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Abstract

Best-Fit Constructional Analysis

by

John Edward Bryant

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jerome Feldman, Chair

This dissertation describes a process called best-fit constructional analysis and the

associated implementation called the Constructional Analyzer. The constructional

analyzer takes an utterance as input and performs deep semantic analysis, mapping

the utterance onto its most likely interpretation. The best-fit constructional analyzer

is unique because it combines Embodied Construction Grammar with the power of

best-fit processing. This combination enables the constructional analyzer to be both

a cognitive model of interpretation and a practical semantic analysis system.

The best-fit constructional analyzer performs incremental unification grammar

parsing, using a factored probabilistic model over syntax and semantics to guide

interpretation. The constructional analyzer has been applied to a range of applica-

tions: a) It is a tool for building and testing construction grammars. b) It is a psy-

chologically plausible model of human interpretation that makes predictions about

reading time that match experimental evidence. c) It is a practical system for se-

mantic analysis that has been tested on a corpus of Mandarin child-parent dialogues.

Professor Jerome Feldman
Dissertation Committee Chair
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Chapter 1

Introduction

This dissertation describes a process called best-fit constructional analysis and

the associated implementation called the Constructional Analyzer (or often just “the

analyzer” for short). The constructional analyzer takes an utterance as input and

performs deep semantic analysis, mapping the input utterance onto its most likely

interpretation. The best-fit constructional analyzer is unique because it combines

Embodied Construction Grammar with the power of best-fit processing. This com-

bination enables the best-fit constructional analyzer to be both a cognitive model of

interpretation and a practical domain-specific semantic analysis system.

Construction grammar [21] [37] [38] is a theory of grammar that states that the

rules of a language are mappings between form constraints and meaning constraints.

Each mapping is called a construction. Figure 1.1 provides an intuitive introduction to

some example constructions. Constructions are a powerful tool for semantic analysis

because they are explicit about the relation between form and meaning. Parsing

an utterance with a construction grammar results in a set of well-formed semantic

constraints describing the utterance, and thus parsing with construction grammar is

equivalent to performing semantic analysis on an utterance. So instead of just calling

this process “parsing” or “semantic analysis”, we call it constructional analysis [5].

Best-fit is a term we use to describe any decision-making process that combines in-

formation from multiple domains in a quantitative way. Thus Best-fit constructional

analysis is a process in which decisions about how to interpret an utterance (using
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constructions) are conditioned on semantic, syntactic and contextual information. In

the implemented constructional analyzer, semantic, syntactic and contextual infor-

mation is combined within a probabilistic model, and the probabilistic model is used

to define a ranking function over (partial) interpretations as each word of an input

utterance is processed. We refer to this probabilistic model as the best-fit metric.

Figure 1.2 provides a schematic view of the analyzer. It takes an utterance, a

grammar, and a model of context as input. The grammar is a construction grammar,

and therefore contains both syntactic and semantic information. The context model

is a structured (relational) representation of discourse and situational context that

tracks salient entities. When an utterance is processed, the syntactic, semantic, and

contextual constraints in the grammar help determine likely interpretations of the

utterance, and references to context (such as pronouns) are resolved according to the

context model.

When the analyzer interprets an utterance, it returns what we call an analysis.

An analysis specifies the constructions that were used to process the utterance and

the semantic content of the utterance (the interpretation). The semantic content

is called a Semantic Specification or semspec, and it consists of an inter-connected

set of frames, semantic schemas, and participants that describes both the seman-

tic content of the utterance and how that semantic content was communicated. A

frame is a gestalt representation of some event or scene along with that scene’s as-

sociated roles [20]. Like frames, semantic schemas are also gestalt representations of

concepts, except schemas represent neurally motivated embodied primitives such as

image schemas [82] and x-schemas [54]. Figure 1.3 explains how a simplified exam-

ple semspec for the sentence Joe walked into the house can be represented in feature

structure notation.

1.1 A Practical System and a Cognitive Model

The best-fit constructional analyzer is both a flexible system for semantic analysis

and a cognitive model of interpretation. The fields of cognitive/functional linguistics,

natural language processing, and psycholinguistics all inform the design of the system.
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Example Constructions
Name Form Meaning

Suffix -ed “-ed” before speech time, completed
Lexical Give “give” a give action

Double Object NP0 V NP1 NP2 Transfer Scene + bindings
WXDY What is NP0 doing PP0 How come NP0 is PP0

Figure 1.1: Four example English constructions represented in an intuitive
way. The three columns in the Example Constructions table show the name
of the construction, a description of its form and a description of its meaning.
For example, The Suffix -ed construction is a morphological construction
that links the suffix ed with the verbal semantics associated with simple past
tense. The Lexical Give construction shows that a word like give is linked to
some kind of representation of a giving action.

The Double Object construction is a sentence construction that asso-
ciates the double object form with both a notion of Transfer and a set of
constraints that link the constituents of the construction to the various
players in a Transfer scene. For example, in the sentence she gave him the
book, the subject NP (she) is the giver, the second NP (he) is the recipient,
and the third NP (the book) is the gift.

WXDY is a shorthand for the What is X doing Y? construction de-
scribed by Kay and Fillmore [38]. An example of this construction is the
sentence What’s a nice girl like you doing in a place like this?. As Kay and
Fillmore point out, this question is not asking about what activity that the
nice girl is doing, but rather has a paraphrase more like How come a nice
girl like you is in a place like this? which suggests that the situation is
inappropriate for some reason. Notice that the WXDY construction leads to
an ambiguity in the grammar. This ambiguity motivates the humor in the
joke Waiter! Waiter! What’s this fly doing in my soup?
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AnalyzerUtterance SemSpec

Grammar

Context 

Model

Figure 1.2: A blackbox diagram describing the input and output of the
analyzer.

Each field focuses on a different aspect of the parsing/interpretation problem, and

as a consequence, each of the three fields have valuable, but very different insights

into how humans interpret language. One goal of this dissertation is to unify insights

from each of these fields because doing so would provide a single unified cognitive

framework for modeling and applying natural language interpretation.

Later chapters provide a much more thorough discussion about how the fields of

cognitive linguistics, natural language processing and psycholinguistics influence the

design choices of the system. But in order to contrast the constructional analyzer

from its related work, related work and ideas from each field are sketched out below:

• Cognitive and functional linguists study the richness of human language. They

examine how form and semantic function are related by highlighting and de-

composing the semantic complexity found in common everyday language. The

idea of construction grammar comes out of this tradition as well as frames,

semantic schemas, and the study of productive metaphor [44]. Cognitive lin-

guists do not generally concentrate on computational models of interpretation

though, focusing instead on qualitative explanation of how people infer meaning

from language. Feldman provides one such qualitative model of interpretation,
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MotionAlongAPath

mover : 0 Joe1
routine : Walk

spg : 3




SPG
trajector : 0

source : 4

path :
goal : 5

landmark : 1 House1










BoundedObject

interior : 5

exterior : 4

object : 1




Figure 1.3: A simple semspec for Joe walked into the house represented
in feature structure notation. A feature structure [35] is a typed set of
feature-value pairs. The semantics of Joe moving into the house by walking is
represented by the frame MotionAlongAPath represented as a feature structure
with mover, routine and spg roles. The mover role is the entity moving along
the path, the routine role represents the method by which the mover moves
along the path, and the spg role refers the path itself.

The semspec contains two semantic schemas SPG and BoundedObject

also represented as feature structures. The SPG schema represents a path
using roles for the source location, path and goal location. The SPG’s trajector

role represents the entity construed as moving along the path, and the landmark

role represents the location to which the trajector’s position is compared. The
BoundedObject schema represents an object with an interior and exterior.

Roles can be filled by atomic values such as the mover role being filled
by Joe1 or the routine role being filled by Walk as shown in the example, or by
other feature structures such as the SPG filling the MotionAlongAPath’s spg role.

In addition to being filled by values, a set of features can also be co-
indexed. Co-indexed features all share the same filler. In a feature structure,
co-indexation is represented using the numbered box notation. For example,
the MotionAlongAPath’s mover role and the SPG’s trajector role are co-indexed
because both roles are marked with the 0 . Co-indexation 1 specifies that
House1 is both the landmark of the SPG and the object of the BoundedObject

schema meaning that House1 is being thought of as a BoundedObject in this
sentence, and that the interior and exterior roles of BoundedObject actually refer
to the interior and exterior of House1.



6

defining language interpretation in terms of neurally motivated processes [19].

• The natural language processing (NLP) community generally concentrates on

broad coverage systems. They show how to infer some of the hidden structure

of an utterance in efficient, robust and mathematically well-motivated ways,

even when scaling up to huge data sets. However these algorithms are generally

not constrained by insights into human processing, and the hidden structures

they infer for an utterance are too shallow to be considered an interpretation

of the utterance. For example, broad coverage statistical parsers [10], [11], [62]

can find a syntactic structure for pretty much any sentence of English, but

phrase structure trees are obviously not interpretations. Systems that perform

Propbank [61] or FrameNet [22] role assignment [24] [64] provide useful shal-

low semantic information about a sentence, but again the returned semantic

information cannot be considered an interpretation.

Recent work in the NLP community on semantic analysis has lead to promising

results for single domain systems. Zettlemoyer and Collins show how to learn a

weighted CCG [7] grammar for the domains of basic geography [90] or travel [91].

Each CCG grammar rule is annotated with a fragment of lambda calculus that

approximates the meaning of the rule, and a complete interpretation is a well-

formed SQL query. Wong and Mooney show that the semantic analysis problem

can be treated as a machine translation problem between natural language and

the formal language of logical formulas [89]. They use techniques from machine

translation to learn synchronous grammars between the two.

In between NLP and functional linguistics lies the relatively broad coverage

parsers built for linguistic frameworks such as LFG [47] and HPSG [63]. Work

by Kaplan et al. [66] uses a disambiguation system on top of the LFG parser

to quickly interpret a sentence. Work by Toutanova et al. employs a similar

mechanism for HPSG disambiguation [87].

• Psycholinguists investigate the process of human language interpretation in an

experimental setting. By discovering the differences between sentences that are
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easy to interpret and those that are harder to interpret, psycholinguists infer

constraints on how humans process language. The computational models built

by psycholinguists make predictions consistent with the experimental data, but

tend to focus on simplicity at the expense of structure. Most psycholinguistic

models such as [46] [30] therefore do not function as models of interpretation

with the exception of Narayanan and Jurafsky [57], Jurafsky [34] and Pado

[59]. While these three model cannot provide deep semantic interpretation and

predict reading time difficulty, all three are extremely influential on the work

described here.

No computational model of interpretation takes all three of these fields seriously

with the exception of this work. The analyzer can be used for a combined set of tasks

that is unmatched by any other system. In summary, the analyzer is:

• a practical, easily-customized semantic analysis system,

• a system capable of analyzing languages besides English and dealing with context-

reliant languages like Mandarin,

• a tool for the building and testing construction grammars that is already in use

by linguists for pushing the boundaries of construction grammar,

• a psychologically-plausible model of human interpretation that makes predic-

tions about reading time that match experimental evidence.

1.2 Best-Fit

Though it goes by different names in different fields, motivation for best-fit pro-

cessing comes from many of the fields of cognitive science. In psychology and psy-

cholinguistic sentence processing literature, best-fit processing models are known as

interactionist or constraint-based models. According to McRae, Spivey and Tannen-

haus:
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In contrast [to a modular approach], constraint-based models assume that
multiple syntactic alternatives are evaluated using both linguistic and non-
linguistic sources of constraint. The comprehension system continuously
integrates all the relevant and available information in order to compute
the interpretation that best satisfies those constraints. [51]

Psycholinguistic models that fit the interactionist paradigm are the aforementioned

model of Narayanan and Jurafsky and the connectionist model that McRae et al.

propose in [51].

Closely related to the constraint-based paradigm are connectionist models and

in particular structured connectionist models . Connectionist models are best-fit

models that use spreading activation to combine information from multiple domains

and competition between units in the connectionist network to model competing

hypotheses. Lane and Henderson show how to use a connectionist network to parse

utterances into syntactic structures [45], while Feldman provides a framework for

reducing language interpretation to connectionist models [19].

Construction grammar itself is a kind of structural best-fit theory of linguistics.

Though it is not a quantitative definition, construction grammar defines grammati-

cality in terms of both formal properties (syntax) and function (semantic and prag-

matic constraints). Another early best-fit idea found in the linguistics community is

Smolensky’s Harmony Theory [76]. Harmony Theory is based on the assumption of

symmetric neural connections, but linking harmony theory to widely-used linguistic

theories such as optimality theory a problem left as future work.

Natural language processing has been investigating a form of best-fit sentence

processing at least since joint models of lexicalized PCFGs were shown to be useful

for syntactic parsing [10] [11]. These approaches use lexical dependency information

as a proxy for direct semantic information. Less progress has been made on semantic

analysis and/or conditioning the parsing process directly on semantic information.

Ge and Mooney [23] extend Collin’s generative model [11] to generate semantic la-

bels as well as syntactic categories, developing something like a probabilistic form of

traditional semantic grammars.
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1.2.1 Factored Models

Factored models, as I will be arguing in chapter 4, are a simple, elegant and

accurate way to represent best-fit metrics. A factored model decomposes a complex

joint distribution over a set of variables v into a set of simpler distributions over

disjoint subsets v0, v1...vk of v. The likelihood of an assignment over v is approximated

by some function f over the distributions of Pr(v0),Pr(v1)...Pr(vk). More precisely:

Pr(v) ≈ f(Pr(v0),Pr(v1)...Pr(vk))

In general, complete probabilistic inference with the complex distribution over v

and inference using the factored model do not yield the same result. The accuracy

of the inference is sacrificed to improve the speed of the inference. However in many

NLP tasks, exact inference is not required. For example, with best-fit constructional

analysis, finding the correct interpretation is more important than knowing its exact

likelihood.

Because inference in NLP systems has gotten progressively more expensive as

the complexity of the systems increase, factored models have recently been shown

to be useful for a range of tasks. Klein and Manning [42] employ a model factored

into a syntax model and a lexical dependency model for guiding the search for a

parse. Narayanan and Jurafsky [57] employ a probabilistic model factored into a

syntax model, a thematic role assignment model, and an n-gram model for predicting

reading time. Haghighi, DeNero and Klein [27] further explore factored models as a

tool for improving the speed and accuracy of various NLP search processes.

1.3 A Neural Theory of Language

Conspicuously left out of the discussion so far is how my work relates to the brain.

The work described in this dissertation is at too high a level of abstraction to be

considered a connectionist model, but according to the Neural Theory of Language

(NTL) [19], models at higher levels of abstraction can still be a kind of neurally-

motivated model.
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Analyzer Simulator
Utterance

in context
SemSpec

Entail-

ments

Figure 1.4: An abstract NTL language understanding architecture.

The NTL group investigates how the brain computes language. Though it is

obvious that the brain uses neurons (which are a connectionist system) for processing

language, NTL claims that connectionist models are the wrong level of abstraction

for studying how the brain processes language. At the other end of the complexity

spectrum, complex language processing systems (such as this dissertation) can only

be considered cognitively plausible if the algorithms and data structures employed by

the system are reducible to connectionist networks. For example, the feature structure

is a computational data structure that has a connectionist implementation [19]. Its

connectionist implementation is biologically plausible as well, so a feature structure

is a cognitively plausible data structure.

For the constructional analyzer to be considered a cognitively plausible model

within NTL, it must be reducible to connectionist models. But before one can under-

stand the reduction of the analyzer to connectionist models, one must understand the

algorithms, assumptions, and data structures employed by the system. Thus the de-

tails of the reduction will be provided at the end of the dissertation in the conclusions

and future work chapter.

Within NTL, the process of language understanding is split into two functionally

distinct but mutually dependent components: the analysis process and the simulation

process. This dissertation defines a computational model of an analysis process that

outputs a semspec. The semspec is the input to an active simulation-based model of

inference [54]. Figure 1.4 shows the NTL language understanding pipeline starting

with the utterance in context and ending with the results of simulation.
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1.4 A Guide to the Rest of the Dissertation

The rest of the dissertation is organized as follows:

• Chapter 2 is a computational introduction to this dissertation that does not

depend on a cognitive science/construction grammar background. It describes

the best-fit constructional analyzer as a system that operates on feature struc-

tures, and provides an intuitive (but precise) introduction to the best-fit metric

and incremental processing constraints.

• Chapter 3 covers a formal language for construction grammar called Embod-

ied Construction Grammar (ECG). ECG has knowledge representation tools

for precisely describing constructions, frames, and the embodied schemas. The

translation between a construction in ECG and its corresponding feature struc-

ture is provided.

• Chapter 4 motivates and defines the factored probabilistic model over inter-

pretations (also called analyses) used by the analyzer. It provides a precise

definition for the syntactic, semantic and contextual models and how they are

combined to score and analysis.

• Chapter 5 defines a probabilistic formulation of left corner parsing, and extends

the formulation to use the factored model from chapter four. Additionally, a

straightforward method for improving the speed of the search is described.

• Chapter 6 uses the analyzer as a tool for linguistic innovation within ECG. A

deep semantic grammar is described, along with how it is extended for inter-

esting “syntactic” phenomena. The semspecs for the test sentences are also

shown.

• Chapter 7 shows how the analyzer can be used to make reading time predictions

comparable to experimental data. The system makes reading time predictions

matching the trends found by McRae, Spivey and Tannenhaus [51].
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• Chapter 8 shows that the system is compatible with other languages. A hand-

built grammar is used to analyze a corpus of Mandarin child-parent interactions.

The Mandarin corpus is much larger than previous test cases, and this chapter

shows how the best-fit metric can be used to improve the speed and accuracy

of interpretation. Additionally, Mandarin is a language in which phrases that

would be required in English are often omitted. This chapter shows that the

analyzer can still interpret utterances that omit their arguments.

• Chapter 9 concludes the dissertation and provides directions for future research.
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Chapter 2

Introduction for Computer

Scientists

This chapter introduces the dissertation to computer scientists who are not fa-

miliar with cognitive science and construction grammar. It assumes that the reader

is familiar with features structures and unification, basic probability theory, basic

linguistic phrase types, parsing with context free grammars (CFGs), and probabilis-

tic context free grammars (PCFGs). For an accessible introduction to these topics,

please see Jurafsky and Martin [35].

Best-fit constructional analysis can be defined just in terms of operations on fea-

ture structures, and thus any unification-based theory of grammar that encodes se-

mantic information in its grammar rules would be compatible with the parsing al-

gorithm and feature structure evaluation metric defined in this dissertation. This

chapter provides the intuition behind the feature structure evaluation metric and

sketches out how the metric can be applied to incremental interpretation.

This chapter is structured as follows: Section 2.1 defines best-fit constructional

analysis as a process that takes a sentence and returns a feature structure. It also

describes the relevant computational properties of feature structures. Section 2.2

defines a probability model over complete feature structures, showing how to proba-

bilistically decompose the feature structure into syntactic and semantic information.

The final section sketches out how the probability model over feature structures can
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be used incrementally.

2.1 From Sentences to Feature Structures

The analyzer is a system that takes a sentence as input and outputs the most likely

feature structure for the input sentence given a unification grammar. The probabil-

ity of a feature structure is computed in terms of the grammatical and semantic

information stored within the feature structure.

To make this discussion more concrete, consider the sentence, he slid into the

room. Figure 2.1 shows a feature structure encoding (a subset of) the grammatical

and semantic information conveyed by the example sentence. The feature structure

in figure 2.1 describes the example sentence as a combination of a subject subj and

a finite verb phrase finiteVP. In this case, the subj role is filled by a simpler feature

structure of type He. The He structure specifies its orthography with the orth role,

whether it’s plural or singular with the num role1, and has a special role m which

denotes the meaning of “he”. In this case, the m role is filled by a function call

Ref(Masc, Sing, Animate, Given) which determines the best referent for a noun phrase

given the information in parentheses.2 As is shown in the figure, the He substructure

claims that its referent will be masculine, singular, animate and given in context.

In this chapter, the “Ref” function encapsulates a feature structure’s dependence on

context. Chapter 3 and 4 provide the grammatical and computational definitions of

the “Ref” function.

One basic assumption I make about feature structures is that the local semantic

content of a feature structure is defined by a role m.3 As will be shown later in this

chapter, the m roles separate the syntactic content of the feature structure from the

semantic content of the feature structure. This separation becomes important when

1For sake of simplicity, number is the only agreement feature I am including in this discussion.
2Including function calls as fillers of feature structure roles is not standard in unification gram-

mar. However, the Ref call provides the intuition that a context module must be consulted before
determining the meaning of he.

3In this chapter, feature structures with complex semantics like Into will have multiple m roles
defined. Using multiple m roles is just a convenience in this chapter, and in general, it is not
necessary as is shown in chapter 3.
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Comparing unification grammar with context free grammar

CFG UG
Nonlocal dependencies? No Yes

Underlying data structure tree DAG

Grammar rules are subtrees constraint sets

Substructure Integration symbol equality unification

Generative Prob. Model PCFG ?

Table 2.1: Comparing context free grammars (CFGs) and unification
grammars (UGs).

I define a probability function over feature structures.

Both the num role and the m role of He have co-indexation constraints represented

in boxed number notation. All roles that are marked with the same boxed number

share an equality constraint on their filler. For example, the num role of the He

structure, the num role of the SelfMotion structure, and the num role of the Slid structure

are all co-indexed together and forced to share the “Sing” filler. Intuitively this forces

agreement between the roles, and therefore allows a grammar writer to say that the

subject of a sentence and the main verb of the sentence agree in number.4

Co-indexation ensures consistency between the substructures that make up a fea-

ture structure by introducing non-local dependencies. It is the existence of non-local

dependencies (often called re-entrancy) that make unification grammar more expres-

sive and more expensive to parse [86] than context free grammar. Table 2.1 compares

context free grammars with unification grammars.

The non-local dependencies also make it difficult to define a proper generative

probabilistic model over feature structures [4] [1], and why researchers began to use

conditional (and in particular maximum-entropy) models for computing the likelihood

of a feature structure given a sentence [33] [67] [66]. It is important to note that in all

4and person.
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Figure 2.1: A feature structure for he slid into the room.
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of these approaches with conditional models, the unification parser runs to comple-

tion, and then the conditional model is used to select amongst the returned feature

structures. In other words, the probability model is not used online, but instead acts

as a model of disambiguation. In this dissertation, a disambiguation approach can-

not be used because the interpretation must happen incrementally. Additionally, as

will be shown in chapter 8, improving the probabilistic model over feature structures

improves the efficiency of the parser as well.

2.2 A Probability Model Over Feature Structures

The goal of the constructional analyzer is to find the most likely feature structure

a given a sentence s and a grammar G or argmaxa Pr( a | s,G ). However, I instead

define a joint model5 over the sentence and its feature structure Pr( a, s | G ) because

joint models tend to be easier to define, take the inherent structure of the problem into

account (i.e. conditional independence) , and allow for simpler parameter estimation

methods.

The first step in building the joint model over feature structures is to visualize

them as directed acyclic graphs (DAGs). Figure 2.2 shows a DAG for the example

sentence, he slid into the room that is equivalent to the feature structure shown in

figure 2.1. In a DAG representation of a feature structure, nodes with outgoing arcs

are feature structures, the (labeled) arcs are the roles, and the nodes with no outgoing

arcs are atomic values such as “Sing”. Co-indexation is represented by multiple arcs

pointing to the same node. For example, the num roles for the NP, SelfMotion and the

verb Slid are all co-indexed, and therefore all point at the same “Sing” value.

The dashed line in figure 2.2 partitions the DAG into syntactic structures and

semantic structures. The only links that cross the partition are the m features, and

they go from the syntactic structures to the semantic structures. This partition sug-

gests that the semantic information can be thought of as dependent on the syntactic

5Collins [11] shows for the PCFG parsing that both a joint model and a conditional model define
the same ranking over parses, and that the probability estimates differ only by a constant (the
probability of the sentence.)
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Figure 2.2: The DAG version of the feature structure shown in figure 2.1
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information. Assuming that we label the syntactic information τ and the semantic

structure σ, we can say:

Pr( a, s | G ) = Pr( a | G ) (2.1)

= Pr( σ, τ | G ) (2.2)

= Pr( σ | τ,G ) Pr( τ | G ) (2.3)

Equation 2.1 follows from the fact that the feature structure a generates the words

of the sentence s. Equation 2.2 follows from the fact that σ and τ form a complete

partition of the structure in a,6 and equation 2.3 is a simple application of the chain

rule of probability. Throughout this dissertation, I will refer to Pr( τ | G ) as the

syntax factor or model and Pr( σ | τ,G ) as the semantic factor.

Figure 2.3 shows the syntactic partition τ for the feature structure associated

with he slid into the room, and figure 2.4 shows the semantic partition σ (without the

m links). Obviously τ and σ are still DAGs, so the partitioning itself does nothing

to make inference or parameter estimation easier. All the partitioning really does

is motivate the choice of using different independence assumptions to approximate

Pr( τ | G ) and Pr( σ | τ,G ).

Upon closer inspection of figure 2.3, one notices that the DAG representing the

syntactic information associated with he slid into the room looks exactly like a

context-free tree if you ignore the extra agreement constraints. So the approach I use

to approximate the probability of the syntactic partition τ is treat it as a context-free

tree t:

Pr( τ | G ) ≈ Pr( t | G ) (2.4)

where t is the context-free version of τ . This is an independence assumption in that

I am claiming that the probability of a node n in τ only depends on n’s syntactic

parent and not any other syntactic nodes that n might be co-indexed with. Figure

2.5 illustrates what this assumption looks like for the τ shown in figure 2.3.

Probabilistic models of context free trees are well-studied, and approximating

the probability of τ using the probability of t allows me leverage work from the

6The definition of σ must include the m links for this to be true.
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Figure 2.4: The semantic partition of the feature structure for he slid into the
room.

statistical parsing community. Collins’ work on generative models of syntactic parsing

[11] is particularly influential, and in chapter 4, I define a probability model over

constructional trees t that uses his work as a starting point.

For the semantic partition σ, the nonlocal constraints are the important ones,

and thus a completely different approximation strategy is employed. Looking again

at the complete DAG a shown in figure 2.2, one can see that the syntactic partition

τ specifies much of the structure of σ through the m arcs. For example, the Into rule

deterministically generates SPG and Container structures if it is used in τ . Similarly,

the Slid rule deterministically generates the Slide semantic structure.

In fact, given a complete τ , all of the structure of σ is deterministically specified,

but each of the rules that went into building τ has a myopic perspective, only knowing

about its local unification constraints. Consider the example S rule shown in figure

2.6. It deterministically links the meaning of its subj role to the mover role of its
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S

subj :




NP
num : 1

m : 2




finiteVP :




VP
num : 1

m :

[
SelfMotion

mover : 2

]







Figure 2.6: An example SelfMotion-specific S rule that binds the meaning of
its subject constituent to the mover of its finiteVP constituent.

finiteVP.7 However, the fact that the constraint results in the mover role being filled

by Ref(Masc, Sing, Animate, Given) is not local to any particular rule in the grammar.

Nonlocal constraints like the mover role being filled by Ref(Masc, Sing, Animate, Given)

have not been taken into account when computing the probability of τ , and thus the

nonlocal semantic constraints are what determine Pr( σ | τ, g ).

The insight that the nonlocal semantic fillers determine the likelihood of σ will

only take us so far without further independence assumptions. Going back to the

semantic partition shown in figure 2.4, we can see that the probability of σ shown in

figure 2.4 given the τ shown in figure 2.3 can be defined as the joint distribution over

all the role=filler pairs:

Pr( Slide.mover = Ref(Masc...),

SPG.traj = Ref(Masc...),

SPG.landmark = Ref(Room...),

Container.object = Ref(Room...),

Slide.path = SPG | τ)

There are various independence assumptions that we could make to approximate

Pr( σ | τ ). One such assumption would be to treat each of the role-filler pairs as

7Obviously in a real grammar, one would not have different S rule for every unique VP rule.
A more general S rule will be defined in chapter 6, and it binds the meaning of its subject to a
generalization over all semantic roles called profiledParticipant.
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independent. However, that would heavily penalize a more complete semantic struc-

ture which would conflict with the idea that adding more semantics to grammar is a

good thing. Instead of treating each role=filler pairing as independent, I just treat

the different fillers as independent. For our example σ, this amounts to:

Pr(σ | τ ) ≈ Pr(Slide.mover = Ref(Masc...), SPG.traj = Ref(Masc...) | τ )×
Pr(SPG.lm = Ref(Room...), Container.obj = Ref(Room...) | τ )×
Pr(Slide.path = SPG | τ ) (2.5)

And then I further simplify equation 2.5 by computing the probability of a binding

with a potential function F . Function F assumes that each of the bindings are

independent of each other and τ . For our example σ, Pr( σ | τ ) ≈

F (Pr(Slide.mover = Ref(Masc...)),Pr(SPG.traj = Ref(Masc...)))×
F (Pr(SPG.lm = Ref(Room...)),Pr(Container.obj = Ref(Room...)))×
F (Pr(Slide.path = SPG)) (2.6)

Figure 2.7 illustrates what the semantic partition looks like after undergoing all

these independence assumptions. Section 4.4.4 provides further motivation for this

decomposition as well as defining the parameters that go into calculating the proba-

bility of a role=filler pairing.

2.3 Incremental Processing

So far I have shown how to compute the probability of a complete feature structure

a. In chapter 1, however, I promised an incremental model of interpretation, and thus

the assumption that feature structure a is complete does not hold during the process

of interpretation itself. The process of incremental interpretation (covered thoroughly

in chapter 5), processes each word of an utterance in order from the beginning of the

utterance to its end, and as each word comes in, its syntactic and semantic constraints

are incorporated into feature structure a and the probability estimate of a must be

updated.
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Figure 2.8: For the prefix, he slid, the system is not sure if the meaning of He

is bound to the mover role.

The problem with updating the probability of a after each word is that the syntac-

tic partition τ will be incomplete until the end of the sentence, and uncertainty in τ

leads to structural uncertainty in σ. And if there is structural uncertainty in σ, then

there is uncertainty about which roles are bound to which fillers and the semantic

factor as defined so far cannot evaluate σ.

To make this discussion more concrete, consider figure 2.8 which shows the partial

DAG for the prefix he slid. The figure illustrates the uncertainty about the kind of VP

construction that will connect the S node with the Slid.8 Uncertainty in the choice

of VP construction leads to uncertainty about the semantic structure. If the next

word is into, as it is in the original example sentence, Ref(Masc...) will be bound to

the mover role. But if the next word is the, as in he slid the puck across the ice, then

Ref(Masc...) will instead be bound to the causer role as is shown in figure 2.9.

But the system can still make progress with all this uncertainty. The system

first computes the probability of the partial τ using the incremental probabilistic

left-corner parsing algorithm [48]. The probabilistic left-corner parsing algorithm

computes the probability of the context-free approximation of τ (tree t) in terms of

8Technically, the system should also be unsure about the co-indexation of Slid’s num role, but
if every way of connecting S and Slid co-indexes the two num roles, then the system will know that
they are always unified.
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the probability of each parser operation used to build t. Chapter 5 describes the left

corner parsing algorithm and the probabilistic variant I use in the system.

With an incremental probabilistic parser, the system can compute the probability

of a partial τ . What remains, then, is to estimate Pr( σ | τ ) in the incremental setting

when τ (and therefore σ) is only partially complete. The key idea here is that while

τ is only a partial specification of the syntactic information, it still carries enough

information to compute the likelihood of various completions of σ called σc. Because

each σc is a complete σ, we can use the technique from the last section to estimate

its (inner) likelihood.

This process can be illustrated by returning to the he slid example shown in

figure 2.8. Assume that the probabilistic left-corner parsing algorithm has returned

the probability of the syntactic partition τ ′ in figure 2.8. Figure 2.10 shows the two

possible completions of σ′ given τ ′. The top completion corresponds to the finiteVP

being filled by SelfMotion and the bottom completion corresponds to the finiteVP being

filled by CauseMotion.9

Assuming that SelfMotion and CauseMotion are the only two possible VPs given τ ′,

the probability of the SelfMotion interpretation is:

Pr(Slide.mover = Ref(Masc...), SPG.traj = Ref(Masc...) | τ ′, SelfMotion )×
Pr(SelfMotion | τ ′ ) Pr( τ ′ | G ) (2.7)

And the probability of the CauseMotion interpretation is:

Pr(NoBindings | τ ′, CauseMotion ) Pr(CauseMotion | τ ′ ) Pr( τ ′ | G ) (2.8)

Equation 2.7 computes the likelihood of the Slide.mover=Ref(Masc...) interpretation

as a product of the probability of τ ′, the probability of the SelfMotion construction

given τ ′, and the probability of the complete resulting σ that assigns the meaning of

He to the mover and traj roles. Equation 2.8 multiplies the probability of τ ′ by the

probability of the CauseMotion construction given τ ′ by the probability of no bindings

in the completed σ.

9As in the slid the puck example.
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The assumption that the only two possible ways of connecting S and Slid is obvi-

ously a simplification. In the general case, the equations above would sum over all

the ways that S and Slid connect up and generate the same interpretation. Chapter

5 shows how to pre-compute the paths and interpretations when there is uncertainty

about how two constructional nodes in the DAG are connected.

2.4 Summary

This chapter provides the intuition behind a factored probabilistic model over

feature structures and shows how it can be used during incremental processing. The

factored model partitions the syntactic and semantic information in the feature struc-

ture, and uses independence assumptions to efficiently estimate the probability of each

factor. Chapter 4 provides more detail on the factored model.

One of the virtues of a factored model is how it can be made incremental, as is

shown in this chapter. Because the model is incremental, it can be used online to

guide the parsing process. Chapter 5 shows precisely how the factored model is made

incremental by deriving a semantic extension to the left-corner parsing algorithm.

Chapter 7 shows the factored model is used to predict incremental reading time

difficulty. Chapter 8 shows how using machine learning to infer the parameters in

the factored model improves the speed and accuracy of the system on a Mandarin

corpus.
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Chapter 3

Implementing Embodied

Construction Grammar

This chapter provides a brief introduction to construction grammar and a thor-

ough introduction to Embodied Construction Grammar (ECG) [3]. As a notation for

defining construction grammars, ECG specifies constructions in terms of form con-

straints and meaning constraints. ECG is embodied because the meanings constraints

are defined in terms of neurally motivated semantic schemas.

Importantly, ECG is a precise knowledge representation language for constructions

and schemas. In addition to defining the syntax of ECG, this chapter shows how the

analyzer pre-processes a construction grammar before analysis starts. First it reads it

from text into a grammar data structure, checking it for consistency. If the consistency

checks are passed, the analyzer turns the grammar into a set of feature structures.

Each feature structure has all the same constraints as the original text specification,

and is easy to adapt to the process of best-fit interpretation.

Section 3.1 discusses some of the important properties of construction grammar.

Section 3.2 provides a qualitative introduction to the ECG formalism using examples.

Section 3.2.2 shows how ECG has been extended since the original publication of

the formalism by Bergen and Chang. Section 3.3 precisely defines the implemented

version of ECG and how a construction grammar is pre-processed for use with the

constructional analyzer.
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3.1 Construction Grammar

Construction grammar is a theory of grammar that defines each grammatical

rule (construction) as a mapping between a form and a function [21]. Thus gram-

maticality is defined not just in terms of syntactic constraints, but also in terms of

semantic/pragmatic constraints.

Because grammaticality is defined in terms of both form and meaning, construc-

tion grammar is in direct opposition to modular approaches to language. In addition,

there is no notion of movement within the theory of construction grammar making it

a simpler syntactic theory than movement based approaches [14].

Researchers in the cognitive field have extended construction grammar to incor-

porate cognitive constraints as well. Goldberg, for example, defines constructions in

terms of radial categories [26]. Tomasello provides a usage-based model describing

how children learn language [85]. Bergen and Chang show how construction grammar

can be linked to simulation semantics in a way that is both cognitive and precise [3].

Figure 3.1 shows four example constructions represented in an intuitive way. The

three columns in figure 3.1 show the name of the construction, a description of its

form and a description of its meaning. The Affix -ed construction is a morphological

construction that links the affix ed with the verbal semantics associated with simple

past tense. The lexical Give construction shows that a word like give is linked to

some kind of representation of the give action.

The Double Object construction (based on Goldberg [26]) is an interesting clausal

construction because it associates the double object form with both a notion of Trans-

fer and a set of constraints that link the constituents of the construction to the var-

ious participants in a Transfer scene.1 The double object construction shows how

a construction’s semantics is not purely compositional. Consider the following two

sentences:

• Bob gave me a book.

• Bob baked me a cake.

1For example, the subject NP0 gets linked to the giver role of the Transfer.
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Name Form Meaning
Affix -ed “-ed” past speech time, completed action

Lexical Give “give” a give action
Double Object NP0 V NP1 NP2 Transfer Scene + bindings

WXDY What is NP0 doing PP0 How come NP0 is PP0

Figure 3.1: Intuitive descriptions of four example constructions

The first sentence is a prototypical example of the double object construction. The

word “gave” has three semantic arguments: a giver (Bob), a recipient (the speaker),

and a gift (a book). One can say that the meaning of the whole sentence looks like a

simple combination of its constituents’ meanings.

