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Feature Selection in Face Recognition:
A Sparse Representation Perspective

Allen Y. Yang, John Wright, Yi Ma, and S. Shankar Sastry.

Abstract

In this paper, we examine the role of feature selection in face recognition from the perspective of sparse representation. We cast
the recognition problem as finding a sparse representation of the test image featuresw.r.t. the training set. The sparse representation
can be accurately and efficiently computed by`1-minimization. The proposed simple algorithm generalizes conventional face
recognition classifiers such as nearest neighbors and nearest subspaces. Using face recognition under varying illumination and
expression as an example, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no
longer critical. What is critical, however, is whether the number of features is sufficient and whether the sparse representation is
correctly found. We conduct extensive experiments to verify this new approach using the Extended Yale B database and the AR
database. Our thorough evaluation shows that the proposed algorithm achieves accurate recognition on face images with varying
illumination and expression, using conventional features such as Eigenfaces and facial parts. Furthermore, other unconventional
features such as severely downsampled images and randomly projections perform almost equally well as the feature dimension
increases. The differences in performance between different features become insignificant once the feature-space dimension is
sufficiently large.

I. I NTRODUCTION

Human faces are arguably the most extensively studied object in image-based recognition. This is partly due to the remarkable
face recognition capability of the human visual system [1], and partly due to numerous important applications for automatic face
recognition technologies. In addition, technical issues associated with face recognition are representative of object recognition
in general. A central issue in the study of object recognition has been the question ofwhich features of an object are the
most important or informative for recognition. Due to the special geometric shape and appearance of the face, instead of
using fixed filter banks (e.g.,downsampling, Fourier, Gabor, wavelets) that are effective for analyzing stationary signals such
as textures, the dominant approaches choose to construct facial features adaptively based on the given images, via techniques
such as Eigenfaces [2], Fisherfaces [3], Laplacianfaces [4], and their variants [5], [6] (see Figure 1 for examples), as well as
facial parts or components [7] (see Figure 10 for examples). The features extracted using such filters or masks are thought
to be more relevant to face recognition, allowing reasonable recognition performance with simple, scalable classifiers such as
nearest neighbor(NN) [8] and nearest subspace(NS) [9] (i.e., minimum distance to the subspace spanned by images of each
subject).

(a)

⇒

(b)

Fig. 1. (a). Original face image. (b). 120-D representations in terms of four different features (from left to right): Eigenfaces, Laplacianfaces, down-sampled
(12×10 pixel) image, and Randomfaces (see Section V for precise description). We will demonstrate that all these features contain almost the same information
about the identity of the subject and give similarly good recognition performance.

However, with so many proposed features but so little consensus about which feature are better or worse, practitioners lack
guidelines to decide which features to use. In the face recognition community, there has been enormous effort and emphasis on
finding the “optimal” features. This quest may have obscured other important factors that can help clarify the role of feature
selection in the overall recognition process. For instance, the performance variation of different features may be due in part
to the choice of classifiers (e.g.,NN or NS), or in part to the choice in the range of feature dimension. The performance of
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conventional features in conjunction with these classifiers has been generally unsatisfactory, far below human face recognition
capability. Frustration with this state of affairs has led researchers to resort to nonlinear features and kernel methods [10],
[11]. Nevertheless, it is still possible that those simple conventional features already contain sufficient information for accurate
recognition and we have simply not employed pertinent tools to harness such information.

In this paper, we cast object recognition as finding asparse representationof a given test imagew.r.t. the training images
of multiple objects:

We represent the test image as a linear combination of the fewest training images possible, out of the entire training
set.

If the test image is indeed an image of one of the subjects in the training database, this linear combination will only
involve training images of that subject. Such a representation is naturallysparse: only a small fraction of the coefficients
are nonzero.1 Such a sparse representation can be effectively computed via`1-minimization [14]. We propose an extremely
simple classification algorithm for face recognition based on the representation computed. Experimental results convincingly
demonstrate the key role of sparsity in recognition: the algorithm achieves high recognition rates on both the Extended Yale B
database and the AR database, significantly boosting the performance of popular face features such as Eigenfaces and facial
parts.

a) Global versus local approach:Notice, however, that we are proposing to compute the sparsest representation in terms
of all the training images. Computing such aglobal representation has several advantages overlocal (one image or subject
at a time) methods such as NN and NS. The first is invalidation, or outlier rejection: if the most compact representation in
terms of the whole training set involves images from several classes, the test image is not likely to be a typical sample from
any one of those classes. For face recognition, this is equivalent to asking “Does the most compact representation treat this
image as a generic face or as the face of a single individual in the training dataset?” (see Section IV). The second advantage
is in identification: sparse representation is similarly discriminative for identification of a (validated) test image within the
subjects in the dataset. It selects out of all the training images a few that most compactly represent the test image and hence
naturally avoids the problem with under-fitting or over-fitting (see Section III for more explanation). Through analysis and
experiments, we will justify the superiority of this global scheme over local methods such as NN and NS, in both validation
and identification.

b) Efficient computational tools:Casting recognition as a (globally) sparse representation problem also allows us to
leverage powerful tools from the emerging mathematical theory of compressed sensing [15]. For example, while finding the
sparsest representation is an NP-hard problem that does not even allow efficient approximation [16], for our problem of interest
it can be computed efficiently and exactly, by`1-minimization.2 Although computing a global representation in terms of all of
the training images may seem computationally extravagant, with an appropriate choice of optimization algorithm the complexity
becomes linear in the number of training samples [17], just as with NN and NS. Furthermore, compressed sensing offers a
new perspective on feature selection: it suggests the number of features is much more important than the details of how they
are constructed. As long as the number of features is large enough, even randomly chosen features are sufficient to recover
the sparse representation [14], [15].

c) Feature selection in the new context:Thus, we are compelled to re-examine feature selection in face recognition from
this new perspective and try to answer the following question:

To what extent does the selection of features still matter, if the sparsity inherent in the recognition problem is properly
harnessed?

Our experiments will show that the performances with conventional features (e.g.,Eigenfaces, Laplacianfaces) converge as the
number of features used increases, as predicted by the theory of sparse representation and compressed sensing [15]. It should
therefore come as no surprise that similarly high recognition rates can be achieved using the same number of down-sampled
pixels or even completely random features, which we callRandomfaces(see Figure 1 for an example). For example, consider
12 × 10 down-sampled images, as shown in Figure 1. Our experiments will show that using such severely down-sampled
images as features, our algorithm can still achieve a recognition rate as high as92.1% over the Extended Yale B database
(see Figure 3). Such performance arguably surpasses humans’ ability to recognize down-sampled images – humans typically
require about16× 16 pixels even for familiar faces [1].

d) What we do not do:In this paper, we assume the face images have been cropped and normalized. We only consider
face recognition of frontal views, and we do not consider pose variations. So our conclusions on feature selection only apply
to the frontal case. Feature selection for face recognition with pose variation, or 3D-model based face recognition, or face
detection/alignment can be rather different problems. It remains an open problem whether the proposed new framework will
have any implications on those problems too.

