of the rate request can be to a constant precision,

the rate of feedback becomes negligible as the block length grows.

Second, we consider the assumption on the properties of the codes used from Sections 6.2

and 6.3. In those sections, three assumptions were made about the codes. First, we assume

that the codes used respond to every source sequence of equivalent type equivalently. Sec-

ond, we assume that the codes are capacity achieving. Finally, we assume that decoding

errors are perfectly detectable.

In order to implement this algorithm with practical codes, we use LDPC based codes

as introduced in Section 2.3 and used throughout this dissertation. These codes are a class

of powerful linear block codes that are capacity approaching. They are decoded using the

iterative sum-product algorithm, and that as the algorithm progresses it either converges to

a solution that satisfies the code’s constraints (most likely the maximum likelihood solution)

or fails to converge at all.

Though LDPC codes do not satisfy the three assumptions stated here, they have prop-

erties that allow them to perform approximately meet the assumptions quite well. Though

LDPC codes do not respond to all sequences of a particular type equivalently and are not

capacity achieving, they perform well in practice. We leverage this empirical performance

here knowing that we will pay a small rate penalty. Further, since LDPC based Slepian-

Wolf systems approach the minimal compression rate bound only for large block lengths, as

discussed in Chapters 3 and 5, extra redundancy is needed for the short block-lengths used

for the first few blocks of our protocol. Finally, we leverage the iterative decoder of LDPC

codes by setting a small number as the maximum number of iterations before a decoding

failure is declared. We can use these declared decoding failures as a strong approximation

of the exact error detection assumed in Section 6.2. As will be seen in Section 6.5, these

effects are minimal.

6.5 Results

In this section we present results from running our blind algorithm. In each of the

simulations, blocks of 100, 000 source symbols are generated according to a distribution.

The initial block-length is set to 100, and each successive block length equals the number of

bits sent thus far. As discussed below, we use a selection of 38 codes. Since not all rates are

available, some additional redundancy is introduced as rates are rounded up to the nearest
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available rate. The redundancy parameter εk is set to εk = 2.0/
√

ni−1 (arbitrarily, though

resulting in good performance).

For these experiments, we generate a finite set of LDPC codes from a selection of

LDPC degree distributions [70]. We use 38 different degree distributions (each both check

and variable irregular), with compression rates ranging from 0.025 to 0.95, with a spacing

of approximately 0.025 between codes. Most degree distributions are obtained from the

binary symmetric channel design section of the LTHC website [4]. The rest of the degree

distributions we use are designed using EXIT (extrinsic information transfer) charts [7],

though similar performance is seen by selecting codes from LTHC designed for other channel

models (such as the binary additive white Gaussian noise channel). Using these degree

distributions, the transform matrices are generated randomly, and then pruned to remove

short loops (of length 4 or less). For greater detail, see Appendix A

We begin by considering the simple 2 source scenario presented in Section 6.2 and shown

in Figure 6.1. We plot the results in Figure 6.4. In these plots the average cumulative

redundancy in percent (averaged over 25 simulations) is plotted versus cumulative block-

length, nk. Cumulative redundancy is defined as
∑k

j=1
[dj−H(Q)]lj

H(Q)nk
. The results of the system

are plotted for 2 different zi entropy rates: 0.1791 and 0.1944. As an example, to transmit

105 bits for a zi entropy H(Q) = 0.1791 bits required an average redundancy of 49%, or

8,875 bits more than the 17,912 bit minimum (26, 787 bits total). In these plots, as nk grows

the overall redundancy declines. To demonstrate consistency between simulations, we plot

one standard deviation error bars. In addition, for a zi of entropy 0.1791 (the other zi is

omitted for clarity, but is similar), a bound on the expected cumulative redundancy using

Equation (6.18) is also plotted, as well as the performance assuming full knowledge of the

source statistics (based on the results of [76]). Despite the limitations mentioned, and the

fact that our bound omits the cost of feedback, our results perform well in relation to our

bound.

For the next simulation, we consider a correlation structure requiring the rate request

structure of Section 6.4. Here, we retain the binary sum of zi to xi to obtain yi as depicted

in Equation (6.1). In contrast, we introduce Markov memory to zi. We now parameterize

the source as follows

p = Pr(zi = 1),

h0 = Pr(zi = 1|zi−1 = 0), and h1 = Pr(zi = 1|zi−1 = 1).

Greater discussion of this model can be found in Chapter 7.
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Figure 6.4. Averaged results (over 25 trials) of blind source coding with side information
of sources as modeled in Section 6.2. The horizontal axis is the number of cipher-text bits
considered, nk, in log-scale, and the vertical axis is the system redundancy (the percent
of bits used above the entropy rate). We present one standard deviation error bars to
demonstrate consistency. As the number of bits transmitted grows performance improves.
Note, the bound from Equation (6.18) plotted here excludes feedback costs. Ideally, we
would like to transmit at 0% redundancy (the entropy rate).

In Figure 6.5, we plot the results of the blind source compression with side informa-

tion of xi when zi has the Markov memory structure described here. We parameterize

zi as (p, h0, h1) = (0.3571, 0.1103, 0.8014). This results in a conditional entropy rate of

H(xi|yi) = 0.5787. On average, these simulations transmitted 80, 000 bits in 47, 951 bits, a

3.56% redundancy. For purpose of contrast, we also plot the redundancy of transmitting xi

uncompressed. As can be seen in Figure. 6.5, the blind transmission scheme here approaches

the entropy rate for correlated sources.

6.6 Conclusions & Open Problems

In this chapter we presented a protocol for blind distributed source coding. We analyzed

the protocol in the case of a simple correlation model and showed its convergence to the

case of full knowledge of the source statistics. We then discussed how to actually implement

this protocol, and demonstrated its practical performance.

Some issues stand out for future study. First, we would like to obtain a lower bound on
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Figure 6.5. Averaged results (over 25 trials) of blind source coding with side information
where the source model of Section 6.2 is altered such that the samples of zi exhibit Markov
memory. Similar to Figure 6.4, the horizontal axis is the number of cipher-text bits con-
sidered, nk, in log-scale, and the vertical axis is the system redundancy (the percent of
bits used above the entropy rate). As the number of bits transmitted grows performance
improves.

transmission redundancy to help establish the optimality of our scheme. Second, we would

like to implement the algorithm with other classes of codes and decoders. For example, the

linear programming LDPC Decoder [24] offers a guarantee of maximum likelihood decoding

or error detection offers promise.

Having developed the tools to perform practical distributed source coding throughout

the previous chapters, we now consider a practical application of these codes. We apply

these techniques to the compression of encrypted data to demonstrate how these codes can

be used to solve new problems.
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Chapter 7

The Compression of Encrypted

Data: A Framework for Encrypted

Simple Sources to Encrypted

Images

In this chapter, and the next, we switch our focus from generally applicable distributed

source codes to developing codes for the application of compressing encrypted data. In these

chapters, we consider sources characterized by statistical redundancy, such as images, that

have been encrypted uncompressed. Since encryption masks the source, traditional data

compression algorithms are rendered ineffective. However, as has been shown previously, the

compression of encrypted data is in fact possible through the use of distributed source-coding

techniques. This means that it is possible to reduce data size without requiring that the

data be compressed prior to encryption. Indeed, under some reasonable conditions, neither

security nor compression efficiency need be sacrificed when compression is performed on the

encrypted data (Johnson et al., 2004 [38]).

Building on this foundation, in this chapter we develop algorithms for the practical

lossless compression of encrypted data sources. We consider algorithms for a variety of

sources, ranging from independent and identically distributed to images. Our methods are

designed to leverage the statistical correlations of the source, even without direct access to
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their instantiations. As an example, we are able to compress a encrypted binary version

of the world map to 43% of its original size, giving a 57% rate savings. Traditional data

compression algorithms are unable to compress the encrypted image at all.

7.1 Introduction

Since good encryption makes a source look completely random, traditional algorithms

are unable to compress encrypted data. Typical systems therefore must compress before

they encrypt. However, Johnson et al. in [38] show that the compression of encrypted

data can be cast as a problem of source coding with side information [78]. It is further

shown in [38] that neither compression performance nor security need be lost under some

reasonable conditions. A block diagram of this system structure is presented in Figure 7.1.

In this figure, a length n source message, xn, is encrypted with, kn, to produce the cipher-

text, yn. The cipher-text is compressed into nR bits (R < 1) and the decoder makes a

source estimate, x̂n, based on the nR bits and kn.

DecompressionJoint
and Decryption

Reconstructed
Source

Encryption

Message
Source

Compression

Key, Kn

Yn X̂n

Xn
nR

Figure 7.1. The source is first encrypted and then compressed. The compressor does not
have access to the key used in the encryption step. The decoder jointly decompresses and
decrypts. The key serves as the decoder side information.

To better understand the problem framework, consider the image in Figure 7.2. In the

left-hand plot is a binary image of the world map. We refer to this as the plain-text since

it is unencrypted. Each of the 100 × 100 pixels in this frame takes a value of either 0 or

1, giving a raw images size of 10, 000 bits. The middle plot of the figure shows an image

of equal dimension to the first, but consisting of bits selected uniformly at random (i.e.,

independent and identically distributed (i.i.d.) Bernoulli-0.5 random variables). This image

is the stream cipher key. We encrypt the image by applying a bitwise exclusive-OR (XOR)

between the key bits and the source (this is an example of a “stream cipher,” and has the

same security properties as the Shannon one-time pad [77]). The resulting encrypted image
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shown in the right-hand plot is referred to as the cipher-text. The problem of compressing

the highly structured unencrypted image on the left has been extensively researched, and

many effective solutions exist. However, none of these can compress the marginally random

image on the right. The cipher-text, in isolation, is independent of the source, is itself a

Bernoulli-0.5 i.i.d. image, and is thus not compressible.

Figure 7.2. A sample 100 × 100 world map image is on the left (10, 000 bits total). To
encrypt this image, the 10, 000 bit random key in the center is added to the unencrypted
image on the left (using a bit-wise exclusive-OR).

While the plain-text and cipher-text are independent, the cipher-text can still be com-

pressed using techniques of source coding with side information. To understand why, note

that compression can be achieved by leveraging the dependence between the cipher-text, yn,

and the key, kn. This dependence can be understood by viewing the cipher-text as a noisy

version of the key stream. For example, if we know that the source has a low Hamming-

weight1, then the set of possible cipher-texts are clustered around the key sequence. Viewing

the key sequence as a noisy version of the cipher-text, we use a Slepian-Wolf decoding pro-

cess [78, 22] on the compressed bits to de-noise the key and uncompress the cipher-text.

The source estimate is produced by decrypting the uncompressed cipher-text.

In addition to establishing the connection between compression of encrypted data and

Slepian-Wolf coding, Johnson et al. [38] demonstrates a practical scheme for compressing

an encrypted i.i.d. source. This scheme is based on graphical codes, and draws from the

work presented in Chapter 3. However, the main target applications for these techniques

are in media coding, where the statistics of sources such as images are far from i.i.d.

In this chapter, we develop a framework for the compression of encrypted media sources.

Since we operate on encrypted data, the encoder has no access to the original (compressible)

source. Therefore, only the decoder can exploit source structure. The accuracy of the
1That is, it is mostly zeros and contains only a few ones. Though most data sources do not have low

Hamming-weight, we can leverage source redundancy to the same effect.
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statistical model used is thus essential to the resulting compression performance. Earlier

work [38] focuses on memoryless models and ignores any spatial and temporal dependencies.

Our contribution is to develop and implement a practical solution for compressing encrypted

media.

We consider the issues in compressing media sources. We introduce 1-D and 2-D models

which can leverage the spatial structure of images. We show how to exploit increased model

complexity for improved performance. We apply these models to both binary and gray scale

images, and we demonstrate that employing these models achieves greater compression than

the i.i.d. source model.

This chapter is organized as follows. In Section 7.2 we describe our framework for

compressing encrypted sources. Then, in Section 7.3 we develop statistical models and

provide experimental results. Finally, we provide concluding notes and open problems in

Section 7.4.

7.2 General Framework

In this section we present the framework of our design. We then specialize it to the

scenario of interest (stream-cipher encryption and compression using linear codes). We use

factor graphs [42] (discussed in greater detail in Section 2.3) to represent the statistical

relationships between quantities in our problem.

As a brief summary of the material in Section 2.3, we give a quick summary. Factor

graphs are bipartite graphs, consisting of two types of nodes: variable nodes (represented by

circles) and factor nodes (represented by rectangles or squares). Variable nodes are either

hidden quantities we wish to estimate (such as the plain-text) or observed quantities (such

as the key). Factor nodes represent constraints between subsets of variable nodes. The set

of variable nodes constrained by a particular factor are connected to the factor node by

edges. Factor graphs not only concisely represent the statistical structure of a statistical

inference problem, but also provide the basis for efficient inference algorithms.