Bob baked me a cake is a non-central example of the double-object construction.

The notion of transfer implied by the sentence is not present in any of the words in

the sentence, and the recipient is not even a semantic participant in the meaning of

the word bake. Goldberg shows that the notion of transfer and the binding of me to

an intended recipient role could only license by the Double Object construction, and

therefore the semantics of this construction are not purely compositional [26].

Goldberg goes on to show that the double object construction that licenses give

and the double object construction that licenses bake are members of a complex

family of constructions ordered into a radial category [26]. Lakoff shows how radial

categories can be applied to constructions in his case study of the There construction

[43].

The WXDY construction is a shorthand for the What is X doing Y? construction

described by Kay and Fillmore [38]. An example of this construction is the sentence

What’s a nice girl like you doing in a place like this?. As Kay and Fillmore point

out, this question is not asking about the activity that the nice girl is doing, but

rather has a paraphrase more like How come a nice girl like you is in a place like

this? which suggests that the situation is inappropriate for some reason. Notice that

this meaning is also non-compositional (i.e. not purely a function of the words used
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in the sentence), and that this ambiguity between the compositional meaning and the

non-compositional meaning is the reason for the humor in the following exchange:

• Waiter! Waiter! What’s this fly doing in my soup?

• It appears to be doing the backstroke, sir.

3.2 Embodied Construction Grammar

In our discussion so far, the constructions have been represented in an informal

way. A handful of construction grammar approaches address the need for a formal

representation. One such example is Kay and Fillmore’s Construction Grammar

(CxG) which is defined in terms of typed feature structures [37], but their theory

is not constrained by cognitive grounding. This is where Embodied Construction

Grammar (ECG) comes in [3].

ECG is a different kind of construction grammar precisely because it cares both

about cognition and being precise with the notation. The goal of the formalism is to

be expressive enough to provide both cognitively plausible analyses of all aspects of

form (from morphemes to clauses to gestures to intonation etc), while acknowledging

that the grammar must be constrained by limitations of the (human) parser and vice

versa.

There are two key principles that underlie the design of the ECG formalism.

The first principle is that the semantics of every construction is defined in terms of

cognitively plausible structures like image schemas [82], frames [20] and metaphors

[44]. The second principle is that language understanding is a cognitive process called

simulation. More precisely, the motor programs in the brain that are used to execute

actions are also used to understand language. These motor programs take parameters

to control their execution, and language is one way to specify those parameters. These

two principles are what make ECG special. ECG isn’t just some arbitrary formalism,

but rather a formalism that is grounded in cognition through embodied structures

and simulation.
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schema TL
roles
trajector
landmark

schema SPG
subcase of TL
roles
source
path
goal

schema Motion
subcase of Process
roles
mover
speed
x-net

constraints
protagonist ←→ mover

schema MotionAlongAPath
subcase of Motion
evokes SPG as spg
constraints
mover ←→ spg.trajector

Figure 3.2: A simplified subset of the ECG schemas required to represent
the meaning of the sentence Eve walked into the house. TrajectorLandmark

and SPG are image schemas related through the subcase of keyword. The
MotionAlongAPath schema is a kind of Motion schema which is a kind of Process.

3.2.1 ECG as a Knowledge Representation Language

Constructions are structured knowledge about language. ECG specifies this struc-

tured knowledge with two basic primitives.2 Constructions specify constructions and

schemas represent linguistically relevant meaning. There are four ways to specify re-

lations between ECG structures: roles, sub-typing (through the subcase of keyword),

evoking a structure (through the evokes keyword) and constraints (co-indexation and

typing). Intuitively speaking, roles name parts of a structure, and sub-typing allows

for (partial) inheritance.

Evoking a structure makes it locally available without imposing a part-of or sub-

type relation between the evoking structure and the evoked structure. The canonical

example usage of evokes concerns the definition of the concept hypotenuse. The con-

2There are two additional primitives that are the subject of ongoing research: Maps and Situ-
ations. Situations are the ECG correlate to mental spaces, and maps are structures that control
information flow between domains such as frames and situations.
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cept hypotenuse only makes sense in reference to a right triangle, but a hypotenuse

is not a kind of a right triangle, nor is the right triangle a part of (role) of the hy-

potenuse. Evokes is used to state the relationship between the hypotenuse and its

right triangle.

ECG also has operators for co-indexing roles (←→) as well as assigning atomic

values to roles (←). Type constraints specified with a colon constrain the fillers of

roles, and the self operator lets a schema or construction refer to itself.

In figure 3.2, the TrajectorLandmark schema has roles for the trajector and the land-

mark. Motion schema is a Process (Process is not shown) that adds three roles and

co-indexes the Process.protagonist role with the mover role. The x-net role denotes

which embodied motor program to use when simulating the motion (e.g. walking,

crawling, sliding etc.). The MotionAlongAPath schema uses the evokes keyword to ac-

tivate an instance of the SPG schema to represent the path and then binds the mover

role to the spg.trajector role, thereby denoting that the mover is the trajector moving

along a path.

In figure 3.3 there is an example MotionAlongAPath construction. The MotionAlon-

gAPath construction covers utterances like The man walked into the house. Construc-

tions are arranged into an inheritance lattice much like schemas. The MotionAlongA-

Path construction is a subcase of the VerbPlusArguments construction which combines

(both syntactically and semantically) a verb form with its constituents. The Verb-

PlusArguments construction is a subcase of ArgumentStructure which is the root of the

VP hierarchy and is more general than a single verb plus its arguments.3

Every construction is defined with three (optional) blocks: a constructional block,

a form block and a meaning block. The constructional block specifies constituency

and constructional features and constraints (for example, specifying number agree-

ment between subject and object). The form block places ordering constraints on

the constituents, specifying a partial ordering over constituents. The meaning block

specifies its denotation through its meaning type and adds any additional meaning.

Because the MotionAlongAPath construction is defined to be a kind of VerbPlusAr-

3A construction marked with the general keyword is not used directly in analysis, but is there
just for typing and inheritance.
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guments construction, it has two constituents, one inherited constituent for the verb

v and one for constituent pp. Each constituent is constrained to be a particular con-

struction type. Constituent pp, for example, is typed to be an Spatial-PP which are

spatial prepositional phrases.

Form constraints employ operators that constrain the relative ordering of con-

stituents. One such operator is the before operator which requires its left argument

be before, but not necessarily immediately before its right argument. Another such

operator is the meets operator which asserts that its left argument be immediately

before its right argument. MotionAlongAPath’s form block asserts the relative form con-

straints, in this case specifying that constituent v comes before constituent pp. The .f

notation indicates (semi-redundantly) that the form constraints are constraining the

form pole of the mentioned constituents.

The construction’s meaning pole specifies that it denotes a MotionAlongAPath scene.

Then within the meaning block, the meaning of each constituent is tied to the corre-

sponding role in the scene. The meaning of constituent v is co-indexed to the self.m

role of the construction. This means that the meaning of the verb (referenced using

the .m notation) is bound to the meaning pole of the MotionAlongAPath construction.

The keyword self indicates a reference to the containing construction, and like before,

.m refers to the defined meaning type of a construction. Similarly, the meaning pole

of the pp constituent is bound to the spg role because the pp role specifies the path

of the motion.

3.2.2 Extended ECG

The previous section described the syntax of the ECG formalism and showed some

examples of how it could be used. While the original formulation specified by Bergen

and Chang [3] was sufficient for a simple child language model [9], the formalism has

been extended to better handle reference and different kinds of optional elements.

These ECG extensions also lead to more intensive processing requirements beyond

those implemented in the previous version of the system [5].
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general construction ArgumentStructure
meaning : Process

general construction VerbPlusArguments
subcase of ArgumentStructure
constituents

v : Verb
meaning : Process

construction MotionAlongAPath
subcase of VerbPlusArguments
constituents

pp : Spatial-PP
form
constraints

v.f before pp.f
meaning : MotionAlongAPath
constraints

self.m ←→ v.m
self.m.spg ←→ pp.m

Figure 3.3: A MotionAlongAPath construction. This construction describes ac-
tive voice VPs with a motion verb and a PP path specifier.



39

schema RD
roles
ontological-category
grammatical-gender
number
givenness
modifiers
referent

general construction NP
meaning
evokes RD as desc
selfm ←→ desc.resolved-ref

Figure 3.4: An RD schema and an abstract NP construction that only specifies
meaning constraints.

Reference

To ground an analysis in terms of the “real world”, the analyzer must also interact

with a context model that implements a reference resolution engine. To resolve a

reference, the context model takes as input a set of semantic and syntactic constraints

associated with a reference, and returns some referent to unify into the analysis. To

aid this process, a ReferentDescriptor schema or RD is defined. The RD captures the

constraints associated with a particular reference, and thus functions as the interface

between the analysis and the reference resolution.

Figure 3.4 shows the RD as well as a general NP construction. The RD has roles

for the ontological category, grammatical gender, modifiers–basically anything that is

used to tie a reference to its referent. Another important role in the RD is the referent

slot which is filled by the referent proposed by the context model. The abstract NP

construction shows how to use the RD and the referent slot. It evokes the RD in its

meaning pole, and then binds its meaning pole to the referent slot. After resolution,

the meaning of the NP is the resolved referent. Such an arrangement makes the RD

transparent with respect to the frames that link up to the meaning of the NP.
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construction MotionAlongAPath
subcase of VerbPlusArguments
constituents

v : Verb
pp : Spatial-PP
optional temp : TimeAdjunct
optional loc : LocationAdjunct

form
// same as before

meaning : MotionAlongAPath
// same as before

Figure 3.5: A MotionAlongAPath construction with two optional constituents.
Constituent temp specifies an optional constituent for a time adjunct while loc

specifies an optional constituent for a locative adjunct.

Optional Elements

There are two basic notions of optionality. The first is when a construction expects

a constituent to be present, but it isn’t there. Gapping and omission of complements

are the linguistic phenomena associated with this kind of optionality. The assump-

tion made here is that all of constituents of a construction that are not marked

as optional are complements, and that any of these complements could possibly

be gapped/omitted, though with differing frequency. The structural aspect of the

grammar does not need to be extended to handle omission/gapping. However, this

approach does require that frequency information describing omission and gapping

preferences be specified along with the grammar.

The second kind of optionality is when a constituent of a construction is always

completely optional. This is often the case with adjuncts and adjectives. To handle

adjuncts, ECG has the keyword optional. Optional constituents can be added to the

constituents block, participate in form constraints and be semantically bound just

like any other constituent. Their primary difference is that they don’t have to be

recognized before the construction can be considered complete. An example of the

optional keyword is shown in figure 3.5.
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construction Fronted-Wh-Question
constructional
constituents
extraposed qnp : WH-NP
fin : Aux
subj : NP
argstruct : ArgumentStructure

form
constraints

qnp.f meets fin.f
fin.f meets subj.f
subj.f meets argstruct.f

// Meaning block to be defined in chapter 6

Figure 3.6: A example construction that uses the extraposed keyword. This ex-
ample Fronted-Wh-Question has four constituents. A WH-NP called qnp covering
phrases like which book. A finite auxiliary constituent named fin. A subject
NP called subj, and an ArgumentStructure construction called argstruct. The qnp

constituent is marked by the extraposed which denotes that it is available as
an argument for whatever construction fills the argstruct role.

Nonlocal Specification of Constituents

Some constructions of English express a semantic argument of another construc-

tion in an analysis. For example, in the sentence Which ticket did you buy?, the

meaning of the phrase which ticket is the semantic argument of the buying event.

In this case, the question construction takes a WH-NP constituent, but the meaning

of that constituent has to trickle down from the question construction into the VP

headed by buy. This allows the VP headed by buy to not match its object constituent

and semantically bind its goods role to the meaning of which ticket.

A special ECG keyword extraposed is available for specifying which constituents

have the ability to trickle down and act as an constituent of another construction. A

construction with a constituent that is fronted with respect to some other construction

marks that constituent with the extraposed keyword. Figure 3.6 discusses an example

wh-question construction that employs the extraposed keyword.
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3.3 The Implemented Syntax of ECG

The qualitative description of ECG was suggestive of what a well-formed ECG

grammar might look like, and in this section I provide an ECG well-formedness spec-

ification. Because ECG is a formal language, I employ a context free specification of

its syntax. Grammars that satisfy this context free specification shown in figure 3.7

are not necessarily well-formed, but given a grammar that does specify the context

free specification in figure 3.7, it is straightforward to perform further checks.

In the context free specification in figure 3.7, fully capitalized terms are the lexical

items of the grammar, while the nonterminals are in lower case. The | operator

separates productions and ε is a production that goes to the empty string. The

production for Schema is split onto the next line. Nonterminals with a capitalized

“L” in them are lists and nonterminals with “Opt” are optional because they have

an ε production. Additionally, ECG keywords such as “schema” and “form” are case

insensitive. In other words, “schema”, “SCHEMA” and “sChEmA” all match the

terminal SCHEMA.

A closer look at figure 3.7 reveals my assumptions about structurally well-formed

ECG grammars. Some of these assumptions are no different than the official ECG

specification. For example, I assume that a construction (Cxn) is comprised of a

the keyword “construction”, followed by an identifier specifying the construction’s

name, followed by an optional parent list (ParentLOpt), followed by an optional

constructional block (CxnBlockOpt), an optional form block (FormBlockOpt), and

an optional meaning block (MeaningBlockOpt).

More interesting, however, are the specifications for the different kinds of blocks.

While the meaning block looks just as expected, the form and the constructional

blocks have additional properties.

The constructional block can be typed to make constructional features such as

person and number available.4 Following the constructional block type, the con-

stituents are defined. And finally, optional constructional constraints can specified

over the constructional features. Importantly, evoked constructions are not allowed

4It is not allowed, however, to define constructional features in the constructional block directly.
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ECGL → ECGL Schema | ECGL Cxn | ε
CxnKind → GENERAL CONSTRUCTION | CONSTRUCTION

Cxn → CxnKind IDENT ParentLOpt CBlockOpt FBlockOpt MBlockOpt
BlockType → : Typespec | ε
CBlockOpt → CONSTRUCTIONAL BlockType ConstitsLOpt ConstraintLOpt | ε
FBlockOpt → FORM BlockType ConstraintLOpt | ε
MBlockOpt → MEANING BlockType EvokedLOpt RolesLOpt ConstraintLOpt | ε

SchemaKinds → FEATURE SCHEMA | SEMANTIC SCHEMA | SCHEMA
Schema → SchemaKinds IDENT ParentLOpt EvokedLOpt . . .

RolesLOpt ConstraintLOpt
ParentLOpt → ParentL | ε

SubcaseOf → SUBCASE | SUBCASE OF
ParentL → ParentL , IDENT | SubcaseOf IDENT

Typespec → IDENT | EXTERNALTYPE
EvokedElement → EVOKES Typespec AS IDENT

EvokedLOpt → EvokedLOpt EvokedElement | ε
Role → IDENT OptType

OptType → : Typespec | ε
RolesLOpt → RolesL | ε

RolesL → RolesL Role | ROLES
Constit → OPTIONAL IDENT : IDENT OptConstitAnno

| EXTRAPOSED IDENT : IDENT OptConstitAnno
| IDENT : IDENT OptConstitAnno

OptConstitAnno → [ ProbL ] | ε
ProbL → PROB | PROB , PROB

ConstitsLOpt → ConstitsL | ε
ConstitsL → ConstitsL Constit | CONSTITUENTS

ConstraintLOpt → ConstraintL | ε
ConstraintL → ConstraintL OptIgnore Constraint | CONSTRAINTS

ChainOperator → ←→ | BEFORE | MEETS
OptIgnore → IGNORE | ε

Var → SLOTCHAIN | IDENT
Constraint → Var ChainOperator Var | Var ←− IdentOrStr
IdentOrStr → EXTERNALTYPE | IDENT | STR

IDENT → [A-Za-z][0-9a-zA-Z- ]*
SLOTCHAIN → (IDENT.)+IDENT

EXTERNALTYPE → @[0-9a-zA-Z.- ]+
STR → “( \” | [ ∧\n”] | \{WHITE SPACE CHAR}+\)*”

PROB → .[0-9]+ | 1.0 | 1

Figure 3.7: A context free representation of the accepted ECG syntax.
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in the constructional block.

Form blocks are the least structured. A form block can be typed to make features

available. This is how the “orth” feature is defined for lexical items. Additional form

features can be defined to specify phonological properties as well, but these are not

used in the system. While ECG allows eight different form constraints, the only two

constraints currently supported in the analyzer are before and meets. Assignment and

co-indexation constraints are also allowed in the constraints block to bind values to

form features.

Defining Constituents

Constituent definitions are also extended in the implemented version of ECG in that

there are now three kinds of constituents:

• Regular (unmarked) constituents are the core constituents of a construction.

The analyzer assumes that unmarked constituents must either be specified in the

input or defined in context, and thus if they are omitted, reference resolution is

used to find the missing semantic component. Regular constituents are allowed

to be expressed nonlocally (e.g. fronted), though the likelihood of this for most

constituents is zero.

• Optional constituents, marked with the keyword optional, are more like adjuncts

in that they can be omitted without any additional reference operations being

instantiated. Optional constituents cannot be expressed nonlocally. Temporal

modifiers or adjectives might be kinds of optional constituents. And like any

other kind of constituent, optional constituents are inherited by subtypes.

• Constituents marked by the keyword extraposed, are special constituents that

(within an analysis) are syntactically co-referent with a nonlocal constituent

of some other construction in the analysis. In other words, the constituent

marked with extraposed is extraposed with respect to some other construct.

Constituents marked as extraposed cannot be omitted and must be expressed
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locally in the construction that defines them. For example, the Fronted-Wh-

Question construction with a subj-aux inversion (shown in figure 3.6) that covers

the sentence Which ticket did you buy? has an extraposed constituent that

would correspond to the object of the VP headed by buy. In other words, if a

construction with a constituent marked with extraposed is used in an analysis,

then the syntactic context associated with fronting is set up.

By default each constituent is set to be omitted with probability zero and specified

locally 100% of the time. One can modify this using the optional constituent anno-

tation (OptConstitAnno) by specifying either one or two probabilities in brackets.

The first probability is the likelihood that the constituent is expressed (i.e. 1 - the

probability of omission) and the second probability is chance that the constituent is

specified locally (i.e. 1 - the probability of it being fronted).

The Special Assignment Constraint

The implemented version of ECG has special functionality associated with the

←− (assignment) constraint. In addition to being used to assign an atomic value to

a role (atomic values are specified as quoted strings), the grammar writer can use the

single-headed arrow to assign anonymous instances. To do this, the grammar writer

specifies a type as the right hand side argument of the assignment, and the analyzer

assumes that the role is being filled by an anonymous instance of the type. This

makes it possible for the grammar writer to assign a type to a role without having to

evoke it first.

Overriding Constraints

The implemented version of ECG employs static constraint override using the

keyword IGNORE. A constraint preceded by IGNORE is dropped. The analyzer assumes

that a constraint marked by IGNORE was defined in a supertype, and then during

the verification phase, that constraint gets removed from the constraint set for the

subtype.
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Naming Constructions, Schemas and Roles

The last five lines of figure 3.7 show how the names of identifiers (IDENT), slot chains

(SLOTCHAIN), external types (EXTERNALTYPE), strings (STR), and probabili-

ties (PROB) are defined.

• Identifiers are used to express the names of constructions, schemas, role and

constituent names. An identifier has to start with a letter, but after that, it

can have any number of letters, numbers, dashes, and underscores. Note that

“.” cannot be a part of an identifier because it would look like a slot chain.

• Slot chains (SLOTCHAIN) are repeated identifiers separated by periods. To

disambiguate between an identifier and a slot chain, the SLOTCHAIN rule

requires that there be at least one period in the slot chain. In the context

free specification, there is an NonTerminal called “Var” that allows either an

IDENT or a SLOTCHAIN.

• Types that belong to external type systems (EXTERNALTYPE) can be speci-

fied with the “@”. The system makes few assumptions about the external type

system’s names, so they can be any combination of letters, numbers, periods,

underscores and dashes without white space

• Strings (STR) are used to specify atomic, unstructured fillers of features. They

are enclosed in double quotes and cannot be broken across lines or contain other

double quotes (unless the “ is preceded by a slash (e.g. \”).

• Constituent probabilities (PROB) are expressed as any combination of digits

preceded by a “.” or “1.0” or “1”.

3.3.1 Analyzer Grammar Constraints

The grammar writer must impose further structure on the grammar if he or she

wants it to be compatible with the implemented analyzer. Specifically, the grammar

writer must do the following:
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• Lexical constructions are defined as concrete constructions without constituents

and have a form pole with a feature orth. The orthographic form of the lexeme

is assigned to the value of the orth feature using a ←− constraint in the form

block.

• A special construction called Root must be defined. The analyzer knows that

it has found a complete utterance when a completed instance of Root has been

found, and no constructions can have Root as the type of one of their con-

stituents. It is customary to define Root with a single constituent and allow

that constituent to be filled by anything that counts as a reasonable utterance.

• If the grammar writer wants the analyzer to interact with context while using

the grammar, the grammar writer must define an RD schema as defined in

section 3.2.2. The information in the RD (the fillers of each of the roles) is used

to find the referent corresponding to a reference.

• No role, constituent or evoked schema can be named “m” or “f”.

3.3.2 Verifying the Grammar

A grammar that satisfies the context free specification is not necessarily a well-

formed ECG grammar specification. There are many things that could still go wrong.

For example, a type or a role might be undefined. This section describes the steps the

pre-processor goes through to further verify the well-formedness of an ECG grammar.

For each construction and schema (referred to below as “type”), the pre-processor:

• Annotates each role, evoked item, and constraint with the construction or

schema that originally defined it.

• In topological sort order starting from the root of the schema/construction

hierarchy, inherited structure is accumulated and pushed along subcase links.

During this process, name clashes are detected, and an error is signaled if the

clashing names have incompatible types.5 Name clashes can occur in two ways.

5Compatible here means that one of the types is a subtype of the other.
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In one case, a type is a subcase of two parent types, both of which define the

same role name. In the second case, a clash can occur between a parent type

and a subtype if the subtype is redefining the type of a role. The system requires

that the redefined type be a subtype of the original parent type.

• For each type, each of its constraints are checked to ensure that each slot chain

role (with the exception of the final role in the slot chain) has a type and that

the type contains the next role in the slot chain. More precisely, for the slot

chain x.y.z, the code checks to make sure that the type associated with role x

has a role y and the type associated with role y has a role z.

• Additionally, for co-indexation (←→ ) constraints, the left hand slot chain and

the right hand slot chain are checked to make sure that they have compatible

pairwise (static) types.

Of course, the verification process can only check so much. Certain grammar errors

can only be found during the analysis process. Debugging grammars during the

analysis process is an area of future research.

3.4 Constructions as Feature Structures

Since ECG is a unification-based formalism, instances of constructions are repre-

sented as feature structures within the analyzer. For the most part, translating the

role and equality constraints into feature structure notation is straightforward, with

a few wrinkles to support the ignore operator and help reduce the size of the feature

structures themselves.

Figure 3.8 shows the feature structure that corresponds to the MotionAlongAPath

construction presented in figure 3.3 in the last chapter and duplicated here. The

MotionAlongAPath construction in figure 3.8 describes VPs with a motion verb and a

PP path specifier. Its corresponding feature structure captures all the information in

the construction, but is intentionally underspecified with respect to the constituents.

Underspecifying the structure of the constituents keeps the size of the parser states
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somewhat smaller, allowing the system to store and copy less information. Addi-

tionally, well-motivated underspecification does not change the final structure of the

semspec, and as will be shown below, it enables simple implementation of the ignore

keyword.

The algorithm for generating a feature structure from a construction γ is as follows:

1. Add a root slot typed γ and filled with a feature structure. For the Motion-

AlongAPath construction, this root slot is typed with the constructional type

MotionAlongAPath.

2. Add an m role for the meaning pole, setting its type to the type of the γ’s mean-

ing pole. In our example, role m is typed as the schema type MotionAlongAPath.

3. If the constructional block is typed, add the constructional roles to the feature

structure. In the example, we have added the role features which is defined in

the constructional block type VerbFeatures.

4. Add typed roles for each of the constituents. In this case, feature v is typed to

Verb and feature pp is typed to Spatial-PP.

5. Add typed roles for each of the evoked items in the meaning pole. In the

example, feature ed is typed to schema EventDescriptor.

6. Look up the roles and evoked structures defined in meaning block’s schema

type. Add the roles underneath feature m. For example, the speed, heading,

x-net, spg, protagonist, and mover roles defined in schema MotionAlongAPath are

all added to the feature structure defined as the filler of m.

7. For each of the co-indexation constraints defined directly in the construction’s

meaning block and constructional block, the roles at the ends of the slot chains

are co-indexed If a slot chain references a role that has not yet been added to

the feature structure, then add the role and the appropriate type of that role.

In our example, the self.m ←→ v.m

constraint is added in this manner, setting up the co-indexation represented as
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construction MotionAlongAPath
subcase of VerbPlusArguments
constructional : VerbFeatures
constituents

v : Verb
pp : Spatial-PP

constraints
self.features ←→ v.features

form
constraints

v.f before pp.f
meaning : MotionAlongAPath
evokes EventDescriptor as ed
constraints

self.m.mover ←→ ed.profiledParticipant
self.m ←→ v.m
self.m.spg ←→ pp.m




MotionAlongAPath

m : 0




MotionAlongAPath
speed :
x-net :

spg : 2

[
SPG

trajector : 3

]

protagonist : 3

heading :
mover : 3




pp :

[
Spatial-PP

m : 2

]

features : 1

ed :




EventDescriptor
profiledParticipant : 3

eventType : 0

profiledProcess : 0




v :




Verb
m : 0

features : 1







Figure 3.8: A MotionAlongAPath construction and its feature structure.
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0 . Incorporating self.m.mover ←→ ed.profiledParticipant

into the feature structure adds the profiledParticipant role to the EventDescriptor

feature structure, and results in co-indexation 3 .

8. For each meaning constraint defined in the meaning block’s schema type, co-

index the roles at the ends of the slot chains (but precede each slot chain with

m). If a slot chain references a role that has not yet been added to the feature

structure, then add the role and the appropriate type of that role. In our

example, the MotionAlongAPath’s protagonist and mover roles are co-indexed in

this manner sharing in co-indexation 3 .

3.4.1 Overriding in the Feature Structure

The ignore operator allows for a limited kind of constraint overriding. While

constraint overriding can lead to nonmonotonic inference, the analyzer employs un-

derspecification to keep from having to undo constraints during analysis.

Constraint overriding is implemented by just removing constraints marked with

ignore from the construction’s constraint list as well as any subtypes that would have

inherited the constraint. Consider three types: D, E, and F. D defines constraint ρ, E

overrides ρ with ignore, and F inherits the override, and so F does not have constraint

ρ either.

Constraint overriding becomes a problem in inference when an inference engine

makes certain assumptions about an instance i (e.g. birds can fly and can therefore

travel quickly) only to later find out that the instance i’s actual type is one that

overrides some aspects of the supertype (e.g. a penguin).

One can cast this problem as type uncertainty, and the analyzer has type uncer-

tainty with constructional constituents. A constructional constituent is defined as

type t, but if actual filler type is t′. If constraint ρ holds on t, but not t′, then the

system cannot assume that ρ holds. Any assumption that the analyzer makes about

t must be compatible with t′. But because the underspecifies constituent types, con-

straint ρ was never added in the first place. In short, underspecification in the feature

structure is what makes this simple overriding scheme work.
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Chapter 4

A Factored Model of ECG

Analyses

This chapter describes the factored model used to model ECG analyses in detail.

Because ECG is a construction grammar, the factors employed are syntactic and

semantic. This chapter provides the motivation for using a factored model and shows

how each factor is decomposed into the parameters used by the analyzer. The content

of this chapter is conceptually dependent on chapter 2.

4.1 Motivation for a Factored Model

The goal of any parser is to find the highest scoring parse of a sentence. The con-

structional analyzer is no different in this regard. The analyzer searches for the analy-

sis a that maximizes the conditional probability Pr( a | sentence, grammar, context )
or the probability of an analysis given the sentence, the grammar and context.1 In-

stead of working with the conditional distribution directly, I will instead define a

generative model over analyses.2, Using a generative model often makes it easier to

1The standard assumption is to treat the parse as independent of context, but I include it here
for purposes which will soon become clear.

2Argmax of Pr( a | sentence, grammar, context ) is the same as argmax of Pr( sentence, a |
grammar, context )/ Pr( sentence | grammar, context ) assuming that an analysis a generates the
sentence with probability 1.



53

leverage the structure of the problem, which simplifies inference and parameter esti-

mation.

While generative models are motivated by the structure of the problem and easy

to understand as a result, building a generative model for an ECG analysis is not

straightforward. ECG is a unification grammar, and as shown in chapter 2, ECG

analyses are feature structures. Unfortunately, the limited work on defining a genera-

tive model over feature structures never properly dealt with the nonlocal dependencies

inherent in feature co-indexation [4] [1].

The primary way researchers have addressed the problem of building a probabilis-

tic model over feature structures is to go back to modeling

Pr( a | sentence, grammar, context )

using discriminatively trained models. Log-linear models, for example, do not make

independence assumptions about their features, and are applied by Johnson et al.

[33] to unification-based grammars. Riezler [67] generalizes the work by Johnson et

al. for German LFG. Further work by Kaplan et al. [66] shows that by applying log-

linear models to the English LFG parser, one can achieve state of the art dependency

extraction performance with the LFG parser.

The approach to probabilistic modeling of feature structures that I take in this

dissertation is to decompose the feature structure into simpler probabilistic factors as

is intuitively described in chapter 2. Given the lack of training data, using a factored

model is a necessity, though this is not the only virtue of a factored model. Factored

models are easier to understand and have fewer parameters than discriminatively

trained models. Additionally, factored models are generally easier to perform incre-

mental inference with because one can marginalize out as-of-yet unseen structure.

This aspect is important since I am modeling incremental interpretation, and not

using the model for re-ranking.

The best case for any factoring approach is when the factors require simple in-

ference and parameter estimation, but still yield fast and accurate inference in the

original domain when combined. Narayanan and Jurafsky use a factored model for

their psycholinguistic results in which they model construction parsing as a mixture
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of PCFG parsing, thematic role preferences, and n-gram models [57]. They assume

independence between the factors, combining them with a noisy AND function. Klein

and Manning use simple PCFG and lexical dependency factors for building a broad

coverage parser of English [42].

To use a factored model for a problem, one decides which factors appropriately

decompose the more complicated distribution and how those factors combine. Differ-

ent methods for combining factors make different assumptions about the domain. For

example, both Narayanan and Jurafsky and Klein and Manning assume independence

between factors, though such an assumption is not strictly necessary. Haghighi et al.

[27] show a method for combining factors when the factors are not independent.

4.2 Factoring an ECG Analysis

An ECG analysis consists of a set of interconnected construction instances τ and

the semspec σ that those instances specify. Figure 4.1 (also shown in chapter 2)

shows a DAG representation of an analysis of the sentence he slid into the room.

Given the natural split of form and meaning information within a constructional

analysis, factoring an analysis into a model of syntax and a model of semantics is an

obvious step, and is broadly compatible with the work of Narayanan and Jurafsky

[55] and Pado [60]. As you can see in figure 4.1, the syntactic and semantic factors

are not independent because the choice of which filler is bound to which frame role

depends crucially on the constructions employed in the analysis.

4.2.1 Defining the Factors

The probability of an analysis a given a grammar G and context Z is Pr( a | G,Z ).

As is shown in chapter 2, we can partition a with the variables τ representing the

syntactic information in an analysis and σ representing the semantic information (or

semspec) in the analysis.

Pr( a | G,Z ) = Pr( σ, τ | G,Z ) (4.1)

= Pr( σ | τ,G, Z ) Pr( τ | G,Z ) (4.2)
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Figure 4.1: The DAG version of the feature structure shown in figure 2.1.
Please see chapter 2 for a thorough discussion of this example.
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= Pr( σ | τ,G, Z ) Pr( τ | G ) (4.3)

Equation 4.1 defines the distribution over a in terms of the joint distribution over the

semspec σ and the syntactic information τ . In both Pr( a | G,Z ) and Pr(σ, τ | G,Z ),

I assume that the words of the sentence are generated by a and τ , respectively. In

equation 4.2, the chain rule is used to split up τ and σ. In equation 4.3, I assume

that the probability of a τ does not depend on context. Obviously this independence

assumption is problematic, but it is an assumption built into broad coverage parsers

as well. Decomposing the probability of an analysis in this way shows how to factorize

an analysis, and how those factors are combined.

4.3 Approximating Pr( τ | G )

I approximate the probability of factor Pr( τ | G ) with a generative context free

model. Generative models of syntax calculate the probability of a tree t by breaking it

down into the product of smaller syntactic choices conditioned on local information.

In the simple PCFG model, for example, the probability of a tree is the product

of the nonterminal expansion choices where each choice is only conditioned on the

nonterminal being expanded [35]. However a generative model need not be so simple.

The constructional factor employed in the analyzer is based on a model designed

by Collins [11]. Collins’ model is a generative model designed to parse into Penn

Treebank [49] style trees.

In Collins’ model, each syntactic category generates a subcategorization frames

to determine its constituents. Syntactic subcategorization frames are related to con-

structions, and therefore his work is quite relevant. But instead of using subcatego-

rization frames, the constructional analyzer uses the richer information provided by

constructions. ECG Constructions specify:

• Which constituents are arguments and which are adjuncts

• Ordering constraints on constituents that admit partial orderings

• The likelihood of a constituent being omitted or expressed (locally or nonlocally)
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• The allowable constructional filler types for each constituent

The parser’s choice to use a particular construction in an analysis involves “sub”-

choices to determine which of the construction’s constituents are expressed and how

they are expressed (locally or nonlocally). The ordering of the expressed constituents

must be determined, and the actual filler of each constituent must be chosen as well.

To make parameter estimation feasible, the likelihood of fitting a construction is

broken down into each of these simple syntactic decisions conditioned only on local

information.

4.3.1 Computing the Probability of a Construction

A construction in ECG specifies rich information about the construction, however

there is still uncertainty in how the construction is realized. A constituent β can

be expressed or omitted (expressedβ), local or nonlocal 3 (localβ), in a particular

constituent ordering ordering and filled by a particular constructional filler fillerβ.

Thus the probability of the “RHS” of a construction α with i+ 1 constituents is:

Pr( filler0...i, ordering0...i, local0...i, expressed0...i | α ) (4.4)

Using the rules of conditional probability and a few reasonable independence assump-

tions, equation 4.4 can be rewritten as:

= Pr( filler0...i | expressed0...i, α )×
Pr( ordering0...i | local0...i, α )×
Pr( local0...i | expressed0...i, α )×
Pr( expressed0...i | α )

These independence assumptions state that the choice of constituent filler depends

on whether the constituent is expressed and on the construction α. The choice of

3Collins employs a probabilistic model of gap threading in his generative model. More recent
research by Levy [46] suggests that simpler methods of recovering gaps work better than Collins’
generative model, and as a consequence, I am not encoding the full gap threading process into the
model.
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constituent ordering depends on which constituents are local and α. The choice of

which constituents are local depends on which constituents are expressed and α, and

that the choice of which constituents are expressed depends just on the construction

α.

All of these independence assumptions are straightforward, however the term

Pr( expressed0...i | α ) again calls into question the assumption made in equation 4.3

that the probability of a tree does not depend on context. With Pr( expressed0...i | α ),

I assume that one can describe α’s preference for expressing/omitting its constituents

ignoring context.

Instead of making the decision to express/omit a constituent depend on context,

I have encoded the the dependence in the semantic factor described below. Referents

must be found for each of the omitted constituents, and constituents for which there

are likely fillers given context pay a smaller penalty that those that are harder to re-

solve in context. Thus in the implemented system, whenever a constituent is omitted,

it must be resolved from context for the construction to match.

For each of the terms except for ordering, I assume choices for each constituent

are independent, and approximate them in the following way:

Pr( expressed0...i | α ) ≈ ∏

j

Pr( expressedj | α ) (4.5)

Pr( local0...i | expressed0...i, α ) ≈ ∏

j

Pr( localj | expressedj, α ) (4.6)

Pr( filler0...i | expressed0...i, α ) ≈ ∏

j

Pr( fillerj | expressedj, α ) (4.7)

Equation 4.5 assumes that the choice of expressing or omitting a constituent does

not depend on the choice of omitting/expressing other constituents. This assumption

helps limit the number of parameters, but is problematic because it could assign non-

zero probability to omitting all of the constituents. This caveat aside, Mok and Bryant

[53] show that making this independence assumption leads to reasonable estimates

for the omission patterns of the Chinese ditransitive construction. Additionally, the

parsing strategy described in the next chapter will not use a construction without

first matching a constituent.

Equation 4.6 states that the choices of whether the expressed constituents are
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local do not depend on each other. As stated, this assumption is also problematic

because it could assign a non-zero probability to all the constituents being nonlo-

cal. However, the actual implementation conditions this choice on the existence of

a fronted constituent, and a constituent can be nonlocal only if a fronted filler is

available. This makes it impossible for more than one constituent to be nonlocal.4

Additionally, should a construction choose for a constituent j to be nonlocal, the

fronted constituent still acts as a filler for the fillerj choice and thus also fills the

appropriate semantic role.