1The sparsity described here differs from the sparse features proposed in [12] for object detection or in [13] for image representation. We are concerned
with sparsity of the representation (coefficients), whereas those works deal with spatial locality of the basis or features.

2Whereas many of the results in compressed sensing pertain to random matrix ensembles, we work with very specific matrices (determined by the training
dataset). We will verify the validity of these results in this deterministic setting.
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e) Relation to the companion paper:In this paper, we do not deal with occluded or corrupted test face images but
that is the topic of a companion paper [18]. Although both papers deal with sparse solutions, the breakdown point of the
proposed method is much more likely to be reached in the case of occluded images. Thus, a more careful characterization of
the breakdown point is given in the companion paper.

II. PROBLEM FORMULATION AND SOLUTION

A. Recognition as a Linear Sparse Representation

In this paper, we consider face recognition with frontal face images fromk individuals that have been properly cropped and
normalized. Each image is of the sizew × h and can be viewed as a point in the spaceRm with m = w × h. The images of
the same face under varying illumination or expressions have been shown to span an (approximately) low-dimensional linear
subspace inRm, called aface subspace[3], [19]. Although the proposed framework and algorithm can apply to the situation
where the training images of each subject have a multi-modal or nonlinear distribution (Section III discusses this issue in
detail), for ease of presentation, let us first assume that the training images of a single subject do span a subspace. This is the
only prior knowledge about the training images we will be using in our solution.3

Let us stack theni images associated with subjecti as vectorsvi,1,vi,2, . . . ,vi,ni ∈ Rm and assume these vectors are
sufficient to span thei-th face subspace: Any new test image of the same subject, stacked as a vectory ∈ Rm, can be
represented as a linear superposition of the training examples4 associated with Subjecti:

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,ni
vi,ni

, (1)

for some scalarsαi,j ∈ R, j = 1, · · · , ni.
Collect all then

.= n1 + · · ·+ nk training images as column vectors of one matrix:

A
.= [v1,1,v1,2, . . . ,v1,n1 ,v2,1, . . . ,vk,nk

] ∈ Rm×n. (2)

Then ideally the test imagey of subjecti can be represented in terms of all of the images in the training set as

y = Ax0 ∈ Rm, (3)

wherex0 = [0, · · · , 0, αi,1, αi,2, . . . , αi,ni , 0, . . . , 0]T ∈ Rn is a coefficient vector whose entries are mostly zero except those
associated with thei-th subject. We therefore exploit the following simple observation: A valid test image can be sufficiently
represented using only the training images of the same subject. This representation is naturally sparse if the number of subjects
k is reasonably large.

As the entries of the vectorx0 encode the identity of the test imagey, it is tempting to attempt to obtain it by solving the
linear system (3). This linear system of equations isglobal, involving the entire training set. The reader may wonder if a global
approach is really necessary, given that there is a sparse representation in terms of just the training images of one subject. We
will see that the global approach has advantages over local methods such as NN and NS in discriminating between subjects in
the training set (Section III) and in rejecting invalid test images (i.e., outliers) (Section IV). These advantages come without
an increase in the order of growth of the computation: as we will see, the complexity remains linear in the number of training
samples.

If the system (3) is under-determined (m < n for A ∈ Rm×n), its solution is not unique. Traditionally a solution is chosen
with minimum `2-norm:

(P2) min ‖x‖2 subject to y = Ax. (4)

Similarly, if the system is over-determined (m > n), one often seeks theleast-squaressolution by minimizing‖y −Ax‖2.5

However, these approaches fail to address two important properties of the recognition problem:
1) The data arevery high-dimensional. For instance, for a640 × 480 grayscale image, the dimensionm is on the order

of 105, while we normally have only a few samples per subject. Such small sample size only exacerbates “the curse
of dimensionality” that plagues high-dimensional statistics [22], and in particular face recognition [10]. Aside from
the computational cost of solving such large systems of equations, the least-squares (or minimum`2-norm) solution
can exhibit severe bias if the system is not properly regularized [23]. This degeneracy phenomenon noticeably hinders
recognition methods such asnearest neighborandnearest subspace(see Table IV in Section VI).

2) The desired solution issparse. The ratio of the nonzero entries inx0 is only ni

n ≈
1
k : For instance, ifk = 20, only 5%

of the entries ofx0 should be nonzero. The more sparse the recoveredx is, the easier it will be to accurately determine
the identity of the test imagey. Unfortunately, the minimum̀2-norm solution of the equationy = Ax is generally
non-sparse, and can be very far from the true sparse solution in (3) when the system is under-determined or there is a
large error iny [24]–[26].

3We actually do not need to know whether the linear structure is due to varying illumination or expression. Thus, we do not need to use domain-specific
knowledge such as an illumination model [20] to eliminate the variability in the training and testing images.

4One may refer to [21] for how to choose the training images to ensure this property. Here, we assume such a training set is given.
5A solution we would also discourage in the companion paper [18].
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B. Sparse Solution in a Reduced Dimension

To address the above issues, we seek methods that 1) reduce the data dimensionm to d� m and 2) explicitly compute the
sparse representation ofy in the lower-dimensional space. We will see that these two goals are complementary: Appropriately
enforcing sparsity renders the outcome less dependent on the details of dimension reduction.

In the computer vision literature, numerous dimension reduction methods have been investigated for projecting high-
dimensional face images to low-dimensional feature spaces. One class of methods extracts holistic face features, such as
Eigenfaces [2], Fisherfaces [3], and Laplacianfaces [4]. Another class of methods tries to extract significant partial facial
features (e.g.,eye corners) [1], [27]. For such face features, the projection from the image space to the feature space can be
represented as a matrixR ∈ Rd×m with d� m. Applying R to both sides of equation (3) yields:

ỹ
.= Ry = RAx0 ∈ Rd. (5)

After projection, the dimensiond of the feature space usually becomes smaller thann. Hence, the system of equations (5)
is under-determined, and the solutionx is not unique. Nevertheless, the desiredx0 should still be sparse. Under very mild
conditions onÃ = RA, the sparsest solution to the system of equations is indeed unique [24]. In other words, the desiredx0

is the unique solution to the following optimization problem:

(P0) min ‖x‖0 subject to ỹ = Ãx, (6)

where‖ · ‖0 denotes thè 0-norm, which simply counts the number of nonzero entries in a vector. Solving(P0) is NP-hard
and even difficult to approximate by polynomial-time algorithms [28]: In the general case, no known procedure for finding the
sparsest solution is significantly more efficient than exhausting all subsets of the entries forx.