The high-level factor graph for our problems is depicted in Figure 7.3. The left half

of the factor graph depicts the generative model (the mapping from source and key to the

compressed bits), while the right half is used by the decoder to estimate the source. The

generative model contains the mapping from the source2 xn and key kn through encryption
2We exclusively consider binary sources herein. This is not as restrictive an assumption as it may first
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into the cipher-text yn. The “encryption function” factor node constrains xn, kn and yn to

be compatible inputs and outputs of the encryption function. The generative model also

contains the code used to map the cipher-text yn into the syndrome3 sm. The compression

rate is m/n. The “code constraint” factor node constrains yn and sm to be compatible

inputs and outputs of the encoding function. The right-half of the factor graph is used by

the decoder to estimate the plain-text. It has as inputs the key kn and syndrome sm and as

internal variables the source and cipher-text estimates, x̂n and ŷn, that are the output of

the decoder. We now discuss how some of the high-level factor nodes of Figure 7.3 can be

further decomposed into more tractable low-level functions. We describe these factorizations

in terms of the variables on the right-hand decoding half of the graph, as it is in decoding

that these simplifications will be exploited.

������X̂1 X̂2 X̂3 X̂n

������Ŷ1 Ŷ3 ŶnŶ2

Encryption Function

Code Constraint

Source Model

Y1 Y2 Y3 Yn������

X1 X3 XnX2 ������

Encryption Function

Code Constraint

Source

��

��

��

1S

S2

Sm

K 2

K 1

K n

K 3

��

��

��

GENERATIVE MODEL
 & ENCODER DECODER

Figure 7.3. The abstracted model for compressing encrypted data. This model consists of
two parts. The first part, the generative model and encoder, describes how the raw source
data is first encrypted and then compressed. This part operates on the true source bits, xi,
the key bits, ki, the encrypted bits, yi, and the compressed bits, si. The second part, the
decoder, shows how the various components of the source are modeled at the decoder for
recovering an estimate of the original source. This part uses the same compressed bits, si,
and key bits ki, but works on an estimate of the encrypted bits, ŷi, and the source bits, x̂i.

appear. For instance, gray-scale image can be broken down into bit planes with the source variables indicating
the bit-plane pixel values.

3We refer to the compressed bits as a “syndrome” to make explicit the connection to distributed source
coding and to Chapter 3.
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7.2.1 Encryption Function

In this dissertation we consider stream-cipher encryption exclusively. Such encryption

is used in a variety of symmetric key encryption standards, and (under our assumption of

an i.i.d. Bernoulli-0.5 key) are Shannon-sense secure [77]. The structure of stream-ciphers

allows us to factor the larger encryption process into a set of bit-by-bit processes. The

cipher-text is computed as ŷi = x̂i ⊕ ki, where ŷi is the ith bit of the cipher-text estimate,

ki is the ith bit of the key, and ⊕ indicates addition mod-2 (XOR).

At decoding a parallel constraint must be enforced on ŷi, x̂i, and ki for every i. In

particular, these variables must sum to zero. We therefore split the large encryption factor

node into n low-level factor nodes. As depicted in Figure 7.4, the square node labeled fi

enforces the even parity.

������

������ Xn

Yn

K n
Y3

X3

K 3
Y2

X2

K 2

X1

Y1

K 1

^ ^ ^ ^

^^^^

ffff1 2 3 n

Figure 7.4. The graphical constraints imposed by stream-cipher encryption. The source
estimate x̂i, the key bit ki, and the cipher-text estimate ŷi must have even parity.

7.2.2 Code Constraint

We use a linear transform to compress the cipher-text. The syndrome is calculated as

sm = Hyn,

where H is an m × n binary matrix, and addition is performed modulo two. This is the

same technique used for compression in Section 3.2.

We choose a low-density parity-check (LDPC) code [26] as the linear transform. Further

discussion of the LDPC codes we use and how we modify then is provided in Section 2.3

and in our experimental descriptions in Section 7.3.4 respectively. See Chapters 3 and 5 for

a more extensive discussion of code design and the merits of using LDPC codes as a base.

The H matrix corresponding to a LDPC code is a sparse matrix, i.e., it has few ones

in any column or row. As detailed later, this choice makes efficient application of iterative
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message-passing inference possible. As with the encryption function, the “code constraint”

function node of Figure 7.3 can also be factored into local functional constraints, as shown

in Figure 7.5. In particular, H can be described by m local constraints, each corresponding

to a row of the H matrix. For example, say that there is a non-zero (i.e., unity) entry in

the ith column and jth row of H. Then in the factor graph we draw an edge connecting

the ith variable ŷi to the jth parity constraint gj . The sum of all ŷi connected to gj must

equal sj .

Y2 Y3Y1 Yn

������

SmS21S

^ ^ ^ ^

m21
g g g

Figure 7.5. The graphical model of the constraints imposed by using a LDPC code for
compression. All cipher-text estimate ŷi connected to the same parity-check gj must sum
to the syndrome value sj .

Here, we implicitly assume that the code provides sufficiently many compressed bits for

the decoder to recover the source. In practice the encoder needs to learn how many bits it

must supply. We discuss a relaxation to this assumption in Chapter 6.

7.2.3 Source and Source Model

Unlike the encryption and compression functions, where exact description of the imposed

constraints is possible, we cannot have exact knowledge of the underlying characteristics

of the general source. Instead, the decoder must use a model of the source. Thus, in

Figure 7.3 the left-hand side function is labeled “source” (as determined by nature) while

the corresponding function on the right-hand side is labeled “source model” (chosen by the

system designer). The compression rates our system can achieve depend strongly on the

quality of the model.

We first discuss the simple n-bit i.i.d. source model of Johnson et al. [38] for the “source

model” constraint. This is the same model discussed in Chapter 3. We defer the discussion

of more sophisticated models to Section 7.3 and Chapter 8. The i.i.d. model is represented
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in Figure 7.6. This graph consists of the n variable nodes corresponding to source bits

estimates, labeled x̂i, and the n function nodes corresponding to the source priors, labeled

Pi. The source prior Pi is the marginal probability that each bit equals one, denoted

p = Pr(x̂i = 1). For now, we assume the decoder is supplied with knowledge of p. We show

how to relax this assumption in Section 7.3.4.

P3

x̂3

P2

x̂2

P1

x̂1

Pn−1

x̂n−1

Pn

x̂n
...

Figure 7.6. The simple i.i.d. model considered in [38] and in Chapter 3. This model consists
of the source estimates x̂i and their priors.

7.2.4 Decoding Algorithm

We recover the plain-text source using the sum-product message passing decoding algo-

rithm. We give a brief summary of the algorithm. For greater depth, see Section 2.3.1. The

sum-product algorithm is an inference algorithm that works on the factor graph. When the

factor graph is a tree, the algorithm produces the correct variable estimates. It is not exact

when there are loops in the factor graph (such as in the code graph of Figure 7.5). Em-

pirically, however, its performance is quite good on average with reasonable computational

complexity (the number of calculations grows polynomially with the block length). This is

due both to code sparsity (thus its loops are typically quite long) and the slowly varying4

nature of the source.

The algorithm works by iteratively sending messages from node to node along the edges

of the factor graph. Each message pertains to a single variable node and represents the

algorithm’s current belief of whether its value is zero or one. Recall that all variables in

our system are binary. We thus use log-likelihood ratios log[(P (xi = 0))/P (x = 1)] to rep-

resent beliefs. By using this parameterization we only need to propagate scalar messages.

Incoming messages are fused together to produce updated beliefs. The sum-product algo-

rithm operates over the factor graph of Figure 7.3, with the simplifications developed in

Section 7.2.1–Section 7.2.3. As message passing iterations progress, statistical information

is disseminated across the graph. The algorithm continues until either a stopping condition
4For most models considered here, there is strong dependency between adjacent bits (with the exception

of the i.i.d. model). See Section 7.3 and Chapter 8.
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is met (e.g. if we compress our current best guess of ŷn and the result is sm) or a maximum

number of iterations is reached.

We now describe the rules used to fuse together incoming messages into refined beliefs at

each node. Messages coming into a variable node are added together to produce an updated

log-likelihood estimate of the value of the node. The rule for fusing messages incoming to

the ith parity constraint (gi) is nearly identical to the update rule for LDPC codes [70],

altering the sign as dictated by sj . In addition gi’s fusion rule takes into account the value

of the ith syndrome. See Section 3.4.1 for examples of the specific form of the update

rules. The update rule for encryption function nodes (fi) is simple: flip the sign of the log

likelihood ratio if the key bit is 1,

µfi,x̂i
= (−1)kiνŷi,fi .

The message update rules for the specific source models we implement are discussed in

Section 7.3 and Chapter 8.

In this section we have made specific choices for the code and encryption constraints

of Figure 7.3. We chose these particular structures for their practical strengths, since they

interact well together in sum-product algorithm. Other choices could be made for these

constraints, but may result in significantly increased computational complexity. In the

following section, we discuss various aspects of the source constraint.

7.3 From Compression of Encrypted Simple Sources to En-

crypted Images

We now focus on the issue of source modeling. In this section, we consider source models

of complexity greater than the i.i.d. source model from Section 7.2.3. Each source model is

intended for use with the factor graph of Figure 7.3, is described in terms of the decoder

half (right-hand side) of Figure 7.3, and is of increasing complexity with better compression

performance. Since we focus on bit-wise stream ciphers in Section 7.2.1, each of our models

is also bit based. As we describe each model, we illustrate them using factor graphs. We

omit discussion of blind transmission for clarity.
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7.3.1 1-D Markov Model

The first extension of the i.i.d. model we consider is Markov memory between successive

bits. The factor graph of our 1-D Markov model is shown in Figure 7.7. In this figure, we

again consider the n bits, labeled x̂i, and the source priors, labeled Pi. Additionally, we now

consider the correlation between consecutive bits, shown as the constraints labeled Mi. The

correlation constraints represent the Markov state transitions. In addition to parameterizing

the source priors with the marginal probability p = Pr(x̂i = 1), we now also parameterize the

Markov correlation constraints. Assuming these correlations to be equivalent both forwards

and backwards, we denote these correlations h0 = Pr(x̂i = 1|x̂i−1 = 0) = Pr(x̂i = 1|x̂i+1 = 0)

and h1 = Pr(x̂i = 1|x̂i−1 = 1) = Pr(x̂i = 1|x̂i+1 = 1).

Pn−1

n−1x

Pn

nxMn−1 Mn1x

P1 P2

2x 3x

P3

M2 M3 ...ν µ^ ^ ^ ^ ^

Figure 7.7. The 1-D source model. This model consists of bits (circles), source priors
(squares below the bits) and correlation constraints (squares between the bits). In addition,
message labels, µ and ν, are presented.

7.3.2 2-D Markov Model

In order to incorporate the spatial correlations of sources such as images, we introduce

a 2-D Markov model5. We consider the n bits as arranged according to a grid, with Nv rows

and Nh columns (Nv×Nh = n). In addition to the source prior, we consider the correlation

between each pixel x̂i,j and its 4 nearest neighbors; up & down, left & right. A section

of the corresponding factor graph is illustrated in Figure 7.8. Besides the circles labeled

x̂i,j (i ∈ {1, . . . , Nh} and j ∈ {1, . . . , Nv}) representing the bits and the squares labeled

Pi,j representing the source priors, the constraints labeled Mh
i,j represent the horizontal

correlations while the those labeled Mv
i,j represent the vertical correlations.

As with the other models, the prior probability on each bit is denoted p = Pr(x̂i,j = 1).

For the 2-D model, we denote the horizontal correlation parameters as h0 = Pr(x̂i,j =

1|x̂i,j−1 = 0) = Pr(x̂i,j = 1|x̂i,j+1 = 0) and h1 = Pr(x̂i,j = 1|x̂i,j−1 = 1) = Pr(x̂i,j =

5The constructions of [82, 65], developed concurrently, are related but consider an image and a noisy
version of the same image. Since neither the key nor the cipher-text are images here, their constructions do
not directly apply.
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Figure 7.8. A section of the 2-D source model. This model includes the source bits (circles)
and both horizontal correlations, Mh

i,j , and vertical correlations, Mv
i,j .