Equation 4.7 assumes that the filler choice of a constituent only depends both

on the construction and whether that constituent is expressed. Generative syntax

models usually apply this assumption as it is consistent with context free assumptions.

Conditioning on the construction (Klein and Manning [41] refer to this as conditioning

on the parent) increases the accuracy of this estimate.

Various independence assumptions can simplify the computation and parameter

estimation of the ordering variable. Collins’ chooses the complete left and right order-

ings (subcat frames) in a single step using the Treebank data to infer the parameters.

As is done by Klein and Manning [41], one could also treat constituent ordering as a

Markov process. A first order process would condition the choice of which constituent

would come in jth position on the constituent in the j − 1th position.

Regardless of which independence assumptions are employed, the parameters must

be given or learned. Because the ordering parameters seem to be highly dependent

on the construction, it is not obvious how to use existing training data like the Penn

Treebank to estimate them. Also since the common case is a total ordering, I ignore

this term in the implemented model5. However a future line a research could be

inferring ordering parameters from linguistic resources.

4There are other kinds of nonlocal constituency besides fronting/topicalization/question non-
locality. To handle these cases, this variable must be split to distinguish between a constituent
being expressed locally, expressed as a topicalized constituent, or expressed to the right of the
current construction as a child of an ancestor in the tree. Also, the parser would have to allow
nonlocal constituents to act as constituents of other constructions.

5Obviously one could use a uniform distribution over the remaining constituents, but that would
unduly penalize constructions with many constituents.
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construction MotionAlongAPathCxn
subcase of VP
constituents

v : Verb
pp : Path-Specifier

form
constraints

v.f before pp.f
meaning : MotionAlongAPath
constraints

self.m ←→ v.m
self.m.spg ←→ pp.m

Figure 4.2: A simplified MotionAlongAPath construction. This construction
matches the underlined portion of a sentence like He slid into the room.

4.3.2 Constructional Factor Example

Using the terms summarized in the previous section, we can compute the proba-

bility of the construction MotionAlongAPathCxn generating the past tense verb slid

and destination phrase into the room:

Pr( expressedv |MotionAlongAPathCxn )×
Pr( localv |MotionAlongAPathCxn, expressedv )×
Pr( fillerv = SlidCXN |MotionAlongAPathCxn, expressedv )×
Pr( expressedpp |MotionAlongAPathCxn )×
Pr( localpp |MotionAlongAPathCxn, expressedpp )×
Pr( fillerpp = DestPhrCxn |MotionAlongAPathCxn, expressedpp )

In this case, the probability that the verb v is expressed and the probability that

the verb is local are multiplied by the probability that the constituent filler of v is

the SlidCxn. Similarly, the expressed, locality and filler probabilities are multiplied

in for the pp constituent. If the pp constituent had been omitted, Pr( omittedpp |
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MotionAlongAPathCxn ) would have been used instead, and

Pr( localpp |MotionAlongAPathCxn, expressedpp )×
Pr( fillerpp = DestPhrCxn |MotionAlongAPathCxn, expressedpp )

would not have been included.

If the pp constituent had instead been been fronted, as in the sentence, Into the

room he slid, Pr(nonlocalpp | MotionAlongAPathCxn, expressedpp ) would have in-

stead been used, but the same constituent filler probability would have been included

because the MotionAlongAPathCxn and the fronting construction would both be re-

sponsible for the destination phrase (although probabilistically, they are treated by

the analyzer as unrelated clauses of the constituent).

4.3.3 Constructional Factor Summary

Assuming construction α, constituent β and filler type θ, the probabilistic syntac-

tic parameters employed in the model are:

• Pr( expressedβ vs. omittedβ | α ): This is the probability that constituent β

is expressed or not expressed (omitted) given the construction. Note that this

term does not depend on the context, as it models a construction’s preference for

omitting an argument ignoring context, letting reference resolution incorporate

context.

• Pr( localβ vs. nonlocalβ | α, expressedβ ): The probability of construction α’s

constituent β being expressed locally (as a normal constituent) or expressed

nonlocally as a fronted constituent

• Pr( filler = θ | α, expressedβ ): Assuming β is expressed, this term is the

likelihood that a particular constructional type θ fills constituent β.
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4.4 Computing Pr(σ | τ,G, Z )

With a method for estimating Pr( τ | G ) in hand, I will now show how I ap-

proximate the probability of the semspec σ given the syntactic information in τ , the

grammar G and the context Z. As I argue in chapter 2, the information in a complete

τ deterministically specifies the structure of σ. However the likelihood of the nonlocal

dependencies in σ have not been taken into account in Pr( τ | G ), so they must be

scored by the semantic factor.

Figure 4.3 shows the semspec associated with he slid into the room represented as

a DAG. Three different kinds of information are stored in the semspec. The first is the

network of arcs representing the set of role sets in the DAG that are co-indexed. For

example, the mover and traj roles are one such co-indexed set, the object and landmark

roles are another, and the path role is another.6 The second kind of information is

hidden in the Ref(...) function. The Ref function finds a referent for a given set of

features such as masculine, singular animate, and given. The final kind of information

in the semspec are the role=filler pairings. For example, the fact that the referent of

Ref(Masc, Sing, Animate, Given) is what is filling the mover role and the trajector role.

In the following equations, I use a different variable for each kind of information. I

call the set of role sets that are co-indexed together csets. I call each referent returned

by the Ref function a filler and the set of fillers across multiple Ref calls fillers. And

the assignments of fillers to roles I call assignments. Using these new variables, we

can decompose the likelihood of a semspec σ:

Pr( σ | τ,G ) = Pr( assignments, fillers, csets | τ,G, Z ) (4.8)

= Pr( assignments | fillers, csets, τ, G, Z )×
Pr( fillers | csets,G, Z ) Pr( csets | τ,G, Z ) (4.9)

≈ Pr( assignments | fillers, csets ) Pr( fillers | csets, τ, G, Z )×
Pr( csets | τ ) (4.10)

Equation 4.8 substitutes the appropriate variables for σ. Equation 4.9 uses the chain

6The sets can be of size one.
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Figure 4.3: The semantic partition of the feature structure for he slid into the
room.
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rule to split up the variables. Equation 4.10 makes an independence assumption that

assignments only depend on the roles and the fillers and do not depend on τ ,

the grammar G or the context Z. In essence, this independence assumption states

that given the csets and the fillers, the semantic factor has enough information to

evaluate the quality of the semspec in terms of consistency between the roles and

their fillers.

To summarize, the terms of equation 4.10 represent:

• Pr( csets | τ,G ) represents the likelihood of a set of co-indexation sets given

the constructions used in an analysis. Or in terms of the DAG formulation, the

choice about which arcs point to the same thing. For the example semspec in

figure 4.3, this term computes

Pr( mover = trajector, object = landmark, path | τ )

• Pr( fillers | csets, τ, G, Z ) represents the likelihood of a particular set of refer-

ent assignments over all the Ref calls in the semspec. For the example semspec,

this term computes

Pr(Ref(Masc...) = Joe,Ref(Room...) = Room42 | τ, csets,G, Z )

• Pr( assignments | fillers, csets ) computes the likelihood of each filler being

paired up with its cset. For the example semspec using the example referents

“J” for “Joe” and “R” for “Room42”, it computes:

Pr(mover = J, traj = J, lm = R, obj = R, path = SPG | J,R, csets )

4.4.1 More on Pr( csets | τ,G )

Given the complete constructional information in τ , there is no uncertainty about

the set of co-indexed roles associated with τ because the constructions employed in τ

are explicit about which roles are unified. Thus Pr( csets | τ,G ) = 1 for a complete

τ . But if τ were only partially specified (as is the case during parsing), there would

be uncertainty about the structure of the semspec, and Pr( csets | τ,G ) takes on
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an important role. As is shown in chapter 2, a partial tree τ could yield a set of

semspecs, and thus Pr( csets | τ,G ) trades off the likelihood for each viable semspec

structure given τ .

One can either treat Pr( csets | τ,G ) as:

• Option 1: a distribution over semspec structures (i.e. different sets of csets)

• Option 2: The combination of many smaller distributions determining whether

rolei and rolej are co-indexed.

For option 1 the number of semspec structures in the worst case is equal to the number

of different role subsets (i.e. intractable). For option 2, the data structures and

inference must be sophisticated since it boils down to a problem of identity uncertainty

over roles. Because option 1 is easier to explain, understand, and do inference on, the

implemented system uses uncertainty over complete semspec structures as a model

of Pr( csets | τ,G ). As shown in the next chapter, computing Pr( csets | τ,G ) in

this way turns out to be easy because a partial τ does not yield many semspecs in

practice.

4.4.2 More on Pr( fillers | csets, t, G )

In an ideal case, a semantically rich reference resolution model would be used to

model Pr( fillers | csets, t, G ). This factor would take facts about a partial analysis,

employ a model of discourse and situational context, and return a ranked set of

referents for each utterance. Building this ideal reference resolution factor was an

early goal of this research.

Unfortunately, current theoretical models don’t support incrementality, are not

psychologically plausible, and are not structured in a cognitively motivated way.

Given the lack of theoretically clean accounts of reference resolution that satisfy this

dissertation’s desiderata, I implemented a heuristic model of situational and discourse

context, which could one day be the basis for an ideal reference resolution factor. The

situational and discourse context model takes facts about a reference, such as gender,

number, givenness and semantic type and returns a ranked set of candidate referents.
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The analyzer uses a heuristic to return a list of candidates for each reference along

with the constructional tree and the semspec. For the semantic factor, instead of

using the type of the referent to compute the semantic cost, I used the head noun of

an NP as a proxy for the referent type.

The related work on discourse and situational context modeling broadly falls into

two categories: broad coverage computational work and linguistic models based on

logical inference. Successful approaches to coreference resolution in the natural lan-

guage processing literature do not use structured models of discourse and situational

context, but instead use pairwise matching functions [77], [58]. It has been shown that

pairwise matches can be further refined with clustering methods on top of the pairwise

methods [50]. While a pairwise matching solution is compatible with incremental pro-

cessing, it is a a mismatch to a structured model of discourse and situational context,

and therefore hard to apply in the context of this dissertation.

Recent NLP research in unsupervised coreference resolution by Haghighi and Klein

[28] uses a generative model of document discourse. In their model, the entities in the

document are generated by an infinite mixture model, and then each entity generates

the mention found in the document. While their intriguing work might form the basis

of a theoretically sound version of a reference resolution factor, turning their work

into a cognitive model is beyond the scope of this dissertation.

On the other end of the spectrum are structured linguistic models such as Dis-

course Representation Theory DRT [36]. While compatible with the idea of a struc-

tured model of context, DRT does not provide a well-defined notion of referent rank-

ing. As a consequence, such linguistically insightful theories are not easily usable to

define a reference resolution factor. Additionally, recent work in applying DRT to

Chinese ellipsis [73] seems no more theoretically sound than my ad hoc implementa-

tion.

4.4.3 Pr( assignments | fillers, csets )

The goal of Pr( assignments | fillers, csets ) is to determine the likelihood of

role=filler bindings in a semspec, assuming a fixed structure (i.e. a complete set of
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co-indexations) and a given set of fillers. Thus this factor can be thought of as a

probabilistic implementation of traditional selectional restrictions [35].

Gildea’s work on automatic frame role labeling [24] ignited a flurry of research

in probabilistic models of frame role fillers. Some of the best performing systems

have been feature-based SVM systems [64] that use semantic features and syntactic

features that map the parse tree into a role/filler set. Clustering over framenet frames,

Pado has built an interesting joint (generative) model over fillers, roles and frames

that she has used to mimic human semantic judgments [59].

4.4.4 Computing Pr( assignments | fillers, csets )

Given the fillers and the coindexations between roles (i.e. the structure) of a sem-

spec, Pr( assignments | fillers, csets ) can be computed in the following manner:

Pr( assignments | fillers, csets )

≈ ∏

filler

Pr( assignmentsfiller | filler, csetfiller ) (4.11)

≈ ∏

filler

Pr( f0.role = filler, . . . , fk.role = filler | filler, csetfiller ) (4.12)

≈ ∏

filler

F (Pr( rolef0 | filler, f0 ), . . .Pr( rolefk
| filler, fk ) (4.13)

In equation 4.11, each of the fillers gets treated as independent. Obviously this as-

sumption is problematic given that knowing one participant in a frame is informative

about the other participants in the frame. For example, knowing the frame is Eat and

the agent is a Person leads to different guesses about the Eaten-Item than if the agent

were of type Horse. However this assumption is fairly standard [59], [57]. Equation

4.12 decomposes a filler’s assignments into a joint distribution over the role=filler

pairs with the same filler. The joint effect of these pairs is approximated by equation

4.13 in which the fit of a filler to its assigned roles is decomposed in terms of a poten-

tial function F . Function F evaluates the combined effect of the filler being bound

to that particular set of roles. Figure 4.4 illustrates the effect of these independence

assumptions on th example semspec for he slid into the room
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As explained in chapter 2, I use function F because I do not want to treat each

role as independent. Treating each role as independent would punish grammar rules

with rich semantic information, and thus is contrary to the goals of this work. In an

ideal situation, function F would be a learned as a log-likelihood function and thus

maintain proper probabilistic semantics. However, since I do not have training data,

I implement F as the harmonic mean, averaging the effects of each of the role=filler

pairings.

4.5 Parameter Estimation Issues

Without training data, estimating the necessary parameters for the syntactic and

semantic factors is problematic. In fact, with no training data and little testing data,

a more fundamental question is how one can decide whether the model has too many

or too few parameters, and whether the application of independence assumptions was

too liberal.

Without training data, there are no empirical answers to these questions. The best

that can be done is to apply the system to many problems to see which parameters

matter. While parameter estimation issues and choices will be covered thoroughly in

the case studies, this section provides a brief summary of how the parameters were

estimated.

For the case study in chapter 6 that describes how the analyzer is used to model

linguistic phenomena, the qualitative performance of the system is more important

than any quantitative metric. Thus uniform distributions are used for the construc-

tional filler preferences, constituents are expressed/local with probability one, and no

semantic parameters were employed.

For the reading time work in chapter 7, constituents were expressed/local with

probability one, but constructional filler probabilities were treated as context free7

and inferred from Treebank rules. The semantic role=filler parameters are taken from

McRae et al. [51], and are crucial for modeling the data.

7In this case, a constituent’s filler does not depend on the construction, only on its type.
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For the parsing of child-parent interactions in Mandarin described in chapter 8,

the full set of parameters is employed. This case study also has a small amount

of training and testing data, and thus a machine learning method in which all the

parameters were learned from the data is employed.
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Chapter 5

Left Corner Construction Parsing

with a Factored Syntax-Semantics

Model

This chapter describes a probabilistic left corner parsing algorithm applied to

parsing with constructions defined in the Embodied Construction Grammar formalism

[3]. The probabilistic model guiding the search is a factored model over syntax and

semantics. The left corner parsing algorithm [70] [15] is chosen both because it has

been shown to be efficient for parsing unification grammars [86] and because variations

on left corner parsing have been shown to be psychologically plausible [78].

This chapter first provides a bit of background information on parsing strategies,

search heuristics, parsing unification grammar and psychologically plausible parsing.

In section 5.2, the probabilistic version of the left corner parsing algorithm for prob-

abilistic context free grammars is defined. Then section 5.4 shows how the algorithm

is extended for parsing using ECG as the grammar formalism.

While reading this chapter, keep the goals of the dissertation in mind. The con-

structional analyzer is both a natural language processing system as well as a cognitive

model of language analysis. Therefore it must provide rich linguistic analyses using

constructions, act as a semantic analyzer for small-to-medium-sized applications, and

analyze sentences in a way that consistent with experimental data. Many systems
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can do two out of the three tasks, but none that I know of can effectively do all three.

5.1 Parsing Overview

A parsing algorithm is a search process that takes a linguistic form (sentence) as its

input and returns a set of hidden structures associated with that input. In syntactic

parsing, this hidden structure is called a parse tree, but in joint syntax and semantic

parsing, the hidden structure is a (partial) interpretation of the input form. This

section provides a brief introduction to parsing strategies, search heuristics, parsing

unification grammar and psychologically plausible parsing. With this background in

place, one can explain why the left corner parsing strategy is an appropriate choice

for a cognitive model of sentence processing.

5.1.1 Parsing Strategies

One way to distinguish parsing strategies is the order in which they attempt to

build phrases. Bottom-up strategies start with the words and build up the smaller

phrases before trying to build up larger ones. The primary concern with bottom-up

strategies is that they are not goal directed. Words and phrases are grouped without

taking into account the fact that the parser is trying to build a single consistent

grouping for the whole sentence. Most high-performance broad coverage syntactic

parsers employ a bottom up strategy [11] [10] [62].

On the other end of the spectrum, top-down strategies start with the assumption

that a parser is looking for a consistent grouping of the whole sentence. Instead of

grouping words into phrases and phrases into larger phrases, a top down parser starts

with a proposed global grouping, and breaks it apart into its constituent phrases.

Those phrases are decomposed into smaller phrases, and then hopefully the smaller

phrases are re-written as the words of the sentence. The primary concern with top

down parsers is that they are not data directed. Pure top down parsers do not

condition their choices on the words of the sentence, and generally they are not used
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for natural language parsing.1

Mixed strategies combine top-down expectations with bottom up filtering, or

(viewed in the other direction) build only the bottom up phrases that are consis-

tent with a top down expectation (or goal). The Earley parsing algorithm is a top

down algorithm with bottom up filtering [17], while left corner parsing is a bottom up

algorithm that only builds phrases if they are consistent with a top-down goal [15].

Recently, mixed strategies have received attention in the broad coverage syntactic

parsing community [13] [48] [31], often with the goal of applying the mixed strategies

to language modeling [68] [88]. The psycholinguistics community has also embraced

mixed strategies because they are considered to be more psychologically plausible

than pure top-down or bottom-up strategies [68] [60] [29] [46].

One other degree of freedom for parsing strategies is the order in which they

process the words of the sentence. Incremental parsing strategies start by integrating

the first word of the sentence, and then the next word and so on. Mixed parsing

strategies are generally incremental, but the most commonly used parsing systems do

not process the input incrementally.

5.1.2 Heuristic Parsers

Natural language is ambiguous, and depending on your assumptions about gram-

mar, natural language can be extremely ambiguous2. With simple context free as-

sumptions, the number of parses grows exponentially with the length of the sen-

tenceṪhat is too many parses, and so various heuristics have been developed to im-

prove the speed and accuracy of syntactic parsers.

The most common heuristic used by broad coverage parsers is to treat the grammar

as a probabilistic (or weighted) grammar. Probabilistic grammars provide a ranking

1According to the classification I am using, Roark [68] is a mixed strategy since the choice of
action for his top-down parser is conditioned on the words.

2A richer grammar formalism like HPSG admits (on average) a much smaller set of parses per
utterance [87] (on the order of 10), however, the grammar does not cover as much as a treebank-
based grammar, so it is hard to compare these numbers. Additionally, parsers for richer grammar
formalisms must do more work per analysis than a treebank parser, so a heuristic ranking function
is just as important for a richer grammar.
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function over parse trees, and the parser can focus on building promising candidates.

The previous chapter describes various approaches to building a (probabilistic) rank-

ing function over parse trees and interpretations. Importantly, the choice of ranking

function depends not only on mathematical issues such as parameter estimation and

ease of computation, but also on the choice of parsing algorithm.

For a ranking function to be effective, the conditioning information used to rank

parses must be available in the parser. For example, bottom up and top down parsers

share locality assumptions with PCFGs,3 and thus a PCFG estimate is a natural

ranking function for these parsers. Broad coverage systems that condition on nonlocal

information must rely on additional search heuristics such as figures of merit [6] [13],

A∗ heuristics [40] [27] or post-parsing re-ranking functions such as [12], but these

approaches are external to the probabilistic grammar.

For parsers that use mixed strategies, such as the Earley parsing algorithm or the

left corner parsing algorithm, the locality assumptions made by a PCFG are different

than the notion of locality used by the parsing algorithm. Mixed parsing strategies

alternate bottom-up and top-down operations, so these strategies have access to top-

down conditioning information as well as bottom-up conditioning information. Thus

the probability of a parser state in a mixed strategy does not necessarily equal the

probability of any particular (connected) syntactic structure. Care must be taken

when relating probabilistic grammars to mixed parsing strategies because of this

mismatch.

Stolcke [80] shows how to define the probability of each parser state in an Earley

parser in terms of a PCFG grammar, while Manning and Carpenter [48] (and later

Van Uytsel [88]) define a completely different probability model for left corner parsing

that does not rely on PCFGs. Henderson uses a recurrent neural network approach

for estimating the probability of a left corner parser state [31] [45], while Titov and

Henderson use incremental sigmoid belief networks to estimate the probability of

a left corner parser state [84]. Stolcke’s stochastic Earley parser and Manning and

Carpenter’s probabilistic left corner parsing model (described in more detail in section

3Presumably this is because most parsing algorithms are designed to parse CFGs.
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5.3.1) inform the approach taken here.

5.1.3 Parsing Unification Grammar

Unification grammar is more expressive than context free grammar, and in the

worst case, recognition with unification grammar is intractable [86]. Tomuro, in her

dissertation on left corner unification parsing [86], explains that most unification-

based systems don’t worry about this theoretical bound, and just treat unification

grammar parsing as an extension to context-free grammar parsing. For example,

Shieber’s original unification parsing algorithm is just an extension of the Earley

parsing algorithm [86].

Tomuro defines a left corner parsing algorithm for unification grammar that is

sound and complete [86]. The technique I define in section 5.5.1 to build up a coher-

ent semantic interpretation given a partial constructional tree is quite similar to the

technique she uses to build coherent feature structures for a partial unification gram-

mar analysis4. Tomuro tests her highly optimized left corner parsing algorithm on

125 sentences from a limited domain and observes that her algorithm produces 30%

fewer parser states than Shieber’s algorithm. This suggests that left corner parsing

not only is a sound and correct method for parsing with unification grammar, but

also an efficient algorithm for parsing unification grammar.

5.1.4 Cognitive and Psychological Plausibility

A cognitively motivated model of parsing and interpretation imposes additional

constraints on the parsing task. For example, the traditional pipeline architecture

where the syntax of an utterance is processed prior to the utterance’s semantics is not

cognitively viable because thematic-fit constraints have been shown by psycholinguists

to affect incremental processing of a sentence [51]. Indeed, psycholinguistics has a lot

to say about human processing, and any cognitive model of processing must also be

plausible by psycholinguistic standards.

4Although if I understand her algorithm, my technique is much more efficient in terms of space
and processing time.
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But what does “psychologically plausible” mean? The most basic notion is that

a psychologically plausible model generates predictions consistent with experimental

evidence. In addition to this performance metric, the psycholinguistics community has

proposed processing desiderata for models that claim to be psychologically plausible.

Pado [59] suggests that psychologically plausible parsers must:

• Process the input incrementally

• Incorporate statistical information about the linguistic domain. Probabilistic

models, for example, can mimic some of the experiential basis of language pro-

cessing.

• Utilize limited parallelism in terms of the number of parses that can be simul-

taneously maintained.

• Condition parser choices on semantics. Psycholinguistic studies have shown

that semantics affects incremental reading time [51].

Roark’s [68] parser is an example of a parser that satisfies some of these desiderata.

He built a broad-coverage, incremental, mixed-strategy syntactic parser that links

each incoming word to a fully-connected in-progress parse tree. He uses a grammar

inferred from the Penn Treebank that has undergone a transformation to remove left

recursion. While Roark never used his parser to generate reading time predictions,

Pado [60] uses it in her psycholinguistic modeling work. More of Pado’s work will be

covered in chapter 7.

5.1.5 Probabilistic Left Corner Parsing Using a Factored Syn-

tactic and Semantic Model

The left corner parsing algorithm has been shown to be an efficient algorithm

for parsing unification grammar [86]. It is an incremental algorithm that can take

advantage of statistical information [48] [88] [31], employ limited parallelism, and, as

will be shown, the parser actions can be conditioned on semantic information. Thus

left corner parsing can be used to model language interpretation in an efficient and
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psychologically plausible way using a rich, unification-based language formalism. In

short, it is well-suited to act as a cognitive model.

In this chapter, I will first define the left corner parsing algorithm for CFGs, and

then derive a probabilistic left corner parsing algorithm for PCFGs. This derivation

provides insight on extending the algorithm to ECG. Then the probabilistic left corner

parsing algorithm is redefined in terms of the factored syntactic and semantic model

from the previous chapter, first for the syntactic factor, and then for the semantic

factor.

The previous chapter ignored parsing issues and defined the probability of an

analysis a as the product of the following terms:

Pr( a | G ) ≈

Pr( assignments | fillers, csets ) Pr( fillers | csets, τ, G, Z ) Pr( csets | τ ) Pr( τ | G )

(5.1)

Where Pr( τ | G ) is the probability of the syntactic information in the feature struc-

ture given a grammar G, Pr( csets | τ,G ) is the probability of set of co-indexed role

sets csets (semspec structures) given τ , Pr( fillers | csets, τ, G, Z ) is the probability

of a set of referent fillers for each of the referring expressions given the τ and csets,

and Pr( assignments | fillers, csets ) is the probability of the role-filler pairings in

the semspec.

Left corner parsing will provide the framework for conditioning the syntactic factor

on the words. Instead of calculating the joint probability of Pr( τ, words | G ), the

algorithm calculates Pr( t | G,words ). Crucially, the construction-conditioned terms

from the generative decomposition of Pr( τ | G ) are still used to compute Pr( τ |
G,words ). Thus the model is still generative, but the parser uses Bayes rule to

condition the inference on the words.

5.2 The Left Corner Parsing Algorithm

The left corner parsing algorithm [70] [15] conditions parser operations both on top

down information (expected or “goal” categories) and bottom up information (words).
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A left corner parser starts with a top down expectation of finding a complete sentence

that begins with the first word of the input utterance. It is an incremental algorithm,

so it only tries to incorporate word wi if word wi−1 has already been derived. A new

grammar rule r is used in the derivation only if it is consistent with the top down

expectation and r’s left-most constituent has already been derived from the input.

Then r’s next unmatched constituent becomes the top-down expectation for the next

unincorporated word. Complete, derived subtrees can also be directly attached to

the unmatched constituent (the top down expectation), if they are compatible.

Left corner parsers generally use a stack to represent each in-progress parse. The

stack is made up of an ordered set of partially matched grammatical rules which I will

call items. The top of the stack Itop is the most recently added item (partially matched

grammatical rule). The ordering on the stack is indicative of syntactic dominance.

The bottom of the stack is the root item of both the stack and of the parse tree. The

item Itop−1 immediately below the item at the top of the stack must syntactically

dominate the top of the stack meaning that Itop must either be a child of Itop−1 or a

child of a descendant of Itop−1.

In this chapter, items on the stack will be represented as a grammar symbol along

with its leftover (unmatched) constituent expectations (goals) in brackets5. Assuming

that α, β, γ are variables standing for symbols of the grammar, then α[βγ] is a stack

state originally pushed onto the stack using a rule like α→ . . . βγ, and a stack with j

states would look like α0[β0γ0], α1[β1γ1], . . . , αj[βjγj] where α0 is the root of the stack

and αj is the top of the stack.

Left corner parsers build up the parse tree using three stack operations:

• Push: Pushes the current word θ onto the stack.

α0[β0γ0], . . . , αj[βjγj] becomes α0[β0γ0], . . . , αj[βjγj], θ[]

The top of the stack must be incomplete, and there must exist6 a path in the

grammar between βj and θ.

5An empty pair of brackets indicates a complete state.
6Unless the grammar allows for productive omission, which is also handled by the implemented

model, but is covered in a later section.
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• Attach: Remove the complete top of the stack, assigning it to be the left-

most unmatched constituent of its stack ancestor. For example, assume that

βj−1 = αj then:

α0[β0γ0], . . . αj−1[βj−1γj−1], αj[] becomes α0[β0γ0] . . . αj−1[γj−1]]

• Propose new item α′ at j: Given a rule α′ → λ′β′γ′, assume that the

complete αj on the top of the stack matches λ′. Pop αj[] and push a new state:

α0[β0γ0], . . . αj−1[βj−1γj−1], αj[] becomes α0[β0γ0], . . . αj−1[βj−1γj−1], α
′
j[β

′
jγ
′
j]

Figure 5.1 shows an example application of the parser operations on the sentence he

slid the box.

5.3 Probabilistic Left Corner Parsing

A probabilistic left corner parsing algorithm assigns a probability to each (partial)

parse τi that is consistent with the input through word i. The probabilistic definition

provided in this section combines ideas from Stolcke’s probabilistic Earley parser [80]

and Manning and Carpenter’s probabilistic left corner parser [48].

5.3.1 Related Probabilistic Algorithms

Both probabilistic bottom-up and top-down parsers share locality assumptions

with PCFGs. Each generated subtree multiplies the probability of a rule by the

probability of each generated subtree, conditioned on information local to the phrase

type.7 Thus the (inner) probability of a subtree is easy to calculate because the

parser’s actions equate to the subtree generation decisions in the PCFG.

During the derivation of a parse tree, the left corner parsing algorithm maintains

multiple incomplete subtrees (in a dominance relation) on a stack. To propose rules

that are consistent with the stack, the left corner parser actions must be conditioned

7Technically, a bottom-up parser builds the subtrees first, but the same generative story holds.
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• Root[S]

– Push HePronoun→ he

• Root[S], HePronoun[]

– Action: Propose Decl → Subj F initeV P

• Root[S], Decl[FiniteV P ]

– Action: Push SlidePastTense→ slid

• Root[S], Decl[FiniteV P ], SlidePastTense[]

– Action: Propose Trans→ V erb NP

• Root[S], Decl[FiniteV P ], T rans[NP ]

– Action: Push TheDet→ the

• Root[S], Decl[FiniteV P ], T rans[NP ], TheDet[]

– Action: Propose DetNoun→ Det N

• Root[S], Decl[FiniteV P ], T rans[NP ], DetNoun[N ]

– Action: Push BoxN → box

• Root[S], Decl[FiniteV P ], T rans[NP ], DetNoun[N ], BoxN []

– Action: Attach BoxN to DetNoun.N

• Root[S], Decl[FiniteV P ], T rans[NP ], DetNoun[]

– Action: Attach DetNoun to Trans.NP

• Root[S], Decl[FiniteV P ], T rans[]

– Action: Attach Trans to Decl.F initeV P

• Root[S], Decl[]

– Action: Attach Decl to Root.S and it’s complete

Figure 5.1: The steps a left corner parser might go through for he slid the box
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on information that is not local to any particular phrase type, but rather depends

on features of the stack itself. Thus relating a probabilistic grammar with certain

locality assumptions with a parsing algorithm with different locality assumptions

requires some subtlety.

For example, instead of computing the probability of a partial tree directly, Stol-

cke’s probabilistic Earley parsing algorithm [80] and Manning and Carpenter’s prob-

abilistic formulation [48] of left corner parsing both calculate the probability of a

derivation. The Earley parsing algorithm builds trees via a left-most derivation,

while the left corner parsing algorithm builds trees via a left-corner derivation. Man-

ning and Carpenter observe that for each parse tree, there is a unique left-corner

derivation, and therefore the probability of the complete parse tree must equal the

probability of the derivation used to build it. Manning and Carpenter capitalize on

this insight to relate the probability of a parse tree and the actions of the parser:

Pr(tree) = Pr(derivationtree) (5.2)

= Pr(op0 . . . opn) (5.3)

= Pr( opn | opn−1, . . . , op0 )× . . .× Pr(op0) (5.4)

Assuming that a derivation of a tree has n steps, then one can define the probability of

a complete parse tree to be the product of all the derivational steps used to build that

tree. 8 A partial derivation can admit multiple parse trees. Manning and Carpenter

apply a Markov style assumption on equation 5.4, choosing to condition on recent

history instead of the complete history.

Given a derivation D, they approximate the probability of each left corner parser

operation using the following assumptions:

Pr( push wi | D ) ≈ Pr(wi | current goal symbol ) (5.5)

Pr( attach | D ) ≈ Pr( attach | stack top , goal symbol ) (5.6)

Pr( propose rule | D ) ≈ (1− Pr( attach | D )) Pr( rule | stack top, goal ) (5.7)

8Note that the probability of partial derivations does not necessarily equal the probability of a
partial tree.
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A push can only happen when the top of the stack is incomplete. However if the top

of the stack is complete, and the top of the stack is the same as the goal state, there

is uncertainty about whether an attach operation or a propose operation should take

place. The probability of an attach in equation 5.6 is only nonzero when the goal

state and the top of the stack are the same symbol. The probability of a propose a

particular rule is shown in equation 5.7. The probability of a propose is the product

of one minus the probability of attaching (which is the chance of not attaching) times

an estimate of the likelihood of proposing a particular rule given the goal state and

the top of the stack.

Manning and Carpenter use their probabilistic left corner parser to parse sentences

from the Penn Treebank. The training trees allow them to estimate the probability

of each operation directly. Estimating the probabilities in this manner makes sense

when given a large set of training data such as the Treebank.

For the construction analyzer’s version of left corner parsing, I have extended

Manning and Carpenter’s approach in the following ways:

• A semantic factor is included to estimate the likelihood of a derivation

• Manning and Carpenter estimate the probability of each operation from data,

however there is no ECG treebank. Instead, the probability of each operation

can be defined in terms of a probabilistic grammar, and in particular the syn-

tactic terms in the factored syntactic-semantic model defined in the previous

chapter.

• In Manning and Carpenter’s formulation, they define the joint probability of a

left corner derivation with the words. For modeling the reading time data in

chapter 7, the conditional probability of each derivation given the words is easier

to link to reading time predictions as is done by Hale [30]. Thus I compute the

conditional probability of a derivation given the input.
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5.3.2 Probabilistic Reachability

The Earley parsing algorithm is a chart-based top-down parser with bottom-up

filtering. An Earley parser predicts rules in a top-down fashion, using a single item

in the chart to represent all the different ways that a symbol could be predicted. In

effect, the chart’s single item for a symbol cuts left recursion off at the earliest point,

and therefore it is not a problem.

Stolcke [80] observes that special care must be taken to properly accumulate prob-

ability mass in the chart. In a naive probabilistic definition of an Earley parser, one

would just accumulate the probability of an item i as each new item j predicted it.9

Left recursion foils this naive implementation, however, because the mass for the left-

recursive paths never gets accumulated in the item (the chart cuts off the recursion).

Thus Stolcke introduces additional probabilistic machinery to accumulate this lost

mass.

Stolcke defines a relation R which is the probabilistic reachability relation allowing

for recursion. Intuitively, R encodes the sum of probabilities over all paths between

two symbols given the grammar. For PCFGs, Stolcke defines R with the following

recurrence relation:

Pr(Z | X ) =
∑

X→Zλ∈G
Pr(X → Zλ) (5.8)

R(X, Y ) = δ(X, Y ) +
∑

Z

Pr(Z | X )R(Z, Y ) (5.9)

Where δ(X, Y ) = 1 if X = Y and δ(X, Y ) = 0 if X 6= Y . Probability Pr(Z | X )

sums the probabilities of all rules that have X as their left hand side and Z as their

immediate left corner. The R relation is straightforward to calculate as the sum of a

geometric series or up to a fixed depth using a dynamic programming algorithm as

is done in the implemented system. Stolcke observes that the R value can be greater

than one especially for reflexive R(X,X) entries.

Probabilistic reachability is an important concept for my derivation of proba-

bilistic left corner parsing because two consecutive items on the stack represent two

9This would be the probability of the item j times the probability of the rule used to predict i.
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endpoints of a possibly infinite set of parse tree paths. The next section shows how

probabilistic reachability is applied to estimate the probability of each parser opera-

tion. Additionally, the recurrence relation defined in 5.9 must be modified for ECG.

Because ECG allows for productive omission, the notion of a left corner is different

than in a PCFG. Section 5.4 defines the necessary extensions to the left corner parsing

algorithm for parsing ECG.

5.3.3 A Probabilistic Left Corner Parsing Algorithm

The probabilistic extension of left corner parsing presented here is inspired10 by

inference in Hidden Markov Models (HMM) [71]. Like an HMM, the parser is in-

crementally given word zero through word i (w0 . . . wi), and after each word wi, the

parser must infer the most likely stack (or derivation). From this point on, I will use

variable t to refer to a left corner derivation instead of a tree, and thus I assume the

parser is looking to find

argmaxti Pr( ti | w0...i )

Which is the most likely derivation ti after seeing word wi

Expression Pr( ti | w0...i ) is decomposed using Bayes rule, and the resulting equa-

tion is known as the forward algorithm (up through equation 5.11): Pr( ti | w0...i ) =

= αPr(wi | ti, w0...i−1 ) Pr( ti | w0...i−1 ) (5.10)

= αPr(wi | ti )
∑

ti−1

Pr( ti | ti−1 ) Pr( ti−1 | w0...i−1 ) (5.11)

= αPr(wi | ti ) Pr( ti | ti−1 ) Pr( ti−1 | w0...i−1 ) (5.12)

Equation 5.10 uses Bayes rule to separate wi from the rest of the words. Line

5.11 applies the standard Markov assumptions and introduces the probability over

derivations from the previous iteration, making the equation recursive. In equation

5.12, the summation is dropped because each derivation ti can only be generated by

a single ti−1. The final terms of equation 5.12 are:

10The parser itself is not an HMM because the state space is not fixed. However the forward
algorithm is an insightful idea for modeling the inference of incremental parsing.
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• α: The normalizing term from Bayes rule which is Pr(w0 . . . wi).