C. Sparse Solution vià1-Minimization

Recent development in the emergingcompressed sensingtheory [24]–[26] reveals that if the solutionx0 sought issparse
enough, the combinatorial problem(P0) is equivalent to the following̀1-minimization problem:

(P1) min ‖x‖1 subject to ỹ = Ãx. (7)

This problem can be solved in polynomial time by standard linear programming or quadratic programming methods [29]. Even
more efficient methods are available when the solution is known to be very sparse. For example, homotopy algorithms recover
solutions withk nonzeros inO(k3 + n) time, linear in the size of the training set [17].

Figure 2 gives a geometric interpretation (essentially due to [30]) of why minimizing the`1-norm recovers sparse solutions.
Let Cα denote thè 1-ball (or cross-polytope) of radiusα:

Cα
.= {x : ‖x‖1 ≤ α} ⊂ Rn. (8)

In Figure 2, the unit̀ 1-ball C1 is mapped to the polytopeP
.= Ã ·C1 ⊂ Rd consisting of allỹ that satisfyỹ = Ãx for some

x whose`1-norm is≤ 1.

Ã

Rn Rd

C1
Ã · C1

x0

ỹ = Ã x0

Fig. 2. Geometry of the sparse solution via`1-minimization. The`1-minimization determines in which facet of the polytopẽA · C1 the pointỹ lies, and
then ỹ is represented as a linear combination of the vertices of that facet, with the coefficientsx0.

The geometric relationship betweenCα and the polytopeÃ · Cα is invariant to scaling. That is, if we scaleCα, its image
underÃ is also scaled by the same amount. Geometrically, finding the minimum`1-norm solutionx1 to (P1) is equivalent
to expanding thè1-ball Cα until the polytopeÃ · Cα first touches̃y = Ãx0. The value ofα at which this occurs is exactly
‖x1‖1.
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Now suppose that̃y = Ãx0 for some sparsex0. We wish to know when solving (P1) correctly recoversx0. This question
is easily resolved from the geometry of Figure 2: Sincex1 is found by expanding bothCα andP = Ã · Cα until a point of
P touchesỹ, the `1-minimizer x1 must generate a point̃Ax1 on the boundary ofP .

Thus x1 = x0 if and only if the pointÃ(x0/‖x0‖1) lies on the boundary ofP . For the example shown in Figure 2, it
is easy to see that̀1-minimization recovers allx0 with only one nonzero entry. This equivalence holds because all of the
vertices ofC1 map to points on the boundary ofP .

If Ã maps allk-dimensional faces ofC1 to faces ofP , the polytopeP is referred to as(centrally) k-neighborly[30]. From
the above, we see that(P1) recovers allx0 with ≤ k+1 nonzeros iffP is k-neighborly. This condition is surprisingly common:
the results of [15] show that even random matrices (e.g., uniform, Gaussian, and partial Fourier) are highly neighborly and
therefore admit sparse solution by`1-minimization.

Unfortunately, there is no known algorithm for efficiently verifying the neighborliness of a given polytopeP . The best
known algorithm is combinatorial and therefore only practical when the dimensionn is moderate [31]. Whenn is large, it is
known that with overwhelming probability, the neighborliness of a randomly chosen polytopeP is loosely bounded between:

c · n < k < n/3 (9)

for some small constantc > 0 (see [24], [30]). In other words, in general, as long as the number of nonzero entries ofx0 is
a small fraction of the dimensionn, `1-minimization will recoverx0. This is precisely the situation in face recognition: the
support of the desired solutionx0 is a fixed fraction of the number of training images; the more subjects there are, the smaller
the fraction. In Section VI, our experimental results will verify the ability of`1-minimization to recover sparse representations
for face recognition, suggesting that the data-dependent features popular in face recognition (e.g.,Eigenfaces) may indeed give
highly neighborly polytopesP .

Since real images are noisy, it may not be possible to express the (features of) the test image exactly as a sparse superposition
of (features of) the training images. To model noise and error in the data, one can consider a stable version of (5) that includes
a noise term with bounded energy‖z‖2 < ε:

ỹ = Ãx0 + z ∈ Rd. (10)

It has been shown that in this case a sparse near solution can be found via the following program:
Theorem 1 (Minimal̀ 1-Norm Near Solution [14]):Consider an under-determined system (10) with a large dimensiond

and‖z‖2 < ε. Let x1 denote the solution to the following problem:

(P ′
1) min ‖x‖1 subject to ‖ỹ − Ãx‖2 ≤ ε. (11)

Then with overwhelming probability, there existρ > 0 andζ > 0 such that for all sparsex0 with ‖x0‖0 ≤ ρd,

‖x1 − x0‖2 ≤ ζε. (12)
The minimization problem (11) can be efficiently solved via convex optimization [29] (see Section VI for our algorithm of
choice).

D. Classification from Sparse Coefficients

Ideally, the nonzero entries in the estimatex will all be associated with the columns iñA from a single subject, and we
can easily assign the test imagey to that subject. However, due to noise, the nonzero entries may be associated with multiple
subjects (see Figure 3). Many classifiers can resolve this problem. For instance, we can simply assigny to the subject with
the single largest entry ofx. However, such heuristics do not harness the subspace structure associated with face images. To
better harness this structure, we instead classifyy based on how well the coefficients associated with all training images of
each subject reproducey.

For each subjecti, define its characteristic functionδi : Rn → Rn which selects the coefficients associated with thei-th
subject. Forx ∈ Rn, δi(x) ∈ Rn is a new vector whose only nonzero entries are the entries inx that are associated with
subjecti, and whose entries associated with all other subjects are zero. We then set

identity(y) = arg min
i

ri(y), where ri(y) .= ‖ỹ − Ã δi(x)‖2. (13)

That is, we assigny to the subject whose associated coefficients,δi(x), give the best approximation toy. Algorithm 1 below
summarizes the complete recognition procedure.

Example 1 (̀1-Minimization versus̀ 2-Minimization): To illustrate how Algorithm 1 works, we randomly select half of the
2, 414 images in the Extended Yale B database as the training set, and the rest for testing. In this example, we chooseR
to simply be the down-sampling filter that sub-samples the images from192 × 168 to size12 × 10. The pixel values of the
down-sampled image are used as features, and hence the feature space dimension isd = 120. Figure 3 top illustrates the
sparse coefficients recovered by Algorithm 1 for a test image from Subject 1. The figure also shows the features and original
images that correspond to the two largest coefficients. As we see, the two largest coefficients are both associated with training
samples from Subject 1. Figure 3 bottom plots the residualsw.r.t. the 38 projected coefficientsδ(xi), i = 1, 2, . . . , 38. With
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Algorithm 1 (Recognition via Sparse Representation)

1: Input: a matrix of training imagesA ∈ Rm×n for k subjects, a linear feature transformR ∈ Rd×m, a test imagey ∈ Rm,
and an error toleranceε.

2: Compute features̃y = Ry and Ã = RA, and normalizẽy and columns ofÃ to unit length.
3: Solve the convex optimization problem (P ′

1):

min ‖x‖1 subject to ‖ỹ − Ãx‖2 ≤ ε.