1|x̂i,j+1 = 1). We further denote the vertical correlation parameters as v0 = Pr(x̂i,j =

1|x̂i−1,j = 0) = Pr(x̂i,j = 1|x̂i+1,j = 0) and v1 = Pr(x̂i,j = 1|x̂i−1,j = 1) = Pr(x̂i,j =

1|x̂i+1,j = 1) for the 2-D model.

7.3.3 Message Passing Rules

Incorporating the models above into the general framework of Figure 7.3 is straightfor-

ward. In this section, we give the form of the additional message update rules necessary that

were not covered in either Section 7.2.4 or Section 2.3.1. There are two additional types of

nodes considered here; the source prior and the correlation constraints. Since each source

prior is a terminal node, its messages are constant across iterations and is the log-likelihood

ratio of the bit according to the prior, p.

As a representative example, we write the update rule for the 1-D message (Figure 7.7)

from M2 to x̂2 (labeled µ) based on the message from x̂1 to M2 (labeled ν). All other

correlation constraint message updates (messages in the alternate direction as well the
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messages update rules for Mh
i,j and Mv

i,j) are identical in form. Recall the parameters for

M2 here; h0 = Pr(x̂i = 1|x̂i−1 = 0) and h1 = Pr(x̂i = 1|x̂i−1 = 1). The update equation is

given below,

µ = log
(

(2− h0 − h1) + (h1 − h0) tanh (ν/2)
(h0 + h1) + (h0 − h1) tanh (ν/2)

)
. (7.1)

M2 thus converts the estimate of x̂1 to an estimate of x̂2, based on the correlation between

x̂1 and x̂2.

7.3.4 Doping

As mentioned in Section 7.2.2, the codes used to compress these encrypted sources are

modified forms of LDPC codes. The code consists of bits calculated using a sparse linear

transformation (based on an LDPC matrix) and a portion of the encrypted bits transmitted

uncompressed. We refer to these uncompressed bits as “doped” bits. In practice, the doped

bits range from 30% to 50% of the total output compressed bits (see Section 7.3.5 for sample

empirical results). We use these bits in two ways6.

First, since doped bits are known unambiguously at the decoder they anchor the itera-

tive decoder and initiate the decoding process. Without these bits as a catalyst, decoding

fails. Decoding fails since marginally each source bit is roughly uniform, and thus the

log likelihood ratios lack bias. This aspect of their use is similar to their use in the dis-

tributed source coding scheme of Markov sources in Garćıa-Fŕıas & Zhong [34] and fountain

codes [51].

Second, they additionally provide a mechanism to estimate the statistics of the en-

crypted data. As mentioned in Section 7.2.4, we assume that the decoder knows the source

statistics. Using doped bits, we can eliminate this assumption. By selecting an appropriate

subset of the source to send as doped bits, the decoder develops estimates of the source

parameters (p, h0, etc.). For example, with Markov source models we dope adjacent bits

for parameter estimation. In this work, we dope bits uniformly at random. Study of more

structured doping schemes is an open problem. For instance, it may be that doping bits

according to variable node degree of the compression code results in better sum-product

algorithm performance.

Though we refer to these bits specifically, they could be incorporated into the code’s

degree distribution. Each bit transmitted doped is equivalent to adding a degree 1 check
6Though not a part of this discussion, one additional use of these “doped” bits would be in initialization

of the blind transmission protocol of Chapter 6.

95



node to the sparse linear transform. A study of code design techniques [70] incorporating

doped bits is an open problem.

7.3.5 Experimental Results

We use an example to demonstrate the compression results. Consider the image in

Figure 7.9, reprinted from Figure 7.2. We encrypt this binary world map image (10, 000

bits) and decompress it using the various idealized source models. Note that for the 1-

D Markov model, we use a raster scan (north to south, than east to west) of the image.

Through a sequence of trials, we determine the minimum rate we can compress the encrypted

image to and still recover the original source exactly and then present that rate here.

For these experiments, we generate a finite set of LDPC codes from a selection of

LDPC degree distributions [70]. We use 38 different degree distributions (each both check

and variable irregular), with compression rates ranging from 0.025 to 0.95, with a spacing

of approximately 0.025 between codes. Most degree distributions are obtained from the

binary symmetric channel design section of the LTHC website [4]. The rest of the degree

distributions we use are designed using EXIT (extrinsic information transfer) charts [7],

though similar performance is seen by selecting codes from LTHC designed for other channel

models (such as the binary additive white Gaussian noise channel). Using these degree

distributions, the transform matrices are generated randomly, and then pruned to remove

short loops (of length 4 or less). For greater detail, see Appendix A.

Figure 7.9. A sample 100× 100 world map image (also shown in Figure 7.2) is on the left
(10, 000 bits total). To encrypt this image, the 10, 000 bit random key in the center is added
to the unencrypted image on the left (using a bit-wise exclusive-OR).

Our first attempt to decompress the world map uses the i.i.d. model. Based on the

doped bits we measure this image, under an i.i.d. source model, to have parameter (p)

= (0.38) and thus entropy of about 0.9580 bits. In practice, we are unable recover the
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source no matter what code rate we use to compress the encrypted image. Using the 1-D

model, we estimate (p, h0, h1) = (0.3738, 0.0399, 0.9331), and the encrypted image could be

compressed to 7, 710 bits. In that simulation, the image was reconstructed in 27 iterations7.

Finally, we compress the encrypted world map image to 4, 299 bits using the 2-D model, of

which 2, 019 are doped bits. The decoder empirically estimates (p, h0, h1, v0, v1) = (0.3935,

0.0594, 0.9132, 0.0420, 0.9295) and then reconstructs the original image using 81 iterations.

The compressed bits and the reconstruction are presented in Figure 7.10.

COMPRESSION
RATE = 0.77

DECODE
& DECRYPT

DECODE
& DECRYPT

COMPRESSION
RATE = 0.43

Figure 7.10. A comparison of the compressed bits and reconstructed image using the 1-D
Markov model and the 2-D Markov model. The 1-D model compressed the encrypted data
to 7, 710 bits. This is 3, 411 bits more than the 4, 299 bits used for the 2-D model. The i.i.d
model could not compress the encrypted image at all.

To demonstrate the effects of the source model on decoding, we present the estimates of

the 1-D and 2-D decoders at three iterations in Figure 7.11. The influence of the 1-D source

model on decoder estimates in the estimates convergence along north-south lines. When the

2-D source model is used in contrast, the estimates converge in “clumped” regions seeded

by the doped bits that grow from iteration to iteration.
7Note that we did not study the effect of the model on the number of iterations required to decode.

Empirical results tended to show that a minimal number of iterations are required unless the code rate is
close to the minimum.
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1−D

2−D

Figure 7.11. A comparison of the intermediate estimates at the decoder. The estimates
from the 1-D Markov model are on the top row, while estimates from the 2-D model are on
the bottom row. The estimates from the 1-D model exhibit convergence along north-south
lines. In contrast, the 2-D model decoder exhibits a localized clumping nature.

7.3.6 Gray Scale Images

We discuss the challenges posed by gray-scale images whose pixel values range from 0

to 255. As with the 2-D model, pixels are assumed to lie on a grid with Nv rows and Nh

columns. We use a bit plane decomposition of each pixel, with 8 bits per pixel. The bit

planes range from most to least significant. Due to the bitwise focus of this model, we find

it convenient to consider each bit plane separately, modeling each with the factor graph of

Figure 7.8.

In contrast to the bit plane model, we could use a pixel based model. As an advantage,

this would allow us to consider every bit plane. Unfortunately, this would also result in

a drastic increase in decoding complexity since the computational complexity of the sum-

product algorithm is proportional to the variable alphabet size. Developing the algorithm

to operate efficiently with pixel based operations is an open problem.

The 1-D and 2-D models provide significant improvements over the i.i.d. model when

considering binary images. These models are very simple in contrast with what is used

in unencrypted gray-scale image coding. Unfortunately, this extension of the idealized
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models from above for “real world” gray-scale images proves difficult. In practice we find

only significant exploitable correlation gains for the two most significant bit planes. Even

exploiting inter-bit plane correlations (as discussed in Chapter 8) provides no significant

additional gain.

Two of the most common techniques used for compression of unencrypted gray scale im-

ages are inapplicable in compressing encrypted images. The first method is the application

of transforms, such as the DCT (Discrete Cosine Transform). As can be seen in Figure 7.12

though, bitwise encryption of gray scale images is a non-linear operation. Therefore the

transform of the encrypted image lacks the exploitable structure of the transform of the

unencrypted image. The second method is the use of localized predictors. Without access

to the local unencrypted context available to compressors of unencrypted images though,

localized predictors fail. In contrast, due to the high temporal correlation that is present,

video offers greater opportunity for compression. We consider the compression of encrypted

video in Chapter 8.

Figure 7.12. A sample image, “Foreman,” is shown on the left (811, 008 bits total). To
encrypt this image, the 811, 008 bit random key in the center is added to the unencrypted
image (using a bitwise exclusive-OR). Many classical methods exist to compress the “Fore-
man” image. These methods use techniques such as transform based methods and localized
predictors. Unfortunately, due to the nonlinear effects of bitwise encryption, none of the
classical methods or techniques will successfully compress the encrypted image.

7.4 Conclusions & Open Problems

In this chapter we presented a practical scheme for compressing encrypted data. We

first describe a general framework, and develop this framework for LDPC based codes and

stream ciphers. We propose idealized i.i.d., 1-D, and 2-D Markov models for compressing

encrypted images, and give an example of their benefit.

The work presented herein is a proof of concept. It suggests a number of areas for further
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study. First, the study of other models for data could provide even stronger compression

performance. For example, in nature correlation between image pixels is not limited simply

to adjacent pixels. Incorporation of a greater number of relationships in the model could

improve system performance, though these gains would be balanced by increased model

complexity.

Another area of study is in the structure of the “doped” bits. We would like to study

a systematic method for selecting which bits to dope. Some questions related to bit doping

immediately arise from the work presented in this chapter. The first question is to consider

what proportion of bits should be doped. Second, we would like to study structured bits

doping schemes. It seems likely that doping based on the code structure could result in

better performance. Finally, we would like to incorporate the open problem of code design

presented in Section 4.5 into this study.

A final area of future work suggested by this chapter is in the study of the compression

of other encrypted “real world” sources. Sources such as text, audio, and video. In the

following chapter, we present such a scheme for compressing encrypted video sequences.
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Chapter 8

Compression of Encrypted Video

In this chapter, we build on the framework presented in Chapter 7 to develop a scheme

for compressing encrypted video. Encryption masks the source, thereby rendering tradi-

tional compression algorithms ineffective. However, by conceiving of the problem as one of

distributed source coding it is shown in (Johnson et al., 2004) that encrypted data is as

compressible as unencrypted data. However, as discussed throughout this thesis, there are

a number of challenges to implementing these theoretical results. In this chapter we tackle

some of the major impediments.

To achieve compression, it is crucial that our models are well-matched to the underlying

source and are compatible with our compression techniques. In this chapter, we develop

models for video. For video, we compare our performance to a state-of-the-art motion-

compensated lossless video encoder that requires unencrypted video as input. It compresses

each unencrypted frame of the “Foreman” test video sequence by about 59% on average. In

comparison, our proof-of-concept implementation that works on encrypted data compresses

the same sequence by about 33%. Because the source is masked, the encoder cannot know

the target rate a priori. We incorporate the rate adaptive protocol of Chapter 6 into our

compression of encrypted video solution to address this problem.

8.1 Introduction

Encryption masks digital content so that it appears completely random. This renders

traditional compression algorithms ineffective. Best practices therefore dictate that content
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must be compressed before it is encrypted. Unfortunately best practices in compression

and security cannot always be assumed. There are prominent examples where raw digital

content is encrypted without first being compressed. For example, this is the case in the

High-Bandwidth Digital Content Protection (HDCP) protocol [86]. This motivates the

search for novel compression routines that operate on uncompressed, encrypted data.

As a motivating application, consider the delivery of high-definition video content over

home wireless networks. On one hand are content providers who have strict security and pri-

vacy requirements. To meet these requirements while maintaining the highest quality video,

content providers often encrypt their raw (uncompressed) content prior to distribution. For

example, the afore mentioned HDCP standard requires the encryption of raw video content.

On the other hand are wireless infrastructure companies. In wireless networks, transport

capacity is limited, and the data rates of raw high-definition video will overwhelm many

communication links. This limits the potential for such systems. By building a prototype

system, this chapter illuminates a solution that can enable the successful development of

these systems.

8.1.1 High-Level System Description and Prior Work

To illustrate the system architecture, consider the encryption process depicted in Fig-

ure 8.1. In the left-hand plot is a frame from the standard “Foreman” test video sequence.