• Pr(wi | ti ):The probability of generating the next word given the current anal-

ysis. In HMM terminology, this is known as the emission model.

• Pr( ti | ti−1 ): The probability of the analysis that generates wi given an analysis

that generates wi−1. In HMM terminology, this is called the transition model.

• Pr( ti−1 | w0...i−1 ): the recursive calculation for ti−1;

Unlike hidden Markov models, the ti’s are not simple atomic states, but structured

states representing derivations, and often it will take more than one parser operation

to turn a derivation that incorporates wi−1 into a derivation that incorporates wi.

Thus Pr( ti | ti−1 ) is actually a shorthand for the likelihood of a sequence of parser

operations. Assuming there are j + 1 steps to extend parse ti−1 to parse ti:

Pr( ti | ti−1 ) = Pr( ti | ti,j−1 ) . . .Pr( ti,1 | ti,0 ) Pr( ti,0 | ti−1 )

This decomposition assumes the standard Markov assumption that the successor in-

terim parser state only depends on the immediate prior state.

However, decomposing Pr( ti | ti−1 ) in this manner raises a question about finding

“good” interim parser states between ti−1 and ti. This subproblem can also be cast

as a search task with the start state being a parser state that incorporates word i− 1

and a descendant “goal” parser state that incorporates word wi. The system uses

the probability of the next word given an interim state or Pr(wi | ti,k ) as a search

heuristic. Details regarding how Pr(wi | ti,k ) is calculated are provided in section

5.3.6.

5.3.4 The Likelihood of each Parser Operation

Upon comparing the actions of the left corner parser with the HMM model, one

notices that the push action is similar to the HMM’s emission action, suggesting

that a push action could be probabilistically modeled as the emission probability

Pr(wi | ti ) where ti is a stack. As a simplifying (Markov) assumption, I assume
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that the likelihood of the wi only depends on the top of the stack. Using the stack

notation from section 5.2: Pr(wi | ti ) = Pr(wi | αj[βj, γj] ) where αj is the top

of ti. In particular, βj must be the constituent that (indirectly) generates wi, so

Pr(wi | ti ) = Pr(wi | βj ).

To define Pr(wi | βj ), I rely on the probabilistic reachability relation R . Normal-

izing R over words reachable from a constituent provides the basis for an estimate of

Pr(wi | βj ):

Pr(wi | αj[βj, γj] ) = Pr(wi | βj ) =
R(βj, wi)∑

w∈wordsR(βj, w)
(5.13)

In equation 5.13, R(βj, wi) is normalized over the set of lexemes in the grammar.

This provides an estimate of how often wi is pushed compared to other lexical items

in the grammar, and it is straightforward to see that it sums to one over all lexical

items reachable from βj.

As for the “transition model”, assuming there are k+1 steps to extend derivation

ti−1 to derivation ti then:

Pr( ti | ti−1 ) = Pr( ti,k | ti,k−1 ) . . .Pr( ti,1 | ti,0 ) Pr( ti,0 | ti−1 )

Propose and attach actions are the “transition” actions between interim derivations

ti,x and ti,x+1 where 0 < x < k. Like Manning and Carpenter (in equation 5.4), I

assume that the conditional probability of the next interim derivation state is the

probability of the parser action that generated that state:

Pr( ti,x+1 | ti,x ) = Pr( opx | ti,x )

Then like Manning and Carpenter, I summarize the information in derivation ti,x

with the goal state and the current left corner. More precisely, if

ti,x = α0[β0γ0], . . . αi−1[βi−1γi−1], αi[]

then I assume:

Pr( ti,y | ti,x ) ≈ Pr( ti,y | αi, βi−1 ) = Pr( op | αi, βi−1 )
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With this simplification, the probability of each operation is defined as:

Pr( attach | αi, βi−1 ) =
Pra(αi | βi−1 )

R(βi−1, αi)
(5.14)

Pr( propose α′ → αiλ | αi, βi−1 ) =
Pr(α′ → αiλ)R(βi−1, α

′)
R(βi−1, αi)

(5.15)

The numerator of equation 5.14 is the probability11 of attaching αi to βi−1. For

a PCFG, Pra(αi | βi−1 ) is one if αi = βi−1 and zero otherwise. In the numerator of

equation 5.15, Pr(α′ → αiλ) accounts for the probability of the rule α′ → αiλ being

used. In the PCFG setting, this is the conditional probability of the rule given α′.

The term R(βi−1, α
′) accounts for the probability of the sum of all the paths between

βi−1 and α′. The product of Pr(α′ → β′...) and R(βi−1, α
′) provides the sum of the

probabilities for all paths between βi−1 and αi that attach to αi using rule α′ → αiλ.

It is straightforward to show that the appropriate normalizer for the attach and

propose operations is R(βi−1, αi). The numerators for the attach and propose opera-

tions implement the recurrence relation definition of R given in equation 5.9:

R(βi−1, αi) = Pr
a

(αi | βi−1 ) +
∑

ρ∈α′→αiλ

Pr(ρ)R(βi−1, α
′)

Where Pra corresponds to the single-step δ function from equation 5.9 and all the

rules that can be proposed are summed. Thus the conditional probability function

Pr( op | ai,x ) integrates to one.

5.3.5 An Example

For a complete example of the algorithm at work, consider the following proba-

bilistic context free grammar G and associated R values:12

11Pra is being used here to stress that this is the attach probability and not the normalized R
probability defined in equation 5.13

12Entries not shown in the table are assumed to be zero
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Rule Probability
S → A 1
A → a 1/3

A → Aa 1/3
A → AB 1/3
B → bB 1/2
B → b 1/2

Constituent(type) Symbol R
A A 3
A a 1
a a 1
b b 1
B b 1
B B 1

In grammar G, lowercase letters are terminals and upper case letters are nonterminals.

Additionally, the R values are computed using the formula for the sum of a geometric

series.13

The grammar G recognizes strings of combined “a”s and “b”s, starting with an

“a”. For the string “aabb”, the operations that the parsing algorithm performs are

shown in figure 5.2. Figure 5.2 also shows the conditional probability of the stack

resulting from the parser operation. For example, line three specifies that the initial

stack is of the form S[A], A[] and that a propose operation with rule A → Aa is

necessary. The conditional probability of the result stack S[A], A[a] is 1/3. With

the initial stack S[A], A[], two other parser operations are possible. Item A[] could be

attached to S[A], or the rule A→ AB could be used instead. Both of those operations

also have a conditional probability of 1/3.

5.3.6 Search

Thinking of parsing in terms of search, the left corner parsing algorithm speci-

fies the operators for extending search states (in-progress derivations) and computing

their probabilities, but with the ambiguity of natural language, more work needs to

13The formula is a/(1− r) with a being the start term and r being the common ratio (when r is
less than one).
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Stack Parser Op Conditional Stack Prob
1 S[A] Push(a) Pr( a | A ) = 1
2 S[A], a[] Propose(A → a) Pr(A→ a)R(A,A)/R(A, a) = 1
3 S[A], A[] Propose(A → Aa) Pr(A→ Aa)R(A,A)/R(A,A) = 1/3
4 S[A], A[a] Push(a) Pr( a | a ) = 1
5 S[A], A[a], a[] Attach Pra( a | a )/R(a, a) = 1
6 S[A], A[] Propose(A → AB) Pr(A→ AB)R(A,A)/R(A,A) = 1/3
7 S[A], A[B] Push(b) Pr( b | B ) = 1
8 S[A], A[B], b[] Propose(B → bB) Pr(B → bB)R(B, B)/R(B, b) = 1/2
9 S[A], A[B], B[B] Push(b) Pr( b | B )

10 S[A], A[B], B[B], b[] Propose(B → b) Pr(B → b)R(B,B)/R(B, b) = 1/2
11 S[A], A[B], B[B], B[] Attach Pra(B | B )/R(B, B) = 1
12 S[A], A[B], B[] Attach Pra(B | B )/R(B, B) = 1
13 S[A], A[] Attach Pra(A | A )/R(A,A) = 1/3

Figure 5.2: The operations that the left corner parsing algorithm executes for
the single correct derivation of the string “aabb”. The first column shows the
stack prior to the operation shown on the same line in the “Parser Op” column.
Column “Conditional Stack Prob” shows the probability of the action given
just the initial stack. The stack that results from the action is shown on the
subsequent line. For example, on line one, the initial stack is S[A], the parser
action is to push “a”, and the conditional likelihood of the push action given
S[A] is one.
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be done to improve the efficiency of the search. Many broad-coverage parsers sacri-

fice completeness for performance using various beaming techniques [11] [65]. Other

parsers opt for agenda-based parsing, but use heuristic techniques for estimating cost

to completion of a parse. The figures of merit work [6] used in the Charniak parser

[10] offers high performance parsing without the theoretical guarantee of complete-

ness, while broad coverage A∗ parsers such as Klein and Manning’s [39] and Haghighi,

DeNero and Klein [27] guide the search with provably optimistic heuristics that do

guarantee completeness. Petrov and Klein [62] apply a novel technique to parsing by

iteratively performing a complete parse of a sentence with a simpler grammar, then

using those results to constrain a complete parse with a more sophisticated grammar.

In essence, the goal states from a simpler search space constrain the search space on

the next iteration. Their scheme is both fast and effective, yielding state of the art

performance.

For my constructional analyzer, the search algorithm is limited to techniques

that are cognitively and psychologically plausible. Complete parsing strategies are

questionable because of memory limitation requirements, and cost-to-completion es-

timates are limited to heuristics that can be computed incrementally without looka-

head. Given these constraints, two search algorithms have been implemented:

• A standard beam search algorithm that iteratively extends derivations from

those that incorporate word wi to those that incorporate word wi+1. Two

priority queues are used to implement this solution, and each priority queue is

limited to a finite, user-specified size. With this search strategy, the surviving

derivations proceed in a near lock step together. This is the parser that is used

for the psycholinguistic results.

• A limited-memory agenda-based parser that uses a single priority queue. In

principle, this setup allows for a single highly likely parse to proceed to the end

of the sentence without waiting for other derivations to catch up. Addition-

ally, for applied information extraction tasks and grammar building, this search

technique is easier to use because one does not have to worry as much about

derivations falling off the beam.
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Given that a derivation has incorporated word wi, the parser should perform push,

attach and propose actions that result in states that are likely to generate word wi+1.

This intuition is consistent with Roark who uses the exact same heuristic to speed

up his parser [68], and Henderson who adds the next word to his neural net that

conditions what parser action to do next [32]. Thus both the beam and agenda-

based parsing strategies use Pr(wi+1 | derivation ) as a psychologically plausible

and extremely optimistic estimate of the cost to complete a derivation. If the top

item of the derivation stack is incomplete and has remaining goal constituents, the

probability of word wi+1 is the same as the probability of pushing word wi+1. If the

top of the stack is complete, however, computing Pr(wi+1 | derivation ) is much more

expensive. Before I show how to calculate Pr(wi+1 | derivation ), some examples will

be helpful for developing the intuition.

Assume that stack ψ is of the form α0[β0γ0], . . . , αk−1[βk−1γk−1], αk[]. Then wi+1

could be predicted by constituent γk−1, but only if αk attached directly to βk−1 or

through a path of unary productions. Additionally, another rule λ could be proposed

in between αk and αk−1. This hypothetical item λ[βλ,0, βλ,1] could attach αk to βλ,0

(or through a path of unary productions), and then constituent βλ,1 could predict the

next word wi+1.

Now consider a stack of the form α0[β0γ0], . . . , αk−2[βk−2γk−2], αk−1[βk−1], αk[]. Ei-

ther via direct attachment or the use of a chain of unary productions from βk−1 to αk,

item αk−1 can be completed. As a consequence, constituent γk−2 would then become

capable of predicting word wi+1. The probability of word wi+1 given γk−2 would have

to be scaled by the probability of completing item αk−1.

Generally speaking, an item on the stack can be used to generate the next word if

everything above it can be completed with just attaches or unary productions. Using

this intuition (and ignoring semantics), one can define a formula for the probability

of word wi+1 given a stack ψ. Assuming ψ has ψk items on it, one can approximate

Pr(wi+1 | ψ ) in the following way:14

Pr(wi+1 | ψ ) ≈ ∑

κ∈ψk...1

δ(ψ, κ)(Patt(ψ,κ,wi+1) + Pprop(ψ,κ,wi+1)) (5.16)

14Ru is the reachability using only unary rules.
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δ(ψ, κ) =
∏

µ∈ψk−1...κ

if | ψ.αµ.goals |= 1 then
Ru(βµ, αµ+1)

R(βmu, αµ+1)
else 0(5.17)

Patt(ψ,κ,wi+1) =
Ru(βκ−1,0, ακ) Pr(wi+1 | βκ−1,1 )

R(βκ−1,0, ακ)
(5.18)

Pprop(ψ,κ,wi+1) =
∑

λ∈G

Ru(βλ,0, ακ)R(βκ−1,0, λ) Pr(wi+1 | βλ,1 )

R(βκ−1,0, ακ)
(5.19)

Summing over each itemκ on the stack, equation 5.16 computes the likelihood of itemκ

completing and itemκ−1 playing some role in generating the next word. The δ function

computes the likelihood of everything through and including itemκ completing. Patt

computes the likelihood that itemκ is attached directly to itemκ−1’s constituent βκ−1,0,

thereby allowing βκ−1,1 to play a role in generating the next word. Pprop computes

the likelihood that some intermediate item is proposed between itemκ and itemκ−1,

and it is this intermediate item that plays a role in generating the next word.

In equation 5.18, the probability of attaching (through a direct attach or unary

productions itemκ to to first unmatched constituent of item + κ− 1 is calculated

by normalizing the unary reachability Ru by the total reachability between itemκ−1

and itemκ. The normalized unary reachability then acts as a scaling factor on the

probability of generating the next word with βκ−1,1.

Equation 5.19 sums over the different rules (λ) that could be proposed between

itemκ and itemκ−1. The likelihood of rule λ in this scenario is the unary reachability

between λ’s first constituent βλ,0 and ακ times the reachability between itemκ−1 and

λ normalized by the total reachability between itemκ−1 and itemκ. This probability

scales the likelihood of the next unmatched constituent of λ generating the next word.

For the PCFG case, the δ function in equation 5.17 is easy to define. An item on

the stack can only complete if everything above it on the stack completes, and it has

a single unmatched constituent. Equation 5.17 encodes constrains the stack item µ

to have just a single remaining constituent (or goal) with the if clause, and if there

is just a single remaining constituent, the likelihood of completing is the normalized

unary reachability between the item and item just above it on the stack. Otherwise

the item cannot possibly be completed, and the δ function returns zero.

The δ function plays a second role at the end of the sentence. When a derivation
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has incorporated all the words of the input, there are no more words to generate,

and obviously Pr(next word | derivation ) is not a useful heuristic for guiding the

parser. In this case, what is important is the cost of completing the derivation (i.e.

completing every item on its stack), and computing the δ function for the whole stack

provides an estimate of the completion likelihood.

5.4 Extending the Left Corner Parsing Algorithm

for ECG

Section 5.3 derived a probabilistic left corner parsing algorithm for PCFGs. ECG

is a more expressive grammar formalism, requiring extension to both the algorithm

and the probabilistic derivation. Productive argument omission, for example, leads

to an extended definition for what can be an expected (goal) symbol for a given item

on the stack. Additionally, the equations for approximating the probability of each

parser operation must be rewritten in terms of the factored syntactic and semantic

model from the previous chapter.

5.4.1 Constructional Factor Summary

Before rewriting the left corner probability equations in terms of the factored

syntactic and semantic model, it will he helpful to review the parameters used in

the syntactic factor. Assuming construction α, constituent β and filler type θ, the

probabilistic syntactic parameters employed in the model are:

• Pr( expressedβ vs. omittedβ | α ): This is the probability that constituent β

is expressed or not expressed (omitted) given the construction. Note that this

term does not depend on the context, as it models a construction’s preference

for omitting an argument ignoring context, letting the reference resolution in-

corporate context.

• Pr( localβ vs. nonlocalβ | α, expressedβ ): The probability of construction α’s

constituent β being expressed locally (as a normal constituent) or expressed
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nonlocally as a fronted constituent

• Pr( filler = θ | α, expressedβ ): Assuming β is expressed, this term is the

likelihood that a particular constructional type θ fills constituent β.

To shorten the equations in the following sections, I abbreviate expressedβ with

expβ, omittedβ with expβ localβ with locβ and Pr( filler = λ | α, expressedβ ) with

Pr(λ | α, expβ ).

5.4.2 Updating Probabilistic Reachability

ECG allows for productive argument omission. This means that for a given a stack

item α[βγλ], β, γ, and λ could each be the expected (goal) symbol. Additionally,

given that the “right hand side” of an ECG rule is not required to be a total ordering,

the notion of which constituent comes next for a given stack item must be refined.

Instead of a single symbol β being expected or “next”, there must be a set of next

symbols.

It is straightforward to statically infer which constituents of a construction α must

be matched before constituent β. This information is stored in a precedes relation

precedes(β). Doing this takes into account the partial constituent ordering that ECG

allows. During parsing, each stack item αi maintains a set of unmatched constituents

unmatched(αi) and a set of next constituents next(αi). If none of the constituents

in precedes(βi,j) are in unmatched(αi), then βi,j is in next(αi).

Given these definitions and the terms of the constructional factor summarized in

section 5.4.1, the static definition of probabilistic reachability defined in equation 5.9

can be updated. For construction α with constituent β and possible filler λ, the R

relation is redefined in the following way:

R(α.β, λ) = Pr(λ | α, expβ ) (5.20)

+
∑

ρ∈G
R(α.β, ρ)

∑
γ∈ρ

Ploc(ρ,γ) Pr(λ | ρ, expγ )Pomit(ρ,γ) (5.21)

Ploc(ρ,γ) = Pr( expγ | ρ ) Pr( locγ | ρ, expγ ) (5.22)

Pomit(ρ,γ) =
∏

θ∈precedes(γ)
Pr( omitθ | ρ ) (5.23)



95

Instead of making the R a relation from symbol to symbol, it is now a relation

from a particular constructional constituent α.β to a construction type λ. Line 5.20

is the single step attachment cost for type λ to constituent α.β. Line 5.21 is the

recursive part of the R relation definition which computes the reachability between

β and λ through each construction ρ in grammar G. For a particular construction ρ,

one multiplies the R value for β and ρ by the chance that construction λ can attach to

some constituent γ in ρ (i.e. summed over all γ). To compute the probability that λ

can be attached to constituent γ in ρ, one multiplies the probability that γ is expressed

locally (equation 5.22) by the probability of filling ρ with λ times the probability of

omitting all of the constituents in precedes(γ) (equation 5.23). Omitting each of the

constituents in precedes(γ) is necessary to allow γ to be matchable.

Note that calculating the R relation in this way does not take into account nonlocal

constituents, and thus it sacrifices correctness for efficiency. Computing the R relation

is expensive, and the factors that condition nonlocal constituents are obviously not

available prior to parse time.15

During parsing, an additional dynamic definition of probabilistic reachability must

also be calculated between items on a stack. This online version of the R rela-

tion (called Ro) takes into account which constituents have been matched and also

makes use of the expressed but nonlocal constituents. Given a stack item of the form

. . . αj[βj,0, ..., βj,k], αj+1, Ro can be calculated in the following way:

Ro(αj[βj,0, .., βj,k], αj+1) =
∑

β∈βj

(Pomit(αj ,β)+Pnonloc(αj ,β))Ploc(αj ,β)R(β, αj+1)(5.24)

Ploc(αj ,β) = Pr( expβ | αj ) Pr( locβ | αj, expβ ) (5.25)

Υαj ,β = precedes(β) ∩ unmatched(αj) (5.26)

Pomit(αj ,β) =
∏

c∈Υαj,β

Pr( omitc | αj ) (5.27)

Pnonloc(αj ,β,λ) =
∑

c∈Υαj,β

Pnonlocfiller(αj ,c,λ)

∏

d∈Υαj,β\c
Pr( omitd | αj )(5.28)

15There is an unimplemented extension of reachability that corrects this problem. Instead of using
the predefined R value directly, one could try every construction η that was reachable from β and
can generate λ. The constituents of η would be allowed to be nonlocal, and the reachability between
β and λ would be re-computed in terms of η.
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Pnonlocfiller(αj ,β,λ) = Pr( expβ | αj ) Pr( locβ | αj, expβ )×
Pr(λ | αj, expβ )

Equation 5.24 defines Ro. Ro takes a stack item αj[βj,0, ..., βj,k] and a type αj+1

as arguments. It calculates the total mass between the item αj and αj+1 by summing

over the R values for each remaining unmatched constituent in αj. For each remaining

constituent β in αj[βj,0, ..., βj,k], a weighted R(β, αj+1) is summed in. The weights

are Pomit(αj ,β) and Pnonloc(αj ,β).

Equation 5.26 defines a set Υ that represents the unmatched constituents of stack

item αj that are also in the precedes set of β. These constituents must be either be

omitted or treated as nonlocal before β can be employed in the derivation. Equation

5.27 calculates the probability of omitting all of the constituents in Υ so that β can

be used to generate αj+1. Pnonloc(αj ,β) in equation 5.28 is the probability that exactly

one of the constituents (constituent c) in Υ is matched by a fronted constituent with

the rest being omitted. Pnonlocfiller(αj ,β,λ) calculates the likelihood that the fronted

constituent λ is bound to constituent c by factoring in the probability that c is

expressed, nonlocal, and filled by λ.

5.4.3 Modifying the Parser Operations for ECG

The intuition behind the equations for calculating the probability of each parser

operation is the same for ECG as it is for the equations for PCFGs defined in section

5.3.3. The conditional probability Pr( ti,j | ti−1,j−1 ) still equals Pr( opj | ti−1,j ). and

the terms used in the equations have similar meaning and are normalized in the same

way.

When the Top of the Stack is Complete

Just as before, when the top of the stack is complete, only attach and propose

operations can be performed on a derivation. To define the probability of an attach

operation, assume a stack ψ of the form:

α0[β0,0, ...β0,k0 ], . . . αi−1[βi−1,0, ..., βi−1,ki−1
], αi[]
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in which αi is attached to β where β ∈ βi−1,0, ..., βi−1,ki−1
:

Pr( attach β | αi−1[βi−1,0, ..., βi−1,ki−1
], αi[] )

=
(Pomit(αi−1,β) + Pnonloc(αi−1,β))Pfill(αi−1,β,αi)

Ro(αi−1[βi−1,0, ..., βi−1,ki−1
], αi[])

(5.29)

where:

Pfill(αi−1,β,αi) = Pr( expβ | αi−1 ) Pr( locβ | αi−1, expβ )×
Pr(αi | αi−1, expβ ) (5.30)

Υαi−1,β = precedes(β) ∩ unmatched(αi−1) (5.31)

Pomit(αi−1,β) =
∏

c∈Υαi−1,β

Pr( omitc | αi−1 ) (5.32)

Pnonloc(αi−1,β,λ) =
∑

c∈Υαi−1,β

Pnonlocfiller(αi−1,c,λ)

∏

d∈Υαi−1,β\c
Pr(omitd |αi−1 )(5.33)

Pnonlocfiller(αi−1,c,λ) = Pr( expc | αi−1 ) Pr(nonlocc | αi−1, expc )×
Pr(λ | αi−1, expc ) (5.34)

Like the PCFG case, equation 5.29 is normalized by the reachability between

αi−1 and αi. And like the PCFG case, the numerator is the generative probability

of making αi the filler of constituent αi−1.β. Pfill (equation 5.30) calculates the

likelihood of constituent β being expressed locally and filled by αi. However, attaching

αi to constituent β assumes that all of the unmatched constituents in precedes(β) can

be omitted or treated as nonlocal. Term Pomit, defined in equation 5.32, computes

the likelihood of all the unmatched constituents in precedes(β) being omitted. Term

Pnonloc, defined in equation 5.33, calculates the probability of exactly one of the

constituents in precedes(β) being expressed nonlocally and filled by the fronted item

λ (equation 5.34), and the rest of the unmatched constituents being omitted. Pomit

and Pnonloc are added together because either scenario would enable αi to attach to

β.

To make this more concrete, consider the example sentence, the quarterback passes

to the receiver for the score which might be uttered by the announcer during a football

game. Assuming that the correct analysis of this sentence employs a cause-motion

construction with an omitted theme, the derivation of this sentence after completing
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the PP would look like:

Declarative[V P ], CauseMotion[theme, path], PP []

The probability of attaching the PP item to the path constituent of the CauseMotion

incorporate the following terms:

Pfill = Pr( exppath | CM ) Pr( locpath | CM ) Pr(PP | CM, exppath )

Pomit = Pr( omittheme | CM )

Pnonloc = 0

Where CM is an abbreviation for CauseMotion and Pnonloc is zero because there are

no fronted items available.

While the probability of an attach operation to constituent β is the sum over all

different ways of dealing with the unmatched constituents in precedes(β), technically

the parser must treat the omission and nonlocal assignments as different parser states

because they have different semantic ramifications. For example, the omitted con-

stituents must be tied to context, while the fronted constituent’s meaning is bound

in to the appropriate roles in the semspec.

To define the probability of a propose operation, assume a stack of the form:

α0[β0,0, ..., β0,k0 ], . . . αi−1[βi−1,0, ..., βi−1,ki−1
], αi[]

and a grammar rule λ of the form αλ → βλ,0, ..., βλ,k where αi attaches to β where

β ∈ βλ,0, ..., βλ,k, the likelihood of proposing rule λ is:

Pr( propose λ, attach β | αi−1[βi−1,0, ..., βi−1,ki−1
], αi[] ) =

(Pomit(λ,β) + Pnonloc(λ,β))Pfill(λ,β,αi)Ro(αi−1[βi−1,0, ..., βi−1,ki−1
], λ)

Ro(αi−1[βi−1,0, ..., βi−1,ki−1
], αi[])

(5.35)

where:

Pfill(λ,β,αi) = Pr( expβ | λ ) Pr( locβ | λ, expβ ) Pr(αi | λ, expβ ) (5.36)

Υλ,β = precedes(β) (5.37)
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Pomit(λ,β) =
∏

c∈Υλ,β

Pr( omitc | λ ) (5.38)

Pnonloc(λ,β,λ) =
∑

c∈Υλ,β

Pnonlocfiller(λ,c,λ)

∏

d∈Υλ,β\c
Pr( omitd | λ ) (5.39)

Pnonlocfiller(λ,c,λ) = Pr( expc | λ ) Pr(nonlocc | λ, expc ) Pr(λ | λ, expc ) (5.40)

Equation 5.35 has many of the same terms as equation 5.29. For example, con-

stituent β still needs to be expressed locally and filled by αi which leads to the

similarity between equations 5.36 and 5.30. The constituents in precedes(β) must

either all be omitted or all but one of them must be omitted with the other con-

stituent in precedes(β) set to nonlocal. This is also quite similar to the attach case,

and motivates the similarities between equations 5.32, 5.33, 5.34 and equations 5.38,

5.39, 5.40, respectively. The only difference between the formula for the probabil-

ity of an attach and the formula for the probability of a propose is the inclusion of

Ro(αi−1[βi−1,0, ..., βi−1,ki−1
], λ) in the numerator which incorporates the reachability

between αi−1 and the newly proposed symbol λ.

When the Top of the Stack is Incomplete

One major difference between the PCFG case and the ECG case is when the top

of the stack is incomplete. With PCFGs, the parser is deterministically required

to perform a push operation. However, with ECG’s productive omission, there is

uncertainty over whether the next word should be pushed onto the stack or whether

all of the unmatched constituents on the top of the stack should be omitted (thereby

completing the top of the stack). Thus a new parser operation must be added to

“finish” an incomplete top item on the stack.

To define the probability of a finish operation, assume a stack ψ in which the top

of the stack is incomplete:

α0[β0,0, ...β0,k0 ], . . . αi[βi,0, ..., βi,ki
]

then the probability of the finish operation is the same as the probability of omitting
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all of the unmatched constituents:16

Pr( finish | ψ ) =
∏

β∈βi,0...βi,ki

Pr( omitβ | αi ) (5.41)

Given the probability Pr( finish | derivation ), the probability of a push operation

can be defined. Assume the top of the stack ψ looks like αi[βi,0, ..., βi,k] and the word

to be pushed is wi+1. Then the conditional probability of a pushing wi+1 given ψ is:

Pr( push | ψ ) = (1− Pr( finish | ψ )) Pr(wi+1 | ψ ) (5.42)

Pr(wi+1 | ψ ) =
Ro(αi[βi,0, ..., βi,k], wi+1)∑

β∈βi,0,...,βi,k
(Pomit(αj ,β) + Pnonloc(αj ,β))Ploc(αj ,β) ×∑

w∈wordsR(β,w)

(5.43)

Equation 5.42 scales the probability of the push operation with (1-Pr( finish | ψ )) to

properly model the uncertainty over pushing or finishing given a stack. Apart from

that, equation 5.42 is quite similar to equation 5.13. The probability of pushing word

wi+1 given ψ is the normalized reachability value of that word given the top of the

stack.

5.4.4 The Probability of the Next Word

With the introduction of productive omission, it becomes all the more important to

guide the search by selecting states that are likely to be on the path to the next word.

Updating the estimate of the probability of the next word for ECG with productive

omission is not much more complicated given what has already been described. The

probability of the next word can still be described with:

Pr(wi+1 | ψ ) ≈ ∑

κ∈ψk...1

δ(ψ, κ)(Patt(ψ,κ,wi+1) + Pprop(ψ,κ,wi+1)) (5.44)

To summarize, equation 5.44 approximates the probability of the next word by sum-

ming over the likelihood that each item ακ−1 on the stack predicts the next word.

The probability that item ακ−1 attaches to its descendant ακ and then predicts the

16If a fronted constituent is available, then another finish operation that binds one of the un-
matched constituents to the fronted constituent is also a possibility.
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next word is Patt(ψ,κ,wi+1). The probability that a rule is proposed between item ακ−1

and ακ, and that the rule predicts the next word is Pprop(ψ,κ,wi+1)). The chance that

item ακ−1 is even capable of predicting the next word is defined by δ(ψ, κ) which

computes the likelihood that every item above ακ−1 on the stack can be finished

through some combination of omission, nonlocal constituency and constituency via

unary productions.

5.5 Incorporating the Semantic Factor

Up to this point, I have focused on computing the probability of a derivation,

ignoring the semantic factor altogether. Computing the probability of derivation τ

given the grammar G and words w only takes us part of the way towards computing

the probability of an analysis a:

Pr( a | G,w ) ≈

Pr( assignments | fillers, csets ) Pr( fillers | csets, τ, G, Z ) Pr( csets | τ )×
Pr( τ | G,w )

To incorporate the semantic factor, both Pr( csets | τ,G ) and Pr( assignments |
fillers, csets ) need to be computed for each derivation τ .

As was shown in the previous chapter, computing Pr( assignments | fillers, csets )

is straightforward given a semspec. It amounts to computing the fit of each filler to

its semantic role. Figure 5.3 shows a derivation of “he slid” that admits two sem-

specs. In interpretation one, “he” is the mover, while in interpretation two, “he” is

unbound and the mover role is unfilled. For interpretation one, the semantic factor

would score the semantic fit of “he” filling the mover role, while for interpretation

two, the semantic factor would score the semantic fit of “he” and the mover being

unbound.17 The distribution Pr( assignments | fillers, csets ) models what I refer

to as the “inner” probability of a semspec.

17The semantic factor as constructed in chapter 4 does not score unfilled roles, but it is an obvious
extension that has been implemented in various iterations of the system.
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Term Pr( csets | τ,G ) returns the likelihood of the semspec’s structure given a

derivation τ . In essence, it models the uncertainty over co-indexations in the feature

structure given τ . For the example derivation in figure 5.3, Pr( csets | τ,G ) would

define the likelihood of a semspec in which the profiledProtagonist role is bound to the

mover role18 and the likelihood of a semspec in which the profiledProtagonist is not

bound to the mover role.19

For a complete constructional tree, all of the co-indexations are defined explicitly

by the constructions used in the tree. Thus Pr( csets | t, G ) for a complete τ is one

because there is no uncertainty about how roles are co-indexed. But given a partial

derivation τ of a complete tree, Pr( csets | τ,G ) plays a crucial role in computing

the probability of an analysis. It functions as the link between the syntactic factor

and the distribution over assignments Pr( assignments | fillers, csets ). Distribution

Pr( csets | τ,G ) returns what I refer to as the “external” probability of a semspec.

Defining Pr( csets | τ,G ) requires building a distribution over semspecs that are

admitted by derivation τ . The rest of this chapter is devoted to defining Pr( csets |
τ,G ).

5.5.1 How Many Semspecs per Stack?

The derivation in figure 5.3 shows the interpretations associated with each step of

a derivation. Notice though, that the simple stack

Root[S], Decl[FiniteV P ], SlidePastTense[]

in derivation step 3 is compatible with a possibly infinite set of trees.20 Yet it does not

seem problematic to assume that there are only two interpretations of that stack. This

is because most if not all of the constructions that can occur between the declarative

(Decl) construction and the main verb “slid” have some function in relating the

subject to a limited number of semantic roles.

18Which is approximately the likelihood of the SelfMotion construction
19Which is approximately the likelihood of the CauseMotion construction given the derivation
20For example, infinite application of the VP conjunction rule.
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1. Root[S], HePronoun[]

• Action: Propose Decl → Subj F initeV P

2. Root[S], Decl[FiniteV P ]

• profiledProtagonist (filled by “he”)

• Action: Push SlidePastTense→ “slid′′

3. Root[S], Decl[FiniteV P ], SlidePastTense[]

• INTERPRETATION 1: profiledProtagonist ←→ mover (filled by
“he”)

• INTERPRETATION 2: profiledProtagonist (filled by “he”)

• Action: Propose Trans→ V erb NP

4. Root[S], Decl[FiniteV P ], T rans[NP ]

• profiledProtagonist ←→ causer (filled by “he”)

• Action: Push TheDet→ “the′′

5. Root[S], Decl[FiniteV P ], T rans[NP ], TheDet[]

• profiledProtagonist ←→ causer (filled by “he”)

• Action: Propose DetNoun→ Det N

6. Root[S], Decl[FiniteV P ], T rans[NP ], DetNoun[N ]

• profiledProtagonist ←→ causer (filled by “he”)

• Action: Push BoxN → “box′′

7. Root[S], Decl[FiniteV P ], T rans[NP ], DetNoun[N ], BoxN []

• profiledProtagonist ←→ causer (filled by “he”); mover (filled by
“box”)

• Action: Attach BoxN to DetNoun.N

Figure 5.3: The steps (up through the final push) that a left corner parser
might go through for the sentence, he slid the box, now shown with relevant se-
mantic bindings. The semantics do not change after the last operation shown.
Notice that pushing “slid” leads to two possible interpretations.
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Obviously, in the worst case, one could construct a grammar in which an infinite

number of interpretations would need to be stored along with a stack. Such a scenario

would undo the space savings gained by using stacks in the first place. But if one

assumes that grammars have regularities in how they build interpretations, there

will be a lot of shared semantic structure between the many parse trees that a stack

supports. So far, the grammars actually in use have the kinds of semantic regularities

that limit the number of semspecs associated with a stack.

5.5.2 The CR Relation

To use the semantic factor to score a derivation, the algorithm needs to infer a set

of possible semspecs given the derivation. As we have seen, a left corner derivation

can be represented by a stack ψ. Given the structure of a stack ψ, the algorithm infers

the set of semspecs admitted by ψ by computing the likelihood of the co-indexation

sets csets. Each csets assignment corresponds to a set of co-indexation assignments

between a set of roles. Co-indexations between frame roles make up the structure

of a semspec, and given the structure of a semspec it is straightforward to infer

Pr( assignments | fillers, csets ).

The process of building the possible semspecs admitted by a stack ψ is modeled

as the pairwise information flow between the items on stack ψ. i.e. flow between

αj−1 and αj. The way the semantic roles are co-indexed between any arbitrary αj−1

and αj can be precomputed using a recurrence relation CR that is similar to the

computation of the probabilistic reachability relation R.