4: Compute the residualsri(y) = ‖ỹ − Ã δi(x)‖2 for i = 1, . . . , k.
5: Output: identity(y) = arg mini ri(y).

12 × 10 down-sampled images as features, Algorithm 1 achieves an overall recognition rate of92.1% across the Extended
Yale B database (see Section VI).

Fig. 3. Top: Recognition with12 × 10 down-sampled images as features. The test imagey belongs to Subject 1. The values of the sparse coefficients
recovered from Algorithm 1 are plotted on the right together with the two training examples that correspond to the two largest sparse coefficients. Bottom:
The residualsri(y) of a test image of Subject 1w.r.t. the projected sparse coefficientsδi(x) by `1-minimization. The ratio between the magnitudes of the
two smallest residuals is about 1:8.6.

For comparison, Figure 4 top shows the coefficients of the same image features given by the conventional`2-minimization
(4), and Figure 4 bottom shows the corresponding residualsw.r.t. the 38 subjects. The coefficients are much less sparse than
those given bỳ 1-minimization (in Figure 3), and the dominant coefficients are not associated with Subject 1 either. As a
result, the smallest residual in Figure 4 is not at Subject 1.

III. R ELATIONSHIPS TONEARESTNEIGHBOR AND NEARESTSUBSPACE

The above example illustrates`1-minimization’s superior ability to recover the desired sparse representation, compared to
`2-minimization. One may notice that the use ofall the training images ofall subjects to represent the test image goes against
the conventional classification methods popular in face recognition literature and existing systems. These methods typically
suggest using residuals computed from “one training image at a time” or “one subject at a time” to classify the test image.
The representative methods include:

1) The nearest neighbor(NN) classifier: Assign the test imagey to subjecti if the smallest distance fromy to the nearest
training image of subjecti

ri(y) = min
j=1,...,ni

‖ỹ − ṽi,j‖2 (14)

is the smallest among all subjects.6

6Another popular distance metric for the residual is the`1-norm distance‖ · ‖1. This is not to be confused with thè1-minimization in this paper.
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Fig. 4. Top: Coefficients from̀2-minimization, using the same test image as Figure 3. The recovered solution is not sparse and hence less informative for
recognition (large coefficients do not correspond to training images of this test subject). Bottom: The residuals of the test image from Subject 1w.r.t. the
projectionδi(x) of the coefficients obtained bỳ2-minimization. The ratio between the magnitudes of the two smallest residuals is about 1:1.3. The smallest
residual is not associated with Subject 1.

2) The nearest subspace(NS) classifier (e.g., [21]): Assign the test imagey to subjecti if the distance fromy to the
subspace spanned by all imagesAi = [vi,1, . . . ,vi,ni ] of the subjecti:

ri(y) = min
xi∈Rni

‖ỹ − Ãixi‖2 (15)

is the smallest among all subjects.

Clearly, NN seeks the best representation in terms of just a single training image,7 while NS seeks the best representation in
terms of all the training images of each subject.

A. Relationship to Nearest Neighbor

Let us first assume that a test imagey can be well-represented in terms of one training image, sayvi (one of the columns
of A):

ỹ = ṽi + zi (16)

where‖zi‖2 ≤ ε for some smallε > 0. Then according to Theorem 1, the recovered sparse solutionx to (11) satisfies

‖x−wi‖2 ≤ ζε

wherewi ∈ Rn is the vector whosei-th entry is1 and others are all zero, andζ is a constant that depends oñA. Thus, in
this case, thè1-minimization based classifier will give the same identification for the test image as NN.

On the other hand, test images may have large variability due to different lighting conditions or facial expressions, and the
training sets generally do not densely cover the space of all possible images (we will see in the next section that this is the
case with the AR database). In this case, it is unlikely that any single training image will be very close to the test image, and
nearest-neighbor classification may perform poorly.

Example 2:Figure 5 shows thè2-distances between the down-sampled face image from Subject 1 in Example 1 and each
of the training images. Although the smallest distance is correctly associated with Subject 1, the variation of the distances for
other subjects is quite large. As we will see in Section VI, this inevitably leads to inferior recognition performance when using
NN (only 71.6% in this case, comparing to92.1% of Algorithm 1).8

7Alternatively, a similar classifierKNN considers K nearest neighbors.
8Other commonly used distance metrics in NN such as`1-distance give results similar to Figure 5.
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Fig. 5. The`2 distances (logarithmic scale) between the test image and the training images in Example 1.

B. Relationship to Nearest Subspace

Let us now assume that a test imagey can be well-represented as a linear combination of the training imagesAi of subject
i:

ỹ = Ãixi + zi (17)

where‖zi‖2 ≤ ε for some smallε > 0. Then again according to Theorem 1, the recovered sparse solutionx to (11) satisfies

‖x−wi‖2 ≤ ζε

wherewi ∈ Rn is a vector of the form[0, . . . , 0,xT
i , 0, . . . , 0]T (if wi is the unique solution that satisfies‖ỹ − Ãwi‖2 < ε).

That is,
δi(x) ≈ wi and ‖δj(x)‖ < ζε for all j 6= i. (18)

We have
‖ỹ − Ãδi(x)‖2 ≈ ‖zi‖2 ≤ ε, ‖ỹ − Ãδj(x)‖2 ≈ ‖ỹ‖2 � ε for all j 6= i. (19)

Thus, in this case, thè1-minimization based classifier will give the same identification for the test image as NS. Notice
that for j 6= i, δj(x) is rather different fromxj computed fromminxj

‖ỹ − Ajxj‖2. The norm ofδj(x) is bounded by the
approximation error (18) wheny is represented just within classj, whereas the norm ofxj can be very large as face images
of different subjects are highly correlated. Further notice that each of thexj is an optimal representation(in the 2-norm) of
y in terms of some (different) subset of the training data, whereasonly oneof the {δj(x)}kj=1 computed vià 1-minimization
is optimal in this sense; the rest have very small norm. In this sense,`1-minimization ismore discriminativethan NS, as is
the set of associated residuals{‖ỹ − Ãδj(x)‖2}kj=1.

Example 3:Figure 6 shows the residuals of the down-sampled features of the test image in Example 1w.r.t. the subspaces
spanned by the 38 subjects. Although the minimum residual is correctly associated with Subject 1, the difference from the
residuals of the other 37 subjects is not as dramatic as that obtained from Algorithm 1. Compared to the ratio 1:8.6 between
the two smallest residuals in Figure 3, the ratio between the two smallest residuals in Figure 6 is only 1:3. In other words, the
solution from Algorithm 1 is more discriminative than that from NS. As we will see Section VI, for the12×10 down-sampled
images, the recognition rate of NS is lower than that of Algorithm 1 (91.1% versus92.1%).