This “plain-text” image is unencrypted. Each of the 288 × 352 pixels in this frame takes

an integer value in the range 0 to 255. The resulting size of each raw frame is 811, 008 bits.

The middle plot of the figure shows an image of equal dimension to the first, but consisting

of bits selected uniformly at random (an independent and identically distributed (i.i.d.)

Bernoulli-0.5 sequence). This is an example of a “stream-cipher.” We encrypt the image by

applying a bitwise exclusive-OR (XOR) between each key bit and the corresponding plain-

text bit. Under this assumption such a “one-time pad” system offers perfect security [77].

The resulting encrypted “cipher-text” is shown in the right-hand plot. Compression of the

highly structured plain-text image has been studied for decades. However, as discussed in

Chapter 7, none of these techniques can be used to successfully compress the marginally

random cipher-text. The cipher-text, independent of the source, is a Bernoulli-0.5 i.i.d.

image and is therefore not individually compressible.

As discussed in Chapter 7, while the plain-text and cipher-text are independent the

cipher-text and stream-cipher are not. This is the crucial insight. Since the stream-cipher
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Figure 8.1. A sample frame from the standard “Foreman” video test sequence is shown
on the left (811, 008 bits total). To encrypt this frame, the 811, 008 bit random key in the
center is added to the unencrypted image (using a bitwise exclusive-OR). Although many
classical methods exist to compress the “Foreman” video sequence, none will successfully
compress the encrypted video.

is known to the decoder, compression is possible by leveraging the dependence between

cipher-text and stream-cipher. The compression and reconstruction/decryption process

can be understood by viewing the cipher-text as a noisy version of the stream-cipher.

We compress the cipher-text by calculating a number of parity constraints of the cipher-

text. These are mod-2 sums of various subsets of the cipher-text bits. The resulting sums

are the compressed bits, which we refer to as the “syndrome” of the cipher-text (as discussed

in Chapter 7). The joint decompresser and decrypter combines the key sequence and the

syndrome to find the source sequence closest to the key sequence that also satisfies the

parity constraints. This search is identical to the decoding process of an error-correcting

code. By choosing the parity-constraints appropriately the cipher-text can be recovered

with high probability. Adding the key sequence to the reconstructed cipher-text yields the

plain-text, assuming decoding success.

A simplified block-diagram of the system is depicted in Figure 8.2 (a repeat of the block

diagram introduced in Figure 7.1). The length n plain-text source xn is encrypted with

the stream-cipher kn to produce the cipher-text yn. The cipher-text is compressed into

the nR (R < 1) bits of the syndrome. The decoder makes its source estimate x̂n based

on the syndrome and the stream-cipher kn. In standard Slepian-Wolf terminology the key

sequence is the “side-information” available to the decoder.

In the previous chapter, we discussed a framework for compressing encrypted sources,

ranging from simple source to images. However, we foresee the main applications of these

ideas to lie in sources such as video. The HDCP motivating example above underscores
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Figure 8.2. The source is first encrypted and then compressed. The compressor does not
have access to the key used in the encryption step. The decoder jointly decompresses and
decrypts. The key serves as the decoder side information.

video as an important focus. Unfortunately, for video sources, the models discussed in

Chapter 7 poorly capture the source characteristics.

8.1.2 Main Results & Outline

Although we demonstrate improvements on images in Chapter 7, when applying the

lessons learned to video content our techniques really gain traction. In this chapter, we

show that in contrast to images, encrypted video is better matched to our techniques and

is an application in much greater need of such a solution. Operating on a frame by frame

basis, video offers the decoder the opportunity to combine intra-frame spatial statistical

models with predictive temporal models. We present a proof-of-concept implementation

and evaluate its performance on standard video sequences. Finally, we incorporate the

feedback ideas to give a fully operational system for blind compression of encrypted video.

This chapter is organized as follows. Section 8.2 provides a model to incorporate in the

framework of Chapter 7 for compressing encrypted video. In Section 8.3 we discuss the

decoding algorithm for encrypted video. Section 8.4 provides the results of compressing en-

crypted video, and compares the results to other leading lossless video codecs. In Section 8.5,

we discuss how to incorporate the blind protocol of Chapter 6 and provide compression re-

sults. Finally, we provide concluding notes and open problems in Section 8.6.
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8.2 Source Model

In this section, we consider a model for video sequences. Encrypted video supports a

larger opportunity for compression than still images, due to the availability of temporal

correlations in addition to spatial correlations. Presuming frame by frame compression

and decompression in our scheme, the decoder has access to temporal (as opposed to just

spatial) predictors. In this section, we consider videos composed of sequences of gray scale

images. Since we consider bitwise stream ciphers Section 7.2, we develop a bitwise source

model for video sources. We then proceed to describe adaptations made to the decoder and

finally present practical results (including blind simulations). Note that we describe our

model in terms of the joint decoder from the framework presented in Section 7.2.

We base our model for video on a succession of the 2-D Markov model considered in

Section 7.3.2, one for each bit plane. We begin by relabeling each bit from Figure 8.3

(reprinting Figure 7.8) as x̂ t
i,j [l] to represent the lth most significant bit of the pixel at row

i and column j of frame t. A dropped index implies that we are considering the entire

range over that index. For example, x̂ t[l] represents the entire lth bit plane of the frame t,

while x̂ t represents the entire frame at time t with elements ranging from 0 to 255 (since

we include every bit plane).

We begin description of our temporal prediction scheme with a high level enumeration

of the steps involved.

1. Generate frame predictors x̃ t and x̃ t−1 based on motion extrapolation from previously

decoded frames x̂ t−1, x̂ t−2, and x̂ t−3. Using motion extrapolation function g(·, ·), we

denote this as follows

x̃ t = g(x̂ t−1, x̂ t−2), and x̃ t−1 = g(x̂ t−2, x̂ t−3).

2. Having frame predictors, the next step is to estimate their quality. We generate

an estimated distribution, P̃ (x̂ t, x̃ t), based on the empirical distribution of the prior

decoded frame and it’s predictor. We denote this as follows

P̃ (x̂ t, x̃ t) ≈ P (x̂ t−1, x̃ t−1).

3. Finally, we condition the current frame bit plane model, x t[l], using the estimated dis-

tribution, P̃ (x̂ t, x̃ t), the predictor, x̃ t, and the prior decoded bit planes, x̂ t[1] through

x̂ t[l − 1].
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Figure 8.3. A reprint of Figure 7.8. A section of the 2-D source model. This model includes
the source bits (circles) and both horizontal correlations, Mh

i,j , and vertical correlations,
Mv

i,j . We apply this model to each bit plane of each frame of the video sequences.

We now discuss our temporal prediction approach in detail, diagramed in Figure 8.4

and Figure 8.5. Figure 8.4 shows what information is fed to the decoder for the frame

at time t. We assume our system works on one frame at a time, and that the previous

frames were decoded exactly. This allows our decoder to have a full copy of the exact

previous frames available, and thus it is able to exploit temporal correlations. We operate

by having a predictor generated of each frame based on the two previous frames. That is,

given that the previous two frames, x̂ t−2 and x̂ t−1, are decoded successfully, we generate

a predictor, x̃ t = g(x̂ t−1, x̂ t−2), such that this function is represented by the “Predictor”

boxes in Figure 8.4.

In this work, we implement a simple predictor operating across the bit planes that

uses motion compensation together with motion extrapolation to generate x̃ t, illustrated

in Figure 8.5. In our scheme, we use the exact motion relationship between frames x̂ t−2

and x̂ t−1 to extrapolate the motion between frames x̂ t−1 and x̂ t. We divide x̂ t−1 into sub-

blocks of N × N pixels (N = 8 in this work), and for each block, we perform motion
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Figure 8.4. A diagram of the way by which information is generated and fed to the decoder
for each frame. Here, predicted frames are developed from the two previous frames. A
measure of the predictor’s accuracy is generated by measuring the accuracy of the previous
frame’s predictor. This gives the decoder sufficient assistance to recover the frame with the
standard joint decompresser and decrypter discussed in Chapter 7.

estimation to find the best matching block in x̂ t−2. In other words, for the (a, b) block, with

a ∈ 1, 2, ..., Nv/N and b ∈ 1, 2, ..., Nh/N , we find (vx(a, b), vy(a, b)) such that:

(vx(a, b), vy(a, b)) = arg min
(vx,vy)∈N

N−1∑

i=0

N−1∑

j=0

d
(
x̂ t−1
aN+i,bN+j , x̂

t−2
aN+i+vy ,bN+j+vx

)

where N denotes the allowable search range, and d(·, ·) is a metric that measures the

difference between two pixel intensities. Here, we simply use the square difference, i.e.

d(α, β) = |α− β|2. Assuming that there is little change in the motion fields over one frame

instance, we estimate the motion vector for each block in x̂ t as the motion vector of the

co-located block in x̂ t−1. Therefore, if (vx, vy) is the motion vector of the (a, b) block of

x̂ t−1, the (a, b) block in x̃ t is then given by:

x̃ t
aN+i,bN+j = x̂ t−1

aN+i+vy,bN+j+vx
, ∀ 0 ≤ i, j ≤ N − 1.

A more sophisticated predictor could lead to a better x̃ t and hence a better model perfor-

mance, but this implementation suffices here.

It is clear that the predicted frame x̃ t can be useful for understanding the actual frame

x̂ t. To make use of the predictor though, we must model how accurate of a predictor it is.

We do this by considering the empirical distribution P (x̂ t−1, x̃ t−1) of the previous frames

and their predictors, as done in Chapter 6. These distributions are calculated on a pixel

level since the distribution for individual bit planes can be determined as a function of the

pixel level distribution. That is, we estimate the joint distribution of our current frame and

its predictor as P̃ (x̂ t, x̃ t) ≈ P (x̂ t−1, x̃ t−1). In Figure 8.4, we represent this function with

the box labeled “P(Decoded,Predicted).” In practice, when calculating the histogram for

107



Frame t (predicted)

(vx,vy) (vx,vy)

Frame t−2 (decoded) Frame t−1 (decoded)

Copy
block

Motion
search

Figure 8.5. Predictor generation using motion compensation and motion extrapolation.
Frames x̂ t−2 and x̂ t−1 are available after having been previously decoded. For each block
in frame x̂ t−1, motion estimation is performed to find the best matching block in frame
x̂ t−2. In the above example, the best predictor for the block with thickened edges in x̂ t−1

is the lightly thickened box in x̂ t−2, shown with its corresponding motion vector (vx, vy).
We estimate the motion vector for each block in frame x̂ t with that of its co-located block
in frame x̂ t−1. Its predictor is then indicated by the estimated motion vector. Here, the
predictor for the block with thickened edges in x̂ t is the lightly thickened box in x̂ t−1, as
pointed to by the motion vector (vx, vy).

the previous frame and its predictor, we add it to the histogram (though with its counts

divided by 2 to act as a forgetting factor) used for decoding the prior frame. This results

in greater stability in the estimate for the distribution between the predicted and actual

frames. We omit this from Figure 8.4 for clarity.

We consider one final source of side information for the decoder (as mentioned in Sec-

tion 7.3.6). Since we process the frame with a single bit plane at a time, we further assume

that they are processed in order of most significant to least significant. Consider adjacent

pixels xt
i,j = 127 and xt

i,j+1 = 128. If we consider only the bitwise expansion of these two

pixels, we see that they differ at every bit plane. Looking at each bit plane in isolation, the

strong similarity between these two pixels is missed. Conversely, by considering each bit

plane in context of the bit planes of greater significance when using P̃ (x̂ t, x̃ t), we are able

to exploit more relevant correlations between bits.

The overall model consists of a predicted frame x̃ t based on the two previous frames and

an empirical distribution P̃ (x̂ t, x̃ t) based on the previous frame and its predictor. We use

all this information available to alter the parameters (p, h0, h1, v0, v1). We no longer assume
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them to be stationary; instead we make them dependent upon their context as follows

p(x t
i,j [l]|x̂ t

i,j , x
t
i,j [1], . . . , x t

i,j [l − 1]),

h0(x t
i,j [l]|x̂ t

i,j , x
t
i,j [1], . . . , x t

i,j [l − 1]),

h1(x t
i,j [l]|x̂ t

i,j , x
t
i,j [1], . . . , x t

i,j [l − 1]),

v0(x t
i,j [l]|x̂ t

i,j , x
t
i,j [1], . . . , x t

i,j [l − 1]),

v1(x t
i,j [l]|x̂ t

i,j , x
t
i,j [1], . . . , x t

i,j [l − 1]).