The co-indexation record table or CR is based on a recurrence relation that tracks

all the different ways the roles between a construction α and construction θ can be

co-indexed when θ is a descendant of α through constituent α.β. A co-indexation

record between α and θ is a list of slot chain pairs where one slot chain of each pair is

rooted in α and the other is rooted in θ. (e.g. ((α.role3, θ.role5) (α.role1, θ.role4)))

Entry CR(α.β, θ) in the co-indexation record table returns a list of co-indexation

records along with an estimate of the probability of each co-indexation record.
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The recurrence relation defining the CR table is:

CR(α.β, θ) = δ(α.β, θ) ∪ ∀γ∈G∀λ∈γ(CR(α.β, γ) ∩∗ CR(γ.λ, θ)) (5.45)

ρ0 ∩∗ ρ1 = ∀r0∈ρ0∀r1∈ρ1J(r0, r1) (5.46)

J(r0, r1) = ∀(α.role,γ.role0)∈r0∀(γ.role1,θ.role)∈r1

if role0 = role1 then (α.role, θ.role) (5.47)

The base case of the CR relation defined in equation 5.45 is the δ function which uni-

fies θ into role α.β and returns a co-indexation record based upon direct attachment.

This co-indexation record consists of slot chains rooted in α and slot chains rooted in

θ that are unified. The probability of the co-indexation record is the likelihood that

θ is an expressed, local filler of β or:

Pr( expressedβ | α )× Pr( localβ | expressedβ, α ) Pr( filler = θ | expressedβ, α )

The recursive part of the CR relation in equation 5.45 looks for indirect con-

nections between α.β and θ by enumerating all possible intermediaries (γ) and each

constituent λ of γ. If there is a co-indexation record between α.β and γ and another

co-indexation record between γ.λ and θ, then there is a co-indexation record between

α.β and θ through γ.

The ∩∗ operator in equation 5.45 performs this modified intersection between the

co-indexation records of CR(α.β, γ) and CR(γ.λ, θ). Assume CR(α.β, γ) = ρ0 and

CR(γ.λ, θ) = ρ1. Then for each co-indexation record pairing (r0, r1) where r0 ∈ ρ0

and r1 ∈ ρ1, a join operation (the J operation in equation 5.47) computes the new co-

indexation record by joining the second element of the r0 pairs with the first element

of the r1 pairs.

The probability of the new co-indexation record is the product of r0’s probability

with r1’s probability times the probability of using constituent λ of construction γ.

This can computed as the product of omitting all the constituents in precedes(λ).

If the new co-indexation record already exists, then this probability is added to the

pre-existing probability of the co-indexation record.
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Additionally, no connection between the two types is also a co-indexation record

that indicates the chance that no roles are shared between α and θ when going through

β. No connection is the most common kind co-indexation record, especially when the

minimum path between the constructions gets long.

5.5.3 An Example

An example of CR table is shown in figure 5.5. The table in figure 5.5 is based on

the grammar in figure 5.4. The grammar in figure 5.4 has three kinds of constructions

X, Y and Z. The Z constructions are the “lexical items”. The X construction is the

root, and the Y constructions are the “phrases” of the grammar. The Y constructions

act as semantic intermediaries between the semantic roles of the lexical items and the

semantic roles of the root.

Depending on the chain of constructions used, different roles are co-indexed. The

table in figure 5.5 shows how the roles of the different constructions through direct

constituency (with path length zero), and additionally through a Y construction (path

length one). Building the two path length 1 entries of the table requires the recursive

step from the co-indexation record algorithm. If the table specifies the co-indexation

record as “no connection”, that means that no roles of the two constructions are co-

indexed in that particular case. Connection records that connect the exact same sets

of roles are merged together. For example, the entry (X, Z1, 1) in the co-indexation

record table in figure 5.5 has only three records instead of four. This is because the

“no connection” record covers two different paths. Whenever a single connection

record covers multiple paths, the probabilities for each path are added together to

determine the likelihood of the entry.

5.5.4 Building Semspecs from a Stack Using the CR Records

The intuition behind building the complete semspec for a stack is to start by

associating each item on the stack with a feature structure that represents that part

of the semspec that the item somehow constrains. Then using the co-indexation

records, a single consistent semspec is built up.



107

construction X
constituents
c : Y

meaning
roles
r1
r2

constraints
self.m.r1 ←→ c.m.r1
self.m.r1 ←− “x”

general construction Y
constituents
c1 : Z
c2 : Z

form
constraints

c1.f before c2.f
meaning
roles
r1
r2

construction Y1
meaning
constraints
self.m.r1 ←→ c1.m.r1
self.m.r2 ←→ c2.m.r2

construction Y2
meaning
constraints
self.m.r2 ←→ c1.m.r1
self.m.r1 ←→ c2.m.r2

general construction Z
meaning
roles
r1
r2
r3

constraints
self.m.r3 ←− “z”

construction Z1
subcase of Z
meaning
constraints
self.m.r1 ←→ self.m.r3

construction Z2
subcase of Z
meaning
constraints
self.m.r2 ←→ self.m.r3

Figure 5.4: A simple example grammar for use in illustrating the process of
building co-indexation records. This grammar admits eight parse trees: (X
(Y1 Z1 Z1)), (X (Y1 Z1 Z2)), (X (Y1 Z2 Z1)), (X (Y1 Z2 Z2)), (X (Y2 Z1
Z1)), (X (Y2 Z1 Z2)), (X (Y2 Z2 Z1)) and (X (Y2 Z2 Z2)).
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Cons DT PL Record Probability
X.c Y1 0 X.m.r1 ⇔ Y1.m.r1 pxc
X.c Y2 0 X.m.r1 ⇔ Y2.m.r1 qxc

Y1.c1 Z1 0 Y1.m.r1 ⇔ Z1.m.r3 py1c1
Y1.c2 Z1 0 Y1.m.r2 ⇔ Z1.m.r2 py1c2
Y1.c1 Z2 0 Y1.m.r1 ⇔ Z2.m.r1 qy1c1
Y1.c2 Z2 0 Y1.m.r2 ⇔ Z2.m.r3 qy1c2
Y2.c1 Z1 0 Y2.m.r2 ⇔ Z1.m.r3 py2c1
Y2.c2 Z1 0 Y2.m.r1 ⇔ Z1.m.r2 py2c2
Y2.c1 Z2 0 Y2.m.r2 ⇔ Z2.m.r1 qy2c1
Y2.c2 Z2 0 Y2.m.r1 ⇔ Z2.m.r3 qy2c2
X.c Z1 1 X.m.r1 ⇔ Z1.m.r3 pxcly1c1py1c1

no connection pxcoy1c1ly1c2py1c2 + qxcly2c1py2c1

X.m.r1 ⇔ Z1.m.r2 qxcoy2c1ly2c2py2c2

X.c Z2 1 X.m.r1 ⇔ Z2.m.r1 pxcly1c1qy1c1

no connection pxcoy1c1ly1c2qy1c2 + qxcly2c1qy2c1

X.m.r1 ⇔ Z2.m.r3 qxcoy2c1ly2c2qy2c2

• pxc and qxc are the probabilities that constituent X.c is filled by Y1 and Y2, respec-
tively.

• py1c1 and qy1c1 are the probabilities that constituent Y1.c1 is filled by Z1 and Z2,
respectively. ly1c1 and oy1c1 are the local and omission probabilities of Y1.c1.

• py1c2 and qy1c2 are the probabilities that constituent Y1.c2 is filled by Z1 and Z2,
respectively. ly1c2 and oy1c2 are the local and omission probabilities of Y1.c2.

• py2c1 and qy2c1 are the probabilities that constituent Y2.c1 is filled by Z1 and Z2,
respectively. ly2c1 and oy2c1 are the local and omission probabilities of Y2.c1.

• py2c2 and qy2c2 are the probabilities that constituent Y2.c2 is filled by Z1 and Z2,
respectively. ly2c2 and oy2c2 are the local and omission probabilities of Y2.c2.

Figure 5.5: The CR table for the grammar in figure 5.4. The Cons column
indicates the source constituent, the DT column indicates the descendant type
, the PL column indicates the distance between the constituent and the de-
scendant in terms of intermediate constructions, the Record column indicates
how the semantic roles unify, the Probability column indicates the probability
of the record. Horizontal lines in the table separate entries in the CR table.
For example the first entry has exactly one connection record, while the entry
for X.c, Z1, 1 has three. “no connection” indicates that no roles are connected.
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Starting from the root of the stack, information is pushed from itemj−1 to itemj.

For each co-indexation record ρ that connects itemj−1 with itemj through constituent

β, each partial semspec Φ associated with itemj−1 is unified with the partial semspec

at itemj according to the constraints in ρ. The (unnormalized) probability of the new

partial semspec is the probability of the original semspec Φ times the probability of the

co-indexation record ρ times the probability of omitting21 the unmatched predecessors

of β:

Pr( Φ | itemj−1 )× Pr( ρ | itemj−1, itemj, β )× Pomit(β)

The maximum number of resulting partial semspecs at itemj after this process is

the number of partial semspecs at itemj−1 times the number of co-indexation records

connecting the two items. It is only the maximum number because some of the

unifications for a given ρ and Φ could fail, which would require re-normalization.

As an example, consider the following stack based on the grammar in figure 5.4:

X[c : Y ], Z1[]. Before any information is passed between stack items, the partial

semspec for X looks like [X.m.r1 : x,X.m.r2 :] and the partial semspec for Z1 looks

like [Z1.m.r2 :, Z1.m.r3 : z]. According to the co-indexation record table in figure 5.5,

there are three co-indexation records between X and Z1. The first connects X.m.r1

with Z1.m.r3 and leads to a unification failure. The second record has no connections,

so the resulting semspec looks like [X.m.r1 : x,X.m.r2 :, Z1.m.r2 :, Z1.m.r3 : z]. The

third co-indexation record connects X.m.r1 with Z1.m.r2 which results in a semspec

that looks like [X.m.r2 :, Z1.m.r2 : x, Z1.m.r3 : z].

The feature structures associated with the top of the stack are the feature struc-

tures consistent with the complete derivation. Thus the normalized22 probability of

one of the complete feature structures is Pr( csets | t, G ) for one assignment to csets

(the external probability of a semspec). It is this probability that relates the syntactic

factor and the semantic factor.

21or setting exactly one to be nonlocal
22Normalizing deals with unification failures and defines a proper distribution over csets
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5.5.5 Updating the Left Corner Parser Operations

Of the three main left corner parser operations, only the attach operation requires

any thought. A push operation just puts a new item on the top of the stack, and

therefore the algorithm for pushing semantic information up the stack described in

section 5.5.4 already does the necessary work. And from the point of view of these

feature structure updates, a propose action is just a combination of a push and an

attach.

When an attach operation takes place, semantic information must be pushed from

a child αj+1 to its new parent αj. The attach takes place between αj+1 and a particular

constituent βj of αj. αj has kj feature structures (interpretations) associated with it,

and there are at most kj feature structures in α′j+1s feature structure set that have the

relevant information to be pushed back to αj. At most kj, because the co-indexation

CR table entry has exactly one direct attach co-indexation record23 for βj and αj+1,

and that co-indexation record would lead to kj feature structures in αj+1.

Given the appropriate co-indexation record for a direct attach, each of the kj

parent feature structures receives updated information from its corresponding child

structure should that corresponding child structure still exist. If the corresponding

child structure does not exist, then that means that the corresponding child feature

structure suffered a unification failure during the lifetime of item αj+1, and the corre-

sponding parent feature structure gets removed from αj. The external probabilities of

each of the remaining feature structures in αj must then be re-normalized to account

for the possibility of unification failure.

5.6 Summary

This chapter defined a probabilistic model of interpretation based on left corner

parsing. It is compatible with the factored syntax and semantic model defined in the

previous chapter. The method for building up coherent semantic interpretations given

23The direct attach co-indexation record is the one indexed by path length 0 in the co-indexation
record table.
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a stack allows for semantic information to condition parser choices without relying on

a fully connected parse tree. The value of the probabilistic model of interpretation

defined here is shown in the next three chapters. Those case studies show both the

value of the probabilistic model for improving parser efficiency, but also to make

detailed reading time predictions for experimental reading time data.
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Chapter 6

Deep Linguistic Representation

with the Constructional Analyzer

This chapter shows how a combination of ECG and the constructional analyzer

can be used to help design theories of embodied semantics and how solutions to

classical problems in syntax can be implemented. In essence, this case study is the

qualitative baseline for the system. All the example semspecs shown in this chapter

are produced by the analyzer using a single grammar. For lack of a better name, we

call this grammar EJ1 which is short for Ellen/John Grammar 1. To see the rest of

the schemas and constructions of EJ1 that are not shown here, visit the ECGwiki.1

While construction grammar has a rich tradition in linguistics, computational

research on construction grammar has moved at a slower pace. Apart from my own

previous work [5], the work of Jurafsky2 [34], and research with Fluid Construction

Grammar [79], there has not been computational research that focuses on construction

grammar. As a consequence, the grammar subset described in section 6.1 is the first

“true” construction grammar used by a parser to interpret a sentence. Of course, there

have been earlier grammars written in various construction grammar formalisms,

but these grammars did not leverage deep semantics and were not compositional

with constructions that represented interesting linguistic phenomena such as passive,

1http://ecgweb.pbwiki.com/
2Broadly speaking, my work can be viewed as the next generation of Jurafsky’s work, except that

I reap the benefits of 15 more years of construction grammar research.
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raising, control, and radial categories. Section 6.1 reports on the Dodge’s insights

on how cause-effect and impact semantics are combined using verbs and argument

structure constructions.

Section 6.2 shows how to make the argument structure constructions in section

6.1 more productive. It explains how they might fit together with constructions that

alter how semantic arguments are expressed. The work in section 6.2 is joint work

with Ellen Dodge.

In section 6.3, I show how to take the basic ideas described in sections 6.1 and 6.2

and apply them to the ditransitive (double object) construction. The radial category

structure of the ditransitive was described by Goldberg [26], however, her work suffers

from incomplete productivity and lacks a proper formalism. My treatment shows how

ECG can be used to further develop her approach.

Apart from the work of Dodge described in section 6.1, the analyses suggested in

this chapter are proof of concept analyses. They show that the constructional analyzer

supports subtle grammatical and semantic inference, and can produce cognitively-

motivated analyses of the same level of complexity that the HPSG parser [87] or the

LFG parser [66] can generate.

6.1 Embodied Schemas

Dodge [16] models actions and events using three basic schemas: Process, Complex-

Process and MotorControl shown in figure 6.1. Process and ComplexProcess are general

descriptions of actions and events in which a single participant is profiled using the

protagonist role. A process that is treated as atomic is a subcase of Process, but not

a subcase of ComplexProcess. The Motion schema shown in figure 6.2 is treated as

atomic. The Motion schema describes a process in which the mover is the protagonist

and has a speed and heading. The MotionAlongAPath schema is a subcase of Motion and

adds the constraint that the motion is conceptualized as occurring along a path. The

path is represented by the evoked SPG schema shown in chapter 2. In both schemas,

the mover is defined as the protagonist using a co-indexation constraint.

Each process has a role called x-net that further specifies the kind of action that
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is modeled by the schema. For example, the Motion process shown in figure 6.2 can

describe both walking and crawling (and many other methods of motion). Walking

and crawling have very different motor actions involved, but the assumption is that

from the point of view of the grammar, those specific aspects of walking and crawling

can be represented by the filler of the xnet role. As a consequence, the Motion schema

acts as an abstraction over all the different motion x-nets. The grammar writer can

use the generic parameters encoded by the Motion schema without necessarily having

to encode x-net specific information in the grammar.

Schema MotorControl has a special significance in the grammar. It is the semantic

root of embodied, controlled processes. It adds roles for actor, effector, effort and

routine. The actor is the embodied protagonist, the effector is the controlled body part,

the effort is the energy expenditure and the routine role is used to refer to embodied

motor control x-nets.

A decomposable process is represented by ComplexProcess is a process that char-

acterizes the interaction between a pair of processes labeled with roles process1 and

process2. For example, causing motion is a kind of complex process because it com-

bines a force application with a motion in which the recipient of the force is also the

mover in the motion. Transfer is also a complex process because one participant is re-

linquishing an object while the other is taking it. The two subprocesses of a complex

process can share any kind of temporal relation as long as they are conceptualized

jointly as part of larger gestalt.

Most verbs in the EJ1 grammar specify a process schema as their meaning and

then bind lexically specific parameters with their meaning blocks. For example the

SlidePastTense construction (also shown in figure 6.2) specifies that its meaning is a

MotionAlongAPath schema. It also specifies that the x-net role is filled by a slide.3

In ECG, and any construction-based theory of grammar for that matter, verbs are

combined with their arguments using argument structure constructions. ECG also

relies on a semantic intuition taken from the cognitive linguistics community [26] that

an argument structure construction specifies the scene being described while the verb

3Remember that the @ symbol indicates that the type is defined in an external ontology.
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schema Process
roles

x-net : process
protagonist

schema ComplexProcess
subcase of Process
roles

process1 : Process
x-net : complexxnet
process2 : Process
protagonist2

constraints
protagonist ←→ process1.protagonist
protagonist2 ←→ process2.protagonist

schema MotorControl
subcase of Process
roles
actor
effector
effort
routine

constraints
actor ←→ protagonist
routine ←→ x-net

Figure 6.1: The Process and ComplexProcess schemas
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schema Motion
subcase of Process
roles

speed
x-net : motionxnet
heading
mover : entity

constraints
mover ←→ protagonist

schema MotionAlongAPath
subcase of Motion
evokes SPG as spg
constraints

mover ←→ spg.trajector

construction SlidePastTense
subcase of Verb
form : WordForm
constraints

self.f.orth ←− ”slid”
meaning : MotionAlongAPath
constraints

self.m.x-net ←− @slide

Figure 6.2: Motion and MotionAlongAPath schemas along with a lexical con-
struction SlidePastTense for the word “slid”.
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elaborates the means by which the action is carried out. In central-case argument

structure constructions, the verb and the argument structure construction’s meanings

line up perfectly (e.g. He gave me a book), while non-central argument structure

constructions combine the semantics of the verb with the semantics of the scene in a

motivated, but not necessarily predictable way.

A further claim that ECG makes is that argument structure constructions also

provide guidance to the simulation about how a scene should be simulated. For

example, active and passive provide differing perspectives on the same scene, and such

a perspective shift must be communicated to the simulator. The EJ1 grammar uses a

schematic abstraction over scenes (events) called the EventDescriptor schema (shown in

figure 6.3) to represent perspectivized facts about a scene. The EventDescriptor schema

has more roles than shown in figure 6.3, but the roles that are shown are useful for

this chapter. The roles that I have included are:

• The eventType role is bound to the Process that represents the scene being de-

scribed. The argument structure construction supplies the filler of this role.

• The profiledProcess role is bound to the subprocess in the scene that is being

profiled. The verb supplies the filler of this role.

• The profiledParticipant role is bound to the participant (entity) in the scene that is

being profiled. This role can be thought of as the semantic correlate of subject,

and is bound to different roles in a scene depending on whether the utterance

is active or passive voice.

• Roles temporalSetting and locativeSetting are bound to the time and location of

the scene, respectively.

• The discourseSegment role is typed to a DiscourseSegment schema. The extremely

simplified DiscourseSegment schema has roles for the speechAct of the utterance

and the topic of the utterance. In this chapter, the speechAct role will be bound

to an atomic value such as “declarative” or “wh-question”. The topic role will

be bound to the topic specified by each finite clause.
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Figure 6.3 shows how a general VerbPlusArguments construction and the MotionA-

longAPath construction co-index their roles with the EventDescriptor. The VerbPlusAr-

guments construction is a special kind of VP construction that has a Verb constituent.4

Its verb constituent’s meaning is bound to the profiledProcess role of its evoked Event-

Descriptor. The MotionAlongAPath construction inherits the evoked EventDescriptor and

a constraint between the verb and profiledProcess role. It also adds a constraint that

the mover role in the MotionAlongAPath scene is bound to the profiledParticipant. As

will be shown in the next section, the S-With-Subj construction binds the subject to

the profiledParticipant role and thereby fills the appropriate semantic role in the scene.

Figure 6.5 shows the schemas and constructions for cause-effect transitive sen-

tences like, He hit the table and The hammer hit the table. According to Dodge, both

of those sentences evoke a ForcefulMotionAction schema through the word hit. A Force-

fulMotionAction is a ComplexProcess in which the protagonist applies a force (process1)

to a target via the motion of an effector (process2). The ForceApplication schema (not

shown) is a MotorControl schema in which the effector applies a force to the actedUpon.

The EffectorMotionPath schema (also not shown) is a kind of ComplexProcess that com-

bines a MotorControl with MotionAlongAPath, binding the MotorControl.effector to the

MotionAlongAPath.mover.5 The constraints in ForcefulMotionAction state that ForceAp-

plication.actedUpon is the same as the EffectorMotionPath.target and the instrument of

the force is the same as the effector of the EffectorMotionPath.

Dodge also suggests that the meaning of the central transitive construction in-

volves a notion of causation. As is shown in figure 6.5, she encodes the central notion

of causation with the CauseEffectAction schema. A CauseEffectAction is also a complex

process where process1 is a ForceApplication acting as the cause and process2 refers to

the effect. The CauseEffectAction schema co-indexes its causer role with the protagonist

role (which is also process1.protagonist), the affected role to the protagonist2 role (which

is also process2.protagonist). It also binds process1.actedUpon with its affected role to

make the ForceApplication apply to the filler of the affected role.

4A VP construction could also be a conjunction of two VPs.
5For more information about ForceApplication and EffectorMotionPath, see Dodge’s disserta-

tion [16].
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schema EventDescriptor
roles

eventType : Process
profiledProcess : Process
profiledParticipant
spatialSetting
temporalSetting
discourseSegment : DiscourseSegment

schema DiscourseSegment
roles
speechAct
topic

general construction VerbPlusArguments
subcase of VP
constituents
v : Verb

meaning
evokes EventDesc as ed
v.m ←→ ed.profiledProcess

construction MotionAlongAPath
subcase of VerbPlusArguments
constituents

pp : Spatial-PP
form

v.f before pp.f
meaning : MotionAlongAPath

self.m.mover ←→ ed.profiledParticipant
self.m ←→ v.m
self.m.spg ←→ pp.m

Figure 6.3: An example EventDescriptor schema, a general VerbPlusArguments

construction and the VP MotionAlongAPath representing a basic motion verb
phrase such as “walked into the house”
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2




EventDescriptor

discourseSegment :




DiscourseSegment
speechAct : 16 ”Declarative”
topic : 8




profiledParticipant : 8 MALEANIMATE

eventType : 13




MotionAlongAPath
x-net : 24 WALK

spg : 26




SPG
landmark : 32 HOUSE
goal : 29

trajector : 8

source : 31




protagonist : 8

mover : 8




profiledProcess : 13







Declarative
m : 2

subj : 7




HE

m : 15

[
RD

ontological-category : 8

]



fin : 14




ActiveMotionAlongAPath
m : 13

v : 25

[
WALKED

m : 13

]

pp : 23




PathPrepPhrase1
m : 26

prep : 28




INTO1
m : 26

bo : 35




BoundedObject
ext : 31

int : 29

obj : 32







np : 30




DeterminerNoun

m : 34

[
RD

ont-cat : 32

]

spec : 46

[
THE

m : 34

]

n : 36

[
HOUSE

m : 32

]







ed : 2







Figure 6.4: The analysis for he walked into the house.
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schema ForcefulMotionAction
subcase of ComplexProcess
roles
process1 : ForceApplication
process2 : EffectorMotionPath

constraints
protagonist ←→ protagonist2
process1.actedUpon ←→ process2.target
process1.instrument ←→ process2.effector

schema CauseEffectAction
subcase of ComplexProcess
roles
process1 : ForceApplication
causer
affected
process2
(inherited)

constraints
protagonist ←→ causer
protagonist2 ←→ affected
process1.actedUpon ←→ affected

Figure 6.5: The ForcefulMotionSchema represents the application of force at
some target via the motion of an effector. The CauseEffectAction is a Com-

plexProcess that models a cause-effect relation between two processes where
process1 is a kind of ForceApplication.
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general construction ActiveTransitiveCEA
subcase of VerbPlusArguments
constituents

np : NP
form
constraints

v.f before np.f
meaning : CauseEffectAction
constraints

self.m.affected ←→ np.m

construction ActiveTransitiveProfiledCauser
subcase of ActiveTransitiveCEA
meaning : CauseEffectAction
evokes ForcefulMotionAction as fma
constraints

v.m ←→ fma
self.m.process1 ←→ fma.process1

self.m.causer ←→ ed.profiledParticipant

construction ActiveTransitiveProfiledInstrument
subcase of ActiveTransitiveProfiledCauser
meaning : CauseEffectAction
constraints
ignore: self.m.causer ←→ ed.profiledParticipant
self.m.instrument ←→ ed.profiledParticipant

Figure 6.6: The ActiveTransitiveCEA construction is a general transitive con-
struction that uses the CauseEffectAction as its meaning. The concrete construc-
tions ActiveTransitiveProfiledCauser and ActiveTransitiveProfiledInstrument each im-
pose a perspective on the basic transitive scene, either profiling the causer or
the instrument, respectively.
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Dodge shows how the CauseEffectAction schema can be used to define the meaning of

a central transitive construction. This general central transitive is ActiveTransitiveCEA,

shown in figure 6.6. The ActiveTransitiveCEA is a subcase of VerbPlusArguments that

combines the inherited verb constituent with an NP constituent acting as the object.

Because the construction is in active voice, the form block constrains the verb to

be before the object NP. Dodge sets the meaning of the ActiveTransitiveCEA to the

CauseEffectAction, adding a constraint that binds the affected role to the meaning of

the object NP.

The ActiveTransitiveCEA is a general construction because it does not specify how

the meaning of the verb combines with the CauseEffectAction. Two concrete subcases

of ActiveTransitiveCEA are also shown in figure 6.6. The ActiveTransitiveProfiledCauser

handles the VP in he hit the table, and so it evokes a ForcefulMotionAction, co-indexing

it with the meaning of the verb. This limits the application of the ActiveTransitivePro-

filedCauser construction to verbs like, “hit”. The second constraint unifies the process1

of the construction’s CauseEffectAction with the evoked ForcefulMotionAction.process1,

thereby unifying the ForceApplications of the two schemas. The third constraint co-

indexes the causer role with the evoked EventDescriptor’s profiledParticipant role thereby

asserting that the ActiveTransitiveProfiledCauser does indeed profile the causer.

The ActiveTransitiveProfiledInstrument is a special transitive that profiles the instru-

ment. It is applied to sentences like, “the hammer hit the table”. ActiveTransitive-

ProfiledInstrument is a subcase of ActiveTransitiveProfiledCauser that ignores the binding

between the causer and the profiledParticipant roles. The construction instead unifies

the instrument role with evoked EventDescriptor’s profiledParticipant role.

The important point to take away from the constructions in figure 6.6 is how much

shared structure there is between ActiveTransitiveProfiledCauser and ActiveTransitivePro-

filedInstrument. Building the argument structure constructions in this way motivates

the similarity between he hit the table and the hammer hit the table. Everything

about the two usages is the same except for a single binding. Thus her solution is

simpler, better motivated and more elegant than a Goldberg style approach to argu-

ment structure constructions [26]. Furthermore, Dodge’s solution uses deep semantics

to indicate which verbs can be a constituent of these two constructions. Using se-
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EventDescriptor

discSeg :




DiscourseSegment
speechAct : 8 ”Declarative”
topic : 7




profPart : 7 MALEANIMATE

eventType : 14




CauseEffectAction
causer : 7

process1 : 23




ForceApplication
instrument : 28

actedUpon : 22 TABLE
protagonist : 7




x-net : 26 HIT

process2 : 24

[
Process

protagonist : 22

]

protagonist : 7

affected : 22

protagonist2 : 22




profProc : 12




AgentiveImpactAction
process1 : 23

x-net : 26

process2 : 29




EffectorMotionPath

process1 : 27

[
MotorControl

effector : 28

]

target : 22

protagonist : 7




protagonist : 7

protagonist2 : 7

routine : 26







Figure 6.7: The semspec for the sentence he hit the table.

mantics is elegant because it builds on a semantic substrate that is already necessary

for inference. Thus her theory does not rely directly on the lexicon.

6.2 Improving Compositionality

The previous section showed how embodied semantics could be integrated into

a construction grammar using schemas and argument structure constructions. To

apply the constructions from the previous section (and the rest of the constructions
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EventDescriptor

discSeg :




DiscourseSegment
speechAct : 7 ”Declarative”
topic : 8




profPart : 18 HAMMER

eventType : 14




CauseEffectAction
causer : 35

process1 : 29




ForceApplication
instrument : 18

actedUpon : 28 TABLE
protagonist : 35




x-net : 36 HIT

process2 : 30

[
Process

protagonist : 28

]

protagonist : 35

affected : 28

protagonist2 : 28




profProc : 3




AgentiveImpactAction
process1 : 29

x-net : 36

process2 : 27




EffectorMotionPath

process1 : 32

[
MotorControl

effector : 18

]

target : 28

protagonist : 35




protagonist : 35

protagonist2 : 35

routine : 36







Figure 6.8: The semspec for the sentence the hammer hit the table.
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described by Dodge) to a broader range of linguistic data, the argument structure

constructions must compose with constructions for different kinds of speech acts.

This section shows proof of concept constructions to model passive, subject-verb

agreement, questions, and object raising.

6.2.1 Passive

The question of how active and passive are related is longstanding question in

linguistics. I have nothing insightful to add to this discussion beyond implementing

a solution that treats active and passive as different families of constructions related

through common semantics. The motivation for such a choice is beyond the scope

of this dissertation, except for the following additional computational motivation for

such a choice: Active and passive constructions are not used with the same frequency,

and having unique constructions makes it obvious how one could represent these

statistical differences.

The basic idea behind these constructions is to use the exact same semantic

schemas as the active counterparts, while inheriting the form constraints through

the passive hierarchy. In this case study, the top of the passive hierarchy is the gen-

eral construction PassiveCEA. Then the only thing that concrete subcases of PassiveCEA

need to do is specify what kinds of verbs are allowed (via meaning constraints) and

how the semantics of the optional by-phrase are bound into the semspec.

Figure 6.9 shows the passive versions of the ActiveTransitiveCEA constructions

shown in figure 6.6. Construction PassiveCEA is subcase of VerbPlusArguments, which

means it inherits a verb constituent. PassiveCEA adds an optional ByPhrase and re-

quires that it come after the verb. Semantically, PassiveCEA denotes a CauseEffectAc-

tion, and unifies the affected role with the evoked EventDescriptor.profiledParticipant. This

difference in binding is exactly the difference between active and passive in the EJ1

grammar. The profiledParticipant in the active case is the causer, while in the passive

case, the affected participant is the profiledParticipant.

The concrete subcases of PassiveCEA are similar to their active counterparts. Pas-

siveCEACauserByPhr evokes a ForcefulMotionAction, binds the two ForceApplications to-
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gether, and then unifies the meaning of the ByPhrase with the causer. The Passive-

CEAInstrumentBYPhr inherits all the structure of PassiveCEACauserBYPhr, but instead

of binding the causer to the meaning of the ByPhrase, it unifies with the instrument

role.

Figure 6.10 shows the semspec that is generated by the analyzer for the passive

sentence, The table was hit by the hammer. Comparing this semspec to the semspec

for the hammer hit the table shown in figure 6.8. The two sentences describe the

same scene and instantiate the same frames. However the passive utterance profiles

the table, while the active sentence profiles the hammer. This difference is cashed out

in different bindings for the profiledParticipant role. The passive sentence co-indexes

the table to that role, while the active sentence binds the hammer to the role.

6.2.2 Agreement

Subject and main verb agreement is the paradigmatic example for illustrating the

power of unification grammar. Because ECG is a kind of unification grammar, it

should come as no surprise that agreement is straightforward to implement in the

EJ1 grammar. The general construction S-With-Subj shown in figure 6.11 defines a

grammatical category that has an NP subj constituent and a finite constituent of type

HasVerbFeatures. The general construction HasVerbFeatures is the supertype of verbs as

well as VPs, and it types the constructional block to have features like number, person

and verbform. The general NP construction also specifies its constructional type to be

HasNominalFeatures which adds features for person, number and case.

The constraints block of construction S-With-Subj shows how these features are

used. The first constraint ensures that constituent fin is a finite form. In this for-

mulation, both VPs and verbs have verbal features. If a VP has a main verb that is

a finite form, then the VP will also be marked as finite. Thus fin refers to features

of the main verb of the S-With-Subj construction. The next two constraints enforce

agreement between the subject subj and the main verb fin by unifying the number

and person roles. The final constraint in S-With-Subj’s constructional constraints block

requires the case of the subject to be nominative.
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general construction PassiveCEA
subcase of VerbPlusArguments
constructional
constituents
optional byPhrase : ByPhrase

constraints
v.features.verbform ←− PastParticiple

form
constraints

v.f before byPhrase.f
meaning : CauseEffectAction
constraints

self.m.affected ←→ ed.profiledParticipant

construction PassiveCEACauserBYPhr
subcase of PassiveCEA
meaning : CauseEffectAction
evokes ForcefulMotionAction as fma
constraints

self.m.process1 ←→ fma.process1
v.m ←→ fma
self.m.causer ←→ byPhrase.m

construction PassiveCEAInstrumentBYPhr
subcase of PassiveCEACauserBYPhr
meaning : CauseEffectAction
constraints
ignore: self.m.causer ←→ byPhrase.m
self.m.instrument ←→ byPhrase.m

Figure 6.9: The passive versions of the argument structure constructions shown
in figure 6.6.
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EventDescriptor

discSeg :




DiscourseSegment
speechAct : ”Declarative”
topic : 9




profPart : 9 TABLE

eventType : 17




CauseEffectAction
causer : 32

process1 : 39




ForceApplication
instrument : 41 HAMMER
actedUpon : 9

protagonist : 32




x-net : 31 HIT

process2 : 34

[
Process

protagonist : 9

]

protagonist : 32

affected : 9

protagonist2 : 9




profProc : 11




AgentiveImpactAction
process1 : 39

x-net : 31

process2 : 36




EffectorMotionPath

process1 : 37

[
MotorControl

effector : 41

]

target : 9

protagonist : 32




protagonist : 32

protagonist2 : 32

routine : 31







Figure 6.10: The semspec for the sentence, the table was hit by the hammer.
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Construction S-With-Subj also has an important semantic function. It inherits the

EventDescriptor meaning pole type, and adds a constraint to unify the meaning pole

of the subject subj constituent with the profiledParticipant role. This constraint thus

defines the semantic correlate of the subject to be the profiledParticipant role, and the

meaning of the subject is available through this role.

The Declarative construction is a particular kind of S-With-Subj. It inherits all the

constraints from S-With-Subj, and adds a type constraint to the fin constituent requir-

ing the fin constituent to be a VP. The inherited constraint from S-With-Subj requires

the VP constituent to be finite. On the form side, the Declarative construction requires

the subj constituent to come before the fin constituent, enforcing normal declarative

constituent ordering. On the meaning side, the Declarative construction unifies the fin

constituent’s evoked EventDescriptor ed be unified with the its own EventDescriptor. It

also sets the DiscourseSegment.speechAct role to “Declarative”.

6.2.3 Basic Questions

The semantics of questions have not been fully worked out within the EJ1 gram-

mar. However building on the constructions from the previous section, one can write

question constructions with a simplified representation of question semantics. The ba-

sic strategy is to subcase the S-With-Subj construction to incorporate subject-auxiliary

inversion, and then define yes-no questions and basic WH-questions6 from there.

Figure 6.12 shows the general S-With-Finite-Aux-NonFinite-AS construction, a con-

struction for yes-no questions (Yes-No-Question), and construction Fronted-WH-Question

which represents simple wh-questions. Construction S-With-Finite-Aux-NonFinite-AS

represents sentences with a finite auxiliary main verb (constituent fin) and an addi-

tional nonfinite argument structure construction (constituent argstruct). Construction

Yes-No-Question extends S-With-Finite-Aux-NonFinite-AS, requiring that the fin, subj, and

argstruct constituents are in that order. It also sets the DiscourseSegment.speechAct to

YN-Question which is a shallow way to show that this construction is a yes-no question.

6For a alternative construction-inspired account of questions within the HPSG framework, see
Ginzburg and Sag [25] extensive account of questions.
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general construction S-With-Subj
subcase of S
constructional
constituents

subj : NP
fin : HasVerbFeatures

constraints
fin.features.verbform ←− Finite
subj.features.number ←→ fin.features.number
subj.features.person ←→ fin.features.person
subj.features.case ←− ”nom”

meaning : EventDescriptor
constraints

subj.m ←→ self.m.profiledParticipant

construction Declarative
subcase of S-With-Subj
constructional
constituents

fin : VP
form
constraints

subj.f before fin.f
meaning : EventDescriptor
constraints

self.m ←→ fin.ed
self.m.discourseSegment.speechAct ←− ”Declarative”
self.m.discourseSegment.topic ←→ self.m.profiledParticipant

Figure 6.11: The S-With-Subj construction combines a subject noun phrase
(subj) and a finite element (fin). The S-With-Subj construction enforces agree-
ment between the subject and the finite element. The Declarative construction
inherits the structure of S-With-Subj and
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Figure 6.12 shows the question constructions in the EJ1 grammar. Construction

Fronted-WH-Question subcases construction Yes-No-Question, inheriting the subj, fin, and

argstruct constituents. To these constituents, construction Fronted-WH-Question adds

an extraposed constituent qp of type WH-Phr. Constituent qp is intended to cover

noun phrases like who or which table and how-phrases like how much or how far.