Fig. 6. The residuals of the test image in Example 1w.r.t. the 38 face subspaces. The ratio between the magnitudes of the two smallest residuals is about
1:3.

Be aware that the subspace for each subject is only an approximation to the true distribution of the face images. In reality,
due to expression variations, specularity, or alignment error, the actual distribution of face images could be nonlinear or multi-
modal. Using only the distance to the entire subspace ignores information about the distribution of the samples within the
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subspace, which could be more important for classification. Even if the test image is generated from a simple statistical model:
ỹ = Ãixi +zi with xi andzi independent Gaussians, any sufficient statistic (for the optimal classifier) depends on both‖xi‖2
and ‖zi‖2, not just the residual‖zi‖2. While the `1-based classifier is also suboptimal under this model, it does implicitly
use the information inxi as it penalizesxi that has a large norm – thè1-minimization based classifier favors small‖zi‖2 as
well as small‖xi‖1 in representing the test image with the training data.

Furthermore, using all the training images in each class may over-fit the test image. In the case when the solutionxi to

ỹ = Ãixi + zi subject to ‖zi‖2 < ε

is not unique, thè 1-minimization (7) will find the sparsestxs
i instead of the least-squares solutionx2

i = (ÃT
i Ãi)†ỹ. That

is, the `1-minimization will use the smallest number of sample images necessary in each class to represent the test image,
subject to a small error. To see why such an solutionxs

i respects better the actual distribution of the training samples (inside
the subspace spanned by all samples), consider the two situations illustrated in Figure 7.

Fig. 7. A sparse solution within the subspace spanned by all training samples of one subject. Left: the samples exhibit a nonlinear distribution within the
subspace. Right: the samples lie on two lower-dimensional subspaces within the subspace spanned by all the samples.

In the figure on the left, the training samples have a nonlinear distribution within the subspace, say due to pose variation. For
the given positive test sample “+,” only two training samples are needed to represent it well linearly. For the other negative test
sample “-,” although it is inside the subspace spanned by all the samples, it deviates significantly from the sample distribution.
In the figure on the right, the training samples of one subject are distributed on two lower-dimensional subspaces. This could
represent the situation when the training images contain both varying illuminations and expressions. Again, for a positive test
sample “+,” typically a small subset of the training samples are needed to represent it well. But if we use the span of all the
samples, that could easily over-fit negative samples that do not belong to the same subject. For example, as we have shown in
Figure 3, although Subject 1 has 32 training examples, the test image is well represented using less than 5 large coefficients.
In other words,̀ 1-minimization is very efficient in harnessing sparse structures even within each face subspace.

From our discussions above, we see that the`1-minimization based classifier works under a wider range of conditions than
NN and NS combined. It strikes a good balance between NN and NS: To avoid under-fitting, it uses multiple (instead of
the nearest one) training images in each class to linearly extrapolate the test image, but it uses only the smallest necessary
number of them to avoid over-fitting. For each test image, the number of samples needed is automatically determined by the
`1-minimization, because in terms of finding the sparse solutionx, the `1-minimization is equivalent to thè0-minimization.
As a result, the classifier can better exploit the actual (possibly multi-modal and nonlinear) distributions of the training data
of each subject and is therefore likely to be more discriminative among multiple classes. These advantages of Algorithm 1 are
corroborated by experimental results presented in Section VI.

IV. VALIDATION OF THE TEST IMAGE

Validation is a problem closely related to but different from identification. Given a test image, before we identify which
subject it is, we first need to decide if it is a valid image of one of the subjects in the dataset. The ability to detect and then
reject invalid test images, also known as “outliers,” is crucial for a recognition system to work in a real-world situation: the
system can be given a face image of a subject that is not in the dataset, or an image that is not a face at all.

In the NN or NS paradigm, the residualsri(y) are also used for validation, in addition to identification. That is, the algorithm
accepts or rejects a test image based on how small the smallest residual is. However, each residualri(y) is computed without
any knowledge of images of other subjects in the training dataset and only measures similarity between the test image and
each individual subject. In the sparse representation paradigm, the residualsri(y) are computed globally, in terms of images
of all subjects. In a sense, it can potentially harness the joint distribution of all subjects for validation.

From Algorithm 1, in addition to the residualsri(y), we also obtain the coefficientsx. We contend that the coefficientsx
are better statistics for validation than the residuals. Let us first see an example. We randomly select an irrelevant image from
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Google, and down-sample it to12 × 10. We then compute the sparse representation of the image against the same training
data as in Example 1. Figure 8 top plots the obtained coefficients, and bottom plots the corresponding residuals. Compared to
the coefficients of a valid test image in Figure 3, notice that the coefficientsx here are not concentrated on any one subject
and instead spread widely across the entire training set. Thus, the distribution of the estimated sparse coefficientsx contains
important information about the validity of the test image: A valid test image should have a sparse representation whose
nonzero entries concentrate mostly on one subject, whereas an invalid image has sparse coefficients spread widely among
multiple subjects.

Fig. 8. Top: The sparse coefficients for an invalid test imagew.r.t. the same training data set from Example 1. The test image is a randomly selected irrelevant
image. The values of the sparse coefficients recovered from Algorithm 1 are plotted on the right. Bottom: The residuals of the invalid test imagew.r.t. the
projectionδi(x) of the sparse representation computed by`1-minimization. The ratio between the magnitudes of the two smallest residuals is about 1:1.2.

To quantify this observation, we define the following measure of how concentrated the coefficients are on a single subject
in the dataset:

Definition 1 (Sparsity Concentration Index):Supposex is the sparse solution to either (P1) (7) or (P ′
1) (11). Thesparsity

concentration index(SCI) of x is defined as

SCI(x) .=
k ·maxi ‖δi(x)‖1/‖x‖1 − 1

k − 1
∈ [0, 1]. (20)

Obviously, when SCI = 1, the test image is represented using only images from a single subject, and when SCI = 0, the sparse
coefficients are spread evenly over all classes. Thus, we choose a thresholdτ ∈ (0, 1) and accept a test image as valid if

SCI(x) ≥ τ, (21)

and reject as invalid otherwise.
Unlike NN or NS, this new rule avoids the use of the residualsri(y) for validation. Notice that in Figure 8, even for a

non-face image, with a large training set, the smallest residual of the invalid test image is not so large at all. Rather than
relying on a single statistic for both validation and identification, our approach separates the information required for these
tasks: the residuals for identification and the sparse coefficients for validation.9 In a sense, the residual measures how well the
representation approximates the test image; and the sparsity concentration index measures how good the representation itself
is, in terms of localization.

Another benefit of this approach is improved validation performance against generic face images. A generic face might be
rather similar to some of the subjects in the dataset and may have small residuals w.r.t. their training images. Using residuals
for validation more likely leads to a false positive. But a generic face is unlikely to pass the new validation rule as a good
representation of it typically requires contribution from images of multiple subjects in the dataset. Thus, the new rule can
better judge whether the test image is a generic face or the face of one particular subject in the dataset. In Section VI-C we

9We find empirically that this separation works well enough in our experiments with face images. However, it is possible that better validation and
identification rules can be contrived from using the residual and the sparsity together.
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will demonstrate that the new validation rule outperforms the NN and NS methods, with as much as 10–20% improvement in
verification rate for a given false accept rate (see Figure 11).