Specifically, we calculate each of these parameters using the marginalized empirical distri-

bution P̃ (x̂ t, x̃ t) conditioned as above.

8.3 Message Passing Rules

When belief propagation is run for each bit plane over the graph model considered here,

the operation of the constraints is similar to the operation discussed in Section 7.3.3. Since

each source constraint, labeled P t
i,j [l], is a terminal node, it transmits its log likelihood

ratio calculated using the marginal probability p(x t
i,j [l]|x̂ t

i,j , x t
i,j [1], . . ., x t

i,j [l − 1]). For

the correlation nodes, labeled Mh,t
i,j [l] and Mv,t

i,j [l], message update rules are of the form

in Equation (8.1) (reprinting Equation (7.1)) but modified for the correlation parameters

above

µ = log
(

(2− h0 − h1) + (h1 − h0) tanh (ν/2)
(h0 + h1) + (h0 − h1) tanh (ν/2)

)
. (8.1)

The rest of the messages passed throughout the compression of encrypted data framework

are identical to those discussed in Chapter 7.

8.4 Experimental Results

We evaluate our technique on the standard “Foreman,” “Garden,” and “Football” video

test sequences1. Respectively, these are low-motion, high-motion, and high-motion se-

quences. We compress 12 encrypted frames (i.e., a group of pictures (GOP) size of 12)

of these test sequences. In this group, we only compress the last nine frames (frames 4

through 12). As mentioned above, the first three frames are used to initialize the predic-

tors. With a larger GOP size, the rate effect of the three uncompressed frames diminishes.

Further, for ease of implementation, we divide each frame into 9 regions (arranged 3 × 3)
1These sequences are used to establish benchmarks for video coding schemes throughout the video coding

community.
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as a grid. Each region, having 1/9 of the pixels, has on the order of ∼ 104 pixels (and each

bit plane has approximately ∼ 104 bits). Better performance is likely by considering each

frame as a whole.

For these experiments, we generate a finite set of LDPC codes from a selection of

LDPC degree distributions [70]. We use 38 different degree distributions (each both check

and variable irregular), with compression rates ranging from 0.025 to 0.95, with a spacing

of approximately 0.025 between codes. Most degree distributions are obtained from the

binary symmetric channel design section of the LTHC website [4]. The rest of the degree

distributions we use are designed using EXIT (extrinsic information transfer) charts [7],

though similar performance is seen by selecting codes from LTHC designed for other channel

models (such as the binary additive white Gaussian noise channel). Using these degree

distributions, the transform matrices are generated randomly, and then pruned to remove

short loops (of length 4 or less). For greater detail, see Appendix A.

As with the image results from Chapter 7, through a sequence of trials we determine the

minimum rate we can compress the encrypted sections to and still recover the original source

exactly. We aggregate the total number of “transmitted bits” and present the resulting rate

here. The results of an automated system are presented in Section 8.5.

As in Section 7.3, we use doping to initiate the decoding process. In contrast to the

models of Section 7.3 though, only 5% to 10% of the total output compressed bits are doped

bits here. The reduced need for doped bits is due to the strength of the predictors used.

Since the prior frames provide significant bias for the decoder, additional doped bits are

unnecessary.

Our overall results are presented in Table 8.4. The numbers in this table represent the

average compression ratio in terms of the number of output bits per source bit. For example,

the number 0.6700 in the upper right most cell of the table indicates that on average, only

0.6700 output bits were necessary to represent each bit of the source video. As a reminder,

this number applies only to the last 9 frames in our group of pictures, ignoring the first 3

frames of the video for initialization as in Figure 8.4. As can be seen in this chart, although

we cannot perform as well as we would have on unencrypted data, significant compression

gains can still be achieved. Further, we can see the effect of the predictor on performance, as

performance is far better for the low motion “Foreman” sequence. The “Foreman” sequence

has better predictor frames than the other sequences, which have large deviations between

predicted and actual frames.
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Frames 4 - 12 JPEG-LS MSU lossless Encrypted
Foreman 0.4904 0.4113 0.6700
Garden 0.7320 0.5908 0.8236
Football 0.6700 0.5956 0.9283

Table 8.1. Comparison of results for the compression of three encrypted sequences compared
to results of traditional encoders compressing the unencrypted sequences. Despite operating
on encrypted data, the proposed approach performs well.

For purposes of comparison, we also compress the videos losslessly using publicly avail-

able software. The first system uses JPEG-LS [84] to perform pure intra-frame video com-

pression. JPEG-LS not only has low encoding complexity, but also demonstrates exceptional

compression performance relative to other lossless image coding standards [72]. In our study,

we compress each video frame with the publicly available JPEG-LS coder [37]. The sec-

ond system, MSU lossless video codec [57], is a publicly available lossless inter-frame video

codec, which is claimed by its authors to have the highest lossless video compression perfor-

mance [58]. Due to its proprietary nature, the details of their video codec are not known.

However, its performance does seem to be comparable to past results in the literature that

used either fixed spatio-temporal predictor [9] or motion compensation [53].

As an example of the operations performed for a particular frame, consider Figure 8.6.

This figure demonstrates everything that goes into the decompression of frame 4 (except

the encryption key, omitted for clarity). Here we see that the encoder has access to only

the encrypted version of frame 3. In contrast, the decoder is given the predicted frame 4,

the probability model estimating the reliability of the predicted frame, and the compressed

bits. In this example, the frame is recovered without error.

In Figure 8.7 and Figure 8.8, we present more detailed results from compressing the

encrypted “Foreman” sequence. The vertical axis of these plots represent the compression

ratio presented earlier (output bits per source bit). In the plot on the left (Figure 8.7),

we plot the rate as a function of the frame number. Note that we made no attempt to

compress the first three frames. This plot shows that the overall performance varies as the

video progresses but each frame is compressed to at least 70% of the source rate. In the

plot on the right (Figure 8.8), we present the rate used for each bit plane (across the 9

compressed frames). The horizontal axis ranges from the most significant bit plane (1) at

left to the least significant bit plane (8) at right. For reference, we are able to compress

the most significant bit plane by 78% on average. Due to variations in the magnitude of

the motion, for the most significant bit plane frame 12 is most compressible (81%) while
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Frame 1 Frame 2 Frame 3 Frame 4

Predicted 3
Predictor

Predicted 4

Encrypted Image

Encrypter

Predictor

P(Actual Predicted)

Encoder

Compressed Bits

Decoder Output

Decoder

Figure 8.6. A sample compression of the fourth frame of the “Foreman” sequence. This
block diagram demonstrates the generation of each of the elements available to the encoder
and to the decoder. Here, the decoder is able to reconstruct frame 4 from the predicted
frame 4, the probability model, and the compressed bits. The encryption key has been
omitted from this figure for clarity.

frame 5 is least compressible (76%). This gives a good indication of how much correlation

our system can exploit in each bit plane. As can be seen in this plot, we are able to obtain

no compression gains in the two least significant bit planes of this sequence.
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Figure 8.7. Compression results for the 9 frames considered by our system. The average
rate (in source bits per output bit) used on each frame. This plot demonstrates consistent
rate savings from frame to frame.
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Figure 8.8. Compression results for the 9 frames considered by our system. This plot shows
the rate used on each bit plane, ranging from most significant (left) to least significant
(right). Maximum and minimum are taken across all 9 frames. This demonstrates the
consistent compressibility of each bit plane from frame to frame. It further demonstrates
that successively less significant bit planes are successively less compressible.

8.5 Blind Video Compression

In this section we extend the algorithm of Chapter 6 to compressing encrypted video.

In particular, the decoder feeds rate requests (as in Section 6.4) for each portion of each bit

plane of each frame. When a decoding error is detected, the decoder requests the data be

retransmitted uncompressed. As mentioned in Section 6.2, performance can be improved

with a hybrid-ARQ-type retransmission strategy.

For clarity, the following discussion presumes each bit plane of each frame is compressed

whole, even though in Section 8.4 we break each bit plane into sections. We label the rate

used for lth most significant bit plane of frame t as Rt[l]. We label the minimum value of

Rt[l] for which decoding is successful as Rt[l]?.

In Section 8.4, we assume that the system knows the values of Rt[l]? for each frame

and plane. In blind operation, while Rt[l]? cannot be achieved, we note that Rt[l]? can

be determined by the decoder after successful transmission is complete. That is, after

successfully decoding a portion of the video sequence, the decoder can then, through trial

and error, determine the value of Rt[l]?. In practice, we found that the decoder could

determine this number with fewer than 20 encoding trials.
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Frames 4 - 12 Foreman Garden Football
Encrypted 0.7918 0.9039 0.9917

Table 8.2. Results for the blind compression of the three encrypted sequences. The pro-
posed approach achieves significant compression gains. This demonstrates the value of the
approach presented here.

Our goal then when compressing plane x t[l] is to determine a rate, Rt[l], based on the

best rate for the previous bit plane, Rt[l− 1]?, and on the best rate for the previous frame,

Rt−1[l]?. Our goal is to select Rt[l] such that it balances the rate used in transmission against

the probability of a decoding error and a retransmission, as in Section 6.3. Fortunately,

there is significant predictability between the value Rt[l]? and the values Rt[l − 1]? and

Rt−1[l]? as can be seen in Figure 8.8.

In practice we used a function of the form φ1R
t−1[l]? + φ2R

t[l− 1]? + φ3 to select x t[l].

We generate this function by using the “Foreman” sequence as training data and then apply

this function to all three sequences. We select φ1 = 0.8350, φ2 = 0.2518, and φ3 = 0.0426.

The blind results are given in Table 8.5. As can be seen here, significant compression gains

are still achievable.

8.6 Conclusions & Open Problems

In this chapter we have presented a practical scheme for compressing encrypted video

sequences. This chapter describes how to adapt the models of Chapter 7 to gray scale

video, and demonstrate the practical compression performance on the standard “Foreman,”

“Garden,” and “Football” sequences. Finally, we present algorithms for blindly compressing

encrypted video sequences, and demonstrate its performance.

The work presented herein is more a proof of concept. It suggests a number of areas for

further study. As a first area of study, we would like to extend the techniques developed

here to other “real world” sources, such as text and audio. Next, we would like to develop

techniques to compress the initial frames in order to reduce their influence on the overall

results.

Another important area of further study is in the influence of the quality of predictors

on compression performance. Prediction resulting from the motion extrapolation offers

significant potential performance improvement. A better motion extrapolation technique
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will result in better prediction frames and hence better performance. This is demonstrated

by our algorithms relative performance on the high motion sequences versus the low motion

sequences. Along the lines of prediction, a technique to better evaluate the relationship

of the predictor and the actual frames would also improve performance. A detailed study

could better bound the error in the predicted frames compared to the actual frames. As

a final issue of prediction, a further study of how to perform rate requests could result in

vastly improved blind video compression.

Though we consider lossless video coding here, our inability to compress the least sig-

nificant bit planes suggests a way to apply our scheme to lossy video coding as a final area

of future study. Namely, by simply dropping the less significant bit planes, we will improve

system performance while providing good signal quality. Since these bit planes play lit-

tle significance in the prediction process, their loss should not strongly inhibit algorithm

performance.
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Chapter 9

Conclusions & Future Directions

In this thesis, we have described algorithms and protocols for practical distributed source

coding. We have presented a solution flexible enough to be applied to arbitrarily structured

distributed source coding problems. Throughout, we have demonstrated the incorporation

of Low-Density Parity-Check (LDPC) codes, and how their properties can be leveraged for

strong practical performance.

In the first half of this dissertation, we presented code construction and theoretical

analysis for the generalized distributed source coding problem. The developments in this

half of this dissertation can be classified as follows:

• A practical construction based on linear block codes for the source coding with side

information problem was presented in Chapter 3. We selected LDPC codes to incor-

porate into this construction, and demonstrated the strength of these source codes.

• An adaptation of the construction in Chapter 3 to distributed source codes for parallel

sources. The analysis presented in Chapter 4 demonstrates the value of attempting

to leverage the non-stationary nature of parallel sources into a single coding frame-

work. We further identified the resulting LDPC code design problem, and presented

a powerful solution.

• A further adaptation of the construction in Chapter 3 for the arbitrarily structured

distributed source coding problem is presented in Chapter 5. This linear block code

based construction is flexible enough to perform over arbitrary correlation structures,

for arbitrary rate points, and for an arbitrary number of sources. This construction is
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also flexible enough to naturally degrade to the solution of Chapter 3. We demonstrate

the application of LDPC codes to the block code construction of Chapter 5, and show

that they approach the Slepian-Wolf limit.