Additionally, constituent qp is notable because it is an extraposed constituent. The

extraposed keyword tells the analyzer that constituent qp will fill a nonlocal constituent

of a construction instantiated later in the derivation. When the analyzer finds this

construction, it will bind the semantics of qp into the semantics of the appropriate

constituent. Of course, the constituent must have a probability of being nonlocal that

is greater than zero.

The form constraints of construction Fronted-WH-Question requires that constituent

qp be immediately before the auxiliary fin. In the meaning block of construction

Fronted-WH-Question, the meaning of qp is bound to the topic role of the DiscourseSeg-

ment schema which indicates that the qp is the topic of the question itself.

Figure 6.13 shows the semspec for the question which table did he hit. The semspec

in figure 6.13 is almost exactly like the semspec for he hit the table, except the Discours-

eSegment.topic is not bound to the profiledParticipant role, but rather to the actedUpon

role. Additionally, the DiscouseSegment.speechAct role is set to “WH-Question”.

6.2.4 Control and Raising

The terms raising and control describe sentences where a frame evoked by a subor-

dinate clause has a semantic argument in a nonlocal, but predictable position (usually

subject). Compare:

• He hit the table

• He seemed to hit the table

In both cases, “he” is the hitter, although in the second sentence, the infinitival phrase

is subordinate to the raising verb “seemed”.7

7The semantics of raising verbs such as “seemed” has not been worked out.
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general construction S-With-Finite-Aux-NonFinite-AS
subcase of S-With-Subj
constructional
constituents

fin : Aux
argstruct : ArgumentStructure

constraints
argstruct.features.verbform ←− NonFinite

meaning : EventDescriptor
constraints

argstruct.ed ←→ self.m

construction Yes-No-Question
subcase of S-With-Finite-Aux-NonFinite-AS
form
constraints

subj.f meets argstruct.f
fin.f meets subj.f

meaning : EventDescriptor
constraints

self.m.discourseSegment.speechAct ←− ”YN-Question”

construction Fronted-WH-Question
subcase of Yes-No-Question
constructional
constituents
extraposed qp : WH-Phr

form
constraints

qnp.f meets fin.f
meaning : EventDescriptor
constraints
ignore: self.m.discourseSegment.speechAct ←− ”YN-Question”
self.m.discourseSegment.speechAct ←− ”WH-Question”
self.m.discourseSegment.topic ←→ qp.m

Figure 6.12: Constructions for sentences with finite auxiliaries such as yes-
no questions (construction Yes-No-Question) and WH-questions (construction
Fronted-WH-Question).
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EventDescriptor

discSeg :




DiscourseSegment
speechAct : “WH-Question”
topic : 10 TABLE




profPart : 4 MALEANIMATE

eventType : 3




CauseEffectAction
causer : 4

process1 : 46




ForceApplication
instrument : 41 INSTRUMENT
actedUpon : 10

protagonist : 4




x-net : 45 HIT

process2 : 42

[
Process

protagonist : 10

]

protagonist : 4

affected : 10

protagonist2 : 10




profProc : 16




AgentiveImpactAction
process1 : 46

x-net : 45

process2 : 47




EffectorMotionPath

process1 : 43

[
MotorControl

effector : 41

]

target : 10

protagonist : 4




protagonist : 4

protagonist2 : 4

routine : 45







Figure 6.13: The semspec generated by the analyzer for the sentence Which table did
he hit.
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Control is like raising with the additional stipulation that the subject of the sen-

tence is also a meaningful semantic argument of the control verb. Compare:

• He hit the table

• He wants to hit the table

As with the “seemed” case, “he” is the hitter in both sentences. But in He wants to

hit the table, “he” is also a semantic argument of the control verb “want”.

Given what we have seen so far, the obvious technique for dealing with raising and

control is to leverage the power of the profiledParticipant role in the EventDescriptor. I

will limit my discussion to control cases. Figure 6.14 shows the schematic abstraction

over control verbs that I use here. A ControlVerbProcess is a process which has an

additional event role. For a sentence like, I want him to go to the store, the event role

would be filled by the meaning of “him going to the store”.

Figure 6.14 also shows an argument structure construction for subject control

cases like, wants to hit the table. Out of the constructions presented in this chapter,

the SubjectControl construction has a unique property: It is an argument structure

construction which takes another argument structure construction argstruct as a con-

stituent. The SubjectControl construction also adds infinitive marker to: TO-IM and

a control verb v8 as constituents. Additionally, the constraint in the constructional

block requires that the verb in the argstruct constituent be infinitival.

While the form block does the obvious ordering, the meaning block has two in-

teresting constraints. As is the case with most active voice sentences, the first con-

straint co-indexes protagonist role of the SubjectControl’s meaning pole to the EventDe-

scriptor.profiledParticipant role, thus ensuring that the subject of the sentence will be

the fill the want-er role (for example). The second constraint unifies the EventDe-

scriptor.profiledParticipant role in the argument structure constituent argstruct with the

SubjectControl’s EventDescriptor.profiledParticipant. Assuming that the subordinate ar-

gument structure construction argstruct has co-indexed the appropriate semantic role

to its profiledParticipant role, this constraint guarantees that the subject will also fill

the appropriate semantic role in argstruct.
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construction SubjectControl
subcase of VerbPlusArguments
constructional : VerbFeatures
constituents

to : TO-IM
argstruct : VerbPlusArguments
v : ControlVerb

constraints
argstruct.features.verbform ←− Infinitive

form
constraints

to.f before argstruct.f
v.f before to.f

meaning : Process
evokes EventDesc as ed(inherited)
constraints

self.m.protagonist ←→ ed.profiledParticipant
argstruct.ed.profiledParticipant ←→ ed.profiledParticipant
v.m.event ←→ argstruct.ed
self.m ←→ v.m

schema ControlVerbProcess
subcase of Process
roles

event

Figure 6.14: A construction for subject control.
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EventDescriptor0

discourseSegment :




DiscourseSegment
speechAct : ”Declarative”
profiledParticipant : 10




profiledParticipant : 10 MALEANIMATE

eventType : 9




WantProcess
event : 22 EventDescriptor1
wanter : 10

protagonist : 10




profiledProcess : 9







EventDescriptor1
profiledParticipant : 10

eventType : 35




CauseEffectAction
causer : 10

process1 : 39




ForceApplication
actedUpon : 30 BOX
protagonist : 10




x-net : 38 HIT

process2 : 29

[
Process

protagonist : 30

]

protagonist : 10

affected : 30

protagonist2 : 30




profiledProcess : 31




AgentiveImpactAction
process1 : 39

x-net : 38

process2 : 32




EffectorMotionPath
target : 30

protagonist : 10




protagonist : 10

protagonist2 : 10

routine : 38







Figure 6.15: A semspec for he wanted to hit the box
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construction ObjectControl
subcase of SubjectControl
constructional : VerbFeatures
constituents

np : NP
constraints

np.features.case ←− ”acc”
form
constraints

np.f before to.f
v.f before np.f

meaning : Process
constraints
ignore: argstruct.ed.profiledParticipant ←→ ed.profiledParticipant
np.m ←→ argstruct.ed.profiledParticipant

Figure 6.16: A argument structure construction for VP phrases like wants him
to hit the ball.

Figure 6.16 shows a construction covering a sentence like, She wants him to hit the

ball which is a case of control in which the object (instead of the subject) of “want” is

the agent of hit. For lack of a better name, I am calling this construction ObjectCon-

trol. The ObjectControl construction subcases SubjectControl, adding an accusative NP

constituent as an object. In its meaning block, the ObjectControl construction ignores

the inherited constraint that binds together the profiledParticipant roles, and instead

unifies the meaning of the NP with the argstruct.EventDescriptor.profiledParticipant role.

This constraint links the object of ObjectControl to the appropriate semantic role in

argstruct.

6.3 Ditransitive as a Radial Category in EJ1

The ditransitive construction is highly productive, semantically rich, and even

has unpredictable (but motivated) usage such as the creation and obtain examples.

8A control verb has a kind of ControlVerbProcess as its meaning pole.
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EventDescriptor0

discourseSegment :




DiscourseSegment
speechAct : ”Declarative”
profiledParticipant : 10




profiledParticipant : 10 FEMALEANIMATE

eventType : 9




WantProcess
event : 23 EventDescriptor1
wanter : 10

protagonist : 10




profiledProcess : 9







EventDescriptor1
profiledParticipant : 27 MALEANIMATE

eventType : 43




CauseEffectAction
causer : 27

process1 : 47




ForceApplication
actedUpon : 38 BOX
protagonist : 27




x-net : 46 HIT

process2 : 37

[
Process

protagonist : 38

]

protagonist : 27

affected : 38

protagonist2 : 38




profiledProcess : 39




AgentiveImpactAction
process1 : 47

x-net : 46

process2 : 40




EffectorMotionPath
target : 38

protagonist : 27




protagonist : 27

protagonist2 : 27

routine : 46







Figure 6.17: The semspec for she wanted him to hit the box
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Consequently, the ditransitive construction is a great testing ground for theories of

construction grammar. Linguists tend to describe it in terms of the verbs that the

ditransitive construction can take as a constituent:

• He gave/handed me a book (central transfer)

• He tossed/kicked me a book (cause-motion to transfer)

• He brought/took me a book (joint-motion to transfer)

• He promised/owed me a book (responsibility to transfer)

• He denied/refused me a book (deny transfer)

• He bequeathed/willed me a book (future transfer)

• He made/wrote me a book (creation with intent to transfer)

• He won/stole me a book (obtain with intent to transfer)

• He permitted/allowed me a book (enable transfer)

Goldberg [26] has studied the ditransitive construction extensively and has pro-

vided a radial category structure for the different verb senses that are compatible

with the ditransitive. While her work is extremely insightful, she does not precisely

specify how the meaning of the verb and the meaning of the construction relate, nor

does she describe her constructions in a way that is compositional with the rest of

the grammar.

The section provides an alternative (partial) category structure for the ditransitive

construction. Goldberg’s work is used as a starting point. The category structure is

specified in EJ1, and is compatible with the active and raising constructions described

in previous sections. Though the categorization provided here is an improvement

over Goldberg’s work, it is just a proof-of-concept starting point for future research in

specifying the ditransitive within ECG. It is not intended as a definitive representation

of the semantics of ditransitive scenes, but these constructions do illustrate the power

of deep semantics and best-fit analysis for studying complex linguistic phenomena.
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The constructions described in this section are arranged in a radial structure with

the central transfer sense being the root of the ditransitive hierarchy. Constraint

overrides (through ignore) are used to redefine the meanings associated with the verb

of the radial extensions, and thus the inheritance is a principled partial inheritance.

This is consistent with how Goldberg construes the inheritance relations between the

different senses of the ditransitive.

6.3.1 Central Ditransitive

Figure 6.18 shows three schemas for representing the central literal meaning of the

ditransitive argument structure construction. Schema ObjectTransfer is a complex pro-

cess combining two different actions. process1 is a ReleaseHold action and process2 is an

EstablishHold schema. Both ReleaseHold and EstablishHold are kinds of ForceApplication

which means that they have semantic roles for a actor and an actedUpon participant.

ObjectTransfer also adds roles for a getter, a giver, and a theme. The constraints block

of ObjectTransfer binds the primary protagonist to the giver role, the secondary protag-

onist2 role to the getter, and additionally co-indexes both of the actedUpon roles with

the theme. Thus this schema defines a scene in which the giver releases a hold on the

theme, while the getter establishes a hold on the theme.

Figure 6.19 shows the CentralActiveDitransitive construction and a lexical GivePast-

Tense construction. The CentralActiveDitransitive is an active form VerbPlusArguments

that inherits a verb constituent v and an evoked EventDescriptor and defines two NP

constituents np1 and np2. The form block constrains the ordering to be v, then np1,

np2.9 The meaning bloc of CentralActiveDitransitive sets the theme role to the meaning

of np2, the getter role to the meaning of np1, and the giver role to the profiledPartic-

ipant role of the evoked EventDescriptor. Importantly, CentralActiveDitransitive unifies

the meaning of the verb v.m with the meaning of the construction. This requires that

any verb fitting this construction must denote an ObjectTransfer schema in its meaning

pole.

9Constituent heaviness leading to alternative constituent arrangements will not be addressed
here.
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schema ObjectTransfer
subcase of ComplexProcess
roles

getter
process1 : ReleaseHold
theme
giver
x-net : objecttransfer
process2 : EstablishHold

constraints
protagonist ←→ giver
protagonist2 ←→ getter
process1.actedUpon ←→ theme
process2.actedUpon ←→ theme

schema ReleaseHold
subcase of ForceApplication
roles

routine : releasehold

schema EstablishHold
subcase of ForceApplication
roles

routine : establishhold

Figure 6.18: Simplified schemas for representing Transfer scenes.
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The GivePastTense construction shows an example lexical “gave” construction. Like

the lexical SlidePastTense construction, the construction sets its meaning to the frame

in which it is defined, and then it sets its x-net role to the appropriate x-net. Because

lexical give specifies that its meaning is an ObjectTransfer schema, it can be bound to

the verb constituent of CentralActiveDitransitive.

The semspec shown in figure 6.20 shows how the verb’s meaning and the meaning

of CentralActiveDitransitive support inference for the sentence she gave him a cookie.

In figure 6.20, the profiledParticipant is FEMALEANIMATE (standing in for “she”), the

eventType and profiledProcess is an ObjectTransfer. The ObjectTransfer schema has the

getter set to MALEANIMATE the giver is set to FEMALEANIMATE, and the theme set to

the COOKIE. The COOKIE is also the actedUpon entity for both the ReleaseHold and

the EstablishHold schema instances.

6.3.2 Cause-Motion Ditransitive

The ActiveDitransitiveCauseMotion construction shown in figure 6.21 is the ditran-

sitive extension for cause motion verbs like toss and throw. The ActiveDitransitive-

CauseMotion construction is a subcase of CentralActiveDitransitive. Thus it inherits the

constituents and form constraints from CentralActiveDitransitive. Importantly, it inher-

its its meaning type of ObjectTransfer from CentralActiveDitransitive. This defines the

semantic similarity between She gave him a cookie and She threw him a cookie.

The meaning block is where ActiveDitransitiveCauseMotion distinguishes itself from

CentralActiveDitransitive. ActiveDitransitiveCauseMotion evokes a CauseMotionPathAction

schema. The CauseMotionPathAction is a special kind of CauseEffectAction in which

the result process process2 is a MotionAlongAPath. The constraints block in ActiveD-

itransitiveCauseMotion overrides the inherited constraint that requires that the verb’s

meaning v.m is bound to the meaning of construction as a whole. Instead of unifying

the verb’s meaning to the construction’s meaning, the second constraint requires that

the verb’s meaning is unified with the evoked CauseMotionPathAction. This constraint

requires that the verbs used with this construction are cause-motion verbs. The final

two constraints in the meaning block hook up the CauseMotionPathAction with the
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construction CentralActiveDitransitive
subcase of VerbPlusArguments
constructional : VerbFeatures
constituents

np1 : NP
np2 : NP

form
constraints

v.f before np1.f
np1.f before np2.f

meaning : ObjectTransfer
evokes EventDesc as ed(inherited)
constraints

self.m.theme ←→ np2.m
self.m.getter ←→ np1.m
self.m.giver ←→ ed.profiledParticipant
self.m ←→ v.m

construction GivePastTense
subcase of Verb
form : WordForm
constraints

self.f.orth ←− ”gave”
meaning : ObjectTransfer
constraints

self.m.x-net ←− @give

Figure 6.19: The central ditransitive construction and an example “gave”
construction
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EventDescriptor

discourseSegment :




DiscourseSegment
speechAct : 8 ”Declarative”
profiledParticipant : 9




profiledParticipant : 9 FEMALEANIMATE

eventType : 12




ObjectTransfer
getter : 22 MALEANIMATE

process1 : 32




ReleaseHold
actedUpon : 24 COOKIE
protagonist : 9




theme : 24

giver : 9

x-net : 27 GIVE

process2 : 21




EstablishHold
actedUpon : 24

protagonist : 22




protagonist : 9

protagonist2 : 22




profiledProcess : 12




Figure 6.20: The semspec for the sentence, she gave him a cookie.

ObjectTransfer schema, unifying the process1 roles of the two schemas and co-indexing

the getter role with the spg.goal role in the CauseMotionPathAction.

The ThrowPastTense construction also in figure 6.21 sets its meaning to the Cause-

MotionPathAction schema. The ThrowPastTense construction shows the power of the

x-net role because the detailed motor control information that describes the differ-

ences between a throw, a toss and a kick are built into the x-net role, allowing a

general schema like CauseMotionPathAction to act as the interface with the argument

structure constructions.

Figure 6.22 shows the semspec for she threw him a cookie. The ObjectTransfer

schema instance specifies the appropriate bindings: the getter set to MALEANIMATE

the giver is set to FEMALEANIMATE, and the theme set to the COOKIE. The COOKIE

is also the actedUpon entity for both the ReleaseHold and the EstablishHold schema

instances.

An additional CauseMotionPathAction schema instance is also in the semspec. This

corresponds to the two construals of a cause-motion ditransitive as both a cause-
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construction ActiveDitransitiveCauseMotion
subcase of CentralActiveDitransitive
meaning : ObjectTransfer
evokes CauseMotionPathAction as cmp
constraints
ignore: self.m ←→ v.m
cmp ←→ v.m
cmp.process1 ←→ self.m.process1
self.m.getter ←→ cmp.process2.spg.goal

construction ThrowPastTense
subcase of Verb
form : WordForm
constraints

self.f.orth ←− ”threw”
meaning : CauseMotionPathAction
constraints

self.m.x-net ←− @throw

schema CauseMotionPathAction
subcase of CauseEffectAction
roles
process2 : MotionAlongAPath

Figure 6.21: A construction representing the non-central cause-motion usage
of the ditransitive along with an example “threw” construction
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motion and a transfer. The causer role of the CauseMotionPathAction is bound to

FEMALEANIMATE, and the COOKIE is set to the affected role. In this construal of the

scene, the goal role of the MotionAlongAPath’s SPG is bound to MALEANIMATE.

An additional inference made in this formulation is that the ReleaseHold of the

ObjectTransfer is unified with process1 of the CauseMotionPathAction. While one could

justifiably argue about whether this is the best formalization, the point here is that

the construction takes the two scenes and creates shared structure through unification.

The end result being two construals of the same action with shared sub-structure.

Importantly, the profiledProcess and eventType roles in the EventDescriptor are bound

to different schema instances. The profiledProcess is bound to the CauseMotionPathAc-

tion because of threw, and the eventType role is bound to the ObjectTransfer because

of the argument structure construction. In central case constructions, the eventType

and the profiledProcess are unified, but non central argument structure constructions

retain the eventType, but profile a different, but related process.

6.3.3 Creation Ditransitive

The ditransitive construction that takes creation verbs is an extremely interest-

ing construction. It combines a transitive verb that has nothing directly to do with

transfer, and treats the created thing as the theme for an intended, but still hypo-

thetical transfer. This creation ditransitive is a great example of how the meaning

of a construction can be a motivated, but unpredictable semantic composition of its

parts.

Figure 6.23 shows schemas and constructions used to represent the creation ex-

tension of the ditransitive. The Intention schema is a simplified representation of an

actor hoping to perform some intendedAct, and the CreationAction schema is a simplified

representation of a Process in which a creator creates a createdThing.

Figure 6.23 also shows a ActiveCreationDitransitive construction and a lexical BakePast-

Tense construction. The ActiveCreationDitransitive inherits the form and constructional

constraints from CentralActiveDitransitive, but is semantically quite different. It evokes

a CreationAction as ca and an Intention as int. It overrides the inherited constraint
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EventDescriptor

discSeg :




DiscourseSegment
speechAct : ”Declarative”
profiledParticipant : 4




profPart : 4 FEMALEANIMATE

eventType : 18




ObjectTransfer
getter : 32 MALEANIMATE

process1 : 37




ReleaseHold
actedUpon : 34 COOKIE
protagonist : 4




theme : 34

giver : 4

x-net : 36 OBJECTTRANSFER

process2 : 23




EstablishHold
actedUpon : 34

protagonist : 32




protagonist : 4

protagonist2 : 32




profProc : 14




CauseMotionPathAction
causer : 4

process1 : 37

x-net : 38 THROW

process2 : 27




MotionAlongAPath

spg : 35

[
SPG

goal : 32

]

protagonist : 34




protagonist : 4

affected : 34

protagonist2 : 34







Figure 6.22: The semspec for the sentence, she threw him a cookie.
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binding the meaning of the verb to the ObjectTransfer type on the meaning pole, and

instead unifies the meaning of the verb with the CreationAction. This constraint speci-

fies that only CreationAction verbs are semantically compatible with this construction.

The next two constraints link the roles of the CreationAction with the ObjectTransfer,

unifying the theme with the createdThing and the creator with the giver. The last two

constraints unify the roles the Intention schema with the rest of the scene, co-indexing

the creator role with the Intention.actor role, and binding the complete ObjectTransfer

to the intendedAct role.

The lexical BakePastTense construction follows the same pattern for lexical con-

structions that we have seen throughout this chapter. It specifies the lexical form,

subclassing Verb. On the meaning side, it defines its meaning block to the frame it

belongs to, and then binds the lexically specific x-net information into the x-net role.

The semspec in figure 6.24 has the same basic properties as the semspec for she

threw him a cookie with the notable exception of a CreationAction filling the profiledPro-

cess role, and an additional Intention schema instance. Roles profiledParticipant, giver,

and creator, Intention.actor are all bound to FEMALEANIMATE. Roles theme and creat-

edThing are bound to the COOKIE. As usual, MALEANIMATE is bound to the getter

role. Additionally, the Intention.intendedAct is bound to the ObjectTransfer itself.

6.4 The Tip of the Iceberg

Even though the constructions and semspecs in this chapter are fairly complex,

these results are just the tip of the iceberg. In addition to demonstrating the capa-

bilities of the system, the goal of this chapter is to show future grammar researchers

examples of the formalism and analyzer at work. Hopefully these examples will help

point them in the right direction.



150

schema Intention
roles

intendedAct : Process
actor

schema CreationAction
subcase of Process
roles

createdThing
creator

constraints
protagonist ←→ creator

construction ActiveCreationDitransitive
subcase of CentralActiveDitransitive
meaning : ObjectTransfer
evokes CreationAction as ca
evokes Intention as int
constraints
ignore: self.m ←→ v.m
v.m ←→ ca
ca.createdThing ←→ self.m.theme
ca.creator ←→ self.m.giver
ca.creator ←→ int.actor
int.intendedAct ←→ self.m

construction BakePastTense
subcase of Verb
constructional : VerbFeatures
form : WordForm
constraints

self.f.orth ←− ”baked”
meaning : CreationAction
constraints

self.m.x-net ←− @bake

Figure 6.23: The creation sense of the ditransitive construction covering sen-
tences like He baked her a cookie. An example Bake construction is shown
along with simple Intention and CreationAction schemas.
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EventDescriptor

discourseSegment :




DiscourseSegment
speechAct : ”Declarative”
topic : 10




profiledParticipant : 10 FEMALEANIMATE

eventType : 6




ObjectTransfer
getter : 32 MALEANIMATE

process1 : 33




ReleaseHold
actedUpon : 22 COOKIE
protagonist : 10




theme : 22

giver : 10

x-net : 29 OBJECTTRANSFER

process2 : 25




EstablishHold
actedUpon : 22

protagonist : 32




protagonist : 10

protagonist2 : 32




profiledProcess : 13




CreationAction
createdThing : 22

creator : 10

x-net : 37 BAKE
protagonist : 10







[
Intention
intendedAct : 33

actor : 6

]

Figure 6.24: The semspec for the sentence, she baked him a cookie.
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Chapter 7

Predicting Reading Time

The constructional analyzer is the first model of deep semantic interpretation to

make detailed reading time predictions. This chapter shows how the constructional

analyzer can be used to model the reduced-relative/main-verb ambiguity data pro-

duced by McRae, Spivey-Knowlton and Tannenhaus [51]. As far as I know, the

reading time predictions are the best modeling results of the McRae et al. data.

The goal of using a construction-based model of interpretation for psycholinguistic

research goes back to Jurafsky [34]. He observes that in construction grammar, lexical

items, idioms, and general syntactic-semantic argument linking rules are represented

by constructions. This uniformity of representation makes a construction-based model

capable of making predictions about a wide-range of linguistic phenomena. Thus

the fact that the analyzer uses constructions is an important feature of the system

because it allows the system to be compatible with modeling many different kinds of

phenomena.1

This rest of this chapter is structured as follows. The motivation for using a model

of interpretation to predict reading time and related work are covered in section

7.1. More on the data and its relevance to models of interpretation are covered

in section 7.2. Section 7.3 shows how I define the constructions and extract the

necessary parameters for modeling the McRae et al data. Section 7.4 precisely defines

the link between the analyzer’s internal probabilistic state and predictions about

1Though the modeling of such phenomena will be left to future work.
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processing difficulty. Section 7.5 shows a word-by-word trace of the system on the

two experimental conditions investigated by McRae et al. Section 7.6 shows how the

predictions of the system compare to the experimental data. how I link the internal

state of the analyzer to reading time predictions.

7.1 Motivation and Related Work

Like the constructional analyzer, Jurafsky’s model [34] is a probabilistic, cogni-

tively plausible model of interpretation that uses constructions. He uses a general

probabilistic parsing algorithm to parse utterances, and defines various operating

principles for determining when the reading of a sentence should be difficult. How-

ever his model cannot make detailed incremental reading time predictions.

There are three other psychologically plausible models that can predict the McRae

et al. data. They include:

• Pado [59] uses the broad-coverage syntactic parser designed by Roark [68] in

combination with a separate frame-based semantic model to make detailed read-

ing time predictions on a range of linguistic data including McRae et al. Pado

assumes reading time difficulty whenever the syntactic parser and her semantic

model disagree about which parse should be the top ranked parse. She correlates

the amount of disagreement with reading time difficulty. However Pado’s model

cannot do deep semantic interpretation, and it does not use constructions.

• The model designed by Narayanan and Jurafsky [57] is a small scale construction-

based model that uses a factored probabilistic model over syntax and semantics.

The factored model is implemented within a graphical model in which support

for the competing interpretations is computed using a noisy-AND. The graphi-

cal modeling framework enables Narayanan and Jurafsky to precisely define the

operating principles defined by Jurafsky [34]. Crucially, Narayanan and Juraf-

sky use the probabilistic state of the graphical model to model a fragment of

the McRae et al. data.
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• The original McRae et al. article also presents models of their data, but the com-

putational models they define are ad hoc collections of parameters that interact

in a connectionist framework. In their models, each interpretation competes

for activation with the competition’s duration corresponding to reading time

difficulty.

Given this range of models that already predict the McRae et al. data, why should

it matter that the constructional analyzer can model the same data? A psychologist

might argue that if two models both predict the data equally well, the simpler model

is a better model. Given that the other models are all simpler should Occam’s razor

make the constructional analyzer unnecessary?

While I agree that simplicity is a virtue, it is not the only criteria for designing a

cognitive model. A cognitive model should also be compatible with related findings

from cognitive science. Such a model has insight even if its predictions can be made

by a simpler model.

It is obvious that speakers of a language do more than just modulate their process-

ing time when they read a sentence. If they choose to read the sentence at all, then

their goal is to understand what it means. Thus a single model like the constructional

analyzer that can predict reading time difficulty and model the understanding of the

utterance is more simple than a theory that requires one model for predicting reading

time and another for understanding.

But getting caught up in arguments about simplicity is missing the point. The

constructional analyzer was designed to be a cognitively plausible model of interpre-

tation, not a program to predict reading time. Predicting reading time data is only

important in that it provides another way to suggest that the constructional analyzer

is indeed cognitively plausible.

7.2 Experimental Data

Consider the following pair of sentences.

1. The cop arrested by the detective was guilty.
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2. The crook arrested by the detective was guilty.

Both of these sentences use the reduced relative construction (arrested by the de-

tective) construction, but importantly, the subjects differ in terms of whether they

are a good agent of arrested (e.g. cop) or a good patient (e.g. crook). Importantly,

arrested is a verb that is ambiguous between a past-participle reading and past-tense

reading.

McRae, Spivey-Knowlton and Tannenhaus [51] tested pairs of sentences like the

pair above within a self-paced reading paradigm. They found that the word by word

reading times for the two classes of sentences differ (see table 7.1) depending on

whether the sentence had a good agent subject or a good patient subject. Broadly

speaking, sentence one, while initially easier for readers to process at the word ar-

rested, is harder for readers to process in the range of by the detective was.

The basic explanation for the reading time difference provided by [51], [56] and [60]

is that reading time differences are a consequence of violation of semantic expectation:

Because arrested is ambiguous between the past tense and the past participle and cops

are prototypical arresters, the expected interpretation of the cop arrested is highly

biased towards an interpretation in which the cop is doing the arresting. When the

phrase by the detective is encountered, the expectation that the cop is doing the

arresting is violated, leading to a higher reading time over the baseline non-reduced

relative version of the sentence.

In sentence two, the scenario is reversed. The best purely syntactic analysis of the

sentence prefix, the crook arrested is one in which arrested is the main verb and the

crook is doing the arresting. But this is at odds with our notion that thieves tend to

be arrested, and not the other way round. Upon encountering, by the detective, the

reader then gains syntactic evidence for the reduced relative interpretation, and the

disagreement is resolved, which leads to less of a delay at by the detective was over

baseline than in the cop arrested case.

Importantly, the McRae et al. results show that differences in semantics affect

the word-by-word interpretation of a sentence. Further, it brings into question any

hypothesis maintaining that syntax is strongly autonomous. And finally, it shows that
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sentence position Good Agent Good Patient
X-ed by 24 ms 61 ms

the Agent 42 ms 32 ms
was ... 44 ms -1 ms

Table 7.1: The average reading time delay over the unreduced relative
baseline reported by McRae et al [51]. These results are averaged over
40 sentence pairs. The self-paced reading time experiment had a sliding
window showing two words at a time. First the subject was shown, then
the ambiguous past participle + by (e.g. “arrested by”), then the actual
agent (e.g. “the detective”).

a cognitively plausible model of human sentence processing must include a model of

semantics, and that the semantic model needs to condition processing choices at an

incremental level.

7.3 Constructions and Parameters

Before the constructional analyzer can be used to model the data from McRae et

al., one must write a grammar for the test sentences and define the relevant syntactic

and semantic parameters for the factored model.

7.3.1 The Grammatical Rules

To define the lexical constructions, I ran each sentence from McRae et al. through

a part of speech tagger, and built small lexical hierarchies rooted by a general part of

speech construction. The phrasal and sentential constructions are hand written for

this task, however they are consistent with the constructions defined in chapter 6.

Consider the lexical constructions for arrested shown in figure 7.1. VBN is the

Penn part of speech tag for past participles, and so I used general construction VBN

as the root of the past participle hierarchy. Arrested-VBN is the corresponding past

participle lexical construction for arrested. VBD is the Penn tag for past tense verbs,
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schema Transitive
roles

agent
patient

schema Arrest
subcase of Transitive

general construction VBN
subcase of NonFiniteVerb
form : WordSchema

construction Arrested-VBN
subcase of VBN
form : WordForm
constraints

self.f.orth ←− ”arrested”
meaning : Arrest

general construction VBD
subcase of FiniteVerb
form : WordSchema

construction Arrested-VBD
subcase of VBD
form : WordForm
constraints

self.f.orth ←− ”arrested”
meaning : Arrest

Figure 7.1: The competing lexical constructions for the word arrested as well
as a schema representing the meaning of Arrest using simple thematic roles.

and thus there is construction Arrested-VBD which is the corresponding lexical con-

struction for past tense arrested. Both constructions specify that schema Arrest is the

simple (transitive) meaning of the verb arrest. Obviously, in a real grammar, the

semantics would be more like the schemas defined in chapter 6, but for the limited

purpose of predicting reading time, this simple notion of semantics is satisfactory.

Three of the important phrasal constructions for the task are shown in figure 7.2

and figure 7.3. Construction ActiveTransitiveVP is a simple transitive VP construction.

It has constituents for a verb v, an object patientNP, and two optional PP modifiers

lightMod and mod. The form block constrains the ordering to be v, lightMod, patientNP,

mod. The meaning block evokes a Transitive schema and binds it to both the meaning

of the construction and the meaning of the verb. This limits the verbs that can

bind to this construction to just those that are semantically transitive. Additionally,

the patient role in the Transitive schema is identified with the meaning of patientNP.

The commented probabilities in the constituents block indicate the likelihood of a
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constituent being expressed, and if expressed, local. For the patientNP constituent,

the likelihood of it being expressed is estimated to be .979, and in this grammar it

is constrained to be local with weight 1.0. The two optional constituents just have

their probability of being expressed since they cannot be expressed nonlocally. The

method for estimating these probabilities will be described below.

Also shown in figure 7.2 is the reduced relative construction NPplusRR which joins

an NP constituent k with an ExtractedNonFinitePassiveVP constituent named pvp. The

ExtractedNonFinitePassiveVP is the relative clause. The meaning block of NPplusRR

identifies the meaning of the construction with the meaning of k and identifies the

meaning of k with the patient role of the ExtractedNonFinitePassiveVP constituent.

The construction shown in figure 7.3 is the ExtractedNonFinitePassiveVP construc-

tion. Construction ExtractedNonFinitePassiveVP is a kind of NonFiniteVP that has a VBN

constituent, an optional ByPhrase constituent, and an optional PP modifier. The form

block requires that the verb come before the ByPhrase and that the ByPhrase comes

before the modifier mod. The meaning block is typed to be the Transitive schema

shown in figure 7.1. The meaning of the ByPhrase is bound to the agent role, the

meaning of the construction itself is bound to the meaning of the verb which requires

that only verbs with Transitive semantics be constituents of this construction.

7.3.2 Estimating Parameters

The constructional analyzer uses three kinds of parameters: the constituent spe-

cific locality parameters, the constituent filler parameters, and the semantic role filler

parameters defined in chapter 4. The methods employed to estimate these parame-

ters are not without their flaws, but they are reasonable estimation methods. Table

7.2 provides a summary of what parameters are used in the model and how they are

estimated.

Locality Parameters

For each constituent β in a grammar, the grammar must specify the the likelihood

that β is expressed versus omitted, and assuming β is expressed, the likelihood of β
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construction ActiveTransitiveVP
subcase of VP
constituents
v : Verb
optional lightMod : PP
// [.004]
patientNP : NP
// [.979, 1.0]
optional mod : PP
// [.07]

form
constraints
v.f before lightMod.f
lightMod.f before patientNP.f
patientNP.f before mod.f

meaning
evokes Transitive as ta
constraints
self.m ←→ ta
ta.patient ←→ patientNP.m
ta ←→ v.m

construction NPplusRR
subcase of NP
constituents
k : NP
pvp : ExtractedNonFinitePassiveVP

form
constraints
k.f meets pvp.f

meaning
constraints
self.m ←→ k.m
k.m ←→ pvp.m.patient

Figure 7.2: Important phrasal constructions for the reduced-relative/main-
verb ambiguity grammar.



160

general construction ExtractedNonFinitePassiveVP
subcase of NonFiniteVP
constituents
v : VBN
optional byPhr : ByPhrase
// [.2]
optional mod : PP
// [.07]

form
constraints
v.f before byPhr.f
byPhr.f before mod.f

meaning : Transitive
constraints
self.m.agent ←→ byPhr.m
self.m ←→ v.m

Figure 7.3: The ExtractedNonFinitePassiveVP construction

Parameter Source Example
Locality Treebank Pr(modifierexp | TransV P )

Constituency Treebank + Propbank Pr(NPplusRR | NP )
Semantics McRae et al. Pr( agent | cop, arrest )

Table 7.2: A table describing each of the kinds of parameters used
in the analyzer and the sources of information used to approximate
them. For example, the constituency probabilities are estimated using
a PCFG assumption (Pr( filler | type )) and counting up the ratio of
the rules similar to the filler over the rules similar to the type constraint.
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being locally expressed must also be specified. While most of the constituents in the

grammar are required to be expressed locally 100% of the time, figure 7.2 shows that

construction ActiveTransitiveVP has a constituent patientNP that can be omitted about

2% of the time.

To estimate the parameters for ActiveTransitiveVP, I turned to the Penn Treebank

[49] and Propbank [61]. To estimate the likelihood of the patientNP being omitted,

I used PropBank. Summing over of the verbs in the McRae et al. data, I counted

the number of times ARG1 was not expressed and normalized by the total number

of times that the verbs were used. To estimate the probability of the modifiers, I

looked at a table of treebank productions, using the following formulas to estimate

the probability of their expression:

Pr( explightMod | ActiveTransitiveV P ) =
| V P → V PP NP... |
| V P → V...NP... | (7.1)

Pr( expmod | ActiveTransitiveV P ) =
| V P → V NP...PP... |
| V P → V...NP... | (7.2)

Equation 7.2 calculates the probability of an optional modifier between the verb and

the NP to be the normalized sum of the rule counts in which the rule had a PP in

between the V2 and NP. Similarly for the post-NP modifier, I used the normalized

number of times a PP followed an NP. Additionally, the rules were constrained to

have a single NP on the right hand side.3

To estimate the likelihood of the ByPhrase in construction ExtractedNonFinitePas-

siveVP, I again looked at the propbank annotations. Propbank annotates verbal tar-

gets for voice as well as its semantic arguments. Thus to estimate the likelihood of a

by-phrase, I used the normalized count of the verbs in passive voice that have ARG0

specified. My reasoning being that if the verb is passive and the agent is specified,

that it is most likely through a by-phrase.