V. FEATURE SELECTION AND RANDOMFACES

With Algorithm 1 in place, the remaining question is how the choice of the feature transformR affects its recognition
performance. Obviously,R affects the performance through the matrix̃A = RA’s ability to recover sparse solutions via
`1-minimization. When the number of non-zero entries inx increases beyond a critical value,`1-minimization no longer
always finds the correct, sparsex0. This value is called theequivalence breakdown pointof Ã [24]. Different Ã’s have
different breakdown points. Although there is no known closed-form formula nor polynomial-time algorithm to determine the
breakdown point of a given matrix, in our context the large number of subjects typically ensures us that the algorithm operates
well below the breakdown point. Therefore, the sparse solutionx will not depend so much on the chosen transformationR
and subsequently, the recognition rate of Algorithm 1 will be similar for different features (either using fixed filter banks or
adaptive bases).

For extant face recognition methods, it is known that increasing the dimension of the feature space generally improves the
recognition rate, as long as the feature distribution does not become degenerate [10]. However, degeneracy is no longer an
issue for our algorithm sincè1-minimization properly regularizes linear regression [23]. We can use very high-dimensional
feature spaces with little concern about degeneracy. In addition, it is easy to show that the breakdown point ofÃ increases
with d [15], [26]. As we will demonstrate in Section VI, the performance of our algorithm improves gracefully asd increases.
The optimization problem(P1) or (P ′

1) can be efficiently solved by linear programming or convex optimization, allowing us
to experiment with feature space dimensions up tod = 12, 000.

Algorithm 1’s ability to handle high-dimensional features allows us to observe an important phenomenon about feature
selection, which is unique in the framework of sparse representation. Theoretical results of [15], [26] have shown that if the
signalx is sparse, then with overwhelming probability, it can be correctly recovered via`1-minimization fromany sufficiently
large dimensiond of linear measurements̃y. More precisely, ifx hask � n nonzeros, then

d ≥ 2k log(n/d) (22)

random measurements are sufficient for sparse recovery with high probability [32]. This surprising phenomenon has been
dubbed the “blessing of dimensionality” [15], [22]. Thus, one should expect to see similarly good recognition performance
from Algorithm 1 even with randomly selected facial features:

Definition 2 (Randomfaces):Consider a transform matrixR ∈ Rd×m whose entries are independently sampled from a zero-
mean normal distribution and each row is normalized to unit length. These row vectors ofR can be viewed asd random faces
in Rm.

Random projection has been previously studied as a general dimensionality reduction method for numerous clustering
problems [33]–[35], as well as for learning nonlinear manifolds [36], [37]. Regardless of whether the estimated signal is sparse
or not, random projection has the following advantages over classical methods such asprincipal component analysis(PCA)
and linear discriminant analysis(LDA):

1) The computation of a random matrixR does not rely on a specific (good) training set,i.e., it is data independent.
2) A random matrix is extremely efficient to generate, even in very high-dimensional feature spaces.

These advantages make random projection a very promising approach to dimension reduction in practical applications. For
instance, a face-recognition system for access control may not be able to acquire in advance a complete database of all subjects
of interest, and the subjects in the database may change dramatically over time. When there is a new subject added to the
database, there is no need for recomputing the random transformationR.

One concern about random projection is its stability,i.e., for an individual trial, the selected features could be bad [38].
Our experiments in Section VI show that for face recognition this is usually not a problem as long as the number of features,
d, is sufficiently large. Nevertheless, one can always ensure higher stability by aggregating the results from multiple random
projections. We next outline one simple scheme to do so.

In Algorithm 1, the classification of a test sampley depends on the residualsri, i = 1, . . . , k, w.r.t. the k classes. When the
projection matrixR is randomly generated, we seek a robust estimate of the residualsri by using an ensemble of Randomface
matricesRj , j = 1, . . . , l. Define rj

i as the residual of the test imagew.r.t. the i-th class using the projection matrixRj in
Algorithm 1, then the empirical average of thei-th residual overl projections is

E[ri] =
1
l

∑
j=1,...,l

rj
i . (23)

Hence the identity ofy can be assigned as
identity(y) = arg min

i
E[ri]. (24)

The optimal membership estimate corresponds to the minimum average residual using the sparse representations overl randomly
generated projection matricesR.
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The modified algorithm is summarized as Algorithm 2. The improvement of this algorithm over Algorithm 1 will be
demonstrated in Section VI.

Algorithm 2 (Recognition via an Ensemble of Randomfaces)
1: Input: a matrix of training imagesA ∈ Rm×n for k subjects, a test imagey ∈ Rm, and an error toleranceε.
2: Generatel random projection matricesR1, . . . , Rl ∈ Rd×m,
3: for all j = 1, . . . , l do
4: Compute features̃y = Rjy and Ã = RjA, normalizeỹ and columns ofÃ to unit length.
5: Solve the convex optimization problem (P ′

1):

min ‖x‖1 subject to ‖ỹ − Ãx‖2 ≤ ε.

6: Computerj
i (y) = ‖ỹ − Ã δi(x)‖2, for i = 1, . . . , k.

7: end for
8: For each classi, E[ri]← mean{r1

i , . . . , rl
i}.

9: Output: identity(y) = arg mini E[ri].

VI. EXPERIMENTAL VERIFICATION

In this section, we quantitatively verify the performance of Algorithm 1 and Algorithm 2 using two public face databases,
namely, the Extended Yale B database [39] and the AR database [40]. The`1-minimization in our algorithm is based on the
“`1-magic” MATLAB toolbox at: http://www.acm.caltech.edu/l1magic/ . The MATLAB implementation of our
algorithms only takes a few seconds to classify one test image on a typical 3G Hz PC.

We compare the two algorithms with two classical algorithms, namely,nearest neighbor(NN) andnearest subspace(NS),
discussed in the previous section. We denote the results from Algorithm 2 on Randomface ensembles as “E-Random” in this
section (five random projection matrices are used to compute the average). For all the experiments, the error distortionε for
Algorithm 1 and Algorithm 2 is set to beε = 0.05.

A. Boosting the Performance of X-Face Features

We first test our algorithms using several conventional holistic face features, namely, Eigenfaces, Laplacianfaces, and
Fisherfaces. We compare their performance with two unconventional features: Randomfaces and down-sampled images.

1) Extended Yale B Database:The Extended Yale B database consists of 2,414 frontal-face images of 38 individuals. The
cropped and normalized192×168 face images were captured under various laboratory-controlled lighting conditions. To fairly
compare the performance, for each subject, we randomly select half of the images for training (i.e., about 32 images per
subject), and the other half for testing. The reason for randomly choosing the training set is to make sure that our results and
conclusions will not depend on any special choice of the training data.