• A protocol for blind distributed source coding to fully automate the codes presented

in this portion of this thesis is introduced in Chapter 6. Such a protocol is necessary to

eliminate the a priori assumptions made by most distributed source coding solutions.

We present a theoretical analyze of the protocol and show that it quickly approaches

the scenario with a priori knowledge of the source statistics. We further present results

demonstrating the success of this protocol in practice.

In this second half of this dissertation, we have focused on the application of our dis-

tributed source coding solution to the problem of compressing encrypted data. The devel-

opments in this half of this dissertation can be classified as follows:

• A practical framework for compressing encrypted data in Chapter 7. We demonstrate

the flexibility of this framework to compress a source under various source models.

We conclude by demonstrating the application of this framework to the compression

of encrypted binary images.

• A method to compress encrypted video, extending the compression of encrypted data

framework of Chapter 7, is applied to gray scale video sequences in Chapter 8. We

demonstrate the significant compression gains achievable when compressing encrypted

video without access to the encryption key. Finally, we incorporate the blind trans-

mission protocol of Chapter 6 and demonstrate the results of a completely automatic

blind compression of encrypted video system.

The work in this thesis suggests several avenues of further study. We itemize some of

these directions here.

• The study of additional code design techniques as the apply to the parallel source

problem considered in Chapter 4, the arbitrary distributed source coding problem

considered in Chapter 5, and the source models for compressing encrypted data in

Chapters 7, and 8 is a significant open problem. In particular, study of the applica-

tion of density evolution [70] techniques to the code design problem offers significant

potential gains.
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• The study of structured doping is an interesting open problem. Though unstruc-

tured doping results in strong performance, as in Chapter 7, it seems probable that

structured doping could perform better still. Doping based on either the structure of

the previously decoded data or based on the structure of the compression code used

promises strong performance improvements. The density evolution tool of Richardson

& Urbanke [70] potentially can provide answers to several of these questions. Incor-

porating this study into the study of code design offers significant promise as a field

of study.

• Application of our distributed source coding solution of Chapter 5 to larger alphabets

and to a larger number of sources is another area of further study. Though our con-

struction naturally adapts to these scenarios, it does so at a cost of increased decoder

complexity. A full characterization of the system performance in these scenarios is an

important next step.

• Since Chapter 6 presented only an upper bound for our protocols performance, we

would also like to analytically develop a lower bound. The development of a lower

bound on protocol performance would help to establish the optimality of the protocol

presented.

• In addition, the incorporation of other types of linear codes or other types of decoders

into the blind protocol of Chapter 6 is a promising open problem. Rate adaptable

codes and codes offering decoding guarantees promises to greatly improve convergence

performance. Further, the LDPC Decoder presented in Feldman, Wainwright, &

Karger [24] could improve system performance through decoding quality guarantees.

• The study of improved source models for images and video is another area of further

study. Though the models presented in Chapters 7 and 8 result in strong performance,

it is clear that better modeling of the data would result in better performance.

• The application of the techniques for practical distributed source coding and practical

compression of encrypted data to other “real world” sources is another field of further

interest. Significant gains have been achieved through the study of video sequences.

Similar gains are likely achievable through the study of text and audio sources.

• Throughout this dissertation, the focus has been on lossless data compression. Yet

each problem considered here could also be considered in terms of lossy data com-

pression. Extension of these techniques to lossy data compression is a significant open

problem.
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To conclude, we hope that this work will spur greater research into applied distributed

source codes. More importantly, we hope that it will spur greater use of distributed source

codes in a variety of applications.
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[34] J. Garćıa-Fŕıas and W. Zhong, “LDPC codes for compression of multiterminal sources
with hidden Markov correlation,” in IEEE Comm. Letters, Mar. 2003, pp. 115–117.

[35] N. Gehrig and P. L. Dragotti, “Symmetric and asymmetric Slepian-Wolf codes with
systematic and non-systematic linear codes,” in IEEE Comm. Letters, vol. 9, no. 1,
Jan. 2005, pp. 61–63.

[36] M. E. Hellman, “Convolutional source encoding,” IEEE Trans. IT, vol. 21, no. 6, pp.
651–656, Nov. 1975.

[37] HP Labs, “HP Labs LOCO-I/JPEG-LS,” http://www.hpl.hp.com/loco/.

[38] M. Johnson, P. Ishwar, V. M. Prabhakaran, D. Schonberg, and K. Ramchandran, “On
compressing encrypted data,” in IEEE Trans. Signal Processing, vol. 52, no. 10, Oct.
2004, pp. 2992–3006.

[39] V. N. Koshelev, “Direct sequential encoding and decoding for discrete sources,” IEEE
Trans. IT, vol. 19, no. 3, pp. 340–343, May 1973.

[40] P. Koulgi, E. Tuncel, S. L. Ragunathan, and K. Rose, “On zero-error source coding
with decoder side information,” IEEE Trans. IT, vol. 49, pp. 99–111, Jan. 2003.

[41] P. Koulgi, E. Tuncel, S. Regunathan, and K. Rose, “On zero-error coding of correlated
sources,” in IEEE Trans. IT, vol. 49, Nov. 2003, pp. 2856–2873.

[42] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-product algo-
rithm,” in IEEE Trans. IT, vol. 47, no. 2, Feb. 2001, pp. 498–519.

[43] C. Lan, A. D. Liveris, K. Narayanan, Z. Xiong, and C. N. Georghiades, “Slepian-Wolf
coding of three binary sources using LDPC codes,” in Proc. Data Compression Conf.,
Snowbird, UT, Mar. 2004.

[44] J. Li, Z. Tu, and R. S. Blum, “Slepian-Wolf coding for nonuniform sources using turbo
codes,” in Proc. Data Compression Conf., Mar. 2004.

[45] A. D. Liveris, C. Lan, K. Narayanan, Z. Xiong, and C. N. Georghiades, “Slepian-Wolf
coding of three binary sources using LDPC codes,” in Proc. Intl. Symp. Turbo Codes
and Related Topics, Brest, France, Sep. 2003.

[46] A. D. Liveris, Z. Xiong, and C. N. Georghiades, “Compression of binary sources with
side information at the decoder using LDPC codes,” in Proc. IEEE Global Comm.
Symposium, Taipei, Taiwan, Nov. 2002.

122



[47] ——, “Compression of binary sources with side information at the decoder using low-
density parity-check codes,” IEEE Comm. Letters, vol. 6, pp. 440–442, 2002.

[48] ——, “A distributed source coding technique for highly correlated images using turbo-
codes,” in Proc. Int. Conf. Acoust. Speech, Signal Processing, May 2002, pp. 3261–3264.

[49] ——, “Joint source-channel coding of binary sources with side information at the de-
coder using IRA codes,” in Proc. Multimedia Signal Processing Workshop, St. Thomas,
US Virgin Islands, Dec. 2002.

[50] ——, “Distributed compression of binary sources using conventional parallel and serial
concatenated convolutional codes,” in Proc. Data Compression Conf., Snowbird, UT,
Mar. 2003.

[51] M. Luby, “LT codes,” in IEEE Symposium on Foundations of Computer Science, cite-
seer.nj.nec.com/luby02lt.html, 2002.

[52] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density
parity check codes,” Electron. Lett., vol. 33, pp. 457–458, Oct. 1996.

[53] I. Matsuda, T. Shiodera, and S. Itoh, “Lossless video coding using variable block-size
MC and 3D prediction optimized for each frame,” European Signal Processing Conf.,
pp. 1967–1970, 2004.

[54] P. Mitran and J. Bajcsy, “Coding for the Wyner-Ziv problem with turbo-like codes,”
in Proc. Int. Symp. Inform. Theory, Lausanne, Switzerland, Jun. 2002, p. 91.

[55] ——, “Near shannon-limit coding for the Slepian-Wolf problem,” in 21st Biennial
Symposium on Communications, Jun. 2002.

[56] ——, “Turbo source coding: A noise-robust approach to data compression,” in Proc.
Data Compression Conf., Apr. 2002, p. 465.

[57] MSU Graphics & Media Lab Video Group, “MSU lossless video codec,” http://www.
compression.ru/video/ls-codec/index en.html.

[58] ——, “MSU lossless video codecs comparison,” http://www.compression.ru/video/
codec comparison/lossless codecs en.html.

[59] H. Ohnsorge, “Data compression system for the transmission of digitized signals,” Proc.
Int. Conf. Comm., vol. II, pp. 485–488, Jun. 1973.

[60] A. Orlitsky, “Interactive communication of balanced distributions and correlated files,”
SIAM Journal on Discrete Mathematics, vol. 6, pp. 548–564, 1993.

[61] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. San Francisco, CA: Morgan Kaufmann Publishers Inc., 1988.

[62] S. S. Pradhan, “On Rate-Distortion of Gaussian Sources with memory in the Presence
of Side Iinformation at the Decoder,” Project Report, ECE 480, Department of Electri-
cal and Computer Engineering, University of Illinois at Urbana-Champaign, December
1998.

123



[63] S. S. Pradhan, R. Puri, and K. Ramchandran, “n-channel symmetric multiple descrip-
tions - part I: (n,k) source-channel erasure codes,” IEEE Trans. IT, vol. 50, no. 1, pp.
47 – 61, Jan. 2004.

[64] S. S. Pradhan and K. Ramchandran, “Distributed source coding: Symmetric rates and
applications to sensor networks,” in Proc. Data Compression Conf., Mar. 2000.

[65] ——, “Enhancing analog image transmission systems using digital side information: A
new wavelet based image coding paradigm,” in Proc. Data Compression Conf., Mar.
2001.

[66] ——, “Distributed source coding using syndromes (DISCUS): design and construc-
tion,” IEEE Trans. IT, vol. 49, no. 3, pp. 626–643, Mar. 2003.

[67] R. Puri, S. Pradhan, and K. Ramchandran, “n-channel symmetric multiple descriptions
- part II: An achievable rate-distortion region,” IEEE Trans. IT, vol. 51, no. 4, pp.
1377 – 1392, Apr. 2005.

[68] R. Puri and K. Ramchandran, “PRISM: A New Robust Video Coding Architecture
Based on Distributed Compression Principles,” 40th Allerton Conference on Commu-
nication, Control and Computing, October 2002.

[69] T. J. Richardson, M. A. Shokrollahi, and R. Urbanke, “Design of capacity-approaching
irregular low-density parity-check codes,” IEEE Trans. IT, vol. 47, pp. 619–637, Feb.
2001.

[70] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes
under message-passing decoding,” IEEE Trans. IT, vol. 47, pp. 599–618, Feb. 2001.

[71] B. Rimoldi and R. Urbanke, “Asynchronous Slepian-Wolf coding via source-splitting,”
Proc. Int. Symp. Inform. Theory, p. 271, Jul. 1997.

[72] D. Santa-Cruz, T. Ebrahimi, J. Askelof, M. Larsson, and C. Christopoulos, “JPEG
2000 still image coding versus other standards,” PROC SPIE INT SOC OPT ENG,
vol. 4115, pp. 446–454, 2000.

[73] M. Sartipi and F. Fekri, “Distributed source coding in wireless sensor networks using
LDPC codes: A non-uniform framework,” in Proc. Data Compression Conf., Mar.
2005, p. 477.

[74] ——, “Distributed source coding in wireless sensor networks using LDPC codes: The
entire Slepian-Wolf rate region,” in Wireless Comm. And Networking Conf., vol. 4,
Mar. 2005, pp. 1939–1944.

[75] D. Schonberg, S. S. Pradhan, and K. Ramchandran, “Distributed code constructions
for the entire Slepian-Wolf rate region for arbitrarily correlated sources,” in Proc. Data
Compression Conf., Mar. 2004, pp. 292–301.

[76] D. Schonberg, K. Ramchandran, and S. S. Pradhan, “LDPC codes can approach the
Slepian Wolf bound for general binary sources,” in 40th Annual Allerton Conf., Oct.
2002, pp. 576–585.

124



[77] C. Shannon, “Communication theory of secrecy systems,” in Bell System Technical
Journal, vol. 28, Oct. 1949, pp. 656–715.

[78] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,” IEEE
Trans. IT, vol. 19, pp. 471–480, Jul. 1973.
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Appendix A

Codes and Degree Distributions
Used to Generate LDPC Codes

In this section we list the degree distributions we used in our simulations. These degree
distributions were either obtained from the LTHC [4] online database or were generated
using the EXIT charts [7] based design technique. For a further description of LDPC code
design techniques, and explanation of the terminology used in this section, see Section 2.3.2.