2I use V here as a shorthand for all the finite verbal part of speech tags VBD,VB and VBZ.
3Distinguishing between NP objects and NP temporal modifiers is difficult given the unannotated

treebank trees, so I chose a simple (incorrect) heuristic for estimating the likelihood. For example,
[went]V [to the store]PP [yesterday]NP is counted as an instance of a light modifier even though it
obviously is not.
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Constituent Filler Parameters

For the constituent filler probabilities, I use a context free simplifying assumption.

Instead of conditioning on the construction and constituent, I just used Pr( filler =

λ | constituent type constraint ). To get PCFG estimates for the constituent filler

probabilities, I again used the treebank. For the parts of speech, I just used Pr(word |
tag ). For noun phrases, the simple estimate of (for example) the number of pronouns

over the number of NPs was used for the likelihood of a pronoun given an NP type

constraint.

More care has to be taken for the phrasal constituent filler probabilities because

those parameters are important for determining the syntactic priors for the two com-

peting interpretations. For example, the NPplusRR constructions expects an Extract-

edNonFinitePassiveVP, and the ExtractedNonFinitePassiveVP construction has at least the

transitive passive and the ditransitive passive constructions as concrete subtypes. To

count the likelihood of the transitive passive given the passive type constraint, I sum

up the number of V P → V BN... rules that do not have an NP, SBAR or S following

the VBN, and normalized by the total count of V P → V BN... rules.4 Of course the

same caveat about NP temporal modifiers applies here as well.

To calculate the likelihood of the NPplusRR construction given NP, I summed the

counts of all NP → NP...V P... rules and normalized. Similarly for the determiner-

noun construction, the normalized sum of the rule counts in which the rule was

NP → DT...N was used as the likelihood of the determiner-noun construction given

NP.

To estimate the likelihood of the FiniteActiveTransitiveVP given FiniteVP, I again

used the propbank annotations. Propbank tracks whether a verb is a finite use or

not. The sum of all finite annotated verbs was the normalizer. To count the number

of finite transitives, I required the verb to be finite, and both ARG0 and ARG1 be

present.

4That don’t have SBAR or S in them
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Semantic Parameters

Consider again the pair of example arrest sentences taken from McRae et al.:

1. The cop arrested by the detective was guilty.

2. The crook arrested by the detective was guilty.

It should be obvious that the semantic fit of cop with the agent and patient roles of

arrest should be extremely important to modeling the data. The same is true for the

semantic fit of crook and the agent/patient roles of arrest. To model the semantic

fit, McRae et al. performed norming studies to get human judgments. With a bit

of numerical massaging5, the McRae et al. norming studies can be interpreted as

providing:

Pr( likelihood of cop being the agent of arrest | cop, arrest )

Thus the semantic parameters for the main effect at arrested are provided by McRae

et al.

There are two other semantic parameters in these sentences that affect the like-

lihood of each interpretation. If the reader treats arrested as the main verb, by the

detective should be interpreted as a locative phrase. If the reader interprets arrested

as the beginning of a reduced relative, then by the detective is interpreted as speci-

fying the agent of the arrest frame. To better model the reading time difference at

word was, I estimated parameters for the semantic fit of detective to the landmark

role of a TrajectorLandmark schema and a parameter for the semantic fit between

detective and the agent role of arrest.

Unfortunately, McRae et al. do not provide enough information to estimate these

parameters. They do mention that the participants in their norming study averaged

4.6 when asked about the agenthood of the object of the by-phrase (e.g. detective).

The objects of the by-phrase are worse agents (on average) than the initial good-agent

5The norming studies provide a number α between 1 and 7 that estimates the fit of agent to cop
and arrest and a second number β between 1 and 7 to estimate the fit of patient to cop and arrest.
Using their α and β, I estimate the likelihood of Pr( agent | Arrest, cop ) to be α−1

α−1+β−1 .
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NPs (e.g. cop), suggesting that the average probability of the good agent NP (e.g.

cop) being assigned agent (.83) should be the upper bound for the average probability

of the object of the by-phrase (e.g. detective) being assigned agent. Without any

further information, I arbitrarily chose .75 for the semantic fit of the object of the

by-phrase to the agent role.

For the likelihood of detective filling the landmark role of TrajectorLandmark,

there is even less information to go on. McRae et al. use a norming value of 1 for

their model saying that the objects of the by-phrases e.g. detective are poor locations.

However, it seems that they are too quick to dismiss the person-for-location metonymy

which allows:

1. He ran past the detective

2. He walked by the detective without stopping

3. He threw his knife at the detective

4. Handcuffed, the crook stood defiantly between the two detectives

Even though detective can productively be used as a landmark, intuition suggests that

there is a bias for animate entities being bound to the trajector role. Without further

guidance, I chose .3 as the value of Pr( landmark | detective, T rajectorLandmark ).

7.4 Linking the Analyzer’s Probabilistic State to

Reading Time

The state of a probabilistic parser is at best an indirect indicator of reading time

difficulty. As a consequence, various heuristics have been developed to link the state

of a probabilistic parser with reading time predictions. As was already mentioned,

Pado links processing difficulty to disparity in disagreement between the semantic

and syntactic models.

Another heuristic first suggested by Hale [29], is known as surprisal. Surprisal

is a heuristic that assumes a correlation between reading time difficulty and the



165

conditional probability of the incoming word wi. If wi has a low probability, then

it is assumed that reading time increases. If the probability of wi is high, then very

little reading time should be necessary. Both Levy [46] and Narayanan and Jurafsky

[57] have used surprisal to predict difference in reading time, with Narayanan and

Jurafsky using it to model a fragment of the McRae et al. data.

The heuristic I employ here is a simplification of a second heuristic developed

by Hale [30]. The key idea behind the approach is to calculate the entropy over

derivations at each word. Entropy is a measure of the uncertainty in a probability

distribution. Given a random variable X, entropy is defined as:

H(X) =
∑

x∈X
Pr(x)× log 1

Pr(x)
(7.3)

Equation 7.3 sums over each possible outcome x in X, scaling the log of 1/Pr(x) by

the probability of x. Large values of H(X) mean high uncertainty, and small values

of H(X) mean less uncertainty.

As the analyzer processes each word of the utterance, it maintains a distribution

over interpretations. This distribution estimates the conditional likelihood of each

interpretation given the sentence so far. Using equation 7.3, the system calculates

the conditional entropy over interpretations at each word. The intuition is that a low

entropy value means that the analyzer is fairly certain about which interpretation is

the right one, and a high entropy meaning that many viable candidates still remain.

Like Hale, I claim that the change in entropy between words correlates with pro-

cessing difficulty. Using H(A)i to mean the conditional entropy over analyses at word

wi, I define the change in entropy at word wi
6 as:

∆i = AbsoluteV alue(H(A)i −H(A)i−1) (7.4)

In equation 7.4, the magnitude of the change in entropy (∆i) is calculated as the

absolute value of the difference in conditional entropy7 between word wi and word

wi−1.

6My definition of the change in entropy is a simplification of Hale’s definition.
7I define ∆0 = H(A)0.
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Difference in entropy corresponds to more processing time than maintaining the

probabilistic status quo under the assumption that shifting attention is expensive.

In short, I claim that both going from unsure to sure incurs processing difficulty

and going from sure to unsure also incurs processing difficulty. Although I have no

biological evidence for such a claim, this hypothesis is consistent with what Narayanan

and Jurafsky [55] refer to as Attention Principle.

7.5 Cop and Crook Traces

The differences between the cop trace and the crook trace show qualitatively how

the processing differs between the two cases. This qualitative difference motivates

the the choice of ∆i as the means of linking the state of the analyzer with processing

difficulty.

For brevity, the traces use abbreviated construction names. “ENFPVP”, for ex-

ample, is short for ExtractedNonFinitePassiveVP. Constituent lightMod is also abbrevi-

ated to “lMod”, construction ActiveTransitiveFiniteVP is abbreviated to “TransVP”,

and schema TrajectorLandmark is shortened to “TL”.

Consider the analyzer trace for the cop arrested by the detective was... shown in

figure 7.4. The stacks for words the and cop are not shown because only a single

analysis of probability one is maintained. When the word arrested is encountered,

two stacks must be maintained, one for arrested as a main verb and the other for

arrested as the beginning of a reduced relative. Stack1 binds Cop to the agent role,

Stack2 binds Cop to the patient role. Importantly, the main verb interpretation is

dominating both on syntactic and semantic grounds which leads to very little change

in entropy at arrested.

When the word by arrives, the interpretation ranking is reversed. The reduced

relative becomes four times more likely than the main verb interpretation because by

arriving immediately after the ambiguous verb is a reliable indicator that the verb is a

past participle. The main verb interpretation has to assume that by is the beginning

of a locative modifier. The radical shift in the distribution over interpretations results

in a large difference in entropy from the last word.
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For the most part, when the arrives, the status quo is maintained with one ex-

ception. A third stack is generated which corresponds to the interpretation of by as

the beginning of a locative phrase (instead of a byPhrase) within the reduced relative

construction. The difference in entropy is minimal.

When the analyzer processes detective, the reduced relative interpretation gains

further momentum since detective is a better agent of arrest than landmark. The like-

lihood of the reduced relative interpretation increases from .82 to .92. The increased

dominance of the reduced relative interpretation decreases the entropy.

Finally, the word was makes it syntactically impossible for arrested to be treated

as a main verb. Stack1 ceases to exist, and the reduced relative interpretation becomes

a near certainty. Because the main verb interpretation is removed from consideration,

the entropy is again decreased by a substantial amount.

The analyzer trace for the crook arrested by the detective was... is shown in figure

7.5. Structurally, the stacks in figure 7.5 evolve the exact same way as they evolve in

figure 7.4. The probability distribution over stacks, however, is extremely different.

At arrested, there is a huge increase in entropy because of the relative uncertainty

between the main verb interpretation and the reduced relative interpretation. As Pado

[59] observes, the syntax and semantics disagree about the appropriate interpretation

of the sentence.

But by the time by is encountered, there is no longer a disagreement between the

syntax and semantics. Word by makes the reduced relative interpretation both a syn-

tactic and semantic certainty. The probability of the reduced relative interpretation

increases to one, and all the entropy at arrested is removed, making the decrease in

entropy extremely large.

After by, the status quo is maintained with the exception of the introduction of

the reduced relative with a locative modifier (Stack3) at the. The primary reduced

relative interpretation maintains a probability of one. Thus when was is encountered,

no noteworthy change in entropy takes place.

These traces show qualitatively how change in entropy after each word correlates

with changes in the belief state over analyses. In the next section, I will show how

averaging the change in entropy across the good agent and good patient cases predicts
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Word 3: “arrested” . . . Change in entropy:.063
Stack1: Root[S], NPVP[FiniteVP], Arrested-VBD[]
Sem: Arrest.agent = Cop; Probability = .99
Stack2: Root[S], NPplusRR[ENFPVP], Arrested-VBN[]
Sem: Arrest.patient = Cop; Probability = .01

Word 4: “by”. . . Change in entropy:.584
Stack2: Root[S], NPplusRR[ENFPVP], ENFPVP[ByPhr, mod], By[]
Sem: Arrest.patient = Cop; Probability = .83
Stack1: Root[S], NPVP[FiniteVP], TransVP[lMod, patNP, mod], By[]
Sem: Arrest.agent = Cop; Probability = .17

Word 5: “the” . . . Change in entropy: .09
Stack2: Root[S], NPplusRR[ENFPVP], ENFPVP[ByPhr, mod],
ByPhrase[NP], The-DT[]
Sem: Arrest.patient = Cop; Probability = .82

Stack1: Root[S], NPVP[FiniteVP], TransVP[lMod, patNP, mod], PP[NP],
The-DT[]
Sem: Arrest.agent = Cop; Probability = .17
Stack3: Root[S], NPplusRR[ENFPVP], ENFPVP[ByPhr, mod], PP[NP],
The-DT[]
Sem: Arrest.patient = Cop; Probability = .01

Word 6: “detective” . . . Change in entropy: -.31
Stack2: Root[S], NPplusRR[ENFPVP], ENFPVP[ByPhr, mod],
ByPhrase[NP], NP[N], Detective-NN[]
Sem: Arrest.patient = Cop; Arrest.agent = Detective; Probability = .92

Stack1: Root[S], NPVP[FiniteVP], TransVP[lMod, patNP, mod], PP[NP],
NP[N], Detective-NN[]
Sem: Arrest.agent = Cop; TL.landmark = Detective; Probability = .07
Stack3: Root[S], NPplusRR[ENFPVP], ENFPVP[ByPhr, mod], PP[NP],
NP[N], Detective-NN[]
Sem: patient = Cop; TL.landmark = Detective; Probability = .01

Word 7: “was” . . . Change in entropy: -.383
Stack2: Root[S], NPVP[FiniteVP], Was-VBD[]
Sem: Arrest.patient = Cop; Arrest.agent = Detective; Probability = .995

Stack3: Root[S], NPVP[FiniteVP], Was-VBD[]
Sem: patient = Cop; TL.landmark = Detective; Probability = .005

Figure 7.4: The trace for The cop arrested by the detective was...
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Word 3: “arrested”. . . Change in entropy: .944
Stack2: Root[S], NPplusRR[ENFPVP], Arrested-VBN[]
Sem: Arrest.patient = Crook; Probability = .64

Stack1: Root[S], NPVP[FiniteVP], Arrested-VBD[]
Sem: Arrest.agent = Crook; Probability = .36

Word 4: “by”. . . Change in entropy: -.934
Stack2: Root[S], NPplusRR[ENFPVP], ENFPVP[ByPhr, mod], By[]
Sem: Arrest.patient = Crook; Probability = 1.0
Stack1: Root[S], NPVP[FiniteVP], TransVP[lMod, patNP, mod], By[]
Sem: Arrest.agent = Crook; Probability = .00

Word 5: “the” . . . Change in entropy: .106
Stack2: Root[S], NPplusRR[ENFPVP], ENFPVP[ByPhr, mod],
ByPhrase[NP], The-DT[]
Sem: Arrest.patient = Crook; Probability = .99

Stack3: Root[S], NPplusRR[ENFPVP], ENFPVP[ByPhr, mod], PP[NP],
The-DT[]
Sem: Arrest.patient = Crook; Probability = .01

Stack1: Root[S], NPVP[FiniteVP], TransVP[lMod, patNP, mod], PP[NP],
The-DT[]
Sem: Arrest.agent = Crook; Probability = .00

Word 6: “detective” . . . Change in entropy: -.061
Stack2: Root[S], NPplusRR[ENFPVP], ENFPVP[ByPhr, mod],
ByPhrase[NP], NP[N], Detective-NN[]
Sem: Arrest.patient = Crook; Arrest.agent = Detective; Probability = .99

Stack3: Root[S], NPplusRR[ENFPVP], ENFPVP[ByPhr, mod], PP[NP],
NP[N], Detective-NN[]
Sem: patient = Crook; TL.landmark = Detective; Probability = .01
Stack1: Root[S], NPVP[FiniteVP], TransVP[lMod, patNP, mod], PP[NP],
NP[N], Detective-NN[]
Sem: Arrest.agent = Crook; TL.landmark = Detective; Probability = .00

Word 7: “was” . . . Change in entropy: -.01
Stack2: Root[S], NPVP[FiniteVP], Was-VBD[]
Sem: Arrest.patient = Crook; Arrest.agent = Detective; Probability = 1.0

Stack3: Root[S], NPVP[FiniteVP], Was-VBD[]
Sem: patient = Crook; TL.landmark = Detective; Probability = .00

Figure 7.5: The analyzer trace for the The crook arrested by the detective was...
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sentence position Good Agent Good Patient
verb .14 (21) .79 (51)
by .28 (42) .75 (48)
was .24 (36) .02 (01)

Table 7.3: The magnitude of the average change in entropy (average
∆i) at the verb, at “by”, and at “was” for the two test conditions.
The number in parentheses is the percentage of the total change in
entropy summed across the three sentence positions. For example,
the change in entropy at the verb for the good agent case is .14, and
.14/(.14+.28+.24) = .21.

reading time difficulty consistent with the trends in the McRae et al. data.

7.6 Results

The system analyzes each of the sentences tested by McRae et al. and after each

word in the sentence, the entropy and change of entropy are calculated using the

equations 7.3 and 7.4. For each word wi, ∆i is averaged separately for all the good

agent cases and for all the good patient cases. This provides the magnitude of the

average change in entropy at the verb, at “by”, and at “was” for both test conditions

which are shown in table 7.3.

McRae et al. present the sentence two words at a time, first showing the initial

NP (the cop), then the past participle + by (arrested by), then the agent NP (the

detective), and finally the actual main verb (was guilty). As is shown in table 7.1,

they provide the reading time differences over the unreduced baseline after the past

participle + by, after the agent NP and after the main verb. Following Narayanan

and Jurafsky [55] and Pado [59], the analyzer state after the main verb is matched to

McRae et al.’s past participle + by effect, the analyzer state after by is matched up

with McRae et al.’s agent NP effect, and the analyzer state after was is matched up

with McRae et al.’s reading time effect.

Instead of comparing the ∆i directly with the reading time difficulties found by
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McRae et al., I compare the percentage of difficulty. For the analyzer, the percentage

of difficulty is the ∆i, normalized by the sum of the ∆i’s at the three points of interest.

As shown in table 7.3, for good agents at the verb, the average ∆verb value is .14.

To get the average percentage of difficulty, I normalize .14 by .14+.28+.36 and then

multiply by 100. A similar computation is done for the McRae et al. reading time

difficulties shown in table 7.1 to get the observed average percentage of difficulty.

Figure 7.6 compares the average percentage of difficulty predicted by the analyzer

(the solid line) with the observed average percentage of difficulty taken from McRae

et al. (the dashed line) for the good agent cases. The analyzer appropriately predicts

about 20% of the reading time difficulty at the past participle. The analyzer predicts

a slightly higher percentage of reading time difficulty at by (42 vs 38), and it predicts

a slightly lower percentage of difficulty at was (36 vs 40). For the good agent cases,

the analyzer predicts the highest amount of difficulty at by because by is a strong

cue for the reduced relative thereby leading to a large change in entropy. At was, the

main verb interpretation is finally rendered impossible, in spite of the strong semantic

bias, and therefore the difference in entropy is large.

Figure 7.7 compares the average percentage of difficulty predicted by the analyzer

(the solid line) with the observed average percentage of difficulty taken from McRae

et al. (the dashed line) for the good patient cases. The analyzer correctly predicts

that the greatest amount of difficulty is at the past participle (51 vs 63), that the

difficulty at by is lower (48 vs 36), and that difficulty as was is nonexistent.

While the trends match up, the analyzer has trouble predicting the smaller per-

centage of difficulty at by. At the past participle, there is a lot of entropy in the

analyzer’s distribution over interpretations because the syntax and the semantics dis-

agree. The syntax prefers the main verb interpretation while the semantics prefers

the reduced relative interpretation. Then at by, almost all the uncertainty goes away

because the syntax and semantics both overwhelmingly prefer the reduced relative

interpretation. Thus another large (albeit somewhat smaller) change in entropy takes

place. At detective, the reduced relative interpretation is a near certainty, and there

is no change in entropy when was is encountered. This predicted lack of difficulty is

consistent with the lack of difference over the baseline found by McRae et al.
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Figure 7.6: For good agent cases: The percentage of reading time difficulty
predicted by the analyzer (the solid line) and the observed percentage of read-
ing time difficulty (the dashed line) for the good patient cases.
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Figure 7.7: For good patient cases: The percentage of reading time difficulty
predicted by the analyzer (the solid line) and the observed percentage of read-
ing time difficulty (the dashed line).
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McRae et al. also describe a sentence completion task. The sentence prefixes were

to be continued by by the subjects of the experiment, and the experimental stimuli

were similar to the ones used in the reading time study. For example, a subject in

the sentence completion study would be given the prefix the cop arrested and have

to write the rest of sentence. For both good agents and good patients, McRae et al.

provided prefixes like:8

• the cop arrested

• the cop arrested by

• the cop arrested by the

• the cop arrested by the detective

McRae et al. then measured the proportion of reduced relative completions at the

past participle, at by, at the, and at the agent noun. The results of their study are

shown in figure 7.8. For the subjects in their study, the proportion of reduced relative

completions is always higher for good patient cases, and for both good agents and

good patients, the proportion of reduced relatives goes up dramatically at by.

Using the conditional probability of the reduced relative interpretation after each

word, the analyzer can also make predictions about the proportion of reduced rel-

ative completions. These predictions are also shown in figure 7.8. The analyzer’s

predictions follow the trends found by the McRae et al. sentence completion study.

Comparing the analyzer’s predictions to the human predictions provides some insight

on the accuracy of the analyzer’s parameters. From the fact that the probability

of the reduced relative is higher for good patients at the past participle than the

proportion of human completions (.36 vs .2) suggests that the parameters used for

analysis make the prior probability of the reduced relative too high. For good agents,

the human proportion of reduced relative completions at by is much lower than the

analyzer’s probability of a reduced relative at by. This suggests that by is not as

reliable of a cue for the reduced relative as the analyzer’s parameters suggest.

8No subject saw the same initial NP + past participle more than once.
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Figure 7.8: For humans, this figure shows the proportion of reduced relative
sentence completions for good agents and good patients found by McRae et al.
For the analyzer, it shows the conditional probability of the reduced relative
given the prefix.
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7.7 More Modeling

The reading time predictions provided by the analyzer are the best McRae et al.

predictions made by a probabilistic model to date. Of course they are also the only

predictions made by model of deep interpretation. This suggests that a construction-

based model of deep interpretation can act both as a cognitive model of sentence

processing and as a psycholinguistic model of human sentence processing. Though

more experiments must be modeled before the constructional analyzer can be truly

be considered a unified model of sentence processing.
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Chapter 8

Analyzing Child-Directed

Utterances in Mandarin

This case study describes the application of the constructional analyzer to the

interpretation of child-directed utterances in Mandarin. Mandarin data provides an

interesting test for the analyzer because Mandarin speakers seem to rely more on

context to communicate meaning than English speakers. For example, constituent

omission is a productive phenomena in Chinese. Thus the extensions to the analyzer

for productive omission prove their utility in this chapter because they enable the

system to parse the child-directed utterances with omission.

Additionally, the scale of this task is much greater than for the other two case

studies in that the number of utterances the system analyzes is an order of magni-

tude larger than in other tests. Efficiency is also important because the Mandarin

grammar is much larger and more ambiguous than any other grammar used with

the system. This leads to a much larger search space, and thus the best-fit metric

becomes extremely important for focusing the analyzer on promising analyses.

This chapter is structured as follows. Section 8.1 provides a summary of the

differences between English and Mandarin, including a discussion of productive omis-

sion. Section 8.2 describes the analyzer’s role in a model of child language learning.

Section 8.3 covers the extensions to the analyzer to allow for multi-rooted analyses.

Section 8.4 describes the training and validation as well as the grammar used to model
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that data. Section 8.5 shows how examples from the Mandarin training corpus are

analyzed and related to context. Section 8.6 shows a proof-of-concept method for

estimating the constructional parameters, which improve the speed and accuracy of

the analysis process.

8.1 Mandarin and Productive Omission

Mandarin and English are similar in that they are both word-order dependent

languages that do not employ a rich morphology. From my English speaker’s per-

spective, though, there is a striking difference between Mandarin and English: Man-

darin speakers do not have to say as much. In Mandarin, one is allowed to freely

omit constituents whenever the meaning of the constituent can be inferred from the

situational or discourse context. This means that for Mandarin speakers, constituent

omission is a productive phenomena, and it is used much in the same way as English

speakers use pronouns.

Even in the child-parent interactions that make up the Beijing CHILDES corpus

[83], productive omission is extremely common. In a pilot study of the the central

ditransitive construction was used in the Childes transcripts [53], Mok and Bryant

note that all eight1 of the possible omission patterns are found in the data. Five

of these patterns are shown in figure 8.1 transcribed in standard PinYin. Note that

because Mandarin is a tonal language, each of the words in the transcribed utterances

are followed by numbers that indicate the tone of the word.

Mok and Bryant calculate the frequency of each of the omission patterns, as well

as the frequency of each argument being omitted. They find that:

• The giver is omitted approximately 80% of the time.

• The theme is omitted approximately 60% of the time.

• The recipient is omitted approximately 40% of the time.

1The giver can be expressed or not expressed, the theme can be expressed or not expressed, and
the recipient can be expressed or not expressed.
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ma1+ma gei3 ni3 zhei4+ge .
mother give 2sg this+CLS
Mother (I) give you this (a toy).

ni3 gei3 yi2 .
2PS give auntie

You give auntie [the peach].

gei3 a1+yi2 yi2+ge qu4 ao .
give auntie 1+CLS DEITaway EMP

[You] Give auntie one (peach).

ao ni3 gei3 ya .
EMP 2PS give EMP

Oh you give [auntie] [the peach].

gei3 .
give

[I] give [you] [some peach].

Figure 8.1: Examples from the Beijing CHILDES corpus illustrating produc-
tive omission with the Mandarin ditransitive construction. For these examples,
the Chinese characters have been transcribed as pinyin. A literal translation of
each word is provided as well as a paraphrase in italics. Bracketed phrases in
the paraphrase are omissions in the original utterance. Parenthesized phrases
are the referents of pronouns.

• All of the arguments are omitted about 30% of the time.

• All of the arguments are expressed about 6% of the time.

Thus Mandarin language learners are not often given the full construction, and yet

still learn that they can use all three arguments when necessary.

8.2 Language Learning and “Robust” Parsing

In a grammar learning framework, the parser and the language learning module

(learner) form a loop. For each input utterance, the parser does the best it can with
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the current (partial) grammar, and the language learning module uses the output of

the parser to improve the partial grammar. Chang [8] instantiates this framework

for English argument structure construction learning in ECG. In her model, each

input utterance is paired with a description of that utterance’s meaning. The in-

put/situation pairs are intended to be analogous to a child hearing the utterance in a

given situation. For each (utterance,situation) pair (α, β), Chang uses a simple con-

struction parser built by Bryant [5] to parse utterance α. Her model then compares

the situation β to the (partial) understanding of the utterance γ provided by the

construction parser. The learning module hypothesizes new constructions to cover

the difference between γ and β. Proposed constructions that are frequently used

become permanent additions to the grammar, while proposed constructions that are

not frequently used are removed.

Mok [52] extends Chang’s model to be more psychologically and cognitively plau-

sible, and to learn Mandarin constructions with argument omission as well. Mok uses

the constructional analyzer described in this thesis as the parsing module in her work.

She also incorporates a third component into the learning loop. This third component

is a context module that tracks the ongoing situational and discourse context after

each utterance and fits the returned analysis to the current context. The context

module enables the learning of constructions with argument omission.

8.3 Extensions for Grammar Learning

The grammar learning scenario puts extra constraints on the design of the system.

The in-progress grammar will be incomplete, and if the grammar is incomplete, then

often there will not be a single construction that spans the whole analysis. To deal

with this problem, I extended the system to return partial analyses in which a set of

fully-matched constructions can be used to cover the input. I refer to a set of analyses

that each cover a subspan of the input as a multi-rooted analysis.

Multi-rooted analyses have the following constraints:

• All returned roots must be complete (all constituents must be marked as omit-
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ted, matched or nonlocal)

• Every subspan of the utterance must be covered.

• A word cannot be a leaf of more than one root.

• To allow skipping, a root α can have a span that is within the span of another

root ρ. In this case, root ρ will not have any shared words with α, but will

consider it to be something like an interjection and skip it. For example, with

the input the the man man, the analyzer can return a multi-rooted analysis

with a span of (0,4) and the other with (1,3), and both NPs are treated as valid

sub-analyses of the utterance.

Using a scheme similar to that of the robust left corner parser described by Rose

and Lavie [69]2, the strategy I employ allows for multiple roots and skipping according

to the constraints specified above. To implement the strategy, two additional parser

operations for switching between roots have been added to the system. Importantly,

these operations have been defined such that a set of complete roots has exactly one

derivation in the analyzer.

Using the stack notation from chapter 5, the operations are defined as:

• New Root: Makes a new stack to incorporate the next word θ.

ROOT0[β0γ0], . . . , αj[] becomes ROOT ′0[β
′
0γ
′
0] LS = αj, θ[]

The current stack is rooted by ROOT0 and has αj as its top. Item αj is re-

quired to be a complete lexical item and additionally, αj cannot already have

been assigned a stack as its right sibling. If all those conditions are met, then a

new root ROOT ′0 is built. The notation LS = αj indicates that the left sibling

of the stack rooted by ROOT ′0 is the stack that has αj as its top item. Note

that ROOT0 could also have a left sibling.

2Their LCFlex parser has also been used to parse utterances from the Childes corpus [72].
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Whenever a new root is created, a user-set penalty term is added into the cost

of the derivation. Additionally, the conditional likelihood of pushing θ given

ROOT ′0 is also incorporated into the derivational cost. The semantic cost of the

new root is the total semantic cost of αj and its left siblings’ semantic cost plus

the semantic cost of the new stack.

• Switch Back: If the current stack is complete and it has a left sibling, switch

to it.

ROOT ′0[] LS = αj RS = ρ becomes ROOT0[β0γ0], . . . , αj[] RS = ρ∪ROOT ′0

The current stack is rooted by ROOT ′0 and has αj as its left sibling and a set of

right siblings (RS) represented by ρ. The switch back operation switches back

to αj. Item αj’s right sibling set is the union of ρ and ROOT ′0.

There is no cost to perform a switch back operation because it is determinis-

tically required given a complete root. Thus the constructional probability of

αj equals the constructional probability of ROOT ′0. In addition to the local3

semantic cost of αj, αj’s semantic cost must be updated to include the semantic

cost of ROOT ′0 and each of the elements of ρ.

The final modification to the parser is to update the heuristic function for com-

puting the probability of the next word wi+1. Assume that the current stack is ψj

and that ψj’s left sibling is ψj−1. I will use Pr(wi+1 | ψ ) to refer to the probability of

the next word given a stack.4 Also, assume an additional-root penalty of π and the

probability of completing ψj to be comp(ψj). Then the probability of the next word

is:

Pr(wi+1 | ψj ) + π × Pr( push | new root ) + Pr(wi+1 | ψj−1 )× comp(ψj) (8.1)

The first term of equation 8.1 is just the normal probability of the next word given

the current stack. The second term of the equation computes the likelihood of the

3The local semantic cost must also incorporate the semantic cost of ROOT0’s left siblings as well.
4This is the same estimate of the probability of the next word defined in chapter 5.
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next word assuming a new stack is used to predict the word. The third term is the

probability of ψ’s left sibling predicting the next word. Before the system can switch

back to ψj−1, it has to complete ψj, and thus the probability of the next word given

ψj−1 is scaled by the probability of completing ψj.

Note that there is a built-in locality assumption in equation 8.1. The equation

could have also added in the probability of the next word given ψj−2, but as written,

it obviously does not. Not including ψj−2 makes the assumption that two roots back

is too far away to be useful for predicting the next word. This assumption improves

the efficiency of the system and also cuts down on the search space, but it does have

ramifications for completeness.

To show how the multi-root operations work, assume a simple grammar S → A B,

A → a, and B → b. Without multi-rooted parsing, the only parseable sentence is

ab. But ff you allow for multi-rooted parsing as I have described it in this section,

sentence aabb is also parseable with two roots using the following derivation (where

sibling stacks are separated by a “;”:

S[AB], A[] → S[AB], A[];S[AB], A[] → S[AB], A[];S[B] →

S[AB], A[];S[B]B[] → S[AB], A[];S[] → S[AB], A[] →

S[B] → S[B], B[] → S[]

Sentence aabbab is also parseable with three roots. However, sentence aababb is not

parseable because of the way the probability of the next word function is calculated.

The stack arrangement when the final b is encountered looks like:

S[AB], A[];S[B], B;S[B], B[];

And the first S[AB], A[] stack is too far back to predict b.

8.4 Data

The Mandarin data used for this case study comes from the Childes Beijing corpus

[83]. The corpus is a collection of transcripts taken from taped interactions between



184

parents and their child in Beijing. The training data for the experiments in this

case study consists of 529 utterances from the transcripts of four children all between

20 and 24 months old. The mean length of the 444 non-interjection utterances in

the training set is 3.68 words and the longest utterance is 13 words. A validation

set was also built, consisting of 173 utterances pulled from the transcripts of the

fourth child with the mean length of the 126 non-interjection utterances being 3.23

words. Eva Mok annotated each utterance in the training and validation sets with

a a frame-based semantic representation of each utterance as well as the situational

and discourse annotation necessary to make sense of the utterance.

In addition to annotating utterances from Beijing Childes, Mok also built an ECG

grammar to cover the utterances in the training set.5 Mok defined 263 schemas for

modeling the common scenarios that a two year old encounters (e.g. eating, playing,

throwing, being naughty), and defined 174 ontological types in her context model.

Paired with those 263 schemas are about 609 constructions of which:

• 106 are abstract and used for defining phrasal and lexical category structure.

• 73 are concrete phrasal/clausal constructions consisting of the argument struc-

ture constructions, topicalization constructions, noun-phrase constructions and

adjunct constructions.

• 283 are open class lexical constructions and 135 are closed class function words.

• There is also a small set of constructions for left-overs such as the Unknown-Word

construction for use when the analyzer has no lexical record for an input form.

The parameters for her grammar are all learned based on the training data as is

shown in section 8.6.

8.5 Qualitative Results

To investigate what the system could and could not accomplish with the Mandarin

grammar, Eva Mok and I parsed the training corpus without enabling multi-rooted

5Lexical constructions for the validation set were also built.



185

analyses. Because we were interested in the structural aspects of the grammar, and

not the parameters, we use uniform constructional parameters and no semantic pa-

rameters.

Using the Mok grammar, the analyzer found a parse for 437 of the 530 utterances

in the training set and 129 of the 173 utterances in the validation set. Mok performed

a detailed analysis of the first 150 utterances in the training set ignoring repeats. Of

those 150, 125 of them had a parse given the Mok grammar. Of those 125, 76 of them

were perfect matches to the intended interpretation. Eight of the returned analyses

chose the right constructions to cover the data, but the context model did not resolve

the omitted arguments correctly. For the forty remaining incorrect analyses:

• nine could not be properly analyzed because the necessary constructions were

not in the grammar

• 12 used an incorrect word sense or had an attachment problem

• 3 analyses had topicalization issues. 2 required a topicalization that did not

happen and the third did not topicalize when it should have.

• 12 had incorrect constituent omissions

• 1 had a problem with reduplication

• 3 had a problem with the word le which in sentence final position could either

mean perfective aspect or act as the current relative state marker

To make these results more concrete, four of the 125 parsed utterances are shown

below. These example analyses show what the Mandarin analyses looked like and how

omission works within the system. Two of the four analyses are successful analyses

that have omitted constituents. For each omitted constituent (and noun phrase), the

context model provided a set of plausible referents that contained the correct referent.

The other two analyses shown below are ones for which the analyzer could not find

the correct analysis. The bad parses illustrate some shortcomings of the system that

can hopefully be corrected by future research.
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8.5.1 Successful Analyses

The two good analyses in this section illustrate how the system deals with omis-

sion, and how the analyzer uses the context model to resolve the omitted arguments.

Additionally, these good analyses illustrate the rich semantics that Mok has incorpo-

rated into her grammar. The rich semantics is a highly informative for the context

model when it has to choose a referent for a referring expression or an omitted con-

stituent.

Utterance (1) is a simple example in which the mother admonishes the child for

mashing a piece of peach into the ground:

(1) hai2 gei3 wo3 cuo1
too BEN 1sg mash

Translation: On top of that, [you’re] mashing [it] for me!

This four word utterance omits the subject and the object (shown as bracketed

phrases in the gloss). I have glossed the meaning of “hai2” with the colloquial “on

top of that”, to indicate the exasperation of the mother. The benefactive marker

“BEN” is used for both benefaction and malefaction in Mandarin, and when “gei3”

is used as the benefactive/malefactive marker6, it comes before the verb.

Figure 8.2 shows a compressed form of both the constructional tree and the sem-

spec for utterance (1). The proper analysis according to Mok’s grammar is an Ac-

tiveSubjectVP that combines a subject s with an active vp vc. In this case, the subject is

omitted and the VP is a TransVPwithMod The TransVPwithMod construction combines

a VP (in this case the CausedMotionVP1) with a special construction that gathers all

the preverbal modifications together called PreverbalModifications. Construction Pre-

verbalModifications has constituents for an adverbial phrase like the construction that

covers “hai2” as well as the construction PreverbalGei3Phr which covers the “for me”

part of the utterance.