We chose to compute the recognition rates with the feature space dimensions 30, 56, 120, and 504, respectively. Those
numbers correspond to the dimensions of the down-sampled image with the ratios 1/32, 1/24, 1/16, and 1/8, respectively.10

Notice that Fisherfaces are different from the other features because the maximal number of valid Fisherfaces is one less than
the number of classesk [3], which is 38 in our case. As a result, the recognition result for Fisherfaces is only available at
dimension 30 in our experiment.

The subspace dimension for the NS algorithm is 9, which has been mostly agreed upon in the literature for processing facial
images with only illumination change.11 Tables I and II show the recognition rates for the X-face features.

These recognition rates shown in Table II are consistent with those that have been reported in the literature, although some
reported on different databases or with different training subsets. For example, Heet. al. [4] reported the best recognition rate
of 75% using Eigenfaces at 33 dimension, and89% using Laplacianfaces at 28 dimension on the Yale face database, both
using NN. In [21], Leeet. al. reported95.4% accuracy using the NS method on the Yale B database.

2) AR Database:The AR database consists of over 4,000 frontal images for 126 individuals. For each individual, 26 pictures
were taken in two separate sessions. These images include more facial variations including illumination change, expressions,
and facial disguises comparing to the Extended Yale B database. In the experiment, we chose a subset of the dataset consisting
of 50 male subjects and 50 female subjects. For each subject, 14 images with only illumination change and expressions were
selected12: The seven images from Session 1 for training, and the other seven from Session 2 for testing. The images are
properly cropped with dimension165 × 120, and all converted to grayscale. We selected four feature space dimensions: 30,

10We cut off the dimension at 504 as the implementation of Eigenfaces and Laplacianfaces reaches the memory limit of MATLAB. Although our algorithm
persists to work far beyond on the same computer, 504 is already sufficient to reach all our conclusions.

11We have experimented with other subspace dimensions that are either greater or less than 9, and they eventually led to a decrease in performance.
12Please refer to the companion submission [18] for our proposed treatment enforcing the sparsity constraint in the presence of (facial) image occlusion.
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TABLE I

RECOGNITION RATES OFALGORITHM 1 (OR 2) ON THE EXTENDED YALE B DATABASE. THE BOLD NUMBERS INDICATE THE BEST AMONG ALL

FEATURES.

Dimension (d) 30 56 120 504
Eigen [%] 86.5 91.63 93.95 96.77
Laplacian [%] 87.49 91.72 93.95 96.52
Random [%] 82.6 91.47 95.53 98.09
Downsample [%] 74.57 86.16 92.13 97.1
Fisher [%] 86.91 N/A N/A N/A
E-Random [%] 90.72 94.12 96.35 98.26

TABLE II

RECOGNITION RATES OFNEARESTNEIGHBOR (LEFT) AND NEARESTSUBSPACE(RIGHT) ON THE EXTENDED YALE B DATABASE. THE BOLD NUMBERS

INDICATE THE BEST AMONG ALL FEATURES.

Dimension (d) 30 56 120 504
Eigen [%] 74.32 81.36 85.50 88.40
Laplacian [%] 77.13 83.51 87.24 90.72
Random [%] 70.34 75.56 78.79 79.04
Downsample [%] 51.69 62.55 71.58 77.96
Fisher [%] 87.57 N/A N/A N/A

Dimension (d) 30 56 120 504
Eigen [%] 89.89 91.13 92.54 93.21
Laplacian [%] 88.98 90.39 91.88 93.37
Random [%] 87.32 91.47 93.87 94.12
Downsample [%] 80.78 88.15 91.13 93.37
Fisher [%] 81.94 N/A N/A N/A

54, 130, and 540, which correspond to the down-sample rations 1/24, 1/18, 1/12, and 1/6, respectively. Because the number
of subjects is 100, results for Fisherfaces are only given at dimension 30 and 54.

This database is substantially more challenging than the Yale database, since the number of subjects is now 100 but the
training images is reduced to seven per subject: Four neutral faces with different lighting conditions and three faces with
different expressions (see Figure 9 for an example).

Fig. 9. The seven training images of an individual in the AR database.

For NS, since the number of training images per subject is seven, any estimate of the face subspace cannot have dimension
higher than 7. We chose to keep all seven dimensions for NS in this case. Tables III and IV show the recognition rates for
the X-face features.

Based on the results on the Extended Yale B database and the AR database, we draw the following conclusions:

1) In general for both the Yale database and AR database, the best performance of Algorithm 1 and Algorithm 2 consistently
outperforms the other two classical methods NN and NS at each individual feature dimension, and by a large margin.
By imposingsparsityvia `1-minimization, the recognition rates of all features improve and converge gracefully when
the feature dimension increases, for both the Yale and AR databases. More specifically, the best recognition rate for the
Yale database vià1-minimization is98.3%, compared to90.7% using NN and94% using NS; the best rate for the AR
database vià1-minimization is95%, compared to89.7% for NN and90% for NS.

TABLE III

RECOGNITION RATES OFALGORITHM 1 (OR 2) ON THE AR DATABASE. THE BOLD NUMBERS INDICATE THE BEST AMONG ALL FEATURES.

Dimension (d) 30 54 130 540
Eigen [%] 71.14 80 85.71 91.99
Laplacian [%] 73.71 84.69 90.99 94.28
Random [%] 57.8 75.54 87.55 94.7
Downsample [%] 46.78 67 84.55 93.85
Fisher [%] 86.98 92.27 N/A N/A
E-Random [%] 78.54 85.84 91.23 94.99
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TABLE IV

RECOGNITION RATES OFNEARESTNEIGHBOR (LEFT) AND NEARESTSUBSPACE(RIGHT) ON THE AR DATABASE. THE BOLD NUMBERS INDICATE THE

BEST AMONG ALL FEATURES.

Dimension (d) 30 54 130 540
Eigen [%] 68.10 74.82 79.26 80.54
Laplacian [%] 73.10 77.11 83.83 89.70
Random [%] 56.65 63.66 71.39 74.96
Downsample [%] 51.65 60.94 69.24 73.68
Fisher [%] 83.40 86.84 N/A N/A

Dimension (d) 30 54 130 540
Eigen [%] 64.09 77.11 81.97 85.12
Laplacian [%] 65.95 77.54 84.26 90.27
Random [%] 59.23 68.24 79.97 83.26
Downsample [%] 56.22 67.67 76.97 82.12
Fisher [%] 80.26 85.84 N/A N/A

2) In Table I and Table III, the experiments have successfully verified that when sparsity is properly harnessed, highly
accurate recognition can be achieved even with the “unconventional” down-sampled images or Randomface features. For
example in Table III, the performance of the down-sampled image features gracefully increased from46.8% at 30-D to
93.9% at 540-D. In comparison, the same features only achieve73.7% for NN and82.1% for NS at 540-D, when such
sparsity constraint is not utilized.