For convenience, the compression rates of the codes, to 4 significant digits, are as follows;
0.0300, 0.0500, 0.0800, 0.1000, 0.1300, 0.1500, 0.1800, 0.2000, 0.2281, 0.2500, 0.2780, 0.3000,
0.3277, 0.3500, 0.3765, 0.4010, 0.4257, 0.4508, 0.4754, 0.5000, 0.5261, 0.5515, 0.5765, 0.6006,
0.6257, 0.6500, 0.6800, 0.7000, 0.7300, 0.7500, 0.7800, 0.8000, 0.8200, 0.8500, 0.8800, 0.9000,
0.9300, 0.9500. Note that the source coding rate, Rs, and the channel coding rate, Rc, are
related as Rs = 1 − Rc. Unless otherwise specified, rates are given as source coding rates
throughout this thesis.

We give the detailed degree distributions for each of the codes below.

1. Code compression rate R = 0.0300. Obtained from LTHC database.

λ(x) =





0.0976872000x + 0.2084250000x2 + .0239832000x4

+0.0025877000x5 + 0.0030756200x6 + 0.2216020000x7

+0.0791919000x15 + 0.0178188000x17 + 0.0707131000x21

+0.0032752600x30 + 0.0539584000x39 + 0.0959645000x40

+0.0373115000x49 + 0.0555949000x64 + 0.0288105000x66

ρ(x) = x199

2. Code compression rate R = 0.0500. Obtained from LTHC database.

λ(x) =





0.1130550000x + 0.2223260000x2 + 0.0217564000x5

+0.1437610000x6 + 0.0077757700x7 + 0.0978175000x8

+0.0282852000x13 + 0.0669393000x15 + 0.0730412000x26

+0.0149455000x34 + 0.2102970000x35

ρ(x) = x109
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3. Code compression rate R = 0.0800. Obtained from LTHC database.

λ(x) =





0.1172100000x + 0.2107930000x2 + 0.1521100000x6

+0.0845317000x7 + 0.0236898000x8 + 0.0049341200x15

+0.0493028000x16 + 0.1133230000x19 + 0.0147003000x23

+0.1190500000x40 + 0.0175400000x42 + 0.0928161000x46

ρ(x) = x69

4. Code compression rate R = 0.1000. Obtained from LTHC database.

λ(x) =





0.1173140000x + 0.1997290000x2 + 0.1935750000x6

+0.0179234000x7 + 0.0322564000x8 + 0.0133904000x16

+0.1638470000x18 + 0.0222610000x20 + 0.1509760000x48

+0.0445984000x50 + 0.0131310000x51 + 0.0168516000x56

+0.0141470000x58

ρ(x) = 0.5x56 + 0.5x57

5. Code compression rate R = 0.1300. Obtained from LTHC database.

λ(x) =





0.1154540000x + 0.1846430000x2 + 0.1872730000x6

+0.0107396000x7 + 0.0107802000x8 + 0.0298498000x9

+0.0676952000x17 + 0.0713005000x21 + 0.0311166000x22

+0.0523218000x25 + 0.1940290000x65 + 0.0148834000x69

+0.0192438000x72 + 0.0020586100x89 + 0.0086120200x99

ρ(x) = 0.5x45 + 0.5x46

6. Code compression rate R = 0.1500. Obtained from LTHC database.

λ(x) =





0.0903419000x + 0.1760760000x2 + 0.3044350000x6

+0.1356970000x15 + 0.0127703000x16 + 0.0764734000x22

+0.1680910000x27 + 0.0361156000x49

ρ(x) = x39

7. Code compression rate R = 0.1800. Obtained from LTHC database.

λ(x) =





0.1267310000x + 0.1851360000x2 + 0.1895540000x6

+0.0406345000x7 + 0.0170619000x15 + 0.0511614000x18

+0.0888360000x19 + 0.0299488000x20 + 0.0217271000x21

+0.0074947900x32 + 0.0092171200x39 + 0.0078997400x53

+0.0871835000x60 + 0.0412600000x62 + 0.0890379000x63

+0.0071160400x68

ρ(x) = 0.7x31 + 0.3x32

8. Code compression rate R = 0.2000. Obtained from LTHC database.

λ(x) =
{

0.0815474000x + 0.1982150000x2 + 0.7202380000x19

ρ(x) = x34
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9. Code compression rate R = 0.2281. Obtained from EXIT chart based design.

λ(x) =





0.0000696838x + 0.5645527721x2 + 0.0006797545x3

+0.0298558824x4 + 0.0010561819x5 + 0.0162886198x6

+0.2852260980x7 + 0.0945686623x8 + 0.0003948341x9

+0.0017553939x10 + 0.0010631110x11 + 0.0006613925x12

+0.0004469575x13 + 0.0003264797x14 + 0.0002535001x15

+0.0002065416x16 + 0.0001745563x17 + 0.0001515564x18

+0.0001343969x19 + 0.0001209905x20 + 0.0001102764x21

+0.0001014784x22 + 0.0000940540x23 + 0.0000877841x24

+0.0000822511x25 + 0.0000775660x26 + 0.0000733644x27

+0.0000697260x28 + 0.0000664825x29 + 0.0000636670x30

+0.0000611618x31 + 0.0000589626x32 + 0.0000570479x33

+0.0000554059x34 + 0.0000539797x35 + 0.0000527396x36

+0.0000517750x37 + 0.0000508221x38 + 0.0000500451x39

+0.0000494506x40 + 0.0000489172x41 + 0.0000484412x42

+0.0000481137x43 + 0.0000476051x44 + 0.0000472480x45

+0.0000467789x46 + 0.0000463338x47 + 0.0000458079x48

+0.0000453462x49 + 0.0000446644x50 + 0.0000441249x51

+0.0000436608x52 + 0.0000435132x53 + 0.0000440380x54

ρ(x) = x17

10. Code compression rate R = 0.2500. Obtained from LTHC database.

λ(x) =
{

0.1118170000x + 0.1479280000x2 + 0.0721407000x5

+0.2464250000x6 + 0.0021321100x8 + 0.4195580000x29

ρ(x) = x23

11. Code compression rate R = 0.2780. Obtained from EXIT chart based design.

λ(x) =





0.0365683268x + 0.4339804675x2 + 0.0001299819x3

+0.0171330361x4 + 0.0023872502x5 + 0.1923109345x6

+0.0016539566x7 + 0.0012354770x8 + 0.0009357160x9

+0.0010813697x10 + 0.0013693568x11 + 0.0024491406x12

+0.0001371963x13 + 0.2953988307x14 + 0.0072606502x15

+0.0021649586x16 + 0.0009936879x17 + 0.0005717216x18

+0.0003736405x19 + 0.0002657385x20 + 0.0002003367x21

+0.0001578227x22 + 0.0001285540x23 + 0.0001075570x24

+0.0000919092x25 + 0.0000799746x26 + 0.0000706532x27

+0.0000632326x28 + 0.0000571490x29 + 0.0000521729x30

+0.0000480070x31 + 0.0000444806x32 + 0.0000414675x33

+0.0000389182x34 + 0.0000366747x35 + 0.0000347150x36

+0.0000329633x37 + 0.0000314569x38 + 0.0000301197x39

+0.0000288897x40 + 0.0000278226x41 + 0.0000268317x42

+0.0000259364x43 + 0.0000251422x44 + 0.0000244178x45

+0.0000237279x46 + 0.0000231042x47 + 0.0000225359x48

+0.0000219885x49

ρ(x) = 0.3x15 + 0.7x16
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12. Code compression rate R = 0.3000. Obtained from LTHC database.

λ(x) =





0.1392280000x + 0.2007590000x2 + 0.2522010000x6

+0.0134136000x11 + 0.1710390000x17 + 0.0424794000x31

+0.0855733000x41 + 0.0953074000x49

ρ(x) = 0.3x16 + 0.7x17

13. Code compression rate R = 0.3277. Obtained from EXIT chart based design.

λ(x) =





0.0530701457x + 0.3670818133x2 + 0.0000467414x3

+0.0001693434x4 + 0.0001839202x5 + 0.0069791251x6

+0.2340869351x7 + 0.0293543350x8 + 0.0010512763x9

+0.0005884899x10 + 0.0004336224x11 + 0.0004421017x12

+0.0003594770x13 + 0.0004299928x14 + 0.0004909475x15

+0.0005842977x16 + 0.0006793042x17 + 0.0007968070x18

+0.0012180480x19 + 0.0004888936x20 + 0.0233161791x21

+0.1332294395x22 + 0.1290474222x23 + 0.0085915359x24

+0.0029141588x25 + 0.0012946281x26 + 0.0007207962x27

+0.0004649800x28 + 0.0003297155x29 + 0.0002492324x30

+0.0001973730x31 + 0.0001619024x32 + 0.0001364856x33

+0.0001174977x34 + 0.0001029730x35 + 0.0000914730x36

+0.0000822134x37 + 0.0000744651x38 + 0.0000681241x39

+0.0000626681x40 + 0.0000580978x41 + 0.0000541896x42

+0.0000508900x43 + 0.0000479426x44

ρ(x) = 0.4x14 + 0.6x15

14. Code compression rate R = 0.3500. Obtained from LTHC database.

λ(x) =





0.1577030000x + 0.1991060000x2 + 0.0324838000x5

+0.1985480000x6 + 0.0807045000x7 + 0.2997880000x21

+0.0310813000x22 + 0.0005852400x33

ρ(x) = x13

15. Code compression rate R = 0.3765. Obtained from EXIT chart based design.

λ(x) =





0.0749746514x + 0.3276397454x2 + 0.0000133230x3

+0.0000334288x4 + 0.0000536346x5 + 0.0153727931x6

+0.0815021268x7 + 0.2102399279x8 + 0.0002396780x9

+0.0001470809x10 + 0.0001101496x11 + 0.0000966061x12

+0.0000903891x13 + 0.0000890635x14 + 0.0000914754x15

+0.0000970680x16 + 0.0001067689x17 + 0.0001207840x18

+0.0001414627x19 + 0.0001706132x20 + 0.0002138222x21

+0.0002778502x22 + 0.0003801933x23 + 0.0005575559x24

+0.0009942277x25 + 0.0038202879x26 + 0.1061438593x27

+0.1680729114x28 + 0.0046663975x29 + 0.0013383072x30

+0.0007207862x31 + 0.0004404507x32 + 0.0002851821x33

+0.0002019419x34 + 0.0001557353x35 + 0.0001265960x36

+0.0001058190x37 + 0.0000899191x38 + 0.0000773867x39
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ρ(x) = 0.2x12 + 0.8x13

16. Code compression rate R = 0.4010. Obtained from EXIT chart based design.

λ(x) =





0.0665052292x + 0.3059480919x2 + 0.0001148099x3

+0.0008967976x4 + 0.0004931189x5 + 0.0885292799x6

+0.0028298017x7 + 0.0933425249x8 + 0.0270974961x9

+0.0288241934x10 + 0.0067485256x11 + 0.0000092266x12

+0.0622890112x13 + 0.0120946708x14 + 0.0041578038x15

+0.0023011096x16 + 0.0016328252x17 + 0.0015906365x18

+0.0014174658x19 + 0.0012243279x20 + 0.0010393924x21

+0.0008685978x22 + 0.0007279214x23 + 0.0006136080x24

+0.0005260355x25 + 0.0004590425x26 + 0.0004104392x27

+0.0003758855x28 + 0.0003539140x29 + 0.0003424701x30

+0.0003416727x31 + 0.0003517762x32 + 0.0003755456x33

+0.0004182788x34 + 0.0004931475x35 + 0.0006325812x36

+0.0009463712x37 + 0.0020643746x38 + 0.2806119994x39

ρ(x) = x13

17. Code compression rate R = 0.4257. Obtained from EXIT chart based design.

λ(x) =





0.1242596346x + 0.3029532976x2 + 0.0000000503x3

+0.1130781949x4 + 0.0000019471x5 + 0.1030539620x6

+0.0000011974x7 + 0.0000000440x8 + 0.0000002074x9

+0.0000002709x10 + 0.0000003055x11 + 0.0000003467x12

+0.0000004646x13 + 0.3566500769x14

ρ(x) = 0.5x9 + 0.5x10

18. Code compression rate R = 0.4508. Obtained from EXIT chart based design.

λ(x) =





0.0999701013x + 0.2884808570x2 + 0.0000004467x3

+0.0000007193x4 + 0.0000015285x5 + 0.2323194203x6

+0.0053583039x7 + 0.0000044615x8 + 0.0000014946x9

+0.0000008772x10 + 0.0000006229x11 + 0.0000004958x12

+0.0000004363x13 + 0.0000004124x14 + 0.0000003973x15

+0.0000004041x16 + 0.0000004193x17 + 0.0000004649x18

+0.0000005231x19 + 0.0000006215x20 + 0.0000008004x21

+0.0000011595x22 + 0.0000022604x23 + 0.3738527719x24

ρ(x) = 0.6x10 + 0.4x11

19. Code compression rate R = 0.4754. Obtained from EXIT chart based design.
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λ(x) =