Omission is marked in the constructional tree as skolem constructional types that

are in the analysis, but left unfilled. For example, constituent s with index 20 has

a skolem referring expression with nothing but an m role because the subject of the

6“gei3” is also the word for “give” in Mandarin
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utterance has been omitted. Similarly, the CauseMotionVP1’s n constituent (indexed

by 50 ) is omitted.

For both of the omitted constructions, the context model returns a candidate set

of referents. The system assumes that the referents of omitted constructions must

be contextually very salient, and this limits the scope of possible referents. For the

omitted subject of type Animate, the model returns the two salient animate entities in

context: the child and the mother. The omitted object has type ConcreteEntity, and

the range of possible referents (just given the type constraint) is much broader. Thus

the system returns a larger set of referents including the child, the mother, the peach,

the peach’s peel, the ground, and the room that they are in. In a more sophisticated

context model, more aspects of the semantics of the utterance would play a role in

determining a more accurate set of referents.7 Additionally, the pronoun “wo3” (me)

specifies that it resolves to the speaker, so the context model returns the mother.

The Mash schema is treated as a force application with roles for force supplier

(forcesupp) and the force recipient forcerecip. In utterance (1), the Mash schema fits

into a larger CauseMotion scene, with the Mash itself being the cause and the effect

being a TranslationalMotion in which the force recipient is the mover. The meaning

of the benefactive phrase is represented simply as a BeneMalefaction schema with the

“benefit” being the CauseMotion scene and the “beneficiary” being the meaning of the

PreverbalGei3Phr’’s np which in this case was resolved to the mother.

Utterance (2) is another simple example in which the mother admonishes the child

for putting too much lotion on her forehead:

(2) bie2 mo3 wai4+tou2 a
NEG apply forehead SFP

Translation: Don’t apply [the lotion] to your forehead

This four word utterance is an imperative that omits the object (shown as brack-

eted phrases in the gloss). The NEG particle indicates a command to not do some-

thing. The sentence final particle “a” reduces the forcefulness of the admonishment.

Figure 8.3 shows the analysis for utterance (2). The top level construction is

7Mok has extended the context model with an additional process that fits the utterance’s semspec
to the current context that also takes the semantics of the utterance into account.
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Figure 8.2: The complete analysis of utterance (1).
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NegImperativeSFP which is a negative imperative construction that combines the nega-

tion marker bie2 with an ActiveSubjectVP. It then treats the subject constituent (s)

as omitted, binding the ADDRESSEE filler into the meaning of the subject.

The meaning of the negative imperative in Mok’s grammar is a Negation schema

that binds the negated action (in this case an Apply schema instance) to the process

slot. Additionally, the bie2 construction evokes a Warning schema, but the Warning

schema instance is not shown because of space considerations.

Construction CausedMotionVP3 is special in that it treats its object as the goal

location of the CausedMotion scene (the forehead). To do this, a special phrase that

turns a common noun into a location (construction CN-Loc) is used. The Caused-

MotionVP3 construction’s constituent n is omitted, and it refers to the theme of the

CausedMotion scene which in this case is the substance being applied.

Resolving the two omitted items is easy for the context model because the gram-

mar provides a lot of information in this utterance. The subject referring expression

has its meaning bound to ADDRESSEE, and the addressee is the child. The omitted

object of the CausedMotionVP3 construction has its meaning bound to SUBSTANCE be-

cause of the Apply schema, and the only salient substance in the discourse/situational

context is the lotion.

8.5.2 Incorrect Analyses

The analyses in this section show some of the errors that the system makes. Some

of the errors are reasonable such as utterance (3) below, and some are a by-product

of the fact that the best-fit metric as defined in chapter 4 has a very weak model

of semantics and context. For both utterance (3) and utterance (4), incorporating

context into the best-fit metric should also make both of these incorrect analyses

less likely because the analyzer could prefer analyses that are consistent with the

situation. Intonation would also help because it would be easier to distinguish speech

acts.

The first incorrect analysis that I will describe is utterance (3) in which the mother

tells the child to give a piece of fruit to the Aunt so that the Aunt can eat it:
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Figure 8.3: The compressed analysis of utterance (2).
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(3) gei3 a1+yi2 chi1
give aunt eat

Translation: Give this to Aunt so she can eat it.

For utterance (3), the system should have returned a pivot analysis in which

Aunt was both the recipient of “give” and the agent of “eat”. Instead it returns

a benefactive analysis translated as eat this for auntie. Utterance (3) is ambiguous

because the verb “give” (gei3) is a homophone with the benefactive marker (also gei3).

Utterance (3) looks extremely similar to utterance (1), and the ambiguity making

the incorrect returned analysis reasonable both syntactically and semantically. The

incorrect analysis is shown in figure 8.4.

Because the analysis in figure 8.4 is quite similar to the analysis in figure 8.2, I

will briefly describe it. Like the analysis of utterance (1), the subject and object of

the main verb are treated as omitted. Additionally, the primary VP in this example

is the IngestionVP which takes verb like eat, chew and swallow. In this case, the verb

is eat and the Eat schema is bound into the meaning of the utterance.

For both utterance (1) and utterance (3), both the pivot interpretation and the

benefactive interpretation are reasonable on syntactic and semantic grounds. Even

with improved constructional and semantic parameters, though, it would be hard for

the system to get both analyses right.8 However, the context of and intonations of

each utterance could disambiguate the choice of interpretation. For example, if the

child sees the Aunt reaching out to take a piece of fruit, then the pivot construction

should be more likely than the benefactive interpretation. Examples such as these

illustrate the importance of including more context into the best-fit metric.

Utterance (4) takes place as the mother and child are inspecting a desk lamp. The

mother wants confirmation about whether the child sees the desk lamp:

(4) ni3 kan4 dao4 dian4+deng1 le ba
you see ASP ACH light ASP/CRS SFP
Translation: You successfully see the desklamp, right?

For utterance (4), the system should have returned an analysis in which the the

particle dao4 denoting achievement was attached to the verb kan4. Instead, the

8Changing the constructional parameters might enable the system to get utterance (3) right, but
it would bias it against getting utterance (1) correct.
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Figure 8.4: The incorrect compressed analysis of utterance (3).
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system treats dao4 as a modifier of dian4+deng1 meaning light (referring to the desk

lamp). Figure 8.5 shows the incorrect analysis of utterance (4).

The analysis in figure 8.5 is the first analysis in which I included the DiscourseSeg-

ment schema because the particle ba is indicative of a request for confirmation (a Re-

sponseEliciting speech act). The FiniteClauseSFP binds the DiscourseSegment’s speechAct

role to the meaning of its sentence final particle (sfp) role.

Like the other analyses in this section, the system returns the ActiveSubjectVP

construction, except this time, the subject is not omitted, and the argument structure

construction is PerceptionWithNPArg. Construction PerceptionWithNPArg takes the main

verb kan-4 (to see), as its constituent v

The trouble in this analysis is found in the CN construction. The achievement

construction dao4-v is bound to the stative modifier (mo) role of the ModifierPlusNoun

construction. This turns dao4-v into the modifier of the noun dian4deng1.9

The fact that the analyzer incorrectly allows the achievement marker to modify

lamp illustrates the fact that the best-fit metric must have a notion of what modifi-

cations are likely and unlikely for a given referent. 10 To encode the notion of likely

and unlikely modifications within the framework of the semantic factor defined in

chapter 4, each property (or modification) would have to be reified as a schema, and

the modified referent would have to be set as the holder of that property.

8.6 Learning the Parameters

In an ideal world, one would use a maximum likelihood estimate over an “analysis

bank” to estimate the constructional and semantic parameters of the factored model.

Unfortunately, no such analysis bank exists. The closest thing to an analysis bank

that we have access to is the annotation set that Mok built for the training and

validation sets, but those annotations do not carry any constructional information.

Thus we investigated an EM-style iterative approach to learning the constructional

9Adjectives in Mandarin are generally analyzed by linguists as stative verbs. Stative verbs can
be used pre-nominally, with or without an associative particle.

10As it stands, a bit more semantic information would have to be included in the grammar to
make it obvious that the notion of achievement was modifying the referent of the CN construction.
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Figure 8.5: The incorrect analysis of utterance (4).
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and semantic parameters11 with alternating parsing and estimation phases:

Input: A corpus θ, a fixed grammar G, and a parameter set ρ consisting of con-

structional parameters and semantic parameters. For the initial parsing step

the constructional filler parameters are assumed to be uniform and the semantic

parameters are not used.

Step 1: For each utterance u in corpus θ, parse u using grammar G and parameters

ρ

Step 2: Re-rank the analyses of each utterance u according to how well they match

u’s annotation.12 The best re-ranked analysis of u is added to a set κ

Step 3: Pretend that κ is a set of gold standard annotations, and re-estimate the

constructional and semantic parameters in ρ using a maximum likelihood esti-

mate.

Step 4: Go back to Step 1, using the new parameters in ρ. Repeat until performance

on the validation set drops.

On the training set, we only estimated parameters using the 437 utterances for

which the grammar produces a single-rooted parse. After each iteration, we used

the parameters of ρ and re-parsed the training and validation sets and compared

the single best parse to the annotation. Performance was measured by how well each

utterance’s single best parse predicted the core arguments of the utterance, as defined

by the annotation. On the training set, there were 1727 core argument roles to be

predicted, and on the validation set there were 444 such roles over the 129 complete

parses it found.

Both the constructional parameters and the semantic parameters were smoothed

after estimation. The constructional filler parameter Pr( filler | constituent ) was

smoothed with Pr( filler | constituent type ) and finally with a uniform distribution

11The frame annotations that Mok built for the Childes data are more general than the schemas
used in her grammar.

12The matching process checked for consistency between core arguments and word senses used.
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given the type constraint. The held-out mass was calculated using the Witten-Bell

smoothing algorithm on each distribution[35].

The semantic parameters Pr( role = filler | frame, filler ) were calculated using

a backoff method. For each (frame, filler, role) triple, 1 was added to the counts of

each supertype of the filler in addition to the filler itself. For example, if the triple was

(Eat, Child, Agent), then (Eat, Child, Agent), (Eat, Person, Agent), (Eat, Animate,

Agent), (Eat, ConcreteEntity, Agent), and (Eat, Entity, Agent) would all have their

counts incremented. The probability of a new (frame, filler, role) is defined as the

normalized count of that triple if it is greater than zero. Otherwise, the probability

of the triple is recursively defined as (filler, parent(filler), role).

Table 8.1 shows the performance of the system on the training and validation sets

without using semantic parameters on any of the iterations. As can be seen from the

table, the iterative technique for estimating the constructional parameters increases

precision and recall on both the training and validation sets. Additionally, on the

training set, the number of states processed by the parser dropped dramatically from

over 31000 with uniform parameters to about 14500 after iteration 2.

Table 8.2 shows the learning progression if the semantic parameters are estimated

along with the constructional parameters. Just like in the constructional parameter

only case, the precision and recall increase through iteration 1 and then level off at

iteration 2. Although the F-scores are quite similar, the precision is higher and the

recall is lower when the semantic parameters are included (as one would expect with

additional constraints).

8.7 Summary

This chapter shows how the constructional analyzer can be applied to a language

with productive omission such as Mandarin. The analyzer uses a context model

to resolve the omitted arguments, leveraging the rich semantics of a construction

grammar to inform the choice of a referent. Additionally, extensions to the analyzer

for parsing with multiple-roots are also defined.

The analyzer was applied to a subset of the Tardiff Beijing Childes Corpus using
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Learning without the semantic parameters

Iteration Training Set Validation Set
Precision Recall F-Score Precision Recall F-Score

-1 .811 .688 .744 .805 .669 .731
0 .834 .775 .803 .859 .770 .812
1 .837 .779 .807 .866 .797 .830
2 .837 .778 .807 .865 .797 .830

Table 8.1: The performance of the analyzer on the training and validation sets after
each iteration of parameter learning. Iteration -1 is the initialization phase that uses
uniform parameters. The semantic parameters were not used during this experiment.

Learning with the semantic parameters

Iteration Training Set Validation Set
Precision Recall F-Score Precision Recall F-Score

-1 .811 .688 .744 .805 .669 .731
0 .836 .763 .798 .870 .768 .816
1 .840 .770 .804 .879 .787 .831
2 .838 .770 .803 .881 .784 .830

Table 8.2: The performance of the analyzer on the training and validation sets after
each iteration of parameter learning. Iteration -1 is the initialization phase that
uses uniform parameters. The semantic parameters are estimated and used for each
iteration except for iteration -1.
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a grammar written by Eva Mok. With the grammar, the analyzer could parse about

82% of the utterances in the training set. A closer examination of 125 of the parseable

utterances in the corpus reveals that the analyzer returns a perfect match 68% of

the time, and how the errors are spread over the remaining 32% of the utterances.

Example analyses illustrate how omission is handled by the system as well as showing

some of the drawbacks of the current best-fit metric.

The final section of this chapter discusses a pilot study that investigated a machine

learning approach to estimating improved constructional and semantic parameters.

Using the learned parameters, the F-score on the validation set increases by .1 over

the unparameterized grammar. In addition to being more accurate, the system also

parses faster with the learned parameters, decreasing the number of states processed

by 50%.
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Chapter 9

Conclusion and Future Work

This dissertation has shown that a construction-based system for language in-

terpretation, called the constructional analyzer, can be both a cognitive model of

interpretation and a practical program for semantic analysis. The analyzer produces

rich linguistic analyses with an embodied grammar. It makes incremental reading

time predictions consistent with experimental data. It can also robustly parse Man-

darin child-directed language, even with Mandarin’s dependence on context. The

analyzer is the first cognitive model of interpretation that can do all three of these

tasks.

The power of the analyzer comes from constructions. Constructions provide ex-

plicit constraints between form, meaning and context, thus enabling the use of a

best-fit technique for defining the conditional probability of an analysis. Addition-

ally, because the relation between form and meaning is explicit, constructions make

it easy to adapt the system to multiple tasks such as the three case studies described

in chapters 6, 7 and 8.

The best-fit metric is implemented as a factored probabilistic model over syntax

and semantics. The syntactic factor incorporates construction-specific preferences

about constituent expression/omission and the kinds of constructional fillers preferred

by each constituent. The semantic factor scores a semspec in terms of the fit between

roles and fillers. Importantly, the two factors are not treated as independent, but

are related through a function that provides the likelihood of the semspec’s structure
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given a partial constructional tree (or derivation). The function that estimates the

probability of a semspec given a derivation makes it possible for the best-fit metric to

act as the online search heuristic for the left corner parsing algorithm. Context also

affects the search heuristic in a limited way in that referents must be found for all

omitted constituents and referring expressions. If no candidates are available, then

the analyzer will not pursue an analysis that requires the referent.

The analyzer produces rich linguistic analyses for a range of interesting construc-

tions including embodied semspecs for the various motion and force-application con-

structions designed by Dodge. An array of syntactically interesting constructions are

also easy to implement within the analyzer including constructions for passives, sim-

ple wh-questions, raising and radial category description of the ditransitive argument

structure construction. Crucially, all of these constructions are implemented within

the same internally consistent grammar.

Although the English construction grammar is currently the most linguistically

well-motivated grammar processed by the analyzer, the analyzer is not tied to English.

It analyzes Mandarin child-directed utterances as well, using a Mandarin grammar.

Productive omission is incorporated into the parser and scored by the best-fit metric.

Omitted arguments are resolved to a candidate set by the system’s context model.

The best-fit metric is vital for analyzing the Mandarin data. Even with small biases

in the constructional probabilities, the accuracy and efficiency of the system increase

dramatically. Success with the Mandarin data confirms that the analyzer is practical

enough to be used as a small-scale construction-based semantic analysis engine.

In addition to practicality, analyzer has been designed with a focus on being psy-

chologically and cognitively plausible and predicts differences in incremental reading

time for reduced relative data. The factored syntactic and semantic model plays an

important role in making the reading time predictions. The syntactic factor imple-

ments the syntactic bias for main verb interpretations over reduced relative inter-

pretations1, and the semantic model implements the good agent/good patient biases

that differentiate the two experimental conditions. Crucially, the system is a model

1Given just an NP and a past-participle
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of deep semantic interpretation first, and it just happens to predict reading time data

as a byproduct of its whole design.

9.1 Future Work

Although the constructional analyzer can perform a collection of tasks that no

other language interpretation program can, there is still so much left to be done. This

section outlines related research directions and for each topic, suggests a roadmap for

future work.

9.1.1 More of the Same

For each of the case studies, doing more of the same would strengthen the claims

about rich linguistic capability/adequacy, psychological/cognitive plausibility and

cross-linguistic completeness. For example, the more argument structure construc-

tions the system can model, the better. The resultative family of constructions would

be an ideal test case because it is a well-studied construction with a rich semantic

structure. Of course, productivity is also of primary interest, and representing other

interesting syntactic phenomenon in ECG will certainly test the adequacy of the both

the formalism and the assumptions made in chapter 6.

In regards to psychological plausibility, the McRae et al. data [51] presented in

chapter 7 is a tailor-made test case for the constructional analyzer because the data

depend on semantics. But the contention that the constructional analyzer is a psy-

chologically plausible model of language interpretation will rest on using the analyzer

to model more experiments. For example, the experiments presented by Tabor et al.

[81] also depend on the reduced relative, and if their experiments could be modeled,

then it would put to rest some of their concerns about mixed parsing strategies. And

though the model of context is rudimentary, the constructional analyzer is the only

system that has a structured representation of context, and thus it would be the

only current system that could potentially model results that condition on contextual

information.
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The Chinese grammar described in chapter 8 acts as an existence proof that the

analyzer can interpret languages that differ significantly from English. Obviously, the

more languages that are incorporated, the better. Ongoing work by Nathan Schneider

is investigating representing Hebrew within ECG. Semitic languages such as Hebrew

have a morphology that is very different from English, and their interpretation would

be both scientifically interesting and have obvious applications.

9.1.2 Parameter Learning

One major unsolved problem with the constructional analyzer is how to estimate

the constructional and semantic parameters on which the system relies. One promis-

ing approach is laid out in chapter 8 for learning the constructional and semantic

parameters for the Mandarin grammar. The parameter estimation process specified

in chapter 8 could be applied to any corpus for which a construction grammar exists

and there was a semantic method for measuring analyzer performance. Even shallow

semantic annotation such as FrameNet [22] or Propbank [61] could in principle be

used for this process. Of course, one either has to write the construction grammar or

a method for inferring the rules of the grammar from data.2

9.1.3 Information Extraction

One possible practical application of the system is shallow understanding or infor-

mation extraction for question answering [75]. Frames and frame role filler extraction

of the sort defined by Gildea [24] provide a shallow, but still useful level of seman-

tic representation. The FrameNet project3 has specified frames for a broad range of

lexical constructions. Crucially, they also provide annotations that link the grammat-

ical roles of the annotated utterance to the semantic roles of the evoked frame. In

his work on paraphrasing using FrameNet, Michael Ellsworth has shown that these

annotations can be construed as extremely impoverished, lexically-specific argument

2For more on construction grammar learning see [8] [52].
3framenet.icsi.berkeley.edu
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structure constructions.4

Thus to build a shallow information extraction grammar, one could convert the

grammatical information stored inside of FrameNet into shallow ECG constructions

and convert the FrameNet frames into ECG schemas. Obviously, additional gram-

matical scaffolding would have to be added to support noun phrases, conjunction, and

different speech acts, but the multi-rooted analysis algorithm could be used if this

proved to be too onerous. Then one could use the parameter estimation techniques

proposed in chapter eight to infer the constructional filler probabilities needed for the

syntactic factor. For the semantic factor, the FrameNet semantic clustering work of

Pado [59] could be used as the semantic factor.

9.1.4 Metaphor

For the productive, relatively fixed metaphors5 covered in [44], there are at least

two open questions. The first is how to represent metaphor within ECG, and the

second is how metaphor is evoked by constructions. This section provides a brief

snapshot of ongoing work for integrating metaphor into the analyzer.

Ongoing work on the representation of productive metaphor in ECG has shown

that instances of metaphoric mappings between domains are not so representation-

ally different from schemas. Our current work suggests that metaphors are kinds of

maps, and thus a new ECG primitive called map has been introduced. Consider the

extremely simplified LoveIsAJourney metaphor shown in figure 9.1. Like schemas, maps

are arranged in a type lattice supporting inheritance. The LoveIsAJourney metaphor

is a subcase of a generic Metaphor type, though in a more complete specification, it

would be a subcase of the event structure metaphor.

Like all maps, the LoveIsAJourney metaphor has roles defined for a source domain

and a target domain. In this case, the source and target are simplified frames for a

journey (the JourneyFrame) and a relationship (the RelationshipFrame) which are not

shown. A map specifies pairings between the source domain and the target domain.

4Personal communication
5Methods for dealing with dynamically mapped domains are still an open topic of research and

will not be dealt with here.
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map LoveIsAJourney
subcase of Metaphor
roles
source : JourneyFrame
target : RelationshipFrame

pairs
participantsToTravelers : Pair
relationshipToPath : Pair

constraints
participantsToTravelers.first ←→ target.participants
participantsToTravelers.second ←→ source.travelers
relationshipToPath.first ←→ target.relationship
participantsToTravelers.second ←→ source.path

schema Pair
roles
first
second

Figure 9.1: An example Love as a Journey metaphor.

In the case of the LoveIsAJourney metaphor shown in figure 9.1, there are two pairings.

One pairing is between the participants in the relationship and the travelers of the

journey. The other pairing is between the relationship role of the RelationshipFrame and

the path role of the JourneyFrame. The constraints block unifies the roles of each pair

with the appropriate roles of the source and target domain.6

The simplest approach to bringing metaphor into the EJ1 grammar is to de-

fine metaphor specific versions of argument structure constructions and prepositional

phrase constructions. Consider the utterance7, Our relationship is running into trou-

ble. There are two clues that this utterance is metaphoric. The first is that relation-

ship cannot be a literal mover, and the second is the object of the into preposition is

a state and not a location.

Figure 9.2 shows a simple example metaphorical prepositional phrase construction

called StatesAreLocationsPP. It is a subcase of the standard SpatialPP which means it

inherits constituents for the preposition, the object of the preposition obj, and the

form constraints from SpatialPP. It also inherits the meaning constraints from SpatialPP

6While this definition of pairs and constraints might seem redundant, it makes it easy to support
static and dynamic maps with the same ECG primitive.

7The sequence relationship is running into trouble exists on google.
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construction StatesAreLocationsPP
subcase of SpatialPP
meaning
evokes Pair as statesArePlaces
constraints
ignore: obj.m ←→ self.m.landmark
statesArePlaces.first ←→ obj.m
statesArePlaces.second ←→ self.m.landmark

Figure 9.2: A metaphorical PP that takes a state instead of a location.

including typing the meaning pole to TrajectorLandmark and binding the meaning of

obj to the ssflandmark role.

All of the differences between SpatialPP and StatesAreLocationsPP are shown in fig-

ure 9.2. Importantly, the construction evokes a Pair schema called StatesArePlaces for

representing the link between states and places. The constraints block ignores (over-

rides) the inherited constraint that the meaning of the obj constituent is bound to the

landmark role. Instead, the meaning of obj is bound to the first role in the statesAre-

Places pair. The landmark role is then bound to the second role of the statesArePlaces

pair.

To make the grammar internally consistent, the metaphoric versions of the motion

constructions will use StatesAreLocationsPP instead of the standard SpatialPP. The

metaphoric motion constructions will then be able to unify the statesArePlaces pair

inside the StatesAreLocationsPP with their own statesArePlaces pair.

The approach to metaphor described here might be reasonable for extremely pro-

ductive constructions like the Event Structure Metaphor which could reasonably be

considered reified. The question of what to do for less productive metaphors is still

unsolved. Making a separate argument structure construction for every compatible

metaphor does not seem like the right answer, so going forward will require more

research.
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9.1.5 Metonymy

Like metaphor, one can split the concept of metonymy into two subcategories. One

kind of metonymy is explicitly grammatically licensed. The other kind of metonymy

is a productive use of language for reference.

As an example of the grammatically licensed variety of metonymy, consider the

sentence, the truck roared down the hill. The sentence features a constructionally

specified metonymy usually described as sound for motion. Figure 9.3 shows one pos-

sible way to define a sound for motion construction. The SoundForMotion construction

inherits from the MotionAlongAPath construction defined in chapter 6 and uses the

schemas defined in that chapter as well.

To model the semantics of co-timed motion and sound, construction SoundFor-

Motion evokes a ComplexProcess schema (also defined in chapter 6) called proc and a

SoundEmission schema called se. The constraint that unifies the meaning of the verb

with the construction’s MotionAlongAPath meaning pole is ignored, and instead, the

bindings specify that MotionAlongAPath is process1, while the meaning of the verb v.m

is unified both with process2 and the SoundEmission schema named se. This ensures

that only sound emission verbs can be a part of this construction. The final two

constraints bind the protagonist roles appropriately.

The productive kind of metonymy used in referring expressions is exemplified

by the utterance, the ham sandwich wants his check. For that utterance to make

sense, you have to put yourself in the shoes of a waiter that only can distinguish his

customers by the food that they ordered, and thus, “ham sandwich” might be the

referential description that maximizes both ease of description and ease of reference

resolution.

To properly resolve referential descriptions such as these, the approach I advocate

is to build the metonymic process into the reference resolution mechanism. My claim

is that this kind of metonymy is quite similar to frame-based coreference examples

such as the definite use of the door in the utterance, I bought a new car, but the door

was scratched. In this case, the door requires inference through the car frame to link

the door ’s meaning with the particular car door.
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construction SoundForMotion
subcase of MotionAlongAPath
meaning : (inherited) MotionAlongAPath
evokes ComplexProcess as proc
evokes SoundEmission as se
ignore: self.m ←→ v.m
proc.process1 ←→ self.m
se ←→ v.m
proc.process2 ←→ v.m
proc.protagonist ←→ self.m.protagonist
proc.protagonist ←→ proc.protagonist2

Figure 9.3: The Sound-For-Motion construction and the construction it
subcases.

For the ham sandwich, a frame-based inference is also necessary, in particular

a restaurant patron frame would have a role for the food that she ordered. The

motivation for treating the ham sandwich as a metonymy (as opposed to simple

frame-based coreference) comes from a type clash. The type constraint on wants

would require a sentient entity, and the ham-sandwich entity would not satisfy such

a type constraint. Thus the reference resolution system would instead return the

restaurant patron as the appropriate resolved referent.

9.1.6 Morphology, Intonation and Speech Recognition

Morphological analysis, intonation analysis, gesture analysis and speech recogni-

tion are separate fields of research. However from the constructional analyzer’s point

of view, they can all be modeled as co-processes that run in parallel with the analyzer.

• For morphology, linking the constructional analyzer to a morphological analyzer

is in progress (joint work with Nathan Schneider). The morphological analyzer

takes a morphological grammar that is also construction-based, and returns a

set of a lexical tokens for each word of the input string. While the current

implementation runs the morphological analyzer on the whole utterance before
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phrasal analysis starts, it can still be conceptualized as a co-process that runs

in parallel with phrasal analysis.

A bonus for using morphological analyzer is that the morphological analyzer can

model the intricacies of building words, and the phrasal analyzer can instead

reason about word classes similar to part-of-speech tags. The part-of-speech

tags might often be constructionally specific, but regardless, an set of interfaces

between the constructional analyzer and the morphological analyzer would re-

duce the lexical portion of the reachability tables to just the interface types. Of

course, semantics and other lexically-specific information will still play a vital

role during analysis, but a tag interface makes it possible to collapse the size of

the reachability tables to just reachable interface types.

• When processing an acoustic signal, off the shelf speech recognition software

can return a list of likely utterances given the acoustic signal. Each of the

possible utterances can be processed separately by the analyzer. The likelihood

of each utterance’s interpretation would have to be scaled by the likelihood of

the utterance given the acoustic signal. More precisely, if one wants to infer the

most likely interpretation i given acoustic signal α:

argmaxi Pr( i | α ) = argmaxi
∑
u

Pr( i | u ) Pr( u | α )

where u ranges over each of the possible utterances given the acoustic signal. Of

course, in the actual implementation, one would not enumerate each utterance u,

and instead the analyzer would incrementally process the word lattice directly.

• Intonation and gesture carry important information for reference resolution, de-

termining discourse focus, and determining speech act (e.g. sarcasm). Though

online gesture processing is still a long ways off, intonation monitoring has

been implemented as a co-routine along with speech recognition. An intona-

tion/gesture monitor can also be seen as a co-process running in parallel with

the constructional analyzer. Defining an interface between the intonation mon-

itor and the constructional analyzer is subtle, however, since some intonation
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boundaries co-occur with word boundaries and some do not. For those that

they do co-occur with word boundaries, one possible interface is to add into-

national features to morphological rules, and use the morphological analyzer to

set the intonational features which would make them available to the phrasal

rules when necessary.

9.1.7 Improved Situation and Context Modeling

The context model is an obvious shortcoming of this work. While much of the

necessary structure is in the model for doing basic reference resolution, the reference

resolution probability model is too rudimentary to be useful. As was addressed in

chapter four, commonly used models of reference resolution are not incremental, they

are not psychologically plausible, and they are not structured in a cognitively moti-

vated way. Thus even basic research on computationally precise models of context

and reference resolution would improve the plausibility of the constructional analyzer.

Though it is not incremental, mental spaces theory [18] provides a cognitively-

motivated account of the situational and discourse context that condition language

interpretation. Unfortunately mental spaces theory is not computational enough to

be employed in the constructional analyzer. Ongoing research with Jerry Feldman

and Luca Gilardi is attempting to change this, however.

In the currently evolving account of mental spaces within ECG, each utterance is

situated in a situation that represents the ongoing discourse and situational context.

Different situations are related through maps which are quite similar to the metaphor

maps described in section 9.1.4. Maps pair elements of different domains. For situa-

tions, maps set up counterpart relations that link (for example) person α from a ten

year old vacation photograph with the person α of today. These relations enable the

cross-situation inference necessary for language understanding.8

8To continue the vacation photo example, assume that person α depicted in the photograph
remarks I should have brought more sunscreen when I went to Maui. If the person α is fair-skinned
and prone to sunburn, the system can infer that the person depicted in the photo is also prone
to sunburn using the map. Only then would the system be able to correctly infer that person α
probably did not apply the appropriate amount of sunscreen and got burnt. Of course, such inference
is beyond the scope of this dissertation, but in principle, the analyzer could return the necessary
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Even with the representational tools of situations and maps, another open problem

is how these situations and maps are instantiated. Certain constructions, called space

builders, are linguistic cues that indicate the possible evocation of a new situation or

space. All the problems of incorporating metaphor into the grammar also exist with

situations and maps with the additional complication that the maps are dynamic in

that new pairs can be introduced by the linguistic content.

Assuming that the situations and maps can be set up properly from the linguistic

context, certain referential expressions could refer to either an entity in the current

situation, or that entity’s counterpart in some other situation. Just as before, the RD

schema can still act as the analyzer’s interface to context, but with the additional

possibility that a resolved referent comes from a different space. For a referring

expression that explicitly expresses the fact that it refers to the counterpart of some

entity, this fact should be marked on the RD schema. One approach to marking the RD

would be to add new RD roles called counterpartOf and baseSituation which would allow

the context model to resolve referents in other spaces without the need for extending

ECG. As an example, consider the sentence, The building in the picture has been

remodeled. The NP the building in the picture refers to the real-life counterpart of

the building in the picture. Using the RD based approach suggested here, the RD

might look like:



RD

category : building

givenness : definite

baseSituation : pictureSituation7

counterpartOf : pictureSituation7.depictedItem

referent : building314




In this case, the phrase the picture would resolve to pictureSituation7 and fill in the

baseSituation role. Use of in would indicate the depictedItem of pictureSituation7,

thereby filling in the counterPart role. During reference resolution of the whole noun

phrase, the context model would search for a counterpart of the item depicted item

that was a building, and return building314.

structure to enable the inference.
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9.1.8 Generation

Beyond the semantic and constructional factors that are already incorporated into

the model, there are a range of additional factors that condition language generation.

Besides genre, register and discourse factors (some of which will be covered below),

the speaker has to model what the addressee does and does not know. Models of

other minds are even beyond the scope of this dissertation’s future work section.

However, if one assumes that the necessary factors for conditioning generation

are accessible, then one can borrow an idea from statistical machine translation as a

starting point for generation [89]. If one assumes that the “source language” is the

conceptualization c that needs to be generated, and that the “target language” is an

utterance u, one can mathematically define the process of generating u as:

argmaxu Pr(u | c )

Then using Bayes rule to rewrite Pr( u | c ):

argmaxu Pr(u | c ) = argmaxu Pr( c | u ) Pr(u)

Term Pr( c | u ) is the likelihood of the conceptualization given the utterance. This

term models the faithfulness of the utterances to the conceptualization c, penalizing

utterances that are ambiguous. Term Pr(u) is the prior likelihood of the utterance,

and it measures the fluency of the utterance u. Highly likely utterances are generally

easier to process. An utterance u that maximizes the product of Pr( c | u ) and Pr(u)

would have to be both easy to process and faithfully generate conceptualization c.

Notice that Pr( c | u ) is basically the probability of an analysis given a sentence,

which is what the analyzer estimates when it parses an utterance. Additionally, it is

straightforward to estimate the likelihood of the utterance u using the analyzer.

Just as in the decoding process of machine translation, one must define a way

of generating possible candidate utterances in the “target language”. These candi-

date utterances act as the domain of Pr(u). Assuming that the conceptualization c

was represented as an EventDescriptor schema9 with bindings for the profiledParticipant,

9If this is not the case, then another process that maps the conceptualization c onto an Event-
Descriptor is also needed.
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profiledProcess, and topic roles, then one would hope that the decoding process and

the analysis process could be performed and modeled jointly. Abstractly, the process

would be kick-started by generating the topic of the sentence, and then choosing to

generate a likely word given the prefix, but only if the generation of that word re-

sulted in a semspec that was still unifiable with the original c. To guide the search

for candidate utterances, an A∗ heuristic indicating how many remaining unexpressed

semantic bindings could be used to indicate how close an utterance u was to matching

the conceptualization c.

9.1.9 Simple Ways to Condition the Analysis Process on Dis-

course, Genre, Register and Priming

One obvious way to condition the analysis process on discourse facts, genre and

register is to use hard constraints such as features. Such an approach is not prob-

lematic given the unification grammar backbone that ECG is built around. However,

softer constraints such as preferences on construction choice in certain discourse con-

texts, genre and register require extension to the probabilistic model.

One simple way to extend the model is to incorporate “probabilistic switches”.

This is implicitly what I do for conditioning the likelihood of nonlocal constituents.

A probabilistic switch (or more accurately a simple piece of conditioning informa-

tion) like “existingFrontedItem=true” modifies the conditional likelihood of a nonlo-

cal constituent in a functional (on/off) way. In essence, the probability of a nonlocal

constituent is zero unless “existingFrontedItem” is true.

Other kinds of probabilistic switches might be the facts about the discourse such

as the type of the previous speech act, the genre of the discourse, and the intended

register of the discourse. A simple switch like “PreviousSpeechAct=Wh-Question”

would increase the likelihood that the response could be a simple NP instead of a

finite clause.

Priming could also be a case where a probabilistic switch could be employed. To

do this, the constituent filler probabilities would need to be updated in some simple

way if a construction that was primed in the previous utterance were a possibility.
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Any modification of the distribution could be used as long as the resulting distribution

still summed to one.

9.1.10 A Neural Model

Cognitive and psychological plausibility were of central importance in the design of

the constructional analyzer. Though it is not possible to map the analyzer’s processes

onto actual neural circuitry in the brain, one can use the design of the analyzer to

inform the design of a computational abstraction over neural circuitry such as a

structured connectionist model. The cognitively/psychologically plausible aspects of

the system include:

• Incremental processing

• Conditioning decisions on syntactic and semantic information (i.e. best-fit)

• Limited parallelism and memory

• Top-down and bottom-up influence on parsing

• Deep semantics

• Constructions

Lane and Henderson use a connectionist model of a best-fit function in their left

corner parsing work [45]. It is a recurrent network that models the relevant features

of the current derivation, and it predicts the likelihood of each next derivational step.

They use a specialized recurrent network that contains co-timed “pulsating” nodes

to represent the structure of a parse and train it using backpropagation.

More cognitively plausible approaches to representing structured elements are de-

vised by Shastri et al. [74] using temporal synchrony and the generalization over

temporal synchrony proposed by Barrett et al. [2] which supports unification. As-

suming that the Barrett et al. work could be extended to support a limited stack-like

item as one of their model’s variables, then each of the variables could represent

competing interpretations of an utterance. The new structure associated with each
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word would be unified in with each of the stacks and unlikely resulting stacks would

be pruned away because of lack of activation. The stack with the highest activation

that survives to the end of the utterance would be the best-fit interpretation of the

utterance.

9.2 Summary

As you can see, best-fit constructional analysis lays the groundwork for computa-

tional implementations of cognitively motivated theories of morphology, metonymy,

metaphor, generation, and mental spaces. Additional practical applications include

tasks where rich semantic analysis is necessary such as question processing or dialogue

systems. And a connectionist implementation of the system would not only advance

the field of connectionist modeling, but cognitive science as well.
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