3) The results corroborate the theory of compressed sensing, which suggests thatd ≈ 128, according to equation (22),
random linear measurements should be sufficient for sparse recovery in the Yale database, whiled ≈ 88 random linear
measurements should suffice for sparse recovery in the AR database [32]. Beyond these dimensions, the performances
of various features in conjunction with̀1-minimization converge, with a single randomly chosen projection performing
the best (98.1% recognition rate on Yale,94.7% on AR).

4) Algorithm 2 further enhances the performance of Randomfaces. For all feature dimensions on the Yale database and
the highest two dimensions on the AR database, Randomface ensembles achieve higher accuracy than all other facial
features considered.

5) From the results of NN and NS in Table II and Table IV, the choice of a good combination of features and classifiers
indeed makes some difference. For example, NS outperforms NN in most cases on both databases. The Fisherface features
excel in almost all low-dimensional facial feature spaces for NN and NS, while it is the Laplacianfaces that achieve the
highest accuracy in higher-dimensional feature spaces.

B. Partial Face Features

There have been extensive studies in both human vision and computer vision literature about the effectiveness of partial
features in recovering the identity of a human face,e.g.,see [1], [27]. As a second set of experiments, we test Algorithm 1 on
the following three partial facial features: nose, right eye, and mouth & chin. We use the Extended Yale B database for the
experiment and the training and test datasets are the same as the experiment in subsection VI-A.1. See Figure 10 for a typical
example of the extracted features.

Fig. 10. Illustration of the three partial features. Left: Nose. Middle: Right eye. Right: Mouth & chin.

Notice that the dimensiond of either feature is larger than the number of training samples (n = 1, 207), and the linear system
(5) to be solved becomes over-determined. Nevertheless, we apply the same Algorithm 1 anyway to encourage sparsity of the
solution. The results in Table V again show that the proposed algorithm achieves much better recognition rates than both NN
and NS, which again demonstrate the significance of imposing the sparsity constraint in face recognition. These experiments
also shows the scalability of the proposed algorithm in working with features of over104 dimensions.

C. Receiver Operating Characteristics

In this experiment, we verify how Algorithm 1, together with the outlier rejection rule (21) given in Section IV, can effectively
detect and reject invalid testing images. Conventionally, the two major indices used to measure the accuracy of outlier rejection
are thefalse acceptance rate(FAR) and theverification rate(VR). False acceptance rate calculates the percentage of test
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TABLE V

LEFT: EXAMPLE OF RIGHT-EYE (RE) FEATURE AND RIGHT-FACE (RF) FEATURE. RIGHT: RECOGNITION RATES OFALGORITHM 1, NN, AND NS ON THE

EXTENDED YALE B DATABASE.

Features Nose Right Eye Mouth & Chin
Dimension (d) 4,270 5,040 12,936

Algorithm 1 [%] 87.32 93.7 98.32
NS [%] 83.68 78.62 94.37
NN [%] 49.21 68.77 72.66

samples that are accepted and wrongly classified. Verification rate is one minus the percentage of valid test samples that are
wrongfully rejected. A good recognition system should achieve high verification rates even at very low false acceptance rates.
Therefore, the accuracy and reliability of a recognition system are typically evaluated by the FAR-VR curve (sometimes it is
loosely identified as thereceiver operating characteristic(ROC) curve).

In this experiment, we only use the more challenging AR dataset – more subjects and more variability in the testing data
make outlier rejection a more relevant issue. The experiments are run under two different settings. The first setting is the same
as in subsection VI-A.2: 700 training images for all 100 subjects and another 700 images for testing. So in this case, there
is no real outliers. The role of validation is simply to reject test images that are difficult to classify. In the second setting,
we remove the training samples of every third of the subjects and add them into the test set. That leaves us 469 training
images for 67 subjects and 700 + 231 = 931 testing images for all 100 subjects. So about half of the test images are true
outliers.13 We compare three algorithms: Algorithm 1, NS, and NS. To be fair, all three algorithms use exactly the same
features, 504-dimensional eigenfaces.14

Figure 11 shows the FAR-VR curves obtained under the two settings. Notice that Algorithm 1 significantly outperforms NS
and NN, as expected. In our companion paper [18], we have also computed the ROC curves for the Extended Yale B dataset
using the entire image as feature. We observe there that the validation performance of Algorithm 1 improves much further
with the full image whereas the other methods do not – their performance saturates when the feature dimension is beyond a
few hundred.

Fig. 11. The FAR-VR curves (in red color) of Algorithm 1 using Eigenfaces. They are compared with the curves of NS and NN using Eigenfaces. Left:
700 images for all 100 subjects in the training, no real outliers in the 700 test images. Right: 469 images for 67 subjects in the training, about half of the
931 test images are true outliers.

VII. C ONCLUSIONS ANDDISCUSSIONS

In this paper, we have contended both theoretically and experimentally that exploiting sparsity is critical for high-performance
face recognition. With sparsity properly harnessed, the choice of features becomes less important than the number of features
used (in our face recognition example, approximately100 are sufficient to make the difference negligible). Furthermore,
when the number of features are large enough (from our experiments, approximately500), even randomly generated features
or severely down-sampled images are just as good as conventional face features such as Eigenfaces and Fisherfaces. This

13More precisely, 462 out of the 931 test images belong to subjects not in the training set.
14Notice that according to Table III, among all 504-D features, eigenfaces are in fact the worst for our algorithm. We use it anyway as this gives a baseline

performance for our algorithm.
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revelation almost goes against conventional wisdom, but is strongly corroborated by the emerging mathematical theory of
compressed sensing [15], [32].

Notice that in this paper, we never explicitly use any illumination model to reduce the effect of lighting on the faces,
unlikely the methods that use quotient or self-quotient images [20], [41]. In a related study, we have verified empirically that
using self-quotient images improves our algorithm only slightly, suggesting that our algorithm can already handle illumination
without any preprocessing. The linear representation model (3) is the only assumption that we made about the relationship
between the test image and the training images. As we see from the results on the AR database, this model apparently works
well with variation in facial expression too.

The conclusions drawn in this paper apply to any object recognition problems where the linear feature model (5) is valid
or approximately so. However, for face recognition with pose variation, the linear model may no longer be accurate. Most
existing solutions have therefore relied on nonlinear kernel methods that render nonlinear face structures linearly separable [10],
[27], [42]. Yet practitioners are faced with similar over-fitting problems in even higher-dimensional kernel spaces. We believe
the proposed classification framework via`1-minimization may also provide new solutions for such kernel-based methods.
Furthermore, in the companion paper [18], we have demonstrated how sparsity also plays a crucial role in face recognition
when the test images are severely corrupted and occluded.
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