0.1153122367x + 0.2911329163x2 + 0.0000013866x3

+0.0000237308x4 + 0.0000055074x5 + 0.1563430715x6

+0.1185591176x7 + 0.0000123470x8 + 0.0000039402x9

+0.0000021293x10 + 0.0000016722x11 + 0.0000014129x12

+0.0000012628x13 + 0.0000011759x14 + 0.0000011534x15

+0.0000011760x16 + 0.0000012159x17 + 0.0000013357x18

+0.0000015028x19 + 0.0000017858x20 + 0.0000022500x21

+0.0000032496x22 + 0.0000062909x23 + 0.3185781326x24

ρ(x) = 0.7x9 + 0.3x10

20. Code compression rate R = 0.5000. Obtained from LTHC database.

λ(x) =
{

0.1527930000x + 0.2823500000x2 + 0.0062193000x3

+0.5586370000x19

ρ(x) = x9

21. Code compression rate R = 0.5261. Obtained from EXIT chart based design.

λ(x) =
{

0.1460827952x + 0.2706599775x2 + 0.0375150106x4

+0.2419193856x6 + 0.3038228311x21

ρ(x) = 0.3x7 + 0.7x8

22. Code compression rate R = 0.5515. Obtained from EXIT chart based design.

λ(x) =





0.1483309314x + 0.2284719333x2 + 0.0000030096x3

+0.0949413930x4 + 0.0001039602x5 + 0.1805360736x6

+0.0000004930x7 + 0.0000044589x8 + 0.0000001607x9

+0.0000056705x10 + 0.0000009369x11 + 0.0000017390x12

+0.0000020428x13 + 0.0000021972x14 + 0.0000024381x15

+0.0000027101x16 + 0.0000031452x17 + 0.0000038634x18

+0.0000048678x19 + 0.0000067093x20 + 0.0000100212x21

+0.0000167482x22 + 0.0000309110x23 + 0.3475135857x24

ρ(x) = 0.3x7 + 0.7x8

23. Code compression rate R = 0.5765. Obtained from EXIT chart based design.

λ(x) =





0.1603735738x + 0.2493334680x2 + 0.0000000001x3

+0.1398432549x4 + 0.0009310009x6 + 0.1919102356x8

+0.2576084667x24

ρ(x) = 0.2x6 + 0.8x7
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24. Code compression rate R = 0.6006. Obtained from EXIT chart based design.

λ(x) =





0.2365103129x + 0.0000003166x2 + 0.3137349967x3

+0.0714882030x4 + 0.0000017984x5 + 0.0000026206x6

+0.0000020295x7 + 0.0000013959x8 + 0.0000009058x9

+0.1706734148x10 + 0.0004347797x11 + 0.0000483848x12

+0.0000733639x13 + 0.0000728850x14 + 0.0000680328x15

+0.0000796862x16 + 0.0000905415x17 + 0.0001139106x18

+0.0001440668x19 + 0.0002042075x20 + 0.0003112035x21

+0.0006324201x22 + 0.0182989558x23 + 0.1854026561x24

+0.0016072092x25 + 0.0000017023x26

ρ(x) = 0.9x6 + 0.1x7

25. Code compression rate R = 0.6257. Obtained from EXIT chart based design.

λ(x) =
{

0.2345281333x + 0.2494103165x3 + 0.0868495874x4

+0.1048097509x6 + 0.3244022119x23

ρ(x) = 0.9x6 + 0.1x7

26. Code compression rate R = 0.6500. Obtained from LTHC database.

λ(x) =





0.2454340000x + 0.1921240000x2 + 0.1357320000x5

+0.0838990000x6 + 0.1116600000x12 + 0.0029827600x14

+0.0222593000x15 + 0.0742901000x28 + 0.1316190000x32

ρ(x) = 0.5x5 + 0.5x6

27. Code compression rate R = 0.6800. Obtained from LTHC database.

λ(x) =





0.2177260000x + 0.1634340000x2 + 0.0001449710x3

+0.0000070738x4 + 0.0980647000x5 + 0.1018190000x6

+0.0537834000x13 + 0.0301359000x16 + 0.0566144000x20

+0.0109644000x26 + 0.0808932000x30 + 0.0000059471x97

+0.0001740400x98 + 0.1862340000x99

ρ(x) = 0.9x6 + 0.1x7

28. Code compression rate R = 0.7000. Obtained from LTHC database.

λ(x) =





0.2202400000x + 0.1604510000x2 + 0.1219000000x5

+0.0669837000x6 + 0.0728829000x12 + 0.0056090100x19

+0.0223284000x21 + 0.0531729000x22 + 0.0496530000x25

+0.0222808000x26 + 0.2044980000x99

ρ(x) = 0.1x5 + 0.9x6

29. Code compression rate R = 0.7300. Obtained from LTHC database.

λ(x) =





0.2374900000x + 0.1643770000x2 + 0.1482710000x5

+0.0442728000x6 + 0.0276623000x13 + 0.1174440000x15

+0.0384218000x30 + 0.0368359000x35 + 0.0319294000x37

+0.1532960000x99
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ρ(x) = 0.7x5 + 0.3x6

30. Code compression rate R = 0.7500. Obtained from LTHC database.

λ(x) =





0.2911570000x + 0.1891740000x2 + 0.0408389000x4

+0.0873393000x5 + 0.0074271800x6 + 0.1125810000x7

+0.0925954000x15 + 0.0186572000x20 + 0.1240640000x32

+0.0160020000x39 + 0.0201644000x44

ρ(x) = 0.8x4 + 0.2x5

31. Code compression rate R = 0.7800. Obtained from LTHC database.

λ(x) =





0.2547740000x + 0.1634760000x2 + 0.0032539300x4

+0.1524220000x5 + 0.0331399000x6 + 0.0038860400x9

+0.0189110000x12 + 0.0998195000x14 + 0.0151103000x27

+0.0769337000x29 + 0.0218393000x32 + 0.1564350000x99

ρ(x) = 0.3x4 + 0.7x5

32. Code compression rate R = 0.8000. Obtained from LTHC database.

λ(x) =





0.2920250000x + 0.1739820000x2 + 0.0523131000x4

+0.0257749000x5 + 0.1220460000x6 + 0.0218315000x8

+0.0209295000x10 + 0.0322251000x14 + 0.1127710000x23

+0.0001708020x25 + 0.0328124000x31 + 0.0274748000x44

+0.0048302000x53 + 0.0126282000x59 + 0.0681855000x99

ρ(x) = x4

33. Code compression rate R = 0.8200. Obtained from LTHC database.

λ(x) =





0.3037920000x + 0.1731880000x2 + 0.0671337000x4

+0.0123568000x5 + 0.1341320000x6 + 0.0314767000x12

+0.0108393000x14 + 0.0256390000x16 + 0.0910351000x19

+0.0400076000x39 + 0.0000240473x45 + 0.0117242000x51

+0.0189157000x57 + 0.0112433000x62 + 0.0684922000x76

ρ(x) = 0.2x3 + 0.8x4

34. Code compression rate R = 0.8500. Obtained from LTHC database.

λ(x) =





0.3151270000x + 0.1902840000x2 + 0.0449124000x4

+0.1705930000x6 + 0.1405970000x17 + 0.0081261000x37

+0.0440236000x41 + 0.0863369000x66

ρ(x) = 0.5x3 + 0.5x4
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35. Code compression rate R = 0.8800. Obtained from LTHC database.

λ(x) =





0.3424730000x + 0.1650060000x2 + 0.1203830000x4

+0.0191956000x5 + 0.0120714000x6 + 0.1416920000x10

+0.0211997000x25 + 0.0201976000x26 + 0.0185881000x34

+0.0428897000x36 + 0.0133019000x38 + 0.0021735800x39

+0.0104203000x40 + 0.0704081000x99

ρ(x) = 0.8x3 + 0.2x4

36. Code compression rate R = 0.9000. Obtained from LTHC database.

λ(x) =





0.3585670000x + 0.1663620000x2 + 0.0000299853x3

+0.0487523000x4 + 0.1205300000x5 + 0.0004778820x6

+0.0000422043x7 + 0.0409013000x10 + 0.0744850000x13

+0.0339421000x25 + 0.0076194000x30 + 0.0564230000x34

+0.0918683000x99

ρ(x) = x3

37. Code compression rate R = 0.9300. Obtained from LTHC database.

λ(x) =





0.4050180000x + 0.1716200000x2 + 0.0995717000x4

+0.0446767000x5 + 0.0379776000x6 + 0.0612300000x10

+0.0188277000x14 + 0.0332702000x16 + 0.0026478100x17

+0.0127722000x20 + 0.0435222000x28 + 0.0075207600x50

+0.0123120000x52 + 0.0258378000x62 + 0.0065513300x63

+0.0166443000x71

ρ(x) = 0.4x2 + 0.6x3

38. Code compression rate R = 0.9500. Obtained from LTHC database.

λ(x) =





0.4145410000x + 0.1667480000x2 + 0.0971414000x4

+0.0737392000x5 + 0.0007658270x6 + 0.0022987300x8

+0.0118195000x9 + 0.0751327000x11 + 0.0575786000x19

+0.0063649900x26 + 0.0046459300x35 + 0.0171996000x43

+0.0443262000x62 + 0.0111913000x82 + 0.0165064000x99

ρ(x) = 0.5x2 + 0.5x3
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Appendix B

Deriving the Slepian-Wolf Error
Exponent From the Channel
Coding Error Exponent

In this section we show that Slepian-Wolf source coding is equivalent to a channel coding
problem by deriving the Slepian-Wolf error exponent from the random coding exponent.
Because their forms are somewhat simpler to manipulate, in this appendix we use the
forms of these exponents given by Csiszár and Körner [22]. Their form of the Slepian-Wolf
exponent is [22, Exercise 3.1.5, p. 264]:

min
Pỹ|x̃ ,Px̃

D(Px̃ ,ỹ‖Qx ,y ) + max{0, Rsw −H(x̃ |ỹ)}, (B.1)

where Rsw is the encoding rate, Qx ,y = Qy |xQx is the underlying joint distribution defined
by the side information channel Qy |x and source distribution Qx , and x̃ and ỹ are random
variables corresponding to the arbitrary distribution Px̃ ,ỹ = Pỹ |x̃Px̃ .

The constant-composition random coding error exponent for channel Qy |x where code-
words are selected uniformly from all vectors of type (empirical distribution) Px̃ is [22,
Thm. 2.5.2, p. 165]:

inf
Pỹ|x̃

D(Pỹ |x̃‖Qy |x |Px̃) + max{0, I(x̃ ; ỹ)−Rcc}, (B.2)

where Rcc is the code rate. Note, the Slepian-Wolf and random-coding exponents of Equa-
tion (B.1) and Equation (B.2) equal the maximum-likelihood exponents derived by Gallager
in [28] and [27].

To show how to derive Equation (B.1) from Equation (B.2) we use the following Slepian-
Wolf code. The encoder first calculates the type (empirical distribution) of the observed
random source sequence x and communicates this type to the decoder. Call this type Px̃ ,
and note that this initial communication does not cost us any rate asymptotically since the
number of types is only polynomial in the block-length. For each type, the encoder and
decoder share a random partition of the sequences in that type class. The partition is made
by uniformly randomly binning the sequences of the given type into exp{NRsw} bins, so
that each bin consists of roughly exp{N [H(Px̃)−Rsw]} sequences uniformly selected from
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the type-class specified by Px̃ . From the decoder’s point of view, this bin of sequences is
the same as a randomly-generated constant composition code of rate H(Px̃) − Rsw. The
decoder observes one of these sequences through the channel Qy |x .

The probability that the source x, which is distributed according to Qx , has type Px̃ is
upper-bounded by exp{−ND(Px̃‖Qx)}. Given that the source is of type Px̃ , the probability
that we subsequently make a decoding error is bounded by Equation (B.2) where Rcc =
H(Px̃) − Rsw. The overall probability of error is therefore bounded by the probability of
the jointly worst-case source type Px̃ and channel law Pỹ |x̃ which, using the divergence
expansion D(Px̃ ,ỹ‖Qx ,y ) = D(Pỹ |x̃‖Qy |x |Px̃) + D(Px̃‖Qx), can be seen to equal Equation
(B.1).
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